1 // Copyright (c) 2011 The Chromium Authors. All rights reserved.
2 // Use of this source code is governed by a BSD-style license that can be
3 // found in the LICENSE file.
5 // The main idea in Courgette is to do patching *under a tranformation*. The
6 // input is transformed into a new representation, patching occurs in the new
7 // repesentation, and then the tranform is reversed to get the patched data.
9 // The idea is applied to pieces (or 'elements') of the whole (or 'ensemble').
10 // Each of the elements has to go through the same set of steps in lock-step.
12 // This file contains the code to create the patch.
15 #include "courgette/ensemble.h"
20 #include "base/basictypes.h"
21 #include "base/logging.h"
22 #include "base/time/time.h"
24 #include "courgette/crc.h"
25 #include "courgette/difference_estimator.h"
26 #include "courgette/region.h"
27 #include "courgette/simple_delta.h"
28 #include "courgette/streams.h"
29 #include "courgette/third_party/bsdiff.h"
31 #include "courgette/patcher_x86_32.h"
32 #include "courgette/patch_generator_x86_32.h"
36 TransformationPatchGenerator::TransformationPatchGenerator(
39 TransformationPatcher
* patcher
)
40 : old_element_(old_element
),
41 new_element_(new_element
),
45 TransformationPatchGenerator::~TransformationPatchGenerator() {
49 // The default implementation of PredictTransformParameters delegates to the
51 Status
TransformationPatchGenerator::PredictTransformParameters(
52 SinkStreamSet
* prediction
) {
53 return patcher_
->PredictTransformParameters(prediction
);
56 // The default implementation of Reform delegates to the patcher.
57 Status
TransformationPatchGenerator::Reform(
58 SourceStreamSet
* transformed_element
,
59 SinkStream
* reformed_element
) {
60 return patcher_
->Reform(transformed_element
, reformed_element
);
63 // Makes a TransformationPatchGenerator of the appropriate variety for the
65 TransformationPatchGenerator
* MakeGenerator(Element
* old_element
,
66 Element
* new_element
) {
67 switch (new_element
->kind()) {
70 case EXE_WIN_32_X86
: {
71 TransformationPatchGenerator
* generator
=
72 new PatchGeneratorX86_32(
75 new PatcherX86_32(old_element
->region()),
79 case EXE_ELF_32_X86
: {
80 TransformationPatchGenerator
* generator
=
81 new PatchGeneratorX86_32(
84 new PatcherX86_32(old_element
->region()),
88 case EXE_ELF_32_ARM
: {
89 TransformationPatchGenerator
* generator
=
90 new PatchGeneratorX86_32(
93 new PatcherX86_32(old_element
->region()),
99 LOG(WARNING
) << "Unexpected Element::Kind " << old_element
->kind();
103 // Checks to see if the proposed comparison is 'unsafe'. Sometimes one element
104 // from 'old' is matched as the closest element to multiple elements from 'new'.
105 // Each time this happens, the old element is transformed and serialized. This
106 // is a problem when the old element is huge compared with the new element
107 // because the mutliple serialized copies can be much bigger than the size of
110 // The right way to avoid this is to ensure any one element from 'old' is
111 // serialized once, which requires matching code in the patch application.
113 // This is a quick hack to avoid the problem by prohibiting a big difference in
114 // size between matching elements.
115 bool UnsafeDifference(Element
* old_element
, Element
* new_element
) {
116 double kMaxBloat
= 2.0;
117 size_t kMinWorrysomeDifference
= 2 << 20; // 2MB
118 size_t old_size
= old_element
->region().length();
119 size_t new_size
= new_element
->region().length();
120 size_t low_size
= std::min(old_size
, new_size
);
121 size_t high_size
= std::max(old_size
, new_size
);
122 if (high_size
- low_size
< kMinWorrysomeDifference
) return false;
123 if (high_size
< low_size
* kMaxBloat
) return false;
127 // FindGenerators finds TransformationPatchGenerators for the elements of
128 // |new_ensemble|. For each element of |new_ensemble| we find the closest
129 // matching element from |old_ensemble| and use that as the basis for
130 // differential compression. The elements have to be the same kind so as to
131 // support transformation into the same kind of 'new representation'.
