cc: Added inline to Tile::IsReadyToDraw
[chromium-blink-merge.git] / third_party / sqlite / src / ext / fts3 / fts3.c
blobd11572ac4cc57d2ddae7087a7e9eed71d93fdd68
1 /*
2 ** 2006 Oct 10
3 **
4 ** The author disclaims copyright to this source code. In place of
5 ** a legal notice, here is a blessing:
6 **
7 ** May you do good and not evil.
8 ** May you find forgiveness for yourself and forgive others.
9 ** May you share freely, never taking more than you give.
11 ******************************************************************************
13 ** This is an SQLite module implementing full-text search.
17 ** The code in this file is only compiled if:
19 ** * The FTS3 module is being built as an extension
20 ** (in which case SQLITE_CORE is not defined), or
22 ** * The FTS3 module is being built into the core of
23 ** SQLite (in which case SQLITE_ENABLE_FTS3 is defined).
26 /* The full-text index is stored in a series of b+tree (-like)
27 ** structures called segments which map terms to doclists. The
28 ** structures are like b+trees in layout, but are constructed from the
29 ** bottom up in optimal fashion and are not updatable. Since trees
30 ** are built from the bottom up, things will be described from the
31 ** bottom up.
34 **** Varints ****
35 ** The basic unit of encoding is a variable-length integer called a
36 ** varint. We encode variable-length integers in little-endian order
37 ** using seven bits * per byte as follows:
39 ** KEY:
40 ** A = 0xxxxxxx 7 bits of data and one flag bit
41 ** B = 1xxxxxxx 7 bits of data and one flag bit
43 ** 7 bits - A
44 ** 14 bits - BA
45 ** 21 bits - BBA
46 ** and so on.
48 ** This is similar in concept to how sqlite encodes "varints" but
49 ** the encoding is not the same. SQLite varints are big-endian
50 ** are are limited to 9 bytes in length whereas FTS3 varints are
51 ** little-endian and can be up to 10 bytes in length (in theory).
53 ** Example encodings:
55 ** 1: 0x01
56 ** 127: 0x7f
57 ** 128: 0x81 0x00
60 **** Document lists ****
61 ** A doclist (document list) holds a docid-sorted list of hits for a
62 ** given term. Doclists hold docids and associated token positions.
63 ** A docid is the unique integer identifier for a single document.
64 ** A position is the index of a word within the document. The first
65 ** word of the document has a position of 0.
67 ** FTS3 used to optionally store character offsets using a compile-time
68 ** option. But that functionality is no longer supported.
70 ** A doclist is stored like this:
72 ** array {
73 ** varint docid;
74 ** array { (position list for column 0)
75 ** varint position; (2 more than the delta from previous position)
76 ** }
77 ** array {
78 ** varint POS_COLUMN; (marks start of position list for new column)
79 ** varint column; (index of new column)
80 ** array {
81 ** varint position; (2 more than the delta from previous position)
82 ** }
83 ** }
84 ** varint POS_END; (marks end of positions for this document.
85 ** }
87 ** Here, array { X } means zero or more occurrences of X, adjacent in
88 ** memory. A "position" is an index of a token in the token stream
89 ** generated by the tokenizer. Note that POS_END and POS_COLUMN occur
90 ** in the same logical place as the position element, and act as sentinals
91 ** ending a position list array. POS_END is 0. POS_COLUMN is 1.
92 ** The positions numbers are not stored literally but rather as two more
93 ** than the difference from the prior position, or the just the position plus
94 ** 2 for the first position. Example:
96 ** label: A B C D E F G H I J K
97 ** value: 123 5 9 1 1 14 35 0 234 72 0
99 ** The 123 value is the first docid. For column zero in this document
100 ** there are two matches at positions 3 and 10 (5-2 and 9-2+3). The 1
101 ** at D signals the start of a new column; the 1 at E indicates that the
102 ** new column is column number 1. There are two positions at 12 and 45
103 ** (14-2 and 35-2+12). The 0 at H indicate the end-of-document. The
104 ** 234 at I is the next docid. It has one position 72 (72-2) and then
105 ** terminates with the 0 at K.
107 ** A "position-list" is the list of positions for multiple columns for
108 ** a single docid. A "column-list" is the set of positions for a single
109 ** column. Hence, a position-list consists of one or more column-lists,
110 ** a document record consists of a docid followed by a position-list and
111 ** a doclist consists of one or more document records.
113 ** A bare doclist omits the position information, becoming an
114 ** array of varint-encoded docids.
116 **** Segment leaf nodes ****
117 ** Segment leaf nodes store terms and doclists, ordered by term. Leaf
118 ** nodes are written using LeafWriter, and read using LeafReader (to
119 ** iterate through a single leaf node's data) and LeavesReader (to
120 ** iterate through a segment's entire leaf layer). Leaf nodes have
121 ** the format:
123 ** varint iHeight; (height from leaf level, always 0)
124 ** varint nTerm; (length of first term)
125 ** char pTerm[nTerm]; (content of first term)
126 ** varint nDoclist; (length of term's associated doclist)
127 ** char pDoclist[nDoclist]; (content of doclist)
128 ** array {
129 ** (further terms are delta-encoded)
130 ** varint nPrefix; (length of prefix shared with previous term)
131 ** varint nSuffix; (length of unshared suffix)
132 ** char pTermSuffix[nSuffix];(unshared suffix of next term)
133 ** varint nDoclist; (length of term's associated doclist)
134 ** char pDoclist[nDoclist]; (content of doclist)
135 ** }
137 ** Here, array { X } means zero or more occurrences of X, adjacent in
138 ** memory.
140 ** Leaf nodes are broken into blocks which are stored contiguously in
141 ** the %_segments table in sorted order. This means that when the end
142 ** of a node is reached, the next term is in the node with the next
143 ** greater node id.
145 ** New data is spilled to a new leaf node when the current node
146 ** exceeds LEAF_MAX bytes (default 2048). New data which itself is
147 ** larger than STANDALONE_MIN (default 1024) is placed in a standalone
148 ** node (a leaf node with a single term and doclist). The goal of
149 ** these settings is to pack together groups of small doclists while
150 ** making it efficient to directly access large doclists. The
151 ** assumption is that large doclists represent terms which are more
152 ** likely to be query targets.
154 ** TODO(shess) It may be useful for blocking decisions to be more
155 ** dynamic. For instance, it may make more sense to have a 2.5k leaf
156 ** node rather than splitting into 2k and .5k nodes. My intuition is
157 ** that this might extend through 2x or 4x the pagesize.
160 **** Segment interior nodes ****
161 ** Segment interior nodes store blockids for subtree nodes and terms
162 ** to describe what data is stored by the each subtree. Interior
163 ** nodes are written using InteriorWriter, and read using
164 ** InteriorReader. InteriorWriters are created as needed when
165 ** SegmentWriter creates new leaf nodes, or when an interior node
166 ** itself grows too big and must be split. The format of interior
167 ** nodes:
169 ** varint iHeight; (height from leaf level, always >0)
170 ** varint iBlockid; (block id of node's leftmost subtree)
171 ** optional {
172 ** varint nTerm; (length of first term)
173 ** char pTerm[nTerm]; (content of first term)
174 ** array {
175 ** (further terms are delta-encoded)
176 ** varint nPrefix; (length of shared prefix with previous term)
177 ** varint nSuffix; (length of unshared suffix)
178 ** char pTermSuffix[nSuffix]; (unshared suffix of next term)
179 ** }
180 ** }
182 ** Here, optional { X } means an optional element, while array { X }
183 ** means zero or more occurrences of X, adjacent in memory.
185 ** An interior node encodes n terms separating n+1 subtrees. The
186 ** subtree blocks are contiguous, so only the first subtree's blockid
187 ** is encoded. The subtree at iBlockid will contain all terms less
188 ** than the first term encoded (or all terms if no term is encoded).
189 ** Otherwise, for terms greater than or equal to pTerm[i] but less
190 ** than pTerm[i+1], the subtree for that term will be rooted at
191 ** iBlockid+i. Interior nodes only store enough term data to
192 ** distinguish adjacent children (if the rightmost term of the left
193 ** child is "something", and the leftmost term of the right child is
194 ** "wicked", only "w" is stored).
196 ** New data is spilled to a new interior node at the same height when
197 ** the current node exceeds INTERIOR_MAX bytes (default 2048).
198 ** INTERIOR_MIN_TERMS (default 7) keeps large terms from monopolizing
199 ** interior nodes and making the tree too skinny. The interior nodes
200 ** at a given height are naturally tracked by interior nodes at
201 ** height+1, and so on.
204 **** Segment directory ****
205 ** The segment directory in table %_segdir stores meta-information for
206 ** merging and deleting segments, and also the root node of the
207 ** segment's tree.
209 ** The root node is the top node of the segment's tree after encoding
210 ** the entire segment, restricted to ROOT_MAX bytes (default 1024).
211 ** This could be either a leaf node or an interior node. If the top
212 ** node requires more than ROOT_MAX bytes, it is flushed to %_segments
213 ** and a new root interior node is generated (which should always fit
214 ** within ROOT_MAX because it only needs space for 2 varints, the
215 ** height and the blockid of the previous root).
217 ** The meta-information in the segment directory is:
218 ** level - segment level (see below)
219 ** idx - index within level
220 ** - (level,idx uniquely identify a segment)
221 ** start_block - first leaf node
222 ** leaves_end_block - last leaf node
223 ** end_block - last block (including interior nodes)
224 ** root - contents of root node
226 ** If the root node is a leaf node, then start_block,
227 ** leaves_end_block, and end_block are all 0.
230 **** Segment merging ****
231 ** To amortize update costs, segments are grouped into levels and
232 ** merged in batches. Each increase in level represents exponentially
233 ** more documents.
235 ** New documents (actually, document updates) are tokenized and
236 ** written individually (using LeafWriter) to a level 0 segment, with
237 ** incrementing idx. When idx reaches MERGE_COUNT (default 16), all
238 ** level 0 segments are merged into a single level 1 segment. Level 1
239 ** is populated like level 0, and eventually MERGE_COUNT level 1
240 ** segments are merged to a single level 2 segment (representing
241 ** MERGE_COUNT^2 updates), and so on.
243 ** A segment merge traverses all segments at a given level in
244 ** parallel, performing a straightforward sorted merge. Since segment
245 ** leaf nodes are written in to the %_segments table in order, this
246 ** merge traverses the underlying sqlite disk structures efficiently.
247 ** After the merge, all segment blocks from the merged level are
248 ** deleted.
250 ** MERGE_COUNT controls how often we merge segments. 16 seems to be
251 ** somewhat of a sweet spot for insertion performance. 32 and 64 show
252 ** very similar performance numbers to 16 on insertion, though they're
253 ** a tiny bit slower (perhaps due to more overhead in merge-time
254 ** sorting). 8 is about 20% slower than 16, 4 about 50% slower than
255 ** 16, 2 about 66% slower than 16.
257 ** At query time, high MERGE_COUNT increases the number of segments
258 ** which need to be scanned and merged. For instance, with 100k docs
259 ** inserted:
261 ** MERGE_COUNT segments
262 ** 16 25
263 ** 8 12
264 ** 4 10
265 ** 2 6
267 ** This appears to have only a moderate impact on queries for very
268 ** frequent terms (which are somewhat dominated by segment merge
269 ** costs), and infrequent and non-existent terms still seem to be fast
270 ** even with many segments.
272 ** TODO(shess) That said, it would be nice to have a better query-side
273 ** argument for MERGE_COUNT of 16. Also, it is possible/likely that
274 ** optimizations to things like doclist merging will swing the sweet
275 ** spot around.
279 **** Handling of deletions and updates ****
280 ** Since we're using a segmented structure, with no docid-oriented
281 ** index into the term index, we clearly cannot simply update the term
282 ** index when a document is deleted or updated. For deletions, we
283 ** write an empty doclist (varint(docid) varint(POS_END)), for updates
284 ** we simply write the new doclist. Segment merges overwrite older
285 ** data for a particular docid with newer data, so deletes or updates
286 ** will eventually overtake the earlier data and knock it out. The
287 ** query logic likewise merges doclists so that newer data knocks out
288 ** older data.
290 ** TODO(shess) Provide a VACUUM type operation to clear out all
291 ** deletions and duplications. This would basically be a forced merge
292 ** into a single segment.
294 #define CHROMIUM_FTS3_CHANGES 1
296 #if !defined(SQLITE_CORE) || defined(SQLITE_ENABLE_FTS3)
298 #if defined(SQLITE_ENABLE_FTS3) && !defined(SQLITE_CORE)
299 # define SQLITE_CORE 1
300 #endif
302 #include "fts3Int.h"
304 #include <assert.h>
305 #include <stdlib.h>
306 #include <stddef.h>
307 #include <stdio.h>
308 #include <string.h>
309 #include <stdarg.h>
311 #include "fts3.h"
312 #ifndef SQLITE_CORE
313 # include "sqlite3ext.h"
314 SQLITE_EXTENSION_INIT1
315 #endif
318 ** Write a 64-bit variable-length integer to memory starting at p[0].
319 ** The length of data written will be between 1 and FTS3_VARINT_MAX bytes.
320 ** The number of bytes written is returned.
322 int sqlite3Fts3PutVarint(char *p, sqlite_int64 v){
323 unsigned char *q = (unsigned char *) p;
324 sqlite_uint64 vu = v;
326 *q++ = (unsigned char) ((vu & 0x7f) | 0x80);
327 vu >>= 7;
328 }while( vu!=0 );
329 q[-1] &= 0x7f; /* turn off high bit in final byte */
330 assert( q - (unsigned char *)p <= FTS3_VARINT_MAX );
331 return (int) (q - (unsigned char *)p);
335 ** Read a 64-bit variable-length integer from memory starting at p[0].
336 ** Return the number of bytes read, or 0 on error.
337 ** The value is stored in *v.
339 int sqlite3Fts3GetVarint(const char *p, sqlite_int64 *v){
340 const unsigned char *q = (const unsigned char *) p;
341 sqlite_uint64 x = 0, y = 1;
342 while( (*q&0x80)==0x80 && q-(unsigned char *)p<FTS3_VARINT_MAX ){
343 x += y * (*q++ & 0x7f);
344 y <<= 7;
346 x += y * (*q++);
347 *v = (sqlite_int64) x;
348 return (int) (q - (unsigned char *)p);
352 ** Similar to sqlite3Fts3GetVarint(), except that the output is truncated to a
353 ** 32-bit integer before it is returned.
355 int sqlite3Fts3GetVarint32(const char *p, int *pi){
356 sqlite_int64 i;
357 int ret = sqlite3Fts3GetVarint(p, &i);
358 *pi = (int) i;
359 return ret;
363 ** Return the number of bytes required to encode v as a varint
365 int sqlite3Fts3VarintLen(sqlite3_uint64 v){
366 int i = 0;
368 i++;
369 v >>= 7;
370 }while( v!=0 );
371 return i;
375 ** Convert an SQL-style quoted string into a normal string by removing
376 ** the quote characters. The conversion is done in-place. If the
377 ** input does not begin with a quote character, then this routine
378 ** is a no-op.
380 ** Examples:
382 ** "abc" becomes abc
383 ** 'xyz' becomes xyz
384 ** [pqr] becomes pqr
385 ** `mno` becomes mno
388 void sqlite3Fts3Dequote(char *z){
389 char quote; /* Quote character (if any ) */
391 quote = z[0];
392 if( quote=='[' || quote=='\'' || quote=='"' || quote=='`' ){
393 int iIn = 1; /* Index of next byte to read from input */
394 int iOut = 0; /* Index of next byte to write to output */
396 /* If the first byte was a '[', then the close-quote character is a ']' */
397 if( quote=='[' ) quote = ']';
399 while( ALWAYS(z[iIn]) ){
400 if( z[iIn]==quote ){
401 if( z[iIn+1]!=quote ) break;
402 z[iOut++] = quote;
403 iIn += 2;
404 }else{
405 z[iOut++] = z[iIn++];
408 z[iOut] = '\0';
413 ** Read a single varint from the doclist at *pp and advance *pp to point
414 ** to the first byte past the end of the varint. Add the value of the varint
415 ** to *pVal.
417 static void fts3GetDeltaVarint(char **pp, sqlite3_int64 *pVal){
418 sqlite3_int64 iVal;
419 *pp += sqlite3Fts3GetVarint(*pp, &iVal);
420 *pVal += iVal;
424 ** As long as *pp has not reached its end (pEnd), then do the same
425 ** as fts3GetDeltaVarint(): read a single varint and add it to *pVal.
426 ** But if we have reached the end of the varint, just set *pp=0 and
427 ** leave *pVal unchanged.
429 static void fts3GetDeltaVarint2(char **pp, char *pEnd, sqlite3_int64 *pVal){
430 if( *pp>=pEnd ){
431 *pp = 0;
432 }else{
433 fts3GetDeltaVarint(pp, pVal);
438 ** The xDisconnect() virtual table method.
440 static int fts3DisconnectMethod(sqlite3_vtab *pVtab){
441 Fts3Table *p = (Fts3Table *)pVtab;
442 int i;
444 assert( p->nPendingData==0 );
445 assert( p->pSegments==0 );
447 /* Free any prepared statements held */
448 for(i=0; i<SizeofArray(p->aStmt); i++){
449 sqlite3_finalize(p->aStmt[i]);
451 sqlite3_free(p->zSegmentsTbl);
452 sqlite3_free(p->zReadExprlist);
453 sqlite3_free(p->zWriteExprlist);
455 /* Invoke the tokenizer destructor to free the tokenizer. */
456 p->pTokenizer->pModule->xDestroy(p->pTokenizer);
458 sqlite3_free(p);
459 return SQLITE_OK;
463 ** Construct one or more SQL statements from the format string given
464 ** and then evaluate those statements. The success code is written
465 ** into *pRc.
467 ** If *pRc is initially non-zero then this routine is a no-op.
469 static void fts3DbExec(
470 int *pRc, /* Success code */
471 sqlite3 *db, /* Database in which to run SQL */
472 const char *zFormat, /* Format string for SQL */
473 ... /* Arguments to the format string */
475 va_list ap;
476 char *zSql;
477 if( *pRc ) return;
478 va_start(ap, zFormat);
479 zSql = sqlite3_vmprintf(zFormat, ap);
480 va_end(ap);
481 if( zSql==0 ){
482 *pRc = SQLITE_NOMEM;
483 }else{
484 *pRc = sqlite3_exec(db, zSql, 0, 0, 0);
485 sqlite3_free(zSql);
490 ** The xDestroy() virtual table method.
