Optimize CommandBufferHelper::GetSpace().
[chromium-blink-merge.git] / third_party / libwebp / dec / frame.c
blobe1eea94ebe27e59f14b254cb49c5af2e2b6472b4
1 // Copyright 2010 Google Inc. All Rights Reserved.
2 //
3 // Use of this source code is governed by a BSD-style license
4 // that can be found in the COPYING file in the root of the source
5 // tree. An additional intellectual property rights grant can be found
6 // in the file PATENTS. All contributing project authors may
7 // be found in the AUTHORS file in the root of the source tree.
8 // -----------------------------------------------------------------------------
9 //
10 // Frame-reconstruction function. Memory allocation.
12 // Author: Skal (pascal.massimino@gmail.com)
14 #include <stdlib.h>
15 #include "./vp8i.h"
16 #include "../utils/utils.h"
18 #define ALIGN_MASK (32 - 1)
20 static void ReconstructRow(const VP8Decoder* const dec,
21 const VP8ThreadContext* ctx); // TODO(skal): remove
23 //------------------------------------------------------------------------------
24 // Filtering
26 // kFilterExtraRows[] = How many extra lines are needed on the MB boundary
27 // for caching, given a filtering level.
28 // Simple filter: up to 2 luma samples are read and 1 is written.
29 // Complex filter: up to 4 luma samples are read and 3 are written. Same for
30 // U/V, so it's 8 samples total (because of the 2x upsampling).
31 static const uint8_t kFilterExtraRows[3] = { 0, 2, 8 };
33 static void DoFilter(const VP8Decoder* const dec, int mb_x, int mb_y) {
34 const VP8ThreadContext* const ctx = &dec->thread_ctx_;
35 const int cache_id = ctx->id_;
36 const int y_bps = dec->cache_y_stride_;
37 const VP8FInfo* const f_info = ctx->f_info_ + mb_x;
38 uint8_t* const y_dst = dec->cache_y_ + cache_id * 16 * y_bps + mb_x * 16;
39 const int ilevel = f_info->f_ilevel_;
40 const int limit = f_info->f_limit_;
41 if (limit == 0) {
42 return;
44 assert(limit >= 3);
45 if (dec->filter_type_ == 1) { // simple
46 if (mb_x > 0) {
47 VP8SimpleHFilter16(y_dst, y_bps, limit + 4);
49 if (f_info->f_inner_) {
50 VP8SimpleHFilter16i(y_dst, y_bps, limit);
52 if (mb_y > 0) {
53 VP8SimpleVFilter16(y_dst, y_bps, limit + 4);
55 if (f_info->f_inner_) {
56 VP8SimpleVFilter16i(y_dst, y_bps, limit);
58 } else { // complex
59 const int uv_bps = dec->cache_uv_stride_;
60 uint8_t* const u_dst = dec->cache_u_ + cache_id * 8 * uv_bps + mb_x * 8;
61 uint8_t* const v_dst = dec->cache_v_ + cache_id * 8 * uv_bps + mb_x * 8;
62 const int hev_thresh = f_info->hev_thresh_;
63 if (mb_x > 0) {
64 VP8HFilter16(y_dst, y_bps, limit + 4, ilevel, hev_thresh);
65 VP8HFilter8(u_dst, v_dst, uv_bps, limit + 4, ilevel, hev_thresh);
67 if (f_info->f_inner_) {
68 VP8HFilter16i(y_dst, y_bps, limit, ilevel, hev_thresh);
69 VP8HFilter8i(u_dst, v_dst, uv_bps, limit, ilevel, hev_thresh);
71 if (mb_y > 0) {
72 VP8VFilter16(y_dst, y_bps, limit + 4, ilevel, hev_thresh);
73 VP8VFilter8(u_dst, v_dst, uv_bps, limit + 4, ilevel, hev_thresh);
75 if (f_info->f_inner_) {
76 VP8VFilter16i(y_dst, y_bps, limit, ilevel, hev_thresh);
77 VP8VFilter8i(u_dst, v_dst, uv_bps, limit, ilevel, hev_thresh);
82 // Filter the decoded macroblock row (if needed)
83 static void FilterRow(const VP8Decoder* const dec) {
84 int mb_x;
85 const int mb_y = dec->thread_ctx_.mb_y_;
86 assert(dec->thread_ctx_.filter_row_);
87 for (mb_x = dec->tl_mb_x_; mb_x < dec->br_mb_x_; ++mb_x) {
88 DoFilter(dec, mb_x, mb_y);
92 //------------------------------------------------------------------------------
93 // Precompute the filtering strength for each segment and each i4x4/i16x16 mode.
