1 // Copyright (c) 2012 The Chromium Authors. All rights reserved.
2 // Use of this source code is governed by a BSD-style license that can be
3 // found in the LICENSE file.
8 #include "base/logging.h"
9 #include "base/synchronization/waitable_event.h"
10 #include "base/synchronization/condition_variable.h"
11 #include "base/synchronization/lock.h"
12 #include "base/threading/thread_restrictions.h"
14 // -----------------------------------------------------------------------------
15 // A WaitableEvent on POSIX is implemented as a wait-list. Currently we don't
16 // support cross-process events (where one process can signal an event which
17 // others are waiting on). Because of this, we can avoid having one thread per
18 // listener in several cases.
20 // The WaitableEvent maintains a list of waiters, protected by a lock. Each
21 // waiter is either an async wait, in which case we have a Task and the
22 // MessageLoop to run it on, or a blocking wait, in which case we have the
23 // condition variable to signal.
25 // Waiting involves grabbing the lock and adding oneself to the wait list. Async
26 // waits can be canceled, which means grabbing the lock and removing oneself
29 // Waiting on multiple events is handled by adding a single, synchronous wait to
30 // the wait-list of many events. An event passes a pointer to itself when
31 // firing a waiter and so we can store that pointer to find out which event
33 // -----------------------------------------------------------------------------
37 // -----------------------------------------------------------------------------
38 // This is just an abstract base class for waking the two types of waiters
39 // -----------------------------------------------------------------------------
40 WaitableEvent::WaitableEvent(bool manual_reset
, bool initially_signaled
)
41 : kernel_(new WaitableEventKernel(manual_reset
, initially_signaled
)) {
44 WaitableEvent::~WaitableEvent() {
47 void WaitableEvent::Reset() {
48 base::AutoLock
locked(kernel_
->lock_
);
49 kernel_
->signaled_
= false;
52 void WaitableEvent::Signal() {
53 base::AutoLock
locked(kernel_
->lock_
);
55 if (kernel_
->signaled_
)
58 if (kernel_
->manual_reset_
) {
60 kernel_
->signaled_
= true;
62 // In the case of auto reset, if no waiters were woken, we remain
65 kernel_
->signaled_
= true;
69 bool WaitableEvent::IsSignaled() {
70 base::AutoLock
locked(kernel_
->lock_
);
72 const bool result
= kernel_
->signaled_
;
73 if (result
&& !kernel_
->manual_reset_
)
74 kernel_
->signaled_
= false;
78 // -----------------------------------------------------------------------------
81 // -----------------------------------------------------------------------------
82 // This is a synchronous waiter. The thread is waiting on the given condition
83 // variable and the fired flag in this object.
84 // -----------------------------------------------------------------------------
85 class SyncWaiter
: public WaitableEvent::Waiter
{
89 signaling_event_(NULL
),
94 virtual bool Fire(WaitableEvent
* signaling_event
) OVERRIDE
{
95 base::AutoLock
locked(lock_
);
101 signaling_event_
= signaling_event
;
105 // Unlike AsyncWaiter objects, SyncWaiter objects are stack-allocated on
106 // the blocking thread's stack. There is no |delete this;| in Fire. The
107 // SyncWaiter object is destroyed when it goes out of scope.
112 WaitableEvent
* signaling_event() const {
113 return signaling_event_
;
116 // ---------------------------------------------------------------------------
117 // These waiters are always stack allocated and don't delete themselves. Thus
118 // there's no problem and the ABA tag is the same as the object pointer.
119 // ---------------------------------------------------------------------------
120 virtual bool Compare(void* tag
) OVERRIDE
{
124 // ---------------------------------------------------------------------------
125 // Called with lock held.
126 // ---------------------------------------------------------------------------
131 // ---------------------------------------------------------------------------
132 // During a TimedWait, we need a way to make sure that an auto-reset
133 // WaitableEvent doesn't think that this event has been signaled between
134 // unlocking it and removing it from the wait-list. Called with lock held.
