Updating trunk VERSION from 2139.0 to 2140.0
[chromium-blink-merge.git] / base / time / time_mac.cc
blob26c5d7a715b2385c3c15ac97c16e2959c4135da2
1 // Copyright (c) 2012 The Chromium Authors. All rights reserved.
2 // Use of this source code is governed by a BSD-style license that can be
3 // found in the LICENSE file.
5 #include "base/time/time.h"
7 #include <CoreFoundation/CFDate.h>
8 #include <CoreFoundation/CFTimeZone.h>
9 #include <mach/mach.h>
10 #include <mach/mach_time.h>
11 #include <sys/sysctl.h>
12 #include <sys/time.h>
13 #include <sys/types.h>
14 #include <time.h>
16 #include "base/basictypes.h"
17 #include "base/logging.h"
18 #include "base/mac/mach_logging.h"
19 #include "base/mac/scoped_cftyperef.h"
20 #include "base/mac/scoped_mach_port.h"
22 namespace {
24 uint64_t ComputeCurrentTicks() {
25 #if defined(OS_IOS)
26 // On iOS mach_absolute_time stops while the device is sleeping. Instead use
27 // now - KERN_BOOTTIME to get a time difference that is not impacted by clock
28 // changes. KERN_BOOTTIME will be updated by the system whenever the system
29 // clock change.
30 struct timeval boottime;
31 int mib[2] = {CTL_KERN, KERN_BOOTTIME};
32 size_t size = sizeof(boottime);
33 int kr = sysctl(mib, arraysize(mib), &boottime, &size, NULL, 0);
34 DCHECK_EQ(KERN_SUCCESS, kr);
35 base::TimeDelta time_difference = base::Time::Now() -
36 (base::Time::FromTimeT(boottime.tv_sec) +
37 base::TimeDelta::FromMicroseconds(boottime.tv_usec));
38 return time_difference.InMicroseconds();
39 #else
40 uint64_t absolute_micro;
42 static mach_timebase_info_data_t timebase_info;
43 if (timebase_info.denom == 0) {
44 // Zero-initialization of statics guarantees that denom will be 0 before
45 // calling mach_timebase_info. mach_timebase_info will never set denom to
46 // 0 as that would be invalid, so the zero-check can be used to determine
47 // whether mach_timebase_info has already been called. This is
48 // recommended by Apple's QA1398.
49 kern_return_t kr = mach_timebase_info(&timebase_info);
50 MACH_DCHECK(kr == KERN_SUCCESS, kr) << "mach_timebase_info";
53 // mach_absolute_time is it when it comes to ticks on the Mac. Other calls
54 // with less precision (such as TickCount) just call through to
55 // mach_absolute_time.
57 // timebase_info converts absolute time tick units into nanoseconds. Convert
58 // to microseconds up front to stave off overflows.
59 absolute_micro =
60 mach_absolute_time() / base::Time::kNanosecondsPerMicrosecond *
61 timebase_info.numer / timebase_info.denom;
63 // Don't bother with the rollover handling that the Windows version does.
64 // With numer and denom = 1 (the expected case), the 64-bit absolute time
65 // reported in nanoseconds is enough to last nearly 585 years.
66 return absolute_micro;
67 #endif // defined(OS_IOS)
70 uint64_t ComputeThreadTicks() {
71 #if defined(OS_IOS)
72 NOTREACHED();
73 return 0;
74 #else
75 base::mac::ScopedMachSendRight thread(mach_thread_self());
76 mach_msg_type_number_t thread_info_count = THREAD_BASIC_INFO_COUNT;
77 thread_basic_info_data_t thread_info_data;
79 if (thread.get() == MACH_PORT_NULL) {
80 DLOG(ERROR) << "Failed to get mach_thread_self()";
81 return 0;
84 kern_return_t kr = thread_info(
85 thread,
86 THREAD_BASIC_INFO,
87 reinterpret_cast<thread_info_t>(&thread_info_data),
88 &thread_info_count);
89 MACH_DCHECK(kr == KERN_SUCCESS, kr) << "thread_info";
91 return (thread_info_data.user_time.seconds *
92 base::Time::kMicrosecondsPerSecond) +
93 thread_info_data.user_time.microseconds;
94 #endif // defined(OS_IOS)
97 } // namespace
99 namespace base {
101 // The Time routines in this file use Mach and CoreFoundation APIs, since the
102 // POSIX definition of time_t in Mac OS X wraps around after 2038--and
103 // there are already cookie expiration dates, etc., past that time out in
104 // the field. Using CFDate prevents that problem, and using mach_absolute_time
105 // for TimeTicks gives us nice high-resolution interval timing.
107 // Time -----------------------------------------------------------------------
109 // Core Foundation uses a double second count since 2001-01-01 00:00:00 UTC.
110 // The UNIX epoch is 1970-01-01 00:00:00 UTC.
111 // Windows uses a Gregorian epoch of 1601. We need to match this internally
112 // so that our time representations match across all platforms. See bug 14734.