492 static int fts3DestroyMethod(sqlite3_vtab *pVtab){
493 int rc = SQLITE_OK; /* Return code */
494 Fts3Table *p = (Fts3Table *)pVtab;
495 sqlite3 *db = p->db;
497 /* Drop the shadow tables */
498 fts3DbExec(&rc, db, "DROP TABLE IF EXISTS %Q.'%q_content'", p->zDb, p->zName);
499 fts3DbExec(&rc, db, "DROP TABLE IF EXISTS %Q.'%q_segments'", p->zDb,p->zName);
500 fts3DbExec(&rc, db, "DROP TABLE IF EXISTS %Q.'%q_segdir'", p->zDb, p->zName);
501 fts3DbExec(&rc, db, "DROP TABLE IF EXISTS %Q.'%q_docsize'", p->zDb, p->zName);
502 fts3DbExec(&rc, db, "DROP TABLE IF EXISTS %Q.'%q_stat'", p->zDb, p->zName);
504 /* If everything has worked, invoke fts3DisconnectMethod() to free the
505 ** memory associated with the Fts3Table structure and return SQLITE_OK.
506 ** Otherwise, return an SQLite error code.
508 return (rc==SQLITE_OK ? fts3DisconnectMethod(pVtab) : rc);
513 ** Invoke sqlite3_declare_vtab() to declare the schema for the FTS3 table
514 ** passed as the first argument. This is done as part of the xConnect()
515 ** and xCreate() methods.
517 ** If *pRc is non-zero when this function is called, it is a no-op.
518 ** Otherwise, if an error occurs, an SQLite error code is stored in *pRc
519 ** before returning.
521 static void fts3DeclareVtab(int *pRc, Fts3Table *p){
522 if( *pRc==SQLITE_OK ){
523 int i; /* Iterator variable */
524 int rc; /* Return code */
525 char *zSql; /* SQL statement passed to declare_vtab() */
526 char *zCols; /* List of user defined columns */
528 /* Create a list of user columns for the virtual table */
529 zCols = sqlite3_mprintf("%Q, ", p->azColumn[0]);
530 for(i=1; zCols && i<p->nColumn; i++){
531 zCols = sqlite3_mprintf("%z%Q, ", zCols, p->azColumn[i]);
534 /* Create the whole "CREATE TABLE" statement to pass to SQLite */
535 zSql = sqlite3_mprintf(
536 "CREATE TABLE x(%s %Q HIDDEN, docid HIDDEN)", zCols, p->zName
538 if( !zCols || !zSql ){
539 rc = SQLITE_NOMEM;
540 }else{
541 rc = sqlite3_declare_vtab(p->db, zSql);
544 sqlite3_free(zSql);
545 sqlite3_free(zCols);
546 *pRc = rc;
551 ** Create the backing store tables (%_content, %_segments and %_segdir)
552 ** required by the FTS3 table passed as the only argument. This is done
553 ** as part of the vtab xCreate() method.
555 ** If the p->bHasDocsize boolean is true (indicating that this is an
556 ** FTS4 table, not an FTS3 table) then also create the %_docsize and
557 ** %_stat tables required by FTS4.
559 static int fts3CreateTables(Fts3Table *p){
560 int rc = SQLITE_OK; /* Return code */
561 int i; /* Iterator variable */
562 char *zContentCols; /* Columns of %_content table */
563 sqlite3 *db = p->db; /* The database connection */
565 /* Create a list of user columns for the content table */
566 zContentCols = sqlite3_mprintf("docid INTEGER PRIMARY KEY");
567 for(i=0; zContentCols && i<p->nColumn; i++){
568 char *z = p->azColumn[i];
569 zContentCols = sqlite3_mprintf("%z, 'c%d%q'", zContentCols, i, z);
571 if( zContentCols==0 ) rc = SQLITE_NOMEM;
573 /* Create the content table */
574 fts3DbExec(&rc, db,
575 "CREATE TABLE %Q.'%q_content'(%s)",
576 p->zDb, p->zName, zContentCols
578 sqlite3_free(zContentCols);
579 /* Create other tables */
580 fts3DbExec(&rc, db,
581 "CREATE TABLE %Q.'%q_segments'(blockid INTEGER PRIMARY KEY, block BLOB);",
582 p->zDb, p->zName
584 fts3DbExec(&rc, db,
585 "CREATE TABLE %Q.'%q_segdir'("
586 "level INTEGER,"
587 "idx INTEGER,"
588 "start_block INTEGER,"
589 "leaves_end_block INTEGER,"
590 "end_block INTEGER,"
591 "root BLOB,"
592 "PRIMARY KEY(level, idx)"
593 ");",
594 p->zDb, p->zName
596 if( p->bHasDocsize ){
597 fts3DbExec(&rc, db,
598 "CREATE TABLE %Q.'%q_docsize'(docid INTEGER PRIMARY KEY, size BLOB);",
599 p->zDb, p->zName
602 if( p->bHasStat ){
603 fts3DbExec(&rc, db,
604 "CREATE TABLE %Q.'%q_stat'(id INTEGER PRIMARY KEY, value BLOB);",
605 p->zDb, p->zName
608 return rc;
612 ** Store the current database page-size in bytes in p->nPgsz.
614 ** If *pRc is non-zero when this function is called, it is a no-op.
615 ** Otherwise, if an error occurs, an SQLite error code is stored in *pRc
616 ** before returning.
618 static void fts3DatabasePageSize(int *pRc, Fts3Table *p){
619 if( *pRc==SQLITE_OK ){
620 int rc; /* Return code */
621 char *zSql; /* SQL text "PRAGMA %Q.page_size" */
622 sqlite3_stmt *pStmt; /* Compiled "PRAGMA %Q.page_size" statement */
624 zSql = sqlite3_mprintf("PRAGMA %Q.page_size", p->zDb);
625 if( !zSql ){
626 rc = SQLITE_NOMEM;
627 }else{
628 rc = sqlite3_prepare(p->db, zSql, -1, &pStmt, 0);
629 if( rc==SQLITE_OK ){
630 sqlite3_step(pStmt);
631 p->nPgsz = sqlite3_column_int(pStmt, 0);
632 rc = sqlite3_finalize(pStmt);
633 }else if( rc==SQLITE_AUTH ){
634 p->nPgsz = 1024;
635 rc = SQLITE_OK;
638 assert( p->nPgsz>0 || rc!=SQLITE_OK );
639 sqlite3_free(zSql);
640 *pRc = rc;
645 ** "Special" FTS4 arguments are column specifications of the following form:
647 ** <key> = <value>
649 ** There may not be whitespace surrounding the "=" character. The <value>
650 ** term may be quoted, but the <key> may not.
652 static int fts3IsSpecialColumn(
653 const char *z,
654 int *pnKey,
655 char **pzValue
657 char *zValue;
658 const char *zCsr = z;
660 while( *zCsr!='=' ){
661 if( *zCsr=='\0' ) return 0;
662 zCsr++;
665 *pnKey = (int)(zCsr-z);
666 zValue = sqlite3_mprintf("%s", &zCsr[1]);
667 if( zValue ){
668 sqlite3Fts3Dequote(zValue);
670 *pzValue = zValue;
671 return 1;
675 ** Append the output of a printf() style formatting to an existing string.
677 static void fts3Appendf(
678 int *pRc, /* IN/OUT: Error code */
679 char **pz, /* IN/OUT: Pointer to string buffer */
680 const char *zFormat, /* Printf format string to append */
681 ... /* Arguments for printf format string */
683 if( *pRc==SQLITE_OK ){
684 va_list ap;
685 char *z;
686 va_start(ap, zFormat);
687 z = sqlite3_vmprintf(zFormat, ap);
688 if( z && *pz ){
689 char *z2 = sqlite3_mprintf("%s%s", *pz, z);
690 sqlite3_free(z);
691 z = z2;
693 if( z==0 ) *pRc = SQLITE_NOMEM;
694 sqlite3_free(*pz);
695 *pz = z;
700 ** Return a copy of input string zInput enclosed in double-quotes (") and
701 ** with all double quote characters escaped. For example:
703 ** fts3QuoteId("un \"zip\"") -> "un \"\"zip\"\""
705 ** The pointer returned points to memory obtained from sqlite3_malloc(). It
706 ** is the callers responsibility to call sqlite3_free() to release this
707 ** memory.
709 static char *fts3QuoteId(char const *zInput){
710 int nRet;
711 char *zRet;
712 nRet = 2 + strlen(zInput)*2 + 1;
713 zRet = sqlite3_malloc(nRet);
714 if( zRet ){
715 int i;
716 char *z = zRet;
717 *(z++) = '"';
718 for(i=0; zInput[i]; i++){
719 if( zInput[i]=='"' ) *(z++) = '"';
720 *(z++) = zInput[i];
722 *(z++) = '"';
723 *(z++) = '\0';
725 return zRet;
729 ** Return a list of comma separated SQL expressions that could be used
730 ** in a SELECT statement such as the following:
732 ** SELECT <list of expressions> FROM %_content AS x ...
734 ** to return the docid, followed by each column of text data in order
735 ** from left to write. If parameter zFunc is not NULL, then instead of
736 ** being returned directly each column of text data is passed to an SQL
737 ** function named zFunc first. For example, if zFunc is "unzip" and the
738 ** table has the three user-defined columns "a", "b", and "c", the following
739 ** string is returned:
741 ** "docid, unzip(x.'a'), unzip(x.'b'), unzip(x.'c')"
743 ** The pointer returned points to a buffer allocated by sqlite3_malloc(). It
744 ** is the responsibility of the caller to eventually free it.
746 ** If *pRc is not SQLITE_OK when this function is called, it is a no-op (and
747 ** a NULL pointer is returned). Otherwise, if an OOM error is encountered
748 ** by this function, NULL is returned and *pRc is set to SQLITE_NOMEM. If
749 ** no error occurs, *pRc is left unmodified.
751 static char *fts3ReadExprList(Fts3Table *p, const char *zFunc, int *pRc){
752 char *zRet = 0;
753 char *zFree = 0;
754 char *zFunction;
755 int i;
757 if( !zFunc ){
758 zFunction = "";
759 }else{
760 zFree = zFunction = fts3QuoteId(zFunc);
762 fts3Appendf(pRc, &zRet, "docid");
763 for(i=0; i<p->nColumn; i++){
764 fts3Appendf(pRc, &zRet, ",%s(x.'c%d%q')", zFunction, i, p->azColumn[i]);
766 sqlite3_free(zFree);
767 return zRet;
771 ** Return a list of N comma separated question marks, where N is the number
772 ** of columns in the %_content table (one for the docid plus one for each
773 ** user-defined text column).
775 ** If argument zFunc is not NULL, then all but the first question mark
776 ** is preceded by zFunc and an open bracket, and followed by a closed
777 ** bracket. For example, if zFunc is "zip" and the FTS3 table has three
778 ** user-defined text columns, the following string is returned:
780 ** "?, zip(?), zip(?), zip(?)"
782 ** The pointer returned points to a buffer allocated by sqlite3_malloc(). It
783 ** is the responsibility of the caller to eventually free it.
785 ** If *pRc is not SQLITE_OK when this function is called, it is a no-op (and
786 ** a NULL pointer is returned). Otherwise, if an OOM error is encountered
787 ** by this function, NULL is returned and *pRc is set to SQLITE_NOMEM. If
788 ** no error occurs, *pRc is left unmodified.
790 static char *fts3WriteExprList(Fts3Table *p, const char *zFunc, int *pRc){
791 char *zRet = 0;
792 char *zFree = 0;
793 char *zFunction;
794 int i;
796 if( !zFunc ){
797 zFunction = "";
798 }else{
799 zFree = zFunction = fts3QuoteId(zFunc);
801 fts3Appendf(pRc, &zRet, "?");
802 for(i=0; i<p->nColumn; i++){
803 fts3Appendf(pRc, &zRet, ",%s(?)", zFunction);
805 sqlite3_free(zFree);
806 return zRet;
810 ** This function is the implementation of both the xConnect and xCreate
811 ** methods of the FTS3 virtual table.
813 ** The argv[] array contains the following:
815 ** argv[0] -> module name ("fts3" or "fts4")
816 ** argv[1] -> database name
817 ** argv[2] -> table name
818 ** argv[...] -> "column name" and other module argument fields.
820 static int fts3InitVtab(
821 int isCreate, /* True for xCreate, false for xConnect */
822 sqlite3 *db, /* The SQLite database connection */
823 void *pAux, /* Hash table containing tokenizers */
824 int argc, /* Number of elements in argv array */
825 const char * const *argv, /* xCreate/xConnect argument array */
826 sqlite3_vtab **ppVTab, /* Write the resulting vtab structure here */
827 char **pzErr /* Write any error message here */
829 Fts3Hash *pHash = (Fts3Hash *)pAux;
830 Fts3Table *p = 0; /* Pointer to allocated vtab */
831 int rc = SQLITE_OK; /* Return code */
832 int i; /* Iterator variable */
833 int nByte; /* Size of allocation used for *p */
834 int iCol; /* Column index */
835 int nString = 0; /* Bytes required to hold all column names */
836 int nCol = 0; /* Number of columns in the FTS table */
837 char *zCsr; /* Space for holding column names */
838 int nDb; /* Bytes required to hold database name */
839 int nName; /* Bytes required to hold table name */
840 int isFts4 = (argv[0][3]=='4'); /* True for FTS4, false for FTS3 */
841 int bNoDocsize = 0; /* True to omit %_docsize table */
842 const char **aCol; /* Array of column names */
843 sqlite3_tokenizer *pTokenizer = 0; /* Tokenizer for this table */
845 char *zCompress = 0;
846 char *zUncompress = 0;
848 assert( strlen(argv[0])==4 );
849 assert( (sqlite3_strnicmp(argv[0], "fts4", 4)==0 && isFts4)
850 || (sqlite3_strnicmp(argv[0], "fts3", 4)==0 && !isFts4)
853 nDb = (int)strlen(argv[1]) + 1;
854 nName = (int)strlen(argv[2]) + 1;
856 aCol = (const char **)sqlite3_malloc(sizeof(const char *) * (argc-2) );
857 if( !aCol ) return SQLITE_NOMEM;
858 memset((void *)aCol, 0, sizeof(const char *) * (argc-2));
860 /* Loop through all of the arguments passed by the user to the FTS3/4
861 ** module (i.e. all the column names and special arguments). This loop
862 ** does the following:
864 ** + Figures out the number of columns the FTSX table will have, and
865 ** the number of bytes of space that must be allocated to store copies
866 ** of the column names.
868 ** + If there is a tokenizer specification included in the arguments,
869 ** initializes the tokenizer pTokenizer.
871 for(i=3; rc==SQLITE_OK && i<argc; i++){
872 char const *z = argv[i];
873 int nKey;
874 char *zVal;
876 /* Check if this is a tokenizer specification */
877 if( !pTokenizer
878 && strlen(z)>8
879 && 0==sqlite3_strnicmp(z, "tokenize", 8)
880 && 0==sqlite3Fts3IsIdChar(z[8])
882 rc = sqlite3Fts3InitTokenizer(pHash, &z[9], &pTokenizer, pzErr);
885 /* Check if it is an FTS4 special argument. */
886 else if( isFts4 && fts3IsSpecialColumn(z, &nKey, &zVal) ){
887 if( !zVal ){
888 rc = SQLITE_NOMEM;
889 goto fts3_init_out;
891 if( nKey==9 && 0==sqlite3_strnicmp(z, "matchinfo", 9) ){
892 if( strlen(zVal)==4 && 0==sqlite3_strnicmp(zVal, "fts3", 4) ){
893 bNoDocsize = 1;
894 }else{
895 *pzErr = sqlite3_mprintf("unrecognized matchinfo: %s", zVal);
896 rc = SQLITE_ERROR;
898 }else if( nKey==8 && 0==sqlite3_strnicmp(z, "compress", 8) ){
899 zCompress = zVal;
900 zVal = 0;
901 }else if( nKey==10 && 0==sqlite3_strnicmp(z, "uncompress", 10) ){
902 zUncompress = zVal;
903 zVal = 0;
904 }else{
905 *pzErr = sqlite3_mprintf("unrecognized parameter: %s", z);
906 rc = SQLITE_ERROR;
908 sqlite3_free(zVal);
911 /* Otherwise, the argument is a column name. */
912 else {
913 nString += (int)(strlen(z) + 1);
914 aCol[nCol++] = z;
917 if( rc!=SQLITE_OK ) goto fts3_init_out;
919 if( nCol==0 ){
920 assert( nString==0 );
921 aCol[0] = "content";
922 nString = 8;
923 nCol = 1;
926 if( pTokenizer==0 ){
927 rc = sqlite3Fts3InitTokenizer(pHash, "simple", &pTokenizer, pzErr);
928 if( rc!=SQLITE_OK ) goto fts3_init_out;
930 assert( pTokenizer );
933 /* Allocate and populate the Fts3Table structure. */
934 nByte = sizeof(Fts3Table) + /* Fts3Table */
935 nCol * sizeof(char *) + /* azColumn */
936 nName + /* zName */
937 nDb + /* zDb */
938 nString; /* Space for azColumn strings */
939 p = (Fts3Table*)sqlite3_malloc(nByte);
940 if( p==0 ){
941 rc = SQLITE_NOMEM;
942 goto fts3_init_out;
944 memset(p, 0, nByte);
945 p->db = db;
946 p->nColumn = nCol;
947 p->nPendingData = 0;
948 p->azColumn = (char **)&p[1];
949 p->pTokenizer = pTokenizer;
950 p->nNodeSize = 1000;
951 p->nMaxPendingData = FTS3_MAX_PENDING_DATA;
952 p->bHasDocsize = (isFts4 && bNoDocsize==0);
953 p->bHasStat = isFts4;
954 fts3HashInit(&p->pendingTerms, FTS3_HASH_STRING, 1);
956 /* Fill in the zName and zDb fields of the vtab structure. */
957 zCsr = (char *)&p->azColumn[nCol];
958 p->zName = zCsr;
959 memcpy(zCsr, argv[2], nName);
960 zCsr += nName;
961 p->zDb = zCsr;
962 memcpy(zCsr, argv[1], nDb);
963 zCsr += nDb;
965 /* Fill in the azColumn array */
966 for(iCol=0; iCol<nCol; iCol++){
967 char *z;
968 int n;
969 z = (char *)sqlite3Fts3NextToken(aCol[iCol], &n);
970 memcpy(zCsr, z, n);
971 zCsr[n] = '\0';
972 sqlite3Fts3Dequote(zCsr);
973 p->azColumn[iCol] = zCsr;
974 zCsr += n+1;
975 assert( zCsr <= &((char *)p)[nByte] );
978 if( (zCompress==0)!=(zUncompress==0) ){
979 char const *zMiss = (zCompress==0 ? "compress" : "uncompress");
980 rc = SQLITE_ERROR;
981 *pzErr = sqlite3_mprintf("missing %s parameter in fts4 constructor", zMiss);
983 p->zReadExprlist = fts3ReadExprList(p, zUncompress, &rc);
984 p->zWriteExprlist = fts3WriteExprList(p, zCompress, &rc);
985 if( rc!=SQLITE_OK ) goto fts3_init_out;
987 /* If this is an xCreate call, create the underlying tables in the
988 ** database. TODO: For xConnect(), it could verify that said tables exist.
