1 // Copyright (c) 2011 The Chromium Authors. All rights reserved.
2 // Use of this source code is governed by a BSD-style license that can be
3 // found in the LICENSE file.
7 #include "base/logging.h"
8 #include "skia/ext/convolver.h"
9 #include "skia/ext/convolver_SSE2.h"
10 #include "skia/ext/convolver_mips_dspr2.h"
11 #include "third_party/skia/include/core/SkSize.h"
12 #include "third_party/skia/include/core/SkTypes.h"
18 // Converts the argument to an 8-bit unsigned value by clamping to the range
20 inline unsigned char ClampTo8(int a
) {
21 if (static_cast<unsigned>(a
) < 256)
22 return a
; // Avoid the extra check in the common case.
28 // Takes the value produced by accumulating element-wise product of image with
29 // a kernel and brings it back into range.
30 // All of the filter scaling factors are in fixed point with kShiftBits bits of
32 inline unsigned char BringBackTo8(int a
, bool take_absolute
) {
33 a
>>= ConvolutionFilter1D::kShiftBits
;
39 // Stores a list of rows in a circular buffer. The usage is you write into it
40 // by calling AdvanceRow. It will keep track of which row in the buffer it
41 // should use next, and the total number of rows added.
42 class CircularRowBuffer
{
44 // The number of pixels in each row is given in |source_row_pixel_width|.
45 // The maximum number of rows needed in the buffer is |max_y_filter_size|
46 // (we only need to store enough rows for the biggest filter).
48 // We use the |first_input_row| to compute the coordinates of all of the
49 // following rows returned by Advance().
50 CircularRowBuffer(int dest_row_pixel_width
, int max_y_filter_size
,
52 : row_byte_width_(dest_row_pixel_width
* 4),
53 num_rows_(max_y_filter_size
),
55 next_row_coordinate_(first_input_row
) {
56 buffer_
.resize(row_byte_width_
* max_y_filter_size
);
57 row_addresses_
.resize(num_rows_
);
60 // Moves to the next row in the buffer, returning a pointer to the beginning
62 unsigned char* AdvanceRow() {
63 unsigned char* row
= &buffer_
[next_row_
* row_byte_width_
];
64 next_row_coordinate_
++;
66 // Set the pointer to the next row to use, wrapping around if necessary.
68 if (next_row_
== num_rows_
)
73 // Returns a pointer to an "unrolled" array of rows. These rows will start
74 // at the y coordinate placed into |*first_row_index| and will continue in
75 // order for the maximum number of rows in this circular buffer.
77 // The |first_row_index_| may be negative. This means the circular buffer
78 // starts before the top of the image (it hasn't been filled yet).
79 unsigned char* const* GetRowAddresses(int* first_row_index
) {
80 // Example for a 4-element circular buffer holding coords 6-9.
83 // Row 2 Coord 6 <- next_row_ = 2, next_row_coordinate_ = 10.
86 // The "next" row is also the first (lowest) coordinate. This computation
87 // may yield a negative value, but that's OK, the math will work out
88 // since the user of this buffer will compute the offset relative
89 // to the first_row_index and the negative rows will never be used.
90 *first_row_index
= next_row_coordinate_
- num_rows_
;
92 int cur_row
= next_row_
;
93 for (int i
= 0; i
< num_rows_
; i
++) {
94 row_addresses_
[i
] = &buffer_
[cur_row
* row_byte_width_
];
96 // Advance to the next row, wrapping if necessary.
98 if (cur_row
== num_rows_
)
101 return &row_addresses_
[0];
105 // The buffer storing the rows. They are packed, each one row_byte_width_.
106 std::vector
<unsigned char> buffer_
;
108 // Number of bytes per row in the |buffer_|.
111 // The number of rows available in the buffer.
114 // The next row index we should write into. This wraps around as the
115 // circular buffer is used.
118 // The y coordinate of the |next_row_|. This is incremented each time a
119 // new row is appended and does not wrap.
120 int next_row_coordinate_
;
122 // Buffer used by GetRowAddresses().
