Update V8 to version 4.7.24.
[chromium-blink-merge.git] / cc / trees / property_tree.cc
blobd65a1427078b3de81141966101bd8bfc59058ed3
1 // Copyright 2014 The Chromium Authors. All rights reserved.
2 // Use of this source code is governed by a BSD-style license that can be
3 // found in the LICENSE file.
5 #include <set>
6 #include <vector>
8 #include "base/logging.h"
9 #include "cc/base/math_util.h"
10 #include "cc/trees/property_tree.h"
12 namespace cc {
14 template <typename T>
15 PropertyTree<T>::PropertyTree()
16 : needs_update_(false) {
17 nodes_.push_back(T());
18 back()->id = 0;
19 back()->parent_id = -1;
22 template <typename T>
23 PropertyTree<T>::~PropertyTree() {
26 TransformTree::TransformTree() : source_to_parent_updates_allowed_(true) {}
28 TransformTree::~TransformTree() {
31 template <typename T>
32 int PropertyTree<T>::Insert(const T& tree_node, int parent_id) {
33 DCHECK_GT(nodes_.size(), 0u);
34 nodes_.push_back(tree_node);
35 T& node = nodes_.back();
36 node.parent_id = parent_id;
37 node.id = static_cast<int>(nodes_.size()) - 1;
38 return node.id;
41 template <typename T>
42 void PropertyTree<T>::clear() {
43 nodes_.clear();
44 nodes_.push_back(T());
45 back()->id = 0;
46 back()->parent_id = -1;
49 template class PropertyTree<TransformNode>;
50 template class PropertyTree<ClipNode>;
51 template class PropertyTree<EffectNode>;
53 TransformNodeData::TransformNodeData()
54 : target_id(-1),
55 content_target_id(-1),
56 source_node_id(-1),
57 needs_local_transform_update(true),
58 is_invertible(true),
59 ancestors_are_invertible(true),
60 is_animated(false),
61 to_screen_is_animated(false),
62 has_only_translation_animations(true),
63 to_screen_has_scale_animation(false),
64 flattens_inherited_transform(false),
65 node_and_ancestors_are_flat(true),
66 node_and_ancestors_have_only_integer_translation(true),
67 scrolls(false),
68 needs_sublayer_scale(false),
69 affected_by_inner_viewport_bounds_delta_x(false),
70 affected_by_inner_viewport_bounds_delta_y(false),
71 affected_by_outer_viewport_bounds_delta_x(false),
72 affected_by_outer_viewport_bounds_delta_y(false),
73 layer_scale_factor(1.0f),
74 post_local_scale_factor(1.0f),
75 local_maximum_animation_target_scale(0.f),
76 local_starting_animation_scale(0.f),
77 combined_maximum_animation_target_scale(0.f),
78 combined_starting_animation_scale(0.f) {}
80 TransformNodeData::~TransformNodeData() {
83 void TransformNodeData::update_pre_local_transform(
84 const gfx::Point3F& transform_origin) {
85 pre_local.MakeIdentity();
86 pre_local.Translate3d(-transform_origin.x(), -transform_origin.y(),
87 -transform_origin.z());
90 void TransformNodeData::update_post_local_transform(
91 const gfx::PointF& position,
92 const gfx::Point3F& transform_origin) {
93 post_local.MakeIdentity();
94 post_local.Scale(post_local_scale_factor, post_local_scale_factor);
95 post_local.Translate3d(
96 position.x() + source_offset.x() + transform_origin.x(),
97 position.y() + source_offset.y() + transform_origin.y(),
98 transform_origin.z());
101 ClipNodeData::ClipNodeData()
102 : transform_id(-1),
103 target_id(-1),
104 inherit_parent_target_space_clip(false),
105 requires_tight_clip_rect(true),
106 render_surface_is_clipped(false) {}
108 EffectNodeData::EffectNodeData() : opacity(1.f), screen_space_opacity(1.f) {}
110 void TransformTree::clear() {
111 PropertyTree<TransformNode>::clear();
113 nodes_affected_by_inner_viewport_bounds_delta_.clear();
114 nodes_affected_by_outer_viewport_bounds_delta_.clear();
117 bool TransformTree::ComputeTransform(int source_id,