990 if( isCreate ){
991 rc = fts3CreateTables(p);
994 /* Figure out the page-size for the database. This is required in order to
995 ** estimate the cost of loading large doclists from the database (see
996 ** function sqlite3Fts3SegReaderCost() for details).
998 fts3DatabasePageSize(&rc, p);
1000 /* Declare the table schema to SQLite. */
1001 fts3DeclareVtab(&rc, p);
1003 fts3_init_out:
1004 sqlite3_free(zCompress);
1005 sqlite3_free(zUncompress);
1006 sqlite3_free((void *)aCol);
1007 if( rc!=SQLITE_OK ){
1008 if( p ){
1009 fts3DisconnectMethod((sqlite3_vtab *)p);
1010 }else if( pTokenizer ){
1011 pTokenizer->pModule->xDestroy(pTokenizer);
1013 }else{
1014 *ppVTab = &p->base;
1016 return rc;
1020 ** The xConnect() and xCreate() methods for the virtual table. All the
1021 ** work is done in function fts3InitVtab().
1023 static int fts3ConnectMethod(
1024 sqlite3 *db, /* Database connection */
1025 void *pAux, /* Pointer to tokenizer hash table */
1026 int argc, /* Number of elements in argv array */
1027 const char * const *argv, /* xCreate/xConnect argument array */
1028 sqlite3_vtab **ppVtab, /* OUT: New sqlite3_vtab object */
1029 char **pzErr /* OUT: sqlite3_malloc'd error message */
1031 return fts3InitVtab(0, db, pAux, argc, argv, ppVtab, pzErr);
1033 static int fts3CreateMethod(
1034 sqlite3 *db, /* Database connection */
1035 void *pAux, /* Pointer to tokenizer hash table */
1036 int argc, /* Number of elements in argv array */
1037 const char * const *argv, /* xCreate/xConnect argument array */
1038 sqlite3_vtab **ppVtab, /* OUT: New sqlite3_vtab object */
1039 char **pzErr /* OUT: sqlite3_malloc'd error message */
1041 return fts3InitVtab(1, db, pAux, argc, argv, ppVtab, pzErr);
1045 ** Implementation of the xBestIndex method for FTS3 tables. There
1046 ** are three possible strategies, in order of preference:
1048 ** 1. Direct lookup by rowid or docid.
1049 ** 2. Full-text search using a MATCH operator on a non-docid column.
1050 ** 3. Linear scan of %_content table.
1052 static int fts3BestIndexMethod(sqlite3_vtab *pVTab, sqlite3_index_info *pInfo){
1053 Fts3Table *p = (Fts3Table *)pVTab;
1054 int i; /* Iterator variable */
1055 int iCons = -1; /* Index of constraint to use */
1057 /* By default use a full table scan. This is an expensive option,
1058 ** so search through the constraints to see if a more efficient
1059 ** strategy is possible.
1061 pInfo->idxNum = FTS3_FULLSCAN_SEARCH;
1062 pInfo->estimatedCost = 500000;
1063 for(i=0; i<pInfo->nConstraint; i++){
1064 struct sqlite3_index_constraint *pCons = &pInfo->aConstraint[i];
1065 if( pCons->usable==0 ) continue;
1067 /* A direct lookup on the rowid or docid column. Assign a cost of 1.0. */
1068 if( pCons->op==SQLITE_INDEX_CONSTRAINT_EQ
1069 && (pCons->iColumn<0 || pCons->iColumn==p->nColumn+1 )
1071 pInfo->idxNum = FTS3_DOCID_SEARCH;
1072 pInfo->estimatedCost = 1.0;
1073 iCons = i;
1076 /* A MATCH constraint. Use a full-text search.
1078 ** If there is more than one MATCH constraint available, use the first
1079 ** one encountered. If there is both a MATCH constraint and a direct
1080 ** rowid/docid lookup, prefer the MATCH strategy. This is done even
1081 ** though the rowid/docid lookup is faster than a MATCH query, selecting
1082 ** it would lead to an "unable to use function MATCH in the requested
1083 ** context" error.
1085 if( pCons->op==SQLITE_INDEX_CONSTRAINT_MATCH
1086 && pCons->iColumn>=0 && pCons->iColumn<=p->nColumn
1088 pInfo->idxNum = FTS3_FULLTEXT_SEARCH + pCons->iColumn;
1089 pInfo->estimatedCost = 2.0;
1090 iCons = i;
1091 break;
1095 if( iCons>=0 ){
1096 pInfo->aConstraintUsage[iCons].argvIndex = 1;
1097 pInfo->aConstraintUsage[iCons].omit = 1;
1099 return SQLITE_OK;
1103 ** Implementation of xOpen method.
1105 static int fts3OpenMethod(sqlite3_vtab *pVTab, sqlite3_vtab_cursor **ppCsr){
1106 sqlite3_vtab_cursor *pCsr; /* Allocated cursor */
1108 UNUSED_PARAMETER(pVTab);
1110 /* Allocate a buffer large enough for an Fts3Cursor structure. If the
1111 ** allocation succeeds, zero it and return SQLITE_OK. Otherwise,
1112 ** if the allocation fails, return SQLITE_NOMEM.
1114 *ppCsr = pCsr = (sqlite3_vtab_cursor *)sqlite3_malloc(sizeof(Fts3Cursor));
1115 if( !pCsr ){
1116 return SQLITE_NOMEM;
1118 memset(pCsr, 0, sizeof(Fts3Cursor));
1119 return SQLITE_OK;
1123 ** Close the cursor. For additional information see the documentation
1124 ** on the xClose method of the virtual table interface.
1126 static int fts3CloseMethod(sqlite3_vtab_cursor *pCursor){
1127 Fts3Cursor *pCsr = (Fts3Cursor *)pCursor;
1128 assert( ((Fts3Table *)pCsr->base.pVtab)->pSegments==0 );
1129 sqlite3_finalize(pCsr->pStmt);
1130 sqlite3Fts3ExprFree(pCsr->pExpr);
1131 sqlite3Fts3FreeDeferredTokens(pCsr);
1132 sqlite3_free(pCsr->aDoclist);
1133 sqlite3_free(pCsr->aMatchinfo);
1134 sqlite3_free(pCsr);
1135 return SQLITE_OK;
1139 ** Position the pCsr->pStmt statement so that it is on the row
1140 ** of the %_content table that contains the last match. Return
1141 ** SQLITE_OK on success.
1143 static int fts3CursorSeek(sqlite3_context *pContext, Fts3Cursor *pCsr){
1144 if( pCsr->isRequireSeek ){
1145 pCsr->isRequireSeek = 0;
1146 sqlite3_bind_int64(pCsr->pStmt, 1, pCsr->iPrevId);
1147 if( SQLITE_ROW==sqlite3_step(pCsr->pStmt) ){
1148 return SQLITE_OK;
1149 }else{
1150 int rc = sqlite3_reset(pCsr->pStmt);
1151 if( rc==SQLITE_OK ){
1152 /* If no row was found and no error has occured, then the %_content
1153 ** table is missing a row that is present in the full-text index.
1154 ** The data structures are corrupt.
1156 rc = SQLITE_CORRUPT;
1158 pCsr->isEof = 1;
1159 if( pContext ){
1160 sqlite3_result_error_code(pContext, rc);
1162 return rc;
1164 }else{
1165 return SQLITE_OK;
1170 ** This function is used to process a single interior node when searching
1171 ** a b-tree for a term or term prefix. The node data is passed to this
1172 ** function via the zNode/nNode parameters. The term to search for is
1173 ** passed in zTerm/nTerm.
1175 ** If piFirst is not NULL, then this function sets *piFirst to the blockid
1176 ** of the child node that heads the sub-tree that may contain the term.
1178 ** If piLast is not NULL, then *piLast is set to the right-most child node
1179 ** that heads a sub-tree that may contain a term for which zTerm/nTerm is
1180 ** a prefix.
1182 ** If an OOM error occurs, SQLITE_NOMEM is returned. Otherwise, SQLITE_OK.
1184 static int fts3ScanInteriorNode(
1185 const char *zTerm, /* Term to select leaves for */
1186 int nTerm, /* Size of term zTerm in bytes */
1187 const char *zNode, /* Buffer containing segment interior node */
1188 int nNode, /* Size of buffer at zNode */
1189 sqlite3_int64 *piFirst, /* OUT: Selected child node */
1190 sqlite3_int64 *piLast /* OUT: Selected child node */
1192 int rc = SQLITE_OK; /* Return code */
1193 const char *zCsr = zNode; /* Cursor to iterate through node */
1194 const char *zEnd = &zCsr[nNode];/* End of interior node buffer */
1195 char *zBuffer = 0; /* Buffer to load terms into */
1196 int nAlloc = 0; /* Size of allocated buffer */
1197 int isFirstTerm = 1; /* True when processing first term on page */
1198 sqlite3_int64 iChild; /* Block id of child node to descend to */
1200 /* Skip over the 'height' varint that occurs at the start of every
1201 ** interior node. Then load the blockid of the left-child of the b-tree
1202 ** node into variable iChild.
1204 ** Even if the data structure on disk is corrupted, this (reading two
1205 ** varints from the buffer) does not risk an overread. If zNode is a
1206 ** root node, then the buffer comes from a SELECT statement. SQLite does
1207 ** not make this guarantee explicitly, but in practice there are always
1208 ** either more than 20 bytes of allocated space following the nNode bytes of
1209 ** contents, or two zero bytes. Or, if the node is read from the %_segments
1210 ** table, then there are always 20 bytes of zeroed padding following the
1211 ** nNode bytes of content (see sqlite3Fts3ReadBlock() for details).
1213 zCsr += sqlite3Fts3GetVarint(zCsr, &iChild);
1214 zCsr += sqlite3Fts3GetVarint(zCsr, &iChild);
1215 if( zCsr>zEnd ){
1216 return SQLITE_CORRUPT;
1219 while( zCsr<zEnd && (piFirst || piLast) ){
1220 int cmp; /* memcmp() result */
1221 int nSuffix; /* Size of term suffix */
1222 int nPrefix = 0; /* Size of term prefix */
1223 int nBuffer; /* Total term size */
1225 /* Load the next term on the node into zBuffer. Use realloc() to expand
1226 ** the size of zBuffer if required. */
1227 if( !isFirstTerm ){
1228 zCsr += sqlite3Fts3GetVarint32(zCsr, &nPrefix);
1230 isFirstTerm = 0;
1231 zCsr += sqlite3Fts3GetVarint32(zCsr, &nSuffix);
1233 /* NOTE(shess): Previous code checked for negative nPrefix and
1234 ** nSuffix and suffix overrunning zEnd. Additionally corrupt if
1235 ** the prefix is longer than the previous term, or if the suffix
1236 ** causes overflow.
1238 if( nPrefix<0 || nSuffix<0 /* || nPrefix>nBuffer */
1239 || &zCsr[nSuffix]<zCsr || &zCsr[nSuffix]>zEnd ){
1240 rc = SQLITE_CORRUPT;
1241 goto finish_scan;
1243 if( nPrefix+nSuffix>nAlloc ){
1244 char *zNew;
1245 nAlloc = (nPrefix+nSuffix) * 2;
1246 zNew = (char *)sqlite3_realloc(zBuffer, nAlloc);
1247 if( !zNew ){
1248 rc = SQLITE_NOMEM;
1249 goto finish_scan;
1251 zBuffer = zNew;
1253 memcpy(&zBuffer[nPrefix], zCsr, nSuffix);
1254 nBuffer = nPrefix + nSuffix;
1255 zCsr += nSuffix;
1257 /* Compare the term we are searching for with the term just loaded from
1258 ** the interior node. If the specified term is greater than or equal
1259 ** to the term from the interior node, then all terms on the sub-tree
1260 ** headed by node iChild are smaller than zTerm. No need to search
1261 ** iChild.
1263 ** If the interior node term is larger than the specified term, then
1264 ** the tree headed by iChild may contain the specified term.
1266 cmp = memcmp(zTerm, zBuffer, (nBuffer>nTerm ? nTerm : nBuffer));
1267 if( piFirst && (cmp<0 || (cmp==0 && nBuffer>nTerm)) ){
1268 *piFirst = iChild;
1269 piFirst = 0;
1272 if( piLast && cmp<0 ){
1273 *piLast = iChild;
1274 piLast = 0;
1277 iChild++;
1280 if( piFirst ) *piFirst = iChild;
1281 if( piLast ) *piLast = iChild;
1283 finish_scan:
1284 sqlite3_free(zBuffer);
1285 return rc;
1290 ** The buffer pointed to by argument zNode (size nNode bytes) contains an
1291 ** interior node of a b-tree segment. The zTerm buffer (size nTerm bytes)
1292 ** contains a term. This function searches the sub-tree headed by the zNode
1293 ** node for the range of leaf nodes that may contain the specified term
1294 ** or terms for which the specified term is a prefix.
1296 ** If piLeaf is not NULL, then *piLeaf is set to the blockid of the
1297 ** left-most leaf node in the tree that may contain the specified term.
1298 ** If piLeaf2 is not NULL, then *piLeaf2 is set to the blockid of the
1299 ** right-most leaf node that may contain a term for which the specified
1300 ** term is a prefix.
1302 ** It is possible that the range of returned leaf nodes does not contain
1303 ** the specified term or any terms for which it is a prefix. However, if the
1304 ** segment does contain any such terms, they are stored within the identified
1305 ** range. Because this function only inspects interior segment nodes (and
1306 ** never loads leaf nodes into memory), it is not possible to be sure.
1308 ** If an error occurs, an error code other than SQLITE_OK is returned.
1310 static int fts3SelectLeaf(
1311 Fts3Table *p, /* Virtual table handle */
1312 const char *zTerm, /* Term to select leaves for */
1313 int nTerm, /* Size of term zTerm in bytes */
1314 const char *zNode, /* Buffer containing segment interior node */
1315 int nNode, /* Size of buffer at zNode */
1316 sqlite3_int64 *piLeaf, /* Selected leaf node */
1317 sqlite3_int64 *piLeaf2 /* Selected leaf node */
1319 int rc; /* Return code */
1320 int iHeight; /* Height of this node in tree */
1322 assert( piLeaf || piLeaf2 );
1324 sqlite3Fts3GetVarint32(zNode, &iHeight);
1325 rc = fts3ScanInteriorNode(zTerm, nTerm, zNode, nNode, piLeaf, piLeaf2);
1326 assert( !piLeaf2 || !piLeaf || rc!=SQLITE_OK || (*piLeaf<=*piLeaf2) );
1328 if( rc==SQLITE_OK && iHeight>1 ){
1329 char *zBlob = 0; /* Blob read from %_segments table */
1330 int nBlob; /* Size of zBlob in bytes */
1332 if( piLeaf && piLeaf2 && (*piLeaf!=*piLeaf2) ){
1333 rc = sqlite3Fts3ReadBlock(p, *piLeaf, &zBlob, &nBlob);
1334 if( rc==SQLITE_OK ){
1335 rc = fts3SelectLeaf(p, zTerm, nTerm, zBlob, nBlob, piLeaf, 0);
1337 sqlite3_free(zBlob);
1338 piLeaf = 0;
1339 zBlob = 0;
1342 if( rc==SQLITE_OK ){
1343 rc = sqlite3Fts3ReadBlock(p, piLeaf ? *piLeaf : *piLeaf2, &zBlob, &nBlob);
1345 if( rc==SQLITE_OK ){
1346 rc = fts3SelectLeaf(p, zTerm, nTerm, zBlob, nBlob, piLeaf, piLeaf2);
1348 sqlite3_free(zBlob);
1351 return rc;
1355 ** This function is used to create delta-encoded serialized lists of FTS3
1356 ** varints. Each call to this function appends a single varint to a list.
1358 static void fts3PutDeltaVarint(
1359 char **pp, /* IN/OUT: Output pointer */
1360 sqlite3_int64 *piPrev, /* IN/OUT: Previous value written to list */
1361 sqlite3_int64 iVal /* Write this value to the list */
1363 assert( iVal-*piPrev > 0 || (*piPrev==0 && iVal==0) );
1364 *pp += sqlite3Fts3PutVarint(*pp, iVal-*piPrev);
1365 *piPrev = iVal;
1369 ** When this function is called, *ppPoslist is assumed to point to the
1370 ** start of a position-list. After it returns, *ppPoslist points to the
1371 ** first byte after the position-list.
1373 ** A position list is list of positions (delta encoded) and columns for
1374 ** a single document record of a doclist. So, in other words, this
1375 ** routine advances *ppPoslist so that it points to the next docid in
1376 ** the doclist, or to the first byte past the end of the doclist.
1378 ** If pp is not NULL, then the contents of the position list are copied
1379 ** to *pp. *pp is set to point to the first byte past the last byte copied
1380 ** before this function returns.
1382 static void fts3PoslistCopy(char **pp, char **ppPoslist){
1383 char *pEnd = *ppPoslist;
1384 char c = 0;
1386 /* The end of a position list is marked by a zero encoded as an FTS3
1387 ** varint. A single POS_END (0) byte. Except, if the 0 byte is preceded by
1388 ** a byte with the 0x80 bit set, then it is not a varint 0, but the tail
1389 ** of some other, multi-byte, value.
1391 ** The following while-loop moves pEnd to point to the first byte that is not
1392 ** immediately preceded by a byte with the 0x80 bit set. Then increments
1393 ** pEnd once more so that it points to the byte immediately following the
1394 ** last byte in the position-list.
1396 while( *pEnd | c ){
1397 c = *pEnd++ & 0x80;
1398 testcase( c!=0 && (*pEnd)==0 );
1400 pEnd++; /* Advance past the POS_END terminator byte */
1402 if( pp ){
1403 int n = (int)(pEnd - *ppPoslist);
1404 char *p = *pp;
1405 memcpy(p, *ppPoslist, n);
1406 p += n;
1407 *pp = p;
1409 *ppPoslist = pEnd;
1413 ** When this function is called, *ppPoslist is assumed to point to the
1414 ** start of a column-list. After it returns, *ppPoslist points to the
1415 ** to the terminator (POS_COLUMN or POS_END) byte of the column-list.
1417 ** A column-list is list of delta-encoded positions for a single column
1418 ** within a single document within a doclist.
1420 ** The column-list is terminated either by a POS_COLUMN varint (1) or
1421 ** a POS_END varint (0). This routine leaves *ppPoslist pointing to
1422 ** the POS_COLUMN or POS_END that terminates the column-list.
1424 ** If pp is not NULL, then the contents of the column-list are copied
1425 ** to *pp. *pp is set to point to the first byte past the last byte copied
1426 ** before this function returns. The POS_COLUMN or POS_END terminator
1427 ** is not copied into *pp.