123 std::vector
<unsigned char*> row_addresses_
;
126 // Convolves horizontally along a single row. The row data is given in
127 // |src_data| and continues for the num_values() of the filter.
128 template<bool has_alpha
>
129 void ConvolveHorizontally(const unsigned char* src_data
,
130 const ConvolutionFilter1D
& filter
,
131 unsigned char* out_row
) {
132 // Loop over each pixel on this row in the output image.
133 int num_values
= filter
.num_values();
134 for (int out_x
= 0; out_x
< num_values
; out_x
++) {
135 // Get the filter that determines the current output pixel.
136 int filter_offset
, filter_length
;
137 const ConvolutionFilter1D::Fixed
* filter_values
=
138 filter
.FilterForValue(out_x
, &filter_offset
, &filter_length
);
140 // Compute the first pixel in this row that the filter affects. It will
141 // touch |filter_length| pixels (4 bytes each) after this.
142 const unsigned char* row_to_filter
= &src_data
[filter_offset
* 4];
144 // Apply the filter to the row to get the destination pixel in |accum|.
146 for (int filter_x
= 0; filter_x
< filter_length
; filter_x
++) {
147 ConvolutionFilter1D::Fixed cur_filter
= filter_values
[filter_x
];
148 accum
[0] += cur_filter
* row_to_filter
[filter_x
* 4 + 0];
149 accum
[1] += cur_filter
* row_to_filter
[filter_x
* 4 + 1];
150 accum
[2] += cur_filter
* row_to_filter
[filter_x
* 4 + 2];
152 accum
[3] += cur_filter
* row_to_filter
[filter_x
* 4 + 3];
155 // Bring this value back in range. All of the filter scaling factors
156 // are in fixed point with kShiftBits bits of fractional part.
157 accum
[0] >>= ConvolutionFilter1D::kShiftBits
;
158 accum
[1] >>= ConvolutionFilter1D::kShiftBits
;
159 accum
[2] >>= ConvolutionFilter1D::kShiftBits
;
161 accum
[3] >>= ConvolutionFilter1D::kShiftBits
;
163 // Store the new pixel.
164 out_row
[out_x
* 4 + 0] = ClampTo8(accum
[0]);
165 out_row
[out_x
* 4 + 1] = ClampTo8(accum
[1]);
166 out_row
[out_x
* 4 + 2] = ClampTo8(accum
[2]);
168 out_row
[out_x
* 4 + 3] = ClampTo8(accum
[3]);
172 // Does vertical convolution to produce one output row. The filter values and
173 // length are given in the first two parameters. These are applied to each
174 // of the rows pointed to in the |source_data_rows| array, with each row
175 // being |pixel_width| wide.
177 // The output must have room for |pixel_width * 4| bytes.
178 template<bool has_alpha
>
179 void ConvolveVertically(const ConvolutionFilter1D::Fixed
* filter_values
,
181 unsigned char* const* source_data_rows
,
183 unsigned char* out_row
) {
184 // We go through each column in the output and do a vertical convolution,
185 // generating one output pixel each time.
186 for (int out_x
= 0; out_x
< pixel_width
; out_x
++) {
187 // Compute the number of bytes over in each row that the current column
188 // we're convolving starts at. The pixel will cover the next 4 bytes.
189 int byte_offset
= out_x
* 4;
191 // Apply the filter to one column of pixels.
193 for (int filter_y
= 0; filter_y
< filter_length
; filter_y
++) {
194 ConvolutionFilter1D::Fixed cur_filter
= filter_values
[filter_y
];
195 accum
[0] += cur_filter
* source_data_rows
[filter_y
][byte_offset
+ 0];
196 accum
[1] += cur_filter
* source_data_rows
[filter_y
][byte_offset
+ 1];
197 accum
[2] += cur_filter
* source_data_rows
[filter_y
][byte_offset
+ 2];
199 accum
[3] += cur_filter
* source_data_rows
[filter_y
][byte_offset
+ 3];
202 // Bring this value back in range. All of the filter scaling factors
203 // are in fixed point with kShiftBits bits of precision.
