Updating trunk VERSION from 2139.0 to 2140.0
[chromium-blink-merge.git] / ash / wm / workspace / workspace_window_resizer.cc
blob76110718830e13526172027e9bdcdeebcb6b36aa
1 // Copyright (c) 2012 The Chromium Authors. All rights reserved.
2 // Use of this source code is governed by a BSD-style license that can be
3 // found in the LICENSE file.
5 #include "ash/wm/workspace/workspace_window_resizer.h"
7 #include <algorithm>
8 #include <cmath>
9 #include <utility>
10 #include <vector>
12 #include "ash/display/display_controller.h"
13 #include "ash/metrics/user_metrics_recorder.h"
14 #include "ash/root_window_controller.h"
15 #include "ash/screen_util.h"
16 #include "ash/shell.h"
17 #include "ash/shell_window_ids.h"
18 #include "ash/wm/default_window_resizer.h"
19 #include "ash/wm/dock/docked_window_layout_manager.h"
20 #include "ash/wm/dock/docked_window_resizer.h"
21 #include "ash/wm/drag_window_resizer.h"
22 #include "ash/wm/panels/panel_window_resizer.h"
23 #include "ash/wm/window_state.h"
24 #include "ash/wm/window_util.h"
25 #include "ash/wm/wm_event.h"
26 #include "ash/wm/workspace/phantom_window_controller.h"
27 #include "ash/wm/workspace/two_step_edge_cycler.h"
28 #include "base/command_line.h"
29 #include "base/memory/weak_ptr.h"
30 #include "ui/aura/client/aura_constants.h"
31 #include "ui/aura/client/screen_position_client.h"
32 #include "ui/aura/window.h"
33 #include "ui/aura/window_delegate.h"
34 #include "ui/aura/window_event_dispatcher.h"
35 #include "ui/base/hit_test.h"
36 #include "ui/compositor/layer.h"
37 #include "ui/gfx/screen.h"
38 #include "ui/gfx/transform.h"
39 #include "ui/wm/core/coordinate_conversion.h"
40 #include "ui/wm/core/window_util.h"
41 #include "ui/wm/public/window_types.h"
43 namespace ash {
45 scoped_ptr<WindowResizer> CreateWindowResizer(
46 aura::Window* window,
47 const gfx::Point& point_in_parent,
48 int window_component,
49 aura::client::WindowMoveSource source) {
50 DCHECK(window);
51 wm::WindowState* window_state = wm::GetWindowState(window);
52 // No need to return a resizer when the window cannot get resized or when a
53 // resizer already exists for this window.
54 if ((!window_state->CanResize() && window_component != HTCAPTION) ||
55 window_state->drag_details()) {
56 return scoped_ptr<WindowResizer>();
59 if (window_component == HTCAPTION && !window_state->can_be_dragged())
60 return scoped_ptr<WindowResizer>();
62 // TODO(varkha): The chaining of window resizers causes some of the logic
63 // to be repeated and the logic flow difficult to control. With some windows
64 // classes using reparenting during drag operations it becomes challenging to
65 // implement proper transition from one resizer to another during or at the
66 // end of the drag. This also causes http://crbug.com/247085.
67 // It seems the only thing the panel or dock resizer needs to do is notify the
68 // layout manager when a docked window is being dragged. We should have a
69 // better way of doing this, perhaps by having a way of observing drags or
70 // having a generic drag window wrapper which informs a layout manager that a
71 // drag has started or stopped.
72 // It may be possible to refactor and eliminate chaining.
73 WindowResizer* window_resizer = NULL;
75 if (!window_state->IsNormalOrSnapped())
76 return scoped_ptr<WindowResizer>();
78 int bounds_change = WindowResizer::GetBoundsChangeForWindowComponent(
79 window_component);
80 if (bounds_change == WindowResizer::kBoundsChangeDirection_None)
81 return scoped_ptr<WindowResizer>();
83 window_state->CreateDragDetails(window, point_in_parent, window_component,
84 source);
85 if (window->parent() &&
86 (window->parent()->id() == kShellWindowId_DefaultContainer ||
87 window->parent()->id() == kShellWindowId_DockedContainer ||
88 window->parent()->id() == kShellWindowId_PanelContainer)) {
89 window_resizer = WorkspaceWindowResizer::Create(
90 window_state, std::vector<aura::Window*>());
91 } else {
92 window_resizer = DefaultWindowResizer::Create(window_state);
94 window_resizer = DragWindowResizer::Create(window_resizer, window_state);
95 if (window->type() == ui::wm::WINDOW_TYPE_PANEL)
96 window_resizer = PanelWindowResizer::Create(window_resizer, window_state);
97 if (window_resizer && window->parent() &&
98 !::wm::GetTransientParent(window) &&
99 (window->parent()->id() == kShellWindowId_DefaultContainer ||
100 window->parent()->id() == kShellWindowId_DockedContainer ||
101 window->parent()->id() == kShellWindowId_PanelContainer)) {
102 window_resizer = DockedWindowResizer::Create(window_resizer, window_state);
104 return make_scoped_ptr<WindowResizer>(window_resizer);
107 namespace {
109 // Snapping distance used instead of WorkspaceWindowResizer::kScreenEdgeInset
110 // when resizing a window using touchscreen.
111 const int kScreenEdgeInsetForTouchDrag = 32;
113 // Returns true if the window should stick to the edge.
114 bool ShouldStickToEdge(int distance_from_edge, int sticky_size) {
115 return distance_from_edge < sticky_size &&
116 distance_from_edge > -sticky_size * 2;
119 // Returns the coordinate along the secondary axis to snap to.
