4 ** The author disclaims copyright to this source code. In place of
5 ** a legal notice, here is a blessing:
7 ** May you do good and not evil.
8 ** May you find forgiveness for yourself and forgive others.
9 ** May you share freely, never taking more than you give.
11 ******************************************************************************
13 ** This is an SQLite module implementing full-text search.
17 ** The code in this file is only compiled if:
19 ** * The FTS3 module is being built as an extension
20 ** (in which case SQLITE_CORE is not defined), or
22 ** * The FTS3 module is being built into the core of
23 ** SQLite (in which case SQLITE_ENABLE_FTS3 is defined).
26 /* The full-text index is stored in a series of b+tree (-like)
27 ** structures called segments which map terms to doclists. The
28 ** structures are like b+trees in layout, but are constructed from the
29 ** bottom up in optimal fashion and are not updatable. Since trees
30 ** are built from the bottom up, things will be described from the
35 ** The basic unit of encoding is a variable-length integer called a
36 ** varint. We encode variable-length integers in little-endian order
37 ** using seven bits * per byte as follows:
40 ** A = 0xxxxxxx 7 bits of data and one flag bit
41 ** B = 1xxxxxxx 7 bits of data and one flag bit
48 ** This is similar in concept to how sqlite encodes "varints" but
49 ** the encoding is not the same. SQLite varints are big-endian
50 ** are are limited to 9 bytes in length whereas FTS3 varints are
51 ** little-endian and can be up to 10 bytes in length (in theory).
60 **** Document lists ****
61 ** A doclist (document list) holds a docid-sorted list of hits for a
62 ** given term. Doclists hold docids and associated token positions.
63 ** A docid is the unique integer identifier for a single document.
64 ** A position is the index of a word within the document. The first
65 ** word of the document has a position of 0.
67 ** FTS3 used to optionally store character offsets using a compile-time
68 ** option. But that functionality is no longer supported.
70 ** A doclist is stored like this:
74 ** array { (position list for column 0)
75 ** varint position; (2 more than the delta from previous position)
78 ** varint POS_COLUMN; (marks start of position list for new column)
79 ** varint column; (index of new column)
81 ** varint position; (2 more than the delta from previous position)
84 ** varint POS_END; (marks end of positions for this document.
87 ** Here, array { X } means zero or more occurrences of X, adjacent in
88 ** memory. A "position" is an index of a token in the token stream
89 ** generated by the tokenizer. Note that POS_END and POS_COLUMN occur
90 ** in the same logical place as the position element, and act as sentinals
91 ** ending a position list array. POS_END is 0. POS_COLUMN is 1.
92 ** The positions numbers are not stored literally but rather as two more
93 ** than the difference from the prior position, or the just the position plus
94 ** 2 for the first position. Example:
96 ** label: A B C D E F G H I J K
97 ** value: 123 5 9 1 1 14 35 0 234 72 0
99 ** The 123 value is the first docid. For column zero in this document
100 ** there are two matches at positions 3 and 10 (5-2 and 9-2+3). The 1
101 ** at D signals the start of a new column; the 1 at E indicates that the
102 ** new column is column number 1. There are two positions at 12 and 45
103 ** (14-2 and 35-2+12). The 0 at H indicate the end-of-document. The
104 ** 234 at I is the next docid. It has one position 72 (72-2) and then
105 ** terminates with the 0 at K.
107 ** A "position-list" is the list of positions for multiple columns for
108 ** a single docid. A "column-list" is the set of positions for a single
109 ** column. Hence, a position-list consists of one or more column-lists,
110 ** a document record consists of a docid followed by a position-list and
111 ** a doclist consists of one or more document records.
113 ** A bare doclist omits the position information, becoming an
114 ** array of varint-encoded docids.
116 **** Segment leaf nodes ****
117 ** Segment leaf nodes store terms and doclists, ordered by term. Leaf
118 ** nodes are written using LeafWriter, and read using LeafReader (to
119 ** iterate through a single leaf node's data) and LeavesReader (to
120 ** iterate through a segment's entire leaf layer). Leaf nodes have
123 ** varint iHeight; (height from leaf level, always 0)
124 ** varint nTerm; (length of first term)
125 ** char pTerm[nTerm]; (content of first term)
126 ** varint nDoclist; (length of term's associated doclist)
127 ** char pDoclist[nDoclist]; (content of doclist)
129 ** (further terms are delta-encoded)
130 ** varint nPrefix; (length of prefix shared with previous term)
131 ** varint nSuffix; (length of unshared suffix)
132 ** char pTermSuffix[nSuffix];(unshared suffix of next term)
133 ** varint nDoclist; (length of term's associated doclist)
134 ** char pDoclist[nDoclist]; (content of doclist)
137 ** Here, array { X } means zero or more occurrences of X, adjacent in
140 ** Leaf nodes are broken into blocks which are stored contiguously in
141 ** the %_segments table in sorted order. This means that when the end
142 ** of a node is reached, the next term is in the node with the next
145 ** New data is spilled to a new leaf node when the current node
146 ** exceeds LEAF_MAX bytes (default 2048). New data which itself is
147 ** larger than STANDALONE_MIN (default 1024) is placed in a standalone
148 ** node (a leaf node with a single term and doclist). The goal of
149 ** these settings is to pack together groups of small doclists while
150 ** making it efficient to directly access large doclists. The
151 ** assumption is that large doclists represent terms which are more
152 ** likely to be query targets.
154 ** TODO(shess) It may be useful for blocking decisions to be more
155 ** dynamic. For instance, it may make more sense to have a 2.5k leaf
156 ** node rather than splitting into 2k and .5k nodes. My intuition is
157 ** that this might extend through 2x or 4x the pagesize.
160 **** Segment interior nodes ****
161 ** Segment interior nodes store blockids for subtree nodes and terms
162 ** to describe what data is stored by the each subtree. Interior
163 ** nodes are written using InteriorWriter, and read using
164 ** InteriorReader. InteriorWriters are created as needed when
165 ** SegmentWriter creates new leaf nodes, or when an interior node
166 ** itself grows too big and must be split. The format of interior
169 ** varint iHeight; (height from leaf level, always >0)
170 ** varint iBlockid; (block id of node's leftmost subtree)
172 ** varint nTerm; (length of first term)
173 ** char pTerm[nTerm]; (content of first term)
175 ** (further terms are delta-encoded)
176 ** varint nPrefix; (length of shared prefix with previous term)
177 ** varint nSuffix; (length of unshared suffix)
178 ** char pTermSuffix[nSuffix]; (unshared suffix of next term)
182 ** Here, optional { X } means an optional element, while array { X }
183 ** means zero or more occurrences of X, adjacent in memory.
185 ** An interior node encodes n terms separating n+1 subtrees. The
186 ** subtree blocks are contiguous, so only the first subtree's blockid
187 ** is encoded. The subtree at iBlockid will contain all terms less
188 ** than the first term encoded (or all terms if no term is encoded).
189 ** Otherwise, for terms greater than or equal to pTerm[i] but less
190 ** than pTerm[i+1], the subtree for that term will be rooted at
191 ** iBlockid+i. Interior nodes only store enough term data to
192 ** distinguish adjacent children (if the rightmost term of the left
193 ** child is "something", and the leftmost term of the right child is
194 ** "wicked", only "w" is stored).
196 ** New data is spilled to a new interior node at the same height when
197 ** the current node exceeds INTERIOR_MAX bytes (default 2048).
198 ** INTERIOR_MIN_TERMS (default 7) keeps large terms from monopolizing
199 ** interior nodes and making the tree too skinny. The interior nodes
200 ** at a given height are naturally tracked by interior nodes at
201 ** height+1, and so on.
204 **** Segment directory ****
205 ** The segment directory in table %_segdir stores meta-information for
206 ** merging and deleting segments, and also the root node of the
209 ** The root node is the top node of the segment's tree after encoding
210 ** the entire segment, restricted to ROOT_MAX bytes (default 1024).
211 ** This could be either a leaf node or an interior node. If the top
212 ** node requires more than ROOT_MAX bytes, it is flushed to %_segments
213 ** and a new root interior node is generated (which should always fit
214 ** within ROOT_MAX because it only needs space for 2 varints, the
215 ** height and the blockid of the previous root).
217 ** The meta-information in the segment directory is:
218 ** level - segment level (see below)
219 ** idx - index within level
220 ** - (level,idx uniquely identify a segment)
221 ** start_block - first leaf node
222 ** leaves_end_block - last leaf node
223 ** end_block - last block (including interior nodes)
224 ** root - contents of root node
226 ** If the root node is a leaf node, then start_block,
227 ** leaves_end_block, and end_block are all 0.
230 **** Segment merging ****
231 ** To amortize update costs, segments are grouped into levels and
232 ** merged in batches. Each increase in level represents exponentially
235 ** New documents (actually, document updates) are tokenized and
236 ** written individually (using LeafWriter) to a level 0 segment, with
237 ** incrementing idx. When idx reaches MERGE_COUNT (default 16), all
238 ** level 0 segments are merged into a single level 1 segment. Level 1
239 ** is populated like level 0, and eventually MERGE_COUNT level 1
240 ** segments are merged to a single level 2 segment (representing
241 ** MERGE_COUNT^2 updates), and so on.
243 ** A segment merge traverses all segments at a given level in
244 ** parallel, performing a straightforward sorted merge. Since segment
245 ** leaf nodes are written in to the %_segments table in order, this
246 ** merge traverses the underlying sqlite disk structures efficiently.
247 ** After the merge, all segment blocks from the merged level are
250 ** MERGE_COUNT controls how often we merge segments. 16 seems to be
251 ** somewhat of a sweet spot for insertion performance. 32 and 64 show
252 ** very similar performance numbers to 16 on insertion, though they're
253 ** a tiny bit slower (perhaps due to more overhead in merge-time
254 ** sorting). 8 is about 20% slower than 16, 4 about 50% slower than
255 ** 16, 2 about 66% slower than 16.
257 ** At query time, high MERGE_COUNT increases the number of segments
258 ** which need to be scanned and merged. For instance, with 100k docs
261 ** MERGE_COUNT segments
267 ** This appears to have only a moderate impact on queries for very
268 ** frequent terms (which are somewhat dominated by segment merge
269 ** costs), and infrequent and non-existent terms still seem to be fast
270 ** even with many segments.
272 ** TODO(shess) That said, it would be nice to have a better query-side
273 ** argument for MERGE_COUNT of 16. Also, it is possible/likely that
274 ** optimizations to things like doclist merging will swing the sweet
279 **** Handling of deletions and updates ****
280 ** Since we're using a segmented structure, with no docid-oriented
281 ** index into the term index, we clearly cannot simply update the term
282 ** index when a document is deleted or updated. For deletions, we
283 ** write an empty doclist (varint(docid) varint(POS_END)), for updates
284 ** we simply write the new doclist. Segment merges overwrite older
285 ** data for a particular docid with newer data, so deletes or updates
286 ** will eventually overtake the earlier data and knock it out. The
287 ** query logic likewise merges doclists so that newer data knocks out
290 ** TODO(shess) Provide a VACUUM type operation to clear out all
291 ** deletions and duplications. This would basically be a forced merge
292 ** into a single segment.
294 #define CHROMIUM_FTS3_CHANGES 1
296 #if !defined(SQLITE_CORE) || defined(SQLITE_ENABLE_FTS3)
298 #if defined(SQLITE_ENABLE_FTS3) && !defined(SQLITE_CORE)
299 # define SQLITE_CORE 1
313 # include "sqlite3ext.h"
314 SQLITE_EXTENSION_INIT1
318 ** Write a 64-bit variable-length integer to memory starting at p[0].
319 ** The length of data written will be between 1 and FTS3_VARINT_MAX bytes.
320 ** The number of bytes written is returned.
322 int sqlite3Fts3PutVarint(char *p
, sqlite_int64 v
){
323 unsigned char *q
= (unsigned char *) p
;
324 sqlite_uint64 vu
= v
;
326 *q
++ = (unsigned char) ((vu
& 0x7f) | 0x80);
329 q
[-1] &= 0x7f; /* turn off high bit in final byte */
330 assert( q
- (unsigned char *)p
<= FTS3_VARINT_MAX
);
331 return (int) (q
- (unsigned char *)p
);
335 ** Read a 64-bit variable-length integer from memory starting at p[0].
336 ** Return the number of bytes read, or 0 on error.
337 ** The value is stored in *v.
339 int sqlite3Fts3GetVarint(const char *p
, sqlite_int64
*v
){
340 const unsigned char *q
= (const unsigned char *) p
;
341 sqlite_uint64 x
= 0, y
= 1;
342 while( (*q
&0x80)==0x80 && q
-(unsigned char *)p
<FTS3_VARINT_MAX
){
343 x
+= y
* (*q
++ & 0x7f);
347 *v
= (sqlite_int64
) x
;
348 return (int) (q
- (unsigned char *)p
);
352 ** Similar to sqlite3Fts3GetVarint(), except that the output is truncated to a
353 ** 32-bit integer before it is returned.
355 int sqlite3Fts3GetVarint32(const char *p
, int *pi
){
357 int ret
= sqlite3Fts3GetVarint(p
, &i
);
363 ** Return the number of bytes required to encode v as a varint
365 int sqlite3Fts3VarintLen(sqlite3_uint64 v
){
375 ** Convert an SQL-style quoted string into a normal string by removing
376 ** the quote characters. The conversion is done in-place. If the
377 ** input does not begin with a quote character, then this routine
388 void sqlite3Fts3Dequote(char *z
){
389 char quote
; /* Quote character (if any ) */
392 if( quote
=='[' || quote
=='\'' || quote
=='"' || quote
=='`' ){
393 int iIn
= 1; /* Index of next byte to read from input */
394 int iOut
= 0; /* Index of next byte to write to output */
396 /* If the first byte was a '[', then the close-quote character is a ']' */
397 if( quote
=='[' ) quote
= ']';
399 while( ALWAYS(z
[iIn
]) ){
401 if( z
[iIn
+1]!=quote
) break;
405 z
[iOut
++] = z
[iIn
++];
413 ** Read a single varint from the doclist at *pp and advance *pp to point
414 ** to the first byte past the end of the varint. Add the value of the varint
417 static void fts3GetDeltaVarint(char **pp
, sqlite3_int64
*pVal
){
419 *pp
+= sqlite3Fts3GetVarint(*pp
, &iVal
);
424 ** As long as *pp has not reached its end (pEnd), then do the same
425 ** as fts3GetDeltaVarint(): read a single varint and add it to *pVal.
426 ** But if we have reached the end of the varint, just set *pp=0 and
427 ** leave *pVal unchanged.
429 static void fts3GetDeltaVarint2(char **pp
, char *pEnd
, sqlite3_int64
*pVal
){
433 fts3GetDeltaVarint(pp
, pVal
);
438 ** The xDisconnect() virtual table method.
440 static int fts3DisconnectMethod(sqlite3_vtab
*pVtab
){
441 Fts3Table
*p
= (Fts3Table
*)pVtab
;
444 assert( p
->nPendingData
==0 );
445 assert( p
->pSegments
==0 );
447 /* Free any prepared statements held */
448 for(i
=0; i
<SizeofArray(p
->aStmt
); i
++){
449 sqlite3_finalize(p
->aStmt
[i
]);
451 sqlite3_free(p
->zSegmentsTbl
);
452 sqlite3_free(p
->zReadExprlist
);
453 sqlite3_free(p
->zWriteExprlist
);
455 /* Invoke the tokenizer destructor to free the tokenizer. */
456 p
->pTokenizer
->pModule
->xDestroy(p
->pTokenizer
);
463 ** Construct one or more SQL statements from the format string given
464 ** and then evaluate those statements. The success code is written
467 ** If *pRc is initially non-zero then this routine is a no-op.
469 static void fts3DbExec(
470 int *pRc
, /* Success code */
471 sqlite3
*db
, /* Database in which to run SQL */
472 const char *zFormat
, /* Format string for SQL */
473 ... /* Arguments to the format string */
478 va_start(ap
, zFormat
);
479 zSql
= sqlite3_vmprintf(zFormat
, ap
);
484 *pRc
= sqlite3_exec(db
, zSql
, 0, 0, 0);
490 ** The xDestroy() virtual table method.
492 static int fts3DestroyMethod(sqlite3_vtab
*pVtab
){
493 int rc
= SQLITE_OK
; /* Return code */
494 Fts3Table
*p
= (Fts3Table
*)pVtab
;
497 /* Drop the shadow tables */
498 fts3DbExec(&rc
, db
, "DROP TABLE IF EXISTS %Q.'%q_content'", p
->zDb
, p
->zName
);
499 fts3DbExec(&rc
, db
, "DROP TABLE IF EXISTS %Q.'%q_segments'", p
->zDb
,p
->zName
);
500 fts3DbExec(&rc
, db
, "DROP TABLE IF EXISTS %Q.'%q_segdir'", p
->zDb
, p
->zName
);
501 fts3DbExec(&rc
, db
, "DROP TABLE IF EXISTS %Q.'%q_docsize'", p
->zDb
, p
->zName
);
502 fts3DbExec(&rc
, db
, "DROP TABLE IF EXISTS %Q.'%q_stat'", p
->zDb
, p
->zName
);
504 /* If everything has worked, invoke fts3DisconnectMethod() to free the
505 ** memory associated with the Fts3Table structure and return SQLITE_OK.
