Updating trunk VERSION from 2139.0 to 2140.0
[chromium-blink-merge.git] / net / disk_cache / blockfile / entry_impl_v3.cc
blobc8898e069d62fd6a317c6dbb71013daa97b587bc
1 // Copyright (c) 2012 The Chromium Authors. All rights reserved.
2 // Use of this source code is governed by a BSD-style license that can be
3 // found in the LICENSE file.
5 #include "net/disk_cache/blockfile/entry_impl_v3.h"
7 #include "base/hash.h"
8 #include "base/message_loop/message_loop.h"
9 #include "base/metrics/histogram.h"
10 #include "base/strings/string_util.h"
11 #include "net/base/io_buffer.h"
12 #include "net/base/net_errors.h"
13 #include "net/disk_cache/blockfile/backend_impl_v3.h"
14 #include "net/disk_cache/blockfile/bitmap.h"
15 #include "net/disk_cache/blockfile/disk_format_v3.h"
16 #include "net/disk_cache/blockfile/histogram_macros_v3.h"
17 #include "net/disk_cache/cache_util.h"
18 #include "net/disk_cache/net_log_parameters.h"
19 // #include "net/disk_cache/blockfile/sparse_control_v3.h"
21 // Provide a BackendImpl object to macros from histogram_macros.h.
22 #define CACHE_UMA_BACKEND_IMPL_OBJ backend_
24 using base::Time;
25 using base::TimeDelta;
26 using base::TimeTicks;
28 namespace {
30 const int kMaxBufferSize = 1024 * 1024; // 1 MB.
32 } // namespace
34 namespace disk_cache {
36 typedef StorageBlock<EntryRecord> CacheEntryBlockV3;
37 typedef StorageBlock<ShortEntryRecord> CacheShortEntryBlock;
39 // This class handles individual memory buffers that store data before it is
40 // sent to disk. The buffer can start at any offset, but if we try to write to
41 // anywhere in the first 16KB of the file (kMaxBlockSize), we set the offset to
42 // zero. The buffer grows up to a size determined by the backend, to keep the
43 // total memory used under control.
44 class EntryImplV3::UserBuffer {
45 public:
46 explicit UserBuffer(BackendImplV3* backend)
47 : backend_(backend->GetWeakPtr()), offset_(0), grow_allowed_(true) {
48 buffer_.reserve(kMaxBlockSize);
50 ~UserBuffer() {
51 if (backend_)
52 backend_->BufferDeleted(capacity() - kMaxBlockSize);
55 // Returns true if we can handle writing |len| bytes to |offset|.
56 bool PreWrite(int offset, int len);
58 // Truncates the buffer to |offset| bytes.
59 void Truncate(int offset);
61 // Writes |len| bytes from |buf| at the given |offset|.
62 void Write(int offset, IOBuffer* buf, int len);
64 // Returns true if we can read |len| bytes from |offset|, given that the
65 // actual file has |eof| bytes stored. Note that the number of bytes to read
66 // may be modified by this method even though it returns false: that means we
67 // should do a smaller read from disk.
68 bool PreRead(int eof, int offset, int* len);
70 // Read |len| bytes from |buf| at the given |offset|.
71 int Read(int offset, IOBuffer* buf, int len);
73 // Prepare this buffer for reuse.
74 void Reset();
76 char* Data() { return buffer_.size() ? &buffer_[0] : NULL; }
77 int Size() { return static_cast<int>(buffer_.size()); }
78 int Start() { return offset_; }
79 int End() { return offset_ + Size(); }
81 private:
82 int capacity() { return static_cast<int>(buffer_.capacity()); }
83 bool GrowBuffer(int required, int limit);
85 base::WeakPtr<BackendImplV3> backend_;
86 int offset_;
87 std::vector<char> buffer_;
88 bool grow_allowed_;
89 DISALLOW_COPY_AND_ASSIGN(UserBuffer);
92 bool EntryImplV3::UserBuffer::PreWrite(int offset, int len) {
93 DCHECK_GE(offset, 0);
94 DCHECK_GE(len, 0);
95 DCHECK_GE(offset + len, 0);
97 // We don't want to write before our current start.
98 if (offset < offset_)
99 return false;
101 // Lets get the common case out of the way.
102 if (offset + len <= capacity())
103 return true;
105 // If we are writing to the first 16K (kMaxBlockSize), we want to keep the
106 // buffer offset_ at 0.
107 if (!Size() && offset > kMaxBlockSize)
108 return GrowBuffer(len, kMaxBufferSize);
110 int required = offset - offset_ + len;
111 return GrowBuffer(required, kMaxBufferSize * 6 / 5);
114 void EntryImplV3::UserBuffer::Truncate(int offset) {
115 DCHECK_GE(offset, 0);
116 DCHECK_GE(offset, offset_);
117 DVLOG(3) << "Buffer truncate at " << offset << " current " << offset_;
119 offset -= offset_;
120 if (Size() >= offset)
121 buffer_.resize(offset);
124 void EntryImplV3::UserBuffer::Write(int offset, IOBuffer* buf, int len) {
125 DCHECK_GE(offset, 0);
126 DCHECK_GE(len, 0);
127 DCHECK_GE(offset + len, 0);
128 DCHECK_GE(offset, offset_);
129 DVLOG(3) << "Buffer write at " << offset << " current " << offset_;
131 if (!Size() && offset > kMaxBlockSize)
132 offset_ = offset;
134 offset -= offset_;
136 if (offset > Size())
137 buffer_.resize(offset);
139 if (!len)
140 return;
142 char* buffer = buf->data();
143 int valid_len = Size() - offset;
144 int copy_len = std::min(valid_len, len);
145 if (copy_len) {
146 memcpy(&buffer_[offset], buffer, copy_len);
147 len -= copy_len;
148 buffer += copy_len;
150 if (!len)
151 return;
153 buffer_.insert(buffer_.end(), buffer, buffer + len);
156 bool EntryImplV3::UserBuffer::PreRead(int eof, int offset, int* len) {
157 DCHECK_GE(offset, 0);
158 DCHECK_GT(*len, 0);
160 if (offset < offset_) {
161 // We are reading before this buffer.
162 if (offset >= eof)
163 return true;
165 // If the read overlaps with the buffer, change its length so that there is
166 // no overlap.
167 *len = std::min(*len, offset_ - offset);
168 *len = std::min(*len, eof - offset);
170 // We should read from disk.
171 return false;
174 if (!Size())
175 return false;
177 // See if we can fulfill the first part of the operation.
