1 // Copyright (c) 2012 The Chromium Authors. All rights reserved.
2 // Use of this source code is governed by a BSD-style license that can be
3 // found in the LICENSE file.
5 #include "net/quic/quic_connection.h"
9 #include "base/basictypes.h"
10 #include "base/bind.h"
11 #include "base/memory/scoped_ptr.h"
12 #include "base/stl_util.h"
13 #include "net/base/net_errors.h"
14 #include "net/quic/congestion_control/loss_detection_interface.h"
15 #include "net/quic/congestion_control/send_algorithm_interface.h"
16 #include "net/quic/crypto/null_encrypter.h"
17 #include "net/quic/crypto/quic_decrypter.h"
18 #include "net/quic/crypto/quic_encrypter.h"
19 #include "net/quic/quic_ack_notifier.h"
20 #include "net/quic/quic_flags.h"
21 #include "net/quic/quic_protocol.h"
22 #include "net/quic/quic_utils.h"
23 #include "net/quic/test_tools/mock_clock.h"
24 #include "net/quic/test_tools/mock_random.h"
25 #include "net/quic/test_tools/quic_config_peer.h"
26 #include "net/quic/test_tools/quic_connection_peer.h"
27 #include "net/quic/test_tools/quic_framer_peer.h"
28 #include "net/quic/test_tools/quic_packet_creator_peer.h"
29 #include "net/quic/test_tools/quic_packet_generator_peer.h"
30 #include "net/quic/test_tools/quic_sent_packet_manager_peer.h"
31 #include "net/quic/test_tools/quic_test_utils.h"
32 #include "net/quic/test_tools/simple_quic_framer.h"
33 #include "net/test/gtest_util.h"
34 #include "testing/gmock/include/gmock/gmock.h"
35 #include "testing/gtest/include/gtest/gtest.h"
37 using base::StringPiece
;
42 using testing::AnyNumber
;
43 using testing::AtLeast
;
44 using testing::Contains
;
46 using testing::InSequence
;
47 using testing::InvokeWithoutArgs
;
48 using testing::NiceMock
;
50 using testing::Return
;
51 using testing::SaveArg
;
52 using testing::StrictMock
;
59 const char data1
[] = "foo";
60 const char data2
[] = "bar";
62 const bool kFin
= true;
63 const bool kEntropyFlag
= true;
65 const QuicPacketEntropyHash kTestEntropyHash
= 76;
67 const int kDefaultRetransmissionTimeMs
= 500;
69 // TaggingEncrypter appends kTagSize bytes of |tag| to the end of each message.
70 class TaggingEncrypter
: public QuicEncrypter
{
72 explicit TaggingEncrypter(uint8 tag
)
76 ~TaggingEncrypter() override
{}
78 // QuicEncrypter interface.
79 bool SetKey(StringPiece key
) override
{ return true; }
81 bool SetNoncePrefix(StringPiece nonce_prefix
) override
{ return true; }
83 bool EncryptPacket(QuicPacketNumber packet_number
,
84 StringPiece associated_data
,
85 StringPiece plaintext
,
87 size_t* output_length
,
88 size_t max_output_length
) override
{
89 const size_t len
= plaintext
.size() + kTagSize
;
90 if (max_output_length
< len
) {
93 memcpy(output
, plaintext
.data(), plaintext
.size());
94 output
+= plaintext
.size();
95 memset(output
, tag_
, kTagSize
);
100 size_t GetKeySize() const override
{ return 0; }
101 size_t GetNoncePrefixSize() const override
{ return 0; }
103 size_t GetMaxPlaintextSize(size_t ciphertext_size
) const override
{
104 return ciphertext_size
- kTagSize
;
107 size_t GetCiphertextSize(size_t plaintext_size
) const override
{
108 return plaintext_size
+ kTagSize
;
111 StringPiece
GetKey() const override
{ return StringPiece(); }
113 StringPiece
GetNoncePrefix() const override
{ return StringPiece(); }
122 DISALLOW_COPY_AND_ASSIGN(TaggingEncrypter
);
125 // TaggingDecrypter ensures that the final kTagSize bytes of the message all
126 // have the same value and then removes them.
127 class TaggingDecrypter
: public QuicDecrypter
{
129 ~TaggingDecrypter() override
{}
131 // QuicDecrypter interface
132 bool SetKey(StringPiece key
) override
{ return true; }
134 bool SetNoncePrefix(StringPiece nonce_prefix
) override
{ return true; }
136 bool DecryptPacket(QuicPacketNumber packet_number
,
137 const StringPiece
& associated_data
,
138 const StringPiece
& ciphertext
,
140 size_t* output_length
,
141 size_t max_output_length
) override
{
142 if (ciphertext
.size() < kTagSize
) {
145 if (!CheckTag(ciphertext
, GetTag(ciphertext
))) {
148 *output_length
= ciphertext
.size() - kTagSize
;
149 memcpy(output
, ciphertext
.data(), *output_length
);
153 StringPiece
GetKey() const override
{ return StringPiece(); }
154 StringPiece
GetNoncePrefix() const override
{ return StringPiece(); }
155 const char* cipher_name() const override
{ return "Tagging"; }
156 // Use a distinct value starting with 0xFFFFFF, which is never used by TLS.
157 uint32
cipher_id() const override
{ return 0xFFFFFFF0; }
160 virtual uint8
GetTag(StringPiece ciphertext
) {
161 return ciphertext
.data()[ciphertext
.size()-1];
169 bool CheckTag(StringPiece ciphertext
, uint8 tag
) {
170 for (size_t i
= ciphertext
.size() - kTagSize
; i
< ciphertext
.size(); i
++) {
171 if (ciphertext
.data()[i
] != tag
) {
180 // StringTaggingDecrypter ensures that the final kTagSize bytes of the message
181 // match the expected value.
182 class StrictTaggingDecrypter
: public TaggingDecrypter
{
184 explicit StrictTaggingDecrypter(uint8 tag
) : tag_(tag
) {}
185 ~StrictTaggingDecrypter() override
{}
187 // TaggingQuicDecrypter
188 uint8
GetTag(StringPiece ciphertext
) override
{ return tag_
; }
190 const char* cipher_name() const override
{ return "StrictTagging"; }
191 // Use a distinct value starting with 0xFFFFFF, which is never used by TLS.
192 uint32
cipher_id() const override
{ return 0xFFFFFFF1; }
198 class TestConnectionHelper
: public QuicConnectionHelperInterface
{
200 class TestAlarm
: public QuicAlarm
{
202 explicit TestAlarm(QuicAlarm::Delegate
* delegate
)
203 : QuicAlarm(delegate
) {
206 void SetImpl() override
{}
207 void CancelImpl() override
{}
208 using QuicAlarm::Fire
;
211 TestConnectionHelper(MockClock
* clock
, MockRandom
* random_generator
)
213 random_generator_(random_generator
) {
214 clock_
->AdvanceTime(QuicTime::Delta::FromSeconds(1));
217 // QuicConnectionHelperInterface
218 const QuicClock
* GetClock() const override
{ return clock_
; }
220 QuicRandom
* GetRandomGenerator() override
{ return random_generator_
; }
222 QuicAlarm
* CreateAlarm(QuicAlarm::Delegate
* delegate
) override
{
223 return new TestAlarm(delegate
);
228 MockRandom
* random_generator_
;
230 DISALLOW_COPY_AND_ASSIGN(TestConnectionHelper
);
233 class TestPacketWriter
: public QuicPacketWriter
{
235 TestPacketWriter(QuicVersion version
, MockClock
*clock
)
237 framer_(SupportedVersions(version_
)),
238 last_packet_size_(0),
239 write_blocked_(false),
240 block_on_next_write_(false),
241 is_write_blocked_data_buffered_(false),
242 final_bytes_of_last_packet_(0),
243 final_bytes_of_previous_packet_(0),
244 use_tagging_decrypter_(false),
245 packets_write_attempts_(0),
247 write_pause_time_delta_(QuicTime::Delta::Zero()) {
250 // QuicPacketWriter interface
251 WriteResult
WritePacket(const char* buffer
,
253 const IPAddressNumber
& self_address
,
254 const IPEndPoint
& peer_address
) override
{
255 QuicEncryptedPacket
packet(buffer
, buf_len
);
256 ++packets_write_attempts_
;
258 if (packet
.length() >= sizeof(final_bytes_of_last_packet_
)) {
259 final_bytes_of_previous_packet_
= final_bytes_of_last_packet_
;
260 memcpy(&final_bytes_of_last_packet_
, packet
.data() + packet
.length() - 4,
261 sizeof(final_bytes_of_last_packet_
));
264 if (use_tagging_decrypter_
) {
265 framer_
.framer()->SetDecrypter(ENCRYPTION_NONE
, new TaggingDecrypter
);
267 EXPECT_TRUE(framer_
.ProcessPacket(packet
));
268 if (block_on_next_write_
) {
269 write_blocked_
= true;
270 block_on_next_write_
= false;
272 if (IsWriteBlocked()) {
273 return WriteResult(WRITE_STATUS_BLOCKED
, -1);
275 last_packet_size_
= packet
.length();
277 if (!write_pause_time_delta_
.IsZero()) {
278 clock_
->AdvanceTime(write_pause_time_delta_
);
280 return WriteResult(WRITE_STATUS_OK
, last_packet_size_
);
283 bool IsWriteBlockedDataBuffered() const override
{
284 return is_write_blocked_data_buffered_
;
287 bool IsWriteBlocked() const override
{ return write_blocked_
; }
289 void SetWritable() override
{ write_blocked_
= false; }
291 void BlockOnNextWrite() { block_on_next_write_
= true; }
293 // Sets the amount of time that the writer should before the actual write.
294 void SetWritePauseTimeDelta(QuicTime::Delta delta
) {
295 write_pause_time_delta_
= delta
;
298 const QuicPacketHeader
& header() { return framer_
.header(); }
300 size_t frame_count() const { return framer_
.num_frames(); }
302 const vector
<QuicAckFrame
>& ack_frames() const {
303 return framer_
.ack_frames();
306 const vector
<QuicStopWaitingFrame
>& stop_waiting_frames() const {
307 return framer_
.stop_waiting_frames();
310 const vector
<QuicConnectionCloseFrame
>& connection_close_frames() const {
311 return framer_
.connection_close_frames();
314 const vector
<QuicRstStreamFrame
>& rst_stream_frames() const {
315 return framer_
.rst_stream_frames();
318 const vector
<QuicStreamFrame
>& stream_frames() const {
319 return framer_
.stream_frames();
322 const vector
<QuicPingFrame
>& ping_frames() const {
323 return framer_
.ping_frames();
326 size_t last_packet_size() {
327 return last_packet_size_
;
330 const QuicVersionNegotiationPacket
* version_negotiation_packet() {
331 return framer_
.version_negotiation_packet();
334 void set_is_write_blocked_data_buffered(bool buffered
) {
335 is_write_blocked_data_buffered_
= buffered
;
338 void set_perspective(Perspective perspective
) {
339 // We invert perspective here, because the framer needs to parse packets
341 perspective
= perspective
== Perspective::IS_CLIENT
342 ? Perspective::IS_SERVER
343 : Perspective::IS_CLIENT
;
344 QuicFramerPeer::SetPerspective(framer_
.framer(), perspective
);
347 // final_bytes_of_last_packet_ returns the last four bytes of the previous
348 // packet as a little-endian, uint32. This is intended to be used with a
349 // TaggingEncrypter so that tests can determine which encrypter was used for
351 uint32
final_bytes_of_last_packet() { return final_bytes_of_last_packet_
; }
353 // Returns the final bytes of the second to last packet.
354 uint32
final_bytes_of_previous_packet() {
355 return final_bytes_of_previous_packet_
;
358 void use_tagging_decrypter() {
359 use_tagging_decrypter_
= true;
362 uint32
packets_write_attempts() { return packets_write_attempts_
; }
364 void Reset() { framer_
.Reset(); }
366 void SetSupportedVersions(const QuicVersionVector
& versions
) {
367 framer_
.SetSupportedVersions(versions
);
371 QuicVersion version_
;
372 SimpleQuicFramer framer_
;
373 size_t last_packet_size_
;
375 bool block_on_next_write_
;
376 bool is_write_blocked_data_buffered_
;
377 uint32 final_bytes_of_last_packet_
;
378 uint32 final_bytes_of_previous_packet_
;
379 bool use_tagging_decrypter_
;
380 uint32 packets_write_attempts_
;
382 // If non-zero, the clock will pause during WritePacket for this amount of
384 QuicTime::Delta write_pause_time_delta_
;
386 DISALLOW_COPY_AND_ASSIGN(TestPacketWriter
);
389 class TestConnection
: public QuicConnection
{
391 TestConnection(QuicConnectionId connection_id
,
393 TestConnectionHelper
* helper
,
394 const PacketWriterFactory
& factory
,
395 Perspective perspective
,
397 : QuicConnection(connection_id
,
401 /* owns_writer= */ false,
403 /* is_secure= */ false,
404 SupportedVersions(version
)) {
405 // Disable tail loss probes for most tests.
406 QuicSentPacketManagerPeer::SetMaxTailLossProbes(
407 QuicConnectionPeer::GetSentPacketManager(this), 0);
408 writer()->set_perspective(perspective
);
412 QuicConnectionPeer::SendAck(this);
415 void SetSendAlgorithm(SendAlgorithmInterface
* send_algorithm
) {
416 QuicConnectionPeer::SetSendAlgorithm(this, send_algorithm
);
419 void SetLossAlgorithm(LossDetectionInterface
* loss_algorithm
) {
420 QuicSentPacketManagerPeer::SetLossAlgorithm(
421 QuicConnectionPeer::GetSentPacketManager(this), loss_algorithm
);
424 void SendPacket(EncryptionLevel level
,
425 QuicPacketNumber packet_number
,
427 QuicPacketEntropyHash entropy_hash
,
428 HasRetransmittableData retransmittable
,
430 bool has_pending_frames
) {
431 RetransmittableFrames
* retransmittable_frames
=
432 retransmittable
== HAS_RETRANSMITTABLE_DATA
433 ? new RetransmittableFrames(ENCRYPTION_NONE
)
435 char buffer
[kMaxPacketSize
];
436 QuicEncryptedPacket
* encrypted
=
437 QuicConnectionPeer::GetFramer(this)->EncryptPayload(
438 ENCRYPTION_NONE
, packet_number
, *packet
, buffer
, kMaxPacketSize
);
440 OnSerializedPacket(SerializedPacket(
441 packet_number
, PACKET_6BYTE_PACKET_NUMBER
, encrypted
, entropy_hash
,
442 retransmittable_frames
, has_ack
, has_pending_frames
));
445 QuicConsumedData
SendStreamDataWithString(
448 QuicStreamOffset offset
,
450 QuicAckNotifier::DelegateInterface
* delegate
) {
451 return SendStreamDataWithStringHelper(id
, data
, offset
, fin
,
452 MAY_FEC_PROTECT
, delegate
);
455 QuicConsumedData
SendStreamDataWithStringWithFec(
458 QuicStreamOffset offset
,
460 QuicAckNotifier::DelegateInterface
* delegate
) {
461 return SendStreamDataWithStringHelper(id
, data
, offset
, fin
,
462 MUST_FEC_PROTECT
, delegate
);
465 QuicConsumedData
SendStreamDataWithStringHelper(
468 QuicStreamOffset offset
,
470 FecProtection fec_protection
,
471 QuicAckNotifier::DelegateInterface
* delegate
) {
473 QuicIOVector
data_iov(MakeIOVector(data
, &iov
));
474 return QuicConnection::SendStreamData(id
, data_iov
, offset
, fin
,
475 fec_protection
, delegate
);
478 QuicConsumedData
SendStreamData3() {
479 return SendStreamDataWithString(kClientDataStreamId1
, "food", 0, !kFin
,
483 QuicConsumedData
SendStreamData3WithFec() {
484 return SendStreamDataWithStringWithFec(kClientDataStreamId1
, "food", 0,
488 QuicConsumedData
SendStreamData5() {
489 return SendStreamDataWithString(kClientDataStreamId2
, "food2", 0, !kFin
,
493 QuicConsumedData
SendStreamData5WithFec() {
494 return SendStreamDataWithStringWithFec(kClientDataStreamId2
, "food2", 0,
497 // Ensures the connection can write stream data before writing.
498 QuicConsumedData
EnsureWritableAndSendStreamData5() {
499 EXPECT_TRUE(CanWriteStreamData());
500 return SendStreamData5();
503 // The crypto stream has special semantics so that it is not blocked by a
504 // congestion window limitation, and also so that it gets put into a separate
505 // packet (so that it is easier to reason about a crypto frame not being
506 // split needlessly across packet boundaries). As a result, we have separate
507 // tests for some cases for this stream.
508 QuicConsumedData
SendCryptoStreamData() {
509 return SendStreamDataWithString(kCryptoStreamId
, "chlo", 0, !kFin
, nullptr);
512 void set_version(QuicVersion version
) {
513 QuicConnectionPeer::GetFramer(this)->set_version(version
);
516 void SetSupportedVersions(const QuicVersionVector
& versions
) {
517 QuicConnectionPeer::GetFramer(this)->SetSupportedVersions(versions
);
518 writer()->SetSupportedVersions(versions
);
521 void set_perspective(Perspective perspective
) {
522 writer()->set_perspective(perspective
);
523 QuicConnectionPeer::SetPerspective(this, perspective
);
526 // Enable path MTU discovery. Assumes that the test is performed from the
527 // client perspective and the higher value of MTU target is used.
528 void EnablePathMtuDiscovery(MockSendAlgorithm
* send_algorithm
) {
529 ASSERT_EQ(Perspective::IS_CLIENT
, perspective());
531 FLAGS_quic_do_path_mtu_discovery
= true;
534 QuicTagVector connection_options
;
535 connection_options
.push_back(kMTUH
);
536 config
.SetConnectionOptionsToSend(connection_options
);
537 EXPECT_CALL(*send_algorithm
, SetFromConfig(_
, _
));
538 SetFromConfig(config
);
540 // Normally, the pacing would be disabled in the test, but calling
541 // SetFromConfig enables it. Set nearly-infinite bandwidth to make the
542 // pacing algorithm work.
543 EXPECT_CALL(*send_algorithm
, PacingRate())
544 .WillRepeatedly(Return(QuicBandwidth::FromKBytesPerSecond(10000)));
547 TestConnectionHelper::TestAlarm
* GetAckAlarm() {
548 return reinterpret_cast<TestConnectionHelper::TestAlarm
*>(
549 QuicConnectionPeer::GetAckAlarm(this));
552 TestConnectionHelper::TestAlarm
* GetPingAlarm() {
553 return reinterpret_cast<TestConnectionHelper::TestAlarm
*>(
554 QuicConnectionPeer::GetPingAlarm(this));
557 TestConnectionHelper::TestAlarm
* GetFecAlarm() {
558 return reinterpret_cast<TestConnectionHelper::TestAlarm
*>(
559 QuicConnectionPeer::GetFecAlarm(this));
562 TestConnectionHelper::TestAlarm
* GetResumeWritesAlarm() {
563 return reinterpret_cast<TestConnectionHelper::TestAlarm
*>(
564 QuicConnectionPeer::GetResumeWritesAlarm(this));
567 TestConnectionHelper::TestAlarm
* GetRetransmissionAlarm() {
568 return reinterpret_cast<TestConnectionHelper::TestAlarm
*>(
569 QuicConnectionPeer::GetRetransmissionAlarm(this));
572 TestConnectionHelper::TestAlarm
* GetSendAlarm() {
573 return reinterpret_cast<TestConnectionHelper::TestAlarm
*>(
574 QuicConnectionPeer::GetSendAlarm(this));
577 TestConnectionHelper::TestAlarm
* GetTimeoutAlarm() {
578 return reinterpret_cast<TestConnectionHelper::TestAlarm
*>(
579 QuicConnectionPeer::GetTimeoutAlarm(this));
582 TestConnectionHelper::TestAlarm
* GetMtuDiscoveryAlarm() {
583 return reinterpret_cast<TestConnectionHelper::TestAlarm
*>(
584 QuicConnectionPeer::GetMtuDiscoveryAlarm(this));
587 using QuicConnection::SelectMutualVersion
;
590 TestPacketWriter
* writer() {
591 return static_cast<TestPacketWriter
*>(QuicConnection::writer());
594 DISALLOW_COPY_AND_ASSIGN(TestConnection
);
597 // Used for testing packets revived from FEC packets.
598 class FecQuicConnectionDebugVisitor
599 : public QuicConnectionDebugVisitor
{
601 void OnRevivedPacket(const QuicPacketHeader
& header
,
602 StringPiece data
) override
{
603 revived_header_
= header
;
606 // Public accessor method.
607 QuicPacketHeader
revived_header() const {
608 return revived_header_
;
612 QuicPacketHeader revived_header_
;
615 class MockPacketWriterFactory
: public QuicConnection::PacketWriterFactory
{
617 explicit MockPacketWriterFactory(QuicPacketWriter
* writer
) {
618 ON_CALL(*this, Create(_
)).WillByDefault(Return(writer
));
620 ~MockPacketWriterFactory() override
{}
622 MOCK_CONST_METHOD1(Create
, QuicPacketWriter
*(QuicConnection
* connection
));
625 // Run tests with combinations of {QuicVersion, fec_send_policy}.
627 TestParams(QuicVersion version
, FecSendPolicy fec_send_policy
)
628 : version(version
), fec_send_policy(fec_send_policy
) {}
630 friend ostream
& operator<<(ostream
& os
, const TestParams
& p
) {
631 os
<< "{ client_version: " << QuicVersionToString(p
.version
)
632 << " fec_send_policy: " << p
.fec_send_policy
<< " }";
637 FecSendPolicy fec_send_policy
;
640 // Constructs various test permutations.
641 vector
<TestParams
> GetTestParams() {
642 vector
<TestParams
> params
;
643 QuicVersionVector all_supported_versions
= QuicSupportedVersions();
644 for (size_t i
= 0; i
< all_supported_versions
.size(); ++i
) {
645 params
.push_back(TestParams(all_supported_versions
[i
], FEC_ANY_TRIGGER
));
646 params
.push_back(TestParams(all_supported_versions
[i
], FEC_ALARM_TRIGGER
));
651 class QuicConnectionTest
: public ::testing::TestWithParam
<TestParams
> {
654 : connection_id_(42),
655 framer_(SupportedVersions(version()),
657 Perspective::IS_CLIENT
),
658 peer_creator_(connection_id_
, &framer_
, &random_generator_
),
659 send_algorithm_(new StrictMock
<MockSendAlgorithm
>),
660 loss_algorithm_(new MockLossAlgorithm()),
661 helper_(new TestConnectionHelper(&clock_
, &random_generator_
)),
662 writer_(new TestPacketWriter(version(), &clock_
)),
663 factory_(writer_
.get()),
664 connection_(connection_id_
,
668 Perspective::IS_CLIENT
,
670 creator_(QuicConnectionPeer::GetPacketCreator(&connection_
)),
671 generator_(QuicConnectionPeer::GetPacketGenerator(&connection_
)),
672 manager_(QuicConnectionPeer::GetSentPacketManager(&connection_
)),
673 frame1_(1, false, 0, StringPiece(data1
)),
674 frame2_(1, false, 3, StringPiece(data2
)),
675 packet_number_length_(PACKET_6BYTE_PACKET_NUMBER
),
676 connection_id_length_(PACKET_8BYTE_CONNECTION_ID
) {
677 connection_
.set_visitor(&visitor_
);
678 connection_
.SetSendAlgorithm(send_algorithm_
);
679 connection_
.SetLossAlgorithm(loss_algorithm_
);
680 framer_
.set_received_entropy_calculator(&entropy_calculator_
);
681 generator_
->set_fec_send_policy(GetParam().fec_send_policy
);
682 EXPECT_CALL(*send_algorithm_
, TimeUntilSend(_
, _
, _
))
683 .WillRepeatedly(Return(QuicTime::Delta::Zero()));
684 EXPECT_CALL(*send_algorithm_
, OnPacketSent(_
, _
, _
, _
, _
))
686 EXPECT_CALL(*send_algorithm_
, RetransmissionDelay())
687 .WillRepeatedly(Return(QuicTime::Delta::Zero()));
688 EXPECT_CALL(*send_algorithm_
, GetCongestionWindow())
689 .WillRepeatedly(Return(kDefaultTCPMSS
));
690 EXPECT_CALL(*send_algorithm_
, PacingRate())
691 .WillRepeatedly(Return(QuicBandwidth::Zero()));
692 ON_CALL(*send_algorithm_
, OnPacketSent(_
, _
, _
, _
, _
))
693 .WillByDefault(Return(true));
694 EXPECT_CALL(*send_algorithm_
, HasReliableBandwidthEstimate())
696 EXPECT_CALL(*send_algorithm_
, BandwidthEstimate())
698 .WillRepeatedly(Return(QuicBandwidth::Zero()));
699 EXPECT_CALL(*send_algorithm_
, InSlowStart()).Times(AnyNumber());
700 EXPECT_CALL(*send_algorithm_
, InRecovery()).Times(AnyNumber());
701 EXPECT_CALL(visitor_
, WillingAndAbleToWrite()).Times(AnyNumber());
702 EXPECT_CALL(visitor_
, HasPendingHandshake()).Times(AnyNumber());
703 EXPECT_CALL(visitor_
, OnCanWrite()).Times(AnyNumber());
704 EXPECT_CALL(visitor_
, HasOpenDynamicStreams())
705 .WillRepeatedly(Return(false));
706 EXPECT_CALL(visitor_
, OnCongestionWindowChange(_
)).Times(AnyNumber());
708 EXPECT_CALL(*loss_algorithm_
, GetLossTimeout())
709 .WillRepeatedly(Return(QuicTime::Zero()));
710 EXPECT_CALL(*loss_algorithm_
, DetectLostPackets(_
, _
, _
, _
))
711 .WillRepeatedly(Return(PacketNumberSet()));
714 QuicVersion
version() { return GetParam().version
; }
716 QuicAckFrame
* outgoing_ack() {
717 QuicConnectionPeer::PopulateAckFrame(&connection_
, &ack_
);
721 QuicStopWaitingFrame
* stop_waiting() {
722 QuicConnectionPeer::PopulateStopWaitingFrame(&connection_
, &stop_waiting_
);
723 return &stop_waiting_
;
726 QuicPacketNumber
least_unacked() {
727 if (writer_
->stop_waiting_frames().empty()) {
730 return writer_
->stop_waiting_frames()[0].least_unacked
;
733 void use_tagging_decrypter() {
734 writer_
->use_tagging_decrypter();
737 void ProcessPacket(QuicPacketNumber number
) {
738 EXPECT_CALL(visitor_
, OnStreamFrame(_
)).Times(1);
739 ProcessDataPacket(number
, 0, !kEntropyFlag
);
742 QuicPacketEntropyHash
ProcessFramePacket(QuicFrame frame
) {
744 frames
.push_back(QuicFrame(frame
));
745 QuicPacketCreatorPeer::SetSendVersionInPacket(
746 &peer_creator_
, connection_
.perspective() == Perspective::IS_SERVER
);
748 char buffer
[kMaxPacketSize
];
749 SerializedPacket serialized_packet
=
750 peer_creator_
.SerializeAllFrames(frames
, buffer
, kMaxPacketSize
);
751 scoped_ptr
<QuicEncryptedPacket
> encrypted(serialized_packet
.packet
);
752 connection_
.ProcessUdpPacket(IPEndPoint(), IPEndPoint(), *encrypted
);
753 return serialized_packet
.entropy_hash
;
756 size_t ProcessDataPacket(QuicPacketNumber number
,
757 QuicFecGroupNumber fec_group
,
759 return ProcessDataPacketAtLevel(number
, fec_group
, entropy_flag
,
763 size_t ProcessDataPacketAtLevel(QuicPacketNumber number
,
764 QuicFecGroupNumber fec_group
,
766 EncryptionLevel level
) {
767 scoped_ptr
<QuicPacket
> packet(ConstructDataPacket(number
, fec_group
,
769 char buffer
[kMaxPacketSize
];
770 scoped_ptr
<QuicEncryptedPacket
> encrypted(
771 framer_
.EncryptPayload(level
, number
, *packet
, buffer
, kMaxPacketSize
));
772 connection_
.ProcessUdpPacket(IPEndPoint(), IPEndPoint(), *encrypted
);
773 return encrypted
->length();
776 void ProcessClosePacket(QuicPacketNumber number
,
777 QuicFecGroupNumber fec_group
) {
778 scoped_ptr
<QuicPacket
> packet(ConstructClosePacket(number
, fec_group
));
779 char buffer
[kMaxPacketSize
];
780 scoped_ptr
<QuicEncryptedPacket
> encrypted(framer_
.EncryptPayload(
781 ENCRYPTION_NONE
, number
, *packet
, buffer
, kMaxPacketSize
));
782 connection_
.ProcessUdpPacket(IPEndPoint(), IPEndPoint(), *encrypted
);
785 size_t ProcessFecProtectedPacket(QuicPacketNumber number
,
788 if (expect_revival
) {
789 EXPECT_CALL(visitor_
, OnStreamFrame(_
)).Times(1);
791 EXPECT_CALL(visitor_
, OnStreamFrame(_
)).Times(1).RetiresOnSaturation();
792 return ProcessDataPacket(number
, 1, entropy_flag
);
795 // Processes an FEC packet that covers the packets that would have been
797 size_t ProcessFecPacket(QuicPacketNumber number
,
798 QuicPacketNumber min_protected_packet
,
801 QuicPacket
* packet
) {
802 if (expect_revival
) {
803 EXPECT_CALL(visitor_
, OnStreamFrame(_
)).Times(1);
806 // Construct the decrypted data packet so we can compute the correct
807 // redundancy. If |packet| has been provided then use that, otherwise
808 // construct a default data packet.
809 scoped_ptr
<QuicPacket
> data_packet
;
811 data_packet
.reset(packet
);
813 data_packet
.reset(ConstructDataPacket(number
, 1, !kEntropyFlag
));
816 QuicPacketHeader header
;
817 header
.public_header
.connection_id
= connection_id_
;
818 header
.public_header
.packet_number_length
= packet_number_length_
;
819 header
.public_header
.connection_id_length
= connection_id_length_
;
820 header
.packet_packet_number
= number
;
821 header
.entropy_flag
= entropy_flag
;
822 header
.fec_flag
= true;
823 header
.is_in_fec_group
= IN_FEC_GROUP
;
824 header
.fec_group
= min_protected_packet
;
825 QuicFecData fec_data
;
826 fec_data
.fec_group
= header
.fec_group
;
828 // Since all data packets in this test have the same payload, the
829 // redundancy is either equal to that payload or the xor of that payload
830 // with itself, depending on the number of packets.
