cc: Added inline to Tile::IsReadyToDraw
[chromium-blink-merge.git] / courgette / encoded_program.cc
blobc619c6af8229514d3a153660e89d994664f70baf
1 // Copyright (c) 2011 The Chromium Authors. All rights reserved.
2 // Use of this source code is governed by a BSD-style license that can be
3 // found in the LICENSE file.
5 #include "courgette/encoded_program.h"
7 #include <algorithm>
8 #include <map>
9 #include <string>
10 #include <vector>
12 #include "base/environment.h"
13 #include "base/logging.h"
14 #include "base/memory/scoped_ptr.h"
15 #include "base/strings/string_util.h"
16 #include "base/strings/utf_string_conversions.h"
17 #include "courgette/courgette.h"
18 #include "courgette/disassembler_elf_32_arm.h"
19 #include "courgette/streams.h"
20 #include "courgette/types_elf.h"
22 namespace courgette {
24 // Stream indexes.
25 const int kStreamMisc = 0;
26 const int kStreamOps = 1;
27 const int kStreamBytes = 2;
28 const int kStreamAbs32Indexes = 3;
29 const int kStreamRel32Indexes = 4;
30 const int kStreamAbs32Addresses = 5;
31 const int kStreamRel32Addresses = 6;
32 const int kStreamCopyCounts = 7;
33 const int kStreamOriginAddresses = kStreamMisc;
35 const int kStreamLimit = 9;
37 // Constructor is here rather than in the header. Although the constructor
38 // appears to do nothing it is fact quite large because of the implicit calls to
39 // field constructors. Ditto for the destructor.
40 EncodedProgram::EncodedProgram() : image_base_(0) {}
41 EncodedProgram::~EncodedProgram() {}
43 // Serializes a vector of integral values using Varint32 coding.
44 template<typename V>
45 CheckBool WriteVector(const V& items, SinkStream* buffer) {
46 size_t count = items.size();
47 bool ok = buffer->WriteSizeVarint32(count);
48 for (size_t i = 0; ok && i < count; ++i) {
49 COMPILE_ASSERT(sizeof(items[0]) <= sizeof(uint32), // NOLINT
50 T_must_fit_in_uint32);
51 ok = buffer->WriteSizeVarint32(items[i]);
53 return ok;
56 template<typename V>
57 bool ReadVector(V* items, SourceStream* buffer) {
58 uint32 count;
59 if (!buffer->ReadVarint32(&count))
60 return false;
62 items->clear();
64 bool ok = items->reserve(count);
65 for (size_t i = 0; ok && i < count; ++i) {
66 uint32 item;
67 ok = buffer->ReadVarint32(&item);
68 if (ok)
69 ok = items->push_back(static_cast<typename V::value_type>(item));
72 return ok;
75 // Serializes a vector, using delta coding followed by Varint32 coding.
76 template<typename V>
77 CheckBool WriteU32Delta(const V& set, SinkStream* buffer) {
78 size_t count = set.size();
79 bool ok = buffer->WriteSizeVarint32(count);
80 uint32 prev = 0;
81 for (size_t i = 0; ok && i < count; ++i) {
82 uint32 current = set[i];
83 uint32 delta = current - prev;
84 ok = buffer->WriteVarint32(delta);
85 prev = current;
87 return ok;
90 template <typename V>
91 static CheckBool ReadU32Delta(V* set, SourceStream* buffer) {
92 uint32 count;
94 if (!buffer->ReadVarint32(&count))
95 return false;
97 set->clear();
98 bool ok = set->reserve(count);
99 uint32 prev = 0;
101 for (size_t i = 0; ok && i < count; ++i) {
102 uint32 delta;
103 ok = buffer->ReadVarint32(&delta);
104 if (ok) {
105 uint32 current = prev + delta;
106 ok = set->push_back(current);
107 prev = current;
111 return ok;
114 // Write a vector as the byte representation of the contents.
