Updating trunk VERSION from 2139.0 to 2140.0
[chromium-blink-merge.git] / net / disk_cache / entry_unittest.cc
blob5fd6db01ecdd22a95964d398738660996af7f27e
1 // Copyright (c) 2012 The Chromium Authors. All rights reserved.
2 // Use of this source code is governed by a BSD-style license that can be
3 // found in the LICENSE file.
5 #include "base/basictypes.h"
6 #include "base/bind.h"
7 #include "base/bind_helpers.h"
8 #include "base/file_util.h"
9 #include "base/files/file.h"
10 #include "base/strings/string_util.h"
11 #include "base/strings/stringprintf.h"
12 #include "base/threading/platform_thread.h"
13 #include "base/timer/timer.h"
14 #include "net/base/completion_callback.h"
15 #include "net/base/io_buffer.h"
16 #include "net/base/net_errors.h"
17 #include "net/base/test_completion_callback.h"
18 #include "net/disk_cache/blockfile/backend_impl.h"
19 #include "net/disk_cache/blockfile/entry_impl.h"
20 #include "net/disk_cache/disk_cache_test_base.h"
21 #include "net/disk_cache/disk_cache_test_util.h"
22 #include "net/disk_cache/memory/mem_entry_impl.h"
23 #include "net/disk_cache/simple/simple_entry_format.h"
24 #include "net/disk_cache/simple/simple_entry_impl.h"
25 #include "net/disk_cache/simple/simple_synchronous_entry.h"
26 #include "net/disk_cache/simple/simple_test_util.h"
27 #include "net/disk_cache/simple/simple_util.h"
28 #include "testing/gtest/include/gtest/gtest.h"
30 using base::Time;
31 using disk_cache::ScopedEntryPtr;
33 // Tests that can run with different types of caches.
34 class DiskCacheEntryTest : public DiskCacheTestWithCache {
35 public:
36 void InternalSyncIOBackground(disk_cache::Entry* entry);
37 void ExternalSyncIOBackground(disk_cache::Entry* entry);
39 protected:
40 void InternalSyncIO();
41 void InternalAsyncIO();
42 void ExternalSyncIO();
43 void ExternalAsyncIO();
44 void ReleaseBuffer(int stream_index);
45 void StreamAccess();
46 void GetKey();
47 void GetTimes(int stream_index);
48 void GrowData(int stream_index);
49 void TruncateData(int stream_index);
50 void ZeroLengthIO(int stream_index);
51 void Buffering();
52 void SizeAtCreate();
53 void SizeChanges(int stream_index);
54 void ReuseEntry(int size, int stream_index);
55 void InvalidData(int stream_index);
56 void ReadWriteDestroyBuffer(int stream_index);
57 void DoomNormalEntry();
58 void DoomEntryNextToOpenEntry();
59 void DoomedEntry(int stream_index);
60 void BasicSparseIO();
61 void HugeSparseIO();
62 void GetAvailableRange();
63 void CouldBeSparse();
64 void UpdateSparseEntry();
65 void DoomSparseEntry();
66 void PartialSparseEntry();
67 bool SimpleCacheMakeBadChecksumEntry(const std::string& key, int* data_size);
68 bool SimpleCacheThirdStreamFileExists(const char* key);
69 void SyncDoomEntry(const char* key);
72 // This part of the test runs on the background thread.
73 void DiskCacheEntryTest::InternalSyncIOBackground(disk_cache::Entry* entry) {
74 const int kSize1 = 10;
75 scoped_refptr<net::IOBuffer> buffer1(new net::IOBuffer(kSize1));
76 CacheTestFillBuffer(buffer1->data(), kSize1, false);
77 EXPECT_EQ(
79 entry->ReadData(0, 0, buffer1.get(), kSize1, net::CompletionCallback()));
80 base::strlcpy(buffer1->data(), "the data", kSize1);
81 EXPECT_EQ(10,
82 entry->WriteData(
83 0, 0, buffer1.get(), kSize1, net::CompletionCallback(), false));
84 memset(buffer1->data(), 0, kSize1);
85 EXPECT_EQ(
86 10,
87 entry->ReadData(0, 0, buffer1.get(), kSize1, net::CompletionCallback()));
88 EXPECT_STREQ("the data", buffer1->data());
90 const int kSize2 = 5000;
91 const int kSize3 = 10000;
92 scoped_refptr<net::IOBuffer> buffer2(new net::IOBuffer(kSize2));
93 scoped_refptr<net::IOBuffer> buffer3(new net::IOBuffer(kSize3));
94 memset(buffer3->data(), 0, kSize3);
95 CacheTestFillBuffer(buffer2->data(), kSize2, false);
96 base::strlcpy(buffer2->data(), "The really big data goes here", kSize2);
97 EXPECT_EQ(
98 5000,
99 entry->WriteData(
100 1, 1500, buffer2.get(), kSize2, net::CompletionCallback(), false));
101 memset(buffer2->data(), 0, kSize2);
102 EXPECT_EQ(4989,
103 entry->ReadData(
104 1, 1511, buffer2.get(), kSize2, net::CompletionCallback()));
105 EXPECT_STREQ("big data goes here", buffer2->data());
106 EXPECT_EQ(
107 5000,
108 entry->ReadData(1, 0, buffer2.get(), kSize2, net::CompletionCallback()));
109 EXPECT_EQ(0, memcmp(buffer2->data(), buffer3->data(), 1500));
110 EXPECT_EQ(1500,
111 entry->ReadData(
112 1, 5000, buffer2.get(), kSize2, net::CompletionCallback()));
114 EXPECT_EQ(0,
115 entry->ReadData(
116 1, 6500, buffer2.get(), kSize2, net::CompletionCallback()));
117 EXPECT_EQ(
118 6500,
119 entry->ReadData(1, 0, buffer3.get(), kSize3, net::CompletionCallback()));
120 EXPECT_EQ(8192,
121 entry->WriteData(
122 1, 0, buffer3.get(), 8192, net::CompletionCallback(), false));
123 EXPECT_EQ(
124 8192,
125 entry->ReadData(1, 0, buffer3.get(), kSize3, net::CompletionCallback()));
126 EXPECT_EQ(8192, entry->GetDataSize(1));
128 // We need to delete the memory buffer on this thread.
129 EXPECT_EQ(0, entry->WriteData(
130 0, 0, NULL, 0, net::CompletionCallback(), true));
131 EXPECT_EQ(0, entry->WriteData(
132 1, 0, NULL, 0, net::CompletionCallback(), true));
135 // We need to support synchronous IO even though it is not a supported operation
136 // from the point of view of the disk cache's public interface, because we use
137 // it internally, not just by a few tests, but as part of the implementation
138 // (see sparse_control.cc, for example).
139 void DiskCacheEntryTest::InternalSyncIO() {
140 disk_cache::Entry* entry = NULL;
141 ASSERT_EQ(net::OK, CreateEntry("the first key", &entry));
142 ASSERT_TRUE(NULL != entry);
144 // The bulk of the test runs from within the callback, on the cache thread.
145 RunTaskForTest(base::Bind(&DiskCacheEntryTest::InternalSyncIOBackground,
146 base::Unretained(this),
147 entry));
150 entry->Doom();
151 entry->Close();
152 FlushQueueForTest();
153 EXPECT_EQ(0, cache_->GetEntryCount());
156 TEST_F(DiskCacheEntryTest, InternalSyncIO) {
157 InitCache();
158 InternalSyncIO();
161 TEST_F(DiskCacheEntryTest, MemoryOnlyInternalSyncIO) {
162 SetMemoryOnlyMode();
163 InitCache();
164 InternalSyncIO();
167 void DiskCacheEntryTest::InternalAsyncIO() {
168 disk_cache::Entry* entry = NULL;
169 ASSERT_EQ(net::OK, CreateEntry("the first key", &entry));
170 ASSERT_TRUE(NULL != entry);
172 // Avoid using internal buffers for the test. We have to write something to
173 // the entry and close it so that we flush the internal buffer to disk. After
174 // that, IO operations will be really hitting the disk. We don't care about
175 // the content, so just extending the entry is enough (all extensions zero-
176 // fill any holes).
177 EXPECT_EQ(0, WriteData(entry, 0, 15 * 1024, NULL, 0, false));
178 EXPECT_EQ(0, WriteData(entry, 1, 15 * 1024, NULL, 0, false));
179 entry->Close();
180 ASSERT_EQ(net::OK, OpenEntry("the first key", &entry));
182 MessageLoopHelper helper;
183 // Let's verify that each IO goes to the right callback object.
184 CallbackTest callback1(&helper, false);
185 CallbackTest callback2(&helper, false);
186 CallbackTest callback3(&helper, false);
187 CallbackTest callback4(&helper, false);
188 CallbackTest callback5(&helper, false);
189 CallbackTest callback6(&helper, false);
190 CallbackTest callback7(&helper, false);
191 CallbackTest callback8(&helper, false);
192 CallbackTest callback9(&helper, false);
193 CallbackTest callback10(&helper, false);
194 CallbackTest callback11(&helper, false);
195 CallbackTest callback12(&helper, false);
196 CallbackTest callback13(&helper, false);
198 const int kSize1 = 10;
199 const int kSize2 = 5000;
200 const int kSize3 = 10000;
201 scoped_refptr<net::IOBuffer> buffer1(new net::IOBuffer(kSize1));
202 scoped_refptr<net::IOBuffer> buffer2(new net::IOBuffer(kSize2));
203 scoped_refptr<net::IOBuffer> buffer3(new net::IOBuffer(kSize3));
204 CacheTestFillBuffer(buffer1->data(), kSize1, false);
205 CacheTestFillBuffer(buffer2->data(), kSize2, false);
206 CacheTestFillBuffer(buffer3->data(), kSize3, false);
208 EXPECT_EQ(0,
209 entry->ReadData(
211 15 * 1024,
212 buffer1.get(),
213 kSize1,
214 base::Bind(&CallbackTest::Run, base::Unretained(&callback1))));
215 base::strlcpy(buffer1->data(), "the data", kSize1);
216 int expected = 0;
217 int ret = entry->WriteData(
220 buffer1.get(),
221 kSize1,
222 base::Bind(&CallbackTest::Run, base::Unretained(&callback2)),
223 false);
224 EXPECT_TRUE(10 == ret || net::ERR_IO_PENDING == ret);
225 if (net::ERR_IO_PENDING == ret)
226 expected++;
228 EXPECT_TRUE(helper.WaitUntilCacheIoFinished(expected));
229 memset(buffer2->data(), 0, kSize2);
230 ret = entry->ReadData(
233 buffer2.get(),
234 kSize1,
235 base::Bind(&CallbackTest::Run, base::Unretained(&callback3)));
236 EXPECT_TRUE(10 == ret || net::ERR_IO_PENDING == ret);
237 if (net::ERR_IO_PENDING == ret)
238 expected++;
240 EXPECT_TRUE(helper.WaitUntilCacheIoFinished(expected));
241 EXPECT_STREQ("the data", buffer2->data());
243 base::strlcpy(buffer2->data(), "The really big data goes here", kSize2);
244 ret = entry->WriteData(
246 1500,
247 buffer2.get(),
248 kSize2,
249 base::Bind(&CallbackTest::Run, base::Unretained(&callback4)),
250 true);
251 EXPECT_TRUE(5000 == ret || net::ERR_IO_PENDING == ret);
252 if (net::ERR_IO_PENDING == ret)
253 expected++;
255 EXPECT_TRUE(helper.WaitUntilCacheIoFinished(expected));
256 memset(buffer3->data(), 0, kSize3);
257 ret = entry->ReadData(
259 1511,
260 buffer3.get(),
261 kSize2,
262 base::Bind(&CallbackTest::Run, base::Unretained(&callback5)));
263 EXPECT_TRUE(4989 == ret || net::ERR_IO_PENDING == ret);
264 if (net::ERR_IO_PENDING == ret)
265 expected++;
267 EXPECT_TRUE(helper.WaitUntilCacheIoFinished(expected));
268 EXPECT_STREQ("big data goes here", buffer3->data());
269 ret = entry->ReadData(
272 buffer2.get(),
273 kSize2,
274 base::Bind(&CallbackTest::Run, base::Unretained(&callback6)));
275 EXPECT_TRUE(5000 == ret || net::ERR_IO_PENDING == ret);
276 if (net::ERR_IO_PENDING == ret)
277 expected++;
279 memset(buffer3->data(), 0, kSize3);
281 EXPECT_TRUE(helper.WaitUntilCacheIoFinished(expected));
282 EXPECT_EQ(0, memcmp(buffer2->data(), buffer3->data(), 1500));
283 ret = entry->ReadData(
285 5000,
286 buffer2.get(),
287 kSize2,
288 base::Bind(&CallbackTest::Run, base::Unretained(&callback7)));
289 EXPECT_TRUE(1500 == ret || net::ERR_IO_PENDING == ret);
290 if (net::ERR_IO_PENDING == ret)
291 expected++;
293 ret = entry->ReadData(
296 buffer3.get(),
297 kSize3,
298 base::Bind(&CallbackTest::Run, base::Unretained(&callback9)));
299 EXPECT_TRUE(6500 == ret || net::ERR_IO_PENDING == ret);
300 if (net::ERR_IO_PENDING == ret)
301 expected++;
303 ret = entry->WriteData(
306 buffer3.get(),
307 8192,
308 base::Bind(&CallbackTest::Run, base::Unretained(&callback10)),
309 true);
310 EXPECT_TRUE(8192 == ret || net::ERR_IO_PENDING == ret);
311 if (net::ERR_IO_PENDING == ret)
312 expected++;
314 EXPECT_TRUE(helper.WaitUntilCacheIoFinished(expected));
315 ret = entry->ReadData(
318 buffer3.get(),
319 kSize3,
320 base::Bind(&CallbackTest::Run, base::Unretained(&callback11)));
321 EXPECT_TRUE(8192 == ret || net::ERR_IO_PENDING == ret);
322 if (net::ERR_IO_PENDING == ret)
323 expected++;
325 EXPECT_EQ(8192, entry->GetDataSize(1));
327 ret = entry->ReadData(
330 buffer1.get(),
331 kSize1,
332 base::Bind(&CallbackTest::Run, base::Unretained(&callback12)));
333 EXPECT_TRUE(10 == ret || net::ERR_IO_PENDING == ret);
334 if (net::ERR_IO_PENDING == ret)
335 expected++;
337 ret = entry->ReadData(
340 buffer2.get(),
341 kSize2,
342 base::Bind(&CallbackTest::Run, base::Unretained(&callback13)));
343 EXPECT_TRUE(5000 == ret || net::ERR_IO_PENDING == ret);
344 if (net::ERR_IO_PENDING == ret)
345 expected++;
347 EXPECT_TRUE(helper.WaitUntilCacheIoFinished(expected));
349 EXPECT_FALSE(helper.callback_reused_error());
351 entry->Doom();
352 entry->Close();
353 FlushQueueForTest();
354 EXPECT_EQ(0, cache_->GetEntryCount());
357 TEST_F(DiskCacheEntryTest, InternalAsyncIO) {
358 InitCache();
359 InternalAsyncIO();
362 TEST_F(DiskCacheEntryTest, MemoryOnlyInternalAsyncIO) {
363 SetMemoryOnlyMode();
364 InitCache();
365 InternalAsyncIO();
368 // This part of the test runs on the background thread.
369 void DiskCacheEntryTest::ExternalSyncIOBackground(disk_cache::Entry* entry) {
370 const int kSize1 = 17000;
371 const int kSize2 = 25000;
372 scoped_refptr<net::IOBuffer> buffer1(new net::IOBuffer(kSize1));
373 scoped_refptr<net::IOBuffer> buffer2(new net::IOBuffer(kSize2));
374 CacheTestFillBuffer(buffer1->data(), kSize1, false);
375 CacheTestFillBuffer(buffer2->data(), kSize2, false);
376 base::strlcpy(buffer1->data(), "the data", kSize1);
377 EXPECT_EQ(17000,
378 entry->WriteData(
379 0, 0, buffer1.get(), kSize1, net::CompletionCallback(), false));
380 memset(buffer1->data(), 0, kSize1);
381 EXPECT_EQ(
382 17000,
383 entry->ReadData(0, 0, buffer1.get(), kSize1, net::CompletionCallback()));
384 EXPECT_STREQ("the data", buffer1->data());
386 base::strlcpy(buffer2->data(), "The really big data goes here", kSize2);
387 EXPECT_EQ(
388 25000,
389 entry->WriteData(
390 1, 10000, buffer2.get(), kSize2, net::CompletionCallback(), false));
391 memset(buffer2->data(), 0, kSize2);
392 EXPECT_EQ(24989,
393 entry->ReadData(
394 1, 10011, buffer2.get(), kSize2, net::CompletionCallback()));
395 EXPECT_STREQ("big data goes here", buffer2->data());
396 EXPECT_EQ(
397 25000,
398 entry->ReadData(1, 0, buffer2.get(), kSize2, net::CompletionCallback()));
399 EXPECT_EQ(5000,
400 entry->ReadData(
401 1, 30000, buffer2.get(), kSize2, net::CompletionCallback()));
403 EXPECT_EQ(0,
404 entry->ReadData(
405 1, 35000, buffer2.get(), kSize2, net::CompletionCallback()));
406 EXPECT_EQ(
407 17000,
408 entry->ReadData(1, 0, buffer1.get(), kSize1, net::CompletionCallback()));
409 EXPECT_EQ(
410 17000,
411 entry->WriteData(
412 1, 20000, buffer1.get(), kSize1, net::CompletionCallback(), false));
413 EXPECT_EQ(37000, entry->GetDataSize(1));
415 // We need to delete the memory buffer on this thread.
416 EXPECT_EQ(0, entry->WriteData(
417 0, 0, NULL, 0, net::CompletionCallback(), true));
418 EXPECT_EQ(0, entry->WriteData(
419 1, 0, NULL, 0, net::CompletionCallback(), true));
422 void DiskCacheEntryTest::ExternalSyncIO() {
423 disk_cache::Entry* entry;
424 ASSERT_EQ(net::OK, CreateEntry("the first key", &entry));
426 // The bulk of the test runs from within the callback, on the cache thread.
427 RunTaskForTest(base::Bind(&DiskCacheEntryTest::ExternalSyncIOBackground,
428 base::Unretained(this),
429 entry));
431 entry->Doom();
432 entry->Close();
433 FlushQueueForTest();
434 EXPECT_EQ(0, cache_->GetEntryCount());
437 TEST_F(DiskCacheEntryTest, ExternalSyncIO) {
438 InitCache();
439 ExternalSyncIO();
442 TEST_F(DiskCacheEntryTest, ExternalSyncIONoBuffer) {
443 InitCache();
444 cache_impl_->SetFlags(disk_cache::kNoBuffering);
445 ExternalSyncIO();
448 TEST_F(DiskCacheEntryTest, MemoryOnlyExternalSyncIO) {
449 SetMemoryOnlyMode();
450 InitCache();
451 ExternalSyncIO();
454 void DiskCacheEntryTest::ExternalAsyncIO() {
455 disk_cache::Entry* entry;
456 ASSERT_EQ(net::OK, CreateEntry("the first key", &entry));
458 int expected = 0;
460 MessageLoopHelper helper;
461 // Let's verify that each IO goes to the right callback object.
462 CallbackTest callback1(&helper, false);
463 CallbackTest callback2(&helper, false);
464 CallbackTest callback3(&helper, false);
465 CallbackTest callback4(&helper, false);
466 CallbackTest callback5(&helper, false);
467 CallbackTest callback6(&helper, false);
468 CallbackTest callback7(&helper, false);
469 CallbackTest callback8(&helper, false);
470 CallbackTest callback9(&helper, false);
472 const int kSize1 = 17000;
473 const int kSize2 = 25000;
474 const int kSize3 = 25000;
475 scoped_refptr<net::IOBuffer> buffer1(new net::IOBuffer(kSize1));
476 scoped_refptr<net::IOBuffer> buffer2(new net::IOBuffer(kSize2));
477 scoped_refptr<net::IOBuffer> buffer3(new net::IOBuffer(kSize3));
478 CacheTestFillBuffer(buffer1->data(), kSize1, false);
479 CacheTestFillBuffer(buffer2->data(), kSize2, false);
480 CacheTestFillBuffer(buffer3->data(), kSize3, false);
481 base::strlcpy(buffer1->data(), "the data", kSize1);
482 int ret = entry->WriteData(
485 buffer1.get(),
486 kSize1,
487 base::Bind(&CallbackTest::Run, base::Unretained(&callback1)),
488 false);
489 EXPECT_TRUE(17000 == ret || net::ERR_IO_PENDING == ret);
490 if (net::ERR_IO_PENDING == ret)
491 expected++;
493 EXPECT_TRUE(helper.WaitUntilCacheIoFinished(expected));
495 memset(buffer2->data(), 0, kSize1);
496 ret = entry->ReadData(
499 buffer2.get(),
500 kSize1,
501 base::Bind(&CallbackTest::Run, base::Unretained(&callback2)));
502 EXPECT_TRUE(17000 == ret || net::ERR_IO_PENDING == ret);
503 if (net::ERR_IO_PENDING == ret)
504 expected++;
506 EXPECT_TRUE(helper.WaitUntilCacheIoFinished(expected));
507 EXPECT_STREQ("the data", buffer2->data());
509 base::strlcpy(buffer2->data(), "The really big data goes here", kSize2);
510 ret = entry->WriteData(
512 10000,
513 buffer2.get(),
514 kSize2,
515 base::Bind(&CallbackTest::Run, base::Unretained(&callback3)),
516 false);
517 EXPECT_TRUE(25000 == ret || net::ERR_IO_PENDING == ret);
518 if (net::ERR_IO_PENDING == ret)
519 expected++;
521 EXPECT_TRUE(helper.WaitUntilCacheIoFinished(expected));
523 memset(buffer3->data(), 0, kSize3);
524 ret = entry->ReadData(
526 10011,
527 buffer3.get(),
528 kSize3,
529 base::Bind(&CallbackTest::Run, base::Unretained(&callback4)));
530 EXPECT_TRUE(24989 == ret || net::ERR_IO_PENDING == ret);
531 if (net::ERR_IO_PENDING == ret)
532 expected++;
534 EXPECT_TRUE(helper.WaitUntilCacheIoFinished(expected));
535 EXPECT_STREQ("big data goes here", buffer3->data());
536 ret = entry->ReadData(
539 buffer2.get(),
540 kSize2,
541 base::Bind(&CallbackTest::Run, base::Unretained(&callback5)));
542 EXPECT_TRUE(25000 == ret || net::ERR_IO_PENDING == ret);
543 if (net::ERR_IO_PENDING == ret)
544 expected++;
546 EXPECT_TRUE(helper.WaitUntilCacheIoFinished(expected));
547 memset(buffer3->data(), 0, kSize3);
548 EXPECT_EQ(0, memcmp(buffer2->data(), buffer3->data(), 10000));
549 ret = entry->ReadData(
551 30000,
552 buffer2.get(),
553 kSize2,
554 base::Bind(&CallbackTest::Run, base::Unretained(&callback6)));
555 EXPECT_TRUE(5000 == ret || net::ERR_IO_PENDING == ret);
556 if (net::ERR_IO_PENDING == ret)
557 expected++;
559 EXPECT_EQ(0,
560 entry->ReadData(
562 35000,
563 buffer2.get(),
564 kSize2,
565 base::Bind(&CallbackTest::Run, base::Unretained(&callback7))));
566 ret = entry->ReadData(
569 buffer1.get(),
570 kSize1,
571 base::Bind(&CallbackTest::Run, base::Unretained(&callback8)));
572 EXPECT_TRUE(17000 == ret || net::ERR_IO_PENDING == ret);
573 if (net::ERR_IO_PENDING == ret)
574 expected++;
575 ret = entry->WriteData(
577 20000,
578 buffer3.get(),
579 kSize1,
580 base::Bind(&CallbackTest::Run, base::Unretained(&callback9)),
581 false);
582 EXPECT_TRUE(17000 == ret || net::ERR_IO_PENDING == ret);
583 if (net::ERR_IO_PENDING == ret)
584 expected++;
586 EXPECT_TRUE(helper.WaitUntilCacheIoFinished(expected));
587 EXPECT_EQ(37000, entry->GetDataSize(1));
589 EXPECT_FALSE(helper.callback_reused_error());
591 entry->Doom();
592 entry->Close();
593 FlushQueueForTest();
594 EXPECT_EQ(0, cache_->GetEntryCount());
597 TEST_F(DiskCacheEntryTest, ExternalAsyncIO) {
598 InitCache();
599 ExternalAsyncIO();
602 TEST_F(DiskCacheEntryTest, ExternalAsyncIONoBuffer) {
603 InitCache();
604 cache_impl_->SetFlags(disk_cache::kNoBuffering);
605 ExternalAsyncIO();
608 TEST_F(DiskCacheEntryTest, MemoryOnlyExternalAsyncIO) {
609 SetMemoryOnlyMode();
610 InitCache();
611 ExternalAsyncIO();
614 // Tests that IOBuffers are not referenced after IO completes.