120 int CoordinateAlongSecondaryAxis(SecondaryMagnetismEdge edge,
121 int leading,
122 int trailing,
123 int none) {
124 switch (edge) {
125 case SECONDARY_MAGNETISM_EDGE_LEADING:
126 return leading;
127 case SECONDARY_MAGNETISM_EDGE_TRAILING:
128 return trailing;
129 case SECONDARY_MAGNETISM_EDGE_NONE:
130 return none;
132 NOTREACHED();
133 return none;
136 // Returns the origin for |src| when magnetically attaching to |attach_to| along
137 // the edges |edges|. |edges| is a bitmask of the MagnetismEdges.
138 gfx::Point OriginForMagneticAttach(const gfx::Rect& src,
139 const gfx::Rect& attach_to,
140 const MatchedEdge& edge) {
141 int x = 0, y = 0;
142 switch (edge.primary_edge) {
143 case MAGNETISM_EDGE_TOP:
144 y = attach_to.bottom();
145 break;
146 case MAGNETISM_EDGE_LEFT:
147 x = attach_to.right();
148 break;
149 case MAGNETISM_EDGE_BOTTOM:
150 y = attach_to.y() - src.height();
151 break;
152 case MAGNETISM_EDGE_RIGHT:
153 x = attach_to.x() - src.width();
154 break;
156 switch (edge.primary_edge) {
157 case MAGNETISM_EDGE_TOP:
158 case MAGNETISM_EDGE_BOTTOM:
159 x = CoordinateAlongSecondaryAxis(
160 edge.secondary_edge, attach_to.x(), attach_to.right() - src.width(),
161 src.x());
162 break;
163 case MAGNETISM_EDGE_LEFT:
164 case MAGNETISM_EDGE_RIGHT:
165 y = CoordinateAlongSecondaryAxis(
166 edge.secondary_edge, attach_to.y(), attach_to.bottom() - src.height(),
167 src.y());
168 break;
170 return gfx::Point(x, y);
173 // Returns the bounds for a magnetic attach when resizing. |src| is the bounds
174 // of window being resized, |attach_to| the bounds of the window to attach to
175 // and |edge| identifies the edge to attach to.
176 gfx::Rect BoundsForMagneticResizeAttach(const gfx::Rect& src,
177 const gfx::Rect& attach_to,
178 const MatchedEdge& edge) {
179 int x = src.x();
180 int y = src.y();
181 int w = src.width();
182 int h = src.height();
183 gfx::Point attach_origin(OriginForMagneticAttach(src, attach_to, edge));
184 switch (edge.primary_edge) {
185 case MAGNETISM_EDGE_LEFT:
186 x = attach_origin.x();
187 w = src.right() - x;
188 break;
189 case MAGNETISM_EDGE_RIGHT:
190 w += attach_origin.x() - src.x();
191 break;
192 case MAGNETISM_EDGE_TOP:
193 y = attach_origin.y();
194 h = src.bottom() - y;
195 break;
196 case MAGNETISM_EDGE_BOTTOM:
197 h += attach_origin.y() - src.y();
198 break;
200 switch (edge.primary_edge) {
201 case MAGNETISM_EDGE_LEFT:
202 case MAGNETISM_EDGE_RIGHT:
203 if (edge.secondary_edge == SECONDARY_MAGNETISM_EDGE_LEADING) {
204 y = attach_origin.y();
205 h = src.bottom() - y;
206 } else if (edge.secondary_edge == SECONDARY_MAGNETISM_EDGE_TRAILING) {
207 h += attach_origin.y() - src.y();
209 break;
210 case MAGNETISM_EDGE_TOP:
211 case MAGNETISM_EDGE_BOTTOM:
212 if (edge.secondary_edge == SECONDARY_MAGNETISM_EDGE_LEADING) {
213 x = attach_origin.x();
214 w = src.right() - x;
215 } else if (edge.secondary_edge == SECONDARY_MAGNETISM_EDGE_TRAILING) {
216 w += attach_origin.x() - src.x();
218 break;
220 return gfx::Rect(x, y, w, h);
223 // Converts a window component edge to the magnetic edge to snap to.
224 uint32 WindowComponentToMagneticEdge(int window_component) {
225 switch (window_component) {
226 case HTTOPLEFT:
227 return MAGNETISM_EDGE_LEFT | MAGNETISM_EDGE_TOP;
228 case HTTOPRIGHT:
229 return MAGNETISM_EDGE_TOP | MAGNETISM_EDGE_RIGHT;
230 case HTBOTTOMLEFT:
231 return MAGNETISM_EDGE_LEFT | MAGNETISM_EDGE_BOTTOM;
232 case HTBOTTOMRIGHT:
233 return MAGNETISM_EDGE_RIGHT | MAGNETISM_EDGE_BOTTOM;
234 case HTTOP:
235 return MAGNETISM_EDGE_TOP;
236 case HTBOTTOM:
237 return MAGNETISM_EDGE_BOTTOM;
238 case HTRIGHT:
239 return MAGNETISM_EDGE_RIGHT;
240 case HTLEFT:
241 return MAGNETISM_EDGE_LEFT;
242 default:
243 break;
245 return 0;
248 } // namespace
250 // static
251 const int WorkspaceWindowResizer::kMinOnscreenSize = 20;
253 // static
254 const int WorkspaceWindowResizer::kMinOnscreenHeight = 32;
256 // static
257 const int WorkspaceWindowResizer::kScreenEdgeInset = 8;
259 // static
260 WorkspaceWindowResizer* WorkspaceWindowResizer::instance_ = NULL;
262 // Represents the width or height of a window with constraints on its minimum
263 // and maximum size. 0 represents a lack of a constraint.