1429 static void fts3ColumnlistCopy(char **pp, char **ppPoslist){
1430 char *pEnd = *ppPoslist;
1431 char c = 0;
1433 /* A column-list is terminated by either a 0x01 or 0x00 byte that is
1434 ** not part of a multi-byte varint.
1436 while( 0xFE & (*pEnd | c) ){
1437 c = *pEnd++ & 0x80;
1438 testcase( c!=0 && ((*pEnd)&0xfe)==0 );
1440 if( pp ){
1441 int n = (int)(pEnd - *ppPoslist);
1442 char *p = *pp;
1443 memcpy(p, *ppPoslist, n);
1444 p += n;
1445 *pp = p;
1447 *ppPoslist = pEnd;
1451 ** Value used to signify the end of an position-list. This is safe because
1452 ** it is not possible to have a document with 2^31 terms.
1454 #define POSITION_LIST_END 0x7fffffff
1457 ** This function is used to help parse position-lists. When this function is
1458 ** called, *pp may point to the start of the next varint in the position-list
1459 ** being parsed, or it may point to 1 byte past the end of the position-list
1460 ** (in which case **pp will be a terminator bytes POS_END (0) or
1461 ** (1)).
1463 ** If *pp points past the end of the current position-list, set *pi to
1464 ** POSITION_LIST_END and return. Otherwise, read the next varint from *pp,
1465 ** increment the current value of *pi by the value read, and set *pp to
1466 ** point to the next value before returning.
1468 ** Before calling this routine *pi must be initialized to the value of
1469 ** the previous position, or zero if we are reading the first position
1470 ** in the position-list. Because positions are delta-encoded, the value
1471 ** of the previous position is needed in order to compute the value of
1472 ** the next position.
1474 static void fts3ReadNextPos(
1475 char **pp, /* IN/OUT: Pointer into position-list buffer */
1476 sqlite3_int64 *pi /* IN/OUT: Value read from position-list */
1478 if( (**pp)&0xFE ){
1479 fts3GetDeltaVarint(pp, pi);
1480 *pi -= 2;
1481 }else{
1482 *pi = POSITION_LIST_END;
1487 ** If parameter iCol is not 0, write an POS_COLUMN (1) byte followed by
1488 ** the value of iCol encoded as a varint to *pp. This will start a new
1489 ** column list.
1491 ** Set *pp to point to the byte just after the last byte written before
1492 ** returning (do not modify it if iCol==0). Return the total number of bytes
1493 ** written (0 if iCol==0).
1495 static int fts3PutColNumber(char **pp, int iCol){
1496 int n = 0; /* Number of bytes written */
1497 if( iCol ){
1498 char *p = *pp; /* Output pointer */
1499 n = 1 + sqlite3Fts3PutVarint(&p[1], iCol);
1500 *p = 0x01;
1501 *pp = &p[n];
1503 return n;
1507 ** Compute the union of two position lists. The output written
1508 ** into *pp contains all positions of both *pp1 and *pp2 in sorted
1509 ** order and with any duplicates removed. All pointers are
1510 ** updated appropriately. The caller is responsible for insuring
1511 ** that there is enough space in *pp to hold the complete output.
1513 static void fts3PoslistMerge(
1514 char **pp, /* Output buffer */
1515 char **pp1, /* Left input list */
1516 char **pp2 /* Right input list */
1518 char *p = *pp;
1519 char *p1 = *pp1;
1520 char *p2 = *pp2;
1522 while( *p1 || *p2 ){
1523 int iCol1; /* The current column index in pp1 */
1524 int iCol2; /* The current column index in pp2 */
1526 if( *p1==POS_COLUMN ) sqlite3Fts3GetVarint32(&p1[1], &iCol1);
1527 else if( *p1==POS_END ) iCol1 = POSITION_LIST_END;
1528 else iCol1 = 0;
1530 if( *p2==POS_COLUMN ) sqlite3Fts3GetVarint32(&p2[1], &iCol2);
1531 else if( *p2==POS_END ) iCol2 = POSITION_LIST_END;
1532 else iCol2 = 0;
1534 if( iCol1==iCol2 ){
1535 sqlite3_int64 i1 = 0; /* Last position from pp1 */
1536 sqlite3_int64 i2 = 0; /* Last position from pp2 */
1537 sqlite3_int64 iPrev = 0;
1538 int n = fts3PutColNumber(&p, iCol1);
1539 p1 += n;
1540 p2 += n;
1542 /* At this point, both p1 and p2 point to the start of column-lists
1543 ** for the same column (the column with index iCol1 and iCol2).
1544 ** A column-list is a list of non-negative delta-encoded varints, each
1545 ** incremented by 2 before being stored. Each list is terminated by a
1546 ** POS_END (0) or POS_COLUMN (1). The following block merges the two lists
1547 ** and writes the results to buffer p. p is left pointing to the byte
1548 ** after the list written. No terminator (POS_END or POS_COLUMN) is
1549 ** written to the output.
1551 fts3GetDeltaVarint(&p1, &i1);
1552 fts3GetDeltaVarint(&p2, &i2);
1553 do {
1554 fts3PutDeltaVarint(&p, &iPrev, (i1<i2) ? i1 : i2);
1555 iPrev -= 2;
1556 if( i1==i2 ){
1557 fts3ReadNextPos(&p1, &i1);
1558 fts3ReadNextPos(&p2, &i2);
1559 }else if( i1<i2 ){
1560 fts3ReadNextPos(&p1, &i1);
1561 }else{
1562 fts3ReadNextPos(&p2, &i2);
1564 }while( i1!=POSITION_LIST_END || i2!=POSITION_LIST_END );
1565 }else if( iCol1<iCol2 ){
1566 p1 += fts3PutColNumber(&p, iCol1);
1567 fts3ColumnlistCopy(&p, &p1);
1568 }else{
1569 p2 += fts3PutColNumber(&p, iCol2);
1570 fts3ColumnlistCopy(&p, &p2);
1574 *p++ = POS_END;
1575 *pp = p;
1576 *pp1 = p1 + 1;
1577 *pp2 = p2 + 1;
1581 ** nToken==1 searches for adjacent positions.
1583 ** This function is used to merge two position lists into one. When it is
1584 ** called, *pp1 and *pp2 must both point to position lists. A position-list is
1585 ** the part of a doclist that follows each document id. For example, if a row
1586 ** contains:
1588 ** 'a b c'|'x y z'|'a b b a'
1590 ** Then the position list for this row for token 'b' would consist of:
1592 ** 0x02 0x01 0x02 0x03 0x03 0x00
1594 ** When this function returns, both *pp1 and *pp2 are left pointing to the
1595 ** byte following the 0x00 terminator of their respective position lists.
1597 ** If isSaveLeft is 0, an entry is added to the output position list for
1598 ** each position in *pp2 for which there exists one or more positions in
1599 ** *pp1 so that (pos(*pp2)>pos(*pp1) && pos(*pp2)-pos(*pp1)<=nToken). i.e.
1600 ** when the *pp1 token appears before the *pp2 token, but not more than nToken
1601 ** slots before it.
1603 static int fts3PoslistPhraseMerge(
1604 char **pp, /* IN/OUT: Preallocated output buffer */
1605 int nToken, /* Maximum difference in token positions */
1606 int isSaveLeft, /* Save the left position */
1607 int isExact, /* If *pp1 is exactly nTokens before *pp2 */
1608 char **pp1, /* IN/OUT: Left input list */
1609 char **pp2 /* IN/OUT: Right input list */
1611 char *p = (pp ? *pp : 0);
1612 char *p1 = *pp1;
1613 char *p2 = *pp2;
1614 int iCol1 = 0;
1615 int iCol2 = 0;
1617 /* Never set both isSaveLeft and isExact for the same invocation. */
1618 assert( isSaveLeft==0 || isExact==0 );
1620 assert( *p1!=0 && *p2!=0 );
1621 if( *p1==POS_COLUMN ){
1622 p1++;
1623 p1 += sqlite3Fts3GetVarint32(p1, &iCol1);
1625 if( *p2==POS_COLUMN ){
1626 p2++;
1627 p2 += sqlite3Fts3GetVarint32(p2, &iCol2);
1630 while( 1 ){
1631 if( iCol1==iCol2 ){
1632 char *pSave = p;
1633 sqlite3_int64 iPrev = 0;
1634 sqlite3_int64 iPos1 = 0;
1635 sqlite3_int64 iPos2 = 0;
1637 if( pp && iCol1 ){
1638 *p++ = POS_COLUMN;
1639 p += sqlite3Fts3PutVarint(p, iCol1);
1642 assert( *p1!=POS_END && *p1!=POS_COLUMN );
1643 assert( *p2!=POS_END && *p2!=POS_COLUMN );
1644 fts3GetDeltaVarint(&p1, &iPos1); iPos1 -= 2;
1645 fts3GetDeltaVarint(&p2, &iPos2); iPos2 -= 2;
1647 while( 1 ){
1648 if( iPos2==iPos1+nToken
1649 || (isExact==0 && iPos2>iPos1 && iPos2<=iPos1+nToken)
1651 sqlite3_int64 iSave;
1652 if( !pp ){
1653 fts3PoslistCopy(0, &p2);
1654 fts3PoslistCopy(0, &p1);
1655 *pp1 = p1;
1656 *pp2 = p2;
1657 return 1;
1659 iSave = isSaveLeft ? iPos1 : iPos2;
1660 fts3PutDeltaVarint(&p, &iPrev, iSave+2); iPrev -= 2;
1661 pSave = 0;
1663 if( (!isSaveLeft && iPos2<=(iPos1+nToken)) || iPos2<=iPos1 ){
1664 if( (*p2&0xFE)==0 ) break;
1665 fts3GetDeltaVarint(&p2, &iPos2); iPos2 -= 2;
1666 }else{
1667 if( (*p1&0xFE)==0 ) break;
1668 fts3GetDeltaVarint(&p1, &iPos1); iPos1 -= 2;
1672 if( pSave ){
1673 assert( pp && p );
1674 p = pSave;
1677 fts3ColumnlistCopy(0, &p1);
1678 fts3ColumnlistCopy(0, &p2);
1679 assert( (*p1&0xFE)==0 && (*p2&0xFE)==0 );
1680 if( 0==*p1 || 0==*p2 ) break;
1682 p1++;
1683 p1 += sqlite3Fts3GetVarint32(p1, &iCol1);
1684 p2++;
1685 p2 += sqlite3Fts3GetVarint32(p2, &iCol2);
1688 /* Advance pointer p1 or p2 (whichever corresponds to the smaller of
1689 ** iCol1 and iCol2) so that it points to either the 0x00 that marks the
1690 ** end of the position list, or the 0x01 that precedes the next
1691 ** column-number in the position list.
1693 else if( iCol1<iCol2 ){
1694 fts3ColumnlistCopy(0, &p1);
1695 if( 0==*p1 ) break;
1696 p1++;
1697 p1 += sqlite3Fts3GetVarint32(p1, &iCol1);
1698 }else{
1699 fts3ColumnlistCopy(0, &p2);
1700 if( 0==*p2 ) break;
1701 p2++;
1702 p2 += sqlite3Fts3GetVarint32(p2, &iCol2);
1706 fts3PoslistCopy(0, &p2);
1707 fts3PoslistCopy(0, &p1);
1708 *pp1 = p1;
1709 *pp2 = p2;
1710 if( !pp || *pp==p ){
1711 return 0;
1713 *p++ = 0x00;
1714 *pp = p;
1715 return 1;
1719 ** Merge two position-lists as required by the NEAR operator.
1721 static int fts3PoslistNearMerge(
1722 char **pp, /* Output buffer */
1723 char *aTmp, /* Temporary buffer space */
1724 int nRight, /* Maximum difference in token positions */
1725 int nLeft, /* Maximum difference in token positions */
1726 char **pp1, /* IN/OUT: Left input list */
1727 char **pp2 /* IN/OUT: Right input list */
1729 char *p1 = *pp1;
1730 char *p2 = *pp2;
1732 if( !pp ){
1733 if( fts3PoslistPhraseMerge(0, nRight, 0, 0, pp1, pp2) ) return 1;
1734 *pp1 = p1;
1735 *pp2 = p2;
1736 return fts3PoslistPhraseMerge(0, nLeft, 0, 0, pp2, pp1);
1737 }else{
1738 char *pTmp1 = aTmp;
1739 char *pTmp2;
1740 char *aTmp2;
1741 int res = 1;
1743 fts3PoslistPhraseMerge(&pTmp1, nRight, 0, 0, pp1, pp2);
1744 aTmp2 = pTmp2 = pTmp1;
1745 *pp1 = p1;
1746 *pp2 = p2;
1747 fts3PoslistPhraseMerge(&pTmp2, nLeft, 1, 0, pp2, pp1);
1748 if( pTmp1!=aTmp && pTmp2!=aTmp2 ){
1749 fts3PoslistMerge(pp, &aTmp, &aTmp2);
1750 }else if( pTmp1!=aTmp ){
1751 fts3PoslistCopy(pp, &aTmp);
1752 }else if( pTmp2!=aTmp2 ){
1753 fts3PoslistCopy(pp, &aTmp2);
1754 }else{
1755 res = 0;
1758 return res;
1763 ** Values that may be used as the first parameter to fts3DoclistMerge().
1765 #define MERGE_NOT 2 /* D + D -> D */
1766 #define MERGE_AND 3 /* D + D -> D */
1767 #define MERGE_OR 4 /* D + D -> D */
1768 #define MERGE_POS_OR 5 /* P + P -> P */
1769 #define MERGE_PHRASE 6 /* P + P -> D */
1770 #define MERGE_POS_PHRASE 7 /* P + P -> P */
1771 #define MERGE_NEAR 8 /* P + P -> D */
1772 #define MERGE_POS_NEAR 9 /* P + P -> P */
1775 ** Merge the two doclists passed in buffer a1 (size n1 bytes) and a2
1776 ** (size n2 bytes). The output is written to pre-allocated buffer aBuffer,
1777 ** which is guaranteed to be large enough to hold the results. The number
1778 ** of bytes written to aBuffer is stored in *pnBuffer before returning.
1780 ** If successful, SQLITE_OK is returned. Otherwise, if a malloc error
1781 ** occurs while allocating a temporary buffer as part of the merge operation,
1782 ** SQLITE_NOMEM is returned.
1784 static int fts3DoclistMerge(
1785 int mergetype, /* One of the MERGE_XXX constants */
1786 int nParam1, /* Used by MERGE_NEAR and MERGE_POS_NEAR */
1787 int nParam2, /* Used by MERGE_NEAR and MERGE_POS_NEAR */
1788 char *aBuffer, /* Pre-allocated output buffer */
1789 int *pnBuffer, /* OUT: Bytes written to aBuffer */
1790 char *a1, /* Buffer containing first doclist */
1791 int n1, /* Size of buffer a1 */
1792 char *a2, /* Buffer containing second doclist */
1793 int n2, /* Size of buffer a2 */
1794 int *pnDoc /* OUT: Number of docids in output */
1796 sqlite3_int64 i1 = 0;
1797 sqlite3_int64 i2 = 0;
1798 sqlite3_int64 iPrev = 0;
1800 char *p = aBuffer;
1801 char *p1 = a1;
1802 char *p2 = a2;
1803 char *pEnd1 = &a1[n1];
1804 char *pEnd2 = &a2[n2];
1805 int nDoc = 0;
1807 assert( mergetype==MERGE_OR || mergetype==MERGE_POS_OR
1808 || mergetype==MERGE_AND || mergetype==MERGE_NOT
1809 || mergetype==MERGE_PHRASE || mergetype==MERGE_POS_PHRASE
1810 || mergetype==MERGE_NEAR || mergetype==MERGE_POS_NEAR
1813 if( !aBuffer ){
1814 *pnBuffer = 0;
1815 return SQLITE_NOMEM;
1818 /* Read the first docid from each doclist */
1819 fts3GetDeltaVarint2(&p1, pEnd1, &i1);
1820 fts3GetDeltaVarint2(&p2, pEnd2, &i2);
1822 switch( mergetype ){
1823 case MERGE_OR:
1824 case MERGE_POS_OR:
1825 while( p1 || p2 ){
1826 if( p2 && p1 && i1==i2 ){
1827 fts3PutDeltaVarint(&p, &iPrev, i1);
1828 if( mergetype==MERGE_POS_OR ) fts3PoslistMerge(&p, &p1, &p2);
1829 fts3GetDeltaVarint2(&p1, pEnd1, &i1);
1830 fts3GetDeltaVarint2(&p2, pEnd2, &i2);
1831 }else if( !p2 || (p1 && i1<i2) ){
1832 fts3PutDeltaVarint(&p, &iPrev, i1);
1833 if( mergetype==MERGE_POS_OR ) fts3PoslistCopy(&p, &p1);
1834 fts3GetDeltaVarint2(&p1, pEnd1, &i1);
1835 }else{
1836 fts3PutDeltaVarint(&p, &iPrev, i2);
1837 if( mergetype==MERGE_POS_OR ) fts3PoslistCopy(&p, &p2);
1838 fts3GetDeltaVarint2(&p2, pEnd2, &i2);
1841 break;
1843 case MERGE_AND:
1844 while( p1 && p2 ){
1845 if( i1==i2 ){
1846 fts3PutDeltaVarint(&p, &iPrev, i1);
1847 fts3GetDeltaVarint2(&p1, pEnd1, &i1);
1848 fts3GetDeltaVarint2(&p2, pEnd2, &i2);
1849 nDoc++;
1850 }else if( i1<i2 ){
1851 fts3GetDeltaVarint2(&p1, pEnd1, &i1);
1852 }else{
1853 fts3GetDeltaVarint2(&p2, pEnd2, &i2);
1856 break;
1858 case MERGE_NOT:
1859 while( p1 ){
1860 if( p2 && i1==i2 ){
1861 fts3GetDeltaVarint2(&p1, pEnd1, &i1);
1862 fts3GetDeltaVarint2(&p2, pEnd2, &i2);
1863 }else if( !p2 || i1<i2 ){
1864 fts3PutDeltaVarint(&p, &iPrev, i1);
1865 fts3GetDeltaVarint2(&p1, pEnd1, &i1);
1866 }else{
1867 fts3GetDeltaVarint2(&p2, pEnd2, &i2);
1870 break;
1872 case MERGE_POS_PHRASE:
1873 case MERGE_PHRASE: {
1874 char **ppPos = (mergetype==MERGE_PHRASE ? 0 : &p);
1875 while( p1 && p2 ){
1876 if( i1==i2 ){
1877 char *pSave = p;
1878 sqlite3_int64 iPrevSave = iPrev;
1879 fts3PutDeltaVarint(&p, &iPrev, i1);
1880 if( 0==fts3PoslistPhraseMerge(ppPos, nParam1, 0, 1, &p1, &p2) ){
1881 p = pSave;
1882 iPrev = iPrevSave;
1883 }else{
1884 nDoc++;
1886 fts3GetDeltaVarint2(&p1, pEnd1, &i1);
1887 fts3GetDeltaVarint2(&p2, pEnd2, &i2);
1888 }else if( i1<i2 ){
1889 fts3PoslistCopy(0, &p1);
1890 fts3GetDeltaVarint2(&p1, pEnd1, &i1);
1891 }else{
1892 fts3PoslistCopy(0, &p2);
1893 fts3GetDeltaVarint2(&p2, pEnd2, &i2);
1896 break;
1899 default: assert( mergetype==MERGE_POS_NEAR || mergetype==MERGE_NEAR ); {
1900 char *aTmp = 0;
1901 char **ppPos = 0;
1903 if( mergetype==MERGE_POS_NEAR ){
1904 ppPos = &p;
1905 aTmp = sqlite3_malloc(2*(n1+n2+1));
1906 if( !aTmp ){
1907 return SQLITE_NOMEM;
1911 while( p1 && p2 ){
1912 if( i1==i2 ){
1913 char *pSave = p;
1914 sqlite3_int64 iPrevSave = iPrev;
1915 fts3PutDeltaVarint(&p, &iPrev, i1);
1917 if( !fts3PoslistNearMerge(ppPos, aTmp, nParam1, nParam2, &p1, &p2) ){
1918 iPrev = iPrevSave;
1919 p = pSave;
1922 fts3GetDeltaVarint2(&p1, pEnd1, &i1);
1923 fts3GetDeltaVarint2(&p2, pEnd2, &i2);
1924 }else if( i1<i2 ){
1925 fts3PoslistCopy(0, &p1);
1926 fts3GetDeltaVarint2(&p1, pEnd1, &i1);
1927 }else{
1928 fts3PoslistCopy(0, &p2);
1929 fts3GetDeltaVarint2(&p2, pEnd2, &i2);
1932 sqlite3_free(aTmp);
1933 break;
1937 if( pnDoc ) *pnDoc = nDoc;
1938 *pnBuffer = (int)(p-aBuffer);
1939 return SQLITE_OK;
1943 ** A pointer to an instance of this structure is used as the context
1944 ** argument to sqlite3Fts3SegReaderIterate()
1946 typedef struct TermSelect TermSelect;
1947 struct TermSelect {
1948 int isReqPos;
1949 char *aaOutput[16]; /* Malloc'd output buffer */
1950 int anOutput[16]; /* Size of output in bytes */
1954 ** Merge all doclists in the TermSelect.aaOutput[] array into a single
1955 ** doclist stored in TermSelect.aaOutput[0]. If successful, delete all
1956 ** other doclists (except the aaOutput[0] one) and return SQLITE_OK.