615 void DiskCacheEntryTest::ReleaseBuffer(int stream_index) {
616 disk_cache::Entry* entry = NULL;
617 ASSERT_EQ(net::OK, CreateEntry("the first key", &entry));
618 ASSERT_TRUE(NULL != entry);
620 const int kBufferSize = 1024;
621 scoped_refptr<net::IOBuffer> buffer(new net::IOBuffer(kBufferSize));
622 CacheTestFillBuffer(buffer->data(), kBufferSize, false);
624 net::ReleaseBufferCompletionCallback cb(buffer.get());
625 int rv = entry->WriteData(
626 stream_index, 0, buffer.get(), kBufferSize, cb.callback(), false);
627 EXPECT_EQ(kBufferSize, cb.GetResult(rv));
628 entry->Close();
631 TEST_F(DiskCacheEntryTest, ReleaseBuffer) {
632 InitCache();
633 cache_impl_->SetFlags(disk_cache::kNoBuffering);
634 ReleaseBuffer(0);
637 TEST_F(DiskCacheEntryTest, MemoryOnlyReleaseBuffer) {
638 SetMemoryOnlyMode();
639 InitCache();
640 ReleaseBuffer(0);
643 void DiskCacheEntryTest::StreamAccess() {
644 disk_cache::Entry* entry = NULL;
645 ASSERT_EQ(net::OK, CreateEntry("the first key", &entry));
646 ASSERT_TRUE(NULL != entry);
648 const int kBufferSize = 1024;
649 const int kNumStreams = 3;
650 scoped_refptr<net::IOBuffer> reference_buffers[kNumStreams];
651 for (int i = 0; i < kNumStreams; i++) {
652 reference_buffers[i] = new net::IOBuffer(kBufferSize);
653 CacheTestFillBuffer(reference_buffers[i]->data(), kBufferSize, false);
655 scoped_refptr<net::IOBuffer> buffer1(new net::IOBuffer(kBufferSize));
656 for (int i = 0; i < kNumStreams; i++) {
657 EXPECT_EQ(
658 kBufferSize,
659 WriteData(entry, i, 0, reference_buffers[i].get(), kBufferSize, false));
660 memset(buffer1->data(), 0, kBufferSize);
661 EXPECT_EQ(kBufferSize, ReadData(entry, i, 0, buffer1.get(), kBufferSize));
662 EXPECT_EQ(
663 0, memcmp(reference_buffers[i]->data(), buffer1->data(), kBufferSize));
665 EXPECT_EQ(net::ERR_INVALID_ARGUMENT,
666 ReadData(entry, kNumStreams, 0, buffer1.get(), kBufferSize));
667 entry->Close();
669 // Open the entry and read it in chunks, including a read past the end.
670 ASSERT_EQ(net::OK, OpenEntry("the first key", &entry));
671 ASSERT_TRUE(NULL != entry);
672 const int kReadBufferSize = 600;
673 const int kFinalReadSize = kBufferSize - kReadBufferSize;
674 COMPILE_ASSERT(kFinalReadSize < kReadBufferSize, should_be_exactly_two_reads);
675 scoped_refptr<net::IOBuffer> buffer2(new net::IOBuffer(kReadBufferSize));
676 for (int i = 0; i < kNumStreams; i++) {
677 memset(buffer2->data(), 0, kReadBufferSize);
678 EXPECT_EQ(kReadBufferSize,
679 ReadData(entry, i, 0, buffer2.get(), kReadBufferSize));
680 EXPECT_EQ(
682 memcmp(reference_buffers[i]->data(), buffer2->data(), kReadBufferSize));
684 memset(buffer2->data(), 0, kReadBufferSize);
685 EXPECT_EQ(
686 kFinalReadSize,
687 ReadData(entry, i, kReadBufferSize, buffer2.get(), kReadBufferSize));
688 EXPECT_EQ(0,
689 memcmp(reference_buffers[i]->data() + kReadBufferSize,
690 buffer2->data(),
691 kFinalReadSize));
694 entry->Close();
697 TEST_F(DiskCacheEntryTest, StreamAccess) {
698 InitCache();
699 StreamAccess();
702 TEST_F(DiskCacheEntryTest, MemoryOnlyStreamAccess) {
703 SetMemoryOnlyMode();
704 InitCache();
705 StreamAccess();
708 void DiskCacheEntryTest::GetKey() {
709 std::string key("the first key");
710 disk_cache::Entry* entry;
711 ASSERT_EQ(net::OK, CreateEntry(key, &entry));
712 EXPECT_EQ(key, entry->GetKey()) << "short key";
713 entry->Close();
715 int seed = static_cast<int>(Time::Now().ToInternalValue());
716 srand(seed);
717 char key_buffer[20000];
719 CacheTestFillBuffer(key_buffer, 3000, true);
720 key_buffer[1000] = '\0';
722 key = key_buffer;
723 ASSERT_EQ(net::OK, CreateEntry(key, &entry));
724 EXPECT_TRUE(key == entry->GetKey()) << "1000 bytes key";
725 entry->Close();
727 key_buffer[1000] = 'p';
728 key_buffer[3000] = '\0';
729 key = key_buffer;
730 ASSERT_EQ(net::OK, CreateEntry(key, &entry));
731 EXPECT_TRUE(key == entry->GetKey()) << "medium size key";
732 entry->Close();
734 CacheTestFillBuffer(key_buffer, sizeof(key_buffer), true);
735 key_buffer[19999] = '\0';
737 key = key_buffer;
738 ASSERT_EQ(net::OK, CreateEntry(key, &entry));
739 EXPECT_TRUE(key == entry->GetKey()) << "long key";
740 entry->Close();
742 CacheTestFillBuffer(key_buffer, 0x4000, true);
743 key_buffer[0x4000] = '\0';
745 key = key_buffer;
746 ASSERT_EQ(net::OK, CreateEntry(key, &entry));
747 EXPECT_TRUE(key == entry->GetKey()) << "16KB key";
748 entry->Close();
751 TEST_F(DiskCacheEntryTest, GetKey) {
752 InitCache();
753 GetKey();
756 TEST_F(DiskCacheEntryTest, MemoryOnlyGetKey) {
757 SetMemoryOnlyMode();
758 InitCache();
759 GetKey();
762 void DiskCacheEntryTest::GetTimes(int stream_index) {
763 std::string key("the first key");
764 disk_cache::Entry* entry;
766 Time t1 = Time::Now();
767 ASSERT_EQ(net::OK, CreateEntry(key, &entry));
768 EXPECT_TRUE(entry->GetLastModified() >= t1);
769 EXPECT_TRUE(entry->GetLastModified() == entry->GetLastUsed());
771 AddDelay();
772 Time t2 = Time::Now();
773 EXPECT_TRUE(t2 > t1);
774 EXPECT_EQ(0, WriteData(entry, stream_index, 200, NULL, 0, false));
775 if (type_ == net::APP_CACHE) {
776 EXPECT_TRUE(entry->GetLastModified() < t2);
777 } else {
778 EXPECT_TRUE(entry->GetLastModified() >= t2);
780 EXPECT_TRUE(entry->GetLastModified() == entry->GetLastUsed());
782 AddDelay();
783 Time t3 = Time::Now();
784 EXPECT_TRUE(t3 > t2);
785 const int kSize = 200;
786 scoped_refptr<net::IOBuffer> buffer(new net::IOBuffer(kSize));
787 EXPECT_EQ(kSize, ReadData(entry, stream_index, 0, buffer.get(), kSize));
788 if (type_ == net::APP_CACHE) {
789 EXPECT_TRUE(entry->GetLastUsed() < t2);
790 EXPECT_TRUE(entry->GetLastModified() < t2);
791 } else if (type_ == net::SHADER_CACHE) {
792 EXPECT_TRUE(entry->GetLastUsed() < t3);
793 EXPECT_TRUE(entry->GetLastModified() < t3);
794 } else {
795 EXPECT_TRUE(entry->GetLastUsed() >= t3);
796 EXPECT_TRUE(entry->GetLastModified() < t3);
798 entry->Close();
801 TEST_F(DiskCacheEntryTest, GetTimes) {
802 InitCache();
803 GetTimes(0);
806 TEST_F(DiskCacheEntryTest, MemoryOnlyGetTimes) {
807 SetMemoryOnlyMode();
808 InitCache();
809 GetTimes(0);
812 TEST_F(DiskCacheEntryTest, AppCacheGetTimes) {
813 SetCacheType(net::APP_CACHE);
814 InitCache();
815 GetTimes(0);
818 TEST_F(DiskCacheEntryTest, ShaderCacheGetTimes) {
819 SetCacheType(net::SHADER_CACHE);
820 InitCache();
821 GetTimes(0);
824 void DiskCacheEntryTest::GrowData(int stream_index) {
825 std::string key1("the first key");
826 disk_cache::Entry* entry;
827 ASSERT_EQ(net::OK, CreateEntry(key1, &entry));
829 const int kSize = 20000;
830 scoped_refptr<net::IOBuffer> buffer1(new net::IOBuffer(kSize));
831 scoped_refptr<net::IOBuffer> buffer2(new net::IOBuffer(kSize));
832 CacheTestFillBuffer(buffer1->data(), kSize, false);
833 memset(buffer2->data(), 0, kSize);
835 base::strlcpy(buffer1->data(), "the data", kSize);
836 EXPECT_EQ(10, WriteData(entry, stream_index, 0, buffer1.get(), 10, false));
837 EXPECT_EQ(10, ReadData(entry, stream_index, 0, buffer2.get(), 10));
838 EXPECT_STREQ("the data", buffer2->data());
839 EXPECT_EQ(10, entry->GetDataSize(stream_index));
841 EXPECT_EQ(2000,
842 WriteData(entry, stream_index, 0, buffer1.get(), 2000, false));
843 EXPECT_EQ(2000, entry->GetDataSize(stream_index));
844 EXPECT_EQ(2000, ReadData(entry, stream_index, 0, buffer2.get(), 2000));
845 EXPECT_TRUE(!memcmp(buffer1->data(), buffer2->data(), 2000));
847 EXPECT_EQ(20000,
848 WriteData(entry, stream_index, 0, buffer1.get(), kSize, false));
849 EXPECT_EQ(20000, entry->GetDataSize(stream_index));
850 EXPECT_EQ(20000, ReadData(entry, stream_index, 0, buffer2.get(), kSize));
851 EXPECT_TRUE(!memcmp(buffer1->data(), buffer2->data(), kSize));
852 entry->Close();
854 memset(buffer2->data(), 0, kSize);
855 std::string key2("Second key");
856 ASSERT_EQ(net::OK, CreateEntry(key2, &entry));
857 EXPECT_EQ(10, WriteData(entry, stream_index, 0, buffer1.get(), 10, false));
858 EXPECT_EQ(10, entry->GetDataSize(stream_index));
859 entry->Close();
861 // Go from an internal address to a bigger block size.
862 ASSERT_EQ(net::OK, OpenEntry(key2, &entry));
863 EXPECT_EQ(2000,
864 WriteData(entry, stream_index, 0, buffer1.get(), 2000, false));
865 EXPECT_EQ(2000, entry->GetDataSize(stream_index));
866 EXPECT_EQ(2000, ReadData(entry, stream_index, 0, buffer2.get(), 2000));
867 EXPECT_TRUE(!memcmp(buffer1->data(), buffer2->data(), 2000));
868 entry->Close();
869 memset(buffer2->data(), 0, kSize);
871 // Go from an internal address to an external one.
872 ASSERT_EQ(net::OK, OpenEntry(key2, &entry));
873 EXPECT_EQ(20000,
874 WriteData(entry, stream_index, 0, buffer1.get(), kSize, false));
875 EXPECT_EQ(20000, entry->GetDataSize(stream_index));
876 EXPECT_EQ(20000, ReadData(entry, stream_index, 0, buffer2.get(), kSize));
877 EXPECT_TRUE(!memcmp(buffer1->data(), buffer2->data(), kSize));
878 entry->Close();
880 // Double check the size from disk.
881 ASSERT_EQ(net::OK, OpenEntry(key2, &entry));
882 EXPECT_EQ(20000, entry->GetDataSize(stream_index));
884 // Now extend the entry without actual data.
885 EXPECT_EQ(0, WriteData(entry, stream_index, 45500, buffer1.get(), 0, false));
886 entry->Close();
888 // And check again from disk.
889 ASSERT_EQ(net::OK, OpenEntry(key2, &entry));
890 EXPECT_EQ(45500, entry->GetDataSize(stream_index));
891 entry->Close();
894 TEST_F(DiskCacheEntryTest, GrowData) {
895 InitCache();
896 GrowData(0);
899 TEST_F(DiskCacheEntryTest, GrowDataNoBuffer) {
900 InitCache();
901 cache_impl_->SetFlags(disk_cache::kNoBuffering);
902 GrowData(0);
905 TEST_F(DiskCacheEntryTest, MemoryOnlyGrowData) {
906 SetMemoryOnlyMode();
907 InitCache();
908 GrowData(0);
911 void DiskCacheEntryTest::TruncateData(int stream_index) {
912 std::string key("the first key");
913 disk_cache::Entry* entry;
914 ASSERT_EQ(net::OK, CreateEntry(key, &entry));
916 const int kSize1 = 20000;
917 const int kSize2 = 20000;
918 scoped_refptr<net::IOBuffer> buffer1(new net::IOBuffer(kSize1));
919 scoped_refptr<net::IOBuffer> buffer2(new net::IOBuffer(kSize2));
921 CacheTestFillBuffer(buffer1->data(), kSize1, false);
922 memset(buffer2->data(), 0, kSize2);
924 // Simple truncation:
925 EXPECT_EQ(200, WriteData(entry, stream_index, 0, buffer1.get(), 200, false));
926 EXPECT_EQ(200, entry->GetDataSize(stream_index));
927 EXPECT_EQ(100, WriteData(entry, stream_index, 0, buffer1.get(), 100, false));
928 EXPECT_EQ(200, entry->GetDataSize(stream_index));
929 EXPECT_EQ(100, WriteData(entry, stream_index, 0, buffer1.get(), 100, true));
930 EXPECT_EQ(100, entry->GetDataSize(stream_index));
931 EXPECT_EQ(0, WriteData(entry, stream_index, 50, buffer1.get(), 0, true));
932 EXPECT_EQ(50, entry->GetDataSize(stream_index));
933 EXPECT_EQ(0, WriteData(entry, stream_index, 0, buffer1.get(), 0, true));
934 EXPECT_EQ(0, entry->GetDataSize(stream_index));
935 entry->Close();
936 ASSERT_EQ(net::OK, OpenEntry(key, &entry));
938 // Go to an external file.
939 EXPECT_EQ(20000,
940 WriteData(entry, stream_index, 0, buffer1.get(), 20000, true));
941 EXPECT_EQ(20000, entry->GetDataSize(stream_index));
942 EXPECT_EQ(20000, ReadData(entry, stream_index, 0, buffer2.get(), 20000));
943 EXPECT_TRUE(!memcmp(buffer1->data(), buffer2->data(), 20000));
944 memset(buffer2->data(), 0, kSize2);
946 // External file truncation
947 EXPECT_EQ(18000,
948 WriteData(entry, stream_index, 0, buffer1.get(), 18000, false));
949 EXPECT_EQ(20000, entry->GetDataSize(stream_index));
950 EXPECT_EQ(18000,
951 WriteData(entry, stream_index, 0, buffer1.get(), 18000, true));
952 EXPECT_EQ(18000, entry->GetDataSize(stream_index));
953 EXPECT_EQ(0, WriteData(entry, stream_index, 17500, buffer1.get(), 0, true));
954 EXPECT_EQ(17500, entry->GetDataSize(stream_index));
956 // And back to an internal block.
957 EXPECT_EQ(600,
958 WriteData(entry, stream_index, 1000, buffer1.get(), 600, true));
959 EXPECT_EQ(1600, entry->GetDataSize(stream_index));
960 EXPECT_EQ(600, ReadData(entry, stream_index, 1000, buffer2.get(), 600));
961 EXPECT_TRUE(!memcmp(buffer1->data(), buffer2->data(), 600));
962 EXPECT_EQ(1000, ReadData(entry, stream_index, 0, buffer2.get(), 1000));
963 EXPECT_TRUE(!memcmp(buffer1->data(), buffer2->data(), 1000))
964 << "Preserves previous data";
966 // Go from external file to zero length.
967 EXPECT_EQ(20000,
968 WriteData(entry, stream_index, 0, buffer1.get(), 20000, true));
969 EXPECT_EQ(20000, entry->GetDataSize(stream_index));
970 EXPECT_EQ(0, WriteData(entry, stream_index, 0, buffer1.get(), 0, true));
971 EXPECT_EQ(0, entry->GetDataSize(stream_index));
973 entry->Close();
976 TEST_F(DiskCacheEntryTest, TruncateData) {
977 InitCache();
978 TruncateData(0);
981 TEST_F(DiskCacheEntryTest, TruncateDataNoBuffer) {
982 InitCache();
983 cache_impl_->SetFlags(disk_cache::kNoBuffering);
984 TruncateData(0);
987 TEST_F(DiskCacheEntryTest, MemoryOnlyTruncateData) {
988 SetMemoryOnlyMode();
989 InitCache();
990 TruncateData(0);
993 void DiskCacheEntryTest::ZeroLengthIO(int stream_index) {
994 std::string key("the first key");
995 disk_cache::Entry* entry;
996 ASSERT_EQ(net::OK, CreateEntry(key, &entry));
998 EXPECT_EQ(0, ReadData(entry, stream_index, 0, NULL, 0));
999 EXPECT_EQ(0, WriteData(entry, stream_index, 0, NULL, 0, false));
1001 // This write should extend the entry.
1002 EXPECT_EQ(0, WriteData(entry, stream_index, 1000, NULL, 0, false));
1003 EXPECT_EQ(0, ReadData(entry, stream_index, 500, NULL, 0));
1004 EXPECT_EQ(0, ReadData(entry, stream_index, 2000, NULL, 0));
1005 EXPECT_EQ(1000, entry->GetDataSize(stream_index));
1007 EXPECT_EQ(0, WriteData(entry, stream_index, 100000, NULL, 0, true));
1008 EXPECT_EQ(0, ReadData(entry, stream_index, 50000, NULL, 0));
1009 EXPECT_EQ(100000, entry->GetDataSize(stream_index));
1011 // Let's verify the actual content.
1012 const int kSize = 20;
1013 const char zeros[kSize] = {};
1014 scoped_refptr<net::IOBuffer> buffer(new net::IOBuffer(kSize));
1016 CacheTestFillBuffer(buffer->data(), kSize, false);
1017 EXPECT_EQ(kSize, ReadData(entry, stream_index, 500, buffer.get(), kSize));
1018 EXPECT_TRUE(!memcmp(buffer->data(), zeros, kSize));
1020 CacheTestFillBuffer(buffer->data(), kSize, false);
1021 EXPECT_EQ(kSize, ReadData(entry, stream_index, 5000, buffer.get(), kSize));
1022 EXPECT_TRUE(!memcmp(buffer->data(), zeros, kSize));
1024 CacheTestFillBuffer(buffer->data(), kSize, false);
1025 EXPECT_EQ(kSize, ReadData(entry, stream_index, 50000, buffer.get(), kSize));
1026 EXPECT_TRUE(!memcmp(buffer->data(), zeros, kSize));
1028 entry->Close();
1031 TEST_F(DiskCacheEntryTest, ZeroLengthIO) {
1032 InitCache();
1033 ZeroLengthIO(0);
1036 TEST_F(DiskCacheEntryTest, ZeroLengthIONoBuffer) {
1037 InitCache();
1038 cache_impl_->SetFlags(disk_cache::kNoBuffering);
1039 ZeroLengthIO(0);
1042 TEST_F(DiskCacheEntryTest, MemoryOnlyZeroLengthIO) {
1043 SetMemoryOnlyMode();
1044 InitCache();
1045 ZeroLengthIO(0);
1048 // Tests that we handle the content correctly when buffering, a feature of the
1049 // standard cache that permits fast responses to certain reads.