113 // irb(main):010:0> Time.at(0).getutc()
114 // => Thu Jan 01 00:00:00 UTC 1970
115 // irb(main):011:0> Time.at(-11644473600).getutc()
116 // => Mon Jan 01 00:00:00 UTC 1601
117 static const int64 kWindowsEpochDeltaSeconds = GG_INT64_C(11644473600);
119 // static
120 const int64 Time::kWindowsEpochDeltaMicroseconds =
121 kWindowsEpochDeltaSeconds * Time::kMicrosecondsPerSecond;
123 // Some functions in time.cc use time_t directly, so we provide an offset
124 // to convert from time_t (Unix epoch) and internal (Windows epoch).
125 // static
126 const int64 Time::kTimeTToMicrosecondsOffset = kWindowsEpochDeltaMicroseconds;
128 // static
129 Time Time::Now() {
130 return FromCFAbsoluteTime(CFAbsoluteTimeGetCurrent());
133 // static
134 Time Time::FromCFAbsoluteTime(CFAbsoluteTime t) {
135 COMPILE_ASSERT(std::numeric_limits<CFAbsoluteTime>::has_infinity,
136 numeric_limits_infinity_is_undefined_when_not_has_infinity);
137 if (t == 0)
138 return Time(); // Consider 0 as a null Time.
139 if (t == std::numeric_limits<CFAbsoluteTime>::infinity())
140 return Max();
141 return Time(static_cast<int64>(
142 (t + kCFAbsoluteTimeIntervalSince1970) * kMicrosecondsPerSecond) +
143 kWindowsEpochDeltaMicroseconds);
146 CFAbsoluteTime Time::ToCFAbsoluteTime() const {
147 COMPILE_ASSERT(std::numeric_limits<CFAbsoluteTime>::has_infinity,
148 numeric_limits_infinity_is_undefined_when_not_has_infinity);
149 if (is_null())
150 return 0; // Consider 0 as a null Time.
151 if (is_max())
152 return std::numeric_limits<CFAbsoluteTime>::infinity();
153 return (static_cast<CFAbsoluteTime>(us_ - kWindowsEpochDeltaMicroseconds) /
154 kMicrosecondsPerSecond) - kCFAbsoluteTimeIntervalSince1970;
157 // static
158 Time Time::NowFromSystemTime() {
159 // Just use Now() because Now() returns the system time.
160 return Now();
163 // static
164 Time Time::FromExploded(bool is_local, const Exploded& exploded) {
165 CFGregorianDate date;
166 date.second = exploded.second +
167 exploded.millisecond / static_cast<double>(kMillisecondsPerSecond);
168 date.minute = exploded.minute;
169 date.hour = exploded.hour;
170 date.day = exploded.day_of_month;
171 date.month = exploded.month;
172 date.year = exploded.year;
174 base::ScopedCFTypeRef<CFTimeZoneRef> time_zone(
175 is_local ? CFTimeZoneCopySystem() : NULL);
176 CFAbsoluteTime seconds = CFGregorianDateGetAbsoluteTime(date, time_zone) +
177 kCFAbsoluteTimeIntervalSince1970;
178 return Time(static_cast<int64>(seconds * kMicrosecondsPerSecond) +
179 kWindowsEpochDeltaMicroseconds);
182 void Time::Explode(bool is_local, Exploded* exploded) const {
183 // Avoid rounding issues, by only putting the integral number of seconds
184 // (rounded towards -infinity) into a |CFAbsoluteTime| (which is a |double|).
185 int64 microsecond = us_ % kMicrosecondsPerSecond;
186 if (microsecond < 0)
187 microsecond += kMicrosecondsPerSecond;
188 CFAbsoluteTime seconds = ((us_ - microsecond) / kMicrosecondsPerSecond) -
189 kWindowsEpochDeltaSeconds -
190 kCFAbsoluteTimeIntervalSince1970;
192 base::ScopedCFTypeRef<CFTimeZoneRef> time_zone(
193 is_local ? CFTimeZoneCopySystem() : NULL);
194 CFGregorianDate date = CFAbsoluteTimeGetGregorianDate(seconds, time_zone);
195 // 1 = Monday, ..., 7 = Sunday.
196 int cf_day_of_week = CFAbsoluteTimeGetDayOfWeek(seconds, time_zone);
198 exploded->year = date.year;
199 exploded->month = date.month;
200 exploded->day_of_week = cf_day_of_week % 7;
201 exploded->day_of_month = date.day;
202 exploded->hour = date.hour;
203 exploded->minute = date.minute;
204 // Make sure seconds are rounded down towards -infinity.
205 exploded->second = floor(date.second);
206 // Calculate milliseconds ourselves, since we rounded the |seconds|, making
207 // sure to round towards -infinity.
208 exploded->millisecond =
209 (microsecond >= 0) ? microsecond / kMicrosecondsPerMillisecond :
210 (microsecond - kMicrosecondsPerMillisecond + 1) /
211 kMicrosecondsPerMillisecond;
214 // TimeTicks ------------------------------------------------------------------
216 // static
217 TimeTicks TimeTicks::Now() {
218 return TimeTicks(ComputeCurrentTicks());
221 // static
222 TimeTicks TimeTicks::HighResNow() {
223 return Now();
226 // static
227 bool TimeTicks::IsHighResNowFastAndReliable() {
228 return true;
231 // static
232 TimeTicks TimeTicks::ThreadNow() {
233 return TimeTicks(ComputeThreadTicks());
236 // static
237 TimeTicks TimeTicks::NowFromSystemTraceTime() {
238 return HighResNow();
241 } // namespace base