95 static void PrecomputeFilterStrengths(VP8Decoder* const dec) {
96 if (dec->filter_type_ > 0) {
97 int s;
98 const VP8FilterHeader* const hdr = &dec->filter_hdr_;
99 for (s = 0; s < NUM_MB_SEGMENTS; ++s) {
100 int i4x4;
101 // First, compute the initial level
102 int base_level;
103 if (dec->segment_hdr_.use_segment_) {
104 base_level = dec->segment_hdr_.filter_strength_[s];
105 if (!dec->segment_hdr_.absolute_delta_) {
106 base_level += hdr->level_;
108 } else {
109 base_level = hdr->level_;
111 for (i4x4 = 0; i4x4 <= 1; ++i4x4) {
112 VP8FInfo* const info = &dec->fstrengths_[s][i4x4];
113 int level = base_level;
114 if (hdr->use_lf_delta_) {
115 // TODO(skal): only CURRENT is handled for now.
116 level += hdr->ref_lf_delta_[0];
117 if (i4x4) {
118 level += hdr->mode_lf_delta_[0];
121 level = (level < 0) ? 0 : (level > 63) ? 63 : level;
122 if (level > 0) {
123 int ilevel = level;
124 if (hdr->sharpness_ > 0) {
125 if (hdr->sharpness_ > 4) {
126 ilevel >>= 2;
127 } else {
128 ilevel >>= 1;
130 if (ilevel > 9 - hdr->sharpness_) {
131 ilevel = 9 - hdr->sharpness_;
134 if (ilevel < 1) ilevel = 1;
135 info->f_ilevel_ = ilevel;
136 info->f_limit_ = 2 * level + ilevel;
137 info->hev_thresh_ = (level >= 40) ? 2 : (level >= 15) ? 1 : 0;
138 } else {
139 info->f_limit_ = 0; // no filtering
141 info->f_inner_ = i4x4;
147 //------------------------------------------------------------------------------
148 // Dithering
150 #define DITHER_AMP_TAB_SIZE 12
151 static const int kQuantToDitherAmp[DITHER_AMP_TAB_SIZE] = {
152 // roughly, it's dqm->uv_mat_[1]
153 8, 7, 6, 4, 4, 2, 2, 2, 1, 1, 1, 1
156 void VP8InitDithering(const WebPDecoderOptions* const options,
157 VP8Decoder* const dec) {
158 assert(dec != NULL);
159 if (options != NULL) {
160 const int d = options->dithering_strength;
161 const int max_amp = (1 << VP8_RANDOM_DITHER_FIX) - 1;
162 const int f = (d < 0) ? 0 : (d > 100) ? max_amp : (d * max_amp / 100);
163 if (f > 0) {
164 int s;
165 int all_amp = 0;
166 for (s = 0; s < NUM_MB_SEGMENTS; ++s) {
167 VP8QuantMatrix* const dqm = &dec->dqm_[s];
168 if (dqm->uv_quant_ < DITHER_AMP_TAB_SIZE) {
169 // TODO(skal): should we specially dither more for uv_quant_ < 0?
170 const int idx = (dqm->uv_quant_ < 0) ? 0 : dqm->uv_quant_;
171 dqm->dither_ = (f * kQuantToDitherAmp[idx]) >> 3;
173 all_amp |= dqm->dither_;
175 if (all_amp != 0) {
176 VP8InitRandom(&dec->dithering_rg_, 1.0f);
177 dec->dither_ = 1;
183 // minimal amp that will provide a non-zero dithering effect
184 #define MIN_DITHER_AMP 4
185 #define DITHER_DESCALE 4
186 #define DITHER_DESCALE_ROUNDER (1 << (DITHER_DESCALE - 1))
187 #define DITHER_AMP_BITS 8
188 #define DITHER_AMP_CENTER (1 << DITHER_AMP_BITS)
190 static void Dither8x8(VP8Random* const rg, uint8_t* dst, int bps, int amp) {
191 int i, j;
192 for (j = 0; j < 8; ++j) {
193 for (i = 0; i < 8; ++i) {
194 // TODO: could be made faster with SSE2
195 const int bits =
196 VP8RandomBits2(rg, DITHER_AMP_BITS + 1, amp) - DITHER_AMP_CENTER;
197 // Convert to range: [-2,2] for dither=50, [-4,4] for dither=100
198 const int delta = (bits + DITHER_DESCALE_ROUNDER) >> DITHER_DESCALE;
199 const int v = (int)dst[i] + delta;
200 dst[i] = (v < 0) ? 0 : (v > 255) ? 255u : (uint8_t)v;
202 dst += bps;
206 static void DitherRow(VP8Decoder* const dec) {
207 int mb_x;
208 assert(dec->dither_);
209 for (mb_x = dec->tl_mb_x_; mb_x < dec->br_mb_x_; ++mb_x) {
210 const VP8ThreadContext* const ctx = &dec->thread_ctx_;
211 const VP8MBData* const data = ctx->mb_data_ + mb_x;
212 const int cache_id = ctx->id_;
213 const int uv_bps = dec->cache_uv_stride_;
214 if (data->dither_ >= MIN_DITHER_AMP) {
215 uint8_t* const u_dst = dec->cache_u_ + cache_id * 8 * uv_bps + mb_x * 8;
216 uint8_t* const v_dst = dec->cache_v_ + cache_id * 8 * uv_bps + mb_x * 8;
217 Dither8x8(&dec->dithering_rg_, u_dst, uv_bps, data->dither_);
218 Dither8x8(&dec->dithering_rg_, v_dst, uv_bps, data->dither_);
223 //------------------------------------------------------------------------------
224 // This function is called after a row of macroblocks is finished decoding.