1050 void DiskCacheEntryTest::Buffering() {
1051 std::string key("the first key");
1052 disk_cache::Entry* entry;
1053 ASSERT_EQ(net::OK, CreateEntry(key, &entry));
1055 const int kSize = 200;
1056 scoped_refptr<net::IOBuffer> buffer1(new net::IOBuffer(kSize));
1057 scoped_refptr<net::IOBuffer> buffer2(new net::IOBuffer(kSize));
1058 CacheTestFillBuffer(buffer1->data(), kSize, true);
1059 CacheTestFillBuffer(buffer2->data(), kSize, true);
1061 EXPECT_EQ(kSize, WriteData(entry, 1, 0, buffer1.get(), kSize, false));
1062 entry->Close();
1064 // Write a little more and read what we wrote before.
1065 ASSERT_EQ(net::OK, OpenEntry(key, &entry));
1066 EXPECT_EQ(kSize, WriteData(entry, 1, 5000, buffer1.get(), kSize, false));
1067 EXPECT_EQ(kSize, ReadData(entry, 1, 0, buffer2.get(), kSize));
1068 EXPECT_TRUE(!memcmp(buffer2->data(), buffer1->data(), kSize));
1070 // Now go to an external file.
1071 EXPECT_EQ(kSize, WriteData(entry, 1, 18000, buffer1.get(), kSize, false));
1072 entry->Close();
1074 // Write something else and verify old data.
1075 ASSERT_EQ(net::OK, OpenEntry(key, &entry));
1076 EXPECT_EQ(kSize, WriteData(entry, 1, 10000, buffer1.get(), kSize, false));
1077 CacheTestFillBuffer(buffer2->data(), kSize, true);
1078 EXPECT_EQ(kSize, ReadData(entry, 1, 5000, buffer2.get(), kSize));
1079 EXPECT_TRUE(!memcmp(buffer2->data(), buffer1->data(), kSize));
1080 CacheTestFillBuffer(buffer2->data(), kSize, true);
1081 EXPECT_EQ(kSize, ReadData(entry, 1, 0, buffer2.get(), kSize));
1082 EXPECT_TRUE(!memcmp(buffer2->data(), buffer1->data(), kSize));
1083 CacheTestFillBuffer(buffer2->data(), kSize, true);
1084 EXPECT_EQ(kSize, ReadData(entry, 1, 18000, buffer2.get(), kSize));
1085 EXPECT_TRUE(!memcmp(buffer2->data(), buffer1->data(), kSize));
1087 // Extend the file some more.
1088 EXPECT_EQ(kSize, WriteData(entry, 1, 23000, buffer1.get(), kSize, false));
1089 entry->Close();
1091 // And now make sure that we can deal with data in both places (ram/disk).
1092 ASSERT_EQ(net::OK, OpenEntry(key, &entry));
1093 EXPECT_EQ(kSize, WriteData(entry, 1, 17000, buffer1.get(), kSize, false));
1095 // We should not overwrite the data at 18000 with this.
1096 EXPECT_EQ(kSize, WriteData(entry, 1, 19000, buffer1.get(), kSize, false));
1097 CacheTestFillBuffer(buffer2->data(), kSize, true);
1098 EXPECT_EQ(kSize, ReadData(entry, 1, 18000, buffer2.get(), kSize));
1099 EXPECT_TRUE(!memcmp(buffer2->data(), buffer1->data(), kSize));
1100 CacheTestFillBuffer(buffer2->data(), kSize, true);
1101 EXPECT_EQ(kSize, ReadData(entry, 1, 17000, buffer2.get(), kSize));
1102 EXPECT_TRUE(!memcmp(buffer2->data(), buffer1->data(), kSize));
1104 EXPECT_EQ(kSize, WriteData(entry, 1, 22900, buffer1.get(), kSize, false));
1105 CacheTestFillBuffer(buffer2->data(), kSize, true);
1106 EXPECT_EQ(100, ReadData(entry, 1, 23000, buffer2.get(), kSize));
1107 EXPECT_TRUE(!memcmp(buffer2->data(), buffer1->data() + 100, 100));
1109 CacheTestFillBuffer(buffer2->data(), kSize, true);
1110 EXPECT_EQ(100, ReadData(entry, 1, 23100, buffer2.get(), kSize));
1111 EXPECT_TRUE(!memcmp(buffer2->data(), buffer1->data() + 100, 100));
1113 // Extend the file again and read before without closing the entry.
1114 EXPECT_EQ(kSize, WriteData(entry, 1, 25000, buffer1.get(), kSize, false));
1115 EXPECT_EQ(kSize, WriteData(entry, 1, 45000, buffer1.get(), kSize, false));
1116 CacheTestFillBuffer(buffer2->data(), kSize, true);
1117 EXPECT_EQ(kSize, ReadData(entry, 1, 25000, buffer2.get(), kSize));
1118 EXPECT_TRUE(!memcmp(buffer2->data(), buffer1->data(), kSize));
1119 CacheTestFillBuffer(buffer2->data(), kSize, true);
1120 EXPECT_EQ(kSize, ReadData(entry, 1, 45000, buffer2.get(), kSize));
1121 EXPECT_TRUE(!memcmp(buffer2->data(), buffer1->data(), kSize));
1123 entry->Close();
1126 TEST_F(DiskCacheEntryTest, Buffering) {
1127 InitCache();
1128 Buffering();
1131 TEST_F(DiskCacheEntryTest, BufferingNoBuffer) {
1132 InitCache();
1133 cache_impl_->SetFlags(disk_cache::kNoBuffering);
1134 Buffering();
1137 // Checks that entries are zero length when created.
1138 void DiskCacheEntryTest::SizeAtCreate() {
1139 const char key[] = "the first key";
1140 disk_cache::Entry* entry;
1141 ASSERT_EQ(net::OK, CreateEntry(key, &entry));
1143 const int kNumStreams = 3;
1144 for (int i = 0; i < kNumStreams; ++i)
1145 EXPECT_EQ(0, entry->GetDataSize(i));
1146 entry->Close();
1149 TEST_F(DiskCacheEntryTest, SizeAtCreate) {
1150 InitCache();
1151 SizeAtCreate();
1154 TEST_F(DiskCacheEntryTest, MemoryOnlySizeAtCreate) {
1155 SetMemoryOnlyMode();
1156 InitCache();
1157 SizeAtCreate();
1160 // Some extra tests to make sure that buffering works properly when changing
1161 // the entry size.
1162 void DiskCacheEntryTest::SizeChanges(int stream_index) {
1163 std::string key("the first key");
1164 disk_cache::Entry* entry;
1165 ASSERT_EQ(net::OK, CreateEntry(key, &entry));
1167 const int kSize = 200;
1168 const char zeros[kSize] = {};
1169 scoped_refptr<net::IOBuffer> buffer1(new net::IOBuffer(kSize));
1170 scoped_refptr<net::IOBuffer> buffer2(new net::IOBuffer(kSize));
1171 CacheTestFillBuffer(buffer1->data(), kSize, true);
1172 CacheTestFillBuffer(buffer2->data(), kSize, true);
1174 EXPECT_EQ(kSize,
1175 WriteData(entry, stream_index, 0, buffer1.get(), kSize, true));
1176 EXPECT_EQ(kSize,
1177 WriteData(entry, stream_index, 17000, buffer1.get(), kSize, true));
1178 EXPECT_EQ(kSize,
1179 WriteData(entry, stream_index, 23000, buffer1.get(), kSize, true));
1180 entry->Close();
1182 // Extend the file and read between the old size and the new write.
1183 ASSERT_EQ(net::OK, OpenEntry(key, &entry));
1184 EXPECT_EQ(23000 + kSize, entry->GetDataSize(stream_index));
1185 EXPECT_EQ(kSize,
1186 WriteData(entry, stream_index, 25000, buffer1.get(), kSize, true));
1187 EXPECT_EQ(25000 + kSize, entry->GetDataSize(stream_index));
1188 EXPECT_EQ(kSize, ReadData(entry, stream_index, 24000, buffer2.get(), kSize));
1189 EXPECT_TRUE(!memcmp(buffer2->data(), zeros, kSize));
1191 // Read at the end of the old file size.
1192 EXPECT_EQ(
1193 kSize,
1194 ReadData(entry, stream_index, 23000 + kSize - 35, buffer2.get(), kSize));
1195 EXPECT_TRUE(!memcmp(buffer2->data(), buffer1->data() + kSize - 35, 35));
1197 // Read slightly before the last write.
1198 CacheTestFillBuffer(buffer2->data(), kSize, true);
1199 EXPECT_EQ(kSize, ReadData(entry, stream_index, 24900, buffer2.get(), kSize));
1200 EXPECT_TRUE(!memcmp(buffer2->data(), zeros, 100));
1201 EXPECT_TRUE(!memcmp(buffer2->data() + 100, buffer1->data(), kSize - 100));
1203 // Extend the entry a little more.
1204 EXPECT_EQ(kSize,
1205 WriteData(entry, stream_index, 26000, buffer1.get(), kSize, true));
1206 EXPECT_EQ(26000 + kSize, entry->GetDataSize(stream_index));
1207 CacheTestFillBuffer(buffer2->data(), kSize, true);
1208 EXPECT_EQ(kSize, ReadData(entry, stream_index, 25900, buffer2.get(), kSize));
1209 EXPECT_TRUE(!memcmp(buffer2->data(), zeros, 100));
1210 EXPECT_TRUE(!memcmp(buffer2->data() + 100, buffer1->data(), kSize - 100));
1212 // And now reduce the size.
1213 EXPECT_EQ(kSize,
1214 WriteData(entry, stream_index, 25000, buffer1.get(), kSize, true));
1215 EXPECT_EQ(25000 + kSize, entry->GetDataSize(stream_index));
1216 EXPECT_EQ(
1218 ReadData(entry, stream_index, 25000 + kSize - 28, buffer2.get(), kSize));
1219 EXPECT_TRUE(!memcmp(buffer2->data(), buffer1->data() + kSize - 28, 28));
1221 // Reduce the size with a buffer that is not extending the size.
1222 EXPECT_EQ(kSize,
1223 WriteData(entry, stream_index, 24000, buffer1.get(), kSize, false));
1224 EXPECT_EQ(25000 + kSize, entry->GetDataSize(stream_index));
1225 EXPECT_EQ(kSize,
1226 WriteData(entry, stream_index, 24500, buffer1.get(), kSize, true));
1227 EXPECT_EQ(24500 + kSize, entry->GetDataSize(stream_index));
1228 EXPECT_EQ(kSize, ReadData(entry, stream_index, 23900, buffer2.get(), kSize));
1229 EXPECT_TRUE(!memcmp(buffer2->data(), zeros, 100));
1230 EXPECT_TRUE(!memcmp(buffer2->data() + 100, buffer1->data(), kSize - 100));
1232 // And now reduce the size below the old size.
1233 EXPECT_EQ(kSize,
1234 WriteData(entry, stream_index, 19000, buffer1.get(), kSize, true));
1235 EXPECT_EQ(19000 + kSize, entry->GetDataSize(stream_index));
1236 EXPECT_EQ(kSize, ReadData(entry, stream_index, 18900, buffer2.get(), kSize));
1237 EXPECT_TRUE(!memcmp(buffer2->data(), zeros, 100));
1238 EXPECT_TRUE(!memcmp(buffer2->data() + 100, buffer1->data(), kSize - 100));
1240 // Verify that the actual file is truncated.
1241 entry->Close();
1242 ASSERT_EQ(net::OK, OpenEntry(key, &entry));
1243 EXPECT_EQ(19000 + kSize, entry->GetDataSize(stream_index));
1245 // Extend the newly opened file with a zero length write, expect zero fill.
1246 EXPECT_EQ(
1248 WriteData(entry, stream_index, 20000 + kSize, buffer1.get(), 0, false));
1249 EXPECT_EQ(kSize,
1250 ReadData(entry, stream_index, 19000 + kSize, buffer1.get(), kSize));
1251 EXPECT_EQ(0, memcmp(buffer1->data(), zeros, kSize));
1253 entry->Close();
1256 TEST_F(DiskCacheEntryTest, SizeChanges) {
1257 InitCache();
1258 SizeChanges(1);
1261 TEST_F(DiskCacheEntryTest, SizeChangesNoBuffer) {
1262 InitCache();
1263 cache_impl_->SetFlags(disk_cache::kNoBuffering);
1264 SizeChanges(1);
1267 // Write more than the total cache capacity but to a single entry. |size| is the
1268 // amount of bytes to write each time.
1269 void DiskCacheEntryTest::ReuseEntry(int size, int stream_index) {
1270 std::string key1("the first key");
1271 disk_cache::Entry* entry;
1272 ASSERT_EQ(net::OK, CreateEntry(key1, &entry));
1274 entry->Close();
1275 std::string key2("the second key");
1276 ASSERT_EQ(net::OK, CreateEntry(key2, &entry));
1278 scoped_refptr<net::IOBuffer> buffer(new net::IOBuffer(size));
1279 CacheTestFillBuffer(buffer->data(), size, false);
1281 for (int i = 0; i < 15; i++) {
1282 EXPECT_EQ(0, WriteData(entry, stream_index, 0, buffer.get(), 0, true));
1283 EXPECT_EQ(size,
1284 WriteData(entry, stream_index, 0, buffer.get(), size, false));
1285 entry->Close();
1286 ASSERT_EQ(net::OK, OpenEntry(key2, &entry));
1289 entry->Close();
1290 ASSERT_EQ(net::OK, OpenEntry(key1, &entry)) << "have not evicted this entry";
1291 entry->Close();
1294 TEST_F(DiskCacheEntryTest, ReuseExternalEntry) {
1295 SetMaxSize(200 * 1024);
1296 InitCache();
1297 ReuseEntry(20 * 1024, 0);
1300 TEST_F(DiskCacheEntryTest, MemoryOnlyReuseExternalEntry) {
1301 SetMemoryOnlyMode();
1302 SetMaxSize(200 * 1024);
1303 InitCache();
1304 ReuseEntry(20 * 1024, 0);
1307 TEST_F(DiskCacheEntryTest, ReuseInternalEntry) {
1308 SetMaxSize(100 * 1024);
1309 InitCache();
1310 ReuseEntry(10 * 1024, 0);
1313 TEST_F(DiskCacheEntryTest, MemoryOnlyReuseInternalEntry) {
1314 SetMemoryOnlyMode();
1315 SetMaxSize(100 * 1024);
1316 InitCache();
1317 ReuseEntry(10 * 1024, 0);
1320 // Reading somewhere that was not written should return zeros.
1321 void DiskCacheEntryTest::InvalidData(int stream_index) {
1322 std::string key("the first key");
1323 disk_cache::Entry* entry;
1324 ASSERT_EQ(net::OK, CreateEntry(key, &entry));
1326 const int kSize1 = 20000;
1327 const int kSize2 = 20000;
1328 const int kSize3 = 20000;
1329 scoped_refptr<net::IOBuffer> buffer1(new net::IOBuffer(kSize1));
1330 scoped_refptr<net::IOBuffer> buffer2(new net::IOBuffer(kSize2));
1331 scoped_refptr<net::IOBuffer> buffer3(new net::IOBuffer(kSize3));
1333 CacheTestFillBuffer(buffer1->data(), kSize1, false);
1334 memset(buffer2->data(), 0, kSize2);
1336 // Simple data grow:
1337 EXPECT_EQ(200,
1338 WriteData(entry, stream_index, 400, buffer1.get(), 200, false));
1339 EXPECT_EQ(600, entry->GetDataSize(stream_index));
1340 EXPECT_EQ(100, ReadData(entry, stream_index, 300, buffer3.get(), 100));
1341 EXPECT_TRUE(!memcmp(buffer3->data(), buffer2->data(), 100));
1342 entry->Close();
1343 ASSERT_EQ(net::OK, OpenEntry(key, &entry));
1345 // The entry is now on disk. Load it and extend it.
1346 EXPECT_EQ(200,
1347 WriteData(entry, stream_index, 800, buffer1.get(), 200, false));
1348 EXPECT_EQ(1000, entry->GetDataSize(stream_index));
1349 EXPECT_EQ(100, ReadData(entry, stream_index, 700, buffer3.get(), 100));
1350 EXPECT_TRUE(!memcmp(buffer3->data(), buffer2->data(), 100));
1351 entry->Close();
1352 ASSERT_EQ(net::OK, OpenEntry(key, &entry));
1354 // This time using truncate.
1355 EXPECT_EQ(200,
1356 WriteData(entry, stream_index, 1800, buffer1.get(), 200, true));
1357 EXPECT_EQ(2000, entry->GetDataSize(stream_index));
1358 EXPECT_EQ(100, ReadData(entry, stream_index, 1500, buffer3.get(), 100));
1359 EXPECT_TRUE(!memcmp(buffer3->data(), buffer2->data(), 100));
1361 // Go to an external file.
1362 EXPECT_EQ(200,
1363 WriteData(entry, stream_index, 19800, buffer1.get(), 200, false));
1364 EXPECT_EQ(20000, entry->GetDataSize(stream_index));
1365 EXPECT_EQ(4000, ReadData(entry, stream_index, 14000, buffer3.get(), 4000));
1366 EXPECT_TRUE(!memcmp(buffer3->data(), buffer2->data(), 4000));
1368 // And back to an internal block.
1369 EXPECT_EQ(600,
1370 WriteData(entry, stream_index, 1000, buffer1.get(), 600, true));
1371 EXPECT_EQ(1600, entry->GetDataSize(stream_index));
1372 EXPECT_EQ(600, ReadData(entry, stream_index, 1000, buffer3.get(), 600));
1373 EXPECT_TRUE(!memcmp(buffer3->data(), buffer1->data(), 600));
1375 // Extend it again.
1376 EXPECT_EQ(600,
1377 WriteData(entry, stream_index, 2000, buffer1.get(), 600, false));
1378 EXPECT_EQ(2600, entry->GetDataSize(stream_index));
1379 EXPECT_EQ(200, ReadData(entry, stream_index, 1800, buffer3.get(), 200));
1380 EXPECT_TRUE(!memcmp(buffer3->data(), buffer2->data(), 200));
1382 // And again (with truncation flag).
1383 EXPECT_EQ(600,
1384 WriteData(entry, stream_index, 3000, buffer1.get(), 600, true));
1385 EXPECT_EQ(3600, entry->GetDataSize(stream_index));
1386 EXPECT_EQ(200, ReadData(entry, stream_index, 2800, buffer3.get(), 200));
1387 EXPECT_TRUE(!memcmp(buffer3->data(), buffer2->data(), 200));
1389 entry->Close();
1392 TEST_F(DiskCacheEntryTest, InvalidData) {
1393 InitCache();
1394 InvalidData(0);
1397 TEST_F(DiskCacheEntryTest, InvalidDataNoBuffer) {
1398 InitCache();
1399 cache_impl_->SetFlags(disk_cache::kNoBuffering);
1400 InvalidData(0);
1403 TEST_F(DiskCacheEntryTest, MemoryOnlyInvalidData) {
1404 SetMemoryOnlyMode();
1405 InitCache();
1406 InvalidData(0);
1409 // Tests that the cache preserves the buffer of an IO operation.
1410 void DiskCacheEntryTest::ReadWriteDestroyBuffer(int stream_index) {
1411 std::string key("the first key");
1412 disk_cache::Entry* entry;
1413 ASSERT_EQ(net::OK, CreateEntry(key, &entry));
1415 const int kSize = 200;
1416 scoped_refptr<net::IOBuffer> buffer(new net::IOBuffer(kSize));
1417 CacheTestFillBuffer(buffer->data(), kSize, false);
1419 net::TestCompletionCallback cb;
1420 EXPECT_EQ(net::ERR_IO_PENDING,
1421 entry->WriteData(
1422 stream_index, 0, buffer.get(), kSize, cb.callback(), false));
1424 // Release our reference to the buffer.
1425 buffer = NULL;
1426 EXPECT_EQ(kSize, cb.WaitForResult());
1428 // And now test with a Read().
1429 buffer = new net::IOBuffer(kSize);
1430 CacheTestFillBuffer(buffer->data(), kSize, false);
1432 EXPECT_EQ(
1433 net::ERR_IO_PENDING,
1434 entry->ReadData(stream_index, 0, buffer.get(), kSize, cb.callback()));
1435 buffer = NULL;
1436 EXPECT_EQ(kSize, cb.WaitForResult());
1438 entry->Close();
1441 TEST_F(DiskCacheEntryTest, ReadWriteDestroyBuffer) {
1442 InitCache();
1443 ReadWriteDestroyBuffer(0);
1446 void DiskCacheEntryTest::DoomNormalEntry() {
1447 std::string key("the first key");
1448 disk_cache::Entry* entry;
1449 ASSERT_EQ(net::OK, CreateEntry(key, &entry));
1450 entry->Doom();
1451 entry->Close();
1453 const int kSize = 20000;
1454 scoped_refptr<net::IOBuffer> buffer(new net::IOBuffer(kSize));
1455 CacheTestFillBuffer(buffer->data(), kSize, true);
1456 buffer->data()[19999] = '\0';
1458 key = buffer->data();
1459 ASSERT_EQ(net::OK, CreateEntry(key, &entry));
1460 EXPECT_EQ(20000, WriteData(entry, 0, 0, buffer.get(), kSize, false));
1461 EXPECT_EQ(20000, WriteData(entry, 1, 0, buffer.get(), kSize, false));
1462 entry->Doom();
1463 entry->Close();
1465 FlushQueueForTest();
1466 EXPECT_EQ(0, cache_->GetEntryCount());
1469 TEST_F(DiskCacheEntryTest, DoomEntry) {
1470 InitCache();
1471 DoomNormalEntry();
1474 TEST_F(DiskCacheEntryTest, MemoryOnlyDoomEntry) {
1475 SetMemoryOnlyMode();
1476 InitCache();
1477 DoomNormalEntry();
1480 // Tests dooming an entry that's linked to an open entry.