264 class WindowSize {
265 public:
266 WindowSize(int size, int min, int max)
267 : size_(size),
268 min_(min),
269 max_(max) {
270 // Grow the min/max bounds to include the starting size.
271 if (is_underflowing())
272 min_ = size_;
273 if (is_overflowing())
274 max_ = size_;
277 bool is_at_capacity(bool shrinking) {
278 return size_ == (shrinking ? min_ : max_);
281 int size() const {
282 return size_;
285 bool has_min() const {
286 return min_ != 0;
289 bool has_max() const {
290 return max_ != 0;
293 bool is_valid() const {
294 return !is_overflowing() && !is_underflowing();
297 bool is_overflowing() const {
298 return has_max() && size_ > max_;
301 bool is_underflowing() const {
302 return has_min() && size_ < min_;
305 // Add |amount| to this WindowSize not exceeding min or max size constraints.
306 // Returns by how much |size_| + |amount| exceeds the min/max constraints.
307 int Add(int amount) {
308 DCHECK(is_valid());
309 int new_value = size_ + amount;
311 if (has_min() && new_value < min_) {
312 size_ = min_;
313 return new_value - min_;
316 if (has_max() && new_value > max_) {
317 size_ = max_;
318 return new_value - max_;
321 size_ = new_value;
322 return 0;
325 private:
326 int size_;
327 int min_;
328 int max_;
331 WorkspaceWindowResizer::~WorkspaceWindowResizer() {
332 if (did_lock_cursor_) {
333 Shell* shell = Shell::GetInstance();
334 shell->cursor_manager()->UnlockCursor();
336 if (instance_ == this)
337 instance_ = NULL;
340 // static
341 WorkspaceWindowResizer* WorkspaceWindowResizer::Create(
342 wm::WindowState* window_state,
343 const std::vector<aura::Window*>& attached_windows) {
344 return new WorkspaceWindowResizer(window_state, attached_windows);
347 void WorkspaceWindowResizer::Drag(const gfx::Point& location_in_parent,
348 int event_flags) {
349 last_mouse_location_ = location_in_parent;
351 int sticky_size;
352 if (event_flags & ui::EF_CONTROL_DOWN) {
353 sticky_size = 0;
354 } else if ((details().bounds_change & kBoundsChange_Resizes) &&
355 details().source == aura::client::WINDOW_MOVE_SOURCE_TOUCH) {
356 sticky_size = kScreenEdgeInsetForTouchDrag;
357 } else {
358 sticky_size = kScreenEdgeInset;
360 // |bounds| is in |GetTarget()->parent()|'s coordinates.
361 gfx::Rect bounds = CalculateBoundsForDrag(location_in_parent);
362 AdjustBoundsForMainWindow(sticky_size, &bounds);
364 if (bounds != GetTarget()->bounds()) {
365 if (!did_move_or_resize_) {
366 if (!details().restore_bounds.IsEmpty())
367 window_state()->ClearRestoreBounds();
368 RestackWindows();
370 did_move_or_resize_ = true;
373 gfx::Point location_in_screen = location_in_parent;
374 ::wm::ConvertPointToScreen(GetTarget()->parent(), &location_in_screen);
376 aura::Window* root = NULL;
377 gfx::Display display =
378 ScreenUtil::FindDisplayContainingPoint(location_in_screen);
379 // Track the last screen that the pointer was on to keep the snap phantom
380 // window there.
381 if (display.is_valid()) {
382 root = Shell::GetInstance()->display_controller()->
383 GetRootWindowForDisplayId(display.id());
385 if (!attached_windows_.empty())
386 LayoutAttachedWindows(&bounds);
387 if (bounds != GetTarget()->bounds()) {
388 // SetBounds needs to be called to update the layout which affects where the
389 // phantom window is drawn. Keep track if the window was destroyed during
390 // the drag and quit early if so.
391 base::WeakPtr<WorkspaceWindowResizer> resizer(
392 weak_ptr_factory_.GetWeakPtr());
393 GetTarget()->SetBounds(bounds);
394 if (!resizer)
395 return;
397 const bool in_original_root = !root || root == GetTarget()->GetRootWindow();
398 // Hide a phantom window for snapping if the cursor is in another root window.
399 if (in_original_root) {
400 UpdateSnapPhantomWindow(location_in_parent, bounds);
401 } else {
402 snap_type_ = SNAP_NONE;
403 snap_phantom_window_controller_.reset();
404 edge_cycler_.reset();
405 SetDraggedWindowDocked(false);
409 void WorkspaceWindowResizer::CompleteDrag() {
410 if (!did_move_or_resize_)
411 return;
413 window_state()->set_bounds_changed_by_user(true);
414 snap_phantom_window_controller_.reset();
416 // If the window's state type changed over the course of the drag do not snap
417 // the window. This happens when the user minimizes or maximizes the window
418 // using a keyboard shortcut while dragging it.
419 if (window_state()->GetStateType() != details().initial_state_type)
420 return;
422 bool snapped = false;
423 if (snap_type_ == SNAP_LEFT || snap_type_ == SNAP_RIGHT) {
424 if (!window_state()->HasRestoreBounds()) {
425 gfx::Rect initial_bounds = ScreenUtil::ConvertRectToScreen(
426 GetTarget()->parent(), details().initial_bounds_in_parent);
427 window_state()->SetRestoreBoundsInScreen(
428 details().restore_bounds.IsEmpty() ?