831 if (((number
- min_protected_packet
) % 2) == 0) {
832 for (size_t i
= GetStartOfFecProtectedData(
833 header
.public_header
.connection_id_length
,
834 header
.public_header
.version_flag
,
835 header
.public_header
.packet_number_length
);
836 i
< data_packet
->length(); ++i
) {
837 data_packet
->mutable_data()[i
] ^= data_packet
->data()[i
];
840 fec_data
.redundancy
= data_packet
->FecProtectedData();
842 scoped_ptr
<QuicPacket
> fec_packet(framer_
.BuildFecPacket(header
, fec_data
));
843 char buffer
[kMaxPacketSize
];
844 scoped_ptr
<QuicEncryptedPacket
> encrypted(framer_
.EncryptPayload(
845 ENCRYPTION_NONE
, number
, *fec_packet
, buffer
, kMaxPacketSize
));
847 connection_
.ProcessUdpPacket(IPEndPoint(), IPEndPoint(), *encrypted
);
848 return encrypted
->length();
851 QuicByteCount
SendStreamDataToPeer(QuicStreamId id
,
853 QuicStreamOffset offset
,
855 QuicPacketNumber
* last_packet
) {
856 QuicByteCount packet_size
;
857 EXPECT_CALL(*send_algorithm_
, OnPacketSent(_
, _
, _
, _
, _
))
858 .WillOnce(DoAll(SaveArg
<3>(&packet_size
), Return(true)));
859 connection_
.SendStreamDataWithString(id
, data
, offset
, fin
, nullptr);
860 if (last_packet
!= nullptr) {
861 *last_packet
= creator_
->packet_number();
863 EXPECT_CALL(*send_algorithm_
, OnPacketSent(_
, _
, _
, _
, _
))
868 void SendAckPacketToPeer() {
869 EXPECT_CALL(*send_algorithm_
, OnPacketSent(_
, _
, _
, _
, _
)).Times(1);
870 connection_
.SendAck();
871 EXPECT_CALL(*send_algorithm_
, OnPacketSent(_
, _
, _
, _
, _
))
875 void ProcessAckPacket(QuicPacketNumber packet_number
, QuicAckFrame
* frame
) {
876 QuicPacketCreatorPeer::SetPacketNumber(&peer_creator_
, packet_number
- 1);
877 ProcessFramePacket(QuicFrame(frame
));
880 QuicPacketEntropyHash
ProcessAckPacket(QuicAckFrame
* frame
) {
881 return ProcessFramePacket(QuicFrame(frame
));
884 QuicPacketEntropyHash
ProcessStopWaitingPacket(QuicStopWaitingFrame
* frame
) {
885 return ProcessFramePacket(QuicFrame(frame
));
888 QuicPacketEntropyHash
ProcessGoAwayPacket(QuicGoAwayFrame
* frame
) {
889 return ProcessFramePacket(QuicFrame(frame
));
892 bool IsMissing(QuicPacketNumber number
) {
893 return IsAwaitingPacket(*outgoing_ack(), number
);
896 QuicPacket
* ConstructPacket(QuicPacketHeader header
, QuicFrames frames
) {
897 QuicPacket
* packet
= BuildUnsizedDataPacket(&framer_
, header
, frames
);
898 EXPECT_NE(nullptr, packet
);
902 QuicPacket
* ConstructDataPacket(QuicPacketNumber number
,
903 QuicFecGroupNumber fec_group
,
905 QuicPacketHeader header
;
906 header
.public_header
.connection_id
= connection_id_
;
907 header
.public_header
.packet_number_length
= packet_number_length_
;
908 header
.public_header
.connection_id_length
= connection_id_length_
;
909 header
.entropy_flag
= entropy_flag
;
910 header
.packet_packet_number
= number
;
911 header
.is_in_fec_group
= fec_group
== 0u ? NOT_IN_FEC_GROUP
: IN_FEC_GROUP
;
912 header
.fec_group
= fec_group
;
915 frames
.push_back(QuicFrame(&frame1_
));
916 return ConstructPacket(header
, frames
);
919 QuicPacket
* ConstructClosePacket(QuicPacketNumber number
,
920 QuicFecGroupNumber fec_group
) {
921 QuicPacketHeader header
;
922 header
.public_header
.connection_id
= connection_id_
;
923 header
.packet_packet_number
= number
;
924 header
.is_in_fec_group
= fec_group
== 0u ? NOT_IN_FEC_GROUP
: IN_FEC_GROUP
;
925 header
.fec_group
= fec_group
;
927 QuicConnectionCloseFrame qccf
;
928 qccf
.error_code
= QUIC_PEER_GOING_AWAY
;
931 frames
.push_back(QuicFrame(&qccf
));
932 return ConstructPacket(header
, frames
);
935 QuicTime::Delta
DefaultRetransmissionTime() {
936 return QuicTime::Delta::FromMilliseconds(kDefaultRetransmissionTimeMs
);
939 QuicTime::Delta
DefaultDelayedAckTime() {
940 return QuicTime::Delta::FromMilliseconds(kMaxDelayedAckTimeMs
);
943 // Initialize a frame acknowledging all packets up to largest_observed.
944 const QuicAckFrame
InitAckFrame(QuicPacketNumber largest_observed
) {
945 QuicAckFrame
frame(MakeAckFrame(largest_observed
));
946 if (largest_observed
> 0) {
948 QuicConnectionPeer::GetSentEntropyHash(&connection_
,
954 const QuicStopWaitingFrame
InitStopWaitingFrame(
955 QuicPacketNumber least_unacked
) {
956 QuicStopWaitingFrame frame
;
957 frame
.least_unacked
= least_unacked
;
961 // Explicitly nack a packet.
962 void NackPacket(QuicPacketNumber missing
, QuicAckFrame
* frame
) {
963 frame
->missing_packets
.insert(missing
);
964 frame
->entropy_hash
^=
965 QuicConnectionPeer::PacketEntropy(&connection_
, missing
);
968 // Undo nacking a packet within the frame.
969 void AckPacket(QuicPacketNumber arrived
, QuicAckFrame
* frame
) {
970 EXPECT_THAT(frame
->missing_packets
, Contains(arrived
));
971 frame
->missing_packets
.erase(arrived
);
972 frame
->entropy_hash
^=
973 QuicConnectionPeer::PacketEntropy(&connection_
, arrived
);
976 void TriggerConnectionClose() {
977 // Send an erroneous packet to close the connection.
978 EXPECT_CALL(visitor_
,
979 OnConnectionClosed(QUIC_INVALID_PACKET_HEADER
, false));
980 // Call ProcessDataPacket rather than ProcessPacket, as we should not get a
981 // packet call to the visitor.
982 ProcessDataPacket(6000, 0, !kEntropyFlag
);
983 EXPECT_FALSE(QuicConnectionPeer::GetConnectionClosePacket(&connection_
) ==
987 void BlockOnNextWrite() {
988 writer_
->BlockOnNextWrite();
989 EXPECT_CALL(visitor_
, OnWriteBlocked()).Times(AtLeast(1));
992 void SetWritePauseTimeDelta(QuicTime::Delta delta
) {
993 writer_
->SetWritePauseTimeDelta(delta
);
996 void CongestionBlockWrites() {
997 EXPECT_CALL(*send_algorithm_
,
998 TimeUntilSend(_
, _
, _
)).WillRepeatedly(
999 testing::Return(QuicTime::Delta::FromSeconds(1)));
1002 void CongestionUnblockWrites() {
1003 EXPECT_CALL(*send_algorithm_
,
1004 TimeUntilSend(_
, _
, _
)).WillRepeatedly(
1005 testing::Return(QuicTime::Delta::Zero()));
1008 QuicConnectionId connection_id_
;
1010 QuicPacketCreator peer_creator_
;
1011 MockEntropyCalculator entropy_calculator_
;
1013 MockSendAlgorithm
* send_algorithm_
;
1014 MockLossAlgorithm
* loss_algorithm_
;
1016 MockRandom random_generator_
;
1017 scoped_ptr
<TestConnectionHelper
> helper_
;
1018 scoped_ptr
<TestPacketWriter
> writer_
;
1019 NiceMock
<MockPacketWriterFactory
> factory_
;
1020 TestConnection connection_
;
1021 QuicPacketCreator
* creator_
;
1022 QuicPacketGenerator
* generator_
;
1023 QuicSentPacketManager
* manager_
;
1024 StrictMock
<MockConnectionVisitor
> visitor_
;
1026 QuicStreamFrame frame1_
;
1027 QuicStreamFrame frame2_
;
1029 QuicStopWaitingFrame stop_waiting_
;
1030 QuicPacketNumberLength packet_number_length_
;
1031 QuicConnectionIdLength connection_id_length_
;
1034 DISALLOW_COPY_AND_ASSIGN(QuicConnectionTest
);
1037 // Run all end to end tests with all supported versions.
1038 INSTANTIATE_TEST_CASE_P(SupportedVersion
,
1040 ::testing::ValuesIn(GetTestParams()));
1042 TEST_P(QuicConnectionTest
, MaxPacketSize
) {
1043 EXPECT_EQ(Perspective::IS_CLIENT
, connection_
.perspective());
1044 EXPECT_EQ(1350u, connection_
.max_packet_length());
1047 TEST_P(QuicConnectionTest
, SmallerServerMaxPacketSize
) {
1048 QuicConnectionId connection_id
= 42;
1049 TestConnection
connection(connection_id
, IPEndPoint(), helper_
.get(),
1050 factory_
, Perspective::IS_SERVER
, version());
1051 EXPECT_EQ(Perspective::IS_SERVER
, connection
.perspective());
1052 EXPECT_EQ(1000u, connection
.max_packet_length());
1055 TEST_P(QuicConnectionTest
, IncreaseServerMaxPacketSize
) {
1056 EXPECT_CALL(visitor_
, OnSuccessfulVersionNegotiation(_
));
1058 connection_
.set_perspective(Perspective::IS_SERVER
);
1059 connection_
.set_max_packet_length(1000);
1061 QuicPacketHeader header
;
1062 header
.public_header
.connection_id
= connection_id_
;
1063 header
.public_header
.version_flag
= true;
1064 header
.packet_packet_number
= 1;
1067 QuicPaddingFrame padding
;
1068 frames
.push_back(QuicFrame(&frame1_
));
1069 frames
.push_back(QuicFrame(&padding
));
1070 scoped_ptr
<QuicPacket
> packet(ConstructPacket(header
, frames
));
1071 char buffer
[kMaxPacketSize
];
1072 scoped_ptr
<QuicEncryptedPacket
> encrypted(framer_
.EncryptPayload(
1073 ENCRYPTION_NONE
, 12, *packet
, buffer
, kMaxPacketSize
));
1074 EXPECT_EQ(kMaxPacketSize
, encrypted
->length());
1076 framer_
.set_version(version());
1077 EXPECT_CALL(visitor_
, OnStreamFrame(_
)).Times(1);
1078 connection_
.ProcessUdpPacket(IPEndPoint(), IPEndPoint(), *encrypted
);
1080 EXPECT_EQ(kMaxPacketSize
, connection_
.max_packet_length());
1083 TEST_P(QuicConnectionTest
, PacketsInOrder
) {
1084 EXPECT_CALL(visitor_
, OnSuccessfulVersionNegotiation(_
));
1087 EXPECT_EQ(1u, outgoing_ack()->largest_observed
);
1088 EXPECT_EQ(0u, outgoing_ack()->missing_packets
.size());
1091 EXPECT_EQ(2u, outgoing_ack()->largest_observed
);
1092 EXPECT_EQ(0u, outgoing_ack()->missing_packets
.size());
1095 EXPECT_EQ(3u, outgoing_ack()->largest_observed
);
1096 EXPECT_EQ(0u, outgoing_ack()->missing_packets
.size());
1099 TEST_P(QuicConnectionTest
, PacketsOutOfOrder
) {
1100 EXPECT_CALL(visitor_
, OnSuccessfulVersionNegotiation(_
));
1103 EXPECT_EQ(3u, outgoing_ack()->largest_observed
);
1104 EXPECT_TRUE(IsMissing(2));
1105 EXPECT_TRUE(IsMissing(1));
1108 EXPECT_EQ(3u, outgoing_ack()->largest_observed
);
1109 EXPECT_FALSE(IsMissing(2));
1110 EXPECT_TRUE(IsMissing(1));
1113 EXPECT_EQ(3u, outgoing_ack()->largest_observed
);
1114 EXPECT_FALSE(IsMissing(2));
1115 EXPECT_FALSE(IsMissing(1));
1118 TEST_P(QuicConnectionTest
, DuplicatePacket
) {
1119 EXPECT_CALL(visitor_
, OnSuccessfulVersionNegotiation(_
));
1122 EXPECT_EQ(3u, outgoing_ack()->largest_observed
);
1123 EXPECT_TRUE(IsMissing(2));
1124 EXPECT_TRUE(IsMissing(1));
1126 // Send packet 3 again, but do not set the expectation that
1127 // the visitor OnStreamFrame() will be called.
1128 ProcessDataPacket(3, 0, !kEntropyFlag
);
1129 EXPECT_EQ(3u, outgoing_ack()->largest_observed
);
1130 EXPECT_TRUE(IsMissing(2));
1131 EXPECT_TRUE(IsMissing(1));
1134 TEST_P(QuicConnectionTest
, PacketsOutOfOrderWithAdditionsAndLeastAwaiting
) {
1135 EXPECT_CALL(visitor_
, OnSuccessfulVersionNegotiation(_
));
1138 EXPECT_EQ(3u, outgoing_ack()->largest_observed
);
1139 EXPECT_TRUE(IsMissing(2));
1140 EXPECT_TRUE(IsMissing(1));
1143 EXPECT_EQ(3u, outgoing_ack()->largest_observed
);
1144 EXPECT_TRUE(IsMissing(1));
1147 EXPECT_EQ(5u, outgoing_ack()->largest_observed
);
1148 EXPECT_TRUE(IsMissing(1));
1149 EXPECT_TRUE(IsMissing(4));
1151 // Pretend at this point the client has gotten acks for 2 and 3 and 1 is a
1152 // packet the peer will not retransmit. It indicates this by sending 'least
1153 // awaiting' is 4. The connection should then realize 1 will not be
1154 // retransmitted, and will remove it from the missing list.
1155 QuicAckFrame frame
= InitAckFrame(1);
1156 EXPECT_CALL(*send_algorithm_
, OnCongestionEvent(_
, _
, _
, _
));
1157 ProcessAckPacket(6, &frame
);
1159 // Force an ack to be sent.
1160 SendAckPacketToPeer();
1161 EXPECT_TRUE(IsMissing(4));
1164 TEST_P(QuicConnectionTest
, RejectPacketTooFarOut
) {
1165 EXPECT_CALL(visitor_
,
1166 OnConnectionClosed(QUIC_INVALID_PACKET_HEADER
, false));
1167 // Call ProcessDataPacket rather than ProcessPacket, as we should not get a
1168 // packet call to the visitor.
1169 ProcessDataPacket(6000, 0, !kEntropyFlag
);
1170 EXPECT_FALSE(QuicConnectionPeer::GetConnectionClosePacket(&connection_
) ==
1174 TEST_P(QuicConnectionTest
, RejectUnencryptedStreamData
) {
1175 // Process an unencrypted packet from the non-crypto stream.
1176 frame1_
.stream_id
= 3;
1177 EXPECT_CALL(visitor_
, OnSuccessfulVersionNegotiation(_
));
1178 EXPECT_CALL(visitor_
, OnConnectionClosed(QUIC_UNENCRYPTED_STREAM_DATA
,
1180 ProcessDataPacket(1, 0, !kEntropyFlag
);
1181 EXPECT_FALSE(QuicConnectionPeer::GetConnectionClosePacket(&connection_
) ==
1183 const vector
<QuicConnectionCloseFrame
>& connection_close_frames
=
1184 writer_
->connection_close_frames();
1185 EXPECT_EQ(1u, connection_close_frames
.size());
1186 EXPECT_EQ(QUIC_UNENCRYPTED_STREAM_DATA
,
1187 connection_close_frames
[0].error_code
);
1190 TEST_P(QuicConnectionTest
, TruncatedAck
) {
1191 EXPECT_CALL(visitor_
, OnSuccessfulVersionNegotiation(_
));
1192 QuicPacketNumber num_packets
= 256 * 2 + 1;
1193 for (QuicPacketNumber i
= 0; i
< num_packets
; ++i
) {
1194 SendStreamDataToPeer(3, "foo", i
* 3, !kFin
, nullptr);
1197 QuicAckFrame frame
= InitAckFrame(num_packets
);
1198 PacketNumberSet lost_packets
;
1199 // Create an ack with 256 nacks, none adjacent to one another.
1200 for (QuicPacketNumber i
= 1; i
<= 256; ++i
) {
1201 NackPacket(i
* 2, &frame
);
1202 if (i
< 256) { // Last packet is nacked, but not lost.
1203 lost_packets
.insert(i
* 2);
1206 EXPECT_CALL(*loss_algorithm_
, DetectLostPackets(_
, _
, _
, _
))
1207 .WillOnce(Return(lost_packets
));
1208 EXPECT_CALL(entropy_calculator_
, EntropyHash(511))
1209 .WillOnce(Return(static_cast<QuicPacketEntropyHash
>(0)));
1210 EXPECT_CALL(*send_algorithm_
, OnCongestionEvent(true, _
, _
, _
));
1211 ProcessAckPacket(&frame
);
1213 // A truncated ack will not have the true largest observed.
1214 EXPECT_GT(num_packets
, manager_
->largest_observed());
1216 AckPacket(192, &frame
);
1218 // Removing one missing packet allows us to ack 192 and one more range, but
1219 // 192 has already been declared lost, so it doesn't register as an ack.
1220 EXPECT_CALL(*loss_algorithm_
, DetectLostPackets(_
, _
, _
, _
))
1221 .WillOnce(Return(PacketNumberSet()));
1222 EXPECT_CALL(*send_algorithm_
, OnCongestionEvent(true, _
, _
, _
));
1223 ProcessAckPacket(&frame
);
1224 EXPECT_EQ(num_packets
, manager_
->largest_observed());
1227 TEST_P(QuicConnectionTest
, AckReceiptCausesAckSendBadEntropy
) {
1228 EXPECT_CALL(visitor_
, OnSuccessfulVersionNegotiation(_
));
1231 // Delay sending, then queue up an ack.
1232 EXPECT_CALL(*send_algorithm_
,
1233 TimeUntilSend(_
, _
, _
)).WillOnce(
1234 testing::Return(QuicTime::Delta::FromMicroseconds(1)));
1235 QuicConnectionPeer::SendAck(&connection_
);
1237 // Process an ack with a least unacked of the received ack.
1238 // This causes an ack to be sent when TimeUntilSend returns 0.
1239 EXPECT_CALL(*send_algorithm_
,
1240 TimeUntilSend(_
, _
, _
)).WillRepeatedly(
1241 testing::Return(QuicTime::Delta::Zero()));
1242 // Skip a packet and then record an ack.
1243 QuicAckFrame frame
= InitAckFrame(0);
1244 ProcessAckPacket(3, &frame
);
1247 TEST_P(QuicConnectionTest
, OutOfOrderReceiptCausesAckSend
) {
1248 EXPECT_CALL(visitor_
, OnSuccessfulVersionNegotiation(_
));
1251 // Should ack immediately since we have missing packets.
1252 EXPECT_EQ(1u, writer_
->packets_write_attempts());
1255 // Should ack immediately since we have missing packets.
1256 EXPECT_EQ(2u, writer_
->packets_write_attempts());
1259 // Should ack immediately, since this fills the last hole.
1260 EXPECT_EQ(3u, writer_
->packets_write_attempts());
1263 // Should not cause an ack.
1264 EXPECT_EQ(3u, writer_
->packets_write_attempts());
1267 TEST_P(QuicConnectionTest
, OutOfOrderAckReceiptCausesNoAck
) {
1268 EXPECT_CALL(visitor_
, OnSuccessfulVersionNegotiation(_
));
1270 SendStreamDataToPeer(1, "foo", 0, !kFin
, nullptr);
1271 SendStreamDataToPeer(1, "bar", 3, !kFin
, nullptr);
1272 EXPECT_EQ(2u, writer_
->packets_write_attempts());
1274 QuicAckFrame ack1
= InitAckFrame(1);
1275 QuicAckFrame ack2
= InitAckFrame(2);
1276 EXPECT_CALL(*send_algorithm_
, OnCongestionEvent(true, _
, _
, _
));
1277 ProcessAckPacket(2, &ack2
);
1278 // Should ack immediately since we have missing packets.
1279 EXPECT_EQ(2u, writer_
->packets_write_attempts());
1281 ProcessAckPacket(1, &ack1
);
1282 // Should not ack an ack filling a missing packet.
1283 EXPECT_EQ(2u, writer_
->packets_write_attempts());
1286 TEST_P(QuicConnectionTest
, AckReceiptCausesAckSend
) {
1287 EXPECT_CALL(visitor_
, OnSuccessfulVersionNegotiation(_
));
1289 QuicPacketNumber original
;
1290 QuicByteCount packet_size
;
1291 EXPECT_CALL(*send_algorithm_
, OnPacketSent(_
, _
, _
, _
, _
))
1292 .WillOnce(DoAll(SaveArg
<2>(&original
), SaveArg
<3>(&packet_size
),
1294 connection_
.SendStreamDataWithString(3, "foo", 0, !kFin
, nullptr);
1295 QuicAckFrame frame
= InitAckFrame(original
);
1296 NackPacket(original
, &frame
);
1297 // First nack triggers early retransmit.
1298 PacketNumberSet lost_packets
;
1299 lost_packets
.insert(1);
1300 EXPECT_CALL(*loss_algorithm_
, DetectLostPackets(_
, _
, _
, _
))
1301 .WillOnce(Return(lost_packets
));
1302 EXPECT_CALL(*send_algorithm_
, OnCongestionEvent(true, _
, _
, _
));
1303 QuicPacketNumber retransmission
;
1304 EXPECT_CALL(*send_algorithm_
,
1305 OnPacketSent(_
, _
, _
, packet_size
- kQuicVersionSize
, _
))
1306 .WillOnce(DoAll(SaveArg
<2>(&retransmission
), Return(true)));
1308 ProcessAckPacket(&frame
);
1310 QuicAckFrame frame2
= InitAckFrame(retransmission
);
1311 NackPacket(original
, &frame2
);
1312 EXPECT_CALL(*send_algorithm_
, OnCongestionEvent(true, _
, _
, _
));
1313 EXPECT_CALL(*loss_algorithm_
, DetectLostPackets(_
, _
, _
, _
))
1314 .WillOnce(Return(PacketNumberSet()));
1315 ProcessAckPacket(&frame2
);
1317 // Now if the peer sends an ack which still reports the retransmitted packet
1318 // as missing, that will bundle an ack with data after two acks in a row
1319 // indicate the high water mark needs to be raised.
1320 EXPECT_CALL(*send_algorithm_
, OnPacketSent(_
, _
, _
, _
,
1321 HAS_RETRANSMITTABLE_DATA
));
1322 connection_
.SendStreamDataWithString(3, "foo", 3, !kFin
, nullptr);
1324 EXPECT_EQ(1u, writer_
->frame_count());
1325 EXPECT_EQ(1u, writer_
->stream_frames().size());
1327 // No more packet loss for the rest of the test.
1328 EXPECT_CALL(*loss_algorithm_
, DetectLostPackets(_
, _
, _
, _
))
1329 .WillRepeatedly(Return(PacketNumberSet()));
1330 ProcessAckPacket(&frame2
);
1331 EXPECT_CALL(*send_algorithm_
, OnPacketSent(_
, _
, _
, _
,
1332 HAS_RETRANSMITTABLE_DATA
));
1333 connection_
.SendStreamDataWithString(3, "foo", 3, !kFin
, nullptr);
1335 EXPECT_EQ(3u, writer_
->frame_count());
1336 EXPECT_EQ(1u, writer_
->stream_frames().size());
1337 EXPECT_FALSE(writer_
->ack_frames().empty());
1339 // But an ack with no missing packets will not send an ack.
1340 AckPacket(original
, &frame2
);
1341 ProcessAckPacket(&frame2
);
1342 ProcessAckPacket(&frame2
);
1345 TEST_P(QuicConnectionTest
, 20AcksCausesAckSend
) {
1346 EXPECT_CALL(visitor_
, OnSuccessfulVersionNegotiation(_
));
1348 SendStreamDataToPeer(1, "foo", 0, !kFin
, nullptr);
1350 QuicAlarm
* ack_alarm
= QuicConnectionPeer::GetAckAlarm(&connection_
);
1351 // But an ack with no missing packets will not send an ack.
1352 QuicAckFrame frame
= InitAckFrame(1);
1353 EXPECT_CALL(*send_algorithm_
, OnCongestionEvent(true, _
, _
, _
));
1354 EXPECT_CALL(*loss_algorithm_
, DetectLostPackets(_
, _
, _
, _
))
1355 .WillRepeatedly(Return(PacketNumberSet()));
1356 for (int i
= 0; i
< 20; ++i
) {
1357 EXPECT_FALSE(ack_alarm
->IsSet());
1358 ProcessAckPacket(&frame
);
1360 EXPECT_TRUE(ack_alarm
->IsSet());
1363 TEST_P(QuicConnectionTest
, LeastUnackedLower
) {
1364 EXPECT_CALL(visitor_
, OnSuccessfulVersionNegotiation(_
));
1366 SendStreamDataToPeer(1, "foo", 0, !kFin
, nullptr);
1367 SendStreamDataToPeer(1, "bar", 3, !kFin
, nullptr);
1368 SendStreamDataToPeer(1, "eep", 6, !kFin
, nullptr);
1370 // Start out saying the least unacked is 2.
1371 QuicPacketCreatorPeer::SetPacketNumber(&peer_creator_
, 5);
1372 QuicStopWaitingFrame frame
= InitStopWaitingFrame(2);
1373 ProcessStopWaitingPacket(&frame
);
1375 // Change it to 1, but lower the packet number to fake out-of-order packets.
1376 // This should be fine.
1377 QuicPacketCreatorPeer::SetPacketNumber(&peer_creator_
, 1);
1378 // The scheduler will not process out of order acks, but all packet processing
1379 // causes the connection to try to write.
1380 EXPECT_CALL(visitor_
, OnCanWrite());
1381 QuicStopWaitingFrame frame2
= InitStopWaitingFrame(1);
1382 ProcessStopWaitingPacket(&frame2
);
1384 // Now claim it's one, but set the ordering so it was sent "after" the first
1385 // one. This should cause a connection error.
1386 EXPECT_CALL(*send_algorithm_
, OnPacketSent(_
, _
, _
, _
, _
));
1387 QuicPacketCreatorPeer::SetPacketNumber(&peer_creator_
, 7);
1388 EXPECT_CALL(visitor_
,
1389 OnConnectionClosed(QUIC_INVALID_STOP_WAITING_DATA
, false));
1390 QuicStopWaitingFrame frame3
= InitStopWaitingFrame(1);
1391 ProcessStopWaitingPacket(&frame3
);
1394 TEST_P(QuicConnectionTest
, TooManySentPackets
) {
1395 EXPECT_CALL(visitor_
, OnSuccessfulVersionNegotiation(_
));
1397 const int num_packets
= kMaxTrackedPackets
+ 100;
1398 for (int i
= 0; i
< num_packets
; ++i
) {
1399 SendStreamDataToPeer(1, "foo", 3 * i
, !kFin
, nullptr);
1402 // Ack packet 1, which leaves more than the limit outstanding.
1403 EXPECT_CALL(*send_algorithm_
, OnCongestionEvent(true, _
, _
, _
));
1404 EXPECT_CALL(visitor_
, OnConnectionClosed(
1405 QUIC_TOO_MANY_OUTSTANDING_SENT_PACKETS
, false));
1406 // We're receive buffer limited, so the connection won't try to write more.
1407 EXPECT_CALL(visitor_
, OnCanWrite()).Times(0);
1409 // Nack the first packet and ack the rest, leaving a huge gap.
1410 QuicAckFrame frame1
= InitAckFrame(num_packets
);
1411 NackPacket(1, &frame1
);
1412 ProcessAckPacket(&frame1
);
1415 TEST_P(QuicConnectionTest
, TooManyReceivedPackets
) {
1416 EXPECT_CALL(visitor_
, OnSuccessfulVersionNegotiation(_
));
1417 EXPECT_CALL(visitor_
, OnConnectionClosed(
1418 QUIC_TOO_MANY_OUTSTANDING_RECEIVED_PACKETS
, false));
1420 // Miss 99 of every 100 packets for 5500 packets.
1421 for (QuicPacketNumber i
= 1; i
< kMaxTrackedPackets
+ 500; i
+= 100) {
1423 if (!connection_
.connected()) {
1429 TEST_P(QuicConnectionTest
, LargestObservedLower
) {
1430 EXPECT_CALL(visitor_
, OnSuccessfulVersionNegotiation(_
));
1432 SendStreamDataToPeer(1, "foo", 0, !kFin
, nullptr);
1433 SendStreamDataToPeer(1, "bar", 3, !kFin
, nullptr);
1434 SendStreamDataToPeer(1, "eep", 6, !kFin
, nullptr);
1435 EXPECT_CALL(*send_algorithm_
, OnCongestionEvent(true, _
, _
, _
));
1437 // Start out saying the largest observed is 2.
1438 QuicAckFrame frame1
= InitAckFrame(1);
1439 QuicAckFrame frame2
= InitAckFrame(2);
1440 ProcessAckPacket(&frame2
);
1442 // Now change it to 1, and it should cause a connection error.
1443 EXPECT_CALL(visitor_
, OnConnectionClosed(QUIC_INVALID_ACK_DATA
, false));
1444 EXPECT_CALL(visitor_
, OnCanWrite()).Times(0);
1445 ProcessAckPacket(&frame1
);
1448 TEST_P(QuicConnectionTest
, AckUnsentData
) {
1449 // Ack a packet which has not been sent.
1450 EXPECT_CALL(visitor_
, OnConnectionClosed(QUIC_INVALID_ACK_DATA
, false));
1451 EXPECT_CALL(visitor_
, OnSuccessfulVersionNegotiation(_
));
1452 EXPECT_CALL(*send_algorithm_
, OnPacketSent(_
, _
, _
, _
, _
));
1453 QuicAckFrame
frame(MakeAckFrame(1));
1454 EXPECT_CALL(visitor_
, OnCanWrite()).Times(0);
1455 ProcessAckPacket(&frame
);
1458 TEST_P(QuicConnectionTest
, AckAll
) {
1459 EXPECT_CALL(visitor_
, OnSuccessfulVersionNegotiation(_
));
1462 QuicPacketCreatorPeer::SetPacketNumber(&peer_creator_
, 1);
1463 QuicAckFrame frame1
= InitAckFrame(0);
1464 ProcessAckPacket(&frame1
);
1467 TEST_P(QuicConnectionTest
, SendingDifferentSequenceNumberLengthsBandwidth
) {
1468 QuicPacketNumber last_packet
;
1469 SendStreamDataToPeer(1, "foo", 0, !kFin
, &last_packet
);
1470 EXPECT_EQ(1u, last_packet
);
1471 EXPECT_EQ(PACKET_1BYTE_PACKET_NUMBER
,
1472 QuicPacketCreatorPeer::NextPacketNumberLength(creator_
));
1473 EXPECT_EQ(PACKET_1BYTE_PACKET_NUMBER
,
1474 writer_
->header().public_header
.packet_number_length
);
1476 EXPECT_CALL(*send_algorithm_
, GetCongestionWindow()).WillRepeatedly(
1477 Return(kMaxPacketSize
* 256));
1479 SendStreamDataToPeer(1, "bar", 3, !kFin
, &last_packet
);
1480 EXPECT_EQ(2u, last_packet
);
1481 EXPECT_EQ(PACKET_2BYTE_PACKET_NUMBER
,
1482 QuicPacketCreatorPeer::NextPacketNumberLength(creator_
));
1483 // The 1 packet lag is due to the packet number length being recalculated in
1484 // QuicConnection after a packet is sent.
