Revert of Enabling audio quality test on mac. (patchset #1 id:1 of https://codereview...
[chromium-blink-merge.git] / third_party / sqlite / amalgamation / sqlite3.c
blob16a136b32481d3be473fbbad824027ed12765dcc
1 /******************************************************************************
2 ** This file is an amalgamation of many separate C source files from SQLite
3 ** version 3.7.6.3. By combining all the individual C code files into this
4 ** single large file, the entire code can be compiled as a single translation
5 ** unit. This allows many compilers to do optimizations that would not be
6 ** possible if the files were compiled separately. Performance improvements
7 ** of 5% or more are commonly seen when SQLite is compiled as a single
8 ** translation unit.
9 **
10 ** This file is all you need to compile SQLite. To use SQLite in other
11 ** programs, you need this file and the "sqlite3.h" header file that defines
12 ** the programming interface to the SQLite library. (If you do not have
13 ** the "sqlite3.h" header file at hand, you will find a copy embedded within
14 ** the text of this file. Search for "Begin file sqlite3.h" to find the start
15 ** of the embedded sqlite3.h header file.) Additional code files may be needed
16 ** if you want a wrapper to interface SQLite with your choice of programming
17 ** language. The code for the "sqlite3" command-line shell is also in a
18 ** separate file. This file contains only code for the core SQLite library.
20 #define SQLITE_CORE 1
21 #define SQLITE_AMALGAMATION 1
22 #ifndef SQLITE_PRIVATE
23 # define SQLITE_PRIVATE static
24 #endif
25 #ifndef SQLITE_API
26 # define SQLITE_API
27 #endif
28 /************** Begin file sqliteInt.h ***************************************/
30 ** 2001 September 15
32 ** The author disclaims copyright to this source code. In place of
33 ** a legal notice, here is a blessing:
35 ** May you do good and not evil.
36 ** May you find forgiveness for yourself and forgive others.
37 ** May you share freely, never taking more than you give.
39 *************************************************************************
40 ** Internal interface definitions for SQLite.
43 #ifndef _SQLITEINT_H_
44 #define _SQLITEINT_H_
47 ** These #defines should enable >2GB file support on POSIX if the
48 ** underlying operating system supports it. If the OS lacks
49 ** large file support, or if the OS is windows, these should be no-ops.
51 ** Ticket #2739: The _LARGEFILE_SOURCE macro must appear before any
52 ** system #includes. Hence, this block of code must be the very first
53 ** code in all source files.
55 ** Large file support can be disabled using the -DSQLITE_DISABLE_LFS switch
56 ** on the compiler command line. This is necessary if you are compiling
57 ** on a recent machine (ex: Red Hat 7.2) but you want your code to work
58 ** on an older machine (ex: Red Hat 6.0). If you compile on Red Hat 7.2
59 ** without this option, LFS is enable. But LFS does not exist in the kernel
60 ** in Red Hat 6.0, so the code won't work. Hence, for maximum binary
61 ** portability you should omit LFS.
63 ** Similar is true for Mac OS X. LFS is only supported on Mac OS X 9 and later.
65 #ifndef SQLITE_DISABLE_LFS
66 # define _LARGE_FILE 1
67 # ifndef _FILE_OFFSET_BITS
68 # define _FILE_OFFSET_BITS 64
69 # endif
70 # define _LARGEFILE_SOURCE 1
71 #endif
74 ** Include the configuration header output by 'configure' if we're using the
75 ** autoconf-based build
77 #ifdef _HAVE_SQLITE_CONFIG_H
78 #include "config.h"
79 #endif
81 /************** Include sqliteLimit.h in the middle of sqliteInt.h ***********/
82 /************** Begin file sqliteLimit.h *************************************/
84 ** 2007 May 7
86 ** The author disclaims copyright to this source code. In place of
87 ** a legal notice, here is a blessing:
89 ** May you do good and not evil.
90 ** May you find forgiveness for yourself and forgive others.
91 ** May you share freely, never taking more than you give.
93 *************************************************************************
94 **
95 ** This file defines various limits of what SQLite can process.
99 ** The maximum length of a TEXT or BLOB in bytes. This also
100 ** limits the size of a row in a table or index.
102 ** The hard limit is the ability of a 32-bit signed integer
103 ** to count the size: 2^31-1 or 2147483647.
105 #ifndef SQLITE_MAX_LENGTH
106 # define SQLITE_MAX_LENGTH 1000000000
107 #endif
110 ** This is the maximum number of
112 ** * Columns in a table
113 ** * Columns in an index
114 ** * Columns in a view
115 ** * Terms in the SET clause of an UPDATE statement
116 ** * Terms in the result set of a SELECT statement
117 ** * Terms in the GROUP BY or ORDER BY clauses of a SELECT statement.
118 ** * Terms in the VALUES clause of an INSERT statement
120 ** The hard upper limit here is 32676. Most database people will
121 ** tell you that in a well-normalized database, you usually should
122 ** not have more than a dozen or so columns in any table. And if
123 ** that is the case, there is no point in having more than a few
124 ** dozen values in any of the other situations described above.
126 #ifndef SQLITE_MAX_COLUMN
127 # define SQLITE_MAX_COLUMN 2000
128 #endif
131 ** The maximum length of a single SQL statement in bytes.
133 ** It used to be the case that setting this value to zero would
134 ** turn the limit off. That is no longer true. It is not possible
135 ** to turn this limit off.
137 #ifndef SQLITE_MAX_SQL_LENGTH
138 # define SQLITE_MAX_SQL_LENGTH 1000000000
139 #endif
142 ** The maximum depth of an expression tree. This is limited to
143 ** some extent by SQLITE_MAX_SQL_LENGTH. But sometime you might
144 ** want to place more severe limits on the complexity of an
145 ** expression.
147 ** A value of 0 used to mean that the limit was not enforced.
148 ** But that is no longer true. The limit is now strictly enforced
149 ** at all times.
151 #ifndef SQLITE_MAX_EXPR_DEPTH
152 # define SQLITE_MAX_EXPR_DEPTH 1000
153 #endif
156 ** The maximum number of terms in a compound SELECT statement.
157 ** The code generator for compound SELECT statements does one
158 ** level of recursion for each term. A stack overflow can result
159 ** if the number of terms is too large. In practice, most SQL
160 ** never has more than 3 or 4 terms. Use a value of 0 to disable
161 ** any limit on the number of terms in a compount SELECT.
163 #ifndef SQLITE_MAX_COMPOUND_SELECT
164 # define SQLITE_MAX_COMPOUND_SELECT 500
165 #endif
168 ** The maximum number of opcodes in a VDBE program.
169 ** Not currently enforced.
171 #ifndef SQLITE_MAX_VDBE_OP
172 # define SQLITE_MAX_VDBE_OP 25000
173 #endif
176 ** The maximum number of arguments to an SQL function.
178 #ifndef SQLITE_MAX_FUNCTION_ARG
179 # define SQLITE_MAX_FUNCTION_ARG 127
180 #endif
183 ** The maximum number of in-memory pages to use for the main database
184 ** table and for temporary tables. The SQLITE_DEFAULT_CACHE_SIZE
186 #ifndef SQLITE_DEFAULT_CACHE_SIZE
187 # define SQLITE_DEFAULT_CACHE_SIZE 2000
188 #endif
189 #ifndef SQLITE_DEFAULT_TEMP_CACHE_SIZE
190 # define SQLITE_DEFAULT_TEMP_CACHE_SIZE 500
191 #endif
194 ** The default number of frames to accumulate in the log file before
195 ** checkpointing the database in WAL mode.
197 #ifndef SQLITE_DEFAULT_WAL_AUTOCHECKPOINT
198 # define SQLITE_DEFAULT_WAL_AUTOCHECKPOINT 1000
199 #endif
202 ** The maximum number of attached databases. This must be between 0
203 ** and 62. The upper bound on 62 is because a 64-bit integer bitmap
204 ** is used internally to track attached databases.
206 #ifndef SQLITE_MAX_ATTACHED
207 # define SQLITE_MAX_ATTACHED 10
208 #endif
212 ** The maximum value of a ?nnn wildcard that the parser will accept.
214 #ifndef SQLITE_MAX_VARIABLE_NUMBER
215 # define SQLITE_MAX_VARIABLE_NUMBER 999
216 #endif
218 /* Maximum page size. The upper bound on this value is 65536. This a limit
219 ** imposed by the use of 16-bit offsets within each page.
221 ** Earlier versions of SQLite allowed the user to change this value at
222 ** compile time. This is no longer permitted, on the grounds that it creates
223 ** a library that is technically incompatible with an SQLite library
224 ** compiled with a different limit. If a process operating on a database
225 ** with a page-size of 65536 bytes crashes, then an instance of SQLite
226 ** compiled with the default page-size limit will not be able to rollback
227 ** the aborted transaction. This could lead to database corruption.
229 #ifdef SQLITE_MAX_PAGE_SIZE
230 # undef SQLITE_MAX_PAGE_SIZE
231 #endif
232 #define SQLITE_MAX_PAGE_SIZE 65536
236 ** The default size of a database page.
238 #ifndef SQLITE_DEFAULT_PAGE_SIZE
239 # define SQLITE_DEFAULT_PAGE_SIZE 1024
240 #endif
241 #if SQLITE_DEFAULT_PAGE_SIZE>SQLITE_MAX_PAGE_SIZE
242 # undef SQLITE_DEFAULT_PAGE_SIZE
243 # define SQLITE_DEFAULT_PAGE_SIZE SQLITE_MAX_PAGE_SIZE
244 #endif
247 ** Ordinarily, if no value is explicitly provided, SQLite creates databases
248 ** with page size SQLITE_DEFAULT_PAGE_SIZE. However, based on certain
249 ** device characteristics (sector-size and atomic write() support),
250 ** SQLite may choose a larger value. This constant is the maximum value
251 ** SQLite will choose on its own.
253 #ifndef SQLITE_MAX_DEFAULT_PAGE_SIZE
254 # define SQLITE_MAX_DEFAULT_PAGE_SIZE 8192
255 #endif
256 #if SQLITE_MAX_DEFAULT_PAGE_SIZE>SQLITE_MAX_PAGE_SIZE
257 # undef SQLITE_MAX_DEFAULT_PAGE_SIZE
258 # define SQLITE_MAX_DEFAULT_PAGE_SIZE SQLITE_MAX_PAGE_SIZE
259 #endif
263 ** Maximum number of pages in one database file.
265 ** This is really just the default value for the max_page_count pragma.
266 ** This value can be lowered (or raised) at run-time using that the
267 ** max_page_count macro.
269 #ifndef SQLITE_MAX_PAGE_COUNT
270 # define SQLITE_MAX_PAGE_COUNT 1073741823
271 #endif
274 ** Maximum length (in bytes) of the pattern in a LIKE or GLOB
275 ** operator.
277 #ifndef SQLITE_MAX_LIKE_PATTERN_LENGTH
278 # define SQLITE_MAX_LIKE_PATTERN_LENGTH 50000
279 #endif
282 ** Maximum depth of recursion for triggers.
284 ** A value of 1 means that a trigger program will not be able to itself
285 ** fire any triggers. A value of 0 means that no trigger programs at all
286 ** may be executed.
288 #ifndef SQLITE_MAX_TRIGGER_DEPTH
289 # define SQLITE_MAX_TRIGGER_DEPTH 1000
290 #endif
292 /************** End of sqliteLimit.h *****************************************/
293 /************** Continuing where we left off in sqliteInt.h ******************/
295 /* Disable nuisance warnings on Borland compilers */
296 #if defined(__BORLANDC__)
297 #pragma warn -rch /* unreachable code */
298 #pragma warn -ccc /* Condition is always true or false */
299 #pragma warn -aus /* Assigned value is never used */
300 #pragma warn -csu /* Comparing signed and unsigned */
301 #pragma warn -spa /* Suspicious pointer arithmetic */
302 #endif
304 /* Needed for various definitions... */
305 #ifndef _GNU_SOURCE
306 # define _GNU_SOURCE
307 #endif
310 ** Include standard header files as necessary
312 #ifdef HAVE_STDINT_H
313 #include <stdint.h>
314 #endif
315 #ifdef HAVE_INTTYPES_H
316 #include <inttypes.h>
317 #endif
320 ** The number of samples of an index that SQLite takes in order to
321 ** construct a histogram of the table content when running ANALYZE
322 ** and with SQLITE_ENABLE_STAT2
324 #define SQLITE_INDEX_SAMPLES 10
327 ** The following macros are used to cast pointers to integers and
328 ** integers to pointers. The way you do this varies from one compiler
329 ** to the next, so we have developed the following set of #if statements
330 ** to generate appropriate macros for a wide range of compilers.
332 ** The correct "ANSI" way to do this is to use the intptr_t type.
333 ** Unfortunately, that typedef is not available on all compilers, or
334 ** if it is available, it requires an #include of specific headers
335 ** that vary from one machine to the next.
337 ** Ticket #3860: The llvm-gcc-4.2 compiler from Apple chokes on
338 ** the ((void*)&((char*)0)[X]) construct. But MSVC chokes on ((void*)(X)).
339 ** So we have to define the macros in different ways depending on the
340 ** compiler.
342 #if defined(__PTRDIFF_TYPE__) /* This case should work for GCC */
343 # define SQLITE_INT_TO_PTR(X) ((void*)(__PTRDIFF_TYPE__)(X))
344 # define SQLITE_PTR_TO_INT(X) ((int)(__PTRDIFF_TYPE__)(X))
345 #elif !defined(__GNUC__) /* Works for compilers other than LLVM */
346 # define SQLITE_INT_TO_PTR(X) ((void*)&((char*)0)[X])
347 # define SQLITE_PTR_TO_INT(X) ((int)(((char*)X)-(char*)0))
348 #elif defined(HAVE_STDINT_H) /* Use this case if we have ANSI headers */
349 # define SQLITE_INT_TO_PTR(X) ((void*)(intptr_t)(X))
350 # define SQLITE_PTR_TO_INT(X) ((int)(intptr_t)(X))
351 #else /* Generates a warning - but it always works */
352 # define SQLITE_INT_TO_PTR(X) ((void*)(X))
353 # define SQLITE_PTR_TO_INT(X) ((int)(X))
354 #endif
357 ** The SQLITE_THREADSAFE macro must be defined as 0, 1, or 2.
358 ** 0 means mutexes are permanently disable and the library is never
359 ** threadsafe. 1 means the library is serialized which is the highest
360 ** level of threadsafety. 2 means the libary is multithreaded - multiple
361 ** threads can use SQLite as long as no two threads try to use the same
362 ** database connection at the same time.
364 ** Older versions of SQLite used an optional THREADSAFE macro.
365 ** We support that for legacy.
367 #if !defined(SQLITE_THREADSAFE)
368 #if defined(THREADSAFE)
369 # define SQLITE_THREADSAFE THREADSAFE
370 #else
371 # define SQLITE_THREADSAFE 1 /* IMP: R-07272-22309 */
372 #endif
373 #endif
376 ** The SQLITE_DEFAULT_MEMSTATUS macro must be defined as either 0 or 1.
377 ** It determines whether or not the features related to
378 ** SQLITE_CONFIG_MEMSTATUS are available by default or not. This value can
379 ** be overridden at runtime using the sqlite3_config() API.
381 #if !defined(SQLITE_DEFAULT_MEMSTATUS)
382 # define SQLITE_DEFAULT_MEMSTATUS 1
383 #endif
386 ** Exactly one of the following macros must be defined in order to
387 ** specify which memory allocation subsystem to use.
389 ** SQLITE_SYSTEM_MALLOC // Use normal system malloc()
390 ** SQLITE_MEMDEBUG // Debugging version of system malloc()
392 ** (Historical note: There used to be several other options, but we've
393 ** pared it down to just these two.)
395 ** If none of the above are defined, then set SQLITE_SYSTEM_MALLOC as
396 ** the default.
398 #if defined(SQLITE_SYSTEM_MALLOC)+defined(SQLITE_MEMDEBUG)>1
399 # error "At most one of the following compile-time configuration options\
400 is allows: SQLITE_SYSTEM_MALLOC, SQLITE_MEMDEBUG"
401 #endif
402 #if defined(SQLITE_SYSTEM_MALLOC)+defined(SQLITE_MEMDEBUG)==0
403 # define SQLITE_SYSTEM_MALLOC 1
404 #endif
407 ** If SQLITE_MALLOC_SOFT_LIMIT is not zero, then try to keep the
408 ** sizes of memory allocations below this value where possible.
410 #if !defined(SQLITE_MALLOC_SOFT_LIMIT)
411 # define SQLITE_MALLOC_SOFT_LIMIT 1024
412 #endif
415 ** We need to define _XOPEN_SOURCE as follows in order to enable
416 ** recursive mutexes on most Unix systems. But Mac OS X is different.
417 ** The _XOPEN_SOURCE define causes problems for Mac OS X we are told,
418 ** so it is omitted there. See ticket #2673.
420 ** Later we learn that _XOPEN_SOURCE is poorly or incorrectly
421 ** implemented on some systems. So we avoid defining it at all
422 ** if it is already defined or if it is unneeded because we are
423 ** not doing a threadsafe build. Ticket #2681.
425 ** See also ticket #2741.
427 #if !defined(_XOPEN_SOURCE) && !defined(__DARWIN__) && !defined(__APPLE__) && SQLITE_THREADSAFE
428 # define _XOPEN_SOURCE 500 /* Needed to enable pthread recursive mutexes */
429 #endif
432 ** The TCL headers are only needed when compiling the TCL bindings.
434 #if defined(SQLITE_TCL) || defined(TCLSH)
435 # include <tcl.h>
436 #endif
439 ** Many people are failing to set -DNDEBUG=1 when compiling SQLite.
440 ** Setting NDEBUG makes the code smaller and run faster. So the following
441 ** lines are added to automatically set NDEBUG unless the -DSQLITE_DEBUG=1
442 ** option is set. Thus NDEBUG becomes an opt-in rather than an opt-out
443 ** feature.
445 #if !defined(NDEBUG) && !defined(SQLITE_DEBUG)
446 # define NDEBUG 1
447 #endif
450 ** The testcase() macro is used to aid in coverage testing. When
451 ** doing coverage testing, the condition inside the argument to
452 ** testcase() must be evaluated both true and false in order to
453 ** get full branch coverage. The testcase() macro is inserted
454 ** to help ensure adequate test coverage in places where simple
455 ** condition/decision coverage is inadequate. For example, testcase()
456 ** can be used to make sure boundary values are tested. For
457 ** bitmask tests, testcase() can be used to make sure each bit
458 ** is significant and used at least once. On switch statements
459 ** where multiple cases go to the same block of code, testcase()
460 ** can insure that all cases are evaluated.
463 #ifdef SQLITE_COVERAGE_TEST
464 SQLITE_PRIVATE void sqlite3Coverage(int);
465 # define testcase(X) if( X ){ sqlite3Coverage(__LINE__); }
466 #else
467 # define testcase(X)
468 #endif
471 ** The TESTONLY macro is used to enclose variable declarations or
472 ** other bits of code that are needed to support the arguments
473 ** within testcase() and assert() macros.
475 #if !defined(NDEBUG) || defined(SQLITE_COVERAGE_TEST)
476 # define TESTONLY(X) X
477 #else
478 # define TESTONLY(X)
479 #endif
482 ** Sometimes we need a small amount of code such as a variable initialization
483 ** to setup for a later assert() statement. We do not want this code to
484 ** appear when assert() is disabled. The following macro is therefore
485 ** used to contain that setup code. The "VVA" acronym stands for
486 ** "Verification, Validation, and Accreditation". In other words, the
487 ** code within VVA_ONLY() will only run during verification processes.
489 #ifndef NDEBUG
490 # define VVA_ONLY(X) X
491 #else
492 # define VVA_ONLY(X)
493 #endif
496 ** The ALWAYS and NEVER macros surround boolean expressions which
497 ** are intended to always be true or false, respectively. Such
498 ** expressions could be omitted from the code completely. But they
499 ** are included in a few cases in order to enhance the resilience
500 ** of SQLite to unexpected behavior - to make the code "self-healing"
501 ** or "ductile" rather than being "brittle" and crashing at the first
502 ** hint of unplanned behavior.
504 ** In other words, ALWAYS and NEVER are added for defensive code.
506 ** When doing coverage testing ALWAYS and NEVER are hard-coded to
507 ** be true and false so that the unreachable code then specify will
508 ** not be counted as untested code.
510 #if defined(SQLITE_COVERAGE_TEST)
511 # define ALWAYS(X) (1)
512 # define NEVER(X) (0)
513 #elif !defined(NDEBUG)
514 # define ALWAYS(X) ((X)?1:(assert(0),0))
515 # define NEVER(X) ((X)?(assert(0),1):0)
516 #else
517 # define ALWAYS(X) (X)
518 # define NEVER(X) (X)
519 #endif
522 ** Return true (non-zero) if the input is a integer that is too large
523 ** to fit in 32-bits. This macro is used inside of various testcase()
524 ** macros to verify that we have tested SQLite for large-file support.
526 #define IS_BIG_INT(X) (((X)&~(i64)0xffffffff)!=0)
529 ** The macro unlikely() is a hint that surrounds a boolean
530 ** expression that is usually false. Macro likely() surrounds
531 ** a boolean expression that is usually true. GCC is able to
532 ** use these hints to generate better code, sometimes.
534 #if defined(__GNUC__) && 0
535 # define likely(X) __builtin_expect((X),1)
536 # define unlikely(X) __builtin_expect((X),0)
537 #else
538 # define likely(X) !!(X)
539 # define unlikely(X) !!(X)
540 #endif
542 /************** Include sqlite3.h in the middle of sqliteInt.h ***************/
543 /************** Begin file sqlite3.h *****************************************/
545 ** 2001 September 15
547 ** The author disclaims copyright to this source code. In place of
548 ** a legal notice, here is a blessing:
550 ** May you do good and not evil.
551 ** May you find forgiveness for yourself and forgive others.
552 ** May you share freely, never taking more than you give.
554 *************************************************************************
555 ** This header file defines the interface that the SQLite library
556 ** presents to client programs. If a C-function, structure, datatype,
557 ** or constant definition does not appear in this file, then it is
558 ** not a published API of SQLite, is subject to change without
559 ** notice, and should not be referenced by programs that use SQLite.
561 ** Some of the definitions that are in this file are marked as
562 ** "experimental". Experimental interfaces are normally new
563 ** features recently added to SQLite. We do not anticipate changes
564 ** to experimental interfaces but reserve the right to make minor changes
565 ** if experience from use "in the wild" suggest such changes are prudent.
567 ** The official C-language API documentation for SQLite is derived
568 ** from comments in this file. This file is the authoritative source
569 ** on how SQLite interfaces are suppose to operate.
571 ** The name of this file under configuration management is "sqlite.h.in".
572 ** The makefile makes some minor changes to this file (such as inserting
573 ** the version number) and changes its name to "sqlite3.h" as
574 ** part of the build process.
576 #ifndef _SQLITE3_H_
577 #define _SQLITE3_H_
578 #include <stdarg.h> /* Needed for the definition of va_list */
581 ** Make sure we can call this stuff from C++.
583 #if 0
584 extern "C" {
585 #endif
589 ** Add the ability to override 'extern'
591 #ifndef SQLITE_EXTERN
592 # define SQLITE_EXTERN extern
593 #endif
595 #ifndef SQLITE_API
596 # define SQLITE_API
597 #endif
601 ** These no-op macros are used in front of interfaces to mark those
602 ** interfaces as either deprecated or experimental. New applications
603 ** should not use deprecated interfaces - they are support for backwards
604 ** compatibility only. Application writers should be aware that
605 ** experimental interfaces are subject to change in point releases.
607 ** These macros used to resolve to various kinds of compiler magic that
608 ** would generate warning messages when they were used. But that
609 ** compiler magic ended up generating such a flurry of bug reports
610 ** that we have taken it all out and gone back to using simple
611 ** noop macros.
613 #define SQLITE_DEPRECATED
614 #define SQLITE_EXPERIMENTAL
617 ** Ensure these symbols were not defined by some previous header file.
619 #ifdef SQLITE_VERSION
620 # undef SQLITE_VERSION
621 #endif
622 #ifdef SQLITE_VERSION_NUMBER
623 # undef SQLITE_VERSION_NUMBER
624 #endif
627 ** CAPI3REF: Compile-Time Library Version Numbers
629 ** ^(The [SQLITE_VERSION] C preprocessor macro in the sqlite3.h header
630 ** evaluates to a string literal that is the SQLite version in the
631 ** format "X.Y.Z" where X is the major version number (always 3 for
632 ** SQLite3) and Y is the minor version number and Z is the release number.)^
633 ** ^(The [SQLITE_VERSION_NUMBER] C preprocessor macro resolves to an integer
634 ** with the value (X*1000000 + Y*1000 + Z) where X, Y, and Z are the same
635 ** numbers used in [SQLITE_VERSION].)^
636 ** The SQLITE_VERSION_NUMBER for any given release of SQLite will also
637 ** be larger than the release from which it is derived. Either Y will
638 ** be held constant and Z will be incremented or else Y will be incremented
639 ** and Z will be reset to zero.
641 ** Since version 3.6.18, SQLite source code has been stored in the
642 ** <a href="http://www.fossil-scm.org/">Fossil configuration management
643 ** system</a>. ^The SQLITE_SOURCE_ID macro evaluates to
644 ** a string which identifies a particular check-in of SQLite
645 ** within its configuration management system. ^The SQLITE_SOURCE_ID
646 ** string contains the date and time of the check-in (UTC) and an SHA1
647 ** hash of the entire source tree.
649 ** See also: [sqlite3_libversion()],
650 ** [sqlite3_libversion_number()], [sqlite3_sourceid()],
651 ** [sqlite_version()] and [sqlite_source_id()].
653 #define SQLITE_VERSION "3.7.6.3"
654 #define SQLITE_VERSION_NUMBER 3007006
655 #define SQLITE_SOURCE_ID "2011-05-19 13:26:54 ed1da510a239ea767a01dc332b667119fa3c908e"
658 ** CAPI3REF: Run-Time Library Version Numbers
659 ** KEYWORDS: sqlite3_version, sqlite3_sourceid
661 ** These interfaces provide the same information as the [SQLITE_VERSION],
662 ** [SQLITE_VERSION_NUMBER], and [SQLITE_SOURCE_ID] C preprocessor macros
663 ** but are associated with the library instead of the header file. ^(Cautious
664 ** programmers might include assert() statements in their application to
665 ** verify that values returned by these interfaces match the macros in
666 ** the header, and thus insure that the application is
667 ** compiled with matching library and header files.
669 ** <blockquote><pre>
670 ** assert( sqlite3_libversion_number()==SQLITE_VERSION_NUMBER );
671 ** assert( strcmp(sqlite3_sourceid(),SQLITE_SOURCE_ID)==0 );
672 ** assert( strcmp(sqlite3_libversion(),SQLITE_VERSION)==0 );
673 ** </pre></blockquote>)^
675 ** ^The sqlite3_version[] string constant contains the text of [SQLITE_VERSION]
676 ** macro. ^The sqlite3_libversion() function returns a pointer to the
677 ** to the sqlite3_version[] string constant. The sqlite3_libversion()
678 ** function is provided for use in DLLs since DLL users usually do not have
679 ** direct access to string constants within the DLL. ^The
680 ** sqlite3_libversion_number() function returns an integer equal to
681 ** [SQLITE_VERSION_NUMBER]. ^The sqlite3_sourceid() function returns
682 ** a pointer to a string constant whose value is the same as the
683 ** [SQLITE_SOURCE_ID] C preprocessor macro.
685 ** See also: [sqlite_version()] and [sqlite_source_id()].
687 SQLITE_API const char sqlite3_version[] = SQLITE_VERSION;
688 SQLITE_API const char *sqlite3_libversion(void);
689 SQLITE_API const char *sqlite3_sourceid(void);
690 SQLITE_API int sqlite3_libversion_number(void);
693 ** CAPI3REF: Run-Time Library Compilation Options Diagnostics
695 ** ^The sqlite3_compileoption_used() function returns 0 or 1
696 ** indicating whether the specified option was defined at
697 ** compile time. ^The SQLITE_ prefix may be omitted from the
698 ** option name passed to sqlite3_compileoption_used().
700 ** ^The sqlite3_compileoption_get() function allows iterating
701 ** over the list of options that were defined at compile time by
702 ** returning the N-th compile time option string. ^If N is out of range,
703 ** sqlite3_compileoption_get() returns a NULL pointer. ^The SQLITE_
704 ** prefix is omitted from any strings returned by
705 ** sqlite3_compileoption_get().
707 ** ^Support for the diagnostic functions sqlite3_compileoption_used()
708 ** and sqlite3_compileoption_get() may be omitted by specifying the
709 ** [SQLITE_OMIT_COMPILEOPTION_DIAGS] option at compile time.
711 ** See also: SQL functions [sqlite_compileoption_used()] and
712 ** [sqlite_compileoption_get()] and the [compile_options pragma].
714 #ifndef SQLITE_OMIT_COMPILEOPTION_DIAGS
715 SQLITE_API int sqlite3_compileoption_used(const char *zOptName);
716 SQLITE_API const char *sqlite3_compileoption_get(int N);
717 #endif
720 ** CAPI3REF: Test To See If The Library Is Threadsafe
722 ** ^The sqlite3_threadsafe() function returns zero if and only if
723 ** SQLite was compiled mutexing code omitted due to the
724 ** [SQLITE_THREADSAFE] compile-time option being set to 0.
726 ** SQLite can be compiled with or without mutexes. When
727 ** the [SQLITE_THREADSAFE] C preprocessor macro is 1 or 2, mutexes
728 ** are enabled and SQLite is threadsafe. When the
729 ** [SQLITE_THREADSAFE] macro is 0,
730 ** the mutexes are omitted. Without the mutexes, it is not safe
731 ** to use SQLite concurrently from more than one thread.
733 ** Enabling mutexes incurs a measurable performance penalty.
734 ** So if speed is of utmost importance, it makes sense to disable
735 ** the mutexes. But for maximum safety, mutexes should be enabled.
736 ** ^The default behavior is for mutexes to be enabled.
738 ** This interface can be used by an application to make sure that the
739 ** version of SQLite that it is linking against was compiled with
740 ** the desired setting of the [SQLITE_THREADSAFE] macro.
742 ** This interface only reports on the compile-time mutex setting
743 ** of the [SQLITE_THREADSAFE] flag. If SQLite is compiled with
744 ** SQLITE_THREADSAFE=1 or =2 then mutexes are enabled by default but
745 ** can be fully or partially disabled using a call to [sqlite3_config()]
746 ** with the verbs [SQLITE_CONFIG_SINGLETHREAD], [SQLITE_CONFIG_MULTITHREAD],
747 ** or [SQLITE_CONFIG_MUTEX]. ^(The return value of the
748 ** sqlite3_threadsafe() function shows only the compile-time setting of
749 ** thread safety, not any run-time changes to that setting made by
750 ** sqlite3_config(). In other words, the return value from sqlite3_threadsafe()
751 ** is unchanged by calls to sqlite3_config().)^
753 ** See the [threading mode] documentation for additional information.
755 SQLITE_API int sqlite3_threadsafe(void);
758 ** CAPI3REF: Database Connection Handle
759 ** KEYWORDS: {database connection} {database connections}
761 ** Each open SQLite database is represented by a pointer to an instance of
762 ** the opaque structure named "sqlite3". It is useful to think of an sqlite3
763 ** pointer as an object. The [sqlite3_open()], [sqlite3_open16()], and
764 ** [sqlite3_open_v2()] interfaces are its constructors, and [sqlite3_close()]
765 ** is its destructor. There are many other interfaces (such as
766 ** [sqlite3_prepare_v2()], [sqlite3_create_function()], and
767 ** [sqlite3_busy_timeout()] to name but three) that are methods on an
768 ** sqlite3 object.
770 typedef struct sqlite3 sqlite3;
773 ** CAPI3REF: 64-Bit Integer Types
774 ** KEYWORDS: sqlite_int64 sqlite_uint64
776 ** Because there is no cross-platform way to specify 64-bit integer types
777 ** SQLite includes typedefs for 64-bit signed and unsigned integers.
779 ** The sqlite3_int64 and sqlite3_uint64 are the preferred type definitions.
780 ** The sqlite_int64 and sqlite_uint64 types are supported for backwards
781 ** compatibility only.
783 ** ^The sqlite3_int64 and sqlite_int64 types can store integer values
784 ** between -9223372036854775808 and +9223372036854775807 inclusive. ^The
785 ** sqlite3_uint64 and sqlite_uint64 types can store integer values
786 ** between 0 and +18446744073709551615 inclusive.
788 #ifdef SQLITE_INT64_TYPE
789 typedef SQLITE_INT64_TYPE sqlite_int64;
790 typedef unsigned SQLITE_INT64_TYPE sqlite_uint64;
791 #elif defined(_MSC_VER) || defined(__BORLANDC__)
792 typedef __int64 sqlite_int64;
793 typedef unsigned __int64 sqlite_uint64;
794 #else
795 typedef long long int sqlite_int64;
796 typedef unsigned long long int sqlite_uint64;
797 #endif
798 typedef sqlite_int64 sqlite3_int64;
799 typedef sqlite_uint64 sqlite3_uint64;
802 ** If compiling for a processor that lacks floating point support,
803 ** substitute integer for floating-point.
805 #ifdef SQLITE_OMIT_FLOATING_POINT
806 # define double sqlite3_int64
807 #endif
810 ** CAPI3REF: Closing A Database Connection
812 ** ^The sqlite3_close() routine is the destructor for the [sqlite3] object.
813 ** ^Calls to sqlite3_close() return SQLITE_OK if the [sqlite3] object is
814 ** successfully destroyed and all associated resources are deallocated.
816 ** Applications must [sqlite3_finalize | finalize] all [prepared statements]
817 ** and [sqlite3_blob_close | close] all [BLOB handles] associated with
818 ** the [sqlite3] object prior to attempting to close the object. ^If
819 ** sqlite3_close() is called on a [database connection] that still has
820 ** outstanding [prepared statements] or [BLOB handles], then it returns
821 ** SQLITE_BUSY.
823 ** ^If [sqlite3_close()] is invoked while a transaction is open,
824 ** the transaction is automatically rolled back.
826 ** The C parameter to [sqlite3_close(C)] must be either a NULL
827 ** pointer or an [sqlite3] object pointer obtained
828 ** from [sqlite3_open()], [sqlite3_open16()], or
829 ** [sqlite3_open_v2()], and not previously closed.
830 ** ^Calling sqlite3_close() with a NULL pointer argument is a
831 ** harmless no-op.
833 SQLITE_API int sqlite3_close(sqlite3 *);
836 ** The type for a callback function.
837 ** This is legacy and deprecated. It is included for historical
838 ** compatibility and is not documented.
840 typedef int (*sqlite3_callback)(void*,int,char**, char**);
843 ** CAPI3REF: One-Step Query Execution Interface
845 ** The sqlite3_exec() interface is a convenience wrapper around
846 ** [sqlite3_prepare_v2()], [sqlite3_step()], and [sqlite3_finalize()],
847 ** that allows an application to run multiple statements of SQL
848 ** without having to use a lot of C code.
850 ** ^The sqlite3_exec() interface runs zero or more UTF-8 encoded,
851 ** semicolon-separate SQL statements passed into its 2nd argument,
852 ** in the context of the [database connection] passed in as its 1st
853 ** argument. ^If the callback function of the 3rd argument to
854 ** sqlite3_exec() is not NULL, then it is invoked for each result row
855 ** coming out of the evaluated SQL statements. ^The 4th argument to
856 ** to sqlite3_exec() is relayed through to the 1st argument of each
857 ** callback invocation. ^If the callback pointer to sqlite3_exec()
858 ** is NULL, then no callback is ever invoked and result rows are
859 ** ignored.
861 ** ^If an error occurs while evaluating the SQL statements passed into
862 ** sqlite3_exec(), then execution of the current statement stops and
863 ** subsequent statements are skipped. ^If the 5th parameter to sqlite3_exec()
864 ** is not NULL then any error message is written into memory obtained
865 ** from [sqlite3_malloc()] and passed back through the 5th parameter.
866 ** To avoid memory leaks, the application should invoke [sqlite3_free()]
867 ** on error message strings returned through the 5th parameter of
868 ** of sqlite3_exec() after the error message string is no longer needed.
869 ** ^If the 5th parameter to sqlite3_exec() is not NULL and no errors
870 ** occur, then sqlite3_exec() sets the pointer in its 5th parameter to
871 ** NULL before returning.
873 ** ^If an sqlite3_exec() callback returns non-zero, the sqlite3_exec()
874 ** routine returns SQLITE_ABORT without invoking the callback again and
875 ** without running any subsequent SQL statements.
877 ** ^The 2nd argument to the sqlite3_exec() callback function is the
878 ** number of columns in the result. ^The 3rd argument to the sqlite3_exec()
879 ** callback is an array of pointers to strings obtained as if from
880 ** [sqlite3_column_text()], one for each column. ^If an element of a
881 ** result row is NULL then the corresponding string pointer for the
882 ** sqlite3_exec() callback is a NULL pointer. ^The 4th argument to the
883 ** sqlite3_exec() callback is an array of pointers to strings where each
884 ** entry represents the name of corresponding result column as obtained
885 ** from [sqlite3_column_name()].
887 ** ^If the 2nd parameter to sqlite3_exec() is a NULL pointer, a pointer
888 ** to an empty string, or a pointer that contains only whitespace and/or
889 ** SQL comments, then no SQL statements are evaluated and the database
890 ** is not changed.
892 ** Restrictions:
894 ** <ul>
895 ** <li> The application must insure that the 1st parameter to sqlite3_exec()
896 ** is a valid and open [database connection].
897 ** <li> The application must not close [database connection] specified by
898 ** the 1st parameter to sqlite3_exec() while sqlite3_exec() is running.
899 ** <li> The application must not modify the SQL statement text passed into
900 ** the 2nd parameter of sqlite3_exec() while sqlite3_exec() is running.
901 ** </ul>
903 SQLITE_API int sqlite3_exec(
904 sqlite3*, /* An open database */
905 const char *sql, /* SQL to be evaluated */
906 int (*callback)(void*,int,char**,char**), /* Callback function */
907 void *, /* 1st argument to callback */
908 char **errmsg /* Error msg written here */
912 ** CAPI3REF: Result Codes
913 ** KEYWORDS: SQLITE_OK {error code} {error codes}
914 ** KEYWORDS: {result code} {result codes}
916 ** Many SQLite functions return an integer result code from the set shown
917 ** here in order to indicates success or failure.
919 ** New error codes may be added in future versions of SQLite.
921 ** See also: [SQLITE_IOERR_READ | extended result codes]
923 #define SQLITE_OK 0 /* Successful result */
924 /* beginning-of-error-codes */
925 #define SQLITE_ERROR 1 /* SQL error or missing database */
926 #define SQLITE_INTERNAL 2 /* Internal logic error in SQLite */
927 #define SQLITE_PERM 3 /* Access permission denied */
928 #define SQLITE_ABORT 4 /* Callback routine requested an abort */
929 #define SQLITE_BUSY 5 /* The database file is locked */
930 #define SQLITE_LOCKED 6 /* A table in the database is locked */
931 #define SQLITE_NOMEM 7 /* A malloc() failed */
932 #define SQLITE_READONLY 8 /* Attempt to write a readonly database */
933 #define SQLITE_INTERRUPT 9 /* Operation terminated by sqlite3_interrupt()*/
934 #define SQLITE_IOERR 10 /* Some kind of disk I/O error occurred */
935 #define SQLITE_CORRUPT 11 /* The database disk image is malformed */
936 #define SQLITE_NOTFOUND 12 /* Unknown opcode in sqlite3_file_control() */
937 #define SQLITE_FULL 13 /* Insertion failed because database is full */
938 #define SQLITE_CANTOPEN 14 /* Unable to open the database file */
939 #define SQLITE_PROTOCOL 15 /* Database lock protocol error */
940 #define SQLITE_EMPTY 16 /* Database is empty */
941 #define SQLITE_SCHEMA 17 /* The database schema changed */
942 #define SQLITE_TOOBIG 18 /* String or BLOB exceeds size limit */
943 #define SQLITE_CONSTRAINT 19 /* Abort due to constraint violation */
944 #define SQLITE_MISMATCH 20 /* Data type mismatch */
945 #define SQLITE_MISUSE 21 /* Library used incorrectly */
946 #define SQLITE_NOLFS 22 /* Uses OS features not supported on host */
947 #define SQLITE_AUTH 23 /* Authorization denied */
948 #define SQLITE_FORMAT 24 /* Auxiliary database format error */
949 #define SQLITE_RANGE 25 /* 2nd parameter to sqlite3_bind out of range */
950 #define SQLITE_NOTADB 26 /* File opened that is not a database file */
951 #define SQLITE_ROW 100 /* sqlite3_step() has another row ready */
952 #define SQLITE_DONE 101 /* sqlite3_step() has finished executing */
953 /* end-of-error-codes */
956 ** CAPI3REF: Extended Result Codes
957 ** KEYWORDS: {extended error code} {extended error codes}
958 ** KEYWORDS: {extended result code} {extended result codes}
960 ** In its default configuration, SQLite API routines return one of 26 integer
961 ** [SQLITE_OK | result codes]. However, experience has shown that many of
962 ** these result codes are too coarse-grained. They do not provide as
963 ** much information about problems as programmers might like. In an effort to
964 ** address this, newer versions of SQLite (version 3.3.8 and later) include
965 ** support for additional result codes that provide more detailed information
966 ** about errors. The extended result codes are enabled or disabled
967 ** on a per database connection basis using the
968 ** [sqlite3_extended_result_codes()] API.
970 ** Some of the available extended result codes are listed here.
971 ** One may expect the number of extended result codes will be expand
972 ** over time. Software that uses extended result codes should expect
973 ** to see new result codes in future releases of SQLite.
975 ** The SQLITE_OK result code will never be extended. It will always
976 ** be exactly zero.
978 #define SQLITE_IOERR_READ (SQLITE_IOERR | (1<<8))
979 #define SQLITE_IOERR_SHORT_READ (SQLITE_IOERR | (2<<8))
980 #define SQLITE_IOERR_WRITE (SQLITE_IOERR | (3<<8))
981 #define SQLITE_IOERR_FSYNC (SQLITE_IOERR | (4<<8))
982 #define SQLITE_IOERR_DIR_FSYNC (SQLITE_IOERR | (5<<8))
983 #define SQLITE_IOERR_TRUNCATE (SQLITE_IOERR | (6<<8))
984 #define SQLITE_IOERR_FSTAT (SQLITE_IOERR | (7<<8))
985 #define SQLITE_IOERR_UNLOCK (SQLITE_IOERR | (8<<8))
986 #define SQLITE_IOERR_RDLOCK (SQLITE_IOERR | (9<<8))
987 #define SQLITE_IOERR_DELETE (SQLITE_IOERR | (10<<8))
988 #define SQLITE_IOERR_BLOCKED (SQLITE_IOERR | (11<<8))
989 #define SQLITE_IOERR_NOMEM (SQLITE_IOERR | (12<<8))
990 #define SQLITE_IOERR_ACCESS (SQLITE_IOERR | (13<<8))
991 #define SQLITE_IOERR_CHECKRESERVEDLOCK (SQLITE_IOERR | (14<<8))
992 #define SQLITE_IOERR_LOCK (SQLITE_IOERR | (15<<8))
993 #define SQLITE_IOERR_CLOSE (SQLITE_IOERR | (16<<8))
994 #define SQLITE_IOERR_DIR_CLOSE (SQLITE_IOERR | (17<<8))
995 #define SQLITE_IOERR_SHMOPEN (SQLITE_IOERR | (18<<8))
996 #define SQLITE_IOERR_SHMSIZE (SQLITE_IOERR | (19<<8))
997 #define SQLITE_IOERR_SHMLOCK (SQLITE_IOERR | (20<<8))
998 #define SQLITE_LOCKED_SHAREDCACHE (SQLITE_LOCKED | (1<<8))
999 #define SQLITE_BUSY_RECOVERY (SQLITE_BUSY | (1<<8))
1000 #define SQLITE_CANTOPEN_NOTEMPDIR (SQLITE_CANTOPEN | (1<<8))
1003 ** CAPI3REF: Flags For File Open Operations
1005 ** These bit values are intended for use in the
1006 ** 3rd parameter to the [sqlite3_open_v2()] interface and
1007 ** in the 4th parameter to the xOpen method of the
1008 ** [sqlite3_vfs] object.
1010 #define SQLITE_OPEN_READONLY 0x00000001 /* Ok for sqlite3_open_v2() */
1011 #define SQLITE_OPEN_READWRITE 0x00000002 /* Ok for sqlite3_open_v2() */
1012 #define SQLITE_OPEN_CREATE 0x00000004 /* Ok for sqlite3_open_v2() */
1013 #define SQLITE_OPEN_DELETEONCLOSE 0x00000008 /* VFS only */
1014 #define SQLITE_OPEN_EXCLUSIVE 0x00000010 /* VFS only */
1015 #define SQLITE_OPEN_AUTOPROXY 0x00000020 /* VFS only */
1016 #define SQLITE_OPEN_MAIN_DB 0x00000100 /* VFS only */
1017 #define SQLITE_OPEN_TEMP_DB 0x00000200 /* VFS only */
1018 #define SQLITE_OPEN_TRANSIENT_DB 0x00000400 /* VFS only */
1019 #define SQLITE_OPEN_MAIN_JOURNAL 0x00000800 /* VFS only */
1020 #define SQLITE_OPEN_TEMP_JOURNAL 0x00001000 /* VFS only */
1021 #define SQLITE_OPEN_SUBJOURNAL 0x00002000 /* VFS only */
1022 #define SQLITE_OPEN_MASTER_JOURNAL 0x00004000 /* VFS only */
1023 #define SQLITE_OPEN_NOMUTEX 0x00008000 /* Ok for sqlite3_open_v2() */
1024 #define SQLITE_OPEN_FULLMUTEX 0x00010000 /* Ok for sqlite3_open_v2() */
1025 #define SQLITE_OPEN_SHAREDCACHE 0x00020000 /* Ok for sqlite3_open_v2() */
1026 #define SQLITE_OPEN_PRIVATECACHE 0x00040000 /* Ok for sqlite3_open_v2() */
1027 #define SQLITE_OPEN_WAL 0x00080000 /* VFS only */
1029 /* Reserved: 0x00F00000 */
1032 ** CAPI3REF: Device Characteristics
1034 ** The xDeviceCharacteristics method of the [sqlite3_io_methods]
1035 ** object returns an integer which is a vector of the these
1036 ** bit values expressing I/O characteristics of the mass storage
1037 ** device that holds the file that the [sqlite3_io_methods]
1038 ** refers to.
1040 ** The SQLITE_IOCAP_ATOMIC property means that all writes of
1041 ** any size are atomic. The SQLITE_IOCAP_ATOMICnnn values
1042 ** mean that writes of blocks that are nnn bytes in size and
1043 ** are aligned to an address which is an integer multiple of
1044 ** nnn are atomic. The SQLITE_IOCAP_SAFE_APPEND value means
1045 ** that when data is appended to a file, the data is appended
1046 ** first then the size of the file is extended, never the other
1047 ** way around. The SQLITE_IOCAP_SEQUENTIAL property means that
1048 ** information is written to disk in the same order as calls
1049 ** to xWrite().
1051 #define SQLITE_IOCAP_ATOMIC 0x00000001
1052 #define SQLITE_IOCAP_ATOMIC512 0x00000002
1053 #define SQLITE_IOCAP_ATOMIC1K 0x00000004
1054 #define SQLITE_IOCAP_ATOMIC2K 0x00000008
1055 #define SQLITE_IOCAP_ATOMIC4K 0x00000010
1056 #define SQLITE_IOCAP_ATOMIC8K 0x00000020
1057 #define SQLITE_IOCAP_ATOMIC16K 0x00000040
1058 #define SQLITE_IOCAP_ATOMIC32K 0x00000080
1059 #define SQLITE_IOCAP_ATOMIC64K 0x00000100
1060 #define SQLITE_IOCAP_SAFE_APPEND 0x00000200
1061 #define SQLITE_IOCAP_SEQUENTIAL 0x00000400
1062 #define SQLITE_IOCAP_UNDELETABLE_WHEN_OPEN 0x00000800
1065 ** CAPI3REF: File Locking Levels
1067 ** SQLite uses one of these integer values as the second
1068 ** argument to calls it makes to the xLock() and xUnlock() methods
1069 ** of an [sqlite3_io_methods] object.
1071 #define SQLITE_LOCK_NONE 0
1072 #define SQLITE_LOCK_SHARED 1
1073 #define SQLITE_LOCK_RESERVED 2
1074 #define SQLITE_LOCK_PENDING 3
1075 #define SQLITE_LOCK_EXCLUSIVE 4
1078 ** CAPI3REF: Synchronization Type Flags
1080 ** When SQLite invokes the xSync() method of an
1081 ** [sqlite3_io_methods] object it uses a combination of
1082 ** these integer values as the second argument.
1084 ** When the SQLITE_SYNC_DATAONLY flag is used, it means that the
1085 ** sync operation only needs to flush data to mass storage. Inode
1086 ** information need not be flushed. If the lower four bits of the flag
1087 ** equal SQLITE_SYNC_NORMAL, that means to use normal fsync() semantics.
1088 ** If the lower four bits equal SQLITE_SYNC_FULL, that means
1089 ** to use Mac OS X style fullsync instead of fsync().
1091 ** Do not confuse the SQLITE_SYNC_NORMAL and SQLITE_SYNC_FULL flags
1092 ** with the [PRAGMA synchronous]=NORMAL and [PRAGMA synchronous]=FULL
1093 ** settings. The [synchronous pragma] determines when calls to the
1094 ** xSync VFS method occur and applies uniformly across all platforms.
1095 ** The SQLITE_SYNC_NORMAL and SQLITE_SYNC_FULL flags determine how
1096 ** energetic or rigorous or forceful the sync operations are and
1097 ** only make a difference on Mac OSX for the default SQLite code.
1098 ** (Third-party VFS implementations might also make the distinction
1099 ** between SQLITE_SYNC_NORMAL and SQLITE_SYNC_FULL, but among the
1100 ** operating systems natively supported by SQLite, only Mac OSX
1101 ** cares about the difference.)
1103 #define SQLITE_SYNC_NORMAL 0x00002
1104 #define SQLITE_SYNC_FULL 0x00003
1105 #define SQLITE_SYNC_DATAONLY 0x00010
1108 ** CAPI3REF: OS Interface Open File Handle
1110 ** An [sqlite3_file] object represents an open file in the
1111 ** [sqlite3_vfs | OS interface layer]. Individual OS interface
1112 ** implementations will
1113 ** want to subclass this object by appending additional fields
1114 ** for their own use. The pMethods entry is a pointer to an
1115 ** [sqlite3_io_methods] object that defines methods for performing
1116 ** I/O operations on the open file.