135 // ---------------------------------------------------------------------------
144 base::ConditionVariable
* cv() {
150 WaitableEvent
* signaling_event_
; // The WaitableEvent which woke us
152 base::ConditionVariable cv_
;
155 void WaitableEvent::Wait() {
156 bool result
= TimedWait(TimeDelta::FromSeconds(-1));
157 DCHECK(result
) << "TimedWait() should never fail with infinite timeout";
160 bool WaitableEvent::TimedWait(const TimeDelta
& max_time
) {
161 base::ThreadRestrictions::AssertWaitAllowed();
162 const TimeTicks
end_time(TimeTicks::Now() + max_time
);
163 const bool finite_time
= max_time
.ToInternalValue() >= 0;
165 kernel_
->lock_
.Acquire();
166 if (kernel_
->signaled_
) {
167 if (!kernel_
->manual_reset_
) {
168 // In this case we were signaled when we had no waiters. Now that
169 // someone has waited upon us, we can automatically reset.
170 kernel_
->signaled_
= false;
173 kernel_
->lock_
.Release();
178 sw
.lock()->Acquire();
181 kernel_
->lock_
.Release();
182 // We are violating locking order here by holding the SyncWaiter lock but not
183 // the WaitableEvent lock. However, this is safe because we don't lock @lock_
184 // again before unlocking it.
187 const TimeTicks
current_time(TimeTicks::Now());
189 if (sw
.fired() || (finite_time
&& current_time
>= end_time
)) {
190 const bool return_value
= sw
.fired();
192 // We can't acquire @lock_ before releasing the SyncWaiter lock (because
193 // of locking order), however, in between the two a signal could be fired
194 // and @sw would accept it, however we will still return false, so the
195 // signal would be lost on an auto-reset WaitableEvent. Thus we call
196 // Disable which makes sw::Fire return false.
198 sw
.lock()->Release();
200 // This is a bug that has been enshrined in the interface of
201 // WaitableEvent now: |Dequeue| is called even when |sw.fired()| is true,
202 // even though it'll always return false in that case. However, taking
203 // the lock ensures that |Signal| has completed before we return and
204 // means that a WaitableEvent can synchronise its own destruction.
205 kernel_
->lock_
.Acquire();
206 kernel_
->Dequeue(&sw
, &sw
);
207 kernel_
->lock_
.Release();
213 const TimeDelta
max_wait(end_time
- current_time
);
214 sw
.cv()->TimedWait(max_wait
);
221 // -----------------------------------------------------------------------------
222 // Synchronous waiting on multiple objects.
224 static bool // StrictWeakOrdering
225 cmp_fst_addr(const std::pair
<WaitableEvent
*, unsigned> &a
,
226 const std::pair
<WaitableEvent
*, unsigned> &b
) {
227 return a
.first
< b
.first
;
231 size_t WaitableEvent::WaitMany(WaitableEvent
** raw_waitables
,
233 base::ThreadRestrictions::AssertWaitAllowed();
234 DCHECK(count
) << "Cannot wait on no events";
236 // We need to acquire the locks in a globally consistent order. Thus we sort
237 // the array of waitables by address. We actually sort a pairs so that we can
238 // map back to the original index values later.
239 std::vector
<std::pair
<WaitableEvent
*, size_t> > waitables
;
240 waitables
.reserve(count
);
241 for (size_t i
= 0; i
< count
; ++i
)
242 waitables
.push_back(std::make_pair(raw_waitables
[i
], i
));
244 DCHECK_EQ(count
, waitables
.size());
246 sort(waitables
.begin(), waitables
.end(), cmp_fst_addr
);
248 // The set of waitables must be distinct. Since we have just sorted by
249 // address, we can check this cheaply by comparing pairs of consecutive
251 for (size_t i
= 0; i
< waitables
.size() - 1; ++i
) {
252 DCHECK(waitables
[i
].first
!= waitables
[i
+1].first
);
257 const size_t r
= EnqueueMany(&waitables
[0], count
, &sw
);
259 // One of the events is already signaled. The SyncWaiter has not been
260 // enqueued anywhere. EnqueueMany returns the count of remaining waitables
261 // when the signaled one was seen, so the index of the signaled event is
263 return waitables
[count
- r
].second
;
266 // At this point, we hold the locks on all the WaitableEvents and we have
267 // enqueued our waiter in them all.
268 sw
.lock()->Acquire();
269 // Release the WaitableEvent locks in the reverse order
270 for (size_t i
= 0; i
< count
; ++i
) {
271 waitables
[count
- (1 + i
)].first
->kernel_
->lock_
.Release();
280 sw
.lock()->Release();
282 // The address of the WaitableEvent which fired is stored in the SyncWaiter.
283 WaitableEvent
*const signaled_event
= sw
.signaling_event();
284 // This will store the index of the raw_waitables which fired.
