Improve back button behavior.
[chromium-blink-merge.git] / media / base / simd / convert_rgb_to_yuv_ssse3.asm
blobffbcbbcebd8d879645dccd7f3c3ab054432ac3bd
1 ; Copyright (c) 2011 The Chromium Authors. All rights reserved.
2 ; Use of this source code is governed by a BSD-style license that can be
3 ; found in the LICENSE file.
5 %include "media/base/simd/media_export.asm"
6 %include "third_party/x86inc/x86inc.asm"
9 ; This file uses SSE, SSE2, SSE3, and SSSE3, which are supported by all ATOM
10 ; processors.
12 SECTION_TEXT
13 CPU SSE, SSE3, SSE3, SSSE3
16 ; XMM registers representing constants. We must not use these registers as
17 ; destination operands.
18 ; for (int i = 0; i < 16; i += 4) {
19 ; xmm7.b[i] = 25; xmm7.b[i+1] = 2; xmm7.b[i+2] = 66; xmm7.b[i+3] = 0;
20 ; xmm6.b[i] = 0; xmm6.b[i+1] = 127; xmm6.b[i+2] = 0; xmm6.b[i+3] = 0;
21 ; xmm5.b[i] = 112; xmm5.b[i+1] = -74; xmm5.b[i+2] = -38; xmm5.b[i+3] = 0;
22 ; xmm4.b[i] = -18; xmm4.b[i+1] = -94; xmm4.b[i+2] = 112; xmm4.b[i+3] = 0;
23 ; }
25 %define XMM_CONST_Y0 xmm7
26 %define XMM_CONST_Y1 xmm6
27 %define XMM_CONST_U xmm5
28 %define XMM_CONST_V xmm4
29 %define XMM_CONST_128 xmm3
32 ; LOAD_XMM %1 (xmm), %2 (imm32)
33 ; Loads an immediate value to an XMM register.
34 ; %1.d[0] = %1.d[1] = %1.d[2] = %1.d[3] = %2;
36 %macro LOAD_XMM 2
37 mov TEMPd, %2
38 movd %1, TEMPd
39 pshufd %1, %1, 00000000B
40 %endmacro
43 ; UNPACKRGB %1 (xmm), %2 (imm8)
44 ; Unpacks one RGB pixel in the specified XMM register.
45 ; for (int i = 15; i > %2; --i) %1.b[i] = %1.b[i - 1];
46 ; %1.b[%2] = 0;
47 ; for (int i = %2 - 1; i >= 0; --i) %1.b[i] = %1.b[i];
49 %macro UNPACKRGB 2
50 movdqa xmm1, %1
51 psrldq xmm1, %2
52 pslldq xmm1, %2
53 pxor %1, xmm1
54 pslldq xmm1, 1
55 por %1, xmm1
56 %endmacro
59 ; READ_ARGB %1 (xmm), %2 (imm)
60 ; Read the specified number of ARGB (or RGB) pixels from the source and store
61 ; them to the destination xmm register. If the input format is RGB, we read RGB
62 ; pixels and convert them to ARGB pixels. (For this case, the alpha values of
63 ; the output pixels become 0.)
65 %macro READ_ARGB 2
67 %if PIXELSIZE == 4
69 ; Read ARGB pixels from the source. (This macro assumes the input buffer may
70 ; not be aligned to a 16-byte boundary.)
71 %if %2 == 1
72 movd %1, DWORD [ARGBq + WIDTHq * 4 * 2]
73 %elif %2 == 2
74 movq %1, QWORD [ARGBq + WIDTHq * 4 * 2]
75 %elif %2 == 4
76 movdqu %1, DQWORD [ARGBq + WIDTHq * 4 * 2]
77 %else
78 %error unsupported number of pixels.
79 %endif
81 %elif PIXELSIZE == 3
83 ; Read RGB pixels from the source and convert them to ARGB pixels.