116 // (This only really makes sense for a type T that has sizeof(T)==1, otherwise
117 // serialized representation is not endian-agnostic. But it is useful to keep
118 // the possibility of a greater size for experiments comparing Varint32 encoding
119 // of a vector of larger integrals vs a plain form.)
121 template<typename V>
122 CheckBool WriteVectorU8(const V& items, SinkStream* buffer) {
123 size_t count = items.size();
124 bool ok = buffer->WriteSizeVarint32(count);
125 if (count != 0 && ok) {
126 size_t byte_count = count * sizeof(typename V::value_type);
127 ok = buffer->Write(static_cast<const void*>(&items[0]), byte_count);
129 return ok;
132 template<typename V>
133 bool ReadVectorU8(V* items, SourceStream* buffer) {
134 uint32 count;
135 if (!buffer->ReadVarint32(&count))
136 return false;
138 items->clear();
139 bool ok = items->resize(count, 0);
140 if (ok && count != 0) {
141 size_t byte_count = count * sizeof(typename V::value_type);
142 return buffer->Read(static_cast<void*>(&((*items)[0])), byte_count);
144 return ok;
147 ////////////////////////////////////////////////////////////////////////////////
149 CheckBool EncodedProgram::DefineRel32Label(int index, RVA value) {
150 return DefineLabelCommon(&rel32_rva_, index, value);
153 CheckBool EncodedProgram::DefineAbs32Label(int index, RVA value) {
154 return DefineLabelCommon(&abs32_rva_, index, value);
157 static const RVA kUnassignedRVA = static_cast<RVA>(-1);
159 CheckBool EncodedProgram::DefineLabelCommon(RvaVector* rvas,
160 int index,
161 RVA rva) {
162 bool ok = true;
163 if (static_cast<int>(rvas->size()) <= index)
164 ok = rvas->resize(index + 1, kUnassignedRVA);
166 if (ok) {
167 DCHECK_EQ((*rvas)[index], kUnassignedRVA)
168 << "DefineLabel double assigned " << index;
169 (*rvas)[index] = rva;
172 return ok;
175 void EncodedProgram::EndLabels() {
176 FinishLabelsCommon(&abs32_rva_);
177 FinishLabelsCommon(&rel32_rva_);
180 void EncodedProgram::FinishLabelsCommon(RvaVector* rvas) {
181 // Replace all unassigned slots with the value at the previous index so they
182 // delta-encode to zero. (There might be better values than zero. The way to
183 // get that is have the higher level assembly program assign the unassigned
184 // slots.)
185 RVA previous = 0;
186 size_t size = rvas->size();
187 for (size_t i = 0; i < size; ++i) {
188 if ((*rvas)[i] == kUnassignedRVA)
189 (*rvas)[i] = previous;
190 else
191 previous = (*rvas)[i];
195 CheckBool EncodedProgram::AddOrigin(RVA origin) {
196 return ops_.push_back(ORIGIN) && origins_.push_back(origin);
199 CheckBool EncodedProgram::AddCopy(uint32 count, const void* bytes) {
200 const uint8* source = static_cast<const uint8*>(bytes);
202 bool ok = true;
204 // Fold adjacent COPY instructions into one. This nearly halves the size of
205 // an EncodedProgram with only COPY1 instructions since there are approx plain
206 // 16 bytes per reloc. This has a working-set benefit during decompression.