1958 ** If an OOM error occurs, return SQLITE_NOMEM. In this case it is
1959 ** the responsibility of the caller to free any doclists left in the
1960 ** TermSelect.aaOutput[] array.
1962 static int fts3TermSelectMerge(TermSelect *pTS){
1963 int mergetype = (pTS->isReqPos ? MERGE_POS_OR : MERGE_OR);
1964 char *aOut = 0;
1965 int nOut = 0;
1966 int i;
1968 /* Loop through the doclists in the aaOutput[] array. Merge them all
1969 ** into a single doclist.
1971 for(i=0; i<SizeofArray(pTS->aaOutput); i++){
1972 if( pTS->aaOutput[i] ){
1973 if( !aOut ){
1974 aOut = pTS->aaOutput[i];
1975 nOut = pTS->anOutput[i];
1976 pTS->aaOutput[i] = 0;
1977 }else{
1978 int nNew = nOut + pTS->anOutput[i];
1979 char *aNew = sqlite3_malloc(nNew);
1980 if( !aNew ){
1981 sqlite3_free(aOut);
1982 return SQLITE_NOMEM;
1984 fts3DoclistMerge(mergetype, 0, 0,
1985 aNew, &nNew, pTS->aaOutput[i], pTS->anOutput[i], aOut, nOut, 0
1987 sqlite3_free(pTS->aaOutput[i]);
1988 sqlite3_free(aOut);
1989 pTS->aaOutput[i] = 0;
1990 aOut = aNew;
1991 nOut = nNew;
1996 pTS->aaOutput[0] = aOut;
1997 pTS->anOutput[0] = nOut;
1998 return SQLITE_OK;
2002 ** This function is used as the sqlite3Fts3SegReaderIterate() callback when
2003 ** querying the full-text index for a doclist associated with a term or
2004 ** term-prefix.
2006 static int fts3TermSelectCb(
2007 Fts3Table *p, /* Virtual table object */
2008 void *pContext, /* Pointer to TermSelect structure */
2009 char *zTerm,
2010 int nTerm,
2011 char *aDoclist,
2012 int nDoclist
2014 TermSelect *pTS = (TermSelect *)pContext;
2016 UNUSED_PARAMETER(p);
2017 UNUSED_PARAMETER(zTerm);
2018 UNUSED_PARAMETER(nTerm);
2020 if( pTS->aaOutput[0]==0 ){
2021 /* If this is the first term selected, copy the doclist to the output
2022 ** buffer using memcpy(). TODO: Add a way to transfer control of the
2023 ** aDoclist buffer from the caller so as to avoid the memcpy().
2025 pTS->aaOutput[0] = sqlite3_malloc(nDoclist);
2026 pTS->anOutput[0] = nDoclist;
2027 if( pTS->aaOutput[0] ){
2028 memcpy(pTS->aaOutput[0], aDoclist, nDoclist);
2029 }else{
2030 return SQLITE_NOMEM;
2032 }else{
2033 int mergetype = (pTS->isReqPos ? MERGE_POS_OR : MERGE_OR);
2034 char *aMerge = aDoclist;
2035 int nMerge = nDoclist;
2036 int iOut;
2038 for(iOut=0; iOut<SizeofArray(pTS->aaOutput); iOut++){
2039 char *aNew;
2040 int nNew;
2041 if( pTS->aaOutput[iOut]==0 ){
2042 assert( iOut>0 );
2043 pTS->aaOutput[iOut] = aMerge;
2044 pTS->anOutput[iOut] = nMerge;
2045 break;
2048 nNew = nMerge + pTS->anOutput[iOut];
2049 aNew = sqlite3_malloc(nNew);
2050 if( !aNew ){
2051 if( aMerge!=aDoclist ){
2052 sqlite3_free(aMerge);
2054 return SQLITE_NOMEM;
2056 fts3DoclistMerge(mergetype, 0, 0, aNew, &nNew,
2057 pTS->aaOutput[iOut], pTS->anOutput[iOut], aMerge, nMerge, 0
2060 if( iOut>0 ) sqlite3_free(aMerge);
2061 sqlite3_free(pTS->aaOutput[iOut]);
2062 pTS->aaOutput[iOut] = 0;
2064 aMerge = aNew;
2065 nMerge = nNew;
2066 if( (iOut+1)==SizeofArray(pTS->aaOutput) ){
2067 pTS->aaOutput[iOut] = aMerge;
2068 pTS->anOutput[iOut] = nMerge;
2072 return SQLITE_OK;
2075 static int fts3DeferredTermSelect(
2076 Fts3DeferredToken *pToken, /* Phrase token */
2077 int isTermPos, /* True to include positions */
2078 int *pnOut, /* OUT: Size of list */
2079 char **ppOut /* OUT: Body of list */
2081 char *aSource;
2082 int nSource;
2084 aSource = sqlite3Fts3DeferredDoclist(pToken, &nSource);
2085 if( !aSource ){
2086 *pnOut = 0;
2087 *ppOut = 0;
2088 }else if( isTermPos ){
2089 *ppOut = sqlite3_malloc(nSource);
2090 if( !*ppOut ) return SQLITE_NOMEM;
2091 memcpy(*ppOut, aSource, nSource);
2092 *pnOut = nSource;
2093 }else{
2094 sqlite3_int64 docid;
2095 *pnOut = sqlite3Fts3GetVarint(aSource, &docid);
2096 *ppOut = sqlite3_malloc(*pnOut);
2097 if( !*ppOut ) return SQLITE_NOMEM;
2098 sqlite3Fts3PutVarint(*ppOut, docid);
2101 return SQLITE_OK;
2104 int sqlite3Fts3SegReaderCursor(
2105 Fts3Table *p, /* FTS3 table handle */
2106 int iLevel, /* Level of segments to scan */
2107 const char *zTerm, /* Term to query for */
2108 int nTerm, /* Size of zTerm in bytes */
2109 int isPrefix, /* True for a prefix search */
2110 int isScan, /* True to scan from zTerm to EOF */
2111 Fts3SegReaderCursor *pCsr /* Cursor object to populate */
2113 int rc = SQLITE_OK;
2114 int rc2;
2115 int iAge = 0;
2116 sqlite3_stmt *pStmt = 0;
2117 Fts3SegReader *pPending = 0;
2119 assert( iLevel==FTS3_SEGCURSOR_ALL
2120 || iLevel==FTS3_SEGCURSOR_PENDING
2121 || iLevel>=0
2123 assert( FTS3_SEGCURSOR_PENDING<0 );
2124 assert( FTS3_SEGCURSOR_ALL<0 );
2125 assert( iLevel==FTS3_SEGCURSOR_ALL || (zTerm==0 && isPrefix==1) );
2126 assert( isPrefix==0 || isScan==0 );
2129 memset(pCsr, 0, sizeof(Fts3SegReaderCursor));
2131 /* If iLevel is less than 0, include a seg-reader for the pending-terms. */
2132 assert( isScan==0 || fts3HashCount(&p->pendingTerms)==0 );
2133 if( iLevel<0 && isScan==0 ){
2134 rc = sqlite3Fts3SegReaderPending(p, zTerm, nTerm, isPrefix, &pPending);
2135 if( rc==SQLITE_OK && pPending ){
2136 int nByte = (sizeof(Fts3SegReader *) * 16);
2137 pCsr->apSegment = (Fts3SegReader **)sqlite3_malloc(nByte);
2138 if( pCsr->apSegment==0 ){
2139 rc = SQLITE_NOMEM;
2140 }else{
2141 pCsr->apSegment[0] = pPending;
2142 pCsr->nSegment = 1;
2143 pPending = 0;
2148 if( iLevel!=FTS3_SEGCURSOR_PENDING ){
2149 if( rc==SQLITE_OK ){
2150 rc = sqlite3Fts3AllSegdirs(p, iLevel, &pStmt);
2152 while( rc==SQLITE_OK && SQLITE_ROW==(rc = sqlite3_step(pStmt)) ){
2154 /* Read the values returned by the SELECT into local variables. */
2155 sqlite3_int64 iStartBlock = sqlite3_column_int64(pStmt, 1);
2156 sqlite3_int64 iLeavesEndBlock = sqlite3_column_int64(pStmt, 2);
2157 sqlite3_int64 iEndBlock = sqlite3_column_int64(pStmt, 3);
2158 int nRoot = sqlite3_column_bytes(pStmt, 4);
2159 char const *zRoot = sqlite3_column_blob(pStmt, 4);
2161 /* If nSegment is a multiple of 16 the array needs to be extended. */
2162 if( (pCsr->nSegment%16)==0 ){
2163 Fts3SegReader **apNew;
2164 int nByte = (pCsr->nSegment + 16)*sizeof(Fts3SegReader*);
2165 apNew = (Fts3SegReader **)sqlite3_realloc(pCsr->apSegment, nByte);
2166 if( !apNew ){
2167 rc = SQLITE_NOMEM;
2168 goto finished;
2170 pCsr->apSegment = apNew;
2173 /* If zTerm is not NULL, and this segment is not stored entirely on its
2174 ** root node, the range of leaves scanned can be reduced. Do this. */
2175 if( iStartBlock && zTerm ){
2176 sqlite3_int64 *pi = (isPrefix ? &iLeavesEndBlock : 0);
2177 rc = fts3SelectLeaf(p, zTerm, nTerm, zRoot, nRoot, &iStartBlock, pi);
2178 if( rc!=SQLITE_OK ) goto finished;
2179 if( isPrefix==0 && isScan==0 ) iLeavesEndBlock = iStartBlock;
2182 rc = sqlite3Fts3SegReaderNew(iAge, iStartBlock, iLeavesEndBlock,
2183 iEndBlock, zRoot, nRoot, &pCsr->apSegment[pCsr->nSegment]
2185 if( rc!=SQLITE_OK ) goto finished;
2186 pCsr->nSegment++;
2187 iAge++;
2191 finished:
2192 rc2 = sqlite3_reset(pStmt);
2193 if( rc==SQLITE_DONE ) rc = rc2;
2194 sqlite3Fts3SegReaderFree(pPending);
2196 return rc;
2200 static int fts3TermSegReaderCursor(
2201 Fts3Cursor *pCsr, /* Virtual table cursor handle */
2202 const char *zTerm, /* Term to query for */
2203 int nTerm, /* Size of zTerm in bytes */
2204 int isPrefix, /* True for a prefix search */
2205 Fts3SegReaderCursor **ppSegcsr /* OUT: Allocated seg-reader cursor */
2207 Fts3SegReaderCursor *pSegcsr; /* Object to allocate and return */
2208 int rc = SQLITE_NOMEM; /* Return code */
2210 pSegcsr = sqlite3_malloc(sizeof(Fts3SegReaderCursor));
2211 if( pSegcsr ){
2212 Fts3Table *p = (Fts3Table *)pCsr->base.pVtab;
2213 int i;
2214 int nCost = 0;
2215 rc = sqlite3Fts3SegReaderCursor(
2216 p, FTS3_SEGCURSOR_ALL, zTerm, nTerm, isPrefix, 0, pSegcsr);
2218 for(i=0; rc==SQLITE_OK && i<pSegcsr->nSegment; i++){
2219 rc = sqlite3Fts3SegReaderCost(pCsr, pSegcsr->apSegment[i], &nCost);
2221 pSegcsr->nCost = nCost;
2224 *ppSegcsr = pSegcsr;
2225 return rc;
2228 static void fts3SegReaderCursorFree(Fts3SegReaderCursor *pSegcsr){
2229 sqlite3Fts3SegReaderFinish(pSegcsr);
2230 sqlite3_free(pSegcsr);
2234 ** This function retreives the doclist for the specified term (or term
2235 ** prefix) from the database.
2237 ** The returned doclist may be in one of two formats, depending on the
2238 ** value of parameter isReqPos. If isReqPos is zero, then the doclist is
2239 ** a sorted list of delta-compressed docids (a bare doclist). If isReqPos
2240 ** is non-zero, then the returned list is in the same format as is stored
2241 ** in the database without the found length specifier at the start of on-disk
2242 ** doclists.
2244 static int fts3TermSelect(
2245 Fts3Table *p, /* Virtual table handle */
2246 Fts3PhraseToken *pTok, /* Token to query for */
2247 int iColumn, /* Column to query (or -ve for all columns) */
2248 int isReqPos, /* True to include position lists in output */
2249 int *pnOut, /* OUT: Size of buffer at *ppOut */
2250 char **ppOut /* OUT: Malloced result buffer */
2252 int rc; /* Return code */
2253 Fts3SegReaderCursor *pSegcsr; /* Seg-reader cursor for this term */
2254 TermSelect tsc; /* Context object for fts3TermSelectCb() */
2255 Fts3SegFilter filter; /* Segment term filter configuration */
2257 pSegcsr = pTok->pSegcsr;
2258 memset(&tsc, 0, sizeof(TermSelect));
2259 tsc.isReqPos = isReqPos;
2261 filter.flags = FTS3_SEGMENT_IGNORE_EMPTY
2262 | (pTok->isPrefix ? FTS3_SEGMENT_PREFIX : 0)
2263 | (isReqPos ? FTS3_SEGMENT_REQUIRE_POS : 0)
2264 | (iColumn<p->nColumn ? FTS3_SEGMENT_COLUMN_FILTER : 0);
2265 filter.iCol = iColumn;
2266 filter.zTerm = pTok->z;
2267 filter.nTerm = pTok->n;
2269 rc = sqlite3Fts3SegReaderStart(p, pSegcsr, &filter);
2270 while( SQLITE_OK==rc
2271 && SQLITE_ROW==(rc = sqlite3Fts3SegReaderStep(p, pSegcsr))
2273 rc = fts3TermSelectCb(p, (void *)&tsc,
2274 pSegcsr->zTerm, pSegcsr->nTerm, pSegcsr->aDoclist, pSegcsr->nDoclist
2278 if( rc==SQLITE_OK ){
2279 rc = fts3TermSelectMerge(&tsc);
2281 if( rc==SQLITE_OK ){
2282 *ppOut = tsc.aaOutput[0];
2283 *pnOut = tsc.anOutput[0];
2284 }else{
2285 int i;
2286 for(i=0; i<SizeofArray(tsc.aaOutput); i++){
2287 sqlite3_free(tsc.aaOutput[i]);
2291 fts3SegReaderCursorFree(pSegcsr);
2292 pTok->pSegcsr = 0;
2293 return rc;
2297 ** This function counts the total number of docids in the doclist stored
2298 ** in buffer aList[], size nList bytes.
2300 ** If the isPoslist argument is true, then it is assumed that the doclist
2301 ** contains a position-list following each docid. Otherwise, it is assumed
2302 ** that the doclist is simply a list of docids stored as delta encoded
2303 ** varints.
2305 static int fts3DoclistCountDocids(int isPoslist, char *aList, int nList){
2306 int nDoc = 0; /* Return value */
2307 if( aList ){
2308 char *aEnd = &aList[nList]; /* Pointer to one byte after EOF */
2309 char *p = aList; /* Cursor */
2310 if( !isPoslist ){
2311 /* The number of docids in the list is the same as the number of
2312 ** varints. In FTS3 a varint consists of a single byte with the 0x80
2313 ** bit cleared and zero or more bytes with the 0x80 bit set. So to
2314 ** count the varints in the buffer, just count the number of bytes
2315 ** with the 0x80 bit clear. */
2316 while( p<aEnd ) nDoc += (((*p++)&0x80)==0);
2317 }else{
2318 while( p<aEnd ){
2319 nDoc++;
2320 while( (*p++)&0x80 ); /* Skip docid varint */
2321 fts3PoslistCopy(0, &p); /* Skip over position list */
2326 return nDoc;
2330 ** Call sqlite3Fts3DeferToken() for each token in the expression pExpr.
