Updating trunk VERSION from 2139.0 to 2140.0
[chromium-blink-merge.git] / gpu / command_buffer / client / fenced_allocator_test.cc
blob7ac35d4435e5a1451342f0ec515b38817197e385
1 // Copyright (c) 2012 The Chromium Authors. All rights reserved.
2 // Use of this source code is governed by a BSD-style license that can be
3 // found in the LICENSE file.
5 // This file contains the tests for the FencedAllocator class.
7 #include "base/bind.h"
8 #include "base/bind_helpers.h"
9 #include "base/memory/aligned_memory.h"
10 #include "base/message_loop/message_loop.h"
11 #include "gpu/command_buffer/client/cmd_buffer_helper.h"
12 #include "gpu/command_buffer/client/fenced_allocator.h"
13 #include "gpu/command_buffer/service/cmd_buffer_engine.h"
14 #include "gpu/command_buffer/service/command_buffer_service.h"
15 #include "gpu/command_buffer/service/gpu_scheduler.h"
16 #include "gpu/command_buffer/service/mocks.h"
17 #include "gpu/command_buffer/service/transfer_buffer_manager.h"
18 #include "testing/gtest/include/gtest/gtest.h"
20 #if defined(OS_MACOSX)
21 #include "base/mac/scoped_nsautorelease_pool.h"
22 #endif
24 namespace gpu {
26 using testing::Return;
27 using testing::Mock;
28 using testing::Truly;
29 using testing::Sequence;
30 using testing::DoAll;
31 using testing::Invoke;
32 using testing::InvokeWithoutArgs;
33 using testing::_;
35 class BaseFencedAllocatorTest : public testing::Test {
36 protected:
37 static const unsigned int kBufferSize = 1024;
38 static const int kAllocAlignment = 16;
40 virtual void SetUp() {
41 api_mock_.reset(new AsyncAPIMock);
42 // ignore noops in the mock - we don't want to inspect the internals of the
43 // helper.
44 EXPECT_CALL(*api_mock_, DoCommand(cmd::kNoop, 0, _))
45 .WillRepeatedly(Return(error::kNoError));
46 // Forward the SetToken calls to the engine
47 EXPECT_CALL(*api_mock_.get(), DoCommand(cmd::kSetToken, 1, _))
48 .WillRepeatedly(DoAll(Invoke(api_mock_.get(), &AsyncAPIMock::SetToken),
49 Return(error::kNoError)));
52 TransferBufferManager* manager = new TransferBufferManager();
53 transfer_buffer_manager_.reset(manager);
54 EXPECT_TRUE(manager->Initialize());
56 command_buffer_.reset(
57 new CommandBufferService(transfer_buffer_manager_.get()));
58 EXPECT_TRUE(command_buffer_->Initialize());
60 gpu_scheduler_.reset(new GpuScheduler(
61 command_buffer_.get(), api_mock_.get(), NULL));
62 command_buffer_->SetPutOffsetChangeCallback(base::Bind(
63 &GpuScheduler::PutChanged, base::Unretained(gpu_scheduler_.get())));
64 command_buffer_->SetGetBufferChangeCallback(base::Bind(
65 &GpuScheduler::SetGetBuffer, base::Unretained(gpu_scheduler_.get())));
67 api_mock_->set_engine(gpu_scheduler_.get());
69 helper_.reset(new CommandBufferHelper(command_buffer_.get()));
70 helper_->Initialize(kBufferSize);
73 int32 GetToken() {
74 return command_buffer_->GetLastState().token;
77 #if defined(OS_MACOSX)
78 base::mac::ScopedNSAutoreleasePool autorelease_pool_;
79 #endif
80 base::MessageLoop message_loop_;
81 scoped_ptr<AsyncAPIMock> api_mock_;
82 scoped_ptr<TransferBufferManagerInterface> transfer_buffer_manager_;
83 scoped_ptr<CommandBufferService> command_buffer_;
84 scoped_ptr<GpuScheduler> gpu_scheduler_;
85 scoped_ptr<CommandBufferHelper> helper_;
88 #ifndef _MSC_VER
89 const unsigned int BaseFencedAllocatorTest::kBufferSize;
90 #endif
92 namespace {
93 void EmptyPoll() {
97 // Test fixture for FencedAllocator test - Creates a FencedAllocator, using a
98 // CommandBufferHelper with a mock AsyncAPIInterface for its interface (calling
99 // it directly, not through the RPC mechanism), making sure Noops are ignored
100 // and SetToken are properly forwarded to the engine.