84 %if %2 == 1
85 ; Read one RGB pixel and convert it to one ARGB pixel.
86 ; Save the WIDTH register to xmm1. (This macro needs to break it.)
87 MOVq xmm1, WIDTHq
89 ; Once read three bytes from the source to TEMPd, and copy it to the
90 ; destination xmm register.
91 lea WIDTHq, [WIDTHq + WIDTHq * 2]
92 movzx TEMPd, BYTE [ARGBq + WIDTHq * 2 + 2]
93 shl TEMPd, 16
94 mov TEMPw, WORD [ARGBq + WIDTHq * 2]
95 movd %1, TEMPd
97 ; Restore the WIDTH register.
98 MOVq WIDTHq, xmm1
99 %elif %2 == 2
100 ; Read two RGB pixels and convert them to two ARGB pixels.
101 ; Read six bytes from the source to the destination xmm register.
102 mov TEMPq, WIDTHq
103 lea TEMPq, [TEMPq + TEMPq * 2]
104 movd %1, DWORD [ARGBq + TEMPq * 2]
105 pinsrw %1, WORD [ARGBq + TEMPq * 2 + 4], 3
107 ; Fill the alpha values of these RGB pixels with 0 and convert them to two
108 ; ARGB pixels.
109 UNPACKRGB %1, 3
110 %elif %2 == 4
111 ; Read four RGB pixels and convert them to four ARGB pixels.
112 ; Read twelve bytes from the source to the destination xmm register.
113 mov TEMPq, WIDTHq
114 lea TEMPq, [TEMPq + TEMPq * 2]
115 movq %1, QWORD [ARGBq + TEMPq * 2]
116 movd xmm1, DWORD [ARGBq + TEMPq * 2 + 8]
117 shufps %1, xmm1, 01000100B
119 ; Fill the alpha values of these RGB pixels with 0 and convert them to four
120 ; ARGB pixels.
121 UNPACKRGB %1, 3
122 UNPACKRGB %1, 4 + 3
123 UNPACKRGB %1, 4 + 4 + 3
124 %else
125 %error unsupported number of pixels.
126 %endif
128 %else
129 %error unsupported PIXELSIZE value.
130 %endif
132 %endmacro
135 ; CALC_Y %1 (xmm), %2 (xmm)
136 ; Calculates four Y values from four ARGB pixels stored in %2.
137 ; %1.b[0] = ToByte((25 * B(0) + 129 * G(0) + 66 * R(0) + 128) / 256 + 16);
138 ; %1.b[1] = ToByte((25 * B(1) + 129 * G(1) + 66 * R(1) + 128) / 256 + 16);
139 ; %1.b[2] = ToByte((25 * B(2) + 129 * G(2) + 66 * R(2) + 128) / 256 + 16);
140 ; %1.b[3] = ToByte((25 * B(3) + 129 * G(3) + 66 * R(3) + 128) / 256 + 16);
142 %macro CALC_Y 2
143 ; To avoid signed saturation, we divide this conversion formula into two
144 ; formulae and store their results into two XMM registers %1 and xmm2.