1485 EXPECT_EQ(PACKET_1BYTE_PACKET_NUMBER
,
1486 writer_
->header().public_header
.packet_number_length
);
1488 EXPECT_CALL(*send_algorithm_
, GetCongestionWindow()).WillRepeatedly(
1489 Return(kMaxPacketSize
* 256 * 256));
1491 SendStreamDataToPeer(1, "foo", 6, !kFin
, &last_packet
);
1492 EXPECT_EQ(3u, last_packet
);
1493 EXPECT_EQ(PACKET_4BYTE_PACKET_NUMBER
,
1494 QuicPacketCreatorPeer::NextPacketNumberLength(creator_
));
1495 EXPECT_EQ(PACKET_2BYTE_PACKET_NUMBER
,
1496 writer_
->header().public_header
.packet_number_length
);
1498 EXPECT_CALL(*send_algorithm_
, GetCongestionWindow()).WillRepeatedly(
1499 Return(kMaxPacketSize
* 256 * 256 * 256));
1501 SendStreamDataToPeer(1, "bar", 9, !kFin
, &last_packet
);
1502 EXPECT_EQ(4u, last_packet
);
1503 EXPECT_EQ(PACKET_4BYTE_PACKET_NUMBER
,
1504 QuicPacketCreatorPeer::NextPacketNumberLength(creator_
));
1505 EXPECT_EQ(PACKET_4BYTE_PACKET_NUMBER
,
1506 writer_
->header().public_header
.packet_number_length
);
1508 EXPECT_CALL(*send_algorithm_
, GetCongestionWindow()).WillRepeatedly(
1509 Return(kMaxPacketSize
* 256 * 256 * 256 * 256));
1511 SendStreamDataToPeer(1, "foo", 12, !kFin
, &last_packet
);
1512 EXPECT_EQ(5u, last_packet
);
1513 EXPECT_EQ(PACKET_6BYTE_PACKET_NUMBER
,
1514 QuicPacketCreatorPeer::NextPacketNumberLength(creator_
));
1515 EXPECT_EQ(PACKET_4BYTE_PACKET_NUMBER
,
1516 writer_
->header().public_header
.packet_number_length
);
1519 // TODO(ianswett): Re-enable this test by finding a good way to test different
1520 // packet number lengths without sending packets with giant gaps.
1521 TEST_P(QuicConnectionTest
,
1522 DISABLED_SendingDifferentSequenceNumberLengthsUnackedDelta
) {
1523 QuicPacketNumber last_packet
;
1524 SendStreamDataToPeer(1, "foo", 0, !kFin
, &last_packet
);
1525 EXPECT_EQ(1u, last_packet
);
1526 EXPECT_EQ(PACKET_1BYTE_PACKET_NUMBER
,
1527 QuicPacketCreatorPeer::NextPacketNumberLength(creator_
));
1528 EXPECT_EQ(PACKET_1BYTE_PACKET_NUMBER
,
1529 writer_
->header().public_header
.packet_number_length
);
1531 QuicPacketCreatorPeer::SetPacketNumber(&peer_creator_
, 100);
1533 SendStreamDataToPeer(1, "bar", 3, !kFin
, &last_packet
);
1534 EXPECT_EQ(PACKET_2BYTE_PACKET_NUMBER
,
1535 QuicPacketCreatorPeer::NextPacketNumberLength(creator_
));
1536 EXPECT_EQ(PACKET_1BYTE_PACKET_NUMBER
,
1537 writer_
->header().public_header
.packet_number_length
);
1539 QuicPacketCreatorPeer::SetPacketNumber(&peer_creator_
, 100 * 256);
1541 SendStreamDataToPeer(1, "foo", 6, !kFin
, &last_packet
);
1542 EXPECT_EQ(PACKET_4BYTE_PACKET_NUMBER
,
1543 QuicPacketCreatorPeer::NextPacketNumberLength(creator_
));
1544 EXPECT_EQ(PACKET_2BYTE_PACKET_NUMBER
,
1545 writer_
->header().public_header
.packet_number_length
);
1547 QuicPacketCreatorPeer::SetPacketNumber(&peer_creator_
, 100 * 256 * 256);
1549 SendStreamDataToPeer(1, "bar", 9, !kFin
, &last_packet
);
1550 EXPECT_EQ(PACKET_4BYTE_PACKET_NUMBER
,
1551 QuicPacketCreatorPeer::NextPacketNumberLength(creator_
));
1552 EXPECT_EQ(PACKET_4BYTE_PACKET_NUMBER
,
1553 writer_
->header().public_header
.packet_number_length
);
1555 QuicPacketCreatorPeer::SetPacketNumber(&peer_creator_
, 100 * 256 * 256 * 256);
1557 SendStreamDataToPeer(1, "foo", 12, !kFin
, &last_packet
);
1558 EXPECT_EQ(PACKET_6BYTE_PACKET_NUMBER
,
1559 QuicPacketCreatorPeer::NextPacketNumberLength(creator_
));
1560 EXPECT_EQ(PACKET_4BYTE_PACKET_NUMBER
,
1561 writer_
->header().public_header
.packet_number_length
);
1564 TEST_P(QuicConnectionTest
, BasicSending
) {
1565 EXPECT_CALL(visitor_
, OnSuccessfulVersionNegotiation(_
));
1566 QuicPacketNumber last_packet
;
1567 SendStreamDataToPeer(1, "foo", 0, !kFin
, &last_packet
); // Packet 1
1568 EXPECT_EQ(1u, last_packet
);
1569 SendAckPacketToPeer(); // Packet 2
1571 EXPECT_EQ(1u, least_unacked());
1573 SendAckPacketToPeer(); // Packet 3
1574 EXPECT_EQ(1u, least_unacked());
1576 SendStreamDataToPeer(1, "bar", 3, !kFin
, &last_packet
); // Packet 4
1577 EXPECT_EQ(4u, last_packet
);
1578 SendAckPacketToPeer(); // Packet 5
1579 EXPECT_EQ(1u, least_unacked());
1581 EXPECT_CALL(*send_algorithm_
, OnCongestionEvent(true, _
, _
, _
));
1583 // Peer acks up to packet 3.
1584 QuicAckFrame frame
= InitAckFrame(3);
1585 ProcessAckPacket(&frame
);
1586 SendAckPacketToPeer(); // Packet 6
1588 // As soon as we've acked one, we skip ack packets 2 and 3 and note lack of
1590 EXPECT_EQ(4u, least_unacked());
1592 EXPECT_CALL(*send_algorithm_
, OnCongestionEvent(true, _
, _
, _
));
1594 // Peer acks up to packet 4, the last packet.
1595 QuicAckFrame frame2
= InitAckFrame(6);
1596 ProcessAckPacket(&frame2
); // Acks don't instigate acks.
1598 // Verify that we did not send an ack.
1599 EXPECT_EQ(6u, writer_
->header().packet_packet_number
);
1601 // So the last ack has not changed.
1602 EXPECT_EQ(4u, least_unacked());
1604 // If we force an ack, we shouldn't change our retransmit state.
1605 SendAckPacketToPeer(); // Packet 7
1606 EXPECT_EQ(7u, least_unacked());
1608 // But if we send more data it should.
1609 SendStreamDataToPeer(1, "eep", 6, !kFin
, &last_packet
); // Packet 8
1610 EXPECT_EQ(8u, last_packet
);
1611 SendAckPacketToPeer(); // Packet 9
1612 EXPECT_EQ(7u, least_unacked());
1615 // QuicConnection should record the the packet sent-time prior to sending the
1617 TEST_P(QuicConnectionTest
, RecordSentTimeBeforePacketSent
) {
1618 // We're using a MockClock for the tests, so we have complete control over the
1620 // Our recorded timestamp for the last packet sent time will be passed in to
1621 // the send_algorithm. Make sure that it is set to the correct value.
1622 QuicTime actual_recorded_send_time
= QuicTime::Zero();
1623 EXPECT_CALL(*send_algorithm_
, OnPacketSent(_
, _
, _
, _
, _
))
1624 .WillOnce(DoAll(SaveArg
<0>(&actual_recorded_send_time
), Return(true)));
1626 // First send without any pause and check the result.
1627 QuicTime expected_recorded_send_time
= clock_
.Now();
1628 connection_
.SendStreamDataWithString(1, "foo", 0, !kFin
, nullptr);
1629 EXPECT_EQ(expected_recorded_send_time
, actual_recorded_send_time
)
1630 << "Expected time = " << expected_recorded_send_time
.ToDebuggingValue()
1631 << ". Actual time = " << actual_recorded_send_time
.ToDebuggingValue();
1633 // Now pause during the write, and check the results.
1634 actual_recorded_send_time
= QuicTime::Zero();
1635 const QuicTime::Delta write_pause_time_delta
=
1636 QuicTime::Delta::FromMilliseconds(5000);
1637 SetWritePauseTimeDelta(write_pause_time_delta
);
1638 expected_recorded_send_time
= clock_
.Now();
1640 EXPECT_CALL(*send_algorithm_
, OnPacketSent(_
, _
, _
, _
, _
))
1641 .WillOnce(DoAll(SaveArg
<0>(&actual_recorded_send_time
), Return(true)));
1642 connection_
.SendStreamDataWithString(2, "baz", 0, !kFin
, nullptr);
1643 EXPECT_EQ(expected_recorded_send_time
, actual_recorded_send_time
)
1644 << "Expected time = " << expected_recorded_send_time
.ToDebuggingValue()
1645 << ". Actual time = " << actual_recorded_send_time
.ToDebuggingValue();
1648 TEST_P(QuicConnectionTest
, FECSending
) {
1649 // All packets carry version info till version is negotiated.
1650 size_t payload_length
;
1651 // GetPacketLengthForOneStream() assumes a stream offset of 0 in determining
1652 // packet length. The size of the offset field in a stream frame is 0 for
1653 // offset 0, and 2 for non-zero offsets up through 64K. Increase
1654 // max_packet_length by 2 so that subsequent packets containing subsequent
1655 // stream frames with non-zero offets will fit within the packet length.
1657 2 + GetPacketLengthForOneStream(connection_
.version(), kIncludeVersion
,
1658 PACKET_8BYTE_CONNECTION_ID
,
1659 PACKET_1BYTE_PACKET_NUMBER
, IN_FEC_GROUP
,
1661 connection_
.set_max_packet_length(length
);
1663 if (generator_
->fec_send_policy() == FEC_ALARM_TRIGGER
) {
1664 // Send 4 protected data packets. FEC packet is not sent.
1665 EXPECT_CALL(*send_algorithm_
,
1666 OnPacketSent(_
, _
, _
, _
, HAS_RETRANSMITTABLE_DATA
)).Times(4);
1668 // Send 4 protected data packets, which should also trigger 1 FEC packet.
1669 EXPECT_CALL(*send_algorithm_
,
1670 OnPacketSent(_
, _
, _
, _
, HAS_RETRANSMITTABLE_DATA
)).Times(5);
1672 // The first stream frame will have 2 fewer overhead bytes than the other 3.
1673 const string
payload(payload_length
* 4 + 2, 'a');
1674 connection_
.SendStreamDataWithStringWithFec(1, payload
, 0, !kFin
, nullptr);
1675 // Expect the FEC group to be closed after SendStreamDataWithString.
1676 EXPECT_FALSE(creator_
->IsFecGroupOpen());
1677 EXPECT_FALSE(creator_
->IsFecProtected());
1680 TEST_P(QuicConnectionTest
, FECQueueing
) {
1681 // All packets carry version info till version is negotiated.
1682 size_t payload_length
;
1683 size_t length
= GetPacketLengthForOneStream(
1684 connection_
.version(), kIncludeVersion
, PACKET_8BYTE_CONNECTION_ID
,
1685 PACKET_1BYTE_PACKET_NUMBER
, IN_FEC_GROUP
, &payload_length
);
1686 connection_
.set_max_packet_length(length
);
1687 EXPECT_TRUE(creator_
->IsFecEnabled());
1689 EXPECT_EQ(0u, connection_
.NumQueuedPackets());
1691 const string
payload(payload_length
, 'a');
1692 connection_
.SendStreamDataWithStringWithFec(1, payload
, 0, !kFin
, nullptr);
1693 EXPECT_FALSE(creator_
->IsFecGroupOpen());
1694 EXPECT_FALSE(creator_
->IsFecProtected());
1695 if (generator_
->fec_send_policy() == FEC_ALARM_TRIGGER
) {
1696 // Expect the first data packet to be queued and not the FEC packet.
1697 EXPECT_EQ(1u, connection_
.NumQueuedPackets());
1699 // Expect the first data packet and the fec packet to be queued.
1700 EXPECT_EQ(2u, connection_
.NumQueuedPackets());
1704 TEST_P(QuicConnectionTest
, FECAlarmStoppedWhenFECPacketSent
) {
1705 EXPECT_TRUE(creator_
->IsFecEnabled());
1706 EXPECT_EQ(0u, QuicSentPacketManagerPeer::GetBytesInFlight(manager_
));
1707 EXPECT_FALSE(connection_
.GetFecAlarm()->IsSet());
1709 creator_
->set_max_packets_per_fec_group(2);
1711 // 1 Data packet. FEC alarm should be set.
1712 EXPECT_CALL(*send_algorithm_
,
1713 OnPacketSent(_
, _
, 1u, _
, HAS_RETRANSMITTABLE_DATA
)).Times(1);
1714 connection_
.SendStreamDataWithStringWithFec(3, "foo", 0, true, nullptr);
1715 EXPECT_TRUE(connection_
.GetFecAlarm()->IsSet());
1717 if (generator_
->fec_send_policy() == FEC_ALARM_TRIGGER
) {
1718 // If FEC send policy is FEC_ALARM_TRIGGER, FEC packet is not sent.
1719 // FEC alarm should not be set.
1720 EXPECT_CALL(*send_algorithm_
,
1721 OnPacketSent(_
, _
, _
, _
, HAS_RETRANSMITTABLE_DATA
)).Times(1);
1723 // Second data packet triggers FEC packet out. FEC alarm should not be set.
1724 EXPECT_CALL(*send_algorithm_
,
1725 OnPacketSent(_
, _
, _
, _
, HAS_RETRANSMITTABLE_DATA
)).Times(2);
1727 connection_
.SendStreamDataWithStringWithFec(5, "foo", 0, true, nullptr);
1728 if (generator_
->fec_send_policy() == FEC_ANY_TRIGGER
) {
1729 EXPECT_TRUE(writer_
->header().fec_flag
);
1731 EXPECT_FALSE(creator_
->IsFecGroupOpen());
1732 EXPECT_FALSE(connection_
.GetFecAlarm()->IsSet());
1735 TEST_P(QuicConnectionTest
, FECAlarmStoppedOnConnectionClose
) {
1736 EXPECT_TRUE(creator_
->IsFecEnabled());
1737 EXPECT_FALSE(connection_
.GetFecAlarm()->IsSet());
1738 creator_
->set_max_packets_per_fec_group(100);
1740 // 1 Data packet. FEC alarm should be set.
1741 EXPECT_CALL(*send_algorithm_
,
1742 OnPacketSent(_
, _
, 1u, _
, HAS_RETRANSMITTABLE_DATA
)).Times(1);
1743 connection_
.SendStreamDataWithStringWithFec(3, "foo", 0, kFin
, nullptr);
1744 EXPECT_TRUE(connection_
.GetFecAlarm()->IsSet());
1746 EXPECT_CALL(visitor_
, OnConnectionClosed(QUIC_NO_ERROR
, false));
1747 // Closing connection should stop the FEC alarm.
1748 connection_
.CloseConnection(QUIC_NO_ERROR
, /*from_peer=*/false);
1749 EXPECT_FALSE(connection_
.GetFecAlarm()->IsSet());
1752 TEST_P(QuicConnectionTest
, RemoveFECFromInflightOnRetransmissionTimeout
) {
1753 EXPECT_CALL(visitor_
, OnSuccessfulVersionNegotiation(_
));
1754 EXPECT_TRUE(creator_
->IsFecEnabled());
1755 EXPECT_EQ(0u, QuicSentPacketManagerPeer::GetBytesInFlight(manager_
));
1756 EXPECT_FALSE(connection_
.GetFecAlarm()->IsSet());
1758 // 1 Data packet. FEC alarm should be set.
1759 EXPECT_CALL(*send_algorithm_
,
1760 OnPacketSent(_
, _
, 1u, _
, HAS_RETRANSMITTABLE_DATA
)).Times(1);
1761 connection_
.SendStreamDataWithStringWithFec(3, "foo", 0, !kFin
, nullptr);
1762 EXPECT_TRUE(connection_
.GetFecAlarm()->IsSet());
1763 size_t protected_packet
=
1764 QuicSentPacketManagerPeer::GetBytesInFlight(manager_
);
1766 // Force FEC timeout to send FEC packet out.
1767 EXPECT_CALL(*send_algorithm_
,
1768 OnPacketSent(_
, _
, 2u, _
, HAS_RETRANSMITTABLE_DATA
)).Times(1);
1769 connection_
.GetFecAlarm()->Fire();
1770 EXPECT_TRUE(writer_
->header().fec_flag
);
1772 size_t fec_packet
= protected_packet
;
1773 EXPECT_EQ(protected_packet
+ fec_packet
,
1774 QuicSentPacketManagerPeer::GetBytesInFlight(manager_
));
1775 clock_
.AdvanceTime(DefaultRetransmissionTime());
1777 // On RTO, both data and FEC packets are removed from inflight, only the data
1778 // packet is retransmitted, and this retransmission (but not FEC) gets added
1779 // back into the inflight.
1780 EXPECT_CALL(*send_algorithm_
, OnRetransmissionTimeout(true));
1781 EXPECT_CALL(*send_algorithm_
, OnPacketSent(_
, _
, _
, _
, _
)).Times(1);
1782 connection_
.GetRetransmissionAlarm()->Fire();
1784 // The retransmission of packet 1 will be 3 bytes smaller than packet 1, since
1785 // the first transmission will have 1 byte for FEC group number and 2 bytes of
1786 // stream frame size, which are absent in the retransmission.
1787 size_t retransmitted_packet
= protected_packet
- 3;
1788 EXPECT_EQ(protected_packet
+ retransmitted_packet
,
1789 QuicSentPacketManagerPeer::GetBytesInFlight(manager_
));
1790 EXPECT_FALSE(connection_
.GetFecAlarm()->IsSet());
1792 // Receive ack for the retransmission. No data should be outstanding.
1793 QuicAckFrame ack
= InitAckFrame(3);
1794 NackPacket(1, &ack
);
1795 NackPacket(2, &ack
);
1796 PacketNumberSet lost_packets
;
1797 lost_packets
.insert(1);
1798 EXPECT_CALL(*loss_algorithm_
, DetectLostPackets(_
, _
, _
, _
))
1799 .WillOnce(Return(lost_packets
));
1800 EXPECT_CALL(*send_algorithm_
, OnCongestionEvent(true, _
, _
, _
));
1801 ProcessAckPacket(&ack
);
1803 // Ensure the alarm is not set since all packets have been acked or abandoned.
1804 EXPECT_FALSE(connection_
.GetRetransmissionAlarm()->IsSet());
1805 EXPECT_EQ(0u, QuicSentPacketManagerPeer::GetBytesInFlight(manager_
));
1808 TEST_P(QuicConnectionTest
, RemoveFECFromInflightOnLossRetransmission
) {
1809 EXPECT_TRUE(creator_
->IsFecEnabled());
1810 EXPECT_FALSE(connection_
.GetFecAlarm()->IsSet());
1812 // 1 FEC-protected data packet. FEC alarm should be set.
1813 EXPECT_CALL(*send_algorithm_
,
1814 OnPacketSent(_
, _
, _
, _
, HAS_RETRANSMITTABLE_DATA
)).Times(1);
1815 connection_
.SendStreamDataWithStringWithFec(3, "foo", 0, kFin
, nullptr);
1816 EXPECT_TRUE(connection_
.GetFecAlarm()->IsSet());
1817 size_t protected_packet
=
1818 QuicSentPacketManagerPeer::GetBytesInFlight(manager_
);
1820 // Force FEC timeout to send FEC packet out.
1821 EXPECT_CALL(*send_algorithm_
,
1822 OnPacketSent(_
, _
, _
, _
, HAS_RETRANSMITTABLE_DATA
)).Times(1);
1823 connection_
.GetFecAlarm()->Fire();
1824 EXPECT_TRUE(writer_
->header().fec_flag
);
1825 size_t fec_packet
= protected_packet
;
1826 EXPECT_EQ(protected_packet
+ fec_packet
,
1827 QuicSentPacketManagerPeer::GetBytesInFlight(manager_
));
1829 // Send more data to trigger NACKs. Note that all data starts at stream offset
1830 // 0 to ensure the same packet size, for ease of testing.
1831 EXPECT_CALL(*send_algorithm_
,
1832 OnPacketSent(_
, _
, _
, _
, HAS_RETRANSMITTABLE_DATA
)).Times(4);
1833 connection_
.SendStreamDataWithString(5, "foo", 0, kFin
, nullptr);
1834 connection_
.SendStreamDataWithString(7, "foo", 0, kFin
, nullptr);
1835 connection_
.SendStreamDataWithString(9, "foo", 0, kFin
, nullptr);
1836 connection_
.SendStreamDataWithString(11, "foo", 0, kFin
, nullptr);
1838 // An unprotected packet will be 3 bytes smaller than an FEC-protected packet,
1839 // since the protected packet will have 1 byte for FEC group number and
1840 // 2 bytes of stream frame size, which are absent in the unprotected packet.
1841 size_t unprotected_packet
= protected_packet
- 3;
1842 EXPECT_EQ(protected_packet
+ fec_packet
+ 4 * unprotected_packet
,
1843 QuicSentPacketManagerPeer::GetBytesInFlight(manager_
));
1844 EXPECT_FALSE(connection_
.GetFecAlarm()->IsSet());
1846 // Ack data packets, and NACK FEC packet and one data packet. Triggers
1847 // NACK-based loss detection of both packets, but only data packet is
1848 // retransmitted and considered oustanding.
1849 QuicAckFrame ack
= InitAckFrame(6);
1850 NackPacket(2, &ack
);
1851 NackPacket(3, &ack
);
1852 PacketNumberSet lost_packets
;
1853 lost_packets
.insert(2);
1854 lost_packets
.insert(3);
1855 EXPECT_CALL(*loss_algorithm_
, DetectLostPackets(_
, _
, _
, _
))
1856 .WillOnce(Return(lost_packets
));
1857 EXPECT_CALL(*send_algorithm_
, OnCongestionEvent(true, _
, _
, _
));
1858 EXPECT_CALL(*send_algorithm_
,
1859 OnPacketSent(_
, _
, _
, _
, HAS_RETRANSMITTABLE_DATA
)).Times(1);
1860 EXPECT_CALL(visitor_
, OnSuccessfulVersionNegotiation(_
));
1861 ProcessAckPacket(&ack
);
1862 // On receiving this ack from the server, the client will no longer send
1863 // version number in subsequent packets, including in this retransmission.
1864 size_t unprotected_packet_no_version
= unprotected_packet
- 4;
1865 EXPECT_EQ(unprotected_packet_no_version
,
1866 QuicSentPacketManagerPeer::GetBytesInFlight(manager_
));
1868 // Receive ack for the retransmission. No data should be outstanding.
1869 QuicAckFrame ack2
= InitAckFrame(7);
1870 NackPacket(2, &ack2
);
1871 NackPacket(3, &ack2
);
1872 PacketNumberSet lost_packets2
;
1873 EXPECT_CALL(*loss_algorithm_
, DetectLostPackets(_
, _
, _
, _
))
1874 .WillOnce(Return(lost_packets2
));
1875 EXPECT_CALL(*send_algorithm_
, OnCongestionEvent(true, _
, _
, _
));
1876 ProcessAckPacket(&ack2
);
1877 EXPECT_EQ(0u, QuicSentPacketManagerPeer::GetBytesInFlight(manager_
));
1880 TEST_P(QuicConnectionTest
, FECRemainsInflightOnTLPOfEarlierData
) {
1881 // This test checks if TLP is sent correctly when a data and an FEC packet
1882 // are outstanding. TLP should be sent for the data packet when the
1883 // retransmission alarm fires.
1884 // Turn on TLP for this test.
1885 QuicSentPacketManagerPeer::SetMaxTailLossProbes(manager_
, 1);
1886 EXPECT_TRUE(creator_
->IsFecEnabled());
1887 EXPECT_EQ(0u, QuicSentPacketManagerPeer::GetBytesInFlight(manager_
));
1888 EXPECT_FALSE(connection_
.GetFecAlarm()->IsSet());
1890 // 1 Data packet. FEC alarm should be set.
1891 EXPECT_CALL(*send_algorithm_
,
1892 OnPacketSent(_
, _
, 1u, _
, HAS_RETRANSMITTABLE_DATA
)).Times(1);
1893 connection_
.SendStreamDataWithStringWithFec(3, "foo", 0, kFin
, nullptr);
1894 EXPECT_TRUE(connection_
.GetFecAlarm()->IsSet());
1895 size_t protected_packet
=
1896 QuicSentPacketManagerPeer::GetBytesInFlight(manager_
);
1897 EXPECT_LT(0u, protected_packet
);
1899 // Force FEC timeout to send FEC packet out.
1900 EXPECT_CALL(*send_algorithm_
,
1901 OnPacketSent(_
, _
, 2u, _
, HAS_RETRANSMITTABLE_DATA
)).Times(1);
1902 connection_
.GetFecAlarm()->Fire();
1903 EXPECT_TRUE(writer_
->header().fec_flag
);
1904 size_t fec_packet
= protected_packet
;
1905 EXPECT_EQ(protected_packet
+ fec_packet
,
1906 QuicSentPacketManagerPeer::GetBytesInFlight(manager_
));
1908 // TLP alarm should be set.
1909 QuicTime retransmission_time
=
1910 connection_
.GetRetransmissionAlarm()->deadline();
1911 EXPECT_NE(QuicTime::Zero(), retransmission_time
);
1912 // Simulate the retransmission alarm firing and sending a TLP, so send
1913 // algorithm's OnRetransmissionTimeout is not called.
1914 clock_
.AdvanceTime(retransmission_time
.Subtract(clock_
.Now()));
1915 EXPECT_CALL(*send_algorithm_
,
1916 OnPacketSent(_
, _
, 3u, _
, HAS_RETRANSMITTABLE_DATA
)).Times(1);
1917 connection_
.GetRetransmissionAlarm()->Fire();
1918 // The TLP retransmission of packet 1 will be 3 bytes smaller than packet 1,
1919 // since packet 1 will have 1 byte for FEC group number and 2 bytes of stream
1920 // frame size, which are absent in the the TLP retransmission.
1921 size_t tlp_packet
= protected_packet
- 3;
1922 EXPECT_EQ(protected_packet
+ fec_packet
+ tlp_packet
,
1923 QuicSentPacketManagerPeer::GetBytesInFlight(manager_
));
1926 TEST_P(QuicConnectionTest
, FECRemainsInflightOnTLPOfLaterData
) {
1927 // Tests if TLP is sent correctly when data packet 1 and an FEC packet are
1928 // sent followed by data packet 2, and data packet 1 is acked. TLP should be
1929 // sent for data packet 2 when the retransmission alarm fires. Turn on TLP for
1931 QuicSentPacketManagerPeer::SetMaxTailLossProbes(manager_
, 1);
1932 EXPECT_TRUE(creator_
->IsFecEnabled());
1933 EXPECT_EQ(0u, QuicSentPacketManagerPeer::GetBytesInFlight(manager_
));
1934 EXPECT_FALSE(connection_
.GetFecAlarm()->IsSet());
1936 // 1 Data packet. FEC alarm should be set.
1937 EXPECT_CALL(*send_algorithm_
,
1938 OnPacketSent(_
, _
, 1u, _
, HAS_RETRANSMITTABLE_DATA
)).Times(1);
1939 connection_
.SendStreamDataWithStringWithFec(3, "foo", 0, kFin
, nullptr);
1940 EXPECT_TRUE(connection_
.GetFecAlarm()->IsSet());
1941 size_t protected_packet
=
1942 QuicSentPacketManagerPeer::GetBytesInFlight(manager_
);
1943 EXPECT_LT(0u, protected_packet
);
1945 // Force FEC timeout to send FEC packet out.
1946 EXPECT_CALL(*send_algorithm_
,
1947 OnPacketSent(_
, _
, 2u, _
, HAS_RETRANSMITTABLE_DATA
)).Times(1);
1948 connection_
.GetFecAlarm()->Fire();
1949 EXPECT_TRUE(writer_
->header().fec_flag
);
1950 // Protected data packet and FEC packet oustanding.
1951 size_t fec_packet
= protected_packet
;
1952 EXPECT_EQ(protected_packet
+ fec_packet
,
1953 QuicSentPacketManagerPeer::GetBytesInFlight(manager_
));
1955 // Send 1 unprotected data packet. No FEC alarm should be set.
1956 EXPECT_CALL(*send_algorithm_
,
1957 OnPacketSent(_
, _
, 3u, _
, HAS_RETRANSMITTABLE_DATA
)).Times(1);
1958 connection_
.SendStreamDataWithString(5, "foo", 0, kFin
, nullptr);
1959 EXPECT_FALSE(connection_
.GetFecAlarm()->IsSet());
1960 // Protected data packet, FEC packet, and unprotected data packet oustanding.
1961 // An unprotected packet will be 3 bytes smaller than an FEC-protected packet,
1962 // since the protected packet will have 1 byte for FEC group number and
1963 // 2 bytes of stream frame size, which are absent in the unprotected packet.
1964 size_t unprotected_packet
= protected_packet
- 3;
1965 EXPECT_EQ(protected_packet
+ fec_packet
+ unprotected_packet
,
1966 QuicSentPacketManagerPeer::GetBytesInFlight(manager_
));
1968 // Receive ack for first data packet. FEC and second data packet are still
1970 QuicAckFrame ack
= InitAckFrame(1);
1971 EXPECT_CALL(*send_algorithm_
, OnCongestionEvent(true, _
, _
, _
));
1972 EXPECT_CALL(visitor_
, OnSuccessfulVersionNegotiation(_
));
1973 ProcessAckPacket(&ack
);
1974 // FEC packet and unprotected data packet oustanding.
1975 EXPECT_EQ(fec_packet
+ unprotected_packet
,
1976 QuicSentPacketManagerPeer::GetBytesInFlight(manager_
));
1978 // TLP alarm should be set.
