Add signalSyncPoint to the WebGraphicsContext3D command buffer impls.
[chromium-blink-merge.git] / cc / base / math_util.cc
blob9dacdb9dfbf3a2b6da9cb43ebfd500feff62e280
1 // Copyright 2012 The Chromium Authors. All rights reserved.
2 // Use of this source code is governed by a BSD-style license that can be
3 // found in the LICENSE file.
5 #include "cc/base/math_util.h"
7 #include <algorithm>
8 #include <cmath>
9 #include <limits>
11 #include "base/values.h"
12 #include "ui/gfx/quad_f.h"
13 #include "ui/gfx/rect.h"
14 #include "ui/gfx/rect_conversions.h"
15 #include "ui/gfx/rect_f.h"
16 #include "ui/gfx/transform.h"
17 #include "ui/gfx/vector2d_f.h"
19 namespace cc {
21 const double MathUtil::kPiDouble = 3.14159265358979323846;
22 const float MathUtil::kPiFloat = 3.14159265358979323846f;
24 static HomogeneousCoordinate ProjectHomogeneousPoint(
25 const gfx::Transform& transform,
26 gfx::PointF p) {
27 // In this case, the layer we are trying to project onto is perpendicular to
28 // ray (point p and z-axis direction) that we are trying to project. This
29 // happens when the layer is rotated so that it is infinitesimally thin, or
30 // when it is co-planar with the camera origin -- i.e. when the layer is
31 // invisible anyway.
32 if (!transform.matrix().getDouble(2, 2))
33 return HomogeneousCoordinate(0.0, 0.0, 0.0, 1.0);
35 double x = p.x();
36 double y = p.y();
37 double z = -(transform.matrix().getDouble(2, 0) * x +
38 transform.matrix().getDouble(2, 1) * y +
39 transform.matrix().getDouble(2, 3)) /
40 transform.matrix().getDouble(2, 2);
41 // implicit definition of w = 1;
43 double out_x = x * transform.matrix().getDouble(0, 0) +
44 y * transform.matrix().getDouble(0, 1) +
45 z * transform.matrix().getDouble(0, 2) +
46 transform.matrix().getDouble(0, 3);
47 double out_y = x * transform.matrix().getDouble(1, 0) +
48 y * transform.matrix().getDouble(1, 1) +
49 z * transform.matrix().getDouble(1, 2) +
50 transform.matrix().getDouble(1, 3);
51 double out_z = x * transform.matrix().getDouble(2, 0) +
52 y * transform.matrix().getDouble(2, 1) +
53 z * transform.matrix().getDouble(2, 2) +
54 transform.matrix().getDouble(2, 3);
55 double out_w = x * transform.matrix().getDouble(3, 0) +
56 y * transform.matrix().getDouble(3, 1) +
57 z * transform.matrix().getDouble(3, 2) +
58 transform.matrix().getDouble(3, 3);
60 return HomogeneousCoordinate(out_x, out_y, out_z, out_w);
63 static HomogeneousCoordinate MapHomogeneousPoint(
64 const gfx::Transform& transform,
65 const gfx::Point3F& p) {
66 double x = p.x();
67 double y = p.y();
68 double z = p.z();
69 // implicit definition of w = 1;
71 double out_x = x * transform.matrix().getDouble(0, 0) +
72 y * transform.matrix().getDouble(0, 1) +
73 z * transform.matrix().getDouble(0, 2) +
74 transform.matrix().getDouble(0, 3);
75 double out_y = x * transform.matrix().getDouble(1, 0) +
76 y * transform.matrix().getDouble(1, 1) +
77 z * transform.matrix().getDouble(1, 2) +
78 transform.matrix().getDouble(1, 3);
79 double out_z = x * transform.matrix().getDouble(2, 0) +
80 y * transform.matrix().getDouble(2, 1) +
81 z * transform.matrix().getDouble(2, 2) +
82 transform.matrix().getDouble(2, 3);
83 double out_w = x * transform.matrix().getDouble(3, 0) +
84 y * transform.matrix().getDouble(3, 1) +
85 z * transform.matrix().getDouble(3, 2) +
86 transform.matrix().getDouble(3, 3);
88 return HomogeneousCoordinate(out_x, out_y, out_z, out_w);
91 static HomogeneousCoordinate ComputeClippedPointForEdge(
92 const HomogeneousCoordinate& h1,
93 const HomogeneousCoordinate& h2) {
94 // Points h1 and h2 form a line in 4d, and any point on that line can be
95 // represented as an interpolation between h1 and h2:
96 // p = (1-t) h1 + (t) h2
98 // We want to compute point p such that p.w == epsilon, where epsilon is a
99 // small non-zero number. (but the smaller the number is, the higher the risk
100 // of overflow)
101 // To do this, we solve for t in the following equation:
102 // p.w = epsilon = (1-t) * h1.w + (t) * h2.w
104 // Once paramter t is known, the rest of p can be computed via
105 // p = (1-t) h1 + (t) h2.
