Create an initial chrome://supervised-user-internals page
[chromium-blink-merge.git] / base / memory / singleton.h
blobe50bdc05f34eeecefc293529e7eeab0e9da0bbde
1 // Copyright (c) 2011 The Chromium Authors. All rights reserved.
2 // Use of this source code is governed by a BSD-style license that can be
3 // found in the LICENSE file.
5 // PLEASE READ: Do you really need a singleton?
6 //
7 // Singletons make it hard to determine the lifetime of an object, which can
8 // lead to buggy code and spurious crashes.
9 //
10 // Instead of adding another singleton into the mix, try to identify either:
11 // a) An existing singleton that can manage your object's lifetime
12 // b) Locations where you can deterministically create the object and pass
13 // into other objects
15 // If you absolutely need a singleton, please keep them as trivial as possible
16 // and ideally a leaf dependency. Singletons get problematic when they attempt
17 // to do too much in their destructor or have circular dependencies.
19 #ifndef BASE_MEMORY_SINGLETON_H_
20 #define BASE_MEMORY_SINGLETON_H_
22 #include "base/at_exit.h"
23 #include "base/atomicops.h"
24 #include "base/base_export.h"
25 #include "base/memory/aligned_memory.h"
26 #include "base/threading/thread_restrictions.h"
28 namespace base {
29 namespace internal {
31 // Our AtomicWord doubles as a spinlock, where a value of
32 // kBeingCreatedMarker means the spinlock is being held for creation.
33 static const subtle::AtomicWord kBeingCreatedMarker = 1;
35 // We pull out some of the functionality into a non-templated function, so that
36 // we can implement the more complicated pieces out of line in the .cc file.
37 BASE_EXPORT subtle::AtomicWord WaitForInstance(subtle::AtomicWord* instance);
39 } // namespace internal
40 } // namespace base
42 // TODO(joth): Move more of this file into namespace base
44 // Default traits for Singleton<Type>. Calls operator new and operator delete on
45 // the object. Registers automatic deletion at process exit.
46 // Overload if you need arguments or another memory allocation function.
47 template<typename Type>
48 struct DefaultSingletonTraits {
49 // Allocates the object.
50 static Type* New() {
51 // The parenthesis is very important here; it forces POD type
52 // initialization.
53 return new Type();
56 // Destroys the object.
57 static void Delete(Type* x) {
58 delete x;
61 // Set to true to automatically register deletion of the object on process
62 // exit. See below for the required call that makes this happen.
63 static const bool kRegisterAtExit = true;
65 #ifndef NDEBUG
66 // Set to false to disallow access on a non-joinable thread. This is
67 // different from kRegisterAtExit because StaticMemorySingletonTraits allows
68 // access on non-joinable threads, and gracefully handles this.
69 static const bool kAllowedToAccessOnNonjoinableThread = false;
70 #endif
74 // Alternate traits for use with the Singleton<Type>. Identical to
75 // DefaultSingletonTraits except that the Singleton will not be cleaned up
76 // at exit.
77 template<typename Type>
78 struct LeakySingletonTraits : public DefaultSingletonTraits<Type> {
79 static const bool kRegisterAtExit = false;
80 #ifndef NDEBUG
81 static const bool kAllowedToAccessOnNonjoinableThread = true;
82 #endif
86 // Alternate traits for use with the Singleton<Type>. Allocates memory
87 // for the singleton instance from a static buffer. The singleton will
88 // be cleaned up at exit, but can't be revived after destruction unless
89 // the Resurrect() method is called.
91 // This is useful for a certain category of things, notably logging and
92 // tracing, where the singleton instance is of a type carefully constructed to
93 // be safe to access post-destruction.
94 // In logging and tracing you'll typically get stray calls at odd times, like
95 // during static destruction, thread teardown and the like, and there's a
96 // termination race on the heap-based singleton - e.g. if one thread calls
97 // get(), but then another thread initiates AtExit processing, the first thread
98 // may call into an object residing in unallocated memory. If the instance is
99 // allocated from the data segment, then this is survivable.
101 // The destructor is to deallocate system resources, in this case to unregister
102 // a callback the system will invoke when logging levels change. Note that
103 // this is also used in e.g. Chrome Frame, where you have to allow for the
104 // possibility of loading briefly into someone else's process space, and
105 // so leaking is not an option, as that would sabotage the state of your host
106 // process once you've unloaded.
107 template <typename Type>
108 struct StaticMemorySingletonTraits {
109 // WARNING: User has to deal with get() in the singleton class
110 // this is traits for returning NULL.
111 static Type* New() {
112 // Only constructs once and returns pointer; otherwise returns NULL.
113 if (base::subtle::NoBarrier_AtomicExchange(&dead_, 1))
114 return NULL;
116 return new(buffer_.void_data()) Type();
119 static void Delete(Type* p) {
120 if (p != NULL)
121 p->Type::~Type();
124 static const bool kRegisterAtExit = true;
125 static const bool kAllowedToAccessOnNonjoinableThread = true;
127 // Exposed for unittesting.
128 static void Resurrect() {
129 base::subtle::NoBarrier_Store(&dead_, 0);
132 private:
133 static base::AlignedMemory<sizeof(Type), ALIGNOF(Type)> buffer_;
134 // Signal the object was already deleted, so it is not revived.
135 static base::subtle::Atomic32 dead_;
138 template <typename Type> base::AlignedMemory<sizeof(Type), ALIGNOF(Type)>
139 StaticMemorySingletonTraits<Type>::buffer_;
140 template <typename Type> base::subtle::Atomic32
141 StaticMemorySingletonTraits<Type>::dead_ = 0;
143 // The Singleton<Type, Traits, DifferentiatingType> class manages a single
144 // instance of Type which will be created on first use and will be destroyed at
145 // normal process exit). The Trait::Delete function will not be called on
146 // abnormal process exit.