506 ** Otherwise, return an SQLite error code.
508 return (rc
==SQLITE_OK
? fts3DisconnectMethod(pVtab
) : rc
);
513 ** Invoke sqlite3_declare_vtab() to declare the schema for the FTS3 table
514 ** passed as the first argument. This is done as part of the xConnect()
515 ** and xCreate() methods.
517 ** If *pRc is non-zero when this function is called, it is a no-op.
518 ** Otherwise, if an error occurs, an SQLite error code is stored in *pRc
521 static void fts3DeclareVtab(int *pRc
, Fts3Table
*p
){
522 if( *pRc
==SQLITE_OK
){
523 int i
; /* Iterator variable */
524 int rc
; /* Return code */
525 char *zSql
; /* SQL statement passed to declare_vtab() */
526 char *zCols
; /* List of user defined columns */
528 /* Create a list of user columns for the virtual table */
529 zCols
= sqlite3_mprintf("%Q, ", p
->azColumn
[0]);
530 for(i
=1; zCols
&& i
<p
->nColumn
; i
++){
531 zCols
= sqlite3_mprintf("%z%Q, ", zCols
, p
->azColumn
[i
]);
534 /* Create the whole "CREATE TABLE" statement to pass to SQLite */
535 zSql
= sqlite3_mprintf(
536 "CREATE TABLE x(%s %Q HIDDEN, docid HIDDEN)", zCols
, p
->zName
538 if( !zCols
|| !zSql
){
541 rc
= sqlite3_declare_vtab(p
->db
, zSql
);
551 ** Create the backing store tables (%_content, %_segments and %_segdir)
552 ** required by the FTS3 table passed as the only argument. This is done
553 ** as part of the vtab xCreate() method.
555 ** If the p->bHasDocsize boolean is true (indicating that this is an
556 ** FTS4 table, not an FTS3 table) then also create the %_docsize and
557 ** %_stat tables required by FTS4.
559 static int fts3CreateTables(Fts3Table
*p
){
560 int rc
= SQLITE_OK
; /* Return code */
561 int i
; /* Iterator variable */
562 char *zContentCols
; /* Columns of %_content table */
563 sqlite3
*db
= p
->db
; /* The database connection */
565 /* Create a list of user columns for the content table */
566 zContentCols
= sqlite3_mprintf("docid INTEGER PRIMARY KEY");
567 for(i
=0; zContentCols
&& i
<p
->nColumn
; i
++){
568 char *z
= p
->azColumn
[i
];
569 zContentCols
= sqlite3_mprintf("%z, 'c%d%q'", zContentCols
, i
, z
);
571 if( zContentCols
==0 ) rc
= SQLITE_NOMEM
;
573 /* Create the content table */
575 "CREATE TABLE %Q.'%q_content'(%s)",
576 p
->zDb
, p
->zName
, zContentCols
578 sqlite3_free(zContentCols
);
579 /* Create other tables */
581 "CREATE TABLE %Q.'%q_segments'(blockid INTEGER PRIMARY KEY, block BLOB);",
585 "CREATE TABLE %Q.'%q_segdir'("
588 "start_block INTEGER,"
589 "leaves_end_block INTEGER,"
592 "PRIMARY KEY(level, idx)"
596 if( p
->bHasDocsize
){
598 "CREATE TABLE %Q.'%q_docsize'(docid INTEGER PRIMARY KEY, size BLOB);",
604 "CREATE TABLE %Q.'%q_stat'(id INTEGER PRIMARY KEY, value BLOB);",
612 ** Store the current database page-size in bytes in p->nPgsz.
614 ** If *pRc is non-zero when this function is called, it is a no-op.
615 ** Otherwise, if an error occurs, an SQLite error code is stored in *pRc
618 static void fts3DatabasePageSize(int *pRc
, Fts3Table
*p
){
619 if( *pRc
==SQLITE_OK
){
620 int rc
; /* Return code */
621 char *zSql
; /* SQL text "PRAGMA %Q.page_size" */
622 sqlite3_stmt
*pStmt
; /* Compiled "PRAGMA %Q.page_size" statement */
624 zSql
= sqlite3_mprintf("PRAGMA %Q.page_size", p
->zDb
);
628 rc
= sqlite3_prepare(p
->db
, zSql
, -1, &pStmt
, 0);
631 p
->nPgsz
= sqlite3_column_int(pStmt
, 0);
632 rc
= sqlite3_finalize(pStmt
);
633 }else if( rc
==SQLITE_AUTH
){
638 assert( p
->nPgsz
>0 || rc
!=SQLITE_OK
);
645 ** "Special" FTS4 arguments are column specifications of the following form:
649 ** There may not be whitespace surrounding the "=" character. The <value>
650 ** term may be quoted, but the <key> may not.
652 static int fts3IsSpecialColumn(
658 const char *zCsr
= z
;
661 if( *zCsr
=='\0' ) return 0;
665 *pnKey
= (int)(zCsr
-z
);
666 zValue
= sqlite3_mprintf("%s", &zCsr
[1]);
668 sqlite3Fts3Dequote(zValue
);
675 ** Append the output of a printf() style formatting to an existing string.
677 static void fts3Appendf(
678 int *pRc
, /* IN/OUT: Error code */
679 char **pz
, /* IN/OUT: Pointer to string buffer */
680 const char *zFormat
, /* Printf format string to append */
681 ... /* Arguments for printf format string */
683 if( *pRc
==SQLITE_OK
){
686 va_start(ap
, zFormat
);
687 z
= sqlite3_vmprintf(zFormat
, ap
);
689 char *z2
= sqlite3_mprintf("%s%s", *pz
, z
);
693 if( z
==0 ) *pRc
= SQLITE_NOMEM
;
700 ** Return a copy of input string zInput enclosed in double-quotes (") and
701 ** with all double quote characters escaped. For example:
703 ** fts3QuoteId("un \"zip\"") -> "un \"\"zip\"\""
705 ** The pointer returned points to memory obtained from sqlite3_malloc(). It
706 ** is the callers responsibility to call sqlite3_free() to release this
709 static char *fts3QuoteId(char const *zInput
){
712 nRet
= 2 + strlen(zInput
)*2 + 1;
713 zRet
= sqlite3_malloc(nRet
);
718 for(i
=0; zInput
[i
]; i
++){
719 if( zInput
[i
]=='"' ) *(z
++) = '"';
729 ** Return a list of comma separated SQL expressions that could be used
730 ** in a SELECT statement such as the following:
732 ** SELECT <list of expressions> FROM %_content AS x ...
734 ** to return the docid, followed by each column of text data in order
735 ** from left to write. If parameter zFunc is not NULL, then instead of
736 ** being returned directly each column of text data is passed to an SQL
737 ** function named zFunc first. For example, if zFunc is "unzip" and the
738 ** table has the three user-defined columns "a", "b", and "c", the following
739 ** string is returned:
741 ** "docid, unzip(x.'a'), unzip(x.'b'), unzip(x.'c')"
743 ** The pointer returned points to a buffer allocated by sqlite3_malloc(). It
744 ** is the responsibility of the caller to eventually free it.
746 ** If *pRc is not SQLITE_OK when this function is called, it is a no-op (and
747 ** a NULL pointer is returned). Otherwise, if an OOM error is encountered
748 ** by this function, NULL is returned and *pRc is set to SQLITE_NOMEM. If
749 ** no error occurs, *pRc is left unmodified.
751 static char *fts3ReadExprList(Fts3Table
*p
, const char *zFunc
, int *pRc
){
760 zFree
= zFunction
= fts3QuoteId(zFunc
);
762 fts3Appendf(pRc
, &zRet
, "docid");
763 for(i
=0; i
<p
->nColumn
; i
++){
764 fts3Appendf(pRc
, &zRet
, ",%s(x.'c%d%q')", zFunction
, i
, p
->azColumn
[i
]);
771 ** Return a list of N comma separated question marks, where N is the number
772 ** of columns in the %_content table (one for the docid plus one for each
773 ** user-defined text column).
775 ** If argument zFunc is not NULL, then all but the first question mark
776 ** is preceded by zFunc and an open bracket, and followed by a closed
777 ** bracket. For example, if zFunc is "zip" and the FTS3 table has three
778 ** user-defined text columns, the following string is returned:
780 ** "?, zip(?), zip(?), zip(?)"
782 ** The pointer returned points to a buffer allocated by sqlite3_malloc(). It
783 ** is the responsibility of the caller to eventually free it.
785 ** If *pRc is not SQLITE_OK when this function is called, it is a no-op (and
786 ** a NULL pointer is returned). Otherwise, if an OOM error is encountered
787 ** by this function, NULL is returned and *pRc is set to SQLITE_NOMEM. If
788 ** no error occurs, *pRc is left unmodified.
790 static char *fts3WriteExprList(Fts3Table
*p
, const char *zFunc
, int *pRc
){
799 zFree
= zFunction
= fts3QuoteId(zFunc
);
801 fts3Appendf(pRc
, &zRet
, "?");
802 for(i
=0; i
<p
->nColumn
; i
++){
803 fts3Appendf(pRc
, &zRet
, ",%s(?)", zFunction
);
810 ** This function is the implementation of both the xConnect and xCreate
811 ** methods of the FTS3 virtual table.
813 ** The argv[] array contains the following:
815 ** argv[0] -> module name ("fts3" or "fts4")
816 ** argv[1] -> database name
817 ** argv[2] -> table name
818 ** argv[...] -> "column name" and other module argument fields.
820 static int fts3InitVtab(
821 int isCreate
, /* True for xCreate, false for xConnect */
822 sqlite3
*db
, /* The SQLite database connection */
823 void *pAux
, /* Hash table containing tokenizers */
824 int argc
, /* Number of elements in argv array */
825 const char * const *argv
, /* xCreate/xConnect argument array */
826 sqlite3_vtab
**ppVTab
, /* Write the resulting vtab structure here */
827 char **pzErr
/* Write any error message here */
829 Fts3Hash
*pHash
= (Fts3Hash
*)pAux
;
830 Fts3Table
*p
= 0; /* Pointer to allocated vtab */
831 int rc
= SQLITE_OK
; /* Return code */
832 int i
; /* Iterator variable */
833 int nByte
; /* Size of allocation used for *p */
834 int iCol
; /* Column index */
835 int nString
= 0; /* Bytes required to hold all column names */
836 int nCol
= 0; /* Number of columns in the FTS table */
837 char *zCsr
; /* Space for holding column names */
838 int nDb
; /* Bytes required to hold database name */
839 int nName
; /* Bytes required to hold table name */
840 int isFts4
= (argv
[0][3]=='4'); /* True for FTS4, false for FTS3 */
841 int bNoDocsize
= 0; /* True to omit %_docsize table */
842 const char **aCol
; /* Array of column names */
843 sqlite3_tokenizer
*pTokenizer
= 0; /* Tokenizer for this table */
846 char *zUncompress
= 0;
848 assert( strlen(argv
[0])==4 );
849 assert( (sqlite3_strnicmp(argv
[0], "fts4", 4)==0 && isFts4
)
850 || (sqlite3_strnicmp(argv
[0], "fts3", 4)==0 && !isFts4
)
853 nDb
= (int)strlen(argv
[1]) + 1;
854 nName
= (int)strlen(argv
[2]) + 1;
856 aCol
= (const char **)sqlite3_malloc(sizeof(const char *) * (argc
-2) );
857 if( !aCol
) return SQLITE_NOMEM
;
858 memset((void *)aCol
, 0, sizeof(const char *) * (argc
-2));
860 /* Loop through all of the arguments passed by the user to the FTS3/4
861 ** module (i.e. all the column names and special arguments). This loop
862 ** does the following:
864 ** + Figures out the number of columns the FTSX table will have, and
865 ** the number of bytes of space that must be allocated to store copies
866 ** of the column names.
868 ** + If there is a tokenizer specification included in the arguments,
869 ** initializes the tokenizer pTokenizer.
871 for(i
=3; rc
==SQLITE_OK
&& i
<argc
; i
++){
872 char const *z
= argv
[i
];
876 /* Check if this is a tokenizer specification */
879 && 0==sqlite3_strnicmp(z
, "tokenize", 8)
880 && 0==sqlite3Fts3IsIdChar(z
[8])
882 rc
= sqlite3Fts3InitTokenizer(pHash
, &z
[9], &pTokenizer
, pzErr
);
885 /* Check if it is an FTS4 special argument. */
886 else if( isFts4
&& fts3IsSpecialColumn(z
, &nKey
, &zVal
) ){
891 if( nKey
==9 && 0==sqlite3_strnicmp(z
, "matchinfo", 9) ){
892 if( strlen(zVal
)==4 && 0==sqlite3_strnicmp(zVal
, "fts3", 4) ){
895 *pzErr
= sqlite3_mprintf("unrecognized matchinfo: %s", zVal
);
898 }else if( nKey
==8 && 0==sqlite3_strnicmp(z
, "compress", 8) ){
901 }else if( nKey
==10 && 0==sqlite3_strnicmp(z
, "uncompress", 10) ){
905 *pzErr
= sqlite3_mprintf("unrecognized parameter: %s", z
);
911 /* Otherwise, the argument is a column name. */
913 nString
+= (int)(strlen(z
) + 1);
917 if( rc
!=SQLITE_OK
) goto fts3_init_out
;
920 assert( nString
==0 );
927 rc
= sqlite3Fts3InitTokenizer(pHash
, "simple", &pTokenizer
, pzErr
);
928 if( rc
!=SQLITE_OK
) goto fts3_init_out
;
930 assert( pTokenizer
);
933 /* Allocate and populate the Fts3Table structure. */
934 nByte
= sizeof(Fts3Table
) + /* Fts3Table */
935 nCol
* sizeof(char *) + /* azColumn */
938 nString
; /* Space for azColumn strings */
939 p
= (Fts3Table
*)sqlite3_malloc(nByte
);
948 p
->azColumn
= (char **)&p
[1];
949 p
->pTokenizer
= pTokenizer
;
951 p
->nMaxPendingData
= FTS3_MAX_PENDING_DATA
;
952 p
->bHasDocsize
= (isFts4
&& bNoDocsize
==0);
953 p
->bHasStat
= isFts4
;
954 fts3HashInit(&p
->pendingTerms
, FTS3_HASH_STRING
, 1);
956 /* Fill in the zName and zDb fields of the vtab structure. */
957 zCsr
= (char *)&p
->azColumn
[nCol
];
959 memcpy(zCsr
, argv
[2], nName
);
962 memcpy(zCsr
, argv
[1], nDb
);
965 /* Fill in the azColumn array */
966 for(iCol
=0; iCol
<nCol
; iCol
++){
969 z
= (char *)sqlite3Fts3NextToken(aCol
[iCol
], &n
);
972 sqlite3Fts3Dequote(zCsr
);
973 p
->azColumn
[iCol
] = zCsr
;
975 assert( zCsr
<= &((char *)p
)[nByte
] );
978 if( (zCompress
==0)!=(zUncompress
==0) ){
979 char const *zMiss
= (zCompress
==0 ? "compress" : "uncompress");
981 *pzErr
= sqlite3_mprintf("missing %s parameter in fts4 constructor", zMiss
);
983 p
->zReadExprlist
= fts3ReadExprList(p
, zUncompress
, &rc
);
984 p
->zWriteExprlist
= fts3WriteExprList(p
, zCompress
, &rc
);
985 if( rc
!=SQLITE_OK
) goto fts3_init_out
;
987 /* If this is an xCreate call, create the underlying tables in the
988 ** database. TODO: For xConnect(), it could verify that said tables exist.
991 rc
= fts3CreateTables(p
);
994 /* Figure out the page-size for the database. This is required in order to
995 ** estimate the cost of loading large doclists from the database (see
996 ** function sqlite3Fts3SegReaderCost() for details).
998 fts3DatabasePageSize(&rc
, p
);
1000 /* Declare the table schema to SQLite. */
1001 fts3DeclareVtab(&rc
, p
);
1004 sqlite3_free(zCompress
);
1005 sqlite3_free(zUncompress
);
1006 sqlite3_free((void *)aCol
);
1007 if( rc
!=SQLITE_OK
){
1009 fts3DisconnectMethod((sqlite3_vtab
*)p
);
1010 }else if( pTokenizer
){
1011 pTokenizer
->pModule
->xDestroy(pTokenizer
);
1020 ** The xConnect() and xCreate() methods for the virtual table. All the
1021 ** work is done in function fts3InitVtab().
1023 static int fts3ConnectMethod(
1024 sqlite3
*db
, /* Database connection */
1025 void *pAux
, /* Pointer to tokenizer hash table */
1026 int argc
, /* Number of elements in argv array */
1027 const char * const *argv
, /* xCreate/xConnect argument array */
1028 sqlite3_vtab
**ppVtab
, /* OUT: New sqlite3_vtab object */
1029 char **pzErr
/* OUT: sqlite3_malloc'd error message */
1031 return fts3InitVtab(0, db
, pAux
, argc
, argv
, ppVtab
, pzErr
);
1033 static int fts3CreateMethod(
1034 sqlite3
*db
, /* Database connection */
1035 void *pAux
, /* Pointer to tokenizer hash table */
1036 int argc
, /* Number of elements in argv array */
1037 const char * const *argv
, /* xCreate/xConnect argument array */
1038 sqlite3_vtab
**ppVtab
, /* OUT: New sqlite3_vtab object */
1039 char **pzErr
/* OUT: sqlite3_malloc'd error message */
1041 return fts3InitVtab(1, db
, pAux
, argc
, argv
, ppVtab
, pzErr
);
1045 ** Implementation of the xBestIndex method for FTS3 tables. There
1046 ** are three possible strategies, in order of preference:
1048 ** 1. Direct lookup by rowid or docid.