2332 static int fts3DeferExpression(Fts3Cursor *pCsr, Fts3Expr *pExpr){
2333 int rc = SQLITE_OK;
2334 if( pExpr ){
2335 rc = fts3DeferExpression(pCsr, pExpr->pLeft);
2336 if( rc==SQLITE_OK ){
2337 rc = fts3DeferExpression(pCsr, pExpr->pRight);
2339 if( pExpr->eType==FTSQUERY_PHRASE ){
2340 int iCol = pExpr->pPhrase->iColumn;
2341 int i;
2342 for(i=0; rc==SQLITE_OK && i<pExpr->pPhrase->nToken; i++){
2343 Fts3PhraseToken *pToken = &pExpr->pPhrase->aToken[i];
2344 if( pToken->pDeferred==0 ){
2345 rc = sqlite3Fts3DeferToken(pCsr, pToken, iCol);
2350 return rc;
2354 ** This function removes the position information from a doclist. When
2355 ** called, buffer aList (size *pnList bytes) contains a doclist that includes
2356 ** position information. This function removes the position information so
2357 ** that aList contains only docids, and adjusts *pnList to reflect the new
2358 ** (possibly reduced) size of the doclist.
2360 static void fts3DoclistStripPositions(
2361 char *aList, /* IN/OUT: Buffer containing doclist */
2362 int *pnList /* IN/OUT: Size of doclist in bytes */
2364 if( aList ){
2365 char *aEnd = &aList[*pnList]; /* Pointer to one byte after EOF */
2366 char *p = aList; /* Input cursor */
2367 char *pOut = aList; /* Output cursor */
2369 while( p<aEnd ){
2370 sqlite3_int64 delta;
2371 p += sqlite3Fts3GetVarint(p, &delta);
2372 fts3PoslistCopy(0, &p);
2373 pOut += sqlite3Fts3PutVarint(pOut, delta);
2376 *pnList = (int)(pOut - aList);
2381 ** Return a DocList corresponding to the phrase *pPhrase.
2383 ** If this function returns SQLITE_OK, but *pnOut is set to a negative value,
2384 ** then no tokens in the phrase were looked up in the full-text index. This
2385 ** is only possible when this function is called from within xFilter(). The
2386 ** caller should assume that all documents match the phrase. The actual
2387 ** filtering will take place in xNext().
2389 static int fts3PhraseSelect(
2390 Fts3Cursor *pCsr, /* Virtual table cursor handle */
2391 Fts3Phrase *pPhrase, /* Phrase to return a doclist for */
2392 int isReqPos, /* True if output should contain positions */
2393 char **paOut, /* OUT: Pointer to malloc'd result buffer */
2394 int *pnOut /* OUT: Size of buffer at *paOut */
2396 char *pOut = 0;
2397 int nOut = 0;
2398 int rc = SQLITE_OK;
2399 int ii;
2400 int iCol = pPhrase->iColumn;
2401 int isTermPos = (pPhrase->nToken>1 || isReqPos);
2402 Fts3Table *p = (Fts3Table *)pCsr->base.pVtab;
2403 int isFirst = 1;
2405 int iPrevTok = 0;
2406 int nDoc = 0;
2408 /* If this is an xFilter() evaluation, create a segment-reader for each
2409 ** phrase token. Or, if this is an xNext() or snippet/offsets/matchinfo
2410 ** evaluation, only create segment-readers if there are no Fts3DeferredToken
2411 ** objects attached to the phrase-tokens.
2413 for(ii=0; ii<pPhrase->nToken; ii++){
2414 Fts3PhraseToken *pTok = &pPhrase->aToken[ii];
2415 if( pTok->pSegcsr==0 ){
2416 if( (pCsr->eEvalmode==FTS3_EVAL_FILTER)
2417 || (pCsr->eEvalmode==FTS3_EVAL_NEXT && pCsr->pDeferred==0)
2418 || (pCsr->eEvalmode==FTS3_EVAL_MATCHINFO && pTok->bFulltext)
2420 rc = fts3TermSegReaderCursor(
2421 pCsr, pTok->z, pTok->n, pTok->isPrefix, &pTok->pSegcsr
2423 if( rc!=SQLITE_OK ) return rc;
2428 for(ii=0; ii<pPhrase->nToken; ii++){
2429 Fts3PhraseToken *pTok; /* Token to find doclist for */
2430 int iTok = 0; /* The token being queried this iteration */
2431 char *pList = 0; /* Pointer to token doclist */
2432 int nList = 0; /* Size of buffer at pList */
2434 /* Select a token to process. If this is an xFilter() call, then tokens
2435 ** are processed in order from least to most costly. Otherwise, tokens
2436 ** are processed in the order in which they occur in the phrase.
2438 if( pCsr->eEvalmode==FTS3_EVAL_MATCHINFO ){
2439 assert( isReqPos );
2440 iTok = ii;
2441 pTok = &pPhrase->aToken[iTok];
2442 if( pTok->bFulltext==0 ) continue;
2443 }else if( pCsr->eEvalmode==FTS3_EVAL_NEXT || isReqPos ){
2444 iTok = ii;
2445 pTok = &pPhrase->aToken[iTok];
2446 }else{
2447 int nMinCost = 0x7FFFFFFF;
2448 int jj;
2450 /* Find the remaining token with the lowest cost. */
2451 for(jj=0; jj<pPhrase->nToken; jj++){
2452 Fts3SegReaderCursor *pSegcsr = pPhrase->aToken[jj].pSegcsr;
2453 if( pSegcsr && pSegcsr->nCost<nMinCost ){
2454 iTok = jj;
2455 nMinCost = pSegcsr->nCost;
2458 pTok = &pPhrase->aToken[iTok];
2460 /* This branch is taken if it is determined that loading the doclist
2461 ** for the next token would require more IO than loading all documents
2462 ** currently identified by doclist pOut/nOut. No further doclists will
2463 ** be loaded from the full-text index for this phrase.
2465 if( nMinCost>nDoc && ii>0 ){
2466 rc = fts3DeferExpression(pCsr, pCsr->pExpr);
2467 break;
2471 if( pCsr->eEvalmode==FTS3_EVAL_NEXT && pTok->pDeferred ){
2472 rc = fts3DeferredTermSelect(pTok->pDeferred, isTermPos, &nList, &pList);
2473 }else{
2474 if( pTok->pSegcsr ){
2475 rc = fts3TermSelect(p, pTok, iCol, isTermPos, &nList, &pList);
2477 pTok->bFulltext = 1;
2479 assert( rc!=SQLITE_OK || pCsr->eEvalmode || pTok->pSegcsr==0 );
2480 if( rc!=SQLITE_OK ) break;
2482 if( isFirst ){
2483 pOut = pList;
2484 nOut = nList;
2485 if( pCsr->eEvalmode==FTS3_EVAL_FILTER && pPhrase->nToken>1 ){
2486 nDoc = fts3DoclistCountDocids(1, pOut, nOut);
2488 isFirst = 0;
2489 iPrevTok = iTok;
2490 }else{
2491 /* Merge the new term list and the current output. */
2492 char *aLeft, *aRight;
2493 int nLeft, nRight;
2494 int nDist;
2495 int mt;
2497 /* If this is the final token of the phrase, and positions were not
2498 ** requested by the caller, use MERGE_PHRASE instead of POS_PHRASE.
2499 ** This drops the position information from the output list.
2501 mt = MERGE_POS_PHRASE;
2502 if( ii==pPhrase->nToken-1 && !isReqPos ) mt = MERGE_PHRASE;
2504 assert( iPrevTok!=iTok );
2505 if( iPrevTok<iTok ){
2506 aLeft = pOut;
2507 nLeft = nOut;
2508 aRight = pList;
2509 nRight = nList;
2510 nDist = iTok-iPrevTok;
2511 iPrevTok = iTok;
2512 }else{
2513 aRight = pOut;
2514 nRight = nOut;
2515 aLeft = pList;
2516 nLeft = nList;
2517 nDist = iPrevTok-iTok;
2519 pOut = aRight;
2520 fts3DoclistMerge(
2521 mt, nDist, 0, pOut, &nOut, aLeft, nLeft, aRight, nRight, &nDoc
2523 sqlite3_free(aLeft);
2525 assert( nOut==0 || pOut!=0 );
2528 if( rc==SQLITE_OK ){
2529 if( ii!=pPhrase->nToken ){
2530 assert( pCsr->eEvalmode==FTS3_EVAL_FILTER && isReqPos==0 );
2531 fts3DoclistStripPositions(pOut, &nOut);
2533 *paOut = pOut;
2534 *pnOut = nOut;
2535 }else{
2536 sqlite3_free(pOut);
2538 return rc;
2542 ** This function merges two doclists according to the requirements of a
2543 ** NEAR operator.
2545 ** Both input doclists must include position information. The output doclist
2546 ** includes position information if the first argument to this function
2547 ** is MERGE_POS_NEAR, or does not if it is MERGE_NEAR.
2549 static int fts3NearMerge(
2550 int mergetype, /* MERGE_POS_NEAR or MERGE_NEAR */
2551 int nNear, /* Parameter to NEAR operator */
2552 int nTokenLeft, /* Number of tokens in LHS phrase arg */
2553 char *aLeft, /* Doclist for LHS (incl. positions) */
2554 int nLeft, /* Size of LHS doclist in bytes */
2555 int nTokenRight, /* As nTokenLeft */
2556 char *aRight, /* As aLeft */
2557 int nRight, /* As nRight */
2558 char **paOut, /* OUT: Results of merge (malloced) */
2559 int *pnOut /* OUT: Sized of output buffer */
2561 char *aOut; /* Buffer to write output doclist to */
2562 int rc; /* Return code */
2564 assert( mergetype==MERGE_POS_NEAR || MERGE_NEAR );
2566 aOut = sqlite3_malloc(nLeft+nRight+1);
2567 if( aOut==0 ){
2568 rc = SQLITE_NOMEM;
2569 }else{
2570 rc = fts3DoclistMerge(mergetype, nNear+nTokenRight, nNear+nTokenLeft,
2571 aOut, pnOut, aLeft, nLeft, aRight, nRight, 0
2573 if( rc!=SQLITE_OK ){
2574 sqlite3_free(aOut);
2575 aOut = 0;
2579 *paOut = aOut;
2580 return rc;
2584 ** This function is used as part of the processing for the snippet() and
2585 ** offsets() functions.
2587 ** Both pLeft and pRight are expression nodes of type FTSQUERY_PHRASE. Both
2588 ** have their respective doclists (including position information) loaded
2589 ** in Fts3Expr.aDoclist/nDoclist. This function removes all entries from
2590 ** each doclist that are not within nNear tokens of a corresponding entry
2591 ** in the other doclist.
2593 int sqlite3Fts3ExprNearTrim(Fts3Expr *pLeft, Fts3Expr *pRight, int nNear){
2594 int rc; /* Return code */
2596 assert( pLeft->eType==FTSQUERY_PHRASE );
2597 assert( pRight->eType==FTSQUERY_PHRASE );
2598 assert( pLeft->isLoaded && pRight->isLoaded );
2600 if( pLeft->aDoclist==0 || pRight->aDoclist==0 ){
2601 sqlite3_free(pLeft->aDoclist);
2602 sqlite3_free(pRight->aDoclist);
2603 pRight->aDoclist = 0;
2604 pLeft->aDoclist = 0;
2605 rc = SQLITE_OK;
2606 }else{
2607 char *aOut; /* Buffer in which to assemble new doclist */
2608 int nOut; /* Size of buffer aOut in bytes */
2610 rc = fts3NearMerge(MERGE_POS_NEAR, nNear,
2611 pLeft->pPhrase->nToken, pLeft->aDoclist, pLeft->nDoclist,
2612 pRight->pPhrase->nToken, pRight->aDoclist, pRight->nDoclist,
2613 &aOut, &nOut
2615 if( rc!=SQLITE_OK ) return rc;
2616 sqlite3_free(pRight->aDoclist);
2617 pRight->aDoclist = aOut;
2618 pRight->nDoclist = nOut;
2620 rc = fts3NearMerge(MERGE_POS_NEAR, nNear,
2621 pRight->pPhrase->nToken, pRight->aDoclist, pRight->nDoclist,
2622 pLeft->pPhrase->nToken, pLeft->aDoclist, pLeft->nDoclist,
2623 &aOut, &nOut
2625 sqlite3_free(pLeft->aDoclist);
2626 pLeft->aDoclist = aOut;
2627 pLeft->nDoclist = nOut;
2629 return rc;
2634 ** Allocate an Fts3SegReaderArray for each token in the expression pExpr.
2635 ** The allocated objects are stored in the Fts3PhraseToken.pArray member
2636 ** variables of each token structure.
2638 static int fts3ExprAllocateSegReaders(
2639 Fts3Cursor *pCsr, /* FTS3 table */
2640 Fts3Expr *pExpr, /* Expression to create seg-readers for */
2641 int *pnExpr /* OUT: Number of AND'd expressions */
2643 int rc = SQLITE_OK; /* Return code */
2645 assert( pCsr->eEvalmode==FTS3_EVAL_FILTER );
2646 if( pnExpr && pExpr->eType!=FTSQUERY_AND ){
2647 (*pnExpr)++;
2648 pnExpr = 0;
2651 if( pExpr->eType==FTSQUERY_PHRASE ){
2652 Fts3Phrase *pPhrase = pExpr->pPhrase;
2653 int ii;
2655 for(ii=0; rc==SQLITE_OK && ii<pPhrase->nToken; ii++){
2656 Fts3PhraseToken *pTok = &pPhrase->aToken[ii];
2657 if( pTok->pSegcsr==0 ){
2658 rc = fts3TermSegReaderCursor(
2659 pCsr, pTok->z, pTok->n, pTok->isPrefix, &pTok->pSegcsr
2663 }else{
2664 rc = fts3ExprAllocateSegReaders(pCsr, pExpr->pLeft, pnExpr);
2665 if( rc==SQLITE_OK ){
2666 rc = fts3ExprAllocateSegReaders(pCsr, pExpr->pRight, pnExpr);
2669 return rc;
2673 ** Free the Fts3SegReaderArray objects associated with each token in the
2674 ** expression pExpr. In other words, this function frees the resources
2675 ** allocated by fts3ExprAllocateSegReaders().
2677 static void fts3ExprFreeSegReaders(Fts3Expr *pExpr){
2678 if( pExpr ){
2679 Fts3Phrase *pPhrase = pExpr->pPhrase;
2680 if( pPhrase ){
2681 int kk;
2682 for(kk=0; kk<pPhrase->nToken; kk++){
2683 fts3SegReaderCursorFree(pPhrase->aToken[kk].pSegcsr);
2684 pPhrase->aToken[kk].pSegcsr = 0;
2687 fts3ExprFreeSegReaders(pExpr->pLeft);
2688 fts3ExprFreeSegReaders(pExpr->pRight);
2693 ** Return the sum of the costs of all tokens in the expression pExpr. This
2694 ** function must be called after Fts3SegReaderArrays have been allocated
2695 ** for all tokens using fts3ExprAllocateSegReaders().
2697 static int fts3ExprCost(Fts3Expr *pExpr){
2698 int nCost; /* Return value */
2699 if( pExpr->eType==FTSQUERY_PHRASE ){
2700 Fts3Phrase *pPhrase = pExpr->pPhrase;
2701 int ii;
2702 nCost = 0;
2703 for(ii=0; ii<pPhrase->nToken; ii++){
2704 Fts3SegReaderCursor *pSegcsr = pPhrase->aToken[ii].pSegcsr;
2705 if( pSegcsr ) nCost += pSegcsr->nCost;
2707 }else{
2708 nCost = fts3ExprCost(pExpr->pLeft) + fts3ExprCost(pExpr->pRight);
2710 return nCost;
2714 ** The following is a helper function (and type) for fts3EvalExpr(). It
2715 ** must be called after Fts3SegReaders have been allocated for every token
2716 ** in the expression. See the context it is called from in fts3EvalExpr()
2717 ** for further explanation.
2719 typedef struct ExprAndCost ExprAndCost;
2720 struct ExprAndCost {
2721 Fts3Expr *pExpr;
2722 int nCost;
2724 static void fts3ExprAssignCosts(
2725 Fts3Expr *pExpr, /* Expression to create seg-readers for */
2726 ExprAndCost **ppExprCost /* OUT: Write to *ppExprCost */
2728 if( pExpr->eType==FTSQUERY_AND ){
2729 fts3ExprAssignCosts(pExpr->pLeft, ppExprCost);
2730 fts3ExprAssignCosts(pExpr->pRight, ppExprCost);
2731 }else{
2732 (*ppExprCost)->pExpr = pExpr;
2733 (*ppExprCost)->nCost = fts3ExprCost(pExpr);
2734 (*ppExprCost)++;
2739 ** Evaluate the full-text expression pExpr against FTS3 table pTab. Store
2740 ** the resulting doclist in *paOut and *pnOut. This routine mallocs for
2741 ** the space needed to store the output. The caller is responsible for
2742 ** freeing the space when it has finished.
2744 ** This function is called in two distinct contexts:
2746 ** * From within the virtual table xFilter() method. In this case, the
2747 ** output doclist contains entries for all rows in the table, based on
2748 ** data read from the full-text index.
2750 ** In this case, if the query expression contains one or more tokens that
2751 ** are very common, then the returned doclist may contain a superset of
2752 ** the documents that actually match the expression.
2754 ** * From within the virtual table xNext() method. This call is only made
2755 ** if the call from within xFilter() found that there were very common
2756 ** tokens in the query expression and did return a superset of the
2757 ** matching documents. In this case the returned doclist contains only
2758 ** entries that correspond to the current row of the table. Instead of
2759 ** reading the data for each token from the full-text index, the data is
2760 ** already available in-memory in the Fts3PhraseToken.pDeferred structures.
2761 ** See fts3EvalDeferred() for how it gets there.
2763 ** In the first case above, Fts3Cursor.doDeferred==0. In the second (if it is
2764 ** required) Fts3Cursor.doDeferred==1.
2766 ** If the SQLite invokes the snippet(), offsets() or matchinfo() function
2767 ** as part of a SELECT on an FTS3 table, this function is called on each
2768 ** individual phrase expression in the query. If there were very common tokens
2769 ** found in the xFilter() call, then this function is called once for phrase
2770 ** for each row visited, and the returned doclist contains entries for the
2771 ** current row only. Otherwise, if there were no very common tokens, then this
2772 ** function is called once only for each phrase in the query and the returned
2773 ** doclist contains entries for all rows of the table.
2775 ** Fts3Cursor.doDeferred==1 when this function is called on phrases as a
2776 ** result of a snippet(), offsets() or matchinfo() invocation.