1979 QuicTime retransmission_time
=
1980 connection_
.GetRetransmissionAlarm()->deadline();
1981 EXPECT_NE(QuicTime::Zero(), retransmission_time
);
1982 // Simulate the retransmission alarm firing and sending a TLP, so send
1983 // algorithm's OnRetransmissionTimeout is not called.
1984 clock_
.AdvanceTime(retransmission_time
.Subtract(clock_
.Now()));
1985 EXPECT_CALL(*send_algorithm_
,
1986 OnPacketSent(_
, _
, 4u, _
, HAS_RETRANSMITTABLE_DATA
)).Times(1);
1987 connection_
.GetRetransmissionAlarm()->Fire();
1989 // Having received an ack from the server, the client will no longer send
1990 // version number in subsequent packets, including in this retransmission.
1991 size_t tlp_packet_no_version
= unprotected_packet
- 4;
1992 EXPECT_EQ(fec_packet
+ unprotected_packet
+ tlp_packet_no_version
,
1993 QuicSentPacketManagerPeer::GetBytesInFlight(manager_
));
1996 TEST_P(QuicConnectionTest
, NoTLPForFECPacket
) {
1997 // Turn on TLP for this test.
1998 QuicSentPacketManagerPeer::SetMaxTailLossProbes(manager_
, 1);
1999 EXPECT_TRUE(creator_
->IsFecEnabled());
2000 EXPECT_CALL(visitor_
, OnSuccessfulVersionNegotiation(_
));
2002 // Send 1 FEC-protected data packet. FEC alarm should be set.
2003 EXPECT_CALL(*send_algorithm_
,
2004 OnPacketSent(_
, _
, _
, _
, HAS_RETRANSMITTABLE_DATA
)).Times(1);
2005 connection_
.SendStreamDataWithStringWithFec(3, "foo", 0, !kFin
, nullptr);
2006 EXPECT_TRUE(connection_
.GetFecAlarm()->IsSet());
2007 // Force FEC timeout to send FEC packet out.
2008 EXPECT_CALL(*send_algorithm_
,
2009 OnPacketSent(_
, _
, _
, _
, HAS_RETRANSMITTABLE_DATA
)).Times(1);
2010 connection_
.GetFecAlarm()->Fire();
2011 EXPECT_TRUE(writer_
->header().fec_flag
);
2013 // Ack data packet, but not FEC packet.
2014 QuicAckFrame ack
= InitAckFrame(1);
2015 EXPECT_CALL(*send_algorithm_
, OnCongestionEvent(true, _
, _
, _
));
2016 ProcessAckPacket(&ack
);
2018 // No TLP alarm for FEC, but retransmission alarm should be set for an RTO.
2019 EXPECT_LT(0u, QuicSentPacketManagerPeer::GetBytesInFlight(manager_
));
2020 EXPECT_TRUE(connection_
.GetRetransmissionAlarm()->IsSet());
2021 QuicTime rto_time
= connection_
.GetRetransmissionAlarm()->deadline();
2022 EXPECT_NE(QuicTime::Zero(), rto_time
);
2024 // Simulate the retransmission alarm firing. FEC packet is no longer
2026 clock_
.AdvanceTime(rto_time
.Subtract(clock_
.Now()));
2027 connection_
.GetRetransmissionAlarm()->Fire();
2029 EXPECT_FALSE(connection_
.GetRetransmissionAlarm()->IsSet());
2030 EXPECT_EQ(0u, QuicSentPacketManagerPeer::GetBytesInFlight(manager_
));
2033 TEST_P(QuicConnectionTest
, FramePacking
) {
2034 CongestionBlockWrites();
2036 // Send an ack and two stream frames in 1 packet by queueing them.
2037 connection_
.SendAck();
2038 EXPECT_CALL(visitor_
, OnCanWrite()).WillOnce(DoAll(
2039 IgnoreResult(InvokeWithoutArgs(&connection_
,
2040 &TestConnection::SendStreamData3
)),
2041 IgnoreResult(InvokeWithoutArgs(&connection_
,
2042 &TestConnection::SendStreamData5
))));
2044 EXPECT_CALL(*send_algorithm_
, OnPacketSent(_
, _
, _
, _
, _
)).Times(1);
2045 CongestionUnblockWrites();
2046 connection_
.GetSendAlarm()->Fire();
2047 EXPECT_EQ(0u, connection_
.NumQueuedPackets());
2048 EXPECT_FALSE(connection_
.HasQueuedData());
2050 // Parse the last packet and ensure it's an ack and two stream frames from
2051 // two different streams.
2052 EXPECT_EQ(4u, writer_
->frame_count());
2053 EXPECT_FALSE(writer_
->stop_waiting_frames().empty());
2054 EXPECT_FALSE(writer_
->ack_frames().empty());
2055 ASSERT_EQ(2u, writer_
->stream_frames().size());
2056 EXPECT_EQ(kClientDataStreamId1
, writer_
->stream_frames()[0].stream_id
);
2057 EXPECT_EQ(kClientDataStreamId2
, writer_
->stream_frames()[1].stream_id
);
2060 TEST_P(QuicConnectionTest
, FramePackingNonCryptoThenCrypto
) {
2061 CongestionBlockWrites();
2063 // Send an ack and two stream frames (one non-crypto, then one crypto) in 2
2064 // packets by queueing them.
2065 connection_
.SendAck();
2066 EXPECT_CALL(visitor_
, OnCanWrite()).WillOnce(DoAll(
2067 IgnoreResult(InvokeWithoutArgs(&connection_
,
2068 &TestConnection::SendStreamData3
)),
2069 IgnoreResult(InvokeWithoutArgs(&connection_
,
2070 &TestConnection::SendCryptoStreamData
))));
2072 EXPECT_CALL(*send_algorithm_
, OnPacketSent(_
, _
, _
, _
, _
)).Times(2);
2073 CongestionUnblockWrites();
2074 connection_
.GetSendAlarm()->Fire();
2075 EXPECT_EQ(0u, connection_
.NumQueuedPackets());
2076 EXPECT_FALSE(connection_
.HasQueuedData());
2078 // Parse the last packet and ensure it's the crypto stream frame.
2079 EXPECT_EQ(1u, writer_
->frame_count());
2080 ASSERT_EQ(1u, writer_
->stream_frames().size());
2081 EXPECT_EQ(kCryptoStreamId
, writer_
->stream_frames()[0].stream_id
);
2084 TEST_P(QuicConnectionTest
, FramePackingCryptoThenNonCrypto
) {
2085 CongestionBlockWrites();
2087 // Send an ack and two stream frames (one crypto, then one non-crypto) in 2
2088 // packets by queueing them.
2089 connection_
.SendAck();
2090 EXPECT_CALL(visitor_
, OnCanWrite()).WillOnce(DoAll(
2091 IgnoreResult(InvokeWithoutArgs(&connection_
,
2092 &TestConnection::SendCryptoStreamData
)),
2093 IgnoreResult(InvokeWithoutArgs(&connection_
,
2094 &TestConnection::SendStreamData3
))));
2096 EXPECT_CALL(*send_algorithm_
, OnPacketSent(_
, _
, _
, _
, _
)).Times(2);
2097 CongestionUnblockWrites();
2098 connection_
.GetSendAlarm()->Fire();
2099 EXPECT_EQ(0u, connection_
.NumQueuedPackets());
2100 EXPECT_FALSE(connection_
.HasQueuedData());
2102 // Parse the last packet and ensure it's the stream frame from stream 3.
2103 EXPECT_EQ(1u, writer_
->frame_count());
2104 ASSERT_EQ(1u, writer_
->stream_frames().size());
2105 EXPECT_EQ(kClientDataStreamId1
, writer_
->stream_frames()[0].stream_id
);
2108 TEST_P(QuicConnectionTest
, FramePackingFEC
) {
2109 EXPECT_TRUE(creator_
->IsFecEnabled());
2111 CongestionBlockWrites();
2113 // Queue an ack and two stream frames. Ack gets flushed when FEC is turned on
2114 // for sending protected data; two stream frames are packed in 1 packet.
2115 EXPECT_CALL(visitor_
, OnCanWrite()).WillOnce(DoAll(
2116 IgnoreResult(InvokeWithoutArgs(
2117 &connection_
, &TestConnection::SendStreamData3WithFec
)),
2118 IgnoreResult(InvokeWithoutArgs(
2119 &connection_
, &TestConnection::SendStreamData5WithFec
))));
2120 connection_
.SendAck();
2122 EXPECT_CALL(*send_algorithm_
, OnPacketSent(_
, _
, _
, _
, _
)).Times(2);
2123 CongestionUnblockWrites();
2124 connection_
.GetSendAlarm()->Fire();
2125 EXPECT_EQ(0u, connection_
.NumQueuedPackets());
2126 EXPECT_FALSE(connection_
.HasQueuedData());
2128 // Parse the last packet and ensure it's in an fec group.
2129 EXPECT_EQ(2u, writer_
->header().fec_group
);
2130 EXPECT_EQ(2u, writer_
->frame_count());
2132 // FEC alarm should be set.
2133 EXPECT_TRUE(connection_
.GetFecAlarm()->IsSet());
2136 TEST_P(QuicConnectionTest
, FramePackingAckResponse
) {
2137 EXPECT_CALL(visitor_
, OnSuccessfulVersionNegotiation(_
));
2138 // Process a data packet to queue up a pending ack.
2139 EXPECT_CALL(visitor_
, OnStreamFrame(_
)).Times(1);
2140 ProcessDataPacket(1, 1, kEntropyFlag
);
2142 EXPECT_CALL(visitor_
, OnCanWrite()).WillOnce(DoAll(
2143 IgnoreResult(InvokeWithoutArgs(&connection_
,
2144 &TestConnection::SendStreamData3
)),
2145 IgnoreResult(InvokeWithoutArgs(&connection_
,
2146 &TestConnection::SendStreamData5
))));
2148 EXPECT_CALL(*send_algorithm_
, OnPacketSent(_
, _
, _
, _
, _
)).Times(1);
2150 // Process an ack to cause the visitor's OnCanWrite to be invoked.
2151 QuicAckFrame ack_one
= InitAckFrame(0);
2152 ProcessAckPacket(3, &ack_one
);
2154 EXPECT_EQ(0u, connection_
.NumQueuedPackets());
2155 EXPECT_FALSE(connection_
.HasQueuedData());
2157 // Parse the last packet and ensure it's an ack and two stream frames from
2158 // two different streams.
2159 EXPECT_EQ(4u, writer_
->frame_count());
2160 EXPECT_FALSE(writer_
->stop_waiting_frames().empty());
2161 EXPECT_FALSE(writer_
->ack_frames().empty());
2162 ASSERT_EQ(2u, writer_
->stream_frames().size());
2163 EXPECT_EQ(kClientDataStreamId1
, writer_
->stream_frames()[0].stream_id
);
2164 EXPECT_EQ(kClientDataStreamId2
, writer_
->stream_frames()[1].stream_id
);
2167 TEST_P(QuicConnectionTest
, FramePackingSendv
) {
2168 // Send data in 1 packet by writing multiple blocks in a single iovector
2170 EXPECT_CALL(*send_algorithm_
, OnPacketSent(_
, _
, _
, _
, _
));
2172 char data
[] = "ABCD";
2173 struct iovec iov
[2];
2174 iov
[0].iov_base
= data
;
2176 iov
[1].iov_base
= data
+ 2;
2178 connection_
.SendStreamData(1, QuicIOVector(iov
, 2, 4), 0, !kFin
,
2179 MAY_FEC_PROTECT
, nullptr);
2181 EXPECT_EQ(0u, connection_
.NumQueuedPackets());
2182 EXPECT_FALSE(connection_
.HasQueuedData());
2184 // Parse the last packet and ensure multiple iovector blocks have
2185 // been packed into a single stream frame from one stream.
2186 EXPECT_EQ(1u, writer_
->frame_count());
2187 EXPECT_EQ(1u, writer_
->stream_frames().size());
2188 QuicStreamFrame frame
= writer_
->stream_frames()[0];
2189 EXPECT_EQ(1u, frame
.stream_id
);
2190 EXPECT_EQ("ABCD", frame
.data
);
2193 TEST_P(QuicConnectionTest
, FramePackingSendvQueued
) {
2194 // Try to send two stream frames in 1 packet by using writev.
2195 EXPECT_CALL(*send_algorithm_
, OnPacketSent(_
, _
, _
, _
, _
));
2198 char data
[] = "ABCD";
2199 struct iovec iov
[2];
2200 iov
[0].iov_base
= data
;
2202 iov
[1].iov_base
= data
+ 2;
2204 connection_
.SendStreamData(1, QuicIOVector(iov
, 2, 4), 0, !kFin
,
2205 MAY_FEC_PROTECT
, nullptr);
2207 EXPECT_EQ(1u, connection_
.NumQueuedPackets());
2208 EXPECT_TRUE(connection_
.HasQueuedData());
2210 // Unblock the writes and actually send.
2211 writer_
->SetWritable();
2212 connection_
.OnCanWrite();
2213 EXPECT_EQ(0u, connection_
.NumQueuedPackets());
2215 // Parse the last packet and ensure it's one stream frame from one stream.
2216 EXPECT_EQ(1u, writer_
->frame_count());
2217 EXPECT_EQ(1u, writer_
->stream_frames().size());
2218 EXPECT_EQ(1u, writer_
->stream_frames()[0].stream_id
);
2221 TEST_P(QuicConnectionTest
, SendingZeroBytes
) {
2222 // Send a zero byte write with a fin using writev.
2223 EXPECT_CALL(*send_algorithm_
, OnPacketSent(_
, _
, _
, _
, _
));
2224 QuicIOVector
empty_iov(nullptr, 0, 0);
2225 connection_
.SendStreamData(1, empty_iov
, 0, kFin
, MAY_FEC_PROTECT
, nullptr);
2227 EXPECT_EQ(0u, connection_
.NumQueuedPackets());
2228 EXPECT_FALSE(connection_
.HasQueuedData());
2230 // Parse the last packet and ensure it's one stream frame from one stream.
2231 EXPECT_EQ(1u, writer_
->frame_count());
2232 EXPECT_EQ(1u, writer_
->stream_frames().size());
2233 EXPECT_EQ(1u, writer_
->stream_frames()[0].stream_id
);
2234 EXPECT_TRUE(writer_
->stream_frames()[0].fin
);
2237 TEST_P(QuicConnectionTest
, OnCanWrite
) {
2238 // Visitor's OnCanWrite will send data, but will have more pending writes.
2239 EXPECT_CALL(visitor_
, OnCanWrite()).WillOnce(DoAll(
2240 IgnoreResult(InvokeWithoutArgs(&connection_
,
2241 &TestConnection::SendStreamData3
)),
2242 IgnoreResult(InvokeWithoutArgs(&connection_
,
2243 &TestConnection::SendStreamData5
))));
2244 EXPECT_CALL(visitor_
, WillingAndAbleToWrite()).WillOnce(Return(true));
2245 EXPECT_CALL(*send_algorithm_
,
2246 TimeUntilSend(_
, _
, _
)).WillRepeatedly(
2247 testing::Return(QuicTime::Delta::Zero()));
2249 connection_
.OnCanWrite();
2251 // Parse the last packet and ensure it's the two stream frames from
2252 // two different streams.
2253 EXPECT_EQ(2u, writer_
->frame_count());
2254 EXPECT_EQ(2u, writer_
->stream_frames().size());
2255 EXPECT_EQ(kClientDataStreamId1
, writer_
->stream_frames()[0].stream_id
);
2256 EXPECT_EQ(kClientDataStreamId2
, writer_
->stream_frames()[1].stream_id
);
2259 TEST_P(QuicConnectionTest
, RetransmitOnNack
) {
2260 QuicPacketNumber last_packet
;
2261 QuicByteCount second_packet_size
;
2262 SendStreamDataToPeer(3, "foo", 0, !kFin
, &last_packet
); // Packet 1
2263 second_packet_size
=
2264 SendStreamDataToPeer(3, "foos", 3, !kFin
, &last_packet
); // Packet 2
2265 SendStreamDataToPeer(3, "fooos", 7, !kFin
, &last_packet
); // Packet 3
2267 EXPECT_CALL(visitor_
, OnSuccessfulVersionNegotiation(_
));
2269 // Don't lose a packet on an ack, and nothing is retransmitted.
2270 EXPECT_CALL(*send_algorithm_
, OnCongestionEvent(true, _
, _
, _
));
2271 QuicAckFrame ack_one
= InitAckFrame(1);
2272 ProcessAckPacket(&ack_one
);
2274 // Lose a packet and ensure it triggers retransmission.
2275 QuicAckFrame nack_two
= InitAckFrame(3);
2276 NackPacket(2, &nack_two
);
2277 PacketNumberSet lost_packets
;
2278 lost_packets
.insert(2);
2279 EXPECT_CALL(*loss_algorithm_
, DetectLostPackets(_
, _
, _
, _
))
2280 .WillOnce(Return(lost_packets
));
2281 EXPECT_CALL(*send_algorithm_
, OnCongestionEvent(true, _
, _
, _
));
2282 EXPECT_CALL(*send_algorithm_
,
2283 OnPacketSent(_
, _
, _
, second_packet_size
- kQuicVersionSize
, _
)).
2285 ProcessAckPacket(&nack_two
);
2288 TEST_P(QuicConnectionTest
, DoNotSendQueuedPacketForResetStream
) {
2289 // Block the connection to queue the packet.
2292 QuicStreamId stream_id
= 2;
2293 connection_
.SendStreamDataWithString(stream_id
, "foo", 0, !kFin
, nullptr);
2295 // Now that there is a queued packet, reset the stream.
2296 connection_
.SendRstStream(stream_id
, QUIC_STREAM_NO_ERROR
, 14);
2298 // Unblock the connection and verify that only the RST_STREAM is sent.
2299 EXPECT_CALL(*send_algorithm_
, OnPacketSent(_
, _
, _
, _
, _
)).Times(1);
2300 writer_
->SetWritable();
2301 connection_
.OnCanWrite();
2302 EXPECT_EQ(1u, writer_
->frame_count());
2303 EXPECT_EQ(1u, writer_
->rst_stream_frames().size());
2306 TEST_P(QuicConnectionTest
, DoNotRetransmitForResetStreamOnNack
) {
2307 QuicStreamId stream_id
= 2;
2308 QuicPacketNumber last_packet
;
2309 SendStreamDataToPeer(stream_id
, "foo", 0, !kFin
, &last_packet
);
2310 SendStreamDataToPeer(stream_id
, "foos", 3, !kFin
, &last_packet
);
2311 SendStreamDataToPeer(stream_id
, "fooos", 7, !kFin
, &last_packet
);
2313 EXPECT_CALL(*send_algorithm_
, OnPacketSent(_
, _
, _
, _
, _
)).Times(1);
2314 connection_
.SendRstStream(stream_id
, QUIC_STREAM_NO_ERROR
, 14);
2316 // Lose a packet and ensure it does not trigger retransmission.
2317 QuicAckFrame nack_two
= InitAckFrame(last_packet
);
2318 NackPacket(last_packet
- 1, &nack_two
);
2319 PacketNumberSet lost_packets
;
2320 lost_packets
.insert(last_packet
- 1);
2321 EXPECT_CALL(visitor_
, OnSuccessfulVersionNegotiation(_
));
2322 EXPECT_CALL(*loss_algorithm_
, DetectLostPackets(_
, _
, _
, _
))
2323 .WillOnce(Return(lost_packets
));
2324 EXPECT_CALL(*send_algorithm_
, OnCongestionEvent(true, _
, _
, _
));
2325 EXPECT_CALL(*send_algorithm_
, OnPacketSent(_
, _
, _
, _
, _
)).Times(0);
2326 ProcessAckPacket(&nack_two
);
2329 TEST_P(QuicConnectionTest
, DoNotRetransmitForResetStreamOnRTO
) {
2330 QuicStreamId stream_id
= 2;
2331 QuicPacketNumber last_packet
;
2332 SendStreamDataToPeer(stream_id
, "foo", 0, !kFin
, &last_packet
);
2334 EXPECT_CALL(*send_algorithm_
, OnPacketSent(_
, _
, _
, _
, _
)).Times(1);
2335 connection_
.SendRstStream(stream_id
, QUIC_STREAM_NO_ERROR
, 14);
2337 // Fire the RTO and verify that the RST_STREAM is resent, not stream data.
2338 EXPECT_CALL(*send_algorithm_
, OnPacketSent(_
, _
, _
, _
, _
)).Times(1);
2339 clock_
.AdvanceTime(DefaultRetransmissionTime());
2340 connection_
.GetRetransmissionAlarm()->Fire();
2341 EXPECT_EQ(1u, writer_
->frame_count());
2342 EXPECT_EQ(1u, writer_
->rst_stream_frames().size());
2343 EXPECT_EQ(stream_id
, writer_
->rst_stream_frames().front().stream_id
);
2346 TEST_P(QuicConnectionTest
, DoNotSendPendingRetransmissionForResetStream
) {
2347 QuicStreamId stream_id
= 2;
2348 QuicPacketNumber last_packet
;
2349 SendStreamDataToPeer(stream_id
, "foo", 0, !kFin
, &last_packet
);
2350 SendStreamDataToPeer(stream_id
, "foos", 3, !kFin
, &last_packet
);
2352 connection_
.SendStreamDataWithString(stream_id
, "fooos", 7, !kFin
, nullptr);
2354 // Lose a packet which will trigger a pending retransmission.
2355 QuicAckFrame ack
= InitAckFrame(last_packet
);
2356 NackPacket(last_packet
- 1, &ack
);
2357 PacketNumberSet lost_packets
;
2358 lost_packets
.insert(last_packet
- 1);
2359 EXPECT_CALL(visitor_
, OnSuccessfulVersionNegotiation(_
));
2360 EXPECT_CALL(*loss_algorithm_
, DetectLostPackets(_
, _
, _
, _
))
2361 .WillOnce(Return(lost_packets
));
2362 EXPECT_CALL(*send_algorithm_
, OnCongestionEvent(true, _
, _
, _
));
2363 EXPECT_CALL(*send_algorithm_
, OnPacketSent(_
, _
, _
, _
, _
)).Times(0);
2364 ProcessAckPacket(&ack
);
2366 connection_
.SendRstStream(stream_id
, QUIC_STREAM_NO_ERROR
, 14);
2368 // Unblock the connection and verify that the RST_STREAM is sent but not the
2369 // second data packet nor a retransmit.
2370 EXPECT_CALL(*send_algorithm_
, OnPacketSent(_
, _
, _
, _
, _
)).Times(1);
2371 writer_
->SetWritable();
2372 connection_
.OnCanWrite();
2373 EXPECT_EQ(1u, writer_
->frame_count());
2374 EXPECT_EQ(1u, writer_
->rst_stream_frames().size());
2375 EXPECT_EQ(stream_id
, writer_
->rst_stream_frames().front().stream_id
);
2378 TEST_P(QuicConnectionTest
, DiscardRetransmit
) {
2379 QuicPacketNumber last_packet
;
2380 SendStreamDataToPeer(1, "foo", 0, !kFin
, &last_packet
); // Packet 1
2381 SendStreamDataToPeer(1, "foos", 3, !kFin
, &last_packet
); // Packet 2
2382 SendStreamDataToPeer(1, "fooos", 7, !kFin
, &last_packet
); // Packet 3
2384 EXPECT_CALL(visitor_
, OnSuccessfulVersionNegotiation(_
));
2386 // Instigate a loss with an ack.
2387 QuicAckFrame nack_two
= InitAckFrame(3);
2388 NackPacket(2, &nack_two
);
2389 // The first nack should trigger a fast retransmission, but we'll be
2390 // write blocked, so the packet will be queued.
2392 PacketNumberSet lost_packets
;
2393 lost_packets
.insert(2);
2394 EXPECT_CALL(*loss_algorithm_
, DetectLostPackets(_
, _
, _
, _
))
2395 .WillOnce(Return(lost_packets
));
2396 EXPECT_CALL(*send_algorithm_
, OnCongestionEvent(true, _
, _
, _
));
2397 ProcessAckPacket(&nack_two
);
2398 EXPECT_EQ(1u, connection_
.NumQueuedPackets());
2400 // Now, ack the previous transmission.
2401 EXPECT_CALL(*loss_algorithm_
, DetectLostPackets(_
, _
, _
, _
))
2402 .WillOnce(Return(PacketNumberSet()));
2403 QuicAckFrame ack_all
= InitAckFrame(3);
2404 ProcessAckPacket(&ack_all
);
2406 // Unblock the socket and attempt to send the queued packets. However,
2407 // since the previous transmission has been acked, we will not
2408 // send the retransmission.
2409 EXPECT_CALL(*send_algorithm_
,
2410 OnPacketSent(_
, _
, _
, _
, _
)).Times(0);
2412 writer_
->SetWritable();
2413 connection_
.OnCanWrite();
2415 EXPECT_EQ(0u, connection_
.NumQueuedPackets());
2418 TEST_P(QuicConnectionTest
, RetransmitNackedLargestObserved
) {
2419 EXPECT_CALL(visitor_
, OnSuccessfulVersionNegotiation(_
));
2420 QuicPacketNumber largest_observed
;
2421 QuicByteCount packet_size
;
2422 EXPECT_CALL(*send_algorithm_
, OnPacketSent(_
, _
, _
, _
, _
))
2423 .WillOnce(DoAll(SaveArg
<2>(&largest_observed
), SaveArg
<3>(&packet_size
),
2425 connection_
.SendStreamDataWithString(3, "foo", 0, !kFin
, nullptr);
2427 QuicAckFrame frame
= InitAckFrame(1);
2428 NackPacket(largest_observed
, &frame
);
2429 // The first nack should retransmit the largest observed packet.
2430 PacketNumberSet lost_packets
;
2431 lost_packets
.insert(1);
2432 EXPECT_CALL(*loss_algorithm_
, DetectLostPackets(_
, _
, _
, _
))
2433 .WillOnce(Return(lost_packets
));
2434 EXPECT_CALL(*send_algorithm_
, OnCongestionEvent(true, _
, _
, _
));
2435 EXPECT_CALL(*send_algorithm_
,
2436 OnPacketSent(_
, _
, _
, packet_size
- kQuicVersionSize
, _
));
2437 ProcessAckPacket(&frame
);
2440 TEST_P(QuicConnectionTest
, QueueAfterTwoRTOs
) {
2441 for (int i
= 0; i
< 10; ++i
) {
2442 EXPECT_CALL(*send_algorithm_
, OnPacketSent(_
, _
, _
, _
, _
)).Times(1);
2443 connection_
.SendStreamDataWithString(3, "foo", i
* 3, !kFin
, nullptr);
2446 // Block the writer and ensure they're queued.
2448 clock_
.AdvanceTime(DefaultRetransmissionTime());
2449 // Only one packet should be retransmitted.
2450 connection_
.GetRetransmissionAlarm()->Fire();
2451 EXPECT_TRUE(connection_
.HasQueuedData());
2453 // Unblock the writer.
2454 writer_
->SetWritable();
2455 clock_
.AdvanceTime(QuicTime::Delta::FromMicroseconds(
2456 2 * DefaultRetransmissionTime().ToMicroseconds()));
2457 // Retransmit already retransmitted packets event though the packet number
2458 // greater than the largest observed.
2459 EXPECT_CALL(*send_algorithm_
, OnPacketSent(_
, _
, _
, _
, _
)).Times(2);
2460 connection_
.GetRetransmissionAlarm()->Fire();
2461 connection_
.OnCanWrite();
2464 TEST_P(QuicConnectionTest
, WriteBlockedBufferedThenSent
) {
2466 writer_
->set_is_write_blocked_data_buffered(true);
2467 EXPECT_CALL(*send_algorithm_
, OnPacketSent(_
, _
, _
, _
, _
)).Times(1);
2468 connection_
.SendStreamDataWithString(1, "foo", 0, !kFin
, nullptr);
2469 EXPECT_TRUE(connection_
.GetRetransmissionAlarm()->IsSet());
2471 writer_
->SetWritable();
2472 connection_
.OnCanWrite();
2473 EXPECT_TRUE(connection_
.GetRetransmissionAlarm()->IsSet());
2476 TEST_P(QuicConnectionTest
, WriteBlockedThenSent
) {
2477 EXPECT_CALL(*send_algorithm_
, OnPacketSent(_
, _
, _
, _
, _
)).Times(0);
2479 connection_
.SendStreamDataWithString(1, "foo", 0, !kFin
, nullptr);
2480 EXPECT_FALSE(connection_
.GetRetransmissionAlarm()->IsSet());
2481 EXPECT_EQ(1u, connection_
.NumQueuedPackets());
2483 // The second packet should also be queued, in order to ensure packets are
2484 // never sent out of order.
2485 writer_
->SetWritable();
2486 connection_
.SendStreamDataWithString(1, "foo", 0, !kFin
, nullptr);
2487 EXPECT_EQ(2u, connection_
.NumQueuedPackets());
2489 // Now both are sent in order when we unblock.
2490 EXPECT_CALL(*send_algorithm_
, OnPacketSent(_
, _
, _
, _
, _
)).Times(2);
2491 connection_
.OnCanWrite();
2492 EXPECT_TRUE(connection_
.GetRetransmissionAlarm()->IsSet());
2495 TEST_P(QuicConnectionTest
, RetransmitWriteBlockedAckedOriginalThenSent
) {
2496 EXPECT_CALL(visitor_
, OnSuccessfulVersionNegotiation(_
));
2497 connection_
.SendStreamDataWithString(3, "foo", 0, !kFin
, nullptr);
2498 EXPECT_TRUE(connection_
.GetRetransmissionAlarm()->IsSet());
2501 writer_
->set_is_write_blocked_data_buffered(true);
2502 // Simulate the retransmission alarm firing.
2503 clock_
.AdvanceTime(DefaultRetransmissionTime());
2504 connection_
.GetRetransmissionAlarm()->Fire();
2506 // Ack the sent packet before the callback returns, which happens in
2507 // rare circumstances with write blocked sockets.
2508 QuicAckFrame ack
= InitAckFrame(1);
2509 EXPECT_CALL(*send_algorithm_
, OnCongestionEvent(true, _
, _
, _
));
2510 ProcessAckPacket(&ack
);
2512 writer_
->SetWritable();
2513 connection_
.OnCanWrite();
2514 // There is now a pending packet, but with no retransmittable frames.
2515 EXPECT_TRUE(connection_
.GetRetransmissionAlarm()->IsSet());
2516 EXPECT_FALSE(connection_
.sent_packet_manager().HasRetransmittableFrames(2));
2519 TEST_P(QuicConnectionTest
, AlarmsWhenWriteBlocked
) {
2520 // Block the connection.
2522 connection_
.SendStreamDataWithString(3, "foo", 0, !kFin
, nullptr);
2523 EXPECT_EQ(1u, writer_
->packets_write_attempts());
2524 EXPECT_TRUE(writer_
->IsWriteBlocked());
2526 // Set the send and resumption alarms. Fire the alarms and ensure they don't
2527 // attempt to write.