1118 typedef struct sqlite3_file sqlite3_file;
1119 struct sqlite3_file {
1120 const struct sqlite3_io_methods *pMethods; /* Methods for an open file */
1124 ** CAPI3REF: OS Interface File Virtual Methods Object
1126 ** Every file opened by the [sqlite3_vfs] xOpen method populates an
1127 ** [sqlite3_file] object (or, more commonly, a subclass of the
1128 ** [sqlite3_file] object) with a pointer to an instance of this object.
1129 ** This object defines the methods used to perform various operations
1130 ** against the open file represented by the [sqlite3_file] object.
1132 ** If the xOpen method sets the sqlite3_file.pMethods element
1133 ** to a non-NULL pointer, then the sqlite3_io_methods.xClose method
1134 ** may be invoked even if the xOpen reported that it failed. The
1135 ** only way to prevent a call to xClose following a failed xOpen
1136 ** is for the xOpen to set the sqlite3_file.pMethods element to NULL.
1138 ** The flags argument to xSync may be one of [SQLITE_SYNC_NORMAL] or
1139 ** [SQLITE_SYNC_FULL]. The first choice is the normal fsync().
1140 ** The second choice is a Mac OS X style fullsync. The [SQLITE_SYNC_DATAONLY]
1141 ** flag may be ORed in to indicate that only the data of the file
1142 ** and not its inode needs to be synced.
1144 ** The integer values to xLock() and xUnlock() are one of
1145 ** <ul>
1146 ** <li> [SQLITE_LOCK_NONE],
1147 ** <li> [SQLITE_LOCK_SHARED],
1148 ** <li> [SQLITE_LOCK_RESERVED],
1149 ** <li> [SQLITE_LOCK_PENDING], or
1150 ** <li> [SQLITE_LOCK_EXCLUSIVE].
1151 ** </ul>
1152 ** xLock() increases the lock. xUnlock() decreases the lock.
1153 ** The xCheckReservedLock() method checks whether any database connection,
1154 ** either in this process or in some other process, is holding a RESERVED,
1155 ** PENDING, or EXCLUSIVE lock on the file. It returns true
1156 ** if such a lock exists and false otherwise.
1158 ** The xFileControl() method is a generic interface that allows custom
1159 ** VFS implementations to directly control an open file using the
1160 ** [sqlite3_file_control()] interface. The second "op" argument is an
1161 ** integer opcode. The third argument is a generic pointer intended to
1162 ** point to a structure that may contain arguments or space in which to
1163 ** write return values. Potential uses for xFileControl() might be
1164 ** functions to enable blocking locks with timeouts, to change the
1165 ** locking strategy (for example to use dot-file locks), to inquire
1166 ** about the status of a lock, or to break stale locks. The SQLite
1167 ** core reserves all opcodes less than 100 for its own use.
1168 ** A [SQLITE_FCNTL_LOCKSTATE | list of opcodes] less than 100 is available.
1169 ** Applications that define a custom xFileControl method should use opcodes
1170 ** greater than 100 to avoid conflicts. VFS implementations should
1171 ** return [SQLITE_NOTFOUND] for file control opcodes that they do not
1172 ** recognize.
1174 ** The xSectorSize() method returns the sector size of the
1175 ** device that underlies the file. The sector size is the
1176 ** minimum write that can be performed without disturbing
1177 ** other bytes in the file. The xDeviceCharacteristics()
1178 ** method returns a bit vector describing behaviors of the
1179 ** underlying device:
1181 ** <ul>
1182 ** <li> [SQLITE_IOCAP_ATOMIC]
1183 ** <li> [SQLITE_IOCAP_ATOMIC512]
1184 ** <li> [SQLITE_IOCAP_ATOMIC1K]
1185 ** <li> [SQLITE_IOCAP_ATOMIC2K]
1186 ** <li> [SQLITE_IOCAP_ATOMIC4K]
1187 ** <li> [SQLITE_IOCAP_ATOMIC8K]
1188 ** <li> [SQLITE_IOCAP_ATOMIC16K]
1189 ** <li> [SQLITE_IOCAP_ATOMIC32K]
1190 ** <li> [SQLITE_IOCAP_ATOMIC64K]
1191 ** <li> [SQLITE_IOCAP_SAFE_APPEND]
1192 ** <li> [SQLITE_IOCAP_SEQUENTIAL]
1193 ** </ul>
1195 ** The SQLITE_IOCAP_ATOMIC property means that all writes of
1196 ** any size are atomic. The SQLITE_IOCAP_ATOMICnnn values
1197 ** mean that writes of blocks that are nnn bytes in size and
1198 ** are aligned to an address which is an integer multiple of
1199 ** nnn are atomic. The SQLITE_IOCAP_SAFE_APPEND value means
1200 ** that when data is appended to a file, the data is appended
1201 ** first then the size of the file is extended, never the other
1202 ** way around. The SQLITE_IOCAP_SEQUENTIAL property means that
1203 ** information is written to disk in the same order as calls
1204 ** to xWrite().
1206 ** If xRead() returns SQLITE_IOERR_SHORT_READ it must also fill
1207 ** in the unread portions of the buffer with zeros. A VFS that
1208 ** fails to zero-fill short reads might seem to work. However,
1209 ** failure to zero-fill short reads will eventually lead to
1210 ** database corruption.
1212 typedef struct sqlite3_io_methods sqlite3_io_methods;
1213 struct sqlite3_io_methods {
1214 int iVersion;
1215 int (*xClose)(sqlite3_file*);
1216 int (*xRead)(sqlite3_file*, void*, int iAmt, sqlite3_int64 iOfst);
1217 int (*xWrite)(sqlite3_file*, const void*, int iAmt, sqlite3_int64 iOfst);
1218 int (*xTruncate)(sqlite3_file*, sqlite3_int64 size);
1219 int (*xSync)(sqlite3_file*, int flags);
1220 int (*xFileSize)(sqlite3_file*, sqlite3_int64 *pSize);
1221 int (*xLock)(sqlite3_file*, int);
1222 int (*xUnlock)(sqlite3_file*, int);
1223 int (*xCheckReservedLock)(sqlite3_file*, int *pResOut);
1224 int (*xFileControl)(sqlite3_file*, int op, void *pArg);
1225 int (*xSectorSize)(sqlite3_file*);
1226 int (*xDeviceCharacteristics)(sqlite3_file*);
1227 /* Methods above are valid for version 1 */
1228 int (*xShmMap)(sqlite3_file*, int iPg, int pgsz, int, void volatile**);
1229 int (*xShmLock)(sqlite3_file*, int offset, int n, int flags);
1230 void (*xShmBarrier)(sqlite3_file*);
1231 int (*xShmUnmap)(sqlite3_file*, int deleteFlag);
1232 /* Methods above are valid for version 2 */
1233 /* Additional methods may be added in future releases */
1237 ** CAPI3REF: Standard File Control Opcodes
1239 ** These integer constants are opcodes for the xFileControl method
1240 ** of the [sqlite3_io_methods] object and for the [sqlite3_file_control()]
1241 ** interface.
1243 ** The [SQLITE_FCNTL_LOCKSTATE] opcode is used for debugging. This
1244 ** opcode causes the xFileControl method to write the current state of
1245 ** the lock (one of [SQLITE_LOCK_NONE], [SQLITE_LOCK_SHARED],
1246 ** [SQLITE_LOCK_RESERVED], [SQLITE_LOCK_PENDING], or [SQLITE_LOCK_EXCLUSIVE])
1247 ** into an integer that the pArg argument points to. This capability
1248 ** is used during testing and only needs to be supported when SQLITE_TEST
1249 ** is defined.
1251 ** The [SQLITE_FCNTL_SIZE_HINT] opcode is used by SQLite to give the VFS
1252 ** layer a hint of how large the database file will grow to be during the
1253 ** current transaction. This hint is not guaranteed to be accurate but it
1254 ** is often close. The underlying VFS might choose to preallocate database
1255 ** file space based on this hint in order to help writes to the database
1256 ** file run faster.
1258 ** The [SQLITE_FCNTL_CHUNK_SIZE] opcode is used to request that the VFS
1259 ** extends and truncates the database file in chunks of a size specified
1260 ** by the user. The fourth argument to [sqlite3_file_control()] should
1261 ** point to an integer (type int) containing the new chunk-size to use
1262 ** for the nominated database. Allocating database file space in large
1263 ** chunks (say 1MB at a time), may reduce file-system fragmentation and
1264 ** improve performance on some systems.
1266 ** The [SQLITE_FCNTL_FILE_POINTER] opcode is used to obtain a pointer
1267 ** to the [sqlite3_file] object associated with a particular database
1268 ** connection. See the [sqlite3_file_control()] documentation for
1269 ** additional information.
1271 ** ^(The [SQLITE_FCNTL_SYNC_OMITTED] opcode is generated internally by
1272 ** SQLite and sent to all VFSes in place of a call to the xSync method
1273 ** when the database connection has [PRAGMA synchronous] set to OFF.)^
1274 ** Some specialized VFSes need this signal in order to operate correctly
1275 ** when [PRAGMA synchronous | PRAGMA synchronous=OFF] is set, but most
1276 ** VFSes do not need this signal and should silently ignore this opcode.
1277 ** Applications should not call [sqlite3_file_control()] with this
1278 ** opcode as doing so may disrupt the operation of the specialized VFSes
1279 ** that do require it.
1281 #define SQLITE_FCNTL_LOCKSTATE 1
1282 #define SQLITE_GET_LOCKPROXYFILE 2
1283 #define SQLITE_SET_LOCKPROXYFILE 3
1284 #define SQLITE_LAST_ERRNO 4
1285 #define SQLITE_FCNTL_SIZE_HINT 5
1286 #define SQLITE_FCNTL_CHUNK_SIZE 6
1287 #define SQLITE_FCNTL_FILE_POINTER 7
1288 #define SQLITE_FCNTL_SYNC_OMITTED 8
1292 ** CAPI3REF: Mutex Handle
1294 ** The mutex module within SQLite defines [sqlite3_mutex] to be an
1295 ** abstract type for a mutex object. The SQLite core never looks
1296 ** at the internal representation of an [sqlite3_mutex]. It only
1297 ** deals with pointers to the [sqlite3_mutex] object.
1299 ** Mutexes are created using [sqlite3_mutex_alloc()].
1301 typedef struct sqlite3_mutex sqlite3_mutex;
1304 ** CAPI3REF: OS Interface Object
1306 ** An instance of the sqlite3_vfs object defines the interface between
1307 ** the SQLite core and the underlying operating system. The "vfs"
1308 ** in the name of the object stands for "virtual file system".
1310 ** The value of the iVersion field is initially 1 but may be larger in
1311 ** future versions of SQLite. Additional fields may be appended to this
1312 ** object when the iVersion value is increased. Note that the structure
1313 ** of the sqlite3_vfs object changes in the transaction between
1314 ** SQLite version 3.5.9 and 3.6.0 and yet the iVersion field was not
1315 ** modified.
1317 ** The szOsFile field is the size of the subclassed [sqlite3_file]
1318 ** structure used by this VFS. mxPathname is the maximum length of
1319 ** a pathname in this VFS.
1321 ** Registered sqlite3_vfs objects are kept on a linked list formed by
1322 ** the pNext pointer. The [sqlite3_vfs_register()]
1323 ** and [sqlite3_vfs_unregister()] interfaces manage this list
1324 ** in a thread-safe way. The [sqlite3_vfs_find()] interface
1325 ** searches the list. Neither the application code nor the VFS
1326 ** implementation should use the pNext pointer.
1328 ** The pNext field is the only field in the sqlite3_vfs
1329 ** structure that SQLite will ever modify. SQLite will only access
1330 ** or modify this field while holding a particular static mutex.
1331 ** The application should never modify anything within the sqlite3_vfs
1332 ** object once the object has been registered.
1334 ** The zName field holds the name of the VFS module. The name must
1335 ** be unique across all VFS modules.
1337 ** ^SQLite guarantees that the zFilename parameter to xOpen
1338 ** is either a NULL pointer or string obtained
1339 ** from xFullPathname() with an optional suffix added.
1340 ** ^If a suffix is added to the zFilename parameter, it will
1341 ** consist of a single "-" character followed by no more than
1342 ** 10 alphanumeric and/or "-" characters.
1343 ** ^SQLite further guarantees that
1344 ** the string will be valid and unchanged until xClose() is
1345 ** called. Because of the previous sentence,
1346 ** the [sqlite3_file] can safely store a pointer to the
1347 ** filename if it needs to remember the filename for some reason.
1348 ** If the zFilename parameter to xOpen is a NULL pointer then xOpen
1349 ** must invent its own temporary name for the file. ^Whenever the
1350 ** xFilename parameter is NULL it will also be the case that the
1351 ** flags parameter will include [SQLITE_OPEN_DELETEONCLOSE].
1353 ** The flags argument to xOpen() includes all bits set in
1354 ** the flags argument to [sqlite3_open_v2()]. Or if [sqlite3_open()]
1355 ** or [sqlite3_open16()] is used, then flags includes at least
1356 ** [SQLITE_OPEN_READWRITE] | [SQLITE_OPEN_CREATE].
1357 ** If xOpen() opens a file read-only then it sets *pOutFlags to
1358 ** include [SQLITE_OPEN_READONLY]. Other bits in *pOutFlags may be set.
1360 ** ^(SQLite will also add one of the following flags to the xOpen()
1361 ** call, depending on the object being opened:
1363 ** <ul>
1364 ** <li> [SQLITE_OPEN_MAIN_DB]
1365 ** <li> [SQLITE_OPEN_MAIN_JOURNAL]
1366 ** <li> [SQLITE_OPEN_TEMP_DB]
1367 ** <li> [SQLITE_OPEN_TEMP_JOURNAL]
1368 ** <li> [SQLITE_OPEN_TRANSIENT_DB]
1369 ** <li> [SQLITE_OPEN_SUBJOURNAL]
1370 ** <li> [SQLITE_OPEN_MASTER_JOURNAL]
1371 ** <li> [SQLITE_OPEN_WAL]
1372 ** </ul>)^
1374 ** The file I/O implementation can use the object type flags to
1375 ** change the way it deals with files. For example, an application
1376 ** that does not care about crash recovery or rollback might make
1377 ** the open of a journal file a no-op. Writes to this journal would
1378 ** also be no-ops, and any attempt to read the journal would return
1379 ** SQLITE_IOERR. Or the implementation might recognize that a database
1380 ** file will be doing page-aligned sector reads and writes in a random
1381 ** order and set up its I/O subsystem accordingly.
1383 ** SQLite might also add one of the following flags to the xOpen method:
1385 ** <ul>
1386 ** <li> [SQLITE_OPEN_DELETEONCLOSE]
1387 ** <li> [SQLITE_OPEN_EXCLUSIVE]
1388 ** </ul>
1390 ** The [SQLITE_OPEN_DELETEONCLOSE] flag means the file should be
1391 ** deleted when it is closed. ^The [SQLITE_OPEN_DELETEONCLOSE]
1392 ** will be set for TEMP databases and their journals, transient
1393 ** databases, and subjournals.
1395 ** ^The [SQLITE_OPEN_EXCLUSIVE] flag is always used in conjunction
1396 ** with the [SQLITE_OPEN_CREATE] flag, which are both directly
1397 ** analogous to the O_EXCL and O_CREAT flags of the POSIX open()
1398 ** API. The SQLITE_OPEN_EXCLUSIVE flag, when paired with the
1399 ** SQLITE_OPEN_CREATE, is used to indicate that file should always
1400 ** be created, and that it is an error if it already exists.
1401 ** It is <i>not</i> used to indicate the file should be opened
1402 ** for exclusive access.
1404 ** ^At least szOsFile bytes of memory are allocated by SQLite
1405 ** to hold the [sqlite3_file] structure passed as the third
1406 ** argument to xOpen. The xOpen method does not have to
1407 ** allocate the structure; it should just fill it in. Note that
1408 ** the xOpen method must set the sqlite3_file.pMethods to either
1409 ** a valid [sqlite3_io_methods] object or to NULL. xOpen must do
1410 ** this even if the open fails. SQLite expects that the sqlite3_file.pMethods
1411 ** element will be valid after xOpen returns regardless of the success
1412 ** or failure of the xOpen call.
1414 ** ^The flags argument to xAccess() may be [SQLITE_ACCESS_EXISTS]
1415 ** to test for the existence of a file, or [SQLITE_ACCESS_READWRITE] to
1416 ** test whether a file is readable and writable, or [SQLITE_ACCESS_READ]
1417 ** to test whether a file is at least readable. The file can be a
1418 ** directory.
1420 ** ^SQLite will always allocate at least mxPathname+1 bytes for the
1421 ** output buffer xFullPathname. The exact size of the output buffer
1422 ** is also passed as a parameter to both methods. If the output buffer
1423 ** is not large enough, [SQLITE_CANTOPEN] should be returned. Since this is
1424 ** handled as a fatal error by SQLite, vfs implementations should endeavor
1425 ** to prevent this by setting mxPathname to a sufficiently large value.
1427 ** The xRandomness(), xSleep(), xCurrentTime(), and xCurrentTimeInt64()
1428 ** interfaces are not strictly a part of the filesystem, but they are
1429 ** included in the VFS structure for completeness.
1430 ** The xRandomness() function attempts to return nBytes bytes
1431 ** of good-quality randomness into zOut. The return value is
1432 ** the actual number of bytes of randomness obtained.
1433 ** The xSleep() method causes the calling thread to sleep for at
1434 ** least the number of microseconds given. ^The xCurrentTime()
1435 ** method returns a Julian Day Number for the current date and time as
1436 ** a floating point value.
1437 ** ^The xCurrentTimeInt64() method returns, as an integer, the Julian
1438 ** Day Number multipled by 86400000 (the number of milliseconds in
1439 ** a 24-hour day).
1440 ** ^SQLite will use the xCurrentTimeInt64() method to get the current
1441 ** date and time if that method is available (if iVersion is 2 or
1442 ** greater and the function pointer is not NULL) and will fall back
1443 ** to xCurrentTime() if xCurrentTimeInt64() is unavailable.
1445 ** ^The xSetSystemCall(), xGetSystemCall(), and xNestSystemCall() interfaces
1446 ** are not used by the SQLite core. These optional interfaces are provided
1447 ** by some VFSes to facilitate testing of the VFS code. By overriding
1448 ** system calls with functions under its control, a test program can
1449 ** simulate faults and error conditions that would otherwise be difficult
1450 ** or impossible to induce. The set of system calls that can be overridden
1451 ** varies from one VFS to another, and from one version of the same VFS to the
1452 ** next. Applications that use these interfaces must be prepared for any
1453 ** or all of these interfaces to be NULL or for their behavior to change
1454 ** from one release to the next. Applications must not attempt to access
1455 ** any of these methods if the iVersion of the VFS is less than 3.
1457 typedef struct sqlite3_vfs sqlite3_vfs;
1458 typedef void (*sqlite3_syscall_ptr)(void);
1459 struct sqlite3_vfs {
1460 int iVersion; /* Structure version number (currently 3) */
1461 int szOsFile; /* Size of subclassed sqlite3_file */
1462 int mxPathname; /* Maximum file pathname length */
1463 sqlite3_vfs *pNext; /* Next registered VFS */
1464 const char *zName; /* Name of this virtual file system */
1465 void *pAppData; /* Pointer to application-specific data */
1466 int (*xOpen)(sqlite3_vfs*, const char *zName, sqlite3_file*,
1467 int flags, int *pOutFlags);
1468 int (*xDelete)(sqlite3_vfs*, const char *zName, int syncDir);
1469 int (*xAccess)(sqlite3_vfs*, const char *zName, int flags, int *pResOut);
1470 int (*xFullPathname)(sqlite3_vfs*, const char *zName, int nOut, char *zOut);
1471 void *(*xDlOpen)(sqlite3_vfs*, const char *zFilename);
1472 void (*xDlError)(sqlite3_vfs*, int nByte, char *zErrMsg);
1473 void (*(*xDlSym)(sqlite3_vfs*,void*, const char *zSymbol))(void);
1474 void (*xDlClose)(sqlite3_vfs*, void*);
1475 int (*xRandomness)(sqlite3_vfs*, int nByte, char *zOut);
1476 int (*xSleep)(sqlite3_vfs*, int microseconds);
1477 int (*xCurrentTime)(sqlite3_vfs*, double*);
1478 int (*xGetLastError)(sqlite3_vfs*, int, char *);
1480 ** The methods above are in version 1 of the sqlite_vfs object
1481 ** definition. Those that follow are added in version 2 or later
1483 int (*xCurrentTimeInt64)(sqlite3_vfs*, sqlite3_int64*);
1485 ** The methods above are in versions 1 and 2 of the sqlite_vfs object.
1486 ** Those below are for version 3 and greater.
1488 int (*xSetSystemCall)(sqlite3_vfs*, const char *zName, sqlite3_syscall_ptr);
1489 sqlite3_syscall_ptr (*xGetSystemCall)(sqlite3_vfs*, const char *zName);
1490 const char *(*xNextSystemCall)(sqlite3_vfs*, const char *zName);
1492 ** The methods above are in versions 1 through 3 of the sqlite_vfs object.
1493 ** New fields may be appended in figure versions. The iVersion
1494 ** value will increment whenever this happens.
1499 ** CAPI3REF: Flags for the xAccess VFS method
1501 ** These integer constants can be used as the third parameter to
1502 ** the xAccess method of an [sqlite3_vfs] object. They determine
1503 ** what kind of permissions the xAccess method is looking for.
1504 ** With SQLITE_ACCESS_EXISTS, the xAccess method
1505 ** simply checks whether the file exists.
1506 ** With SQLITE_ACCESS_READWRITE, the xAccess method
1507 ** checks whether the named directory is both readable and writable
1508 ** (in other words, if files can be added, removed, and renamed within
1509 ** the directory).
1510 ** The SQLITE_ACCESS_READWRITE constant is currently used only by the
1511 ** [temp_store_directory pragma], though this could change in a future
1512 ** release of SQLite.
1513 ** With SQLITE_ACCESS_READ, the xAccess method
1514 ** checks whether the file is readable. The SQLITE_ACCESS_READ constant is
1515 ** currently unused, though it might be used in a future release of
1516 ** SQLite.
1518 #define SQLITE_ACCESS_EXISTS 0
1519 #define SQLITE_ACCESS_READWRITE 1 /* Used by PRAGMA temp_store_directory */
1520 #define SQLITE_ACCESS_READ 2 /* Unused */
1523 ** CAPI3REF: Flags for the xShmLock VFS method
1525 ** These integer constants define the various locking operations
1526 ** allowed by the xShmLock method of [sqlite3_io_methods]. The
1527 ** following are the only legal combinations of flags to the
1528 ** xShmLock method:
1530 ** <ul>
1531 ** <li> SQLITE_SHM_LOCK | SQLITE_SHM_SHARED
1532 ** <li> SQLITE_SHM_LOCK | SQLITE_SHM_EXCLUSIVE
1533 ** <li> SQLITE_SHM_UNLOCK | SQLITE_SHM_SHARED
1534 ** <li> SQLITE_SHM_UNLOCK | SQLITE_SHM_EXCLUSIVE
1535 ** </ul>
1537 ** When unlocking, the same SHARED or EXCLUSIVE flag must be supplied as
1538 ** was given no the corresponding lock.
1540 ** The xShmLock method can transition between unlocked and SHARED or
1541 ** between unlocked and EXCLUSIVE. It cannot transition between SHARED
1542 ** and EXCLUSIVE.
1544 #define SQLITE_SHM_UNLOCK 1
1545 #define SQLITE_SHM_LOCK 2
1546 #define SQLITE_SHM_SHARED 4
1547 #define SQLITE_SHM_EXCLUSIVE 8
1550 ** CAPI3REF: Maximum xShmLock index
1552 ** The xShmLock method on [sqlite3_io_methods] may use values
1553 ** between 0 and this upper bound as its "offset" argument.
1554 ** The SQLite core will never attempt to acquire or release a
1555 ** lock outside of this range
1557 #define SQLITE_SHM_NLOCK 8
1561 ** CAPI3REF: Initialize The SQLite Library
1563 ** ^The sqlite3_initialize() routine initializes the
1564 ** SQLite library. ^The sqlite3_shutdown() routine
1565 ** deallocates any resources that were allocated by sqlite3_initialize().
1566 ** These routines are designed to aid in process initialization and
1567 ** shutdown on embedded systems. Workstation applications using
1568 ** SQLite normally do not need to invoke either of these routines.
1570 ** A call to sqlite3_initialize() is an "effective" call if it is
1571 ** the first time sqlite3_initialize() is invoked during the lifetime of
1572 ** the process, or if it is the first time sqlite3_initialize() is invoked
1573 ** following a call to sqlite3_shutdown(). ^(Only an effective call
1574 ** of sqlite3_initialize() does any initialization. All other calls
1575 ** are harmless no-ops.)^
1577 ** A call to sqlite3_shutdown() is an "effective" call if it is the first
1578 ** call to sqlite3_shutdown() since the last sqlite3_initialize(). ^(Only
1579 ** an effective call to sqlite3_shutdown() does any deinitialization.
1580 ** All other valid calls to sqlite3_shutdown() are harmless no-ops.)^
1582 ** The sqlite3_initialize() interface is threadsafe, but sqlite3_shutdown()
1583 ** is not. The sqlite3_shutdown() interface must only be called from a
1584 ** single thread. All open [database connections] must be closed and all
1585 ** other SQLite resources must be deallocated prior to invoking
1586 ** sqlite3_shutdown().
1588 ** Among other things, ^sqlite3_initialize() will invoke
1589 ** sqlite3_os_init(). Similarly, ^sqlite3_shutdown()
1590 ** will invoke sqlite3_os_end().
1592 ** ^The sqlite3_initialize() routine returns [SQLITE_OK] on success.
1593 ** ^If for some reason, sqlite3_initialize() is unable to initialize
1594 ** the library (perhaps it is unable to allocate a needed resource such
1595 ** as a mutex) it returns an [error code] other than [SQLITE_OK].
1597 ** ^The sqlite3_initialize() routine is called internally by many other
1598 ** SQLite interfaces so that an application usually does not need to
1599 ** invoke sqlite3_initialize() directly. For example, [sqlite3_open()]
1600 ** calls sqlite3_initialize() so the SQLite library will be automatically
1601 ** initialized when [sqlite3_open()] is called if it has not be initialized
1602 ** already. ^However, if SQLite is compiled with the [SQLITE_OMIT_AUTOINIT]
1603 ** compile-time option, then the automatic calls to sqlite3_initialize()
1604 ** are omitted and the application must call sqlite3_initialize() directly
1605 ** prior to using any other SQLite interface. For maximum portability,
1606 ** it is recommended that applications always invoke sqlite3_initialize()
1607 ** directly prior to using any other SQLite interface. Future releases
1608 ** of SQLite may require this. In other words, the behavior exhibited
1609 ** when SQLite is compiled with [SQLITE_OMIT_AUTOINIT] might become the
1610 ** default behavior in some future release of SQLite.
1612 ** The sqlite3_os_init() routine does operating-system specific
1613 ** initialization of the SQLite library. The sqlite3_os_end()
1614 ** routine undoes the effect of sqlite3_os_init(). Typical tasks
1615 ** performed by these routines include allocation or deallocation
1616 ** of static resources, initialization of global variables,
1617 ** setting up a default [sqlite3_vfs] module, or setting up
1618 ** a default configuration using [sqlite3_config()].
1620 ** The application should never invoke either sqlite3_os_init()
1621 ** or sqlite3_os_end() directly. The application should only invoke
1622 ** sqlite3_initialize() and sqlite3_shutdown(). The sqlite3_os_init()
1623 ** interface is called automatically by sqlite3_initialize() and
1624 ** sqlite3_os_end() is called by sqlite3_shutdown(). Appropriate
1625 ** implementations for sqlite3_os_init() and sqlite3_os_end()
1626 ** are built into SQLite when it is compiled for Unix, Windows, or OS/2.
1627 ** When [custom builds | built for other platforms]
1628 ** (using the [SQLITE_OS_OTHER=1] compile-time
1629 ** option) the application must supply a suitable implementation for
1630 ** sqlite3_os_init() and sqlite3_os_end(). An application-supplied
1631 ** implementation of sqlite3_os_init() or sqlite3_os_end()
1632 ** must return [SQLITE_OK] on success and some other [error code] upon
1633 ** failure.
1635 SQLITE_API int sqlite3_initialize(void);
1636 SQLITE_API int sqlite3_shutdown(void);
1637 SQLITE_API int sqlite3_os_init(void);
1638 SQLITE_API int sqlite3_os_end(void);
1641 ** CAPI3REF: Configuring The SQLite Library
1643 ** The sqlite3_config() interface is used to make global configuration
1644 ** changes to SQLite in order to tune SQLite to the specific needs of
1645 ** the application. The default configuration is recommended for most
1646 ** applications and so this routine is usually not necessary. It is
1647 ** provided to support rare applications with unusual needs.
1649 ** The sqlite3_config() interface is not threadsafe. The application
1650 ** must insure that no other SQLite interfaces are invoked by other
1651 ** threads while sqlite3_config() is running. Furthermore, sqlite3_config()
1652 ** may only be invoked prior to library initialization using
1653 ** [sqlite3_initialize()] or after shutdown by [sqlite3_shutdown()].
1654 ** ^If sqlite3_config() is called after [sqlite3_initialize()] and before
1655 ** [sqlite3_shutdown()] then it will return SQLITE_MISUSE.
1656 ** Note, however, that ^sqlite3_config() can be called as part of the
1657 ** implementation of an application-defined [sqlite3_os_init()].
1659 ** The first argument to sqlite3_config() is an integer
1660 ** [SQLITE_CONFIG_SINGLETHREAD | configuration option] that determines
1661 ** what property of SQLite is to be configured. Subsequent arguments
1662 ** vary depending on the [SQLITE_CONFIG_SINGLETHREAD | configuration option]
1663 ** in the first argument.
1665 ** ^When a configuration option is set, sqlite3_config() returns [SQLITE_OK].
1666 ** ^If the option is unknown or SQLite is unable to set the option
1667 ** then this routine returns a non-zero [error code].
1669 SQLITE_API int sqlite3_config(int, ...);
1672 ** CAPI3REF: Configure database connections
1674 ** The sqlite3_db_config() interface is used to make configuration
1675 ** changes to a [database connection]. The interface is similar to
1676 ** [sqlite3_config()] except that the changes apply to a single
1677 ** [database connection] (specified in the first argument).
1679 ** The second argument to sqlite3_db_config(D,V,...) is the
1680 ** [SQLITE_DBCONFIG_LOOKASIDE | configuration verb] - an integer code
1681 ** that indicates what aspect of the [database connection] is being configured.
1682 ** Subsequent arguments vary depending on the configuration verb.
1684 ** ^Calls to sqlite3_db_config() return SQLITE_OK if and only if
1685 ** the call is considered successful.
1687 SQLITE_API int sqlite3_db_config(sqlite3*, int op, ...);
1690 ** CAPI3REF: Memory Allocation Routines
1692 ** An instance of this object defines the interface between SQLite
1693 ** and low-level memory allocation routines.
1695 ** This object is used in only one place in the SQLite interface.
1696 ** A pointer to an instance of this object is the argument to
1697 ** [sqlite3_config()] when the configuration option is
1698 ** [SQLITE_CONFIG_MALLOC] or [SQLITE_CONFIG_GETMALLOC].
1699 ** By creating an instance of this object
1700 ** and passing it to [sqlite3_config]([SQLITE_CONFIG_MALLOC])
1701 ** during configuration, an application can specify an alternative
1702 ** memory allocation subsystem for SQLite to use for all of its
1703 ** dynamic memory needs.
1705 ** Note that SQLite comes with several [built-in memory allocators]
1706 ** that are perfectly adequate for the overwhelming majority of applications
1707 ** and that this object is only useful to a tiny minority of applications
1708 ** with specialized memory allocation requirements. This object is
1709 ** also used during testing of SQLite in order to specify an alternative
1710 ** memory allocator that simulates memory out-of-memory conditions in
1711 ** order to verify that SQLite recovers gracefully from such
1712 ** conditions.
1714 ** The xMalloc and xFree methods must work like the
1715 ** malloc() and free() functions from the standard C library.
1716 ** The xRealloc method must work like realloc() from the standard C library
1717 ** with the exception that if the second argument to xRealloc is zero,
1718 ** xRealloc must be a no-op - it must not perform any allocation or
1719 ** deallocation. ^SQLite guarantees that the second argument to
1720 ** xRealloc is always a value returned by a prior call to xRoundup.
1721 ** And so in cases where xRoundup always returns a positive number,
1722 ** xRealloc can perform exactly as the standard library realloc() and
1723 ** still be in compliance with this specification.
1725 ** xSize should return the allocated size of a memory allocation
1726 ** previously obtained from xMalloc or xRealloc. The allocated size
1727 ** is always at least as big as the requested size but may be larger.
1729 ** The xRoundup method returns what would be the allocated size of
1730 ** a memory allocation given a particular requested size. Most memory
1731 ** allocators round up memory allocations at least to the next multiple
1732 ** of 8. Some allocators round up to a larger multiple or to a power of 2.
1733 ** Every memory allocation request coming in through [sqlite3_malloc()]
1734 ** or [sqlite3_realloc()] first calls xRoundup. If xRoundup returns 0,
1735 ** that causes the corresponding memory allocation to fail.
1737 ** The xInit method initializes the memory allocator. (For example,
1738 ** it might allocate any require mutexes or initialize internal data
1739 ** structures. The xShutdown method is invoked (indirectly) by
1740 ** [sqlite3_shutdown()] and should deallocate any resources acquired
1741 ** by xInit. The pAppData pointer is used as the only parameter to
1742 ** xInit and xShutdown.
1744 ** SQLite holds the [SQLITE_MUTEX_STATIC_MASTER] mutex when it invokes
1745 ** the xInit method, so the xInit method need not be threadsafe. The
1746 ** xShutdown method is only called from [sqlite3_shutdown()] so it does
1747 ** not need to be threadsafe either. For all other methods, SQLite
1748 ** holds the [SQLITE_MUTEX_STATIC_MEM] mutex as long as the
1749 ** [SQLITE_CONFIG_MEMSTATUS] configuration option is turned on (which
1750 ** it is by default) and so the methods are automatically serialized.
1751 ** However, if [SQLITE_CONFIG_MEMSTATUS] is disabled, then the other
1752 ** methods must be threadsafe or else make their own arrangements for
1753 ** serialization.
1755 ** SQLite will never invoke xInit() more than once without an intervening
1756 ** call to xShutdown().
1758 typedef struct sqlite3_mem_methods sqlite3_mem_methods;
1759 struct sqlite3_mem_methods {
1760 void *(*xMalloc)(int); /* Memory allocation function */
1761 void (*xFree)(void*); /* Free a prior allocation */
1762 void *(*xRealloc)(void*,int); /* Resize an allocation */
1763 int (*xSize)(void*); /* Return the size of an allocation */
1764 int (*xRoundup)(int); /* Round up request size to allocation size */
1765 int (*xInit)(void*); /* Initialize the memory allocator */
1766 void (*xShutdown)(void*); /* Deinitialize the memory allocator */
1767 void *pAppData; /* Argument to xInit() and xShutdown() */
1771 ** CAPI3REF: Configuration Options
1773 ** These constants are the available integer configuration options that
1774 ** can be passed as the first argument to the [sqlite3_config()] interface.
1776 ** New configuration options may be added in future releases of SQLite.
1777 ** Existing configuration options might be discontinued. Applications
1778 ** should check the return code from [sqlite3_config()] to make sure that
1779 ** the call worked. The [sqlite3_config()] interface will return a
1780 ** non-zero [error code] if a discontinued or unsupported configuration option
1781 ** is invoked.
1783 ** <dl>
1784 ** <dt>SQLITE_CONFIG_SINGLETHREAD</dt>
1785 ** <dd>There are no arguments to this option. ^This option sets the
1786 ** [threading mode] to Single-thread. In other words, it disables
1787 ** all mutexing and puts SQLite into a mode where it can only be used
1788 ** by a single thread. ^If SQLite is compiled with
1789 ** the [SQLITE_THREADSAFE | SQLITE_THREADSAFE=0] compile-time option then
1790 ** it is not possible to change the [threading mode] from its default
1791 ** value of Single-thread and so [sqlite3_config()] will return
1792 ** [SQLITE_ERROR] if called with the SQLITE_CONFIG_SINGLETHREAD
1793 ** configuration option.</dd>
1795 ** <dt>SQLITE_CONFIG_MULTITHREAD</dt>
1796 ** <dd>There are no arguments to this option. ^This option sets the
1797 ** [threading mode] to Multi-thread. In other words, it disables
1798 ** mutexing on [database connection] and [prepared statement] objects.
1799 ** The application is responsible for serializing access to
1800 ** [database connections] and [prepared statements]. But other mutexes
1801 ** are enabled so that SQLite will be safe to use in a multi-threaded
1802 ** environment as long as no two threads attempt to use the same
1803 ** [database connection] at the same time. ^If SQLite is compiled with
1804 ** the [SQLITE_THREADSAFE | SQLITE_THREADSAFE=0] compile-time option then
1805 ** it is not possible to set the Multi-thread [threading mode] and
1806 ** [sqlite3_config()] will return [SQLITE_ERROR] if called with the
1807 ** SQLITE_CONFIG_MULTITHREAD configuration option.</dd>
1809 ** <dt>SQLITE_CONFIG_SERIALIZED</dt>
1810 ** <dd>There are no arguments to this option. ^This option sets the
1811 ** [threading mode] to Serialized. In other words, this option enables
1812 ** all mutexes including the recursive
1813 ** mutexes on [database connection] and [prepared statement] objects.
1814 ** In this mode (which is the default when SQLite is compiled with
1815 ** [SQLITE_THREADSAFE=1]) the SQLite library will itself serialize access
1816 ** to [database connections] and [prepared statements] so that the
1817 ** application is free to use the same [database connection] or the
1818 ** same [prepared statement] in different threads at the same time.
1819 ** ^If SQLite is compiled with
1820 ** the [SQLITE_THREADSAFE | SQLITE_THREADSAFE=0] compile-time option then
1821 ** it is not possible to set the Serialized [threading mode] and
1822 ** [sqlite3_config()] will return [SQLITE_ERROR] if called with the
1823 ** SQLITE_CONFIG_SERIALIZED configuration option.</dd>
1825 ** <dt>SQLITE_CONFIG_MALLOC</dt>
1826 ** <dd> ^(This option takes a single argument which is a pointer to an
1827 ** instance of the [sqlite3_mem_methods] structure. The argument specifies
1828 ** alternative low-level memory allocation routines to be used in place of
1829 ** the memory allocation routines built into SQLite.)^ ^SQLite makes
1830 ** its own private copy of the content of the [sqlite3_mem_methods] structure
1831 ** before the [sqlite3_config()] call returns.</dd>
1833 ** <dt>SQLITE_CONFIG_GETMALLOC</dt>
1834 ** <dd> ^(This option takes a single argument which is a pointer to an
1835 ** instance of the [sqlite3_mem_methods] structure. The [sqlite3_mem_methods]
1836 ** structure is filled with the currently defined memory allocation routines.)^
1837 ** This option can be used to overload the default memory allocation
1838 ** routines with a wrapper that simulations memory allocation failure or
1839 ** tracks memory usage, for example. </dd>
1841 ** <dt>SQLITE_CONFIG_MEMSTATUS</dt>
1842 ** <dd> ^This option takes single argument of type int, interpreted as a
1843 ** boolean, which enables or disables the collection of memory allocation
1844 ** statistics. ^(When memory allocation statistics are disabled, the
1845 ** following SQLite interfaces become non-operational:
1846 ** <ul>
1847 ** <li> [sqlite3_memory_used()]
1848 ** <li> [sqlite3_memory_highwater()]
1849 ** <li> [sqlite3_soft_heap_limit64()]
1850 ** <li> [sqlite3_status()]
1851 ** </ul>)^
1852 ** ^Memory allocation statistics are enabled by default unless SQLite is
1853 ** compiled with [SQLITE_DEFAULT_MEMSTATUS]=0 in which case memory
1854 ** allocation statistics are disabled by default.
1855 ** </dd>
1857 ** <dt>SQLITE_CONFIG_SCRATCH</dt>
1858 ** <dd> ^This option specifies a static memory buffer that SQLite can use for
1859 ** scratch memory. There are three arguments: A pointer an 8-byte
1860 ** aligned memory buffer from which the scratch allocations will be
1861 ** drawn, the size of each scratch allocation (sz),
1862 ** and the maximum number of scratch allocations (N). The sz
1863 ** argument must be a multiple of 16.
1864 ** The first argument must be a pointer to an 8-byte aligned buffer
1865 ** of at least sz*N bytes of memory.
1866 ** ^SQLite will use no more than two scratch buffers per thread. So
1867 ** N should be set to twice the expected maximum number of threads.
1868 ** ^SQLite will never require a scratch buffer that is more than 6
1869 ** times the database page size. ^If SQLite needs needs additional
1870 ** scratch memory beyond what is provided by this configuration option, then
1871 ** [sqlite3_malloc()] will be used to obtain the memory needed.</dd>
1873 ** <dt>SQLITE_CONFIG_PAGECACHE</dt>
1874 ** <dd> ^This option specifies a static memory buffer that SQLite can use for
1875 ** the database page cache with the default page cache implemenation.
1876 ** This configuration should not be used if an application-define page
1877 ** cache implementation is loaded using the SQLITE_CONFIG_PCACHE option.
1878 ** There are three arguments to this option: A pointer to 8-byte aligned
1879 ** memory, the size of each page buffer (sz), and the number of pages (N).
1880 ** The sz argument should be the size of the largest database page
1881 ** (a power of two between 512 and 32768) plus a little extra for each
1882 ** page header. ^The page header size is 20 to 40 bytes depending on
1883 ** the host architecture. ^It is harmless, apart from the wasted memory,
1884 ** to make sz a little too large. The first
1885 ** argument should point to an allocation of at least sz*N bytes of memory.
1886 ** ^SQLite will use the memory provided by the first argument to satisfy its
1887 ** memory needs for the first N pages that it adds to cache. ^If additional
1888 ** page cache memory is needed beyond what is provided by this option, then
1889 ** SQLite goes to [sqlite3_malloc()] for the additional storage space.
1890 ** The pointer in the first argument must
1891 ** be aligned to an 8-byte boundary or subsequent behavior of SQLite
1892 ** will be undefined.</dd>
1894 ** <dt>SQLITE_CONFIG_HEAP</dt>
1895 ** <dd> ^This option specifies a static memory buffer that SQLite will use
1896 ** for all of its dynamic memory allocation needs beyond those provided
1897 ** for by [SQLITE_CONFIG_SCRATCH] and [SQLITE_CONFIG_PAGECACHE].
1898 ** There are three arguments: An 8-byte aligned pointer to the memory,
1899 ** the number of bytes in the memory buffer, and the minimum allocation size.
1900 ** ^If the first pointer (the memory pointer) is NULL, then SQLite reverts
1901 ** to using its default memory allocator (the system malloc() implementation),
1902 ** undoing any prior invocation of [SQLITE_CONFIG_MALLOC]. ^If the
1903 ** memory pointer is not NULL and either [SQLITE_ENABLE_MEMSYS3] or
1904 ** [SQLITE_ENABLE_MEMSYS5] are defined, then the alternative memory
1905 ** allocator is engaged to handle all of SQLites memory allocation needs.
1906 ** The first pointer (the memory pointer) must be aligned to an 8-byte
1907 ** boundary or subsequent behavior of SQLite will be undefined.
1908 ** The minimum allocation size is capped at 2^12. Reasonable values
1909 ** for the minimum allocation size are 2^5 through 2^8.</dd>
1911 ** <dt>SQLITE_CONFIG_MUTEX</dt>
1912 ** <dd> ^(This option takes a single argument which is a pointer to an
1913 ** instance of the [sqlite3_mutex_methods] structure. The argument specifies
1914 ** alternative low-level mutex routines to be used in place
1915 ** the mutex routines built into SQLite.)^ ^SQLite makes a copy of the
1916 ** content of the [sqlite3_mutex_methods] structure before the call to
1917 ** [sqlite3_config()] returns. ^If SQLite is compiled with
1918 ** the [SQLITE_THREADSAFE | SQLITE_THREADSAFE=0] compile-time option then
1919 ** the entire mutexing subsystem is omitted from the build and hence calls to
1920 ** [sqlite3_config()] with the SQLITE_CONFIG_MUTEX configuration option will
1921 ** return [SQLITE_ERROR].</dd>
1923 ** <dt>SQLITE_CONFIG_GETMUTEX</dt>
1924 ** <dd> ^(This option takes a single argument which is a pointer to an
1925 ** instance of the [sqlite3_mutex_methods] structure. The
1926 ** [sqlite3_mutex_methods]
1927 ** structure is filled with the currently defined mutex routines.)^
1928 ** This option can be used to overload the default mutex allocation
1929 ** routines with a wrapper used to track mutex usage for performance
1930 ** profiling or testing, for example. ^If SQLite is compiled with
1931 ** the [SQLITE_THREADSAFE | SQLITE_THREADSAFE=0] compile-time option then
1932 ** the entire mutexing subsystem is omitted from the build and hence calls to
1933 ** [sqlite3_config()] with the SQLITE_CONFIG_GETMUTEX configuration option will
1934 ** return [SQLITE_ERROR].</dd>
1936 ** <dt>SQLITE_CONFIG_LOOKASIDE</dt>
1937 ** <dd> ^(This option takes two arguments that determine the default
1938 ** memory allocation for the lookaside memory allocator on each
1939 ** [database connection]. The first argument is the
1940 ** size of each lookaside buffer slot and the second is the number of
1941 ** slots allocated to each database connection.)^ ^(This option sets the
1942 ** <i>default</i> lookaside size. The [SQLITE_DBCONFIG_LOOKASIDE]
1943 ** verb to [sqlite3_db_config()] can be used to change the lookaside
1944 ** configuration on individual connections.)^ </dd>
1946 ** <dt>SQLITE_CONFIG_PCACHE</dt>
1947 ** <dd> ^(This option takes a single argument which is a pointer to
1948 ** an [sqlite3_pcache_methods] object. This object specifies the interface
1949 ** to a custom page cache implementation.)^ ^SQLite makes a copy of the
1950 ** object and uses it for page cache memory allocations.</dd>
1952 ** <dt>SQLITE_CONFIG_GETPCACHE</dt>
1953 ** <dd> ^(This option takes a single argument which is a pointer to an
1954 ** [sqlite3_pcache_methods] object. SQLite copies of the current
1955 ** page cache implementation into that object.)^ </dd>
1957 ** <dt>SQLITE_CONFIG_LOG</dt>
1958 ** <dd> ^The SQLITE_CONFIG_LOG option takes two arguments: a pointer to a
1959 ** function with a call signature of void(*)(void*,int,const char*),
1960 ** and a pointer to void. ^If the function pointer is not NULL, it is
1961 ** invoked by [sqlite3_log()] to process each logging event. ^If the
1962 ** function pointer is NULL, the [sqlite3_log()] interface becomes a no-op.
1963 ** ^The void pointer that is the second argument to SQLITE_CONFIG_LOG is
1964 ** passed through as the first parameter to the application-defined logger
1965 ** function whenever that function is invoked. ^The second parameter to
1966 ** the logger function is a copy of the first parameter to the corresponding
1967 ** [sqlite3_log()] call and is intended to be a [result code] or an
1968 ** [extended result code]. ^The third parameter passed to the logger is
1969 ** log message after formatting via [sqlite3_snprintf()].
1970 ** The SQLite logging interface is not reentrant; the logger function
1971 ** supplied by the application must not invoke any SQLite interface.
1972 ** In a multi-threaded application, the application-defined logger
1973 ** function must be threadsafe. </dd>
1975 ** </dl>
1977 #define SQLITE_CONFIG_SINGLETHREAD 1 /* nil */
1978 #define SQLITE_CONFIG_MULTITHREAD 2 /* nil */
1979 #define SQLITE_CONFIG_SERIALIZED 3 /* nil */
1980 #define SQLITE_CONFIG_MALLOC 4 /* sqlite3_mem_methods* */
1981 #define SQLITE_CONFIG_GETMALLOC 5 /* sqlite3_mem_methods* */
1982 #define SQLITE_CONFIG_SCRATCH 6 /* void*, int sz, int N */
1983 #define SQLITE_CONFIG_PAGECACHE 7 /* void*, int sz, int N */
1984 #define SQLITE_CONFIG_HEAP 8 /* void*, int nByte, int min */
1985 #define SQLITE_CONFIG_MEMSTATUS 9 /* boolean */
1986 #define SQLITE_CONFIG_MUTEX 10 /* sqlite3_mutex_methods* */
1987 #define SQLITE_CONFIG_GETMUTEX 11 /* sqlite3_mutex_methods* */
1988 /* previously SQLITE_CONFIG_CHUNKALLOC 12 which is now unused. */
1989 #define SQLITE_CONFIG_LOOKASIDE 13 /* int int */
1990 #define SQLITE_CONFIG_PCACHE 14 /* sqlite3_pcache_methods* */
1991 #define SQLITE_CONFIG_GETPCACHE 15 /* sqlite3_pcache_methods* */
1992 #define SQLITE_CONFIG_LOG 16 /* xFunc, void* */
1995 ** CAPI3REF: Database Connection Configuration Options
1997 ** These constants are the available integer configuration options that
1998 ** can be passed as the second argument to the [sqlite3_db_config()] interface.
2000 ** New configuration options may be added in future releases of SQLite.
2001 ** Existing configuration options might be discontinued. Applications
2002 ** should check the return code from [sqlite3_db_config()] to make sure that
2003 ** the call worked. ^The [sqlite3_db_config()] interface will return a
2004 ** non-zero [error code] if a discontinued or unsupported configuration option
2005 ** is invoked.
2007 ** <dl>
2008 ** <dt>SQLITE_DBCONFIG_LOOKASIDE</dt>
2009 ** <dd> ^This option takes three additional arguments that determine the
2010 ** [lookaside memory allocator] configuration for the [database connection].
2011 ** ^The first argument (the third parameter to [sqlite3_db_config()] is a
2012 ** pointer to a memory buffer to use for lookaside memory.