178 return (offset - offset_ < Size());
181 int EntryImplV3::UserBuffer::Read(int offset, IOBuffer* buf, int len) {
182 DCHECK_GE(offset, 0);
183 DCHECK_GT(len, 0);
184 DCHECK(Size() || offset < offset_);
186 int clean_bytes = 0;
187 if (offset < offset_) {
188 // We don't have a file so lets fill the first part with 0.
189 clean_bytes = std::min(offset_ - offset, len);
190 memset(buf->data(), 0, clean_bytes);
191 if (len == clean_bytes)
192 return len;
193 offset = offset_;
194 len -= clean_bytes;
197 int start = offset - offset_;
198 int available = Size() - start;
199 DCHECK_GE(start, 0);
200 DCHECK_GE(available, 0);
201 len = std::min(len, available);
202 memcpy(buf->data() + clean_bytes, &buffer_[start], len);
203 return len + clean_bytes;
206 void EntryImplV3::UserBuffer::Reset() {
207 if (!grow_allowed_) {
208 if (backend_)
209 backend_->BufferDeleted(capacity() - kMaxBlockSize);
210 grow_allowed_ = true;
211 std::vector<char> tmp;
212 buffer_.swap(tmp);
213 buffer_.reserve(kMaxBlockSize);
215 offset_ = 0;
216 buffer_.clear();
219 bool EntryImplV3::UserBuffer::GrowBuffer(int required, int limit) {
220 DCHECK_GE(required, 0);
221 int current_size = capacity();
222 if (required <= current_size)
223 return true;
225 if (required > limit)
226 return false;
228 if (!backend_)
229 return false;
231 int to_add = std::max(required - current_size, kMaxBlockSize * 4);
232 to_add = std::max(current_size, to_add);
233 required = std::min(current_size + to_add, limit);
235 grow_allowed_ = backend_->IsAllocAllowed(current_size, required);
236 if (!grow_allowed_)
237 return false;
239 DVLOG(3) << "Buffer grow to " << required;
241 buffer_.reserve(required);
242 return true;
245 // ------------------------------------------------------------------------
247 EntryImplV3::EntryImplV3(BackendImplV3* backend, Addr address, bool read_only)
248 : backend_(backend->GetWeakPtr()),
249 address_(address),
250 doomed_(false),
251 read_only_(read_only),
252 dirty_(true),
253 modified_(false) {
254 for (int i = 0; i < kNumStreams; i++) {
255 unreported_size_[i] = 0;
259 #if defined(V3_NOT_JUST_YET_READY)
261 bool EntryImplV3::CreateEntry(Addr node_address, const std::string& key,
262 uint32 hash) {
263 Trace("Create entry In");
264 EntryStore* entry_store = entry_.Data();
265 RankingsNode* node = node_.Data();
266 memset(entry_store, 0, sizeof(EntryStore) * entry_.address().num_blocks());
267 memset(node, 0, sizeof(RankingsNode));
268 if (!node_.LazyInit(backend_->File(node_address), node_address))
269 return false;
271 entry_store->rankings_node = node_address.value();
272 node->contents = entry_.address().value();
274 entry_store->hash = hash;
275 entry_store->creation_time = Time::Now().ToInternalValue();
276 entry_store->key_len = static_cast<int32>(key.size());
277 if (entry_store->key_len > kMaxInternalKeyLength) {
278 Addr address(0);
279 if (!CreateBlock(entry_store->key_len + 1, &address))
280 return false;
282 entry_store->long_key = address.value();
283 File* key_file = GetBackingFile(address, kKeyFileIndex);
284 key_ = key;
286 size_t offset = 0;
287 if (address.is_block_file())
288 offset = address.start_block() * address.BlockSize() + kBlockHeaderSize;
290 if (!key_file || !key_file->Write(key.data(), key.size(), offset)) {
291 DeleteData(address, kKeyFileIndex);
292 return false;
295 if (address.is_separate_file())
296 key_file->SetLength(key.size() + 1);
297 } else {
298 memcpy(entry_store->key, key.data(), key.size());
299 entry_store->key[key.size()] = '\0';
301 backend_->ModifyStorageSize(0, static_cast<int32>(key.size()));
302 CACHE_UMA(COUNTS, "KeySize", 0, static_cast<int32>(key.size()));
303 node->dirty = backend_->GetCurrentEntryId();
304 Log("Create Entry ");
305 return true;
308 uint32 EntryImplV3::GetHash() {
309 return entry_.Data()->hash;
312 bool EntryImplV3::IsSameEntry(const std::string& key, uint32 hash) {
313 if (entry_.Data()->hash != hash ||
314 static_cast<size_t>(entry_.Data()->key_len) != key.size())
315 return false;
317 return (key.compare(GetKey()) == 0);
320 void EntryImplV3::InternalDoom() {
321 net_log_.AddEvent(net::NetLog::TYPE_ENTRY_DOOM);
322 DCHECK(node_.HasData());
323 if (!node_.Data()->dirty) {
324 node_.Data()->dirty = backend_->GetCurrentEntryId();
325 node_.Store();
327 doomed_ = true;
330 // This only includes checks that relate to the first block of the entry (the
331 // first 256 bytes), and values that should be set from the entry creation.
332 // Basically, even if there is something wrong with this entry, we want to see
333 // if it is possible to load the rankings node and delete them together.
334 bool EntryImplV3::SanityCheck() {
335 if (!entry_.VerifyHash())
336 return false;
338 EntryStore* stored = entry_.Data();
339 if (!stored->rankings_node || stored->key_len <= 0)
340 return false;
342 if (stored->reuse_count < 0 || stored->refetch_count < 0)
343 return false;
345 Addr rankings_addr(stored->rankings_node);
346 if (!rankings_addr.SanityCheckForRankings())
347 return false;
349 Addr next_addr(stored->next);
350 if (next_addr.is_initialized() && !next_addr.SanityCheckForEntry()) {
351 STRESS_NOTREACHED();
352 return false;
354 STRESS_DCHECK(next_addr.value() != entry_.address().value());
356 if (stored->state > ENTRY_DOOMED || stored->state < ENTRY_NORMAL)
357 return false;
359 Addr key_addr(stored->long_key);
360 if ((stored->key_len <= kMaxInternalKeyLength && key_addr.is_initialized()) ||
361 (stored->key_len > kMaxInternalKeyLength && !key_addr.is_initialized()))
362 return false;
364 if (!key_addr.SanityCheck())
365 return false;
367 if (key_addr.is_initialized() &&
368 ((stored->key_len < kMaxBlockSize && key_addr.is_separate_file()) ||
369 (stored->key_len >= kMaxBlockSize && key_addr.is_block_file())))
370 return false;
372 int num_blocks = NumBlocksForEntry(stored->key_len);
373 if (entry_.address().num_blocks() != num_blocks)
374 return false;
376 return true;
379 bool EntryImplV3::DataSanityCheck() {
380 EntryStore* stored = entry_.Data();
381 Addr key_addr(stored->long_key);
383 // The key must be NULL terminated.
