Roll src/third_party/WebKit 4619053:6b63e20 (svn 201059:201060)
[chromium-blink-merge.git] / base / move.h
blob87dc52d16c554cf0588053e3d83a11e99e1375ed
1 // Copyright (c) 2012 The Chromium Authors. All rights reserved.
2 // Use of this source code is governed by a BSD-style license that can be
3 // found in the LICENSE file.
5 #ifndef BASE_MOVE_H_
6 #define BASE_MOVE_H_
8 #include "base/compiler_specific.h"
10 // Macro with the boilerplate that makes a type move-only in C++03.
12 // USAGE
14 // This macro should be used instead of DISALLOW_COPY_AND_ASSIGN to create
15 // a "move-only" type. Unlike DISALLOW_COPY_AND_ASSIGN, this macro should be
16 // the first line in a class declaration.
18 // A class using this macro must call .Pass() (or somehow be an r-value already)
19 // before it can be:
21 // * Passed as a function argument
22 // * Used as the right-hand side of an assignment
23 // * Returned from a function
25 // Each class will still need to define their own "move constructor" and "move
26 // operator=" to make this useful. Here's an example of the macro, the move
27 // constructor, and the move operator= from the scoped_ptr class:
29 // template <typename T>
30 // class scoped_ptr {
31 // MOVE_ONLY_TYPE_FOR_CPP_03(scoped_ptr, RValue)
32 // public:
33 // scoped_ptr(RValue& other) : ptr_(other.release()) { }
34 // scoped_ptr& operator=(RValue& other) {
35 // swap(other);
36 // return *this;
37 // }
38 // };
40 // Note that the constructor must NOT be marked explicit.
42 // For consistency, the second parameter to the macro should always be RValue
43 // unless you have a strong reason to do otherwise. It is only exposed as a
44 // macro parameter so that the move constructor and move operator= don't look
45 // like they're using a phantom type.
48 // HOW THIS WORKS
50 // For a thorough explanation of this technique, see:
52 // http://en.wikibooks.org/wiki/More_C%2B%2B_Idioms/Move_Constructor
54 // The summary is that we take advantage of 2 properties:
56 // 1) non-const references will not bind to r-values.
57 // 2) C++ can apply one user-defined conversion when initializing a
58 // variable.
60 // The first lets us disable the copy constructor and assignment operator
61 // by declaring private version of them with a non-const reference parameter.
63 // For l-values, direct initialization still fails like in
64 // DISALLOW_COPY_AND_ASSIGN because the copy constructor and assignment
65 // operators are private.
67 // For r-values, the situation is different. The copy constructor and
68 // assignment operator are not viable due to (1), so we are trying to call
69 // a non-existent constructor and non-existing operator= rather than a private
70 // one. Since we have not committed an error quite yet, we can provide an
71 // alternate conversion sequence and a constructor. We add
73 // * a private struct named "RValue"
74 // * a user-defined conversion "operator RValue()"
75 // * a "move constructor" and "move operator=" that take the RValue& as
76 // their sole parameter.
78 // Only r-values will trigger this sequence and execute our "move constructor"
79 // or "move operator=." L-values will match the private copy constructor and
80 // operator= first giving a "private in this context" error. This combination
81 // gives us a move-only type.
83 // For signaling a destructive transfer of data from an l-value, we provide a
84 // method named Pass() which creates an r-value for the current instance
85 // triggering the move constructor or move operator=.
87 // Other ways to get r-values is to use the result of an expression like a
88 // function call.
90 // Here's an example with comments explaining what gets triggered where:
92 // class Foo {
93 // MOVE_ONLY_TYPE_FOR_CPP_03(Foo, RValue);
95 // public:
96 // ... API ...
97 // Foo(RValue other); // Move constructor.
98 // Foo& operator=(RValue rhs); // Move operator=
99 // };
101 // Foo MakeFoo(); // Function that returns a Foo.
103 // Foo f;
104 // Foo f_copy(f); // ERROR: Foo(Foo&) is private in this context.
105 // Foo f_assign;
106 // f_assign = f; // ERROR: operator=(Foo&) is private in this context.
109 // Foo f(MakeFoo()); // R-value so alternate conversion executed.
110 // Foo f_copy(f.Pass()); // R-value so alternate conversion executed.
111 // f = f_copy.Pass(); // R-value so alternate conversion executed.
114 // IMPLEMENTATION SUBTLETIES WITH RValue
116 // The RValue struct is just a container for a pointer back to the original
117 // object. It should only ever be created as a temporary, and no external
118 // class should ever declare it or use it in a parameter.
120 // It is tempting to want to use the RValue type in function parameters, but
121 // excluding the limited usage here for the move constructor and move
122 // operator=, doing so would mean that the function could take both r-values
123 // and l-values equially which is unexpected. See COMPARED To Boost.Move for
124 // more details.