2013 ** ^The first argument after the SQLITE_DBCONFIG_LOOKASIDE verb
2014 ** may be NULL in which case SQLite will allocate the
2015 ** lookaside buffer itself using [sqlite3_malloc()]. ^The second argument is the
2016 ** size of each lookaside buffer slot. ^The third argument is the number of
2017 ** slots. The size of the buffer in the first argument must be greater than
2018 ** or equal to the product of the second and third arguments. The buffer
2019 ** must be aligned to an 8-byte boundary. ^If the second argument to
2020 ** SQLITE_DBCONFIG_LOOKASIDE is not a multiple of 8, it is internally
2021 ** rounded down to the next smaller multiple of 8. ^(The lookaside memory
2022 ** configuration for a database connection can only be changed when that
2023 ** connection is not currently using lookaside memory, or in other words
2024 ** when the "current value" returned by
2025 ** [sqlite3_db_status](D,[SQLITE_CONFIG_LOOKASIDE],...) is zero.
2026 ** Any attempt to change the lookaside memory configuration when lookaside
2027 ** memory is in use leaves the configuration unchanged and returns
2028 ** [SQLITE_BUSY].)^</dd>
2030 ** <dt>SQLITE_DBCONFIG_ENABLE_FKEY</dt>
2031 ** <dd> ^This option is used to enable or disable the enforcement of
2032 ** [foreign key constraints]. There should be two additional arguments.
2033 ** The first argument is an integer which is 0 to disable FK enforcement,
2034 ** positive to enable FK enforcement or negative to leave FK enforcement
2035 ** unchanged. The second parameter is a pointer to an integer into which
2036 ** is written 0 or 1 to indicate whether FK enforcement is off or on
2037 ** following this call. The second parameter may be a NULL pointer, in
2038 ** which case the FK enforcement setting is not reported back. </dd>
2040 ** <dt>SQLITE_DBCONFIG_ENABLE_TRIGGER</dt>
2041 ** <dd> ^This option is used to enable or disable [CREATE TRIGGER | triggers].
2042 ** There should be two additional arguments.
2043 ** The first argument is an integer which is 0 to disable triggers,
2044 ** positive to enable triggers or negative to leave the setting unchanged.
2045 ** The second parameter is a pointer to an integer into which
2046 ** is written 0 or 1 to indicate whether triggers are disabled or enabled
2047 ** following this call. The second parameter may be a NULL pointer, in
2048 ** which case the trigger setting is not reported back. </dd>
2050 ** </dl>
2052 #define SQLITE_DBCONFIG_LOOKASIDE 1001 /* void* int int */
2053 #define SQLITE_DBCONFIG_ENABLE_FKEY 1002 /* int int* */
2054 #define SQLITE_DBCONFIG_ENABLE_TRIGGER 1003 /* int int* */
2058 ** CAPI3REF: Enable Or Disable Extended Result Codes
2060 ** ^The sqlite3_extended_result_codes() routine enables or disables the
2061 ** [extended result codes] feature of SQLite. ^The extended result
2062 ** codes are disabled by default for historical compatibility.
2064 SQLITE_API int sqlite3_extended_result_codes(sqlite3*, int onoff);
2067 ** CAPI3REF: Last Insert Rowid
2069 ** ^Each entry in an SQLite table has a unique 64-bit signed
2070 ** integer key called the [ROWID | "rowid"]. ^The rowid is always available
2071 ** as an undeclared column named ROWID, OID, or _ROWID_ as long as those
2072 ** names are not also used by explicitly declared columns. ^If
2073 ** the table has a column of type [INTEGER PRIMARY KEY] then that column
2074 ** is another alias for the rowid.
2076 ** ^This routine returns the [rowid] of the most recent
2077 ** successful [INSERT] into the database from the [database connection]
2078 ** in the first argument. ^If no successful [INSERT]s
2079 ** have ever occurred on that database connection, zero is returned.
2081 ** ^(If an [INSERT] occurs within a trigger, then the [rowid] of the inserted
2082 ** row is returned by this routine as long as the trigger is running.
2083 ** But once the trigger terminates, the value returned by this routine
2084 ** reverts to the last value inserted before the trigger fired.)^
2086 ** ^An [INSERT] that fails due to a constraint violation is not a
2087 ** successful [INSERT] and does not change the value returned by this
2088 ** routine. ^Thus INSERT OR FAIL, INSERT OR IGNORE, INSERT OR ROLLBACK,
2089 ** and INSERT OR ABORT make no changes to the return value of this
2090 ** routine when their insertion fails. ^(When INSERT OR REPLACE
2091 ** encounters a constraint violation, it does not fail. The
2092 ** INSERT continues to completion after deleting rows that caused
2093 ** the constraint problem so INSERT OR REPLACE will always change
2094 ** the return value of this interface.)^
2096 ** ^For the purposes of this routine, an [INSERT] is considered to
2097 ** be successful even if it is subsequently rolled back.
2099 ** This function is accessible to SQL statements via the
2100 ** [last_insert_rowid() SQL function].
2102 ** If a separate thread performs a new [INSERT] on the same
2103 ** database connection while the [sqlite3_last_insert_rowid()]
2104 ** function is running and thus changes the last insert [rowid],
2105 ** then the value returned by [sqlite3_last_insert_rowid()] is
2106 ** unpredictable and might not equal either the old or the new
2107 ** last insert [rowid].
2109 SQLITE_API sqlite3_int64 sqlite3_last_insert_rowid(sqlite3*);
2112 ** CAPI3REF: Count The Number Of Rows Modified
2114 ** ^This function returns the number of database rows that were changed
2115 ** or inserted or deleted by the most recently completed SQL statement
2116 ** on the [database connection] specified by the first parameter.
2117 ** ^(Only changes that are directly specified by the [INSERT], [UPDATE],
2118 ** or [DELETE] statement are counted. Auxiliary changes caused by
2119 ** triggers or [foreign key actions] are not counted.)^ Use the
2120 ** [sqlite3_total_changes()] function to find the total number of changes
2121 ** including changes caused by triggers and foreign key actions.
2123 ** ^Changes to a view that are simulated by an [INSTEAD OF trigger]
2124 ** are not counted. Only real table changes are counted.
2126 ** ^(A "row change" is a change to a single row of a single table
2127 ** caused by an INSERT, DELETE, or UPDATE statement. Rows that
2128 ** are changed as side effects of [REPLACE] constraint resolution,
2129 ** rollback, ABORT processing, [DROP TABLE], or by any other
2130 ** mechanisms do not count as direct row changes.)^
2132 ** A "trigger context" is a scope of execution that begins and
2133 ** ends with the script of a [CREATE TRIGGER | trigger].
2134 ** Most SQL statements are
2135 ** evaluated outside of any trigger. This is the "top level"
2136 ** trigger context. If a trigger fires from the top level, a
2137 ** new trigger context is entered for the duration of that one
2138 ** trigger. Subtriggers create subcontexts for their duration.
2140 ** ^Calling [sqlite3_exec()] or [sqlite3_step()] recursively does
2141 ** not create a new trigger context.
2143 ** ^This function returns the number of direct row changes in the
2144 ** most recent INSERT, UPDATE, or DELETE statement within the same
2145 ** trigger context.
2147 ** ^Thus, when called from the top level, this function returns the
2148 ** number of changes in the most recent INSERT, UPDATE, or DELETE
2149 ** that also occurred at the top level. ^(Within the body of a trigger,
2150 ** the sqlite3_changes() interface can be called to find the number of
2151 ** changes in the most recently completed INSERT, UPDATE, or DELETE
2152 ** statement within the body of the same trigger.
2153 ** However, the number returned does not include changes
2154 ** caused by subtriggers since those have their own context.)^
2156 ** See also the [sqlite3_total_changes()] interface, the
2157 ** [count_changes pragma], and the [changes() SQL function].
2159 ** If a separate thread makes changes on the same database connection
2160 ** while [sqlite3_changes()] is running then the value returned
2161 ** is unpredictable and not meaningful.
2163 SQLITE_API int sqlite3_changes(sqlite3*);
2166 ** CAPI3REF: Total Number Of Rows Modified
2168 ** ^This function returns the number of row changes caused by [INSERT],
2169 ** [UPDATE] or [DELETE] statements since the [database connection] was opened.
2170 ** ^(The count returned by sqlite3_total_changes() includes all changes
2171 ** from all [CREATE TRIGGER | trigger] contexts and changes made by
2172 ** [foreign key actions]. However,
2173 ** the count does not include changes used to implement [REPLACE] constraints,
2174 ** do rollbacks or ABORT processing, or [DROP TABLE] processing. The
2175 ** count does not include rows of views that fire an [INSTEAD OF trigger],
2176 ** though if the INSTEAD OF trigger makes changes of its own, those changes
2177 ** are counted.)^
2178 ** ^The sqlite3_total_changes() function counts the changes as soon as
2179 ** the statement that makes them is completed (when the statement handle
2180 ** is passed to [sqlite3_reset()] or [sqlite3_finalize()]).
2182 ** See also the [sqlite3_changes()] interface, the
2183 ** [count_changes pragma], and the [total_changes() SQL function].
2185 ** If a separate thread makes changes on the same database connection
2186 ** while [sqlite3_total_changes()] is running then the value
2187 ** returned is unpredictable and not meaningful.
2189 SQLITE_API int sqlite3_total_changes(sqlite3*);
2192 ** CAPI3REF: Interrupt A Long-Running Query
2194 ** ^This function causes any pending database operation to abort and
2195 ** return at its earliest opportunity. This routine is typically
2196 ** called in response to a user action such as pressing "Cancel"
2197 ** or Ctrl-C where the user wants a long query operation to halt
2198 ** immediately.
2200 ** ^It is safe to call this routine from a thread different from the
2201 ** thread that is currently running the database operation. But it
2202 ** is not safe to call this routine with a [database connection] that
2203 ** is closed or might close before sqlite3_interrupt() returns.
2205 ** ^If an SQL operation is very nearly finished at the time when
2206 ** sqlite3_interrupt() is called, then it might not have an opportunity
2207 ** to be interrupted and might continue to completion.
2209 ** ^An SQL operation that is interrupted will return [SQLITE_INTERRUPT].
2210 ** ^If the interrupted SQL operation is an INSERT, UPDATE, or DELETE
2211 ** that is inside an explicit transaction, then the entire transaction
2212 ** will be rolled back automatically.
2214 ** ^The sqlite3_interrupt(D) call is in effect until all currently running
2215 ** SQL statements on [database connection] D complete. ^Any new SQL statements
2216 ** that are started after the sqlite3_interrupt() call and before the
2217 ** running statements reaches zero are interrupted as if they had been
2218 ** running prior to the sqlite3_interrupt() call. ^New SQL statements
2219 ** that are started after the running statement count reaches zero are
2220 ** not effected by the sqlite3_interrupt().
2221 ** ^A call to sqlite3_interrupt(D) that occurs when there are no running
2222 ** SQL statements is a no-op and has no effect on SQL statements
2223 ** that are started after the sqlite3_interrupt() call returns.
2225 ** If the database connection closes while [sqlite3_interrupt()]
2226 ** is running then bad things will likely happen.
2228 SQLITE_API void sqlite3_interrupt(sqlite3*);
2231 ** CAPI3REF: Determine If An SQL Statement Is Complete
2233 ** These routines are useful during command-line input to determine if the
2234 ** currently entered text seems to form a complete SQL statement or
2235 ** if additional input is needed before sending the text into
2236 ** SQLite for parsing. ^These routines return 1 if the input string
2237 ** appears to be a complete SQL statement. ^A statement is judged to be
2238 ** complete if it ends with a semicolon token and is not a prefix of a
2239 ** well-formed CREATE TRIGGER statement. ^Semicolons that are embedded within
2240 ** string literals or quoted identifier names or comments are not
2241 ** independent tokens (they are part of the token in which they are
2242 ** embedded) and thus do not count as a statement terminator. ^Whitespace
2243 ** and comments that follow the final semicolon are ignored.
2245 ** ^These routines return 0 if the statement is incomplete. ^If a
2246 ** memory allocation fails, then SQLITE_NOMEM is returned.
2248 ** ^These routines do not parse the SQL statements thus
2249 ** will not detect syntactically incorrect SQL.
2251 ** ^(If SQLite has not been initialized using [sqlite3_initialize()] prior
2252 ** to invoking sqlite3_complete16() then sqlite3_initialize() is invoked
2253 ** automatically by sqlite3_complete16(). If that initialization fails,
2254 ** then the return value from sqlite3_complete16() will be non-zero
2255 ** regardless of whether or not the input SQL is complete.)^
2257 ** The input to [sqlite3_complete()] must be a zero-terminated
2258 ** UTF-8 string.
2260 ** The input to [sqlite3_complete16()] must be a zero-terminated
2261 ** UTF-16 string in native byte order.
2263 SQLITE_API int sqlite3_complete(const char *sql);
2264 SQLITE_API int sqlite3_complete16(const void *sql);
2267 ** CAPI3REF: Register A Callback To Handle SQLITE_BUSY Errors
2269 ** ^This routine sets a callback function that might be invoked whenever
2270 ** an attempt is made to open a database table that another thread
2271 ** or process has locked.
2273 ** ^If the busy callback is NULL, then [SQLITE_BUSY] or [SQLITE_IOERR_BLOCKED]
2274 ** is returned immediately upon encountering the lock. ^If the busy callback
2275 ** is not NULL, then the callback might be invoked with two arguments.
2277 ** ^The first argument to the busy handler is a copy of the void* pointer which
2278 ** is the third argument to sqlite3_busy_handler(). ^The second argument to
2279 ** the busy handler callback is the number of times that the busy handler has
2280 ** been invoked for this locking event. ^If the
2281 ** busy callback returns 0, then no additional attempts are made to
2282 ** access the database and [SQLITE_BUSY] or [SQLITE_IOERR_BLOCKED] is returned.
2283 ** ^If the callback returns non-zero, then another attempt
2284 ** is made to open the database for reading and the cycle repeats.
2286 ** The presence of a busy handler does not guarantee that it will be invoked
2287 ** when there is lock contention. ^If SQLite determines that invoking the busy
2288 ** handler could result in a deadlock, it will go ahead and return [SQLITE_BUSY]
2289 ** or [SQLITE_IOERR_BLOCKED] instead of invoking the busy handler.
2290 ** Consider a scenario where one process is holding a read lock that
2291 ** it is trying to promote to a reserved lock and
2292 ** a second process is holding a reserved lock that it is trying
2293 ** to promote to an exclusive lock. The first process cannot proceed
2294 ** because it is blocked by the second and the second process cannot
2295 ** proceed because it is blocked by the first. If both processes
2296 ** invoke the busy handlers, neither will make any progress. Therefore,
2297 ** SQLite returns [SQLITE_BUSY] for the first process, hoping that this
2298 ** will induce the first process to release its read lock and allow
2299 ** the second process to proceed.
2301 ** ^The default busy callback is NULL.
2303 ** ^The [SQLITE_BUSY] error is converted to [SQLITE_IOERR_BLOCKED]
2304 ** when SQLite is in the middle of a large transaction where all the
2305 ** changes will not fit into the in-memory cache. SQLite will
2306 ** already hold a RESERVED lock on the database file, but it needs
2307 ** to promote this lock to EXCLUSIVE so that it can spill cache
2308 ** pages into the database file without harm to concurrent
2309 ** readers. ^If it is unable to promote the lock, then the in-memory
2310 ** cache will be left in an inconsistent state and so the error
2311 ** code is promoted from the relatively benign [SQLITE_BUSY] to
2312 ** the more severe [SQLITE_IOERR_BLOCKED]. ^This error code promotion
2313 ** forces an automatic rollback of the changes. See the
2314 ** <a href="/cvstrac/wiki?p=CorruptionFollowingBusyError">
2315 ** CorruptionFollowingBusyError</a> wiki page for a discussion of why
2316 ** this is important.
2318 ** ^(There can only be a single busy handler defined for each
2319 ** [database connection]. Setting a new busy handler clears any
2320 ** previously set handler.)^ ^Note that calling [sqlite3_busy_timeout()]
2321 ** will also set or clear the busy handler.
2323 ** The busy callback should not take any actions which modify the
2324 ** database connection that invoked the busy handler. Any such actions
2325 ** result in undefined behavior.
2327 ** A busy handler must not close the database connection
2328 ** or [prepared statement] that invoked the busy handler.
2330 SQLITE_API int sqlite3_busy_handler(sqlite3*, int(*)(void*,int), void*);
2333 ** CAPI3REF: Set A Busy Timeout
2335 ** ^This routine sets a [sqlite3_busy_handler | busy handler] that sleeps
2336 ** for a specified amount of time when a table is locked. ^The handler
2337 ** will sleep multiple times until at least "ms" milliseconds of sleeping
2338 ** have accumulated. ^After at least "ms" milliseconds of sleeping,
2339 ** the handler returns 0 which causes [sqlite3_step()] to return
2340 ** [SQLITE_BUSY] or [SQLITE_IOERR_BLOCKED].
2342 ** ^Calling this routine with an argument less than or equal to zero
2343 ** turns off all busy handlers.
2345 ** ^(There can only be a single busy handler for a particular
2346 ** [database connection] any any given moment. If another busy handler
2347 ** was defined (using [sqlite3_busy_handler()]) prior to calling
2348 ** this routine, that other busy handler is cleared.)^
2350 SQLITE_API int sqlite3_busy_timeout(sqlite3*, int ms);
2353 ** CAPI3REF: Convenience Routines For Running Queries
2355 ** This is a legacy interface that is preserved for backwards compatibility.
2356 ** Use of this interface is not recommended.
2358 ** Definition: A <b>result table</b> is memory data structure created by the
2359 ** [sqlite3_get_table()] interface. A result table records the
2360 ** complete query results from one or more queries.
2362 ** The table conceptually has a number of rows and columns. But
2363 ** these numbers are not part of the result table itself. These
2364 ** numbers are obtained separately. Let N be the number of rows
2365 ** and M be the number of columns.
2367 ** A result table is an array of pointers to zero-terminated UTF-8 strings.
2368 ** There are (N+1)*M elements in the array. The first M pointers point
2369 ** to zero-terminated strings that contain the names of the columns.
2370 ** The remaining entries all point to query results. NULL values result
2371 ** in NULL pointers. All other values are in their UTF-8 zero-terminated
2372 ** string representation as returned by [sqlite3_column_text()].
2374 ** A result table might consist of one or more memory allocations.
2375 ** It is not safe to pass a result table directly to [sqlite3_free()].
2376 ** A result table should be deallocated using [sqlite3_free_table()].
2378 ** ^(As an example of the result table format, suppose a query result
2379 ** is as follows:
2381 ** <blockquote><pre>
2382 ** Name | Age
2383 ** -----------------------
2384 ** Alice | 43
2385 ** Bob | 28
2386 ** Cindy | 21
2387 ** </pre></blockquote>
2389 ** There are two column (M==2) and three rows (N==3). Thus the
2390 ** result table has 8 entries. Suppose the result table is stored
2391 ** in an array names azResult. Then azResult holds this content:
2393 ** <blockquote><pre>
2394 ** azResult&#91;0] = "Name";
2395 ** azResult&#91;1] = "Age";
2396 ** azResult&#91;2] = "Alice";
2397 ** azResult&#91;3] = "43";
2398 ** azResult&#91;4] = "Bob";
2399 ** azResult&#91;5] = "28";
2400 ** azResult&#91;6] = "Cindy";
2401 ** azResult&#91;7] = "21";
2402 ** </pre></blockquote>)^
2404 ** ^The sqlite3_get_table() function evaluates one or more
2405 ** semicolon-separated SQL statements in the zero-terminated UTF-8
2406 ** string of its 2nd parameter and returns a result table to the
2407 ** pointer given in its 3rd parameter.
2409 ** After the application has finished with the result from sqlite3_get_table(),
2410 ** it must pass the result table pointer to sqlite3_free_table() in order to
2411 ** release the memory that was malloced. Because of the way the
2412 ** [sqlite3_malloc()] happens within sqlite3_get_table(), the calling
2413 ** function must not try to call [sqlite3_free()] directly. Only
2414 ** [sqlite3_free_table()] is able to release the memory properly and safely.
2416 ** The sqlite3_get_table() interface is implemented as a wrapper around
2417 ** [sqlite3_exec()]. The sqlite3_get_table() routine does not have access
2418 ** to any internal data structures of SQLite. It uses only the public
2419 ** interface defined here. As a consequence, errors that occur in the
2420 ** wrapper layer outside of the internal [sqlite3_exec()] call are not
2421 ** reflected in subsequent calls to [sqlite3_errcode()] or
2422 ** [sqlite3_errmsg()].
2424 SQLITE_API int sqlite3_get_table(
2425 sqlite3 *db, /* An open database */
2426 const char *zSql, /* SQL to be evaluated */
2427 char ***pazResult, /* Results of the query */
2428 int *pnRow, /* Number of result rows written here */
2429 int *pnColumn, /* Number of result columns written here */
2430 char **pzErrmsg /* Error msg written here */
2432 SQLITE_API void sqlite3_free_table(char **result);
2435 ** CAPI3REF: Formatted String Printing Functions
2437 ** These routines are work-alikes of the "printf()" family of functions
2438 ** from the standard C library.
2440 ** ^The sqlite3_mprintf() and sqlite3_vmprintf() routines write their
2441 ** results into memory obtained from [sqlite3_malloc()].
2442 ** The strings returned by these two routines should be
2443 ** released by [sqlite3_free()]. ^Both routines return a
2444 ** NULL pointer if [sqlite3_malloc()] is unable to allocate enough
2445 ** memory to hold the resulting string.
2447 ** ^(The sqlite3_snprintf() routine is similar to "snprintf()" from
2448 ** the standard C library. The result is written into the
2449 ** buffer supplied as the second parameter whose size is given by
2450 ** the first parameter. Note that the order of the
2451 ** first two parameters is reversed from snprintf().)^ This is an
2452 ** historical accident that cannot be fixed without breaking
2453 ** backwards compatibility. ^(Note also that sqlite3_snprintf()
2454 ** returns a pointer to its buffer instead of the number of
2455 ** characters actually written into the buffer.)^ We admit that
2456 ** the number of characters written would be a more useful return
2457 ** value but we cannot change the implementation of sqlite3_snprintf()
2458 ** now without breaking compatibility.
2460 ** ^As long as the buffer size is greater than zero, sqlite3_snprintf()
2461 ** guarantees that the buffer is always zero-terminated. ^The first
2462 ** parameter "n" is the total size of the buffer, including space for
2463 ** the zero terminator. So the longest string that can be completely
2464 ** written will be n-1 characters.
2466 ** ^The sqlite3_vsnprintf() routine is a varargs version of sqlite3_snprintf().
2468 ** These routines all implement some additional formatting
2469 ** options that are useful for constructing SQL statements.
2470 ** All of the usual printf() formatting options apply. In addition, there
2471 ** is are "%q", "%Q", and "%z" options.
2473 ** ^(The %q option works like %s in that it substitutes a null-terminated
2474 ** string from the argument list. But %q also doubles every '\'' character.
2475 ** %q is designed for use inside a string literal.)^ By doubling each '\''
2476 ** character it escapes that character and allows it to be inserted into
2477 ** the string.
2479 ** For example, assume the string variable zText contains text as follows:
2481 ** <blockquote><pre>
2482 ** char *zText = "It's a happy day!";
2483 ** </pre></blockquote>
2485 ** One can use this text in an SQL statement as follows:
2487 ** <blockquote><pre>
2488 ** char *zSQL = sqlite3_mprintf("INSERT INTO table VALUES('%q')", zText);
2489 ** sqlite3_exec(db, zSQL, 0, 0, 0);
2490 ** sqlite3_free(zSQL);
2491 ** </pre></blockquote>
2493 ** Because the %q format string is used, the '\'' character in zText
2494 ** is escaped and the SQL generated is as follows:
2496 ** <blockquote><pre>
2497 ** INSERT INTO table1 VALUES('It''s a happy day!')
2498 ** </pre></blockquote>
2500 ** This is correct. Had we used %s instead of %q, the generated SQL
2501 ** would have looked like this:
2503 ** <blockquote><pre>
2504 ** INSERT INTO table1 VALUES('It's a happy day!');
2505 ** </pre></blockquote>
2507 ** This second example is an SQL syntax error. As a general rule you should
2508 ** always use %q instead of %s when inserting text into a string literal.
2510 ** ^(The %Q option works like %q except it also adds single quotes around
2511 ** the outside of the total string. Additionally, if the parameter in the
2512 ** argument list is a NULL pointer, %Q substitutes the text "NULL" (without
2513 ** single quotes).)^ So, for example, one could say:
2515 ** <blockquote><pre>
2516 ** char *zSQL = sqlite3_mprintf("INSERT INTO table VALUES(%Q)", zText);
2517 ** sqlite3_exec(db, zSQL, 0, 0, 0);
2518 ** sqlite3_free(zSQL);
2519 ** </pre></blockquote>
2521 ** The code above will render a correct SQL statement in the zSQL
2522 ** variable even if the zText variable is a NULL pointer.
2524 ** ^(The "%z" formatting option works like "%s" but with the
2525 ** addition that after the string has been read and copied into
2526 ** the result, [sqlite3_free()] is called on the input string.)^
2528 SQLITE_API char *sqlite3_mprintf(const char*,...);
2529 SQLITE_API char *sqlite3_vmprintf(const char*, va_list);
2530 SQLITE_API char *sqlite3_snprintf(int,char*,const char*, ...);
2531 SQLITE_API char *sqlite3_vsnprintf(int,char*,const char*, va_list);
2534 ** CAPI3REF: Memory Allocation Subsystem
2536 ** The SQLite core uses these three routines for all of its own
2537 ** internal memory allocation needs. "Core" in the previous sentence
2538 ** does not include operating-system specific VFS implementation. The
2539 ** Windows VFS uses native malloc() and free() for some operations.
2541 ** ^The sqlite3_malloc() routine returns a pointer to a block
2542 ** of memory at least N bytes in length, where N is the parameter.
2543 ** ^If sqlite3_malloc() is unable to obtain sufficient free
2544 ** memory, it returns a NULL pointer. ^If the parameter N to
2545 ** sqlite3_malloc() is zero or negative then sqlite3_malloc() returns
2546 ** a NULL pointer.
2548 ** ^Calling sqlite3_free() with a pointer previously returned
2549 ** by sqlite3_malloc() or sqlite3_realloc() releases that memory so
2550 ** that it might be reused. ^The sqlite3_free() routine is
2551 ** a no-op if is called with a NULL pointer. Passing a NULL pointer
2552 ** to sqlite3_free() is harmless. After being freed, memory
2553 ** should neither be read nor written. Even reading previously freed
2554 ** memory might result in a segmentation fault or other severe error.
2555 ** Memory corruption, a segmentation fault, or other severe error
2556 ** might result if sqlite3_free() is called with a non-NULL pointer that
2557 ** was not obtained from sqlite3_malloc() or sqlite3_realloc().
2559 ** ^(The sqlite3_realloc() interface attempts to resize a
2560 ** prior memory allocation to be at least N bytes, where N is the
2561 ** second parameter. The memory allocation to be resized is the first
2562 ** parameter.)^ ^ If the first parameter to sqlite3_realloc()
2563 ** is a NULL pointer then its behavior is identical to calling
2564 ** sqlite3_malloc(N) where N is the second parameter to sqlite3_realloc().
2565 ** ^If the second parameter to sqlite3_realloc() is zero or
2566 ** negative then the behavior is exactly the same as calling
2567 ** sqlite3_free(P) where P is the first parameter to sqlite3_realloc().
2568 ** ^sqlite3_realloc() returns a pointer to a memory allocation
2569 ** of at least N bytes in size or NULL if sufficient memory is unavailable.
2570 ** ^If M is the size of the prior allocation, then min(N,M) bytes
2571 ** of the prior allocation are copied into the beginning of buffer returned
2572 ** by sqlite3_realloc() and the prior allocation is freed.
2573 ** ^If sqlite3_realloc() returns NULL, then the prior allocation
2574 ** is not freed.
2576 ** ^The memory returned by sqlite3_malloc() and sqlite3_realloc()
2577 ** is always aligned to at least an 8 byte boundary, or to a
2578 ** 4 byte boundary if the [SQLITE_4_BYTE_ALIGNED_MALLOC] compile-time
2579 ** option is used.
2581 ** In SQLite version 3.5.0 and 3.5.1, it was possible to define
2582 ** the SQLITE_OMIT_MEMORY_ALLOCATION which would cause the built-in
2583 ** implementation of these routines to be omitted. That capability
2584 ** is no longer provided. Only built-in memory allocators can be used.
2586 ** The Windows OS interface layer calls
2587 ** the system malloc() and free() directly when converting
2588 ** filenames between the UTF-8 encoding used by SQLite
2589 ** and whatever filename encoding is used by the particular Windows
2590 ** installation. Memory allocation errors are detected, but
2591 ** they are reported back as [SQLITE_CANTOPEN] or
2592 ** [SQLITE_IOERR] rather than [SQLITE_NOMEM].
2594 ** The pointer arguments to [sqlite3_free()] and [sqlite3_realloc()]
2595 ** must be either NULL or else pointers obtained from a prior
2596 ** invocation of [sqlite3_malloc()] or [sqlite3_realloc()] that have
2597 ** not yet been released.
2599 ** The application must not read or write any part of
2600 ** a block of memory after it has been released using
2601 ** [sqlite3_free()] or [sqlite3_realloc()].
2603 SQLITE_API void *sqlite3_malloc(int);
2604 SQLITE_API void *sqlite3_realloc(void*, int);
2605 SQLITE_API void sqlite3_free(void*);
2608 ** CAPI3REF: Memory Allocator Statistics
2610 ** SQLite provides these two interfaces for reporting on the status
2611 ** of the [sqlite3_malloc()], [sqlite3_free()], and [sqlite3_realloc()]
2612 ** routines, which form the built-in memory allocation subsystem.
2614 ** ^The [sqlite3_memory_used()] routine returns the number of bytes
2615 ** of memory currently outstanding (malloced but not freed).
2616 ** ^The [sqlite3_memory_highwater()] routine returns the maximum
2617 ** value of [sqlite3_memory_used()] since the high-water mark
2618 ** was last reset. ^The values returned by [sqlite3_memory_used()] and
2619 ** [sqlite3_memory_highwater()] include any overhead
2620 ** added by SQLite in its implementation of [sqlite3_malloc()],
2621 ** but not overhead added by the any underlying system library
2622 ** routines that [sqlite3_malloc()] may call.
2624 ** ^The memory high-water mark is reset to the current value of
2625 ** [sqlite3_memory_used()] if and only if the parameter to
2626 ** [sqlite3_memory_highwater()] is true. ^The value returned
2627 ** by [sqlite3_memory_highwater(1)] is the high-water mark
2628 ** prior to the reset.
2630 SQLITE_API sqlite3_int64 sqlite3_memory_used(void);
2631 SQLITE_API sqlite3_int64 sqlite3_memory_highwater(int resetFlag);
2634 ** CAPI3REF: Pseudo-Random Number Generator
2636 ** SQLite contains a high-quality pseudo-random number generator (PRNG) used to
2637 ** select random [ROWID | ROWIDs] when inserting new records into a table that
2638 ** already uses the largest possible [ROWID]. The PRNG is also used for
2639 ** the build-in random() and randomblob() SQL functions. This interface allows
2640 ** applications to access the same PRNG for other purposes.
2642 ** ^A call to this routine stores N bytes of randomness into buffer P.
2644 ** ^The first time this routine is invoked (either internally or by
2645 ** the application) the PRNG is seeded using randomness obtained
2646 ** from the xRandomness method of the default [sqlite3_vfs] object.
2647 ** ^On all subsequent invocations, the pseudo-randomness is generated
2648 ** internally and without recourse to the [sqlite3_vfs] xRandomness
2649 ** method.
2651 SQLITE_API void sqlite3_randomness(int N, void *P);
2654 ** CAPI3REF: Compile-Time Authorization Callbacks
2656 ** ^This routine registers an authorizer callback with a particular
2657 ** [database connection], supplied in the first argument.
2658 ** ^The authorizer callback is invoked as SQL statements are being compiled
2659 ** by [sqlite3_prepare()] or its variants [sqlite3_prepare_v2()],
2660 ** [sqlite3_prepare16()] and [sqlite3_prepare16_v2()]. ^At various
2661 ** points during the compilation process, as logic is being created
2662 ** to perform various actions, the authorizer callback is invoked to
2663 ** see if those actions are allowed. ^The authorizer callback should
2664 ** return [SQLITE_OK] to allow the action, [SQLITE_IGNORE] to disallow the
2665 ** specific action but allow the SQL statement to continue to be
2666 ** compiled, or [SQLITE_DENY] to cause the entire SQL statement to be
2667 ** rejected with an error. ^If the authorizer callback returns
2668 ** any value other than [SQLITE_IGNORE], [SQLITE_OK], or [SQLITE_DENY]
2669 ** then the [sqlite3_prepare_v2()] or equivalent call that triggered
2670 ** the authorizer will fail with an error message.
2672 ** When the callback returns [SQLITE_OK], that means the operation
2673 ** requested is ok. ^When the callback returns [SQLITE_DENY], the
2674 ** [sqlite3_prepare_v2()] or equivalent call that triggered the
2675 ** authorizer will fail with an error message explaining that
2676 ** access is denied.
2678 ** ^The first parameter to the authorizer callback is a copy of the third
2679 ** parameter to the sqlite3_set_authorizer() interface. ^The second parameter
2680 ** to the callback is an integer [SQLITE_COPY | action code] that specifies
2681 ** the particular action to be authorized. ^The third through sixth parameters
2682 ** to the callback are zero-terminated strings that contain additional
2683 ** details about the action to be authorized.
2685 ** ^If the action code is [SQLITE_READ]
2686 ** and the callback returns [SQLITE_IGNORE] then the
2687 ** [prepared statement] statement is constructed to substitute
2688 ** a NULL value in place of the table column that would have
2689 ** been read if [SQLITE_OK] had been returned. The [SQLITE_IGNORE]
2690 ** return can be used to deny an untrusted user access to individual
2691 ** columns of a table.
2692 ** ^If the action code is [SQLITE_DELETE] and the callback returns
2693 ** [SQLITE_IGNORE] then the [DELETE] operation proceeds but the
2694 ** [truncate optimization] is disabled and all rows are deleted individually.
2696 ** An authorizer is used when [sqlite3_prepare | preparing]
2697 ** SQL statements from an untrusted source, to ensure that the SQL statements
2698 ** do not try to access data they are not allowed to see, or that they do not
2699 ** try to execute malicious statements that damage the database. For
2700 ** example, an application may allow a user to enter arbitrary
2701 ** SQL queries for evaluation by a database. But the application does
2702 ** not want the user to be able to make arbitrary changes to the
2703 ** database. An authorizer could then be put in place while the
2704 ** user-entered SQL is being [sqlite3_prepare | prepared] that
2705 ** disallows everything except [SELECT] statements.
2707 ** Applications that need to process SQL from untrusted sources
2708 ** might also consider lowering resource limits using [sqlite3_limit()]
2709 ** and limiting database size using the [max_page_count] [PRAGMA]
2710 ** in addition to using an authorizer.
2712 ** ^(Only a single authorizer can be in place on a database connection
2713 ** at a time. Each call to sqlite3_set_authorizer overrides the
2714 ** previous call.)^ ^Disable the authorizer by installing a NULL callback.
2715 ** The authorizer is disabled by default.
2717 ** The authorizer callback must not do anything that will modify
2718 ** the database connection that invoked the authorizer callback.
2719 ** Note that [sqlite3_prepare_v2()] and [sqlite3_step()] both modify their
2720 ** database connections for the meaning of "modify" in this paragraph.
2722 ** ^When [sqlite3_prepare_v2()] is used to prepare a statement, the
2723 ** statement might be re-prepared during [sqlite3_step()] due to a
2724 ** schema change. Hence, the application should ensure that the
2725 ** correct authorizer callback remains in place during the [sqlite3_step()].
2727 ** ^Note that the authorizer callback is invoked only during
2728 ** [sqlite3_prepare()] or its variants. Authorization is not
2729 ** performed during statement evaluation in [sqlite3_step()], unless
2730 ** as stated in the previous paragraph, sqlite3_step() invokes
2731 ** sqlite3_prepare_v2() to reprepare a statement after a schema change.
2733 SQLITE_API int sqlite3_set_authorizer(
2734 sqlite3*,
2735 int (*xAuth)(void*,int,const char*,const char*,const char*,const char*),
2736 void *pUserData
2740 ** CAPI3REF: Authorizer Return Codes
2742 ** The [sqlite3_set_authorizer | authorizer callback function] must
2743 ** return either [SQLITE_OK] or one of these two constants in order
2744 ** to signal SQLite whether or not the action is permitted. See the
2745 ** [sqlite3_set_authorizer | authorizer documentation] for additional
2746 ** information.
2748 #define SQLITE_DENY 1 /* Abort the SQL statement with an error */
2749 #define SQLITE_IGNORE 2 /* Don't allow access, but don't generate an error */
2752 ** CAPI3REF: Authorizer Action Codes
2754 ** The [sqlite3_set_authorizer()] interface registers a callback function
2755 ** that is invoked to authorize certain SQL statement actions. The
2756 ** second parameter to the callback is an integer code that specifies
2757 ** what action is being authorized. These are the integer action codes that
2758 ** the authorizer callback may be passed.
2760 ** These action code values signify what kind of operation is to be
2761 ** authorized. The 3rd and 4th parameters to the authorization
2762 ** callback function will be parameters or NULL depending on which of these
2763 ** codes is used as the second parameter. ^(The 5th parameter to the
2764 ** authorizer callback is the name of the database ("main", "temp",
2765 ** etc.) if applicable.)^ ^The 6th parameter to the authorizer callback
2766 ** is the name of the inner-most trigger or view that is responsible for
2767 ** the access attempt or NULL if this access attempt is directly from
2768 ** top-level SQL code.
2770 /******************************************* 3rd ************ 4th ***********/
2771 #define SQLITE_CREATE_INDEX 1 /* Index Name Table Name */
2772 #define SQLITE_CREATE_TABLE 2 /* Table Name NULL */
2773 #define SQLITE_CREATE_TEMP_INDEX 3 /* Index Name Table Name */
2774 #define SQLITE_CREATE_TEMP_TABLE 4 /* Table Name NULL */
2775 #define SQLITE_CREATE_TEMP_TRIGGER 5 /* Trigger Name Table Name */
2776 #define SQLITE_CREATE_TEMP_VIEW 6 /* View Name NULL */
2777 #define SQLITE_CREATE_TRIGGER 7 /* Trigger Name Table Name */
2778 #define SQLITE_CREATE_VIEW 8 /* View Name NULL */
2779 #define SQLITE_DELETE 9 /* Table Name NULL */
2780 #define SQLITE_DROP_INDEX 10 /* Index Name Table Name */
2781 #define SQLITE_DROP_TABLE 11 /* Table Name NULL */
2782 #define SQLITE_DROP_TEMP_INDEX 12 /* Index Name Table Name */
2783 #define SQLITE_DROP_TEMP_TABLE 13 /* Table Name NULL */
2784 #define SQLITE_DROP_TEMP_TRIGGER 14 /* Trigger Name Table Name */
2785 #define SQLITE_DROP_TEMP_VIEW 15 /* View Name NULL */
2786 #define SQLITE_DROP_TRIGGER 16 /* Trigger Name Table Name */
2787 #define SQLITE_DROP_VIEW 17 /* View Name NULL */
2788 #define SQLITE_INSERT 18 /* Table Name NULL */
2789 #define SQLITE_PRAGMA 19 /* Pragma Name 1st arg or NULL */
2790 #define SQLITE_READ 20 /* Table Name Column Name */
2791 #define SQLITE_SELECT 21 /* NULL NULL */
2792 #define SQLITE_TRANSACTION 22 /* Operation NULL */
2793 #define SQLITE_UPDATE 23 /* Table Name Column Name */
2794 #define SQLITE_ATTACH 24 /* Filename NULL */
2795 #define SQLITE_DETACH 25 /* Database Name NULL */
2796 #define SQLITE_ALTER_TABLE 26 /* Database Name Table Name */
2797 #define SQLITE_REINDEX 27 /* Index Name NULL */
2798 #define SQLITE_ANALYZE 28 /* Table Name NULL */
2799 #define SQLITE_CREATE_VTABLE 29 /* Table Name Module Name */
2800 #define SQLITE_DROP_VTABLE 30 /* Table Name Module Name */
2801 #define SQLITE_FUNCTION 31 /* NULL Function Name */
2802 #define SQLITE_SAVEPOINT 32 /* Operation Savepoint Name */
2803 #define SQLITE_COPY 0 /* No longer used */
2806 ** CAPI3REF: Tracing And Profiling Functions
2808 ** These routines register callback functions that can be used for
2809 ** tracing and profiling the execution of SQL statements.
2811 ** ^The callback function registered by sqlite3_trace() is invoked at
2812 ** various times when an SQL statement is being run by [sqlite3_step()].
2813 ** ^The sqlite3_trace() callback is invoked with a UTF-8 rendering of the
2814 ** SQL statement text as the statement first begins executing.
2815 ** ^(Additional sqlite3_trace() callbacks might occur
2816 ** as each triggered subprogram is entered. The callbacks for triggers
2817 ** contain a UTF-8 SQL comment that identifies the trigger.)^
2819 ** ^The callback function registered by sqlite3_profile() is invoked
2820 ** as each SQL statement finishes. ^The profile callback contains
2821 ** the original statement text and an estimate of wall-clock time
2822 ** of how long that statement took to run. ^The profile callback
2823 ** time is in units of nanoseconds, however the current implementation
2824 ** is only capable of millisecond resolution so the six least significant
2825 ** digits in the time are meaningless. Future versions of SQLite
2826 ** might provide greater resolution on the profiler callback. The
2827 ** sqlite3_profile() function is considered experimental and is
2828 ** subject to change in future versions of SQLite.
2830 SQLITE_API void *sqlite3_trace(sqlite3*, void(*xTrace)(void*,const char*), void*);
2831 SQLITE_API SQLITE_EXPERIMENTAL void *sqlite3_profile(sqlite3*,
2832 void(*xProfile)(void*,const char*,sqlite3_uint64), void*);
2835 ** CAPI3REF: Query Progress Callbacks
2837 ** ^The sqlite3_progress_handler(D,N,X,P) interface causes the callback
2838 ** function X to be invoked periodically during long running calls to
2839 ** [sqlite3_exec()], [sqlite3_step()] and [sqlite3_get_table()] for
2840 ** database connection D. An example use for this
2841 ** interface is to keep a GUI updated during a large query.
2843 ** ^The parameter P is passed through as the only parameter to the
2844 ** callback function X. ^The parameter N is the number of
2845 ** [virtual machine instructions] that are evaluated between successive
2846 ** invocations of the callback X.
2848 ** ^Only a single progress handler may be defined at one time per
2849 ** [database connection]; setting a new progress handler cancels the
2850 ** old one. ^Setting parameter X to NULL disables the progress handler.
2851 ** ^The progress handler is also disabled by setting N to a value less
2852 ** than 1.
2854 ** ^If the progress callback returns non-zero, the operation is
2855 ** interrupted. This feature can be used to implement a
2856 ** "Cancel" button on a GUI progress dialog box.
2858 ** The progress handler callback must not do anything that will modify
2859 ** the database connection that invoked the progress handler.
2860 ** Note that [sqlite3_prepare_v2()] and [sqlite3_step()] both modify their
2861 ** database connections for the meaning of "modify" in this paragraph.
2864 SQLITE_API void sqlite3_progress_handler(sqlite3*, int, int(*)(void*), void*);
2867 ** CAPI3REF: Opening A New Database Connection
2869 ** ^These routines open an SQLite database file whose name is given by the
2870 ** filename argument. ^The filename argument is interpreted as UTF-8 for
2871 ** sqlite3_open() and sqlite3_open_v2() and as UTF-16 in the native byte
2872 ** order for sqlite3_open16(). ^(A [database connection] handle is usually
2873 ** returned in *ppDb, even if an error occurs. The only exception is that
2874 ** if SQLite is unable to allocate memory to hold the [sqlite3] object,
2875 ** a NULL will be written into *ppDb instead of a pointer to the [sqlite3]
2876 ** object.)^ ^(If the database is opened (and/or created) successfully, then
2877 ** [SQLITE_OK] is returned. Otherwise an [error code] is returned.)^ ^The
2878 ** [sqlite3_errmsg()] or [sqlite3_errmsg16()] routines can be used to obtain
2879 ** an English language description of the error following a failure of any
2880 ** of the sqlite3_open() routines.
2882 ** ^The default encoding for the database will be UTF-8 if
2883 ** sqlite3_open() or sqlite3_open_v2() is called and
2884 ** UTF-16 in the native byte order if sqlite3_open16() is used.
2886 ** Whether or not an error occurs when it is opened, resources
2887 ** associated with the [database connection] handle should be released by
2888 ** passing it to [sqlite3_close()] when it is no longer required.
2890 ** The sqlite3_open_v2() interface works like sqlite3_open()
2891 ** except that it accepts two additional parameters for additional control
2892 ** over the new database connection. ^(The flags parameter to
2893 ** sqlite3_open_v2() can take one of
2894 ** the following three values, optionally combined with the
2895 ** [SQLITE_OPEN_NOMUTEX], [SQLITE_OPEN_FULLMUTEX], [SQLITE_OPEN_SHAREDCACHE],
2896 ** and/or [SQLITE_OPEN_PRIVATECACHE] flags:)^
2898 ** <dl>
2899 ** ^(<dt>[SQLITE_OPEN_READONLY]</dt>
2900 ** <dd>The database is opened in read-only mode. If the database does not
2901 ** already exist, an error is returned.</dd>)^
2903 ** ^(<dt>[SQLITE_OPEN_READWRITE]</dt>
2904 ** <dd>The database is opened for reading and writing if possible, or reading
2905 ** only if the file is write protected by the operating system. In either
2906 ** case the database must already exist, otherwise an error is returned.</dd>)^
2908 ** ^(<dt>[SQLITE_OPEN_READWRITE] | [SQLITE_OPEN_CREATE]</dt>
2909 ** <dd>The database is opened for reading and writing, and is created if
2910 ** it does not already exist. This is the behavior that is always used for
2911 ** sqlite3_open() and sqlite3_open16().</dd>)^
2912 ** </dl>
2914 ** If the 3rd parameter to sqlite3_open_v2() is not one of the
2915 ** combinations shown above or one of the combinations shown above combined
2916 ** with the [SQLITE_OPEN_NOMUTEX], [SQLITE_OPEN_FULLMUTEX],
2917 ** [SQLITE_OPEN_SHAREDCACHE] and/or [SQLITE_OPEN_PRIVATECACHE] flags,
2918 ** then the behavior is undefined.
2920 ** ^If the [SQLITE_OPEN_NOMUTEX] flag is set, then the database connection
2921 ** opens in the multi-thread [threading mode] as long as the single-thread
2922 ** mode has not been set at compile-time or start-time. ^If the
2923 ** [SQLITE_OPEN_FULLMUTEX] flag is set then the database connection opens
2924 ** in the serialized [threading mode] unless single-thread was
2925 ** previously selected at compile-time or start-time.
2926 ** ^The [SQLITE_OPEN_SHAREDCACHE] flag causes the database connection to be
2927 ** eligible to use [shared cache mode], regardless of whether or not shared
2928 ** cache is enabled using [sqlite3_enable_shared_cache()]. ^The
2929 ** [SQLITE_OPEN_PRIVATECACHE] flag causes the database connection to not
2930 ** participate in [shared cache mode] even if it is enabled.
2932 ** ^If the filename is ":memory:", then a private, temporary in-memory database
2933 ** is created for the connection. ^This in-memory database will vanish when
2934 ** the database connection is closed. Future versions of SQLite might
2935 ** make use of additional special filenames that begin with the ":" character.
2936 ** It is recommended that when a database filename actually does begin with
2937 ** a ":" character you should prefix the filename with a pathname such as
2938 ** "./" to avoid ambiguity.
2940 ** ^If the filename is an empty string, then a private, temporary
2941 ** on-disk database will be created. ^This private database will be
2942 ** automatically deleted as soon as the database connection is closed.
2944 ** ^The fourth parameter to sqlite3_open_v2() is the name of the
2945 ** [sqlite3_vfs] object that defines the operating system interface that
2946 ** the new database connection should use. ^If the fourth parameter is
2947 ** a NULL pointer then the default [sqlite3_vfs] object is used.
2949 ** <b>Note to Windows users:</b> The encoding used for the filename argument
2950 ** of sqlite3_open() and sqlite3_open_v2() must be UTF-8, not whatever
2951 ** codepage is currently defined. Filenames containing international
2952 ** characters must be converted to UTF-8 prior to passing them into
2953 ** sqlite3_open() or sqlite3_open_v2().
2955 SQLITE_API int sqlite3_open(
2956 const char *filename, /* Database filename (UTF-8) */
2957 sqlite3 **ppDb /* OUT: SQLite db handle */
2959 SQLITE_API int sqlite3_open16(
2960 const void *filename, /* Database filename (UTF-16) */
2961 sqlite3 **ppDb /* OUT: SQLite db handle */
2963 SQLITE_API int sqlite3_open_v2(
2964 const char *filename, /* Database filename (UTF-8) */
2965 sqlite3 **ppDb, /* OUT: SQLite db handle */
2966 int flags, /* Flags */
2967 const char *zVfs /* Name of VFS module to use */
2971 ** CAPI3REF: Error Codes And Messages
2973 ** ^The sqlite3_errcode() interface returns the numeric [result code] or
2974 ** [extended result code] for the most recent failed sqlite3_* API call
2975 ** associated with a [database connection]. If a prior API call failed
2976 ** but the most recent API call succeeded, the return value from
2977 ** sqlite3_errcode() is undefined. ^The sqlite3_extended_errcode()
2978 ** interface is the same except that it always returns the
2979 ** [extended result code] even when extended result codes are
2980 ** disabled.
2982 ** ^The sqlite3_errmsg() and sqlite3_errmsg16() return English-language
2983 ** text that describes the error, as either UTF-8 or UTF-16 respectively.
2984 ** ^(Memory to hold the error message string is managed internally.
2985 ** The application does not need to worry about freeing the result.
2986 ** However, the error string might be overwritten or deallocated by
2987 ** subsequent calls to other SQLite interface functions.)^
2989 ** When the serialized [threading mode] is in use, it might be the
2990 ** case that a second error occurs on a separate thread in between
2991 ** the time of the first error and the call to these interfaces.
2992 ** When that happens, the second error will be reported since these
2993 ** interfaces always report the most recent result. To avoid
2994 ** this, each thread can obtain exclusive use of the [database connection] D
2995 ** by invoking [sqlite3_mutex_enter]([sqlite3_db_mutex](D)) before beginning
2996 ** to use D and invoking [sqlite3_mutex_leave]([sqlite3_db_mutex](D)) after
2997 ** all calls to the interfaces listed here are completed.