101 class FencedAllocatorTest : public BaseFencedAllocatorTest {
102 protected:
103 virtual void SetUp() {
104 BaseFencedAllocatorTest::SetUp();
105 allocator_.reset(new FencedAllocator(kBufferSize,
106 helper_.get(),
107 base::Bind(&EmptyPoll)));
110 virtual void TearDown() {
111 // If the GpuScheduler posts any tasks, this forces them to run.
112 base::MessageLoop::current()->RunUntilIdle();
114 EXPECT_TRUE(allocator_->CheckConsistency());
116 BaseFencedAllocatorTest::TearDown();
119 scoped_ptr<FencedAllocator> allocator_;
122 // Checks basic alloc and free.
123 TEST_F(FencedAllocatorTest, TestBasic) {
124 allocator_->CheckConsistency();
125 EXPECT_FALSE(allocator_->InUse());
127 const unsigned int kSize = 16;
128 FencedAllocator::Offset offset = allocator_->Alloc(kSize);
129 EXPECT_TRUE(allocator_->InUse());
130 EXPECT_NE(FencedAllocator::kInvalidOffset, offset);
131 EXPECT_GE(kBufferSize, offset+kSize);
132 EXPECT_TRUE(allocator_->CheckConsistency());
134 allocator_->Free(offset);
135 EXPECT_FALSE(allocator_->InUse());
136 EXPECT_TRUE(allocator_->CheckConsistency());
139 // Test alloc 0 fails.
140 TEST_F(FencedAllocatorTest, TestAllocZero) {
141 FencedAllocator::Offset offset = allocator_->Alloc(0);
142 EXPECT_EQ(FencedAllocator::kInvalidOffset, offset);
143 EXPECT_FALSE(allocator_->InUse());
144 EXPECT_TRUE(allocator_->CheckConsistency());
147 // Checks out-of-memory condition.
148 TEST_F(FencedAllocatorTest, TestOutOfMemory) {
149 EXPECT_TRUE(allocator_->CheckConsistency());
151 const unsigned int kSize = 16;
152 const unsigned int kAllocCount = kBufferSize / kSize;
153 CHECK(kAllocCount * kSize == kBufferSize);
155 // Allocate several buffers to fill in the memory.
156 FencedAllocator::Offset offsets[kAllocCount];
157 for (unsigned int i = 0; i < kAllocCount; ++i) {
158 offsets[i] = allocator_->Alloc(kSize);
159 EXPECT_NE(FencedAllocator::kInvalidOffset, offsets[i]);
160 EXPECT_GE(kBufferSize, offsets[i]+kSize);
161 EXPECT_TRUE(allocator_->CheckConsistency());
164 // This allocation should fail.
165 FencedAllocator::Offset offset_failed = allocator_->Alloc(kSize);
166 EXPECT_EQ(FencedAllocator::kInvalidOffset, offset_failed);
167 EXPECT_TRUE(allocator_->CheckConsistency());
169 // Free one successful allocation, reallocate with half the size
170 allocator_->Free(offsets[0]);
171 EXPECT_TRUE(allocator_->CheckConsistency());
172 offsets[0] = allocator_->Alloc(kSize/2);
173 EXPECT_NE(FencedAllocator::kInvalidOffset, offsets[0]);
174 EXPECT_GE(kBufferSize, offsets[0]+kSize);
175 EXPECT_TRUE(allocator_->CheckConsistency());
177 // This allocation should fail as well.
178 offset_failed = allocator_->Alloc(kSize);
179 EXPECT_EQ(FencedAllocator::kInvalidOffset, offset_failed);
180 EXPECT_TRUE(allocator_->CheckConsistency());
182 // Free up everything.
183 for (unsigned int i = 0; i < kAllocCount; ++i) {
184 allocator_->Free(offsets[i]);
185 EXPECT_TRUE(allocator_->CheckConsistency());
189 // Checks the free-pending-token mechanism.