133 Status
FindGenerators(Ensemble
* old_ensemble
, Ensemble
* new_ensemble
,
134 std::vector
<TransformationPatchGenerator
*>* generators
) {
135 base::Time start_find_time
= base::Time::Now();
136 old_ensemble
->FindEmbeddedElements();
137 new_ensemble
->FindEmbeddedElements();
138 VLOG(1) << "done FindEmbeddedElements "
139 << (base::Time::Now() - start_find_time
).InSecondsF();
141 std::vector
<Element
*> old_elements(old_ensemble
->elements());
142 std::vector
<Element
*> new_elements(new_ensemble
->elements());
144 VLOG(1) << "old has " << old_elements
.size() << " elements";
145 VLOG(1) << "new has " << new_elements
.size() << " elements";
147 DifferenceEstimator difference_estimator
;
148 std::vector
<DifferenceEstimator::Base
*> bases
;
150 base::Time start_bases_time
= base::Time::Now();
151 for (size_t i
= 0; i
< old_elements
.size(); ++i
) {
153 difference_estimator
.MakeBase(old_elements
[i
]->region()));
155 VLOG(1) << "done make bases "
156 << (base::Time::Now() - start_bases_time
).InSecondsF() << "s";
158 for (size_t new_index
= 0; new_index
< new_elements
.size(); ++new_index
) {
159 Element
* new_element
= new_elements
[new_index
];
160 DifferenceEstimator::Subject
* new_subject
=
161 difference_estimator
.MakeSubject(new_element
->region());
163 // Search through old elements to find the best match.
165 // TODO(sra): This is O(N x M), i.e. O(N^2) since old_ensemble and
166 // new_ensemble probably have a very similar structure. We can make the
167 // search faster by making the comparison provided by DifferenceEstimator
168 // more nuanced, returning early if the measured difference is greater than
169 // the current best. This will be most effective if we can arrange that the
170 // first elements we try to match are likely the 'right' ones. We could
171 // prioritize elements that are of a similar size or similar position in the
172 // sequence of elements.
174 Element
* best_old_element
= NULL
;
175 size_t best_difference
= std::numeric_limits
<size_t>::max();
176 for (size_t old_index
= 0; old_index
< old_elements
.size(); ++old_index
) {
177 Element
* old_element
= old_elements
[old_index
];
178 // Elements of different kinds are incompatible.
179 if (old_element
->kind() != new_element
->kind())
182 if (UnsafeDifference(old_element
, new_element
))
185 base::Time start_compare
= base::Time::Now();
186 DifferenceEstimator::Base
* old_base
= bases
[old_index
];
187 size_t difference
= difference_estimator
.Measure(old_base
, new_subject
);
189 VLOG(1) << "Compare " << old_element
->Name()
190 << " to " << new_element
->Name()
191 << " --> " << difference
192 << " in " << (base::Time::Now() - start_compare
).InSecondsF()
194 if (difference
== 0) {
195 VLOG(1) << "Skip " << new_element
->Name()
196 << " - identical to " << old_element
->Name();
198 best_old_element
= NULL
;
201 if (difference
< best_difference
) {
202 best_difference
= difference
;
203 best_old_element
= old_element
;
207 if (best_old_element
) {
208 VLOG(1) << "Matched " << best_old_element
->Name()
209 << " to " << new_element
->Name()
210 << " --> " << best_difference
;
211 TransformationPatchGenerator
* generator
=
212 MakeGenerator(best_old_element
, new_element
);
214 generators
->push_back(generator
);
218 VLOG(1) << "done FindGenerators found " << generators