1481 void DiskCacheEntryTest::DoomEntryNextToOpenEntry() {
1482 disk_cache::Entry* entry1;
1483 disk_cache::Entry* entry2;
1484 ASSERT_EQ(net::OK, CreateEntry("fixed", &entry1));
1485 entry1->Close();
1486 ASSERT_EQ(net::OK, CreateEntry("foo", &entry1));
1487 entry1->Close();
1488 ASSERT_EQ(net::OK, CreateEntry("bar", &entry1));
1489 entry1->Close();
1491 ASSERT_EQ(net::OK, OpenEntry("foo", &entry1));
1492 ASSERT_EQ(net::OK, OpenEntry("bar", &entry2));
1493 entry2->Doom();
1494 entry2->Close();
1496 ASSERT_EQ(net::OK, OpenEntry("foo", &entry2));
1497 entry2->Doom();
1498 entry2->Close();
1499 entry1->Close();
1501 ASSERT_EQ(net::OK, OpenEntry("fixed", &entry1));
1502 entry1->Close();
1505 TEST_F(DiskCacheEntryTest, DoomEntryNextToOpenEntry) {
1506 InitCache();
1507 DoomEntryNextToOpenEntry();
1510 TEST_F(DiskCacheEntryTest, NewEvictionDoomEntryNextToOpenEntry) {
1511 SetNewEviction();
1512 InitCache();
1513 DoomEntryNextToOpenEntry();
1516 TEST_F(DiskCacheEntryTest, AppCacheDoomEntryNextToOpenEntry) {
1517 SetCacheType(net::APP_CACHE);
1518 InitCache();
1519 DoomEntryNextToOpenEntry();
1522 // Verify that basic operations work as expected with doomed entries.
1523 void DiskCacheEntryTest::DoomedEntry(int stream_index) {
1524 std::string key("the first key");
1525 disk_cache::Entry* entry;
1526 ASSERT_EQ(net::OK, CreateEntry(key, &entry));
1527 entry->Doom();
1529 FlushQueueForTest();
1530 EXPECT_EQ(0, cache_->GetEntryCount());
1531 Time initial = Time::Now();
1532 AddDelay();
1534 const int kSize1 = 2000;
1535 const int kSize2 = 2000;
1536 scoped_refptr<net::IOBuffer> buffer1(new net::IOBuffer(kSize1));
1537 scoped_refptr<net::IOBuffer> buffer2(new net::IOBuffer(kSize2));
1538 CacheTestFillBuffer(buffer1->data(), kSize1, false);
1539 memset(buffer2->data(), 0, kSize2);
1541 EXPECT_EQ(2000,
1542 WriteData(entry, stream_index, 0, buffer1.get(), 2000, false));
1543 EXPECT_EQ(2000, ReadData(entry, stream_index, 0, buffer2.get(), 2000));
1544 EXPECT_EQ(0, memcmp(buffer1->data(), buffer2->data(), kSize1));
1545 EXPECT_EQ(key, entry->GetKey());
1546 EXPECT_TRUE(initial < entry->GetLastModified());
1547 EXPECT_TRUE(initial < entry->GetLastUsed());
1549 entry->Close();
1552 TEST_F(DiskCacheEntryTest, DoomedEntry) {
1553 InitCache();
1554 DoomedEntry(0);
1557 TEST_F(DiskCacheEntryTest, MemoryOnlyDoomedEntry) {
1558 SetMemoryOnlyMode();
1559 InitCache();
1560 DoomedEntry(0);
1563 // Tests that we discard entries if the data is missing.
1564 TEST_F(DiskCacheEntryTest, MissingData) {
1565 InitCache();
1567 std::string key("the first key");
1568 disk_cache::Entry* entry;
1569 ASSERT_EQ(net::OK, CreateEntry(key, &entry));
1571 // Write to an external file.
1572 const int kSize = 20000;
1573 scoped_refptr<net::IOBuffer> buffer(new net::IOBuffer(kSize));
1574 CacheTestFillBuffer(buffer->data(), kSize, false);
1575 EXPECT_EQ(kSize, WriteData(entry, 0, 0, buffer.get(), kSize, false));
1576 entry->Close();
1577 FlushQueueForTest();
1579 disk_cache::Addr address(0x80000001);
1580 base::FilePath name = cache_impl_->GetFileName(address);
1581 EXPECT_TRUE(base::DeleteFile(name, false));
1583 // Attempt to read the data.
1584 ASSERT_EQ(net::OK, OpenEntry(key, &entry));
1585 EXPECT_EQ(net::ERR_FILE_NOT_FOUND,
1586 ReadData(entry, 0, 0, buffer.get(), kSize));
1587 entry->Close();
1589 // The entry should be gone.
1590 ASSERT_NE(net::OK, OpenEntry(key, &entry));
1593 // Test that child entries in a memory cache backend are not visible from
1594 // enumerations.
1595 TEST_F(DiskCacheEntryTest, MemoryOnlyEnumerationWithSparseEntries) {
1596 SetMemoryOnlyMode();
1597 InitCache();
1599 const int kSize = 4096;
1600 scoped_refptr<net::IOBuffer> buf(new net::IOBuffer(kSize));
1601 CacheTestFillBuffer(buf->data(), kSize, false);
1603 std::string key("the first key");
1604 disk_cache::Entry* parent_entry;
1605 ASSERT_EQ(net::OK, CreateEntry(key, &parent_entry));
1607 // Writes to the parent entry.
1608 EXPECT_EQ(kSize,
1609 parent_entry->WriteSparseData(
1610 0, buf.get(), kSize, net::CompletionCallback()));
1612 // This write creates a child entry and writes to it.
1613 EXPECT_EQ(kSize,
1614 parent_entry->WriteSparseData(
1615 8192, buf.get(), kSize, net::CompletionCallback()));
1617 parent_entry->Close();
1619 // Perform the enumerations.
1620 void* iter = NULL;
1621 disk_cache::Entry* entry = NULL;
1622 int count = 0;
1623 while (OpenNextEntry(&iter, &entry) == net::OK) {
1624 ASSERT_TRUE(entry != NULL);
1625 ++count;
1626 disk_cache::MemEntryImpl* mem_entry =
1627 reinterpret_cast<disk_cache::MemEntryImpl*>(entry);
1628 EXPECT_EQ(disk_cache::MemEntryImpl::kParentEntry, mem_entry->type());
1629 mem_entry->Close();
1631 EXPECT_EQ(1, count);
1634 // Writes |buf_1| to offset and reads it back as |buf_2|.
1635 void VerifySparseIO(disk_cache::Entry* entry, int64 offset,
1636 net::IOBuffer* buf_1, int size, net::IOBuffer* buf_2) {
1637 net::TestCompletionCallback cb;
1639 memset(buf_2->data(), 0, size);
1640 int ret = entry->ReadSparseData(offset, buf_2, size, cb.callback());
1641 EXPECT_EQ(0, cb.GetResult(ret));
1643 ret = entry->WriteSparseData(offset, buf_1, size, cb.callback());
1644 EXPECT_EQ(size, cb.GetResult(ret));
1646 ret = entry->ReadSparseData(offset, buf_2, size, cb.callback());
1647 EXPECT_EQ(size, cb.GetResult(ret));
1649 EXPECT_EQ(0, memcmp(buf_1->data(), buf_2->data(), size));
1652 // Reads |size| bytes from |entry| at |offset| and verifies that they are the
1653 // same as the content of the provided |buffer|.
1654 void VerifyContentSparseIO(disk_cache::Entry* entry, int64 offset, char* buffer,
1655 int size) {
1656 net::TestCompletionCallback cb;
1658 scoped_refptr<net::IOBuffer> buf_1(new net::IOBuffer(size));
1659 memset(buf_1->data(), 0, size);
1660 int ret = entry->ReadSparseData(offset, buf_1.get(), size, cb.callback());
1661 EXPECT_EQ(size, cb.GetResult(ret));
1662 EXPECT_EQ(0, memcmp(buf_1->data(), buffer, size));
1665 void DiskCacheEntryTest::BasicSparseIO() {
1666 std::string key("the first key");
1667 disk_cache::Entry* entry;
1668 ASSERT_EQ(net::OK, CreateEntry(key, &entry));
1670 const int kSize = 2048;
1671 scoped_refptr<net::IOBuffer> buf_1(new net::IOBuffer(kSize));
1672 scoped_refptr<net::IOBuffer> buf_2(new net::IOBuffer(kSize));
1673 CacheTestFillBuffer(buf_1->data(), kSize, false);
1675 // Write at offset 0.
1676 VerifySparseIO(entry, 0, buf_1.get(), kSize, buf_2.get());
1678 // Write at offset 0x400000 (4 MB).
1679 VerifySparseIO(entry, 0x400000, buf_1.get(), kSize, buf_2.get());
1681 // Write at offset 0x800000000 (32 GB).
1682 VerifySparseIO(entry, 0x800000000LL, buf_1.get(), kSize, buf_2.get());
1684 entry->Close();
1686 // Check everything again.
1687 ASSERT_EQ(net::OK, OpenEntry(key, &entry));
1688 VerifyContentSparseIO(entry, 0, buf_1->data(), kSize);
1689 VerifyContentSparseIO(entry, 0x400000, buf_1->data(), kSize);
1690 VerifyContentSparseIO(entry, 0x800000000LL, buf_1->data(), kSize);
1691 entry->Close();
1694 TEST_F(DiskCacheEntryTest, BasicSparseIO) {
1695 InitCache();
1696 BasicSparseIO();
1699 TEST_F(DiskCacheEntryTest, MemoryOnlyBasicSparseIO) {
1700 SetMemoryOnlyMode();
1701 InitCache();
1702 BasicSparseIO();
1705 void DiskCacheEntryTest::HugeSparseIO() {
1706 std::string key("the first key");
1707 disk_cache::Entry* entry;
1708 ASSERT_EQ(net::OK, CreateEntry(key, &entry));
1710 // Write 1.2 MB so that we cover multiple entries.
1711 const int kSize = 1200 * 1024;
1712 scoped_refptr<net::IOBuffer> buf_1(new net::IOBuffer(kSize));
1713 scoped_refptr<net::IOBuffer> buf_2(new net::IOBuffer(kSize));
1714 CacheTestFillBuffer(buf_1->data(), kSize, false);
1716 // Write at offset 0x20F0000 (33 MB - 64 KB).
1717 VerifySparseIO(entry, 0x20F0000, buf_1.get(), kSize, buf_2.get());
1718 entry->Close();
1720 // Check it again.
1721 ASSERT_EQ(net::OK, OpenEntry(key, &entry));
1722 VerifyContentSparseIO(entry, 0x20F0000, buf_1->data(), kSize);
1723 entry->Close();
1726 TEST_F(DiskCacheEntryTest, HugeSparseIO) {
1727 InitCache();
1728 HugeSparseIO();
1731 TEST_F(DiskCacheEntryTest, MemoryOnlyHugeSparseIO) {
1732 SetMemoryOnlyMode();
1733 InitCache();
1734 HugeSparseIO();
1737 void DiskCacheEntryTest::GetAvailableRange() {
1738 std::string key("the first key");
1739 disk_cache::Entry* entry;
1740 ASSERT_EQ(net::OK, CreateEntry(key, &entry));
1742 const int kSize = 16 * 1024;
1743 scoped_refptr<net::IOBuffer> buf(new net::IOBuffer(kSize));
1744 CacheTestFillBuffer(buf->data(), kSize, false);
1746 // Write at offset 0x20F0000 (33 MB - 64 KB), and 0x20F4400 (33 MB - 47 KB).
1747 EXPECT_EQ(kSize, WriteSparseData(entry, 0x20F0000, buf.get(), kSize));
1748 EXPECT_EQ(kSize, WriteSparseData(entry, 0x20F4400, buf.get(), kSize));
1750 // We stop at the first empty block.
1751 int64 start;
1752 net::TestCompletionCallback cb;
1753 int rv = entry->GetAvailableRange(
1754 0x20F0000, kSize * 2, &start, cb.callback());
1755 EXPECT_EQ(kSize, cb.GetResult(rv));
1756 EXPECT_EQ(0x20F0000, start);
1758 start = 0;
1759 rv = entry->GetAvailableRange(0, kSize, &start, cb.callback());
1760 EXPECT_EQ(0, cb.GetResult(rv));
1761 rv = entry->GetAvailableRange(
1762 0x20F0000 - kSize, kSize, &start, cb.callback());
1763 EXPECT_EQ(0, cb.GetResult(rv));
1764 rv = entry->GetAvailableRange(0, 0x2100000, &start, cb.callback());
1765 EXPECT_EQ(kSize, cb.GetResult(rv));
1766 EXPECT_EQ(0x20F0000, start);
1768 // We should be able to Read based on the results of GetAvailableRange.
1769 start = -1;
1770 rv = entry->GetAvailableRange(0x2100000, kSize, &start, cb.callback());
1771 EXPECT_EQ(0, cb.GetResult(rv));
1772 rv = entry->ReadSparseData(start, buf.get(), kSize, cb.callback());
1773 EXPECT_EQ(0, cb.GetResult(rv));
1775 start = 0;
1776 rv = entry->GetAvailableRange(0x20F2000, kSize, &start, cb.callback());
1777 EXPECT_EQ(0x2000, cb.GetResult(rv));
1778 EXPECT_EQ(0x20F2000, start);
1779 EXPECT_EQ(0x2000, ReadSparseData(entry, start, buf.get(), kSize));
1781 // Make sure that we respect the |len| argument.
1782 start = 0;
1783 rv = entry->GetAvailableRange(
1784 0x20F0001 - kSize, kSize, &start, cb.callback());
1785 EXPECT_EQ(1, cb.GetResult(rv));
1786 EXPECT_EQ(0x20F0000, start);
1788 entry->Close();
1791 TEST_F(DiskCacheEntryTest, GetAvailableRange) {
1792 InitCache();
1793 GetAvailableRange();
1796 TEST_F(DiskCacheEntryTest, MemoryOnlyGetAvailableRange) {
1797 SetMemoryOnlyMode();
1798 InitCache();
1799 GetAvailableRange();
1802 void DiskCacheEntryTest::CouldBeSparse() {
1803 std::string key("the first key");
1804 disk_cache::Entry* entry;
1805 ASSERT_EQ(net::OK, CreateEntry(key, &entry));
1807 const int kSize = 16 * 1024;
1808 scoped_refptr<net::IOBuffer> buf(new net::IOBuffer(kSize));
1809 CacheTestFillBuffer(buf->data(), kSize, false);
1811 // Write at offset 0x20F0000 (33 MB - 64 KB).
1812 EXPECT_EQ(kSize, WriteSparseData(entry, 0x20F0000, buf.get(), kSize));
1814 EXPECT_TRUE(entry->CouldBeSparse());
1815 entry->Close();
1817 ASSERT_EQ(net::OK, OpenEntry(key, &entry));
1818 EXPECT_TRUE(entry->CouldBeSparse());
1819 entry->Close();
1821 // Now verify a regular entry.
1822 key.assign("another key");
1823 ASSERT_EQ(net::OK, CreateEntry(key, &entry));
1824 EXPECT_FALSE(entry->CouldBeSparse());
1826 EXPECT_EQ(kSize, WriteData(entry, 0, 0, buf.get(), kSize, false));
1827 EXPECT_EQ(kSize, WriteData(entry, 1, 0, buf.get(), kSize, false));
1828 EXPECT_EQ(kSize, WriteData(entry, 2, 0, buf.get(), kSize, false));
1830 EXPECT_FALSE(entry->CouldBeSparse());
1831 entry->Close();
1833 ASSERT_EQ(net::OK, OpenEntry(key, &entry));
1834 EXPECT_FALSE(entry->CouldBeSparse());
1835 entry->Close();
1838 TEST_F(DiskCacheEntryTest, CouldBeSparse) {
1839 InitCache();
1840 CouldBeSparse();
1843 TEST_F(DiskCacheEntryTest, MemoryCouldBeSparse) {
1844 SetMemoryOnlyMode();
1845 InitCache();
1846 CouldBeSparse();
1849 TEST_F(DiskCacheEntryTest, MemoryOnlyMisalignedSparseIO) {
1850 SetMemoryOnlyMode();
1851 InitCache();
1853 const int kSize = 8192;
1854 scoped_refptr<net::IOBuffer> buf_1(new net::IOBuffer(kSize));
1855 scoped_refptr<net::IOBuffer> buf_2(new net::IOBuffer(kSize));
1856 CacheTestFillBuffer(buf_1->data(), kSize, false);
1858 std::string key("the first key");
1859 disk_cache::Entry* entry;
1860 ASSERT_EQ(net::OK, CreateEntry(key, &entry));
1862 // This loop writes back to back starting from offset 0 and 9000.
1863 for (int i = 0; i < kSize; i += 1024) {
1864 scoped_refptr<net::WrappedIOBuffer> buf_3(
1865 new net::WrappedIOBuffer(buf_1->data() + i));
1866 VerifySparseIO(entry, i, buf_3.get(), 1024, buf_2.get());
1867 VerifySparseIO(entry, 9000 + i, buf_3.get(), 1024, buf_2.get());
1870 // Make sure we have data written.
1871 VerifyContentSparseIO(entry, 0, buf_1->data(), kSize);
1872 VerifyContentSparseIO(entry, 9000, buf_1->data(), kSize);
1874 // This tests a large write that spans 3 entries from a misaligned offset.
1875 VerifySparseIO(entry, 20481, buf_1.get(), 8192, buf_2.get());
1877 entry->Close();
1880 TEST_F(DiskCacheEntryTest, MemoryOnlyMisalignedGetAvailableRange) {
1881 SetMemoryOnlyMode();
1882 InitCache();
1884 const int kSize = 8192;
1885 scoped_refptr<net::IOBuffer> buf(new net::IOBuffer(kSize));
1886 CacheTestFillBuffer(buf->data(), kSize, false);
1888 disk_cache::Entry* entry;
1889 std::string key("the first key");
1890 ASSERT_EQ(net::OK, CreateEntry(key, &entry));
1892 // Writes in the middle of an entry.
1893 EXPECT_EQ(
1894 1024,
1895 entry->WriteSparseData(0, buf.get(), 1024, net::CompletionCallback()));
1896 EXPECT_EQ(
1897 1024,
1898 entry->WriteSparseData(5120, buf.get(), 1024, net::CompletionCallback()));
1899 EXPECT_EQ(1024,
1900 entry->WriteSparseData(
1901 10000, buf.get(), 1024, net::CompletionCallback()));
1903 // Writes in the middle of an entry and spans 2 child entries.
1904 EXPECT_EQ(8192,
1905 entry->WriteSparseData(
1906 50000, buf.get(), 8192, net::CompletionCallback()));
1908 int64 start;
1909 net::TestCompletionCallback cb;
1910 // Test that we stop at a discontinuous child at the second block.
1911 int rv = entry->GetAvailableRange(0, 10000, &start, cb.callback());
1912 EXPECT_EQ(1024, cb.GetResult(rv));
1913 EXPECT_EQ(0, start);
1915 // Test that number of bytes is reported correctly when we start from the
1916 // middle of a filled region.
1917 rv = entry->GetAvailableRange(512, 10000, &start, cb.callback());
1918 EXPECT_EQ(512, cb.GetResult(rv));
1919 EXPECT_EQ(512, start);
1921 // Test that we found bytes in the child of next block.
1922 rv = entry->GetAvailableRange(1024, 10000, &start, cb.callback());
1923 EXPECT_EQ(1024, cb.GetResult(rv));
1924 EXPECT_EQ(5120, start);
1926 // Test that the desired length is respected. It starts within a filled
1927 // region.
1928 rv = entry->GetAvailableRange(5500, 512, &start, cb.callback());
1929 EXPECT_EQ(512, cb.GetResult(rv));
1930 EXPECT_EQ(5500, start);
1932 // Test that the desired length is respected. It starts before a filled
1933 // region.
1934 rv = entry->GetAvailableRange(5000, 620, &start, cb.callback());
1935 EXPECT_EQ(500, cb.GetResult(rv));
1936 EXPECT_EQ(5120, start);
1938 // Test that multiple blocks are scanned.
1939 rv = entry->GetAvailableRange(40000, 20000, &start, cb.callback());
1940 EXPECT_EQ(8192, cb.GetResult(rv));
1941 EXPECT_EQ(50000, start);
1943 entry->Close();
1946 void DiskCacheEntryTest::UpdateSparseEntry() {
1947 std::string key("the first key");
1948 disk_cache::Entry* entry1;
1949 ASSERT_EQ(net::OK, CreateEntry(key, &entry1));
1951 const int kSize = 2048;
1952 scoped_refptr<net::IOBuffer> buf_1(new net::IOBuffer(kSize));
1953 scoped_refptr<net::IOBuffer> buf_2(new net::IOBuffer(kSize));
1954 CacheTestFillBuffer(buf_1->data(), kSize, false);
1956 // Write at offset 0.
1957 VerifySparseIO(entry1, 0, buf_1.get(), kSize, buf_2.get());
1958 entry1->Close();
1960 // Write at offset 2048.
1961 ASSERT_EQ(net::OK, OpenEntry(key, &entry1));
1962 VerifySparseIO(entry1, 2048, buf_1.get(), kSize, buf_2.get());
1964 disk_cache::Entry* entry2;
1965 ASSERT_EQ(net::OK, CreateEntry("the second key", &entry2));
1967 entry1->Close();
1968 entry2->Close();
1969 FlushQueueForTest();
1970 if (memory_only_ || simple_cache_mode_)
1971 EXPECT_EQ(2, cache_->GetEntryCount());
1972 else
1973 EXPECT_EQ(3, cache_->GetEntryCount());
1976 TEST_F(DiskCacheEntryTest, UpdateSparseEntry) {
1977 SetCacheType(net::MEDIA_CACHE);
1978 InitCache();
1979 UpdateSparseEntry();
1982 TEST_F(DiskCacheEntryTest, MemoryOnlyUpdateSparseEntry) {
1983 SetMemoryOnlyMode();
1984 SetCacheType(net::MEDIA_CACHE);
1985 InitCache();
1986 UpdateSparseEntry();
1989 void DiskCacheEntryTest::DoomSparseEntry() {
1990 std::string key1("the first key");
1991 std::string key2("the second key");
1992 disk_cache::Entry *entry1, *entry2;
1993 ASSERT_EQ(net::OK, CreateEntry(key1, &entry1));
1994 ASSERT_EQ(net::OK, CreateEntry(key2, &entry2));
1996 const int kSize = 4 * 1024;
1997 scoped_refptr<net::IOBuffer> buf(new net::IOBuffer(kSize));
1998 CacheTestFillBuffer(buf->data(), kSize, false);
2000 int64 offset = 1024;
2001 // Write to a bunch of ranges.
2002 for (int i = 0; i < 12; i++) {
2003 EXPECT_EQ(kSize, WriteSparseData(entry1, offset, buf.get(), kSize));
2004 // Keep the second map under the default size.