207 // For compression of files with large differences this makes a small (4%)
208 // improvement in size. For files with small differences this degrades the
209 // compressed size by 1.3%
210 if (!ops_.empty()) {
211 if (ops_.back() == COPY1) {
212 ops_.back() = COPY;
213 ok = copy_counts_.push_back(1);
215 if (ok && ops_.back() == COPY) {
216 copy_counts_.back() += count;
217 for (uint32 i = 0; ok && i < count; ++i) {
218 ok = copy_bytes_.push_back(source[i]);
220 return ok;
224 if (ok) {
225 if (count == 1) {
226 ok = ops_.push_back(COPY1) && copy_bytes_.push_back(source[0]);
227 } else {
228 ok = ops_.push_back(COPY) && copy_counts_.push_back(count);
229 for (uint32 i = 0; ok && i < count; ++i) {
230 ok = copy_bytes_.push_back(source[i]);
235 return ok;
238 CheckBool EncodedProgram::AddAbs32(int label_index) {
239 return ops_.push_back(ABS32) && abs32_ix_.push_back(label_index);
242 CheckBool EncodedProgram::AddRel32(int label_index) {
243 return ops_.push_back(REL32) && rel32_ix_.push_back(label_index);
246 CheckBool EncodedProgram::AddRel32ARM(uint16 op, int label_index) {
247 return ops_.push_back(static_cast<OP>(op)) &&
248 rel32_ix_.push_back(label_index);
251 CheckBool EncodedProgram::AddPeMakeRelocs() {
252 return ops_.push_back(MAKE_PE_RELOCATION_TABLE);
255 CheckBool EncodedProgram::AddElfMakeRelocs() {
256 return ops_.push_back(MAKE_ELF_RELOCATION_TABLE);
259 CheckBool EncodedProgram::AddElfARMMakeRelocs() {
260 return ops_.push_back(MAKE_ELF_ARM_RELOCATION_TABLE);
263 void EncodedProgram::DebuggingSummary() {
264 VLOG(1) << "EncodedProgram Summary"
265 << "\n image base " << image_base_
266 << "\n abs32 rvas " << abs32_rva_.size()
267 << "\n rel32 rvas " << rel32_rva_.size()
268 << "\n ops " << ops_.size()
269 << "\n origins " << origins_.size()
270 << "\n copy_counts " << copy_counts_.size()
271 << "\n copy_bytes " << copy_bytes_.size()
272 << "\n abs32_ix " << abs32_ix_.size()
273 << "\n rel32_ix " << rel32_ix_.size();
276 ////////////////////////////////////////////////////////////////////////////////
278 // For algorithm refinement purposes it is useful to write subsets of the file
279 // format. This gives us the ability to estimate the entropy of the
280 // differential compression of the individual streams, which can provide
281 // invaluable insights. The default, of course, is to include all the streams.
283 enum FieldSelect {
284 INCLUDE_ABS32_ADDRESSES = 0x0001,
285 INCLUDE_REL32_ADDRESSES = 0x0002,
286 INCLUDE_ABS32_INDEXES = 0x0010,
287 INCLUDE_REL32_INDEXES = 0x0020,
288 INCLUDE_OPS = 0x0100,
289 INCLUDE_BYTES = 0x0200,
290 INCLUDE_COPY_COUNTS = 0x0400,
291 INCLUDE_MISC = 0x1000
294 static FieldSelect GetFieldSelect() {
295 #if 1
296 // TODO(sra): Use better configuration.
297 scoped_ptr<base::Environment> env(base::Environment::Create());
298 std::string s;
299 env->GetVar("A_FIELDS", &s);
300 if (!s.empty()) {
301 return static_cast<FieldSelect>(wcstoul(ASCIIToWide(s).c_str(), 0, 0));
303 #endif
304 return static_cast<FieldSelect>(~0);
307 CheckBool EncodedProgram::WriteTo(SinkStreamSet* streams) {
308 FieldSelect select = GetFieldSelect();
310 // The order of fields must be consistent in WriteTo and ReadFrom, regardless
311 // of the streams used. The code can be configured with all kStreamXXX
312 // constants the same.
314 // If we change the code to pipeline reading with assembly (to avoid temporary
315 // storage vectors by consuming operands directly from the stream) then we
316 // need to read the base address and the random access address tables first,
317 // the rest can be interleaved.
319 if (select & INCLUDE_MISC) {
320 // TODO(sra): write 64 bits.