107 // Technically this is a special case of the following assertion, but its a
108 // good idea to keep it an explicit sanity check here.
109 DCHECK_NE(h2.w, h1.w);
110 // Exactly one of h1 or h2 (but not both) must be on the negative side of the
111 // w plane when this is called.
112 DCHECK(h1.ShouldBeClipped() ^ h2.ShouldBeClipped());
114 double w = 0.00001; // or any positive non-zero small epsilon
116 double t = (w - h1.w) / (h2.w - h1.w);
118 double x = (1 - t) * h1.x + t * h2.x;
119 double y = (1 - t) * h1.y + t * h2.y;
120 double z = (1 - t) * h1.z + t * h2.z;
122 return HomogeneousCoordinate(x, y, z, w);
125 static inline void ExpandBoundsToIncludePoint(float* xmin,
126 float* xmax,
127 float* ymin,
128 float* ymax,
129 gfx::PointF p) {
130 *xmin = std::min(p.x(), *xmin);
131 *xmax = std::max(p.x(), *xmax);
132 *ymin = std::min(p.y(), *ymin);
133 *ymax = std::max(p.y(), *ymax);
136 static inline void AddVertexToClippedQuad(gfx::PointF new_vertex,
137 gfx::PointF clipped_quad[8],
138 int* num_vertices_in_clipped_quad) {
139 clipped_quad[*num_vertices_in_clipped_quad] = new_vertex;
140 (*num_vertices_in_clipped_quad)++;
143 gfx::Rect MathUtil::MapClippedRect(const gfx::Transform& transform,
144 gfx::Rect src_rect) {
145 return gfx::ToEnclosingRect(MapClippedRect(transform, gfx::RectF(src_rect)));
148 gfx::RectF MathUtil::MapClippedRect(const gfx::Transform& transform,
149 const gfx::RectF& src_rect) {
150 if (transform.IsIdentityOrTranslation())
151 return src_rect +
152 gfx::Vector2dF(
153 static_cast<float>(transform.matrix().getDouble(0, 3)),
154 static_cast<float>(transform.matrix().getDouble(1, 3)));
156 // Apply the transform, but retain the result in homogeneous coordinates.
158 double quad[4 * 2]; // input: 4 x 2D points
159 quad[0] = src_rect.x();
160 quad[1] = src_rect.y();
161 quad[2] = src_rect.right();
162 quad[3] = src_rect.y();
163 quad[4] = src_rect.right();
164 quad[5] = src_rect.bottom();
165 quad[6] = src_rect.x();
166 quad[7] = src_rect.bottom();
168 double result[4 * 4]; // output: 4 x 4D homogeneous points
169 transform.matrix().map2(quad, 4, result);
171 HomogeneousCoordinate hc0(result[0], result[1], result[2], result[3]);
172 HomogeneousCoordinate hc1(result[4], result[5], result[6], result[7]);
173 HomogeneousCoordinate hc2(result[8], result[9], result[10], result[11]);
174 HomogeneousCoordinate hc3(result[12], result[13], result[14], result[15]);
175 return ComputeEnclosingClippedRect(hc0, hc1, hc2, hc3);
178 gfx::RectF MathUtil::ProjectClippedRect(const gfx::Transform& transform,
179 const gfx::RectF& src_rect) {
180 if (transform.IsIdentityOrTranslation()) {
181 return src_rect +
182 gfx::Vector2dF(
183 static_cast<float>(transform.matrix().getDouble(0, 3)),
184 static_cast<float>(transform.matrix().getDouble(1, 3)));
187 // Perform the projection, but retain the result in homogeneous coordinates.