204 accum
[0] >>= ConvolutionFilter1D::kShiftBits
;
205 accum
[1] >>= ConvolutionFilter1D::kShiftBits
;
206 accum
[2] >>= ConvolutionFilter1D::kShiftBits
;
208 accum
[3] >>= ConvolutionFilter1D::kShiftBits
;
210 // Store the new pixel.
211 out_row
[byte_offset
+ 0] = ClampTo8(accum
[0]);
212 out_row
[byte_offset
+ 1] = ClampTo8(accum
[1]);
213 out_row
[byte_offset
+ 2] = ClampTo8(accum
[2]);
215 unsigned char alpha
= ClampTo8(accum
[3]);
217 // Make sure the alpha channel doesn't come out smaller than any of the
218 // color channels. We use premultipled alpha channels, so this should
219 // never happen, but rounding errors will cause this from time to time.
220 // These "impossible" colors will cause overflows (and hence random pixel
221 // values) when the resulting bitmap is drawn to the screen.
223 // We only need to do this when generating the final output row (here).
224 int max_color_channel
= std::max(out_row
[byte_offset
+ 0],
225 std::max(out_row
[byte_offset
+ 1], out_row
[byte_offset
+ 2]));
226 if (alpha
< max_color_channel
)
227 out_row
[byte_offset
+ 3] = max_color_channel
;
229 out_row
[byte_offset
+ 3] = alpha
;
231 // No alpha channel, the image is opaque.
232 out_row
[byte_offset
+ 3] = 0xff;
237 void ConvolveVertically(const ConvolutionFilter1D::Fixed
* filter_values
,
239 unsigned char* const* source_data_rows
,
241 unsigned char* out_row
,
242 bool source_has_alpha
) {
243 if (source_has_alpha
) {
244 ConvolveVertically
<true>(filter_values
, filter_length
,
249 ConvolveVertically
<false>(filter_values
, filter_length
,
258 // ConvolutionFilter1D ---------------------------------------------------------
260 ConvolutionFilter1D::ConvolutionFilter1D()
264 ConvolutionFilter1D::~ConvolutionFilter1D() {
267 void ConvolutionFilter1D::AddFilter(int filter_offset
,
268 const float* filter_values
,
270 SkASSERT(filter_length
> 0);
272 std::vector
<Fixed
> fixed_values
;
273 fixed_values
.reserve(filter_length
);
275 for (int i
= 0; i
< filter_length
; ++i
)
276 fixed_values
.push_back(FloatToFixed(filter_values
[i
]));
278 AddFilter(filter_offset
, &fixed_values
[0], filter_length
);
281 void ConvolutionFilter1D::AddFilter(int filter_offset
,
282 const Fixed
* filter_values
,
284 // It is common for leading/trailing filter values to be zeros. In such
285 // cases it is beneficial to only store the central factors.
286 // For a scaling to 1/4th in each dimension using a Lanczos-2 filter on
287 // a 1080p image this optimization gives a ~10% speed improvement.
288 int filter_size
= filter_length
;
289 int first_non_zero
= 0;
290 while (first_non_zero
< filter_length
&& filter_values
[first_non_zero
] == 0)
293 if (first_non_zero
< filter_length
) {
294 // Here we have at least one non-zero factor.
295 int last_non_zero
= filter_length
- 1;
296 while (last_non_zero
>= 0 && filter_values
[last_non_zero
] == 0)
299 filter_offset
+= first_non_zero
;
300 filter_length
= last_non_zero
+ 1 - first_non_zero
;
301 SkASSERT(filter_length
> 0);
303 for (int i
= first_non_zero
; i
<= last_non_zero
; i
++)
304 filter_values_
.push_back(filter_values
[i
]);
306 // Here all the factors were zeroes.