384 if (!key_addr.is_initialized() && stored->key[stored->key_len])
385 return false;
387 if (stored->hash != base::Hash(GetKey()))
388 return false;
390 for (int i = 0; i < kNumStreams; i++) {
391 Addr data_addr(stored->data_addr[i]);
392 int data_size = stored->data_size[i];
393 if (data_size < 0)
394 return false;
395 if (!data_size && data_addr.is_initialized())
396 return false;
397 if (!data_addr.SanityCheck())
398 return false;
399 if (!data_size)
400 continue;
401 if (data_size <= kMaxBlockSize && data_addr.is_separate_file())
402 return false;
403 if (data_size > kMaxBlockSize && data_addr.is_block_file())
404 return false;
406 return true;
409 void EntryImplV3::FixForDelete() {
410 EntryStore* stored = entry_.Data();
411 Addr key_addr(stored->long_key);
413 if (!key_addr.is_initialized())
414 stored->key[stored->key_len] = '\0';
416 for (int i = 0; i < kNumStreams; i++) {
417 Addr data_addr(stored->data_addr[i]);
418 int data_size = stored->data_size[i];
419 if (data_addr.is_initialized()) {
420 if ((data_size <= kMaxBlockSize && data_addr.is_separate_file()) ||
421 (data_size > kMaxBlockSize && data_addr.is_block_file()) ||
422 !data_addr.SanityCheck()) {
423 STRESS_NOTREACHED();
424 // The address is weird so don't attempt to delete it.
425 stored->data_addr[i] = 0;
426 // In general, trust the stored size as it should be in sync with the
427 // total size tracked by the backend.
430 if (data_size < 0)
431 stored->data_size[i] = 0;
433 entry_.Store();
436 void EntryImplV3::SetTimes(base::Time last_used, base::Time last_modified) {
437 node_.Data()->last_used = last_used.ToInternalValue();
438 node_.Data()->last_modified = last_modified.ToInternalValue();
439 node_.set_modified();
442 void EntryImplV3::BeginLogging(net::NetLog* net_log, bool created) {
443 DCHECK(!net_log_.net_log());
444 net_log_ = net::BoundNetLog::Make(
445 net_log, net::NetLog::SOURCE_DISK_CACHE_ENTRY);
446 net_log_.BeginEvent(
447 net::NetLog::TYPE_DISK_CACHE_ENTRY_IMPL,
448 CreateNetLogEntryCreationCallback(this, created));
451 const net::BoundNetLog& EntryImplV3::net_log() const {
452 return net_log_;
455 // ------------------------------------------------------------------------
457 void EntryImplV3::Doom() {
458 if (background_queue_)
459 background_queue_->DoomEntryImpl(this);
462 void EntryImplV3::DoomImpl() {
463 if (doomed_ || !backend_)
464 return;
466 SetPointerForInvalidEntry(backend_->GetCurrentEntryId());
467 backend_->InternalDoomEntry(this);
470 void EntryImplV3::Close() {
471 if (background_queue_)
472 background_queue_->CloseEntryImpl(this);
475 std::string EntryImplV3::GetKey() const {
476 CacheEntryBlock* entry = const_cast<CacheEntryBlock*>(&entry_);
477 int key_len = entry->Data()->key_len;
478 if (key_len <= kMaxInternalKeyLength)
479 return std::string(entry->Data()->key);
481 // We keep a copy of the key so that we can always return it, even if the
482 // backend is disabled.
483 if (!key_.empty())
484 return key_;
486 Addr address(entry->Data()->long_key);
487 DCHECK(address.is_initialized());
488 size_t offset = 0;
489 if (address.is_block_file())
490 offset = address.start_block() * address.BlockSize() + kBlockHeaderSize;
492 COMPILE_ASSERT(kNumStreams == kKeyFileIndex, invalid_key_index);
493 File* key_file = const_cast<EntryImpl*>(this)->GetBackingFile(address,
494 kKeyFileIndex);
495 if (!key_file)
496 return std::string();
498 ++key_len; // We store a trailing \0 on disk that we read back below.