285 size_t signaled_index
= 0;
287 // Take the locks of each WaitableEvent in turn (except the signaled one) and
288 // remove our SyncWaiter from the wait-list
289 for (size_t i
= 0; i
< count
; ++i
) {
290 if (raw_waitables
[i
] != signaled_event
) {
291 raw_waitables
[i
]->kernel_
->lock_
.Acquire();
292 // There's no possible ABA issue with the address of the SyncWaiter here
293 // because it lives on the stack. Thus the tag value is just the pointer
295 raw_waitables
[i
]->kernel_
->Dequeue(&sw
, &sw
);
296 raw_waitables
[i
]->kernel_
->lock_
.Release();
298 // By taking this lock here we ensure that |Signal| has completed by the
299 // time we return, because |Signal| holds this lock. This matches the
300 // behaviour of |Wait| and |TimedWait|.
301 raw_waitables
[i
]->kernel_
->lock_
.Acquire();
302 raw_waitables
[i
]->kernel_
->lock_
.Release();
307 return signaled_index
;
310 // -----------------------------------------------------------------------------
311 // If return value == 0:
312 // The locks of the WaitableEvents have been taken in order and the Waiter has
313 // been enqueued in the wait-list of each. None of the WaitableEvents are
314 // currently signaled
316 // None of the WaitableEvent locks are held. The Waiter has not been enqueued
317 // in any of them and the return value is the index of the first WaitableEvent
318 // which was signaled, from the end of the array.
319 // -----------------------------------------------------------------------------
321 size_t WaitableEvent::EnqueueMany
322 (std::pair
<WaitableEvent
*, size_t>* waitables
,
323 size_t count
, Waiter
* waiter
) {
327 waitables
[0].first
->kernel_
->lock_
.Acquire();
328 if (waitables
[0].first
->kernel_
->signaled_
) {
329 if (!waitables
[0].first
->kernel_
->manual_reset_
)
330 waitables
[0].first
->kernel_
->signaled_
= false;
331 waitables
[0].first
->kernel_
->lock_
.Release();
335 const size_t r
= EnqueueMany(waitables
+ 1, count
- 1, waiter
);
337 waitables
[0].first
->kernel_
->lock_
.Release();
339 waitables
[0].first
->Enqueue(waiter
);
345 // -----------------------------------------------------------------------------
348 // -----------------------------------------------------------------------------
349 // Private functions...
351 WaitableEvent::WaitableEventKernel::WaitableEventKernel(bool manual_reset
,
352 bool initially_signaled
)
353 : manual_reset_(manual_reset
),
354 signaled_(initially_signaled
) {
357 WaitableEvent::WaitableEventKernel::~WaitableEventKernel() {
360 // -----------------------------------------------------------------------------
361 // Wake all waiting waiters. Called with lock held.
362 // -----------------------------------------------------------------------------
363 bool WaitableEvent::SignalAll() {
364 bool signaled_at_least_one
= false;
366 for (std::list
<Waiter
*>::iterator
367 i
= kernel_
->waiters_
.begin(); i
!= kernel_
->waiters_
.end(); ++i
) {
368 if ((*i
)->Fire(this))
369 signaled_at_least_one
= true;
372 kernel_
->waiters_
.clear();
373 return signaled_at_least_one
;
376 // ---------------------------------------------------------------------------
377 // Try to wake a single waiter. Return true if one was woken. Called with lock
379 // ---------------------------------------------------------------------------
380 bool WaitableEvent::SignalOne() {
382 if (kernel_
->waiters_
.empty())
385 const bool r
= (*kernel_
->waiters_
.begin())->Fire(this);
386 kernel_
->waiters_
.pop_front();
392 // -----------------------------------------------------------------------------
393 // Add a waiter to the list of those waiting. Called with lock held.
394 // -----------------------------------------------------------------------------
395 void WaitableEvent::Enqueue(Waiter
* waiter
) {
396 kernel_
->waiters_
.push_back(waiter
);
399 // -----------------------------------------------------------------------------
400 // Remove a waiter from the list of those waiting. Return true if the waiter was
401 // actually removed. Called with lock held.
402 // -----------------------------------------------------------------------------
403 bool WaitableEvent::WaitableEventKernel::Dequeue(Waiter
* waiter
, void* tag
) {
404 for (std::list
<Waiter
*>::iterator
405 i
= waiters_
.begin(); i
!= waiters_
.end(); ++i
) {
406 if (*i
== waiter
&& (*i
)->Compare(tag
)) {
415 // -----------------------------------------------------------------------------