2005 if (i < 9)
2006 EXPECT_EQ(kSize, WriteSparseData(entry2, offset, buf.get(), kSize));
2008 offset *= 4;
2011 if (memory_only_ || simple_cache_mode_)
2012 EXPECT_EQ(2, cache_->GetEntryCount());
2013 else
2014 EXPECT_EQ(15, cache_->GetEntryCount());
2016 // Doom the first entry while it's still open.
2017 entry1->Doom();
2018 entry1->Close();
2019 entry2->Close();
2021 // Doom the second entry after it's fully saved.
2022 EXPECT_EQ(net::OK, DoomEntry(key2));
2024 // Make sure we do all needed work. This may fail for entry2 if between Close
2025 // and DoomEntry the system decides to remove all traces of the file from the
2026 // system cache so we don't see that there is pending IO.
2027 base::MessageLoop::current()->RunUntilIdle();
2029 if (memory_only_) {
2030 EXPECT_EQ(0, cache_->GetEntryCount());
2031 } else {
2032 if (5 == cache_->GetEntryCount()) {
2033 // Most likely we are waiting for the result of reading the sparse info
2034 // (it's always async on Posix so it is easy to miss). Unfortunately we
2035 // don't have any signal to watch for so we can only wait.
2036 base::PlatformThread::Sleep(base::TimeDelta::FromMilliseconds(500));
2037 base::MessageLoop::current()->RunUntilIdle();
2039 EXPECT_EQ(0, cache_->GetEntryCount());
2043 TEST_F(DiskCacheEntryTest, DoomSparseEntry) {
2044 UseCurrentThread();
2045 InitCache();
2046 DoomSparseEntry();
2049 TEST_F(DiskCacheEntryTest, MemoryOnlyDoomSparseEntry) {
2050 SetMemoryOnlyMode();
2051 InitCache();
2052 DoomSparseEntry();
2055 // A CompletionCallback wrapper that deletes the cache from within the callback.
2056 // The way a CompletionCallback works means that all tasks (even new ones)
2057 // are executed by the message loop before returning to the caller so the only
2058 // way to simulate a race is to execute what we want on the callback.
2059 class SparseTestCompletionCallback: public net::TestCompletionCallback {
2060 public:
2061 explicit SparseTestCompletionCallback(scoped_ptr<disk_cache::Backend> cache)
2062 : cache_(cache.Pass()) {
2065 private:
2066 virtual void SetResult(int result) OVERRIDE {
2067 cache_.reset();
2068 TestCompletionCallback::SetResult(result);
2071 scoped_ptr<disk_cache::Backend> cache_;
2072 DISALLOW_COPY_AND_ASSIGN(SparseTestCompletionCallback);
2075 // Tests that we don't crash when the backend is deleted while we are working
2076 // deleting the sub-entries of a sparse entry.
2077 TEST_F(DiskCacheEntryTest, DoomSparseEntry2) {
2078 UseCurrentThread();
2079 InitCache();
2080 std::string key("the key");
2081 disk_cache::Entry* entry;
2082 ASSERT_EQ(net::OK, CreateEntry(key, &entry));
2084 const int kSize = 4 * 1024;
2085 scoped_refptr<net::IOBuffer> buf(new net::IOBuffer(kSize));
2086 CacheTestFillBuffer(buf->data(), kSize, false);
2088 int64 offset = 1024;
2089 // Write to a bunch of ranges.
2090 for (int i = 0; i < 12; i++) {
2091 EXPECT_EQ(kSize,
2092 entry->WriteSparseData(
2093 offset, buf.get(), kSize, net::CompletionCallback()));
2094 offset *= 4;
2096 EXPECT_EQ(9, cache_->GetEntryCount());
2098 entry->Close();
2099 disk_cache::Backend* cache = cache_.get();
2100 SparseTestCompletionCallback cb(cache_.Pass());
2101 int rv = cache->DoomEntry(key, cb.callback());
2102 EXPECT_EQ(net::ERR_IO_PENDING, rv);
2103 EXPECT_EQ(net::OK, cb.WaitForResult());
2106 void DiskCacheEntryTest::PartialSparseEntry() {
2107 std::string key("the first key");
2108 disk_cache::Entry* entry;
2109 ASSERT_EQ(net::OK, CreateEntry(key, &entry));
2111 // We should be able to deal with IO that is not aligned to the block size
2112 // of a sparse entry, at least to write a big range without leaving holes.
2113 const int kSize = 4 * 1024;
2114 const int kSmallSize = 128;
2115 scoped_refptr<net::IOBuffer> buf1(new net::IOBuffer(kSize));
2116 CacheTestFillBuffer(buf1->data(), kSize, false);
2118 // The first write is just to extend the entry. The third write occupies
2119 // a 1KB block partially, it may not be written internally depending on the
2120 // implementation.
2121 EXPECT_EQ(kSize, WriteSparseData(entry, 20000, buf1.get(), kSize));
2122 EXPECT_EQ(kSize, WriteSparseData(entry, 500, buf1.get(), kSize));
2123 EXPECT_EQ(kSmallSize,
2124 WriteSparseData(entry, 1080321, buf1.get(), kSmallSize));
2125 entry->Close();
2126 ASSERT_EQ(net::OK, OpenEntry(key, &entry));
2128 scoped_refptr<net::IOBuffer> buf2(new net::IOBuffer(kSize));
2129 memset(buf2->data(), 0, kSize);
2130 EXPECT_EQ(0, ReadSparseData(entry, 8000, buf2.get(), kSize));
2132 EXPECT_EQ(500, ReadSparseData(entry, kSize, buf2.get(), kSize));
2133 EXPECT_EQ(0, memcmp(buf2->data(), buf1->data() + kSize - 500, 500));
2134 EXPECT_EQ(0, ReadSparseData(entry, 0, buf2.get(), kSize));
2136 // This read should not change anything.
2137 EXPECT_EQ(96, ReadSparseData(entry, 24000, buf2.get(), kSize));
2138 EXPECT_EQ(500, ReadSparseData(entry, kSize, buf2.get(), kSize));
2139 EXPECT_EQ(0, ReadSparseData(entry, 99, buf2.get(), kSize));
2141 int rv;
2142 int64 start;
2143 net::TestCompletionCallback cb;
2144 if (memory_only_ || simple_cache_mode_) {
2145 rv = entry->GetAvailableRange(0, 600, &start, cb.callback());
2146 EXPECT_EQ(100, cb.GetResult(rv));
2147 EXPECT_EQ(500, start);
2148 } else {
2149 rv = entry->GetAvailableRange(0, 2048, &start, cb.callback());
2150 EXPECT_EQ(1024, cb.GetResult(rv));
2151 EXPECT_EQ(1024, start);
2153 rv = entry->GetAvailableRange(kSize, kSize, &start, cb.callback());
2154 EXPECT_EQ(500, cb.GetResult(rv));
2155 EXPECT_EQ(kSize, start);
2156 rv = entry->GetAvailableRange(20 * 1024, 10000, &start, cb.callback());
2157 EXPECT_EQ(3616, cb.GetResult(rv));
2158 EXPECT_EQ(20 * 1024, start);
2160 // 1. Query before a filled 1KB block.
2161 // 2. Query within a filled 1KB block.
2162 // 3. Query beyond a filled 1KB block.
2163 if (memory_only_ || simple_cache_mode_) {
2164 rv = entry->GetAvailableRange(19400, kSize, &start, cb.callback());
2165 EXPECT_EQ(3496, cb.GetResult(rv));
2166 EXPECT_EQ(20000, start);
2167 } else {
2168 rv = entry->GetAvailableRange(19400, kSize, &start, cb.callback());
2169 EXPECT_EQ(3016, cb.GetResult(rv));
2170 EXPECT_EQ(20480, start);
2172 rv = entry->GetAvailableRange(3073, kSize, &start, cb.callback());
2173 EXPECT_EQ(1523, cb.GetResult(rv));
2174 EXPECT_EQ(3073, start);
2175 rv = entry->GetAvailableRange(4600, kSize, &start, cb.callback());
2176 EXPECT_EQ(0, cb.GetResult(rv));
2177 EXPECT_EQ(4600, start);
2179 // Now make another write and verify that there is no hole in between.
2180 EXPECT_EQ(kSize, WriteSparseData(entry, 500 + kSize, buf1.get(), kSize));
2181 rv = entry->GetAvailableRange(1024, 10000, &start, cb.callback());
2182 EXPECT_EQ(7 * 1024 + 500, cb.GetResult(rv));
2183 EXPECT_EQ(1024, start);
2184 EXPECT_EQ(kSize, ReadSparseData(entry, kSize, buf2.get(), kSize));
2185 EXPECT_EQ(0, memcmp(buf2->data(), buf1->data() + kSize - 500, 500));
2186 EXPECT_EQ(0, memcmp(buf2->data() + 500, buf1->data(), kSize - 500));
2188 entry->Close();
2191 TEST_F(DiskCacheEntryTest, PartialSparseEntry) {
2192 InitCache();
2193 PartialSparseEntry();
2196 TEST_F(DiskCacheEntryTest, MemoryPartialSparseEntry) {
2197 SetMemoryOnlyMode();
2198 InitCache();
2199 PartialSparseEntry();
2202 // Tests that corrupt sparse children are removed automatically.
2203 TEST_F(DiskCacheEntryTest, CleanupSparseEntry) {
2204 InitCache();
2205 std::string key("the first key");
2206 disk_cache::Entry* entry;
2207 ASSERT_EQ(net::OK, CreateEntry(key, &entry));
2209 const int kSize = 4 * 1024;
2210 scoped_refptr<net::IOBuffer> buf1(new net::IOBuffer(kSize));
2211 CacheTestFillBuffer(buf1->data(), kSize, false);
2213 const int k1Meg = 1024 * 1024;
2214 EXPECT_EQ(kSize, WriteSparseData(entry, 8192, buf1.get(), kSize));
2215 EXPECT_EQ(kSize, WriteSparseData(entry, k1Meg + 8192, buf1.get(), kSize));
2216 EXPECT_EQ(kSize, WriteSparseData(entry, 2 * k1Meg + 8192, buf1.get(), kSize));
2217 entry->Close();
2218 EXPECT_EQ(4, cache_->GetEntryCount());
2220 void* iter = NULL;
2221 int count = 0;
2222 std::string child_key[2];
2223 while (OpenNextEntry(&iter, &entry) == net::OK) {
2224 ASSERT_TRUE(entry != NULL);
2225 // Writing to an entry will alter the LRU list and invalidate the iterator.
2226 if (entry->GetKey() != key && count < 2)
2227 child_key[count++] = entry->GetKey();
2228 entry->Close();
2230 for (int i = 0; i < 2; i++) {
2231 ASSERT_EQ(net::OK, OpenEntry(child_key[i], &entry));
2232 // Overwrite the header's magic and signature.
2233 EXPECT_EQ(12, WriteData(entry, 2, 0, buf1.get(), 12, false));
2234 entry->Close();
2237 EXPECT_EQ(4, cache_->GetEntryCount());
2238 ASSERT_EQ(net::OK, OpenEntry(key, &entry));
2240 // Two children should be gone. One while reading and one while writing.
2241 EXPECT_EQ(0, ReadSparseData(entry, 2 * k1Meg + 8192, buf1.get(), kSize));
2242 EXPECT_EQ(kSize, WriteSparseData(entry, k1Meg + 16384, buf1.get(), kSize));
2243 EXPECT_EQ(0, ReadSparseData(entry, k1Meg + 8192, buf1.get(), kSize));
2245 // We never touched this one.
2246 EXPECT_EQ(kSize, ReadSparseData(entry, 8192, buf1.get(), kSize));
2247 entry->Close();
2249 // We re-created one of the corrupt children.
2250 EXPECT_EQ(3, cache_->GetEntryCount());
2253 TEST_F(DiskCacheEntryTest, CancelSparseIO) {
2254 UseCurrentThread();
2255 InitCache();
2256 std::string key("the first key");
2257 disk_cache::Entry* entry;
2258 ASSERT_EQ(net::OK, CreateEntry(key, &entry));
2260 const int kSize = 40 * 1024;
2261 scoped_refptr<net::IOBuffer> buf(new net::IOBuffer(kSize));
2262 CacheTestFillBuffer(buf->data(), kSize, false);
2264 // This will open and write two "real" entries.
2265 net::TestCompletionCallback cb1, cb2, cb3, cb4, cb5;
2266 int rv = entry->WriteSparseData(
2267 1024 * 1024 - 4096, buf.get(), kSize, cb1.callback());
2268 EXPECT_EQ(net::ERR_IO_PENDING, rv);
2270 int64 offset = 0;
2271 rv = entry->GetAvailableRange(offset, kSize, &offset, cb5.callback());
2272 rv = cb5.GetResult(rv);
2273 if (!cb1.have_result()) {
2274 // We may or may not have finished writing to the entry. If we have not,
2275 // we cannot start another operation at this time.
2276 EXPECT_EQ(net::ERR_CACHE_OPERATION_NOT_SUPPORTED, rv);
2279 // We cancel the pending operation, and register multiple notifications.
2280 entry->CancelSparseIO();
2281 EXPECT_EQ(net::ERR_IO_PENDING, entry->ReadyForSparseIO(cb2.callback()));
2282 EXPECT_EQ(net::ERR_IO_PENDING, entry->ReadyForSparseIO(cb3.callback()));
2283 entry->CancelSparseIO(); // Should be a no op at this point.
2284 EXPECT_EQ(net::ERR_IO_PENDING, entry->ReadyForSparseIO(cb4.callback()));
2286 if (!cb1.have_result()) {
2287 EXPECT_EQ(net::ERR_CACHE_OPERATION_NOT_SUPPORTED,
2288 entry->ReadSparseData(
2289 offset, buf.get(), kSize, net::CompletionCallback()));
2290 EXPECT_EQ(net::ERR_CACHE_OPERATION_NOT_SUPPORTED,
2291 entry->WriteSparseData(
2292 offset, buf.get(), kSize, net::CompletionCallback()));
2295 // Now see if we receive all notifications. Note that we should not be able
2296 // to write everything (unless the timing of the system is really weird).
2297 rv = cb1.WaitForResult();
2298 EXPECT_TRUE(rv == 4096 || rv == kSize);
2299 EXPECT_EQ(net::OK, cb2.WaitForResult());
2300 EXPECT_EQ(net::OK, cb3.WaitForResult());
2301 EXPECT_EQ(net::OK, cb4.WaitForResult());
2303 rv = entry->GetAvailableRange(offset, kSize, &offset, cb5.callback());
2304 EXPECT_EQ(0, cb5.GetResult(rv));
2305 entry->Close();
2308 // Tests that we perform sanity checks on an entry's key. Note that there are
2309 // other tests that exercise sanity checks by using saved corrupt files.
2310 TEST_F(DiskCacheEntryTest, KeySanityCheck) {
2311 UseCurrentThread();
2312 InitCache();
2313 std::string key("the first key");
2314 disk_cache::Entry* entry;
2315 ASSERT_EQ(net::OK, CreateEntry(key, &entry));
2317 disk_cache::EntryImpl* entry_impl =
2318 static_cast<disk_cache::EntryImpl*>(entry);
2319 disk_cache::EntryStore* store = entry_impl->entry()->Data();
2321 // We have reserved space for a short key (one block), let's say that the key
2322 // takes more than one block, and remove the NULLs after the actual key.
2323 store->key_len = 800;
2324 memset(store->key + key.size(), 'k', sizeof(store->key) - key.size());
2325 entry_impl->entry()->set_modified();
2326 entry->Close();
2328 // We have a corrupt entry. Now reload it. We should NOT read beyond the
2329 // allocated buffer here.
2330 ASSERT_NE(net::OK, OpenEntry(key, &entry));
2331 DisableIntegrityCheck();
2334 // The Simple Cache backend requires a few guarantees from the filesystem like
2335 // atomic renaming of recently open files. Those guarantees are not provided in
2336 // general on Windows.
2337 #if defined(OS_POSIX)
2339 TEST_F(DiskCacheEntryTest, SimpleCacheInternalAsyncIO) {
2340 SetSimpleCacheMode();
2341 InitCache();
2342 InternalAsyncIO();
2345 TEST_F(DiskCacheEntryTest, SimpleCacheExternalAsyncIO) {
2346 SetSimpleCacheMode();
2347 InitCache();
2348 ExternalAsyncIO();
2351 TEST_F(DiskCacheEntryTest, SimpleCacheReleaseBuffer) {
2352 SetSimpleCacheMode();
2353 InitCache();
2354 for (int i = 0; i < disk_cache::kSimpleEntryStreamCount; ++i) {
2355 EXPECT_EQ(net::OK, DoomAllEntries());
2356 ReleaseBuffer(i);
2360 TEST_F(DiskCacheEntryTest, SimpleCacheStreamAccess) {
2361 SetSimpleCacheMode();
2362 InitCache();
2363 StreamAccess();
2366 TEST_F(DiskCacheEntryTest, SimpleCacheGetKey) {
2367 SetSimpleCacheMode();
2368 InitCache();
2369 GetKey();
2372 TEST_F(DiskCacheEntryTest, SimpleCacheGetTimes) {
2373 SetSimpleCacheMode();
2374 InitCache();
2375 for (int i = 0; i < disk_cache::kSimpleEntryStreamCount; ++i) {
2376 EXPECT_EQ(net::OK, DoomAllEntries());
2377 GetTimes(i);
2381 TEST_F(DiskCacheEntryTest, SimpleCacheGrowData) {
2382 SetSimpleCacheMode();
2383 InitCache();
2384 for (int i = 0; i < disk_cache::kSimpleEntryStreamCount; ++i) {
2385 EXPECT_EQ(net::OK, DoomAllEntries());
2386 GrowData(i);
2390 TEST_F(DiskCacheEntryTest, SimpleCacheTruncateData) {
2391 SetSimpleCacheMode();
2392 InitCache();
2393 for (int i = 0; i < disk_cache::kSimpleEntryStreamCount; ++i) {
2394 EXPECT_EQ(net::OK, DoomAllEntries());
2395 TruncateData(i);
2399 TEST_F(DiskCacheEntryTest, SimpleCacheZeroLengthIO) {
2400 SetSimpleCacheMode();
2401 InitCache();
2402 for (int i = 0; i < disk_cache::kSimpleEntryStreamCount; ++i) {
2403 EXPECT_EQ(net::OK, DoomAllEntries());
2404 ZeroLengthIO(i);
2408 TEST_F(DiskCacheEntryTest, SimpleCacheSizeAtCreate) {
2409 SetSimpleCacheMode();
2410 InitCache();
2411 SizeAtCreate();
2414 TEST_F(DiskCacheEntryTest, SimpleCacheReuseExternalEntry) {
2415 SetSimpleCacheMode();
2416 SetMaxSize(200 * 1024);
2417 InitCache();
2418 for (int i = 0; i < disk_cache::kSimpleEntryStreamCount; ++i) {
2419 EXPECT_EQ(net::OK, DoomAllEntries());
2420 ReuseEntry(20 * 1024, i);
2424 TEST_F(DiskCacheEntryTest, SimpleCacheReuseInternalEntry) {
2425 SetSimpleCacheMode();
2426 SetMaxSize(100 * 1024);
2427 InitCache();
2428 for (int i = 0; i < disk_cache::kSimpleEntryStreamCount; ++i) {
2429 EXPECT_EQ(net::OK, DoomAllEntries());
2430 ReuseEntry(10 * 1024, i);
2434 TEST_F(DiskCacheEntryTest, SimpleCacheSizeChanges) {
2435 SetSimpleCacheMode();
2436 InitCache();
2437 for (int i = 0; i < disk_cache::kSimpleEntryStreamCount; ++i) {
2438 EXPECT_EQ(net::OK, DoomAllEntries());
2439 SizeChanges(i);
2443 TEST_F(DiskCacheEntryTest, SimpleCacheInvalidData) {
2444 SetSimpleCacheMode();
2445 InitCache();
2446 for (int i = 0; i < disk_cache::kSimpleEntryStreamCount; ++i) {
2447 EXPECT_EQ(net::OK, DoomAllEntries());
2448 InvalidData(i);
2452 TEST_F(DiskCacheEntryTest, SimpleCacheReadWriteDestroyBuffer) {
2453 // Proving that the test works well with optimistic operations enabled is
2454 // subtle, instead run only in APP_CACHE mode to disable optimistic
2455 // operations. Stream 0 always uses optimistic operations, so the test is not
2456 // run on stream 0.
2457 SetCacheType(net::APP_CACHE);
2458 SetSimpleCacheMode();
2459 InitCache();
2460 for (int i = 1; i < disk_cache::kSimpleEntryStreamCount; ++i) {
2461 EXPECT_EQ(net::OK, DoomAllEntries());
2462 ReadWriteDestroyBuffer(i);
2466 TEST_F(DiskCacheEntryTest, SimpleCacheDoomEntry) {
2467 SetSimpleCacheMode();
2468 InitCache();
2469 DoomNormalEntry();
2472 TEST_F(DiskCacheEntryTest, SimpleCacheDoomEntryNextToOpenEntry) {
2473 SetSimpleCacheMode();
2474 InitCache();
2475 DoomEntryNextToOpenEntry();
2478 TEST_F(DiskCacheEntryTest, SimpleCacheDoomedEntry) {
2479 SetSimpleCacheMode();
2480 InitCache();
2481 // Stream 2 is excluded because the implementation does not support writing to
2482 // it on a doomed entry, if it was previously lazily omitted.
2483 for (int i = 0; i < disk_cache::kSimpleEntryStreamCount - 1; ++i) {
2484 EXPECT_EQ(net::OK, DoomAllEntries());
2485 DoomedEntry(i);
2489 // Creates an entry with corrupted last byte in stream 0.
2490 // Requires SimpleCacheMode.
2491 bool DiskCacheEntryTest::SimpleCacheMakeBadChecksumEntry(const std::string& key,
2492 int* data_size) {
2493 disk_cache::Entry* entry = NULL;
2495 if (CreateEntry(key, &entry) != net::OK || !entry) {
2496 LOG(ERROR) << "Could not create entry";
2497 return false;
2500 const char data[] = "this is very good data";
2501 const int kDataSize = arraysize(data);
2502 scoped_refptr<net::IOBuffer> buffer(new net::IOBuffer(kDataSize));
2503 base::strlcpy(buffer->data(), data, kDataSize);
2505 EXPECT_EQ(kDataSize, WriteData(entry, 1, 0, buffer.get(), kDataSize, false));
2506 entry->Close();
2507 entry = NULL;
2509 // Corrupt the last byte of the data.