118 int dest_id,
119 gfx::Transform* transform) const {
120 transform->MakeIdentity();
122 if (source_id == dest_id)
123 return true;
125 if (source_id > dest_id) {
126 return CombineTransformsBetween(source_id, dest_id, transform);
129 return CombineInversesBetween(source_id, dest_id, transform);
132 bool TransformTree::ComputeTransformWithDestinationSublayerScale(
133 int source_id,
134 int dest_id,
135 gfx::Transform* transform) const {
136 bool success = ComputeTransform(source_id, dest_id, transform);
138 const TransformNode* dest_node = Node(dest_id);
139 if (!dest_node->data.needs_sublayer_scale)
140 return success;
142 transform->matrix().postScale(dest_node->data.sublayer_scale.x(),
143 dest_node->data.sublayer_scale.y(), 1.f);
144 return success;
147 bool TransformTree::ComputeTransformWithSourceSublayerScale(
148 int source_id,
149 int dest_id,
150 gfx::Transform* transform) const {
151 bool success = ComputeTransform(source_id, dest_id, transform);
153 const TransformNode* source_node = Node(source_id);
154 if (!source_node->data.needs_sublayer_scale)
155 return success;
157 if (source_node->data.sublayer_scale.x() == 0 ||
158 source_node->data.sublayer_scale.y() == 0)
159 return false;
161 transform->Scale(1.f / source_node->data.sublayer_scale.x(),
162 1.f / source_node->data.sublayer_scale.y());
163 return success;
166 bool TransformTree::Are2DAxisAligned(int source_id, int dest_id) const {
167 gfx::Transform transform;
168 return ComputeTransform(source_id, dest_id, &transform) &&
169 transform.Preserves2dAxisAlignment();
172 bool TransformTree::NeedsSourceToParentUpdate(TransformNode* node) {
173 return (source_to_parent_updates_allowed() &&
174 node->parent_id != node->data.source_node_id);
177 void TransformTree::UpdateTransforms(int id) {
178 TransformNode* node = Node(id);
179 TransformNode* parent_node = parent(node);
180 TransformNode* target_node = Node(node->data.target_id);
181 if (node->data.needs_local_transform_update ||
182 NeedsSourceToParentUpdate(node))
183 UpdateLocalTransform(node);
184 UpdateScreenSpaceTransform(node, parent_node, target_node);
185 UpdateSublayerScale(node);
186 UpdateTargetSpaceTransform(node, target_node);
187 UpdateAnimationProperties(node, parent_node);
188 UpdateSnapping(node);
189 UpdateNodeAndAncestorsHaveIntegerTranslations(node, parent_node);
192 bool TransformTree::IsDescendant(int desc_id, int source_id) const {
193 while (desc_id != source_id) {
194 if (desc_id < 0)
195 return false;
196 desc_id = Node(desc_id)->parent_id;
198 return true;
201 bool TransformTree::CombineTransformsBetween(int source_id,
202 int dest_id,
203 gfx::Transform* transform) const {
204 DCHECK(source_id > dest_id);
205 const TransformNode* current = Node(source_id);
206 const TransformNode* dest = Node(dest_id);
207 // Combine transforms to and from the screen when possible. Since flattening
208 // is a non-linear operation, we cannot use this approach when there is
209 // non-trivial flattening between the source and destination nodes. For
210 // example, consider the tree R->A->B->C, where B flattens its inherited
211 // transform, and A has a non-flat transform. Suppose C is the source and A is
212 // the destination. The expected result is C * B. But C's to_screen
213 // transform is C * B * flattened(A * R), and A's from_screen transform is
214 // R^{-1} * A^{-1}. If at least one of A and R isn't flat, the inverse of
215 // flattened(A * R) won't be R^{-1} * A{-1}, so multiplying C's to_screen and
216 // A's from_screen will not produce the correct result.