1049 ** 2. Full-text search using a MATCH operator on a non-docid column.
1050 ** 3. Linear scan of %_content table.
1052 static int fts3BestIndexMethod(sqlite3_vtab
*pVTab
, sqlite3_index_info
*pInfo
){
1053 Fts3Table
*p
= (Fts3Table
*)pVTab
;
1054 int i
; /* Iterator variable */
1055 int iCons
= -1; /* Index of constraint to use */
1057 /* By default use a full table scan. This is an expensive option,
1058 ** so search through the constraints to see if a more efficient
1059 ** strategy is possible.
1061 pInfo
->idxNum
= FTS3_FULLSCAN_SEARCH
;
1062 pInfo
->estimatedCost
= 500000;
1063 for(i
=0; i
<pInfo
->nConstraint
; i
++){
1064 struct sqlite3_index_constraint
*pCons
= &pInfo
->aConstraint
[i
];
1065 if( pCons
->usable
==0 ) continue;
1067 /* A direct lookup on the rowid or docid column. Assign a cost of 1.0. */
1068 if( pCons
->op
==SQLITE_INDEX_CONSTRAINT_EQ
1069 && (pCons
->iColumn
<0 || pCons
->iColumn
==p
->nColumn
+1 )
1071 pInfo
->idxNum
= FTS3_DOCID_SEARCH
;
1072 pInfo
->estimatedCost
= 1.0;
1076 /* A MATCH constraint. Use a full-text search.
1078 ** If there is more than one MATCH constraint available, use the first
1079 ** one encountered. If there is both a MATCH constraint and a direct
1080 ** rowid/docid lookup, prefer the MATCH strategy. This is done even
1081 ** though the rowid/docid lookup is faster than a MATCH query, selecting
1082 ** it would lead to an "unable to use function MATCH in the requested
1085 if( pCons
->op
==SQLITE_INDEX_CONSTRAINT_MATCH
1086 && pCons
->iColumn
>=0 && pCons
->iColumn
<=p
->nColumn
1088 pInfo
->idxNum
= FTS3_FULLTEXT_SEARCH
+ pCons
->iColumn
;
1089 pInfo
->estimatedCost
= 2.0;
1096 pInfo
->aConstraintUsage
[iCons
].argvIndex
= 1;
1097 pInfo
->aConstraintUsage
[iCons
].omit
= 1;
1103 ** Implementation of xOpen method.
1105 static int fts3OpenMethod(sqlite3_vtab
*pVTab
, sqlite3_vtab_cursor
**ppCsr
){
1106 sqlite3_vtab_cursor
*pCsr
; /* Allocated cursor */
1108 UNUSED_PARAMETER(pVTab
);
1110 /* Allocate a buffer large enough for an Fts3Cursor structure. If the
1111 ** allocation succeeds, zero it and return SQLITE_OK. Otherwise,
1112 ** if the allocation fails, return SQLITE_NOMEM.
1114 *ppCsr
= pCsr
= (sqlite3_vtab_cursor
*)sqlite3_malloc(sizeof(Fts3Cursor
));
1116 return SQLITE_NOMEM
;
1118 memset(pCsr
, 0, sizeof(Fts3Cursor
));
1123 ** Close the cursor. For additional information see the documentation
1124 ** on the xClose method of the virtual table interface.
1126 static int fts3CloseMethod(sqlite3_vtab_cursor
*pCursor
){
1127 Fts3Cursor
*pCsr
= (Fts3Cursor
*)pCursor
;
1128 assert( ((Fts3Table
*)pCsr
->base
.pVtab
)->pSegments
==0 );
1129 sqlite3_finalize(pCsr
->pStmt
);
1130 sqlite3Fts3ExprFree(pCsr
->pExpr
);
1131 sqlite3Fts3FreeDeferredTokens(pCsr
);
1132 sqlite3_free(pCsr
->aDoclist
);
1133 sqlite3_free(pCsr
->aMatchinfo
);
1139 ** Position the pCsr->pStmt statement so that it is on the row
1140 ** of the %_content table that contains the last match. Return
1141 ** SQLITE_OK on success.
1143 static int fts3CursorSeek(sqlite3_context
*pContext
, Fts3Cursor
*pCsr
){
1144 if( pCsr
->isRequireSeek
){
1145 pCsr
->isRequireSeek
= 0;
1146 sqlite3_bind_int64(pCsr
->pStmt
, 1, pCsr
->iPrevId
);
1147 if( SQLITE_ROW
==sqlite3_step(pCsr
->pStmt
) ){
1150 int rc
= sqlite3_reset(pCsr
->pStmt
);
1151 if( rc
==SQLITE_OK
){
1152 /* If no row was found and no error has occured, then the %_content
1153 ** table is missing a row that is present in the full-text index.
1154 ** The data structures are corrupt.
1156 rc
= SQLITE_CORRUPT
;
1160 sqlite3_result_error_code(pContext
, rc
);
1170 ** This function is used to process a single interior node when searching
1171 ** a b-tree for a term or term prefix. The node data is passed to this
1172 ** function via the zNode/nNode parameters. The term to search for is
1173 ** passed in zTerm/nTerm.
1175 ** If piFirst is not NULL, then this function sets *piFirst to the blockid
1176 ** of the child node that heads the sub-tree that may contain the term.
1178 ** If piLast is not NULL, then *piLast is set to the right-most child node
1179 ** that heads a sub-tree that may contain a term for which zTerm/nTerm is
1182 ** If an OOM error occurs, SQLITE_NOMEM is returned. Otherwise, SQLITE_OK.
1184 static int fts3ScanInteriorNode(
1185 const char *zTerm
, /* Term to select leaves for */
1186 int nTerm
, /* Size of term zTerm in bytes */
1187 const char *zNode
, /* Buffer containing segment interior node */
1188 int nNode
, /* Size of buffer at zNode */
1189 sqlite3_int64
*piFirst
, /* OUT: Selected child node */
1190 sqlite3_int64
*piLast
/* OUT: Selected child node */
1192 int rc
= SQLITE_OK
; /* Return code */
1193 const char *zCsr
= zNode
; /* Cursor to iterate through node */
1194 const char *zEnd
= &zCsr
[nNode
];/* End of interior node buffer */
1195 char *zBuffer
= 0; /* Buffer to load terms into */
1196 int nAlloc
= 0; /* Size of allocated buffer */
1197 int isFirstTerm
= 1; /* True when processing first term on page */
1198 sqlite3_int64 iChild
; /* Block id of child node to descend to */
1200 /* Skip over the 'height' varint that occurs at the start of every
1201 ** interior node. Then load the blockid of the left-child of the b-tree
1202 ** node into variable iChild.
1204 ** Even if the data structure on disk is corrupted, this (reading two
1205 ** varints from the buffer) does not risk an overread. If zNode is a
1206 ** root node, then the buffer comes from a SELECT statement. SQLite does
1207 ** not make this guarantee explicitly, but in practice there are always
1208 ** either more than 20 bytes of allocated space following the nNode bytes of
1209 ** contents, or two zero bytes. Or, if the node is read from the %_segments
1210 ** table, then there are always 20 bytes of zeroed padding following the
1211 ** nNode bytes of content (see sqlite3Fts3ReadBlock() for details).
1213 zCsr
+= sqlite3Fts3GetVarint(zCsr
, &iChild
);
1214 zCsr
+= sqlite3Fts3GetVarint(zCsr
, &iChild
);
1216 return SQLITE_CORRUPT
;
1219 while( zCsr
<zEnd
&& (piFirst
|| piLast
) ){
1220 int cmp
; /* memcmp() result */
1221 int nSuffix
; /* Size of term suffix */
1222 int nPrefix
= 0; /* Size of term prefix */
1223 int nBuffer
; /* Total term size */
1225 /* Load the next term on the node into zBuffer. Use realloc() to expand
1226 ** the size of zBuffer if required. */
1228 zCsr
+= sqlite3Fts3GetVarint32(zCsr
, &nPrefix
);
1231 zCsr
+= sqlite3Fts3GetVarint32(zCsr
, &nSuffix
);
1233 /* NOTE(shess): Previous code checked for negative nPrefix and
1234 ** nSuffix and suffix overrunning zEnd. Additionally corrupt if
1235 ** the prefix is longer than the previous term, or if the suffix
1238 if( nPrefix
<0 || nSuffix
<0 /* || nPrefix>nBuffer */
1239 || &zCsr
[nSuffix
]<zCsr
|| &zCsr
[nSuffix
]>zEnd
){
1240 rc
= SQLITE_CORRUPT
;
1243 if( nPrefix
+nSuffix
>nAlloc
){
1245 nAlloc
= (nPrefix
+nSuffix
) * 2;
1246 zNew
= (char *)sqlite3_realloc(zBuffer
, nAlloc
);
1253 memcpy(&zBuffer
[nPrefix
], zCsr
, nSuffix
);
1254 nBuffer
= nPrefix
+ nSuffix
;
1257 /* Compare the term we are searching for with the term just loaded from
1258 ** the interior node. If the specified term is greater than or equal
1259 ** to the term from the interior node, then all terms on the sub-tree
1260 ** headed by node iChild are smaller than zTerm. No need to search
1263 ** If the interior node term is larger than the specified term, then
1264 ** the tree headed by iChild may contain the specified term.
1266 cmp
= memcmp(zTerm
, zBuffer
, (nBuffer
>nTerm
? nTerm
: nBuffer
));
1267 if( piFirst
&& (cmp
<0 || (cmp
==0 && nBuffer
>nTerm
)) ){
1272 if( piLast
&& cmp
<0 ){
1280 if( piFirst
) *piFirst
= iChild
;
1281 if( piLast
) *piLast
= iChild
;
1284 sqlite3_free(zBuffer
);
1290 ** The buffer pointed to by argument zNode (size nNode bytes) contains an
1291 ** interior node of a b-tree segment. The zTerm buffer (size nTerm bytes)
1292 ** contains a term. This function searches the sub-tree headed by the zNode
1293 ** node for the range of leaf nodes that may contain the specified term
1294 ** or terms for which the specified term is a prefix.
1296 ** If piLeaf is not NULL, then *piLeaf is set to the blockid of the
1297 ** left-most leaf node in the tree that may contain the specified term.
1298 ** If piLeaf2 is not NULL, then *piLeaf2 is set to the blockid of the
1299 ** right-most leaf node that may contain a term for which the specified
1300 ** term is a prefix.
1302 ** It is possible that the range of returned leaf nodes does not contain
1303 ** the specified term or any terms for which it is a prefix. However, if the
1304 ** segment does contain any such terms, they are stored within the identified
1305 ** range. Because this function only inspects interior segment nodes (and
1306 ** never loads leaf nodes into memory), it is not possible to be sure.
1308 ** If an error occurs, an error code other than SQLITE_OK is returned.
1310 static int fts3SelectLeaf(
1311 Fts3Table
*p
, /* Virtual table handle */
1312 const char *zTerm
, /* Term to select leaves for */
1313 int nTerm
, /* Size of term zTerm in bytes */
1314 const char *zNode
, /* Buffer containing segment interior node */
1315 int nNode
, /* Size of buffer at zNode */
1316 sqlite3_int64
*piLeaf
, /* Selected leaf node */
1317 sqlite3_int64
*piLeaf2
/* Selected leaf node */
1319 int rc
; /* Return code */
1320 int iHeight
; /* Height of this node in tree */
1322 assert( piLeaf
|| piLeaf2
);
1324 sqlite3Fts3GetVarint32(zNode
, &iHeight
);
1325 rc
= fts3ScanInteriorNode(zTerm
, nTerm
, zNode
, nNode
, piLeaf
, piLeaf2
);
1326 assert( !piLeaf2
|| !piLeaf
|| rc
!=SQLITE_OK
|| (*piLeaf
<=*piLeaf2
) );
1328 if( rc
==SQLITE_OK
&& iHeight
>1 ){
1329 char *zBlob
= 0; /* Blob read from %_segments table */
1330 int nBlob
; /* Size of zBlob in bytes */
1332 if( piLeaf
&& piLeaf2
&& (*piLeaf
!=*piLeaf2
) ){
1333 rc
= sqlite3Fts3ReadBlock(p
, *piLeaf
, &zBlob
, &nBlob
);
1334 if( rc
==SQLITE_OK
){
1335 rc
= fts3SelectLeaf(p
, zTerm
, nTerm
, zBlob
, nBlob
, piLeaf
, 0);
1337 sqlite3_free(zBlob
);
1342 if( rc
==SQLITE_OK
){
1343 rc
= sqlite3Fts3ReadBlock(p
, piLeaf
? *piLeaf
: *piLeaf2
, &zBlob
, &nBlob
);
1345 if( rc
==SQLITE_OK
){
1346 rc
= fts3SelectLeaf(p
, zTerm
, nTerm
, zBlob
, nBlob
, piLeaf
, piLeaf2
);
1348 sqlite3_free(zBlob
);
1355 ** This function is used to create delta-encoded serialized lists of FTS3
1356 ** varints. Each call to this function appends a single varint to a list.
1358 static void fts3PutDeltaVarint(
1359 char **pp
, /* IN/OUT: Output pointer */
1360 sqlite3_int64
*piPrev
, /* IN/OUT: Previous value written to list */
1361 sqlite3_int64 iVal
/* Write this value to the list */
1363 assert( iVal
-*piPrev
> 0 || (*piPrev
==0 && iVal
==0) );
1364 *pp
+= sqlite3Fts3PutVarint(*pp
, iVal
-*piPrev
);
1369 ** When this function is called, *ppPoslist is assumed to point to the
1370 ** start of a position-list. After it returns, *ppPoslist points to the
1371 ** first byte after the position-list.
1373 ** A position list is list of positions (delta encoded) and columns for
1374 ** a single document record of a doclist. So, in other words, this
1375 ** routine advances *ppPoslist so that it points to the next docid in
1376 ** the doclist, or to the first byte past the end of the doclist.
1378 ** If pp is not NULL, then the contents of the position list are copied
1379 ** to *pp. *pp is set to point to the first byte past the last byte copied
1380 ** before this function returns.
1382 static void fts3PoslistCopy(char **pp
, char **ppPoslist
){
1383 char *pEnd
= *ppPoslist
;
1386 /* The end of a position list is marked by a zero encoded as an FTS3
1387 ** varint. A single POS_END (0) byte. Except, if the 0 byte is preceded by
1388 ** a byte with the 0x80 bit set, then it is not a varint 0, but the tail
1389 ** of some other, multi-byte, value.
1391 ** The following while-loop moves pEnd to point to the first byte that is not
1392 ** immediately preceded by a byte with the 0x80 bit set. Then increments
1393 ** pEnd once more so that it points to the byte immediately following the
1394 ** last byte in the position-list.
1398 testcase( c
!=0 && (*pEnd
)==0 );
1400 pEnd
++; /* Advance past the POS_END terminator byte */
1403 int n
= (int)(pEnd
- *ppPoslist
);
1405 memcpy(p
, *ppPoslist
, n
);
1413 ** When this function is called, *ppPoslist is assumed to point to the
1414 ** start of a column-list. After it returns, *ppPoslist points to the
1415 ** to the terminator (POS_COLUMN or POS_END) byte of the column-list.
1417 ** A column-list is list of delta-encoded positions for a single column
1418 ** within a single document within a doclist.
1420 ** The column-list is terminated either by a POS_COLUMN varint (1) or
1421 ** a POS_END varint (0). This routine leaves *ppPoslist pointing to
1422 ** the POS_COLUMN or POS_END that terminates the column-list.
1424 ** If pp is not NULL, then the contents of the column-list are copied
1425 ** to *pp. *pp is set to point to the first byte past the last byte copied
1426 ** before this function returns. The POS_COLUMN or POS_END terminator
1427 ** is not copied into *pp.
1429 static void fts3ColumnlistCopy(char **pp
, char **ppPoslist
){
1430 char *pEnd
= *ppPoslist
;
1433 /* A column-list is terminated by either a 0x01 or 0x00 byte that is
1434 ** not part of a multi-byte varint.
1436 while( 0xFE & (*pEnd
| c
) ){
1438 testcase( c
!=0 && ((*pEnd
)&0xfe)==0 );
1441 int n
= (int)(pEnd
- *ppPoslist
);
1443 memcpy(p
, *ppPoslist
, n
);
1451 ** Value used to signify the end of an position-list. This is safe because
1452 ** it is not possible to have a document with 2^31 terms.
1454 #define POSITION_LIST_END 0x7fffffff
1457 ** This function is used to help parse position-lists. When this function is
1458 ** called, *pp may point to the start of the next varint in the position-list
1459 ** being parsed, or it may point to 1 byte past the end of the position-list
1460 ** (in which case **pp will be a terminator bytes POS_END (0) or
1463 ** If *pp points past the end of the current position-list, set *pi to
1464 ** POSITION_LIST_END and return. Otherwise, read the next varint from *pp,
1465 ** increment the current value of *pi by the value read, and set *pp to
1466 ** point to the next value before returning.