499 if (!offset && key_file->GetLength() != static_cast<size_t>(key_len))
500 return std::string();
502 if (!key_file->Read(WriteInto(&key_, key_len), key_len, offset))
503 key_.clear();
504 return key_;
507 Time EntryImplV3::GetLastUsed() const {
508 CacheRankingsBlock* node = const_cast<CacheRankingsBlock*>(&node_);
509 return Time::FromInternalValue(node->Data()->last_used);
512 Time EntryImplV3::GetLastModified() const {
513 CacheRankingsBlock* node = const_cast<CacheRankingsBlock*>(&node_);
514 return Time::FromInternalValue(node->Data()->last_modified);
517 int32 EntryImplV3::GetDataSize(int index) const {
518 if (index < 0 || index >= kNumStreams)
519 return 0;
521 CacheEntryBlock* entry = const_cast<CacheEntryBlock*>(&entry_);
522 return entry->Data()->data_size[index];
525 int EntryImplV3::ReadData(int index, int offset, IOBuffer* buf, int buf_len,
526 const CompletionCallback& callback) {
527 if (callback.is_null())
528 return ReadDataImpl(index, offset, buf, buf_len, callback);
530 DCHECK(node_.Data()->dirty || read_only_);
531 if (index < 0 || index >= kNumStreams)
532 return net::ERR_INVALID_ARGUMENT;
534 int entry_size = entry_.Data()->data_size[index];
535 if (offset >= entry_size || offset < 0 || !buf_len)
536 return 0;
538 if (buf_len < 0)
539 return net::ERR_INVALID_ARGUMENT;
541 if (!background_queue_)
542 return net::ERR_UNEXPECTED;
544 background_queue_->ReadData(this, index, offset, buf, buf_len, callback);
545 return net::ERR_IO_PENDING;
548 int EntryImpl::ReadDataImpl(int index, int offset, IOBuffer* buf, int buf_len,
549 const CompletionCallback& callback) {
550 if (net_log_.IsLogging()) {
551 net_log_.BeginEvent(
552 net::NetLog::TYPE_ENTRY_READ_DATA,
553 CreateNetLogReadWriteDataCallback(index, offset, buf_len, false));
556 int result = InternalReadData(index, offset, buf, buf_len, callback);
558 if (result != net::ERR_IO_PENDING && net_log_.IsLogging()) {
559 net_log_.EndEvent(
560 net::NetLog::TYPE_ENTRY_READ_DATA,
561 CreateNetLogReadWriteCompleteCallback(result));
563 return result;
566 int EntryImplV3::WriteData(int index, int offset, IOBuffer* buf, int buf_len,
567 const CompletionCallback& callback, bool truncate) {
568 if (callback.is_null())
569 return WriteDataImpl(index, offset, buf, buf_len, callback, truncate);
571 DCHECK(node_.Data()->dirty || read_only_);
572 if (index < 0 || index >= kNumStreams)
573 return net::ERR_INVALID_ARGUMENT;
575 if (offset < 0 || buf_len < 0)
576 return net::ERR_INVALID_ARGUMENT;
578 if (!background_queue_)
579 return net::ERR_UNEXPECTED;
581 background_queue_->WriteData(this, index, offset, buf, buf_len, truncate,
582 callback);
583 return net::ERR_IO_PENDING;
586 int EntryImpl::WriteDataImpl(int index, int offset, IOBuffer* buf, int buf_len,
587 const CompletionCallback& callback,
588 bool truncate) {
589 if (net_log_.IsLogging()) {
590 net_log_.BeginEvent(
591 net::NetLog::TYPE_ENTRY_WRITE_DATA,
592 CreateNetLogReadWriteDataCallback(index, offset, buf_len, truncate));
595 int result = InternalWriteData(index, offset, buf, buf_len, callback,
596 truncate);
598 if (result != net::ERR_IO_PENDING && net_log_.IsLogging()) {
599 net_log_.EndEvent(
600 net::NetLog::TYPE_ENTRY_WRITE_DATA,
601 CreateNetLogReadWriteCompleteCallback(result));
603 return result;
606 int EntryImplV3::ReadSparseData(int64 offset, IOBuffer* buf, int buf_len,
607 const CompletionCallback& callback) {
608 if (callback.is_null())
609 return ReadSparseDataImpl(offset, buf, buf_len, callback);
611 if (!background_queue_)
612 return net::ERR_UNEXPECTED;
614 background_queue_->ReadSparseData(this, offset, buf, buf_len, callback);
615 return net::ERR_IO_PENDING;
618 int EntryImpl::ReadSparseDataImpl(int64 offset, IOBuffer* buf, int buf_len,
619 const CompletionCallback& callback) {
620 DCHECK(node_.Data()->dirty || read_only_);
621 int result = InitSparseData();
622 if (net::OK != result)
623 return result;
625 TimeTicks start = TimeTicks::Now();
626 result = sparse_->StartIO(SparseControl::kReadOperation, offset, buf, buf_len,
627 callback);
628 ReportIOTime(kSparseRead, start);
629 return result;
632 int EntryImplV3::WriteSparseData(int64 offset, IOBuffer* buf, int buf_len,
633 const CompletionCallback& callback) {
634 if (callback.is_null())
635 return WriteSparseDataImpl(offset, buf, buf_len, callback);
637 if (!background_queue_)
638 return net::ERR_UNEXPECTED;
640 background_queue_->WriteSparseData(this, offset, buf, buf_len, callback);
641 return net::ERR_IO_PENDING;
644 int EntryImpl::WriteSparseDataImpl(int64 offset, IOBuffer* buf, int buf_len,
645 const CompletionCallback& callback) {
646 DCHECK(node_.Data()->dirty || read_only_);
647 int result = InitSparseData();
648 if (net::OK != result)
649 return result;
651 TimeTicks start = TimeTicks::Now();
652 result = sparse_->StartIO(SparseControl::kWriteOperation, offset, buf,
653 buf_len, callback);
654 ReportIOTime(kSparseWrite, start);
655 return result;
658 int EntryImplV3::GetAvailableRange(int64 offset, int len, int64* start,
659 const CompletionCallback& callback) {
660 if (!background_queue_)
661 return net::ERR_UNEXPECTED;
663 background_queue_->GetAvailableRange(this, offset, len, start, callback);
664 return net::ERR_IO_PENDING;
667 int EntryImpl::GetAvailableRangeImpl(int64 offset, int len, int64* start) {
668 int result = InitSparseData();
669 if (net::OK != result)
670 return result;
672 return sparse_->GetAvailableRange(offset, len, start);
675 bool EntryImplV3::CouldBeSparse() const {
676 if (sparse_.get())
677 return true;
679 scoped_ptr<SparseControl> sparse;
680 sparse.reset(new SparseControl(const_cast<EntryImpl*>(this)));
681 return sparse->CouldBeSparse();
684 void EntryImplV3::CancelSparseIO() {
685 if (background_queue_)
686 background_queue_->CancelSparseIO(this);
689 void EntryImplV3::CancelSparseIOImpl() {
690 if (!sparse_.get())
691 return;
693 sparse_->CancelIO();
696 int EntryImplV3::ReadyForSparseIO(const CompletionCallback& callback) {
697 if (!sparse_.get())
698 return net::OK;
700 if (!background_queue_)
701 return net::ERR_UNEXPECTED;
703 background_queue_->ReadyForSparseIO(this, callback);
704 return net::ERR_IO_PENDING;
707 int EntryImplV3::ReadyForSparseIOImpl(const CompletionCallback& callback) {
708 DCHECK(sparse_.get());
709 return sparse_->ReadyToUse(callback);
712 // ------------------------------------------------------------------------
714 // When an entry is deleted from the cache, we clean up all the data associated
715 // with it for two reasons: to simplify the reuse of the block (we know that any
716 // unused block is filled with zeros), and to simplify the handling of write /
717 // read partial information from an entry (don't have to worry about returning
718 // data related to a previous cache entry because the range was not fully
719 // written before).
720 EntryImplV3::~EntryImplV3() {
721 if (!backend_) {
722 entry_.clear_modified();
723 node_.clear_modified();
724 return;
726 Log("~EntryImpl in");
728 // Save the sparse info to disk. This will generate IO for this entry and
729 // maybe for a child entry, so it is important to do it before deleting this
730 // entry.