217 if (!dest || (dest->data.ancestors_are_invertible &&
218 dest->data.node_and_ancestors_are_flat)) {
219 transform->ConcatTransform(current->data.to_screen);
220 if (dest)
221 transform->ConcatTransform(dest->data.from_screen);
222 return true;
225 // Flattening is defined in a way that requires it to be applied while
226 // traversing downward in the tree. We first identify nodes that are on the
227 // path from the source to the destination (this is traversing upward), and
228 // then we visit these nodes in reverse order, flattening as needed. We
229 // early-out if we get to a node whose target node is the destination, since
230 // we can then re-use the target space transform stored at that node. However,
231 // we cannot re-use a stored target space transform if the destination has a
232 // zero sublayer scale, since stored target space transforms have sublayer
233 // scale baked in, but we need to compute an unscaled transform.
234 std::vector<int> source_to_destination;
235 source_to_destination.push_back(current->id);
236 current = parent(current);
237 bool destination_has_non_zero_sublayer_scale =
238 dest->data.sublayer_scale.x() != 0.f &&
239 dest->data.sublayer_scale.y() != 0.f;
240 DCHECK(destination_has_non_zero_sublayer_scale ||
241 !dest->data.ancestors_are_invertible);
242 for (; current && current->id > dest_id; current = parent(current)) {
243 if (destination_has_non_zero_sublayer_scale &&
244 current->data.target_id == dest_id &&
245 current->data.content_target_id == dest_id)
246 break;
247 source_to_destination.push_back(current->id);
250 gfx::Transform combined_transform;
251 if (current->id > dest_id) {
252 combined_transform = current->data.to_target;
253 // The stored target space transform has sublayer scale baked in, but we
254 // need the unscaled transform.
255 combined_transform.Scale(1.0f / dest->data.sublayer_scale.x(),
256 1.0f / dest->data.sublayer_scale.y());
257 } else if (current->id < dest_id) {
258 // We have reached the lowest common ancestor of the source and destination
259 // nodes. This case can occur when we are transforming between a node
260 // corresponding to a fixed-position layer (or its descendant) and the node
261 // corresponding to the layer's render target. For example, consider the
262 // layer tree R->T->S->F where F is fixed-position, S owns a render surface,
263 // and T has a significant transform. This will yield the following
264 // transform tree:
265 // R
266 // |
267 // T
268 // /|
269 // S F
270 // In this example, T will have id 2, S will have id 3, and F will have id
271 // 4. When walking up the ancestor chain from F, the first node with a
272 // smaller id than S will be T, the lowest common ancestor of these nodes.
273 // We compute the transform from T to S here, and then from F to T in the
274 // loop below.
275 DCHECK(IsDescendant(dest_id, current->id));
276 CombineInversesBetween(current->id, dest_id, &combined_transform);
277 DCHECK(combined_transform.IsApproximatelyIdentityOrTranslation(
278 SkDoubleToMScalar(1e-4)));
281 size_t source_to_destination_size = source_to_destination.size();
282 for (size_t i = 0; i < source_to_destination_size; ++i) {
283 size_t index = source_to_destination_size - 1 - i;
284 const TransformNode* node = Node(source_to_destination[index]);
285 if (node->data.flattens_inherited_transform)
286 combined_transform.FlattenTo2d();
287 combined_transform.PreconcatTransform(node->data.to_parent);
290 transform->ConcatTransform(combined_transform);
291 return true;
294 bool TransformTree::CombineInversesBetween(int source_id,
295 int dest_id,
296 gfx::Transform* transform) const {
297 DCHECK(source_id < dest_id);
298 const TransformNode* current = Node(dest_id);
299 const TransformNode* dest = Node(source_id);
300 // Just as in CombineTransformsBetween, we can use screen space transforms in
301 // this computation only when there isn't any non-trivial flattening
302 // involved.
303 if (current->data.ancestors_are_invertible &&
304 current->data.node_and_ancestors_are_flat) {
305 transform->PreconcatTransform(current->data.from_screen);
306 if (dest)
307 transform->PreconcatTransform(dest->data.to_screen);
308 return true;
311 // Inverting a flattening is not equivalent to flattening an inverse. This
312 // means we cannot, for example, use the inverse of each node's to_parent
313 // transform, flattening where needed. Instead, we must compute the transform
314 // from the destination to the source, with flattening, and then invert the
315 // result.