310 FilterInstance instance
;
312 // We pushed filter_length elements onto filter_values_
313 instance
.data_location
= (static_cast<int>(filter_values_
.size()) -
315 instance
.offset
= filter_offset
;
316 instance
.trimmed_length
= filter_length
;
317 instance
.length
= filter_size
;
318 filters_
.push_back(instance
);
320 max_filter_
= std::max(max_filter_
, filter_length
);
323 const ConvolutionFilter1D::Fixed
* ConvolutionFilter1D::GetSingleFilter(
324 int* specified_filter_length
,
326 int* filter_length
) const {
327 const FilterInstance
& filter
= filters_
[0];
328 *filter_offset
= filter
.offset
;
329 *filter_length
= filter
.trimmed_length
;
330 *specified_filter_length
= filter
.length
;
331 if (filter
.trimmed_length
== 0)
334 return &filter_values_
[filter
.data_location
];
337 typedef void (*ConvolveVertically_pointer
)(
338 const ConvolutionFilter1D::Fixed
* filter_values
,
340 unsigned char* const* source_data_rows
,
342 unsigned char* out_row
,
344 typedef void (*Convolve4RowsHorizontally_pointer
)(
345 const unsigned char* src_data
[4],
346 const ConvolutionFilter1D
& filter
,
347 unsigned char* out_row
[4]);
348 typedef void (*ConvolveHorizontally_pointer
)(
349 const unsigned char* src_data
,
350 const ConvolutionFilter1D
& filter
,
351 unsigned char* out_row
,
354 struct ConvolveProcs
{
355 // This is how many extra pixels may be read by the
356 // conolve*horizontally functions.
357 int extra_horizontal_reads
;
358 ConvolveVertically_pointer convolve_vertically
;
359 Convolve4RowsHorizontally_pointer convolve_4rows_horizontally
;
360 ConvolveHorizontally_pointer convolve_horizontally
;
363 void SetupSIMD(ConvolveProcs
*procs
) {
366 if (cpu
.has_sse2()) {
367 procs
->extra_horizontal_reads
= 3;
368 procs
->convolve_vertically
= &ConvolveVertically_SSE2
;
369 procs
->convolve_4rows_horizontally
= &Convolve4RowsHorizontally_SSE2
;
370 procs
->convolve_horizontally
= &ConvolveHorizontally_SSE2
;
372 #elif defined SIMD_MIPS_DSPR2
373 procs
->extra_horizontal_reads
= 3;
374 procs
->convolve_vertically
= &ConvolveVertically_mips_dspr2
;
375 procs
->convolve_horizontally
= &ConvolveHorizontally_mips_dspr2
;
379 void BGRAConvolve2D(const unsigned char* source_data
,
380 int source_byte_row_stride
,
381 bool source_has_alpha
,
382 const ConvolutionFilter1D
& filter_x
,
383 const ConvolutionFilter1D
& filter_y
,
384 int output_byte_row_stride
,
385 unsigned char* output
,
386 bool use_simd_if_possible
) {
388 simd
.extra_horizontal_reads
= 0;
389 simd
.convolve_vertically
= NULL
;
390 simd
.convolve_4rows_horizontally
= NULL
;
391 simd
.convolve_horizontally
= NULL
;
392 if (use_simd_if_possible
) {
396 int max_y_filter_size
= filter_y
.max_filter();
398 // The next row in the input that we will generate a horizontally
399 // convolved row for. If the filter doesn't start at the beginning of the
400 // image (this is the case when we are only resizing a subset), then we
401 // don't want to generate any output rows before that. Compute the starting
402 // row for convolution as the first pixel for the first vertical filter.
403 int filter_offset
, filter_length
;
404 const ConvolutionFilter1D::Fixed
* filter_values
=
405 filter_y
.FilterForValue(0, &filter_offset
, &filter_length
);
406 int next_x_row
= filter_offset
;
408 // We loop over each row in the input doing a horizontal convolution. This
409 // will result in a horizontally convolved image. We write the results into
410 // a circular buffer of convolved rows and do vertical convolution as rows
411 // are available. This prevents us from having to store the entire
412 // intermediate image and helps cache coherency.
413 // We will need four extra rows to allow horizontal convolution could be done
414 // simultaneously. We also padding each row in row buffer to be aligned-up to
416 // TODO(jiesun): We do not use aligned load from row buffer in vertical
417 // convolution pass yet. Somehow Windows does not like it.