1468 ** Before calling this routine *pi must be initialized to the value of
1469 ** the previous position, or zero if we are reading the first position
1470 ** in the position-list. Because positions are delta-encoded, the value
1471 ** of the previous position is needed in order to compute the value of
1472 ** the next position.
1474 static void fts3ReadNextPos(
1475 char **pp
, /* IN/OUT: Pointer into position-list buffer */
1476 sqlite3_int64
*pi
/* IN/OUT: Value read from position-list */
1479 fts3GetDeltaVarint(pp
, pi
);
1482 *pi
= POSITION_LIST_END
;
1487 ** If parameter iCol is not 0, write an POS_COLUMN (1) byte followed by
1488 ** the value of iCol encoded as a varint to *pp. This will start a new
1491 ** Set *pp to point to the byte just after the last byte written before
1492 ** returning (do not modify it if iCol==0). Return the total number of bytes
1493 ** written (0 if iCol==0).
1495 static int fts3PutColNumber(char **pp
, int iCol
){
1496 int n
= 0; /* Number of bytes written */
1498 char *p
= *pp
; /* Output pointer */
1499 n
= 1 + sqlite3Fts3PutVarint(&p
[1], iCol
);
1507 ** Compute the union of two position lists. The output written
1508 ** into *pp contains all positions of both *pp1 and *pp2 in sorted
1509 ** order and with any duplicates removed. All pointers are
1510 ** updated appropriately. The caller is responsible for insuring
1511 ** that there is enough space in *pp to hold the complete output.
1513 static void fts3PoslistMerge(
1514 char **pp
, /* Output buffer */
1515 char **pp1
, /* Left input list */
1516 char **pp2
/* Right input list */
1522 while( *p1
|| *p2
){
1523 int iCol1
; /* The current column index in pp1 */
1524 int iCol2
; /* The current column index in pp2 */
1526 if( *p1
==POS_COLUMN
) sqlite3Fts3GetVarint32(&p1
[1], &iCol1
);
1527 else if( *p1
==POS_END
) iCol1
= POSITION_LIST_END
;
1530 if( *p2
==POS_COLUMN
) sqlite3Fts3GetVarint32(&p2
[1], &iCol2
);
1531 else if( *p2
==POS_END
) iCol2
= POSITION_LIST_END
;
1535 sqlite3_int64 i1
= 0; /* Last position from pp1 */
1536 sqlite3_int64 i2
= 0; /* Last position from pp2 */
1537 sqlite3_int64 iPrev
= 0;
1538 int n
= fts3PutColNumber(&p
, iCol1
);
1542 /* At this point, both p1 and p2 point to the start of column-lists
1543 ** for the same column (the column with index iCol1 and iCol2).
1544 ** A column-list is a list of non-negative delta-encoded varints, each
1545 ** incremented by 2 before being stored. Each list is terminated by a
1546 ** POS_END (0) or POS_COLUMN (1). The following block merges the two lists
1547 ** and writes the results to buffer p. p is left pointing to the byte
1548 ** after the list written. No terminator (POS_END or POS_COLUMN) is
1549 ** written to the output.
1551 fts3GetDeltaVarint(&p1
, &i1
);
1552 fts3GetDeltaVarint(&p2
, &i2
);
1554 fts3PutDeltaVarint(&p
, &iPrev
, (i1
<i2
) ? i1
: i2
);
1557 fts3ReadNextPos(&p1
, &i1
);
1558 fts3ReadNextPos(&p2
, &i2
);
1560 fts3ReadNextPos(&p1
, &i1
);
1562 fts3ReadNextPos(&p2
, &i2
);
1564 }while( i1
!=POSITION_LIST_END
|| i2
!=POSITION_LIST_END
);
1565 }else if( iCol1
<iCol2
){
1566 p1
+= fts3PutColNumber(&p
, iCol1
);
1567 fts3ColumnlistCopy(&p
, &p1
);
1569 p2
+= fts3PutColNumber(&p
, iCol2
);
1570 fts3ColumnlistCopy(&p
, &p2
);
1581 ** nToken==1 searches for adjacent positions.
1583 ** This function is used to merge two position lists into one. When it is
1584 ** called, *pp1 and *pp2 must both point to position lists. A position-list is
1585 ** the part of a doclist that follows each document id. For example, if a row
1588 ** 'a b c'|'x y z'|'a b b a'
1590 ** Then the position list for this row for token 'b' would consist of:
1592 ** 0x02 0x01 0x02 0x03 0x03 0x00
1594 ** When this function returns, both *pp1 and *pp2 are left pointing to the
1595 ** byte following the 0x00 terminator of their respective position lists.
1597 ** If isSaveLeft is 0, an entry is added to the output position list for
1598 ** each position in *pp2 for which there exists one or more positions in
1599 ** *pp1 so that (pos(*pp2)>pos(*pp1) && pos(*pp2)-pos(*pp1)<=nToken). i.e.
1600 ** when the *pp1 token appears before the *pp2 token, but not more than nToken
1603 static int fts3PoslistPhraseMerge(
1604 char **pp
, /* IN/OUT: Preallocated output buffer */
1605 int nToken
, /* Maximum difference in token positions */
1606 int isSaveLeft
, /* Save the left position */
1607 int isExact
, /* If *pp1 is exactly nTokens before *pp2 */
1608 char **pp1
, /* IN/OUT: Left input list */
1609 char **pp2
/* IN/OUT: Right input list */
1611 char *p
= (pp
? *pp
: 0);
1617 /* Never set both isSaveLeft and isExact for the same invocation. */
1618 assert( isSaveLeft
==0 || isExact
==0 );
1620 assert( *p1
!=0 && *p2
!=0 );
1621 if( *p1
==POS_COLUMN
){
1623 p1
+= sqlite3Fts3GetVarint32(p1
, &iCol1
);
1625 if( *p2
==POS_COLUMN
){
1627 p2
+= sqlite3Fts3GetVarint32(p2
, &iCol2
);
1633 sqlite3_int64 iPrev
= 0;
1634 sqlite3_int64 iPos1
= 0;
1635 sqlite3_int64 iPos2
= 0;
1639 p
+= sqlite3Fts3PutVarint(p
, iCol1
);
1642 assert( *p1
!=POS_END
&& *p1
!=POS_COLUMN
);
1643 assert( *p2
!=POS_END
&& *p2
!=POS_COLUMN
);
1644 fts3GetDeltaVarint(&p1
, &iPos1
); iPos1
-= 2;
1645 fts3GetDeltaVarint(&p2
, &iPos2
); iPos2
-= 2;
1648 if( iPos2
==iPos1
+nToken
1649 || (isExact
==0 && iPos2
>iPos1
&& iPos2
<=iPos1
+nToken
)
1651 sqlite3_int64 iSave
;
1653 fts3PoslistCopy(0, &p2
);
1654 fts3PoslistCopy(0, &p1
);
1659 iSave
= isSaveLeft
? iPos1
: iPos2
;
1660 fts3PutDeltaVarint(&p
, &iPrev
, iSave
+2); iPrev
-= 2;
1663 if( (!isSaveLeft
&& iPos2
<=(iPos1
+nToken
)) || iPos2
<=iPos1
){
1664 if( (*p2
&0xFE)==0 ) break;
1665 fts3GetDeltaVarint(&p2
, &iPos2
); iPos2
-= 2;
1667 if( (*p1
&0xFE)==0 ) break;
1668 fts3GetDeltaVarint(&p1
, &iPos1
); iPos1
-= 2;
1677 fts3ColumnlistCopy(0, &p1
);
1678 fts3ColumnlistCopy(0, &p2
);
1679 assert( (*p1
&0xFE)==0 && (*p2
&0xFE)==0 );
1680 if( 0==*p1
|| 0==*p2
) break;
1683 p1
+= sqlite3Fts3GetVarint32(p1
, &iCol1
);
1685 p2
+= sqlite3Fts3GetVarint32(p2
, &iCol2
);
1688 /* Advance pointer p1 or p2 (whichever corresponds to the smaller of
1689 ** iCol1 and iCol2) so that it points to either the 0x00 that marks the
1690 ** end of the position list, or the 0x01 that precedes the next
1691 ** column-number in the position list.
1693 else if( iCol1
<iCol2
){
1694 fts3ColumnlistCopy(0, &p1
);
1697 p1
+= sqlite3Fts3GetVarint32(p1
, &iCol1
);
1699 fts3ColumnlistCopy(0, &p2
);
1702 p2
+= sqlite3Fts3GetVarint32(p2
, &iCol2
);
1706 fts3PoslistCopy(0, &p2
);
1707 fts3PoslistCopy(0, &p1
);
1710 if( !pp
|| *pp
==p
){
1719 ** Merge two position-lists as required by the NEAR operator.
1721 static int fts3PoslistNearMerge(
1722 char **pp
, /* Output buffer */
1723 char *aTmp
, /* Temporary buffer space */
1724 int nRight
, /* Maximum difference in token positions */
1725 int nLeft
, /* Maximum difference in token positions */
1726 char **pp1
, /* IN/OUT: Left input list */
1727 char **pp2
/* IN/OUT: Right input list */
1733 if( fts3PoslistPhraseMerge(0, nRight
, 0, 0, pp1
, pp2
) ) return 1;
1736 return fts3PoslistPhraseMerge(0, nLeft
, 0, 0, pp2
, pp1
);
1743 fts3PoslistPhraseMerge(&pTmp1
, nRight
, 0, 0, pp1
, pp2
);
1744 aTmp2
= pTmp2
= pTmp1
;
1747 fts3PoslistPhraseMerge(&pTmp2
, nLeft
, 1, 0, pp2
, pp1
);
1748 if( pTmp1
!=aTmp
&& pTmp2
!=aTmp2
){
1749 fts3PoslistMerge(pp
, &aTmp
, &aTmp2
);
1750 }else if( pTmp1
!=aTmp
){
1751 fts3PoslistCopy(pp
, &aTmp
);
1752 }else if( pTmp2
!=aTmp2
){
1753 fts3PoslistCopy(pp
, &aTmp2
);
1763 ** Values that may be used as the first parameter to fts3DoclistMerge().
1765 #define MERGE_NOT 2 /* D + D -> D */
1766 #define MERGE_AND 3 /* D + D -> D */
1767 #define MERGE_OR 4 /* D + D -> D */
1768 #define MERGE_POS_OR 5 /* P + P -> P */
1769 #define MERGE_PHRASE 6 /* P + P -> D */
1770 #define MERGE_POS_PHRASE 7 /* P + P -> P */
1771 #define MERGE_NEAR 8 /* P + P -> D */
1772 #define MERGE_POS_NEAR 9 /* P + P -> P */
1775 ** Merge the two doclists passed in buffer a1 (size n1 bytes) and a2
1776 ** (size n2 bytes). The output is written to pre-allocated buffer aBuffer,
1777 ** which is guaranteed to be large enough to hold the results. The number
1778 ** of bytes written to aBuffer is stored in *pnBuffer before returning.
1780 ** If successful, SQLITE_OK is returned. Otherwise, if a malloc error
1781 ** occurs while allocating a temporary buffer as part of the merge operation,
1782 ** SQLITE_NOMEM is returned.
1784 static int fts3DoclistMerge(
1785 int mergetype
, /* One of the MERGE_XXX constants */
1786 int nParam1
, /* Used by MERGE_NEAR and MERGE_POS_NEAR */
1787 int nParam2
, /* Used by MERGE_NEAR and MERGE_POS_NEAR */
1788 char *aBuffer
, /* Pre-allocated output buffer */
1789 int *pnBuffer
, /* OUT: Bytes written to aBuffer */
1790 char *a1
, /* Buffer containing first doclist */
1791 int n1
, /* Size of buffer a1 */
1792 char *a2
, /* Buffer containing second doclist */
1793 int n2
, /* Size of buffer a2 */
1794 int *pnDoc
/* OUT: Number of docids in output */
1796 sqlite3_int64 i1
= 0;
1797 sqlite3_int64 i2
= 0;
1798 sqlite3_int64 iPrev
= 0;
1803 char *pEnd1
= &a1
[n1
];
1804 char *pEnd2
= &a2
[n2
];
1807 assert( mergetype
==MERGE_OR
|| mergetype
==MERGE_POS_OR
1808 || mergetype
==MERGE_AND
|| mergetype
==MERGE_NOT
1809 || mergetype
==MERGE_PHRASE
|| mergetype
==MERGE_POS_PHRASE
1810 || mergetype
==MERGE_NEAR
|| mergetype
==MERGE_POS_NEAR
1815 return SQLITE_NOMEM
;
1818 /* Read the first docid from each doclist */
1819 fts3GetDeltaVarint2(&p1
, pEnd1
, &i1
);
1820 fts3GetDeltaVarint2(&p2
, pEnd2
, &i2
);
1822 switch( mergetype
){
1826 if( p2
&& p1
&& i1
==i2
){
1827 fts3PutDeltaVarint(&p
, &iPrev
, i1
);
1828 if( mergetype
==MERGE_POS_OR
) fts3PoslistMerge(&p
, &p1
, &p2
);
1829 fts3GetDeltaVarint2(&p1
, pEnd1
, &i1
);
1830 fts3GetDeltaVarint2(&p2
, pEnd2
, &i2
);
1831 }else if( !p2
|| (p1
&& i1
<i2
) ){
1832 fts3PutDeltaVarint(&p
, &iPrev
, i1
);
1833 if( mergetype
==MERGE_POS_OR
) fts3PoslistCopy(&p
, &p1
);
1834 fts3GetDeltaVarint2(&p1
, pEnd1
, &i1
);
1836 fts3PutDeltaVarint(&p
, &iPrev
, i2
);
1837 if( mergetype
==MERGE_POS_OR
) fts3PoslistCopy(&p
, &p2
);
1838 fts3GetDeltaVarint2(&p2
, pEnd2
, &i2
);
1846 fts3PutDeltaVarint(&p
, &iPrev
, i1
);
1847 fts3GetDeltaVarint2(&p1
, pEnd1
, &i1
);
1848 fts3GetDeltaVarint2(&p2
, pEnd2
, &i2
);
1851 fts3GetDeltaVarint2(&p1
, pEnd1
, &i1
);
1853 fts3GetDeltaVarint2(&p2
, pEnd2
, &i2
);
1861 fts3GetDeltaVarint2(&p1
, pEnd1
, &i1
);
1862 fts3GetDeltaVarint2(&p2
, pEnd2
, &i2
);
1863 }else if( !p2
|| i1
<i2
){
1864 fts3PutDeltaVarint(&p
, &iPrev
, i1
);
1865 fts3GetDeltaVarint2(&p1
, pEnd1
, &i1
);
1867 fts3GetDeltaVarint2(&p2
, pEnd2
, &i2
);
1872 case MERGE_POS_PHRASE
:
1873 case MERGE_PHRASE
: {
1874 char **ppPos
= (mergetype
==MERGE_PHRASE
? 0 : &p
);
1878 sqlite3_int64 iPrevSave
= iPrev
;
1879 fts3PutDeltaVarint(&p
, &iPrev
, i1
);
1880 if( 0==fts3PoslistPhraseMerge(ppPos
, nParam1
, 0, 1, &p1
, &p2
) ){
1886 fts3GetDeltaVarint2(&p1
, pEnd1
, &i1
);
1887 fts3GetDeltaVarint2(&p2
, pEnd2
, &i2
);
1889 fts3PoslistCopy(0, &p1
);
1890 fts3GetDeltaVarint2(&p1
, pEnd1
, &i1
);
1892 fts3PoslistCopy(0, &p2
);
1893 fts3GetDeltaVarint2(&p2
, pEnd2
, &i2
);
1899 default: assert( mergetype
==MERGE_POS_NEAR
|| mergetype
==MERGE_NEAR
); {
1903 if( mergetype
==MERGE_POS_NEAR
){
1905 aTmp
= sqlite3_malloc(2*(n1
+n2
+1));
1907 return SQLITE_NOMEM
;
1914 sqlite3_int64 iPrevSave
= iPrev
;
1915 fts3PutDeltaVarint(&p
, &iPrev
, i1
);
1917 if( !fts3PoslistNearMerge(ppPos
, aTmp
, nParam1
, nParam2
, &p1
, &p2
) ){
1922 fts3GetDeltaVarint2(&p1
, pEnd1
, &i1
);
1923 fts3GetDeltaVarint2(&p2
, pEnd2
, &i2
);
1925 fts3PoslistCopy(0, &p1
);
1926 fts3GetDeltaVarint2(&p1
, pEnd1
, &i1
);
1928 fts3PoslistCopy(0, &p2
);
1929 fts3GetDeltaVarint2(&p2
, pEnd2
, &i2
);
1937 if( pnDoc
) *pnDoc
= nDoc
;
1938 *pnBuffer
= (int)(p
-aBuffer
);
1943 ** A pointer to an instance of this structure is used as the context
1944 ** argument to sqlite3Fts3SegReaderIterate()
1946 typedef struct TermSelect TermSelect
;
1949 char *aaOutput
[16]; /* Malloc'd output buffer */
1950 int anOutput
[16]; /* Size of output in bytes */
1954 ** Merge all doclists in the TermSelect.aaOutput[] array into a single
1955 ** doclist stored in TermSelect.aaOutput[0]. If successful, delete all
1956 ** other doclists (except the aaOutput[0] one) and return SQLITE_OK.