731 sparse_.reset();
733 // Remove this entry from the list of open entries.
734 backend_->OnEntryDestroyBegin(entry_.address());
736 if (doomed_) {
737 DeleteEntryData(true);
738 } else {
739 #if defined(NET_BUILD_STRESS_CACHE)
740 SanityCheck();
741 #endif
742 net_log_.AddEvent(net::NetLog::TYPE_ENTRY_CLOSE);
743 bool ret = true;
744 for (int index = 0; index < kNumStreams; index++) {
745 if (user_buffers_[index].get()) {
746 if (!(ret = Flush(index, 0)))
747 LOG(ERROR) << "Failed to save user data";
749 if (unreported_size_[index]) {
750 backend_->ModifyStorageSize(
751 entry_.Data()->data_size[index] - unreported_size_[index],
752 entry_.Data()->data_size[index]);
756 if (!ret) {
757 // There was a failure writing the actual data. Mark the entry as dirty.
758 int current_id = backend_->GetCurrentEntryId();
759 node_.Data()->dirty = current_id == 1 ? -1 : current_id - 1;
760 node_.Store();
761 } else if (node_.HasData() && !dirty_ && node_.Data()->dirty) {
762 node_.Data()->dirty = 0;
763 node_.Store();
767 Trace("~EntryImpl out 0x%p", reinterpret_cast<void*>(this));
768 net_log_.EndEvent(net::NetLog::TYPE_DISK_CACHE_ENTRY_IMPL);
769 backend_->OnEntryDestroyEnd();
772 int EntryImpl::InternalReadData(int index, int offset,
773 IOBuffer* buf, int buf_len,
774 const CompletionCallback& callback) {
775 DCHECK(node_.Data()->dirty || read_only_);
776 DVLOG(2) << "Read from " << index << " at " << offset << " : " << buf_len;
777 if (index < 0 || index >= kNumStreams)
778 return net::ERR_INVALID_ARGUMENT;
780 int entry_size = entry_.Data()->data_size[index];
781 if (offset >= entry_size || offset < 0 || !buf_len)
782 return 0;
784 if (buf_len < 0)
785 return net::ERR_INVALID_ARGUMENT;
787 if (!backend_)
788 return net::ERR_UNEXPECTED;
790 TimeTicks start = TimeTicks::Now();
792 if (offset + buf_len > entry_size)
793 buf_len = entry_size - offset;
795 UpdateRank(false);
797 backend_->OnEvent(Stats::READ_DATA);
798 backend_->OnRead(buf_len);
800 Addr address(entry_.Data()->data_addr[index]);
801 int eof = address.is_initialized() ? entry_size : 0;
802 if (user_buffers_[index].get() &&
803 user_buffers_[index]->PreRead(eof, offset, &buf_len)) {
804 // Complete the operation locally.
805 buf_len = user_buffers_[index]->Read(offset, buf, buf_len);
806 ReportIOTime(kRead, start);
807 return buf_len;
810 address.set_value(entry_.Data()->data_addr[index]);
811 DCHECK(address.is_initialized());
812 if (!address.is_initialized()) {
813 DoomImpl();
814 return net::ERR_FAILED;
817 File* file = GetBackingFile(address, index);
818 if (!file) {
819 DoomImpl();
820 LOG(ERROR) << "No file for " << std::hex << address.value();
821 return net::ERR_FILE_NOT_FOUND;
824 size_t file_offset = offset;
825 if (address.is_block_file()) {
826 DCHECK_LE(offset + buf_len, kMaxBlockSize);
827 file_offset += address.start_block() * address.BlockSize() +
828 kBlockHeaderSize;
831 SyncCallback* io_callback = NULL;
832 if (!callback.is_null()) {
833 io_callback = new SyncCallback(this, buf, callback,
834 net::NetLog::TYPE_ENTRY_READ_DATA);
837 TimeTicks start_async = TimeTicks::Now();
839 bool completed;
840 if (!file->Read(buf->data(), buf_len, file_offset, io_callback, &completed)) {
841 if (io_callback)
842 io_callback->Discard();
843 DoomImpl();
844 return net::ERR_CACHE_READ_FAILURE;
847 if (io_callback && completed)
848 io_callback->Discard();
850 if (io_callback)
851 ReportIOTime(kReadAsync1, start_async);
853 ReportIOTime(kRead, start);
854 return (completed || callback.is_null()) ? buf_len : net::ERR_IO_PENDING;
857 int EntryImpl::InternalWriteData(int index, int offset,
858 IOBuffer* buf, int buf_len,
859 const CompletionCallback& callback,
860 bool truncate) {
861 DCHECK(node_.Data()->dirty || read_only_);
862 DVLOG(2) << "Write to " << index << " at " << offset << " : " << buf_len;
863 if (index < 0 || index >= kNumStreams)
864 return net::ERR_INVALID_ARGUMENT;
866 if (offset < 0 || buf_len < 0)
867 return net::ERR_INVALID_ARGUMENT;
869 if (!backend_)
870 return net::ERR_UNEXPECTED;
872 int max_file_size = backend_->MaxFileSize();
874 // offset or buf_len could be negative numbers.
875 if (offset > max_file_size || buf_len > max_file_size ||
876 offset + buf_len > max_file_size) {
877 int size = offset + buf_len;
878 if (size <= max_file_size)
879 size = kint32max;
880 backend_->TooMuchStorageRequested(size);
881 return net::ERR_FAILED;
884 TimeTicks start = TimeTicks::Now();
886 // Read the size at this point (it may change inside prepare).
887 int entry_size = entry_.Data()->data_size[index];
888 bool extending = entry_size < offset + buf_len;
889 truncate = truncate && entry_size > offset + buf_len;
890 Trace("To PrepareTarget 0x%x", entry_.address().value());
891 if (!PrepareTarget(index, offset, buf_len, truncate))
892 return net::ERR_FAILED;
894 Trace("From PrepareTarget 0x%x", entry_.address().value());
895 if (extending || truncate)
896 UpdateSize(index, entry_size, offset + buf_len);
898 UpdateRank(true);
900 backend_->OnEvent(Stats::WRITE_DATA);
901 backend_->OnWrite(buf_len);
903 if (user_buffers_[index].get()) {
904 // Complete the operation locally.