2999 ** If an interface fails with SQLITE_MISUSE, that means the interface
3000 ** was invoked incorrectly by the application. In that case, the
3001 ** error code and message may or may not be set.
3003 SQLITE_API int sqlite3_errcode(sqlite3 *db);
3004 SQLITE_API int sqlite3_extended_errcode(sqlite3 *db);
3005 SQLITE_API const char *sqlite3_errmsg(sqlite3*);
3006 SQLITE_API const void *sqlite3_errmsg16(sqlite3*);
3009 ** CAPI3REF: SQL Statement Object
3010 ** KEYWORDS: {prepared statement} {prepared statements}
3012 ** An instance of this object represents a single SQL statement.
3013 ** This object is variously known as a "prepared statement" or a
3014 ** "compiled SQL statement" or simply as a "statement".
3016 ** The life of a statement object goes something like this:
3018 ** <ol>
3019 ** <li> Create the object using [sqlite3_prepare_v2()] or a related
3020 ** function.
3021 ** <li> Bind values to [host parameters] using the sqlite3_bind_*()
3022 ** interfaces.
3023 ** <li> Run the SQL by calling [sqlite3_step()] one or more times.
3024 ** <li> Reset the statement using [sqlite3_reset()] then go back
3025 ** to step 2. Do this zero or more times.
3026 ** <li> Destroy the object using [sqlite3_finalize()].
3027 ** </ol>
3029 ** Refer to documentation on individual methods above for additional
3030 ** information.
3032 typedef struct sqlite3_stmt sqlite3_stmt;
3035 ** CAPI3REF: Run-time Limits
3037 ** ^(This interface allows the size of various constructs to be limited
3038 ** on a connection by connection basis. The first parameter is the
3039 ** [database connection] whose limit is to be set or queried. The
3040 ** second parameter is one of the [limit categories] that define a
3041 ** class of constructs to be size limited. The third parameter is the
3042 ** new limit for that construct.)^
3044 ** ^If the new limit is a negative number, the limit is unchanged.
3045 ** ^(For each limit category SQLITE_LIMIT_<i>NAME</i> there is a
3046 ** [limits | hard upper bound]
3047 ** set at compile-time by a C preprocessor macro called
3048 ** [limits | SQLITE_MAX_<i>NAME</i>].
3049 ** (The "_LIMIT_" in the name is changed to "_MAX_".))^
3050 ** ^Attempts to increase a limit above its hard upper bound are
3051 ** silently truncated to the hard upper bound.
3053 ** ^Regardless of whether or not the limit was changed, the
3054 ** [sqlite3_limit()] interface returns the prior value of the limit.
3055 ** ^Hence, to find the current value of a limit without changing it,
3056 ** simply invoke this interface with the third parameter set to -1.
3058 ** Run-time limits are intended for use in applications that manage
3059 ** both their own internal database and also databases that are controlled
3060 ** by untrusted external sources. An example application might be a
3061 ** web browser that has its own databases for storing history and
3062 ** separate databases controlled by JavaScript applications downloaded
3063 ** off the Internet. The internal databases can be given the
3064 ** large, default limits. Databases managed by external sources can
3065 ** be given much smaller limits designed to prevent a denial of service
3066 ** attack. Developers might also want to use the [sqlite3_set_authorizer()]
3067 ** interface to further control untrusted SQL. The size of the database
3068 ** created by an untrusted script can be contained using the
3069 ** [max_page_count] [PRAGMA].
3071 ** New run-time limit categories may be added in future releases.
3073 SQLITE_API int sqlite3_limit(sqlite3*, int id, int newVal);
3076 ** CAPI3REF: Run-Time Limit Categories
3077 ** KEYWORDS: {limit category} {*limit categories}
3079 ** These constants define various performance limits
3080 ** that can be lowered at run-time using [sqlite3_limit()].
3081 ** The synopsis of the meanings of the various limits is shown below.
3082 ** Additional information is available at [limits | Limits in SQLite].
3084 ** <dl>
3085 ** ^(<dt>SQLITE_LIMIT_LENGTH</dt>
3086 ** <dd>The maximum size of any string or BLOB or table row, in bytes.<dd>)^
3088 ** ^(<dt>SQLITE_LIMIT_SQL_LENGTH</dt>
3089 ** <dd>The maximum length of an SQL statement, in bytes.</dd>)^
3091 ** ^(<dt>SQLITE_LIMIT_COLUMN</dt>
3092 ** <dd>The maximum number of columns in a table definition or in the
3093 ** result set of a [SELECT] or the maximum number of columns in an index
3094 ** or in an ORDER BY or GROUP BY clause.</dd>)^
3096 ** ^(<dt>SQLITE_LIMIT_EXPR_DEPTH</dt>
3097 ** <dd>The maximum depth of the parse tree on any expression.</dd>)^
3099 ** ^(<dt>SQLITE_LIMIT_COMPOUND_SELECT</dt>
3100 ** <dd>The maximum number of terms in a compound SELECT statement.</dd>)^
3102 ** ^(<dt>SQLITE_LIMIT_VDBE_OP</dt>
3103 ** <dd>The maximum number of instructions in a virtual machine program
3104 ** used to implement an SQL statement. This limit is not currently
3105 ** enforced, though that might be added in some future release of
3106 ** SQLite.</dd>)^
3108 ** ^(<dt>SQLITE_LIMIT_FUNCTION_ARG</dt>
3109 ** <dd>The maximum number of arguments on a function.</dd>)^
3111 ** ^(<dt>SQLITE_LIMIT_ATTACHED</dt>
3112 ** <dd>The maximum number of [ATTACH | attached databases].)^</dd>
3114 ** ^(<dt>SQLITE_LIMIT_LIKE_PATTERN_LENGTH</dt>
3115 ** <dd>The maximum length of the pattern argument to the [LIKE] or
3116 ** [GLOB] operators.</dd>)^
3118 ** ^(<dt>SQLITE_LIMIT_VARIABLE_NUMBER</dt>
3119 ** <dd>The maximum index number of any [parameter] in an SQL statement.)^
3121 ** ^(<dt>SQLITE_LIMIT_TRIGGER_DEPTH</dt>
3122 ** <dd>The maximum depth of recursion for triggers.</dd>)^
3123 ** </dl>
3125 #define SQLITE_LIMIT_LENGTH 0
3126 #define SQLITE_LIMIT_SQL_LENGTH 1
3127 #define SQLITE_LIMIT_COLUMN 2
3128 #define SQLITE_LIMIT_EXPR_DEPTH 3
3129 #define SQLITE_LIMIT_COMPOUND_SELECT 4
3130 #define SQLITE_LIMIT_VDBE_OP 5
3131 #define SQLITE_LIMIT_FUNCTION_ARG 6
3132 #define SQLITE_LIMIT_ATTACHED 7
3133 #define SQLITE_LIMIT_LIKE_PATTERN_LENGTH 8
3134 #define SQLITE_LIMIT_VARIABLE_NUMBER 9
3135 #define SQLITE_LIMIT_TRIGGER_DEPTH 10
3138 ** CAPI3REF: Compiling An SQL Statement
3139 ** KEYWORDS: {SQL statement compiler}
3141 ** To execute an SQL query, it must first be compiled into a byte-code
3142 ** program using one of these routines.
3144 ** The first argument, "db", is a [database connection] obtained from a
3145 ** prior successful call to [sqlite3_open()], [sqlite3_open_v2()] or
3146 ** [sqlite3_open16()]. The database connection must not have been closed.
3148 ** The second argument, "zSql", is the statement to be compiled, encoded
3149 ** as either UTF-8 or UTF-16. The sqlite3_prepare() and sqlite3_prepare_v2()
3150 ** interfaces use UTF-8, and sqlite3_prepare16() and sqlite3_prepare16_v2()
3151 ** use UTF-16.
3153 ** ^If the nByte argument is less than zero, then zSql is read up to the
3154 ** first zero terminator. ^If nByte is non-negative, then it is the maximum
3155 ** number of bytes read from zSql. ^When nByte is non-negative, the
3156 ** zSql string ends at either the first '\000' or '\u0000' character or
3157 ** the nByte-th byte, whichever comes first. If the caller knows
3158 ** that the supplied string is nul-terminated, then there is a small
3159 ** performance advantage to be gained by passing an nByte parameter that
3160 ** is equal to the number of bytes in the input string <i>including</i>
3161 ** the nul-terminator bytes.
3163 ** ^If pzTail is not NULL then *pzTail is made to point to the first byte
3164 ** past the end of the first SQL statement in zSql. These routines only
3165 ** compile the first statement in zSql, so *pzTail is left pointing to
3166 ** what remains uncompiled.
3168 ** ^*ppStmt is left pointing to a compiled [prepared statement] that can be
3169 ** executed using [sqlite3_step()]. ^If there is an error, *ppStmt is set
3170 ** to NULL. ^If the input text contains no SQL (if the input is an empty
3171 ** string or a comment) then *ppStmt is set to NULL.
3172 ** The calling procedure is responsible for deleting the compiled
3173 ** SQL statement using [sqlite3_finalize()] after it has finished with it.
3174 ** ppStmt may not be NULL.
3176 ** ^On success, the sqlite3_prepare() family of routines return [SQLITE_OK];
3177 ** otherwise an [error code] is returned.
3179 ** The sqlite3_prepare_v2() and sqlite3_prepare16_v2() interfaces are
3180 ** recommended for all new programs. The two older interfaces are retained
3181 ** for backwards compatibility, but their use is discouraged.
3182 ** ^In the "v2" interfaces, the prepared statement
3183 ** that is returned (the [sqlite3_stmt] object) contains a copy of the
3184 ** original SQL text. This causes the [sqlite3_step()] interface to
3185 ** behave differently in three ways:
3187 ** <ol>
3188 ** <li>
3189 ** ^If the database schema changes, instead of returning [SQLITE_SCHEMA] as it
3190 ** always used to do, [sqlite3_step()] will automatically recompile the SQL
3191 ** statement and try to run it again.
3192 ** </li>
3194 ** <li>
3195 ** ^When an error occurs, [sqlite3_step()] will return one of the detailed
3196 ** [error codes] or [extended error codes]. ^The legacy behavior was that
3197 ** [sqlite3_step()] would only return a generic [SQLITE_ERROR] result code
3198 ** and the application would have to make a second call to [sqlite3_reset()]
3199 ** in order to find the underlying cause of the problem. With the "v2" prepare
3200 ** interfaces, the underlying reason for the error is returned immediately.
3201 ** </li>
3203 ** <li>
3204 ** ^If the specific value bound to [parameter | host parameter] in the
3205 ** WHERE clause might influence the choice of query plan for a statement,
3206 ** then the statement will be automatically recompiled, as if there had been
3207 ** a schema change, on the first [sqlite3_step()] call following any change
3208 ** to the [sqlite3_bind_text | bindings] of that [parameter].
3209 ** ^The specific value of WHERE-clause [parameter] might influence the
3210 ** choice of query plan if the parameter is the left-hand side of a [LIKE]
3211 ** or [GLOB] operator or if the parameter is compared to an indexed column
3212 ** and the [SQLITE_ENABLE_STAT2] compile-time option is enabled.
3213 ** the
3214 ** </li>
3215 ** </ol>
3217 SQLITE_API int sqlite3_prepare(
3218 sqlite3 *db, /* Database handle */
3219 const char *zSql, /* SQL statement, UTF-8 encoded */
3220 int nByte, /* Maximum length of zSql in bytes. */
3221 sqlite3_stmt **ppStmt, /* OUT: Statement handle */
3222 const char **pzTail /* OUT: Pointer to unused portion of zSql */
3224 SQLITE_API int sqlite3_prepare_v2(
3225 sqlite3 *db, /* Database handle */
3226 const char *zSql, /* SQL statement, UTF-8 encoded */
3227 int nByte, /* Maximum length of zSql in bytes. */
3228 sqlite3_stmt **ppStmt, /* OUT: Statement handle */
3229 const char **pzTail /* OUT: Pointer to unused portion of zSql */
3231 SQLITE_API int sqlite3_prepare16(
3232 sqlite3 *db, /* Database handle */
3233 const void *zSql, /* SQL statement, UTF-16 encoded */
3234 int nByte, /* Maximum length of zSql in bytes. */
3235 sqlite3_stmt **ppStmt, /* OUT: Statement handle */
3236 const void **pzTail /* OUT: Pointer to unused portion of zSql */
3238 SQLITE_API int sqlite3_prepare16_v2(
3239 sqlite3 *db, /* Database handle */
3240 const void *zSql, /* SQL statement, UTF-16 encoded */
3241 int nByte, /* Maximum length of zSql in bytes. */
3242 sqlite3_stmt **ppStmt, /* OUT: Statement handle */
3243 const void **pzTail /* OUT: Pointer to unused portion of zSql */
3247 ** CAPI3REF: Retrieving Statement SQL
3249 ** ^This interface can be used to retrieve a saved copy of the original
3250 ** SQL text used to create a [prepared statement] if that statement was
3251 ** compiled using either [sqlite3_prepare_v2()] or [sqlite3_prepare16_v2()].
3253 SQLITE_API const char *sqlite3_sql(sqlite3_stmt *pStmt);
3256 ** CAPI3REF: Determine If An SQL Statement Writes The Database
3258 ** ^The sqlite3_stmt_readonly(X) interface returns true (non-zero) if
3259 ** and only if the [prepared statement] X makes no direct changes to
3260 ** the content of the database file.
3262 ** Note that [application-defined SQL functions] or
3263 ** [virtual tables] might change the database indirectly as a side effect.
3264 ** ^(For example, if an application defines a function "eval()" that
3265 ** calls [sqlite3_exec()], then the following SQL statement would
3266 ** change the database file through side-effects:
3268 ** <blockquote><pre>
3269 ** SELECT eval('DELETE FROM t1') FROM t2;
3270 ** </pre></blockquote>
3272 ** But because the [SELECT] statement does not change the database file
3273 ** directly, sqlite3_stmt_readonly() would still return true.)^
3275 ** ^Transaction control statements such as [BEGIN], [COMMIT], [ROLLBACK],
3276 ** [SAVEPOINT], and [RELEASE] cause sqlite3_stmt_readonly() to return true,
3277 ** since the statements themselves do not actually modify the database but
3278 ** rather they control the timing of when other statements modify the
3279 ** database. ^The [ATTACH] and [DETACH] statements also cause
3280 ** sqlite3_stmt_readonly() to return true since, while those statements
3281 ** change the configuration of a database connection, they do not make
3282 ** changes to the content of the database files on disk.
3284 SQLITE_API int sqlite3_stmt_readonly(sqlite3_stmt *pStmt);
3287 ** CAPI3REF: Dynamically Typed Value Object
3288 ** KEYWORDS: {protected sqlite3_value} {unprotected sqlite3_value}
3290 ** SQLite uses the sqlite3_value object to represent all values
3291 ** that can be stored in a database table. SQLite uses dynamic typing
3292 ** for the values it stores. ^Values stored in sqlite3_value objects
3293 ** can be integers, floating point values, strings, BLOBs, or NULL.
3295 ** An sqlite3_value object may be either "protected" or "unprotected".
3296 ** Some interfaces require a protected sqlite3_value. Other interfaces
3297 ** will accept either a protected or an unprotected sqlite3_value.
3298 ** Every interface that accepts sqlite3_value arguments specifies
3299 ** whether or not it requires a protected sqlite3_value.
3301 ** The terms "protected" and "unprotected" refer to whether or not
3302 ** a mutex is held. An internal mutex is held for a protected
3303 ** sqlite3_value object but no mutex is held for an unprotected
3304 ** sqlite3_value object. If SQLite is compiled to be single-threaded
3305 ** (with [SQLITE_THREADSAFE=0] and with [sqlite3_threadsafe()] returning 0)
3306 ** or if SQLite is run in one of reduced mutex modes
3307 ** [SQLITE_CONFIG_SINGLETHREAD] or [SQLITE_CONFIG_MULTITHREAD]
3308 ** then there is no distinction between protected and unprotected
3309 ** sqlite3_value objects and they can be used interchangeably. However,
3310 ** for maximum code portability it is recommended that applications
3311 ** still make the distinction between protected and unprotected
3312 ** sqlite3_value objects even when not strictly required.
3314 ** ^The sqlite3_value objects that are passed as parameters into the
3315 ** implementation of [application-defined SQL functions] are protected.
3316 ** ^The sqlite3_value object returned by
3317 ** [sqlite3_column_value()] is unprotected.
3318 ** Unprotected sqlite3_value objects may only be used with
3319 ** [sqlite3_result_value()] and [sqlite3_bind_value()].
3320 ** The [sqlite3_value_blob | sqlite3_value_type()] family of
3321 ** interfaces require protected sqlite3_value objects.
3323 typedef struct Mem sqlite3_value;
3326 ** CAPI3REF: SQL Function Context Object
3328 ** The context in which an SQL function executes is stored in an
3329 ** sqlite3_context object. ^A pointer to an sqlite3_context object
3330 ** is always first parameter to [application-defined SQL functions].
3331 ** The application-defined SQL function implementation will pass this
3332 ** pointer through into calls to [sqlite3_result_int | sqlite3_result()],
3333 ** [sqlite3_aggregate_context()], [sqlite3_user_data()],
3334 ** [sqlite3_context_db_handle()], [sqlite3_get_auxdata()],
3335 ** and/or [sqlite3_set_auxdata()].
3337 typedef struct sqlite3_context sqlite3_context;
3340 ** CAPI3REF: Binding Values To Prepared Statements
3341 ** KEYWORDS: {host parameter} {host parameters} {host parameter name}
3342 ** KEYWORDS: {SQL parameter} {SQL parameters} {parameter binding}
3344 ** ^(In the SQL statement text input to [sqlite3_prepare_v2()] and its variants,
3345 ** literals may be replaced by a [parameter] that matches one of following
3346 ** templates:
3348 ** <ul>
3349 ** <li> ?
3350 ** <li> ?NNN
3351 ** <li> :VVV
3352 ** <li> @VVV
3353 ** <li> $VVV
3354 ** </ul>
3356 ** In the templates above, NNN represents an integer literal,
3357 ** and VVV represents an alphanumeric identifier.)^ ^The values of these
3358 ** parameters (also called "host parameter names" or "SQL parameters")
3359 ** can be set using the sqlite3_bind_*() routines defined here.
3361 ** ^The first argument to the sqlite3_bind_*() routines is always
3362 ** a pointer to the [sqlite3_stmt] object returned from
3363 ** [sqlite3_prepare_v2()] or its variants.
3365 ** ^The second argument is the index of the SQL parameter to be set.
3366 ** ^The leftmost SQL parameter has an index of 1. ^When the same named
3367 ** SQL parameter is used more than once, second and subsequent
3368 ** occurrences have the same index as the first occurrence.
3369 ** ^The index for named parameters can be looked up using the
3370 ** [sqlite3_bind_parameter_index()] API if desired. ^The index
3371 ** for "?NNN" parameters is the value of NNN.
3372 ** ^The NNN value must be between 1 and the [sqlite3_limit()]
3373 ** parameter [SQLITE_LIMIT_VARIABLE_NUMBER] (default value: 999).
3375 ** ^The third argument is the value to bind to the parameter.
3377 ** ^(In those routines that have a fourth argument, its value is the
3378 ** number of bytes in the parameter. To be clear: the value is the
3379 ** number of <u>bytes</u> in the value, not the number of characters.)^
3380 ** ^If the fourth parameter is negative, the length of the string is
3381 ** the number of bytes up to the first zero terminator.
3383 ** ^The fifth argument to sqlite3_bind_blob(), sqlite3_bind_text(), and
3384 ** sqlite3_bind_text16() is a destructor used to dispose of the BLOB or
3385 ** string after SQLite has finished with it. ^The destructor is called
3386 ** to dispose of the BLOB or string even if the call to sqlite3_bind_blob(),
3387 ** sqlite3_bind_text(), or sqlite3_bind_text16() fails.
3388 ** ^If the fifth argument is
3389 ** the special value [SQLITE_STATIC], then SQLite assumes that the
3390 ** information is in static, unmanaged space and does not need to be freed.
3391 ** ^If the fifth argument has the value [SQLITE_TRANSIENT], then
3392 ** SQLite makes its own private copy of the data immediately, before
3393 ** the sqlite3_bind_*() routine returns.
3395 ** ^The sqlite3_bind_zeroblob() routine binds a BLOB of length N that
3396 ** is filled with zeroes. ^A zeroblob uses a fixed amount of memory
3397 ** (just an integer to hold its size) while it is being processed.
3398 ** Zeroblobs are intended to serve as placeholders for BLOBs whose
3399 ** content is later written using
3400 ** [sqlite3_blob_open | incremental BLOB I/O] routines.
3401 ** ^A negative value for the zeroblob results in a zero-length BLOB.
3403 ** ^If any of the sqlite3_bind_*() routines are called with a NULL pointer
3404 ** for the [prepared statement] or with a prepared statement for which
3405 ** [sqlite3_step()] has been called more recently than [sqlite3_reset()],
3406 ** then the call will return [SQLITE_MISUSE]. If any sqlite3_bind_()
3407 ** routine is passed a [prepared statement] that has been finalized, the
3408 ** result is undefined and probably harmful.
3410 ** ^Bindings are not cleared by the [sqlite3_reset()] routine.
3411 ** ^Unbound parameters are interpreted as NULL.
3413 ** ^The sqlite3_bind_* routines return [SQLITE_OK] on success or an
3414 ** [error code] if anything goes wrong.
3415 ** ^[SQLITE_RANGE] is returned if the parameter
3416 ** index is out of range. ^[SQLITE_NOMEM] is returned if malloc() fails.
3418 ** See also: [sqlite3_bind_parameter_count()],
3419 ** [sqlite3_bind_parameter_name()], and [sqlite3_bind_parameter_index()].
3421 SQLITE_API int sqlite3_bind_blob(sqlite3_stmt*, int, const void*, int n, void(*)(void*));
3422 SQLITE_API int sqlite3_bind_double(sqlite3_stmt*, int, double);
3423 SQLITE_API int sqlite3_bind_int(sqlite3_stmt*, int, int);
3424 SQLITE_API int sqlite3_bind_int64(sqlite3_stmt*, int, sqlite3_int64);
3425 SQLITE_API int sqlite3_bind_null(sqlite3_stmt*, int);
3426 SQLITE_API int sqlite3_bind_text(sqlite3_stmt*, int, const char*, int n, void(*)(void*));
3427 SQLITE_API int sqlite3_bind_text16(sqlite3_stmt*, int, const void*, int, void(*)(void*));
3428 SQLITE_API int sqlite3_bind_value(sqlite3_stmt*, int, const sqlite3_value*);
3429 SQLITE_API int sqlite3_bind_zeroblob(sqlite3_stmt*, int, int n);
3432 ** CAPI3REF: Number Of SQL Parameters
3434 ** ^This routine can be used to find the number of [SQL parameters]
3435 ** in a [prepared statement]. SQL parameters are tokens of the
3436 ** form "?", "?NNN", ":AAA", "$AAA", or "@AAA" that serve as
3437 ** placeholders for values that are [sqlite3_bind_blob | bound]
3438 ** to the parameters at a later time.
3440 ** ^(This routine actually returns the index of the largest (rightmost)
3441 ** parameter. For all forms except ?NNN, this will correspond to the
3442 ** number of unique parameters. If parameters of the ?NNN form are used,
3443 ** there may be gaps in the list.)^
3445 ** See also: [sqlite3_bind_blob|sqlite3_bind()],
3446 ** [sqlite3_bind_parameter_name()], and
3447 ** [sqlite3_bind_parameter_index()].
3449 SQLITE_API int sqlite3_bind_parameter_count(sqlite3_stmt*);
3452 ** CAPI3REF: Name Of A Host Parameter
3454 ** ^The sqlite3_bind_parameter_name(P,N) interface returns
3455 ** the name of the N-th [SQL parameter] in the [prepared statement] P.
3456 ** ^(SQL parameters of the form "?NNN" or ":AAA" or "@AAA" or "$AAA"
3457 ** have a name which is the string "?NNN" or ":AAA" or "@AAA" or "$AAA"
3458 ** respectively.
3459 ** In other words, the initial ":" or "$" or "@" or "?"
3460 ** is included as part of the name.)^
3461 ** ^Parameters of the form "?" without a following integer have no name
3462 ** and are referred to as "nameless" or "anonymous parameters".
3464 ** ^The first host parameter has an index of 1, not 0.
3466 ** ^If the value N is out of range or if the N-th parameter is
3467 ** nameless, then NULL is returned. ^The returned string is
3468 ** always in UTF-8 encoding even if the named parameter was
3469 ** originally specified as UTF-16 in [sqlite3_prepare16()] or
3470 ** [sqlite3_prepare16_v2()].
3472 ** See also: [sqlite3_bind_blob|sqlite3_bind()],
3473 ** [sqlite3_bind_parameter_count()], and
3474 ** [sqlite3_bind_parameter_index()].
3476 SQLITE_API const char *sqlite3_bind_parameter_name(sqlite3_stmt*, int);
3479 ** CAPI3REF: Index Of A Parameter With A Given Name
3481 ** ^Return the index of an SQL parameter given its name. ^The
3482 ** index value returned is suitable for use as the second
3483 ** parameter to [sqlite3_bind_blob|sqlite3_bind()]. ^A zero
3484 ** is returned if no matching parameter is found. ^The parameter
3485 ** name must be given in UTF-8 even if the original statement
3486 ** was prepared from UTF-16 text using [sqlite3_prepare16_v2()].
3488 ** See also: [sqlite3_bind_blob|sqlite3_bind()],
3489 ** [sqlite3_bind_parameter_count()], and
3490 ** [sqlite3_bind_parameter_index()].
3492 SQLITE_API int sqlite3_bind_parameter_index(sqlite3_stmt*, const char *zName);
3495 ** CAPI3REF: Reset All Bindings On A Prepared Statement
3497 ** ^Contrary to the intuition of many, [sqlite3_reset()] does not reset
3498 ** the [sqlite3_bind_blob | bindings] on a [prepared statement].
3499 ** ^Use this routine to reset all host parameters to NULL.
3501 SQLITE_API int sqlite3_clear_bindings(sqlite3_stmt*);
3504 ** CAPI3REF: Number Of Columns In A Result Set
3506 ** ^Return the number of columns in the result set returned by the
3507 ** [prepared statement]. ^This routine returns 0 if pStmt is an SQL
3508 ** statement that does not return data (for example an [UPDATE]).
3510 ** See also: [sqlite3_data_count()]
3512 SQLITE_API int sqlite3_column_count(sqlite3_stmt *pStmt);
3515 ** CAPI3REF: Column Names In A Result Set
3517 ** ^These routines return the name assigned to a particular column
3518 ** in the result set of a [SELECT] statement. ^The sqlite3_column_name()
3519 ** interface returns a pointer to a zero-terminated UTF-8 string
3520 ** and sqlite3_column_name16() returns a pointer to a zero-terminated
3521 ** UTF-16 string. ^The first parameter is the [prepared statement]
3522 ** that implements the [SELECT] statement. ^The second parameter is the
3523 ** column number. ^The leftmost column is number 0.
3525 ** ^The returned string pointer is valid until either the [prepared statement]
3526 ** is destroyed by [sqlite3_finalize()] or until the statement is automatically
3527 ** reprepared by the first call to [sqlite3_step()] for a particular run
3528 ** or until the next call to
3529 ** sqlite3_column_name() or sqlite3_column_name16() on the same column.
3531 ** ^If sqlite3_malloc() fails during the processing of either routine
3532 ** (for example during a conversion from UTF-8 to UTF-16) then a
3533 ** NULL pointer is returned.
3535 ** ^The name of a result column is the value of the "AS" clause for
3536 ** that column, if there is an AS clause. If there is no AS clause
3537 ** then the name of the column is unspecified and may change from
3538 ** one release of SQLite to the next.
3540 SQLITE_API const char *sqlite3_column_name(sqlite3_stmt*, int N);
3541 SQLITE_API const void *sqlite3_column_name16(sqlite3_stmt*, int N);
3544 ** CAPI3REF: Source Of Data In A Query Result
3546 ** ^These routines provide a means to determine the database, table, and
3547 ** table column that is the origin of a particular result column in
3548 ** [SELECT] statement.
3549 ** ^The name of the database or table or column can be returned as
3550 ** either a UTF-8 or UTF-16 string. ^The _database_ routines return
3551 ** the database name, the _table_ routines return the table name, and
3552 ** the origin_ routines return the column name.
3553 ** ^The returned string is valid until the [prepared statement] is destroyed
3554 ** using [sqlite3_finalize()] or until the statement is automatically
3555 ** reprepared by the first call to [sqlite3_step()] for a particular run
3556 ** or until the same information is requested
3557 ** again in a different encoding.
3559 ** ^The names returned are the original un-aliased names of the
3560 ** database, table, and column.
3562 ** ^The first argument to these interfaces is a [prepared statement].
3563 ** ^These functions return information about the Nth result column returned by
3564 ** the statement, where N is the second function argument.
3565 ** ^The left-most column is column 0 for these routines.
3567 ** ^If the Nth column returned by the statement is an expression or
3568 ** subquery and is not a column value, then all of these functions return
3569 ** NULL. ^These routine might also return NULL if a memory allocation error
3570 ** occurs. ^Otherwise, they return the name of the attached database, table,
3571 ** or column that query result column was extracted from.
3573 ** ^As with all other SQLite APIs, those whose names end with "16" return
3574 ** UTF-16 encoded strings and the other functions return UTF-8.
3576 ** ^These APIs are only available if the library was compiled with the
3577 ** [SQLITE_ENABLE_COLUMN_METADATA] C-preprocessor symbol.
3579 ** If two or more threads call one or more of these routines against the same
3580 ** prepared statement and column at the same time then the results are
3581 ** undefined.
3583 ** If two or more threads call one or more
3584 ** [sqlite3_column_database_name | column metadata interfaces]
3585 ** for the same [prepared statement] and result column
3586 ** at the same time then the results are undefined.
3588 SQLITE_API const char *sqlite3_column_database_name(sqlite3_stmt*,int);
3589 SQLITE_API const void *sqlite3_column_database_name16(sqlite3_stmt*,int);
3590 SQLITE_API const char *sqlite3_column_table_name(sqlite3_stmt*,int);
3591 SQLITE_API const void *sqlite3_column_table_name16(sqlite3_stmt*,int);
3592 SQLITE_API const char *sqlite3_column_origin_name(sqlite3_stmt*,int);
3593 SQLITE_API const void *sqlite3_column_origin_name16(sqlite3_stmt*,int);
3596 ** CAPI3REF: Declared Datatype Of A Query Result
3598 ** ^(The first parameter is a [prepared statement].
3599 ** If this statement is a [SELECT] statement and the Nth column of the
3600 ** returned result set of that [SELECT] is a table column (not an
3601 ** expression or subquery) then the declared type of the table
3602 ** column is returned.)^ ^If the Nth column of the result set is an
3603 ** expression or subquery, then a NULL pointer is returned.
3604 ** ^The returned string is always UTF-8 encoded.
3606 ** ^(For example, given the database schema:
3608 ** CREATE TABLE t1(c1 VARIANT);
3610 ** and the following statement to be compiled:
3612 ** SELECT c1 + 1, c1 FROM t1;
3614 ** this routine would return the string "VARIANT" for the second result
3615 ** column (i==1), and a NULL pointer for the first result column (i==0).)^
3617 ** ^SQLite uses dynamic run-time typing. ^So just because a column
3618 ** is declared to contain a particular type does not mean that the
3619 ** data stored in that column is of the declared type. SQLite is
3620 ** strongly typed, but the typing is dynamic not static. ^Type
3621 ** is associated with individual values, not with the containers
3622 ** used to hold those values.
3624 SQLITE_API const char *sqlite3_column_decltype(sqlite3_stmt*,int);
3625 SQLITE_API const void *sqlite3_column_decltype16(sqlite3_stmt*,int);
3628 ** CAPI3REF: Evaluate An SQL Statement
3630 ** After a [prepared statement] has been prepared using either
3631 ** [sqlite3_prepare_v2()] or [sqlite3_prepare16_v2()] or one of the legacy
3632 ** interfaces [sqlite3_prepare()] or [sqlite3_prepare16()], this function
3633 ** must be called one or more times to evaluate the statement.
3635 ** The details of the behavior of the sqlite3_step() interface depend
3636 ** on whether the statement was prepared using the newer "v2" interface
3637 ** [sqlite3_prepare_v2()] and [sqlite3_prepare16_v2()] or the older legacy
3638 ** interface [sqlite3_prepare()] and [sqlite3_prepare16()]. The use of the
3639 ** new "v2" interface is recommended for new applications but the legacy
3640 ** interface will continue to be supported.
3642 ** ^In the legacy interface, the return value will be either [SQLITE_BUSY],
3643 ** [SQLITE_DONE], [SQLITE_ROW], [SQLITE_ERROR], or [SQLITE_MISUSE].
3644 ** ^With the "v2" interface, any of the other [result codes] or
3645 ** [extended result codes] might be returned as well.
3647 ** ^[SQLITE_BUSY] means that the database engine was unable to acquire the
3648 ** database locks it needs to do its job. ^If the statement is a [COMMIT]
3649 ** or occurs outside of an explicit transaction, then you can retry the
3650 ** statement. If the statement is not a [COMMIT] and occurs within a
3651 ** explicit transaction then you should rollback the transaction before
3652 ** continuing.
3654 ** ^[SQLITE_DONE] means that the statement has finished executing
3655 ** successfully. sqlite3_step() should not be called again on this virtual
3656 ** machine without first calling [sqlite3_reset()] to reset the virtual
3657 ** machine back to its initial state.
3659 ** ^If the SQL statement being executed returns any data, then [SQLITE_ROW]
3660 ** is returned each time a new row of data is ready for processing by the
3661 ** caller. The values may be accessed using the [column access functions].
3662 ** sqlite3_step() is called again to retrieve the next row of data.
3664 ** ^[SQLITE_ERROR] means that a run-time error (such as a constraint
3665 ** violation) has occurred. sqlite3_step() should not be called again on
3666 ** the VM. More information may be found by calling [sqlite3_errmsg()].
3667 ** ^With the legacy interface, a more specific error code (for example,
3668 ** [SQLITE_INTERRUPT], [SQLITE_SCHEMA], [SQLITE_CORRUPT], and so forth)
3669 ** can be obtained by calling [sqlite3_reset()] on the
3670 ** [prepared statement]. ^In the "v2" interface,
3671 ** the more specific error code is returned directly by sqlite3_step().
3673 ** [SQLITE_MISUSE] means that the this routine was called inappropriately.
3674 ** Perhaps it was called on a [prepared statement] that has
3675 ** already been [sqlite3_finalize | finalized] or on one that had
3676 ** previously returned [SQLITE_ERROR] or [SQLITE_DONE]. Or it could
3677 ** be the case that the same database connection is being used by two or
3678 ** more threads at the same moment in time.
3680 ** For all versions of SQLite up to and including 3.6.23.1, a call to
3681 ** [sqlite3_reset()] was required after sqlite3_step() returned anything
3682 ** other than [SQLITE_ROW] before any subsequent invocation of
3683 ** sqlite3_step(). Failure to reset the prepared statement using
3684 ** [sqlite3_reset()] would result in an [SQLITE_MISUSE] return from
3685 ** sqlite3_step(). But after version 3.6.23.1, sqlite3_step() began
3686 ** calling [sqlite3_reset()] automatically in this circumstance rather
3687 ** than returning [SQLITE_MISUSE]. This is not considered a compatibility
3688 ** break because any application that ever receives an SQLITE_MISUSE error
3689 ** is broken by definition. The [SQLITE_OMIT_AUTORESET] compile-time option
3690 ** can be used to restore the legacy behavior.
3692 ** <b>Goofy Interface Alert:</b> In the legacy interface, the sqlite3_step()
3693 ** API always returns a generic error code, [SQLITE_ERROR], following any
3694 ** error other than [SQLITE_BUSY] and [SQLITE_MISUSE]. You must call
3695 ** [sqlite3_reset()] or [sqlite3_finalize()] in order to find one of the
3696 ** specific [error codes] that better describes the error.
3697 ** We admit that this is a goofy design. The problem has been fixed
3698 ** with the "v2" interface. If you prepare all of your SQL statements
3699 ** using either [sqlite3_prepare_v2()] or [sqlite3_prepare16_v2()] instead
3700 ** of the legacy [sqlite3_prepare()] and [sqlite3_prepare16()] interfaces,
3701 ** then the more specific [error codes] are returned directly
3702 ** by sqlite3_step(). The use of the "v2" interface is recommended.
3704 SQLITE_API int sqlite3_step(sqlite3_stmt*);
3707 ** CAPI3REF: Number of columns in a result set
3709 ** ^The sqlite3_data_count(P) interface returns the number of columns in the
3710 ** current row of the result set of [prepared statement] P.
3711 ** ^If prepared statement P does not have results ready to return
3712 ** (via calls to the [sqlite3_column_int | sqlite3_column_*()] of
3713 ** interfaces) then sqlite3_data_count(P) returns 0.
3714 ** ^The sqlite3_data_count(P) routine also returns 0 if P is a NULL pointer.
3716 ** See also: [sqlite3_column_count()]
3718 SQLITE_API int sqlite3_data_count(sqlite3_stmt *pStmt);
3721 ** CAPI3REF: Fundamental Datatypes
3722 ** KEYWORDS: SQLITE_TEXT
3724 ** ^(Every value in SQLite has one of five fundamental datatypes:
3726 ** <ul>
3727 ** <li> 64-bit signed integer
3728 ** <li> 64-bit IEEE floating point number
3729 ** <li> string
3730 ** <li> BLOB
3731 ** <li> NULL
3732 ** </ul>)^
3734 ** These constants are codes for each of those types.
3736 ** Note that the SQLITE_TEXT constant was also used in SQLite version 2
3737 ** for a completely different meaning. Software that links against both
3738 ** SQLite version 2 and SQLite version 3 should use SQLITE3_TEXT, not
3739 ** SQLITE_TEXT.
3741 #define SQLITE_INTEGER 1
3742 #define SQLITE_FLOAT 2
3743 #define SQLITE_BLOB 4
3744 #define SQLITE_NULL 5
3745 #ifdef SQLITE_TEXT
3746 # undef SQLITE_TEXT
3747 #else
3748 # define SQLITE_TEXT 3
3749 #endif
3750 #define SQLITE3_TEXT 3
3753 ** CAPI3REF: Result Values From A Query
3754 ** KEYWORDS: {column access functions}
3756 ** These routines form the "result set" interface.
3758 ** ^These routines return information about a single column of the current
3759 ** result row of a query. ^In every case the first argument is a pointer
3760 ** to the [prepared statement] that is being evaluated (the [sqlite3_stmt*]
3761 ** that was returned from [sqlite3_prepare_v2()] or one of its variants)
3762 ** and the second argument is the index of the column for which information
3763 ** should be returned. ^The leftmost column of the result set has the index 0.
3764 ** ^The number of columns in the result can be determined using
3765 ** [sqlite3_column_count()].
3767 ** If the SQL statement does not currently point to a valid row, or if the
3768 ** column index is out of range, the result is undefined.
3769 ** These routines may only be called when the most recent call to
3770 ** [sqlite3_step()] has returned [SQLITE_ROW] and neither
3771 ** [sqlite3_reset()] nor [sqlite3_finalize()] have been called subsequently.
3772 ** If any of these routines are called after [sqlite3_reset()] or
3773 ** [sqlite3_finalize()] or after [sqlite3_step()] has returned
3774 ** something other than [SQLITE_ROW], the results are undefined.
3775 ** If [sqlite3_step()] or [sqlite3_reset()] or [sqlite3_finalize()]
3776 ** are called from a different thread while any of these routines
3777 ** are pending, then the results are undefined.
3779 ** ^The sqlite3_column_type() routine returns the
3780 ** [SQLITE_INTEGER | datatype code] for the initial data type
3781 ** of the result column. ^The returned value is one of [SQLITE_INTEGER],
3782 ** [SQLITE_FLOAT], [SQLITE_TEXT], [SQLITE_BLOB], or [SQLITE_NULL]. The value
3783 ** returned by sqlite3_column_type() is only meaningful if no type
3784 ** conversions have occurred as described below. After a type conversion,
3785 ** the value returned by sqlite3_column_type() is undefined. Future
3786 ** versions of SQLite may change the behavior of sqlite3_column_type()
3787 ** following a type conversion.
3789 ** ^If the result is a BLOB or UTF-8 string then the sqlite3_column_bytes()
3790 ** routine returns the number of bytes in that BLOB or string.
3791 ** ^If the result is a UTF-16 string, then sqlite3_column_bytes() converts
3792 ** the string to UTF-8 and then returns the number of bytes.
3793 ** ^If the result is a numeric value then sqlite3_column_bytes() uses
3794 ** [sqlite3_snprintf()] to convert that value to a UTF-8 string and returns
3795 ** the number of bytes in that string.
3796 ** ^If the result is NULL, then sqlite3_column_bytes() returns zero.
3798 ** ^If the result is a BLOB or UTF-16 string then the sqlite3_column_bytes16()
3799 ** routine returns the number of bytes in that BLOB or string.
3800 ** ^If the result is a UTF-8 string, then sqlite3_column_bytes16() converts
3801 ** the string to UTF-16 and then returns the number of bytes.
3802 ** ^If the result is a numeric value then sqlite3_column_bytes16() uses
3803 ** [sqlite3_snprintf()] to convert that value to a UTF-16 string and returns
3804 ** the number of bytes in that string.
3805 ** ^If the result is NULL, then sqlite3_column_bytes16() returns zero.
3807 ** ^The values returned by [sqlite3_column_bytes()] and
3808 ** [sqlite3_column_bytes16()] do not include the zero terminators at the end
3809 ** of the string. ^For clarity: the values returned by
3810 ** [sqlite3_column_bytes()] and [sqlite3_column_bytes16()] are the number of
3811 ** bytes in the string, not the number of characters.
3813 ** ^Strings returned by sqlite3_column_text() and sqlite3_column_text16(),
3814 ** even empty strings, are always zero terminated. ^The return
3815 ** value from sqlite3_column_blob() for a zero-length BLOB is a NULL pointer.
3817 ** ^The object returned by [sqlite3_column_value()] is an
3818 ** [unprotected sqlite3_value] object. An unprotected sqlite3_value object
3819 ** may only be used with [sqlite3_bind_value()] and [sqlite3_result_value()].
3820 ** If the [unprotected sqlite3_value] object returned by
3821 ** [sqlite3_column_value()] is used in any other way, including calls
3822 ** to routines like [sqlite3_value_int()], [sqlite3_value_text()],
3823 ** or [sqlite3_value_bytes()], then the behavior is undefined.
3825 ** These routines attempt to convert the value where appropriate. ^For
3826 ** example, if the internal representation is FLOAT and a text result
3827 ** is requested, [sqlite3_snprintf()] is used internally to perform the
3828 ** conversion automatically. ^(The following table details the conversions
3829 ** that are applied:
3831 ** <blockquote>
3832 ** <table border="1">
3833 ** <tr><th> Internal<br>Type <th> Requested<br>Type <th> Conversion
3835 ** <tr><td> NULL <td> INTEGER <td> Result is 0
3836 ** <tr><td> NULL <td> FLOAT <td> Result is 0.0
3837 ** <tr><td> NULL <td> TEXT <td> Result is NULL pointer
3838 ** <tr><td> NULL <td> BLOB <td> Result is NULL pointer
3839 ** <tr><td> INTEGER <td> FLOAT <td> Convert from integer to float
3840 ** <tr><td> INTEGER <td> TEXT <td> ASCII rendering of the integer
3841 ** <tr><td> INTEGER <td> BLOB <td> Same as INTEGER->TEXT
3842 ** <tr><td> FLOAT <td> INTEGER <td> Convert from float to integer
3843 ** <tr><td> FLOAT <td> TEXT <td> ASCII rendering of the float
3844 ** <tr><td> FLOAT <td> BLOB <td> Same as FLOAT->TEXT
3845 ** <tr><td> TEXT <td> INTEGER <td> Use atoi()
3846 ** <tr><td> TEXT <td> FLOAT <td> Use atof()
3847 ** <tr><td> TEXT <td> BLOB <td> No change
3848 ** <tr><td> BLOB <td> INTEGER <td> Convert to TEXT then use atoi()
3849 ** <tr><td> BLOB <td> FLOAT <td> Convert to TEXT then use atof()
3850 ** <tr><td> BLOB <td> TEXT <td> Add a zero terminator if needed
3851 ** </table>
3852 ** </blockquote>)^
3854 ** The table above makes reference to standard C library functions atoi()
3855 ** and atof(). SQLite does not really use these functions. It has its
3856 ** own equivalent internal routines. The atoi() and atof() names are
3857 ** used in the table for brevity and because they are familiar to most
3858 ** C programmers.
3860 ** Note that when type conversions occur, pointers returned by prior
3861 ** calls to sqlite3_column_blob(), sqlite3_column_text(), and/or
3862 ** sqlite3_column_text16() may be invalidated.
3863 ** Type conversions and pointer invalidations might occur
3864 ** in the following cases:
3866 ** <ul>
3867 ** <li> The initial content is a BLOB and sqlite3_column_text() or
3868 ** sqlite3_column_text16() is called. A zero-terminator might
3869 ** need to be added to the string.</li>
3870 ** <li> The initial content is UTF-8 text and sqlite3_column_bytes16() or
3871 ** sqlite3_column_text16() is called. The content must be converted
3872 ** to UTF-16.</li>
3873 ** <li> The initial content is UTF-16 text and sqlite3_column_bytes() or
3874 ** sqlite3_column_text() is called. The content must be converted
3875 ** to UTF-8.</li>
3876 ** </ul>
3878 ** ^Conversions between UTF-16be and UTF-16le are always done in place and do
3879 ** not invalidate a prior pointer, though of course the content of the buffer
3880 ** that the prior pointer references will have been modified. Other kinds
3881 ** of conversion are done in place when it is possible, but sometimes they
3882 ** are not possible and in those cases prior pointers are invalidated.
3884 ** The safest and easiest to remember policy is to invoke these routines
3885 ** in one of the following ways:
3887 ** <ul>
3888 ** <li>sqlite3_column_text() followed by sqlite3_column_bytes()</li>
3889 ** <li>sqlite3_column_blob() followed by sqlite3_column_bytes()</li>
3890 ** <li>sqlite3_column_text16() followed by sqlite3_column_bytes16()</li>
3891 ** </ul>
3893 ** In other words, you should call sqlite3_column_text(),
3894 ** sqlite3_column_blob(), or sqlite3_column_text16() first to force the result
3895 ** into the desired format, then invoke sqlite3_column_bytes() or
3896 ** sqlite3_column_bytes16() to find the size of the result. Do not mix calls
3897 ** to sqlite3_column_text() or sqlite3_column_blob() with calls to
3898 ** sqlite3_column_bytes16(), and do not mix calls to sqlite3_column_text16()
3899 ** with calls to sqlite3_column_bytes().
3901 ** ^The pointers returned are valid until a type conversion occurs as
3902 ** described above, or until [sqlite3_step()] or [sqlite3_reset()] or
3903 ** [sqlite3_finalize()] is called. ^The memory space used to hold strings
3904 ** and BLOBs is freed automatically. Do <b>not</b> pass the pointers returned
3905 ** [sqlite3_column_blob()], [sqlite3_column_text()], etc. into
3906 ** [sqlite3_free()].
3908 ** ^(If a memory allocation error occurs during the evaluation of any
3909 ** of these routines, a default value is returned. The default value
3910 ** is either the integer 0, the floating point number 0.0, or a NULL
3911 ** pointer. Subsequent calls to [sqlite3_errcode()] will return
3912 ** [SQLITE_NOMEM].)^
3914 SQLITE_API const void *sqlite3_column_blob(sqlite3_stmt*, int iCol);
3915 SQLITE_API int sqlite3_column_bytes(sqlite3_stmt*, int iCol);
3916 SQLITE_API int sqlite3_column_bytes16(sqlite3_stmt*, int iCol);
3917 SQLITE_API double sqlite3_column_double(sqlite3_stmt*, int iCol);
3918 SQLITE_API int sqlite3_column_int(sqlite3_stmt*, int iCol);
3919 SQLITE_API sqlite3_int64 sqlite3_column_int64(sqlite3_stmt*, int iCol);
3920 SQLITE_API const unsigned char *sqlite3_column_text(sqlite3_stmt*, int iCol);
3921 SQLITE_API const void *sqlite3_column_text16(sqlite3_stmt*, int iCol);
3922 SQLITE_API int sqlite3_column_type(sqlite3_stmt*, int iCol);
3923 SQLITE_API sqlite3_value *sqlite3_column_value(sqlite3_stmt*, int iCol);
3926 ** CAPI3REF: Destroy A Prepared Statement Object
3928 ** ^The sqlite3_finalize() function is called to delete a [prepared statement].
3929 ** ^If the most recent evaluation of the statement encountered no errors or
3930 ** or if the statement is never been evaluated, then sqlite3_finalize() returns
3931 ** SQLITE_OK. ^If the most recent evaluation of statement S failed, then
3932 ** sqlite3_finalize(S) returns the appropriate [error code] or
3933 ** [extended error code].
3935 ** ^The sqlite3_finalize(S) routine can be called at any point during
3936 ** the life cycle of [prepared statement] S:
3937 ** before statement S is ever evaluated, after
3938 ** one or more calls to [sqlite3_reset()], or after any call
3939 ** to [sqlite3_step()] regardless of whether or not the statement has
3940 ** completed execution.
3942 ** ^Invoking sqlite3_finalize() on a NULL pointer is a harmless no-op.
3944 ** The application must finalize every [prepared statement] in order to avoid
3945 ** resource leaks. It is a grievous error for the application to try to use
3946 ** a prepared statement after it has been finalized. Any use of a prepared
3947 ** statement after it has been finalized can result in undefined and
3948 ** undesirable behavior such as segfaults and heap corruption.
3950 SQLITE_API int sqlite3_finalize(sqlite3_stmt *pStmt);
3953 ** CAPI3REF: Reset A Prepared Statement Object
3955 ** The sqlite3_reset() function is called to reset a [prepared statement]
3956 ** object back to its initial state, ready to be re-executed.
3957 ** ^Any SQL statement variables that had values bound to them using
3958 ** the [sqlite3_bind_blob | sqlite3_bind_*() API] retain their values.
3959 ** Use [sqlite3_clear_bindings()] to reset the bindings.
3961 ** ^The [sqlite3_reset(S)] interface resets the [prepared statement] S
3962 ** back to the beginning of its program.