2778 static int fts3EvalExpr(
2779 Fts3Cursor *p, /* Virtual table cursor handle */
2780 Fts3Expr *pExpr, /* Parsed fts3 expression */
2781 char **paOut, /* OUT: Pointer to malloc'd result buffer */
2782 int *pnOut, /* OUT: Size of buffer at *paOut */
2783 int isReqPos /* Require positions in output buffer */
2785 int rc = SQLITE_OK; /* Return code */
2787 /* Zero the output parameters. */
2788 *paOut = 0;
2789 *pnOut = 0;
2791 if( pExpr ){
2792 assert( pExpr->eType==FTSQUERY_NEAR || pExpr->eType==FTSQUERY_OR
2793 || pExpr->eType==FTSQUERY_AND || pExpr->eType==FTSQUERY_NOT
2794 || pExpr->eType==FTSQUERY_PHRASE
2796 assert( pExpr->eType==FTSQUERY_PHRASE || isReqPos==0 );
2798 if( pExpr->eType==FTSQUERY_PHRASE ){
2799 rc = fts3PhraseSelect(p, pExpr->pPhrase,
2800 isReqPos || (pExpr->pParent && pExpr->pParent->eType==FTSQUERY_NEAR),
2801 paOut, pnOut
2803 fts3ExprFreeSegReaders(pExpr);
2804 }else if( p->eEvalmode==FTS3_EVAL_FILTER && pExpr->eType==FTSQUERY_AND ){
2805 ExprAndCost *aExpr = 0; /* Array of AND'd expressions and costs */
2806 int nExpr = 0; /* Size of aExpr[] */
2807 char *aRet = 0; /* Doclist to return to caller */
2808 int nRet = 0; /* Length of aRet[] in bytes */
2809 int nDoc = 0x7FFFFFFF;
2811 assert( !isReqPos );
2813 rc = fts3ExprAllocateSegReaders(p, pExpr, &nExpr);
2814 if( rc==SQLITE_OK ){
2815 assert( nExpr>1 );
2816 aExpr = sqlite3_malloc(sizeof(ExprAndCost) * nExpr);
2817 if( !aExpr ) rc = SQLITE_NOMEM;
2819 if( rc==SQLITE_OK ){
2820 int ii; /* Used to iterate through expressions */
2822 fts3ExprAssignCosts(pExpr, &aExpr);
2823 aExpr -= nExpr;
2824 for(ii=0; ii<nExpr; ii++){
2825 char *aNew;
2826 int nNew;
2827 int jj;
2828 ExprAndCost *pBest = 0;
2830 for(jj=0; jj<nExpr; jj++){
2831 ExprAndCost *pCand = &aExpr[jj];
2832 if( pCand->pExpr && (pBest==0 || pCand->nCost<pBest->nCost) ){
2833 pBest = pCand;
2837 if( pBest->nCost>nDoc ){
2838 rc = fts3DeferExpression(p, p->pExpr);
2839 break;
2840 }else{
2841 rc = fts3EvalExpr(p, pBest->pExpr, &aNew, &nNew, 0);
2842 if( rc!=SQLITE_OK ) break;
2843 pBest->pExpr = 0;
2844 if( ii==0 ){
2845 aRet = aNew;
2846 nRet = nNew;
2847 nDoc = fts3DoclistCountDocids(0, aRet, nRet);
2848 }else{
2849 fts3DoclistMerge(
2850 MERGE_AND, 0, 0, aRet, &nRet, aRet, nRet, aNew, nNew, &nDoc
2852 sqlite3_free(aNew);
2858 if( rc==SQLITE_OK ){
2859 *paOut = aRet;
2860 *pnOut = nRet;
2861 }else{
2862 assert( *paOut==0 );
2863 sqlite3_free(aRet);
2865 sqlite3_free(aExpr);
2866 fts3ExprFreeSegReaders(pExpr);
2868 }else{
2869 char *aLeft;
2870 char *aRight;
2871 int nLeft;
2872 int nRight;
2874 assert( pExpr->eType==FTSQUERY_NEAR
2875 || pExpr->eType==FTSQUERY_OR
2876 || pExpr->eType==FTSQUERY_NOT
2877 || (pExpr->eType==FTSQUERY_AND && p->eEvalmode==FTS3_EVAL_NEXT)
2880 if( 0==(rc = fts3EvalExpr(p, pExpr->pRight, &aRight, &nRight, isReqPos))
2881 && 0==(rc = fts3EvalExpr(p, pExpr->pLeft, &aLeft, &nLeft, isReqPos))
2883 switch( pExpr->eType ){
2884 case FTSQUERY_NEAR: {
2885 Fts3Expr *pLeft;
2886 Fts3Expr *pRight;
2887 int mergetype = MERGE_NEAR;
2888 if( pExpr->pParent && pExpr->pParent->eType==FTSQUERY_NEAR ){
2889 mergetype = MERGE_POS_NEAR;
2891 pLeft = pExpr->pLeft;
2892 while( pLeft->eType==FTSQUERY_NEAR ){
2893 pLeft=pLeft->pRight;
2895 pRight = pExpr->pRight;
2896 assert( pRight->eType==FTSQUERY_PHRASE );
2897 assert( pLeft->eType==FTSQUERY_PHRASE );
2899 rc = fts3NearMerge(mergetype, pExpr->nNear,
2900 pLeft->pPhrase->nToken, aLeft, nLeft,
2901 pRight->pPhrase->nToken, aRight, nRight,
2902 paOut, pnOut
2904 sqlite3_free(aLeft);
2905 break;
2908 case FTSQUERY_OR: {
2909 /* Allocate a buffer for the output. The maximum size is the
2910 ** sum of the sizes of the two input buffers. The +1 term is
2911 ** so that a buffer of zero bytes is never allocated - this can
2912 ** cause fts3DoclistMerge() to incorrectly return SQLITE_NOMEM.
2914 char *aBuffer = sqlite3_malloc(nRight+nLeft+1);
2915 rc = fts3DoclistMerge(MERGE_OR, 0, 0, aBuffer, pnOut,
2916 aLeft, nLeft, aRight, nRight, 0
2918 *paOut = aBuffer;
2919 sqlite3_free(aLeft);
2920 break;
2923 default: {
2924 assert( FTSQUERY_NOT==MERGE_NOT && FTSQUERY_AND==MERGE_AND );
2925 fts3DoclistMerge(pExpr->eType, 0, 0, aLeft, pnOut,
2926 aLeft, nLeft, aRight, nRight, 0
2928 *paOut = aLeft;
2929 break;
2933 sqlite3_free(aRight);
2937 assert( rc==SQLITE_OK || *paOut==0 );
2938 return rc;
2942 ** This function is called from within xNext() for each row visited by
2943 ** an FTS3 query. If evaluating the FTS3 query expression within xFilter()
2944 ** was able to determine the exact set of matching rows, this function sets
2945 ** *pbRes to true and returns SQLITE_IO immediately.
2947 ** Otherwise, if evaluating the query expression within xFilter() returned a
2948 ** superset of the matching documents instead of an exact set (this happens
2949 ** when the query includes very common tokens and it is deemed too expensive to
2950 ** load their doclists from disk), this function tests if the current row
2951 ** really does match the FTS3 query.
2953 ** If an error occurs, an SQLite error code is returned. Otherwise, SQLITE_OK
2954 ** is returned and *pbRes is set to true if the current row matches the
2955 ** FTS3 query (and should be included in the results returned to SQLite), or
2956 ** false otherwise.
2958 static int fts3EvalDeferred(
2959 Fts3Cursor *pCsr, /* FTS3 cursor pointing at row to test */
2960 int *pbRes /* OUT: Set to true if row is a match */
2962 int rc = SQLITE_OK;
2963 if( pCsr->pDeferred==0 ){
2964 *pbRes = 1;
2965 }else{
2966 rc = fts3CursorSeek(0, pCsr);
2967 if( rc==SQLITE_OK ){
2968 sqlite3Fts3FreeDeferredDoclists(pCsr);
2969 rc = sqlite3Fts3CacheDeferredDoclists(pCsr);
2971 if( rc==SQLITE_OK ){
2972 char *a = 0;
2973 int n = 0;
2974 rc = fts3EvalExpr(pCsr, pCsr->pExpr, &a, &n, 0);
2975 assert( n>=0 );
2976 *pbRes = (n>0);
2977 sqlite3_free(a);
2980 return rc;
2984 ** Advance the cursor to the next row in the %_content table that
2985 ** matches the search criteria. For a MATCH search, this will be
2986 ** the next row that matches. For a full-table scan, this will be
2987 ** simply the next row in the %_content table. For a docid lookup,
2988 ** this routine simply sets the EOF flag.
2990 ** Return SQLITE_OK if nothing goes wrong. SQLITE_OK is returned
2991 ** even if we reach end-of-file. The fts3EofMethod() will be called
2992 ** subsequently to determine whether or not an EOF was hit.
2994 static int fts3NextMethod(sqlite3_vtab_cursor *pCursor){
2995 int res;
2996 int rc = SQLITE_OK; /* Return code */
2997 Fts3Cursor *pCsr = (Fts3Cursor *)pCursor;
2999 pCsr->eEvalmode = FTS3_EVAL_NEXT;
3000 do {
3001 if( pCsr->aDoclist==0 ){
3002 if( SQLITE_ROW!=sqlite3_step(pCsr->pStmt) ){
3003 pCsr->isEof = 1;
3004 rc = sqlite3_reset(pCsr->pStmt);
3005 break;
3007 pCsr->iPrevId = sqlite3_column_int64(pCsr->pStmt, 0);
3008 }else{
3009 if( pCsr->pNextId>=&pCsr->aDoclist[pCsr->nDoclist] ){
3010 pCsr->isEof = 1;
3011 break;
3013 sqlite3_reset(pCsr->pStmt);
3014 fts3GetDeltaVarint(&pCsr->pNextId, &pCsr->iPrevId);
3015 pCsr->isRequireSeek = 1;
3016 pCsr->isMatchinfoNeeded = 1;
3018 }while( SQLITE_OK==(rc = fts3EvalDeferred(pCsr, &res)) && res==0 );
3020 return rc;
3024 ** This is the xFilter interface for the virtual table. See
3025 ** the virtual table xFilter method documentation for additional
3026 ** information.
3028 ** If idxNum==FTS3_FULLSCAN_SEARCH then do a full table scan against
3029 ** the %_content table.
3031 ** If idxNum==FTS3_DOCID_SEARCH then do a docid lookup for a single entry
3032 ** in the %_content table.
3034 ** If idxNum>=FTS3_FULLTEXT_SEARCH then use the full text index. The
3035 ** column on the left-hand side of the MATCH operator is column
3036 ** number idxNum-FTS3_FULLTEXT_SEARCH, 0 indexed. argv[0] is the right-hand
3037 ** side of the MATCH operator.
3039 static int fts3FilterMethod(
3040 sqlite3_vtab_cursor *pCursor, /* The cursor used for this query */
3041 int idxNum, /* Strategy index */
3042 const char *idxStr, /* Unused */
3043 int nVal, /* Number of elements in apVal */
3044 sqlite3_value **apVal /* Arguments for the indexing scheme */
3046 const char *azSql[] = {
3047 "SELECT %s FROM %Q.'%q_content' AS x WHERE docid = ?", /* non-full-scan */
3048 "SELECT %s FROM %Q.'%q_content' AS x ", /* full-scan */
3050 int rc; /* Return code */
3051 char *zSql; /* SQL statement used to access %_content */
3052 Fts3Table *p = (Fts3Table *)pCursor->pVtab;
3053 Fts3Cursor *pCsr = (Fts3Cursor *)pCursor;
3055 UNUSED_PARAMETER(idxStr);
3056 UNUSED_PARAMETER(nVal);
3058 assert( idxNum>=0 && idxNum<=(FTS3_FULLTEXT_SEARCH+p->nColumn) );
3059 assert( nVal==0 || nVal==1 );
3060 assert( (nVal==0)==(idxNum==FTS3_FULLSCAN_SEARCH) );
3061 assert( p->pSegments==0 );
3063 /* In case the cursor has been used before, clear it now. */
3064 sqlite3_finalize(pCsr->pStmt);
3065 sqlite3_free(pCsr->aDoclist);
3066 sqlite3Fts3ExprFree(pCsr->pExpr);
3067 memset(&pCursor[1], 0, sizeof(Fts3Cursor)-sizeof(sqlite3_vtab_cursor));
3069 if( idxNum!=FTS3_DOCID_SEARCH && idxNum!=FTS3_FULLSCAN_SEARCH ){
3070 int iCol = idxNum-FTS3_FULLTEXT_SEARCH;
3071 const char *zQuery = (const char *)sqlite3_value_text(apVal[0]);
3073 if( zQuery==0 && sqlite3_value_type(apVal[0])!=SQLITE_NULL ){
3074 return SQLITE_NOMEM;
3077 rc = sqlite3Fts3ExprParse(p->pTokenizer, p->azColumn, p->nColumn,
3078 iCol, zQuery, -1, &pCsr->pExpr
3080 if( rc!=SQLITE_OK ){
3081 if( rc==SQLITE_ERROR ){
3082 p->base.zErrMsg = sqlite3_mprintf("malformed MATCH expression: [%s]",
3083 zQuery);
3085 return rc;
3088 rc = sqlite3Fts3ReadLock(p);
3089 if( rc!=SQLITE_OK ) return rc;
3091 rc = fts3EvalExpr(pCsr, pCsr->pExpr, &pCsr->aDoclist, &pCsr->nDoclist, 0);
3092 sqlite3Fts3SegmentsClose(p);
3093 if( rc!=SQLITE_OK ) return rc;
3094 pCsr->pNextId = pCsr->aDoclist;
3095 pCsr->iPrevId = 0;
3098 /* Compile a SELECT statement for this cursor. For a full-table-scan, the
3099 ** statement loops through all rows of the %_content table. For a
3100 ** full-text query or docid lookup, the statement retrieves a single
3101 ** row by docid.
3103 zSql = (char *)azSql[idxNum==FTS3_FULLSCAN_SEARCH];
3104 zSql = sqlite3_mprintf(zSql, p->zReadExprlist, p->zDb, p->zName);
3105 if( !zSql ){
3106 rc = SQLITE_NOMEM;
3107 }else{
3108 rc = sqlite3_prepare_v2(p->db, zSql, -1, &pCsr->pStmt, 0);
3109 sqlite3_free(zSql);
3111 if( rc==SQLITE_OK && idxNum==FTS3_DOCID_SEARCH ){
3112 rc = sqlite3_bind_value(pCsr->pStmt, 1, apVal[0]);
3114 pCsr->eSearch = (i16)idxNum;
3116 if( rc!=SQLITE_OK ) return rc;
3117 return fts3NextMethod(pCursor);
3121 ** This is the xEof method of the virtual table. SQLite calls this
3122 ** routine to find out if it has reached the end of a result set.
3124 static int fts3EofMethod(sqlite3_vtab_cursor *pCursor){
3125 return ((Fts3Cursor *)pCursor)->isEof;
3129 ** This is the xRowid method. The SQLite core calls this routine to
3130 ** retrieve the rowid for the current row of the result set. fts3
3131 ** exposes %_content.docid as the rowid for the virtual table. The
3132 ** rowid should be written to *pRowid.
3134 static int fts3RowidMethod(sqlite3_vtab_cursor *pCursor, sqlite_int64 *pRowid){
3135 Fts3Cursor *pCsr = (Fts3Cursor *) pCursor;
3136 if( pCsr->aDoclist ){
3137 *pRowid = pCsr->iPrevId;
3138 }else{
3139 /* This branch runs if the query is implemented using a full-table scan
3140 ** (not using the full-text index). In this case grab the rowid from the
3141 ** SELECT statement.
3143 assert( pCsr->isRequireSeek==0 );
3144 *pRowid = sqlite3_column_int64(pCsr->pStmt, 0);
3146 return SQLITE_OK;
3150 ** This is the xColumn method, called by SQLite to request a value from
3151 ** the row that the supplied cursor currently points to.
3153 static int fts3ColumnMethod(
3154 sqlite3_vtab_cursor *pCursor, /* Cursor to retrieve value from */
3155 sqlite3_context *pContext, /* Context for sqlite3_result_xxx() calls */
3156 int iCol /* Index of column to read value from */
3158 int rc; /* Return Code */
3159 Fts3Cursor *pCsr = (Fts3Cursor *) pCursor;
3160 Fts3Table *p = (Fts3Table *)pCursor->pVtab;
3162 /* The column value supplied by SQLite must be in range. */
3163 assert( iCol>=0 && iCol<=p->nColumn+1 );
3165 if( iCol==p->nColumn+1 ){
3166 /* This call is a request for the "docid" column. Since "docid" is an
3167 ** alias for "rowid", use the xRowid() method to obtain the value.
3169 sqlite3_int64 iRowid;
3170 rc = fts3RowidMethod(pCursor, &iRowid);
3171 sqlite3_result_int64(pContext, iRowid);
3172 }else if( iCol==p->nColumn ){
3173 /* The extra column whose name is the same as the table.
3174 ** Return a blob which is a pointer to the cursor.
3176 sqlite3_result_blob(pContext, &pCsr, sizeof(pCsr), SQLITE_TRANSIENT);
3177 rc = SQLITE_OK;
3178 }else{
3179 rc = fts3CursorSeek(0, pCsr);
3180 if( rc==SQLITE_OK ){
3181 sqlite3_result_value(pContext, sqlite3_column_value(pCsr->pStmt, iCol+1));
3184 return rc;
3188 ** This function is the implementation of the xUpdate callback used by
3189 ** FTS3 virtual tables. It is invoked by SQLite each time a row is to be
3190 ** inserted, updated or deleted.
3192 static int fts3UpdateMethod(
3193 sqlite3_vtab *pVtab, /* Virtual table handle */
3194 int nArg, /* Size of argument array */
3195 sqlite3_value **apVal, /* Array of arguments */
3196 sqlite_int64 *pRowid /* OUT: The affected (or effected) rowid */
3198 return sqlite3Fts3UpdateMethod(pVtab, nArg, apVal, pRowid);
3202 ** Implementation of xSync() method. Flush the contents of the pending-terms
3203 ** hash-table to the database.
3205 static int fts3SyncMethod(sqlite3_vtab *pVtab){
3206 int rc = sqlite3Fts3PendingTermsFlush((Fts3Table *)pVtab);
3207 sqlite3Fts3SegmentsClose((Fts3Table *)pVtab);
3208 return rc;
3212 ** Implementation of xBegin() method. This is a no-op.
3214 static int fts3BeginMethod(sqlite3_vtab *pVtab){
3215 UNUSED_PARAMETER(pVtab);
3216 assert( ((Fts3Table *)pVtab)->nPendingData==0 );
3217 return SQLITE_OK;
3221 ** Implementation of xCommit() method. This is a no-op. The contents of
3222 ** the pending-terms hash-table have already been flushed into the database
3223 ** by fts3SyncMethod().
3225 static int fts3CommitMethod(sqlite3_vtab *pVtab){
3226 UNUSED_PARAMETER(pVtab);
3227 assert( ((Fts3Table *)pVtab)->nPendingData==0 );
3228 return SQLITE_OK;
3232 ** Implementation of xRollback(). Discard the contents of the pending-terms
3233 ** hash-table. Any changes made to the database are reverted by SQLite.
3235 static int fts3RollbackMethod(sqlite3_vtab *pVtab){
3236 sqlite3Fts3PendingTermsClear((Fts3Table *)pVtab);
3237 return SQLITE_OK;
3241 ** Load the doclist associated with expression pExpr to pExpr->aDoclist.
