1 // Copyright (c) 2013 The Chromium Authors. All rights reserved.
2 // Use of this source code is governed by a BSD-style license that can be
3 // found in the LICENSE file.
5 #ifndef BASE_MEMORY_DISCARDABLE_MEMORY_H_
6 #define BASE_MEMORY_DISCARDABLE_MEMORY_H_
11 #include "base/base_export.h"
12 #include "base/basictypes.h"
13 #include "base/compiler_specific.h"
14 #include "base/memory/scoped_ptr.h"
18 enum DiscardableMemoryType
{
19 DISCARDABLE_MEMORY_TYPE_NONE
,
20 DISCARDABLE_MEMORY_TYPE_ASHMEM
,
21 DISCARDABLE_MEMORY_TYPE_MAC
,
22 DISCARDABLE_MEMORY_TYPE_EMULATED
,
23 DISCARDABLE_MEMORY_TYPE_MALLOC
26 enum DiscardableMemoryLockStatus
{
27 DISCARDABLE_MEMORY_LOCK_STATUS_FAILED
,
28 DISCARDABLE_MEMORY_LOCK_STATUS_PURGED
,
29 DISCARDABLE_MEMORY_LOCK_STATUS_SUCCESS
32 // Platform abstraction for discardable memory. DiscardableMemory is used to
33 // cache large objects without worrying about blowing out memory, both on mobile
34 // devices where there is no swap, and desktop devices where unused free memory
35 // should be used to help the user experience. This is preferable to releasing
36 // memory in response to an OOM signal because it is simpler, though it has less
37 // flexibility as to which objects get discarded.
39 // Discardable memory has two states: locked and unlocked. While the memory is
40 // locked, it will not be discarded. Unlocking the memory allows the OS to
41 // reclaim it if needed. Locks do not nest.
44 // - The paging behavior of memory while it is locked is not specified. While
45 // mobile platforms will not swap it out, it may qualify for swapping
46 // on desktop platforms. It is not expected that this will matter, as the
47 // preferred pattern of usage for DiscardableMemory is to lock down the
48 // memory, use it as quickly as possible, and then unlock it.
49 // - Because of memory alignment, the amount of memory allocated can be
50 // larger than the requested memory size. It is not very efficient for
52 // - A discardable memory instance is not thread safe. It is the
53 // responsibility of users of discardable memory to ensure there are no
57 // - Linux: http://lwn.net/Articles/452035/
58 // - Mac: http://trac.webkit.org/browser/trunk/Source/WebCore/platform/mac/PurgeableBufferMac.cpp
59 // the comment starting with "vm_object_purgable_control" at
60 // http://www.opensource.apple.com/source/xnu/xnu-792.13.8/osfmk/vm/vm_object.c
62 // Thread-safety: DiscardableMemory instances are not thread-safe.
63 class BASE_EXPORT DiscardableMemory
{
65 virtual ~DiscardableMemory() {}
67 // Gets the discardable memory type with a given name.
68 static DiscardableMemoryType
GetNamedType(const std::string
& name
);
70 // Gets the name of a discardable memory type.
71 static const char* GetTypeName(DiscardableMemoryType type
);
73 // Gets system supported discardable memory types. Default preferred type
74 // at the front of vector.
75 static void GetSupportedTypes(std::vector
<DiscardableMemoryType
>* types
);
77 // Sets the preferred discardable memory type. This overrides the default
78 // preferred type. Can only be called once prior to GetPreferredType()
79 // or CreateLockedMemory(). Caller is responsible for correct ordering.
80 static void SetPreferredType(DiscardableMemoryType type
);
82 // Gets the preferred discardable memory type.
83 static DiscardableMemoryType
GetPreferredType();
85 // Create a DiscardableMemory instance with specified |type| and |size|.
86 static scoped_ptr
<DiscardableMemory
> CreateLockedMemoryWithType(
87 DiscardableMemoryType type
, size_t size
);
89 // Create a DiscardableMemory instance with preferred type and |size|.
90 static scoped_ptr
<DiscardableMemory
> CreateLockedMemory(size_t size
);
92 // Discardable memory implementations might allow an elevated usage level
93 // while in frequent use. Call this to have the usage reduced to the base
94 // level. Returns true if there's no need to call this again until
95 // memory instances have been used. This indicates that all discardable
96 // memory implementations have reduced usage to the base level or below.
97 // Note: calling this too often or while discardable memory is in frequent
98 // use can hurt performance, whereas calling it too infrequently can result
100 static bool ReduceMemoryUsage();
102 // Locks the memory so that it will not be purged by the system. Returns
103 // DISCARDABLE_MEMORY_LOCK_STATUS_SUCCESS on success. If the return value is
104 // DISCARDABLE_MEMORY_LOCK_STATUS_FAILED then this object should be
105 // discarded and a new one should be created. If the return value is
106 // DISCARDABLE_MEMORY_LOCK_STATUS_PURGED then the memory is present but any
107 // data that was in it is gone.
108 virtual DiscardableMemoryLockStatus
Lock() WARN_UNUSED_RESULT
= 0;
110 // Unlocks the memory so that it can be purged by the system. Must be called
111 // after every successful lock call.
112 virtual void Unlock() = 0;
114 // Returns the memory address held by this object. The object must be locked
115 // before calling this. Otherwise, this will cause a DCHECK error.
116 virtual void* Memory() const = 0;
118 // Testing utility calls.
120 // Purge all discardable memory in the system. This call has global effects
121 // across all running processes, so it should only be used for testing!
122 static void PurgeForTesting();
127 #endif // BASE_MEMORY_DISCARDABLE_MEMORY_H_