126 // An alternate, and incorrect, implementation of the RValue class used by
127 // Boost.Move makes RValue a fieldless child of the move-only type. RValue&
128 // is then used in place of RValue in the various operators. The RValue& is
129 // "created" by doing *reinterpret_cast<RValue*>(this). This has the appeal
130 // of never creating a temporary RValue struct even with optimizations
131 // disabled. Also, by virtue of inheritance you can treat the RValue
132 // reference as if it were the move-only type itself. Unfortunately,
133 // using the result of this reinterpret_cast<> is actually undefined behavior
134 // due to C++98 5.2.10.7. In certain compilers (e.g., NaCl) the optimizer
135 // will generate non-working code.
137 // In optimized builds, both implementations generate the same assembly so we
138 // choose the one that adheres to the standard.
141 // WHY HAVE typedef void MoveOnlyTypeForCPP03
143 // Callback<>/Bind() needs to understand movable-but-not-copyable semantics
144 // to call .Pass() appropriately when it is expected to transfer the value.
145 // The cryptic typedef MoveOnlyTypeForCPP03 is added to make this check
146 // easy and automatic in helper templates for Callback<>/Bind().
147 // See IsMoveOnlyType template and its usage in base/callback_internal.h
148 // for more details.
151 // COMPARED TO C++11
153 // In C++11, you would implement this functionality using an r-value reference
154 // and our .Pass() method would be replaced with a call to std::move().
156 // This emulation also has a deficiency where it uses up the single
157 // user-defined conversion allowed by C++ during initialization. This can
158 // cause problems in some API edge cases. For instance, in scoped_ptr, it is
159 // impossible to make a function "void Foo(scoped_ptr<Parent> p)" accept a
160 // value of type scoped_ptr<Child> even if you add a constructor to
161 // scoped_ptr<> that would make it look like it should work. C++11 does not
162 // have this deficiency.
165 // COMPARED TO Boost.Move
167 // Our implementation similar to Boost.Move, but we keep the RValue struct
168 // private to the move-only type, and we don't use the reinterpret_cast<> hack.
170 // In Boost.Move, RValue is the boost::rv<> template. This type can be used
171 // when writing APIs like:
173 // void MyFunc(boost::rv<Foo>& f)
175 // that can take advantage of rv<> to avoid extra copies of a type. However you
176 // would still be able to call this version of MyFunc with an l-value:
178 // Foo f;
179 // MyFunc(f); // Uh oh, we probably just destroyed |f| w/o calling Pass().
181 // unless someone is very careful to also declare a parallel override like:
183 // void MyFunc(const Foo& f)
185 // that would catch the l-values first. This was declared unsafe in C++11 and
186 // a C++11 compiler will explicitly fail MyFunc(f). Unfortunately, we cannot
187 // ensure this in C++03.
189 // Since we have no need for writing such APIs yet, our implementation keeps
190 // RValue private and uses a .Pass() method to do the conversion instead of
191 // trying to write a version of "std::move()." Writing an API like std::move()
192 // would require the RValue struct to be public.
195 // CAVEATS
197 // If you include a move-only type as a field inside a class that does not
198 // explicitly declare a copy constructor, the containing class's implicit
199 // copy constructor will change from Containing(const Containing&) to
200 // Containing(Containing&). This can cause some unexpected errors.
202 // http://llvm.org/bugs/show_bug.cgi?id=11528
204 // The workaround is to explicitly declare your copy constructor.
206 #define MOVE_ONLY_TYPE_FOR_CPP_03(type, rvalue_type) \
207 private: \
208 struct rvalue_type { \
209 explicit rvalue_type(type* object) : object(object) {} \
210 type* object; \
211 }; \
212 type(type&); \
213 void operator=(type&); \
214 public: \
215 operator rvalue_type() { return rvalue_type(this); } \
216 type Pass() WARN_UNUSED_RESULT { return type(rvalue_type(this)); } \
217 typedef void MoveOnlyTypeForCPP03; \
218 private:
220 #define MOVE_ONLY_TYPE_WITH_MOVE_CONSTRUCTOR_FOR_CPP_03(type) \
221 private: \
222 type(const type&); \
223 void operator=(const type&); \
224 public: \
225 type&& Pass() WARN_UNUSED_RESULT { return static_cast<type&&>(*this); } \
226 typedef void MoveOnlyTypeForCPP03; \
227 private:
229 #define TYPE_WITH_MOVE_CONSTRUCTOR_FOR_CPP_03(type) \
230 public: \
231 type&& Pass() WARN_UNUSED_RESULT { return static_cast<type&&>(*this); } \
232 private:
234 #endif // BASE_MOVE_H_