316 gfx::Transform dest_to_source;
317 CombineTransformsBetween(dest_id, source_id, &dest_to_source);
318 gfx::Transform source_to_dest;
319 bool all_are_invertible = dest_to_source.GetInverse(&source_to_dest);
320 transform->PreconcatTransform(source_to_dest);
321 return all_are_invertible;
324 void TransformTree::UpdateLocalTransform(TransformNode* node) {
325 gfx::Transform transform = node->data.post_local;
326 if (NeedsSourceToParentUpdate(node)) {
327 gfx::Transform to_parent;
328 ComputeTransform(node->data.source_node_id, node->parent_id, &to_parent);
329 node->data.source_to_parent = to_parent.To2dTranslation();
332 gfx::Vector2dF fixed_position_adjustment;
333 if (node->data.affected_by_inner_viewport_bounds_delta_x)
334 fixed_position_adjustment.set_x(inner_viewport_bounds_delta_.x());
335 else if (node->data.affected_by_outer_viewport_bounds_delta_x)
336 fixed_position_adjustment.set_x(outer_viewport_bounds_delta_.x());
338 if (node->data.affected_by_inner_viewport_bounds_delta_y)
339 fixed_position_adjustment.set_y(inner_viewport_bounds_delta_.y());
340 else if (node->data.affected_by_outer_viewport_bounds_delta_y)
341 fixed_position_adjustment.set_y(outer_viewport_bounds_delta_.y());
343 transform.Translate(
344 node->data.source_to_parent.x() - node->data.scroll_offset.x() +
345 fixed_position_adjustment.x(),
346 node->data.source_to_parent.y() - node->data.scroll_offset.y() +
347 fixed_position_adjustment.y());
348 transform.PreconcatTransform(node->data.local);
349 transform.PreconcatTransform(node->data.pre_local);
350 node->data.set_to_parent(transform);
351 node->data.needs_local_transform_update = false;
354 void TransformTree::UpdateScreenSpaceTransform(TransformNode* node,
355 TransformNode* parent_node,
356 TransformNode* target_node) {
357 if (!parent_node) {
358 node->data.to_screen = node->data.to_parent;
359 node->data.ancestors_are_invertible = true;
360 node->data.to_screen_is_animated = false;
361 node->data.node_and_ancestors_are_flat = node->data.to_parent.IsFlat();
362 } else {
363 node->data.to_screen = parent_node->data.to_screen;
364 if (node->data.flattens_inherited_transform)
365 node->data.to_screen.FlattenTo2d();
366 node->data.to_screen.PreconcatTransform(node->data.to_parent);
367 node->data.ancestors_are_invertible =
368 parent_node->data.ancestors_are_invertible;
369 node->data.node_and_ancestors_are_flat =
370 parent_node->data.node_and_ancestors_are_flat &&
371 node->data.to_parent.IsFlat();
374 if (!node->data.to_screen.GetInverse(&node->data.from_screen))
375 node->data.ancestors_are_invertible = false;
378 void TransformTree::UpdateSublayerScale(TransformNode* node) {
379 // The sublayer scale depends on the screen space transform, so update it too.
380 node->data.sublayer_scale =
381 node->data.needs_sublayer_scale
382 ? MathUtil::ComputeTransform2dScaleComponents(
383 node->data.to_screen, node->data.layer_scale_factor)
384 : gfx::Vector2dF(1.0f, 1.0f);
387 void TransformTree::UpdateTargetSpaceTransform(TransformNode* node,
388 TransformNode* target_node) {
389 if (node->data.needs_sublayer_scale) {
390 node->data.to_target.MakeIdentity();
391 node->data.to_target.Scale(node->data.sublayer_scale.x(),
392 node->data.sublayer_scale.y());
393 } else {
394 const bool target_is_root_surface = target_node->id == 1;
395 // In order to include the root transform for the root surface, we walk up
396 // to the root of the transform tree in ComputeTransform.