225 // It also takes into account the following restrictions:
226 // * In case of in-loop filtering, we must hold off sending some of the bottom
227 // pixels as they are yet unfiltered. They will be when the next macroblock
228 // row is decoded. Meanwhile, we must preserve them by rotating them in the
229 // cache area. This doesn't hold for the very bottom row of the uncropped
230 // picture of course.
231 // * we must clip the remaining pixels against the cropping area. The VP8Io
232 // struct must have the following fields set correctly before calling put():
234 #define MACROBLOCK_VPOS(mb_y) ((mb_y) * 16) // vertical position of a MB
236 // Finalize and transmit a complete row. Return false in case of user-abort.
237 static int FinishRow(VP8Decoder* const dec, VP8Io* const io) {
238 int ok = 1;
239 const VP8ThreadContext* const ctx = &dec->thread_ctx_;
240 const int cache_id = ctx->id_;
241 const int extra_y_rows = kFilterExtraRows[dec->filter_type_];
242 const int ysize = extra_y_rows * dec->cache_y_stride_;
243 const int uvsize = (extra_y_rows / 2) * dec->cache_uv_stride_;
244 const int y_offset = cache_id * 16 * dec->cache_y_stride_;
245 const int uv_offset = cache_id * 8 * dec->cache_uv_stride_;
246 uint8_t* const ydst = dec->cache_y_ - ysize + y_offset;
247 uint8_t* const udst = dec->cache_u_ - uvsize + uv_offset;
248 uint8_t* const vdst = dec->cache_v_ - uvsize + uv_offset;
249 const int mb_y = ctx->mb_y_;
250 const int is_first_row = (mb_y == 0);
251 const int is_last_row = (mb_y >= dec->br_mb_y_ - 1);
253 if (dec->mt_method_ == 2) {
254 ReconstructRow(dec, ctx);
257 if (ctx->filter_row_) {
258 FilterRow(dec);
261 if (dec->dither_) {
262 DitherRow(dec);
265 if (io->put != NULL) {
266 int y_start = MACROBLOCK_VPOS(mb_y);
267 int y_end = MACROBLOCK_VPOS(mb_y + 1);
268 if (!is_first_row) {
269 y_start -= extra_y_rows;
270 io->y = ydst;
271 io->u = udst;
272 io->v = vdst;
273 } else {
274 io->y = dec->cache_y_ + y_offset;
275 io->u = dec->cache_u_ + uv_offset;
276 io->v = dec->cache_v_ + uv_offset;
279 if (!is_last_row) {
280 y_end -= extra_y_rows;
282 if (y_end > io->crop_bottom) {
283 y_end = io->crop_bottom; // make sure we don't overflow on last row.
285 io->a = NULL;
286 if (dec->alpha_data_ != NULL && y_start < y_end) {
287 // TODO(skal): testing presence of alpha with dec->alpha_data_ is not a
288 // good idea.