2528 connection_
.GetResumeWritesAlarm()->Set(clock_
.ApproximateNow());
2529 connection_
.GetSendAlarm()->Set(clock_
.ApproximateNow());
2530 connection_
.GetResumeWritesAlarm()->Fire();
2531 connection_
.GetSendAlarm()->Fire();
2532 EXPECT_TRUE(writer_
->IsWriteBlocked());
2533 EXPECT_EQ(1u, writer_
->packets_write_attempts());
2536 TEST_P(QuicConnectionTest
, NoLimitPacketsPerNack
) {
2537 EXPECT_CALL(visitor_
, OnSuccessfulVersionNegotiation(_
));
2539 // Send packets 1 to 15.
2540 for (int i
= 0; i
< 15; ++i
) {
2541 SendStreamDataToPeer(1, "foo", offset
, !kFin
, nullptr);
2545 // Ack 15, nack 1-14.
2546 PacketNumberSet lost_packets
;
2547 QuicAckFrame nack
= InitAckFrame(15);
2548 for (int i
= 1; i
< 15; ++i
) {
2549 NackPacket(i
, &nack
);
2550 lost_packets
.insert(i
);
2553 // 14 packets have been NACK'd and lost. In TCP cubic, PRR limits
2554 // the retransmission rate in the case of burst losses.
2555 EXPECT_CALL(*loss_algorithm_
, DetectLostPackets(_
, _
, _
, _
))
2556 .WillOnce(Return(lost_packets
));
2557 EXPECT_CALL(*send_algorithm_
, OnCongestionEvent(true, _
, _
, _
));
2558 EXPECT_CALL(*send_algorithm_
, OnPacketSent(_
, _
, _
, _
, _
)).Times(14);
2559 ProcessAckPacket(&nack
);
2562 // Test sending multiple acks from the connection to the session.
2563 TEST_P(QuicConnectionTest
, MultipleAcks
) {
2564 QuicPacketNumber last_packet
;
2565 SendStreamDataToPeer(1, "foo", 0, !kFin
, &last_packet
); // Packet 1
2566 EXPECT_EQ(1u, last_packet
);
2567 SendStreamDataToPeer(3, "foo", 0, !kFin
, &last_packet
); // Packet 2
2568 EXPECT_EQ(2u, last_packet
);
2569 SendAckPacketToPeer(); // Packet 3
2570 SendStreamDataToPeer(5, "foo", 0, !kFin
, &last_packet
); // Packet 4
2571 EXPECT_EQ(4u, last_packet
);
2572 SendStreamDataToPeer(1, "foo", 3, !kFin
, &last_packet
); // Packet 5
2573 EXPECT_EQ(5u, last_packet
);
2574 SendStreamDataToPeer(3, "foo", 3, !kFin
, &last_packet
); // Packet 6
2575 EXPECT_EQ(6u, last_packet
);
2577 // Client will ack packets 1, 2, [!3], 4, 5.
2578 EXPECT_CALL(*send_algorithm_
, OnCongestionEvent(true, _
, _
, _
));
2579 QuicAckFrame frame1
= InitAckFrame(5);
2580 NackPacket(3, &frame1
);
2581 EXPECT_CALL(visitor_
, OnSuccessfulVersionNegotiation(_
));
2582 ProcessAckPacket(&frame1
);
2584 // Now the client implicitly acks 3, and explicitly acks 6.
2585 EXPECT_CALL(*send_algorithm_
, OnCongestionEvent(true, _
, _
, _
));
2586 QuicAckFrame frame2
= InitAckFrame(6);
2587 ProcessAckPacket(&frame2
);
2590 TEST_P(QuicConnectionTest
, DontLatchUnackedPacket
) {
2591 SendStreamDataToPeer(1, "foo", 0, !kFin
, nullptr); // Packet 1;
2592 // From now on, we send acks, so the send algorithm won't mark them pending.
2593 ON_CALL(*send_algorithm_
, OnPacketSent(_
, _
, _
, _
, _
))
2594 .WillByDefault(Return(false));
2595 SendAckPacketToPeer(); // Packet 2
2597 EXPECT_CALL(visitor_
, OnSuccessfulVersionNegotiation(_
));
2598 EXPECT_CALL(*send_algorithm_
, OnCongestionEvent(true, _
, _
, _
));
2599 QuicAckFrame frame
= InitAckFrame(1);
2600 ProcessAckPacket(&frame
);
2602 // Verify that our internal state has least-unacked as 2, because we're still
2603 // waiting for a potential ack for 2.
2605 EXPECT_EQ(2u, stop_waiting()->least_unacked
);
2607 EXPECT_CALL(*send_algorithm_
, OnCongestionEvent(true, _
, _
, _
));
2608 frame
= InitAckFrame(2);
2609 ProcessAckPacket(&frame
);
2610 EXPECT_EQ(3u, stop_waiting()->least_unacked
);
2612 // When we send an ack, we make sure our least-unacked makes sense. In this
2613 // case since we're not waiting on an ack for 2 and all packets are acked, we
2615 SendAckPacketToPeer(); // Packet 3
2616 // Least_unacked remains at 3 until another ack is received.
2617 EXPECT_EQ(3u, stop_waiting()->least_unacked
);
2618 // Check that the outgoing ack had its packet number as least_unacked.
2619 EXPECT_EQ(3u, least_unacked());
2621 // Ack the ack, which updates the rtt and raises the least unacked.
2622 EXPECT_CALL(*send_algorithm_
, OnCongestionEvent(true, _
, _
, _
));
2623 frame
= InitAckFrame(3);
2624 ProcessAckPacket(&frame
);
2626 ON_CALL(*send_algorithm_
, OnPacketSent(_
, _
, _
, _
, _
))
2627 .WillByDefault(Return(true));
2628 SendStreamDataToPeer(1, "bar", 3, false, nullptr); // Packet 4
2629 EXPECT_EQ(4u, stop_waiting()->least_unacked
);
2630 ON_CALL(*send_algorithm_
, OnPacketSent(_
, _
, _
, _
, _
))
2631 .WillByDefault(Return(false));
2632 SendAckPacketToPeer(); // Packet 5
2633 EXPECT_EQ(4u, least_unacked());
2635 // Send two data packets at the end, and ensure if the last one is acked,
2636 // the least unacked is raised above the ack packets.
2637 ON_CALL(*send_algorithm_
, OnPacketSent(_
, _
, _
, _
, _
))
2638 .WillByDefault(Return(true));
2639 SendStreamDataToPeer(1, "bar", 6, false, nullptr); // Packet 6
2640 SendStreamDataToPeer(1, "bar", 9, false, nullptr); // Packet 7
2642 EXPECT_CALL(*send_algorithm_
, OnCongestionEvent(true, _
, _
, _
));
2643 frame
= InitAckFrame(7);
2644 NackPacket(5, &frame
);
2645 NackPacket(6, &frame
);
2646 ProcessAckPacket(&frame
);
2648 EXPECT_EQ(6u, stop_waiting()->least_unacked
);
2651 TEST_P(QuicConnectionTest
, ReviveMissingPacketAfterFecPacket
) {
2652 EXPECT_CALL(visitor_
, OnSuccessfulVersionNegotiation(_
));
2654 // Don't send missing packet 1.
2655 ProcessFecPacket(2, 1, true, !kEntropyFlag
, nullptr);
2656 // Entropy flag should be false, so entropy should be 0.
2657 EXPECT_EQ(0u, QuicConnectionPeer::ReceivedEntropyHash(&connection_
, 2));
2660 TEST_P(QuicConnectionTest
, ReviveMissingPacketWithVaryingSeqNumLengths
) {
2661 EXPECT_CALL(visitor_
, OnSuccessfulVersionNegotiation(_
));
2663 // Set up a debug visitor to the connection.
2664 scoped_ptr
<FecQuicConnectionDebugVisitor
> fec_visitor(
2665 new FecQuicConnectionDebugVisitor());
2666 connection_
.set_debug_visitor(fec_visitor
.get());
2668 QuicPacketNumber fec_packet
= 0;
2669 QuicPacketNumberLength lengths
[] = {
2670 PACKET_6BYTE_PACKET_NUMBER
, PACKET_4BYTE_PACKET_NUMBER
,
2671 PACKET_2BYTE_PACKET_NUMBER
, PACKET_1BYTE_PACKET_NUMBER
};
2672 // For each packet number length size, revive a packet and check sequence
2673 // number length in the revived packet.
2674 for (size_t i
= 0; i
< arraysize(lengths
); ++i
) {
2675 // Set packet_number_length_ (for data and FEC packets).
2676 packet_number_length_
= lengths
[i
];
2678 // Don't send missing packet, but send fec packet right after it.
2679 ProcessFecPacket(fec_packet
, fec_packet
- 1, true, !kEntropyFlag
, nullptr);
2680 // packet number length in the revived header should be the same as
2681 // in the original data/fec packet headers.
2682 EXPECT_EQ(packet_number_length_
,
2683 fec_visitor
->revived_header().public_header
.packet_number_length
);
2687 TEST_P(QuicConnectionTest
, ReviveMissingPacketWithVaryingConnectionIdLengths
) {
2688 EXPECT_CALL(visitor_
, OnSuccessfulVersionNegotiation(_
));
2690 // Set up a debug visitor to the connection.
2691 scoped_ptr
<FecQuicConnectionDebugVisitor
> fec_visitor(
2692 new FecQuicConnectionDebugVisitor());
2693 connection_
.set_debug_visitor(fec_visitor
.get());
2695 QuicPacketNumber fec_packet
= 0;
2696 QuicConnectionIdLength lengths
[] = {PACKET_8BYTE_CONNECTION_ID
,
2697 PACKET_4BYTE_CONNECTION_ID
,
2698 PACKET_1BYTE_CONNECTION_ID
,
2699 PACKET_0BYTE_CONNECTION_ID
};
2700 // For each connection id length size, revive a packet and check connection
2701 // id length in the revived packet.
2702 for (size_t i
= 0; i
< arraysize(lengths
); ++i
) {
2703 // Set connection id length (for data and FEC packets).
2704 connection_id_length_
= lengths
[i
];
2706 // Don't send missing packet, but send fec packet right after it.
2707 ProcessFecPacket(fec_packet
, fec_packet
- 1, true, !kEntropyFlag
, nullptr);
2708 // Connection id length in the revived header should be the same as
2709 // in the original data/fec packet headers.
2710 EXPECT_EQ(connection_id_length_
,
2711 fec_visitor
->revived_header().public_header
.connection_id_length
);
2715 TEST_P(QuicConnectionTest
, ReviveMissingPacketAfterDataPacketThenFecPacket
) {
2716 EXPECT_CALL(visitor_
, OnSuccessfulVersionNegotiation(_
));
2718 ProcessFecProtectedPacket(1, false, kEntropyFlag
);
2719 // Don't send missing packet 2.
2720 ProcessFecPacket(3, 1, true, !kEntropyFlag
, nullptr);
2721 // Entropy flag should be true, so entropy should not be 0.
2722 EXPECT_NE(0u, QuicConnectionPeer::ReceivedEntropyHash(&connection_
, 2));
2725 TEST_P(QuicConnectionTest
, ReviveMissingPacketAfterDataPacketsThenFecPacket
) {
2726 EXPECT_CALL(visitor_
, OnSuccessfulVersionNegotiation(_
));
2728 ProcessFecProtectedPacket(1, false, !kEntropyFlag
);
2729 // Don't send missing packet 2.
2730 ProcessFecProtectedPacket(3, false, !kEntropyFlag
);
2731 ProcessFecPacket(4, 1, true, kEntropyFlag
, nullptr);
2732 // Ensure QUIC no longer revives entropy for lost packets.
2733 EXPECT_EQ(0u, QuicConnectionPeer::ReceivedEntropyHash(&connection_
, 2));
2734 EXPECT_NE(0u, QuicConnectionPeer::ReceivedEntropyHash(&connection_
, 4));
2737 TEST_P(QuicConnectionTest
, ReviveMissingPacketAfterDataPacket
) {
2738 EXPECT_CALL(visitor_
, OnSuccessfulVersionNegotiation(_
));
2740 // Don't send missing packet 1.
2741 ProcessFecPacket(3, 1, false, !kEntropyFlag
, nullptr);
2743 ProcessFecProtectedPacket(2, true, !kEntropyFlag
);
2744 // Entropy flag should be false, so entropy should be 0.
2745 EXPECT_EQ(0u, QuicConnectionPeer::ReceivedEntropyHash(&connection_
, 2));
2748 TEST_P(QuicConnectionTest
, ReviveMissingPacketAfterDataPackets
) {
2749 EXPECT_CALL(visitor_
, OnSuccessfulVersionNegotiation(_
));
2751 ProcessFecProtectedPacket(1, false, !kEntropyFlag
);
2752 // Don't send missing packet 2.
2753 ProcessFecPacket(6, 1, false, kEntropyFlag
, nullptr);
2754 ProcessFecProtectedPacket(3, false, kEntropyFlag
);
2755 ProcessFecProtectedPacket(4, false, kEntropyFlag
);
2756 ProcessFecProtectedPacket(5, true, !kEntropyFlag
);
2757 // Ensure entropy is not revived for the missing packet.
2758 EXPECT_EQ(0u, QuicConnectionPeer::ReceivedEntropyHash(&connection_
, 2));
2759 EXPECT_NE(0u, QuicConnectionPeer::ReceivedEntropyHash(&connection_
, 3));
2762 TEST_P(QuicConnectionTest
, TLP
) {
2763 QuicSentPacketManagerPeer::SetMaxTailLossProbes(manager_
, 1);
2765 SendStreamDataToPeer(3, "foo", 0, !kFin
, nullptr);
2766 EXPECT_EQ(1u, stop_waiting()->least_unacked
);
2767 QuicTime retransmission_time
=
2768 connection_
.GetRetransmissionAlarm()->deadline();
2769 EXPECT_NE(QuicTime::Zero(), retransmission_time
);
2771 EXPECT_EQ(1u, writer_
->header().packet_packet_number
);
2772 // Simulate the retransmission alarm firing and sending a tlp,
2773 // so send algorithm's OnRetransmissionTimeout is not called.
2774 clock_
.AdvanceTime(retransmission_time
.Subtract(clock_
.Now()));
2775 EXPECT_CALL(*send_algorithm_
, OnPacketSent(_
, _
, 2u, _
, _
));
2776 connection_
.GetRetransmissionAlarm()->Fire();
2777 EXPECT_EQ(2u, writer_
->header().packet_packet_number
);
2778 // We do not raise the high water mark yet.
2779 EXPECT_EQ(1u, stop_waiting()->least_unacked
);
2782 TEST_P(QuicConnectionTest
, RTO
) {
2783 QuicTime default_retransmission_time
= clock_
.ApproximateNow().Add(
2784 DefaultRetransmissionTime());
2785 SendStreamDataToPeer(3, "foo", 0, !kFin
, nullptr);
2786 EXPECT_EQ(1u, stop_waiting()->least_unacked
);
2788 EXPECT_EQ(1u, writer_
->header().packet_packet_number
);
2789 EXPECT_EQ(default_retransmission_time
,
2790 connection_
.GetRetransmissionAlarm()->deadline());
2791 // Simulate the retransmission alarm firing.
2792 clock_
.AdvanceTime(DefaultRetransmissionTime());
2793 EXPECT_CALL(*send_algorithm_
, OnPacketSent(_
, _
, 2u, _
, _
));
2794 connection_
.GetRetransmissionAlarm()->Fire();
2795 EXPECT_EQ(2u, writer_
->header().packet_packet_number
);
2796 // We do not raise the high water mark yet.
2797 EXPECT_EQ(1u, stop_waiting()->least_unacked
);
2800 TEST_P(QuicConnectionTest
, RTOWithSameEncryptionLevel
) {
2801 QuicTime default_retransmission_time
= clock_
.ApproximateNow().Add(
2802 DefaultRetransmissionTime());
2803 use_tagging_decrypter();
2805 // A TaggingEncrypter puts kTagSize copies of the given byte (0x01 here) at
2806 // the end of the packet. We can test this to check which encrypter was used.
2807 connection_
.SetEncrypter(ENCRYPTION_NONE
, new TaggingEncrypter(0x01));
2808 SendStreamDataToPeer(3, "foo", 0, !kFin
, nullptr);
2809 EXPECT_EQ(0x01010101u
, writer_
->final_bytes_of_last_packet());
2811 connection_
.SetEncrypter(ENCRYPTION_INITIAL
, new TaggingEncrypter(0x02));
2812 connection_
.SetDefaultEncryptionLevel(ENCRYPTION_INITIAL
);
2813 SendStreamDataToPeer(3, "foo", 0, !kFin
, nullptr);
2814 EXPECT_EQ(0x02020202u
, writer_
->final_bytes_of_last_packet());
2816 EXPECT_EQ(default_retransmission_time
,
2817 connection_
.GetRetransmissionAlarm()->deadline());
2820 EXPECT_CALL(*send_algorithm_
, OnPacketSent(_
, _
, 3, _
, _
));
2821 EXPECT_CALL(*send_algorithm_
, OnPacketSent(_
, _
, 4, _
, _
));
2824 // Simulate the retransmission alarm firing.
2825 clock_
.AdvanceTime(DefaultRetransmissionTime());
2826 connection_
.GetRetransmissionAlarm()->Fire();
2828 // Packet should have been sent with ENCRYPTION_NONE.
2829 EXPECT_EQ(0x01010101u
, writer_
->final_bytes_of_previous_packet());
2831 // Packet should have been sent with ENCRYPTION_INITIAL.
2832 EXPECT_EQ(0x02020202u
, writer_
->final_bytes_of_last_packet());
2835 TEST_P(QuicConnectionTest
, SendHandshakeMessages
) {
2836 use_tagging_decrypter();
2837 // A TaggingEncrypter puts kTagSize copies of the given byte (0x01 here) at
2838 // the end of the packet. We can test this to check which encrypter was used.
2839 connection_
.SetEncrypter(ENCRYPTION_NONE
, new TaggingEncrypter(0x01));
2841 // Attempt to send a handshake message and have the socket block.
2842 EXPECT_CALL(*send_algorithm_
,
2843 TimeUntilSend(_
, _
, _
)).WillRepeatedly(
2844 testing::Return(QuicTime::Delta::Zero()));
2846 connection_
.SendStreamDataWithString(1, "foo", 0, !kFin
, nullptr);
2847 // The packet should be serialized, but not queued.
2848 EXPECT_EQ(1u, connection_
.NumQueuedPackets());
2850 // Switch to the new encrypter.
2851 connection_
.SetEncrypter(ENCRYPTION_INITIAL
, new TaggingEncrypter(0x02));
2852 connection_
.SetDefaultEncryptionLevel(ENCRYPTION_INITIAL
);
2854 // Now become writeable and flush the packets.
2855 writer_
->SetWritable();
2856 EXPECT_CALL(visitor_
, OnCanWrite());
2857 connection_
.OnCanWrite();
2858 EXPECT_EQ(0u, connection_
.NumQueuedPackets());
2860 // Verify that the handshake packet went out at the null encryption.
2861 EXPECT_EQ(0x01010101u
, writer_
->final_bytes_of_last_packet());
2864 TEST_P(QuicConnectionTest
,
2865 DropRetransmitsForNullEncryptedPacketAfterForwardSecure
) {
2866 use_tagging_decrypter();
2867 connection_
.SetEncrypter(ENCRYPTION_NONE
, new TaggingEncrypter(0x01));
2868 QuicPacketNumber packet_number
;
2869 SendStreamDataToPeer(3, "foo", 0, !kFin
, &packet_number
);
2871 // Simulate the retransmission alarm firing and the socket blocking.
2873 clock_
.AdvanceTime(DefaultRetransmissionTime());
2874 connection_
.GetRetransmissionAlarm()->Fire();
2876 // Go forward secure.
2877 connection_
.SetEncrypter(ENCRYPTION_FORWARD_SECURE
,
2878 new TaggingEncrypter(0x02));
2879 connection_
.SetDefaultEncryptionLevel(ENCRYPTION_FORWARD_SECURE
);
2880 connection_
.NeuterUnencryptedPackets();
2882 EXPECT_EQ(QuicTime::Zero(),
2883 connection_
.GetRetransmissionAlarm()->deadline());
2884 // Unblock the socket and ensure that no packets are sent.
2885 EXPECT_CALL(*send_algorithm_
, OnPacketSent(_
, _
, _
, _
, _
)).Times(0);
2886 writer_
->SetWritable();
2887 connection_
.OnCanWrite();
2890 TEST_P(QuicConnectionTest
, RetransmitPacketsWithInitialEncryption
) {
2891 use_tagging_decrypter();
2892 connection_
.SetEncrypter(ENCRYPTION_NONE
, new TaggingEncrypter(0x01));
2893 connection_
.SetDefaultEncryptionLevel(ENCRYPTION_NONE
);
2895 SendStreamDataToPeer(1, "foo", 0, !kFin
, nullptr);
2897 connection_
.SetEncrypter(ENCRYPTION_INITIAL
, new TaggingEncrypter(0x02));
2898 connection_
.SetDefaultEncryptionLevel(ENCRYPTION_INITIAL
);
2900 SendStreamDataToPeer(2, "bar", 0, !kFin
, nullptr);
2901 EXPECT_CALL(*send_algorithm_
, OnPacketSent(_
, _
, _
, _
, _
)).Times(1);
2903 connection_
.RetransmitUnackedPackets(ALL_INITIAL_RETRANSMISSION
);
2906 TEST_P(QuicConnectionTest
, DelayForwardSecureEncryptionUntilClientIsReady
) {
2907 // A TaggingEncrypter puts kTagSize copies of the given byte (0x02 here) at
2908 // the end of the packet. We can test this to check which encrypter was used.
2909 use_tagging_decrypter();
2910 connection_
.SetEncrypter(ENCRYPTION_INITIAL
, new TaggingEncrypter(0x02));
2911 connection_
.SetDefaultEncryptionLevel(ENCRYPTION_INITIAL
);
2912 SendAckPacketToPeer();
2913 EXPECT_EQ(0x02020202u
, writer_
->final_bytes_of_last_packet());
2915 // Set a forward-secure encrypter but do not make it the default, and verify
2916 // that it is not yet used.
2917 connection_
.SetEncrypter(ENCRYPTION_FORWARD_SECURE
,
2918 new TaggingEncrypter(0x03));
2919 SendAckPacketToPeer();
2920 EXPECT_EQ(0x02020202u
, writer_
->final_bytes_of_last_packet());
2922 // Now simulate receipt of a forward-secure packet and verify that the
2923 // forward-secure encrypter is now used.
2924 connection_
.OnDecryptedPacket(ENCRYPTION_FORWARD_SECURE
);
2925 SendAckPacketToPeer();
2926 EXPECT_EQ(0x03030303u
, writer_
->final_bytes_of_last_packet());
2929 TEST_P(QuicConnectionTest
, DelayForwardSecureEncryptionUntilManyPacketSent
) {
2930 // Set a congestion window of 10 packets.
2931 QuicPacketCount congestion_window
= 10;
2932 EXPECT_CALL(*send_algorithm_
, GetCongestionWindow()).WillRepeatedly(
2933 Return(congestion_window
* kDefaultMaxPacketSize
));
2935 // A TaggingEncrypter puts kTagSize copies of the given byte (0x02 here) at
2936 // the end of the packet. We can test this to check which encrypter was used.
2937 use_tagging_decrypter();
2938 connection_
.SetEncrypter(ENCRYPTION_INITIAL
, new TaggingEncrypter(0x02));
2939 connection_
.SetDefaultEncryptionLevel(ENCRYPTION_INITIAL
);
2940 SendAckPacketToPeer();
2941 EXPECT_EQ(0x02020202u
, writer_
->final_bytes_of_last_packet());
2943 // Set a forward-secure encrypter but do not make it the default, and
2944 // verify that it is not yet used.
2945 connection_
.SetEncrypter(ENCRYPTION_FORWARD_SECURE
,
2946 new TaggingEncrypter(0x03));
2947 SendAckPacketToPeer();
2948 EXPECT_EQ(0x02020202u
, writer_
->final_bytes_of_last_packet());
2950 // Now send a packet "Far enough" after the encrypter was set and verify that
2951 // the forward-secure encrypter is now used.
2952 for (uint64 i
= 0; i
< 3 * congestion_window
- 1; ++i
) {
2953 EXPECT_EQ(0x02020202u
, writer_
->final_bytes_of_last_packet());
2954 SendAckPacketToPeer();
2956 EXPECT_EQ(0x03030303u
, writer_
->final_bytes_of_last_packet());
2959 TEST_P(QuicConnectionTest
, BufferNonDecryptablePackets
) {
2960 // SetFromConfig is always called after construction from InitializeSession.
2961 EXPECT_CALL(*send_algorithm_
, SetFromConfig(_
, _
));
2963 connection_
.SetFromConfig(config
);
2964 EXPECT_CALL(visitor_
, OnSuccessfulVersionNegotiation(_
));
2965 use_tagging_decrypter();
2967 const uint8 tag
= 0x07;
2968 framer_
.SetEncrypter(ENCRYPTION_INITIAL
, new TaggingEncrypter(tag
));
2970 // Process an encrypted packet which can not yet be decrypted which should
2971 // result in the packet being buffered.
2972 ProcessDataPacketAtLevel(1, 0, kEntropyFlag
, ENCRYPTION_INITIAL
);
2974 // Transition to the new encryption state and process another encrypted packet
2975 // which should result in the original packet being processed.
2976 connection_
.SetDecrypter(ENCRYPTION_INITIAL
, new StrictTaggingDecrypter(tag
));
2977 connection_
.SetDefaultEncryptionLevel(ENCRYPTION_INITIAL
);
2978 connection_
.SetEncrypter(ENCRYPTION_INITIAL
, new TaggingEncrypter(tag
));
2979 EXPECT_CALL(visitor_
, OnStreamFrame(_
)).Times(2);
2980 ProcessDataPacketAtLevel(2, 0, kEntropyFlag
, ENCRYPTION_INITIAL
);
2982 // Finally, process a third packet and note that we do not reprocess the
2984 EXPECT_CALL(visitor_
, OnStreamFrame(_
)).Times(1);
2985 ProcessDataPacketAtLevel(3, 0, kEntropyFlag
, ENCRYPTION_INITIAL
);
2988 TEST_P(QuicConnectionTest
, Buffer100NonDecryptablePackets
) {
2989 // SetFromConfig is always called after construction from InitializeSession.
2990 EXPECT_CALL(*send_algorithm_
, SetFromConfig(_
, _
));
2992 config
.set_max_undecryptable_packets(100);
2993 connection_
.SetFromConfig(config
);
2994 EXPECT_CALL(visitor_
, OnSuccessfulVersionNegotiation(_
));
2995 use_tagging_decrypter();
2997 const uint8 tag
= 0x07;
2998 framer_
.SetEncrypter(ENCRYPTION_INITIAL
, new TaggingEncrypter(tag
));
3000 // Process an encrypted packet which can not yet be decrypted which should
3001 // result in the packet being buffered.
3002 for (QuicPacketNumber i
= 1; i
<= 100; ++i
) {
3003 ProcessDataPacketAtLevel(i
, 0, kEntropyFlag
, ENCRYPTION_INITIAL
);
3006 // Transition to the new encryption state and process another encrypted packet
3007 // which should result in the original packets being processed.
3008 connection_
.SetDecrypter(ENCRYPTION_INITIAL
, new StrictTaggingDecrypter(tag
));
3009 connection_
.SetDefaultEncryptionLevel(ENCRYPTION_INITIAL
);
3010 connection_
.SetEncrypter(ENCRYPTION_INITIAL
, new TaggingEncrypter(tag
));
3011 EXPECT_CALL(visitor_
, OnStreamFrame(_
)).Times(101);
3012 ProcessDataPacketAtLevel(101, 0, kEntropyFlag
, ENCRYPTION_INITIAL
);
3014 // Finally, process a third packet and note that we do not reprocess the
3016 EXPECT_CALL(visitor_
, OnStreamFrame(_
)).Times(1);
3017 ProcessDataPacketAtLevel(102, 0, kEntropyFlag
, ENCRYPTION_INITIAL
);
3020 TEST_P(QuicConnectionTest
, TestRetransmitOrder
) {
3021 QuicByteCount first_packet_size
;
3022 EXPECT_CALL(*send_algorithm_
, OnPacketSent(_
, _
, _
, _
, _
)).WillOnce(
3023 DoAll(SaveArg
<3>(&first_packet_size
), Return(true)));
3025 connection_
.SendStreamDataWithString(3, "first_packet", 0, !kFin
, nullptr);
3026 QuicByteCount second_packet_size
;
3027 EXPECT_CALL(*send_algorithm_
, OnPacketSent(_
, _
, _
, _
, _
)).WillOnce(
3028 DoAll(SaveArg
<3>(&second_packet_size
), Return(true)));
3029 connection_
.SendStreamDataWithString(3, "second_packet", 12, !kFin
, nullptr);
3030 EXPECT_NE(first_packet_size
, second_packet_size
);
3031 // Advance the clock by huge time to make sure packets will be retransmitted.
3032 clock_
.AdvanceTime(QuicTime::Delta::FromSeconds(10));
3035 EXPECT_CALL(*send_algorithm_
,
3036 OnPacketSent(_
, _
, _
, first_packet_size
, _
));
3037 EXPECT_CALL(*send_algorithm_
,
3038 OnPacketSent(_
, _
, _
, second_packet_size
, _
));
3040 connection_
.GetRetransmissionAlarm()->Fire();
3042 // Advance again and expect the packets to be sent again in the same order.
3043 clock_
.AdvanceTime(QuicTime::Delta::FromSeconds(20));
3046 EXPECT_CALL(*send_algorithm_
,
3047 OnPacketSent(_
, _
, _
, first_packet_size
, _
));
3048 EXPECT_CALL(*send_algorithm_
,
3049 OnPacketSent(_
, _
, _
, second_packet_size
, _
));
3051 connection_
.GetRetransmissionAlarm()->Fire();
3054 TEST_P(QuicConnectionTest
, SetRTOAfterWritingToSocket
) {
3056 connection_
.SendStreamDataWithString(1, "foo", 0, !kFin
, nullptr);
3057 // Make sure that RTO is not started when the packet is queued.
3058 EXPECT_FALSE(connection_
.GetRetransmissionAlarm()->IsSet());
3060 // Test that RTO is started once we write to the socket.
3061 writer_
->SetWritable();
3062 connection_
.OnCanWrite();
3063 EXPECT_TRUE(connection_
.GetRetransmissionAlarm()->IsSet());
3066 TEST_P(QuicConnectionTest
, DelayRTOWithAckReceipt
) {
3067 EXPECT_CALL(visitor_
, OnSuccessfulVersionNegotiation(_
));
3068 EXPECT_CALL(*send_algorithm_
, OnPacketSent(_
, _
, _
, _
, _
))
3070 connection_
.SendStreamDataWithString(2, "foo", 0, !kFin
, nullptr);
3071 connection_
.SendStreamDataWithString(3, "bar", 0, !kFin
, nullptr);
3072 QuicAlarm
* retransmission_alarm
= connection_
.GetRetransmissionAlarm();
3073 EXPECT_TRUE(retransmission_alarm
->IsSet());
3074 EXPECT_EQ(clock_
.Now().Add(DefaultRetransmissionTime()),
3075 retransmission_alarm
->deadline());
3077 // Advance the time right before the RTO, then receive an ack for the first
3078 // packet to delay the RTO.