321 if (!streams->stream(kStreamMisc)->WriteVarint32(
322 static_cast<uint32>(image_base_))) {
323 return false;
327 bool success = true;
329 if (select & INCLUDE_ABS32_ADDRESSES) {
330 success &= WriteU32Delta(abs32_rva_,
331 streams->stream(kStreamAbs32Addresses));
334 if (select & INCLUDE_REL32_ADDRESSES) {
335 success &= WriteU32Delta(rel32_rva_,
336 streams->stream(kStreamRel32Addresses));
339 if (select & INCLUDE_MISC)
340 success &= WriteVector(origins_, streams->stream(kStreamOriginAddresses));
342 if (select & INCLUDE_OPS) {
343 // 5 for length.
344 success &= streams->stream(kStreamOps)->Reserve(ops_.size() + 5);
345 success &= WriteVector(ops_, streams->stream(kStreamOps));
348 if (select & INCLUDE_COPY_COUNTS)
349 success &= WriteVector(copy_counts_, streams->stream(kStreamCopyCounts));
351 if (select & INCLUDE_BYTES)
352 success &= WriteVectorU8(copy_bytes_, streams->stream(kStreamBytes));
354 if (select & INCLUDE_ABS32_INDEXES)
355 success &= WriteVector(abs32_ix_, streams->stream(kStreamAbs32Indexes));
357 if (select & INCLUDE_REL32_INDEXES)
358 success &= WriteVector(rel32_ix_, streams->stream(kStreamRel32Indexes));
360 return success;
363 bool EncodedProgram::ReadFrom(SourceStreamSet* streams) {
364 // TODO(sra): read 64 bits.
365 uint32 temp;
366 if (!streams->stream(kStreamMisc)->ReadVarint32(&temp))
367 return false;
368 image_base_ = temp;
370 if (!ReadU32Delta(&abs32_rva_, streams->stream(kStreamAbs32Addresses)))
371 return false;
372 if (!ReadU32Delta(&rel32_rva_, streams->stream(kStreamRel32Addresses)))
373 return false;
374 if (!ReadVector(&origins_, streams->stream(kStreamOriginAddresses)))
375 return false;
376 if (!ReadVector(&ops_, streams->stream(kStreamOps)))
377 return false;
378 if (!ReadVector(&copy_counts_, streams->stream(kStreamCopyCounts)))
379 return false;
380 if (!ReadVectorU8(&copy_bytes_, streams->stream(kStreamBytes)))
381 return false;
382 if (!ReadVector(&abs32_ix_, streams->stream(kStreamAbs32Indexes)))
383 return false;
384 if (!ReadVector(&rel32_ix_, streams->stream(kStreamRel32Indexes)))
385 return false;
387 // Check that streams have been completely consumed.
388 for (int i = 0; i < kStreamLimit; ++i) {
389 if (streams->stream(i)->Remaining() > 0)
390 return false;
393 return true;
396 // Safe, non-throwing version of std::vector::at(). Returns 'true' for success,
397 // 'false' for out-of-bounds index error.