905 user_buffers_[index]->Write(offset, buf, buf_len);
906 ReportIOTime(kWrite, start);
907 return buf_len;
910 Addr address(entry_.Data()->data_addr[index]);
911 if (offset + buf_len == 0) {
912 if (truncate) {
913 DCHECK(!address.is_initialized());
915 return 0;
918 File* file = GetBackingFile(address, index);
919 if (!file)
920 return net::ERR_FILE_NOT_FOUND;
922 size_t file_offset = offset;
923 if (address.is_block_file()) {
924 DCHECK_LE(offset + buf_len, kMaxBlockSize);
925 file_offset += address.start_block() * address.BlockSize() +
926 kBlockHeaderSize;
927 } else if (truncate || (extending && !buf_len)) {
928 if (!file->SetLength(offset + buf_len))
929 return net::ERR_FAILED;
932 if (!buf_len)
933 return 0;
935 SyncCallback* io_callback = NULL;
936 if (!callback.is_null()) {
937 io_callback = new SyncCallback(this, buf, callback,
938 net::NetLog::TYPE_ENTRY_WRITE_DATA);
941 TimeTicks start_async = TimeTicks::Now();
943 bool completed;
944 if (!file->Write(buf->data(), buf_len, file_offset, io_callback,
945 &completed)) {
946 if (io_callback)
947 io_callback->Discard();
948 return net::ERR_CACHE_WRITE_FAILURE;
951 if (io_callback && completed)
952 io_callback->Discard();
954 if (io_callback)
955 ReportIOTime(kWriteAsync1, start_async);
957 ReportIOTime(kWrite, start);
958 return (completed || callback.is_null()) ? buf_len : net::ERR_IO_PENDING;
961 // ------------------------------------------------------------------------
963 bool EntryImpl::CreateDataBlock(int index, int size) {
964 DCHECK(index >= 0 && index < kNumStreams);
966 Addr address(entry_.Data()->data_addr[index]);
967 if (!CreateBlock(size, &address))
968 return false;
970 entry_.Data()->data_addr[index] = address.value();
971 entry_.Store();
972 return true;
975 bool EntryImpl::CreateBlock(int size, Addr* address) {
976 DCHECK(!address->is_initialized());
977 if (!backend_)
978 return false;
980 FileType file_type = Addr::RequiredFileType(size);
981 if (EXTERNAL == file_type) {
982 if (size > backend_->MaxFileSize())
983 return false;
984 if (!backend_->CreateExternalFile(address))
985 return false;
986 } else {
987 int num_blocks = Addr::RequiredBlocks(size, file_type);
989 if (!backend_->CreateBlock(file_type, num_blocks, address))
990 return false;
992 return true;
995 // Note that this method may end up modifying a block file so upon return the
996 // involved block will be free, and could be reused for something else. If there
997 // is a crash after that point (and maybe before returning to the caller), the
998 // entry will be left dirty... and at some point it will be discarded; it is
999 // important that the entry doesn't keep a reference to this address, or we'll
1000 // end up deleting the contents of |address| once again.
1001 void EntryImpl::DeleteData(Addr address, int index) {
1002 DCHECK(backend_);
1003 if (!address.is_initialized())
1004 return;
1005 if (address.is_separate_file()) {
1006 int failure = !DeleteCacheFile(backend_->GetFileName(address));
1007 CACHE_UMA(COUNTS, "DeleteFailed", 0, failure);
1008 if (failure) {
1009 LOG(ERROR) << "Failed to delete " <<
1010 backend_->GetFileName(address).value() << " from the cache.";
1012 if (files_[index])
1013 files_[index] = NULL; // Releases the object.
1014 } else {
1015 backend_->DeleteBlock(address, true);
1019 void EntryImpl::UpdateRank(bool modified) {
1020 if (!backend_)
1021 return;
1023 if (!doomed_) {
1024 // Everything is handled by the backend.
1025 backend_->UpdateRank(this, modified);
1026 return;
1029 Time current = Time::Now();
1030 node_.Data()->last_used = current.ToInternalValue();
1032 if (modified)
1033 node_.Data()->last_modified = current.ToInternalValue();
1036 void EntryImpl::DeleteEntryData(bool everything) {
1037 DCHECK(doomed_ || !everything);
1039 if (GetEntryFlags() & PARENT_ENTRY) {
1040 // We have some child entries that must go away.
1041 SparseControl::DeleteChildren(this);
1044 if (GetDataSize(0))
1045 CACHE_UMA(COUNTS, "DeleteHeader", 0, GetDataSize(0));
1046 if (GetDataSize(1))
1047 CACHE_UMA(COUNTS, "DeleteData", 0, GetDataSize(1));
1048 for (int index = 0; index < kNumStreams; index++) {
1049 Addr address(entry_.Data()->data_addr[index]);
1050 if (address.is_initialized()) {
1051 backend_->ModifyStorageSize(entry_.Data()->data_size[index] -
1052 unreported_size_[index], 0);
1053 entry_.Data()->data_addr[index] = 0;
1054 entry_.Data()->data_size[index] = 0;
1055 entry_.Store();
1056 DeleteData(address, index);
1060 if (!everything)
1061 return;
1063 // Remove all traces of this entry.
1064 backend_->RemoveEntry(this);
1066 // Note that at this point node_ and entry_ are just two blocks of data, and
1067 // even if they reference each other, nobody should be referencing them.
1069 Addr address(entry_.Data()->long_key);
1070 DeleteData(address, kKeyFileIndex);
1071 backend_->ModifyStorageSize(entry_.Data()->key_len, 0);
1073 backend_->DeleteBlock(entry_.address(), true);
1074 entry_.Discard();
1076 if (!LeaveRankingsBehind()) {
1077 backend_->DeleteBlock(node_.address(), true);
1078 node_.Discard();
1082 // We keep a memory buffer for everything that ends up stored on a block file
1083 // (because we don't know yet the final data size), and for some of the data
1084 // that end up on external files. This function will initialize that memory
1085 // buffer and / or the files needed to store the data.
1087 // In general, a buffer may overlap data already stored on disk, and in that
1088 // case, the contents of the buffer are the most accurate. It may also extend
1089 // the file, but we don't want to read from disk just to keep the buffer up to
1090 // date. This means that as soon as there is a chance to get confused about what
1091 // is the most recent version of some part of a file, we'll flush the buffer and
1092 // reuse it for the new data. Keep in mind that the normal use pattern is quite
1093 // simple (write sequentially from the beginning), so we optimize for handling
1094 // that case.