188 gfx::QuadF q = gfx::QuadF(src_rect);
189 HomogeneousCoordinate h1 = ProjectHomogeneousPoint(transform, q.p1());
190 HomogeneousCoordinate h2 = ProjectHomogeneousPoint(transform, q.p2());
191 HomogeneousCoordinate h3 = ProjectHomogeneousPoint(transform, q.p3());
192 HomogeneousCoordinate h4 = ProjectHomogeneousPoint(transform, q.p4());
194 return ComputeEnclosingClippedRect(h1, h2, h3, h4);
197 void MathUtil::MapClippedQuad(const gfx::Transform& transform,
198 const gfx::QuadF& src_quad,
199 gfx::PointF clipped_quad[8],
200 int* num_vertices_in_clipped_quad) {
201 HomogeneousCoordinate h1 =
202 MapHomogeneousPoint(transform, gfx::Point3F(src_quad.p1()));
203 HomogeneousCoordinate h2 =
204 MapHomogeneousPoint(transform, gfx::Point3F(src_quad.p2()));
205 HomogeneousCoordinate h3 =
206 MapHomogeneousPoint(transform, gfx::Point3F(src_quad.p3()));
207 HomogeneousCoordinate h4 =
208 MapHomogeneousPoint(transform, gfx::Point3F(src_quad.p4()));
210 // The order of adding the vertices to the array is chosen so that
211 // clockwise / counter-clockwise orientation is retained.
213 *num_vertices_in_clipped_quad = 0;
215 if (!h1.ShouldBeClipped()) {
216 AddVertexToClippedQuad(
217 h1.CartesianPoint2d(), clipped_quad, num_vertices_in_clipped_quad);
220 if (h1.ShouldBeClipped() ^ h2.ShouldBeClipped()) {
221 AddVertexToClippedQuad(
222 ComputeClippedPointForEdge(h1, h2).CartesianPoint2d(),
223 clipped_quad,
224 num_vertices_in_clipped_quad);
227 if (!h2.ShouldBeClipped()) {
228 AddVertexToClippedQuad(
229 h2.CartesianPoint2d(), clipped_quad, num_vertices_in_clipped_quad);
232 if (h2.ShouldBeClipped() ^ h3.ShouldBeClipped()) {
233 AddVertexToClippedQuad(
234 ComputeClippedPointForEdge(h2, h3).CartesianPoint2d(),
235 clipped_quad,
236 num_vertices_in_clipped_quad);
239 if (!h3.ShouldBeClipped()) {
240 AddVertexToClippedQuad(
241 h3.CartesianPoint2d(), clipped_quad, num_vertices_in_clipped_quad);
244 if (h3.ShouldBeClipped() ^ h4.ShouldBeClipped()) {
245 AddVertexToClippedQuad(
246 ComputeClippedPointForEdge(h3, h4).CartesianPoint2d(),
247 clipped_quad,
248 num_vertices_in_clipped_quad);
251 if (!h4.ShouldBeClipped()) {
252 AddVertexToClippedQuad(
253 h4.CartesianPoint2d(), clipped_quad, num_vertices_in_clipped_quad);
256 if (h4.ShouldBeClipped() ^ h1.ShouldBeClipped()) {
257 AddVertexToClippedQuad(
258 ComputeClippedPointForEdge(h4, h1).CartesianPoint2d(),
259 clipped_quad,
260 num_vertices_in_clipped_quad);
263 DCHECK_LE(*num_vertices_in_clipped_quad, 8);
266 gfx::RectF MathUtil::ComputeEnclosingRectOfVertices(gfx::PointF vertices[],
267 int num_vertices) {
268 if (num_vertices < 2)
269 return gfx::RectF();
271 float xmin = std::numeric_limits<float>::max();
272 float xmax = -std::numeric_limits<float>::max();
273 float ymin = std::numeric_limits<float>::max();
274 float ymax = -std::numeric_limits<float>::max();
276 for (int i = 0; i < num_vertices; ++i)
277 ExpandBoundsToIncludePoint(&xmin, &xmax, &ymin, &ymax, vertices[i]);
279 return gfx::RectF(gfx::PointF(xmin, ymin),
280 gfx::SizeF(xmax - xmin, ymax - ymin));
283 gfx::RectF MathUtil::ComputeEnclosingClippedRect(
284 const HomogeneousCoordinate& h1,
285 const HomogeneousCoordinate& h2,
286 const HomogeneousCoordinate& h3,
287 const HomogeneousCoordinate& h4) {
288 // This function performs clipping as necessary and computes the enclosing 2d
289 // gfx::RectF of the vertices. Doing these two steps simultaneously allows us
290 // to avoid the overhead of storing an unknown number of clipped vertices.