429 initial_bounds :
430 details().restore_bounds);
432 if (!dock_layout_->is_dragged_window_docked()) {
433 UserMetricsRecorder* metrics = Shell::GetInstance()->metrics();
434 // TODO(oshima): Add event source type to WMEvent and move
435 // metrics recording inside WindowState::OnWMEvent.
436 const wm::WMEvent event(snap_type_ == SNAP_LEFT ?
437 wm::WM_EVENT_SNAP_LEFT : wm::WM_EVENT_SNAP_RIGHT);
438 window_state()->OnWMEvent(&event);
439 metrics->RecordUserMetricsAction(
440 snap_type_ == SNAP_LEFT ?
441 UMA_DRAG_MAXIMIZE_LEFT : UMA_DRAG_MAXIMIZE_RIGHT);
442 snapped = true;
446 if (!snapped) {
447 if (window_state()->IsSnapped()) {
448 // Keep the window snapped if the user resizes the window such that the
449 // window has valid bounds for a snapped window. Always unsnap the window
450 // if the user dragged the window via the caption area because doing this
451 // is slightly less confusing.
452 if (details().window_component == HTCAPTION ||
453 !AreBoundsValidSnappedBounds(window_state()->GetStateType(),
454 GetTarget()->bounds())) {
455 // Set the window to WINDOW_STATE_TYPE_NORMAL but keep the
456 // window at the bounds that the user has moved/resized the
457 // window to. ClearRestoreBounds() is used instead of
458 // SaveCurrentBoundsForRestore() because most of the restore
459 // logic is skipped because we are still in the middle of a
460 // drag. TODO(pkotwicz): Fix this and use
461 // SaveCurrentBoundsForRestore().
462 window_state()->ClearRestoreBounds();
463 window_state()->Restore();
465 } else if (!dock_layout_->is_dragged_window_docked()) {
466 // The window was not snapped and is not snapped. This is a user
467 // resize/drag and so the current bounds should be maintained, clearing
468 // any prior restore bounds. When the window is docked the restore bound
469 // must be kept so the docked state can be reverted properly.
470 window_state()->ClearRestoreBounds();
475 void WorkspaceWindowResizer::RevertDrag() {
476 window_state()->set_bounds_changed_by_user(initial_bounds_changed_by_user_);
477 snap_phantom_window_controller_.reset();
479 if (!did_move_or_resize_)
480 return;
482 GetTarget()->SetBounds(details().initial_bounds_in_parent);
483 if (!details().restore_bounds.IsEmpty()) {
484 window_state()->SetRestoreBoundsInScreen(details().restore_bounds);
487 if (details().window_component == HTRIGHT) {
488 int last_x = details().initial_bounds_in_parent.right();
489 for (size_t i = 0; i < attached_windows_.size(); ++i) {
490 gfx::Rect bounds(attached_windows_[i]->bounds());
491 bounds.set_x(last_x);
492 bounds.set_width(initial_size_[i]);
493 attached_windows_[i]->SetBounds(bounds);
494 last_x = attached_windows_[i]->bounds().right();
496 } else {
497 int last_y = details().initial_bounds_in_parent.bottom();
498 for (size_t i = 0; i < attached_windows_.size(); ++i) {
499 gfx::Rect bounds(attached_windows_[i]->bounds());
500 bounds.set_y(last_y);
501 bounds.set_height(initial_size_[i]);
502 attached_windows_[i]->SetBounds(bounds);
503 last_y = attached_windows_[i]->bounds().bottom();
508 WorkspaceWindowResizer::WorkspaceWindowResizer(
509 wm::WindowState* window_state,
510 const std::vector<aura::Window*>& attached_windows)
511 : WindowResizer(window_state),
512 attached_windows_(attached_windows),
513 did_lock_cursor_(false),
514 did_move_or_resize_(false),
515 initial_bounds_changed_by_user_(window_state_->bounds_changed_by_user()),
516 total_min_(0),
517 total_initial_size_(0),
518 snap_type_(SNAP_NONE),
519 num_mouse_moves_since_bounds_change_(0),
520 magnetism_window_(NULL),
521 weak_ptr_factory_(this) {
522 DCHECK(details().is_resizable);
524 // A mousemove should still show the cursor even if the window is
525 // being moved or resized with touch, so do not lock the cursor.
526 if (details().source != aura::client::WINDOW_MOVE_SOURCE_TOUCH) {
527 Shell* shell = Shell::GetInstance();
528 shell->cursor_manager()->LockCursor();
529 did_lock_cursor_ = true;
532 aura::Window* dock_container = Shell::GetContainer(
533 GetTarget()->GetRootWindow(), kShellWindowId_DockedContainer);
534 dock_layout_ = static_cast<DockedWindowLayoutManager*>(
535 dock_container->layout_manager());
537 // Only support attaching to the right/bottom.
538 DCHECK(attached_windows_.empty() ||
539 (details().window_component == HTRIGHT ||
540 details().window_component == HTBOTTOM));
542 // TODO: figure out how to deal with window going off the edge.
544 // Calculate sizes so that we can maintain the ratios if we need to resize.
545 int total_available = 0;
546 for (size_t i = 0; i < attached_windows_.size(); ++i) {
547 gfx::Size min(attached_windows_[i]->delegate()->GetMinimumSize());
548 int initial_size = PrimaryAxisSize(attached_windows_[i]->bounds().size());
549 initial_size_.push_back(initial_size);
550 // If current size is smaller than the min, use the current size as the min.