1958 ** If an OOM error occurs, return SQLITE_NOMEM. In this case it is
1959 ** the responsibility of the caller to free any doclists left in the
1960 ** TermSelect.aaOutput[] array.
1962 static int fts3TermSelectMerge(TermSelect
*pTS
){
1963 int mergetype
= (pTS
->isReqPos
? MERGE_POS_OR
: MERGE_OR
);
1968 /* Loop through the doclists in the aaOutput[] array. Merge them all
1969 ** into a single doclist.
1971 for(i
=0; i
<SizeofArray(pTS
->aaOutput
); i
++){
1972 if( pTS
->aaOutput
[i
] ){
1974 aOut
= pTS
->aaOutput
[i
];
1975 nOut
= pTS
->anOutput
[i
];
1976 pTS
->aaOutput
[i
] = 0;
1978 int nNew
= nOut
+ pTS
->anOutput
[i
];
1979 char *aNew
= sqlite3_malloc(nNew
);
1982 return SQLITE_NOMEM
;
1984 fts3DoclistMerge(mergetype
, 0, 0,
1985 aNew
, &nNew
, pTS
->aaOutput
[i
], pTS
->anOutput
[i
], aOut
, nOut
, 0
1987 sqlite3_free(pTS
->aaOutput
[i
]);
1989 pTS
->aaOutput
[i
] = 0;
1996 pTS
->aaOutput
[0] = aOut
;
1997 pTS
->anOutput
[0] = nOut
;
2002 ** This function is used as the sqlite3Fts3SegReaderIterate() callback when
2003 ** querying the full-text index for a doclist associated with a term or
2006 static int fts3TermSelectCb(
2007 Fts3Table
*p
, /* Virtual table object */
2008 void *pContext
, /* Pointer to TermSelect structure */
2014 TermSelect
*pTS
= (TermSelect
*)pContext
;
2016 UNUSED_PARAMETER(p
);
2017 UNUSED_PARAMETER(zTerm
);
2018 UNUSED_PARAMETER(nTerm
);
2020 if( pTS
->aaOutput
[0]==0 ){
2021 /* If this is the first term selected, copy the doclist to the output
2022 ** buffer using memcpy(). TODO: Add a way to transfer control of the
2023 ** aDoclist buffer from the caller so as to avoid the memcpy().
2025 pTS
->aaOutput
[0] = sqlite3_malloc(nDoclist
);
2026 pTS
->anOutput
[0] = nDoclist
;
2027 if( pTS
->aaOutput
[0] ){
2028 memcpy(pTS
->aaOutput
[0], aDoclist
, nDoclist
);
2030 return SQLITE_NOMEM
;
2033 int mergetype
= (pTS
->isReqPos
? MERGE_POS_OR
: MERGE_OR
);
2034 char *aMerge
= aDoclist
;
2035 int nMerge
= nDoclist
;
2038 for(iOut
=0; iOut
<SizeofArray(pTS
->aaOutput
); iOut
++){
2041 if( pTS
->aaOutput
[iOut
]==0 ){
2043 pTS
->aaOutput
[iOut
] = aMerge
;
2044 pTS
->anOutput
[iOut
] = nMerge
;
2048 nNew
= nMerge
+ pTS
->anOutput
[iOut
];
2049 aNew
= sqlite3_malloc(nNew
);
2051 if( aMerge
!=aDoclist
){
2052 sqlite3_free(aMerge
);
2054 return SQLITE_NOMEM
;
2056 fts3DoclistMerge(mergetype
, 0, 0, aNew
, &nNew
,
2057 pTS
->aaOutput
[iOut
], pTS
->anOutput
[iOut
], aMerge
, nMerge
, 0
2060 if( iOut
>0 ) sqlite3_free(aMerge
);
2061 sqlite3_free(pTS
->aaOutput
[iOut
]);
2062 pTS
->aaOutput
[iOut
] = 0;
2066 if( (iOut
+1)==SizeofArray(pTS
->aaOutput
) ){
2067 pTS
->aaOutput
[iOut
] = aMerge
;
2068 pTS
->anOutput
[iOut
] = nMerge
;
2075 static int fts3DeferredTermSelect(
2076 Fts3DeferredToken
*pToken
, /* Phrase token */
2077 int isTermPos
, /* True to include positions */
2078 int *pnOut
, /* OUT: Size of list */
2079 char **ppOut
/* OUT: Body of list */
2084 aSource
= sqlite3Fts3DeferredDoclist(pToken
, &nSource
);
2088 }else if( isTermPos
){
2089 *ppOut
= sqlite3_malloc(nSource
);
2090 if( !*ppOut
) return SQLITE_NOMEM
;
2091 memcpy(*ppOut
, aSource
, nSource
);
2094 sqlite3_int64 docid
;
2095 *pnOut
= sqlite3Fts3GetVarint(aSource
, &docid
);
2096 *ppOut
= sqlite3_malloc(*pnOut
);
2097 if( !*ppOut
) return SQLITE_NOMEM
;
2098 sqlite3Fts3PutVarint(*ppOut
, docid
);
2104 int sqlite3Fts3SegReaderCursor(
2105 Fts3Table
*p
, /* FTS3 table handle */
2106 int iLevel
, /* Level of segments to scan */
2107 const char *zTerm
, /* Term to query for */
2108 int nTerm
, /* Size of zTerm in bytes */
2109 int isPrefix
, /* True for a prefix search */
2110 int isScan
, /* True to scan from zTerm to EOF */
2111 Fts3SegReaderCursor
*pCsr
/* Cursor object to populate */
2116 sqlite3_stmt
*pStmt
= 0;
2117 Fts3SegReader
*pPending
= 0;
2119 assert( iLevel
==FTS3_SEGCURSOR_ALL
2120 || iLevel
==FTS3_SEGCURSOR_PENDING
2123 assert( FTS3_SEGCURSOR_PENDING
<0 );
2124 assert( FTS3_SEGCURSOR_ALL
<0 );
2125 assert( iLevel
==FTS3_SEGCURSOR_ALL
|| (zTerm
==0 && isPrefix
==1) );
2126 assert( isPrefix
==0 || isScan
==0 );
2129 memset(pCsr
, 0, sizeof(Fts3SegReaderCursor
));
2131 /* If iLevel is less than 0, include a seg-reader for the pending-terms. */
2132 assert( isScan
==0 || fts3HashCount(&p
->pendingTerms
)==0 );
2133 if( iLevel
<0 && isScan
==0 ){
2134 rc
= sqlite3Fts3SegReaderPending(p
, zTerm
, nTerm
, isPrefix
, &pPending
);
2135 if( rc
==SQLITE_OK
&& pPending
){
2136 int nByte
= (sizeof(Fts3SegReader
*) * 16);
2137 pCsr
->apSegment
= (Fts3SegReader
**)sqlite3_malloc(nByte
);
2138 if( pCsr
->apSegment
==0 ){
2141 pCsr
->apSegment
[0] = pPending
;
2148 if( iLevel
!=FTS3_SEGCURSOR_PENDING
){
2149 if( rc
==SQLITE_OK
){
2150 rc
= sqlite3Fts3AllSegdirs(p
, iLevel
, &pStmt
);
2152 while( rc
==SQLITE_OK
&& SQLITE_ROW
==(rc
= sqlite3_step(pStmt
)) ){
2154 /* Read the values returned by the SELECT into local variables. */
2155 sqlite3_int64 iStartBlock
= sqlite3_column_int64(pStmt
, 1);
2156 sqlite3_int64 iLeavesEndBlock
= sqlite3_column_int64(pStmt
, 2);
2157 sqlite3_int64 iEndBlock
= sqlite3_column_int64(pStmt
, 3);
2158 int nRoot
= sqlite3_column_bytes(pStmt
, 4);
2159 char const *zRoot
= sqlite3_column_blob(pStmt
, 4);
2161 /* If nSegment is a multiple of 16 the array needs to be extended. */
2162 if( (pCsr
->nSegment
%16)==0 ){
2163 Fts3SegReader
**apNew
;
2164 int nByte
= (pCsr
->nSegment
+ 16)*sizeof(Fts3SegReader
*);
2165 apNew
= (Fts3SegReader
**)sqlite3_realloc(pCsr
->apSegment
, nByte
);
2170 pCsr
->apSegment
= apNew
;
2173 /* If zTerm is not NULL, and this segment is not stored entirely on its
2174 ** root node, the range of leaves scanned can be reduced. Do this. */
2175 if( iStartBlock
&& zTerm
){
2176 sqlite3_int64
*pi
= (isPrefix
? &iLeavesEndBlock
: 0);
2177 rc
= fts3SelectLeaf(p
, zTerm
, nTerm
, zRoot
, nRoot
, &iStartBlock
, pi
);
2178 if( rc
!=SQLITE_OK
) goto finished
;
2179 if( isPrefix
==0 && isScan
==0 ) iLeavesEndBlock
= iStartBlock
;
2182 rc
= sqlite3Fts3SegReaderNew(iAge
, iStartBlock
, iLeavesEndBlock
,
2183 iEndBlock
, zRoot
, nRoot
, &pCsr
->apSegment
[pCsr
->nSegment
]
2185 if( rc
!=SQLITE_OK
) goto finished
;
2192 rc2
= sqlite3_reset(pStmt
);
2193 if( rc
==SQLITE_DONE
) rc
= rc2
;
2194 sqlite3Fts3SegReaderFree(pPending
);
2200 static int fts3TermSegReaderCursor(
2201 Fts3Cursor
*pCsr
, /* Virtual table cursor handle */
2202 const char *zTerm
, /* Term to query for */
2203 int nTerm
, /* Size of zTerm in bytes */
2204 int isPrefix
, /* True for a prefix search */
2205 Fts3SegReaderCursor
**ppSegcsr
/* OUT: Allocated seg-reader cursor */
2207 Fts3SegReaderCursor
*pSegcsr
; /* Object to allocate and return */
2208 int rc
= SQLITE_NOMEM
; /* Return code */
2210 pSegcsr
= sqlite3_malloc(sizeof(Fts3SegReaderCursor
));
2212 Fts3Table
*p
= (Fts3Table
*)pCsr
->base
.pVtab
;
2215 rc
= sqlite3Fts3SegReaderCursor(
2216 p
, FTS3_SEGCURSOR_ALL
, zTerm
, nTerm
, isPrefix
, 0, pSegcsr
);
2218 for(i
=0; rc
==SQLITE_OK
&& i
<pSegcsr
->nSegment
; i
++){
2219 rc
= sqlite3Fts3SegReaderCost(pCsr
, pSegcsr
->apSegment
[i
], &nCost
);
2221 pSegcsr
->nCost
= nCost
;
2224 *ppSegcsr
= pSegcsr
;
2228 static void fts3SegReaderCursorFree(Fts3SegReaderCursor
*pSegcsr
){
2229 sqlite3Fts3SegReaderFinish(pSegcsr
);
2230 sqlite3_free(pSegcsr
);
2234 ** This function retreives the doclist for the specified term (or term
2235 ** prefix) from the database.
2237 ** The returned doclist may be in one of two formats, depending on the
2238 ** value of parameter isReqPos. If isReqPos is zero, then the doclist is
2239 ** a sorted list of delta-compressed docids (a bare doclist). If isReqPos
2240 ** is non-zero, then the returned list is in the same format as is stored
2241 ** in the database without the found length specifier at the start of on-disk
2244 static int fts3TermSelect(
2245 Fts3Table
*p
, /* Virtual table handle */
2246 Fts3PhraseToken
*pTok
, /* Token to query for */
2247 int iColumn
, /* Column to query (or -ve for all columns) */
2248 int isReqPos
, /* True to include position lists in output */
2249 int *pnOut
, /* OUT: Size of buffer at *ppOut */
2250 char **ppOut
/* OUT: Malloced result buffer */
2252 int rc
; /* Return code */
2253 Fts3SegReaderCursor
*pSegcsr
; /* Seg-reader cursor for this term */
2254 TermSelect tsc
; /* Context object for fts3TermSelectCb() */
2255 Fts3SegFilter filter
; /* Segment term filter configuration */
2257 pSegcsr
= pTok
->pSegcsr
;
2258 memset(&tsc
, 0, sizeof(TermSelect
));
2259 tsc
.isReqPos
= isReqPos
;
2261 filter
.flags
= FTS3_SEGMENT_IGNORE_EMPTY
2262 | (pTok
->isPrefix
? FTS3_SEGMENT_PREFIX
: 0)
2263 | (isReqPos
? FTS3_SEGMENT_REQUIRE_POS
: 0)
2264 | (iColumn
<p
->nColumn
? FTS3_SEGMENT_COLUMN_FILTER
: 0);
2265 filter
.iCol
= iColumn
;
2266 filter
.zTerm
= pTok
->z
;
2267 filter
.nTerm
= pTok
->n
;
2269 rc
= sqlite3Fts3SegReaderStart(p
, pSegcsr
, &filter
);
2270 while( SQLITE_OK
==rc
2271 && SQLITE_ROW
==(rc
= sqlite3Fts3SegReaderStep(p
, pSegcsr
))
2273 rc
= fts3TermSelectCb(p
, (void *)&tsc
,
2274 pSegcsr
->zTerm
, pSegcsr
->nTerm
, pSegcsr
->aDoclist
, pSegcsr
->nDoclist
2278 if( rc
==SQLITE_OK
){
2279 rc
= fts3TermSelectMerge(&tsc
);
2281 if( rc
==SQLITE_OK
){
2282 *ppOut
= tsc
.aaOutput
[0];
2283 *pnOut
= tsc
.anOutput
[0];
2286 for(i
=0; i
<SizeofArray(tsc
.aaOutput
); i
++){
2287 sqlite3_free(tsc
.aaOutput
[i
]);
2291 fts3SegReaderCursorFree(pSegcsr
);
2297 ** This function counts the total number of docids in the doclist stored
2298 ** in buffer aList[], size nList bytes.
2300 ** If the isPoslist argument is true, then it is assumed that the doclist
2301 ** contains a position-list following each docid. Otherwise, it is assumed
2302 ** that the doclist is simply a list of docids stored as delta encoded
2305 static int fts3DoclistCountDocids(int isPoslist
, char *aList
, int nList
){
2306 int nDoc
= 0; /* Return value */
2308 char *aEnd
= &aList
[nList
]; /* Pointer to one byte after EOF */
2309 char *p
= aList
; /* Cursor */
2311 /* The number of docids in the list is the same as the number of
2312 ** varints. In FTS3 a varint consists of a single byte with the 0x80
2313 ** bit cleared and zero or more bytes with the 0x80 bit set. So to
2314 ** count the varints in the buffer, just count the number of bytes
2315 ** with the 0x80 bit clear. */
2316 while( p
<aEnd
) nDoc
+= (((*p
++)&0x80)==0);
2320 while( (*p
++)&0x80 ); /* Skip docid varint */
2321 fts3PoslistCopy(0, &p
); /* Skip over position list */
2330 ** Call sqlite3Fts3DeferToken() for each token in the expression pExpr.
2332 static int fts3DeferExpression(Fts3Cursor
*pCsr
, Fts3Expr
*pExpr
){
2335 rc
= fts3DeferExpression(pCsr
, pExpr
->pLeft
);
2336 if( rc
==SQLITE_OK
){
2337 rc
= fts3DeferExpression(pCsr
, pExpr
->pRight
);
2339 if( pExpr
->eType
==FTSQUERY_PHRASE
){
2340 int iCol
= pExpr
->pPhrase
->iColumn
;
2342 for(i
=0; rc
==SQLITE_OK
&& i
<pExpr
->pPhrase
->nToken
; i
++){
2343 Fts3PhraseToken
*pToken
= &pExpr
->pPhrase
->aToken
[i
];
2344 if( pToken
->pDeferred
==0 ){
2345 rc
= sqlite3Fts3DeferToken(pCsr
, pToken
, iCol
);
2354 ** This function removes the position information from a doclist. When
2355 ** called, buffer aList (size *pnList bytes) contains a doclist that includes
2356 ** position information. This function removes the position information so
2357 ** that aList contains only docids, and adjusts *pnList to reflect the new
2358 ** (possibly reduced) size of the doclist.
2360 static void fts3DoclistStripPositions(
2361 char *aList
, /* IN/OUT: Buffer containing doclist */
2362 int *pnList
/* IN/OUT: Size of doclist in bytes */
2365 char *aEnd
= &aList
[*pnList
]; /* Pointer to one byte after EOF */
2366 char *p
= aList
; /* Input cursor */
2367 char *pOut
= aList
; /* Output cursor */
2370 sqlite3_int64 delta
;
2371 p
+= sqlite3Fts3GetVarint(p
, &delta
);
2372 fts3PoslistCopy(0, &p
);
2373 pOut
+= sqlite3Fts3PutVarint(pOut
, delta
);
2376 *pnList
= (int)(pOut
- aList
);
2381 ** Return a DocList corresponding to the phrase *pPhrase.
2383 ** If this function returns SQLITE_OK, but *pnOut is set to a negative value,
2384 ** then no tokens in the phrase were looked up in the full-text index. This
2385 ** is only possible when this function is called from within xFilter(). The
2386 ** caller should assume that all documents match the phrase. The actual
2387 ** filtering will take place in xNext().