292 // If no vertices on the quad are clipped, then we can simply return the
293 // enclosing rect directly.
294 bool something_clipped = h1.ShouldBeClipped() || h2.ShouldBeClipped() ||
295 h3.ShouldBeClipped() || h4.ShouldBeClipped();
296 if (!something_clipped) {
297 gfx::QuadF mapped_quad = gfx::QuadF(h1.CartesianPoint2d(),
298 h2.CartesianPoint2d(),
299 h3.CartesianPoint2d(),
300 h4.CartesianPoint2d());
301 return mapped_quad.BoundingBox();
304 bool everything_clipped = h1.ShouldBeClipped() && h2.ShouldBeClipped() &&
305 h3.ShouldBeClipped() && h4.ShouldBeClipped();
306 if (everything_clipped)
307 return gfx::RectF();
309 float xmin = std::numeric_limits<float>::max();
310 float xmax = -std::numeric_limits<float>::max();
311 float ymin = std::numeric_limits<float>::max();
312 float ymax = -std::numeric_limits<float>::max();
314 if (!h1.ShouldBeClipped())
315 ExpandBoundsToIncludePoint(&xmin, &xmax, &ymin, &ymax,
316 h1.CartesianPoint2d());
318 if (h1.ShouldBeClipped() ^ h2.ShouldBeClipped())
319 ExpandBoundsToIncludePoint(&xmin,
320 &xmax,
321 &ymin,
322 &ymax,
323 ComputeClippedPointForEdge(h1, h2)
324 .CartesianPoint2d());
326 if (!h2.ShouldBeClipped())
327 ExpandBoundsToIncludePoint(&xmin, &xmax, &ymin, &ymax,
328 h2.CartesianPoint2d());
330 if (h2.ShouldBeClipped() ^ h3.ShouldBeClipped())
331 ExpandBoundsToIncludePoint(&xmin,
332 &xmax,
333 &ymin,
334 &ymax,
335 ComputeClippedPointForEdge(h2, h3)
336 .CartesianPoint2d());
338 if (!h3.ShouldBeClipped())
339 ExpandBoundsToIncludePoint(&xmin, &xmax, &ymin, &ymax,
340 h3.CartesianPoint2d());
342 if (h3.ShouldBeClipped() ^ h4.ShouldBeClipped())
343 ExpandBoundsToIncludePoint(&xmin,
344 &xmax,
345 &ymin,
346 &ymax,
347 ComputeClippedPointForEdge(h3, h4)
348 .CartesianPoint2d());
350 if (!h4.ShouldBeClipped())
351 ExpandBoundsToIncludePoint(&xmin, &xmax, &ymin, &ymax,
352 h4.CartesianPoint2d());
354 if (h4.ShouldBeClipped() ^ h1.ShouldBeClipped())
355 ExpandBoundsToIncludePoint(&xmin,
356 &xmax,
357 &ymin,
358 &ymax,
359 ComputeClippedPointForEdge(h4, h1)
360 .CartesianPoint2d());
362 return gfx::RectF(gfx::PointF(xmin, ymin),
363 gfx::SizeF(xmax - xmin, ymax - ymin));
366 gfx::QuadF MathUtil::MapQuad(const gfx::Transform& transform,
367 const gfx::QuadF& q,
368 bool* clipped) {
369 if (transform.IsIdentityOrTranslation()) {
370 gfx::QuadF mapped_quad(q);
371 mapped_quad +=
372 gfx::Vector2dF(static_cast<float>(transform.matrix().getDouble(0, 3)),
373 static_cast<float>(transform.matrix().getDouble(1, 3)));
374 *clipped = false;
375 return mapped_quad;
378 HomogeneousCoordinate h1 =
379 MapHomogeneousPoint(transform, gfx::Point3F(q.p1()));
380 HomogeneousCoordinate h2 =
381 MapHomogeneousPoint(transform, gfx::Point3F(q.p2()));
382 HomogeneousCoordinate h3 =
383 MapHomogeneousPoint(transform, gfx::Point3F(q.p3()));
384 HomogeneousCoordinate h4 =