3964 ** ^If the most recent call to [sqlite3_step(S)] for the
3965 ** [prepared statement] S returned [SQLITE_ROW] or [SQLITE_DONE],
3966 ** or if [sqlite3_step(S)] has never before been called on S,
3967 ** then [sqlite3_reset(S)] returns [SQLITE_OK].
3969 ** ^If the most recent call to [sqlite3_step(S)] for the
3970 ** [prepared statement] S indicated an error, then
3971 ** [sqlite3_reset(S)] returns an appropriate [error code].
3973 ** ^The [sqlite3_reset(S)] interface does not change the values
3974 ** of any [sqlite3_bind_blob|bindings] on the [prepared statement] S.
3976 SQLITE_API int sqlite3_reset(sqlite3_stmt *pStmt);
3979 ** CAPI3REF: Create Or Redefine SQL Functions
3980 ** KEYWORDS: {function creation routines}
3981 ** KEYWORDS: {application-defined SQL function}
3982 ** KEYWORDS: {application-defined SQL functions}
3984 ** ^These functions (collectively known as "function creation routines")
3985 ** are used to add SQL functions or aggregates or to redefine the behavior
3986 ** of existing SQL functions or aggregates. The only differences between
3987 ** these routines are the text encoding expected for
3988 ** the second parameter (the name of the function being created)
3989 ** and the presence or absence of a destructor callback for
3990 ** the application data pointer.
3992 ** ^The first parameter is the [database connection] to which the SQL
3993 ** function is to be added. ^If an application uses more than one database
3994 ** connection then application-defined SQL functions must be added
3995 ** to each database connection separately.
3997 ** ^The second parameter is the name of the SQL function to be created or
3998 ** redefined. ^The length of the name is limited to 255 bytes in a UTF-8
3999 ** representation, exclusive of the zero-terminator. ^Note that the name
4000 ** length limit is in UTF-8 bytes, not characters nor UTF-16 bytes.
4001 ** ^Any attempt to create a function with a longer name
4002 ** will result in [SQLITE_MISUSE] being returned.
4004 ** ^The third parameter (nArg)
4005 ** is the number of arguments that the SQL function or
4006 ** aggregate takes. ^If this parameter is -1, then the SQL function or
4007 ** aggregate may take any number of arguments between 0 and the limit
4008 ** set by [sqlite3_limit]([SQLITE_LIMIT_FUNCTION_ARG]). If the third
4009 ** parameter is less than -1 or greater than 127 then the behavior is
4010 ** undefined.
4012 ** ^The fourth parameter, eTextRep, specifies what
4013 ** [SQLITE_UTF8 | text encoding] this SQL function prefers for
4014 ** its parameters. Every SQL function implementation must be able to work
4015 ** with UTF-8, UTF-16le, or UTF-16be. But some implementations may be
4016 ** more efficient with one encoding than another. ^An application may
4017 ** invoke sqlite3_create_function() or sqlite3_create_function16() multiple
4018 ** times with the same function but with different values of eTextRep.
4019 ** ^When multiple implementations of the same function are available, SQLite
4020 ** will pick the one that involves the least amount of data conversion.
4021 ** If there is only a single implementation which does not care what text
4022 ** encoding is used, then the fourth argument should be [SQLITE_ANY].
4024 ** ^(The fifth parameter is an arbitrary pointer. The implementation of the
4025 ** function can gain access to this pointer using [sqlite3_user_data()].)^
4027 ** ^The sixth, seventh and eighth parameters, xFunc, xStep and xFinal, are
4028 ** pointers to C-language functions that implement the SQL function or
4029 ** aggregate. ^A scalar SQL function requires an implementation of the xFunc
4030 ** callback only; NULL pointers must be passed as the xStep and xFinal
4031 ** parameters. ^An aggregate SQL function requires an implementation of xStep
4032 ** and xFinal and NULL pointer must be passed for xFunc. ^To delete an existing
4033 ** SQL function or aggregate, pass NULL pointers for all three function
4034 ** callbacks.
4036 ** ^(If the ninth parameter to sqlite3_create_function_v2() is not NULL,
4037 ** then it is destructor for the application data pointer.
4038 ** The destructor is invoked when the function is deleted, either by being
4039 ** overloaded or when the database connection closes.)^
4040 ** ^The destructor is also invoked if the call to
4041 ** sqlite3_create_function_v2() fails.
4042 ** ^When the destructor callback of the tenth parameter is invoked, it
4043 ** is passed a single argument which is a copy of the application data
4044 ** pointer which was the fifth parameter to sqlite3_create_function_v2().
4046 ** ^It is permitted to register multiple implementations of the same
4047 ** functions with the same name but with either differing numbers of
4048 ** arguments or differing preferred text encodings. ^SQLite will use
4049 ** the implementation that most closely matches the way in which the
4050 ** SQL function is used. ^A function implementation with a non-negative
4051 ** nArg parameter is a better match than a function implementation with
4052 ** a negative nArg. ^A function where the preferred text encoding
4053 ** matches the database encoding is a better
4054 ** match than a function where the encoding is different.
4055 ** ^A function where the encoding difference is between UTF16le and UTF16be
4056 ** is a closer match than a function where the encoding difference is
4057 ** between UTF8 and UTF16.
4059 ** ^Built-in functions may be overloaded by new application-defined functions.
4061 ** ^An application-defined function is permitted to call other
4062 ** SQLite interfaces. However, such calls must not
4063 ** close the database connection nor finalize or reset the prepared
4064 ** statement in which the function is running.
4066 SQLITE_API int sqlite3_create_function(
4067 sqlite3 *db,
4068 const char *zFunctionName,
4069 int nArg,
4070 int eTextRep,
4071 void *pApp,
4072 void (*xFunc)(sqlite3_context*,int,sqlite3_value**),
4073 void (*xStep)(sqlite3_context*,int,sqlite3_value**),
4074 void (*xFinal)(sqlite3_context*)
4076 SQLITE_API int sqlite3_create_function16(
4077 sqlite3 *db,
4078 const void *zFunctionName,
4079 int nArg,
4080 int eTextRep,
4081 void *pApp,
4082 void (*xFunc)(sqlite3_context*,int,sqlite3_value**),
4083 void (*xStep)(sqlite3_context*,int,sqlite3_value**),
4084 void (*xFinal)(sqlite3_context*)
4086 SQLITE_API int sqlite3_create_function_v2(
4087 sqlite3 *db,
4088 const char *zFunctionName,
4089 int nArg,
4090 int eTextRep,
4091 void *pApp,
4092 void (*xFunc)(sqlite3_context*,int,sqlite3_value**),
4093 void (*xStep)(sqlite3_context*,int,sqlite3_value**),
4094 void (*xFinal)(sqlite3_context*),
4095 void(*xDestroy)(void*)
4099 ** CAPI3REF: Text Encodings
4101 ** These constant define integer codes that represent the various
4102 ** text encodings supported by SQLite.
4104 #define SQLITE_UTF8 1
4105 #define SQLITE_UTF16LE 2
4106 #define SQLITE_UTF16BE 3
4107 #define SQLITE_UTF16 4 /* Use native byte order */
4108 #define SQLITE_ANY 5 /* sqlite3_create_function only */
4109 #define SQLITE_UTF16_ALIGNED 8 /* sqlite3_create_collation only */
4112 ** CAPI3REF: Deprecated Functions
4113 ** DEPRECATED
4115 ** These functions are [deprecated]. In order to maintain
4116 ** backwards compatibility with older code, these functions continue
4117 ** to be supported. However, new applications should avoid
4118 ** the use of these functions. To help encourage people to avoid
4119 ** using these functions, we are not going to tell you what they do.
4121 #ifndef SQLITE_OMIT_DEPRECATED
4122 SQLITE_API SQLITE_DEPRECATED int sqlite3_aggregate_count(sqlite3_context*);
4123 SQLITE_API SQLITE_DEPRECATED int sqlite3_expired(sqlite3_stmt*);
4124 SQLITE_API SQLITE_DEPRECATED int sqlite3_transfer_bindings(sqlite3_stmt*, sqlite3_stmt*);
4125 SQLITE_API SQLITE_DEPRECATED int sqlite3_global_recover(void);
4126 SQLITE_API SQLITE_DEPRECATED void sqlite3_thread_cleanup(void);
4127 SQLITE_API SQLITE_DEPRECATED int sqlite3_memory_alarm(void(*)(void*,sqlite3_int64,int),void*,sqlite3_int64);
4128 #endif
4131 ** CAPI3REF: Obtaining SQL Function Parameter Values
4133 ** The C-language implementation of SQL functions and aggregates uses
4134 ** this set of interface routines to access the parameter values on
4135 ** the function or aggregate.
4137 ** The xFunc (for scalar functions) or xStep (for aggregates) parameters
4138 ** to [sqlite3_create_function()] and [sqlite3_create_function16()]
4139 ** define callbacks that implement the SQL functions and aggregates.
4140 ** The 3rd parameter to these callbacks is an array of pointers to
4141 ** [protected sqlite3_value] objects. There is one [sqlite3_value] object for
4142 ** each parameter to the SQL function. These routines are used to
4143 ** extract values from the [sqlite3_value] objects.
4145 ** These routines work only with [protected sqlite3_value] objects.
4146 ** Any attempt to use these routines on an [unprotected sqlite3_value]
4147 ** object results in undefined behavior.
4149 ** ^These routines work just like the corresponding [column access functions]
4150 ** except that these routines take a single [protected sqlite3_value] object
4151 ** pointer instead of a [sqlite3_stmt*] pointer and an integer column number.
4153 ** ^The sqlite3_value_text16() interface extracts a UTF-16 string
4154 ** in the native byte-order of the host machine. ^The
4155 ** sqlite3_value_text16be() and sqlite3_value_text16le() interfaces
4156 ** extract UTF-16 strings as big-endian and little-endian respectively.
4158 ** ^(The sqlite3_value_numeric_type() interface attempts to apply
4159 ** numeric affinity to the value. This means that an attempt is
4160 ** made to convert the value to an integer or floating point. If
4161 ** such a conversion is possible without loss of information (in other
4162 ** words, if the value is a string that looks like a number)
4163 ** then the conversion is performed. Otherwise no conversion occurs.
4164 ** The [SQLITE_INTEGER | datatype] after conversion is returned.)^
4166 ** Please pay particular attention to the fact that the pointer returned
4167 ** from [sqlite3_value_blob()], [sqlite3_value_text()], or
4168 ** [sqlite3_value_text16()] can be invalidated by a subsequent call to
4169 ** [sqlite3_value_bytes()], [sqlite3_value_bytes16()], [sqlite3_value_text()],
4170 ** or [sqlite3_value_text16()].
4172 ** These routines must be called from the same thread as
4173 ** the SQL function that supplied the [sqlite3_value*] parameters.
4175 SQLITE_API const void *sqlite3_value_blob(sqlite3_value*);
4176 SQLITE_API int sqlite3_value_bytes(sqlite3_value*);
4177 SQLITE_API int sqlite3_value_bytes16(sqlite3_value*);
4178 SQLITE_API double sqlite3_value_double(sqlite3_value*);
4179 SQLITE_API int sqlite3_value_int(sqlite3_value*);
4180 SQLITE_API sqlite3_int64 sqlite3_value_int64(sqlite3_value*);
4181 SQLITE_API const unsigned char *sqlite3_value_text(sqlite3_value*);
4182 SQLITE_API const void *sqlite3_value_text16(sqlite3_value*);
4183 SQLITE_API const void *sqlite3_value_text16le(sqlite3_value*);
4184 SQLITE_API const void *sqlite3_value_text16be(sqlite3_value*);
4185 SQLITE_API int sqlite3_value_type(sqlite3_value*);
4186 SQLITE_API int sqlite3_value_numeric_type(sqlite3_value*);
4189 ** CAPI3REF: Obtain Aggregate Function Context
4191 ** Implementations of aggregate SQL functions use this
4192 ** routine to allocate memory for storing their state.
4194 ** ^The first time the sqlite3_aggregate_context(C,N) routine is called
4195 ** for a particular aggregate function, SQLite
4196 ** allocates N of memory, zeroes out that memory, and returns a pointer
4197 ** to the new memory. ^On second and subsequent calls to
4198 ** sqlite3_aggregate_context() for the same aggregate function instance,
4199 ** the same buffer is returned. Sqlite3_aggregate_context() is normally
4200 ** called once for each invocation of the xStep callback and then one
4201 ** last time when the xFinal callback is invoked. ^(When no rows match
4202 ** an aggregate query, the xStep() callback of the aggregate function
4203 ** implementation is never called and xFinal() is called exactly once.
4204 ** In those cases, sqlite3_aggregate_context() might be called for the
4205 ** first time from within xFinal().)^
4207 ** ^The sqlite3_aggregate_context(C,N) routine returns a NULL pointer if N is
4208 ** less than or equal to zero or if a memory allocate error occurs.
4210 ** ^(The amount of space allocated by sqlite3_aggregate_context(C,N) is
4211 ** determined by the N parameter on first successful call. Changing the
4212 ** value of N in subsequent call to sqlite3_aggregate_context() within
4213 ** the same aggregate function instance will not resize the memory
4214 ** allocation.)^
4216 ** ^SQLite automatically frees the memory allocated by
4217 ** sqlite3_aggregate_context() when the aggregate query concludes.
4219 ** The first parameter must be a copy of the
4220 ** [sqlite3_context | SQL function context] that is the first parameter
4221 ** to the xStep or xFinal callback routine that implements the aggregate
4222 ** function.
4224 ** This routine must be called from the same thread in which
4225 ** the aggregate SQL function is running.
4227 SQLITE_API void *sqlite3_aggregate_context(sqlite3_context*, int nBytes);
4230 ** CAPI3REF: User Data For Functions
4232 ** ^The sqlite3_user_data() interface returns a copy of
4233 ** the pointer that was the pUserData parameter (the 5th parameter)
4234 ** of the [sqlite3_create_function()]
4235 ** and [sqlite3_create_function16()] routines that originally
4236 ** registered the application defined function.
4238 ** This routine must be called from the same thread in which
4239 ** the application-defined function is running.
4241 SQLITE_API void *sqlite3_user_data(sqlite3_context*);
4244 ** CAPI3REF: Database Connection For Functions
4246 ** ^The sqlite3_context_db_handle() interface returns a copy of
4247 ** the pointer to the [database connection] (the 1st parameter)
4248 ** of the [sqlite3_create_function()]
4249 ** and [sqlite3_create_function16()] routines that originally
4250 ** registered the application defined function.
4252 SQLITE_API sqlite3 *sqlite3_context_db_handle(sqlite3_context*);
4255 ** CAPI3REF: Function Auxiliary Data
4257 ** The following two functions may be used by scalar SQL functions to
4258 ** associate metadata with argument values. If the same value is passed to
4259 ** multiple invocations of the same SQL function during query execution, under
4260 ** some circumstances the associated metadata may be preserved. This may
4261 ** be used, for example, to add a regular-expression matching scalar
4262 ** function. The compiled version of the regular expression is stored as
4263 ** metadata associated with the SQL value passed as the regular expression
4264 ** pattern. The compiled regular expression can be reused on multiple
4265 ** invocations of the same function so that the original pattern string
4266 ** does not need to be recompiled on each invocation.
4268 ** ^The sqlite3_get_auxdata() interface returns a pointer to the metadata
4269 ** associated by the sqlite3_set_auxdata() function with the Nth argument
4270 ** value to the application-defined function. ^If no metadata has been ever
4271 ** been set for the Nth argument of the function, or if the corresponding
4272 ** function parameter has changed since the meta-data was set,
4273 ** then sqlite3_get_auxdata() returns a NULL pointer.
4275 ** ^The sqlite3_set_auxdata() interface saves the metadata
4276 ** pointed to by its 3rd parameter as the metadata for the N-th
4277 ** argument of the application-defined function. Subsequent
4278 ** calls to sqlite3_get_auxdata() might return this data, if it has
4279 ** not been destroyed.
4280 ** ^If it is not NULL, SQLite will invoke the destructor
4281 ** function given by the 4th parameter to sqlite3_set_auxdata() on
4282 ** the metadata when the corresponding function parameter changes
4283 ** or when the SQL statement completes, whichever comes first.
4285 ** SQLite is free to call the destructor and drop metadata on any
4286 ** parameter of any function at any time. ^The only guarantee is that
4287 ** the destructor will be called before the metadata is dropped.
4289 ** ^(In practice, metadata is preserved between function calls for
4290 ** expressions that are constant at compile time. This includes literal
4291 ** values and [parameters].)^
4293 ** These routines must be called from the same thread in which
4294 ** the SQL function is running.
4296 SQLITE_API void *sqlite3_get_auxdata(sqlite3_context*, int N);
4297 SQLITE_API void sqlite3_set_auxdata(sqlite3_context*, int N, void*, void (*)(void*));
4301 ** CAPI3REF: Constants Defining Special Destructor Behavior
4303 ** These are special values for the destructor that is passed in as the
4304 ** final argument to routines like [sqlite3_result_blob()]. ^If the destructor
4305 ** argument is SQLITE_STATIC, it means that the content pointer is constant
4306 ** and will never change. It does not need to be destroyed. ^The
4307 ** SQLITE_TRANSIENT value means that the content will likely change in
4308 ** the near future and that SQLite should make its own private copy of
4309 ** the content before returning.
4311 ** The typedef is necessary to work around problems in certain
4312 ** C++ compilers. See ticket #2191.
4314 typedef void (*sqlite3_destructor_type)(void*);
4315 #define SQLITE_STATIC ((sqlite3_destructor_type)0)
4316 #define SQLITE_TRANSIENT ((sqlite3_destructor_type)-1)
4319 ** CAPI3REF: Setting The Result Of An SQL Function
4321 ** These routines are used by the xFunc or xFinal callbacks that
4322 ** implement SQL functions and aggregates. See
4323 ** [sqlite3_create_function()] and [sqlite3_create_function16()]
4324 ** for additional information.
4326 ** These functions work very much like the [parameter binding] family of
4327 ** functions used to bind values to host parameters in prepared statements.
4328 ** Refer to the [SQL parameter] documentation for additional information.
4330 ** ^The sqlite3_result_blob() interface sets the result from
4331 ** an application-defined function to be the BLOB whose content is pointed
4332 ** to by the second parameter and which is N bytes long where N is the
4333 ** third parameter.
4335 ** ^The sqlite3_result_zeroblob() interfaces set the result of
4336 ** the application-defined function to be a BLOB containing all zero
4337 ** bytes and N bytes in size, where N is the value of the 2nd parameter.
4339 ** ^The sqlite3_result_double() interface sets the result from
4340 ** an application-defined function to be a floating point value specified
4341 ** by its 2nd argument.
4343 ** ^The sqlite3_result_error() and sqlite3_result_error16() functions
4344 ** cause the implemented SQL function to throw an exception.
4345 ** ^SQLite uses the string pointed to by the
4346 ** 2nd parameter of sqlite3_result_error() or sqlite3_result_error16()
4347 ** as the text of an error message. ^SQLite interprets the error
4348 ** message string from sqlite3_result_error() as UTF-8. ^SQLite
4349 ** interprets the string from sqlite3_result_error16() as UTF-16 in native
4350 ** byte order. ^If the third parameter to sqlite3_result_error()
4351 ** or sqlite3_result_error16() is negative then SQLite takes as the error
4352 ** message all text up through the first zero character.
4353 ** ^If the third parameter to sqlite3_result_error() or
4354 ** sqlite3_result_error16() is non-negative then SQLite takes that many
4355 ** bytes (not characters) from the 2nd parameter as the error message.
4356 ** ^The sqlite3_result_error() and sqlite3_result_error16()
4357 ** routines make a private copy of the error message text before
4358 ** they return. Hence, the calling function can deallocate or
4359 ** modify the text after they return without harm.
4360 ** ^The sqlite3_result_error_code() function changes the error code
4361 ** returned by SQLite as a result of an error in a function. ^By default,
4362 ** the error code is SQLITE_ERROR. ^A subsequent call to sqlite3_result_error()
4363 ** or sqlite3_result_error16() resets the error code to SQLITE_ERROR.
4365 ** ^The sqlite3_result_toobig() interface causes SQLite to throw an error
4366 ** indicating that a string or BLOB is too long to represent.
4368 ** ^The sqlite3_result_nomem() interface causes SQLite to throw an error
4369 ** indicating that a memory allocation failed.
4371 ** ^The sqlite3_result_int() interface sets the return value
4372 ** of the application-defined function to be the 32-bit signed integer
4373 ** value given in the 2nd argument.
4374 ** ^The sqlite3_result_int64() interface sets the return value
4375 ** of the application-defined function to be the 64-bit signed integer
4376 ** value given in the 2nd argument.
4378 ** ^The sqlite3_result_null() interface sets the return value
4379 ** of the application-defined function to be NULL.
4381 ** ^The sqlite3_result_text(), sqlite3_result_text16(),
4382 ** sqlite3_result_text16le(), and sqlite3_result_text16be() interfaces
4383 ** set the return value of the application-defined function to be
4384 ** a text string which is represented as UTF-8, UTF-16 native byte order,
4385 ** UTF-16 little endian, or UTF-16 big endian, respectively.
4386 ** ^SQLite takes the text result from the application from
4387 ** the 2nd parameter of the sqlite3_result_text* interfaces.
4388 ** ^If the 3rd parameter to the sqlite3_result_text* interfaces
4389 ** is negative, then SQLite takes result text from the 2nd parameter
4390 ** through the first zero character.
4391 ** ^If the 3rd parameter to the sqlite3_result_text* interfaces
4392 ** is non-negative, then as many bytes (not characters) of the text
4393 ** pointed to by the 2nd parameter are taken as the application-defined
4394 ** function result.
4395 ** ^If the 4th parameter to the sqlite3_result_text* interfaces
4396 ** or sqlite3_result_blob is a non-NULL pointer, then SQLite calls that
4397 ** function as the destructor on the text or BLOB result when it has
4398 ** finished using that result.
4399 ** ^If the 4th parameter to the sqlite3_result_text* interfaces or to
4400 ** sqlite3_result_blob is the special constant SQLITE_STATIC, then SQLite
4401 ** assumes that the text or BLOB result is in constant space and does not
4402 ** copy the content of the parameter nor call a destructor on the content
4403 ** when it has finished using that result.
4404 ** ^If the 4th parameter to the sqlite3_result_text* interfaces
4405 ** or sqlite3_result_blob is the special constant SQLITE_TRANSIENT
4406 ** then SQLite makes a copy of the result into space obtained from
4407 ** from [sqlite3_malloc()] before it returns.
4409 ** ^The sqlite3_result_value() interface sets the result of
4410 ** the application-defined function to be a copy the
4411 ** [unprotected sqlite3_value] object specified by the 2nd parameter. ^The
4412 ** sqlite3_result_value() interface makes a copy of the [sqlite3_value]
4413 ** so that the [sqlite3_value] specified in the parameter may change or
4414 ** be deallocated after sqlite3_result_value() returns without harm.
4415 ** ^A [protected sqlite3_value] object may always be used where an
4416 ** [unprotected sqlite3_value] object is required, so either
4417 ** kind of [sqlite3_value] object can be used with this interface.
4419 ** If these routines are called from within the different thread
4420 ** than the one containing the application-defined function that received
4421 ** the [sqlite3_context] pointer, the results are undefined.
4423 SQLITE_API void sqlite3_result_blob(sqlite3_context*, const void*, int, void(*)(void*));
4424 SQLITE_API void sqlite3_result_double(sqlite3_context*, double);
4425 SQLITE_API void sqlite3_result_error(sqlite3_context*, const char*, int);
4426 SQLITE_API void sqlite3_result_error16(sqlite3_context*, const void*, int);
4427 SQLITE_API void sqlite3_result_error_toobig(sqlite3_context*);
4428 SQLITE_API void sqlite3_result_error_nomem(sqlite3_context*);
4429 SQLITE_API void sqlite3_result_error_code(sqlite3_context*, int);
4430 SQLITE_API void sqlite3_result_int(sqlite3_context*, int);
4431 SQLITE_API void sqlite3_result_int64(sqlite3_context*, sqlite3_int64);
4432 SQLITE_API void sqlite3_result_null(sqlite3_context*);
4433 SQLITE_API void sqlite3_result_text(sqlite3_context*, const char*, int, void(*)(void*));
4434 SQLITE_API void sqlite3_result_text16(sqlite3_context*, const void*, int, void(*)(void*));
4435 SQLITE_API void sqlite3_result_text16le(sqlite3_context*, const void*, int,void(*)(void*));
4436 SQLITE_API void sqlite3_result_text16be(sqlite3_context*, const void*, int,void(*)(void*));
4437 SQLITE_API void sqlite3_result_value(sqlite3_context*, sqlite3_value*);
4438 SQLITE_API void sqlite3_result_zeroblob(sqlite3_context*, int n);
4441 ** CAPI3REF: Define New Collating Sequences
4443 ** ^These functions add, remove, or modify a [collation] associated
4444 ** with the [database connection] specified as the first argument.
4446 ** ^The name of the collation is a UTF-8 string
4447 ** for sqlite3_create_collation() and sqlite3_create_collation_v2()
4448 ** and a UTF-16 string in native byte order for sqlite3_create_collation16().
4449 ** ^Collation names that compare equal according to [sqlite3_strnicmp()] are
4450 ** considered to be the same name.
4452 ** ^(The third argument (eTextRep) must be one of the constants:
4453 ** <ul>
4454 ** <li> [SQLITE_UTF8],
4455 ** <li> [SQLITE_UTF16LE],
4456 ** <li> [SQLITE_UTF16BE],
4457 ** <li> [SQLITE_UTF16], or
4458 ** <li> [SQLITE_UTF16_ALIGNED].
4459 ** </ul>)^
4460 ** ^The eTextRep argument determines the encoding of strings passed
4461 ** to the collating function callback, xCallback.
4462 ** ^The [SQLITE_UTF16] and [SQLITE_UTF16_ALIGNED] values for eTextRep
4463 ** force strings to be UTF16 with native byte order.
4464 ** ^The [SQLITE_UTF16_ALIGNED] value for eTextRep forces strings to begin
4465 ** on an even byte address.
4467 ** ^The fourth argument, pArg, is an application data pointer that is passed
4468 ** through as the first argument to the collating function callback.
4470 ** ^The fifth argument, xCallback, is a pointer to the collating function.
4471 ** ^Multiple collating functions can be registered using the same name but
4472 ** with different eTextRep parameters and SQLite will use whichever
4473 ** function requires the least amount of data transformation.
4474 ** ^If the xCallback argument is NULL then the collating function is
4475 ** deleted. ^When all collating functions having the same name are deleted,
4476 ** that collation is no longer usable.
4478 ** ^The collating function callback is invoked with a copy of the pArg
4479 ** application data pointer and with two strings in the encoding specified
4480 ** by the eTextRep argument. The collating function must return an
4481 ** integer that is negative, zero, or positive
4482 ** if the first string is less than, equal to, or greater than the second,
4483 ** respectively. A collating function must always return the same answer
4484 ** given the same inputs. If two or more collating functions are registered
4485 ** to the same collation name (using different eTextRep values) then all
4486 ** must give an equivalent answer when invoked with equivalent strings.
4487 ** The collating function must obey the following properties for all
4488 ** strings A, B, and C:
4490 ** <ol>
4491 ** <li> If A==B then B==A.
4492 ** <li> If A==B and B==C then A==C.
4493 ** <li> If A&lt;B THEN B&gt;A.
4494 ** <li> If A&lt;B and B&lt;C then A&lt;C.
4495 ** </ol>
4497 ** If a collating function fails any of the above constraints and that
4498 ** collating function is registered and used, then the behavior of SQLite
4499 ** is undefined.
4501 ** ^The sqlite3_create_collation_v2() works like sqlite3_create_collation()
4502 ** with the addition that the xDestroy callback is invoked on pArg when
4503 ** the collating function is deleted.
4504 ** ^Collating functions are deleted when they are overridden by later
4505 ** calls to the collation creation functions or when the
4506 ** [database connection] is closed using [sqlite3_close()].
4508 ** ^The xDestroy callback is <u>not</u> called if the
4509 ** sqlite3_create_collation_v2() function fails. Applications that invoke
4510 ** sqlite3_create_collation_v2() with a non-NULL xDestroy argument should
4511 ** check the return code and dispose of the application data pointer
4512 ** themselves rather than expecting SQLite to deal with it for them.
4513 ** This is different from every other SQLite interface. The inconsistency
4514 ** is unfortunate but cannot be changed without breaking backwards
4515 ** compatibility.
4517 ** See also: [sqlite3_collation_needed()] and [sqlite3_collation_needed16()].
4519 SQLITE_API int sqlite3_create_collation(
4520 sqlite3*,
4521 const char *zName,
4522 int eTextRep,
4523 void *pArg,
4524 int(*xCompare)(void*,int,const void*,int,const void*)
4526 SQLITE_API int sqlite3_create_collation_v2(
4527 sqlite3*,
4528 const char *zName,
4529 int eTextRep,
4530 void *pArg,
4531 int(*xCompare)(void*,int,const void*,int,const void*),
4532 void(*xDestroy)(void*)
4534 SQLITE_API int sqlite3_create_collation16(
4535 sqlite3*,
4536 const void *zName,
4537 int eTextRep,
4538 void *pArg,
4539 int(*xCompare)(void*,int,const void*,int,const void*)
4543 ** CAPI3REF: Collation Needed Callbacks
4545 ** ^To avoid having to register all collation sequences before a database
4546 ** can be used, a single callback function may be registered with the
4547 ** [database connection] to be invoked whenever an undefined collation
4548 ** sequence is required.
4550 ** ^If the function is registered using the sqlite3_collation_needed() API,
4551 ** then it is passed the names of undefined collation sequences as strings
4552 ** encoded in UTF-8. ^If sqlite3_collation_needed16() is used,
4553 ** the names are passed as UTF-16 in machine native byte order.
4554 ** ^A call to either function replaces the existing collation-needed callback.
4556 ** ^(When the callback is invoked, the first argument passed is a copy
4557 ** of the second argument to sqlite3_collation_needed() or
4558 ** sqlite3_collation_needed16(). The second argument is the database
4559 ** connection. The third argument is one of [SQLITE_UTF8], [SQLITE_UTF16BE],
4560 ** or [SQLITE_UTF16LE], indicating the most desirable form of the collation
4561 ** sequence function required. The fourth parameter is the name of the
4562 ** required collation sequence.)^
4564 ** The callback function should register the desired collation using
4565 ** [sqlite3_create_collation()], [sqlite3_create_collation16()], or
4566 ** [sqlite3_create_collation_v2()].
4568 SQLITE_API int sqlite3_collation_needed(
4569 sqlite3*,
4570 void*,
4571 void(*)(void*,sqlite3*,int eTextRep,const char*)
4573 SQLITE_API int sqlite3_collation_needed16(
4574 sqlite3*,
4575 void*,
4576 void(*)(void*,sqlite3*,int eTextRep,const void*)
4579 #ifdef SQLITE_HAS_CODEC
4581 ** Specify the key for an encrypted database. This routine should be
4582 ** called right after sqlite3_open().
4584 ** The code to implement this API is not available in the public release
4585 ** of SQLite.
4587 SQLITE_API int sqlite3_key(
4588 sqlite3 *db, /* Database to be rekeyed */
4589 const void *pKey, int nKey /* The key */
4593 ** Change the key on an open database. If the current database is not
4594 ** encrypted, this routine will encrypt it. If pNew==0 or nNew==0, the
4595 ** database is decrypted.
4597 ** The code to implement this API is not available in the public release
4598 ** of SQLite.
4600 SQLITE_API int sqlite3_rekey(
4601 sqlite3 *db, /* Database to be rekeyed */
4602 const void *pKey, int nKey /* The new key */
4606 ** Specify the activation key for a SEE database. Unless
4607 ** activated, none of the SEE routines will work.
4609 SQLITE_API void sqlite3_activate_see(
4610 const char *zPassPhrase /* Activation phrase */
4612 #endif
4614 #ifdef SQLITE_ENABLE_CEROD
4616 ** Specify the activation key for a CEROD database. Unless
4617 ** activated, none of the CEROD routines will work.
4619 SQLITE_API void sqlite3_activate_cerod(
4620 const char *zPassPhrase /* Activation phrase */
4622 #endif
4625 ** CAPI3REF: Suspend Execution For A Short Time
4627 ** The sqlite3_sleep() function causes the current thread to suspend execution
4628 ** for at least a number of milliseconds specified in its parameter.
4630 ** If the operating system does not support sleep requests with
4631 ** millisecond time resolution, then the time will be rounded up to
4632 ** the nearest second. The number of milliseconds of sleep actually
4633 ** requested from the operating system is returned.
4635 ** ^SQLite implements this interface by calling the xSleep()
4636 ** method of the default [sqlite3_vfs] object. If the xSleep() method
4637 ** of the default VFS is not implemented correctly, or not implemented at
4638 ** all, then the behavior of sqlite3_sleep() may deviate from the description
4639 ** in the previous paragraphs.
4641 SQLITE_API int sqlite3_sleep(int);
4644 ** CAPI3REF: Name Of The Folder Holding Temporary Files
4646 ** ^(If this global variable is made to point to a string which is
4647 ** the name of a folder (a.k.a. directory), then all temporary files
4648 ** created by SQLite when using a built-in [sqlite3_vfs | VFS]
4649 ** will be placed in that directory.)^ ^If this variable
4650 ** is a NULL pointer, then SQLite performs a search for an appropriate
4651 ** temporary file directory.
4653 ** It is not safe to read or modify this variable in more than one
4654 ** thread at a time. It is not safe to read or modify this variable
4655 ** if a [database connection] is being used at the same time in a separate
4656 ** thread.
4657 ** It is intended that this variable be set once
4658 ** as part of process initialization and before any SQLite interface
4659 ** routines have been called and that this variable remain unchanged
4660 ** thereafter.
4662 ** ^The [temp_store_directory pragma] may modify this variable and cause
4663 ** it to point to memory obtained from [sqlite3_malloc]. ^Furthermore,
4664 ** the [temp_store_directory pragma] always assumes that any string
4665 ** that this variable points to is held in memory obtained from
4666 ** [sqlite3_malloc] and the pragma may attempt to free that memory
4667 ** using [sqlite3_free].
4668 ** Hence, if this variable is modified directly, either it should be
4669 ** made NULL or made to point to memory obtained from [sqlite3_malloc]
4670 ** or else the use of the [temp_store_directory pragma] should be avoided.
4672 SQLITE_API char *sqlite3_temp_directory;
4675 ** CAPI3REF: Test For Auto-Commit Mode
4676 ** KEYWORDS: {autocommit mode}
4678 ** ^The sqlite3_get_autocommit() interface returns non-zero or
4679 ** zero if the given database connection is or is not in autocommit mode,
4680 ** respectively. ^Autocommit mode is on by default.
4681 ** ^Autocommit mode is disabled by a [BEGIN] statement.
4682 ** ^Autocommit mode is re-enabled by a [COMMIT] or [ROLLBACK].
4684 ** If certain kinds of errors occur on a statement within a multi-statement
4685 ** transaction (errors including [SQLITE_FULL], [SQLITE_IOERR],
4686 ** [SQLITE_NOMEM], [SQLITE_BUSY], and [SQLITE_INTERRUPT]) then the
4687 ** transaction might be rolled back automatically. The only way to
4688 ** find out whether SQLite automatically rolled back the transaction after
4689 ** an error is to use this function.
4691 ** If another thread changes the autocommit status of the database
4692 ** connection while this routine is running, then the return value
4693 ** is undefined.
4695 SQLITE_API int sqlite3_get_autocommit(sqlite3*);
4698 ** CAPI3REF: Find The Database Handle Of A Prepared Statement
4700 ** ^The sqlite3_db_handle interface returns the [database connection] handle
4701 ** to which a [prepared statement] belongs. ^The [database connection]
4702 ** returned by sqlite3_db_handle is the same [database connection]
4703 ** that was the first argument
4704 ** to the [sqlite3_prepare_v2()] call (or its variants) that was used to
4705 ** create the statement in the first place.
4707 SQLITE_API sqlite3 *sqlite3_db_handle(sqlite3_stmt*);
4710 ** CAPI3REF: Find the next prepared statement
4712 ** ^This interface returns a pointer to the next [prepared statement] after
4713 ** pStmt associated with the [database connection] pDb. ^If pStmt is NULL
4714 ** then this interface returns a pointer to the first prepared statement
4715 ** associated with the database connection pDb. ^If no prepared statement
4716 ** satisfies the conditions of this routine, it returns NULL.
4718 ** The [database connection] pointer D in a call to
4719 ** [sqlite3_next_stmt(D,S)] must refer to an open database
4720 ** connection and in particular must not be a NULL pointer.
4722 SQLITE_API sqlite3_stmt *sqlite3_next_stmt(sqlite3 *pDb, sqlite3_stmt *pStmt);
4725 ** CAPI3REF: Commit And Rollback Notification Callbacks
4727 ** ^The sqlite3_commit_hook() interface registers a callback
4728 ** function to be invoked whenever a transaction is [COMMIT | committed].
4729 ** ^Any callback set by a previous call to sqlite3_commit_hook()
4730 ** for the same database connection is overridden.
4731 ** ^The sqlite3_rollback_hook() interface registers a callback
4732 ** function to be invoked whenever a transaction is [ROLLBACK | rolled back].
4733 ** ^Any callback set by a previous call to sqlite3_rollback_hook()
4734 ** for the same database connection is overridden.
4735 ** ^The pArg argument is passed through to the callback.
4736 ** ^If the callback on a commit hook function returns non-zero,
4737 ** then the commit is converted into a rollback.
4739 ** ^The sqlite3_commit_hook(D,C,P) and sqlite3_rollback_hook(D,C,P) functions
4740 ** return the P argument from the previous call of the same function
4741 ** on the same [database connection] D, or NULL for
4742 ** the first call for each function on D.
4744 ** The callback implementation must not do anything that will modify
4745 ** the database connection that invoked the callback. Any actions
4746 ** to modify the database connection must be deferred until after the
4747 ** completion of the [sqlite3_step()] call that triggered the commit
4748 ** or rollback hook in the first place.
4749 ** Note that [sqlite3_prepare_v2()] and [sqlite3_step()] both modify their
4750 ** database connections for the meaning of "modify" in this paragraph.
4752 ** ^Registering a NULL function disables the callback.
4754 ** ^When the commit hook callback routine returns zero, the [COMMIT]
4755 ** operation is allowed to continue normally. ^If the commit hook
4756 ** returns non-zero, then the [COMMIT] is converted into a [ROLLBACK].
4757 ** ^The rollback hook is invoked on a rollback that results from a commit
4758 ** hook returning non-zero, just as it would be with any other rollback.
4760 ** ^For the purposes of this API, a transaction is said to have been
4761 ** rolled back if an explicit "ROLLBACK" statement is executed, or
4762 ** an error or constraint causes an implicit rollback to occur.
4763 ** ^The rollback callback is not invoked if a transaction is
4764 ** automatically rolled back because the database connection is closed.
4766 ** See also the [sqlite3_update_hook()] interface.
4768 SQLITE_API void *sqlite3_commit_hook(sqlite3*, int(*)(void*), void*);
4769 SQLITE_API void *sqlite3_rollback_hook(sqlite3*, void(*)(void *), void*);
4772 ** CAPI3REF: Data Change Notification Callbacks
4774 ** ^The sqlite3_update_hook() interface registers a callback function
4775 ** with the [database connection] identified by the first argument
4776 ** to be invoked whenever a row is updated, inserted or deleted.
4777 ** ^Any callback set by a previous call to this function
4778 ** for the same database connection is overridden.
4780 ** ^The second argument is a pointer to the function to invoke when a
4781 ** row is updated, inserted or deleted.
4782 ** ^The first argument to the callback is a copy of the third argument
4783 ** to sqlite3_update_hook().
4784 ** ^The second callback argument is one of [SQLITE_INSERT], [SQLITE_DELETE],
4785 ** or [SQLITE_UPDATE], depending on the operation that caused the callback
4786 ** to be invoked.
4787 ** ^The third and fourth arguments to the callback contain pointers to the
4788 ** database and table name containing the affected row.
4789 ** ^The final callback parameter is the [rowid] of the row.
4790 ** ^In the case of an update, this is the [rowid] after the update takes place.
4792 ** ^(The update hook is not invoked when internal system tables are
4793 ** modified (i.e. sqlite_master and sqlite_sequence).)^
4795 ** ^In the current implementation, the update hook
4796 ** is not invoked when duplication rows are deleted because of an
4797 ** [ON CONFLICT | ON CONFLICT REPLACE] clause. ^Nor is the update hook
4798 ** invoked when rows are deleted using the [truncate optimization].
4799 ** The exceptions defined in this paragraph might change in a future
4800 ** release of SQLite.
4802 ** The update hook implementation must not do anything that will modify
4803 ** the database connection that invoked the update hook. Any actions
4804 ** to modify the database connection must be deferred until after the
4805 ** completion of the [sqlite3_step()] call that triggered the update hook.
4806 ** Note that [sqlite3_prepare_v2()] and [sqlite3_step()] both modify their
4807 ** database connections for the meaning of "modify" in this paragraph.
4809 ** ^The sqlite3_update_hook(D,C,P) function
4810 ** returns the P argument from the previous call
4811 ** on the same [database connection] D, or NULL for
4812 ** the first call on D.
4814 ** See also the [sqlite3_commit_hook()] and [sqlite3_rollback_hook()]
4815 ** interfaces.
4817 SQLITE_API void *sqlite3_update_hook(
4818 sqlite3*,
4819 void(*)(void *,int ,char const *,char const *,sqlite3_int64),
4820 void*
4824 ** CAPI3REF: Enable Or Disable Shared Pager Cache
4825 ** KEYWORDS: {shared cache}
4827 ** ^(This routine enables or disables the sharing of the database cache
4828 ** and schema data structures between [database connection | connections]
4829 ** to the same database. Sharing is enabled if the argument is true
4830 ** and disabled if the argument is false.)^
4832 ** ^Cache sharing is enabled and disabled for an entire process.
4833 ** This is a change as of SQLite version 3.5.0. In prior versions of SQLite,
4834 ** sharing was enabled or disabled for each thread separately.
4836 ** ^(The cache sharing mode set by this interface effects all subsequent
4837 ** calls to [sqlite3_open()], [sqlite3_open_v2()], and [sqlite3_open16()].
4838 ** Existing database connections continue use the sharing mode
4839 ** that was in effect at the time they were opened.)^
4841 ** ^(This routine returns [SQLITE_OK] if shared cache was enabled or disabled
4842 ** successfully. An [error code] is returned otherwise.)^
4844 ** ^Shared cache is disabled by default. But this might change in
4845 ** future releases of SQLite. Applications that care about shared
4846 ** cache setting should set it explicitly.
4848 ** See Also: [SQLite Shared-Cache Mode]
4850 SQLITE_API int sqlite3_enable_shared_cache(int);
4853 ** CAPI3REF: Attempt To Free Heap Memory
4855 ** ^The sqlite3_release_memory() interface attempts to free N bytes
4856 ** of heap memory by deallocating non-essential memory allocations
4857 ** held by the database library. Memory used to cache database
4858 ** pages to improve performance is an example of non-essential memory.
4859 ** ^sqlite3_release_memory() returns the number of bytes actually freed,
4860 ** which might be more or less than the amount requested.
4861 ** ^The sqlite3_release_memory() routine is a no-op returning zero
4862 ** if SQLite is not compiled with [SQLITE_ENABLE_MEMORY_MANAGEMENT].
4864 SQLITE_API int sqlite3_release_memory(int);
4867 ** CAPI3REF: Impose A Limit On Heap Size
4869 ** ^The sqlite3_soft_heap_limit64() interface sets and/or queries the
4870 ** soft limit on the amount of heap memory that may be allocated by SQLite.
4871 ** ^SQLite strives to keep heap memory utilization below the soft heap
4872 ** limit by reducing the number of pages held in the page cache
4873 ** as heap memory usages approaches the limit.
4874 ** ^The soft heap limit is "soft" because even though SQLite strives to stay
4875 ** below the limit, it will exceed the limit rather than generate
4876 ** an [SQLITE_NOMEM] error. In other words, the soft heap limit
4877 ** is advisory only.
4879 ** ^The return value from sqlite3_soft_heap_limit64() is the size of
4880 ** the soft heap limit prior to the call. ^If the argument N is negative
4881 ** then no change is made to the soft heap limit. Hence, the current
4882 ** size of the soft heap limit can be determined by invoking
4883 ** sqlite3_soft_heap_limit64() with a negative argument.
4885 ** ^If the argument N is zero then the soft heap limit is disabled.
4887 ** ^(The soft heap limit is not enforced in the current implementation
4888 ** if one or more of following conditions are true:
4890 ** <ul>
4891 ** <li> The soft heap limit is set to zero.
4892 ** <li> Memory accounting is disabled using a combination of the
4893 ** [sqlite3_config]([SQLITE_CONFIG_MEMSTATUS],...) start-time option and
4894 ** the [SQLITE_DEFAULT_MEMSTATUS] compile-time option.
4895 ** <li> An alternative page cache implementation is specified using
4896 ** [sqlite3_config]([SQLITE_CONFIG_PCACHE],...).
4897 ** <li> The page cache allocates from its own memory pool supplied
4898 ** by [sqlite3_config]([SQLITE_CONFIG_PAGECACHE],...) rather than
4899 ** from the heap.
4900 ** </ul>)^
4902 ** Beginning with SQLite version 3.7.3, the soft heap limit is enforced
4903 ** regardless of whether or not the [SQLITE_ENABLE_MEMORY_MANAGEMENT]
4904 ** compile-time option is invoked. With [SQLITE_ENABLE_MEMORY_MANAGEMENT],
4905 ** the soft heap limit is enforced on every memory allocation. Without
4906 ** [SQLITE_ENABLE_MEMORY_MANAGEMENT], the soft heap limit is only enforced
4907 ** when memory is allocated by the page cache. Testing suggests that because
4908 ** the page cache is the predominate memory user in SQLite, most
4909 ** applications will achieve adequate soft heap limit enforcement without
4910 ** the use of [SQLITE_ENABLE_MEMORY_MANAGEMENT].
4912 ** The circumstances under which SQLite will enforce the soft heap limit may
4913 ** changes in future releases of SQLite.
4915 SQLITE_API sqlite3_int64 sqlite3_soft_heap_limit64(sqlite3_int64 N);
4918 ** CAPI3REF: Deprecated Soft Heap Limit Interface
4919 ** DEPRECATED
4921 ** This is a deprecated version of the [sqlite3_soft_heap_limit64()]
4922 ** interface. This routine is provided for historical compatibility
4923 ** only. All new applications should use the
4924 ** [sqlite3_soft_heap_limit64()] interface rather than this one.
4926 SQLITE_API SQLITE_DEPRECATED void sqlite3_soft_heap_limit(int N);
4930 ** CAPI3REF: Extract Metadata About A Column Of A Table
4932 ** ^This routine returns metadata about a specific column of a specific
4933 ** database table accessible using the [database connection] handle
4934 ** passed as the first function argument.
4936 ** ^The column is identified by the second, third and fourth parameters to
4937 ** this function. ^The second parameter is either the name of the database
4938 ** (i.e. "main", "temp", or an attached database) containing the specified
4939 ** table or NULL. ^If it is NULL, then all attached databases are searched
4940 ** for the table using the same algorithm used by the database engine to
4941 ** resolve unqualified table references.
4943 ** ^The third and fourth parameters to this function are the table and column
4944 ** name of the desired column, respectively. Neither of these parameters
4945 ** may be NULL.
4947 ** ^Metadata is returned by writing to the memory locations passed as the 5th
4948 ** and subsequent parameters to this function. ^Any of these arguments may be
4949 ** NULL, in which case the corresponding element of metadata is omitted.
4951 ** ^(<blockquote>
4952 ** <table border="1">
4953 ** <tr><th> Parameter <th> Output<br>Type <th> Description
4955 ** <tr><td> 5th <td> const char* <td> Data type
4956 ** <tr><td> 6th <td> const char* <td> Name of default collation sequence
4957 ** <tr><td> 7th <td> int <td> True if column has a NOT NULL constraint
4958 ** <tr><td> 8th <td> int <td> True if column is part of the PRIMARY KEY
4959 ** <tr><td> 9th <td> int <td> True if column is [AUTOINCREMENT]
4960 ** </table>
4961 ** </blockquote>)^
4963 ** ^The memory pointed to by the character pointers returned for the
4964 ** declaration type and collation sequence is valid only until the next
4965 ** call to any SQLite API function.
4967 ** ^If the specified table is actually a view, an [error code] is returned.
4969 ** ^If the specified column is "rowid", "oid" or "_rowid_" and an
4970 ** [INTEGER PRIMARY KEY] column has been explicitly declared, then the output
4971 ** parameters are set for the explicitly declared column. ^(If there is no
4972 ** explicitly declared [INTEGER PRIMARY KEY] column, then the output
4973 ** parameters are set as follows:
4975 ** <pre>
4976 ** data type: "INTEGER"
4977 ** collation sequence: "BINARY"
4978 ** not null: 0
4979 ** primary key: 1
4980 ** auto increment: 0
4981 ** </pre>)^
4983 ** ^(This function may load one or more schemas from database files. If an
4984 ** error occurs during this process, or if the requested table or column
4985 ** cannot be found, an [error code] is returned and an error message left
4986 ** in the [database connection] (to be retrieved using sqlite3_errmsg()).)^
4988 ** ^This API is only available if the library was compiled with the
4989 ** [SQLITE_ENABLE_COLUMN_METADATA] C-preprocessor symbol defined.
4991 SQLITE_API int sqlite3_table_column_metadata(
4992 sqlite3 *db, /* Connection handle */
4993 const char *zDbName, /* Database name or NULL */
4994 const char *zTableName, /* Table name */
4995 const char *zColumnName, /* Column name */
4996 char const **pzDataType, /* OUTPUT: Declared data type */
4997 char const **pzCollSeq, /* OUTPUT: Collation sequence name */
4998 int *pNotNull, /* OUTPUT: True if NOT NULL constraint exists */
4999 int *pPrimaryKey, /* OUTPUT: True if column part of PK */
5000 int *pAutoinc /* OUTPUT: True if column is auto-increment */
5004 ** CAPI3REF: Load An Extension
5006 ** ^This interface loads an SQLite extension library from the named file.
5008 ** ^The sqlite3_load_extension() interface attempts to load an
5009 ** SQLite extension library contained in the file zFile.
5011 ** ^The entry point is zProc.
5012 ** ^zProc may be 0, in which case the name of the entry point
5013 ** defaults to "sqlite3_extension_init".
5014 ** ^The sqlite3_load_extension() interface returns
5015 ** [SQLITE_OK] on success and [SQLITE_ERROR] if something goes wrong.