418 int row_buffer_width
= (filter_x
.num_values() + 15) & ~0xF;
419 int row_buffer_height
= max_y_filter_size
+
420 (simd
.convolve_4rows_horizontally
? 4 : 0);
421 CircularRowBuffer
row_buffer(row_buffer_width
,
425 // Loop over every possible output row, processing just enough horizontal
426 // convolutions to run each subsequent vertical convolution.
427 SkASSERT(output_byte_row_stride
>= filter_x
.num_values() * 4);
428 int num_output_rows
= filter_y
.num_values();
430 // We need to check which is the last line to convolve before we advance 4
431 // lines in one iteration.
432 int last_filter_offset
, last_filter_length
;
434 // SSE2 can access up to 3 extra pixels past the end of the
435 // buffer. At the bottom of the image, we have to be careful
436 // not to access data past the end of the buffer. Normally
437 // we fall back to the C++ implementation for the last row.
438 // If the last row is less than 3 pixels wide, we may have to fall
439 // back to the C++ version for more rows. Compute how many
440 // rows we need to avoid the SSE implementation for here.
441 filter_x
.FilterForValue(filter_x
.num_values() - 1, &last_filter_offset
,
442 &last_filter_length
);
443 int avoid_simd_rows
= 1 + simd
.extra_horizontal_reads
/
444 (last_filter_offset
+ last_filter_length
);
446 filter_y
.FilterForValue(num_output_rows
- 1, &last_filter_offset
,
447 &last_filter_length
);
449 for (int out_y
= 0; out_y
< num_output_rows
; out_y
++) {
450 filter_values
= filter_y
.FilterForValue(out_y
,
451 &filter_offset
, &filter_length
);
453 // Generate output rows until we have enough to run the current filter.
454 while (next_x_row
< filter_offset
+ filter_length
) {
455 if (simd
.convolve_4rows_horizontally
&&
456 next_x_row
+ 3 < last_filter_offset
+ last_filter_length
-
458 const unsigned char* src
[4];
459 unsigned char* out_row
[4];
460 for (int i
= 0; i
< 4; ++i
) {
461 src
[i
] = &source_data
[(next_x_row
+ i
) * source_byte_row_stride
];
462 out_row
[i
] = row_buffer
.AdvanceRow();
464 simd
.convolve_4rows_horizontally(src
, filter_x
, out_row
);
467 // Check if we need to avoid SSE2 for this row.
468 if (simd
.convolve_horizontally
&&
469 next_x_row
< last_filter_offset
+ last_filter_length
-
471 simd
.convolve_horizontally(
472 &source_data
[next_x_row
* source_byte_row_stride
],
473 filter_x
, row_buffer
.AdvanceRow(), source_has_alpha
);
475 if (source_has_alpha
) {
476 ConvolveHorizontally
<true>(
477 &source_data
[next_x_row
* source_byte_row_stride
],
478 filter_x
, row_buffer
.AdvanceRow());
480 ConvolveHorizontally
<false>(
481 &source_data
[next_x_row
* source_byte_row_stride
],
482 filter_x
, row_buffer
.AdvanceRow());
489 // Compute where in the output image this row of final data will go.
490 unsigned char* cur_output_row
= &output
[out_y
* output_byte_row_stride
];
492 // Get the list of rows that the circular buffer has, in order.