385 MapHomogeneousPoint(transform, gfx::Point3F(q.p4()));
387 *clipped = h1.ShouldBeClipped() || h2.ShouldBeClipped() ||
388 h3.ShouldBeClipped() || h4.ShouldBeClipped();
390 // Result will be invalid if clipped == true. But, compute it anyway just in
391 // case, to emulate existing behavior.
392 return gfx::QuadF(h1.CartesianPoint2d(),
393 h2.CartesianPoint2d(),
394 h3.CartesianPoint2d(),
395 h4.CartesianPoint2d());
398 gfx::PointF MathUtil::MapPoint(const gfx::Transform& transform,
399 gfx::PointF p,
400 bool* clipped) {
401 HomogeneousCoordinate h = MapHomogeneousPoint(transform, gfx::Point3F(p));
403 if (h.w > 0) {
404 *clipped = false;
405 return h.CartesianPoint2d();
408 // The cartesian coordinates will be invalid after dividing by w.
409 *clipped = true;
411 // Avoid dividing by w if w == 0.
412 if (!h.w)
413 return gfx::PointF();
415 // This return value will be invalid because clipped == true, but (1) users of
416 // this code should be ignoring the return value when clipped == true anyway,
417 // and (2) this behavior is more consistent with existing behavior of WebKit
418 // transforms if the user really does not ignore the return value.
419 return h.CartesianPoint2d();
422 gfx::Point3F MathUtil::MapPoint(const gfx::Transform& transform,
423 const gfx::Point3F& p,
424 bool* clipped) {
425 HomogeneousCoordinate h = MapHomogeneousPoint(transform, p);
427 if (h.w > 0) {
428 *clipped = false;
429 return h.CartesianPoint3d();
432 // The cartesian coordinates will be invalid after dividing by w.
433 *clipped = true;
435 // Avoid dividing by w if w == 0.
436 if (!h.w)
437 return gfx::Point3F();
439 // This return value will be invalid because clipped == true, but (1) users of
440 // this code should be ignoring the return value when clipped == true anyway,
441 // and (2) this behavior is more consistent with existing behavior of WebKit
442 // transforms if the user really does not ignore the return value.
443 return h.CartesianPoint3d();
446 gfx::QuadF MathUtil::ProjectQuad(const gfx::Transform& transform,
447 const gfx::QuadF& q,
448 bool* clipped) {
449 gfx::QuadF projected_quad;
450 bool clipped_point;
451 projected_quad.set_p1(ProjectPoint(transform, q.p1(), &clipped_point));
452 *clipped = clipped_point;
453 projected_quad.set_p2(ProjectPoint(transform, q.p2(), &clipped_point));
454 *clipped |= clipped_point;
455 projected_quad.set_p3(ProjectPoint(transform, q.p3(), &clipped_point));
456 *clipped |= clipped_point;
457 projected_quad.set_p4(ProjectPoint(transform, q.p4(), &clipped_point));
458 *clipped |= clipped_point;
460 return projected_quad;
463 gfx::PointF MathUtil::ProjectPoint(const gfx::Transform& transform,
464 gfx::PointF p,
465 bool* clipped) {
466 HomogeneousCoordinate h = ProjectHomogeneousPoint(transform, p);
468 if (h.w > 0) {
469 // The cartesian coordinates will be valid in this case.