2510 base::FilePath entry_file0_path = cache_path_.AppendASCII(
2511 disk_cache::simple_util::GetFilenameFromKeyAndFileIndex(key, 0));
2512 base::File entry_file0(entry_file0_path,
2513 base::File::FLAG_WRITE | base::File::FLAG_OPEN);
2514 if (!entry_file0.IsValid())
2515 return false;
2517 int64 file_offset =
2518 sizeof(disk_cache::SimpleFileHeader) + key.size() + kDataSize - 2;
2519 EXPECT_EQ(1, entry_file0.Write(file_offset, "X", 1));
2520 *data_size = kDataSize;
2521 return true;
2524 // Tests that the simple cache can detect entries that have bad data.
2525 TEST_F(DiskCacheEntryTest, SimpleCacheBadChecksum) {
2526 SetSimpleCacheMode();
2527 InitCache();
2529 const char key[] = "the first key";
2530 int size_unused;
2531 ASSERT_TRUE(SimpleCacheMakeBadChecksumEntry(key, &size_unused));
2533 disk_cache::Entry* entry = NULL;
2535 // Open the entry.
2536 ASSERT_EQ(net::OK, OpenEntry(key, &entry));
2537 ScopedEntryPtr entry_closer(entry);
2539 const int kReadBufferSize = 200;
2540 EXPECT_GE(kReadBufferSize, entry->GetDataSize(1));
2541 scoped_refptr<net::IOBuffer> read_buffer(new net::IOBuffer(kReadBufferSize));
2542 EXPECT_EQ(net::ERR_CACHE_CHECKSUM_MISMATCH,
2543 ReadData(entry, 1, 0, read_buffer.get(), kReadBufferSize));
2546 // Tests that an entry that has had an IO error occur can still be Doomed().
2547 TEST_F(DiskCacheEntryTest, SimpleCacheErrorThenDoom) {
2548 SetSimpleCacheMode();
2549 InitCache();
2551 const char key[] = "the first key";
2552 int size_unused;
2553 ASSERT_TRUE(SimpleCacheMakeBadChecksumEntry(key, &size_unused));
2555 disk_cache::Entry* entry = NULL;
2557 // Open the entry, forcing an IO error.
2558 ASSERT_EQ(net::OK, OpenEntry(key, &entry));
2559 ScopedEntryPtr entry_closer(entry);
2561 const int kReadBufferSize = 200;
2562 EXPECT_GE(kReadBufferSize, entry->GetDataSize(1));
2563 scoped_refptr<net::IOBuffer> read_buffer(new net::IOBuffer(kReadBufferSize));
2564 EXPECT_EQ(net::ERR_CACHE_CHECKSUM_MISMATCH,
2565 ReadData(entry, 1, 0, read_buffer.get(), kReadBufferSize));
2567 entry->Doom(); // Should not crash.
2570 bool TruncatePath(const base::FilePath& file_path, int64 length) {
2571 base::File file(file_path, base::File::FLAG_WRITE | base::File::FLAG_OPEN);
2572 if (!file.IsValid())
2573 return false;
2574 return file.SetLength(length);
2577 TEST_F(DiskCacheEntryTest, SimpleCacheNoEOF) {
2578 SetSimpleCacheMode();
2579 InitCache();
2581 const char key[] = "the first key";
2583 disk_cache::Entry* entry = NULL;
2584 ASSERT_EQ(net::OK, CreateEntry(key, &entry));
2585 disk_cache::Entry* null = NULL;
2586 EXPECT_NE(null, entry);
2587 entry->Close();
2588 entry = NULL;
2590 // Force the entry to flush to disk, so subsequent platform file operations
2591 // succed.
2592 ASSERT_EQ(net::OK, OpenEntry(key, &entry));
2593 entry->Close();
2594 entry = NULL;
2596 // Truncate the file such that the length isn't sufficient to have an EOF
2597 // record.
2598 int kTruncationBytes = -implicit_cast<int>(sizeof(disk_cache::SimpleFileEOF));
2599 const base::FilePath entry_path = cache_path_.AppendASCII(
2600 disk_cache::simple_util::GetFilenameFromKeyAndFileIndex(key, 0));
2601 const int64 invalid_size =
2602 disk_cache::simple_util::GetFileSizeFromKeyAndDataSize(key,
2603 kTruncationBytes);
2604 EXPECT_TRUE(TruncatePath(entry_path, invalid_size));
2605 EXPECT_EQ(net::ERR_FAILED, OpenEntry(key, &entry));
2606 DisableIntegrityCheck();
2609 TEST_F(DiskCacheEntryTest, SimpleCacheNonOptimisticOperationsBasic) {
2610 // Test sequence:
2611 // Create, Write, Read, Close.
2612 SetCacheType(net::APP_CACHE); // APP_CACHE doesn't use optimistic operations.
2613 SetSimpleCacheMode();
2614 InitCache();
2615 disk_cache::Entry* const null_entry = NULL;
2617 disk_cache::Entry* entry = NULL;
2618 EXPECT_EQ(net::OK, CreateEntry("my key", &entry));
2619 ASSERT_NE(null_entry, entry);
2620 ScopedEntryPtr entry_closer(entry);
2622 const int kBufferSize = 10;
2623 scoped_refptr<net::IOBufferWithSize> write_buffer(
2624 new net::IOBufferWithSize(kBufferSize));
2625 CacheTestFillBuffer(write_buffer->data(), write_buffer->size(), false);
2626 EXPECT_EQ(
2627 write_buffer->size(),
2628 WriteData(entry, 1, 0, write_buffer.get(), write_buffer->size(), false));
2630 scoped_refptr<net::IOBufferWithSize> read_buffer(
2631 new net::IOBufferWithSize(kBufferSize));
2632 EXPECT_EQ(read_buffer->size(),
2633 ReadData(entry, 1, 0, read_buffer.get(), read_buffer->size()));
2636 TEST_F(DiskCacheEntryTest, SimpleCacheNonOptimisticOperationsDontBlock) {
2637 // Test sequence:
2638 // Create, Write, Close.
2639 SetCacheType(net::APP_CACHE); // APP_CACHE doesn't use optimistic operations.
2640 SetSimpleCacheMode();
2641 InitCache();
2642 disk_cache::Entry* const null_entry = NULL;
2644 MessageLoopHelper helper;
2645 CallbackTest create_callback(&helper, false);
2647 int expected_callback_runs = 0;
2648 const int kBufferSize = 10;
2649 scoped_refptr<net::IOBufferWithSize> write_buffer(
2650 new net::IOBufferWithSize(kBufferSize));
2652 disk_cache::Entry* entry = NULL;
2653 EXPECT_EQ(net::OK, CreateEntry("my key", &entry));
2654 ASSERT_NE(null_entry, entry);
2655 ScopedEntryPtr entry_closer(entry);
2657 CacheTestFillBuffer(write_buffer->data(), write_buffer->size(), false);
2658 CallbackTest write_callback(&helper, false);
2659 int ret = entry->WriteData(
2662 write_buffer.get(),
2663 write_buffer->size(),
2664 base::Bind(&CallbackTest::Run, base::Unretained(&write_callback)),
2665 false);
2666 ASSERT_EQ(net::ERR_IO_PENDING, ret);
2667 helper.WaitUntilCacheIoFinished(++expected_callback_runs);
2670 TEST_F(DiskCacheEntryTest,
2671 SimpleCacheNonOptimisticOperationsBasicsWithoutWaiting) {
2672 // Test sequence:
2673 // Create, Write, Read, Close.
2674 SetCacheType(net::APP_CACHE); // APP_CACHE doesn't use optimistic operations.
2675 SetSimpleCacheMode();
2676 InitCache();
2677 disk_cache::Entry* const null_entry = NULL;
2678 MessageLoopHelper helper;
2680 disk_cache::Entry* entry = NULL;
2681 // Note that |entry| is only set once CreateEntry() completed which is why we
2682 // have to wait (i.e. use the helper CreateEntry() function).
2683 EXPECT_EQ(net::OK, CreateEntry("my key", &entry));
2684 ASSERT_NE(null_entry, entry);
2685 ScopedEntryPtr entry_closer(entry);
2687 const int kBufferSize = 10;
2688 scoped_refptr<net::IOBufferWithSize> write_buffer(
2689 new net::IOBufferWithSize(kBufferSize));
2690 CacheTestFillBuffer(write_buffer->data(), write_buffer->size(), false);
2691 CallbackTest write_callback(&helper, false);
2692 int ret = entry->WriteData(
2695 write_buffer.get(),
2696 write_buffer->size(),
2697 base::Bind(&CallbackTest::Run, base::Unretained(&write_callback)),
2698 false);
2699 EXPECT_EQ(net::ERR_IO_PENDING, ret);
2700 int expected_callback_runs = 1;
2702 scoped_refptr<net::IOBufferWithSize> read_buffer(
2703 new net::IOBufferWithSize(kBufferSize));
2704 CallbackTest read_callback(&helper, false);
2705 ret = entry->ReadData(
2708 read_buffer.get(),
2709 read_buffer->size(),
2710 base::Bind(&CallbackTest::Run, base::Unretained(&read_callback)));
2711 EXPECT_EQ(net::ERR_IO_PENDING, ret);
2712 ++expected_callback_runs;
2714 helper.WaitUntilCacheIoFinished(expected_callback_runs);
2715 ASSERT_EQ(read_buffer->size(), write_buffer->size());
2716 EXPECT_EQ(
2718 memcmp(read_buffer->data(), write_buffer->data(), read_buffer->size()));
2721 TEST_F(DiskCacheEntryTest, SimpleCacheOptimistic) {
2722 // Test sequence:
2723 // Create, Write, Read, Write, Read, Close.
2724 SetSimpleCacheMode();
2725 InitCache();
2726 disk_cache::Entry* null = NULL;
2727 const char key[] = "the first key";
2729 MessageLoopHelper helper;
2730 CallbackTest callback1(&helper, false);
2731 CallbackTest callback2(&helper, false);
2732 CallbackTest callback3(&helper, false);
2733 CallbackTest callback4(&helper, false);
2734 CallbackTest callback5(&helper, false);
2736 int expected = 0;
2737 const int kSize1 = 10;
2738 const int kSize2 = 20;
2739 scoped_refptr<net::IOBuffer> buffer1(new net::IOBuffer(kSize1));
2740 scoped_refptr<net::IOBuffer> buffer1_read(new net::IOBuffer(kSize1));
2741 scoped_refptr<net::IOBuffer> buffer2(new net::IOBuffer(kSize2));
2742 scoped_refptr<net::IOBuffer> buffer2_read(new net::IOBuffer(kSize2));
2743 CacheTestFillBuffer(buffer1->data(), kSize1, false);
2744 CacheTestFillBuffer(buffer2->data(), kSize2, false);
2746 disk_cache::Entry* entry = NULL;
2747 // Create is optimistic, must return OK.
2748 ASSERT_EQ(net::OK,
2749 cache_->CreateEntry(key, &entry,
2750 base::Bind(&CallbackTest::Run,
2751 base::Unretained(&callback1))));
2752 EXPECT_NE(null, entry);
2753 ScopedEntryPtr entry_closer(entry);
2755 // This write may or may not be optimistic (it depends if the previous
2756 // optimistic create already finished by the time we call the write here).
2757 int ret = entry->WriteData(
2760 buffer1.get(),
2761 kSize1,
2762 base::Bind(&CallbackTest::Run, base::Unretained(&callback2)),
2763 false);
2764 EXPECT_TRUE(kSize1 == ret || net::ERR_IO_PENDING == ret);
2765 if (net::ERR_IO_PENDING == ret)
2766 expected++;
2768 // This Read must not be optimistic, since we don't support that yet.
2769 EXPECT_EQ(net::ERR_IO_PENDING,
2770 entry->ReadData(
2773 buffer1_read.get(),
2774 kSize1,
2775 base::Bind(&CallbackTest::Run, base::Unretained(&callback3))));
2776 expected++;
2777 EXPECT_TRUE(helper.WaitUntilCacheIoFinished(expected));
2778 EXPECT_EQ(0, memcmp(buffer1->data(), buffer1_read->data(), kSize1));
2780 // At this point after waiting, the pending operations queue on the entry
2781 // should be empty, so the next Write operation must run as optimistic.
2782 EXPECT_EQ(kSize2,
2783 entry->WriteData(
2786 buffer2.get(),
2787 kSize2,
2788 base::Bind(&CallbackTest::Run, base::Unretained(&callback4)),
2789 false));
2791 // Lets do another read so we block until both the write and the read
2792 // operation finishes and we can then test for HasOneRef() below.
2793 EXPECT_EQ(net::ERR_IO_PENDING,
2794 entry->ReadData(
2797 buffer2_read.get(),
2798 kSize2,
2799 base::Bind(&CallbackTest::Run, base::Unretained(&callback5))));
2800 expected++;
2802 EXPECT_TRUE(helper.WaitUntilCacheIoFinished(expected));
2803 EXPECT_EQ(0, memcmp(buffer2->data(), buffer2_read->data(), kSize2));
2805 // Check that we are not leaking.
2806 EXPECT_NE(entry, null);
2807 EXPECT_TRUE(
2808 static_cast<disk_cache::SimpleEntryImpl*>(entry)->HasOneRef());
2811 TEST_F(DiskCacheEntryTest, SimpleCacheOptimistic2) {
2812 // Test sequence:
2813 // Create, Open, Close, Close.
2814 SetSimpleCacheMode();
2815 InitCache();
2816 disk_cache::Entry* null = NULL;
2817 const char key[] = "the first key";
2819 MessageLoopHelper helper;
2820 CallbackTest callback1(&helper, false);
2821 CallbackTest callback2(&helper, false);
2823 disk_cache::Entry* entry = NULL;
2824 ASSERT_EQ(net::OK,
2825 cache_->CreateEntry(key, &entry,
2826 base::Bind(&CallbackTest::Run,
2827 base::Unretained(&callback1))));
2828 EXPECT_NE(null, entry);
2829 ScopedEntryPtr entry_closer(entry);
2831 disk_cache::Entry* entry2 = NULL;
2832 ASSERT_EQ(net::ERR_IO_PENDING,
2833 cache_->OpenEntry(key, &entry2,
2834 base::Bind(&CallbackTest::Run,
2835 base::Unretained(&callback2))));
2836 ASSERT_TRUE(helper.WaitUntilCacheIoFinished(1));
2838 EXPECT_NE(null, entry2);
2839 EXPECT_EQ(entry, entry2);
2841 // We have to call close twice, since we called create and open above.
2842 entry->Close();
2844 // Check that we are not leaking.
2845 EXPECT_TRUE(
2846 static_cast<disk_cache::SimpleEntryImpl*>(entry)->HasOneRef());
2849 TEST_F(DiskCacheEntryTest, SimpleCacheOptimistic3) {
2850 // Test sequence:
2851 // Create, Close, Open, Close.
2852 SetSimpleCacheMode();
2853 InitCache();
2854 disk_cache::Entry* null = NULL;
2855 const char key[] = "the first key";
2857 disk_cache::Entry* entry = NULL;
2858 ASSERT_EQ(net::OK,
2859 cache_->CreateEntry(key, &entry, net::CompletionCallback()));
2860 EXPECT_NE(null, entry);
2861 entry->Close();
2863 net::TestCompletionCallback cb;
2864 disk_cache::Entry* entry2 = NULL;
2865 ASSERT_EQ(net::ERR_IO_PENDING,
2866 cache_->OpenEntry(key, &entry2, cb.callback()));
2867 ASSERT_EQ(net::OK, cb.GetResult(net::ERR_IO_PENDING));
2868 ScopedEntryPtr entry_closer(entry2);
2870 EXPECT_NE(null, entry2);
2871 EXPECT_EQ(entry, entry2);
2873 // Check that we are not leaking.
2874 EXPECT_TRUE(
2875 static_cast<disk_cache::SimpleEntryImpl*>(entry2)->HasOneRef());
2878 TEST_F(DiskCacheEntryTest, SimpleCacheOptimistic4) {
2879 // Test sequence:
2880 // Create, Close, Write, Open, Open, Close, Write, Read, Close.
2881 SetSimpleCacheMode();
2882 InitCache();
2883 disk_cache::Entry* null = NULL;
2884 const char key[] = "the first key";
2886 net::TestCompletionCallback cb;
2887 const int kSize1 = 10;
2888 scoped_refptr<net::IOBuffer> buffer1(new net::IOBuffer(kSize1));
2889 CacheTestFillBuffer(buffer1->data(), kSize1, false);
2890 disk_cache::Entry* entry = NULL;
2892 ASSERT_EQ(net::OK,
2893 cache_->CreateEntry(key, &entry, net::CompletionCallback()));
2894 EXPECT_NE(null, entry);
2895 entry->Close();
2897 // Lets do a Write so we block until both the Close and the Write
2898 // operation finishes. Write must fail since we are writing in a closed entry.
2899 EXPECT_EQ(
2900 net::ERR_IO_PENDING,
2901 entry->WriteData(1, 0, buffer1.get(), kSize1, cb.callback(), false));
2902 EXPECT_EQ(net::ERR_FAILED, cb.GetResult(net::ERR_IO_PENDING));
2904 // Finish running the pending tasks so that we fully complete the close
2905 // operation and destroy the entry object.
2906 base::MessageLoop::current()->RunUntilIdle();
2908 // At this point the |entry| must have been destroyed, and called
2909 // RemoveSelfFromBackend().
2910 disk_cache::Entry* entry2 = NULL;
2911 ASSERT_EQ(net::ERR_IO_PENDING,
2912 cache_->OpenEntry(key, &entry2, cb.callback()));
2913 ASSERT_EQ(net::OK, cb.GetResult(net::ERR_IO_PENDING));
2914 EXPECT_NE(null, entry2);
2916 disk_cache::Entry* entry3 = NULL;
2917 ASSERT_EQ(net::ERR_IO_PENDING,
2918 cache_->OpenEntry(key, &entry3, cb.callback()));
2919 ASSERT_EQ(net::OK, cb.GetResult(net::ERR_IO_PENDING));
2920 EXPECT_NE(null, entry3);
2921 EXPECT_EQ(entry2, entry3);
2922 entry3->Close();
2924 // The previous Close doesn't actually closes the entry since we opened it
2925 // twice, so the next Write operation must succeed and it must be able to
2926 // perform it optimistically, since there is no operation running on this
2927 // entry.
2928 EXPECT_EQ(kSize1,
2929 entry2->WriteData(
2930 1, 0, buffer1.get(), kSize1, net::CompletionCallback(), false));
2932 // Lets do another read so we block until both the write and the read
2933 // operation finishes and we can then test for HasOneRef() below.
2934 EXPECT_EQ(net::ERR_IO_PENDING,
2935 entry2->ReadData(1, 0, buffer1.get(), kSize1, cb.callback()));
2936 EXPECT_EQ(kSize1, cb.GetResult(net::ERR_IO_PENDING));
2938 // Check that we are not leaking.
2939 EXPECT_TRUE(
2940 static_cast<disk_cache::SimpleEntryImpl*>(entry2)->HasOneRef());
2941 entry2->Close();
2944 TEST_F(DiskCacheEntryTest, SimpleCacheOptimistic5) {
2945 // Test sequence:
2946 // Create, Doom, Write, Read, Close.
2947 SetSimpleCacheMode();
2948 InitCache();
2949 disk_cache::Entry* null = NULL;
2950 const char key[] = "the first key";
2952 net::TestCompletionCallback cb;
2953 const int kSize1 = 10;
2954 scoped_refptr<net::IOBuffer> buffer1(new net::IOBuffer(kSize1));
2955 CacheTestFillBuffer(buffer1->data(), kSize1, false);
2956 disk_cache::Entry* entry = NULL;
2958 ASSERT_EQ(net::OK,
2959 cache_->CreateEntry(key, &entry, net::CompletionCallback()));
2960 EXPECT_NE(null, entry);
2961 ScopedEntryPtr entry_closer(entry);
2962 entry->Doom();
2964 EXPECT_EQ(
2965 net::ERR_IO_PENDING,
2966 entry->WriteData(1, 0, buffer1.get(), kSize1, cb.callback(), false));
2967 EXPECT_EQ(kSize1, cb.GetResult(net::ERR_IO_PENDING));
2969 EXPECT_EQ(net::ERR_IO_PENDING,
2970 entry->ReadData(1, 0, buffer1.get(), kSize1, cb.callback()));
2971 EXPECT_EQ(kSize1, cb.GetResult(net::ERR_IO_PENDING));
2973 // Check that we are not leaking.
2974 EXPECT_TRUE(
2975 static_cast<disk_cache::SimpleEntryImpl*>(entry)->HasOneRef());
2978 TEST_F(DiskCacheEntryTest, SimpleCacheOptimistic6) {
2979 // Test sequence:
2980 // Create, Write, Doom, Doom, Read, Doom, Close.
2981 SetSimpleCacheMode();
2982 InitCache();
2983 disk_cache::Entry* null = NULL;
2984 const char key[] = "the first key";
2986 net::TestCompletionCallback cb;
2987 const int kSize1 = 10;
2988 scoped_refptr<net::IOBuffer> buffer1(new net::IOBuffer(kSize1));
2989 scoped_refptr<net::IOBuffer> buffer1_read(new net::IOBuffer(kSize1));
2990 CacheTestFillBuffer(buffer1->data(), kSize1, false);
2991 disk_cache::Entry* entry = NULL;
2993 ASSERT_EQ(net::OK,
2994 cache_->CreateEntry(key, &entry, net::CompletionCallback()));
2995 EXPECT_NE(null, entry);
2996 ScopedEntryPtr entry_closer(entry);
2998 EXPECT_EQ(
2999 net::ERR_IO_PENDING,
3000 entry->WriteData(1, 0, buffer1.get(), kSize1, cb.callback(), false));
3001 EXPECT_EQ(kSize1, cb.GetResult(net::ERR_IO_PENDING));
3003 entry->Doom();
3004 entry->Doom();
3006 // This Read must not be optimistic, since we don't support that yet.
3007 EXPECT_EQ(net::ERR_IO_PENDING,
3008 entry->ReadData(1, 0, buffer1_read.get(), kSize1, cb.callback()));
3009 EXPECT_EQ(kSize1, cb.GetResult(net::ERR_IO_PENDING));
3010 EXPECT_EQ(0, memcmp(buffer1->data(), buffer1_read->data(), kSize1));
3012 entry->Doom();
3015 // Confirm that IO buffers are not referenced by the Simple Cache after a write
3016 // completes.