2389 static int fts3PhraseSelect(
2390 Fts3Cursor
*pCsr
, /* Virtual table cursor handle */
2391 Fts3Phrase
*pPhrase
, /* Phrase to return a doclist for */
2392 int isReqPos
, /* True if output should contain positions */
2393 char **paOut
, /* OUT: Pointer to malloc'd result buffer */
2394 int *pnOut
/* OUT: Size of buffer at *paOut */
2400 int iCol
= pPhrase
->iColumn
;
2401 int isTermPos
= (pPhrase
->nToken
>1 || isReqPos
);
2402 Fts3Table
*p
= (Fts3Table
*)pCsr
->base
.pVtab
;
2408 /* If this is an xFilter() evaluation, create a segment-reader for each
2409 ** phrase token. Or, if this is an xNext() or snippet/offsets/matchinfo
2410 ** evaluation, only create segment-readers if there are no Fts3DeferredToken
2411 ** objects attached to the phrase-tokens.
2413 for(ii
=0; ii
<pPhrase
->nToken
; ii
++){
2414 Fts3PhraseToken
*pTok
= &pPhrase
->aToken
[ii
];
2415 if( pTok
->pSegcsr
==0 ){
2416 if( (pCsr
->eEvalmode
==FTS3_EVAL_FILTER
)
2417 || (pCsr
->eEvalmode
==FTS3_EVAL_NEXT
&& pCsr
->pDeferred
==0)
2418 || (pCsr
->eEvalmode
==FTS3_EVAL_MATCHINFO
&& pTok
->bFulltext
)
2420 rc
= fts3TermSegReaderCursor(
2421 pCsr
, pTok
->z
, pTok
->n
, pTok
->isPrefix
, &pTok
->pSegcsr
2423 if( rc
!=SQLITE_OK
) return rc
;
2428 for(ii
=0; ii
<pPhrase
->nToken
; ii
++){
2429 Fts3PhraseToken
*pTok
; /* Token to find doclist for */
2430 int iTok
= 0; /* The token being queried this iteration */
2431 char *pList
= 0; /* Pointer to token doclist */
2432 int nList
= 0; /* Size of buffer at pList */
2434 /* Select a token to process. If this is an xFilter() call, then tokens
2435 ** are processed in order from least to most costly. Otherwise, tokens
2436 ** are processed in the order in which they occur in the phrase.
2438 if( pCsr
->eEvalmode
==FTS3_EVAL_MATCHINFO
){
2441 pTok
= &pPhrase
->aToken
[iTok
];
2442 if( pTok
->bFulltext
==0 ) continue;
2443 }else if( pCsr
->eEvalmode
==FTS3_EVAL_NEXT
|| isReqPos
){
2445 pTok
= &pPhrase
->aToken
[iTok
];
2447 int nMinCost
= 0x7FFFFFFF;
2450 /* Find the remaining token with the lowest cost. */
2451 for(jj
=0; jj
<pPhrase
->nToken
; jj
++){
2452 Fts3SegReaderCursor
*pSegcsr
= pPhrase
->aToken
[jj
].pSegcsr
;
2453 if( pSegcsr
&& pSegcsr
->nCost
<nMinCost
){
2455 nMinCost
= pSegcsr
->nCost
;
2458 pTok
= &pPhrase
->aToken
[iTok
];
2460 /* This branch is taken if it is determined that loading the doclist
2461 ** for the next token would require more IO than loading all documents
2462 ** currently identified by doclist pOut/nOut. No further doclists will
2463 ** be loaded from the full-text index for this phrase.
2465 if( nMinCost
>nDoc
&& ii
>0 ){
2466 rc
= fts3DeferExpression(pCsr
, pCsr
->pExpr
);
2471 if( pCsr
->eEvalmode
==FTS3_EVAL_NEXT
&& pTok
->pDeferred
){
2472 rc
= fts3DeferredTermSelect(pTok
->pDeferred
, isTermPos
, &nList
, &pList
);
2474 if( pTok
->pSegcsr
){
2475 rc
= fts3TermSelect(p
, pTok
, iCol
, isTermPos
, &nList
, &pList
);
2477 pTok
->bFulltext
= 1;
2479 assert( rc
!=SQLITE_OK
|| pCsr
->eEvalmode
|| pTok
->pSegcsr
==0 );
2480 if( rc
!=SQLITE_OK
) break;
2485 if( pCsr
->eEvalmode
==FTS3_EVAL_FILTER
&& pPhrase
->nToken
>1 ){
2486 nDoc
= fts3DoclistCountDocids(1, pOut
, nOut
);
2491 /* Merge the new term list and the current output. */
2492 char *aLeft
, *aRight
;
2497 /* If this is the final token of the phrase, and positions were not
2498 ** requested by the caller, use MERGE_PHRASE instead of POS_PHRASE.
2499 ** This drops the position information from the output list.
2501 mt
= MERGE_POS_PHRASE
;
2502 if( ii
==pPhrase
->nToken
-1 && !isReqPos
) mt
= MERGE_PHRASE
;
2504 assert( iPrevTok
!=iTok
);
2505 if( iPrevTok
<iTok
){
2510 nDist
= iTok
-iPrevTok
;
2517 nDist
= iPrevTok
-iTok
;
2521 mt
, nDist
, 0, pOut
, &nOut
, aLeft
, nLeft
, aRight
, nRight
, &nDoc
2523 sqlite3_free(aLeft
);
2525 assert( nOut
==0 || pOut
!=0 );
2528 if( rc
==SQLITE_OK
){
2529 if( ii
!=pPhrase
->nToken
){
2530 assert( pCsr
->eEvalmode
==FTS3_EVAL_FILTER
&& isReqPos
==0 );
2531 fts3DoclistStripPositions(pOut
, &nOut
);
2542 ** This function merges two doclists according to the requirements of a
2545 ** Both input doclists must include position information. The output doclist
2546 ** includes position information if the first argument to this function
2547 ** is MERGE_POS_NEAR, or does not if it is MERGE_NEAR.
2549 static int fts3NearMerge(
2550 int mergetype
, /* MERGE_POS_NEAR or MERGE_NEAR */
2551 int nNear
, /* Parameter to NEAR operator */
2552 int nTokenLeft
, /* Number of tokens in LHS phrase arg */
2553 char *aLeft
, /* Doclist for LHS (incl. positions) */
2554 int nLeft
, /* Size of LHS doclist in bytes */
2555 int nTokenRight
, /* As nTokenLeft */
2556 char *aRight
, /* As aLeft */
2557 int nRight
, /* As nRight */
2558 char **paOut
, /* OUT: Results of merge (malloced) */
2559 int *pnOut
/* OUT: Sized of output buffer */
2561 char *aOut
; /* Buffer to write output doclist to */
2562 int rc
; /* Return code */
2564 assert( mergetype
==MERGE_POS_NEAR
|| MERGE_NEAR
);
2566 aOut
= sqlite3_malloc(nLeft
+nRight
+1);
2570 rc
= fts3DoclistMerge(mergetype
, nNear
+nTokenRight
, nNear
+nTokenLeft
,
2571 aOut
, pnOut
, aLeft
, nLeft
, aRight
, nRight
, 0
2573 if( rc
!=SQLITE_OK
){
2584 ** This function is used as part of the processing for the snippet() and
2585 ** offsets() functions.
2587 ** Both pLeft and pRight are expression nodes of type FTSQUERY_PHRASE. Both
2588 ** have their respective doclists (including position information) loaded
2589 ** in Fts3Expr.aDoclist/nDoclist. This function removes all entries from
2590 ** each doclist that are not within nNear tokens of a corresponding entry
2591 ** in the other doclist.
2593 int sqlite3Fts3ExprNearTrim(Fts3Expr
*pLeft
, Fts3Expr
*pRight
, int nNear
){
2594 int rc
; /* Return code */
2596 assert( pLeft
->eType
==FTSQUERY_PHRASE
);
2597 assert( pRight
->eType
==FTSQUERY_PHRASE
);
2598 assert( pLeft
->isLoaded
&& pRight
->isLoaded
);
2600 if( pLeft
->aDoclist
==0 || pRight
->aDoclist
==0 ){
2601 sqlite3_free(pLeft
->aDoclist
);
2602 sqlite3_free(pRight
->aDoclist
);
2603 pRight
->aDoclist
= 0;
2604 pLeft
->aDoclist
= 0;
2607 char *aOut
; /* Buffer in which to assemble new doclist */
2608 int nOut
; /* Size of buffer aOut in bytes */
2610 rc
= fts3NearMerge(MERGE_POS_NEAR
, nNear
,
2611 pLeft
->pPhrase
->nToken
, pLeft
->aDoclist
, pLeft
->nDoclist
,
2612 pRight
->pPhrase
->nToken
, pRight
->aDoclist
, pRight
->nDoclist
,
2615 if( rc
!=SQLITE_OK
) return rc
;
2616 sqlite3_free(pRight
->aDoclist
);
2617 pRight
->aDoclist
= aOut
;
2618 pRight
->nDoclist
= nOut
;
2620 rc
= fts3NearMerge(MERGE_POS_NEAR
, nNear
,
2621 pRight
->pPhrase
->nToken
, pRight
->aDoclist
, pRight
->nDoclist
,
2622 pLeft
->pPhrase
->nToken
, pLeft
->aDoclist
, pLeft
->nDoclist
,
2625 sqlite3_free(pLeft
->aDoclist
);
2626 pLeft
->aDoclist
= aOut
;
2627 pLeft
->nDoclist
= nOut
;
2634 ** Allocate an Fts3SegReaderArray for each token in the expression pExpr.
2635 ** The allocated objects are stored in the Fts3PhraseToken.pArray member
2636 ** variables of each token structure.
2638 static int fts3ExprAllocateSegReaders(
2639 Fts3Cursor
*pCsr
, /* FTS3 table */
2640 Fts3Expr
*pExpr
, /* Expression to create seg-readers for */
2641 int *pnExpr
/* OUT: Number of AND'd expressions */
2643 int rc
= SQLITE_OK
; /* Return code */
2645 assert( pCsr
->eEvalmode
==FTS3_EVAL_FILTER
);
2646 if( pnExpr
&& pExpr
->eType
!=FTSQUERY_AND
){
2651 if( pExpr
->eType
==FTSQUERY_PHRASE
){
2652 Fts3Phrase
*pPhrase
= pExpr
->pPhrase
;
2655 for(ii
=0; rc
==SQLITE_OK
&& ii
<pPhrase
->nToken
; ii
++){
2656 Fts3PhraseToken
*pTok
= &pPhrase
->aToken
[ii
];
2657 if( pTok
->pSegcsr
==0 ){
2658 rc
= fts3TermSegReaderCursor(
2659 pCsr
, pTok
->z
, pTok
->n
, pTok
->isPrefix
, &pTok
->pSegcsr
2664 rc
= fts3ExprAllocateSegReaders(pCsr
, pExpr
->pLeft
, pnExpr
);
2665 if( rc
==SQLITE_OK
){
2666 rc
= fts3ExprAllocateSegReaders(pCsr
, pExpr
->pRight
, pnExpr
);
2673 ** Free the Fts3SegReaderArray objects associated with each token in the
2674 ** expression pExpr. In other words, this function frees the resources
2675 ** allocated by fts3ExprAllocateSegReaders().
2677 static void fts3ExprFreeSegReaders(Fts3Expr
*pExpr
){
2679 Fts3Phrase
*pPhrase
= pExpr
->pPhrase
;
2682 for(kk
=0; kk
<pPhrase
->nToken
; kk
++){
2683 fts3SegReaderCursorFree(pPhrase
->aToken
[kk
].pSegcsr
);
2684 pPhrase
->aToken
[kk
].pSegcsr
= 0;
2687 fts3ExprFreeSegReaders(pExpr
->pLeft
);
2688 fts3ExprFreeSegReaders(pExpr
->pRight
);
2693 ** Return the sum of the costs of all tokens in the expression pExpr. This
2694 ** function must be called after Fts3SegReaderArrays have been allocated
2695 ** for all tokens using fts3ExprAllocateSegReaders().
2697 static int fts3ExprCost(Fts3Expr
*pExpr
){
2698 int nCost
; /* Return value */
2699 if( pExpr
->eType
==FTSQUERY_PHRASE
){
2700 Fts3Phrase
*pPhrase
= pExpr
->pPhrase
;
2703 for(ii
=0; ii
<pPhrase
->nToken
; ii
++){
2704 Fts3SegReaderCursor
*pSegcsr
= pPhrase
->aToken
[ii
].pSegcsr
;
2705 if( pSegcsr
) nCost
+= pSegcsr
->nCost
;
2708 nCost
= fts3ExprCost(pExpr
->pLeft
) + fts3ExprCost(pExpr
->pRight
);
2714 ** The following is a helper function (and type) for fts3EvalExpr(). It
2715 ** must be called after Fts3SegReaders have been allocated for every token
2716 ** in the expression. See the context it is called from in fts3EvalExpr()
2717 ** for further explanation.
2719 typedef struct ExprAndCost ExprAndCost
;
2720 struct ExprAndCost
{
2724 static void fts3ExprAssignCosts(
2725 Fts3Expr
*pExpr
, /* Expression to create seg-readers for */
2726 ExprAndCost
**ppExprCost
/* OUT: Write to *ppExprCost */
2728 if( pExpr
->eType
==FTSQUERY_AND
){
2729 fts3ExprAssignCosts(pExpr
->pLeft
, ppExprCost
);
2730 fts3ExprAssignCosts(pExpr
->pRight
, ppExprCost
);
2732 (*ppExprCost
)->pExpr
= pExpr
;
2733 (*ppExprCost
)->nCost
= fts3ExprCost(pExpr
);
2739 ** Evaluate the full-text expression pExpr against FTS3 table pTab. Store
2740 ** the resulting doclist in *paOut and *pnOut. This routine mallocs for
2741 ** the space needed to store the output. The caller is responsible for
2742 ** freeing the space when it has finished.
2744 ** This function is called in two distinct contexts:
2746 ** * From within the virtual table xFilter() method. In this case, the
2747 ** output doclist contains entries for all rows in the table, based on
2748 ** data read from the full-text index.
2750 ** In this case, if the query expression contains one or more tokens that
2751 ** are very common, then the returned doclist may contain a superset of
2752 ** the documents that actually match the expression.
2754 ** * From within the virtual table xNext() method. This call is only made
2755 ** if the call from within xFilter() found that there were very common
2756 ** tokens in the query expression and did return a superset of the
2757 ** matching documents. In this case the returned doclist contains only
2758 ** entries that correspond to the current row of the table. Instead of
2759 ** reading the data for each token from the full-text index, the data is
2760 ** already available in-memory in the Fts3PhraseToken.pDeferred structures.
2761 ** See fts3EvalDeferred() for how it gets there.
2763 ** In the first case above, Fts3Cursor.doDeferred==0. In the second (if it is
2764 ** required) Fts3Cursor.doDeferred==1.
2766 ** If the SQLite invokes the snippet(), offsets() or matchinfo() function
2767 ** as part of a SELECT on an FTS3 table, this function is called on each
2768 ** individual phrase expression in the query. If there were very common tokens
2769 ** found in the xFilter() call, then this function is called once for phrase
2770 ** for each row visited, and the returned doclist contains entries for the
2771 ** current row only. Otherwise, if there were no very common tokens, then this
2772 ** function is called once only for each phrase in the query and the returned
2773 ** doclist contains entries for all rows of the table.
2775 ** Fts3Cursor.doDeferred==1 when this function is called on phrases as a
2776 ** result of a snippet(), offsets() or matchinfo() invocation.