398 template<typename V, typename T>
399 bool VectorAt(const V& v, size_t index, T* output) {
400 if (index >= v.size())
401 return false;
402 *output = v[index];
403 return true;
406 CheckBool EncodedProgram::EvaluateRel32ARM(OP op,
407 size_t& ix_rel32_ix,
408 RVA& current_rva,
409 SinkStream* output) {
410 switch (op & 0x0000F000) {
411 case REL32ARM8: {
412 uint32 index;
413 if (!VectorAt(rel32_ix_, ix_rel32_ix, &index))
414 return false;
415 ++ix_rel32_ix;
416 RVA rva;
417 if (!VectorAt(rel32_rva_, index, &rva))
418 return false;
419 uint32 decompressed_op;
420 if (!DisassemblerElf32ARM::Decompress(ARM_OFF8,
421 static_cast<uint16>(op),
422 static_cast<uint32>(rva -
423 current_rva),
424 &decompressed_op)) {
425 return false;
427 uint16 op16 = decompressed_op;
428 if (!output->Write(&op16, 2))
429 return false;
430 current_rva += 2;
431 break;
433 case REL32ARM11: {
434 uint32 index;
435 if (!VectorAt(rel32_ix_, ix_rel32_ix, &index))
436 return false;
437 ++ix_rel32_ix;
438 RVA rva;
439 if (!VectorAt(rel32_rva_, index, &rva))
440 return false;
441 uint32 decompressed_op;
442 if (!DisassemblerElf32ARM::Decompress(ARM_OFF11, (uint16) op,
443 (uint32) (rva - current_rva),
444 &decompressed_op)) {
445 return false;
447 uint16 op16 = decompressed_op;
448 if (!output->Write(&op16, 2))
449 return false;
450 current_rva += 2;
451 break;
453 case REL32ARM24: {
454 uint32 index;
455 if (!VectorAt(rel32_ix_, ix_rel32_ix, &index))
456 return false;
457 ++ix_rel32_ix;
458 RVA rva;
459 if (!VectorAt(rel32_rva_, index, &rva))
460 return false;
461 uint32 decompressed_op;
462 if (!DisassemblerElf32ARM::Decompress(ARM_OFF24, (uint16) op,
463 (uint32) (rva - current_rva),
464 &decompressed_op)) {
465 return false;
467 if (!output->Write(&decompressed_op, 4))
468 return false;
469 current_rva += 4;
470 break;
472 case REL32ARM25: {
473 uint32 index;
474 if (!VectorAt(rel32_ix_, ix_rel32_ix, &index))
475 return false;
476 ++ix_rel32_ix;
477 RVA rva;
478 if (!VectorAt(rel32_rva_, index, &rva))
479 return false;
480 uint32 decompressed_op;
481 if (!DisassemblerElf32ARM::Decompress(ARM_OFF25, (uint16) op,
482 (uint32) (rva - current_rva),
483 &decompressed_op)) {
484 return false;
486 uint32 words = (decompressed_op << 16) | (decompressed_op >> 16);
487 if (!output->Write(&words, 4))
488 return false;
489 current_rva += 4;
490 break;
492 case REL32ARM21: {
493 uint32 index;
494 if (!VectorAt(rel32_ix_, ix_rel32_ix, &index))
495 return false;
496 ++ix_rel32_ix;
497 RVA rva;
498 if (!VectorAt(rel32_rva_, index, &rva))
499 return false;
500 uint32 decompressed_op;
501 if (!DisassemblerElf32ARM::Decompress(ARM_OFF21, (uint16) op,
502 (uint32) (rva - current_rva),
503 &decompressed_op)) {
504 return false;
506 uint32 words = (decompressed_op << 16) | (decompressed_op >> 16);
507 if (!output->Write(&words, 4))
508 return false;
509 current_rva += 4;
510 break;
512 default:
513 return false;
516 return true;
519 CheckBool EncodedProgram::AssembleTo(SinkStream* final_buffer) {
520 // For the most part, the assembly process walks the various tables.
521 // ix_mumble is the index into the mumble table.