3242 ** The loaded doclist contains positions as well as the document ids.
3243 ** This is used by the matchinfo(), snippet() and offsets() auxillary
3244 ** functions.
3246 int sqlite3Fts3ExprLoadDoclist(Fts3Cursor *pCsr, Fts3Expr *pExpr){
3247 int rc;
3248 assert( pExpr->eType==FTSQUERY_PHRASE && pExpr->pPhrase );
3249 assert( pCsr->eEvalmode==FTS3_EVAL_NEXT );
3250 rc = fts3EvalExpr(pCsr, pExpr, &pExpr->aDoclist, &pExpr->nDoclist, 1);
3251 return rc;
3254 int sqlite3Fts3ExprLoadFtDoclist(
3255 Fts3Cursor *pCsr,
3256 Fts3Expr *pExpr,
3257 char **paDoclist,
3258 int *pnDoclist
3260 int rc;
3261 assert( pCsr->eEvalmode==FTS3_EVAL_NEXT );
3262 assert( pExpr->eType==FTSQUERY_PHRASE && pExpr->pPhrase );
3263 pCsr->eEvalmode = FTS3_EVAL_MATCHINFO;
3264 rc = fts3EvalExpr(pCsr, pExpr, paDoclist, pnDoclist, 1);
3265 pCsr->eEvalmode = FTS3_EVAL_NEXT;
3266 return rc;
3270 ** After ExprLoadDoclist() (see above) has been called, this function is
3271 ** used to iterate/search through the position lists that make up the doclist
3272 ** stored in pExpr->aDoclist.
3274 char *sqlite3Fts3FindPositions(
3275 Fts3Expr *pExpr, /* Access this expressions doclist */
3276 sqlite3_int64 iDocid, /* Docid associated with requested pos-list */
3277 int iCol /* Column of requested pos-list */
3279 assert( pExpr->isLoaded );
3280 if( pExpr->aDoclist ){
3281 char *pEnd = &pExpr->aDoclist[pExpr->nDoclist];
3282 char *pCsr;
3284 if( pExpr->pCurrent==0 ){
3285 pExpr->pCurrent = pExpr->aDoclist;
3286 pExpr->iCurrent = 0;
3287 pExpr->pCurrent += sqlite3Fts3GetVarint(pExpr->pCurrent,&pExpr->iCurrent);
3289 pCsr = pExpr->pCurrent;
3290 assert( pCsr );
3292 while( pCsr<pEnd ){
3293 if( pExpr->iCurrent<iDocid ){
3294 fts3PoslistCopy(0, &pCsr);
3295 if( pCsr<pEnd ){
3296 fts3GetDeltaVarint(&pCsr, &pExpr->iCurrent);
3298 pExpr->pCurrent = pCsr;
3299 }else{
3300 if( pExpr->iCurrent==iDocid ){
3301 int iThis = 0;
3302 if( iCol<0 ){
3303 /* If iCol is negative, return a pointer to the start of the
3304 ** position-list (instead of a pointer to the start of a list
3305 ** of offsets associated with a specific column).
3307 return pCsr;
3309 while( iThis<iCol ){
3310 fts3ColumnlistCopy(0, &pCsr);
3311 if( *pCsr==0x00 ) return 0;
3312 pCsr++;
3313 pCsr += sqlite3Fts3GetVarint32(pCsr, &iThis);
3315 if( iCol==iThis && (*pCsr&0xFE) ) return pCsr;
3317 return 0;
3322 return 0;
3326 ** Helper function used by the implementation of the overloaded snippet(),
3327 ** offsets() and optimize() SQL functions.
3329 ** If the value passed as the third argument is a blob of size
3330 ** sizeof(Fts3Cursor*), then the blob contents are copied to the
3331 ** output variable *ppCsr and SQLITE_OK is returned. Otherwise, an error
3332 ** message is written to context pContext and SQLITE_ERROR returned. The
3333 ** string passed via zFunc is used as part of the error message.
3335 static int fts3FunctionArg(
3336 sqlite3_context *pContext, /* SQL function call context */
3337 const char *zFunc, /* Function name */
3338 sqlite3_value *pVal, /* argv[0] passed to function */
3339 Fts3Cursor **ppCsr /* OUT: Store cursor handle here */
3341 Fts3Cursor *pRet;
3342 if( sqlite3_value_type(pVal)!=SQLITE_BLOB
3343 || sqlite3_value_bytes(pVal)!=sizeof(Fts3Cursor *)
3345 char *zErr = sqlite3_mprintf("illegal first argument to %s", zFunc);
3346 sqlite3_result_error(pContext, zErr, -1);
3347 sqlite3_free(zErr);
3348 return SQLITE_ERROR;
3350 memcpy(&pRet, sqlite3_value_blob(pVal), sizeof(Fts3Cursor *));
3351 *ppCsr = pRet;
3352 return SQLITE_OK;
3356 ** Implementation of the snippet() function for FTS3
3358 static void fts3SnippetFunc(
3359 sqlite3_context *pContext, /* SQLite function call context */
3360 int nVal, /* Size of apVal[] array */
3361 sqlite3_value **apVal /* Array of arguments */
3363 Fts3Cursor *pCsr; /* Cursor handle passed through apVal[0] */
3364 const char *zStart = "<b>";
3365 const char *zEnd = "</b>";
3366 const char *zEllipsis = "<b>...</b>";
3367 int iCol = -1;
3368 int nToken = 15; /* Default number of tokens in snippet */
3370 /* There must be at least one argument passed to this function (otherwise
3371 ** the non-overloaded version would have been called instead of this one).
3373 assert( nVal>=1 );
3375 if( nVal>6 ){
3376 sqlite3_result_error(pContext,
3377 "wrong number of arguments to function snippet()", -1);
3378 return;
3380 if( fts3FunctionArg(pContext, "snippet", apVal[0], &pCsr) ) return;
3382 switch( nVal ){
3383 case 6: nToken = sqlite3_value_int(apVal[5]);
3384 case 5: iCol = sqlite3_value_int(apVal[4]);
3385 case 4: zEllipsis = (const char*)sqlite3_value_text(apVal[3]);
3386 case 3: zEnd = (const char*)sqlite3_value_text(apVal[2]);
3387 case 2: zStart = (const char*)sqlite3_value_text(apVal[1]);
3389 if( !zEllipsis || !zEnd || !zStart ){
3390 sqlite3_result_error_nomem(pContext);
3391 }else if( SQLITE_OK==fts3CursorSeek(pContext, pCsr) ){
3392 sqlite3Fts3Snippet(pContext, pCsr, zStart, zEnd, zEllipsis, iCol, nToken);
3397 ** Implementation of the offsets() function for FTS3
3399 static void fts3OffsetsFunc(
3400 sqlite3_context *pContext, /* SQLite function call context */
3401 int nVal, /* Size of argument array */
3402 sqlite3_value **apVal /* Array of arguments */
3404 Fts3Cursor *pCsr; /* Cursor handle passed through apVal[0] */
3406 UNUSED_PARAMETER(nVal);
3408 assert( nVal==1 );
3409 if( fts3FunctionArg(pContext, "offsets", apVal[0], &pCsr) ) return;
3410 assert( pCsr );
3411 if( SQLITE_OK==fts3CursorSeek(pContext, pCsr) ){
3412 sqlite3Fts3Offsets(pContext, pCsr);
3417 ** Implementation of the special optimize() function for FTS3. This
3418 ** function merges all segments in the database to a single segment.
3419 ** Example usage is:
3421 ** SELECT optimize(t) FROM t LIMIT 1;
3423 ** where 't' is the name of an FTS3 table.
3425 static void fts3OptimizeFunc(
3426 sqlite3_context *pContext, /* SQLite function call context */
3427 int nVal, /* Size of argument array */
3428 sqlite3_value **apVal /* Array of arguments */
3430 int rc; /* Return code */
3431 Fts3Table *p; /* Virtual table handle */
3432 Fts3Cursor *pCursor; /* Cursor handle passed through apVal[0] */
3434 UNUSED_PARAMETER(nVal);
3436 assert( nVal==1 );
3437 if( fts3FunctionArg(pContext, "optimize", apVal[0], &pCursor) ) return;
3438 p = (Fts3Table *)pCursor->base.pVtab;
3439 assert( p );
3441 rc = sqlite3Fts3Optimize(p);
3443 switch( rc ){
3444 case SQLITE_OK:
3445 sqlite3_result_text(pContext, "Index optimized", -1, SQLITE_STATIC);
3446 break;
3447 case SQLITE_DONE:
3448 sqlite3_result_text(pContext, "Index already optimal", -1, SQLITE_STATIC);
3449 break;
3450 default:
3451 sqlite3_result_error_code(pContext, rc);
3452 break;
3457 ** Implementation of the matchinfo() function for FTS3
3459 static void fts3MatchinfoFunc(
3460 sqlite3_context *pContext, /* SQLite function call context */
3461 int nVal, /* Size of argument array */
3462 sqlite3_value **apVal /* Array of arguments */
3464 Fts3Cursor *pCsr; /* Cursor handle passed through apVal[0] */
3465 assert( nVal==1 || nVal==2 );
3466 if( SQLITE_OK==fts3FunctionArg(pContext, "matchinfo", apVal[0], &pCsr) ){
3467 const char *zArg = 0;
3468 if( nVal>1 ){
3469 zArg = (const char *)sqlite3_value_text(apVal[1]);
3471 sqlite3Fts3Matchinfo(pContext, pCsr, zArg);
3476 ** This routine implements the xFindFunction method for the FTS3
3477 ** virtual table.
3479 static int fts3FindFunctionMethod(
3480 sqlite3_vtab *pVtab, /* Virtual table handle */
3481 int nArg, /* Number of SQL function arguments */
3482 const char *zName, /* Name of SQL function */
3483 void (**pxFunc)(sqlite3_context*,int,sqlite3_value**), /* OUT: Result */
3484 void **ppArg /* Unused */
3486 struct Overloaded {
3487 const char *zName;
3488 void (*xFunc)(sqlite3_context*,int,sqlite3_value**);
3489 } aOverload[] = {
3490 { "snippet", fts3SnippetFunc },
3491 { "offsets", fts3OffsetsFunc },
3492 { "optimize", fts3OptimizeFunc },
3493 { "matchinfo", fts3MatchinfoFunc },
3495 int i; /* Iterator variable */
3497 UNUSED_PARAMETER(pVtab);
3498 UNUSED_PARAMETER(nArg);
3499 UNUSED_PARAMETER(ppArg);
3501 for(i=0; i<SizeofArray(aOverload); i++){
3502 if( strcmp(zName, aOverload[i].zName)==0 ){
3503 *pxFunc = aOverload[i].xFunc;
3504 return 1;
3508 /* No function of the specified name was found. Return 0. */
3509 return 0;
3513 ** Implementation of FTS3 xRename method. Rename an fts3 table.
3515 static int fts3RenameMethod(
3516 sqlite3_vtab *pVtab, /* Virtual table handle */
3517 const char *zName /* New name of table */
3519 Fts3Table *p = (Fts3Table *)pVtab;
3520 sqlite3 *db = p->db; /* Database connection */
3521 int rc; /* Return Code */
3523 rc = sqlite3Fts3PendingTermsFlush(p);
3524 if( rc!=SQLITE_OK ){
3525 return rc;
3528 fts3DbExec(&rc, db,
3529 "ALTER TABLE %Q.'%q_content' RENAME TO '%q_content';",
3530 p->zDb, p->zName, zName
3532 if( p->bHasDocsize ){
3533 fts3DbExec(&rc, db,
3534 "ALTER TABLE %Q.'%q_docsize' RENAME TO '%q_docsize';",
3535 p->zDb, p->zName, zName
3538 if( p->bHasStat ){
3539 fts3DbExec(&rc, db,
3540 "ALTER TABLE %Q.'%q_stat' RENAME TO '%q_stat';",
3541 p->zDb, p->zName, zName
3544 fts3DbExec(&rc, db,
3545 "ALTER TABLE %Q.'%q_segments' RENAME TO '%q_segments';",
3546 p->zDb, p->zName, zName
3548 fts3DbExec(&rc, db,
3549 "ALTER TABLE %Q.'%q_segdir' RENAME TO '%q_segdir';",
3550 p->zDb, p->zName, zName
3552 return rc;
3555 static const sqlite3_module fts3Module = {
3556 /* iVersion */ 0,
3557 /* xCreate */ fts3CreateMethod,
3558 /* xConnect */ fts3ConnectMethod,
3559 /* xBestIndex */ fts3BestIndexMethod,
3560 /* xDisconnect */ fts3DisconnectMethod,
3561 /* xDestroy */ fts3DestroyMethod,
3562 /* xOpen */ fts3OpenMethod,
3563 /* xClose */ fts3CloseMethod,
3564 /* xFilter */ fts3FilterMethod,
3565 /* xNext */ fts3NextMethod,
3566 /* xEof */ fts3EofMethod,
3567 /* xColumn */ fts3ColumnMethod,
3568 /* xRowid */ fts3RowidMethod,
3569 /* xUpdate */ fts3UpdateMethod,
3570 /* xBegin */ fts3BeginMethod,
3571 /* xSync */ fts3SyncMethod,
3572 /* xCommit */ fts3CommitMethod,
3573 /* xRollback */ fts3RollbackMethod,
3574 /* xFindFunction */ fts3FindFunctionMethod,
3575 /* xRename */ fts3RenameMethod,
3579 ** This function is registered as the module destructor (called when an
3580 ** FTS3 enabled database connection is closed). It frees the memory
3581 ** allocated for the tokenizer hash table.
3583 static void hashDestroy(void *p){
3584 Fts3Hash *pHash = (Fts3Hash *)p;
3585 sqlite3Fts3HashClear(pHash);
3586 sqlite3_free(pHash);
3590 ** The fts3 built-in tokenizers - "simple", "porter" and "icu"- are
3591 ** implemented in files fts3_tokenizer1.c, fts3_porter.c and fts3_icu.c
3592 ** respectively. The following three forward declarations are for functions
3593 ** declared in these files used to retrieve the respective implementations.
3595 ** Calling sqlite3Fts3SimpleTokenizerModule() sets the value pointed
3596 ** to by the argument to point to the "simple" tokenizer implementation.
3597 ** And so on.
3599 void sqlite3Fts3SimpleTokenizerModule(sqlite3_tokenizer_module const**ppModule);
3600 void sqlite3Fts3PorterTokenizerModule(sqlite3_tokenizer_module const**ppModule);
3601 #ifdef SQLITE_ENABLE_ICU
3602 void sqlite3Fts3IcuTokenizerModule(sqlite3_tokenizer_module const**ppModule);
3603 #endif
3606 ** Initialise the fts3 extension. If this extension is built as part
3607 ** of the sqlite library, then this function is called directly by
3608 ** SQLite. If fts3 is built as a dynamically loadable extension, this
3609 ** function is called by the sqlite3_extension_init() entry point.
3611 int sqlite3Fts3Init(sqlite3 *db){
3612 int rc = SQLITE_OK;
3613 Fts3Hash *pHash = 0;
3614 const sqlite3_tokenizer_module *pSimple = 0;
3615 const sqlite3_tokenizer_module *pPorter = 0;
3617 #ifdef SQLITE_ENABLE_ICU
3618 const sqlite3_tokenizer_module *pIcu = 0;
3619 sqlite3Fts3IcuTokenizerModule(&pIcu);
3620 #endif
3622 rc = sqlite3Fts3InitAux(db);
3623 if( rc!=SQLITE_OK ) return rc;
3625 sqlite3Fts3SimpleTokenizerModule(&pSimple);
3626 sqlite3Fts3PorterTokenizerModule(&pPorter);
3628 /* Allocate and initialise the hash-table used to store tokenizers. */
3629 pHash = sqlite3_malloc(sizeof(Fts3Hash));
3630 if( !pHash ){
3631 rc = SQLITE_NOMEM;
3632 }else{
3633 sqlite3Fts3HashInit(pHash, FTS3_HASH_STRING, 1);
3636 /* Load the built-in tokenizers into the hash table */
3637 if( rc==SQLITE_OK ){
3638 if( sqlite3Fts3HashInsert(pHash, "simple", 7, (void *)pSimple)
3639 || sqlite3Fts3HashInsert(pHash, "porter", 7, (void *)pPorter)
3640 #ifdef SQLITE_ENABLE_ICU
3641 || (pIcu && sqlite3Fts3HashInsert(pHash, "icu", 4, (void *)pIcu))
3642 #endif
3644 rc = SQLITE_NOMEM;
3648 #ifdef SQLITE_TEST
3649 if( rc==SQLITE_OK ){
3650 rc = sqlite3Fts3ExprInitTestInterface(db);
3652 #endif
3654 /* Create the virtual table wrapper around the hash-table and overload
3655 ** the two scalar functions. If this is successful, register the
3656 ** module with sqlite.
3658 if( SQLITE_OK==rc
3659 #if CHROMIUM_FTS3_CHANGES && !SQLITE_TEST
3660 /* fts3_tokenizer() disabled for security reasons. */
3661 #else
3662 && SQLITE_OK==(rc = sqlite3Fts3InitHashTable(db, pHash, "fts3_tokenizer"))
3663 #endif
3664 && SQLITE_OK==(rc = sqlite3_overload_function(db, "snippet", -1))
3665 && SQLITE_OK==(rc = sqlite3_overload_function(db, "offsets", 1))
3666 && SQLITE_OK==(rc = sqlite3_overload_function(db, "matchinfo", 1))
3667 && SQLITE_OK==(rc = sqlite3_overload_function(db, "matchinfo", 2))
3668 && SQLITE_OK==(rc = sqlite3_overload_function(db, "optimize", 1))
3670 rc = sqlite3_create_module_v2(
3671 db, "fts3", &fts3Module, (void *)pHash, hashDestroy
3673 #if CHROMIUM_FTS3_CHANGES && !SQLITE_TEST
3674 /* Disable fts4 pending review. */
3675 #else
3676 if( rc==SQLITE_OK ){
3677 rc = sqlite3_create_module_v2(
3678 db, "fts4", &fts3Module, (void *)pHash, 0
3681 #endif
3682 return rc;
3685 /* An error has occurred. Delete the hash table and return the error code. */
3686 assert( rc!=SQLITE_OK );
3687 if( pHash ){
3688 sqlite3Fts3HashClear(pHash);
3689 sqlite3_free(pHash);
3691 return rc;
3694 #if !SQLITE_CORE
3695 int sqlite3_extension_init(
3696 sqlite3 *db,
3697 char **pzErrMsg,
3698 const sqlite3_api_routines *pApi
3700 SQLITE_EXTENSION_INIT2(pApi)
3701 return sqlite3Fts3Init(db);
3703 #endif
3705 #endif