145 ; %1.w[0] = 25 * %2.b[0] + 2 * %2.b[1] + 66 * %2.b[2] + 0 * %2.b[3];
146 ; %1.w[1] = 25 * %2.b[4] + 2 * %2.b[5] + 66 * %2.b[6] + 0 * %2.b[7];
147 ; %1.w[2] = 25 * %2.b[8] + 2 * %2.b[9] + 66 * %2.b[10] + 0 * %2.b[11];
148 ; %1.w[3] = 25 * %2.b[12] + 2 * %2.b[13] + 66 * %2.b[14] + 0 * %2.b[15];
149 ; xmm2.w[0] = 0 * %2.b[0] + 127 * %2.b[1] + 0 * %2.b[2] + 0 * %2.b[3];
150 ; xmm2.w[1] = 0 * %2.b[4] + 127 * %2.b[5] + 0 * %2.b[6] + 0 * %2.b[7];
151 ; xmm2.w[2] = 0 * %2.b[8] + 127 * %2.b[9] + 0 * %2.b[10] + 0 * %2.b[11];
152 ; xmm2.w[3] = 0 * %2.b[12] + 127 * %2.b[13] + 0 * %2.b[14] + 0 * %2.b[15];
153 movdqa %1, %2
154 pmaddubsw %1, XMM_CONST_Y0
155 phaddsw %1, %1
156 movdqa xmm2, %2
157 pmaddubsw xmm2, XMM_CONST_Y1
158 phaddsw xmm2, xmm2
160 ; %1.b[0] = ToByte((%1.w[0] + xmm2.w[0] + 128) / 256 + 16);
161 ; %1.b[1] = ToByte((%1.w[1] + xmm2.w[1] + 128) / 256 + 16);
162 ; %1.b[2] = ToByte((%1.w[2] + xmm2.w[2] + 128) / 256 + 16);
163 ; %1.b[3] = ToByte((%1.w[3] + xmm2.w[3] + 128) / 256 + 16);
164 paddw %1, xmm2
165 movdqa xmm2, XMM_CONST_128
166 paddw %1, xmm2
167 psrlw %1, 8
168 psrlw xmm2, 3
169 paddw %1, xmm2
170 packuswb %1, %1
171 %endmacro
174 ; INIT_UV %1 (r32), %2 (reg) %3 (imm)
176 %macro INIT_UV 3
178 %if SUBSAMPLING == 1 && LINE == 1
179 %if %3 == 1 || %3 == 2
180 movzx %1, BYTE [%2 + WIDTHq]
181 %elif %3 == 4
182 movzx %1, WORD [%2 + WIDTHq]
183 %else
184 %error unsupported number of pixels.
185 %endif
186 %endif
188 %endmacro
191 ; CALC_UV %1 (xmm), %2 (xmm), %3 (xmm), %4 (r32)
192 ; Calculates two U (or V) values from four ARGB pixels stored in %2.
193 ; if %3 == XMM_CONST_U
194 ; if (SUBSAMPLING) {
195 ; %1.b[0] = ToByte((112 * B(0) - 74 * G(0) - 38 * R(0) + 128) / 256 + 128);
196 ; %1.b[0] = ToByte((112 * B(0) - 74 * G(0) - 38 * R(0) + 128) / 256 + 128);
197 ; %1.b[1] = ToByte((112 * B(2) - 74 * G(2) - 38 * R(2) + 128) / 256 + 128);
198 ; %1.b[1] = ToByte((112 * B(2) - 74 * G(2) - 38 * R(2) + 128) / 256 + 128);
199 ; } else {
200 ; %1.b[0] = ToByte((112 * B(0) - 74 * G(0) - 38 * R(0) + 128) / 256 + 128);
201 ; %1.b[1] = ToByte((112 * B(2) - 74 * G(2) - 38 * R(2) + 128) / 256 + 128);
203 ; if %3 == XMM_CONST_V
204 ; %1.b[0] = ToByte((-18 * B(0) - 94 * G(0) + 112 * R(0) + 128) / 256 + 128);
205 ; %1.b[1] = ToByte((-18 * B(2) - 94 * G(2) + 112 * R(2) + 128) / 256 + 128);
207 %macro CALC_UV 4
208 ; for (int i = 0; i < 4; ++i) {
209 ; %1.w[i] = 0;
210 ; for (int j = 0; j < 4; ++j)
211 ; %1.w[i] += %3.b[i * 4 + j] + %2.b[i * 4 + j];
213 movdqa %1, %2