470 *clipped = false;
471 return h.CartesianPoint2d();
474 // The cartesian coordinates will be invalid after dividing by w.
475 *clipped = true;
477 // Avoid dividing by w if w == 0.
478 if (!h.w)
479 return gfx::PointF();
481 // This return value will be invalid because clipped == true, but (1) users of
482 // this code should be ignoring the return value when clipped == true anyway,
483 // and (2) this behavior is more consistent with existing behavior of WebKit
484 // transforms if the user really does not ignore the return value.
485 return h.CartesianPoint2d();
488 static inline float ScaleOnAxis(double a, double b, double c) {
489 return std::sqrt(a * a + b * b + c * c);
492 gfx::Vector2dF MathUtil::ComputeTransform2dScaleComponents(
493 const gfx::Transform& transform,
494 float fallback_value) {
495 if (transform.HasPerspective())
496 return gfx::Vector2dF(fallback_value, fallback_value);
497 float x_scale = ScaleOnAxis(transform.matrix().getDouble(0, 0),
498 transform.matrix().getDouble(1, 0),
499 transform.matrix().getDouble(2, 0));
500 float y_scale = ScaleOnAxis(transform.matrix().getDouble(0, 1),
501 transform.matrix().getDouble(1, 1),
502 transform.matrix().getDouble(2, 1));
503 return gfx::Vector2dF(x_scale, y_scale);
506 float MathUtil::SmallestAngleBetweenVectors(gfx::Vector2dF v1,
507 gfx::Vector2dF v2) {
508 double dot_product = gfx::DotProduct(v1, v2) / v1.Length() / v2.Length();
509 // Clamp to compensate for rounding errors.
510 dot_product = std::max(-1.0, std::min(1.0, dot_product));
511 return static_cast<float>(Rad2Deg(std::acos(dot_product)));
514 gfx::Vector2dF MathUtil::ProjectVector(gfx::Vector2dF source,
515 gfx::Vector2dF destination) {
516 float projected_length =
517 gfx::DotProduct(source, destination) / destination.LengthSquared();
518 return gfx::Vector2dF(projected_length * destination.x(),
519 projected_length * destination.y());
522 scoped_ptr<base::Value> MathUtil::AsValue(gfx::Size s) {
523 scoped_ptr<base::DictionaryValue> res(new base::DictionaryValue());
524 res->SetDouble("width", s.width());
525 res->SetDouble("height", s.height());
526 return res.PassAs<base::Value>();
529 scoped_ptr<base::Value> MathUtil::AsValue(gfx::PointF pt) {
530 scoped_ptr<base::DictionaryValue> res(new base::DictionaryValue());
531 res->SetDouble("x", pt.x());
532 res->SetDouble("y", pt.y());
533 return res.PassAs<base::Value>();
536 scoped_ptr<base::Value> MathUtil::AsValue(gfx::QuadF q) {
537 scoped_ptr<base::DictionaryValue> res(new base::DictionaryValue());
538 res->Set("p1", AsValue(q.p1()).release());
539 res->Set("p2", AsValue(q.p2()).release());
540 res->Set("p3", AsValue(q.p3()).release());
541 res->Set("p4", AsValue(q.p4()).release());
542 return res.PassAs<base::Value>();
545 scoped_ptr<base::Value> MathUtil::AsValueSafely(double value) {
546 return scoped_ptr<base::Value>(base::Value::CreateDoubleValue(
547 std::min(value, std::numeric_limits<double>::max())));
550 scoped_ptr<base::Value> MathUtil::AsValueSafely(float value) {
551 return scoped_ptr<base::Value>(base::Value::CreateDoubleValue(
552 std::min(value, std::numeric_limits<float>::max())));
555 } // namespace cc