289 io->a = VP8DecompressAlphaRows(dec, y_start, y_end - y_start);
290 if (io->a == NULL) {
291 return VP8SetError(dec, VP8_STATUS_BITSTREAM_ERROR,
292 "Could not decode alpha data.");
295 if (y_start < io->crop_top) {
296 const int delta_y = io->crop_top - y_start;
297 y_start = io->crop_top;
298 assert(!(delta_y & 1));
299 io->y += dec->cache_y_stride_ * delta_y;
300 io->u += dec->cache_uv_stride_ * (delta_y >> 1);
301 io->v += dec->cache_uv_stride_ * (delta_y >> 1);
302 if (io->a != NULL) {
303 io->a += io->width * delta_y;
306 if (y_start < y_end) {
307 io->y += io->crop_left;
308 io->u += io->crop_left >> 1;
309 io->v += io->crop_left >> 1;
310 if (io->a != NULL) {
311 io->a += io->crop_left;
313 io->mb_y = y_start - io->crop_top;
314 io->mb_w = io->crop_right - io->crop_left;
315 io->mb_h = y_end - y_start;
316 ok = io->put(io);
319 // rotate top samples if needed
320 if (cache_id + 1 == dec->num_caches_) {
321 if (!is_last_row) {
322 memcpy(dec->cache_y_ - ysize, ydst + 16 * dec->cache_y_stride_, ysize);
323 memcpy(dec->cache_u_ - uvsize, udst + 8 * dec->cache_uv_stride_, uvsize);
324 memcpy(dec->cache_v_ - uvsize, vdst + 8 * dec->cache_uv_stride_, uvsize);
328 return ok;
331 #undef MACROBLOCK_VPOS
333 //------------------------------------------------------------------------------
335 int VP8ProcessRow(VP8Decoder* const dec, VP8Io* const io) {
336 int ok = 1;
337 VP8ThreadContext* const ctx = &dec->thread_ctx_;
338 const int filter_row =
339 (dec->filter_type_ > 0) &&
340 (dec->mb_y_ >= dec->tl_mb_y_) && (dec->mb_y_ <= dec->br_mb_y_);
341 if (dec->mt_method_ == 0) {
342 // ctx->id_ and ctx->f_info_ are already set
343 ctx->mb_y_ = dec->mb_y_;
344 ctx->filter_row_ = filter_row;
345 ReconstructRow(dec, ctx);
346 ok = FinishRow(dec, io);
347 } else {
348 WebPWorker* const worker = &dec->worker_;
349 // Finish previous job *before* updating context
350 ok &= WebPWorkerSync(worker);
351 assert(worker->status_ == OK);
352 if (ok) { // spawn a new deblocking/output job
353 ctx->io_ = *io;
354 ctx->id_ = dec->cache_id_;
355 ctx->mb_y_ = dec->mb_y_;
356 ctx->filter_row_ = filter_row;
357 if (dec->mt_method_ == 2) { // swap macroblock data
358 VP8MBData* const tmp = ctx->mb_data_;
359 ctx->mb_data_ = dec->mb_data_;
360 dec->mb_data_ = tmp;
361 } else {
362 // perform reconstruction directly in main thread
363 ReconstructRow(dec, ctx);
365 if (filter_row) { // swap filter info
366 VP8FInfo* const tmp = ctx->f_info_;
367 ctx->f_info_ = dec->f_info_;
368 dec->f_info_ = tmp;
370 WebPWorkerLaunch(worker); // (reconstruct)+filter in parallel
371 if (++dec->cache_id_ == dec->num_caches_) {
372 dec->cache_id_ = 0;
376 return ok;
379 //------------------------------------------------------------------------------
380 // Finish setting up the decoding parameter once user's setup() is called.
382 VP8StatusCode VP8EnterCritical(VP8Decoder* const dec, VP8Io* const io) {
383 // Call setup() first. This may trigger additional decoding features on 'io'.
384 // Note: Afterward, we must call teardown() no matter what.
385 if (io->setup != NULL && !io->setup(io)) {
386 VP8SetError(dec, VP8_STATUS_USER_ABORT, "Frame setup failed");
387 return dec->status_;
390 // Disable filtering per user request
391 if (io->bypass_filtering) {
392 dec->filter_type_ = 0;
394 // TODO(skal): filter type / strength / sharpness forcing
396 // Define the area where we can skip in-loop filtering, in case of cropping.
398 // 'Simple' filter reads two luma samples outside of the macroblock
399 // and filters one. It doesn't filter the chroma samples. Hence, we can
400 // avoid doing the in-loop filtering before crop_top/crop_left position.
401 // For the 'Complex' filter, 3 samples are read and up to 3 are filtered.
402 // Means: there's a dependency chain that goes all the way up to the
403 // top-left corner of the picture (MB #0). We must filter all the previous
404 // macroblocks.
405 // TODO(skal): add an 'approximate_decoding' option, that won't produce
406 // a 1:1 bit-exactness for complex filtering?
408 const int extra_pixels = kFilterExtraRows[dec->filter_type_];
409 if (dec->filter_type_ == 2) {
410 // For complex filter, we need to preserve the dependency chain.