190 TEST_F(FencedAllocatorTest, TestFreePendingToken) {
191 EXPECT_TRUE(allocator_->CheckConsistency());
193 const unsigned int kSize = 16;
194 const unsigned int kAllocCount = kBufferSize / kSize;
195 CHECK(kAllocCount * kSize == kBufferSize);
197 // Allocate several buffers to fill in the memory.
198 FencedAllocator::Offset offsets[kAllocCount];
199 for (unsigned int i = 0; i < kAllocCount; ++i) {
200 offsets[i] = allocator_->Alloc(kSize);
201 EXPECT_NE(FencedAllocator::kInvalidOffset, offsets[i]);
202 EXPECT_GE(kBufferSize, offsets[i]+kSize);
203 EXPECT_TRUE(allocator_->CheckConsistency());
206 // This allocation should fail.
207 FencedAllocator::Offset offset_failed = allocator_->Alloc(kSize);
208 EXPECT_EQ(FencedAllocator::kInvalidOffset, offset_failed);
209 EXPECT_TRUE(allocator_->CheckConsistency());
211 // Free one successful allocation, pending fence.
212 int32 token = helper_.get()->InsertToken();
213 allocator_->FreePendingToken(offsets[0], token);
214 EXPECT_TRUE(allocator_->CheckConsistency());
216 // The way we hooked up the helper and engine, it won't process commands
217 // until it has to wait for something. Which means the token shouldn't have
218 // passed yet at this point.
219 EXPECT_GT(token, GetToken());
221 // This allocation will need to reclaim the space freed above, so that should
222 // process the commands until the token is passed.
223 offsets[0] = allocator_->Alloc(kSize);
224 EXPECT_NE(FencedAllocator::kInvalidOffset, offsets[0]);
225 EXPECT_GE(kBufferSize, offsets[0]+kSize);
226 EXPECT_TRUE(allocator_->CheckConsistency());
227 // Check that the token has indeed passed.
228 EXPECT_LE(token, GetToken());
230 // Free up everything.
231 for (unsigned int i = 0; i < kAllocCount; ++i) {
232 allocator_->Free(offsets[i]);
233 EXPECT_TRUE(allocator_->CheckConsistency());
237 // Checks the free-pending-token mechanism using FreeUnused
238 TEST_F(FencedAllocatorTest, FreeUnused) {
239 EXPECT_TRUE(allocator_->CheckConsistency());
241 const unsigned int kSize = 16;
242 const unsigned int kAllocCount = kBufferSize / kSize;
243 CHECK(kAllocCount * kSize == kBufferSize);
245 // Allocate several buffers to fill in the memory.
246 FencedAllocator::Offset offsets[kAllocCount];
247 for (unsigned int i = 0; i < kAllocCount; ++i) {
248 offsets[i] = allocator_->Alloc(kSize);
249 EXPECT_NE(FencedAllocator::kInvalidOffset, offsets[i]);
250 EXPECT_GE(kBufferSize, offsets[i]+kSize);
251 EXPECT_TRUE(allocator_->CheckConsistency());
253 EXPECT_TRUE(allocator_->InUse());
255 // No memory should be available.
256 EXPECT_EQ(0u, allocator_->GetLargestFreeSize());
258 // Free one successful allocation, pending fence.
259 int32 token = helper_.get()->InsertToken();
260 allocator_->FreePendingToken(offsets[0], token);
261 EXPECT_TRUE(allocator_->CheckConsistency());
263 // Force the command buffer to process the token.
264 helper_->Finish();
266 // Tell the allocator to update what's available based on the current token.
267 allocator_->FreeUnused();
269 // Check that the new largest free size takes into account the unused block.
270 EXPECT_EQ(kSize, allocator_->GetLargestFreeSize());
272 // Free two more.
273 token = helper_.get()->InsertToken();
274 allocator_->FreePendingToken(offsets[1], token);
275 token = helper_.get()->InsertToken();
276 allocator_->FreePendingToken(offsets[2], token);
277 EXPECT_TRUE(allocator_->CheckConsistency());
279 // Check that nothing has changed.
280 EXPECT_EQ(kSize, allocator_->GetLargestFreeSize());
282 // Force the command buffer to process the token.