3079 clock_
.AdvanceTime(DefaultRetransmissionTime());
3080 EXPECT_CALL(*send_algorithm_
, OnCongestionEvent(true, _
, _
, _
));
3081 QuicAckFrame ack
= InitAckFrame(1);
3082 ProcessAckPacket(&ack
);
3083 EXPECT_TRUE(retransmission_alarm
->IsSet());
3084 EXPECT_GT(retransmission_alarm
->deadline(), clock_
.Now());
3086 // Move forward past the original RTO and ensure the RTO is still pending.
3087 clock_
.AdvanceTime(DefaultRetransmissionTime().Multiply(2));
3089 // Ensure the second packet gets retransmitted when it finally fires.
3090 EXPECT_TRUE(retransmission_alarm
->IsSet());
3091 EXPECT_LT(retransmission_alarm
->deadline(), clock_
.ApproximateNow());
3092 EXPECT_CALL(*send_algorithm_
, OnPacketSent(_
, _
, _
, _
, _
));
3093 // Manually cancel the alarm to simulate a real test.
3094 connection_
.GetRetransmissionAlarm()->Fire();
3096 // The new retransmitted packet number should set the RTO to a larger value
3098 EXPECT_TRUE(retransmission_alarm
->IsSet());
3099 QuicTime next_rto_time
= retransmission_alarm
->deadline();
3100 QuicTime expected_rto_time
=
3101 connection_
.sent_packet_manager().GetRetransmissionTime();
3102 EXPECT_EQ(next_rto_time
, expected_rto_time
);
3105 TEST_P(QuicConnectionTest
, TestQueued
) {
3106 EXPECT_EQ(0u, connection_
.NumQueuedPackets());
3108 connection_
.SendStreamDataWithString(1, "foo", 0, !kFin
, nullptr);
3109 EXPECT_EQ(1u, connection_
.NumQueuedPackets());
3111 // Unblock the writes and actually send.
3112 writer_
->SetWritable();
3113 connection_
.OnCanWrite();
3114 EXPECT_EQ(0u, connection_
.NumQueuedPackets());
3117 TEST_P(QuicConnectionTest
, CloseFecGroup
) {
3118 EXPECT_CALL(visitor_
, OnSuccessfulVersionNegotiation(_
));
3119 // Don't send missing packet 1.
3120 // Don't send missing packet 2.
3121 ProcessFecProtectedPacket(3, false, !kEntropyFlag
);
3122 // Don't send missing FEC packet 3.
3123 ASSERT_EQ(1u, connection_
.NumFecGroups());
3125 // Now send non-fec protected ack packet and close the group.
3126 QuicPacketCreatorPeer::SetPacketNumber(&peer_creator_
, 4);
3127 QuicStopWaitingFrame frame
= InitStopWaitingFrame(5);
3128 ProcessStopWaitingPacket(&frame
);
3129 ASSERT_EQ(0u, connection_
.NumFecGroups());
3132 TEST_P(QuicConnectionTest
, InitialTimeout
) {
3133 EXPECT_TRUE(connection_
.connected());
3134 EXPECT_CALL(*send_algorithm_
, OnPacketSent(_
, _
, _
, _
, _
)).Times(AnyNumber());
3135 EXPECT_FALSE(connection_
.GetTimeoutAlarm()->IsSet());
3137 // SetFromConfig sets the initial timeouts before negotiation.
3138 EXPECT_CALL(*send_algorithm_
, SetFromConfig(_
, _
));
3140 connection_
.SetFromConfig(config
);
3141 // Subtract a second from the idle timeout on the client side.
3142 QuicTime default_timeout
= clock_
.ApproximateNow().Add(
3143 QuicTime::Delta::FromSeconds(kInitialIdleTimeoutSecs
- 1));
3144 EXPECT_EQ(default_timeout
, connection_
.GetTimeoutAlarm()->deadline());
3146 EXPECT_CALL(visitor_
, OnConnectionClosed(QUIC_CONNECTION_TIMED_OUT
, false));
3147 // Simulate the timeout alarm firing.
3149 QuicTime::Delta::FromSeconds(kInitialIdleTimeoutSecs
- 1));
3150 connection_
.GetTimeoutAlarm()->Fire();
3152 EXPECT_FALSE(connection_
.GetTimeoutAlarm()->IsSet());
3153 EXPECT_FALSE(connection_
.connected());
3155 EXPECT_FALSE(connection_
.GetAckAlarm()->IsSet());
3156 EXPECT_FALSE(connection_
.GetPingAlarm()->IsSet());
3157 EXPECT_FALSE(connection_
.GetFecAlarm()->IsSet());
3158 EXPECT_FALSE(connection_
.GetResumeWritesAlarm()->IsSet());
3159 EXPECT_FALSE(connection_
.GetRetransmissionAlarm()->IsSet());
3160 EXPECT_FALSE(connection_
.GetSendAlarm()->IsSet());
3161 EXPECT_FALSE(connection_
.GetMtuDiscoveryAlarm()->IsSet());
3164 TEST_P(QuicConnectionTest
, OverallTimeout
) {
3165 // Use a shorter overall connection timeout than idle timeout for this test.
3166 const QuicTime::Delta timeout
= QuicTime::Delta::FromSeconds(5);
3167 connection_
.SetNetworkTimeouts(timeout
, timeout
);
3168 EXPECT_TRUE(connection_
.connected());
3169 EXPECT_CALL(*send_algorithm_
, OnPacketSent(_
, _
, _
, _
, _
)).Times(AnyNumber());
3171 QuicTime overall_timeout
= clock_
.ApproximateNow().Add(timeout
).Subtract(
3172 QuicTime::Delta::FromSeconds(1));
3173 EXPECT_EQ(overall_timeout
, connection_
.GetTimeoutAlarm()->deadline());
3174 EXPECT_TRUE(connection_
.connected());
3176 // Send and ack new data 3 seconds later to lengthen the idle timeout.
3177 SendStreamDataToPeer(1, "GET /", 0, kFin
, nullptr);
3178 clock_
.AdvanceTime(QuicTime::Delta::FromSeconds(3));
3179 QuicAckFrame frame
= InitAckFrame(1);
3180 EXPECT_CALL(visitor_
, OnSuccessfulVersionNegotiation(_
));
3181 EXPECT_CALL(*send_algorithm_
, OnCongestionEvent(true, _
, _
, _
));
3182 ProcessAckPacket(&frame
);
3184 // Fire early to verify it wouldn't timeout yet.
3185 connection_
.GetTimeoutAlarm()->Fire();
3186 EXPECT_TRUE(connection_
.GetTimeoutAlarm()->IsSet());
3187 EXPECT_TRUE(connection_
.connected());
3189 clock_
.AdvanceTime(timeout
.Subtract(QuicTime::Delta::FromSeconds(2)));
3191 EXPECT_CALL(visitor_
,
3192 OnConnectionClosed(QUIC_CONNECTION_OVERALL_TIMED_OUT
, false));
3193 // Simulate the timeout alarm firing.
3194 connection_
.GetTimeoutAlarm()->Fire();
3196 EXPECT_FALSE(connection_
.GetTimeoutAlarm()->IsSet());
3197 EXPECT_FALSE(connection_
.connected());
3199 EXPECT_FALSE(connection_
.GetAckAlarm()->IsSet());
3200 EXPECT_FALSE(connection_
.GetPingAlarm()->IsSet());
3201 EXPECT_FALSE(connection_
.GetFecAlarm()->IsSet());
3202 EXPECT_FALSE(connection_
.GetResumeWritesAlarm()->IsSet());
3203 EXPECT_FALSE(connection_
.GetRetransmissionAlarm()->IsSet());
3204 EXPECT_FALSE(connection_
.GetSendAlarm()->IsSet());
3207 TEST_P(QuicConnectionTest
, PingAfterSend
) {
3208 EXPECT_TRUE(connection_
.connected());
3209 EXPECT_CALL(visitor_
, HasOpenDynamicStreams()).WillRepeatedly(Return(true));
3210 EXPECT_FALSE(connection_
.GetPingAlarm()->IsSet());
3212 // Advance to 5ms, and send a packet to the peer, which will set
3214 clock_
.AdvanceTime(QuicTime::Delta::FromMilliseconds(5));
3215 EXPECT_FALSE(connection_
.GetRetransmissionAlarm()->IsSet());
3216 SendStreamDataToPeer(1, "GET /", 0, kFin
, nullptr);
3217 EXPECT_TRUE(connection_
.GetPingAlarm()->IsSet());
3218 EXPECT_EQ(clock_
.ApproximateNow().Add(QuicTime::Delta::FromSeconds(15)),
3219 connection_
.GetPingAlarm()->deadline());
3221 // Now recevie and ACK of the previous packet, which will move the
3222 // ping alarm forward.
3223 clock_
.AdvanceTime(QuicTime::Delta::FromMilliseconds(5));
3224 QuicAckFrame frame
= InitAckFrame(1);
3225 EXPECT_CALL(visitor_
, OnSuccessfulVersionNegotiation(_
));
3226 EXPECT_CALL(*send_algorithm_
, OnCongestionEvent(true, _
, _
, _
));
3227 ProcessAckPacket(&frame
);
3228 EXPECT_TRUE(connection_
.GetPingAlarm()->IsSet());
3229 // The ping timer is set slightly less than 15 seconds in the future, because
3230 // of the 1s ping timer alarm granularity.
3231 EXPECT_EQ(clock_
.ApproximateNow().Add(QuicTime::Delta::FromSeconds(15))
3232 .Subtract(QuicTime::Delta::FromMilliseconds(5)),
3233 connection_
.GetPingAlarm()->deadline());
3236 clock_
.AdvanceTime(QuicTime::Delta::FromSeconds(15));
3237 connection_
.GetPingAlarm()->Fire();
3238 EXPECT_EQ(1u, writer_
->frame_count());
3239 ASSERT_EQ(1u, writer_
->ping_frames().size());
3242 EXPECT_CALL(visitor_
, HasOpenDynamicStreams()).WillRepeatedly(Return(false));
3243 clock_
.AdvanceTime(QuicTime::Delta::FromMilliseconds(5));
3244 SendAckPacketToPeer();
3246 EXPECT_FALSE(connection_
.GetPingAlarm()->IsSet());
3249 // Tests whether sending an MTU discovery packet to peer successfully causes the
3250 // maximum packet size to increase.
3251 TEST_P(QuicConnectionTest
, SendMtuDiscoveryPacket
) {
3252 EXPECT_TRUE(connection_
.connected());
3254 // Send an MTU probe.
3255 const size_t new_mtu
= kDefaultMaxPacketSize
+ 100;
3256 QuicByteCount mtu_probe_size
;
3257 EXPECT_CALL(*send_algorithm_
, OnPacketSent(_
, _
, _
, _
, _
))
3258 .WillOnce(DoAll(SaveArg
<3>(&mtu_probe_size
), Return(true)));
3259 connection_
.SendMtuDiscoveryPacket(new_mtu
);
3260 EXPECT_EQ(new_mtu
, mtu_probe_size
);
3261 EXPECT_EQ(1u, creator_
->packet_number());
3263 // Send more than MTU worth of data. No acknowledgement was received so far,
3264 // so the MTU should be at its old value.
3265 const string
data(kDefaultMaxPacketSize
+ 1, '.');
3266 QuicByteCount size_before_mtu_change
;
3267 EXPECT_CALL(*send_algorithm_
, OnPacketSent(_
, _
, _
, _
, _
))
3268 .WillOnce(DoAll(SaveArg
<3>(&size_before_mtu_change
), Return(true)))
3269 .WillOnce(Return(true));
3270 connection_
.SendStreamDataWithString(3, data
, 0, kFin
, nullptr);
3271 EXPECT_EQ(3u, creator_
->packet_number());
3272 EXPECT_EQ(kDefaultMaxPacketSize
, size_before_mtu_change
);
3274 // Acknowledge all packets so far.
3275 QuicAckFrame probe_ack
= InitAckFrame(3);
3276 EXPECT_CALL(visitor_
, OnSuccessfulVersionNegotiation(_
));
3277 EXPECT_CALL(*send_algorithm_
, OnCongestionEvent(true, _
, _
, _
));
3278 ProcessAckPacket(&probe_ack
);
3279 EXPECT_EQ(new_mtu
, connection_
.max_packet_length());
3281 // Send the same data again. Check that it fits into a single packet now.
3282 EXPECT_CALL(*send_algorithm_
, OnPacketSent(_
, _
, _
, _
, _
)).Times(1);
3283 connection_
.SendStreamDataWithString(3, data
, 0, kFin
, nullptr);
3284 EXPECT_EQ(4u, creator_
->packet_number());
3287 // Tests whether MTU discovery does not happen when it is not explicitly enabled
3288 // by the connection options.
3289 TEST_P(QuicConnectionTest
, MtuDiscoveryDisabled
) {
3290 EXPECT_TRUE(connection_
.connected());
3292 // Restore the current value FLAGS_quic_do_path_mtu_discovery after the test.
3293 ValueRestore
<bool> old_flag(&FLAGS_quic_do_path_mtu_discovery
, true);
3295 const QuicPacketCount number_of_packets
= kPacketsBetweenMtuProbesBase
* 2;
3296 for (QuicPacketCount i
= 0; i
< number_of_packets
; i
++) {
3297 SendStreamDataToPeer(3, ".", i
, /*fin=*/false, nullptr);
3298 EXPECT_FALSE(connection_
.GetMtuDiscoveryAlarm()->IsSet());
3299 EXPECT_EQ(0u, connection_
.mtu_probe_count());
3303 // Tests whether MTU discovery works when the probe gets acknowledged on the
3305 TEST_P(QuicConnectionTest
, MtuDiscoveryEnabled
) {
3306 EXPECT_TRUE(connection_
.connected());
3308 // Restore the current value FLAGS_quic_do_path_mtu_discovery after the test.
3309 ValueRestore
<bool> old_flag(&FLAGS_quic_do_path_mtu_discovery
, true);
3310 connection_
.EnablePathMtuDiscovery(send_algorithm_
);
3312 // Send enough packets so that the next one triggers path MTU discovery.
3313 for (QuicPacketCount i
= 0; i
< kPacketsBetweenMtuProbesBase
- 1; i
++) {
3314 SendStreamDataToPeer(3, ".", i
, /*fin=*/false, nullptr);
3315 ASSERT_FALSE(connection_
.GetMtuDiscoveryAlarm()->IsSet());
3318 // Trigger the probe.
3319 SendStreamDataToPeer(3, "!", kPacketsBetweenMtuProbesBase
,
3320 /*fin=*/false, nullptr);
3321 ASSERT_TRUE(connection_
.GetMtuDiscoveryAlarm()->IsSet());
3322 QuicByteCount probe_size
;
3323 EXPECT_CALL(*send_algorithm_
, OnPacketSent(_
, _
, _
, _
, _
))
3324 .WillOnce(DoAll(SaveArg
<3>(&probe_size
), Return(true)));
3325 connection_
.GetMtuDiscoveryAlarm()->Fire();
3326 EXPECT_EQ(kMtuDiscoveryTargetPacketSizeHigh
, probe_size
);
3328 const QuicPacketCount probe_packet_number
= kPacketsBetweenMtuProbesBase
+ 1;
3329 ASSERT_EQ(probe_packet_number
, creator_
->packet_number());
3331 // Acknowledge all packets sent so far.
3332 QuicAckFrame probe_ack
= InitAckFrame(probe_packet_number
);
3333 EXPECT_CALL(visitor_
, OnSuccessfulVersionNegotiation(_
));
3334 EXPECT_CALL(*send_algorithm_
, OnCongestionEvent(true, _
, _
, _
));
3335 ProcessAckPacket(&probe_ack
);
3336 EXPECT_EQ(kMtuDiscoveryTargetPacketSizeHigh
, connection_
.max_packet_length());
3337 EXPECT_EQ(0u, QuicSentPacketManagerPeer::GetBytesInFlight(manager_
));
3339 // Send more packets, and ensure that none of them sets the alarm.
3340 for (QuicPacketCount i
= 0; i
< 4 * kPacketsBetweenMtuProbesBase
; i
++) {
3341 SendStreamDataToPeer(3, ".", i
, /*fin=*/false, nullptr);
3342 ASSERT_FALSE(connection_
.GetMtuDiscoveryAlarm()->IsSet());
3345 EXPECT_EQ(1u, connection_
.mtu_probe_count());
3348 // Tests whether MTU discovery works correctly when the probes never get
3350 TEST_P(QuicConnectionTest
, MtuDiscoveryFailed
) {
3351 EXPECT_TRUE(connection_
.connected());
3353 // Restore the current value FLAGS_quic_do_path_mtu_discovery after the test.
3354 ValueRestore
<bool> old_flag(&FLAGS_quic_do_path_mtu_discovery
, true);
3355 connection_
.EnablePathMtuDiscovery(send_algorithm_
);
3357 const QuicTime::Delta rtt
= QuicTime::Delta::FromMilliseconds(100);
3359 EXPECT_EQ(kPacketsBetweenMtuProbesBase
,
3360 QuicConnectionPeer::GetPacketsBetweenMtuProbes(&connection_
));
3361 // Lower the number of probes between packets in order to make the test go
3363 const QuicPacketCount packets_between_probes_base
= 10;
3364 QuicConnectionPeer::SetPacketsBetweenMtuProbes(&connection_
,
3365 packets_between_probes_base
);
3366 QuicConnectionPeer::SetNextMtuProbeAt(&connection_
,
3367 packets_between_probes_base
);
3369 // This tests sends more packets than strictly necessary to make sure that if
3370 // the connection was to send more discovery packets than needed, those would
3371 // get caught as well.
3372 const QuicPacketCount number_of_packets
=
3373 packets_between_probes_base
* (1 << (kMtuDiscoveryAttempts
+ 1));
3374 vector
<QuicPacketNumber
> mtu_discovery_packets
;
3375 // Called by the first ack.
3376 EXPECT_CALL(visitor_
, OnSuccessfulVersionNegotiation(_
));
3377 // Called on many acks.
3378 EXPECT_CALL(*send_algorithm_
, OnCongestionEvent(true, _
, _
, _
))
3379 .Times(AnyNumber());
3380 for (QuicPacketCount i
= 0; i
< number_of_packets
; i
++) {
3381 SendStreamDataToPeer(3, "!", i
, /*fin=*/false, nullptr);
3382 clock_
.AdvanceTime(rtt
);
3384 // Receive an ACK, which marks all data packets as received, and all MTU
3385 // discovery packets as missing.
3386 QuicAckFrame ack
= InitAckFrame(creator_
->packet_number());
3387 for (QuicPacketNumber
& packet
: mtu_discovery_packets
) {
3388 NackPacket(packet
, &ack
);
3390 ProcessAckPacket(&ack
);
3392 // Trigger MTU probe if it would be scheduled now.
3393 if (!connection_
.GetMtuDiscoveryAlarm()->IsSet()) {
3397 // Fire the alarm. The alarm should cause a packet to be sent.
3398 EXPECT_CALL(*send_algorithm_
, OnPacketSent(_
, _
, _
, _
, _
))
3399 .WillOnce(Return(true));
3400 connection_
.GetMtuDiscoveryAlarm()->Fire();
3401 // Record the packet number of the MTU discovery packet in order to
3402 // mark it as NACK'd.
3403 mtu_discovery_packets
.push_back(creator_
->packet_number());
3406 // Ensure the number of packets between probes grows exponentially by checking
3407 // it against the closed-form expression for the packet number.
3408 ASSERT_EQ(kMtuDiscoveryAttempts
, mtu_discovery_packets
.size());
3409 for (QuicPacketNumber i
= 0; i
< kMtuDiscoveryAttempts
; i
++) {
3410 // 2^0 + 2^1 + 2^2 + ... + 2^n = 2^(n + 1) - 1
3411 const QuicPacketCount packets_between_probes
=
3412 packets_between_probes_base
* ((1 << (i
+ 1)) - 1);
3413 EXPECT_EQ(packets_between_probes
+ (i
+ 1), mtu_discovery_packets
[i
]);
3416 EXPECT_FALSE(connection_
.GetMtuDiscoveryAlarm()->IsSet());
3417 EXPECT_EQ(kDefaultMaxPacketSize
, connection_
.max_packet_length());
3418 EXPECT_EQ(kMtuDiscoveryAttempts
, connection_
.mtu_probe_count());
3421 TEST_P(QuicConnectionTest
, NoMtuDiscoveryAfterConnectionClosed
) {
3422 EXPECT_TRUE(connection_
.connected());
3424 // Restore the current value FLAGS_quic_do_path_mtu_discovery after the test.
3425 ValueRestore
<bool> old_flag(&FLAGS_quic_do_path_mtu_discovery
, true);
3426 connection_
.EnablePathMtuDiscovery(send_algorithm_
);
3428 // Send enough packets so that the next one triggers path MTU discovery.
3429 for (QuicPacketCount i
= 0; i
< kPacketsBetweenMtuProbesBase
- 1; i
++) {
3430 SendStreamDataToPeer(3, ".", i
, /*fin=*/false, nullptr);
3431 ASSERT_FALSE(connection_
.GetMtuDiscoveryAlarm()->IsSet());
3434 SendStreamDataToPeer(3, "!", kPacketsBetweenMtuProbesBase
,
3435 /*fin=*/false, nullptr);
3436 EXPECT_TRUE(connection_
.GetMtuDiscoveryAlarm()->IsSet());
3438 EXPECT_CALL(visitor_
, OnConnectionClosed(_
, _
));
3439 connection_
.CloseConnection(QUIC_INTERNAL_ERROR
, /*from_peer=*/false);
3440 EXPECT_FALSE(connection_
.GetMtuDiscoveryAlarm()->IsSet());
3443 TEST_P(QuicConnectionTest
, TimeoutAfterSend
) {
3444 EXPECT_TRUE(connection_
.connected());
3445 EXPECT_CALL(*send_algorithm_
, SetFromConfig(_
, _
));
3447 connection_
.SetFromConfig(config
);
3448 EXPECT_FALSE(QuicConnectionPeer::IsSilentCloseEnabled(&connection_
));
3450 const QuicTime::Delta initial_idle_timeout
=
3451 QuicTime::Delta::FromSeconds(kInitialIdleTimeoutSecs
- 1);
3452 const QuicTime::Delta five_ms
= QuicTime::Delta::FromMilliseconds(5);
3453 QuicTime default_timeout
= clock_
.ApproximateNow().Add(initial_idle_timeout
);
3455 // When we send a packet, the timeout will change to 5ms +
3456 // kInitialIdleTimeoutSecs.
3457 clock_
.AdvanceTime(five_ms
);
3459 // Send an ack so we don't set the retransmission alarm.
3460 SendAckPacketToPeer();
3461 EXPECT_EQ(default_timeout
, connection_
.GetTimeoutAlarm()->deadline());
3463 // The original alarm will fire. We should not time out because we had a
3464 // network event at t=5ms. The alarm will reregister.
3465 clock_
.AdvanceTime(initial_idle_timeout
.Subtract(five_ms
));
3466 EXPECT_EQ(default_timeout
, clock_
.ApproximateNow());
3467 connection_
.GetTimeoutAlarm()->Fire();
3468 EXPECT_TRUE(connection_
.GetTimeoutAlarm()->IsSet());
3469 EXPECT_TRUE(connection_
.connected());
3470 EXPECT_EQ(default_timeout
.Add(five_ms
),
3471 connection_
.GetTimeoutAlarm()->deadline());
3473 // This time, we should time out.
3474 EXPECT_CALL(visitor_
, OnConnectionClosed(QUIC_CONNECTION_TIMED_OUT
, false));
3475 EXPECT_CALL(*send_algorithm_
, OnPacketSent(_
, _
, _
, _
, _
));
3476 clock_
.AdvanceTime(five_ms
);
3477 EXPECT_EQ(default_timeout
.Add(five_ms
), clock_
.ApproximateNow());
3478 connection_
.GetTimeoutAlarm()->Fire();
3479 EXPECT_FALSE(connection_
.GetTimeoutAlarm()->IsSet());
3480 EXPECT_FALSE(connection_
.connected());
3483 TEST_P(QuicConnectionTest
, TimeoutAfterSendSilentClose
) {
3484 // Same test as above, but complete a handshake which enables silent close,
3485 // causing no connection close packet to be sent.
3486 EXPECT_TRUE(connection_
.connected());
3487 EXPECT_CALL(*send_algorithm_
, SetFromConfig(_
, _
));
3490 // Create a handshake message that also enables silent close.
3491 CryptoHandshakeMessage msg
;
3492 string error_details
;
3493 QuicConfig client_config
;
3494 client_config
.SetInitialStreamFlowControlWindowToSend(
3495 kInitialStreamFlowControlWindowForTest
);
3496 client_config
.SetInitialSessionFlowControlWindowToSend(
3497 kInitialSessionFlowControlWindowForTest
);
3498 client_config
.SetIdleConnectionStateLifetime(
3499 QuicTime::Delta::FromSeconds(kDefaultIdleTimeoutSecs
),
3500 QuicTime::Delta::FromSeconds(kDefaultIdleTimeoutSecs
));
3501 client_config
.ToHandshakeMessage(&msg
);
3502 const QuicErrorCode error
=
3503 config
.ProcessPeerHello(msg
, CLIENT
, &error_details
);
3504 EXPECT_EQ(QUIC_NO_ERROR
, error
);
3506 connection_
.SetFromConfig(config
);
3507 EXPECT_TRUE(QuicConnectionPeer::IsSilentCloseEnabled(&connection_
));
3509 const QuicTime::Delta default_idle_timeout
=
3510 QuicTime::Delta::FromSeconds(kDefaultIdleTimeoutSecs
- 1);
3511 const QuicTime::Delta five_ms
= QuicTime::Delta::FromMilliseconds(5);
3512 QuicTime default_timeout
= clock_
.ApproximateNow().Add(default_idle_timeout
);
3514 // When we send a packet, the timeout will change to 5ms +
3515 // kInitialIdleTimeoutSecs.
3516 clock_
.AdvanceTime(five_ms
);
3518 // Send an ack so we don't set the retransmission alarm.
3519 SendAckPacketToPeer();
3520 EXPECT_EQ(default_timeout
, connection_
.GetTimeoutAlarm()->deadline());
3522 // The original alarm will fire. We should not time out because we had a
3523 // network event at t=5ms. The alarm will reregister.
3524 clock_
.AdvanceTime(default_idle_timeout
.Subtract(five_ms
));
3525 EXPECT_EQ(default_timeout
, clock_
.ApproximateNow());
3526 connection_
.GetTimeoutAlarm()->Fire();
3527 EXPECT_TRUE(connection_
.GetTimeoutAlarm()->IsSet());
3528 EXPECT_TRUE(connection_
.connected());
3529 EXPECT_EQ(default_timeout
.Add(five_ms
),
3530 connection_
.GetTimeoutAlarm()->deadline());
3532 // This time, we should time out.
3533 EXPECT_CALL(visitor_
, OnConnectionClosed(QUIC_CONNECTION_TIMED_OUT
, false));
3534 clock_
.AdvanceTime(five_ms
);
3535 EXPECT_EQ(default_timeout
.Add(five_ms
), clock_
.ApproximateNow());
3536 connection_
.GetTimeoutAlarm()->Fire();
3537 EXPECT_FALSE(connection_
.GetTimeoutAlarm()->IsSet());
3538 EXPECT_FALSE(connection_
.connected());
3541 TEST_P(QuicConnectionTest
, SendScheduler
) {
3542 // Test that if we send a packet without delay, it is not queued.
3543 QuicPacket
* packet
= ConstructDataPacket(1, 0, !kEntropyFlag
);
3544 EXPECT_CALL(*send_algorithm_
, OnPacketSent(_
, _
, _
, _
, _
));
3545 connection_
.SendPacket(ENCRYPTION_NONE
, 1, packet
, kTestEntropyHash
,
3546 HAS_RETRANSMITTABLE_DATA
, false, false);
3547 EXPECT_EQ(0u, connection_
.NumQueuedPackets());
3550 TEST_P(QuicConnectionTest
, SendSchedulerEAGAIN
) {
3551 QuicPacket
* packet
= ConstructDataPacket(1, 0, !kEntropyFlag
);
3553 EXPECT_CALL(*send_algorithm_
, OnPacketSent(_
, _
, 1, _
, _
)).Times(0);
3554 connection_
.SendPacket(ENCRYPTION_NONE
, 1, packet
, kTestEntropyHash
,
3555 HAS_RETRANSMITTABLE_DATA
, false, false);
3556 EXPECT_EQ(1u, connection_
.NumQueuedPackets());
3559 TEST_P(QuicConnectionTest
, TestQueueLimitsOnSendStreamData
) {
3560 // All packets carry version info till version is negotiated.
3561 size_t payload_length
;
3562 size_t length
= GetPacketLengthForOneStream(
3563 connection_
.version(), kIncludeVersion
, PACKET_8BYTE_CONNECTION_ID
,
3564 PACKET_1BYTE_PACKET_NUMBER
, NOT_IN_FEC_GROUP
, &payload_length
);
3565 connection_
.set_max_packet_length(length
);
3567 // Queue the first packet.
3568 EXPECT_CALL(*send_algorithm_
,
3569 TimeUntilSend(_
, _
, _
)).WillOnce(
3570 testing::Return(QuicTime::Delta::FromMicroseconds(10)));
3571 const string
payload(payload_length
, 'a');
3572 EXPECT_EQ(0u, connection_
.SendStreamDataWithString(3, payload
, 0, !kFin
,
3573 nullptr).bytes_consumed
);
3574 EXPECT_EQ(0u, connection_
.NumQueuedPackets());
3577 TEST_P(QuicConnectionTest
, LoopThroughSendingPackets
) {
3578 // All packets carry version info till version is negotiated.
3579 size_t payload_length
;
3580 // GetPacketLengthForOneStream() assumes a stream offset of 0 in determining
3581 // packet length. The size of the offset field in a stream frame is 0 for
3582 // offset 0, and 2 for non-zero offsets up through 16K. Increase
3583 // max_packet_length by 2 so that subsequent packets containing subsequent
3584 // stream frames with non-zero offets will fit within the packet length.
3586 2 + GetPacketLengthForOneStream(connection_
.version(), kIncludeVersion
,
3587 PACKET_8BYTE_CONNECTION_ID
,
3588 PACKET_1BYTE_PACKET_NUMBER
,
3589 NOT_IN_FEC_GROUP
, &payload_length
);
3590 connection_
.set_max_packet_length(length
);
3592 // Queue the first packet.
3593 EXPECT_CALL(*send_algorithm_
, OnPacketSent(_
, _
, _
, _
, _
)).Times(7);
3594 // The first stream frame will have 2 fewer overhead bytes than the other six.
3595 const string
payload(payload_length
* 7 + 2, 'a');
3596 EXPECT_EQ(payload
.size(),
3597 connection_
.SendStreamDataWithString(1, payload
, 0, !kFin
, nullptr)
3601 TEST_P(QuicConnectionTest
, LoopThroughSendingPacketsWithTruncation
) {
3602 // Set up a larger payload than will fit in one packet.