411 dec->tl_mb_x_ = 0;
412 dec->tl_mb_y_ = 0;
413 } else {
414 // For simple filter, we can filter only the cropped region.
415 // We include 'extra_pixels' on the other side of the boundary, since
416 // vertical or horizontal filtering of the previous macroblock can
417 // modify some abutting pixels.
418 dec->tl_mb_x_ = (io->crop_left - extra_pixels) >> 4;
419 dec->tl_mb_y_ = (io->crop_top - extra_pixels) >> 4;
420 if (dec->tl_mb_x_ < 0) dec->tl_mb_x_ = 0;
421 if (dec->tl_mb_y_ < 0) dec->tl_mb_y_ = 0;
423 // We need some 'extra' pixels on the right/bottom.
424 dec->br_mb_y_ = (io->crop_bottom + 15 + extra_pixels) >> 4;
425 dec->br_mb_x_ = (io->crop_right + 15 + extra_pixels) >> 4;
426 if (dec->br_mb_x_ > dec->mb_w_) {
427 dec->br_mb_x_ = dec->mb_w_;
429 if (dec->br_mb_y_ > dec->mb_h_) {
430 dec->br_mb_y_ = dec->mb_h_;
433 PrecomputeFilterStrengths(dec);
434 return VP8_STATUS_OK;
437 int VP8ExitCritical(VP8Decoder* const dec, VP8Io* const io) {
438 int ok = 1;
439 if (dec->mt_method_ > 0) {
440 ok = WebPWorkerSync(&dec->worker_);
443 if (io->teardown != NULL) {
444 io->teardown(io);
446 return ok;
449 //------------------------------------------------------------------------------
450 // For multi-threaded decoding we need to use 3 rows of 16 pixels as delay line.
452 // Reason is: the deblocking filter cannot deblock the bottom horizontal edges
453 // immediately, and needs to wait for first few rows of the next macroblock to
454 // be decoded. Hence, deblocking is lagging behind by 4 or 8 pixels (depending
455 // on strength).
456 // With two threads, the vertical positions of the rows being decoded are:
457 // Decode: [ 0..15][16..31][32..47][48..63][64..79][...
458 // Deblock: [ 0..11][12..27][28..43][44..59][...
459 // If we use two threads and two caches of 16 pixels, the sequence would be:
460 // Decode: [ 0..15][16..31][ 0..15!!][16..31][ 0..15][...
461 // Deblock: [ 0..11][12..27!!][-4..11][12..27][...
462 // The problem occurs during row [12..15!!] that both the decoding and
463 // deblocking threads are writing simultaneously.
464 // With 3 cache lines, one get a safe write pattern:
465 // Decode: [ 0..15][16..31][32..47][ 0..15][16..31][32..47][0..
466 // Deblock: [ 0..11][12..27][28..43][-4..11][12..27][28...
467 // Note that multi-threaded output _without_ deblocking can make use of two
468 // cache lines of 16 pixels only, since there's no lagging behind. The decoding
469 // and output process have non-concurrent writing:
470 // Decode: [ 0..15][16..31][ 0..15][16..31][...
471 // io->put: [ 0..15][16..31][ 0..15][...
473 #define MT_CACHE_LINES 3
474 #define ST_CACHE_LINES 1 // 1 cache row only for single-threaded case
476 // Initialize multi/single-thread worker
477 static int InitThreadContext(VP8Decoder* const dec) {
478 dec->cache_id_ = 0;
479 if (dec->mt_method_ > 0) {
480 WebPWorker* const worker = &dec->worker_;
481 if (!WebPWorkerReset(worker)) {
482 return VP8SetError(dec, VP8_STATUS_OUT_OF_MEMORY,
483 "thread initialization failed.");
485 worker->data1 = dec;
486 worker->data2 = (void*)&dec->thread_ctx_.io_;
487 worker->hook = (WebPWorkerHook)FinishRow;
488 dec->num_caches_ =
489 (dec->filter_type_ > 0) ? MT_CACHE_LINES : MT_CACHE_LINES - 1;
490 } else {
491 dec->num_caches_ = ST_CACHE_LINES;
493 return 1;
496 int VP8GetThreadMethod(const WebPDecoderOptions* const options,
497 const WebPHeaderStructure* const headers,
498 int width, int height) {
499 if (options == NULL || options->use_threads == 0) {
500 return 0;
502 (void)headers;
503 (void)width;
504 (void)height;
505 assert(!headers->is_lossless);
506 #if defined(WEBP_USE_THREAD)
507 if (width < MIN_WIDTH_FOR_THREADS) return 0;
508 // TODO(skal): tune the heuristic further
509 #if 0
510 if (height < 2 * width) return 2;
511 #endif
512 return 2;
513 #else // !WEBP_USE_THREAD
514 return 0;
515 #endif
518 #undef MT_CACHE_LINES
519 #undef ST_CACHE_LINES
521 //------------------------------------------------------------------------------
522 // Memory setup
524 static int AllocateMemory(VP8Decoder* const dec) {
525 const int num_caches = dec->num_caches_;
526 const int mb_w = dec->mb_w_;
527 // Note: we use 'size_t' when there's no overflow risk, uint64_t otherwise.