493 int first_row_in_circular_buffer
;
494 unsigned char* const* rows_to_convolve
=
495 row_buffer
.GetRowAddresses(&first_row_in_circular_buffer
);
497 // Now compute the start of the subset of those rows that the filter
499 unsigned char* const* first_row_for_filter
=
500 &rows_to_convolve
[filter_offset
- first_row_in_circular_buffer
];
502 if (simd
.convolve_vertically
) {
503 simd
.convolve_vertically(filter_values
, filter_length
,
504 first_row_for_filter
,
505 filter_x
.num_values(), cur_output_row
,
508 ConvolveVertically(filter_values
, filter_length
,
509 first_row_for_filter
,
510 filter_x
.num_values(), cur_output_row
,
516 void SingleChannelConvolveX1D(const unsigned char* source_data
,
517 int source_byte_row_stride
,
518 int input_channel_index
,
519 int input_channel_count
,
520 const ConvolutionFilter1D
& filter
,
521 const SkISize
& image_size
,
522 unsigned char* output
,
523 int output_byte_row_stride
,
524 int output_channel_index
,
525 int output_channel_count
,
526 bool absolute_values
) {
527 int filter_offset
, filter_length
, filter_size
;
528 // Very much unlike BGRAConvolve2D, here we expect to have the same filter
530 const ConvolutionFilter1D::Fixed
* filter_values
=
531 filter
.GetSingleFilter(&filter_size
, &filter_offset
, &filter_length
);
533 if (filter_values
== NULL
|| image_size
.width() < filter_size
) {
538 int centrepoint
= filter_length
/ 2;
539 if (filter_size
- filter_offset
!= 2 * filter_offset
) {
540 // This means the original filter was not symmetrical AND
541 // got clipped from one side more than from the other.
542 centrepoint
= filter_size
/ 2 - filter_offset
;
545 const unsigned char* source_data_row
= source_data
;
546 unsigned char* output_row
= output
;
548 for (int r
= 0; r
< image_size
.height(); ++r
) {
549 unsigned char* target_byte
= output_row
+ output_channel_index
;
550 // Process the lead part, padding image to the left with the first pixel.
552 for (; c
< centrepoint
; ++c
, target_byte
+= output_channel_count
) {
555 int pixel_byte_index
= input_channel_index
;
556 for (; i
< centrepoint
- c
; ++i
) // Padding part.
557 accval
+= filter_values
[i
] * source_data_row
[pixel_byte_index
];
559 for (; i
< filter_length
; ++i
, pixel_byte_index
+= input_channel_count
)
560 accval
+= filter_values
[i
] * source_data_row
[pixel_byte_index
];
562 *target_byte
= BringBackTo8(accval
, absolute_values
);
565 // Now for the main event.
566 for (; c
< image_size
.width() - centrepoint
;
567 ++c
, target_byte
+= output_channel_count
) {
569 int pixel_byte_index
= (c
- centrepoint
) * input_channel_count
+
572 for (int i
= 0; i
< filter_length
;
573 ++i
, pixel_byte_index
+= input_channel_count
) {
574 accval
+= filter_values
[i
] * source_data_row
[pixel_byte_index
];
577 *target_byte
= BringBackTo8(accval
, absolute_values
);
580 for (; c
< image_size
.width(); ++c
, target_byte
+= output_channel_count
) {
582 int overlap_taps
= image_size
.width() - c
+ centrepoint
;
583 int pixel_byte_index
= (c
- centrepoint
) * input_channel_count
+
586 for (; i
< overlap_taps
- 1; ++i
, pixel_byte_index
+= input_channel_count
)
587 accval
+= filter_values
[i
] * source_data_row
[pixel_byte_index
];
589 for (; i
< filter_length
; ++i
)
590 accval
+= filter_values
[i
] * source_data_row
[pixel_byte_index
];
592 *target_byte
= BringBackTo8(accval
, absolute_values
);
595 source_data_row
+= source_byte_row_stride
;
596 output_row
+= output_byte_row_stride
;
600 void SingleChannelConvolveY1D(const unsigned char* source_data
,
601 int source_byte_row_stride
,
602 int input_channel_index
,
603 int input_channel_count
,
604 const ConvolutionFilter1D
& filter
,
605 const SkISize
& image_size
,
606 unsigned char* output
,
607 int output_byte_row_stride
,
608 int output_channel_index
,
609 int output_channel_count
,
610 bool absolute_values
) {
611 int filter_offset
, filter_length
, filter_size
;
612 // Very much unlike BGRAConvolve2D, here we expect to have the same filter
614 const ConvolutionFilter1D::Fixed
* filter_values
=
615 filter
.GetSingleFilter(&filter_size
, &filter_offset
, &filter_length
);
617 if (filter_values
== NULL
|| image_size
.height() < filter_size
) {
622 int centrepoint
= filter_length
/ 2;
623 if (filter_size
- filter_offset
!= 2 * filter_offset
) {
624 // This means the original filter was not symmetrical AND
625 // got clipped from one side more than from the other.