551 // This way we don't snap on resize.
552 int min_size = std::min(initial_size,
553 std::max(PrimaryAxisSize(min), kMinOnscreenSize));
554 total_min_ += min_size;
555 total_initial_size_ += initial_size;
556 total_available += std::max(min_size, initial_size) - min_size;
558 instance_ = this;
561 void WorkspaceWindowResizer::LayoutAttachedWindows(
562 gfx::Rect* bounds) {
563 gfx::Rect work_area(ScreenUtil::GetDisplayWorkAreaBoundsInParent(
564 GetTarget()));
565 int initial_size = PrimaryAxisSize(details().initial_bounds_in_parent.size());
566 int current_size = PrimaryAxisSize(bounds->size());
567 int start = PrimaryAxisCoordinate(bounds->right(), bounds->bottom());
568 int end = PrimaryAxisCoordinate(work_area.right(), work_area.bottom());
570 int delta = current_size - initial_size;
571 int available_size = end - start;
572 std::vector<int> sizes;
573 int leftovers = CalculateAttachedSizes(delta, available_size, &sizes);
575 // leftovers > 0 means that the attached windows can't grow to compensate for
576 // the shrinkage of the main window. This line causes the attached windows to
577 // be moved so they are still flush against the main window, rather than the
578 // main window being prevented from shrinking.
579 leftovers = std::min(0, leftovers);
580 // Reallocate any leftover pixels back into the main window. This is
581 // necessary when, for example, the main window shrinks, but none of the
582 // attached windows can grow without exceeding their max size constraints.
583 // Adding the pixels back to the main window effectively prevents the main
584 // window from resizing too far.
585 if (details().window_component == HTRIGHT)
586 bounds->set_width(bounds->width() + leftovers);
587 else
588 bounds->set_height(bounds->height() + leftovers);
590 DCHECK_EQ(attached_windows_.size(), sizes.size());
591 int last = PrimaryAxisCoordinate(bounds->right(), bounds->bottom());
592 for (size_t i = 0; i < attached_windows_.size(); ++i) {
593 gfx::Rect attached_bounds(attached_windows_[i]->bounds());
594 if (details().window_component == HTRIGHT) {
595 attached_bounds.set_x(last);
596 attached_bounds.set_width(sizes[i]);
597 } else {
598 attached_bounds.set_y(last);
599 attached_bounds.set_height(sizes[i]);
601 attached_windows_[i]->SetBounds(attached_bounds);
602 last += sizes[i];
606 int WorkspaceWindowResizer::CalculateAttachedSizes(
607 int delta,
608 int available_size,
609 std::vector<int>* sizes) const {
610 std::vector<WindowSize> window_sizes;
611 CreateBucketsForAttached(&window_sizes);
613 // How much we need to grow the attached by (collectively).
614 int grow_attached_by = 0;
615 if (delta > 0) {
616 // If the attached windows don't fit when at their initial size, we will
617 // have to shrink them by how much they overflow.
618 if (total_initial_size_ >= available_size)
619 grow_attached_by = available_size - total_initial_size_;
620 } else {
621 // If we're shrinking, we grow the attached so the total size remains
622 // constant.
623 grow_attached_by = -delta;
626 int leftover_pixels = 0;
627 while (grow_attached_by != 0) {
628 int leftovers = GrowFairly(grow_attached_by, window_sizes);
629 if (leftovers == grow_attached_by) {
630 leftover_pixels = leftovers;
631 break;
633 grow_attached_by = leftovers;
636 for (size_t i = 0; i < window_sizes.size(); ++i)
637 sizes->push_back(window_sizes[i].size());
639 return leftover_pixels;
642 int WorkspaceWindowResizer::GrowFairly(
643 int pixels,
644 std::vector<WindowSize>& sizes) const {
645 bool shrinking = pixels < 0;
646 std::vector<WindowSize*> nonfull_windows;
647 for (size_t i = 0; i < sizes.size(); ++i) {
648 if (!sizes[i].is_at_capacity(shrinking))
649 nonfull_windows.push_back(&sizes[i]);
651 std::vector<float> ratios;
652 CalculateGrowthRatios(nonfull_windows, &ratios);
654 int remaining_pixels = pixels;
655 bool add_leftover_pixels_to_last = true;
656 for (size_t i = 0; i < nonfull_windows.size(); ++i) {
657 int grow_by = pixels * ratios[i];
658 // Put any leftover pixels into the last window.
659 if (i == nonfull_windows.size() - 1 && add_leftover_pixels_to_last)
660 grow_by = remaining_pixels;
661 int remainder = nonfull_windows[i]->Add(grow_by);
662 int consumed = grow_by - remainder;
663 remaining_pixels -= consumed;
664 if (nonfull_windows[i]->is_at_capacity(shrinking) && remainder > 0) {
665 // Because this window overflowed, some of the pixels in
666 // |remaining_pixels| aren't there due to rounding errors. Rather than
667 // unfairly giving all those pixels to the last window, we refrain from
668 // allocating them so that this function can be called again to distribute
669 // the pixels fairly.