528 const size_t intra_pred_mode_size = 4 * mb_w * sizeof(uint8_t);
529 const size_t top_size = sizeof(VP8TopSamples) * mb_w;
530 const size_t mb_info_size = (mb_w + 1) * sizeof(VP8MB);
531 const size_t f_info_size =
532 (dec->filter_type_ > 0) ?
533 mb_w * (dec->mt_method_ > 0 ? 2 : 1) * sizeof(VP8FInfo)
534 : 0;
535 const size_t yuv_size = YUV_SIZE * sizeof(*dec->yuv_b_);
536 const size_t mb_data_size =
537 (dec->mt_method_ == 2 ? 2 : 1) * mb_w * sizeof(*dec->mb_data_);
538 const size_t cache_height = (16 * num_caches
539 + kFilterExtraRows[dec->filter_type_]) * 3 / 2;
540 const size_t cache_size = top_size * cache_height;
541 // alpha_size is the only one that scales as width x height.
542 const uint64_t alpha_size = (dec->alpha_data_ != NULL) ?
543 (uint64_t)dec->pic_hdr_.width_ * dec->pic_hdr_.height_ : 0ULL;
544 const uint64_t needed = (uint64_t)intra_pred_mode_size
545 + top_size + mb_info_size + f_info_size
546 + yuv_size + mb_data_size
547 + cache_size + alpha_size + ALIGN_MASK;
548 uint8_t* mem;
550 if (needed != (size_t)needed) return 0; // check for overflow
551 if (needed > dec->mem_size_) {
552 free(dec->mem_);
553 dec->mem_size_ = 0;
554 dec->mem_ = WebPSafeMalloc(needed, sizeof(uint8_t));
555 if (dec->mem_ == NULL) {
556 return VP8SetError(dec, VP8_STATUS_OUT_OF_MEMORY,
557 "no memory during frame initialization.");
559 // down-cast is ok, thanks to WebPSafeAlloc() above.
560 dec->mem_size_ = (size_t)needed;
563 mem = (uint8_t*)dec->mem_;
564 dec->intra_t_ = (uint8_t*)mem;
565 mem += intra_pred_mode_size;
567 dec->yuv_t_ = (VP8TopSamples*)mem;
568 mem += top_size;
570 dec->mb_info_ = ((VP8MB*)mem) + 1;
571 mem += mb_info_size;
573 dec->f_info_ = f_info_size ? (VP8FInfo*)mem : NULL;
574 mem += f_info_size;
575 dec->thread_ctx_.id_ = 0;
576 dec->thread_ctx_.f_info_ = dec->f_info_;
577 if (dec->mt_method_ > 0) {
578 // secondary cache line. The deblocking process need to make use of the
579 // filtering strength from previous macroblock row, while the new ones
580 // are being decoded in parallel. We'll just swap the pointers.
581 dec->thread_ctx_.f_info_ += mb_w;
584 mem = (uint8_t*)((uintptr_t)(mem + ALIGN_MASK) & ~ALIGN_MASK);
585 assert((yuv_size & ALIGN_MASK) == 0);
586 dec->yuv_b_ = (uint8_t*)mem;
587 mem += yuv_size;
589 dec->mb_data_ = (VP8MBData*)mem;
590 dec->thread_ctx_.mb_data_ = (VP8MBData*)mem;
591 if (dec->mt_method_ == 2) {
592 dec->thread_ctx_.mb_data_ += mb_w;
594 mem += mb_data_size;
596 dec->cache_y_stride_ = 16 * mb_w;
597 dec->cache_uv_stride_ = 8 * mb_w;
599 const int extra_rows = kFilterExtraRows[dec->filter_type_];
600 const int extra_y = extra_rows * dec->cache_y_stride_;
601 const int extra_uv = (extra_rows / 2) * dec->cache_uv_stride_;
602 dec->cache_y_ = ((uint8_t*)mem) + extra_y;
603 dec->cache_u_ = dec->cache_y_
604 + 16 * num_caches * dec->cache_y_stride_ + extra_uv;
605 dec->cache_v_ = dec->cache_u_
606 + 8 * num_caches * dec->cache_uv_stride_ + extra_uv;
607 dec->cache_id_ = 0;
609 mem += cache_size;
611 // alpha plane
612 dec->alpha_plane_ = alpha_size ? (uint8_t*)mem : NULL;
613 mem += alpha_size;
614 assert(mem <= (uint8_t*)dec->mem_ + dec->mem_size_);
616 // note: left/top-info is initialized once for all.