214 pmaddubsw %1, %3
215 phaddsw %1, %1
217 %if SUBSAMPLING == 1
218 ; %1.w[0] = (%1.w[0] + %1.w[1] + 1) / 2;
219 ; %1.w[1] = (%1.w[1] + %1.w[0] + 1) / 2;
220 ; %1.w[2] = (%1.w[2] + %1.w[3] + 1) / 2;
221 ; %1.w[3] = (%1.w[3] + %1.w[2] + 1) / 2;
222 pshuflw xmm2, %1, 10110001B
223 pavgw %1, xmm2
224 %endif
226 ; %1.b[0] = ToByte((%1.w[0] + 128) / 256 + 128);
227 ; %1.b[1] = ToByte((%1.w[2] + 128) / 256 + 128);
228 pshuflw %1, %1, 10001000B
229 paddw %1, XMM_CONST_128
230 psraw %1, 8
231 paddw %1, XMM_CONST_128
232 packuswb %1, %1
234 %if SUBSAMPLING == 1 && LINE == 1
235 ; %1.b[0] = (%1.b[0] + %3.b[0] + 1) / 2;
236 ; %1.b[1] = (%1.b[1] + %3.b[1] + 1) / 2;
237 movd xmm2, %4
238 pavgb %1, xmm2
239 %endif
240 %endmacro
243 ; extern "C" void ConvertARGBToYUVRow_SSSE3(const uint8* argb,
244 ; uint8* y,
245 ; uint8* u,
246 ; uint8* v,
247 ; ptrdiff_t width);
249 %define SYMBOL ConvertARGBToYUVRow_SSSE3
250 %define PIXELSIZE 4
251 %define SUBSAMPLING 0
252 %define LINE 0
253 %include "convert_rgb_to_yuv_ssse3.inc"
256 ; extern "C" void ConvertRGBToYUVRow_SSSE3(const uint8* rgb,
257 ; uint8* y,
258 ; uint8* u,
259 ; uint8* v,
260 ; ptrdiff_t width);
262 %define SYMBOL ConvertRGBToYUVRow_SSSE3
263 %define PIXELSIZE 3
264 %define SUBSAMPLING 0
265 %define LINE 0
266 %include "convert_rgb_to_yuv_ssse3.inc"
269 ; extern "C" void ConvertARGBToYUVEven_SSSE3(const uint8* argb,
270 ; uint8* y,
271 ; uint8* u,
272 ; uint8* v,
273 ; ptrdiff_t width);
275 %define SYMBOL ConvertARGBToYUVEven_SSSE3
276 %define PIXELSIZE 4
277 %define SUBSAMPLING 1
278 %define LINE 0
279 %include "convert_rgb_to_yuv_ssse3.inc"
282 ; extern "C" void ConvertARGBToYUVOdd_SSSE3(const uint8* argb,
283 ; uint8* y,
284 ; uint8* u,
285 ; uint8* v,
286 ; ptrdiff_t width);
288 %define SYMBOL ConvertARGBToYUVOdd_SSSE3
289 %define PIXELSIZE 4
290 %define SUBSAMPLING 1
291 %define LINE 1
292 %include "convert_rgb_to_yuv_ssse3.inc"
295 ; extern "C" void ConvertRGBToYUVEven_SSSE3(const uint8* rgb,
296 ; uint8* y,
297 ; uint8* u,
298 ; uint8* v,
299 ; ptrdiff_t width);
301 %define SYMBOL ConvertRGBToYUVEven_SSSE3
302 %define PIXELSIZE 3
303 %define SUBSAMPLING 1
304 %define LINE 0
305 %include "convert_rgb_to_yuv_ssse3.inc"
308 ; extern "C" void ConvertRGBToYUVOdd_SSSE3(const uint8* rgb,
309 ; uint8* y,
310 ; uint8* u,
311 ; uint8* v,
312 ; ptrdiff_t width);
314 %define SYMBOL ConvertRGBToYUVOdd_SSSE3
315 %define PIXELSIZE 3
316 %define SUBSAMPLING 1
317 %define LINE 1
318 %include "convert_rgb_to_yuv_ssse3.inc"