397 int target_id = target_is_root_surface ? 0 : target_node->id;
398 ComputeTransformWithDestinationSublayerScale(node->id, target_id,
399 &node->data.to_target);
402 if (!node->data.to_target.GetInverse(&node->data.from_target))
403 node->data.ancestors_are_invertible = false;
406 void TransformTree::UpdateAnimationProperties(TransformNode* node,
407 TransformNode* parent_node) {
408 bool ancestor_is_animating = false;
409 bool ancestor_is_animating_scale = false;
410 float ancestor_maximum_target_scale = 0.f;
411 float ancestor_starting_animation_scale = 0.f;
412 if (parent_node) {
413 ancestor_is_animating = parent_node->data.to_screen_is_animated;
414 ancestor_is_animating_scale =
415 parent_node->data.to_screen_has_scale_animation;
416 ancestor_maximum_target_scale =
417 parent_node->data.combined_maximum_animation_target_scale;
418 ancestor_starting_animation_scale =
419 parent_node->data.combined_starting_animation_scale;
421 node->data.to_screen_is_animated =
422 node->data.is_animated || ancestor_is_animating;
423 node->data.to_screen_has_scale_animation =
424 !node->data.has_only_translation_animations ||
425 ancestor_is_animating_scale;
427 // Once we've failed to compute a maximum animated scale at an ancestor, we
428 // continue to fail.
429 bool failed_at_ancestor =
430 ancestor_is_animating_scale && ancestor_maximum_target_scale == 0.f;
432 // Computing maximum animated scale in the presence of non-scale/translation
433 // transforms isn't supported.
434 bool failed_for_non_scale_or_translation =
435 !node->data.to_target.IsScaleOrTranslation();
437 // We don't attempt to accumulate animation scale from multiple nodes with
438 // scale animations, because of the risk of significant overestimation. For
439 // example, one node might be increasing scale from 1 to 10 at the same time
440 // as another node is decreasing scale from 10 to 1. Naively combining these
441 // scales would produce a scale of 100.
442 bool failed_for_multiple_scale_animations =
443 ancestor_is_animating_scale &&
444 !node->data.has_only_translation_animations;
446 if (failed_at_ancestor || failed_for_non_scale_or_translation ||
447 failed_for_multiple_scale_animations) {
448 node->data.combined_maximum_animation_target_scale = 0.f;
449 node->data.combined_starting_animation_scale = 0.f;
451 // This ensures that descendants know we've failed to compute a maximum
452 // animated scale.
453 node->data.to_screen_has_scale_animation = true;
454 return;
457 if (!node->data.to_screen_has_scale_animation) {
458 node->data.combined_maximum_animation_target_scale = 0.f;
459 node->data.combined_starting_animation_scale = 0.f;
460 return;
463 // At this point, we know exactly one of this node or an ancestor is animating
464 // scale.
465 if (node->data.has_only_translation_animations) {
466 // An ancestor is animating scale.
467 gfx::Vector2dF local_scales =
468 MathUtil::ComputeTransform2dScaleComponents(node->data.local, 0.f);
469 float max_local_scale = std::max(local_scales.x(), local_scales.y());
470 node->data.combined_maximum_animation_target_scale =
471 max_local_scale * ancestor_maximum_target_scale;
472 node->data.combined_starting_animation_scale =
473 max_local_scale * ancestor_starting_animation_scale;
474 return;
477 if (node->data.local_starting_animation_scale == 0.f ||
478 node->data.local_maximum_animation_target_scale == 0.f) {
479 node->data.combined_maximum_animation_target_scale = 0.f;
480 node->data.combined_starting_animation_scale = 0.f;
481 return;
484 gfx::Vector2dF ancestor_scales =
485 parent_node ? MathUtil::ComputeTransform2dScaleComponents(
486 parent_node->data.to_target, 0.f)
487 : gfx::Vector2dF(1.f, 1.f);
488 float max_ancestor_scale = std::max(ancestor_scales.x(), ancestor_scales.y());
489 node->data.combined_maximum_animation_target_scale =
490 max_ancestor_scale * node->data.local_maximum_animation_target_scale;
491 node->data.combined_starting_animation_scale =
492 max_ancestor_scale * node->data.local_starting_animation_scale;
495 void TransformTree::UpdateSnapping(TransformNode* node) {
496 if (!node->data.scrolls || node->data.to_screen_is_animated ||
497 !node->data.to_target.IsScaleOrTranslation()) {
498 return;
501 // Scroll snapping must be done in target space (the pixels we care about).
502 // This means we effectively snap the target space transform. If TT is the
503 // target space transform and TT' is TT with its translation components
504 // rounded, then what we're after is the scroll delta X, where TT * X = TT'.
505 // I.e., we want a transform that will realize our scroll snap. It follows
506 // that X = TT^-1 * TT'. We cache TT and TT^-1 to make this more efficient.