3603 const string
payload(connection_
.max_packet_length(), 'a');
3604 EXPECT_CALL(*send_algorithm_
, SetFromConfig(_
, _
)).Times(AnyNumber());
3606 // Now send some packets with no truncation.
3607 EXPECT_CALL(*send_algorithm_
, OnPacketSent(_
, _
, _
, _
, _
)).Times(2);
3608 EXPECT_EQ(payload
.size(),
3609 connection_
.SendStreamDataWithString(
3610 3, payload
, 0, !kFin
, nullptr).bytes_consumed
);
3611 // Track the size of the second packet here. The overhead will be the largest
3612 // we see in this test, due to the non-truncated connection id.
3613 size_t non_truncated_packet_size
= writer_
->last_packet_size();
3615 // Change to a 4 byte connection id.
3617 QuicConfigPeer::SetReceivedBytesForConnectionId(&config
, 4);
3618 connection_
.SetFromConfig(config
);
3619 EXPECT_CALL(*send_algorithm_
, OnPacketSent(_
, _
, _
, _
, _
)).Times(2);
3620 EXPECT_EQ(payload
.size(),
3621 connection_
.SendStreamDataWithString(
3622 3, payload
, 0, !kFin
, nullptr).bytes_consumed
);
3623 // Verify that we have 8 fewer bytes than in the non-truncated case. The
3624 // first packet got 4 bytes of extra payload due to the truncation, and the
3625 // headers here are also 4 byte smaller.
3626 EXPECT_EQ(non_truncated_packet_size
, writer_
->last_packet_size() + 8);
3628 // Change to a 1 byte connection id.
3629 QuicConfigPeer::SetReceivedBytesForConnectionId(&config
, 1);
3630 connection_
.SetFromConfig(config
);
3631 EXPECT_CALL(*send_algorithm_
, OnPacketSent(_
, _
, _
, _
, _
)).Times(2);
3632 EXPECT_EQ(payload
.size(),
3633 connection_
.SendStreamDataWithString(
3634 3, payload
, 0, !kFin
, nullptr).bytes_consumed
);
3635 // Just like above, we save 7 bytes on payload, and 7 on truncation.
3636 EXPECT_EQ(non_truncated_packet_size
, writer_
->last_packet_size() + 7 * 2);
3638 // Change to a 0 byte connection id.
3639 QuicConfigPeer::SetReceivedBytesForConnectionId(&config
, 0);
3640 connection_
.SetFromConfig(config
);
3641 EXPECT_CALL(*send_algorithm_
, OnPacketSent(_
, _
, _
, _
, _
)).Times(2);
3642 EXPECT_EQ(payload
.size(),
3643 connection_
.SendStreamDataWithString(
3644 3, payload
, 0, !kFin
, nullptr).bytes_consumed
);
3645 // Just like above, we save 8 bytes on payload, and 8 on truncation.
3646 EXPECT_EQ(non_truncated_packet_size
, writer_
->last_packet_size() + 8 * 2);
3649 TEST_P(QuicConnectionTest
, SendDelayedAck
) {
3650 QuicTime ack_time
= clock_
.ApproximateNow().Add(DefaultDelayedAckTime());
3651 EXPECT_CALL(visitor_
, OnSuccessfulVersionNegotiation(_
));
3652 EXPECT_FALSE(connection_
.GetAckAlarm()->IsSet());
3653 const uint8 tag
= 0x07;
3654 connection_
.SetDecrypter(ENCRYPTION_INITIAL
, new StrictTaggingDecrypter(tag
));
3655 framer_
.SetEncrypter(ENCRYPTION_INITIAL
, new TaggingEncrypter(tag
));
3656 // Process a packet from the non-crypto stream.
3657 frame1_
.stream_id
= 3;
3659 // The same as ProcessPacket(1) except that ENCRYPTION_INITIAL is used
3660 // instead of ENCRYPTION_NONE.
3661 EXPECT_CALL(visitor_
, OnStreamFrame(_
)).Times(1);
3662 ProcessDataPacketAtLevel(1, 0, !kEntropyFlag
, ENCRYPTION_INITIAL
);
3664 // Check if delayed ack timer is running for the expected interval.
3665 EXPECT_TRUE(connection_
.GetAckAlarm()->IsSet());
3666 EXPECT_EQ(ack_time
, connection_
.GetAckAlarm()->deadline());
3667 // Simulate delayed ack alarm firing.
3668 connection_
.GetAckAlarm()->Fire();
3669 // Check that ack is sent and that delayed ack alarm is reset.
3670 EXPECT_EQ(2u, writer_
->frame_count());
3671 EXPECT_FALSE(writer_
->stop_waiting_frames().empty());
3672 EXPECT_FALSE(writer_
->ack_frames().empty());
3673 EXPECT_FALSE(connection_
.GetAckAlarm()->IsSet());
3676 TEST_P(QuicConnectionTest
, SendDelayedAckOnHandshakeConfirmed
) {
3677 EXPECT_CALL(visitor_
, OnSuccessfulVersionNegotiation(_
));
3679 // Check that ack is sent and that delayed ack alarm is set.
3680 EXPECT_TRUE(connection_
.GetAckAlarm()->IsSet());
3681 QuicTime ack_time
= clock_
.ApproximateNow().Add(DefaultDelayedAckTime());
3682 EXPECT_EQ(ack_time
, connection_
.GetAckAlarm()->deadline());
3684 // Completing the handshake as the server does nothing.
3685 QuicConnectionPeer::SetPerspective(&connection_
, Perspective::IS_SERVER
);
3686 connection_
.OnHandshakeComplete();
3687 EXPECT_TRUE(connection_
.GetAckAlarm()->IsSet());
3688 EXPECT_EQ(ack_time
, connection_
.GetAckAlarm()->deadline());
3690 // Complete the handshake as the client decreases the delayed ack time to 0ms.
3691 QuicConnectionPeer::SetPerspective(&connection_
, Perspective::IS_CLIENT
);
3692 connection_
.OnHandshakeComplete();
3693 EXPECT_TRUE(connection_
.GetAckAlarm()->IsSet());
3694 EXPECT_EQ(clock_
.ApproximateNow(), connection_
.GetAckAlarm()->deadline());
3697 TEST_P(QuicConnectionTest
, SendDelayedAckOnSecondPacket
) {
3698 EXPECT_CALL(visitor_
, OnSuccessfulVersionNegotiation(_
));
3701 // Check that ack is sent and that delayed ack alarm is reset.
3702 EXPECT_EQ(2u, writer_
->frame_count());
3703 EXPECT_FALSE(writer_
->stop_waiting_frames().empty());
3704 EXPECT_FALSE(writer_
->ack_frames().empty());
3705 EXPECT_FALSE(connection_
.GetAckAlarm()->IsSet());
3708 TEST_P(QuicConnectionTest
, NoAckOnOldNacks
) {
3709 EXPECT_CALL(visitor_
, OnSuccessfulVersionNegotiation(_
));
3710 // Drop one packet, triggering a sequence of acks.
3712 size_t frames_per_ack
= 2;
3713 EXPECT_EQ(frames_per_ack
, writer_
->frame_count());
3714 EXPECT_FALSE(writer_
->ack_frames().empty());
3717 EXPECT_EQ(frames_per_ack
, writer_
->frame_count());
3718 EXPECT_FALSE(writer_
->ack_frames().empty());
3721 EXPECT_EQ(frames_per_ack
, writer_
->frame_count());
3722 EXPECT_FALSE(writer_
->ack_frames().empty());
3725 EXPECT_EQ(frames_per_ack
, writer_
->frame_count());
3726 EXPECT_FALSE(writer_
->ack_frames().empty());
3728 // Now only set the timer on the 6th packet, instead of sending another ack.
3730 EXPECT_EQ(0u, writer_
->frame_count());
3731 EXPECT_TRUE(connection_
.GetAckAlarm()->IsSet());
3734 TEST_P(QuicConnectionTest
, SendDelayedAckOnOutgoingPacket
) {
3735 EXPECT_CALL(visitor_
, OnSuccessfulVersionNegotiation(_
));
3737 connection_
.SendStreamDataWithString(kClientDataStreamId1
, "foo", 0, !kFin
,
3739 // Check that ack is bundled with outgoing data and that delayed ack
3741 EXPECT_EQ(3u, writer_
->frame_count());
3742 EXPECT_FALSE(writer_
->stop_waiting_frames().empty());
3743 EXPECT_FALSE(writer_
->ack_frames().empty());
3744 EXPECT_FALSE(connection_
.GetAckAlarm()->IsSet());
3747 TEST_P(QuicConnectionTest
, SendDelayedAckOnOutgoingCryptoPacket
) {
3748 EXPECT_CALL(visitor_
, OnSuccessfulVersionNegotiation(_
));
3750 connection_
.SendStreamDataWithString(kCryptoStreamId
, "foo", 0, !kFin
,
3752 // Check that ack is bundled with outgoing crypto data.
3753 EXPECT_EQ(3u, writer_
->frame_count());
3754 EXPECT_FALSE(writer_
->ack_frames().empty());
3755 EXPECT_FALSE(connection_
.GetAckAlarm()->IsSet());
3758 TEST_P(QuicConnectionTest
, BlockAndBufferOnFirstCHLOPacketOfTwo
) {
3759 EXPECT_CALL(visitor_
, OnSuccessfulVersionNegotiation(_
));
3762 writer_
->set_is_write_blocked_data_buffered(true);
3763 connection_
.SendStreamDataWithString(kCryptoStreamId
, "foo", 0, !kFin
,
3765 EXPECT_TRUE(writer_
->IsWriteBlocked());
3766 EXPECT_FALSE(connection_
.HasQueuedData());
3767 connection_
.SendStreamDataWithString(kCryptoStreamId
, "bar", 3, !kFin
,
3769 EXPECT_TRUE(writer_
->IsWriteBlocked());
3770 EXPECT_TRUE(connection_
.HasQueuedData());
3773 TEST_P(QuicConnectionTest
, BundleAckForSecondCHLO
) {
3774 EXPECT_CALL(visitor_
, OnSuccessfulVersionNegotiation(_
));
3775 EXPECT_FALSE(connection_
.GetAckAlarm()->IsSet());
3776 EXPECT_CALL(visitor_
, OnCanWrite()).WillOnce(
3777 IgnoreResult(InvokeWithoutArgs(&connection_
,
3778 &TestConnection::SendCryptoStreamData
)));
3779 // Process a packet from the crypto stream, which is frame1_'s default.
3780 // Receiving the CHLO as packet 2 first will cause the connection to
3781 // immediately send an ack, due to the packet gap.
3783 // Check that ack is sent and that delayed ack alarm is reset.
3784 EXPECT_EQ(3u, writer_
->frame_count());
3785 EXPECT_FALSE(writer_
->stop_waiting_frames().empty());
3786 EXPECT_EQ(1u, writer_
->stream_frames().size());
3787 EXPECT_FALSE(writer_
->ack_frames().empty());
3788 EXPECT_FALSE(connection_
.GetAckAlarm()->IsSet());
3791 TEST_P(QuicConnectionTest
, BundleAckWithDataOnIncomingAck
) {
3792 EXPECT_CALL(visitor_
, OnSuccessfulVersionNegotiation(_
));
3793 connection_
.SendStreamDataWithString(kClientDataStreamId1
, "foo", 0, !kFin
,
3795 connection_
.SendStreamDataWithString(kClientDataStreamId1
, "foo", 3, !kFin
,
3797 // Ack the second packet, which will retransmit the first packet.
3798 QuicAckFrame ack
= InitAckFrame(2);
3799 NackPacket(1, &ack
);
3800 PacketNumberSet lost_packets
;
3801 lost_packets
.insert(1);
3802 EXPECT_CALL(*loss_algorithm_
, DetectLostPackets(_
, _
, _
, _
))
3803 .WillOnce(Return(lost_packets
));
3804 EXPECT_CALL(*send_algorithm_
, OnCongestionEvent(true, _
, _
, _
));
3805 ProcessAckPacket(&ack
);
3806 EXPECT_EQ(1u, writer_
->frame_count());
3807 EXPECT_EQ(1u, writer_
->stream_frames().size());
3810 // Now ack the retransmission, which will both raise the high water mark
3811 // and see if there is more data to send.
3812 ack
= InitAckFrame(3);
3813 NackPacket(1, &ack
);
3814 EXPECT_CALL(*loss_algorithm_
, DetectLostPackets(_
, _
, _
, _
))
3815 .WillOnce(Return(PacketNumberSet()));
3816 EXPECT_CALL(*send_algorithm_
, OnCongestionEvent(true, _
, _
, _
));
3817 ProcessAckPacket(&ack
);
3819 // Check that no packet is sent and the ack alarm isn't set.
3820 EXPECT_EQ(0u, writer_
->frame_count());
3821 EXPECT_FALSE(connection_
.GetAckAlarm()->IsSet());
3824 // Send the same ack, but send both data and an ack together.
3825 ack
= InitAckFrame(3);
3826 NackPacket(1, &ack
);
3827 EXPECT_CALL(*loss_algorithm_
, DetectLostPackets(_
, _
, _
, _
))
3828 .WillOnce(Return(PacketNumberSet()));
3829 EXPECT_CALL(visitor_
, OnCanWrite()).WillOnce(
3830 IgnoreResult(InvokeWithoutArgs(
3832 &TestConnection::EnsureWritableAndSendStreamData5
)));
3833 ProcessAckPacket(&ack
);
3835 // Check that ack is bundled with outgoing data and the delayed ack
3837 EXPECT_EQ(3u, writer_
->frame_count());
3838 EXPECT_FALSE(writer_
->stop_waiting_frames().empty());
3839 EXPECT_FALSE(writer_
->ack_frames().empty());
3840 EXPECT_EQ(1u, writer_
->stream_frames().size());
3841 EXPECT_FALSE(connection_
.GetAckAlarm()->IsSet());
3844 TEST_P(QuicConnectionTest
, NoAckSentForClose
) {
3845 EXPECT_CALL(visitor_
, OnSuccessfulVersionNegotiation(_
));
3847 EXPECT_CALL(visitor_
, OnConnectionClosed(QUIC_PEER_GOING_AWAY
, true));
3848 EXPECT_CALL(*send_algorithm_
, OnPacketSent(_
, _
, _
, _
, _
)).Times(0);
3849 ProcessClosePacket(2, 0);
3852 TEST_P(QuicConnectionTest
, SendWhenDisconnected
) {
3853 EXPECT_TRUE(connection_
.connected());
3854 EXPECT_CALL(visitor_
, OnConnectionClosed(QUIC_PEER_GOING_AWAY
, false));
3855 connection_
.CloseConnection(QUIC_PEER_GOING_AWAY
, false);
3856 EXPECT_FALSE(connection_
.connected());
3857 EXPECT_FALSE(connection_
.CanWriteStreamData());
3858 QuicPacket
* packet
= ConstructDataPacket(1, 0, !kEntropyFlag
);
3859 EXPECT_CALL(*send_algorithm_
, OnPacketSent(_
, _
, 1, _
, _
)).Times(0);
3860 connection_
.SendPacket(ENCRYPTION_NONE
, 1, packet
, kTestEntropyHash
,
3861 HAS_RETRANSMITTABLE_DATA
, false, false);
3864 TEST_P(QuicConnectionTest
, PublicReset
) {
3865 QuicPublicResetPacket header
;
3866 header
.public_header
.connection_id
= connection_id_
;
3867 header
.public_header
.reset_flag
= true;
3868 header
.public_header
.version_flag
= false;
3869 header
.rejected_packet_number
= 10101;
3870 scoped_ptr
<QuicEncryptedPacket
> packet(
3871 framer_
.BuildPublicResetPacket(header
));
3872 EXPECT_CALL(visitor_
, OnConnectionClosed(QUIC_PUBLIC_RESET
, true));
3873 connection_
.ProcessUdpPacket(IPEndPoint(), IPEndPoint(), *packet
);
3876 TEST_P(QuicConnectionTest
, GoAway
) {
3877 EXPECT_CALL(visitor_
, OnSuccessfulVersionNegotiation(_
));
3879 QuicGoAwayFrame goaway
;
3880 goaway
.last_good_stream_id
= 1;
3881 goaway
.error_code
= QUIC_PEER_GOING_AWAY
;
3882 goaway
.reason_phrase
= "Going away.";
3883 EXPECT_CALL(visitor_
, OnGoAway(_
));
3884 ProcessGoAwayPacket(&goaway
);
3887 TEST_P(QuicConnectionTest
, WindowUpdate
) {
3888 EXPECT_CALL(visitor_
, OnSuccessfulVersionNegotiation(_
));
3890 QuicWindowUpdateFrame window_update
;
3891 window_update
.stream_id
= 3;
3892 window_update
.byte_offset
= 1234;
3893 EXPECT_CALL(visitor_
, OnWindowUpdateFrame(_
));
3894 ProcessFramePacket(QuicFrame(&window_update
));
3897 TEST_P(QuicConnectionTest
, Blocked
) {
3898 EXPECT_CALL(visitor_
, OnSuccessfulVersionNegotiation(_
));
3900 QuicBlockedFrame blocked
;
3901 blocked
.stream_id
= 3;
3902 EXPECT_CALL(visitor_
, OnBlockedFrame(_
));
3903 ProcessFramePacket(QuicFrame(&blocked
));
3906 TEST_P(QuicConnectionTest
, ZeroBytePacket
) {
3907 // Don't close the connection for zero byte packets.
3908 EXPECT_CALL(visitor_
, OnConnectionClosed(_
, _
)).Times(0);
3909 QuicEncryptedPacket
encrypted(nullptr, 0);
3910 connection_
.ProcessUdpPacket(IPEndPoint(), IPEndPoint(), encrypted
);
3913 TEST_P(QuicConnectionTest
, MissingPacketsBeforeLeastUnacked
) {
3914 // Set the packet number of the ack packet to be least unacked (4).
3915 QuicPacketCreatorPeer::SetPacketNumber(&peer_creator_
, 3);
3916 EXPECT_CALL(visitor_
, OnSuccessfulVersionNegotiation(_
));
3917 QuicStopWaitingFrame frame
= InitStopWaitingFrame(4);
3918 ProcessStopWaitingPacket(&frame
);
3919 EXPECT_TRUE(outgoing_ack()->missing_packets
.empty());
3922 TEST_P(QuicConnectionTest
, ReceivedEntropyHashCalculation
) {
3923 EXPECT_CALL(visitor_
, OnStreamFrame(_
)).Times(AtLeast(1));
3924 EXPECT_CALL(visitor_
, OnSuccessfulVersionNegotiation(_
));
3925 ProcessDataPacket(1, 1, kEntropyFlag
);
3926 ProcessDataPacket(4, 1, kEntropyFlag
);
3927 ProcessDataPacket(3, 1, !kEntropyFlag
);
3928 ProcessDataPacket(7, 1, kEntropyFlag
);
3929 EXPECT_EQ(146u, outgoing_ack()->entropy_hash
);
3932 TEST_P(QuicConnectionTest
, ReceivedEntropyHashCalculationHalfFEC
) {
3933 // FEC packets should not change the entropy hash calculation.
3934 EXPECT_CALL(visitor_
, OnStreamFrame(_
)).Times(AtLeast(1));
3935 EXPECT_CALL(visitor_
, OnSuccessfulVersionNegotiation(_
));
3936 ProcessDataPacket(1, 1, kEntropyFlag
);
3937 ProcessFecPacket(4, 1, false, kEntropyFlag
, nullptr);
3938 ProcessDataPacket(3, 3, !kEntropyFlag
);
3939 ProcessFecPacket(7, 3, false, kEntropyFlag
, nullptr);
3940 EXPECT_EQ(146u, outgoing_ack()->entropy_hash
);
3943 TEST_P(QuicConnectionTest
, UpdateEntropyForReceivedPackets
) {
3944 EXPECT_CALL(visitor_
, OnStreamFrame(_
)).Times(AtLeast(1));
3945 EXPECT_CALL(visitor_
, OnSuccessfulVersionNegotiation(_
));
3946 ProcessDataPacket(1, 1, kEntropyFlag
);
3947 ProcessDataPacket(5, 1, kEntropyFlag
);
3948 ProcessDataPacket(4, 1, !kEntropyFlag
);
3949 EXPECT_EQ(34u, outgoing_ack()->entropy_hash
);
3950 // Make 4th packet my least unacked, and update entropy for 2, 3 packets.
3951 QuicPacketCreatorPeer::SetPacketNumber(&peer_creator_
, 5);
3952 QuicPacketEntropyHash six_packet_entropy_hash
= 0;
3953 QuicPacketEntropyHash random_entropy_hash
= 129u;
3954 QuicStopWaitingFrame frame
= InitStopWaitingFrame(4);
3955 frame
.entropy_hash
= random_entropy_hash
;
3956 if (ProcessStopWaitingPacket(&frame
)) {
3957 six_packet_entropy_hash
= 1 << 6;
3960 EXPECT_EQ((random_entropy_hash
+ (1 << 5) + six_packet_entropy_hash
),
3961 outgoing_ack()->entropy_hash
);
3964 TEST_P(QuicConnectionTest
, UpdateEntropyHashUptoCurrentPacket
) {
3965 EXPECT_CALL(visitor_
, OnStreamFrame(_
)).Times(AtLeast(1));
3966 EXPECT_CALL(visitor_
, OnSuccessfulVersionNegotiation(_
));
3967 ProcessDataPacket(1, 1, kEntropyFlag
);
3968 ProcessDataPacket(5, 1, !kEntropyFlag
);
3969 ProcessDataPacket(22, 1, kEntropyFlag
);
3970 EXPECT_EQ(66u, outgoing_ack()->entropy_hash
);
3971 QuicPacketCreatorPeer::SetPacketNumber(&peer_creator_
, 22);
3972 QuicPacketEntropyHash random_entropy_hash
= 85u;
3973 // Current packet is the least unacked packet.
3974 QuicPacketEntropyHash ack_entropy_hash
;
3975 QuicStopWaitingFrame frame
= InitStopWaitingFrame(23);
3976 frame
.entropy_hash
= random_entropy_hash
;
3977 ack_entropy_hash
= ProcessStopWaitingPacket(&frame
);
3978 EXPECT_EQ((random_entropy_hash
+ ack_entropy_hash
),
3979 outgoing_ack()->entropy_hash
);
3980 ProcessDataPacket(25, 1, kEntropyFlag
);
3981 EXPECT_EQ((random_entropy_hash
+ ack_entropy_hash
+ (1 << (25 % 8))),
3982 outgoing_ack()->entropy_hash
);
3985 TEST_P(QuicConnectionTest
, EntropyCalculationForTruncatedAck
) {
3986 EXPECT_CALL(visitor_
, OnStreamFrame(_
)).Times(AtLeast(1));
3987 EXPECT_CALL(visitor_
, OnSuccessfulVersionNegotiation(_
));
3988 QuicPacketEntropyHash entropy
[51];
3990 for (int i
= 1; i
< 51; ++i
) {
3991 bool should_send
= i
% 10 != 1;
3992 bool entropy_flag
= (i
& (i
- 1)) != 0;
3994 entropy
[i
] = entropy
[i
- 1];
3998 entropy
[i
] = entropy
[i
- 1] ^ (1 << (i
% 8));
4000 entropy
[i
] = entropy
[i
- 1];
4002 ProcessDataPacket(i
, 1, entropy_flag
);
4004 for (int i
= 1; i
< 50; ++i
) {
4005 EXPECT_EQ(entropy
[i
], QuicConnectionPeer::ReceivedEntropyHash(
4010 TEST_P(QuicConnectionTest
, ServerSendsVersionNegotiationPacket
) {
4011 connection_
.SetSupportedVersions(QuicSupportedVersions());
4012 framer_
.set_version_for_tests(QUIC_VERSION_UNSUPPORTED
);
4014 QuicPacketHeader header
;
4015 header
.public_header
.connection_id
= connection_id_
;
4016 header
.public_header
.version_flag
= true;
4017 header
.packet_packet_number
= 12;
4020 frames
.push_back(QuicFrame(&frame1_
));
4021 scoped_ptr
<QuicPacket
> packet(ConstructPacket(header
, frames
));
4022 char buffer
[kMaxPacketSize
];
4023 scoped_ptr
<QuicEncryptedPacket
> encrypted(framer_
.EncryptPayload(
4024 ENCRYPTION_NONE
, 12, *packet
, buffer
, kMaxPacketSize
));
4026 framer_
.set_version(version());
4027 connection_
.set_perspective(Perspective::IS_SERVER
);
4028 connection_
.ProcessUdpPacket(IPEndPoint(), IPEndPoint(), *encrypted
);
4029 EXPECT_TRUE(writer_
->version_negotiation_packet() != nullptr);
4031 size_t num_versions
= arraysize(kSupportedQuicVersions
);
4032 ASSERT_EQ(num_versions
,
4033 writer_
->version_negotiation_packet()->versions
.size());
4035 // We expect all versions in kSupportedQuicVersions to be
4036 // included in the packet.
4037 for (size_t i
= 0; i
< num_versions
; ++i
) {
4038 EXPECT_EQ(kSupportedQuicVersions
[i
],
4039 writer_
->version_negotiation_packet()->versions
[i
]);
4043 TEST_P(QuicConnectionTest
, ServerSendsVersionNegotiationPacketSocketBlocked
) {
4044 connection_
.SetSupportedVersions(QuicSupportedVersions());
4045 framer_
.set_version_for_tests(QUIC_VERSION_UNSUPPORTED
);
4047 QuicPacketHeader header
;
4048 header
.public_header
.connection_id
= connection_id_
;
4049 header
.public_header
.version_flag
= true;
4050 header
.packet_packet_number
= 12;
4053 frames
.push_back(QuicFrame(&frame1_
));
4054 scoped_ptr
<QuicPacket
> packet(ConstructPacket(header
, frames
));
4055 char buffer
[kMaxPacketSize
];
4056 scoped_ptr
<QuicEncryptedPacket
> encrypted(framer_
.EncryptPayload(
4057 ENCRYPTION_NONE
, 12, *packet
, buffer
, kMaxPacketSize
));
4059 framer_
.set_version(version());
4060 connection_
.set_perspective(Perspective::IS_SERVER
);
4062 connection_
.ProcessUdpPacket(IPEndPoint(), IPEndPoint(), *encrypted
);
4063 EXPECT_EQ(0u, writer_
->last_packet_size());
4064 EXPECT_TRUE(connection_
.HasQueuedData());
4066 writer_
->SetWritable();
4067 connection_
.OnCanWrite();
4068 EXPECT_TRUE(writer_
->version_negotiation_packet() != nullptr);
4070 size_t num_versions
= arraysize(kSupportedQuicVersions
);
4071 ASSERT_EQ(num_versions
,
4072 writer_
->version_negotiation_packet()->versions
.size());
4074 // We expect all versions in kSupportedQuicVersions to be
4075 // included in the packet.
4076 for (size_t i
= 0; i
< num_versions
; ++i
) {
4077 EXPECT_EQ(kSupportedQuicVersions
[i
],
4078 writer_
->version_negotiation_packet()->versions
[i
]);
4082 TEST_P(QuicConnectionTest
,
4083 ServerSendsVersionNegotiationPacketSocketBlockedDataBuffered
) {
4084 connection_
.SetSupportedVersions(QuicSupportedVersions());
4085 framer_
.set_version_for_tests(QUIC_VERSION_UNSUPPORTED
);
4087 QuicPacketHeader header
;
4088 header
.public_header
.connection_id
= connection_id_
;
4089 header
.public_header
.version_flag
= true;
4090 header
.packet_packet_number
= 12;
4093 frames
.push_back(QuicFrame(&frame1_
));
4094 scoped_ptr
<QuicPacket
> packet(ConstructPacket(header
, frames
));
4095 char buffer
[kMaxPacketSize
];
4096 scoped_ptr
<QuicEncryptedPacket
> encrypted(framer_
.EncryptPayload(
4097 ENCRYPTION_NONE
, 12, *packet
, buffer
, kMaxPacketSize
));
4099 framer_
.set_version(version());
4100 connection_
.set_perspective(Perspective::IS_SERVER
);
4102 writer_
->set_is_write_blocked_data_buffered(true);
4103 connection_
.ProcessUdpPacket(IPEndPoint(), IPEndPoint(), *encrypted
);
4104 EXPECT_EQ(0u, writer_
->last_packet_size());
4105 EXPECT_FALSE(connection_
.HasQueuedData());
4108 TEST_P(QuicConnectionTest
, ClientHandlesVersionNegotiation
) {
4109 // Start out with some unsupported version.
4110 QuicConnectionPeer::GetFramer(&connection_
)->set_version_for_tests(
4111 QUIC_VERSION_UNSUPPORTED
);
4113 QuicPacketHeader header
;
4114 header
.public_header
.connection_id
= connection_id_
;
4115 header
.public_header
.version_flag
= true;
4116 header
.packet_packet_number
= 12;
4118 QuicVersionVector supported_versions
;
4119 for (size_t i
= 0; i
< arraysize(kSupportedQuicVersions
); ++i
) {
4120 supported_versions
.push_back(kSupportedQuicVersions
[i
]);
4123 // Send a version negotiation packet.
4124 scoped_ptr
<QuicEncryptedPacket
> encrypted(
4125 framer_
.BuildVersionNegotiationPacket(
4126 header
.public_header
, supported_versions
));
4127 connection_
.ProcessUdpPacket(IPEndPoint(), IPEndPoint(), *encrypted
);
4129 // Now force another packet. The connection should transition into
4130 // NEGOTIATED_VERSION state and tell the packet creator to StopSendingVersion.
4131 header
.public_header
.version_flag
= false;
4133 frames
.push_back(QuicFrame(&frame1_
));
4134 scoped_ptr
<QuicPacket
> packet(ConstructPacket(header
, frames
));
4135 char buffer
[kMaxPacketSize
];
4136 encrypted
.reset(framer_
.EncryptPayload(ENCRYPTION_NONE
, 12, *packet
, buffer
,
4138 EXPECT_CALL(visitor_
, OnStreamFrame(_
)).Times(1);
4139 EXPECT_CALL(visitor_
, OnSuccessfulVersionNegotiation(_
));
4140 connection_
.ProcessUdpPacket(IPEndPoint(), IPEndPoint(), *encrypted
);
4142 ASSERT_FALSE(QuicPacketCreatorPeer::SendVersionInPacket(creator_
));
4145 TEST_P(QuicConnectionTest
, BadVersionNegotiation
) {
4146 QuicPacketHeader header
;
4147 header
.public_header
.connection_id
= connection_id_
;
4148 header
.public_header
.version_flag
= true;
4149 header
.packet_packet_number
= 12;
4151 QuicVersionVector supported_versions
;
4152 for (size_t i
= 0; i
< arraysize(kSupportedQuicVersions
); ++i
) {
4153 supported_versions
.push_back(kSupportedQuicVersions
[i
]);
4156 // Send a version negotiation packet with the version the client started with.
4157 // It should be rejected.