626 centrepoint
= filter_size
/ 2 - filter_offset
;
629 for (int c
= 0; c
< image_size
.width(); ++c
) {
630 unsigned char* target_byte
= output
+ c
* output_channel_count
+
631 output_channel_index
;
634 for (; r
< centrepoint
; ++r
, target_byte
+= output_byte_row_stride
) {
637 int pixel_byte_index
= c
* input_channel_count
+ input_channel_index
;
639 for (; i
< centrepoint
- r
; ++i
) // Padding part.
640 accval
+= filter_values
[i
] * source_data
[pixel_byte_index
];
642 for (; i
< filter_length
; ++i
, pixel_byte_index
+= source_byte_row_stride
)
643 accval
+= filter_values
[i
] * source_data
[pixel_byte_index
];
645 *target_byte
= BringBackTo8(accval
, absolute_values
);
648 for (; r
< image_size
.height() - centrepoint
;
649 ++r
, target_byte
+= output_byte_row_stride
) {
651 int pixel_byte_index
= (r
- centrepoint
) * source_byte_row_stride
+
652 c
* input_channel_count
+ input_channel_index
;
653 for (int i
= 0; i
< filter_length
;
654 ++i
, pixel_byte_index
+= source_byte_row_stride
) {
655 accval
+= filter_values
[i
] * source_data
[pixel_byte_index
];
658 *target_byte
= BringBackTo8(accval
, absolute_values
);
661 for (; r
< image_size
.height();
662 ++r
, target_byte
+= output_byte_row_stride
) {
664 int overlap_taps
= image_size
.height() - r
+ centrepoint
;
665 int pixel_byte_index
= (r
- centrepoint
) * source_byte_row_stride
+
666 c
* input_channel_count
+ input_channel_index
;
668 for (; i
< overlap_taps
- 1;
669 ++i
, pixel_byte_index
+= source_byte_row_stride
) {
670 accval
+= filter_values
[i
] * source_data
[pixel_byte_index
];
673 for (; i
< filter_length
; ++i
)
674 accval
+= filter_values
[i
] * source_data
[pixel_byte_index
];
676 *target_byte
= BringBackTo8(accval
, absolute_values
);
681 void SetUpGaussianConvolutionKernel(ConvolutionFilter1D
* filter
,
684 DCHECK(filter
!= NULL
);
685 DCHECK_GT(kernel_sigma
, 0.0);
686 const int tail_length
= static_cast<int>(4.0f
* kernel_sigma
+ 0.5f
);
687 const int kernel_size
= tail_length
* 2 + 1;
688 const float sigmasq
= kernel_sigma
* kernel_sigma
;
689 std::vector
<float> kernel_weights(kernel_size
, 0.0);
690 float kernel_sum
= 1.0f
;
692 kernel_weights
[tail_length
] = 1.0f
;
694 for (int ii
= 1; ii
<= tail_length
; ++ii
) {
695 float v
= std::exp(-0.5f
* ii
* ii
/ sigmasq
);
696 kernel_weights
[tail_length
+ ii
] = v
;
697 kernel_weights
[tail_length
- ii
] = v
;
698 kernel_sum
+= 2.0f
* v
;
701 for (int i
= 0; i
< kernel_size
; ++i
)
702 kernel_weights
[i
] /= kernel_sum
;
705 kernel_weights
[tail_length
] = 0.0;
706 for (int ii
= 1; ii
<= tail_length
; ++ii
) {
707 float v
= sigmasq
* kernel_weights
[tail_length
+ ii
] / ii
;
708 kernel_weights
[tail_length
+ ii
] = v
;
709 kernel_weights
[tail_length
- ii
] = -v
;
713 filter
->AddFilter(0, &kernel_weights
[0], kernel_weights
.size());