617 memset(dec->mb_info_ - 1, 0, mb_info_size);
618 VP8InitScanline(dec); // initialize left too.
620 // initialize top
621 memset(dec->intra_t_, B_DC_PRED, intra_pred_mode_size);
623 return 1;
626 static void InitIo(VP8Decoder* const dec, VP8Io* io) {
627 // prepare 'io'
628 io->mb_y = 0;
629 io->y = dec->cache_y_;
630 io->u = dec->cache_u_;
631 io->v = dec->cache_v_;
632 io->y_stride = dec->cache_y_stride_;
633 io->uv_stride = dec->cache_uv_stride_;
634 io->a = NULL;
637 int VP8InitFrame(VP8Decoder* const dec, VP8Io* io) {
638 if (!InitThreadContext(dec)) return 0; // call first. Sets dec->num_caches_.
639 if (!AllocateMemory(dec)) return 0;
640 InitIo(dec, io);
641 VP8DspInit(); // Init critical function pointers and look-up tables.
642 return 1;
645 //------------------------------------------------------------------------------
646 // Main reconstruction function.
648 static const int kScan[16] = {
649 0 + 0 * BPS, 4 + 0 * BPS, 8 + 0 * BPS, 12 + 0 * BPS,
650 0 + 4 * BPS, 4 + 4 * BPS, 8 + 4 * BPS, 12 + 4 * BPS,
651 0 + 8 * BPS, 4 + 8 * BPS, 8 + 8 * BPS, 12 + 8 * BPS,
652 0 + 12 * BPS, 4 + 12 * BPS, 8 + 12 * BPS, 12 + 12 * BPS
655 static int CheckMode(int mb_x, int mb_y, int mode) {
656 if (mode == B_DC_PRED) {
657 if (mb_x == 0) {
658 return (mb_y == 0) ? B_DC_PRED_NOTOPLEFT : B_DC_PRED_NOLEFT;
659 } else {
660 return (mb_y == 0) ? B_DC_PRED_NOTOP : B_DC_PRED;
663 return mode;
666 static void Copy32b(uint8_t* dst, uint8_t* src) {
667 memcpy(dst, src, 4);
670 static WEBP_INLINE void DoTransform(uint32_t bits, const int16_t* const src,
671 uint8_t* const dst) {
672 switch (bits >> 30) {
673 case 3:
674 VP8Transform(src, dst, 0);
675 break;
676 case 2:
677 VP8TransformAC3(src, dst);
678 break;
679 case 1:
680 VP8TransformDC(src, dst);
681 break;
682 default:
683 break;
687 static void DoUVTransform(uint32_t bits, const int16_t* const src,
688 uint8_t* const dst) {
689 if (bits & 0xff) { // any non-zero coeff at all?
690 if (bits & 0xaa) { // any non-zero AC coefficient?
691 VP8TransformUV(src, dst); // note we don't use the AC3 variant for U/V
692 } else {
693 VP8TransformDCUV(src, dst);
698 static void ReconstructRow(const VP8Decoder* const dec,
699 const VP8ThreadContext* ctx) {
700 int j;
701 int mb_x;
702 const int mb_y = ctx->mb_y_;
703 const int cache_id = ctx->id_;
704 uint8_t* const y_dst = dec->yuv_b_ + Y_OFF;
705 uint8_t* const u_dst = dec->yuv_b_ + U_OFF;
706 uint8_t* const v_dst = dec->yuv_b_ + V_OFF;
707 for (mb_x = 0; mb_x < dec->mb_w_; ++mb_x) {
708 const VP8MBData* const block = ctx->mb_data_ + mb_x;
710 // Rotate in the left samples from previously decoded block. We move four
711 // pixels at a time for alignment reason, and because of in-loop filter.