670 add_leftover_pixels_to_last = false;
673 return remaining_pixels;
676 void WorkspaceWindowResizer::CalculateGrowthRatios(
677 const std::vector<WindowSize*>& sizes,
678 std::vector<float>* out_ratios) const {
679 DCHECK(out_ratios->empty());
680 int total_value = 0;
681 for (size_t i = 0; i < sizes.size(); ++i)
682 total_value += sizes[i]->size();
684 for (size_t i = 0; i < sizes.size(); ++i)
685 out_ratios->push_back(
686 (static_cast<float>(sizes[i]->size())) / total_value);
689 void WorkspaceWindowResizer::CreateBucketsForAttached(
690 std::vector<WindowSize>* sizes) const {
691 for (size_t i = 0; i < attached_windows_.size(); i++) {
692 int initial_size = initial_size_[i];
693 aura::WindowDelegate* delegate = attached_windows_[i]->delegate();
694 int min = PrimaryAxisSize(delegate->GetMinimumSize());
695 int max = PrimaryAxisSize(delegate->GetMaximumSize());
697 sizes->push_back(WindowSize(initial_size, min, max));
701 void WorkspaceWindowResizer::MagneticallySnapToOtherWindows(gfx::Rect* bounds) {
702 if (UpdateMagnetismWindow(*bounds, kAllMagnetismEdges)) {
703 gfx::Point point = OriginForMagneticAttach(
704 ScreenUtil::ConvertRectToScreen(GetTarget()->parent(), *bounds),
705 magnetism_window_->GetBoundsInScreen(),
706 magnetism_edge_);
707 aura::client::GetScreenPositionClient(GetTarget()->GetRootWindow())->
708 ConvertPointFromScreen(GetTarget()->parent(), &point);
709 bounds->set_origin(point);
713 void WorkspaceWindowResizer::MagneticallySnapResizeToOtherWindows(
714 gfx::Rect* bounds) {
715 const uint32 edges = WindowComponentToMagneticEdge(
716 details().window_component);
717 if (UpdateMagnetismWindow(*bounds, edges)) {
718 *bounds = ScreenUtil::ConvertRectFromScreen(
719 GetTarget()->parent(),
720 BoundsForMagneticResizeAttach(
721 ScreenUtil::ConvertRectToScreen(GetTarget()->parent(), *bounds),
722 magnetism_window_->GetBoundsInScreen(),
723 magnetism_edge_));
727 bool WorkspaceWindowResizer::UpdateMagnetismWindow(const gfx::Rect& bounds,
728 uint32 edges) {
729 // |bounds| are in coordinates of original window's parent.
730 gfx::Rect bounds_in_screen =
731 ScreenUtil::ConvertRectToScreen(GetTarget()->parent(), bounds);
732 MagnetismMatcher matcher(bounds_in_screen, edges);
734 // If we snapped to a window then check it first. That way we don't bounce
735 // around when close to multiple edges.
736 if (magnetism_window_) {
737 if (window_tracker_.Contains(magnetism_window_) &&
738 matcher.ShouldAttach(magnetism_window_->GetBoundsInScreen(),
739 &magnetism_edge_)) {
740 return true;
742 window_tracker_.Remove(magnetism_window_);
743 magnetism_window_ = NULL;
746 // Avoid magnetically snapping windows that are not resizable.
747 // TODO(oshima): change this to window.type() == TYPE_NORMAL.
748 if (!window_state()->CanResize())
749 return false;
751 aura::Window::Windows root_windows = Shell::GetAllRootWindows();
752 for (aura::Window::Windows::iterator iter = root_windows.begin();
753 iter != root_windows.end(); ++iter) {
754 const aura::Window* root_window = *iter;
755 // Test all children from the desktop in each root window.
756 const aura::Window::Windows& children = Shell::GetContainer(
757 root_window, kShellWindowId_DefaultContainer)->children();
758 for (aura::Window::Windows::const_reverse_iterator i = children.rbegin();
759 i != children.rend() && !matcher.AreEdgesObscured(); ++i) {
760 wm::WindowState* other_state = wm::GetWindowState(*i);
761 if (other_state->window() == GetTarget() ||
762 !other_state->window()->IsVisible() ||
763 !other_state->IsNormalOrSnapped() ||
764 !other_state->CanResize()) {
765 continue;
767 if (matcher.ShouldAttach(
768 other_state->window()->GetBoundsInScreen(), &magnetism_edge_)) {
769 magnetism_window_ = other_state->window();
770 window_tracker_.Add(magnetism_window_);
771 return true;
775 return false;
778 void WorkspaceWindowResizer::AdjustBoundsForMainWindow(
779 int sticky_size,
780 gfx::Rect* bounds) {
781 gfx::Point last_mouse_location_in_screen = last_mouse_location_;
782 ::wm::ConvertPointToScreen(GetTarget()->parent(),
783 &last_mouse_location_in_screen);
784 gfx::Display display = Shell::GetScreen()->GetDisplayNearestPoint(
785 last_mouse_location_in_screen);
786 gfx::Rect work_area =
787 ScreenUtil::ConvertRectFromScreen(GetTarget()->parent(),
788 display.work_area());
789 if (details().window_component == HTCAPTION) {
790 // Adjust the bounds to the work area where the mouse cursor is located.
791 // Always keep kMinOnscreenHeight or the window height (whichever is less)
792 // on the bottom.
793 int max_y = work_area.bottom() - std::min(kMinOnscreenHeight,
794 bounds->height());
795 if (bounds->y() > max_y) {
796 bounds->set_y(max_y);
797 } else if (bounds->y() <= work_area.y()) {
798 // Don't allow dragging above the top of the display until the mouse
799 // cursor reaches the work area above if any.
800 bounds->set_y(work_area.y());
803 if (sticky_size > 0) {
804 // Possibly stick to edge except when a mouse pointer is outside the
805 // work area.