2778 static int fts3EvalExpr(
2779 Fts3Cursor
*p
, /* Virtual table cursor handle */
2780 Fts3Expr
*pExpr
, /* Parsed fts3 expression */
2781 char **paOut
, /* OUT: Pointer to malloc'd result buffer */
2782 int *pnOut
, /* OUT: Size of buffer at *paOut */
2783 int isReqPos
/* Require positions in output buffer */
2785 int rc
= SQLITE_OK
; /* Return code */
2787 /* Zero the output parameters. */
2792 assert( pExpr
->eType
==FTSQUERY_NEAR
|| pExpr
->eType
==FTSQUERY_OR
2793 || pExpr
->eType
==FTSQUERY_AND
|| pExpr
->eType
==FTSQUERY_NOT
2794 || pExpr
->eType
==FTSQUERY_PHRASE
2796 assert( pExpr
->eType
==FTSQUERY_PHRASE
|| isReqPos
==0 );
2798 if( pExpr
->eType
==FTSQUERY_PHRASE
){
2799 rc
= fts3PhraseSelect(p
, pExpr
->pPhrase
,
2800 isReqPos
|| (pExpr
->pParent
&& pExpr
->pParent
->eType
==FTSQUERY_NEAR
),
2803 fts3ExprFreeSegReaders(pExpr
);
2804 }else if( p
->eEvalmode
==FTS3_EVAL_FILTER
&& pExpr
->eType
==FTSQUERY_AND
){
2805 ExprAndCost
*aExpr
= 0; /* Array of AND'd expressions and costs */
2806 int nExpr
= 0; /* Size of aExpr[] */
2807 char *aRet
= 0; /* Doclist to return to caller */
2808 int nRet
= 0; /* Length of aRet[] in bytes */
2809 int nDoc
= 0x7FFFFFFF;
2811 assert( !isReqPos
);
2813 rc
= fts3ExprAllocateSegReaders(p
, pExpr
, &nExpr
);
2814 if( rc
==SQLITE_OK
){
2816 aExpr
= sqlite3_malloc(sizeof(ExprAndCost
) * nExpr
);
2817 if( !aExpr
) rc
= SQLITE_NOMEM
;
2819 if( rc
==SQLITE_OK
){
2820 int ii
; /* Used to iterate through expressions */
2822 fts3ExprAssignCosts(pExpr
, &aExpr
);
2824 for(ii
=0; ii
<nExpr
; ii
++){
2828 ExprAndCost
*pBest
= 0;
2830 for(jj
=0; jj
<nExpr
; jj
++){
2831 ExprAndCost
*pCand
= &aExpr
[jj
];
2832 if( pCand
->pExpr
&& (pBest
==0 || pCand
->nCost
<pBest
->nCost
) ){
2837 if( pBest
->nCost
>nDoc
){
2838 rc
= fts3DeferExpression(p
, p
->pExpr
);
2841 rc
= fts3EvalExpr(p
, pBest
->pExpr
, &aNew
, &nNew
, 0);
2842 if( rc
!=SQLITE_OK
) break;
2847 nDoc
= fts3DoclistCountDocids(0, aRet
, nRet
);
2850 MERGE_AND
, 0, 0, aRet
, &nRet
, aRet
, nRet
, aNew
, nNew
, &nDoc
2858 if( rc
==SQLITE_OK
){
2862 assert( *paOut
==0 );
2865 sqlite3_free(aExpr
);
2866 fts3ExprFreeSegReaders(pExpr
);
2874 assert( pExpr
->eType
==FTSQUERY_NEAR
2875 || pExpr
->eType
==FTSQUERY_OR
2876 || pExpr
->eType
==FTSQUERY_NOT
2877 || (pExpr
->eType
==FTSQUERY_AND
&& p
->eEvalmode
==FTS3_EVAL_NEXT
)
2880 if( 0==(rc
= fts3EvalExpr(p
, pExpr
->pRight
, &aRight
, &nRight
, isReqPos
))
2881 && 0==(rc
= fts3EvalExpr(p
, pExpr
->pLeft
, &aLeft
, &nLeft
, isReqPos
))
2883 switch( pExpr
->eType
){
2884 case FTSQUERY_NEAR
: {
2887 int mergetype
= MERGE_NEAR
;
2888 if( pExpr
->pParent
&& pExpr
->pParent
->eType
==FTSQUERY_NEAR
){
2889 mergetype
= MERGE_POS_NEAR
;
2891 pLeft
= pExpr
->pLeft
;
2892 while( pLeft
->eType
==FTSQUERY_NEAR
){
2893 pLeft
=pLeft
->pRight
;
2895 pRight
= pExpr
->pRight
;
2896 assert( pRight
->eType
==FTSQUERY_PHRASE
);
2897 assert( pLeft
->eType
==FTSQUERY_PHRASE
);
2899 rc
= fts3NearMerge(mergetype
, pExpr
->nNear
,
2900 pLeft
->pPhrase
->nToken
, aLeft
, nLeft
,
2901 pRight
->pPhrase
->nToken
, aRight
, nRight
,
2904 sqlite3_free(aLeft
);
2909 /* Allocate a buffer for the output. The maximum size is the
2910 ** sum of the sizes of the two input buffers. The +1 term is
2911 ** so that a buffer of zero bytes is never allocated - this can
2912 ** cause fts3DoclistMerge() to incorrectly return SQLITE_NOMEM.
2914 char *aBuffer
= sqlite3_malloc(nRight
+nLeft
+1);
2915 rc
= fts3DoclistMerge(MERGE_OR
, 0, 0, aBuffer
, pnOut
,
2916 aLeft
, nLeft
, aRight
, nRight
, 0
2919 sqlite3_free(aLeft
);
2924 assert( FTSQUERY_NOT
==MERGE_NOT
&& FTSQUERY_AND
==MERGE_AND
);
2925 fts3DoclistMerge(pExpr
->eType
, 0, 0, aLeft
, pnOut
,
2926 aLeft
, nLeft
, aRight
, nRight
, 0
2933 sqlite3_free(aRight
);
2937 assert( rc
==SQLITE_OK
|| *paOut
==0 );
2942 ** This function is called from within xNext() for each row visited by
2943 ** an FTS3 query. If evaluating the FTS3 query expression within xFilter()
2944 ** was able to determine the exact set of matching rows, this function sets
2945 ** *pbRes to true and returns SQLITE_IO immediately.
2947 ** Otherwise, if evaluating the query expression within xFilter() returned a
2948 ** superset of the matching documents instead of an exact set (this happens
2949 ** when the query includes very common tokens and it is deemed too expensive to
2950 ** load their doclists from disk), this function tests if the current row
2951 ** really does match the FTS3 query.
2953 ** If an error occurs, an SQLite error code is returned. Otherwise, SQLITE_OK
2954 ** is returned and *pbRes is set to true if the current row matches the
2955 ** FTS3 query (and should be included in the results returned to SQLite), or
2958 static int fts3EvalDeferred(
2959 Fts3Cursor
*pCsr
, /* FTS3 cursor pointing at row to test */
2960 int *pbRes
/* OUT: Set to true if row is a match */
2963 if( pCsr
->pDeferred
==0 ){
2966 rc
= fts3CursorSeek(0, pCsr
);
2967 if( rc
==SQLITE_OK
){
2968 sqlite3Fts3FreeDeferredDoclists(pCsr
);
2969 rc
= sqlite3Fts3CacheDeferredDoclists(pCsr
);
2971 if( rc
==SQLITE_OK
){
2974 rc
= fts3EvalExpr(pCsr
, pCsr
->pExpr
, &a
, &n
, 0);
2984 ** Advance the cursor to the next row in the %_content table that
2985 ** matches the search criteria. For a MATCH search, this will be
2986 ** the next row that matches. For a full-table scan, this will be
2987 ** simply the next row in the %_content table. For a docid lookup,
2988 ** this routine simply sets the EOF flag.
2990 ** Return SQLITE_OK if nothing goes wrong. SQLITE_OK is returned
2991 ** even if we reach end-of-file. The fts3EofMethod() will be called
2992 ** subsequently to determine whether or not an EOF was hit.
2994 static int fts3NextMethod(sqlite3_vtab_cursor
*pCursor
){
2996 int rc
= SQLITE_OK
; /* Return code */
2997 Fts3Cursor
*pCsr
= (Fts3Cursor
*)pCursor
;
2999 pCsr
->eEvalmode
= FTS3_EVAL_NEXT
;
3001 if( pCsr
->aDoclist
==0 ){
3002 if( SQLITE_ROW
!=sqlite3_step(pCsr
->pStmt
) ){
3004 rc
= sqlite3_reset(pCsr
->pStmt
);
3007 pCsr
->iPrevId
= sqlite3_column_int64(pCsr
->pStmt
, 0);
3009 if( pCsr
->pNextId
>=&pCsr
->aDoclist
[pCsr
->nDoclist
] ){
3013 sqlite3_reset(pCsr
->pStmt
);
3014 fts3GetDeltaVarint(&pCsr
->pNextId
, &pCsr
->iPrevId
);
3015 pCsr
->isRequireSeek
= 1;
3016 pCsr
->isMatchinfoNeeded
= 1;
3018 }while( SQLITE_OK
==(rc
= fts3EvalDeferred(pCsr
, &res
)) && res
==0 );
3024 ** This is the xFilter interface for the virtual table. See
3025 ** the virtual table xFilter method documentation for additional
3028 ** If idxNum==FTS3_FULLSCAN_SEARCH then do a full table scan against
3029 ** the %_content table.
3031 ** If idxNum==FTS3_DOCID_SEARCH then do a docid lookup for a single entry
3032 ** in the %_content table.
3034 ** If idxNum>=FTS3_FULLTEXT_SEARCH then use the full text index. The
3035 ** column on the left-hand side of the MATCH operator is column
3036 ** number idxNum-FTS3_FULLTEXT_SEARCH, 0 indexed. argv[0] is the right-hand
3037 ** side of the MATCH operator.
3039 static int fts3FilterMethod(
3040 sqlite3_vtab_cursor
*pCursor
, /* The cursor used for this query */
3041 int idxNum
, /* Strategy index */
3042 const char *idxStr
, /* Unused */
3043 int nVal
, /* Number of elements in apVal */
3044 sqlite3_value
**apVal
/* Arguments for the indexing scheme */
3046 const char *azSql
[] = {
3047 "SELECT %s FROM %Q.'%q_content' AS x WHERE docid = ?", /* non-full-scan */
3048 "SELECT %s FROM %Q.'%q_content' AS x ", /* full-scan */
3050 int rc
; /* Return code */
3051 char *zSql
; /* SQL statement used to access %_content */
3052 Fts3Table
*p
= (Fts3Table
*)pCursor
->pVtab
;
3053 Fts3Cursor
*pCsr
= (Fts3Cursor
*)pCursor
;
3055 UNUSED_PARAMETER(idxStr
);
3056 UNUSED_PARAMETER(nVal
);
3058 assert( idxNum
>=0 && idxNum
<=(FTS3_FULLTEXT_SEARCH
+p
->nColumn
) );
3059 assert( nVal
==0 || nVal
==1 );
3060 assert( (nVal
==0)==(idxNum
==FTS3_FULLSCAN_SEARCH
) );
3061 assert( p
->pSegments
==0 );
3063 /* In case the cursor has been used before, clear it now. */
3064 sqlite3_finalize(pCsr
->pStmt
);
3065 sqlite3_free(pCsr
->aDoclist
);
3066 sqlite3Fts3ExprFree(pCsr
->pExpr
);
3067 memset(&pCursor
[1], 0, sizeof(Fts3Cursor
)-sizeof(sqlite3_vtab_cursor
));
3069 if( idxNum
!=FTS3_DOCID_SEARCH
&& idxNum
!=FTS3_FULLSCAN_SEARCH
){
3070 int iCol
= idxNum
-FTS3_FULLTEXT_SEARCH
;
3071 const char *zQuery
= (const char *)sqlite3_value_text(apVal
[0]);
3073 if( zQuery
==0 && sqlite3_value_type(apVal
[0])!=SQLITE_NULL
){
3074 return SQLITE_NOMEM
;
3077 rc
= sqlite3Fts3ExprParse(p
->pTokenizer
, p
->azColumn
, p
->nColumn
,
3078 iCol
, zQuery
, -1, &pCsr
->pExpr
3080 if( rc
!=SQLITE_OK
){
3081 if( rc
==SQLITE_ERROR
){
3082 p
->base
.zErrMsg
= sqlite3_mprintf("malformed MATCH expression: [%s]",
3088 rc
= sqlite3Fts3ReadLock(p
);
3089 if( rc
!=SQLITE_OK
) return rc
;
3091 rc
= fts3EvalExpr(pCsr
, pCsr
->pExpr
, &pCsr
->aDoclist
, &pCsr
->nDoclist
, 0);
3092 sqlite3Fts3SegmentsClose(p
);
3093 if( rc
!=SQLITE_OK
) return rc
;
3094 pCsr
->pNextId
= pCsr
->aDoclist
;
3098 /* Compile a SELECT statement for this cursor. For a full-table-scan, the
3099 ** statement loops through all rows of the %_content table. For a
3100 ** full-text query or docid lookup, the statement retrieves a single
3103 zSql
= (char *)azSql
[idxNum
==FTS3_FULLSCAN_SEARCH
];
3104 zSql
= sqlite3_mprintf(zSql
, p
->zReadExprlist
, p
->zDb
, p
->zName
);
3108 rc
= sqlite3_prepare_v2(p
->db
, zSql
, -1, &pCsr
->pStmt
, 0);
3111 if( rc
==SQLITE_OK
&& idxNum
==FTS3_DOCID_SEARCH
){
3112 rc
= sqlite3_bind_value(pCsr
->pStmt
, 1, apVal
[0]);
3114 pCsr
->eSearch
= (i16
)idxNum
;
3116 if( rc
!=SQLITE_OK
) return rc
;
3117 return fts3NextMethod(pCursor
);
3121 ** This is the xEof method of the virtual table. SQLite calls this
3122 ** routine to find out if it has reached the end of a result set.
3124 static int fts3EofMethod(sqlite3_vtab_cursor
*pCursor
){
3125 return ((Fts3Cursor
*)pCursor
)->isEof
;
3129 ** This is the xRowid method. The SQLite core calls this routine to
3130 ** retrieve the rowid for the current row of the result set. fts3
3131 ** exposes %_content.docid as the rowid for the virtual table. The
3132 ** rowid should be written to *pRowid.
3134 static int fts3RowidMethod(sqlite3_vtab_cursor
*pCursor
, sqlite_int64
*pRowid
){
3135 Fts3Cursor
*pCsr
= (Fts3Cursor
*) pCursor
;
3136 if( pCsr
->aDoclist
){
3137 *pRowid
= pCsr
->iPrevId
;
3139 /* This branch runs if the query is implemented using a full-table scan
3140 ** (not using the full-text index). In this case grab the rowid from the
3141 ** SELECT statement.
3143 assert( pCsr
->isRequireSeek
==0 );
3144 *pRowid
= sqlite3_column_int64(pCsr
->pStmt
, 0);
3150 ** This is the xColumn method, called by SQLite to request a value from
3151 ** the row that the supplied cursor currently points to.
3153 static int fts3ColumnMethod(
3154 sqlite3_vtab_cursor
*pCursor
, /* Cursor to retrieve value from */
3155 sqlite3_context
*pContext
, /* Context for sqlite3_result_xxx() calls */
3156 int iCol
/* Index of column to read value from */
3158 int rc
; /* Return Code */
3159 Fts3Cursor
*pCsr
= (Fts3Cursor
*) pCursor
;
3160 Fts3Table
*p
= (Fts3Table
*)pCursor
->pVtab
;
3162 /* The column value supplied by SQLite must be in range. */
3163 assert( iCol
>=0 && iCol
<=p
->nColumn
+1 );
3165 if( iCol
==p
->nColumn
+1 ){
3166 /* This call is a request for the "docid" column. Since "docid" is an
3167 ** alias for "rowid", use the xRowid() method to obtain the value.
3169 sqlite3_int64 iRowid
;
3170 rc
= fts3RowidMethod(pCursor
, &iRowid
);
3171 sqlite3_result_int64(pContext
, iRowid
);
3172 }else if( iCol
==p
->nColumn
){
3173 /* The extra column whose name is the same as the table.
3174 ** Return a blob which is a pointer to the cursor.
3176 sqlite3_result_blob(pContext
, &pCsr
, sizeof(pCsr
), SQLITE_TRANSIENT
);
3179 rc
= fts3CursorSeek(0, pCsr
);
3180 if( rc
==SQLITE_OK
){
3181 sqlite3_result_value(pContext
, sqlite3_column_value(pCsr
->pStmt
, iCol
+1));
3188 ** This function is the implementation of the xUpdate callback used by
3189 ** FTS3 virtual tables. It is invoked by SQLite each time a row is to be
3190 ** inserted, updated or deleted.
3192 static int fts3UpdateMethod(
3193 sqlite3_vtab
*pVtab
, /* Virtual table handle */
3194 int nArg
, /* Size of argument array */
3195 sqlite3_value
**apVal
, /* Array of arguments */
3196 sqlite_int64
*pRowid
/* OUT: The affected (or effected) rowid */
3198 return sqlite3Fts3UpdateMethod(pVtab
, nArg
, apVal
, pRowid
);
3202 ** Implementation of xSync() method. Flush the contents of the pending-terms
3203 ** hash-table to the database.
3205 static int fts3SyncMethod(sqlite3_vtab
*pVtab
){
3206 int rc
= sqlite3Fts3PendingTermsFlush((Fts3Table
*)pVtab
);
3207 sqlite3Fts3SegmentsClose((Fts3Table
*)pVtab
);
3212 ** Implementation of xBegin() method. This is a no-op.
3214 static int fts3BeginMethod(sqlite3_vtab
*pVtab
){
3215 UNUSED_PARAMETER(pVtab
);
3216 assert( ((Fts3Table
*)pVtab
)->nPendingData
==0 );
3221 ** Implementation of xCommit() method. This is a no-op. The contents of
3222 ** the pending-terms hash-table have already been flushed into the database
3223 ** by fts3SyncMethod().
3225 static int fts3CommitMethod(sqlite3_vtab
*pVtab
){
3226 UNUSED_PARAMETER(pVtab
);
3227 assert( ((Fts3Table
*)pVtab
)->nPendingData
==0 );
3232 ** Implementation of xRollback(). Discard the contents of the pending-terms
3233 ** hash-table. Any changes made to the database are reverted by SQLite.
3235 static int fts3RollbackMethod(sqlite3_vtab
*pVtab
){
3236 sqlite3Fts3PendingTermsClear((Fts3Table
*)pVtab
);
3241 ** Load the doclist associated with expression pExpr to pExpr->aDoclist.
3242 ** The loaded doclist contains positions as well as the document ids.