283 helper_->Finish();
285 // Tell the allocator to update what's available based on the current token.
286 allocator_->FreeUnused();
288 // Check that the new largest free size takes into account the unused blocks.
289 EXPECT_EQ(kSize * 3, allocator_->GetLargestFreeSize());
290 EXPECT_TRUE(allocator_->InUse());
292 // Free up everything.
293 for (unsigned int i = 3; i < kAllocCount; ++i) {
294 allocator_->Free(offsets[i]);
295 EXPECT_TRUE(allocator_->CheckConsistency());
297 EXPECT_FALSE(allocator_->InUse());
300 // Tests GetLargestFreeSize
301 TEST_F(FencedAllocatorTest, TestGetLargestFreeSize) {
302 EXPECT_TRUE(allocator_->CheckConsistency());
303 EXPECT_EQ(kBufferSize, allocator_->GetLargestFreeSize());
305 FencedAllocator::Offset offset = allocator_->Alloc(kBufferSize);
306 ASSERT_NE(FencedAllocator::kInvalidOffset, offset);
307 EXPECT_EQ(0u, allocator_->GetLargestFreeSize());
308 allocator_->Free(offset);
309 EXPECT_EQ(kBufferSize, allocator_->GetLargestFreeSize());
311 const unsigned int kSize = 16;
312 offset = allocator_->Alloc(kSize);
313 ASSERT_NE(FencedAllocator::kInvalidOffset, offset);
314 // The following checks that the buffer is allocated "smartly" - which is
315 // dependent on the implementation. But both first-fit or best-fit would
316 // ensure that.
317 EXPECT_EQ(kBufferSize - kSize, allocator_->GetLargestFreeSize());
319 // Allocate 2 more buffers (now 3), and then free the first two. This is to
320 // ensure a hole. Note that this is dependent on the first-fit current
321 // implementation.
322 FencedAllocator::Offset offset1 = allocator_->Alloc(kSize);
323 ASSERT_NE(FencedAllocator::kInvalidOffset, offset1);
324 FencedAllocator::Offset offset2 = allocator_->Alloc(kSize);
325 ASSERT_NE(FencedAllocator::kInvalidOffset, offset2);
326 allocator_->Free(offset);
327 allocator_->Free(offset1);
328 EXPECT_EQ(kBufferSize - 3 * kSize, allocator_->GetLargestFreeSize());
330 offset = allocator_->Alloc(kBufferSize - 3 * kSize);
331 ASSERT_NE(FencedAllocator::kInvalidOffset, offset);
332 EXPECT_EQ(2 * kSize, allocator_->GetLargestFreeSize());
334 offset1 = allocator_->Alloc(2 * kSize);
335 ASSERT_NE(FencedAllocator::kInvalidOffset, offset1);
336 EXPECT_EQ(0u, allocator_->GetLargestFreeSize());
338 allocator_->Free(offset);
339 allocator_->Free(offset1);
340 allocator_->Free(offset2);
343 // Tests GetLargestFreeOrPendingSize
344 TEST_F(FencedAllocatorTest, TestGetLargestFreeOrPendingSize) {
345 EXPECT_TRUE(allocator_->CheckConsistency());
346 EXPECT_EQ(kBufferSize, allocator_->GetLargestFreeOrPendingSize());
348 FencedAllocator::Offset offset = allocator_->Alloc(kBufferSize);
349 ASSERT_NE(FencedAllocator::kInvalidOffset, offset);
350 EXPECT_EQ(0u, allocator_->GetLargestFreeOrPendingSize());
351 allocator_->Free(offset);
352 EXPECT_EQ(kBufferSize, allocator_->GetLargestFreeOrPendingSize());
354 const unsigned int kSize = 16;
355 offset = allocator_->Alloc(kSize);
356 ASSERT_NE(FencedAllocator::kInvalidOffset, offset);
357 // The following checks that the buffer is allocates "smartly" - which is
358 // dependent on the implementation. But both first-fit or best-fit would
359 // ensure that.
360 EXPECT_EQ(kBufferSize - kSize, allocator_->GetLargestFreeOrPendingSize());
362 // Allocate 2 more buffers (now 3), and then free the first two. This is to
363 // ensure a hole. Note that this is dependent on the first-fit current
364 // implementation.