4158 EXPECT_CALL(visitor_
,
4159 OnConnectionClosed(QUIC_INVALID_VERSION_NEGOTIATION_PACKET
,
4161 scoped_ptr
<QuicEncryptedPacket
> encrypted(
4162 framer_
.BuildVersionNegotiationPacket(
4163 header
.public_header
, supported_versions
));
4164 connection_
.ProcessUdpPacket(IPEndPoint(), IPEndPoint(), *encrypted
);
4167 TEST_P(QuicConnectionTest
, CheckSendStats
) {
4168 EXPECT_CALL(*send_algorithm_
, OnPacketSent(_
, _
, _
, _
, _
));
4169 connection_
.SendStreamDataWithString(3, "first", 0, !kFin
, nullptr);
4170 size_t first_packet_size
= writer_
->last_packet_size();
4172 EXPECT_CALL(*send_algorithm_
, OnPacketSent(_
, _
, _
, _
, _
));
4173 connection_
.SendStreamDataWithString(5, "second", 0, !kFin
, nullptr);
4174 size_t second_packet_size
= writer_
->last_packet_size();
4176 // 2 retransmissions due to rto, 1 due to explicit nack.
4177 EXPECT_CALL(*send_algorithm_
, OnRetransmissionTimeout(true));
4178 EXPECT_CALL(*send_algorithm_
, OnPacketSent(_
, _
, _
, _
, _
)).Times(3);
4180 // Retransmit due to RTO.
4181 clock_
.AdvanceTime(QuicTime::Delta::FromSeconds(10));
4182 connection_
.GetRetransmissionAlarm()->Fire();
4184 // Retransmit due to explicit nacks.
4185 QuicAckFrame nack_three
= InitAckFrame(4);
4186 NackPacket(3, &nack_three
);
4187 NackPacket(1, &nack_three
);
4188 PacketNumberSet lost_packets
;
4189 lost_packets
.insert(1);
4190 lost_packets
.insert(3);
4191 EXPECT_CALL(*loss_algorithm_
, DetectLostPackets(_
, _
, _
, _
))
4192 .WillOnce(Return(lost_packets
));
4193 EXPECT_CALL(*send_algorithm_
, OnCongestionEvent(true, _
, _
, _
));
4194 EXPECT_CALL(visitor_
, OnCanWrite());
4195 EXPECT_CALL(visitor_
, OnSuccessfulVersionNegotiation(_
));
4196 ProcessAckPacket(&nack_three
);
4198 EXPECT_CALL(*send_algorithm_
, BandwidthEstimate()).WillOnce(
4199 Return(QuicBandwidth::Zero()));
4201 const QuicConnectionStats
& stats
= connection_
.GetStats();
4202 EXPECT_EQ(3 * first_packet_size
+ 2 * second_packet_size
- kQuicVersionSize
,
4204 EXPECT_EQ(5u, stats
.packets_sent
);
4205 EXPECT_EQ(2 * first_packet_size
+ second_packet_size
- kQuicVersionSize
,
4206 stats
.bytes_retransmitted
);
4207 EXPECT_EQ(3u, stats
.packets_retransmitted
);
4208 EXPECT_EQ(1u, stats
.rto_count
);
4209 EXPECT_EQ(kDefaultMaxPacketSize
, stats
.max_packet_size
);
4212 TEST_P(QuicConnectionTest
, CheckReceiveStats
) {
4213 EXPECT_CALL(visitor_
, OnSuccessfulVersionNegotiation(_
));
4215 size_t received_bytes
= 0;
4216 received_bytes
+= ProcessFecProtectedPacket(1, false, !kEntropyFlag
);
4217 received_bytes
+= ProcessFecProtectedPacket(3, false, !kEntropyFlag
);
4218 // Should be counted against dropped packets.
4219 received_bytes
+= ProcessDataPacket(3, 1, !kEntropyFlag
);
4220 received_bytes
+= ProcessFecPacket(4, 1, true, !kEntropyFlag
, nullptr);
4222 EXPECT_CALL(*send_algorithm_
, BandwidthEstimate()).WillOnce(
4223 Return(QuicBandwidth::Zero()));
4225 const QuicConnectionStats
& stats
= connection_
.GetStats();
4226 EXPECT_EQ(received_bytes
, stats
.bytes_received
);
4227 EXPECT_EQ(4u, stats
.packets_received
);
4229 EXPECT_EQ(1u, stats
.packets_revived
);
4230 EXPECT_EQ(1u, stats
.packets_dropped
);
4233 TEST_P(QuicConnectionTest
, TestFecGroupLimits
) {
4234 // Create and return a group for 1.
4235 ASSERT_TRUE(QuicConnectionPeer::GetFecGroup(&connection_
, 1) != nullptr);
4237 // Create and return a group for 2.
4238 ASSERT_TRUE(QuicConnectionPeer::GetFecGroup(&connection_
, 2) != nullptr);
4240 // Create and return a group for 4. This should remove 1 but not 2.
4241 ASSERT_TRUE(QuicConnectionPeer::GetFecGroup(&connection_
, 4) != nullptr);
4242 ASSERT_TRUE(QuicConnectionPeer::GetFecGroup(&connection_
, 1) == nullptr);
4243 ASSERT_TRUE(QuicConnectionPeer::GetFecGroup(&connection_
, 2) != nullptr);
4245 // Create and return a group for 3. This will kill off 2.
4246 ASSERT_TRUE(QuicConnectionPeer::GetFecGroup(&connection_
, 3) != nullptr);
4247 ASSERT_TRUE(QuicConnectionPeer::GetFecGroup(&connection_
, 2) == nullptr);
4249 // Verify that adding 5 kills off 3, despite 4 being created before 3.
4250 ASSERT_TRUE(QuicConnectionPeer::GetFecGroup(&connection_
, 5) != nullptr);
4251 ASSERT_TRUE(QuicConnectionPeer::GetFecGroup(&connection_
, 4) != nullptr);
4252 ASSERT_TRUE(QuicConnectionPeer::GetFecGroup(&connection_
, 3) == nullptr);
4255 TEST_P(QuicConnectionTest
, ProcessFramesIfPacketClosedConnection
) {
4256 // Construct a packet with stream frame and connection close frame.
4257 QuicPacketHeader header
;
4258 header
.public_header
.connection_id
= connection_id_
;
4259 header
.packet_packet_number
= 1;
4260 header
.public_header
.version_flag
= false;
4262 QuicConnectionCloseFrame qccf
;
4263 qccf
.error_code
= QUIC_PEER_GOING_AWAY
;
4266 frames
.push_back(QuicFrame(&frame1_
));
4267 frames
.push_back(QuicFrame(&qccf
));
4268 scoped_ptr
<QuicPacket
> packet(ConstructPacket(header
, frames
));
4269 EXPECT_TRUE(nullptr != packet
.get());
4270 char buffer
[kMaxPacketSize
];
4271 scoped_ptr
<QuicEncryptedPacket
> encrypted(framer_
.EncryptPayload(
4272 ENCRYPTION_NONE
, 1, *packet
, buffer
, kMaxPacketSize
));
4274 EXPECT_CALL(visitor_
, OnConnectionClosed(QUIC_PEER_GOING_AWAY
, true));
4275 EXPECT_CALL(visitor_
, OnStreamFrame(_
)).Times(1);
4276 EXPECT_CALL(visitor_
, OnSuccessfulVersionNegotiation(_
));
4278 connection_
.ProcessUdpPacket(IPEndPoint(), IPEndPoint(), *encrypted
);
4281 TEST_P(QuicConnectionTest
, SelectMutualVersion
) {
4282 connection_
.SetSupportedVersions(QuicSupportedVersions());
4283 // Set the connection to speak the lowest quic version.
4284 connection_
.set_version(QuicVersionMin());
4285 EXPECT_EQ(QuicVersionMin(), connection_
.version());
4287 // Pass in available versions which includes a higher mutually supported
4288 // version. The higher mutually supported version should be selected.
4289 QuicVersionVector supported_versions
;
4290 for (size_t i
= 0; i
< arraysize(kSupportedQuicVersions
); ++i
) {
4291 supported_versions
.push_back(kSupportedQuicVersions
[i
]);
4293 EXPECT_TRUE(connection_
.SelectMutualVersion(supported_versions
));
4294 EXPECT_EQ(QuicVersionMax(), connection_
.version());
4296 // Expect that the lowest version is selected.
4297 // Ensure the lowest supported version is less than the max, unless they're
4299 EXPECT_LE(QuicVersionMin(), QuicVersionMax());
4300 QuicVersionVector lowest_version_vector
;
4301 lowest_version_vector
.push_back(QuicVersionMin());
4302 EXPECT_TRUE(connection_
.SelectMutualVersion(lowest_version_vector
));
4303 EXPECT_EQ(QuicVersionMin(), connection_
.version());
4305 // Shouldn't be able to find a mutually supported version.
4306 QuicVersionVector unsupported_version
;
4307 unsupported_version
.push_back(QUIC_VERSION_UNSUPPORTED
);
4308 EXPECT_FALSE(connection_
.SelectMutualVersion(unsupported_version
));
4311 TEST_P(QuicConnectionTest
, ConnectionCloseWhenWritable
) {
4312 EXPECT_FALSE(writer_
->IsWriteBlocked());
4315 connection_
.SendStreamDataWithString(1, "foo", 0, !kFin
, nullptr);
4316 EXPECT_EQ(0u, connection_
.NumQueuedPackets());
4317 EXPECT_EQ(1u, writer_
->packets_write_attempts());
4319 TriggerConnectionClose();
4320 EXPECT_EQ(2u, writer_
->packets_write_attempts());
4323 TEST_P(QuicConnectionTest
, ConnectionCloseGettingWriteBlocked
) {
4325 TriggerConnectionClose();
4326 EXPECT_EQ(1u, writer_
->packets_write_attempts());
4327 EXPECT_TRUE(writer_
->IsWriteBlocked());
4330 TEST_P(QuicConnectionTest
, ConnectionCloseWhenWriteBlocked
) {
4332 connection_
.SendStreamDataWithString(1, "foo", 0, !kFin
, nullptr);
4333 EXPECT_EQ(1u, connection_
.NumQueuedPackets());
4334 EXPECT_EQ(1u, writer_
->packets_write_attempts());
4335 EXPECT_TRUE(writer_
->IsWriteBlocked());
4336 TriggerConnectionClose();
4337 EXPECT_EQ(1u, writer_
->packets_write_attempts());
4340 TEST_P(QuicConnectionTest
, AckNotifierTriggerCallback
) {
4341 EXPECT_CALL(visitor_
, OnSuccessfulVersionNegotiation(_
));
4343 // Create a delegate which we expect to be called.
4344 scoped_refptr
<MockAckNotifierDelegate
> delegate(new MockAckNotifierDelegate
);
4345 EXPECT_CALL(*delegate
.get(), OnAckNotification(_
, _
, _
)).Times(1);
4347 // Send some data, which will register the delegate to be notified.
4348 connection_
.SendStreamDataWithString(1, "foo", 0, !kFin
, delegate
.get());
4350 // Process an ACK from the server which should trigger the callback.
4351 EXPECT_CALL(*send_algorithm_
, OnCongestionEvent(true, _
, _
, _
));
4352 QuicAckFrame frame
= InitAckFrame(1);
4353 ProcessAckPacket(&frame
);
4356 TEST_P(QuicConnectionTest
, AckNotifierFailToTriggerCallback
) {
4357 EXPECT_CALL(visitor_
, OnSuccessfulVersionNegotiation(_
));
4359 // Create a delegate which we don't expect to be called.
4360 scoped_refptr
<MockAckNotifierDelegate
> delegate(new MockAckNotifierDelegate
);
4361 EXPECT_CALL(*delegate
.get(), OnAckNotification(_
, _
, _
)).Times(0);
4363 // Send some data, which will register the delegate to be notified. This will
4364 // not be ACKed and so the delegate should never be called.
4365 connection_
.SendStreamDataWithString(1, "foo", 0, !kFin
, delegate
.get());
4367 // Send some other data which we will ACK.
4368 connection_
.SendStreamDataWithString(1, "foo", 0, !kFin
, nullptr);
4369 connection_
.SendStreamDataWithString(1, "bar", 0, !kFin
, nullptr);
4371 // Now we receive ACK for packets 2 and 3, but importantly missing packet 1
4372 // which we registered to be notified about.
4373 QuicAckFrame frame
= InitAckFrame(3);
4374 NackPacket(1, &frame
);
4375 PacketNumberSet lost_packets
;
4376 lost_packets
.insert(1);
4377 EXPECT_CALL(*loss_algorithm_
, DetectLostPackets(_
, _
, _
, _
))
4378 .WillOnce(Return(lost_packets
));
4379 EXPECT_CALL(*send_algorithm_
, OnCongestionEvent(true, _
, _
, _
));
4380 ProcessAckPacket(&frame
);
4383 TEST_P(QuicConnectionTest
, AckNotifierCallbackAfterRetransmission
) {
4384 EXPECT_CALL(visitor_
, OnSuccessfulVersionNegotiation(_
));
4386 // Create a delegate which we expect to be called.
4387 scoped_refptr
<MockAckNotifierDelegate
> delegate(new MockAckNotifierDelegate
);
4388 EXPECT_CALL(*delegate
.get(), OnAckNotification(_
, _
, _
)).Times(1);
4390 // Send four packets, and register to be notified on ACK of packet 2.
4391 connection_
.SendStreamDataWithString(3, "foo", 0, !kFin
, nullptr);
4392 connection_
.SendStreamDataWithString(3, "bar", 0, !kFin
, delegate
.get());
4393 connection_
.SendStreamDataWithString(3, "baz", 0, !kFin
, nullptr);
4394 connection_
.SendStreamDataWithString(3, "qux", 0, !kFin
, nullptr);
4396 // Now we receive ACK for packets 1, 3, and 4 and lose 2.
4397 QuicAckFrame frame
= InitAckFrame(4);
4398 NackPacket(2, &frame
);
4399 PacketNumberSet lost_packets
;
4400 lost_packets
.insert(2);
4401 EXPECT_CALL(*loss_algorithm_
, DetectLostPackets(_
, _
, _
, _
))
4402 .WillOnce(Return(lost_packets
));
4403 EXPECT_CALL(*send_algorithm_
, OnCongestionEvent(true, _
, _
, _
));
4404 EXPECT_CALL(*send_algorithm_
, OnPacketSent(_
, _
, _
, _
, _
));
4405 ProcessAckPacket(&frame
);
4407 // Now we get an ACK for packet 5 (retransmitted packet 2), which should
4408 // trigger the callback.
4409 EXPECT_CALL(*loss_algorithm_
, DetectLostPackets(_
, _
, _
, _
))
4410 .WillRepeatedly(Return(PacketNumberSet()));
4411 EXPECT_CALL(*send_algorithm_
, OnCongestionEvent(true, _
, _
, _
));
4412 QuicAckFrame second_ack_frame
= InitAckFrame(5);
4413 ProcessAckPacket(&second_ack_frame
);
4416 // AckNotifierCallback is triggered by the ack of a packet that timed
4417 // out and was retransmitted, even though the retransmission has a
4418 // different packet number.
4419 TEST_P(QuicConnectionTest
, AckNotifierCallbackForAckAfterRTO
) {
4422 // Create a delegate which we expect to be called.
4423 scoped_refptr
<MockAckNotifierDelegate
> delegate(
4424 new StrictMock
<MockAckNotifierDelegate
>);
4426 QuicTime default_retransmission_time
= clock_
.ApproximateNow().Add(
4427 DefaultRetransmissionTime());
4428 connection_
.SendStreamDataWithString(3, "foo", 0, !kFin
, delegate
.get());
4429 EXPECT_EQ(1u, stop_waiting()->least_unacked
);
4431 EXPECT_EQ(1u, writer_
->header().packet_packet_number
);
4432 EXPECT_EQ(default_retransmission_time
,
4433 connection_
.GetRetransmissionAlarm()->deadline());
4434 // Simulate the retransmission alarm firing.
4435 clock_
.AdvanceTime(DefaultRetransmissionTime());
4436 EXPECT_CALL(*send_algorithm_
, OnPacketSent(_
, _
, 2u, _
, _
));
4437 connection_
.GetRetransmissionAlarm()->Fire();
4438 EXPECT_EQ(2u, writer_
->header().packet_packet_number
);
4439 // We do not raise the high water mark yet.
4440 EXPECT_EQ(1u, stop_waiting()->least_unacked
);
4442 // Ack the original packet, which will revert the RTO.
4443 EXPECT_CALL(visitor_
, OnSuccessfulVersionNegotiation(_
));
4444 EXPECT_CALL(*delegate
, OnAckNotification(1, _
, _
));
4445 EXPECT_CALL(*send_algorithm_
, OnCongestionEvent(true, _
, _
, _
));
4446 QuicAckFrame ack_frame
= InitAckFrame(1);
4447 ProcessAckPacket(&ack_frame
);
4449 // Delegate is not notified again when the retransmit is acked.
4450 EXPECT_CALL(*send_algorithm_
, OnCongestionEvent(true, _
, _
, _
));
4451 QuicAckFrame second_ack_frame
= InitAckFrame(2);
4452 ProcessAckPacket(&second_ack_frame
);
4455 // AckNotifierCallback is triggered by the ack of a packet that was
4456 // previously nacked, even though the retransmission has a different
4458 TEST_P(QuicConnectionTest
, AckNotifierCallbackForAckOfNackedPacket
) {
4461 // Create a delegate which we expect to be called.
4462 scoped_refptr
<MockAckNotifierDelegate
> delegate(
4463 new StrictMock
<MockAckNotifierDelegate
>);
4465 // Send four packets, and register to be notified on ACK of packet 2.
4466 connection_
.SendStreamDataWithString(3, "foo", 0, !kFin
, nullptr);
4467 connection_
.SendStreamDataWithString(3, "bar", 0, !kFin
, delegate
.get());
4468 connection_
.SendStreamDataWithString(3, "baz", 0, !kFin
, nullptr);
4469 connection_
.SendStreamDataWithString(3, "qux", 0, !kFin
, nullptr);
4471 // Now we receive ACK for packets 1, 3, and 4 and lose 2.
4472 QuicAckFrame frame
= InitAckFrame(4);
4473 NackPacket(2, &frame
);
4474 PacketNumberSet lost_packets
;
4475 lost_packets
.insert(2);
4476 EXPECT_CALL(visitor_
, OnSuccessfulVersionNegotiation(_
));
4477 EXPECT_CALL(*loss_algorithm_
, DetectLostPackets(_
, _
, _
, _
))
4478 .WillOnce(Return(lost_packets
));
4479 EXPECT_CALL(*send_algorithm_
, OnCongestionEvent(true, _
, _
, _
));
4480 EXPECT_CALL(*send_algorithm_
, OnPacketSent(_
, _
, _
, _
, _
));
4481 ProcessAckPacket(&frame
);
4483 // Now we get an ACK for packet 2, which was previously nacked.
4484 PacketNumberSet no_lost_packets
;
4485 EXPECT_CALL(*delegate
.get(), OnAckNotification(1, _
, _
));
4486 EXPECT_CALL(*loss_algorithm_
, DetectLostPackets(_
, _
, _
, _
))
4487 .WillOnce(Return(no_lost_packets
));
4488 QuicAckFrame second_ack_frame
= InitAckFrame(4);
4489 ProcessAckPacket(&second_ack_frame
);
4491 // Verify that the delegate is not notified again when the
4492 // retransmit is acked.
4493 EXPECT_CALL(*loss_algorithm_
, DetectLostPackets(_
, _
, _
, _
))
4494 .WillOnce(Return(no_lost_packets
));
4495 EXPECT_CALL(*send_algorithm_
, OnCongestionEvent(true, _
, _
, _
));
4496 QuicAckFrame third_ack_frame
= InitAckFrame(5);
4497 ProcessAckPacket(&third_ack_frame
);
4500 TEST_P(QuicConnectionTest
, AckNotifierFECTriggerCallback
) {
4501 EXPECT_CALL(visitor_
, OnSuccessfulVersionNegotiation(_
));
4503 // Create a delegate which we expect to be called.
4504 scoped_refptr
<MockAckNotifierDelegate
> delegate(
4505 new MockAckNotifierDelegate
);
4506 EXPECT_CALL(*delegate
.get(), OnAckNotification(_
, _
, _
)).Times(1);
4508 // Send some data, which will register the delegate to be notified.
4509 connection_
.SendStreamDataWithString(1, "foo", 0, !kFin
, delegate
.get());
4510 connection_
.SendStreamDataWithString(2, "bar", 0, !kFin
, nullptr);
4512 // Process an ACK from the server with a revived packet, which should trigger
4514 EXPECT_CALL(*send_algorithm_
, OnCongestionEvent(true, _
, _
, _
));
4515 QuicAckFrame frame
= InitAckFrame(2);
4516 NackPacket(1, &frame
);
4517 frame
.revived_packets
.insert(1);
4518 ProcessAckPacket(&frame
);
4519 // If the ack is processed again, the notifier should not be called again.
4520 ProcessAckPacket(&frame
);
4523 TEST_P(QuicConnectionTest
, AckNotifierCallbackAfterFECRecovery
) {
4524 EXPECT_CALL(visitor_
, OnSuccessfulVersionNegotiation(_
));
4525 EXPECT_CALL(visitor_
, OnCanWrite());
4527 // Create a delegate which we expect to be called.
4528 scoped_refptr
<MockAckNotifierDelegate
> delegate(new MockAckNotifierDelegate
);
4529 EXPECT_CALL(*delegate
.get(), OnAckNotification(_
, _
, _
)).Times(1);
4531 // Expect ACKs for 1 packet.
4532 EXPECT_CALL(*send_algorithm_
, OnCongestionEvent(true, _
, _
, _
));
4534 // Send one packet, and register to be notified on ACK.
4535 connection_
.SendStreamDataWithString(1, "foo", 0, !kFin
, delegate
.get());
4537 // Ack packet gets dropped, but we receive an FEC packet that covers it.
4538 // Should recover the Ack packet and trigger the notification callback.
4541 QuicAckFrame ack_frame
= InitAckFrame(1);
4542 frames
.push_back(QuicFrame(&ack_frame
));
4544 // Dummy stream frame to satisfy expectations set elsewhere.
4545 frames
.push_back(QuicFrame(&frame1_
));
4547 QuicPacketHeader ack_header
;
4548 ack_header
.public_header
.connection_id
= connection_id_
;
4549 ack_header
.public_header
.reset_flag
= false;
4550 ack_header
.public_header
.version_flag
= false;
4551 ack_header
.entropy_flag
= !kEntropyFlag
;
4552 ack_header
.fec_flag
= true;
4553 ack_header
.packet_packet_number
= 1;
4554 ack_header
.is_in_fec_group
= IN_FEC_GROUP
;
4555 ack_header
.fec_group
= 1;
4557 QuicPacket
* packet
= BuildUnsizedDataPacket(&framer_
, ack_header
, frames
);
4559 // Take the packet which contains the ACK frame, and construct and deliver an
4560 // FEC packet which allows the ACK packet to be recovered.
4561 ProcessFecPacket(2, 1, true, !kEntropyFlag
, packet
);
4564 TEST_P(QuicConnectionTest
, NetworkChangeVisitorCwndCallbackChangesFecState
) {
4565 size_t max_packets_per_fec_group
= creator_
->max_packets_per_fec_group();
4567 QuicSentPacketManager::NetworkChangeVisitor
* visitor
=
4568 QuicSentPacketManagerPeer::GetNetworkChangeVisitor(manager_
);
4569 EXPECT_TRUE(visitor
);
4571 // Increase FEC group size by increasing congestion window to a large number.
4572 EXPECT_CALL(*send_algorithm_
, GetCongestionWindow()).WillRepeatedly(
4573 Return(1000 * kDefaultTCPMSS
));
4574 visitor
->OnCongestionWindowChange();
4575 EXPECT_LT(max_packets_per_fec_group
, creator_
->max_packets_per_fec_group());
4578 TEST_P(QuicConnectionTest
, NetworkChangeVisitorConfigCallbackChangesFecState
) {
4579 QuicSentPacketManager::NetworkChangeVisitor
* visitor
=
4580 QuicSentPacketManagerPeer::GetNetworkChangeVisitor(manager_
);
4581 EXPECT_TRUE(visitor
);
4582 EXPECT_EQ(QuicTime::Delta::Zero(),
4583 QuicPacketGeneratorPeer::GetFecTimeout(generator_
));
4585 // Verify that sending a config with a new initial rtt changes fec timeout.
4586 // Create and process a config with a non-zero initial RTT.
4587 EXPECT_CALL(*send_algorithm_
, SetFromConfig(_
, _
));
4589 config
.SetInitialRoundTripTimeUsToSend(300000);
4590 connection_
.SetFromConfig(config
);
4591 EXPECT_LT(QuicTime::Delta::Zero(),
4592 QuicPacketGeneratorPeer::GetFecTimeout(generator_
));
4595 TEST_P(QuicConnectionTest
, NetworkChangeVisitorRttCallbackChangesFecState
) {
4596 // Verify that sending a config with a new initial rtt changes fec timeout.
4597 QuicSentPacketManager::NetworkChangeVisitor
* visitor
=
4598 QuicSentPacketManagerPeer::GetNetworkChangeVisitor(manager_
);
4599 EXPECT_TRUE(visitor
);
4600 EXPECT_EQ(QuicTime::Delta::Zero(),
4601 QuicPacketGeneratorPeer::GetFecTimeout(generator_
));
4603 // Increase FEC timeout by increasing RTT.
4604 RttStats
* rtt_stats
= QuicSentPacketManagerPeer::GetRttStats(manager_
);
4605 rtt_stats
->UpdateRtt(QuicTime::Delta::FromMilliseconds(300),
4606 QuicTime::Delta::Zero(), QuicTime::Zero());
4607 visitor
->OnRttChange();
4608 EXPECT_LT(QuicTime::Delta::Zero(),
4609 QuicPacketGeneratorPeer::GetFecTimeout(generator_
));
4612 TEST_P(QuicConnectionTest
, OnPacketHeaderDebugVisitor
) {
4613 QuicPacketHeader header
;
4615 scoped_ptr
<MockQuicConnectionDebugVisitor
> debug_visitor(
4616 new MockQuicConnectionDebugVisitor());
4617 connection_
.set_debug_visitor(debug_visitor
.get());
4618 EXPECT_CALL(*debug_visitor
, OnPacketHeader(Ref(header
))).Times(1);
4619 connection_
.OnPacketHeader(header
);
4622 TEST_P(QuicConnectionTest
, Pacing
) {
4623 TestConnection
server(connection_id_
, IPEndPoint(), helper_
.get(), factory_
,
4624 Perspective::IS_SERVER
, version());
4625 TestConnection
client(connection_id_
, IPEndPoint(), helper_
.get(), factory_
,
4626 Perspective::IS_CLIENT
, version());
4627 EXPECT_FALSE(client
.sent_packet_manager().using_pacing());
4628 EXPECT_FALSE(server
.sent_packet_manager().using_pacing());
4631 TEST_P(QuicConnectionTest
, ControlFramesInstigateAcks
) {
4632 EXPECT_CALL(visitor_
, OnSuccessfulVersionNegotiation(_
));
4634 // Send a WINDOW_UPDATE frame.
4635 QuicWindowUpdateFrame window_update
;
4636 window_update
.stream_id
= 3;
4637 window_update
.byte_offset
= 1234;
4638 EXPECT_CALL(visitor_
, OnWindowUpdateFrame(_
));
4639 ProcessFramePacket(QuicFrame(&window_update
));
4641 // Ensure that this has caused the ACK alarm to be set.
4642 QuicAlarm
* ack_alarm
= QuicConnectionPeer::GetAckAlarm(&connection_
);
4643 EXPECT_TRUE(ack_alarm
->IsSet());
4645 // Cancel alarm, and try again with BLOCKED frame.
4646 ack_alarm
->Cancel();
4647 QuicBlockedFrame blocked
;
4648 blocked
.stream_id
= 3;
4649 EXPECT_CALL(visitor_
, OnBlockedFrame(_
));
4650 ProcessFramePacket(QuicFrame(&blocked
));
4651 EXPECT_TRUE(ack_alarm
->IsSet());
4654 TEST_P(QuicConnectionTest
, NoDataNoFin
) {
4655 // Make sure that a call to SendStreamWithData, with no data and no FIN, does
4656 // not result in a QuicAckNotifier being used-after-free (fail under ASAN).
4657 // Regression test for b/18594622
4658 scoped_refptr
<MockAckNotifierDelegate
> delegate(new MockAckNotifierDelegate
);
4660 connection_
.SendStreamDataWithString(3, "", 0, !kFin
, delegate
.get()),
4661 "Attempt to send empty stream frame");
4664 TEST_P(QuicConnectionTest
, FecSendPolicyReceivedConnectionOption
) {
4665 // Test sending SetReceivedConnectionOptions when FEC send policy is
4667 if (GetParam().fec_send_policy
== FEC_ALARM_TRIGGER
) {
4670 connection_
.set_perspective(Perspective::IS_SERVER
);
4672 // Test ReceivedConnectionOptions.
4673 EXPECT_CALL(*send_algorithm_
, SetFromConfig(_
, _
));
4676 copt
.push_back(kFSPA
);
4677 QuicConfigPeer::SetReceivedConnectionOptions(&config
, copt
);
4678 EXPECT_EQ(FEC_ANY_TRIGGER
, generator_
->fec_send_policy());
4679 connection_
.SetFromConfig(config
);
4680 EXPECT_EQ(FEC_ALARM_TRIGGER
, generator_
->fec_send_policy());
4683 // TODO(rtenneti): Delete this code after the 0.25 RTT FEC experiment.
4684 TEST_P(QuicConnectionTest
, FecRTTMultiplierReceivedConnectionOption
) {
4685 connection_
.set_perspective(Perspective::IS_SERVER
);
4687 // Test ReceivedConnectionOptions.
4688 EXPECT_CALL(*send_algorithm_
, SetFromConfig(_
, _
));
4691 copt
.push_back(kFRTT
);
4692 QuicConfigPeer::SetReceivedConnectionOptions(&config
, copt
);
4693 float rtt_multiplier_for_fec_timeout
=
4694 generator_
->rtt_multiplier_for_fec_timeout();
4695 connection_
.SetFromConfig(config
);
4696 // New RTT multiplier is half of the old RTT multiplier.
4697 EXPECT_EQ(rtt_multiplier_for_fec_timeout
,
4698 generator_
->rtt_multiplier_for_fec_timeout() * 2);
4701 TEST_P(QuicConnectionTest
, DoNotSendGoAwayTwice
) {
4702 EXPECT_FALSE(connection_
.goaway_sent());
4703 EXPECT_CALL(*send_algorithm_
, OnPacketSent(_
, _
, _
, _
, _
)).Times(1);
4704 connection_
.SendGoAway(QUIC_PEER_GOING_AWAY
, kHeadersStreamId
, "Going Away.");
4705 EXPECT_TRUE(connection_
.goaway_sent());
4706 EXPECT_CALL(*send_algorithm_
, OnPacketSent(_
, _
, _
, _
, _
)).Times(0);
4707 connection_
.SendGoAway(QUIC_PEER_GOING_AWAY
, kHeadersStreamId
, "Going Away.");