3243 ** This is used by the matchinfo(), snippet() and offsets() auxillary
3246 int sqlite3Fts3ExprLoadDoclist(Fts3Cursor
*pCsr
, Fts3Expr
*pExpr
){
3248 assert( pExpr
->eType
==FTSQUERY_PHRASE
&& pExpr
->pPhrase
);
3249 assert( pCsr
->eEvalmode
==FTS3_EVAL_NEXT
);
3250 rc
= fts3EvalExpr(pCsr
, pExpr
, &pExpr
->aDoclist
, &pExpr
->nDoclist
, 1);
3254 int sqlite3Fts3ExprLoadFtDoclist(
3261 assert( pCsr
->eEvalmode
==FTS3_EVAL_NEXT
);
3262 assert( pExpr
->eType
==FTSQUERY_PHRASE
&& pExpr
->pPhrase
);
3263 pCsr
->eEvalmode
= FTS3_EVAL_MATCHINFO
;
3264 rc
= fts3EvalExpr(pCsr
, pExpr
, paDoclist
, pnDoclist
, 1);
3265 pCsr
->eEvalmode
= FTS3_EVAL_NEXT
;
3270 ** After ExprLoadDoclist() (see above) has been called, this function is
3271 ** used to iterate/search through the position lists that make up the doclist
3272 ** stored in pExpr->aDoclist.
3274 char *sqlite3Fts3FindPositions(
3275 Fts3Expr
*pExpr
, /* Access this expressions doclist */
3276 sqlite3_int64 iDocid
, /* Docid associated with requested pos-list */
3277 int iCol
/* Column of requested pos-list */
3279 assert( pExpr
->isLoaded
);
3280 if( pExpr
->aDoclist
){
3281 char *pEnd
= &pExpr
->aDoclist
[pExpr
->nDoclist
];
3284 if( pExpr
->pCurrent
==0 ){
3285 pExpr
->pCurrent
= pExpr
->aDoclist
;
3286 pExpr
->iCurrent
= 0;
3287 pExpr
->pCurrent
+= sqlite3Fts3GetVarint(pExpr
->pCurrent
,&pExpr
->iCurrent
);
3289 pCsr
= pExpr
->pCurrent
;
3293 if( pExpr
->iCurrent
<iDocid
){
3294 fts3PoslistCopy(0, &pCsr
);
3296 fts3GetDeltaVarint(&pCsr
, &pExpr
->iCurrent
);
3298 pExpr
->pCurrent
= pCsr
;
3300 if( pExpr
->iCurrent
==iDocid
){
3303 /* If iCol is negative, return a pointer to the start of the
3304 ** position-list (instead of a pointer to the start of a list
3305 ** of offsets associated with a specific column).
3309 while( iThis
<iCol
){
3310 fts3ColumnlistCopy(0, &pCsr
);
3311 if( *pCsr
==0x00 ) return 0;
3313 pCsr
+= sqlite3Fts3GetVarint32(pCsr
, &iThis
);
3315 if( iCol
==iThis
&& (*pCsr
&0xFE) ) return pCsr
;
3326 ** Helper function used by the implementation of the overloaded snippet(),
3327 ** offsets() and optimize() SQL functions.
3329 ** If the value passed as the third argument is a blob of size
3330 ** sizeof(Fts3Cursor*), then the blob contents are copied to the
3331 ** output variable *ppCsr and SQLITE_OK is returned. Otherwise, an error
3332 ** message is written to context pContext and SQLITE_ERROR returned. The
3333 ** string passed via zFunc is used as part of the error message.
3335 static int fts3FunctionArg(
3336 sqlite3_context
*pContext
, /* SQL function call context */
3337 const char *zFunc
, /* Function name */
3338 sqlite3_value
*pVal
, /* argv[0] passed to function */
3339 Fts3Cursor
**ppCsr
/* OUT: Store cursor handle here */
3342 if( sqlite3_value_type(pVal
)!=SQLITE_BLOB
3343 || sqlite3_value_bytes(pVal
)!=sizeof(Fts3Cursor
*)
3345 char *zErr
= sqlite3_mprintf("illegal first argument to %s", zFunc
);
3346 sqlite3_result_error(pContext
, zErr
, -1);
3348 return SQLITE_ERROR
;
3350 memcpy(&pRet
, sqlite3_value_blob(pVal
), sizeof(Fts3Cursor
*));
3356 ** Implementation of the snippet() function for FTS3
3358 static void fts3SnippetFunc(
3359 sqlite3_context
*pContext
, /* SQLite function call context */
3360 int nVal
, /* Size of apVal[] array */
3361 sqlite3_value
**apVal
/* Array of arguments */
3363 Fts3Cursor
*pCsr
; /* Cursor handle passed through apVal[0] */
3364 const char *zStart
= "<b>";
3365 const char *zEnd
= "</b>";
3366 const char *zEllipsis
= "<b>...</b>";
3368 int nToken
= 15; /* Default number of tokens in snippet */
3370 /* There must be at least one argument passed to this function (otherwise
3371 ** the non-overloaded version would have been called instead of this one).
3376 sqlite3_result_error(pContext
,
3377 "wrong number of arguments to function snippet()", -1);
3380 if( fts3FunctionArg(pContext
, "snippet", apVal
[0], &pCsr
) ) return;
3383 case 6: nToken
= sqlite3_value_int(apVal
[5]);
3384 case 5: iCol
= sqlite3_value_int(apVal
[4]);
3385 case 4: zEllipsis
= (const char*)sqlite3_value_text(apVal
[3]);
3386 case 3: zEnd
= (const char*)sqlite3_value_text(apVal
[2]);
3387 case 2: zStart
= (const char*)sqlite3_value_text(apVal
[1]);
3389 if( !zEllipsis
|| !zEnd
|| !zStart
){
3390 sqlite3_result_error_nomem(pContext
);
3391 }else if( SQLITE_OK
==fts3CursorSeek(pContext
, pCsr
) ){
3392 sqlite3Fts3Snippet(pContext
, pCsr
, zStart
, zEnd
, zEllipsis
, iCol
, nToken
);
3397 ** Implementation of the offsets() function for FTS3
3399 static void fts3OffsetsFunc(
3400 sqlite3_context
*pContext
, /* SQLite function call context */
3401 int nVal
, /* Size of argument array */
3402 sqlite3_value
**apVal
/* Array of arguments */
3404 Fts3Cursor
*pCsr
; /* Cursor handle passed through apVal[0] */
3406 UNUSED_PARAMETER(nVal
);
3409 if( fts3FunctionArg(pContext
, "offsets", apVal
[0], &pCsr
) ) return;
3411 if( SQLITE_OK
==fts3CursorSeek(pContext
, pCsr
) ){
3412 sqlite3Fts3Offsets(pContext
, pCsr
);
3417 ** Implementation of the special optimize() function for FTS3. This
3418 ** function merges all segments in the database to a single segment.
3419 ** Example usage is:
3421 ** SELECT optimize(t) FROM t LIMIT 1;
3423 ** where 't' is the name of an FTS3 table.
3425 static void fts3OptimizeFunc(
3426 sqlite3_context
*pContext
, /* SQLite function call context */
3427 int nVal
, /* Size of argument array */
3428 sqlite3_value
**apVal
/* Array of arguments */
3430 int rc
; /* Return code */
3431 Fts3Table
*p
; /* Virtual table handle */
3432 Fts3Cursor
*pCursor
; /* Cursor handle passed through apVal[0] */
3434 UNUSED_PARAMETER(nVal
);
3437 if( fts3FunctionArg(pContext
, "optimize", apVal
[0], &pCursor
) ) return;
3438 p
= (Fts3Table
*)pCursor
->base
.pVtab
;
3441 rc
= sqlite3Fts3Optimize(p
);
3445 sqlite3_result_text(pContext
, "Index optimized", -1, SQLITE_STATIC
);
3448 sqlite3_result_text(pContext
, "Index already optimal", -1, SQLITE_STATIC
);
3451 sqlite3_result_error_code(pContext
, rc
);
3457 ** Implementation of the matchinfo() function for FTS3
3459 static void fts3MatchinfoFunc(
3460 sqlite3_context
*pContext
, /* SQLite function call context */
3461 int nVal
, /* Size of argument array */
3462 sqlite3_value
**apVal
/* Array of arguments */
3464 Fts3Cursor
*pCsr
; /* Cursor handle passed through apVal[0] */
3465 assert( nVal
==1 || nVal
==2 );
3466 if( SQLITE_OK
==fts3FunctionArg(pContext
, "matchinfo", apVal
[0], &pCsr
) ){
3467 const char *zArg
= 0;
3469 zArg
= (const char *)sqlite3_value_text(apVal
[1]);
3471 sqlite3Fts3Matchinfo(pContext
, pCsr
, zArg
);
3476 ** This routine implements the xFindFunction method for the FTS3
3479 static int fts3FindFunctionMethod(
3480 sqlite3_vtab
*pVtab
, /* Virtual table handle */
3481 int nArg
, /* Number of SQL function arguments */
3482 const char *zName
, /* Name of SQL function */
3483 void (**pxFunc
)(sqlite3_context
*,int,sqlite3_value
**), /* OUT: Result */
3484 void **ppArg
/* Unused */
3488 void (*xFunc
)(sqlite3_context
*,int,sqlite3_value
**);
3490 { "snippet", fts3SnippetFunc
},
3491 { "offsets", fts3OffsetsFunc
},
3492 { "optimize", fts3OptimizeFunc
},
3493 { "matchinfo", fts3MatchinfoFunc
},
3495 int i
; /* Iterator variable */
3497 UNUSED_PARAMETER(pVtab
);
3498 UNUSED_PARAMETER(nArg
);
3499 UNUSED_PARAMETER(ppArg
);
3501 for(i
=0; i
<SizeofArray(aOverload
); i
++){
3502 if( strcmp(zName
, aOverload
[i
].zName
)==0 ){
3503 *pxFunc
= aOverload
[i
].xFunc
;
3508 /* No function of the specified name was found. Return 0. */
3513 ** Implementation of FTS3 xRename method. Rename an fts3 table.
3515 static int fts3RenameMethod(
3516 sqlite3_vtab
*pVtab
, /* Virtual table handle */
3517 const char *zName
/* New name of table */
3519 Fts3Table
*p
= (Fts3Table
*)pVtab
;
3520 sqlite3
*db
= p
->db
; /* Database connection */
3521 int rc
; /* Return Code */
3523 rc
= sqlite3Fts3PendingTermsFlush(p
);
3524 if( rc
!=SQLITE_OK
){
3529 "ALTER TABLE %Q.'%q_content' RENAME TO '%q_content';",
3530 p
->zDb
, p
->zName
, zName
3532 if( p
->bHasDocsize
){
3534 "ALTER TABLE %Q.'%q_docsize' RENAME TO '%q_docsize';",
3535 p
->zDb
, p
->zName
, zName
3540 "ALTER TABLE %Q.'%q_stat' RENAME TO '%q_stat';",
3541 p
->zDb
, p
->zName
, zName
3545 "ALTER TABLE %Q.'%q_segments' RENAME TO '%q_segments';",
3546 p
->zDb
, p
->zName
, zName
3549 "ALTER TABLE %Q.'%q_segdir' RENAME TO '%q_segdir';",
3550 p
->zDb
, p
->zName
, zName
3555 static const sqlite3_module fts3Module
= {
3557 /* xCreate */ fts3CreateMethod
,
3558 /* xConnect */ fts3ConnectMethod
,
3559 /* xBestIndex */ fts3BestIndexMethod
,
3560 /* xDisconnect */ fts3DisconnectMethod
,
3561 /* xDestroy */ fts3DestroyMethod
,
3562 /* xOpen */ fts3OpenMethod
,
3563 /* xClose */ fts3CloseMethod
,
3564 /* xFilter */ fts3FilterMethod
,
3565 /* xNext */ fts3NextMethod
,
3566 /* xEof */ fts3EofMethod
,
3567 /* xColumn */ fts3ColumnMethod
,
3568 /* xRowid */ fts3RowidMethod
,
3569 /* xUpdate */ fts3UpdateMethod
,
3570 /* xBegin */ fts3BeginMethod
,
3571 /* xSync */ fts3SyncMethod
,
3572 /* xCommit */ fts3CommitMethod
,
3573 /* xRollback */ fts3RollbackMethod
,
3574 /* xFindFunction */ fts3FindFunctionMethod
,
3575 /* xRename */ fts3RenameMethod
,
3579 ** This function is registered as the module destructor (called when an
3580 ** FTS3 enabled database connection is closed). It frees the memory
3581 ** allocated for the tokenizer hash table.
3583 static void hashDestroy(void *p
){
3584 Fts3Hash
*pHash
= (Fts3Hash
*)p
;
3585 sqlite3Fts3HashClear(pHash
);
3586 sqlite3_free(pHash
);
3590 ** The fts3 built-in tokenizers - "simple", "porter" and "icu"- are
3591 ** implemented in files fts3_tokenizer1.c, fts3_porter.c and fts3_icu.c
3592 ** respectively. The following three forward declarations are for functions
3593 ** declared in these files used to retrieve the respective implementations.
3595 ** Calling sqlite3Fts3SimpleTokenizerModule() sets the value pointed
3596 ** to by the argument to point to the "simple" tokenizer implementation.
3599 void sqlite3Fts3SimpleTokenizerModule(sqlite3_tokenizer_module
const**ppModule
);
3600 void sqlite3Fts3PorterTokenizerModule(sqlite3_tokenizer_module
const**ppModule
);
3601 #ifdef SQLITE_ENABLE_ICU
3602 void sqlite3Fts3IcuTokenizerModule(sqlite3_tokenizer_module
const**ppModule
);
3606 ** Initialise the fts3 extension. If this extension is built as part
3607 ** of the sqlite library, then this function is called directly by
3608 ** SQLite. If fts3 is built as a dynamically loadable extension, this
3609 ** function is called by the sqlite3_extension_init() entry point.
3611 int sqlite3Fts3Init(sqlite3
*db
){
3613 Fts3Hash
*pHash
= 0;
3614 const sqlite3_tokenizer_module
*pSimple
= 0;
3615 const sqlite3_tokenizer_module
*pPorter
= 0;
3617 #ifdef SQLITE_ENABLE_ICU
3618 const sqlite3_tokenizer_module
*pIcu
= 0;
3619 sqlite3Fts3IcuTokenizerModule(&pIcu
);
3622 rc
= sqlite3Fts3InitAux(db
);
3623 if( rc
!=SQLITE_OK
) return rc
;
3625 sqlite3Fts3SimpleTokenizerModule(&pSimple
);
3626 sqlite3Fts3PorterTokenizerModule(&pPorter
);
3628 /* Allocate and initialise the hash-table used to store tokenizers. */
3629 pHash
= sqlite3_malloc(sizeof(Fts3Hash
));
3633 sqlite3Fts3HashInit(pHash
, FTS3_HASH_STRING
, 1);
3636 /* Load the built-in tokenizers into the hash table */
3637 if( rc
==SQLITE_OK
){
3638 if( sqlite3Fts3HashInsert(pHash
, "simple", 7, (void *)pSimple
)
3639 || sqlite3Fts3HashInsert(pHash
, "porter", 7, (void *)pPorter
)
3640 #ifdef SQLITE_ENABLE_ICU
3641 || (pIcu
&& sqlite3Fts3HashInsert(pHash
, "icu", 4, (void *)pIcu
))
3649 if( rc
==SQLITE_OK
){
3650 rc
= sqlite3Fts3ExprInitTestInterface(db
);
3654 /* Create the virtual table wrapper around the hash-table and overload
3655 ** the two scalar functions. If this is successful, register the
3656 ** module with sqlite.
3659 #if CHROMIUM_FTS3_CHANGES && !SQLITE_TEST
3660 /* fts3_tokenizer() disabled for security reasons. */
3662 && SQLITE_OK
==(rc
= sqlite3Fts3InitHashTable(db
, pHash
, "fts3_tokenizer"))
3664 && SQLITE_OK
==(rc
= sqlite3_overload_function(db
, "snippet", -1))
3665 && SQLITE_OK
==(rc
= sqlite3_overload_function(db
, "offsets", 1))
3666 && SQLITE_OK
==(rc
= sqlite3_overload_function(db
, "matchinfo", 1))
3667 && SQLITE_OK
==(rc
= sqlite3_overload_function(db
, "matchinfo", 2))
3668 && SQLITE_OK
==(rc
= sqlite3_overload_function(db
, "optimize", 1))
3670 rc
= sqlite3_create_module_v2(
3671 db
, "fts3", &fts3Module
, (void *)pHash
, hashDestroy
3673 #if CHROMIUM_FTS3_CHANGES && !SQLITE_TEST
3674 /* Disable fts4 pending review. */
3676 if( rc
==SQLITE_OK
){
3677 rc
= sqlite3_create_module_v2(
3678 db
, "fts4", &fts3Module
, (void *)pHash
, 0
3685 /* An error has occurred. Delete the hash table and return the error code. */
3686 assert( rc
!=SQLITE_OK
);
3688 sqlite3Fts3HashClear(pHash
);
3689 sqlite3_free(pHash
);
3695 int sqlite3_extension_init(
3698 const sqlite3_api_routines
*pApi
3700 SQLITE_EXTENSION_INIT2(pApi
)
3701 return sqlite3Fts3Init(db
);