->size()
219 << " in " << (base::Time::Now() - start_find_time
).InSecondsF()
225 void FreeGenerators(std::vector
<TransformationPatchGenerator
*>* generators
) {
226 for (size_t i
= 0; i
< generators
->size(); ++i
) {
227 delete (*generators
)[i
];
232 ////////////////////////////////////////////////////////////////////////////////
234 Status
GenerateEnsemblePatch(SourceStream
* base
,
235 SourceStream
* update
,
236 SinkStream
* final_patch
) {
237 VLOG(1) << "start GenerateEnsemblePatch";
238 base::Time start_time
= base::Time::Now();
240 Region
old_region(base
->Buffer(), base
->Remaining());
241 Region
new_region(update
->Buffer(), update
->Remaining());
242 Ensemble
old_ensemble(old_region
, "old");
243 Ensemble
new_ensemble(new_region
, "new");
244 std::vector
<TransformationPatchGenerator
*> generators
;
245 Status generators_status
= FindGenerators(&old_ensemble
, &new_ensemble
,
247 if (generators_status
!= C_OK
)
248 return generators_status
;
250 SinkStreamSet patch_streams
;
252 SinkStream
* tranformation_descriptions
= patch_streams
.stream(0);
253 SinkStream
* parameter_correction
= patch_streams
.stream(1);
254 SinkStream
* transformed_elements_correction
= patch_streams
.stream(2);
255 SinkStream
* ensemble_correction
= patch_streams
.stream(3);
257 size_t number_of_transformations
= generators
.size();
258 if (!tranformation_descriptions
->WriteSizeVarint32(number_of_transformations
))
259 return C_STREAM_ERROR
;
261 for (size_t i
= 0; i
< number_of_transformations
; ++i
) {
262 ExecutableType kind
= generators
[i
]->Kind();
263 if (!tranformation_descriptions
->WriteVarint32(kind
))
264 return C_STREAM_ERROR
;
267 for (size_t i
= 0; i
< number_of_transformations
; ++i
) {
269 generators
[i
]->WriteInitialParameters(tranformation_descriptions
);
275 // Generate sub-patch for parameters.
277 SinkStreamSet predicted_parameters_sink
;
278 SinkStreamSet corrected_parameters_sink
;
280 for (size_t i
= 0; i
< number_of_transformations
; ++i
) {
281 SinkStreamSet single_predicted_parameters
;
283 status
= generators
[i
]->PredictTransformParameters(
284 &single_predicted_parameters
);
287 if (!predicted_parameters_sink
.WriteSet(&single_predicted_parameters
))
288 return C_STREAM_ERROR
;
290 SinkStreamSet single_corrected_parameters
;
291 status
= generators
[i
]->CorrectedTransformParameters(
292 &single_corrected_parameters
);
295 if (!corrected_parameters_sink
.WriteSet(&single_corrected_parameters
))
296 return C_STREAM_ERROR
;
299 SinkStream linearized_predicted_parameters
;
300 SinkStream linearized_corrected_parameters
;
302 if (!predicted_parameters_sink
.CopyTo(&linearized_predicted_parameters
))
303 return C_STREAM_ERROR
;
304 if (!corrected_parameters_sink
.CopyTo(&linearized_corrected_parameters
))
305 return C_STREAM_ERROR
;
307 SourceStream predicted_parameters_source
;
308 SourceStream corrected_parameters_source
;
309 predicted_parameters_source
.Init(linearized_predicted_parameters
);
310 corrected_parameters_source
.Init(linearized_corrected_parameters
);
312 Status delta1_status
= GenerateSimpleDelta(&predicted_parameters_source
,
313 &corrected_parameters_source
,
314 parameter_correction
);
315 if (delta1_status
!= C_OK
)
316 return delta1_status
;
319 // Generate sub-patch for elements.