522 size_t ix_origins = 0;
523 size_t ix_copy_counts = 0;
524 size_t ix_copy_bytes = 0;
525 size_t ix_abs32_ix = 0;
526 size_t ix_rel32_ix = 0;
528 RVA current_rva = 0;
530 bool pending_pe_relocation_table = false;
531 Elf32_Word pending_elf_relocation_table_type = 0;
532 SinkStream bytes_following_relocation_table;
534 SinkStream* output = final_buffer;
536 for (size_t ix_ops = 0; ix_ops < ops_.size(); ++ix_ops) {
537 OP op = ops_[ix_ops];
539 switch (op) {
540 default:
541 if (!EvaluateRel32ARM(op, ix_rel32_ix, current_rva, output))
542 return false;
543 break;
545 case ORIGIN: {
546 RVA section_rva;
547 if (!VectorAt(origins_, ix_origins, &section_rva))
548 return false;
549 ++ix_origins;
550 current_rva = section_rva;
551 break;
554 case COPY: {
555 uint32 count;
556 if (!VectorAt(copy_counts_, ix_copy_counts, &count))
557 return false;
558 ++ix_copy_counts;
559 for (uint32 i = 0; i < count; ++i) {
560 uint8 b;
561 if (!VectorAt(copy_bytes_, ix_copy_bytes, &b))
562 return false;
563 ++ix_copy_bytes;
564 if (!output->Write(&b, 1))
565 return false;
567 current_rva += count;
568 break;
571 case COPY1: {
572 uint8 b;
573 if (!VectorAt(copy_bytes_, ix_copy_bytes, &b))
574 return false;
575 ++ix_copy_bytes;
576 if (!output->Write(&b, 1))
577 return false;
578 current_rva += 1;
579 break;
582 case REL32: {
583 uint32 index;
584 if (!VectorAt(rel32_ix_, ix_rel32_ix, &index))
585 return false;
586 ++ix_rel32_ix;
587 RVA rva;
588 if (!VectorAt(rel32_rva_, index, &rva))
589 return false;
590 uint32 offset = (rva - (current_rva + 4));
591 if (!output->Write(&offset, 4))
592 return false;
593 current_rva += 4;
594 break;
597 case ABS32: {
598 uint32 index;
599 if (!VectorAt(abs32_ix_, ix_abs32_ix, &index))
600 return false;
601 ++ix_abs32_ix;
602 RVA rva;
603 if (!VectorAt(abs32_rva_, index, &rva))
604 return false;
605 uint32 abs32 = static_cast<uint32>(rva + image_base_);
606 if (!abs32_relocs_.push_back(current_rva) || !output->Write(&abs32, 4))
607 return false;
608 current_rva += 4;
609 break;
612 case MAKE_PE_RELOCATION_TABLE: {
613 // We can see the base relocation anywhere, but we only have the
614 // information to generate it at the very end. So we divert the bytes
615 // we are generating to a temporary stream.
616 if (pending_pe_relocation_table) // Can't have two base relocation
617 // tables.
618 return false;
620 pending_pe_relocation_table = true;
621 output = &bytes_following_relocation_table;
622 break;
623 // There is a potential problem *if* the instruction stream contains
624 // some REL32 relocations following the base relocation and in the same
625 // section. We don't know the size of the table, so 'current_rva' will
626 // be wrong, causing REL32 offsets to be miscalculated. This never
627 // happens; the base relocation table is usually in a section of its
628 // own, a data-only section, and following everything else in the
629 // executable except some padding zero bytes. We could fix this by
630 // emitting an ORIGIN after the MAKE_BASE_RELOCATION_TABLE.
633 case MAKE_ELF_ARM_RELOCATION_TABLE: {
634 // We can see the base relocation anywhere, but we only have the
635 // information to generate it at the very end. So we divert the bytes
636 // we are generating to a temporary stream.
637 if (pending_elf_relocation_table_type) // Can't have two relocation
638 // tables.
639 return false;
641 pending_elf_relocation_table_type = R_ARM_RELATIVE;
642 output = &bytes_following_relocation_table;
643 break;
646 case MAKE_ELF_RELOCATION_TABLE: {
647 // We can see the base relocation anywhere, but we only have the
648 // information to generate it at the very end. So we divert the bytes
649 // we are generating to a temporary stream.
650 if (pending_elf_relocation_table_type) // Can't have two relocation
651 // tables.
652 return false;
654 pending_elf_relocation_table_type = R_386_RELATIVE;
655 output = &bytes_following_relocation_table;
656 break;
661 if (pending_pe_relocation_table) {
662 if (!GeneratePeRelocations(final_buffer) ||
663 !final_buffer->Append(&bytes_following_relocation_table))
664 return false;
667 if (pending_elf_relocation_table_type) {
668 if (!GenerateElfRelocations(pending_elf_relocation_table_type,
669 final_buffer) ||
670 !final_buffer->Append(&bytes_following_relocation_table))
671 return false;
674 // Final verification check: did we consume all lists?