712 if (mb_x > 0) {
713 for (j = -1; j < 16; ++j) {
714 Copy32b(&y_dst[j * BPS - 4], &y_dst[j * BPS + 12]);
716 for (j = -1; j < 8; ++j) {
717 Copy32b(&u_dst[j * BPS - 4], &u_dst[j * BPS + 4]);
718 Copy32b(&v_dst[j * BPS - 4], &v_dst[j * BPS + 4]);
720 } else {
721 for (j = 0; j < 16; ++j) {
722 y_dst[j * BPS - 1] = 129;
724 for (j = 0; j < 8; ++j) {
725 u_dst[j * BPS - 1] = 129;
726 v_dst[j * BPS - 1] = 129;
728 // Init top-left sample on left column too
729 if (mb_y > 0) {
730 y_dst[-1 - BPS] = u_dst[-1 - BPS] = v_dst[-1 - BPS] = 129;
734 // bring top samples into the cache
735 VP8TopSamples* const top_yuv = dec->yuv_t_ + mb_x;
736 const int16_t* const coeffs = block->coeffs_;
737 uint32_t bits = block->non_zero_y_;
738 int n;
740 if (mb_y > 0) {
741 memcpy(y_dst - BPS, top_yuv[0].y, 16);
742 memcpy(u_dst - BPS, top_yuv[0].u, 8);
743 memcpy(v_dst - BPS, top_yuv[0].v, 8);
744 } else if (mb_x == 0) {
745 // we only need to do this init once at block (0,0).
746 // Afterward, it remains valid for the whole topmost row.
747 memset(y_dst - BPS - 1, 127, 16 + 4 + 1);
748 memset(u_dst - BPS - 1, 127, 8 + 1);
749 memset(v_dst - BPS - 1, 127, 8 + 1);
752 // predict and add residuals
753 if (block->is_i4x4_) { // 4x4
754 uint32_t* const top_right = (uint32_t*)(y_dst - BPS + 16);
756 if (mb_y > 0) {
757 if (mb_x >= dec->mb_w_ - 1) { // on rightmost border
758 memset(top_right, top_yuv[0].y[15], sizeof(*top_right));
759 } else {
760 memcpy(top_right, top_yuv[1].y, sizeof(*top_right));
763 // replicate the top-right pixels below
764 top_right[BPS] = top_right[2 * BPS] = top_right[3 * BPS] = top_right[0];
766 // predict and add residuals for all 4x4 blocks in turn.
767 for (n = 0; n < 16; ++n, bits <<= 2) {
768 uint8_t* const dst = y_dst + kScan[n];
769 VP8PredLuma4[block->imodes_[n]](dst);
770 DoTransform(bits, coeffs + n * 16, dst);
772 } else { // 16x16
773 const int pred_func = CheckMode(mb_x, mb_y,
774 block->imodes_[0]);
775 VP8PredLuma16[pred_func](y_dst);
776 if (bits != 0) {
777 for (n = 0; n < 16; ++n, bits <<= 2) {
778 DoTransform(bits, coeffs + n * 16, y_dst + kScan[n]);
783 // Chroma
784 const uint32_t bits_uv = block->non_zero_uv_;
785 const int pred_func = CheckMode(mb_x, mb_y, block->uvmode_);
786 VP8PredChroma8[pred_func](u_dst);
787 VP8PredChroma8[pred_func](v_dst);
788 DoUVTransform(bits_uv >> 0, coeffs + 16 * 16, u_dst);
789 DoUVTransform(bits_uv >> 8, coeffs + 20 * 16, v_dst);
792 // stash away top samples for next block
793 if (mb_y < dec->mb_h_ - 1) {
794 memcpy(top_yuv[0].y, y_dst + 15 * BPS, 16);
795 memcpy(top_yuv[0].u, u_dst + 7 * BPS, 8);
796 memcpy(top_yuv[0].v, v_dst + 7 * BPS, 8);
799 // Transfer reconstructed samples from yuv_b_ cache to final destination.
801 const int y_offset = cache_id * 16 * dec->cache_y_stride_;
802 const int uv_offset = cache_id * 8 * dec->cache_uv_stride_;
803 uint8_t* const y_out = dec->cache_y_ + mb_x * 16 + y_offset;
804 uint8_t* const u_out = dec->cache_u_ + mb_x * 8 + uv_offset;
805 uint8_t* const v_out = dec->cache_v_ + mb_x * 8 + uv_offset;
806 for (j = 0; j < 16; ++j) {
807 memcpy(y_out + j * dec->cache_y_stride_, y_dst + j * BPS, 16);
809 for (j = 0; j < 8; ++j) {
810 memcpy(u_out + j * dec->cache_uv_stride_, u_dst + j * BPS, 8);
811 memcpy(v_out + j * dec->cache_uv_stride_, v_dst + j * BPS, 8);
817 //------------------------------------------------------------------------------