365 FencedAllocator::Offset offset1 = allocator_->Alloc(kSize);
366 ASSERT_NE(FencedAllocator::kInvalidOffset, offset1);
367 FencedAllocator::Offset offset2 = allocator_->Alloc(kSize);
368 ASSERT_NE(FencedAllocator::kInvalidOffset, offset2);
369 allocator_->Free(offset);
370 allocator_->Free(offset1);
371 EXPECT_EQ(kBufferSize - 3 * kSize,
372 allocator_->GetLargestFreeOrPendingSize());
374 // Free the last one, pending a token.
375 int32 token = helper_.get()->InsertToken();
376 allocator_->FreePendingToken(offset2, token);
378 // Now all the buffers have been freed...
379 EXPECT_EQ(kBufferSize, allocator_->GetLargestFreeOrPendingSize());
380 // .. but one is still waiting for the token.
381 EXPECT_EQ(kBufferSize - 3 * kSize,
382 allocator_->GetLargestFreeSize());
384 // The way we hooked up the helper and engine, it won't process commands
385 // until it has to wait for something. Which means the token shouldn't have
386 // passed yet at this point.
387 EXPECT_GT(token, GetToken());
388 // This allocation will need to reclaim the space freed above, so that should
389 // process the commands until the token is passed, but it will succeed.
390 offset = allocator_->Alloc(kBufferSize);
391 ASSERT_NE(FencedAllocator::kInvalidOffset, offset);
392 // Check that the token has indeed passed.
393 EXPECT_LE(token, GetToken());
394 allocator_->Free(offset);
396 // Everything now has been freed...
397 EXPECT_EQ(kBufferSize, allocator_->GetLargestFreeOrPendingSize());
398 // ... for real.
399 EXPECT_EQ(kBufferSize, allocator_->GetLargestFreeSize());
402 class FencedAllocatorPollTest : public BaseFencedAllocatorTest {
403 public:
404 static const unsigned int kAllocSize = 128;
406 MOCK_METHOD0(MockedPoll, void());
408 protected:
409 virtual void TearDown() {
410 // If the GpuScheduler posts any tasks, this forces them to run.
411 base::MessageLoop::current()->RunUntilIdle();
413 BaseFencedAllocatorTest::TearDown();
417 TEST_F(FencedAllocatorPollTest, TestPoll) {
418 scoped_ptr<FencedAllocator> allocator(
419 new FencedAllocator(kBufferSize,
420 helper_.get(),
421 base::Bind(&FencedAllocatorPollTest::MockedPoll,
422 base::Unretained(this))));
424 FencedAllocator::Offset mem1 = allocator->Alloc(kAllocSize);
425 FencedAllocator::Offset mem2 = allocator->Alloc(kAllocSize);
426 EXPECT_NE(mem1, FencedAllocator::kInvalidOffset);
427 EXPECT_NE(mem2, FencedAllocator::kInvalidOffset);
428 EXPECT_TRUE(allocator->CheckConsistency());
429 EXPECT_EQ(allocator->bytes_in_use(), kAllocSize * 2);
431 // Check that no-op Poll doesn't affect the state.
432 EXPECT_CALL(*this, MockedPoll()).RetiresOnSaturation();
433 allocator->FreeUnused();
434 EXPECT_TRUE(allocator->CheckConsistency());
435 EXPECT_EQ(allocator->bytes_in_use(), kAllocSize * 2);
437 // Check that freeing in Poll works.
438 base::Closure free_mem1_closure =
439 base::Bind(&FencedAllocator::Free,
440 base::Unretained(allocator.get()),
441 mem1);
442 EXPECT_CALL(*this, MockedPoll())
443 .WillOnce(InvokeWithoutArgs(&free_mem1_closure, &base::Closure::Run))
444 .RetiresOnSaturation();
445 allocator->FreeUnused();
446 EXPECT_TRUE(allocator->CheckConsistency());
447 EXPECT_EQ(allocator->bytes_in_use(), kAllocSize * 1);
449 // Check that freeing still works.