675 if (ix_copy_counts != copy_counts_.size())
676 return false;
677 if (ix_copy_bytes != copy_bytes_.size())
678 return false;
679 if (ix_abs32_ix != abs32_ix_.size())
680 return false;
681 if (ix_rel32_ix != rel32_ix_.size())
682 return false;
684 return true;
687 // RelocBlock has the layout of a block of relocations in the base relocation
688 // table file format.
690 struct RelocBlockPOD {
691 uint32 page_rva;
692 uint32 block_size;
693 uint16 relocs[4096]; // Allow up to one relocation per byte of a 4k page.
696 COMPILE_ASSERT(offsetof(RelocBlockPOD, relocs) == 8, reloc_block_header_size);
698 class RelocBlock {
699 public:
700 RelocBlock() {
701 pod.page_rva = ~0;
702 pod.block_size = 8;
705 void Add(uint16 item) {
706 pod.relocs[(pod.block_size-8)/2] = item;
707 pod.block_size += 2;
710 CheckBool Flush(SinkStream* buffer) WARN_UNUSED_RESULT {
711 bool ok = true;
712 if (pod.block_size != 8) {
713 if (pod.block_size % 4 != 0) { // Pad to make size multiple of 4 bytes.
714 Add(0);
716 ok = buffer->Write(&pod, pod.block_size);
717 pod.block_size = 8;
719 return ok;
721 RelocBlockPOD pod;
724 CheckBool EncodedProgram::GeneratePeRelocations(SinkStream* buffer) {
725 std::sort(abs32_relocs_.begin(), abs32_relocs_.end());
727 RelocBlock block;
729 bool ok = true;
730 for (size_t i = 0; ok && i < abs32_relocs_.size(); ++i) {
731 uint32 rva = abs32_relocs_[i];
732 uint32 page_rva = rva & ~0xFFF;
733 if (page_rva != block.pod.page_rva) {
734 ok &= block.Flush(buffer);
735 block.pod.page_rva = page_rva;
737 if (ok)
738 block.Add(0x3000 | (rva & 0xFFF));
740 ok &= block.Flush(buffer);
741 return ok;
744 CheckBool EncodedProgram::GenerateElfRelocations(Elf32_Word r_info,
745 SinkStream* buffer) {
746 std::sort(abs32_relocs_.begin(), abs32_relocs_.end());
748 Elf32_Rel relocation_block;
750 relocation_block.r_info = r_info;
752 bool ok = true;
753 for (size_t i = 0; ok && i < abs32_relocs_.size(); ++i) {
754 relocation_block.r_offset = abs32_relocs_[i];
755 ok = buffer->Write(&relocation_block, sizeof(Elf32_Rel));
758 return ok;
760 ////////////////////////////////////////////////////////////////////////////////
762 Status WriteEncodedProgram(EncodedProgram* encoded, SinkStreamSet* sink) {
763 if (!encoded->WriteTo(sink))
764 return C_STREAM_ERROR;
765 return C_OK;
768 Status ReadEncodedProgram(SourceStreamSet* streams, EncodedProgram** output) {
769 EncodedProgram* encoded = new EncodedProgram();
770 if (encoded->ReadFrom(streams)) {
771 *output = encoded;
772 return C_OK;
774 delete encoded;
775 return C_DESERIALIZATION_FAILED;
778 Status Assemble(EncodedProgram* encoded, SinkStream* buffer) {
779 bool assembled = encoded->AssembleTo(buffer);
780 if (assembled)
781 return C_OK;
782 return C_ASSEMBLY_FAILED;
785 void DeleteEncodedProgram(EncodedProgram* encoded) {
786 delete encoded;
789 } // end namespace