3017 TEST_F(DiskCacheEntryTest, SimpleCacheOptimisticWriteReleases) {
3018 SetSimpleCacheMode();
3019 InitCache();
3021 const char key[] = "the first key";
3022 disk_cache::Entry* entry = NULL;
3024 // First, an optimistic create.
3025 ASSERT_EQ(net::OK,
3026 cache_->CreateEntry(key, &entry, net::CompletionCallback()));
3027 ASSERT_TRUE(entry);
3028 ScopedEntryPtr entry_closer(entry);
3030 const int kWriteSize = 512;
3031 scoped_refptr<net::IOBuffer> buffer1(new net::IOBuffer(kWriteSize));
3032 EXPECT_TRUE(buffer1->HasOneRef());
3033 CacheTestFillBuffer(buffer1->data(), kWriteSize, false);
3035 // An optimistic write happens only when there is an empty queue of pending
3036 // operations. To ensure the queue is empty, we issue a write and wait until
3037 // it completes.
3038 EXPECT_EQ(kWriteSize,
3039 WriteData(entry, 1, 0, buffer1.get(), kWriteSize, false));
3040 EXPECT_TRUE(buffer1->HasOneRef());
3042 // Finally, we should perform an optimistic write and confirm that all
3043 // references to the IO buffer have been released.
3044 EXPECT_EQ(
3045 kWriteSize,
3046 entry->WriteData(
3047 1, 0, buffer1.get(), kWriteSize, net::CompletionCallback(), false));
3048 EXPECT_TRUE(buffer1->HasOneRef());
3051 TEST_F(DiskCacheEntryTest, SimpleCacheCreateDoomRace) {
3052 // Test sequence:
3053 // Create, Doom, Write, Close, Check files are not on disk anymore.
3054 SetSimpleCacheMode();
3055 InitCache();
3056 disk_cache::Entry* null = NULL;
3057 const char key[] = "the first key";
3059 net::TestCompletionCallback cb;
3060 const int kSize1 = 10;
3061 scoped_refptr<net::IOBuffer> buffer1(new net::IOBuffer(kSize1));
3062 CacheTestFillBuffer(buffer1->data(), kSize1, false);
3063 disk_cache::Entry* entry = NULL;
3065 ASSERT_EQ(net::OK,
3066 cache_->CreateEntry(key, &entry, net::CompletionCallback()));
3067 EXPECT_NE(null, entry);
3069 EXPECT_EQ(net::ERR_IO_PENDING, cache_->DoomEntry(key, cb.callback()));
3070 EXPECT_EQ(net::OK, cb.GetResult(net::ERR_IO_PENDING));
3072 EXPECT_EQ(
3073 kSize1,
3074 entry->WriteData(0, 0, buffer1.get(), kSize1, cb.callback(), false));
3076 entry->Close();
3078 // Finish running the pending tasks so that we fully complete the close
3079 // operation and destroy the entry object.
3080 base::MessageLoop::current()->RunUntilIdle();
3082 for (int i = 0; i < disk_cache::kSimpleEntryFileCount; ++i) {
3083 base::FilePath entry_file_path = cache_path_.AppendASCII(
3084 disk_cache::simple_util::GetFilenameFromKeyAndFileIndex(key, i));
3085 base::File::Info info;
3086 EXPECT_FALSE(base::GetFileInfo(entry_file_path, &info));
3090 TEST_F(DiskCacheEntryTest, SimpleCacheDoomCreateRace) {
3091 // This test runs as APP_CACHE to make operations more synchronous. Test
3092 // sequence:
3093 // Create, Doom, Create.
3094 SetCacheType(net::APP_CACHE);
3095 SetSimpleCacheMode();
3096 InitCache();
3097 disk_cache::Entry* null = NULL;
3098 const char key[] = "the first key";
3100 net::TestCompletionCallback create_callback;
3102 disk_cache::Entry* entry1 = NULL;
3103 ASSERT_EQ(net::OK,
3104 create_callback.GetResult(
3105 cache_->CreateEntry(key, &entry1, create_callback.callback())));
3106 ScopedEntryPtr entry1_closer(entry1);
3107 EXPECT_NE(null, entry1);
3109 net::TestCompletionCallback doom_callback;
3110 EXPECT_EQ(net::ERR_IO_PENDING,
3111 cache_->DoomEntry(key, doom_callback.callback()));
3113 disk_cache::Entry* entry2 = NULL;
3114 ASSERT_EQ(net::OK,
3115 create_callback.GetResult(
3116 cache_->CreateEntry(key, &entry2, create_callback.callback())));
3117 ScopedEntryPtr entry2_closer(entry2);
3118 EXPECT_EQ(net::OK, doom_callback.GetResult(net::ERR_IO_PENDING));
3121 TEST_F(DiskCacheEntryTest, SimpleCacheDoomDoom) {
3122 // Test sequence:
3123 // Create, Doom, Create, Doom (1st entry), Open.
3124 SetSimpleCacheMode();
3125 InitCache();
3126 disk_cache::Entry* null = NULL;
3128 const char key[] = "the first key";
3130 disk_cache::Entry* entry1 = NULL;
3131 ASSERT_EQ(net::OK, CreateEntry(key, &entry1));
3132 ScopedEntryPtr entry1_closer(entry1);
3133 EXPECT_NE(null, entry1);
3135 EXPECT_EQ(net::OK, DoomEntry(key));
3137 disk_cache::Entry* entry2 = NULL;
3138 ASSERT_EQ(net::OK, CreateEntry(key, &entry2));
3139 ScopedEntryPtr entry2_closer(entry2);
3140 EXPECT_NE(null, entry2);
3142 // Redundantly dooming entry1 should not delete entry2.
3143 disk_cache::SimpleEntryImpl* simple_entry1 =
3144 static_cast<disk_cache::SimpleEntryImpl*>(entry1);
3145 net::TestCompletionCallback cb;
3146 EXPECT_EQ(net::OK,
3147 cb.GetResult(simple_entry1->DoomEntry(cb.callback())));
3149 disk_cache::Entry* entry3 = NULL;
3150 ASSERT_EQ(net::OK, OpenEntry(key, &entry3));
3151 ScopedEntryPtr entry3_closer(entry3);
3152 EXPECT_NE(null, entry3);
3155 TEST_F(DiskCacheEntryTest, SimpleCacheDoomCreateDoom) {
3156 // Test sequence:
3157 // Create, Doom, Create, Doom.
3158 SetSimpleCacheMode();
3159 InitCache();
3161 disk_cache::Entry* null = NULL;
3163 const char key[] = "the first key";
3165 disk_cache::Entry* entry1 = NULL;
3166 ASSERT_EQ(net::OK, CreateEntry(key, &entry1));
3167 ScopedEntryPtr entry1_closer(entry1);
3168 EXPECT_NE(null, entry1);
3170 entry1->Doom();
3172 disk_cache::Entry* entry2 = NULL;
3173 ASSERT_EQ(net::OK, CreateEntry(key, &entry2));
3174 ScopedEntryPtr entry2_closer(entry2);
3175 EXPECT_NE(null, entry2);
3177 entry2->Doom();
3179 // This test passes if it doesn't crash.
3182 TEST_F(DiskCacheEntryTest, SimpleCacheDoomCloseCreateCloseOpen) {
3183 // Test sequence: Create, Doom, Close, Create, Close, Open.
3184 SetSimpleCacheMode();
3185 InitCache();
3187 disk_cache::Entry* null = NULL;
3189 const char key[] = "this is a key";
3191 disk_cache::Entry* entry1 = NULL;
3192 ASSERT_EQ(net::OK, CreateEntry(key, &entry1));
3193 ScopedEntryPtr entry1_closer(entry1);
3194 EXPECT_NE(null, entry1);
3196 entry1->Doom();
3197 entry1_closer.reset();
3198 entry1 = NULL;
3200 disk_cache::Entry* entry2 = NULL;
3201 ASSERT_EQ(net::OK, CreateEntry(key, &entry2));
3202 ScopedEntryPtr entry2_closer(entry2);
3203 EXPECT_NE(null, entry2);
3205 entry2_closer.reset();
3206 entry2 = NULL;
3208 disk_cache::Entry* entry3 = NULL;
3209 ASSERT_EQ(net::OK, OpenEntry(key, &entry3));
3210 ScopedEntryPtr entry3_closer(entry3);
3211 EXPECT_NE(null, entry3);
3214 // Checks that an optimistic Create would fail later on a racing Open.
3215 TEST_F(DiskCacheEntryTest, SimpleCacheOptimisticCreateFailsOnOpen) {
3216 SetSimpleCacheMode();
3217 InitCache();
3219 // Create a corrupt file in place of a future entry. Optimistic create should
3220 // initially succeed, but realize later that creation failed.
3221 const std::string key = "the key";
3222 net::TestCompletionCallback cb;
3223 disk_cache::Entry* entry = NULL;
3224 disk_cache::Entry* entry2 = NULL;
3226 EXPECT_TRUE(disk_cache::simple_util::CreateCorruptFileForTests(
3227 key, cache_path_));
3228 EXPECT_EQ(net::OK, cache_->CreateEntry(key, &entry, cb.callback()));
3229 ASSERT_TRUE(entry);
3230 ScopedEntryPtr entry_closer(entry);
3231 ASSERT_NE(net::OK, OpenEntry(key, &entry2));
3233 // Check that we are not leaking.
3234 EXPECT_TRUE(
3235 static_cast<disk_cache::SimpleEntryImpl*>(entry)->HasOneRef());
3237 DisableIntegrityCheck();
3240 // Tests that old entries are evicted while new entries remain in the index.
3241 // This test relies on non-mandatory properties of the simple Cache Backend:
3242 // LRU eviction, specific values of high-watermark and low-watermark etc.
3243 // When changing the eviction algorithm, the test will have to be re-engineered.
3244 TEST_F(DiskCacheEntryTest, SimpleCacheEvictOldEntries) {
3245 const int kMaxSize = 200 * 1024;
3246 const int kWriteSize = kMaxSize / 10;
3247 const int kNumExtraEntries = 12;
3248 SetSimpleCacheMode();
3249 SetMaxSize(kMaxSize);
3250 InitCache();
3252 std::string key1("the first key");
3253 disk_cache::Entry* entry;
3254 ASSERT_EQ(net::OK, CreateEntry(key1, &entry));
3255 scoped_refptr<net::IOBuffer> buffer(new net::IOBuffer(kWriteSize));
3256 CacheTestFillBuffer(buffer->data(), kWriteSize, false);
3257 EXPECT_EQ(kWriteSize,
3258 WriteData(entry, 1, 0, buffer.get(), kWriteSize, false));
3259 entry->Close();
3260 AddDelay();
3262 std::string key2("the key prefix");
3263 for (int i = 0; i < kNumExtraEntries; i++) {
3264 if (i == kNumExtraEntries - 2) {
3265 // Create a distinct timestamp for the last two entries. These entries
3266 // will be checked for outliving the eviction.
3267 AddDelay();
3269 ASSERT_EQ(net::OK, CreateEntry(key2 + base::StringPrintf("%d", i), &entry));
3270 ScopedEntryPtr entry_closer(entry);
3271 EXPECT_EQ(kWriteSize,
3272 WriteData(entry, 1, 0, buffer.get(), kWriteSize, false));
3275 // TODO(pasko): Find a way to wait for the eviction task(s) to finish by using
3276 // the internal knowledge about |SimpleBackendImpl|.
3277 ASSERT_NE(net::OK, OpenEntry(key1, &entry))
3278 << "Should have evicted the old entry";
3279 for (int i = 0; i < 2; i++) {
3280 int entry_no = kNumExtraEntries - i - 1;
3281 // Generally there is no guarantee that at this point the backround eviction
3282 // is finished. We are testing the positive case, i.e. when the eviction
3283 // never reaches this entry, should be non-flaky.
3284 ASSERT_EQ(net::OK, OpenEntry(key2 + base::StringPrintf("%d", entry_no),
3285 &entry))
3286 << "Should not have evicted fresh entry " << entry_no;
3287 entry->Close();
3291 // Tests that if a read and a following in-flight truncate are both in progress
3292 // simultaniously that they both can occur successfully. See
3293 // http://crbug.com/239223
3294 TEST_F(DiskCacheEntryTest, SimpleCacheInFlightTruncate) {
3295 SetSimpleCacheMode();
3296 InitCache();
3298 const char key[] = "the first key";
3300 const int kBufferSize = 1024;
3301 scoped_refptr<net::IOBuffer> write_buffer(new net::IOBuffer(kBufferSize));
3302 CacheTestFillBuffer(write_buffer->data(), kBufferSize, false);
3304 disk_cache::Entry* entry = NULL;
3305 ASSERT_EQ(net::OK, CreateEntry(key, &entry));
3307 EXPECT_EQ(kBufferSize,
3308 WriteData(entry, 1, 0, write_buffer.get(), kBufferSize, false));
3309 entry->Close();
3310 entry = NULL;
3312 ASSERT_EQ(net::OK, OpenEntry(key, &entry));
3313 ScopedEntryPtr entry_closer(entry);
3315 MessageLoopHelper helper;
3316 int expected = 0;
3318 // Make a short read.
3319 const int kReadBufferSize = 512;
3320 scoped_refptr<net::IOBuffer> read_buffer(new net::IOBuffer(kReadBufferSize));
3321 CallbackTest read_callback(&helper, false);
3322 EXPECT_EQ(net::ERR_IO_PENDING,
3323 entry->ReadData(1,
3325 read_buffer.get(),
3326 kReadBufferSize,
3327 base::Bind(&CallbackTest::Run,
3328 base::Unretained(&read_callback))));
3329 ++expected;
3331 // Truncate the entry to the length of that read.
3332 scoped_refptr<net::IOBuffer>
3333 truncate_buffer(new net::IOBuffer(kReadBufferSize));
3334 CacheTestFillBuffer(truncate_buffer->data(), kReadBufferSize, false);
3335 CallbackTest truncate_callback(&helper, false);
3336 EXPECT_EQ(net::ERR_IO_PENDING,
3337 entry->WriteData(1,
3339 truncate_buffer.get(),
3340 kReadBufferSize,
3341 base::Bind(&CallbackTest::Run,
3342 base::Unretained(&truncate_callback)),
3343 true));
3344 ++expected;
3346 // Wait for both the read and truncation to finish, and confirm that both
3347 // succeeded.
3348 EXPECT_TRUE(helper.WaitUntilCacheIoFinished(expected));
3349 EXPECT_EQ(kReadBufferSize, read_callback.last_result());
3350 EXPECT_EQ(kReadBufferSize, truncate_callback.last_result());
3351 EXPECT_EQ(0,
3352 memcmp(write_buffer->data(), read_buffer->data(), kReadBufferSize));
3355 // Tests that if a write and a read dependant on it are both in flight
3356 // simultaneiously that they both can complete successfully without erroneous
3357 // early returns. See http://crbug.com/239223
3358 TEST_F(DiskCacheEntryTest, SimpleCacheInFlightRead) {
3359 SetSimpleCacheMode();
3360 InitCache();
3362 const char key[] = "the first key";
3363 disk_cache::Entry* entry = NULL;
3364 ASSERT_EQ(net::OK,
3365 cache_->CreateEntry(key, &entry, net::CompletionCallback()));
3366 ScopedEntryPtr entry_closer(entry);
3368 const int kBufferSize = 1024;
3369 scoped_refptr<net::IOBuffer> write_buffer(new net::IOBuffer(kBufferSize));
3370 CacheTestFillBuffer(write_buffer->data(), kBufferSize, false);
3372 MessageLoopHelper helper;
3373 int expected = 0;
3375 CallbackTest write_callback(&helper, false);
3376 EXPECT_EQ(net::ERR_IO_PENDING,
3377 entry->WriteData(1,
3379 write_buffer.get(),
3380 kBufferSize,
3381 base::Bind(&CallbackTest::Run,
3382 base::Unretained(&write_callback)),
3383 true));
3384 ++expected;
3386 scoped_refptr<net::IOBuffer> read_buffer(new net::IOBuffer(kBufferSize));
3387 CallbackTest read_callback(&helper, false);
3388 EXPECT_EQ(net::ERR_IO_PENDING,
3389 entry->ReadData(1,
3391 read_buffer.get(),
3392 kBufferSize,
3393 base::Bind(&CallbackTest::Run,
3394 base::Unretained(&read_callback))));
3395 ++expected;
3397 EXPECT_TRUE(helper.WaitUntilCacheIoFinished(expected));
3398 EXPECT_EQ(kBufferSize, write_callback.last_result());
3399 EXPECT_EQ(kBufferSize, read_callback.last_result());
3400 EXPECT_EQ(0, memcmp(write_buffer->data(), read_buffer->data(), kBufferSize));
3403 TEST_F(DiskCacheEntryTest, SimpleCacheOpenCreateRaceWithNoIndex) {
3404 SetSimpleCacheMode();
3405 DisableSimpleCacheWaitForIndex();
3406 DisableIntegrityCheck();
3407 InitCache();
3409 // Assume the index is not initialized, which is likely, since we are blocking
3410 // the IO thread from executing the index finalization step.
3411 disk_cache::Entry* entry1;
3412 net::TestCompletionCallback cb1;
3413 disk_cache::Entry* entry2;
3414 net::TestCompletionCallback cb2;
3415 int rv1 = cache_->OpenEntry("key", &entry1, cb1.callback());
3416 int rv2 = cache_->CreateEntry("key", &entry2, cb2.callback());
3418 EXPECT_EQ(net::ERR_FAILED, cb1.GetResult(rv1));
3419 ASSERT_EQ(net::OK, cb2.GetResult(rv2));
3420 entry2->Close();
3423 // Checks that reading two entries simultaneously does not discard a CRC check.
3424 // TODO(pasko): make it work with Simple Cache.
3425 TEST_F(DiskCacheEntryTest, DISABLED_SimpleCacheMultipleReadersCheckCRC) {
3426 SetSimpleCacheMode();
3427 InitCache();
3429 const char key[] = "key";
3431 int size;
3432 ASSERT_TRUE(SimpleCacheMakeBadChecksumEntry(key, &size));
3434 scoped_refptr<net::IOBuffer> read_buffer1(new net::IOBuffer(size));
3435 scoped_refptr<net::IOBuffer> read_buffer2(new net::IOBuffer(size));
3437 // Advance the first reader a little.
3438 disk_cache::Entry* entry = NULL;
3439 ASSERT_EQ(net::OK, OpenEntry(key, &entry));
3440 EXPECT_EQ(1, ReadData(entry, 0, 0, read_buffer1.get(), 1));
3442 // Make the second reader pass the point where the first one is, and close.
3443 disk_cache::Entry* entry2 = NULL;
3444 EXPECT_EQ(net::OK, OpenEntry(key, &entry2));
3445 EXPECT_EQ(1, ReadData(entry2, 0, 0, read_buffer2.get(), 1));
3446 EXPECT_EQ(1, ReadData(entry2, 0, 1, read_buffer2.get(), 1));
3447 entry2->Close();
3449 // Read the data till the end should produce an error.
3450 EXPECT_GT(0, ReadData(entry, 0, 1, read_buffer1.get(), size));
3451 entry->Close();
3452 DisableIntegrityCheck();
3455 // Checking one more scenario of overlapped reading of a bad entry.
3456 // Differs from the |SimpleCacheMultipleReadersCheckCRC| only by the order of
3457 // last two reads.
3458 TEST_F(DiskCacheEntryTest, SimpleCacheMultipleReadersCheckCRC2) {
3459 SetSimpleCacheMode();
3460 InitCache();
3462 const char key[] = "key";
3463 int size;
3464 ASSERT_TRUE(SimpleCacheMakeBadChecksumEntry(key, &size));
3466 scoped_refptr<net::IOBuffer> read_buffer1(new net::IOBuffer(size));
3467 scoped_refptr<net::IOBuffer> read_buffer2(new net::IOBuffer(size));
3469 // Advance the first reader a little.
3470 disk_cache::Entry* entry = NULL;
3471 ASSERT_EQ(net::OK, OpenEntry(key, &entry));
3472 ScopedEntryPtr entry_closer(entry);
3473 EXPECT_EQ(1, ReadData(entry, 1, 0, read_buffer1.get(), 1));
3475 // Advance the 2nd reader by the same amount.
3476 disk_cache::Entry* entry2 = NULL;
3477 EXPECT_EQ(net::OK, OpenEntry(key, &entry2));
3478 ScopedEntryPtr entry2_closer(entry2);
3479 EXPECT_EQ(1, ReadData(entry2, 1, 0, read_buffer2.get(), 1));
3481 // Continue reading 1st.
3482 EXPECT_GT(0, ReadData(entry, 1, 1, read_buffer1.get(), size));
3484 // This read should fail as well because we have previous read failures.
3485 EXPECT_GT(0, ReadData(entry2, 1, 1, read_buffer2.get(), 1));
3486 DisableIntegrityCheck();
3489 // Test if we can sequentially read each subset of the data until all the data
3490 // is read, then the CRC is calculated correctly and the reads are successful.
3491 TEST_F(DiskCacheEntryTest, SimpleCacheReadCombineCRC) {
3492 // Test sequence:
3493 // Create, Write, Read (first half of data), Read (second half of data),
3494 // Close.
3495 SetSimpleCacheMode();
3496 InitCache();
3497 disk_cache::Entry* null = NULL;
3498 const char key[] = "the first key";
3500 const int kHalfSize = 200;
3501 const int kSize = 2 * kHalfSize;
3502 scoped_refptr<net::IOBuffer> buffer1(new net::IOBuffer(kSize));
3503 CacheTestFillBuffer(buffer1->data(), kSize, false);
3504 disk_cache::Entry* entry = NULL;
3506 ASSERT_EQ(net::OK, CreateEntry(key, &entry));
3507 EXPECT_NE(null, entry);
3509 EXPECT_EQ(kSize, WriteData(entry, 1, 0, buffer1.get(), kSize, false));
3510 entry->Close();
3512 disk_cache::Entry* entry2 = NULL;
3513 ASSERT_EQ(net::OK, OpenEntry(key, &entry2));
3514 EXPECT_EQ(entry, entry2);
3516 // Read the first half of the data.
3517 int offset = 0;
3518 int buf_len = kHalfSize;
3519 scoped_refptr<net::IOBuffer> buffer1_read1(new net::IOBuffer(buf_len));
3520 EXPECT_EQ(buf_len, ReadData(entry2, 1, offset, buffer1_read1.get(), buf_len));
3521 EXPECT_EQ(0, memcmp(buffer1->data(), buffer1_read1->data(), buf_len));
3523 // Read the second half of the data.