450 EXPECT_CALL(*this, MockedPoll()).RetiresOnSaturation();
451 allocator->Free(mem2);
452 allocator->FreeUnused();
453 EXPECT_TRUE(allocator->CheckConsistency());
454 EXPECT_EQ(allocator->bytes_in_use(), 0u);
456 allocator.reset();
459 // Test fixture for FencedAllocatorWrapper test - Creates a
460 // FencedAllocatorWrapper, using a CommandBufferHelper with a mock
461 // AsyncAPIInterface for its interface (calling it directly, not through the
462 // RPC mechanism), making sure Noops are ignored and SetToken are properly
463 // forwarded to the engine.
464 class FencedAllocatorWrapperTest : public BaseFencedAllocatorTest {
465 protected:
466 virtual void SetUp() {
467 BaseFencedAllocatorTest::SetUp();
469 // Though allocating this buffer isn't strictly necessary, it makes
470 // allocations point to valid addresses, so they could be used for
471 // something.
472 buffer_.reset(static_cast<char*>(base::AlignedAlloc(
473 kBufferSize, kAllocAlignment)));
474 allocator_.reset(new FencedAllocatorWrapper(kBufferSize,
475 helper_.get(),
476 base::Bind(&EmptyPoll),
477 buffer_.get()));
480 virtual void TearDown() {
481 // If the GpuScheduler posts any tasks, this forces them to run.
482 base::MessageLoop::current()->RunUntilIdle();
484 EXPECT_TRUE(allocator_->CheckConsistency());
486 BaseFencedAllocatorTest::TearDown();
489 scoped_ptr<FencedAllocatorWrapper> allocator_;
490 scoped_ptr<char, base::AlignedFreeDeleter> buffer_;
493 // Checks basic alloc and free.
494 TEST_F(FencedAllocatorWrapperTest, TestBasic) {
495 allocator_->CheckConsistency();
497 const unsigned int kSize = 16;
498 void *pointer = allocator_->Alloc(kSize);
499 ASSERT_TRUE(pointer);
500 EXPECT_LE(buffer_.get(), static_cast<char *>(pointer));
501 EXPECT_GE(kBufferSize, static_cast<char *>(pointer) - buffer_.get() + kSize);
502 EXPECT_TRUE(allocator_->CheckConsistency());
504 allocator_->Free(pointer);
505 EXPECT_TRUE(allocator_->CheckConsistency());
507 char *pointer_char = allocator_->AllocTyped<char>(kSize);
508 ASSERT_TRUE(pointer_char);
509 EXPECT_LE(buffer_.get(), pointer_char);
510 EXPECT_GE(buffer_.get() + kBufferSize, pointer_char + kSize);
511 allocator_->Free(pointer_char);
512 EXPECT_TRUE(allocator_->CheckConsistency());
514 unsigned int *pointer_uint = allocator_->AllocTyped<unsigned int>(kSize);
515 ASSERT_TRUE(pointer_uint);
516 EXPECT_LE(buffer_.get(), reinterpret_cast<char *>(pointer_uint));
517 EXPECT_GE(buffer_.get() + kBufferSize,
518 reinterpret_cast<char *>(pointer_uint + kSize));
520 // Check that it did allocate kSize * sizeof(unsigned int). We can't tell
521 // directly, except from the remaining size.
522 EXPECT_EQ(kBufferSize - kSize * sizeof(*pointer_uint),
523 allocator_->GetLargestFreeSize());
524 allocator_->Free(pointer_uint);
527 // Test alloc 0 fails.
528 TEST_F(FencedAllocatorWrapperTest, TestAllocZero) {
529 allocator_->CheckConsistency();
531 void *pointer = allocator_->Alloc(0);
532 ASSERT_FALSE(pointer);
533 EXPECT_TRUE(allocator_->CheckConsistency());
536 // Checks that allocation offsets are aligned to multiples of 16 bytes.