1095 bool EntryImpl::PrepareTarget(int index, int offset, int buf_len,
1096 bool truncate) {
1097 if (truncate)
1098 return HandleTruncation(index, offset, buf_len);
1100 if (!offset && !buf_len)
1101 return true;
1103 Addr address(entry_.Data()->data_addr[index]);
1104 if (address.is_initialized()) {
1105 if (address.is_block_file() && !MoveToLocalBuffer(index))
1106 return false;
1108 if (!user_buffers_[index].get() && offset < kMaxBlockSize) {
1109 // We are about to create a buffer for the first 16KB, make sure that we
1110 // preserve existing data.
1111 if (!CopyToLocalBuffer(index))
1112 return false;
1116 if (!user_buffers_[index].get())
1117 user_buffers_[index].reset(new UserBuffer(backend_.get()));
1119 return PrepareBuffer(index, offset, buf_len);
1122 // We get to this function with some data already stored. If there is a
1123 // truncation that results on data stored internally, we'll explicitly
1124 // handle the case here.
1125 bool EntryImpl::HandleTruncation(int index, int offset, int buf_len) {
1126 Addr address(entry_.Data()->data_addr[index]);
1128 int current_size = entry_.Data()->data_size[index];
1129 int new_size = offset + buf_len;
1131 if (!new_size) {
1132 // This is by far the most common scenario.
1133 backend_->ModifyStorageSize(current_size - unreported_size_[index], 0);
1134 entry_.Data()->data_addr[index] = 0;
1135 entry_.Data()->data_size[index] = 0;
1136 unreported_size_[index] = 0;
1137 entry_.Store();
1138 DeleteData(address, index);
1140 user_buffers_[index].reset();
1141 return true;
1144 // We never postpone truncating a file, if there is one, but we may postpone
1145 // telling the backend about the size reduction.
1146 if (user_buffers_[index].get()) {
1147 DCHECK_GE(current_size, user_buffers_[index]->Start());
1148 if (!address.is_initialized()) {
1149 // There is no overlap between the buffer and disk.
1150 if (new_size > user_buffers_[index]->Start()) {
1151 // Just truncate our buffer.
1152 DCHECK_LT(new_size, user_buffers_[index]->End());
1153 user_buffers_[index]->Truncate(new_size);
1154 return true;
1157 // Just discard our buffer.
1158 user_buffers_[index]->Reset();
1159 return PrepareBuffer(index, offset, buf_len);
1162 // There is some overlap or we need to extend the file before the
1163 // truncation.
1164 if (offset > user_buffers_[index]->Start())
1165 user_buffers_[index]->Truncate(new_size);
1166 UpdateSize(index, current_size, new_size);
1167 if (!Flush(index, 0))
1168 return false;
1169 user_buffers_[index].reset();
1172 // We have data somewhere, and it is not in a buffer.
1173 DCHECK(!user_buffers_[index].get());
1174 DCHECK(address.is_initialized());
1176 if (new_size > kMaxBlockSize)
1177 return true; // Let the operation go directly to disk.
1179 return ImportSeparateFile(index, offset + buf_len);
1182 bool EntryImpl::CopyToLocalBuffer(int index) {
1183 Addr address(entry_.Data()->data_addr[index]);
1184 DCHECK(!user_buffers_[index].get());
1185 DCHECK(address.is_initialized());
1187 int len = std::min(entry_.Data()->data_size[index], kMaxBlockSize);
1188 user_buffers_[index].reset(new UserBuffer(backend_.get()));
1189 user_buffers_[index]->Write(len, NULL, 0);
1191 File* file = GetBackingFile(address, index);
1192 int offset = 0;
1194 if (address.is_block_file())
1195 offset = address.start_block() * address.BlockSize() + kBlockHeaderSize;
1197 if (!file ||
1198 !file->Read(user_buffers_[index]->Data(), len, offset, NULL, NULL)) {
1199 user_buffers_[index].reset();
1200 return false;
1202 return true;
1205 bool EntryImpl::MoveToLocalBuffer(int index) {
1206 if (!CopyToLocalBuffer(index))
1207 return false;
1209 Addr address(entry_.Data()->data_addr[index]);
1210 entry_.Data()->data_addr[index] = 0;
1211 entry_.Store();
1212 DeleteData(address, index);
1214 // If we lose this entry we'll see it as zero sized.
1215 int len = entry_.Data()->data_size[index];
1216 backend_->ModifyStorageSize(len - unreported_size_[index], 0);
1217 unreported_size_[index] = len;
1218 return true;
1221 bool EntryImpl::ImportSeparateFile(int index, int new_size) {
1222 if (entry_.Data()->data_size[index] > new_size)
1223 UpdateSize(index, entry_.Data()->data_size[index], new_size);
1225 return MoveToLocalBuffer(index);
1228 bool EntryImpl::PrepareBuffer(int index, int offset, int buf_len) {
1229 DCHECK(user_buffers_[index].get());
1230 if ((user_buffers_[index]->End() && offset > user_buffers_[index]->End()) ||
1231 offset > entry_.Data()->data_size[index]) {
1232 // We are about to extend the buffer or the file (with zeros), so make sure
1233 // that we are not overwriting anything.
1234 Addr address(entry_.Data()->data_addr[index]);
1235 if (address.is_initialized() && address.is_separate_file()) {
1236 if (!Flush(index, 0))
1237 return false;
1238 // There is an actual file already, and we don't want to keep track of
1239 // its length so we let this operation go straight to disk.
1240 // The only case when a buffer is allowed to extend the file (as in fill
1241 // with zeros before the start) is when there is no file yet to extend.
1242 user_buffers_[index].reset();
1243 return true;
1247 if (!user_buffers_[index]->PreWrite(offset, buf_len)) {
1248 if (!Flush(index, offset + buf_len))
1249 return false;
1251 // Lets try again.
1252 if (offset > user_buffers_[index]->End() ||
1253 !user_buffers_[index]->PreWrite(offset, buf_len)) {
1254 // We cannot complete the operation with a buffer.