321 corrected_parameters_source
.Init(linearized_corrected_parameters
);
322 SourceStreamSet corrected_parameters_source_set
;
323 if (!corrected_parameters_source_set
.Init(&corrected_parameters_source
))
324 return C_STREAM_ERROR
;
326 SinkStreamSet predicted_transformed_elements
;
327 SinkStreamSet corrected_transformed_elements
;
329 for (size_t i
= 0; i
< number_of_transformations
; ++i
) {
330 SourceStreamSet single_parameters
;
331 if (!corrected_parameters_source_set
.ReadSet(&single_parameters
))
332 return C_STREAM_ERROR
;
333 SinkStreamSet single_predicted_transformed_element
;
334 SinkStreamSet single_corrected_transformed_element
;
335 Status status
= generators
[i
]->Transform(
337 &single_predicted_transformed_element
,
338 &single_corrected_transformed_element
);
341 if (!single_parameters
.Empty())
342 return C_STREAM_NOT_CONSUMED
;
343 if (!predicted_transformed_elements
.WriteSet(
344 &single_predicted_transformed_element
))
345 return C_STREAM_ERROR
;
346 if (!corrected_transformed_elements
.WriteSet(
347 &single_corrected_transformed_element
))
348 return C_STREAM_ERROR
;
351 if (!corrected_parameters_source_set
.Empty())
352 return C_STREAM_NOT_CONSUMED
;
354 SinkStream linearized_predicted_transformed_elements
;
355 SinkStream linearized_corrected_transformed_elements
;
357 if (!predicted_transformed_elements
.CopyTo(
358 &linearized_predicted_transformed_elements
))
359 return C_STREAM_ERROR
;
360 if (!corrected_transformed_elements
.CopyTo(
361 &linearized_corrected_transformed_elements
))
362 return C_STREAM_ERROR
;
364 SourceStream predicted_transformed_elements_source
;
365 SourceStream corrected_transformed_elements_source
;
366 predicted_transformed_elements_source
367 .Init(linearized_predicted_transformed_elements
);
368 corrected_transformed_elements_source
369 .Init(linearized_corrected_transformed_elements
);
371 Status delta2_status
=
372 GenerateSimpleDelta(&predicted_transformed_elements_source
,
373 &corrected_transformed_elements_source
,
374 transformed_elements_correction
);
375 if (delta2_status
!= C_OK
)
376 return delta2_status
;
378 // Last use, free storage.
379 linearized_predicted_transformed_elements
.Retire();
382 // Generate sub-patch for whole enchilada.
384 SinkStream predicted_ensemble
;
386 if (!predicted_ensemble
.Write(base
->Buffer(), base
->Remaining()))
387 return C_STREAM_ERROR
;
389 SourceStreamSet corrected_transformed_elements_source_set
;
390 corrected_transformed_elements_source
391 .Init(linearized_corrected_transformed_elements
);
392 if (!corrected_transformed_elements_source_set
393 .Init(&corrected_transformed_elements_source
))
394 return C_STREAM_ERROR
;
396 for (size_t i
= 0; i
< number_of_transformations
; ++i
) {
397 SourceStreamSet single_corrected_transformed_element
;
398 if (!corrected_transformed_elements_source_set
.ReadSet(
399 &single_corrected_transformed_element
))
400 return C_STREAM_ERROR
;
401 Status status
= generators
[i
]->Reform(&single_corrected_transformed_element
,
402 &predicted_ensemble
);
405 if (!single_corrected_transformed_element
.Empty())
406 return C_STREAM_NOT_CONSUMED
;
409 if (!corrected_transformed_elements_source_set
.Empty())
410 return C_STREAM_NOT_CONSUMED
;
412 // No more references to this stream's buffer.
413 linearized_corrected_transformed_elements
.Retire();
415 FreeGenerators(&generators
);
417 size_t final_patch_input_size
= predicted_ensemble
.Length();
418 SourceStream predicted_ensemble_source
;
419 predicted_ensemble_source
.Init(predicted_ensemble
);
420 Status delta3_status
= GenerateSimpleDelta(&predicted_ensemble_source
,
422 ensemble_correction
);
423 if (delta3_status
!= C_OK
)
424 return delta3_status
;
427 // Final output stream has a header followed by a StreamSet.
429 if (!final_patch
->WriteVarint32(CourgettePatchFile::kMagic
) ||
430 !final_patch
->WriteVarint32(CourgettePatchFile::kVersion
) ||
431 !final_patch
->WriteVarint32(CalculateCrc(old_region
.start(),
432 old_region
.length())) ||
433 !final_patch
->WriteVarint32(CalculateCrc(new_region
.start(),
434 new_region
.length())) ||
435 !final_patch
->WriteSizeVarint32(final_patch_input_size
) ||
436 !patch_streams
.CopyTo(final_patch
)) {
437 return C_STREAM_ERROR
;
440 VLOG(1) << "done GenerateEnsemblePatch "
441 << (base::Time::Now() - start_time
).InSecondsF() << "s";