5016 ** ^If an error occurs and pzErrMsg is not 0, then the
5017 ** [sqlite3_load_extension()] interface shall attempt to
5018 ** fill *pzErrMsg with error message text stored in memory
5019 ** obtained from [sqlite3_malloc()]. The calling function
5020 ** should free this memory by calling [sqlite3_free()].
5022 ** ^Extension loading must be enabled using
5023 ** [sqlite3_enable_load_extension()] prior to calling this API,
5024 ** otherwise an error will be returned.
5026 ** See also the [load_extension() SQL function].
5028 SQLITE_API int sqlite3_load_extension(
5029 sqlite3 *db, /* Load the extension into this database connection */
5030 const char *zFile, /* Name of the shared library containing extension */
5031 const char *zProc, /* Entry point. Derived from zFile if 0 */
5032 char **pzErrMsg /* Put error message here if not 0 */
5036 ** CAPI3REF: Enable Or Disable Extension Loading
5038 ** ^So as not to open security holes in older applications that are
5039 ** unprepared to deal with extension loading, and as a means of disabling
5040 ** extension loading while evaluating user-entered SQL, the following API
5041 ** is provided to turn the [sqlite3_load_extension()] mechanism on and off.
5043 ** ^Extension loading is off by default. See ticket #1863.
5044 ** ^Call the sqlite3_enable_load_extension() routine with onoff==1
5045 ** to turn extension loading on and call it with onoff==0 to turn
5046 ** it back off again.
5048 SQLITE_API int sqlite3_enable_load_extension(sqlite3 *db, int onoff);
5051 ** CAPI3REF: Automatically Load Statically Linked Extensions
5053 ** ^This interface causes the xEntryPoint() function to be invoked for
5054 ** each new [database connection] that is created. The idea here is that
5055 ** xEntryPoint() is the entry point for a statically linked SQLite extension
5056 ** that is to be automatically loaded into all new database connections.
5058 ** ^(Even though the function prototype shows that xEntryPoint() takes
5059 ** no arguments and returns void, SQLite invokes xEntryPoint() with three
5060 ** arguments and expects and integer result as if the signature of the
5061 ** entry point where as follows:
5063 ** <blockquote><pre>
5064 ** &nbsp; int xEntryPoint(
5065 ** &nbsp; sqlite3 *db,
5066 ** &nbsp; const char **pzErrMsg,
5067 ** &nbsp; const struct sqlite3_api_routines *pThunk
5068 ** &nbsp; );
5069 ** </pre></blockquote>)^
5071 ** If the xEntryPoint routine encounters an error, it should make *pzErrMsg
5072 ** point to an appropriate error message (obtained from [sqlite3_mprintf()])
5073 ** and return an appropriate [error code]. ^SQLite ensures that *pzErrMsg
5074 ** is NULL before calling the xEntryPoint(). ^SQLite will invoke
5075 ** [sqlite3_free()] on *pzErrMsg after xEntryPoint() returns. ^If any
5076 ** xEntryPoint() returns an error, the [sqlite3_open()], [sqlite3_open16()],
5077 ** or [sqlite3_open_v2()] call that provoked the xEntryPoint() will fail.
5079 ** ^Calling sqlite3_auto_extension(X) with an entry point X that is already
5080 ** on the list of automatic extensions is a harmless no-op. ^No entry point
5081 ** will be called more than once for each database connection that is opened.
5083 ** See also: [sqlite3_reset_auto_extension()].
5085 SQLITE_API int sqlite3_auto_extension(void (*xEntryPoint)(void));
5088 ** CAPI3REF: Reset Automatic Extension Loading
5090 ** ^This interface disables all automatic extensions previously
5091 ** registered using [sqlite3_auto_extension()].
5093 SQLITE_API void sqlite3_reset_auto_extension(void);
5096 ** The interface to the virtual-table mechanism is currently considered
5097 ** to be experimental. The interface might change in incompatible ways.
5098 ** If this is a problem for you, do not use the interface at this time.
5100 ** When the virtual-table mechanism stabilizes, we will declare the
5101 ** interface fixed, support it indefinitely, and remove this comment.
5105 ** Structures used by the virtual table interface
5107 typedef struct sqlite3_vtab sqlite3_vtab;
5108 typedef struct sqlite3_index_info sqlite3_index_info;
5109 typedef struct sqlite3_vtab_cursor sqlite3_vtab_cursor;
5110 typedef struct sqlite3_module sqlite3_module;
5113 ** CAPI3REF: Virtual Table Object
5114 ** KEYWORDS: sqlite3_module {virtual table module}
5116 ** This structure, sometimes called a "virtual table module",
5117 ** defines the implementation of a [virtual tables].
5118 ** This structure consists mostly of methods for the module.
5120 ** ^A virtual table module is created by filling in a persistent
5121 ** instance of this structure and passing a pointer to that instance
5122 ** to [sqlite3_create_module()] or [sqlite3_create_module_v2()].
5123 ** ^The registration remains valid until it is replaced by a different
5124 ** module or until the [database connection] closes. The content
5125 ** of this structure must not change while it is registered with
5126 ** any database connection.
5128 struct sqlite3_module {
5129 int iVersion;
5130 int (*xCreate)(sqlite3*, void *pAux,
5131 int argc, const char *const*argv,
5132 sqlite3_vtab **ppVTab, char**);
5133 int (*xConnect)(sqlite3*, void *pAux,
5134 int argc, const char *const*argv,
5135 sqlite3_vtab **ppVTab, char**);
5136 int (*xBestIndex)(sqlite3_vtab *pVTab, sqlite3_index_info*);
5137 int (*xDisconnect)(sqlite3_vtab *pVTab);
5138 int (*xDestroy)(sqlite3_vtab *pVTab);
5139 int (*xOpen)(sqlite3_vtab *pVTab, sqlite3_vtab_cursor **ppCursor);
5140 int (*xClose)(sqlite3_vtab_cursor*);
5141 int (*xFilter)(sqlite3_vtab_cursor*, int idxNum, const char *idxStr,
5142 int argc, sqlite3_value **argv);
5143 int (*xNext)(sqlite3_vtab_cursor*);
5144 int (*xEof)(sqlite3_vtab_cursor*);
5145 int (*xColumn)(sqlite3_vtab_cursor*, sqlite3_context*, int);
5146 int (*xRowid)(sqlite3_vtab_cursor*, sqlite3_int64 *pRowid);
5147 int (*xUpdate)(sqlite3_vtab *, int, sqlite3_value **, sqlite3_int64 *);
5148 int (*xBegin)(sqlite3_vtab *pVTab);
5149 int (*xSync)(sqlite3_vtab *pVTab);
5150 int (*xCommit)(sqlite3_vtab *pVTab);
5151 int (*xRollback)(sqlite3_vtab *pVTab);
5152 int (*xFindFunction)(sqlite3_vtab *pVtab, int nArg, const char *zName,
5153 void (**pxFunc)(sqlite3_context*,int,sqlite3_value**),
5154 void **ppArg);
5155 int (*xRename)(sqlite3_vtab *pVtab, const char *zNew);
5159 ** CAPI3REF: Virtual Table Indexing Information
5160 ** KEYWORDS: sqlite3_index_info
5162 ** The sqlite3_index_info structure and its substructures is used as part
5163 ** of the [virtual table] interface to
5164 ** pass information into and receive the reply from the [xBestIndex]
5165 ** method of a [virtual table module]. The fields under **Inputs** are the
5166 ** inputs to xBestIndex and are read-only. xBestIndex inserts its
5167 ** results into the **Outputs** fields.
5169 ** ^(The aConstraint[] array records WHERE clause constraints of the form:
5171 ** <blockquote>column OP expr</blockquote>
5173 ** where OP is =, &lt;, &lt;=, &gt;, or &gt;=.)^ ^(The particular operator is
5174 ** stored in aConstraint[].op using one of the
5175 ** [SQLITE_INDEX_CONSTRAINT_EQ | SQLITE_INDEX_CONSTRAINT_ values].)^
5176 ** ^(The index of the column is stored in
5177 ** aConstraint[].iColumn.)^ ^(aConstraint[].usable is TRUE if the
5178 ** expr on the right-hand side can be evaluated (and thus the constraint
5179 ** is usable) and false if it cannot.)^
5181 ** ^The optimizer automatically inverts terms of the form "expr OP column"
5182 ** and makes other simplifications to the WHERE clause in an attempt to
5183 ** get as many WHERE clause terms into the form shown above as possible.
5184 ** ^The aConstraint[] array only reports WHERE clause terms that are
5185 ** relevant to the particular virtual table being queried.
5187 ** ^Information about the ORDER BY clause is stored in aOrderBy[].
5188 ** ^Each term of aOrderBy records a column of the ORDER BY clause.
5190 ** The [xBestIndex] method must fill aConstraintUsage[] with information
5191 ** about what parameters to pass to xFilter. ^If argvIndex>0 then
5192 ** the right-hand side of the corresponding aConstraint[] is evaluated
5193 ** and becomes the argvIndex-th entry in argv. ^(If aConstraintUsage[].omit
5194 ** is true, then the constraint is assumed to be fully handled by the
5195 ** virtual table and is not checked again by SQLite.)^
5197 ** ^The idxNum and idxPtr values are recorded and passed into the
5198 ** [xFilter] method.
5199 ** ^[sqlite3_free()] is used to free idxPtr if and only if
5200 ** needToFreeIdxPtr is true.
5202 ** ^The orderByConsumed means that output from [xFilter]/[xNext] will occur in
5203 ** the correct order to satisfy the ORDER BY clause so that no separate
5204 ** sorting step is required.
5206 ** ^The estimatedCost value is an estimate of the cost of doing the
5207 ** particular lookup. A full scan of a table with N entries should have
5208 ** a cost of N. A binary search of a table of N entries should have a
5209 ** cost of approximately log(N).
5211 struct sqlite3_index_info {
5212 /* Inputs */
5213 int nConstraint; /* Number of entries in aConstraint */
5214 struct sqlite3_index_constraint {
5215 int iColumn; /* Column on left-hand side of constraint */
5216 unsigned char op; /* Constraint operator */
5217 unsigned char usable; /* True if this constraint is usable */
5218 int iTermOffset; /* Used internally - xBestIndex should ignore */
5219 } *aConstraint; /* Table of WHERE clause constraints */
5220 int nOrderBy; /* Number of terms in the ORDER BY clause */
5221 struct sqlite3_index_orderby {
5222 int iColumn; /* Column number */
5223 unsigned char desc; /* True for DESC. False for ASC. */
5224 } *aOrderBy; /* The ORDER BY clause */
5225 /* Outputs */
5226 struct sqlite3_index_constraint_usage {
5227 int argvIndex; /* if >0, constraint is part of argv to xFilter */
5228 unsigned char omit; /* Do not code a test for this constraint */
5229 } *aConstraintUsage;
5230 int idxNum; /* Number used to identify the index */
5231 char *idxStr; /* String, possibly obtained from sqlite3_malloc */
5232 int needToFreeIdxStr; /* Free idxStr using sqlite3_free() if true */
5233 int orderByConsumed; /* True if output is already ordered */
5234 double estimatedCost; /* Estimated cost of using this index */
5238 ** CAPI3REF: Virtual Table Constraint Operator Codes
5240 ** These macros defined the allowed values for the
5241 ** [sqlite3_index_info].aConstraint[].op field. Each value represents
5242 ** an operator that is part of a constraint term in the wHERE clause of
5243 ** a query that uses a [virtual table].
5245 #define SQLITE_INDEX_CONSTRAINT_EQ 2
5246 #define SQLITE_INDEX_CONSTRAINT_GT 4
5247 #define SQLITE_INDEX_CONSTRAINT_LE 8
5248 #define SQLITE_INDEX_CONSTRAINT_LT 16
5249 #define SQLITE_INDEX_CONSTRAINT_GE 32
5250 #define SQLITE_INDEX_CONSTRAINT_MATCH 64
5253 ** CAPI3REF: Register A Virtual Table Implementation
5255 ** ^These routines are used to register a new [virtual table module] name.
5256 ** ^Module names must be registered before
5257 ** creating a new [virtual table] using the module and before using a
5258 ** preexisting [virtual table] for the module.
5260 ** ^The module name is registered on the [database connection] specified
5261 ** by the first parameter. ^The name of the module is given by the
5262 ** second parameter. ^The third parameter is a pointer to
5263 ** the implementation of the [virtual table module]. ^The fourth
5264 ** parameter is an arbitrary client data pointer that is passed through
5265 ** into the [xCreate] and [xConnect] methods of the virtual table module
5266 ** when a new virtual table is be being created or reinitialized.
5268 ** ^The sqlite3_create_module_v2() interface has a fifth parameter which
5269 ** is a pointer to a destructor for the pClientData. ^SQLite will
5270 ** invoke the destructor function (if it is not NULL) when SQLite
5271 ** no longer needs the pClientData pointer. ^The destructor will also
5272 ** be invoked if the call to sqlite3_create_module_v2() fails.
5273 ** ^The sqlite3_create_module()
5274 ** interface is equivalent to sqlite3_create_module_v2() with a NULL
5275 ** destructor.
5277 SQLITE_API int sqlite3_create_module(
5278 sqlite3 *db, /* SQLite connection to register module with */
5279 const char *zName, /* Name of the module */
5280 const sqlite3_module *p, /* Methods for the module */
5281 void *pClientData /* Client data for xCreate/xConnect */
5283 SQLITE_API int sqlite3_create_module_v2(
5284 sqlite3 *db, /* SQLite connection to register module with */
5285 const char *zName, /* Name of the module */
5286 const sqlite3_module *p, /* Methods for the module */
5287 void *pClientData, /* Client data for xCreate/xConnect */
5288 void(*xDestroy)(void*) /* Module destructor function */
5292 ** CAPI3REF: Virtual Table Instance Object
5293 ** KEYWORDS: sqlite3_vtab
5295 ** Every [virtual table module] implementation uses a subclass
5296 ** of this object to describe a particular instance
5297 ** of the [virtual table]. Each subclass will
5298 ** be tailored to the specific needs of the module implementation.
5299 ** The purpose of this superclass is to define certain fields that are
5300 ** common to all module implementations.
5302 ** ^Virtual tables methods can set an error message by assigning a
5303 ** string obtained from [sqlite3_mprintf()] to zErrMsg. The method should
5304 ** take care that any prior string is freed by a call to [sqlite3_free()]
5305 ** prior to assigning a new string to zErrMsg. ^After the error message
5306 ** is delivered up to the client application, the string will be automatically
5307 ** freed by sqlite3_free() and the zErrMsg field will be zeroed.
5309 struct sqlite3_vtab {
5310 const sqlite3_module *pModule; /* The module for this virtual table */
5311 int nRef; /* NO LONGER USED */
5312 char *zErrMsg; /* Error message from sqlite3_mprintf() */
5313 /* Virtual table implementations will typically add additional fields */
5317 ** CAPI3REF: Virtual Table Cursor Object
5318 ** KEYWORDS: sqlite3_vtab_cursor {virtual table cursor}
5320 ** Every [virtual table module] implementation uses a subclass of the
5321 ** following structure to describe cursors that point into the
5322 ** [virtual table] and are used
5323 ** to loop through the virtual table. Cursors are created using the
5324 ** [sqlite3_module.xOpen | xOpen] method of the module and are destroyed
5325 ** by the [sqlite3_module.xClose | xClose] method. Cursors are used
5326 ** by the [xFilter], [xNext], [xEof], [xColumn], and [xRowid] methods
5327 ** of the module. Each module implementation will define
5328 ** the content of a cursor structure to suit its own needs.
5330 ** This superclass exists in order to define fields of the cursor that
5331 ** are common to all implementations.
5333 struct sqlite3_vtab_cursor {
5334 sqlite3_vtab *pVtab; /* Virtual table of this cursor */
5335 /* Virtual table implementations will typically add additional fields */
5339 ** CAPI3REF: Declare The Schema Of A Virtual Table
5341 ** ^The [xCreate] and [xConnect] methods of a
5342 ** [virtual table module] call this interface
5343 ** to declare the format (the names and datatypes of the columns) of
5344 ** the virtual tables they implement.
5346 SQLITE_API int sqlite3_declare_vtab(sqlite3*, const char *zSQL);
5349 ** CAPI3REF: Overload A Function For A Virtual Table
5351 ** ^(Virtual tables can provide alternative implementations of functions
5352 ** using the [xFindFunction] method of the [virtual table module].
5353 ** But global versions of those functions
5354 ** must exist in order to be overloaded.)^
5356 ** ^(This API makes sure a global version of a function with a particular
5357 ** name and number of parameters exists. If no such function exists
5358 ** before this API is called, a new function is created.)^ ^The implementation
5359 ** of the new function always causes an exception to be thrown. So
5360 ** the new function is not good for anything by itself. Its only
5361 ** purpose is to be a placeholder function that can be overloaded
5362 ** by a [virtual table].
5364 SQLITE_API int sqlite3_overload_function(sqlite3*, const char *zFuncName, int nArg);
5367 ** The interface to the virtual-table mechanism defined above (back up
5368 ** to a comment remarkably similar to this one) is currently considered
5369 ** to be experimental. The interface might change in incompatible ways.
5370 ** If this is a problem for you, do not use the interface at this time.
5372 ** When the virtual-table mechanism stabilizes, we will declare the
5373 ** interface fixed, support it indefinitely, and remove this comment.
5377 ** CAPI3REF: A Handle To An Open BLOB
5378 ** KEYWORDS: {BLOB handle} {BLOB handles}
5380 ** An instance of this object represents an open BLOB on which
5381 ** [sqlite3_blob_open | incremental BLOB I/O] can be performed.
5382 ** ^Objects of this type are created by [sqlite3_blob_open()]
5383 ** and destroyed by [sqlite3_blob_close()].
5384 ** ^The [sqlite3_blob_read()] and [sqlite3_blob_write()] interfaces
5385 ** can be used to read or write small subsections of the BLOB.
5386 ** ^The [sqlite3_blob_bytes()] interface returns the size of the BLOB in bytes.
5388 typedef struct sqlite3_blob sqlite3_blob;
5391 ** CAPI3REF: Open A BLOB For Incremental I/O
5393 ** ^(This interfaces opens a [BLOB handle | handle] to the BLOB located
5394 ** in row iRow, column zColumn, table zTable in database zDb;
5395 ** in other words, the same BLOB that would be selected by:
5397 ** <pre>
5398 ** SELECT zColumn FROM zDb.zTable WHERE [rowid] = iRow;
5399 ** </pre>)^
5401 ** ^If the flags parameter is non-zero, then the BLOB is opened for read
5402 ** and write access. ^If it is zero, the BLOB is opened for read access.
5403 ** ^It is not possible to open a column that is part of an index or primary
5404 ** key for writing. ^If [foreign key constraints] are enabled, it is
5405 ** not possible to open a column that is part of a [child key] for writing.
5407 ** ^Note that the database name is not the filename that contains
5408 ** the database but rather the symbolic name of the database that
5409 ** appears after the AS keyword when the database is connected using [ATTACH].
5410 ** ^For the main database file, the database name is "main".
5411 ** ^For TEMP tables, the database name is "temp".
5413 ** ^(On success, [SQLITE_OK] is returned and the new [BLOB handle] is written
5414 ** to *ppBlob. Otherwise an [error code] is returned and *ppBlob is set
5415 ** to be a null pointer.)^
5416 ** ^This function sets the [database connection] error code and message
5417 ** accessible via [sqlite3_errcode()] and [sqlite3_errmsg()] and related
5418 ** functions. ^Note that the *ppBlob variable is always initialized in a
5419 ** way that makes it safe to invoke [sqlite3_blob_close()] on *ppBlob
5420 ** regardless of the success or failure of this routine.
5422 ** ^(If the row that a BLOB handle points to is modified by an
5423 ** [UPDATE], [DELETE], or by [ON CONFLICT] side-effects
5424 ** then the BLOB handle is marked as "expired".
5425 ** This is true if any column of the row is changed, even a column
5426 ** other than the one the BLOB handle is open on.)^
5427 ** ^Calls to [sqlite3_blob_read()] and [sqlite3_blob_write()] for
5428 ** an expired BLOB handle fail with a return code of [SQLITE_ABORT].
5429 ** ^(Changes written into a BLOB prior to the BLOB expiring are not
5430 ** rolled back by the expiration of the BLOB. Such changes will eventually
5431 ** commit if the transaction continues to completion.)^
5433 ** ^Use the [sqlite3_blob_bytes()] interface to determine the size of
5434 ** the opened blob. ^The size of a blob may not be changed by this
5435 ** interface. Use the [UPDATE] SQL command to change the size of a
5436 ** blob.
5438 ** ^The [sqlite3_bind_zeroblob()] and [sqlite3_result_zeroblob()] interfaces
5439 ** and the built-in [zeroblob] SQL function can be used, if desired,
5440 ** to create an empty, zero-filled blob in which to read or write using
5441 ** this interface.
5443 ** To avoid a resource leak, every open [BLOB handle] should eventually
5444 ** be released by a call to [sqlite3_blob_close()].
5446 SQLITE_API int sqlite3_blob_open(
5447 sqlite3*,
5448 const char *zDb,
5449 const char *zTable,
5450 const char *zColumn,
5451 sqlite3_int64 iRow,
5452 int flags,
5453 sqlite3_blob **ppBlob
5457 ** CAPI3REF: Move a BLOB Handle to a New Row
5459 ** ^This function is used to move an existing blob handle so that it points
5460 ** to a different row of the same database table. ^The new row is identified
5461 ** by the rowid value passed as the second argument. Only the row can be
5462 ** changed. ^The database, table and column on which the blob handle is open
5463 ** remain the same. Moving an existing blob handle to a new row can be
5464 ** faster than closing the existing handle and opening a new one.
5466 ** ^(The new row must meet the same criteria as for [sqlite3_blob_open()] -
5467 ** it must exist and there must be either a blob or text value stored in
5468 ** the nominated column.)^ ^If the new row is not present in the table, or if
5469 ** it does not contain a blob or text value, or if another error occurs, an
5470 ** SQLite error code is returned and the blob handle is considered aborted.
5471 ** ^All subsequent calls to [sqlite3_blob_read()], [sqlite3_blob_write()] or
5472 ** [sqlite3_blob_reopen()] on an aborted blob handle immediately return
5473 ** SQLITE_ABORT. ^Calling [sqlite3_blob_bytes()] on an aborted blob handle
5474 ** always returns zero.
5476 ** ^This function sets the database handle error code and message.
5478 SQLITE_API SQLITE_EXPERIMENTAL int sqlite3_blob_reopen(sqlite3_blob *, sqlite3_int64);
5481 ** CAPI3REF: Close A BLOB Handle
5483 ** ^Closes an open [BLOB handle].
5485 ** ^Closing a BLOB shall cause the current transaction to commit
5486 ** if there are no other BLOBs, no pending prepared statements, and the
5487 ** database connection is in [autocommit mode].
5488 ** ^If any writes were made to the BLOB, they might be held in cache
5489 ** until the close operation if they will fit.
5491 ** ^(Closing the BLOB often forces the changes
5492 ** out to disk and so if any I/O errors occur, they will likely occur
5493 ** at the time when the BLOB is closed. Any errors that occur during
5494 ** closing are reported as a non-zero return value.)^
5496 ** ^(The BLOB is closed unconditionally. Even if this routine returns
5497 ** an error code, the BLOB is still closed.)^
5499 ** ^Calling this routine with a null pointer (such as would be returned
5500 ** by a failed call to [sqlite3_blob_open()]) is a harmless no-op.
5502 SQLITE_API int sqlite3_blob_close(sqlite3_blob *);
5505 ** CAPI3REF: Return The Size Of An Open BLOB
5507 ** ^Returns the size in bytes of the BLOB accessible via the
5508 ** successfully opened [BLOB handle] in its only argument. ^The
5509 ** incremental blob I/O routines can only read or overwriting existing
5510 ** blob content; they cannot change the size of a blob.
5512 ** This routine only works on a [BLOB handle] which has been created
5513 ** by a prior successful call to [sqlite3_blob_open()] and which has not
5514 ** been closed by [sqlite3_blob_close()]. Passing any other pointer in
5515 ** to this routine results in undefined and probably undesirable behavior.
5517 SQLITE_API int sqlite3_blob_bytes(sqlite3_blob *);
5520 ** CAPI3REF: Read Data From A BLOB Incrementally
5522 ** ^(This function is used to read data from an open [BLOB handle] into a
5523 ** caller-supplied buffer. N bytes of data are copied into buffer Z
5524 ** from the open BLOB, starting at offset iOffset.)^
5526 ** ^If offset iOffset is less than N bytes from the end of the BLOB,
5527 ** [SQLITE_ERROR] is returned and no data is read. ^If N or iOffset is
5528 ** less than zero, [SQLITE_ERROR] is returned and no data is read.
5529 ** ^The size of the blob (and hence the maximum value of N+iOffset)
5530 ** can be determined using the [sqlite3_blob_bytes()] interface.
5532 ** ^An attempt to read from an expired [BLOB handle] fails with an
5533 ** error code of [SQLITE_ABORT].
5535 ** ^(On success, sqlite3_blob_read() returns SQLITE_OK.
5536 ** Otherwise, an [error code] or an [extended error code] is returned.)^
5538 ** This routine only works on a [BLOB handle] which has been created
5539 ** by a prior successful call to [sqlite3_blob_open()] and which has not
5540 ** been closed by [sqlite3_blob_close()]. Passing any other pointer in
5541 ** to this routine results in undefined and probably undesirable behavior.
5543 ** See also: [sqlite3_blob_write()].
5545 SQLITE_API int sqlite3_blob_read(sqlite3_blob *, void *Z, int N, int iOffset);
5548 ** CAPI3REF: Write Data Into A BLOB Incrementally
5550 ** ^This function is used to write data into an open [BLOB handle] from a
5551 ** caller-supplied buffer. ^N bytes of data are copied from the buffer Z
5552 ** into the open BLOB, starting at offset iOffset.
5554 ** ^If the [BLOB handle] passed as the first argument was not opened for
5555 ** writing (the flags parameter to [sqlite3_blob_open()] was zero),
5556 ** this function returns [SQLITE_READONLY].
5558 ** ^This function may only modify the contents of the BLOB; it is
5559 ** not possible to increase the size of a BLOB using this API.
5560 ** ^If offset iOffset is less than N bytes from the end of the BLOB,
5561 ** [SQLITE_ERROR] is returned and no data is written. ^If N is
5562 ** less than zero [SQLITE_ERROR] is returned and no data is written.
5563 ** The size of the BLOB (and hence the maximum value of N+iOffset)
5564 ** can be determined using the [sqlite3_blob_bytes()] interface.
5566 ** ^An attempt to write to an expired [BLOB handle] fails with an
5567 ** error code of [SQLITE_ABORT]. ^Writes to the BLOB that occurred
5568 ** before the [BLOB handle] expired are not rolled back by the
5569 ** expiration of the handle, though of course those changes might
5570 ** have been overwritten by the statement that expired the BLOB handle
5571 ** or by other independent statements.
5573 ** ^(On success, sqlite3_blob_write() returns SQLITE_OK.
5574 ** Otherwise, an [error code] or an [extended error code] is returned.)^
5576 ** This routine only works on a [BLOB handle] which has been created
5577 ** by a prior successful call to [sqlite3_blob_open()] and which has not
5578 ** been closed by [sqlite3_blob_close()]. Passing any other pointer in
5579 ** to this routine results in undefined and probably undesirable behavior.
5581 ** See also: [sqlite3_blob_read()].
5583 SQLITE_API int sqlite3_blob_write(sqlite3_blob *, const void *z, int n, int iOffset);
5586 ** CAPI3REF: Virtual File System Objects
5588 ** A virtual filesystem (VFS) is an [sqlite3_vfs] object
5589 ** that SQLite uses to interact
5590 ** with the underlying operating system. Most SQLite builds come with a
5591 ** single default VFS that is appropriate for the host computer.
5592 ** New VFSes can be registered and existing VFSes can be unregistered.
5593 ** The following interfaces are provided.
5595 ** ^The sqlite3_vfs_find() interface returns a pointer to a VFS given its name.
5596 ** ^Names are case sensitive.
5597 ** ^Names are zero-terminated UTF-8 strings.
5598 ** ^If there is no match, a NULL pointer is returned.
5599 ** ^If zVfsName is NULL then the default VFS is returned.
5601 ** ^New VFSes are registered with sqlite3_vfs_register().
5602 ** ^Each new VFS becomes the default VFS if the makeDflt flag is set.
5603 ** ^The same VFS can be registered multiple times without injury.
5604 ** ^To make an existing VFS into the default VFS, register it again
5605 ** with the makeDflt flag set. If two different VFSes with the
5606 ** same name are registered, the behavior is undefined. If a
5607 ** VFS is registered with a name that is NULL or an empty string,
5608 ** then the behavior is undefined.
5610 ** ^Unregister a VFS with the sqlite3_vfs_unregister() interface.
5611 ** ^(If the default VFS is unregistered, another VFS is chosen as
5612 ** the default. The choice for the new VFS is arbitrary.)^
5614 SQLITE_API sqlite3_vfs *sqlite3_vfs_find(const char *zVfsName);
5615 SQLITE_API int sqlite3_vfs_register(sqlite3_vfs*, int makeDflt);
5616 SQLITE_API int sqlite3_vfs_unregister(sqlite3_vfs*);
5619 ** CAPI3REF: Mutexes
5621 ** The SQLite core uses these routines for thread
5622 ** synchronization. Though they are intended for internal
5623 ** use by SQLite, code that links against SQLite is
5624 ** permitted to use any of these routines.
5626 ** The SQLite source code contains multiple implementations
5627 ** of these mutex routines. An appropriate implementation
5628 ** is selected automatically at compile-time. ^(The following
5629 ** implementations are available in the SQLite core:
5631 ** <ul>
5632 ** <li> SQLITE_MUTEX_OS2
5633 ** <li> SQLITE_MUTEX_PTHREAD
5634 ** <li> SQLITE_MUTEX_W32
5635 ** <li> SQLITE_MUTEX_NOOP
5636 ** </ul>)^
5638 ** ^The SQLITE_MUTEX_NOOP implementation is a set of routines
5639 ** that does no real locking and is appropriate for use in
5640 ** a single-threaded application. ^The SQLITE_MUTEX_OS2,
5641 ** SQLITE_MUTEX_PTHREAD, and SQLITE_MUTEX_W32 implementations
5642 ** are appropriate for use on OS/2, Unix, and Windows.
5644 ** ^(If SQLite is compiled with the SQLITE_MUTEX_APPDEF preprocessor
5645 ** macro defined (with "-DSQLITE_MUTEX_APPDEF=1"), then no mutex
5646 ** implementation is included with the library. In this case the
5647 ** application must supply a custom mutex implementation using the
5648 ** [SQLITE_CONFIG_MUTEX] option of the sqlite3_config() function
5649 ** before calling sqlite3_initialize() or any other public sqlite3_
5650 ** function that calls sqlite3_initialize().)^
5652 ** ^The sqlite3_mutex_alloc() routine allocates a new
5653 ** mutex and returns a pointer to it. ^If it returns NULL
5654 ** that means that a mutex could not be allocated. ^SQLite
5655 ** will unwind its stack and return an error. ^(The argument
5656 ** to sqlite3_mutex_alloc() is one of these integer constants:
5658 ** <ul>
5659 ** <li> SQLITE_MUTEX_FAST
5660 ** <li> SQLITE_MUTEX_RECURSIVE
5661 ** <li> SQLITE_MUTEX_STATIC_MASTER
5662 ** <li> SQLITE_MUTEX_STATIC_MEM
5663 ** <li> SQLITE_MUTEX_STATIC_MEM2
5664 ** <li> SQLITE_MUTEX_STATIC_PRNG
5665 ** <li> SQLITE_MUTEX_STATIC_LRU
5666 ** <li> SQLITE_MUTEX_STATIC_LRU2
5667 ** </ul>)^
5669 ** ^The first two constants (SQLITE_MUTEX_FAST and SQLITE_MUTEX_RECURSIVE)
5670 ** cause sqlite3_mutex_alloc() to create
5671 ** a new mutex. ^The new mutex is recursive when SQLITE_MUTEX_RECURSIVE
5672 ** is used but not necessarily so when SQLITE_MUTEX_FAST is used.
5673 ** The mutex implementation does not need to make a distinction
5674 ** between SQLITE_MUTEX_RECURSIVE and SQLITE_MUTEX_FAST if it does
5675 ** not want to. ^SQLite will only request a recursive mutex in
5676 ** cases where it really needs one. ^If a faster non-recursive mutex
5677 ** implementation is available on the host platform, the mutex subsystem
5678 ** might return such a mutex in response to SQLITE_MUTEX_FAST.
5680 ** ^The other allowed parameters to sqlite3_mutex_alloc() (anything other
5681 ** than SQLITE_MUTEX_FAST and SQLITE_MUTEX_RECURSIVE) each return
5682 ** a pointer to a static preexisting mutex. ^Six static mutexes are
5683 ** used by the current version of SQLite. Future versions of SQLite
5684 ** may add additional static mutexes. Static mutexes are for internal
5685 ** use by SQLite only. Applications that use SQLite mutexes should
5686 ** use only the dynamic mutexes returned by SQLITE_MUTEX_FAST or
5687 ** SQLITE_MUTEX_RECURSIVE.
5689 ** ^Note that if one of the dynamic mutex parameters (SQLITE_MUTEX_FAST
5690 ** or SQLITE_MUTEX_RECURSIVE) is used then sqlite3_mutex_alloc()
5691 ** returns a different mutex on every call. ^But for the static
5692 ** mutex types, the same mutex is returned on every call that has
5693 ** the same type number.
5695 ** ^The sqlite3_mutex_free() routine deallocates a previously
5696 ** allocated dynamic mutex. ^SQLite is careful to deallocate every
5697 ** dynamic mutex that it allocates. The dynamic mutexes must not be in
5698 ** use when they are deallocated. Attempting to deallocate a static
5699 ** mutex results in undefined behavior. ^SQLite never deallocates
5700 ** a static mutex.
5702 ** ^The sqlite3_mutex_enter() and sqlite3_mutex_try() routines attempt
5703 ** to enter a mutex. ^If another thread is already within the mutex,
5704 ** sqlite3_mutex_enter() will block and sqlite3_mutex_try() will return
5705 ** SQLITE_BUSY. ^The sqlite3_mutex_try() interface returns [SQLITE_OK]
5706 ** upon successful entry. ^(Mutexes created using
5707 ** SQLITE_MUTEX_RECURSIVE can be entered multiple times by the same thread.
5708 ** In such cases the,
5709 ** mutex must be exited an equal number of times before another thread
5710 ** can enter.)^ ^(If the same thread tries to enter any other
5711 ** kind of mutex more than once, the behavior is undefined.
5712 ** SQLite will never exhibit
5713 ** such behavior in its own use of mutexes.)^
5715 ** ^(Some systems (for example, Windows 95) do not support the operation
5716 ** implemented by sqlite3_mutex_try(). On those systems, sqlite3_mutex_try()
5717 ** will always return SQLITE_BUSY. The SQLite core only ever uses
5718 ** sqlite3_mutex_try() as an optimization so this is acceptable behavior.)^
5720 ** ^The sqlite3_mutex_leave() routine exits a mutex that was
5721 ** previously entered by the same thread. ^(The behavior
5722 ** is undefined if the mutex is not currently entered by the
5723 ** calling thread or is not currently allocated. SQLite will
5724 ** never do either.)^
5726 ** ^If the argument to sqlite3_mutex_enter(), sqlite3_mutex_try(), or
5727 ** sqlite3_mutex_leave() is a NULL pointer, then all three routines
5728 ** behave as no-ops.
5730 ** See also: [sqlite3_mutex_held()] and [sqlite3_mutex_notheld()].
5732 SQLITE_API sqlite3_mutex *sqlite3_mutex_alloc(int);
5733 SQLITE_API void sqlite3_mutex_free(sqlite3_mutex*);
5734 SQLITE_API void sqlite3_mutex_enter(sqlite3_mutex*);
5735 SQLITE_API int sqlite3_mutex_try(sqlite3_mutex*);
5736 SQLITE_API void sqlite3_mutex_leave(sqlite3_mutex*);
5739 ** CAPI3REF: Mutex Methods Object
5741 ** An instance of this structure defines the low-level routines
5742 ** used to allocate and use mutexes.
5744 ** Usually, the default mutex implementations provided by SQLite are
5745 ** sufficient, however the user has the option of substituting a custom
5746 ** implementation for specialized deployments or systems for which SQLite
5747 ** does not provide a suitable implementation. In this case, the user
5748 ** creates and populates an instance of this structure to pass
5749 ** to sqlite3_config() along with the [SQLITE_CONFIG_MUTEX] option.
5750 ** Additionally, an instance of this structure can be used as an
5751 ** output variable when querying the system for the current mutex
5752 ** implementation, using the [SQLITE_CONFIG_GETMUTEX] option.
5754 ** ^The xMutexInit method defined by this structure is invoked as
5755 ** part of system initialization by the sqlite3_initialize() function.
5756 ** ^The xMutexInit routine is called by SQLite exactly once for each
5757 ** effective call to [sqlite3_initialize()].
5759 ** ^The xMutexEnd method defined by this structure is invoked as
5760 ** part of system shutdown by the sqlite3_shutdown() function. The
5761 ** implementation of this method is expected to release all outstanding
5762 ** resources obtained by the mutex methods implementation, especially
5763 ** those obtained by the xMutexInit method. ^The xMutexEnd()
5764 ** interface is invoked exactly once for each call to [sqlite3_shutdown()].
5766 ** ^(The remaining seven methods defined by this structure (xMutexAlloc,
5767 ** xMutexFree, xMutexEnter, xMutexTry, xMutexLeave, xMutexHeld and
5768 ** xMutexNotheld) implement the following interfaces (respectively):
5770 ** <ul>
5771 ** <li> [sqlite3_mutex_alloc()] </li>
5772 ** <li> [sqlite3_mutex_free()] </li>
5773 ** <li> [sqlite3_mutex_enter()] </li>
5774 ** <li> [sqlite3_mutex_try()] </li>
5775 ** <li> [sqlite3_mutex_leave()] </li>
5776 ** <li> [sqlite3_mutex_held()] </li>
5777 ** <li> [sqlite3_mutex_notheld()] </li>
5778 ** </ul>)^
5780 ** The only difference is that the public sqlite3_XXX functions enumerated
5781 ** above silently ignore any invocations that pass a NULL pointer instead
5782 ** of a valid mutex handle. The implementations of the methods defined
5783 ** by this structure are not required to handle this case, the results
5784 ** of passing a NULL pointer instead of a valid mutex handle are undefined
5785 ** (i.e. it is acceptable to provide an implementation that segfaults if
5786 ** it is passed a NULL pointer).
5788 ** The xMutexInit() method must be threadsafe. ^It must be harmless to
5789 ** invoke xMutexInit() multiple times within the same process and without
5790 ** intervening calls to xMutexEnd(). Second and subsequent calls to
5791 ** xMutexInit() must be no-ops.
5793 ** ^xMutexInit() must not use SQLite memory allocation ([sqlite3_malloc()]
5794 ** and its associates). ^Similarly, xMutexAlloc() must not use SQLite memory
5795 ** allocation for a static mutex. ^However xMutexAlloc() may use SQLite
5796 ** memory allocation for a fast or recursive mutex.
5798 ** ^SQLite will invoke the xMutexEnd() method when [sqlite3_shutdown()] is
5799 ** called, but only if the prior call to xMutexInit returned SQLITE_OK.
5800 ** If xMutexInit fails in any way, it is expected to clean up after itself
5801 ** prior to returning.
5803 typedef struct sqlite3_mutex_methods sqlite3_mutex_methods;
5804 struct sqlite3_mutex_methods {
5805 int (*xMutexInit)(void);
5806 int (*xMutexEnd)(void);
5807 sqlite3_mutex *(*xMutexAlloc)(int);
5808 void (*xMutexFree)(sqlite3_mutex *);
5809 void (*xMutexEnter)(sqlite3_mutex *);
5810 int (*xMutexTry)(sqlite3_mutex *);
5811 void (*xMutexLeave)(sqlite3_mutex *);
5812 int (*xMutexHeld)(sqlite3_mutex *);
5813 int (*xMutexNotheld)(sqlite3_mutex *);
5817 ** CAPI3REF: Mutex Verification Routines
5819 ** The sqlite3_mutex_held() and sqlite3_mutex_notheld() routines
5820 ** are intended for use inside assert() statements. ^The SQLite core
5821 ** never uses these routines except inside an assert() and applications
5822 ** are advised to follow the lead of the core. ^The SQLite core only
5823 ** provides implementations for these routines when it is compiled
5824 ** with the SQLITE_DEBUG flag. ^External mutex implementations
5825 ** are only required to provide these routines if SQLITE_DEBUG is
5826 ** defined and if NDEBUG is not defined.
5828 ** ^These routines should return true if the mutex in their argument
5829 ** is held or not held, respectively, by the calling thread.
5831 ** ^The implementation is not required to provided versions of these
5832 ** routines that actually work. If the implementation does not provide working
5833 ** versions of these routines, it should at least provide stubs that always
5834 ** return true so that one does not get spurious assertion failures.
5836 ** ^If the argument to sqlite3_mutex_held() is a NULL pointer then
5837 ** the routine should return 1. This seems counter-intuitive since
5838 ** clearly the mutex cannot be held if it does not exist. But the
5839 ** the reason the mutex does not exist is because the build is not
5840 ** using mutexes. And we do not want the assert() containing the
5841 ** call to sqlite3_mutex_held() to fail, so a non-zero return is
5842 ** the appropriate thing to do. ^The sqlite3_mutex_notheld()
5843 ** interface should also return 1 when given a NULL pointer.
5845 #ifndef NDEBUG
5846 SQLITE_API int sqlite3_mutex_held(sqlite3_mutex*);
5847 SQLITE_API int sqlite3_mutex_notheld(sqlite3_mutex*);
5848 #endif
5851 ** CAPI3REF: Mutex Types
5853 ** The [sqlite3_mutex_alloc()] interface takes a single argument
5854 ** which is one of these integer constants.
5856 ** The set of static mutexes may change from one SQLite release to the
5857 ** next. Applications that override the built-in mutex logic must be
5858 ** prepared to accommodate additional static mutexes.
5860 #define SQLITE_MUTEX_FAST 0
5861 #define SQLITE_MUTEX_RECURSIVE 1
5862 #define SQLITE_MUTEX_STATIC_MASTER 2
5863 #define SQLITE_MUTEX_STATIC_MEM 3 /* sqlite3_malloc() */
5864 #define SQLITE_MUTEX_STATIC_MEM2 4 /* NOT USED */
5865 #define SQLITE_MUTEX_STATIC_OPEN 4 /* sqlite3BtreeOpen() */
5866 #define SQLITE_MUTEX_STATIC_PRNG 5 /* sqlite3_random() */
5867 #define SQLITE_MUTEX_STATIC_LRU 6 /* lru page list */
5868 #define SQLITE_MUTEX_STATIC_LRU2 7 /* NOT USED */
5869 #define SQLITE_MUTEX_STATIC_PMEM 7 /* sqlite3PageMalloc() */
5872 ** CAPI3REF: Retrieve the mutex for a database connection
5874 ** ^This interface returns a pointer the [sqlite3_mutex] object that
5875 ** serializes access to the [database connection] given in the argument
5876 ** when the [threading mode] is Serialized.
5877 ** ^If the [threading mode] is Single-thread or Multi-thread then this
5878 ** routine returns a NULL pointer.
5880 SQLITE_API sqlite3_mutex *sqlite3_db_mutex(sqlite3*);
5883 ** CAPI3REF: Low-Level Control Of Database Files
5885 ** ^The [sqlite3_file_control()] interface makes a direct call to the
5886 ** xFileControl method for the [sqlite3_io_methods] object associated
5887 ** with a particular database identified by the second argument. ^The
5888 ** name of the database is "main" for the main database or "temp" for the
5889 ** TEMP database, or the name that appears after the AS keyword for
5890 ** databases that are added using the [ATTACH] SQL command.
5891 ** ^A NULL pointer can be used in place of "main" to refer to the
5892 ** main database file.
5893 ** ^The third and fourth parameters to this routine
5894 ** are passed directly through to the second and third parameters of
5895 ** the xFileControl method. ^The return value of the xFileControl
5896 ** method becomes the return value of this routine.
5898 ** ^The SQLITE_FCNTL_FILE_POINTER value for the op parameter causes
5899 ** a pointer to the underlying [sqlite3_file] object to be written into
5900 ** the space pointed to by the 4th parameter. ^The SQLITE_FCNTL_FILE_POINTER
5901 ** case is a short-circuit path which does not actually invoke the
5902 ** underlying sqlite3_io_methods.xFileControl method.
5904 ** ^If the second parameter (zDbName) does not match the name of any
5905 ** open database file, then SQLITE_ERROR is returned. ^This error
5906 ** code is not remembered and will not be recalled by [sqlite3_errcode()]
5907 ** or [sqlite3_errmsg()]. The underlying xFileControl method might
5908 ** also return SQLITE_ERROR. There is no way to distinguish between
5909 ** an incorrect zDbName and an SQLITE_ERROR return from the underlying
5910 ** xFileControl method.
5912 ** See also: [SQLITE_FCNTL_LOCKSTATE]
5914 SQLITE_API int sqlite3_file_control(sqlite3*, const char *zDbName, int op, void*);
5917 ** CAPI3REF: Testing Interface
5919 ** ^The sqlite3_test_control() interface is used to read out internal
5920 ** state of SQLite and to inject faults into SQLite for testing
5921 ** purposes. ^The first parameter is an operation code that determines
5922 ** the number, meaning, and operation of all subsequent parameters.
5924 ** This interface is not for use by applications. It exists solely
5925 ** for verifying the correct operation of the SQLite library. Depending
5926 ** on how the SQLite library is compiled, this interface might not exist.
5928 ** The details of the operation codes, their meanings, the parameters
5929 ** they take, and what they do are all subject to change without notice.
5930 ** Unlike most of the SQLite API, this function is not guaranteed to
5931 ** operate consistently from one release to the next.
5933 SQLITE_API int sqlite3_test_control(int op, ...);
5936 ** CAPI3REF: Testing Interface Operation Codes
5938 ** These constants are the valid operation code parameters used
5939 ** as the first argument to [sqlite3_test_control()].
5941 ** These parameters and their meanings are subject to change
5942 ** without notice. These values are for testing purposes only.
5943 ** Applications should not use any of these parameters or the
5944 ** [sqlite3_test_control()] interface.
5946 #define SQLITE_TESTCTRL_FIRST 5
5947 #define SQLITE_TESTCTRL_PRNG_SAVE 5
5948 #define SQLITE_TESTCTRL_PRNG_RESTORE 6
5949 #define SQLITE_TESTCTRL_PRNG_RESET 7
5950 #define SQLITE_TESTCTRL_BITVEC_TEST 8
5951 #define SQLITE_TESTCTRL_FAULT_INSTALL 9
5952 #define SQLITE_TESTCTRL_BENIGN_MALLOC_HOOKS 10
5953 #define SQLITE_TESTCTRL_PENDING_BYTE 11
5954 #define SQLITE_TESTCTRL_ASSERT 12
5955 #define SQLITE_TESTCTRL_ALWAYS 13
5956 #define SQLITE_TESTCTRL_RESERVE 14
5957 #define SQLITE_TESTCTRL_OPTIMIZATIONS 15
5958 #define SQLITE_TESTCTRL_ISKEYWORD 16
5959 #define SQLITE_TESTCTRL_PGHDRSZ 17
5960 #define SQLITE_TESTCTRL_SCRATCHMALLOC 18
5961 #define SQLITE_TESTCTRL_LAST 18
5964 ** CAPI3REF: SQLite Runtime Status
5966 ** ^This interface is used to retrieve runtime status information
5967 ** about the performance of SQLite, and optionally to reset various
5968 ** highwater marks. ^The first argument is an integer code for
5969 ** the specific parameter to measure. ^(Recognized integer codes
5970 ** are of the form [SQLITE_STATUS_MEMORY_USED | SQLITE_STATUS_...].)^
5971 ** ^The current value of the parameter is returned into *pCurrent.
5972 ** ^The highest recorded value is returned in *pHighwater. ^If the
5973 ** resetFlag is true, then the highest record value is reset after
5974 ** *pHighwater is written. ^(Some parameters do not record the highest
5975 ** value. For those parameters
5976 ** nothing is written into *pHighwater and the resetFlag is ignored.)^
5977 ** ^(Other parameters record only the highwater mark and not the current
5978 ** value. For these latter parameters nothing is written into *pCurrent.)^
5980 ** ^The sqlite3_status() routine returns SQLITE_OK on success and a
5981 ** non-zero [error code] on failure.
5983 ** This routine is threadsafe but is not atomic. This routine can be
5984 ** called while other threads are running the same or different SQLite
5985 ** interfaces. However the values returned in *pCurrent and
5986 ** *pHighwater reflect the status of SQLite at different points in time
5987 ** and it is possible that another thread might change the parameter
5988 ** in between the times when *pCurrent and *pHighwater are written.
5990 ** See also: [sqlite3_db_status()]
5992 SQLITE_API int sqlite3_status(int op, int *pCurrent, int *pHighwater, int resetFlag);
5996 ** CAPI3REF: Status Parameters
5998 ** These integer constants designate various run-time status parameters
5999 ** that can be returned by [sqlite3_status()].
6001 ** <dl>
6002 ** ^(<dt>SQLITE_STATUS_MEMORY_USED</dt>
6003 ** <dd>This parameter is the current amount of memory checked out
6004 ** using [sqlite3_malloc()], either directly or indirectly. The
6005 ** figure includes calls made to [sqlite3_malloc()] by the application
6006 ** and internal memory usage by the SQLite library. Scratch memory
6007 ** controlled by [SQLITE_CONFIG_SCRATCH] and auxiliary page-cache
6008 ** memory controlled by [SQLITE_CONFIG_PAGECACHE] is not included in
6009 ** this parameter. The amount returned is the sum of the allocation
6010 ** sizes as reported by the xSize method in [sqlite3_mem_methods].</dd>)^
6012 ** ^(<dt>SQLITE_STATUS_MALLOC_SIZE</dt>
6013 ** <dd>This parameter records the largest memory allocation request
6014 ** handed to [sqlite3_malloc()] or [sqlite3_realloc()] (or their
6015 ** internal equivalents). Only the value returned in the
6016 ** *pHighwater parameter to [sqlite3_status()] is of interest.