148 // DifferentiatingType is used as a key to differentiate two different
149 // singletons having the same memory allocation functions but serving a
150 // different purpose. This is mainly used for Locks serving different purposes.
152 // Example usage:
154 // In your header:
155 // template <typename T> struct DefaultSingletonTraits;
156 // class FooClass {
157 // public:
158 // static FooClass* GetInstance(); <-- See comment below on this.
159 // void Bar() { ... }
160 // private:
161 // FooClass() { ... }
162 // friend struct DefaultSingletonTraits<FooClass>;
164 // DISALLOW_COPY_AND_ASSIGN(FooClass);
165 // };
167 // In your source file:
168 // #include "base/memory/singleton.h"
169 // FooClass* FooClass::GetInstance() {
170 // return Singleton<FooClass>::get();
171 // }
173 // And to call methods on FooClass:
174 // FooClass::GetInstance()->Bar();
176 // NOTE: The method accessing Singleton<T>::get() has to be named as GetInstance
177 // and it is important that FooClass::GetInstance() is not inlined in the
178 // header. This makes sure that when source files from multiple targets include
179 // this header they don't end up with different copies of the inlined code
180 // creating multiple copies of the singleton.
182 // Singleton<> has no non-static members and doesn't need to actually be
183 // instantiated.
185 // This class is itself thread-safe. The underlying Type must of course be
186 // thread-safe if you want to use it concurrently. Two parameters may be tuned
187 // depending on the user's requirements.
189 // Glossary:
190 // RAE = kRegisterAtExit
192 // On every platform, if Traits::RAE is true, the singleton will be destroyed at
193 // process exit. More precisely it uses base::AtExitManager which requires an
194 // object of this type to be instantiated. AtExitManager mimics the semantics
195 // of atexit() such as LIFO order but under Windows is safer to call. For more
196 // information see at_exit.h.
198 // If Traits::RAE is false, the singleton will not be freed at process exit,
199 // thus the singleton will be leaked if it is ever accessed. Traits::RAE
200 // shouldn't be false unless absolutely necessary. Remember that the heap where
201 // the object is allocated may be destroyed by the CRT anyway.
203 // Caveats:
204 // (a) Every call to get(), operator->() and operator*() incurs some overhead
205 // (16ns on my P4/2.8GHz) to check whether the object has already been
206 // initialized. You may wish to cache the result of get(); it will not
207 // change.
209 // (b) Your factory function must never throw an exception. This class is not
210 // exception-safe.
212 template <typename Type,
213 typename Traits = DefaultSingletonTraits<Type>,
214 typename DifferentiatingType = Type>
215 class Singleton {
216 private:
217 // Classes using the Singleton<T> pattern should declare a GetInstance()
218 // method and call Singleton::get() from within that.
219 friend Type* Type::GetInstance();
221 // Allow TraceLog tests to test tracing after OnExit.
222 friend class DeleteTraceLogForTesting;
224 // This class is safe to be constructed and copy-constructed since it has no
225 // member.
227 // Return a pointer to the one true instance of the class.
228 static Type* get() {
229 #ifndef NDEBUG
230 // Avoid making TLS lookup on release builds.
231 if (!Traits::kAllowedToAccessOnNonjoinableThread)
232 base::ThreadRestrictions::AssertSingletonAllowed();
233 #endif
235 // The load has acquire memory ordering as the thread which reads the
236 // instance_ pointer must acquire visibility over the singleton data.
237 base::subtle::AtomicWord value = base::subtle::Acquire_Load(&instance_);
238 if (value != 0 && value != base::internal::kBeingCreatedMarker) {
239 return reinterpret_cast<Type*>(value);
242 // Object isn't created yet, maybe we will get to create it, let's try...
243 if (base::subtle::Acquire_CompareAndSwap(
244 &instance_, 0, base::internal::kBeingCreatedMarker) == 0) {
245 // instance_ was NULL and is now kBeingCreatedMarker. Only one thread
246 // will ever get here. Threads might be spinning on us, and they will
247 // stop right after we do this store.
248 Type* newval = Traits::New();
250 // Releases the visibility over instance_ to the readers.
251 base::subtle::Release_Store(
252 &instance_, reinterpret_cast<base::subtle::AtomicWord>(newval));
254 if (newval != NULL && Traits::kRegisterAtExit)
255 base::AtExitManager::RegisterCallback(OnExit, NULL);
257 return newval;
260 // We hit a race. Wait for the other thread to complete it.
261 value = base::internal::WaitForInstance(&instance_);
263 return reinterpret_cast<Type*>(value);
266 // Adapter function for use with AtExit(). This should be called single
267 // threaded, so don't use atomic operations.
268 // Calling OnExit while singleton is in use by other threads is a mistake.
269 static void OnExit(void* /*unused*/) {
270 // AtExit should only ever be register after the singleton instance was
271 // created. We should only ever get here with a valid instance_ pointer.
272 Traits::Delete(
273 reinterpret_cast<Type*>(base::subtle::NoBarrier_Load(&instance_)));
274 instance_ = 0;
276 static base::subtle::AtomicWord instance_;
279 template <typename Type, typename Traits, typename DifferentiatingType>
280 base::subtle::AtomicWord Singleton<Type, Traits, DifferentiatingType>::
281 instance_ = 0;
283 #endif // BASE_MEMORY_SINGLETON_H_