3524 offset = buf_len;
3525 buf_len = kHalfSize;
3526 scoped_refptr<net::IOBuffer> buffer1_read2(new net::IOBuffer(buf_len));
3527 EXPECT_EQ(buf_len, ReadData(entry2, 1, offset, buffer1_read2.get(), buf_len));
3528 char* buffer1_data = buffer1->data() + offset;
3529 EXPECT_EQ(0, memcmp(buffer1_data, buffer1_read2->data(), buf_len));
3531 // Check that we are not leaking.
3532 EXPECT_NE(entry, null);
3533 EXPECT_TRUE(
3534 static_cast<disk_cache::SimpleEntryImpl*>(entry)->HasOneRef());
3535 entry->Close();
3536 entry = NULL;
3539 // Test if we can write the data not in sequence and read correctly. In
3540 // this case the CRC will not be present.
3541 TEST_F(DiskCacheEntryTest, SimpleCacheNonSequentialWrite) {
3542 // Test sequence:
3543 // Create, Write (second half of data), Write (first half of data), Read,
3544 // Close.
3545 SetSimpleCacheMode();
3546 InitCache();
3547 disk_cache::Entry* null = NULL;
3548 const char key[] = "the first key";
3550 const int kHalfSize = 200;
3551 const int kSize = 2 * kHalfSize;
3552 scoped_refptr<net::IOBuffer> buffer1(new net::IOBuffer(kSize));
3553 scoped_refptr<net::IOBuffer> buffer2(new net::IOBuffer(kSize));
3554 CacheTestFillBuffer(buffer1->data(), kSize, false);
3555 char* buffer1_data = buffer1->data() + kHalfSize;
3556 memcpy(buffer2->data(), buffer1_data, kHalfSize);
3558 disk_cache::Entry* entry = NULL;
3559 ASSERT_EQ(net::OK, CreateEntry(key, &entry));
3560 entry->Close();
3561 for (int i = 0; i < disk_cache::kSimpleEntryStreamCount; ++i) {
3562 ASSERT_EQ(net::OK, OpenEntry(key, &entry));
3563 EXPECT_NE(null, entry);
3565 int offset = kHalfSize;
3566 int buf_len = kHalfSize;
3568 EXPECT_EQ(buf_len,
3569 WriteData(entry, i, offset, buffer2.get(), buf_len, false));
3570 offset = 0;
3571 buf_len = kHalfSize;
3572 EXPECT_EQ(buf_len,
3573 WriteData(entry, i, offset, buffer1.get(), buf_len, false));
3574 entry->Close();
3576 ASSERT_EQ(net::OK, OpenEntry(key, &entry));
3578 scoped_refptr<net::IOBuffer> buffer1_read1(new net::IOBuffer(kSize));
3579 EXPECT_EQ(kSize, ReadData(entry, i, 0, buffer1_read1.get(), kSize));
3580 EXPECT_EQ(0, memcmp(buffer1->data(), buffer1_read1->data(), kSize));
3581 // Check that we are not leaking.
3582 ASSERT_NE(entry, null);
3583 EXPECT_TRUE(static_cast<disk_cache::SimpleEntryImpl*>(entry)->HasOneRef());
3584 entry->Close();
3588 // Test that changing stream1 size does not affect stream0 (stream0 and stream1
3589 // are stored in the same file in Simple Cache).
3590 TEST_F(DiskCacheEntryTest, SimpleCacheStream1SizeChanges) {
3591 SetSimpleCacheMode();
3592 InitCache();
3593 disk_cache::Entry* entry = NULL;
3594 const char key[] = "the key";
3595 const int kSize = 100;
3596 scoped_refptr<net::IOBuffer> buffer(new net::IOBuffer(kSize));
3597 scoped_refptr<net::IOBuffer> buffer_read(new net::IOBuffer(kSize));
3598 CacheTestFillBuffer(buffer->data(), kSize, false);
3600 ASSERT_EQ(net::OK, CreateEntry(key, &entry));
3601 EXPECT_TRUE(entry);
3603 // Write something into stream0.
3604 EXPECT_EQ(kSize, WriteData(entry, 0, 0, buffer.get(), kSize, false));
3605 EXPECT_EQ(kSize, ReadData(entry, 0, 0, buffer_read.get(), kSize));
3606 EXPECT_EQ(0, memcmp(buffer->data(), buffer_read->data(), kSize));
3607 entry->Close();
3609 // Extend stream1.
3610 ASSERT_EQ(net::OK, OpenEntry(key, &entry));
3611 int stream1_size = 100;
3612 EXPECT_EQ(0, WriteData(entry, 1, stream1_size, buffer.get(), 0, false));
3613 EXPECT_EQ(stream1_size, entry->GetDataSize(1));
3614 entry->Close();
3616 // Check that stream0 data has not been modified and that the EOF record for
3617 // stream 0 contains a crc.
3618 // The entry needs to be reopened before checking the crc: Open will perform
3619 // the synchronization with the previous Close. This ensures the EOF records
3620 // have been written to disk before we attempt to read them independently.
3621 ASSERT_EQ(net::OK, OpenEntry(key, &entry));
3622 base::FilePath entry_file0_path = cache_path_.AppendASCII(
3623 disk_cache::simple_util::GetFilenameFromKeyAndFileIndex(key, 0));
3624 base::File entry_file0(entry_file0_path,
3625 base::File::FLAG_READ | base::File::FLAG_OPEN);
3626 ASSERT_TRUE(entry_file0.IsValid());
3628 int data_size[disk_cache::kSimpleEntryStreamCount] = {kSize, stream1_size, 0};
3629 int sparse_data_size = 0;
3630 disk_cache::SimpleEntryStat entry_stat(
3631 base::Time::Now(), base::Time::Now(), data_size, sparse_data_size);
3632 int eof_offset = entry_stat.GetEOFOffsetInFile(key, 0);
3633 disk_cache::SimpleFileEOF eof_record;
3634 ASSERT_EQ(static_cast<int>(sizeof(eof_record)),
3635 entry_file0.Read(eof_offset, reinterpret_cast<char*>(&eof_record),
3636 sizeof(eof_record)));
3637 EXPECT_EQ(disk_cache::kSimpleFinalMagicNumber, eof_record.final_magic_number);
3638 EXPECT_TRUE((eof_record.flags & disk_cache::SimpleFileEOF::FLAG_HAS_CRC32) ==
3639 disk_cache::SimpleFileEOF::FLAG_HAS_CRC32);
3641 buffer_read = new net::IOBuffer(kSize);
3642 EXPECT_EQ(kSize, ReadData(entry, 0, 0, buffer_read.get(), kSize));
3643 EXPECT_EQ(0, memcmp(buffer->data(), buffer_read->data(), kSize));
3645 // Shrink stream1.
3646 stream1_size = 50;
3647 EXPECT_EQ(0, WriteData(entry, 1, stream1_size, buffer.get(), 0, true));
3648 EXPECT_EQ(stream1_size, entry->GetDataSize(1));
3649 entry->Close();
3651 // Check that stream0 data has not been modified.
3652 buffer_read = new net::IOBuffer(kSize);
3653 ASSERT_EQ(net::OK, OpenEntry(key, &entry));
3654 EXPECT_EQ(kSize, ReadData(entry, 0, 0, buffer_read.get(), kSize));
3655 EXPECT_EQ(0, memcmp(buffer->data(), buffer_read->data(), kSize));
3656 entry->Close();
3657 entry = NULL;
3660 // Test that writing within the range for which the crc has already been
3661 // computed will properly invalidate the computed crc.
3662 TEST_F(DiskCacheEntryTest, SimpleCacheCRCRewrite) {
3663 // Test sequence:
3664 // Create, Write (big data), Write (small data in the middle), Close.
3665 // Open, Read (all), Close.
3666 SetSimpleCacheMode();
3667 InitCache();
3668 disk_cache::Entry* null = NULL;
3669 const char key[] = "the first key";
3671 const int kHalfSize = 200;
3672 const int kSize = 2 * kHalfSize;
3673 scoped_refptr<net::IOBuffer> buffer1(new net::IOBuffer(kSize));
3674 scoped_refptr<net::IOBuffer> buffer2(new net::IOBuffer(kHalfSize));
3675 CacheTestFillBuffer(buffer1->data(), kSize, false);
3676 CacheTestFillBuffer(buffer2->data(), kHalfSize, false);
3678 disk_cache::Entry* entry = NULL;
3679 ASSERT_EQ(net::OK, CreateEntry(key, &entry));
3680 EXPECT_NE(null, entry);
3681 entry->Close();
3683 for (int i = 0; i < disk_cache::kSimpleEntryStreamCount; ++i) {
3684 ASSERT_EQ(net::OK, OpenEntry(key, &entry));
3685 int offset = 0;
3686 int buf_len = kSize;
3688 EXPECT_EQ(buf_len,
3689 WriteData(entry, i, offset, buffer1.get(), buf_len, false));
3690 offset = kHalfSize;
3691 buf_len = kHalfSize;
3692 EXPECT_EQ(buf_len,
3693 WriteData(entry, i, offset, buffer2.get(), buf_len, false));
3694 entry->Close();
3696 ASSERT_EQ(net::OK, OpenEntry(key, &entry));
3698 scoped_refptr<net::IOBuffer> buffer1_read1(new net::IOBuffer(kSize));
3699 EXPECT_EQ(kSize, ReadData(entry, i, 0, buffer1_read1.get(), kSize));
3700 EXPECT_EQ(0, memcmp(buffer1->data(), buffer1_read1->data(), kHalfSize));
3701 EXPECT_EQ(
3703 memcmp(buffer2->data(), buffer1_read1->data() + kHalfSize, kHalfSize));
3705 entry->Close();
3709 bool DiskCacheEntryTest::SimpleCacheThirdStreamFileExists(const char* key) {
3710 int third_stream_file_index =
3711 disk_cache::simple_util::GetFileIndexFromStreamIndex(2);
3712 base::FilePath third_stream_file_path = cache_path_.AppendASCII(
3713 disk_cache::simple_util::GetFilenameFromKeyAndFileIndex(
3714 key, third_stream_file_index));
3715 return PathExists(third_stream_file_path);
3718 void DiskCacheEntryTest::SyncDoomEntry(const char* key) {
3719 net::TestCompletionCallback callback;
3720 cache_->DoomEntry(key, callback.callback());
3721 callback.WaitForResult();
3724 // Check that a newly-created entry with no third-stream writes omits the
3725 // third stream file.
3726 TEST_F(DiskCacheEntryTest, SimpleCacheOmittedThirdStream1) {
3727 SetSimpleCacheMode();
3728 InitCache();
3730 const char key[] = "key";
3732 disk_cache::Entry* entry;
3734 // Create entry and close without writing: third stream file should be
3735 // omitted, since the stream is empty.
3736 ASSERT_EQ(net::OK, CreateEntry(key, &entry));
3737 entry->Close();
3738 EXPECT_FALSE(SimpleCacheThirdStreamFileExists(key));
3740 SyncDoomEntry(key);
3741 EXPECT_FALSE(SimpleCacheThirdStreamFileExists(key));
3744 // Check that a newly-created entry with only a single zero-offset, zero-length
3745 // write omits the third stream file.
3746 TEST_F(DiskCacheEntryTest, SimpleCacheOmittedThirdStream2) {
3747 SetSimpleCacheMode();
3748 InitCache();
3750 const int kHalfSize = 8;
3751 const int kSize = kHalfSize * 2;
3752 const char key[] = "key";
3753 scoped_refptr<net::IOBuffer> buffer(new net::IOBuffer(kSize));
3754 CacheTestFillBuffer(buffer->data(), kHalfSize, false);
3756 disk_cache::Entry* entry;
3758 // Create entry, write empty buffer to third stream, and close: third stream
3759 // should still be omitted, since the entry ignores writes that don't modify
3760 // data or change the length.
3761 ASSERT_EQ(net::OK, CreateEntry(key, &entry));
3762 EXPECT_EQ(0, WriteData(entry, 2, 0, buffer.get(), 0, true));
3763 entry->Close();
3764 EXPECT_FALSE(SimpleCacheThirdStreamFileExists(key));
3766 SyncDoomEntry(key);
3767 EXPECT_FALSE(SimpleCacheThirdStreamFileExists(key));
3770 // Check that we can read back data written to the third stream.
3771 TEST_F(DiskCacheEntryTest, SimpleCacheOmittedThirdStream3) {
3772 SetSimpleCacheMode();
3773 InitCache();
3775 const int kHalfSize = 8;
3776 const int kSize = kHalfSize * 2;
3777 const char key[] = "key";
3778 scoped_refptr<net::IOBuffer> buffer1(new net::IOBuffer(kSize));
3779 scoped_refptr<net::IOBuffer> buffer2(new net::IOBuffer(kSize));
3780 CacheTestFillBuffer(buffer1->data(), kHalfSize, false);
3782 disk_cache::Entry* entry;
3784 // Create entry, write data to third stream, and close: third stream should
3785 // not be omitted, since it contains data. Re-open entry and ensure there
3786 // are that many bytes in the third stream.
3787 ASSERT_EQ(net::OK, CreateEntry(key, &entry));
3788 EXPECT_EQ(kHalfSize, WriteData(entry, 2, 0, buffer1.get(), kHalfSize, true));
3789 entry->Close();
3790 EXPECT_TRUE(SimpleCacheThirdStreamFileExists(key));
3792 ASSERT_EQ(net::OK, OpenEntry(key, &entry));
3793 EXPECT_EQ(kHalfSize, ReadData(entry, 2, 0, buffer2.get(), kSize));
3794 EXPECT_EQ(0, memcmp(buffer1->data(), buffer2->data(), kHalfSize));
3795 entry->Close();
3796 EXPECT_TRUE(SimpleCacheThirdStreamFileExists(key));
3798 SyncDoomEntry(key);
3799 EXPECT_FALSE(SimpleCacheThirdStreamFileExists(key));
3802 // Check that we remove the third stream file upon opening an entry and finding
3803 // the third stream empty. (This is the upgrade path for entries written
3804 // before the third stream was optional.)
3805 TEST_F(DiskCacheEntryTest, SimpleCacheOmittedThirdStream4) {
3806 SetSimpleCacheMode();
3807 InitCache();
3809 const int kHalfSize = 8;
3810 const int kSize = kHalfSize * 2;
3811 const char key[] = "key";
3812 scoped_refptr<net::IOBuffer> buffer1(new net::IOBuffer(kSize));
3813 scoped_refptr<net::IOBuffer> buffer2(new net::IOBuffer(kSize));
3814 CacheTestFillBuffer(buffer1->data(), kHalfSize, false);
3816 disk_cache::Entry* entry;
3818 // Create entry, write data to third stream, truncate third stream back to
3819 // empty, and close: third stream will not initially be omitted, since entry
3820 // creates the file when the first significant write comes in, and only
3821 // removes it on open if it is empty. Reopen, ensure that the file is
3822 // deleted, and that there's no data in the third stream.
3823 ASSERT_EQ(net::OK, CreateEntry(key, &entry));
3824 EXPECT_EQ(kHalfSize, WriteData(entry, 2, 0, buffer1.get(), kHalfSize, true));
3825 EXPECT_EQ(0, WriteData(entry, 2, 0, buffer1.get(), 0, true));
3826 entry->Close();
3827 EXPECT_TRUE(SimpleCacheThirdStreamFileExists(key));
3829 ASSERT_EQ(net::OK, OpenEntry(key, &entry));
3830 EXPECT_FALSE(SimpleCacheThirdStreamFileExists(key));
3831 EXPECT_EQ(0, ReadData(entry, 2, 0, buffer2.get(), kSize));
3832 entry->Close();
3833 EXPECT_FALSE(SimpleCacheThirdStreamFileExists(key));
3835 SyncDoomEntry(key);
3836 EXPECT_FALSE(SimpleCacheThirdStreamFileExists(key));
3839 // Check that we don't accidentally create the third stream file once the entry
3840 // has been doomed.
3841 TEST_F(DiskCacheEntryTest, SimpleCacheOmittedThirdStream5) {
3842 SetSimpleCacheMode();
3843 InitCache();
3845 const int kHalfSize = 8;
3846 const int kSize = kHalfSize * 2;
3847 const char key[] = "key";
3848 scoped_refptr<net::IOBuffer> buffer(new net::IOBuffer(kSize));
3849 CacheTestFillBuffer(buffer->data(), kHalfSize, false);
3851 disk_cache::Entry* entry;
3853 // Create entry, doom entry, write data to third stream, and close: third
3854 // stream should not exist. (Note: We don't care if the write fails, just
3855 // that it doesn't cause the file to be created on disk.)
3856 ASSERT_EQ(net::OK, CreateEntry(key, &entry));
3857 entry->Doom();
3858 WriteData(entry, 2, 0, buffer.get(), kHalfSize, true);
3859 entry->Close();
3860 EXPECT_FALSE(SimpleCacheThirdStreamFileExists(key));
3863 // There could be a race between Doom and an optimistic write.
3864 TEST_F(DiskCacheEntryTest, SimpleCacheDoomOptimisticWritesRace) {
3865 // Test sequence:
3866 // Create, first Write, second Write, Close.
3867 // Open, Close.
3868 SetSimpleCacheMode();
3869 InitCache();
3870 disk_cache::Entry* null = NULL;
3871 const char key[] = "the first key";
3873 const int kSize = 200;
3874 scoped_refptr<net::IOBuffer> buffer1(new net::IOBuffer(kSize));
3875 scoped_refptr<net::IOBuffer> buffer2(new net::IOBuffer(kSize));
3876 CacheTestFillBuffer(buffer1->data(), kSize, false);
3877 CacheTestFillBuffer(buffer2->data(), kSize, false);
3879 // The race only happens on stream 1 and stream 2.
3880 for (int i = 0; i < disk_cache::kSimpleEntryStreamCount; ++i) {
3881 ASSERT_EQ(net::OK, DoomAllEntries());
3882 disk_cache::Entry* entry = NULL;
3884 ASSERT_EQ(net::OK, CreateEntry(key, &entry));
3885 EXPECT_NE(null, entry);
3886 entry->Close();
3887 entry = NULL;
3889 ASSERT_EQ(net::OK, DoomAllEntries());
3890 ASSERT_EQ(net::OK, CreateEntry(key, &entry));
3891 EXPECT_NE(null, entry);
3893 int offset = 0;
3894 int buf_len = kSize;
3895 // This write should not be optimistic (since create is).
3896 EXPECT_EQ(buf_len,
3897 WriteData(entry, i, offset, buffer1.get(), buf_len, false));
3899 offset = kSize;
3900 // This write should be optimistic.
3901 EXPECT_EQ(buf_len,
3902 WriteData(entry, i, offset, buffer2.get(), buf_len, false));
3903 entry->Close();
3905 ASSERT_EQ(net::OK, OpenEntry(key, &entry));
3906 EXPECT_NE(null, entry);
3908 entry->Close();
3909 entry = NULL;
3913 TEST_F(DiskCacheEntryTest, SimpleCacheBasicSparseIO) {
3914 SetSimpleCacheMode();
3915 InitCache();
3916 BasicSparseIO();
3919 TEST_F(DiskCacheEntryTest, SimpleCacheHugeSparseIO) {
3920 SetSimpleCacheMode();
3921 InitCache();
3922 HugeSparseIO();
3925 TEST_F(DiskCacheEntryTest, SimpleCacheGetAvailableRange) {
3926 SetSimpleCacheMode();
3927 InitCache();
3928 GetAvailableRange();
3931 TEST_F(DiskCacheEntryTest, DISABLED_SimpleCacheCouldBeSparse) {
3932 SetSimpleCacheMode();
3933 InitCache();
3934 CouldBeSparse();
3937 TEST_F(DiskCacheEntryTest, SimpleCacheUpdateSparseEntry) {
3938 SetSimpleCacheMode();
3939 InitCache();
3940 UpdateSparseEntry();
3943 TEST_F(DiskCacheEntryTest, SimpleCacheDoomSparseEntry) {
3944 SetSimpleCacheMode();
3945 InitCache();
3946 DoomSparseEntry();
3949 TEST_F(DiskCacheEntryTest, SimpleCachePartialSparseEntry) {
3950 SetSimpleCacheMode();
3951 InitCache();
3952 PartialSparseEntry();
3955 TEST_F(DiskCacheEntryTest, SimpleCacheTruncateLargeSparseFile) {
3956 const int kSize = 1024;
3958 SetSimpleCacheMode();
3959 // An entry is allowed sparse data 1/10 the size of the cache, so this size
3960 // allows for one |kSize|-sized range plus overhead, but not two ranges.
3961 SetMaxSize(kSize * 15);
3962 InitCache();
3964 const char key[] = "key";
3965 disk_cache::Entry* null = NULL;
3966 disk_cache::Entry* entry;
3967 ASSERT_EQ(net::OK, CreateEntry(key, &entry));
3968 EXPECT_NE(null, entry);
3970 scoped_refptr<net::IOBuffer> buffer(new net::IOBuffer(kSize));
3971 CacheTestFillBuffer(buffer->data(), kSize, false);
3972 net::TestCompletionCallback callback;
3973 int ret;
3975 // Verify initial conditions.
3976 ret = entry->ReadSparseData(0, buffer.get(), kSize, callback.callback());
3977 EXPECT_EQ(0, callback.GetResult(ret));
3979 ret = entry->ReadSparseData(kSize, buffer.get(), kSize, callback.callback());
3980 EXPECT_EQ(0, callback.GetResult(ret));
3982 // Write a range and make sure it reads back.
3983 ret = entry->WriteSparseData(0, buffer.get(), kSize, callback.callback());
3984 EXPECT_EQ(kSize, callback.GetResult(ret));
3986 ret = entry->ReadSparseData(0, buffer.get(), kSize, callback.callback());
3987 EXPECT_EQ(kSize, callback.GetResult(ret));
3989 // Write another range and make sure it reads back.
3990 ret = entry->WriteSparseData(kSize, buffer.get(), kSize, callback.callback());
3991 EXPECT_EQ(kSize, callback.GetResult(ret));
3993 ret = entry->ReadSparseData(kSize, buffer.get(), kSize, callback.callback());
3994 EXPECT_EQ(kSize, callback.GetResult(ret));
3996 // Make sure the first range was removed when the second was written.
3997 ret = entry->ReadSparseData(0, buffer.get(), kSize, callback.callback());
3998 EXPECT_EQ(0, callback.GetResult(ret));
4000 entry->Close();
4003 #endif // defined(OS_POSIX)