507 gfx::Transform rounded = node->data.to_target;
508 rounded.RoundTranslationComponents();
509 gfx::Transform delta = node->data.from_target;
510 delta *= rounded;
512 DCHECK(delta.IsApproximatelyIdentityOrTranslation(SkDoubleToMScalar(1e-4)))
513 << delta.ToString();
515 gfx::Vector2dF translation = delta.To2dTranslation();
517 // Now that we have our scroll delta, we must apply it to each of our
518 // combined, to/from matrices.
519 node->data.to_parent.Translate(translation.x(), translation.y());
520 node->data.to_target.Translate(translation.x(), translation.y());
521 node->data.from_target.matrix().postTranslate(-translation.x(),
522 -translation.y(), 0);
523 node->data.to_screen.Translate(translation.x(), translation.y());
524 node->data.from_screen.matrix().postTranslate(-translation.x(),
525 -translation.y(), 0);
527 node->data.scroll_snap = translation;
530 void TransformTree::SetInnerViewportBoundsDelta(gfx::Vector2dF bounds_delta) {
531 if (inner_viewport_bounds_delta_ == bounds_delta)
532 return;
534 inner_viewport_bounds_delta_ = bounds_delta;
536 if (nodes_affected_by_inner_viewport_bounds_delta_.empty())
537 return;
539 set_needs_update(true);
540 for (int i : nodes_affected_by_inner_viewport_bounds_delta_)
541 Node(i)->data.needs_local_transform_update = true;
544 void TransformTree::SetOuterViewportBoundsDelta(gfx::Vector2dF bounds_delta) {
545 if (outer_viewport_bounds_delta_ == bounds_delta)
546 return;
548 outer_viewport_bounds_delta_ = bounds_delta;
550 if (nodes_affected_by_outer_viewport_bounds_delta_.empty())
551 return;
553 set_needs_update(true);
554 for (int i : nodes_affected_by_outer_viewport_bounds_delta_)
555 Node(i)->data.needs_local_transform_update = true;
558 void TransformTree::AddNodeAffectedByInnerViewportBoundsDelta(int node_id) {
559 nodes_affected_by_inner_viewport_bounds_delta_.push_back(node_id);
562 void TransformTree::AddNodeAffectedByOuterViewportBoundsDelta(int node_id) {
563 nodes_affected_by_outer_viewport_bounds_delta_.push_back(node_id);
566 bool TransformTree::HasNodesAffectedByInnerViewportBoundsDelta() const {
567 return !nodes_affected_by_inner_viewport_bounds_delta_.empty();
570 bool TransformTree::HasNodesAffectedByOuterViewportBoundsDelta() const {
571 return !nodes_affected_by_outer_viewport_bounds_delta_.empty();
574 void EffectTree::UpdateOpacities(int id) {
575 EffectNode* node = Node(id);
576 node->data.screen_space_opacity = node->data.opacity;
578 EffectNode* parent_node = parent(node);
579 if (parent_node)
580 node->data.screen_space_opacity *= parent_node->data.screen_space_opacity;
583 void TransformTree::UpdateNodeAndAncestorsHaveIntegerTranslations(
584 TransformNode* node,
585 TransformNode* parent_node) {
586 node->data.node_and_ancestors_have_only_integer_translation =
587 node->data.to_parent.IsIdentityOrIntegerTranslation();
588 if (parent_node)
589 node->data.node_and_ancestors_have_only_integer_translation =
590 node->data.node_and_ancestors_have_only_integer_translation &&
591 parent_node->data.node_and_ancestors_have_only_integer_translation;
594 void ClipTree::SetViewportClip(gfx::RectF viewport_rect) {
595 if (size() < 2)
596 return;
597 ClipNode* node = Node(1);
598 if (viewport_rect == node->data.clip)
599 return;
600 node->data.clip = viewport_rect;
601 set_needs_update(true);
604 gfx::RectF ClipTree::ViewportClip() {
605 const unsigned long min_size = 1;
606 DCHECK_GT(size(), min_size);
607 return Node(1)->data.clip;
610 PropertyTrees::PropertyTrees() : needs_rebuild(true), sequence_number(0) {
613 } // namespace cc