6017 ** The value written into the *pCurrent parameter is undefined.</dd>)^
6019 ** ^(<dt>SQLITE_STATUS_MALLOC_COUNT</dt>
6020 ** <dd>This parameter records the number of separate memory allocations
6021 ** currently checked out.</dd>)^
6023 ** ^(<dt>SQLITE_STATUS_PAGECACHE_USED</dt>
6024 ** <dd>This parameter returns the number of pages used out of the
6025 ** [pagecache memory allocator] that was configured using
6026 ** [SQLITE_CONFIG_PAGECACHE]. The
6027 ** value returned is in pages, not in bytes.</dd>)^
6029 ** ^(<dt>SQLITE_STATUS_PAGECACHE_OVERFLOW</dt>
6030 ** <dd>This parameter returns the number of bytes of page cache
6031 ** allocation which could not be satisfied by the [SQLITE_CONFIG_PAGECACHE]
6032 ** buffer and where forced to overflow to [sqlite3_malloc()]. The
6033 ** returned value includes allocations that overflowed because they
6034 ** where too large (they were larger than the "sz" parameter to
6035 ** [SQLITE_CONFIG_PAGECACHE]) and allocations that overflowed because
6036 ** no space was left in the page cache.</dd>)^
6038 ** ^(<dt>SQLITE_STATUS_PAGECACHE_SIZE</dt>
6039 ** <dd>This parameter records the largest memory allocation request
6040 ** handed to [pagecache memory allocator]. Only the value returned in the
6041 ** *pHighwater parameter to [sqlite3_status()] is of interest.
6042 ** The value written into the *pCurrent parameter is undefined.</dd>)^
6044 ** ^(<dt>SQLITE_STATUS_SCRATCH_USED</dt>
6045 ** <dd>This parameter returns the number of allocations used out of the
6046 ** [scratch memory allocator] configured using
6047 ** [SQLITE_CONFIG_SCRATCH]. The value returned is in allocations, not
6048 ** in bytes. Since a single thread may only have one scratch allocation
6049 ** outstanding at time, this parameter also reports the number of threads
6050 ** using scratch memory at the same time.</dd>)^
6052 ** ^(<dt>SQLITE_STATUS_SCRATCH_OVERFLOW</dt>
6053 ** <dd>This parameter returns the number of bytes of scratch memory
6054 ** allocation which could not be satisfied by the [SQLITE_CONFIG_SCRATCH]
6055 ** buffer and where forced to overflow to [sqlite3_malloc()]. The values
6056 ** returned include overflows because the requested allocation was too
6057 ** larger (that is, because the requested allocation was larger than the
6058 ** "sz" parameter to [SQLITE_CONFIG_SCRATCH]) and because no scratch buffer
6059 ** slots were available.
6060 ** </dd>)^
6062 ** ^(<dt>SQLITE_STATUS_SCRATCH_SIZE</dt>
6063 ** <dd>This parameter records the largest memory allocation request
6064 ** handed to [scratch memory allocator]. Only the value returned in the
6065 ** *pHighwater parameter to [sqlite3_status()] is of interest.
6066 ** The value written into the *pCurrent parameter is undefined.</dd>)^
6068 ** ^(<dt>SQLITE_STATUS_PARSER_STACK</dt>
6069 ** <dd>This parameter records the deepest parser stack. It is only
6070 ** meaningful if SQLite is compiled with [YYTRACKMAXSTACKDEPTH].</dd>)^
6071 ** </dl>
6073 ** New status parameters may be added from time to time.
6075 #define SQLITE_STATUS_MEMORY_USED 0
6076 #define SQLITE_STATUS_PAGECACHE_USED 1
6077 #define SQLITE_STATUS_PAGECACHE_OVERFLOW 2
6078 #define SQLITE_STATUS_SCRATCH_USED 3
6079 #define SQLITE_STATUS_SCRATCH_OVERFLOW 4
6080 #define SQLITE_STATUS_MALLOC_SIZE 5
6081 #define SQLITE_STATUS_PARSER_STACK 6
6082 #define SQLITE_STATUS_PAGECACHE_SIZE 7
6083 #define SQLITE_STATUS_SCRATCH_SIZE 8
6084 #define SQLITE_STATUS_MALLOC_COUNT 9
6087 ** CAPI3REF: Database Connection Status
6089 ** ^This interface is used to retrieve runtime status information
6090 ** about a single [database connection]. ^The first argument is the
6091 ** database connection object to be interrogated. ^The second argument
6092 ** is an integer constant, taken from the set of
6093 ** [SQLITE_DBSTATUS_LOOKASIDE_USED | SQLITE_DBSTATUS_*] macros, that
6094 ** determines the parameter to interrogate. The set of
6095 ** [SQLITE_DBSTATUS_LOOKASIDE_USED | SQLITE_DBSTATUS_*] macros is likely
6096 ** to grow in future releases of SQLite.
6098 ** ^The current value of the requested parameter is written into *pCur
6099 ** and the highest instantaneous value is written into *pHiwtr. ^If
6100 ** the resetFlg is true, then the highest instantaneous value is
6101 ** reset back down to the current value.
6103 ** ^The sqlite3_db_status() routine returns SQLITE_OK on success and a
6104 ** non-zero [error code] on failure.
6106 ** See also: [sqlite3_status()] and [sqlite3_stmt_status()].
6108 SQLITE_API int sqlite3_db_status(sqlite3*, int op, int *pCur, int *pHiwtr, int resetFlg);
6111 ** CAPI3REF: Status Parameters for database connections
6113 ** These constants are the available integer "verbs" that can be passed as
6114 ** the second argument to the [sqlite3_db_status()] interface.
6116 ** New verbs may be added in future releases of SQLite. Existing verbs
6117 ** might be discontinued. Applications should check the return code from
6118 ** [sqlite3_db_status()] to make sure that the call worked.
6119 ** The [sqlite3_db_status()] interface will return a non-zero error code
6120 ** if a discontinued or unsupported verb is invoked.
6122 ** <dl>
6123 ** ^(<dt>SQLITE_DBSTATUS_LOOKASIDE_USED</dt>
6124 ** <dd>This parameter returns the number of lookaside memory slots currently
6125 ** checked out.</dd>)^
6127 ** ^(<dt>SQLITE_DBSTATUS_LOOKASIDE_HIT</dt>
6128 ** <dd>This parameter returns the number malloc attempts that were
6129 ** satisfied using lookaside memory. Only the high-water value is meaningful;
6130 ** the current value is always zero.)^
6132 ** ^(<dt>SQLITE_DBSTATUS_LOOKASIDE_MISS_SIZE</dt>
6133 ** <dd>This parameter returns the number malloc attempts that might have
6134 ** been satisfied using lookaside memory but failed due to the amount of
6135 ** memory requested being larger than the lookaside slot size.
6136 ** Only the high-water value is meaningful;
6137 ** the current value is always zero.)^
6139 ** ^(<dt>SQLITE_DBSTATUS_LOOKASIDE_MISS_FULL</dt>
6140 ** <dd>This parameter returns the number malloc attempts that might have
6141 ** been satisfied using lookaside memory but failed due to all lookaside
6142 ** memory already being in use.
6143 ** Only the high-water value is meaningful;
6144 ** the current value is always zero.)^
6146 ** ^(<dt>SQLITE_DBSTATUS_CACHE_USED</dt>
6147 ** <dd>This parameter returns the approximate number of of bytes of heap
6148 ** memory used by all pager caches associated with the database connection.)^
6149 ** ^The highwater mark associated with SQLITE_DBSTATUS_CACHE_USED is always 0.
6151 ** ^(<dt>SQLITE_DBSTATUS_SCHEMA_USED</dt>
6152 ** <dd>This parameter returns the approximate number of of bytes of heap
6153 ** memory used to store the schema for all databases associated
6154 ** with the connection - main, temp, and any [ATTACH]-ed databases.)^
6155 ** ^The full amount of memory used by the schemas is reported, even if the
6156 ** schema memory is shared with other database connections due to
6157 ** [shared cache mode] being enabled.
6158 ** ^The highwater mark associated with SQLITE_DBSTATUS_SCHEMA_USED is always 0.
6160 ** ^(<dt>SQLITE_DBSTATUS_STMT_USED</dt>
6161 ** <dd>This parameter returns the approximate number of of bytes of heap
6162 ** and lookaside memory used by all prepared statements associated with
6163 ** the database connection.)^
6164 ** ^The highwater mark associated with SQLITE_DBSTATUS_STMT_USED is always 0.
6165 ** </dd>
6166 ** </dl>
6168 #define SQLITE_DBSTATUS_LOOKASIDE_USED 0
6169 #define SQLITE_DBSTATUS_CACHE_USED 1
6170 #define SQLITE_DBSTATUS_SCHEMA_USED 2
6171 #define SQLITE_DBSTATUS_STMT_USED 3
6172 #define SQLITE_DBSTATUS_LOOKASIDE_HIT 4
6173 #define SQLITE_DBSTATUS_LOOKASIDE_MISS_SIZE 5
6174 #define SQLITE_DBSTATUS_LOOKASIDE_MISS_FULL 6
6175 #define SQLITE_DBSTATUS_MAX 6 /* Largest defined DBSTATUS */
6179 ** CAPI3REF: Prepared Statement Status
6181 ** ^(Each prepared statement maintains various
6182 ** [SQLITE_STMTSTATUS_SORT | counters] that measure the number
6183 ** of times it has performed specific operations.)^ These counters can
6184 ** be used to monitor the performance characteristics of the prepared
6185 ** statements. For example, if the number of table steps greatly exceeds
6186 ** the number of table searches or result rows, that would tend to indicate
6187 ** that the prepared statement is using a full table scan rather than
6188 ** an index.
6190 ** ^(This interface is used to retrieve and reset counter values from
6191 ** a [prepared statement]. The first argument is the prepared statement
6192 ** object to be interrogated. The second argument
6193 ** is an integer code for a specific [SQLITE_STMTSTATUS_SORT | counter]
6194 ** to be interrogated.)^
6195 ** ^The current value of the requested counter is returned.
6196 ** ^If the resetFlg is true, then the counter is reset to zero after this
6197 ** interface call returns.
6199 ** See also: [sqlite3_status()] and [sqlite3_db_status()].
6201 SQLITE_API int sqlite3_stmt_status(sqlite3_stmt*, int op,int resetFlg);
6204 ** CAPI3REF: Status Parameters for prepared statements
6206 ** These preprocessor macros define integer codes that name counter
6207 ** values associated with the [sqlite3_stmt_status()] interface.
6208 ** The meanings of the various counters are as follows:
6210 ** <dl>
6211 ** <dt>SQLITE_STMTSTATUS_FULLSCAN_STEP</dt>
6212 ** <dd>^This is the number of times that SQLite has stepped forward in
6213 ** a table as part of a full table scan. Large numbers for this counter
6214 ** may indicate opportunities for performance improvement through
6215 ** careful use of indices.</dd>
6217 ** <dt>SQLITE_STMTSTATUS_SORT</dt>
6218 ** <dd>^This is the number of sort operations that have occurred.
6219 ** A non-zero value in this counter may indicate an opportunity to
6220 ** improvement performance through careful use of indices.</dd>
6222 ** <dt>SQLITE_STMTSTATUS_AUTOINDEX</dt>
6223 ** <dd>^This is the number of rows inserted into transient indices that
6224 ** were created automatically in order to help joins run faster.
6225 ** A non-zero value in this counter may indicate an opportunity to
6226 ** improvement performance by adding permanent indices that do not
6227 ** need to be reinitialized each time the statement is run.</dd>
6229 ** </dl>
6231 #define SQLITE_STMTSTATUS_FULLSCAN_STEP 1
6232 #define SQLITE_STMTSTATUS_SORT 2
6233 #define SQLITE_STMTSTATUS_AUTOINDEX 3
6236 ** CAPI3REF: Custom Page Cache Object
6238 ** The sqlite3_pcache type is opaque. It is implemented by
6239 ** the pluggable module. The SQLite core has no knowledge of
6240 ** its size or internal structure and never deals with the
6241 ** sqlite3_pcache object except by holding and passing pointers
6242 ** to the object.
6244 ** See [sqlite3_pcache_methods] for additional information.
6246 typedef struct sqlite3_pcache sqlite3_pcache;
6249 ** CAPI3REF: Application Defined Page Cache.
6250 ** KEYWORDS: {page cache}
6252 ** ^(The [sqlite3_config]([SQLITE_CONFIG_PCACHE], ...) interface can
6253 ** register an alternative page cache implementation by passing in an
6254 ** instance of the sqlite3_pcache_methods structure.)^
6255 ** In many applications, most of the heap memory allocated by
6256 ** SQLite is used for the page cache.
6257 ** By implementing a
6258 ** custom page cache using this API, an application can better control
6259 ** the amount of memory consumed by SQLite, the way in which
6260 ** that memory is allocated and released, and the policies used to
6261 ** determine exactly which parts of a database file are cached and for
6262 ** how long.
6264 ** The alternative page cache mechanism is an
6265 ** extreme measure that is only needed by the most demanding applications.
6266 ** The built-in page cache is recommended for most uses.
6268 ** ^(The contents of the sqlite3_pcache_methods structure are copied to an
6269 ** internal buffer by SQLite within the call to [sqlite3_config]. Hence
6270 ** the application may discard the parameter after the call to
6271 ** [sqlite3_config()] returns.)^
6273 ** ^(The xInit() method is called once for each effective
6274 ** call to [sqlite3_initialize()])^
6275 ** (usually only once during the lifetime of the process). ^(The xInit()
6276 ** method is passed a copy of the sqlite3_pcache_methods.pArg value.)^
6277 ** The intent of the xInit() method is to set up global data structures
6278 ** required by the custom page cache implementation.
6279 ** ^(If the xInit() method is NULL, then the
6280 ** built-in default page cache is used instead of the application defined
6281 ** page cache.)^
6283 ** ^The xShutdown() method is called by [sqlite3_shutdown()].
6284 ** It can be used to clean up
6285 ** any outstanding resources before process shutdown, if required.
6286 ** ^The xShutdown() method may be NULL.
6288 ** ^SQLite automatically serializes calls to the xInit method,
6289 ** so the xInit method need not be threadsafe. ^The
6290 ** xShutdown method is only called from [sqlite3_shutdown()] so it does
6291 ** not need to be threadsafe either. All other methods must be threadsafe
6292 ** in multithreaded applications.
6294 ** ^SQLite will never invoke xInit() more than once without an intervening
6295 ** call to xShutdown().
6297 ** ^SQLite invokes the xCreate() method to construct a new cache instance.
6298 ** SQLite will typically create one cache instance for each open database file,
6299 ** though this is not guaranteed. ^The
6300 ** first parameter, szPage, is the size in bytes of the pages that must
6301 ** be allocated by the cache. ^szPage will not be a power of two. ^szPage
6302 ** will the page size of the database file that is to be cached plus an
6303 ** increment (here called "R") of less than 250. SQLite will use the
6304 ** extra R bytes on each page to store metadata about the underlying
6305 ** database page on disk. The value of R depends
6306 ** on the SQLite version, the target platform, and how SQLite was compiled.
6307 ** ^(R is constant for a particular build of SQLite. Except, there are two
6308 ** distinct values of R when SQLite is compiled with the proprietary
6309 ** ZIPVFS extension.)^ ^The second argument to
6310 ** xCreate(), bPurgeable, is true if the cache being created will
6311 ** be used to cache database pages of a file stored on disk, or
6312 ** false if it is used for an in-memory database. The cache implementation
6313 ** does not have to do anything special based with the value of bPurgeable;
6314 ** it is purely advisory. ^On a cache where bPurgeable is false, SQLite will
6315 ** never invoke xUnpin() except to deliberately delete a page.
6316 ** ^In other words, calls to xUnpin() on a cache with bPurgeable set to
6317 ** false will always have the "discard" flag set to true.
6318 ** ^Hence, a cache created with bPurgeable false will
6319 ** never contain any unpinned pages.
6321 ** ^(The xCachesize() method may be called at any time by SQLite to set the
6322 ** suggested maximum cache-size (number of pages stored by) the cache
6323 ** instance passed as the first argument. This is the value configured using
6324 ** the SQLite "[PRAGMA cache_size]" command.)^ As with the bPurgeable
6325 ** parameter, the implementation is not required to do anything with this
6326 ** value; it is advisory only.
6328 ** The xPagecount() method must return the number of pages currently
6329 ** stored in the cache, both pinned and unpinned.
6331 ** The xFetch() method locates a page in the cache and returns a pointer to
6332 ** the page, or a NULL pointer.
6333 ** A "page", in this context, means a buffer of szPage bytes aligned at an
6334 ** 8-byte boundary. The page to be fetched is determined by the key. ^The
6335 ** mimimum key value is 1. After it has been retrieved using xFetch, the page
6336 ** is considered to be "pinned".
6338 ** If the requested page is already in the page cache, then the page cache
6339 ** implementation must return a pointer to the page buffer with its content
6340 ** intact. If the requested page is not already in the cache, then the
6341 ** cache implementation should use the value of the createFlag
6342 ** parameter to help it determined what action to take:
6344 ** <table border=1 width=85% align=center>
6345 ** <tr><th> createFlag <th> Behaviour when page is not already in cache
6346 ** <tr><td> 0 <td> Do not allocate a new page. Return NULL.
6347 ** <tr><td> 1 <td> Allocate a new page if it easy and convenient to do so.
6348 ** Otherwise return NULL.
6349 ** <tr><td> 2 <td> Make every effort to allocate a new page. Only return
6350 ** NULL if allocating a new page is effectively impossible.
6351 ** </table>
6353 ** ^(SQLite will normally invoke xFetch() with a createFlag of 0 or 1. SQLite
6354 ** will only use a createFlag of 2 after a prior call with a createFlag of 1
6355 ** failed.)^ In between the to xFetch() calls, SQLite may
6356 ** attempt to unpin one or more cache pages by spilling the content of
6357 ** pinned pages to disk and synching the operating system disk cache.
6359 ** ^xUnpin() is called by SQLite with a pointer to a currently pinned page
6360 ** as its second argument. If the third parameter, discard, is non-zero,
6361 ** then the page must be evicted from the cache.
6362 ** ^If the discard parameter is
6363 ** zero, then the page may be discarded or retained at the discretion of
6364 ** page cache implementation. ^The page cache implementation
6365 ** may choose to evict unpinned pages at any time.
6367 ** The cache must not perform any reference counting. A single
6368 ** call to xUnpin() unpins the page regardless of the number of prior calls
6369 ** to xFetch().
6371 ** The xRekey() method is used to change the key value associated with the
6372 ** page passed as the second argument. If the cache
6373 ** previously contains an entry associated with newKey, it must be
6374 ** discarded. ^Any prior cache entry associated with newKey is guaranteed not
6375 ** to be pinned.
6377 ** When SQLite calls the xTruncate() method, the cache must discard all
6378 ** existing cache entries with page numbers (keys) greater than or equal
6379 ** to the value of the iLimit parameter passed to xTruncate(). If any
6380 ** of these pages are pinned, they are implicitly unpinned, meaning that
6381 ** they can be safely discarded.
6383 ** ^The xDestroy() method is used to delete a cache allocated by xCreate().
6384 ** All resources associated with the specified cache should be freed. ^After
6385 ** calling the xDestroy() method, SQLite considers the [sqlite3_pcache*]
6386 ** handle invalid, and will not use it with any other sqlite3_pcache_methods
6387 ** functions.
6389 typedef struct sqlite3_pcache_methods sqlite3_pcache_methods;
6390 struct sqlite3_pcache_methods {
6391 void *pArg;
6392 int (*xInit)(void*);
6393 void (*xShutdown)(void*);
6394 sqlite3_pcache *(*xCreate)(int szPage, int bPurgeable);
6395 void (*xCachesize)(sqlite3_pcache*, int nCachesize);
6396 int (*xPagecount)(sqlite3_pcache*);
6397 void *(*xFetch)(sqlite3_pcache*, unsigned key, int createFlag);
6398 void (*xUnpin)(sqlite3_pcache*, void*, int discard);
6399 void (*xRekey)(sqlite3_pcache*, void*, unsigned oldKey, unsigned newKey);
6400 void (*xTruncate)(sqlite3_pcache*, unsigned iLimit);
6401 void (*xDestroy)(sqlite3_pcache*);
6405 ** CAPI3REF: Online Backup Object
6407 ** The sqlite3_backup object records state information about an ongoing
6408 ** online backup operation. ^The sqlite3_backup object is created by
6409 ** a call to [sqlite3_backup_init()] and is destroyed by a call to
6410 ** [sqlite3_backup_finish()].
6412 ** See Also: [Using the SQLite Online Backup API]
6414 typedef struct sqlite3_backup sqlite3_backup;
6417 ** CAPI3REF: Online Backup API.
6419 ** The backup API copies the content of one database into another.
6420 ** It is useful either for creating backups of databases or
6421 ** for copying in-memory databases to or from persistent files.
6423 ** See Also: [Using the SQLite Online Backup API]
6425 ** ^SQLite holds a write transaction open on the destination database file
6426 ** for the duration of the backup operation.
6427 ** ^The source database is read-locked only while it is being read;
6428 ** it is not locked continuously for the entire backup operation.
6429 ** ^Thus, the backup may be performed on a live source database without
6430 ** preventing other database connections from
6431 ** reading or writing to the source database while the backup is underway.
6433 ** ^(To perform a backup operation:
6434 ** <ol>
6435 ** <li><b>sqlite3_backup_init()</b> is called once to initialize the
6436 ** backup,
6437 ** <li><b>sqlite3_backup_step()</b> is called one or more times to transfer
6438 ** the data between the two databases, and finally
6439 ** <li><b>sqlite3_backup_finish()</b> is called to release all resources
6440 ** associated with the backup operation.
6441 ** </ol>)^
6442 ** There should be exactly one call to sqlite3_backup_finish() for each
6443 ** successful call to sqlite3_backup_init().
6445 ** <b>sqlite3_backup_init()</b>
6447 ** ^The D and N arguments to sqlite3_backup_init(D,N,S,M) are the
6448 ** [database connection] associated with the destination database
6449 ** and the database name, respectively.
6450 ** ^The database name is "main" for the main database, "temp" for the
6451 ** temporary database, or the name specified after the AS keyword in
6452 ** an [ATTACH] statement for an attached database.
6453 ** ^The S and M arguments passed to
6454 ** sqlite3_backup_init(D,N,S,M) identify the [database connection]
6455 ** and database name of the source database, respectively.
6456 ** ^The source and destination [database connections] (parameters S and D)
6457 ** must be different or else sqlite3_backup_init(D,N,S,M) will fail with
6458 ** an error.
6460 ** ^If an error occurs within sqlite3_backup_init(D,N,S,M), then NULL is
6461 ** returned and an error code and error message are stored in the
6462 ** destination [database connection] D.
6463 ** ^The error code and message for the failed call to sqlite3_backup_init()
6464 ** can be retrieved using the [sqlite3_errcode()], [sqlite3_errmsg()], and/or
6465 ** [sqlite3_errmsg16()] functions.
6466 ** ^A successful call to sqlite3_backup_init() returns a pointer to an
6467 ** [sqlite3_backup] object.
6468 ** ^The [sqlite3_backup] object may be used with the sqlite3_backup_step() and
6469 ** sqlite3_backup_finish() functions to perform the specified backup
6470 ** operation.
6472 ** <b>sqlite3_backup_step()</b>
6474 ** ^Function sqlite3_backup_step(B,N) will copy up to N pages between
6475 ** the source and destination databases specified by [sqlite3_backup] object B.
6476 ** ^If N is negative, all remaining source pages are copied.
6477 ** ^If sqlite3_backup_step(B,N) successfully copies N pages and there
6478 ** are still more pages to be copied, then the function returns [SQLITE_OK].
6479 ** ^If sqlite3_backup_step(B,N) successfully finishes copying all pages
6480 ** from source to destination, then it returns [SQLITE_DONE].
6481 ** ^If an error occurs while running sqlite3_backup_step(B,N),
6482 ** then an [error code] is returned. ^As well as [SQLITE_OK] and
6483 ** [SQLITE_DONE], a call to sqlite3_backup_step() may return [SQLITE_READONLY],
6484 ** [SQLITE_NOMEM], [SQLITE_BUSY], [SQLITE_LOCKED], or an
6485 ** [SQLITE_IOERR_ACCESS | SQLITE_IOERR_XXX] extended error code.
6487 ** ^(The sqlite3_backup_step() might return [SQLITE_READONLY] if
6488 ** <ol>
6489 ** <li> the destination database was opened read-only, or
6490 ** <li> the destination database is using write-ahead-log journaling
6491 ** and the destination and source page sizes differ, or
6492 ** <li> the destination database is an in-memory database and the
6493 ** destination and source page sizes differ.
6494 ** </ol>)^
6496 ** ^If sqlite3_backup_step() cannot obtain a required file-system lock, then
6497 ** the [sqlite3_busy_handler | busy-handler function]
6498 ** is invoked (if one is specified). ^If the
6499 ** busy-handler returns non-zero before the lock is available, then
6500 ** [SQLITE_BUSY] is returned to the caller. ^In this case the call to
6501 ** sqlite3_backup_step() can be retried later. ^If the source
6502 ** [database connection]
6503 ** is being used to write to the source database when sqlite3_backup_step()
6504 ** is called, then [SQLITE_LOCKED] is returned immediately. ^Again, in this
6505 ** case the call to sqlite3_backup_step() can be retried later on. ^(If
6506 ** [SQLITE_IOERR_ACCESS | SQLITE_IOERR_XXX], [SQLITE_NOMEM], or
6507 ** [SQLITE_READONLY] is returned, then
6508 ** there is no point in retrying the call to sqlite3_backup_step(). These
6509 ** errors are considered fatal.)^ The application must accept
6510 ** that the backup operation has failed and pass the backup operation handle
6511 ** to the sqlite3_backup_finish() to release associated resources.
6513 ** ^The first call to sqlite3_backup_step() obtains an exclusive lock
6514 ** on the destination file. ^The exclusive lock is not released until either
6515 ** sqlite3_backup_finish() is called or the backup operation is complete
6516 ** and sqlite3_backup_step() returns [SQLITE_DONE]. ^Every call to
6517 ** sqlite3_backup_step() obtains a [shared lock] on the source database that
6518 ** lasts for the duration of the sqlite3_backup_step() call.
6519 ** ^Because the source database is not locked between calls to
6520 ** sqlite3_backup_step(), the source database may be modified mid-way
6521 ** through the backup process. ^If the source database is modified by an
6522 ** external process or via a database connection other than the one being
6523 ** used by the backup operation, then the backup will be automatically
6524 ** restarted by the next call to sqlite3_backup_step(). ^If the source
6525 ** database is modified by the using the same database connection as is used
6526 ** by the backup operation, then the backup database is automatically
6527 ** updated at the same time.
6529 ** <b>sqlite3_backup_finish()</b>
6531 ** When sqlite3_backup_step() has returned [SQLITE_DONE], or when the
6532 ** application wishes to abandon the backup operation, the application
6533 ** should destroy the [sqlite3_backup] by passing it to sqlite3_backup_finish().
6534 ** ^The sqlite3_backup_finish() interfaces releases all
6535 ** resources associated with the [sqlite3_backup] object.
6536 ** ^If sqlite3_backup_step() has not yet returned [SQLITE_DONE], then any
6537 ** active write-transaction on the destination database is rolled back.
6538 ** The [sqlite3_backup] object is invalid
6539 ** and may not be used following a call to sqlite3_backup_finish().
6541 ** ^The value returned by sqlite3_backup_finish is [SQLITE_OK] if no
6542 ** sqlite3_backup_step() errors occurred, regardless or whether or not
6543 ** sqlite3_backup_step() completed.
6544 ** ^If an out-of-memory condition or IO error occurred during any prior
6545 ** sqlite3_backup_step() call on the same [sqlite3_backup] object, then
6546 ** sqlite3_backup_finish() returns the corresponding [error code].
6548 ** ^A return of [SQLITE_BUSY] or [SQLITE_LOCKED] from sqlite3_backup_step()
6549 ** is not a permanent error and does not affect the return value of
6550 ** sqlite3_backup_finish().
6552 ** <b>sqlite3_backup_remaining(), sqlite3_backup_pagecount()</b>
6554 ** ^Each call to sqlite3_backup_step() sets two values inside
6555 ** the [sqlite3_backup] object: the number of pages still to be backed
6556 ** up and the total number of pages in the source database file.
6557 ** The sqlite3_backup_remaining() and sqlite3_backup_pagecount() interfaces
6558 ** retrieve these two values, respectively.
6560 ** ^The values returned by these functions are only updated by
6561 ** sqlite3_backup_step(). ^If the source database is modified during a backup
6562 ** operation, then the values are not updated to account for any extra
6563 ** pages that need to be updated or the size of the source database file
6564 ** changing.
6566 ** <b>Concurrent Usage of Database Handles</b>
6568 ** ^The source [database connection] may be used by the application for other
6569 ** purposes while a backup operation is underway or being initialized.
6570 ** ^If SQLite is compiled and configured to support threadsafe database
6571 ** connections, then the source database connection may be used concurrently
6572 ** from within other threads.
6574 ** However, the application must guarantee that the destination
6575 ** [database connection] is not passed to any other API (by any thread) after
6576 ** sqlite3_backup_init() is called and before the corresponding call to
6577 ** sqlite3_backup_finish(). SQLite does not currently check to see
6578 ** if the application incorrectly accesses the destination [database connection]
6579 ** and so no error code is reported, but the operations may malfunction
6580 ** nevertheless. Use of the destination database connection while a
6581 ** backup is in progress might also also cause a mutex deadlock.
6583 ** If running in [shared cache mode], the application must
6584 ** guarantee that the shared cache used by the destination database
6585 ** is not accessed while the backup is running. In practice this means
6586 ** that the application must guarantee that the disk file being
6587 ** backed up to is not accessed by any connection within the process,
6588 ** not just the specific connection that was passed to sqlite3_backup_init().
6590 ** The [sqlite3_backup] object itself is partially threadsafe. Multiple
6591 ** threads may safely make multiple concurrent calls to sqlite3_backup_step().
6592 ** However, the sqlite3_backup_remaining() and sqlite3_backup_pagecount()
6593 ** APIs are not strictly speaking threadsafe. If they are invoked at the
6594 ** same time as another thread is invoking sqlite3_backup_step() it is
6595 ** possible that they return invalid values.
6597 SQLITE_API sqlite3_backup *sqlite3_backup_init(
6598 sqlite3 *pDest, /* Destination database handle */
6599 const char *zDestName, /* Destination database name */
6600 sqlite3 *pSource, /* Source database handle */
6601 const char *zSourceName /* Source database name */
6603 SQLITE_API int sqlite3_backup_step(sqlite3_backup *p, int nPage);
6604 SQLITE_API int sqlite3_backup_finish(sqlite3_backup *p);
6605 SQLITE_API int sqlite3_backup_remaining(sqlite3_backup *p);
6606 SQLITE_API int sqlite3_backup_pagecount(sqlite3_backup *p);
6609 ** CAPI3REF: Unlock Notification
6611 ** ^When running in shared-cache mode, a database operation may fail with
6612 ** an [SQLITE_LOCKED] error if the required locks on the shared-cache or
6613 ** individual tables within the shared-cache cannot be obtained. See
6614 ** [SQLite Shared-Cache Mode] for a description of shared-cache locking.
6615 ** ^This API may be used to register a callback that SQLite will invoke
6616 ** when the connection currently holding the required lock relinquishes it.
6617 ** ^This API is only available if the library was compiled with the
6618 ** [SQLITE_ENABLE_UNLOCK_NOTIFY] C-preprocessor symbol defined.
6620 ** See Also: [Using the SQLite Unlock Notification Feature].
6622 ** ^Shared-cache locks are released when a database connection concludes
6623 ** its current transaction, either by committing it or rolling it back.
6625 ** ^When a connection (known as the blocked connection) fails to obtain a
6626 ** shared-cache lock and SQLITE_LOCKED is returned to the caller, the
6627 ** identity of the database connection (the blocking connection) that
6628 ** has locked the required resource is stored internally. ^After an
6629 ** application receives an SQLITE_LOCKED error, it may call the
6630 ** sqlite3_unlock_notify() method with the blocked connection handle as
6631 ** the first argument to register for a callback that will be invoked
6632 ** when the blocking connections current transaction is concluded. ^The
6633 ** callback is invoked from within the [sqlite3_step] or [sqlite3_close]
6634 ** call that concludes the blocking connections transaction.
6636 ** ^(If sqlite3_unlock_notify() is called in a multi-threaded application,
6637 ** there is a chance that the blocking connection will have already
6638 ** concluded its transaction by the time sqlite3_unlock_notify() is invoked.
6639 ** If this happens, then the specified callback is invoked immediately,
6640 ** from within the call to sqlite3_unlock_notify().)^
6642 ** ^If the blocked connection is attempting to obtain a write-lock on a
6643 ** shared-cache table, and more than one other connection currently holds
6644 ** a read-lock on the same table, then SQLite arbitrarily selects one of
6645 ** the other connections to use as the blocking connection.
6647 ** ^(There may be at most one unlock-notify callback registered by a
6648 ** blocked connection. If sqlite3_unlock_notify() is called when the
6649 ** blocked connection already has a registered unlock-notify callback,
6650 ** then the new callback replaces the old.)^ ^If sqlite3_unlock_notify() is
6651 ** called with a NULL pointer as its second argument, then any existing
6652 ** unlock-notify callback is canceled. ^The blocked connections
6653 ** unlock-notify callback may also be canceled by closing the blocked
6654 ** connection using [sqlite3_close()].
6656 ** The unlock-notify callback is not reentrant. If an application invokes
6657 ** any sqlite3_xxx API functions from within an unlock-notify callback, a
6658 ** crash or deadlock may be the result.
6660 ** ^Unless deadlock is detected (see below), sqlite3_unlock_notify() always
6661 ** returns SQLITE_OK.
6663 ** <b>Callback Invocation Details</b>
6665 ** When an unlock-notify callback is registered, the application provides a
6666 ** single void* pointer that is passed to the callback when it is invoked.
6667 ** However, the signature of the callback function allows SQLite to pass
6668 ** it an array of void* context pointers. The first argument passed to
6669 ** an unlock-notify callback is a pointer to an array of void* pointers,
6670 ** and the second is the number of entries in the array.
6672 ** When a blocking connections transaction is concluded, there may be
6673 ** more than one blocked connection that has registered for an unlock-notify
6674 ** callback. ^If two or more such blocked connections have specified the
6675 ** same callback function, then instead of invoking the callback function
6676 ** multiple times, it is invoked once with the set of void* context pointers
6677 ** specified by the blocked connections bundled together into an array.
6678 ** This gives the application an opportunity to prioritize any actions
6679 ** related to the set of unblocked database connections.
6681 ** <b>Deadlock Detection</b>
6683 ** Assuming that after registering for an unlock-notify callback a
6684 ** database waits for the callback to be issued before taking any further
6685 ** action (a reasonable assumption), then using this API may cause the
6686 ** application to deadlock. For example, if connection X is waiting for
6687 ** connection Y's transaction to be concluded, and similarly connection
6688 ** Y is waiting on connection X's transaction, then neither connection
6689 ** will proceed and the system may remain deadlocked indefinitely.
6691 ** To avoid this scenario, the sqlite3_unlock_notify() performs deadlock
6692 ** detection. ^If a given call to sqlite3_unlock_notify() would put the
6693 ** system in a deadlocked state, then SQLITE_LOCKED is returned and no
6694 ** unlock-notify callback is registered. The system is said to be in
6695 ** a deadlocked state if connection A has registered for an unlock-notify
6696 ** callback on the conclusion of connection B's transaction, and connection
6697 ** B has itself registered for an unlock-notify callback when connection
6698 ** A's transaction is concluded. ^Indirect deadlock is also detected, so
6699 ** the system is also considered to be deadlocked if connection B has
6700 ** registered for an unlock-notify callback on the conclusion of connection
6701 ** C's transaction, where connection C is waiting on connection A. ^Any
6702 ** number of levels of indirection are allowed.
6704 ** <b>The "DROP TABLE" Exception</b>
6706 ** When a call to [sqlite3_step()] returns SQLITE_LOCKED, it is almost
6707 ** always appropriate to call sqlite3_unlock_notify(). There is however,
6708 ** one exception. When executing a "DROP TABLE" or "DROP INDEX" statement,
6709 ** SQLite checks if there are any currently executing SELECT statements
6710 ** that belong to the same connection. If there are, SQLITE_LOCKED is
6711 ** returned. In this case there is no "blocking connection", so invoking
6712 ** sqlite3_unlock_notify() results in the unlock-notify callback being
6713 ** invoked immediately. If the application then re-attempts the "DROP TABLE"
6714 ** or "DROP INDEX" query, an infinite loop might be the result.
6716 ** One way around this problem is to check the extended error code returned
6717 ** by an sqlite3_step() call. ^(If there is a blocking connection, then the
6718 ** extended error code is set to SQLITE_LOCKED_SHAREDCACHE. Otherwise, in
6719 ** the special "DROP TABLE/INDEX" case, the extended error code is just
6720 ** SQLITE_LOCKED.)^
6722 SQLITE_API int sqlite3_unlock_notify(
6723 sqlite3 *pBlocked, /* Waiting connection */
6724 void (*xNotify)(void **apArg, int nArg), /* Callback function to invoke */
6725 void *pNotifyArg /* Argument to pass to xNotify */
6730 ** CAPI3REF: String Comparison
6732 ** ^The [sqlite3_strnicmp()] API allows applications and extensions to
6733 ** compare the contents of two buffers containing UTF-8 strings in a
6734 ** case-independent fashion, using the same definition of case independence
6735 ** that SQLite uses internally when comparing identifiers.
6737 SQLITE_API int sqlite3_strnicmp(const char *, const char *, int);
6740 ** CAPI3REF: Error Logging Interface
6742 ** ^The [sqlite3_log()] interface writes a message into the error log
6743 ** established by the [SQLITE_CONFIG_LOG] option to [sqlite3_config()].
6744 ** ^If logging is enabled, the zFormat string and subsequent arguments are
6745 ** used with [sqlite3_snprintf()] to generate the final output string.
6747 ** The sqlite3_log() interface is intended for use by extensions such as
6748 ** virtual tables, collating functions, and SQL functions. While there is
6749 ** nothing to prevent an application from calling sqlite3_log(), doing so
6750 ** is considered bad form.
6752 ** The zFormat string must not be NULL.
6754 ** To avoid deadlocks and other threading problems, the sqlite3_log() routine
6755 ** will not use dynamically allocated memory. The log message is stored in
6756 ** a fixed-length buffer on the stack. If the log message is longer than
6757 ** a few hundred characters, it will be truncated to the length of the
6758 ** buffer.
6760 SQLITE_API void sqlite3_log(int iErrCode, const char *zFormat, ...);
6763 ** CAPI3REF: Write-Ahead Log Commit Hook
6765 ** ^The [sqlite3_wal_hook()] function is used to register a callback that
6766 ** will be invoked each time a database connection commits data to a
6767 ** [write-ahead log] (i.e. whenever a transaction is committed in
6768 ** [journal_mode | journal_mode=WAL mode]).
6770 ** ^The callback is invoked by SQLite after the commit has taken place and
6771 ** the associated write-lock on the database released, so the implementation
6772 ** may read, write or [checkpoint] the database as required.
6774 ** ^The first parameter passed to the callback function when it is invoked
6775 ** is a copy of the third parameter passed to sqlite3_wal_hook() when
6776 ** registering the callback. ^The second is a copy of the database handle.
6777 ** ^The third parameter is the name of the database that was written to -
6778 ** either "main" or the name of an [ATTACH]-ed database. ^The fourth parameter
6779 ** is the number of pages currently in the write-ahead log file,
6780 ** including those that were just committed.
6782 ** The callback function should normally return [SQLITE_OK]. ^If an error
6783 ** code is returned, that error will propagate back up through the
6784 ** SQLite code base to cause the statement that provoked the callback
6785 ** to report an error, though the commit will have still occurred. If the
6786 ** callback returns [SQLITE_ROW] or [SQLITE_DONE], or if it returns a value
6787 ** that does not correspond to any valid SQLite error code, the results
6788 ** are undefined.
6790 ** A single database handle may have at most a single write-ahead log callback
6791 ** registered at one time. ^Calling [sqlite3_wal_hook()] replaces any
6792 ** previously registered write-ahead log callback. ^Note that the
6793 ** [sqlite3_wal_autocheckpoint()] interface and the
6794 ** [wal_autocheckpoint pragma] both invoke [sqlite3_wal_hook()] and will
6795 ** those overwrite any prior [sqlite3_wal_hook()] settings.
6797 SQLITE_API void *sqlite3_wal_hook(
6798 sqlite3*,
6799 int(*)(void *,sqlite3*,const char*,int),
6800 void*
6804 ** CAPI3REF: Configure an auto-checkpoint
6806 ** ^The [sqlite3_wal_autocheckpoint(D,N)] is a wrapper around
6807 ** [sqlite3_wal_hook()] that causes any database on [database connection] D
6808 ** to automatically [checkpoint]
6809 ** after committing a transaction if there are N or
6810 ** more frames in the [write-ahead log] file. ^Passing zero or
6811 ** a negative value as the nFrame parameter disables automatic
6812 ** checkpoints entirely.
6814 ** ^The callback registered by this function replaces any existing callback
6815 ** registered using [sqlite3_wal_hook()]. ^Likewise, registering a callback
6816 ** using [sqlite3_wal_hook()] disables the automatic checkpoint mechanism
6817 ** configured by this function.
6819 ** ^The [wal_autocheckpoint pragma] can be used to invoke this interface
6820 ** from SQL.
6822 ** ^Every new [database connection] defaults to having the auto-checkpoint
6823 ** enabled with a threshold of 1000 or [SQLITE_DEFAULT_WAL_AUTOCHECKPOINT]
6824 ** pages. The use of this interface
6825 ** is only necessary if the default setting is found to be suboptimal
6826 ** for a particular application.
6828 SQLITE_API int sqlite3_wal_autocheckpoint(sqlite3 *db, int N);
6831 ** CAPI3REF: Checkpoint a database
6833 ** ^The [sqlite3_wal_checkpoint(D,X)] interface causes database named X
6834 ** on [database connection] D to be [checkpointed]. ^If X is NULL or an
6835 ** empty string, then a checkpoint is run on all databases of
6836 ** connection D. ^If the database connection D is not in
6837 ** [WAL | write-ahead log mode] then this interface is a harmless no-op.
6839 ** ^The [wal_checkpoint pragma] can be used to invoke this interface
6840 ** from SQL. ^The [sqlite3_wal_autocheckpoint()] interface and the
6841 ** [wal_autocheckpoint pragma] can be used to cause this interface to be
6842 ** run whenever the WAL reaches a certain size threshold.
6844 ** See also: [sqlite3_wal_checkpoint_v2()]
6846 SQLITE_API int sqlite3_wal_checkpoint(sqlite3 *db, const char *zDb);
6849 ** CAPI3REF: Checkpoint a database
6851 ** Run a checkpoint operation on WAL database zDb attached to database
6852 ** handle db. The specific operation is determined by the value of the
6853 ** eMode parameter:
6855 ** <dl>
6856 ** <dt>SQLITE_CHECKPOINT_PASSIVE<dd>
6857 ** Checkpoint as many frames as possible without waiting for any database
6858 ** readers or writers to finish. Sync the db file if all frames in the log
6859 ** are checkpointed. This mode is the same as calling
6860 ** sqlite3_wal_checkpoint(). The busy-handler callback is never invoked.
6862 ** <dt>SQLITE_CHECKPOINT_FULL<dd>
6863 ** This mode blocks (calls the busy-handler callback) until there is no
6864 ** database writer and all readers are reading from the most recent database
6865 ** snapshot. It then checkpoints all frames in the log file and syncs the
6866 ** database file. This call blocks database writers while it is running,
6867 ** but not database readers.
6869 ** <dt>SQLITE_CHECKPOINT_RESTART<dd>
6870 ** This mode works the same way as SQLITE_CHECKPOINT_FULL, except after
6871 ** checkpointing the log file it blocks (calls the busy-handler callback)
6872 ** until all readers are reading from the database file only. This ensures
6873 ** that the next client to write to the database file restarts the log file
6874 ** from the beginning. This call blocks database writers while it is running,
6875 ** but not database readers.
6876 ** </dl>
6878 ** If pnLog is not NULL, then *pnLog is set to the total number of frames in
6879 ** the log file before returning. If pnCkpt is not NULL, then *pnCkpt is set to
6880 ** the total number of checkpointed frames (including any that were already
6881 ** checkpointed when this function is called). *pnLog and *pnCkpt may be
6882 ** populated even if sqlite3_wal_checkpoint_v2() returns other than SQLITE_OK.
6883 ** If no values are available because of an error, they are both set to -1
6884 ** before returning to communicate this to the caller.
6886 ** All calls obtain an exclusive "checkpoint" lock on the database file. If
6887 ** any other process is running a checkpoint operation at the same time, the
6888 ** lock cannot be obtained and SQLITE_BUSY is returned. Even if there is a
6889 ** busy-handler configured, it will not be invoked in this case.
6891 ** The SQLITE_CHECKPOINT_FULL and RESTART modes also obtain the exclusive
6892 ** "writer" lock on the database file. If the writer lock cannot be obtained
6893 ** immediately, and a busy-handler is configured, it is invoked and the writer
6894 ** lock retried until either the busy-handler returns 0 or the lock is
6895 ** successfully obtained. The busy-handler is also invoked while waiting for
6896 ** database readers as described above. If the busy-handler returns 0 before
6897 ** the writer lock is obtained or while waiting for database readers, the
6898 ** checkpoint operation proceeds from that point in the same way as
6899 ** SQLITE_CHECKPOINT_PASSIVE - checkpointing as many frames as possible
6900 ** without blocking any further. SQLITE_BUSY is returned in this case.
6902 ** If parameter zDb is NULL or points to a zero length string, then the
6903 ** specified operation is attempted on all WAL databases. In this case the
6904 ** values written to output parameters *pnLog and *pnCkpt are undefined. If
6905 ** an SQLITE_BUSY error is encountered when processing one or more of the
6906 ** attached WAL databases, the operation is still attempted on any remaining
6907 ** attached databases and SQLITE_BUSY is returned to the caller. If any other
6908 ** error occurs while processing an attached database, processing is abandoned
6909 ** and the error code returned to the caller immediately. If no error
6910 ** (SQLITE_BUSY or otherwise) is encountered while processing the attached
6911 ** databases, SQLITE_OK is returned.
6913 ** If database zDb is the name of an attached database that is not in WAL
6914 ** mode, SQLITE_OK is returned and both *pnLog and *pnCkpt set to -1. If
6915 ** zDb is not NULL (or a zero length string) and is not the name of any
6916 ** attached database, SQLITE_ERROR is returned to the caller.
6918 SQLITE_API int sqlite3_wal_checkpoint_v2(
6919 sqlite3 *db, /* Database handle */
6920 const char *zDb, /* Name of attached database (or NULL) */
6921 int eMode, /* SQLITE_CHECKPOINT_* value */
6922 int *pnLog, /* OUT: Size of WAL log in frames */
6923 int *pnCkpt /* OUT: Total number of frames checkpointed */
6927 ** CAPI3REF: Checkpoint operation parameters
6929 ** These constants can be used as the 3rd parameter to
6930 ** [sqlite3_wal_checkpoint_v2()]. See the [sqlite3_wal_checkpoint_v2()]
6931 ** documentation for additional information about the meaning and use of
6932 ** each of these values.
6934 #define SQLITE_CHECKPOINT_PASSIVE 0
6935 #define SQLITE_CHECKPOINT_FULL 1
6936 #define SQLITE_CHECKPOINT_RESTART 2
6939 /* Begin recover.patch for Chromium */
6941 ** Call to initialize the recover virtual-table modules (see recover.c).
6943 ** This could be loaded by default in main.c, but that would make the
6944 ** virtual table available to Web SQL. Breaking it out allows only
6945 ** selected users to enable it (currently sql/recovery.cc).
6947 int recoverVtableInit(sqlite3 *db);
6948 /* End recover.patch for Chromium */
6951 ** Undo the hack that converts floating point types to integer for
6952 ** builds on processors without floating point support.
6954 #ifdef SQLITE_OMIT_FLOATING_POINT
6955 # undef double
6956 #endif
6958 #if 0
6959 } /* End of the 'extern "C"' block */
6960 #endif
6961 #endif
6964 ** 2010 August 30
6966 ** The author disclaims copyright to this source code. In place of
6967 ** a legal notice, here is a blessing:
6969 ** May you do good and not evil.
6970 ** May you find forgiveness for yourself and forgive others.
6971 ** May you share freely, never taking more than you give.
6973 *************************************************************************
6976 #ifndef _SQLITE3RTREE_H_
6977 #define _SQLITE3RTREE_H_
6980 #if 0
6981 extern "C" {
6982 #endif
6984 typedef struct sqlite3_rtree_geometry sqlite3_rtree_geometry;
6987 ** Register a geometry callback named zGeom that can be used as part of an
6988 ** R-Tree geometry query as follows:
6990 ** SELECT ... FROM <rtree> WHERE <rtree col> MATCH $zGeom(... params ...)
6992 SQLITE_API int sqlite3_rtree_geometry_callback(
6993 sqlite3 *db,
6994 const char *zGeom,
6995 int (*xGeom)(sqlite3_rtree_geometry *, int nCoord, double *aCoord, int *pRes),
6996 void *pContext
7001 ** A pointer to a structure of the following type is passed as the first
7002 ** argument to callbacks registered using rtree_geometry_callback().
7004 struct sqlite3_rtree_geometry {
7005 void *pContext; /* Copy of pContext passed to s_r_g_c() */
7006 int nParam; /* Size of array aParam[] */
7007 double *aParam; /* Parameters passed to SQL geom function */
7008 void *pUser; /* Callback implementation user data */
7009 void (*xDelUser)(void *); /* Called by SQLite to clean up pUser */
7013 #if 0
7014 } /* end of the 'extern "C"' block */
7015 #endif
7017 #endif /* ifndef _SQLITE3RTREE_H_ */
7020 /************** End of sqlite3.h *********************************************/
7021 /************** Continuing where we left off in sqliteInt.h ******************/
7022 /************** Include hash.h in the middle of sqliteInt.h ******************/
7023 /************** Begin file hash.h ********************************************/
7025 ** 2001 September 22
7027 ** The author disclaims copyright to this source code. In place of
7028 ** a legal notice, here is a blessing:
7030 ** May you do good and not evil.
7031 ** May you find forgiveness for yourself and forgive others.
7032 ** May you share freely, never taking more than you give.
7034 *************************************************************************
7035 ** This is the header file for the generic hash-table implemenation
7036 ** used in SQLite.
7038 #ifndef _SQLITE_HASH_H_
7039 #define _SQLITE_HASH_H_
7041 /* Forward declarations of structures. */
7042 typedef struct Hash Hash;
7043 typedef struct HashElem HashElem;
7045 /* A complete hash table is an instance of the following structure.