806 if (display.work_area().Contains(last_mouse_location_in_screen))
807 StickToWorkAreaOnMove(work_area, sticky_size, bounds);
808 MagneticallySnapToOtherWindows(bounds);
810 } else if (sticky_size > 0) {
811 MagneticallySnapResizeToOtherWindows(bounds);
812 if (!magnetism_window_ && sticky_size > 0)
813 StickToWorkAreaOnResize(work_area, sticky_size, bounds);
816 if (attached_windows_.empty())
817 return;
819 if (details().window_component == HTRIGHT) {
820 bounds->set_width(std::min(bounds->width(),
821 work_area.right() - total_min_ - bounds->x()));
822 } else {
823 DCHECK_EQ(HTBOTTOM, details().window_component);
824 bounds->set_height(std::min(bounds->height(),
825 work_area.bottom() - total_min_ - bounds->y()));
829 bool WorkspaceWindowResizer::StickToWorkAreaOnMove(
830 const gfx::Rect& work_area,
831 int sticky_size,
832 gfx::Rect* bounds) const {
833 const int left_edge = work_area.x();
834 const int right_edge = work_area.right();
835 const int top_edge = work_area.y();
836 const int bottom_edge = work_area.bottom();
837 bool updated = false;
838 if (ShouldStickToEdge(bounds->x() - left_edge, sticky_size)) {
839 bounds->set_x(left_edge);
840 updated = true;
841 } else if (ShouldStickToEdge(right_edge - bounds->right(), sticky_size)) {
842 bounds->set_x(right_edge - bounds->width());
843 updated = true;
845 if (ShouldStickToEdge(bounds->y() - top_edge, sticky_size)) {
846 bounds->set_y(top_edge);
847 updated = true;
848 } else if (ShouldStickToEdge(bottom_edge - bounds->bottom(), sticky_size) &&
849 bounds->height() < (bottom_edge - top_edge)) {
850 // Only snap to the bottom if the window is smaller than the work area.
851 // Doing otherwise can lead to window snapping in weird ways as it bounces
852 // between snapping to top then bottom.
853 bounds->set_y(bottom_edge - bounds->height());
854 updated = true;
856 return updated;
859 void WorkspaceWindowResizer::StickToWorkAreaOnResize(
860 const gfx::Rect& work_area,
861 int sticky_size,
862 gfx::Rect* bounds) const {
863 const uint32 edges = WindowComponentToMagneticEdge(
864 details().window_component);
865 const int left_edge = work_area.x();
866 const int right_edge = work_area.right();
867 const int top_edge = work_area.y();
868 const int bottom_edge = work_area.bottom();
869 if (edges & MAGNETISM_EDGE_TOP &&
870 ShouldStickToEdge(bounds->y() - top_edge, sticky_size)) {
871 bounds->set_height(bounds->bottom() - top_edge);
872 bounds->set_y(top_edge);
874 if (edges & MAGNETISM_EDGE_LEFT &&
875 ShouldStickToEdge(bounds->x() - left_edge, sticky_size)) {
876 bounds->set_width(bounds->right() - left_edge);
877 bounds->set_x(left_edge);
879 if (edges & MAGNETISM_EDGE_BOTTOM &&
880 ShouldStickToEdge(bottom_edge - bounds->bottom(), sticky_size)) {
881 bounds->set_height(bottom_edge - bounds->y());
883 if (edges & MAGNETISM_EDGE_RIGHT &&
884 ShouldStickToEdge(right_edge - bounds->right(), sticky_size)) {
885 bounds->set_width(right_edge - bounds->x());
889 int WorkspaceWindowResizer::PrimaryAxisSize(const gfx::Size& size) const {
890 return PrimaryAxisCoordinate(size.width(), size.height());
893 int WorkspaceWindowResizer::PrimaryAxisCoordinate(int x, int y) const {
894 switch (details().window_component) {
895 case HTRIGHT:
896 return x;
897 case HTBOTTOM:
898 return y;
899 default:
900 NOTREACHED();
902 return 0;
905 void WorkspaceWindowResizer::UpdateSnapPhantomWindow(const gfx::Point& location,
906 const gfx::Rect& bounds) {
907 if (!did_move_or_resize_ || details().window_component != HTCAPTION)
908 return;
910 SnapType last_type = snap_type_;
911 snap_type_ = GetSnapType(location);
912 if (snap_type_ == SNAP_NONE || snap_type_ != last_type) {
913 snap_phantom_window_controller_.reset();
914 edge_cycler_.reset();
915 if (snap_type_ == SNAP_NONE) {
916 SetDraggedWindowDocked(false);
917 return;
921 DCHECK(snap_type_ == SNAP_LEFT || snap_type_ == SNAP_RIGHT);
922 DockedAlignment desired_alignment = (snap_type_ == SNAP_LEFT) ?
923 DOCKED_ALIGNMENT_LEFT : DOCKED_ALIGNMENT_RIGHT;
924 const bool can_dock =
925 dock_layout_->CanDockWindow(GetTarget(), desired_alignment) &&
926 dock_layout_->GetAlignmentOfWindow(GetTarget()) != DOCKED_ALIGNMENT_NONE;
927 if (!can_dock) {
928 // If the window cannot be docked, undock the window. This may change the
929 // workspace bounds and hence |snap_type_|.