1255 DCHECK(!user_buffers_[index]->Size());
1256 DCHECK(!user_buffers_[index]->Start());
1257 user_buffers_[index].reset();
1260 return true;
1263 bool EntryImpl::Flush(int index, int min_len) {
1264 Addr address(entry_.Data()->data_addr[index]);
1265 DCHECK(user_buffers_[index].get());
1266 DCHECK(!address.is_initialized() || address.is_separate_file());
1267 DVLOG(3) << "Flush";
1269 int size = std::max(entry_.Data()->data_size[index], min_len);
1270 if (size && !address.is_initialized() && !CreateDataBlock(index, size))
1271 return false;
1273 if (!entry_.Data()->data_size[index]) {
1274 DCHECK(!user_buffers_[index]->Size());
1275 return true;
1278 address.set_value(entry_.Data()->data_addr[index]);
1280 int len = user_buffers_[index]->Size();
1281 int offset = user_buffers_[index]->Start();
1282 if (!len && !offset)
1283 return true;
1285 if (address.is_block_file()) {
1286 DCHECK_EQ(len, entry_.Data()->data_size[index]);
1287 DCHECK(!offset);
1288 offset = address.start_block() * address.BlockSize() + kBlockHeaderSize;
1291 File* file = GetBackingFile(address, index);
1292 if (!file)
1293 return false;
1295 if (!file->Write(user_buffers_[index]->Data(), len, offset, NULL, NULL))
1296 return false;
1297 user_buffers_[index]->Reset();
1299 return true;
1302 void EntryImpl::UpdateSize(int index, int old_size, int new_size) {
1303 if (entry_.Data()->data_size[index] == new_size)
1304 return;
1306 unreported_size_[index] += new_size - old_size;
1307 entry_.Data()->data_size[index] = new_size;
1308 entry_.set_modified();
1311 int EntryImpl::InitSparseData() {
1312 if (sparse_.get())
1313 return net::OK;
1315 // Use a local variable so that sparse_ never goes from 'valid' to NULL.
1316 scoped_ptr<SparseControl> sparse(new SparseControl(this));
1317 int result = sparse->Init();
1318 if (net::OK == result)
1319 sparse_.swap(sparse);
1321 return result;
1324 void EntryImpl::SetEntryFlags(uint32 flags) {
1325 entry_.Data()->flags |= flags;
1326 entry_.set_modified();
1329 uint32 EntryImpl::GetEntryFlags() {
1330 return entry_.Data()->flags;
1333 void EntryImpl::GetData(int index, char** buffer, Addr* address) {
1334 DCHECK(backend_);
1335 if (user_buffers_[index].get() && user_buffers_[index]->Size() &&
1336 !user_buffers_[index]->Start()) {
1337 // The data is already in memory, just copy it and we're done.
1338 int data_len = entry_.Data()->data_size[index];
1339 if (data_len <= user_buffers_[index]->Size()) {
1340 DCHECK(!user_buffers_[index]->Start());
1341 *buffer = new char[data_len];
1342 memcpy(*buffer, user_buffers_[index]->Data(), data_len);
1343 return;
1347 // Bad news: we'd have to read the info from disk so instead we'll just tell
1348 // the caller where to read from.
1349 *buffer = NULL;
1350 address->set_value(entry_.Data()->data_addr[index]);
1351 if (address->is_initialized()) {
1352 // Prevent us from deleting the block from the backing store.
1353 backend_->ModifyStorageSize(entry_.Data()->data_size[index] -
1354 unreported_size_[index], 0);
1355 entry_.Data()->data_addr[index] = 0;
1356 entry_.Data()->data_size[index] = 0;
1360 #endif // defined(V3_NOT_JUST_YET_READY).
1362 void EntryImplV3::ReportIOTime(Operation op, const base::TimeTicks& start) {
1363 if (!backend_)
1364 return;
1366 switch (op) {
1367 case kRead:
1368 CACHE_UMA(AGE_MS, "ReadTime", start);
1369 break;
1370 case kWrite:
1371 CACHE_UMA(AGE_MS, "WriteTime", start);
1372 break;
1373 case kSparseRead:
1374 CACHE_UMA(AGE_MS, "SparseReadTime", start);
1375 break;
1376 case kSparseWrite:
1377 CACHE_UMA(AGE_MS, "SparseWriteTime", start);
1378 break;
1379 case kAsyncIO:
1380 CACHE_UMA(AGE_MS, "AsyncIOTime", start);
1381 break;
1382 case kReadAsync1:
1383 CACHE_UMA(AGE_MS, "AsyncReadDispatchTime", start);
1384 break;
1385 case kWriteAsync1:
1386 CACHE_UMA(AGE_MS, "AsyncWriteDispatchTime", start);
1387 break;
1388 default:
1389 NOTREACHED();
1393 void EntryImplV3::Log(const char* msg) {
1394 Trace("%s 0x%p 0x%x", msg, reinterpret_cast<void*>(this), address_);
1395 Trace(" data: 0x%x 0x%x", entry_->data_addr[0], entry_->data_addr[1]);
1396 Trace(" doomed: %d", doomed_);
1399 void EntryImplV3::Doom() {
1400 NOTIMPLEMENTED();
1403 void EntryImplV3::Close() {
1404 NOTIMPLEMENTED();
1407 std::string EntryImplV3::GetKey() const {
1408 return std::string();
1411 Time EntryImplV3::GetLastUsed() const {
1412 return Time();
1415 Time EntryImplV3::GetLastModified() const {
1416 return Time();
1419 int32 EntryImplV3::GetDataSize(int index) const {
1420 return 0;
1423 int EntryImplV3::ReadData(int index, int offset, IOBuffer* buf, int buf_len,
1424 const CompletionCallback& callback) {
1425 return net::ERR_FAILED;
1428 int EntryImplV3::WriteData(int index, int offset, IOBuffer* buf, int buf_len,
1429 const CompletionCallback& callback, bool truncate) {
1430 return net::ERR_FAILED;
1433 int EntryImplV3::ReadSparseData(int64 offset, IOBuffer* buf, int buf_len,
1434 const CompletionCallback& callback) {
1435 return net::ERR_FAILED;
1438 int EntryImplV3::WriteSparseData(int64 offset, IOBuffer* buf, int buf_len,
1439 const CompletionCallback& callback) {
1440 return net::ERR_FAILED;
1443 int EntryImplV3::GetAvailableRange(int64 offset, int len, int64* start,
1444 const CompletionCallback& callback) {
1445 return net::ERR_FAILED;
1448 bool EntryImplV3::CouldBeSparse() const {
1449 return false;
1452 void EntryImplV3::CancelSparseIO() {
1453 NOTIMPLEMENTED();
1456 int EntryImplV3::ReadyForSparseIO(const CompletionCallback& callback) {
1457 return net::ERR_FAILED;
1460 EntryImplV3::~EntryImplV3() {
1461 NOTIMPLEMENTED();
1464 } // namespace disk_cache