537 TEST_F(FencedAllocatorWrapperTest, TestAlignment) {
538 allocator_->CheckConsistency();
540 const unsigned int kSize1 = 75;
541 void *pointer1 = allocator_->Alloc(kSize1);
542 ASSERT_TRUE(pointer1);
543 EXPECT_EQ(reinterpret_cast<intptr_t>(pointer1) & (kAllocAlignment - 1), 0);
544 EXPECT_TRUE(allocator_->CheckConsistency());
546 const unsigned int kSize2 = 43;
547 void *pointer2 = allocator_->Alloc(kSize2);
548 ASSERT_TRUE(pointer2);
549 EXPECT_EQ(reinterpret_cast<intptr_t>(pointer2) & (kAllocAlignment - 1), 0);
550 EXPECT_TRUE(allocator_->CheckConsistency());
552 allocator_->Free(pointer2);
553 EXPECT_TRUE(allocator_->CheckConsistency());
555 allocator_->Free(pointer1);
556 EXPECT_TRUE(allocator_->CheckConsistency());
559 // Checks out-of-memory condition.
560 TEST_F(FencedAllocatorWrapperTest, TestOutOfMemory) {
561 allocator_->CheckConsistency();
563 const unsigned int kSize = 16;
564 const unsigned int kAllocCount = kBufferSize / kSize;
565 CHECK(kAllocCount * kSize == kBufferSize);
567 // Allocate several buffers to fill in the memory.
568 void *pointers[kAllocCount];
569 for (unsigned int i = 0; i < kAllocCount; ++i) {
570 pointers[i] = allocator_->Alloc(kSize);
571 EXPECT_TRUE(pointers[i]);
572 EXPECT_TRUE(allocator_->CheckConsistency());
575 // This allocation should fail.
576 void *pointer_failed = allocator_->Alloc(kSize);
577 EXPECT_FALSE(pointer_failed);
578 EXPECT_TRUE(allocator_->CheckConsistency());
580 // Free one successful allocation, reallocate with half the size
581 allocator_->Free(pointers[0]);
582 EXPECT_TRUE(allocator_->CheckConsistency());
583 pointers[0] = allocator_->Alloc(kSize/2);
584 EXPECT_TRUE(pointers[0]);
585 EXPECT_TRUE(allocator_->CheckConsistency());
587 // This allocation should fail as well.
588 pointer_failed = allocator_->Alloc(kSize);
589 EXPECT_FALSE(pointer_failed);
590 EXPECT_TRUE(allocator_->CheckConsistency());
592 // Free up everything.
593 for (unsigned int i = 0; i < kAllocCount; ++i) {
594 allocator_->Free(pointers[i]);
595 EXPECT_TRUE(allocator_->CheckConsistency());
599 // Checks the free-pending-token mechanism.
600 TEST_F(FencedAllocatorWrapperTest, TestFreePendingToken) {
601 allocator_->CheckConsistency();
603 const unsigned int kSize = 16;
604 const unsigned int kAllocCount = kBufferSize / kSize;
605 CHECK(kAllocCount * kSize == kBufferSize);
607 // Allocate several buffers to fill in the memory.
608 void *pointers[kAllocCount];
609 for (unsigned int i = 0; i < kAllocCount; ++i) {
610 pointers[i] = allocator_->Alloc(kSize);
611 EXPECT_TRUE(pointers[i]);
612 EXPECT_TRUE(allocator_->CheckConsistency());
615 // This allocation should fail.
616 void *pointer_failed = allocator_->Alloc(kSize);
617 EXPECT_FALSE(pointer_failed);
618 EXPECT_TRUE(allocator_->CheckConsistency());
620 // Free one successful allocation, pending fence.
621 int32 token = helper_.get()->InsertToken();
622 allocator_->FreePendingToken(pointers[0], token);
623 EXPECT_TRUE(allocator_->CheckConsistency());
625 // The way we hooked up the helper and engine, it won't process commands
626 // until it has to wait for something. Which means the token shouldn't have
627 // passed yet at this point.
628 EXPECT_GT(token, GetToken());
630 // This allocation will need to reclaim the space freed above, so that should
631 // process the commands until the token is passed.
632 pointers[0] = allocator_->Alloc(kSize);
633 EXPECT_TRUE(pointers[0]);
634 EXPECT_TRUE(allocator_->CheckConsistency());
635 // Check that the token has indeed passed.
636 EXPECT_LE(token, GetToken());
638 // Free up everything.
639 for (unsigned int i = 0; i < kAllocCount; ++i) {
640 allocator_->Free(pointers[i]);
641 EXPECT_TRUE(allocator_->CheckConsistency());
645 } // namespace gpu