930 SetDraggedWindowDocked(false);
931 snap_type_ = GetSnapType(location);
933 const bool can_snap = snap_type_ != SNAP_NONE && window_state()->CanSnap();
934 if (!can_snap && !can_dock) {
935 snap_type_ = SNAP_NONE;
936 snap_phantom_window_controller_.reset();
937 edge_cycler_.reset();
938 return;
940 if (!edge_cycler_)
941 edge_cycler_.reset(new TwoStepEdgeCycler(location));
942 else
943 edge_cycler_->OnMove(location);
945 // Update phantom window with snapped or docked guide bounds.
946 // Windows that cannot be snapped or are less wide than kMaxDockWidth can get
947 // docked without going through a snapping sequence.
948 gfx::Rect phantom_bounds;
949 const bool should_dock = can_dock &&
950 (!can_snap ||
951 GetTarget()->bounds().width() <=
952 DockedWindowLayoutManager::kMaxDockWidth ||
953 edge_cycler_->use_second_mode() ||
954 dock_layout_->is_dragged_window_docked());
955 if (should_dock) {
956 SetDraggedWindowDocked(true);
957 phantom_bounds = ScreenUtil::ConvertRectFromScreen(
958 GetTarget()->parent(), dock_layout_->dragged_bounds());
959 } else {
960 phantom_bounds = (snap_type_ == SNAP_LEFT) ?
961 wm::GetDefaultLeftSnappedWindowBoundsInParent(GetTarget()) :
962 wm::GetDefaultRightSnappedWindowBoundsInParent(GetTarget());
965 if (!snap_phantom_window_controller_) {
966 snap_phantom_window_controller_.reset(
967 new PhantomWindowController(GetTarget()));
969 snap_phantom_window_controller_->Show(ScreenUtil::ConvertRectToScreen(
970 GetTarget()->parent(), phantom_bounds));
973 void WorkspaceWindowResizer::RestackWindows() {
974 if (attached_windows_.empty())
975 return;
976 // Build a map from index in children to window, returning if there is a
977 // window with a different parent.
978 typedef std::map<size_t, aura::Window*> IndexToWindowMap;
979 IndexToWindowMap map;
980 aura::Window* parent = GetTarget()->parent();
981 const aura::Window::Windows& windows(parent->children());
982 map[std::find(windows.begin(), windows.end(), GetTarget()) -
983 windows.begin()] = GetTarget();
984 for (std::vector<aura::Window*>::const_iterator i =
985 attached_windows_.begin(); i != attached_windows_.end(); ++i) {
986 if ((*i)->parent() != parent)
987 return;
988 size_t index =
989 std::find(windows.begin(), windows.end(), *i) - windows.begin();
990 map[index] = *i;
993 // Reorder the windows starting at the topmost.
994 parent->StackChildAtTop(map.rbegin()->second);
995 for (IndexToWindowMap::const_reverse_iterator i = map.rbegin();
996 i != map.rend(); ) {
997 aura::Window* window = i->second;
998 ++i;
999 if (i != map.rend())
1000 parent->StackChildBelow(i->second, window);
1004 WorkspaceWindowResizer::SnapType WorkspaceWindowResizer::GetSnapType(
1005 const gfx::Point& location) const {
1006 // TODO: this likely only wants total display area, not the area of a single
1007 // display.
1008 gfx::Rect area(ScreenUtil::GetDisplayWorkAreaBoundsInParent(GetTarget()));
1009 if (details().source == aura::client::WINDOW_MOVE_SOURCE_TOUCH) {
1010 // Increase tolerance for touch-snapping near the screen edges. This is only
1011 // necessary when the work area left or right edge is same as screen edge.
1012 gfx::Rect display_bounds(ScreenUtil::GetDisplayBoundsInParent(GetTarget()));
1013 int inset_left = 0;
1014 if (area.x() == display_bounds.x())
1015 inset_left = kScreenEdgeInsetForTouchDrag;
1016 int inset_right = 0;
1017 if (area.right() == display_bounds.right())
1018 inset_right = kScreenEdgeInsetForTouchDrag;
1019 area.Inset(inset_left, 0, inset_right, 0);
1021 if (location.x() <= area.x())
1022 return SNAP_LEFT;
1023 if (location.x() >= area.right() - 1)
1024 return SNAP_RIGHT;
1025 return SNAP_NONE;
1028 void WorkspaceWindowResizer::SetDraggedWindowDocked(bool should_dock) {
1029 if (should_dock) {
1030 if (!dock_layout_->is_dragged_window_docked()) {
1031 window_state()->set_bounds_changed_by_user(false);
1032 dock_layout_->DockDraggedWindow(GetTarget());
1034 } else {
1035 if (dock_layout_->is_dragged_window_docked()) {
1036 dock_layout_->UndockDraggedWindow();
1037 window_state()->set_bounds_changed_by_user(true);
1042 bool WorkspaceWindowResizer::AreBoundsValidSnappedBounds(
1043 wm::WindowStateType snapped_type,
1044 const gfx::Rect& bounds_in_parent) const {
1045 DCHECK(snapped_type == wm::WINDOW_STATE_TYPE_LEFT_SNAPPED ||
1046 snapped_type == wm::WINDOW_STATE_TYPE_RIGHT_SNAPPED);
1047 gfx::Rect snapped_bounds = ScreenUtil::GetDisplayWorkAreaBoundsInParent(
1048 GetTarget());
1049 if (snapped_type == wm::WINDOW_STATE_TYPE_RIGHT_SNAPPED)
1050 snapped_bounds.set_x(snapped_bounds.right() - bounds_in_parent.width());
1051 snapped_bounds.set_width(bounds_in_parent.width());
1052 return bounds_in_parent == snapped_bounds;
1055 } // namespace ash