7046 ** The internals of this structure are intended to be opaque -- client
7047 ** code should not attempt to access or modify the fields of this structure
7048 ** directly. Change this structure only by using the routines below.
7049 ** However, some of the "procedures" and "functions" for modifying and
7050 ** accessing this structure are really macros, so we can't really make
7051 ** this structure opaque.
7053 ** All elements of the hash table are on a single doubly-linked list.
7054 ** Hash.first points to the head of this list.
7056 ** There are Hash.htsize buckets. Each bucket points to a spot in
7057 ** the global doubly-linked list. The contents of the bucket are the
7058 ** element pointed to plus the next _ht.count-1 elements in the list.
7060 ** Hash.htsize and Hash.ht may be zero. In that case lookup is done
7061 ** by a linear search of the global list. For small tables, the
7062 ** Hash.ht table is never allocated because if there are few elements
7063 ** in the table, it is faster to do a linear search than to manage
7064 ** the hash table.
7066 struct Hash {
7067 unsigned int htsize; /* Number of buckets in the hash table */
7068 unsigned int count; /* Number of entries in this table */
7069 HashElem *first; /* The first element of the array */
7070 struct _ht { /* the hash table */
7071 int count; /* Number of entries with this hash */
7072 HashElem *chain; /* Pointer to first entry with this hash */
7073 } *ht;
7076 /* Each element in the hash table is an instance of the following
7077 ** structure. All elements are stored on a single doubly-linked list.
7079 ** Again, this structure is intended to be opaque, but it can't really
7080 ** be opaque because it is used by macros.
7082 struct HashElem {
7083 HashElem *next, *prev; /* Next and previous elements in the table */
7084 void *data; /* Data associated with this element */
7085 const char *pKey; int nKey; /* Key associated with this element */
7089 ** Access routines. To delete, insert a NULL pointer.
7091 SQLITE_PRIVATE void sqlite3HashInit(Hash*);
7092 SQLITE_PRIVATE void *sqlite3HashInsert(Hash*, const char *pKey, int nKey, void *pData);
7093 SQLITE_PRIVATE void *sqlite3HashFind(const Hash*, const char *pKey, int nKey);
7094 SQLITE_PRIVATE void sqlite3HashClear(Hash*);
7097 ** Macros for looping over all elements of a hash table. The idiom is
7098 ** like this:
7100 ** Hash h;
7101 ** HashElem *p;
7102 ** ...
7103 ** for(p=sqliteHashFirst(&h); p; p=sqliteHashNext(p)){
7104 ** SomeStructure *pData = sqliteHashData(p);
7105 ** // do something with pData
7106 ** }
7108 #define sqliteHashFirst(H) ((H)->first)
7109 #define sqliteHashNext(E) ((E)->next)
7110 #define sqliteHashData(E) ((E)->data)
7111 /* #define sqliteHashKey(E) ((E)->pKey) // NOT USED */
7112 /* #define sqliteHashKeysize(E) ((E)->nKey) // NOT USED */
7115 ** Number of entries in a hash table
7117 /* #define sqliteHashCount(H) ((H)->count) // NOT USED */
7119 #endif /* _SQLITE_HASH_H_ */
7121 /************** End of hash.h ************************************************/
7122 /************** Continuing where we left off in sqliteInt.h ******************/
7123 /************** Include parse.h in the middle of sqliteInt.h *****************/
7124 /************** Begin file parse.h *******************************************/
7125 #define TK_SEMI 1
7126 #define TK_EXPLAIN 2
7127 #define TK_QUERY 3
7128 #define TK_PLAN 4
7129 #define TK_BEGIN 5
7130 #define TK_TRANSACTION 6
7131 #define TK_DEFERRED 7
7132 #define TK_IMMEDIATE 8
7133 #define TK_EXCLUSIVE 9
7134 #define TK_COMMIT 10
7135 #define TK_END 11
7136 #define TK_ROLLBACK 12
7137 #define TK_SAVEPOINT 13
7138 #define TK_RELEASE 14
7139 #define TK_TO 15
7140 #define TK_TABLE 16
7141 #define TK_CREATE 17
7142 #define TK_IF 18
7143 #define TK_NOT 19
7144 #define TK_EXISTS 20
7145 #define TK_TEMP 21
7146 #define TK_LP 22
7147 #define TK_RP 23
7148 #define TK_AS 24
7149 #define TK_COMMA 25
7150 #define TK_ID 26
7151 #define TK_INDEXED 27
7152 #define TK_ABORT 28
7153 #define TK_ACTION 29
7154 #define TK_AFTER 30
7155 #define TK_ANALYZE 31
7156 #define TK_ASC 32
7157 #define TK_ATTACH 33
7158 #define TK_BEFORE 34
7159 #define TK_BY 35
7160 #define TK_CASCADE 36
7161 #define TK_CAST 37
7162 #define TK_COLUMNKW 38
7163 #define TK_CONFLICT 39
7164 #define TK_DATABASE 40
7165 #define TK_DESC 41
7166 #define TK_DETACH 42
7167 #define TK_EACH 43
7168 #define TK_FAIL 44
7169 #define TK_FOR 45
7170 #define TK_IGNORE 46
7171 #define TK_INITIALLY 47
7172 #define TK_INSTEAD 48
7173 #define TK_LIKE_KW 49
7174 #define TK_MATCH 50
7175 #define TK_NO 51
7176 #define TK_KEY 52
7177 #define TK_OF 53
7178 #define TK_OFFSET 54
7179 #define TK_PRAGMA 55
7180 #define TK_RAISE 56
7181 #define TK_REPLACE 57
7182 #define TK_RESTRICT 58
7183 #define TK_ROW 59
7184 #define TK_TRIGGER 60
7185 #define TK_VACUUM 61
7186 #define TK_VIEW 62
7187 #define TK_VIRTUAL 63
7188 #define TK_REINDEX 64
7189 #define TK_RENAME 65
7190 #define TK_CTIME_KW 66
7191 #define TK_ANY 67
7192 #define TK_OR 68
7193 #define TK_AND 69
7194 #define TK_IS 70
7195 #define TK_BETWEEN 71
7196 #define TK_IN 72
7197 #define TK_ISNULL 73
7198 #define TK_NOTNULL 74
7199 #define TK_NE 75
7200 #define TK_EQ 76
7201 #define TK_GT 77
7202 #define TK_LE 78
7203 #define TK_LT 79
7204 #define TK_GE 80
7205 #define TK_ESCAPE 81
7206 #define TK_BITAND 82
7207 #define TK_BITOR 83
7208 #define TK_LSHIFT 84
7209 #define TK_RSHIFT 85
7210 #define TK_PLUS 86
7211 #define TK_MINUS 87
7212 #define TK_STAR 88
7213 #define TK_SLASH 89
7214 #define TK_REM 90
7215 #define TK_CONCAT 91
7216 #define TK_COLLATE 92
7217 #define TK_BITNOT 93
7218 #define TK_STRING 94
7219 #define TK_JOIN_KW 95
7220 #define TK_CONSTRAINT 96
7221 #define TK_DEFAULT 97
7222 #define TK_NULL 98
7223 #define TK_PRIMARY 99
7224 #define TK_UNIQUE 100
7225 #define TK_CHECK 101
7226 #define TK_REFERENCES 102
7227 #define TK_AUTOINCR 103
7228 #define TK_ON 104
7229 #define TK_INSERT 105
7230 #define TK_DELETE 106
7231 #define TK_UPDATE 107
7232 #define TK_SET 108
7233 #define TK_DEFERRABLE 109
7234 #define TK_FOREIGN 110
7235 #define TK_DROP 111
7236 #define TK_UNION 112
7237 #define TK_ALL 113
7238 #define TK_EXCEPT 114
7239 #define TK_INTERSECT 115
7240 #define TK_SELECT 116
7241 #define TK_DISTINCT 117
7242 #define TK_DOT 118
7243 #define TK_FROM 119
7244 #define TK_JOIN 120
7245 #define TK_USING 121
7246 #define TK_ORDER 122
7247 #define TK_GROUP 123
7248 #define TK_HAVING 124
7249 #define TK_LIMIT 125
7250 #define TK_WHERE 126
7251 #define TK_INTO 127
7252 #define TK_VALUES 128
7253 #define TK_INTEGER 129
7254 #define TK_FLOAT 130
7255 #define TK_BLOB 131
7256 #define TK_REGISTER 132
7257 #define TK_VARIABLE 133
7258 #define TK_CASE 134
7259 #define TK_WHEN 135
7260 #define TK_THEN 136
7261 #define TK_ELSE 137
7262 #define TK_INDEX 138
7263 #define TK_ALTER 139
7264 #define TK_ADD 140
7265 #define TK_TO_TEXT 141
7266 #define TK_TO_BLOB 142
7267 #define TK_TO_NUMERIC 143
7268 #define TK_TO_INT 144
7269 #define TK_TO_REAL 145
7270 #define TK_ISNOT 146
7271 #define TK_END_OF_FILE 147
7272 #define TK_ILLEGAL 148
7273 #define TK_SPACE 149
7274 #define TK_UNCLOSED_STRING 150
7275 #define TK_FUNCTION 151
7276 #define TK_COLUMN 152
7277 #define TK_AGG_FUNCTION 153
7278 #define TK_AGG_COLUMN 154
7279 #define TK_CONST_FUNC 155
7280 #define TK_UMINUS 156
7281 #define TK_UPLUS 157
7283 /************** End of parse.h ***********************************************/
7284 /************** Continuing where we left off in sqliteInt.h ******************/
7285 #include <stdio.h>
7286 #include <stdlib.h>
7287 #include <string.h>
7288 #include <assert.h>
7289 #include <stddef.h>
7292 ** If compiling for a processor that lacks floating point support,
7293 ** substitute integer for floating-point
7295 #ifdef SQLITE_OMIT_FLOATING_POINT
7296 # define double sqlite_int64
7297 # define float sqlite_int64
7298 # define LONGDOUBLE_TYPE sqlite_int64
7299 # ifndef SQLITE_BIG_DBL
7300 # define SQLITE_BIG_DBL (((sqlite3_int64)1)<<50)
7301 # endif
7302 # define SQLITE_OMIT_DATETIME_FUNCS 1
7303 # define SQLITE_OMIT_TRACE 1
7304 # undef SQLITE_MIXED_ENDIAN_64BIT_FLOAT
7305 # undef SQLITE_HAVE_ISNAN
7306 #endif
7307 #ifndef SQLITE_BIG_DBL
7308 # define SQLITE_BIG_DBL (1e99)
7309 #endif
7312 ** OMIT_TEMPDB is set to 1 if SQLITE_OMIT_TEMPDB is defined, or 0
7313 ** afterward. Having this macro allows us to cause the C compiler
7314 ** to omit code used by TEMP tables without messy #ifndef statements.
7316 #ifdef SQLITE_OMIT_TEMPDB
7317 #define OMIT_TEMPDB 1
7318 #else
7319 #define OMIT_TEMPDB 0
7320 #endif
7323 ** The "file format" number is an integer that is incremented whenever
7324 ** the VDBE-level file format changes. The following macros define the
7325 ** the default file format for new databases and the maximum file format
7326 ** that the library can read.
7328 #define SQLITE_MAX_FILE_FORMAT 4
7329 #ifndef SQLITE_DEFAULT_FILE_FORMAT
7330 # define SQLITE_DEFAULT_FILE_FORMAT 1
7331 #endif
7334 ** Determine whether triggers are recursive by default. This can be
7335 ** changed at run-time using a pragma.
7337 #ifndef SQLITE_DEFAULT_RECURSIVE_TRIGGERS
7338 # define SQLITE_DEFAULT_RECURSIVE_TRIGGERS 0
7339 #endif
7342 ** Provide a default value for SQLITE_TEMP_STORE in case it is not specified
7343 ** on the command-line
7345 #ifndef SQLITE_TEMP_STORE
7346 # define SQLITE_TEMP_STORE 1
7347 #endif
7350 ** GCC does not define the offsetof() macro so we'll have to do it
7351 ** ourselves.
7353 #ifndef offsetof
7354 #define offsetof(STRUCTURE,FIELD) ((int)((char*)&((STRUCTURE*)0)->FIELD))
7355 #endif
7358 ** Check to see if this machine uses EBCDIC. (Yes, believe it or
7359 ** not, there are still machines out there that use EBCDIC.)
7361 #if 'A' == '\301'
7362 # define SQLITE_EBCDIC 1
7363 #else
7364 # define SQLITE_ASCII 1
7365 #endif
7368 ** Integers of known sizes. These typedefs might change for architectures
7369 ** where the sizes very. Preprocessor macros are available so that the
7370 ** types can be conveniently redefined at compile-type. Like this:
7372 ** cc '-DUINTPTR_TYPE=long long int' ...
7374 #ifndef UINT32_TYPE
7375 # ifdef HAVE_UINT32_T
7376 # define UINT32_TYPE uint32_t
7377 # else
7378 # define UINT32_TYPE unsigned int
7379 # endif
7380 #endif
7381 #ifndef UINT16_TYPE
7382 # ifdef HAVE_UINT16_T
7383 # define UINT16_TYPE uint16_t
7384 # else
7385 # define UINT16_TYPE unsigned short int
7386 # endif
7387 #endif
7388 #ifndef INT16_TYPE
7389 # ifdef HAVE_INT16_T
7390 # define INT16_TYPE int16_t
7391 # else
7392 # define INT16_TYPE short int
7393 # endif
7394 #endif
7395 #ifndef UINT8_TYPE
7396 # ifdef HAVE_UINT8_T
7397 # define UINT8_TYPE uint8_t
7398 # else
7399 # define UINT8_TYPE unsigned char
7400 # endif
7401 #endif
7402 #ifndef INT8_TYPE
7403 # ifdef HAVE_INT8_T
7404 # define INT8_TYPE int8_t
7405 # else
7406 # define INT8_TYPE signed char
7407 # endif
7408 #endif
7409 #ifndef LONGDOUBLE_TYPE
7410 # define LONGDOUBLE_TYPE long double
7411 #endif
7412 typedef sqlite_int64 i64; /* 8-byte signed integer */
7413 typedef sqlite_uint64 u64; /* 8-byte unsigned integer */
7414 typedef UINT32_TYPE u32; /* 4-byte unsigned integer */
7415 typedef UINT16_TYPE u16; /* 2-byte unsigned integer */
7416 typedef INT16_TYPE i16; /* 2-byte signed integer */
7417 typedef UINT8_TYPE u8; /* 1-byte unsigned integer */
7418 typedef INT8_TYPE i8; /* 1-byte signed integer */
7421 ** SQLITE_MAX_U32 is a u64 constant that is the maximum u64 value
7422 ** that can be stored in a u32 without loss of data. The value
7423 ** is 0x00000000ffffffff. But because of quirks of some compilers, we
7424 ** have to specify the value in the less intuitive manner shown:
7426 #define SQLITE_MAX_U32 ((((u64)1)<<32)-1)
7429 ** Macros to determine whether the machine is big or little endian,
7430 ** evaluated at runtime.
7432 #ifdef SQLITE_AMALGAMATION
7433 SQLITE_PRIVATE const int sqlite3one = 1;
7434 #else
7435 SQLITE_PRIVATE const int sqlite3one;
7436 #endif
7437 #if defined(i386) || defined(__i386__) || defined(_M_IX86)\
7438 || defined(__x86_64) || defined(__x86_64__)
7439 # define SQLITE_BIGENDIAN 0
7440 # define SQLITE_LITTLEENDIAN 1
7441 # define SQLITE_UTF16NATIVE SQLITE_UTF16LE
7442 #else
7443 # define SQLITE_BIGENDIAN (*(char *)(&sqlite3one)==0)
7444 # define SQLITE_LITTLEENDIAN (*(char *)(&sqlite3one)==1)
7445 # define SQLITE_UTF16NATIVE (SQLITE_BIGENDIAN?SQLITE_UTF16BE:SQLITE_UTF16LE)
7446 #endif
7449 ** Constants for the largest and smallest possible 64-bit signed integers.
7450 ** These macros are designed to work correctly on both 32-bit and 64-bit
7451 ** compilers.
7453 #define LARGEST_INT64 (0xffffffff|(((i64)0x7fffffff)<<32))
7454 #define SMALLEST_INT64 (((i64)-1) - LARGEST_INT64)
7457 ** Round up a number to the next larger multiple of 8. This is used
7458 ** to force 8-byte alignment on 64-bit architectures.
7460 #define ROUND8(x) (((x)+7)&~7)
7463 ** Round down to the nearest multiple of 8
7465 #define ROUNDDOWN8(x) ((x)&~7)
7468 ** Assert that the pointer X is aligned to an 8-byte boundary. This
7469 ** macro is used only within assert() to verify that the code gets
7470 ** all alignment restrictions correct.
7472 ** Except, if SQLITE_4_BYTE_ALIGNED_MALLOC is defined, then the
7473 ** underlying malloc() implemention might return us 4-byte aligned
7474 ** pointers. In that case, only verify 4-byte alignment.
7476 #ifdef SQLITE_4_BYTE_ALIGNED_MALLOC
7477 # define EIGHT_BYTE_ALIGNMENT(X) ((((char*)(X) - (char*)0)&3)==0)
7478 #else
7479 # define EIGHT_BYTE_ALIGNMENT(X) ((((char*)(X) - (char*)0)&7)==0)
7480 #endif
7484 ** An instance of the following structure is used to store the busy-handler
7485 ** callback for a given sqlite handle.
7487 ** The sqlite.busyHandler member of the sqlite struct contains the busy
7488 ** callback for the database handle. Each pager opened via the sqlite
7489 ** handle is passed a pointer to sqlite.busyHandler. The busy-handler
7490 ** callback is currently invoked only from within pager.c.
7492 typedef struct BusyHandler BusyHandler;
7493 struct BusyHandler {
7494 int (*xFunc)(void *,int); /* The busy callback */
7495 void *pArg; /* First arg to busy callback */
7496 int nBusy; /* Incremented with each busy call */
7500 ** Name of the master database table. The master database table
7501 ** is a special table that holds the names and attributes of all
7502 ** user tables and indices.
7504 #define MASTER_NAME "sqlite_master"
7505 #define TEMP_MASTER_NAME "sqlite_temp_master"
7508 ** The root-page of the master database table.
7510 #define MASTER_ROOT 1
7513 ** The name of the schema table.
7515 #define SCHEMA_TABLE(x) ((!OMIT_TEMPDB)&&(x==1)?TEMP_MASTER_NAME:MASTER_NAME)
7518 ** A convenience macro that returns the number of elements in
7519 ** an array.
7521 #define ArraySize(X) ((int)(sizeof(X)/sizeof(X[0])))
7524 ** The following value as a destructor means to use sqlite3DbFree().
7525 ** This is an internal extension to SQLITE_STATIC and SQLITE_TRANSIENT.
7527 #define SQLITE_DYNAMIC ((sqlite3_destructor_type)sqlite3DbFree)
7530 ** When SQLITE_OMIT_WSD is defined, it means that the target platform does
7531 ** not support Writable Static Data (WSD) such as global and static variables.
7532 ** All variables must either be on the stack or dynamically allocated from
7533 ** the heap. When WSD is unsupported, the variable declarations scattered
7534 ** throughout the SQLite code must become constants instead. The SQLITE_WSD
7535 ** macro is used for this purpose. And instead of referencing the variable
7536 ** directly, we use its constant as a key to lookup the run-time allocated
7537 ** buffer that holds real variable. The constant is also the initializer
7538 ** for the run-time allocated buffer.
7540 ** In the usual case where WSD is supported, the SQLITE_WSD and GLOBAL
7541 ** macros become no-ops and have zero performance impact.
7543 #ifdef SQLITE_OMIT_WSD
7544 #define SQLITE_WSD const
7545 #define GLOBAL(t,v) (*(t*)sqlite3_wsd_find((void*)&(v), sizeof(v)))
7546 #define sqlite3GlobalConfig GLOBAL(struct Sqlite3Config, sqlite3Config)
7547 SQLITE_API int sqlite3_wsd_init(int N, int J);
7548 SQLITE_API void *sqlite3_wsd_find(void *K, int L);
7549 #else
7550 #define SQLITE_WSD
7551 #define GLOBAL(t,v) v
7552 #define sqlite3GlobalConfig sqlite3Config
7553 #endif
7556 ** The following macros are used to suppress compiler warnings and to
7557 ** make it clear to human readers when a function parameter is deliberately
7558 ** left unused within the body of a function. This usually happens when
7559 ** a function is called via a function pointer. For example the
7560 ** implementation of an SQL aggregate step callback may not use the
7561 ** parameter indicating the number of arguments passed to the aggregate,
7562 ** if it knows that this is enforced elsewhere.
7564 ** When a function parameter is not used at all within the body of a function,
7565 ** it is generally named "NotUsed" or "NotUsed2" to make things even clearer.
7566 ** However, these macros may also be used to suppress warnings related to
7567 ** parameters that may or may not be used depending on compilation options.
7568 ** For example those parameters only used in assert() statements. In these
7569 ** cases the parameters are named as per the usual conventions.
7571 #define UNUSED_PARAMETER(x) (void)(x)
7572 #define UNUSED_PARAMETER2(x,y) UNUSED_PARAMETER(x),UNUSED_PARAMETER(y)
7575 ** Forward references to structures
7577 typedef struct AggInfo AggInfo;
7578 typedef struct AuthContext AuthContext;
7579 typedef struct AutoincInfo AutoincInfo;
7580 typedef struct Bitvec Bitvec;
7581 typedef struct CollSeq CollSeq;
7582 typedef struct Column Column;
7583 typedef struct Db Db;
7584 typedef struct Schema Schema;
7585 typedef struct Expr Expr;
7586 typedef struct ExprList ExprList;
7587 typedef struct ExprSpan ExprSpan;
7588 typedef struct FKey FKey;
7589 typedef struct FuncDestructor FuncDestructor;
7590 typedef struct FuncDef FuncDef;
7591 typedef struct FuncDefHash FuncDefHash;
7592 typedef struct IdList IdList;
7593 typedef struct Index Index;
7594 typedef struct IndexSample IndexSample;
7595 typedef struct KeyClass KeyClass;
7596 typedef struct KeyInfo KeyInfo;
7597 typedef struct Lookaside Lookaside;
7598 typedef struct LookasideSlot LookasideSlot;
7599 typedef struct Module Module;
7600 typedef struct NameContext NameContext;
7601 typedef struct Parse Parse;
7602 typedef struct RowSet RowSet;
7603 typedef struct Savepoint Savepoint;
7604 typedef struct Select Select;
7605 typedef struct SrcList SrcList;
7606 typedef struct StrAccum StrAccum;
7607 typedef struct Table Table;
7608 typedef struct TableLock TableLock;
7609 typedef struct Token Token;
7610 typedef struct Trigger Trigger;
7611 typedef struct TriggerPrg TriggerPrg;
7612 typedef struct TriggerStep TriggerStep;
7613 typedef struct UnpackedRecord UnpackedRecord;
7614 typedef struct VTable VTable;
7615 typedef struct Walker Walker;
7616 typedef struct WherePlan WherePlan;
7617 typedef struct WhereInfo WhereInfo;
7618 typedef struct WhereLevel WhereLevel;
7621 ** Defer sourcing vdbe.h and btree.h until after the "u8" and
7622 ** "BusyHandler" typedefs. vdbe.h also requires a few of the opaque
7623 ** pointer types (i.e. FuncDef) defined above.
7625 /************** Include btree.h in the middle of sqliteInt.h *****************/
7626 /************** Begin file btree.h *******************************************/
7628 ** 2001 September 15
7630 ** The author disclaims copyright to this source code. In place of
7631 ** a legal notice, here is a blessing:
7633 ** May you do good and not evil.
7634 ** May you find forgiveness for yourself and forgive others.
7635 ** May you share freely, never taking more than you give.
7637 *************************************************************************
7638 ** This header file defines the interface that the sqlite B-Tree file
7639 ** subsystem. See comments in the source code for a detailed description
7640 ** of what each interface routine does.
7642 #ifndef _BTREE_H_
7643 #define _BTREE_H_
7645 /* TODO: This definition is just included so other modules compile. It
7646 ** needs to be revisited.
7648 #define SQLITE_N_BTREE_META 10
7651 ** If defined as non-zero, auto-vacuum is enabled by default. Otherwise
7652 ** it must be turned on for each database using "PRAGMA auto_vacuum = 1".
7654 #ifndef SQLITE_DEFAULT_AUTOVACUUM
7655 #define SQLITE_DEFAULT_AUTOVACUUM 0
7656 #endif
7658 #define BTREE_AUTOVACUUM_NONE 0 /* Do not do auto-vacuum */
7659 #define BTREE_AUTOVACUUM_FULL 1 /* Do full auto-vacuum */
7660 #define BTREE_AUTOVACUUM_INCR 2 /* Incremental vacuum */
7663 ** Forward declarations of structure
7665 typedef struct Btree Btree;
7666 typedef struct BtCursor BtCursor;
7667 typedef struct BtShared BtShared;
7670 SQLITE_PRIVATE int sqlite3BtreeOpen(
7671 const char *zFilename, /* Name of database file to open */
7672 sqlite3 *db, /* Associated database connection */
7673 Btree **ppBtree, /* Return open Btree* here */
7674 int flags, /* Flags */
7675 int vfsFlags /* Flags passed through to VFS open */
7678 /* The flags parameter to sqlite3BtreeOpen can be the bitwise or of the
7679 ** following values.
7681 ** NOTE: These values must match the corresponding PAGER_ values in
7682 ** pager.h.
7684 #define BTREE_OMIT_JOURNAL 1 /* Do not create or use a rollback journal */
7685 #define BTREE_NO_READLOCK 2 /* Omit readlocks on readonly files */
7686 #define BTREE_MEMORY 4 /* This is an in-memory DB */
7687 #define BTREE_SINGLE 8 /* The file contains at most 1 b-tree */
7688 #define BTREE_UNORDERED 16 /* Use of a hash implementation is OK */
7690 SQLITE_PRIVATE int sqlite3BtreeClose(Btree*);
7691 SQLITE_PRIVATE int sqlite3BtreeSetCacheSize(Btree*,int);
7692 SQLITE_PRIVATE int sqlite3BtreeSetSafetyLevel(Btree*,int,int,int);
7693 SQLITE_PRIVATE int sqlite3BtreeSyncDisabled(Btree*);
7694 SQLITE_PRIVATE int sqlite3BtreeSetPageSize(Btree *p, int nPagesize, int nReserve, int eFix);
7695 SQLITE_PRIVATE int sqlite3BtreeGetPageSize(Btree*);
7696 SQLITE_PRIVATE int sqlite3BtreeMaxPageCount(Btree*,int);
7697 SQLITE_PRIVATE u32 sqlite3BtreeLastPage(Btree*);
7698 SQLITE_PRIVATE int sqlite3BtreeSecureDelete(Btree*,int);
7699 SQLITE_PRIVATE int sqlite3BtreeGetReserve(Btree*);
7700 SQLITE_PRIVATE int sqlite3BtreeSetAutoVacuum(Btree *, int);
7701 SQLITE_PRIVATE int sqlite3BtreeGetAutoVacuum(Btree *);
7702 SQLITE_PRIVATE int sqlite3BtreeBeginTrans(Btree*,int);
7703 SQLITE_PRIVATE int sqlite3BtreeCommitPhaseOne(Btree*, const char *zMaster);
7704 SQLITE_PRIVATE int sqlite3BtreeCommitPhaseTwo(Btree*, int);
7705 SQLITE_PRIVATE int sqlite3BtreeCommit(Btree*);
7706 SQLITE_PRIVATE int sqlite3BtreeRollback(Btree*);
7707 SQLITE_PRIVATE int sqlite3BtreeBeginStmt(Btree*,int);
7708 SQLITE_PRIVATE int sqlite3BtreeCreateTable(Btree*, int*, int flags);
7709 SQLITE_PRIVATE int sqlite3BtreeIsInTrans(Btree*);
7710 SQLITE_PRIVATE int sqlite3BtreeIsInReadTrans(Btree*);
7711 SQLITE_PRIVATE int sqlite3BtreeIsInBackup(Btree*);
7712 SQLITE_PRIVATE void *sqlite3BtreeSchema(Btree *, int, void(*)(void *));
7713 SQLITE_PRIVATE int sqlite3BtreeSchemaLocked(Btree *pBtree);
7714 SQLITE_PRIVATE int sqlite3BtreeLockTable(Btree *pBtree, int iTab, u8 isWriteLock);
7715 SQLITE_PRIVATE int sqlite3BtreeSavepoint(Btree *, int, int);
7717 SQLITE_PRIVATE const char *sqlite3BtreeGetFilename(Btree *);
7718 SQLITE_PRIVATE const char *sqlite3BtreeGetJournalname(Btree *);
7719 SQLITE_PRIVATE int sqlite3BtreeCopyFile(Btree *, Btree *);
7721 SQLITE_PRIVATE int sqlite3BtreeIncrVacuum(Btree *);
7723 /* The flags parameter to sqlite3BtreeCreateTable can be the bitwise OR
7724 ** of the flags shown below.
7726 ** Every SQLite table must have either BTREE_INTKEY or BTREE_BLOBKEY set.
7727 ** With BTREE_INTKEY, the table key is a 64-bit integer and arbitrary data
7728 ** is stored in the leaves. (BTREE_INTKEY is used for SQL tables.) With
7729 ** BTREE_BLOBKEY, the key is an arbitrary BLOB and no content is stored
7730 ** anywhere - the key is the content. (BTREE_BLOBKEY is used for SQL
7731 ** indices.)
7733 #define BTREE_INTKEY 1 /* Table has only 64-bit signed integer keys */
7734 #define BTREE_BLOBKEY 2 /* Table has keys only - no data */
7736 SQLITE_PRIVATE int sqlite3BtreeDropTable(Btree*, int, int*);
7737 SQLITE_PRIVATE int sqlite3BtreeClearTable(Btree*, int, int*);
7738 SQLITE_PRIVATE void sqlite3BtreeTripAllCursors(Btree*, int);
7740 SQLITE_PRIVATE void sqlite3BtreeGetMeta(Btree *pBtree, int idx, u32 *pValue);
7741 SQLITE_PRIVATE int sqlite3BtreeUpdateMeta(Btree*, int idx, u32 value);
7744 ** The second parameter to sqlite3BtreeGetMeta or sqlite3BtreeUpdateMeta
7745 ** should be one of the following values. The integer values are assigned
7746 ** to constants so that the offset of the corresponding field in an
7747 ** SQLite database header may be found using the following formula:
7749 ** offset = 36 + (idx * 4)
7751 ** For example, the free-page-count field is located at byte offset 36 of
7752 ** the database file header. The incr-vacuum-flag field is located at
7753 ** byte offset 64 (== 36+4*7).
7755 #define BTREE_FREE_PAGE_COUNT 0
7756 #define BTREE_SCHEMA_VERSION 1
7757 #define BTREE_FILE_FORMAT 2
7758 #define BTREE_DEFAULT_CACHE_SIZE 3
7759 #define BTREE_LARGEST_ROOT_PAGE 4
7760 #define BTREE_TEXT_ENCODING 5
7761 #define BTREE_USER_VERSION 6
7762 #define BTREE_INCR_VACUUM 7
7764 SQLITE_PRIVATE int sqlite3BtreeCursor(
7765 Btree*, /* BTree containing table to open */
7766 int iTable, /* Index of root page */
7767 int wrFlag, /* 1 for writing. 0 for read-only */
7768 struct KeyInfo*, /* First argument to compare function */
7769 BtCursor *pCursor /* Space to write cursor structure */
7771 SQLITE_PRIVATE int sqlite3BtreeCursorSize(void);
7772 SQLITE_PRIVATE void sqlite3BtreeCursorZero(BtCursor*);
7774 SQLITE_PRIVATE int sqlite3BtreeCloseCursor(BtCursor*);
7775 SQLITE_PRIVATE int sqlite3BtreeMovetoUnpacked(
7776 BtCursor*,
7777 UnpackedRecord *pUnKey,
7778 i64 intKey,
7779 int bias,
7780 int *pRes
7782 SQLITE_PRIVATE int sqlite3BtreeCursorHasMoved(BtCursor*, int*);
7783 SQLITE_PRIVATE int sqlite3BtreeDelete(BtCursor*);
7784 SQLITE_PRIVATE int sqlite3BtreeInsert(BtCursor*, const void *pKey, i64 nKey,
7785 const void *pData, int nData,
7786 int nZero, int bias, int seekResult);
7787 SQLITE_PRIVATE int sqlite3BtreeFirst(BtCursor*, int *pRes);
7788 SQLITE_PRIVATE int sqlite3BtreeLast(BtCursor*, int *pRes);
7789 SQLITE_PRIVATE int sqlite3BtreeNext(BtCursor*, int *pRes);
7790 SQLITE_PRIVATE int sqlite3BtreeEof(BtCursor*);
7791 SQLITE_PRIVATE int sqlite3BtreePrevious(BtCursor*, int *pRes);
7792 SQLITE_PRIVATE int sqlite3BtreeKeySize(BtCursor*, i64 *pSize);
7793 SQLITE_PRIVATE int sqlite3BtreeKey(BtCursor*, u32 offset, u32 amt, void*);
7794 SQLITE_PRIVATE const void *sqlite3BtreeKeyFetch(BtCursor*, int *pAmt);
7795 SQLITE_PRIVATE const void *sqlite3BtreeDataFetch(BtCursor*, int *pAmt);
7796 SQLITE_PRIVATE int sqlite3BtreeDataSize(BtCursor*, u32 *pSize);
7797 SQLITE_PRIVATE int sqlite3BtreeData(BtCursor*, u32 offset, u32 amt, void*);
7798 SQLITE_PRIVATE void sqlite3BtreeSetCachedRowid(BtCursor*, sqlite3_int64);
7799 SQLITE_PRIVATE sqlite3_int64 sqlite3BtreeGetCachedRowid(BtCursor*);
7801 SQLITE_PRIVATE char *sqlite3BtreeIntegrityCheck(Btree*, int *aRoot, int nRoot, int, int*);
7802 SQLITE_PRIVATE struct Pager *sqlite3BtreePager(Btree*);
7804 SQLITE_PRIVATE int sqlite3BtreePutData(BtCursor*, u32 offset, u32 amt, void*);
7805 SQLITE_PRIVATE void sqlite3BtreeCacheOverflow(BtCursor *);
7806 SQLITE_PRIVATE void sqlite3BtreeClearCursor(BtCursor *);
7808 SQLITE_PRIVATE int sqlite3BtreeSetVersion(Btree *pBt, int iVersion);
7810 #ifndef NDEBUG
7811 SQLITE_PRIVATE int sqlite3BtreeCursorIsValid(BtCursor*);
7812 #endif
7814 #ifndef SQLITE_OMIT_BTREECOUNT
7815 SQLITE_PRIVATE int sqlite3BtreeCount(BtCursor *, i64 *);
7816 #endif
7818 #ifdef SQLITE_TEST
7819 SQLITE_PRIVATE int sqlite3BtreeCursorInfo(BtCursor*, int*, int);
7820 SQLITE_PRIVATE void sqlite3BtreeCursorList(Btree*);
7821 #endif
7823 #ifndef SQLITE_OMIT_WAL
7824 SQLITE_PRIVATE int sqlite3BtreeCheckpoint(Btree*, int, int *, int *);
7825 #endif
7828 ** If we are not using shared cache, then there is no need to
7829 ** use mutexes to access the BtShared structures. So make the
7830 ** Enter and Leave procedures no-ops.
7832 #ifndef SQLITE_OMIT_SHARED_CACHE
7833 SQLITE_PRIVATE void sqlite3BtreeEnter(Btree*);
7834 SQLITE_PRIVATE void sqlite3BtreeEnterAll(sqlite3*);
7835 #else
7836 # define sqlite3BtreeEnter(X)
7837 # define sqlite3BtreeEnterAll(X)
7838 #endif
7840 #if !defined(SQLITE_OMIT_SHARED_CACHE) && SQLITE_THREADSAFE
7841 SQLITE_PRIVATE int sqlite3BtreeSharable(Btree*);
7842 SQLITE_PRIVATE void sqlite3BtreeLeave(Btree*);
7843 SQLITE_PRIVATE void sqlite3BtreeEnterCursor(BtCursor*);
7844 SQLITE_PRIVATE void sqlite3BtreeLeaveCursor(BtCursor*);
7845 SQLITE_PRIVATE void sqlite3BtreeLeaveAll(sqlite3*);
7846 #ifndef NDEBUG
7847 /* These routines are used inside assert() statements only. */
7848 SQLITE_PRIVATE int sqlite3BtreeHoldsMutex(Btree*);
7849 SQLITE_PRIVATE int sqlite3BtreeHoldsAllMutexes(sqlite3*);
7850 SQLITE_PRIVATE int sqlite3SchemaMutexHeld(sqlite3*,int,Schema*);
7851 #endif
7852 #else
7854 # define sqlite3BtreeSharable(X) 0
7855 # define sqlite3BtreeLeave(X)
7856 # define sqlite3BtreeEnterCursor(X)
7857 # define sqlite3BtreeLeaveCursor(X)
7858 # define sqlite3BtreeLeaveAll(X)
7860 # define sqlite3BtreeHoldsMutex(X) 1
7861 # define sqlite3BtreeHoldsAllMutexes(X) 1
7862 # define sqlite3SchemaMutexHeld(X,Y,Z) 1
7863 #endif
7866 #endif /* _BTREE_H_ */
7868 /************** End of btree.h ***********************************************/
7869 /************** Continuing where we left off in sqliteInt.h ******************/
7870 /************** Include vdbe.h in the middle of sqliteInt.h ******************/
7871 /************** Begin file vdbe.h ********************************************/
7873 ** 2001 September 15
7875 ** The author disclaims copyright to this source code. In place of
7876 ** a legal notice, here is a blessing:
7878 ** May you do good and not evil.
7879 ** May you find forgiveness for yourself and forgive others.
7880 ** May you share freely, never taking more than you give.
7882 *************************************************************************
7883 ** Header file for the Virtual DataBase Engine (VDBE)
7885 ** This header defines the interface to the virtual database engine
7886 ** or VDBE. The VDBE implements an abstract machine that runs a
7887 ** simple program to access and modify the underlying database.
7889 #ifndef _SQLITE_VDBE_H_
7890 #define _SQLITE_VDBE_H_
7893 ** A single VDBE is an opaque structure named "Vdbe". Only routines
7894 ** in the source file sqliteVdbe.c are allowed to see the insides
7895 ** of this structure.
7897 typedef struct Vdbe Vdbe;
7900 ** The names of the following types declared in vdbeInt.h are required
7901 ** for the VdbeOp definition.
7903 typedef struct VdbeFunc VdbeFunc;
7904 typedef struct Mem Mem;
7905 typedef struct SubProgram SubProgram;
7908 ** A single instruction of the virtual machine has an opcode
7909 ** and as many as three operands. The instruction is recorded
7910 ** as an instance of the following structure:
7912 struct VdbeOp {
7913 u8 opcode; /* What operation to perform */
7914 signed char p4type; /* One of the P4_xxx constants for p4 */
7915 u8 opflags; /* Mask of the OPFLG_* flags in opcodes.h */
7916 u8 p5; /* Fifth parameter is an unsigned character */
7917 int p1; /* First operand */
7918 int p2; /* Second parameter (often the jump destination) */
7919 int p3; /* The third parameter */
7920 union { /* fourth parameter */
7921 int i; /* Integer value if p4type==P4_INT32 */
7922 void *p; /* Generic pointer */
7923 char *z; /* Pointer to data for string (char array) types */
7924 i64 *pI64; /* Used when p4type is P4_INT64 */
7925 double *pReal; /* Used when p4type is P4_REAL */
7926 FuncDef *pFunc; /* Used when p4type is P4_FUNCDEF */
7927 VdbeFunc *pVdbeFunc; /* Used when p4type is P4_VDBEFUNC */
7928 CollSeq *pColl; /* Used when p4type is P4_COLLSEQ */
7929 Mem *pMem; /* Used when p4type is P4_MEM */
7930 VTable *pVtab; /* Used when p4type is P4_VTAB */
7931 KeyInfo *pKeyInfo; /* Used when p4type is P4_KEYINFO */
7932 int *ai; /* Used when p4type is P4_INTARRAY */
7933 SubProgram *pProgram; /* Used when p4type is P4_SUBPROGRAM */
7934 } p4;
7935 #ifdef SQLITE_DEBUG
7936 char *zComment; /* Comment to improve readability */
7937 #endif
7938 #ifdef VDBE_PROFILE
7939 int cnt; /* Number of times this instruction was executed */
7940 u64 cycles; /* Total time spent executing this instruction */
7941 #endif
7943 typedef struct VdbeOp VdbeOp;
7947 ** A sub-routine used to implement a trigger program.
7949 struct SubProgram {
7950 VdbeOp *aOp; /* Array of opcodes for sub-program */
7951 int nOp; /* Elements in aOp[] */
7952 int nMem; /* Number of memory cells required */
7953 int nCsr; /* Number of cursors required */
7954 void *token; /* id that may be used to recursive triggers */
7955 SubProgram *pNext; /* Next sub-program already visited */
7959 ** A smaller version of VdbeOp used for the VdbeAddOpList() function because
7960 ** it takes up less space.
7962 struct VdbeOpList {
7963 u8 opcode; /* What operation to perform */
7964 signed char p1; /* First operand */
7965 signed char p2; /* Second parameter (often the jump destination) */
7966 signed char p3; /* Third parameter */
7968 typedef struct VdbeOpList VdbeOpList;
7971 ** Allowed values of VdbeOp.p4type
7973 #define P4_NOTUSED 0 /* The P4 parameter is not used */
7974 #define P4_DYNAMIC (-1) /* Pointer to a string obtained from sqliteMalloc() */
7975 #define P4_STATIC (-2) /* Pointer to a static string */
7976 #define P4_COLLSEQ (-4) /* P4 is a pointer to a CollSeq structure */
7977 #define P4_FUNCDEF (-5) /* P4 is a pointer to a FuncDef structure */
7978 #define P4_KEYINFO (-6) /* P4 is a pointer to a KeyInfo structure */
7979 #define P4_VDBEFUNC (-7) /* P4 is a pointer to a VdbeFunc structure */
7980 #define P4_MEM (-8) /* P4 is a pointer to a Mem* structure */
7981 #define P4_TRANSIENT 0 /* P4 is a pointer to a transient string */
7982 #define P4_VTAB (-10) /* P4 is a pointer to an sqlite3_vtab structure */
7983 #define P4_MPRINTF (-11) /* P4 is a string obtained from sqlite3_mprintf() */
7984 #define P4_REAL (-12) /* P4 is a 64-bit floating point value */
7985 #define P4_INT64 (-13) /* P4 is a 64-bit signed integer */
7986 #define P4_INT32 (-14) /* P4 is a 32-bit signed integer */
7987 #define P4_INTARRAY (-15) /* P4 is a vector of 32-bit integers */
7988 #define P4_SUBPROGRAM (-18) /* P4 is a pointer to a SubProgram structure */
7990 /* When adding a P4 argument using P4_KEYINFO, a copy of the KeyInfo structure
7991 ** is made. That copy is freed when the Vdbe is finalized. But if the
7992 ** argument is P4_KEYINFO_HANDOFF, the passed in pointer is used. It still
7993 ** gets freed when the Vdbe is finalized so it still should be obtained
7994 ** from a single sqliteMalloc(). But no copy is made and the calling
7995 ** function should *not* try to free the KeyInfo.
7997 #define P4_KEYINFO_HANDOFF (-16)
7998 #define P4_KEYINFO_STATIC (-17)
8001 ** The Vdbe.aColName array contains 5n Mem structures, where n is the
8002 ** number of columns of data returned by the statement.
8004 #define COLNAME_NAME 0
8005 #define COLNAME_DECLTYPE 1
8006 #define COLNAME_DATABASE 2
8007 #define COLNAME_TABLE 3
8008 #define COLNAME_COLUMN 4
8009 #ifdef SQLITE_ENABLE_COLUMN_METADATA
8010 # define COLNAME_N 5 /* Number of COLNAME_xxx symbols */
8011 #else
8012 # ifdef SQLITE_OMIT_DECLTYPE
8013 # define COLNAME_N 1 /* Store only the name */
8014 # else
8015 # define COLNAME_N 2 /* Store the name and decltype */
8016 # endif
8017 #endif
8020 ** The following macro converts a relative address in the p2 field
8021 ** of a VdbeOp structure into a negative number so that
8022 ** sqlite3VdbeAddOpList() knows that the address is relative. Calling
8023 ** the macro again restores the address.
8025 #define ADDR(X) (-1-(X))
8028 ** The makefile scans the vdbe.c source file and creates the "opcodes.h"
8029 ** header file that defines a number for each opcode used by the VDBE.
8031 /************** Include opcodes.h in the middle of vdbe.h ********************/
8032 /************** Begin file opcodes.h *****************************************/
8033 /* Automatically generated. Do not edit */
8034 /* See the mkopcodeh.awk script for details */
8035 #define OP_Goto 1
8036 #define OP_Gosub 2
8037 #define OP_Return 3
8038 #define OP_Yield 4
8039 #define OP_HaltIfNull 5
8040 #define OP_Halt 6
8041 #define OP_Integer 7
8042 #define OP_Int64 8
8043 #define OP_Real 130 /* same as TK_FLOAT */
8044 #define OP_String8 94 /* same as TK_STRING */
8045 #define OP_String 9
8046 #define OP_Null 10
8047 #define OP_Blob 11
8048 #define OP_Variable 12
8049 #define OP_Move 13
8050 #define OP_Copy 14
8051 #define OP_SCopy 15
8052 #define OP_ResultRow 16
8053 #define OP_Concat 91 /* same as TK_CONCAT */
8054 #define OP_Add 86 /* same as TK_PLUS */
8055 #define OP_Subtract 87 /* same as TK_MINUS */
8056 #define OP_Multiply 88 /* same as TK_STAR */
8057 #define OP_Divide 89 /* same as TK_SLASH */
8058 #define OP_Remainder 90 /* same as TK_REM */
8059 #define OP_CollSeq 17
8060 #define OP_Function 18
8061 #define OP_BitAnd 82 /* same as TK_BITAND */
8062 #define OP_BitOr 83 /* same as TK_BITOR */
8063 #define OP_ShiftLeft 84 /* same as TK_LSHIFT */
8064 #define OP_ShiftRight 85 /* same as TK_RSHIFT */
8065 #define OP_AddImm 20
8066 #define OP_MustBeInt 21
8067 #define OP_RealAffinity 22
8068 #define OP_ToText 141 /* same as TK_TO_TEXT */
8069 #define OP_ToBlob 142 /* same as TK_TO_BLOB */
8070 #define OP_ToNumeric 143 /* same as TK_TO_NUMERIC*/
8071 #define OP_ToInt 144 /* same as TK_TO_INT */
8072 #define OP_ToReal 145 /* same as TK_TO_REAL */
8073 #define OP_Eq 76 /* same as TK_EQ */
8074 #define OP_Ne 75 /* same as TK_NE */
8075 #define OP_Lt 79 /* same as TK_LT */
8076 #define OP_Le 78 /* same as TK_LE */
8077 #define OP_Gt 77 /* same as TK_GT */
8078 #define OP_Ge 80 /* same as TK_GE */
8079 #define OP_Permutation 23
8080 #define OP_Compare 24
8081 #define OP_Jump 25
8082 #define OP_And 69 /* same as TK_AND */
8083 #define OP_Or 68 /* same as TK_OR */
8084 #define OP_Not 19 /* same as TK_NOT */
8085 #define OP_BitNot 93 /* same as TK_BITNOT */
8086 #define OP_If 26
8087 #define OP_IfNot 27
8088 #define OP_IsNull 73 /* same as TK_ISNULL */
8089 #define OP_NotNull 74 /* same as TK_NOTNULL */
8090 #define OP_Column 28
8091 #define OP_Affinity 29
8092 #define OP_MakeRecord 30
8093 #define OP_Count 31
8094 #define OP_Savepoint 32
8095 #define OP_AutoCommit 33
8096 #define OP_Transaction 34
8097 #define OP_ReadCookie 35
8098 #define OP_SetCookie 36
8099 #define OP_VerifyCookie 37
8100 #define OP_OpenRead 38
8101 #define OP_OpenWrite 39
8102 #define OP_OpenAutoindex 40
8103 #define OP_OpenEphemeral 41
8104 #define OP_OpenPseudo 42
8105 #define OP_Close 43
8106 #define OP_SeekLt 44
8107 #define OP_SeekLe 45
8108 #define OP_SeekGe 46
8109 #define OP_SeekGt 47
8110 #define OP_Seek 48
8111 #define OP_NotFound 49
8112 #define OP_Found 50
8113 #define OP_IsUnique 51
8114 #define OP_NotExists 52
8115 #define OP_Sequence 53
8116 #define OP_NewRowid 54
8117 #define OP_Insert 55
8118 #define OP_InsertInt 56
8119 #define OP_Delete 57
8120 #define OP_ResetCount 58
8121 #define OP_RowKey 59
8122 #define OP_RowData 60
8123 #define OP_Rowid 61
8124 #define OP_NullRow 62
8125 #define OP_Last 63
8126 #define OP_Sort 64
8127 #define OP_Rewind 65
8128 #define OP_Prev 66
8129 #define OP_Next 67
8130 #define OP_IdxInsert 70
8131 #define OP_IdxDelete 71
8132 #define OP_IdxRowid 72
8133 #define OP_IdxLT 81
8134 #define OP_IdxGE 92
8135 #define OP_Destroy 95
8136 #define OP_Clear 96
8137 #define OP_CreateIndex 97
8138 #define OP_CreateTable 98
8139 #define OP_ParseSchema 99
8140 #define OP_LoadAnalysis 100
8141 #define OP_DropTable 101
8142 #define OP_DropIndex 102
8143 #define OP_DropTrigger 103
8144 #define OP_IntegrityCk 104
8145 #define OP_RowSetAdd 105
8146 #define OP_RowSetRead 106
8147 #define OP_RowSetTest 107
8148 #define OP_Program 108
8149 #define OP_Param 109
8150 #define OP_FkCounter 110
8151 #define OP_FkIfZero 111
8152 #define OP_MemMax 112
8153 #define OP_IfPos 113
8154 #define OP_IfNeg 114
8155 #define OP_IfZero 115
8156 #define OP_AggStep 116
8157 #define OP_AggFinal 117
8158 #define OP_Checkpoint 118
8159 #define OP_JournalMode 119
8160 #define OP_Vacuum 120
8161 #define OP_IncrVacuum 121
8162 #define OP_Expire 122
8163 #define OP_TableLock 123
8164 #define OP_VBegin 124
8165 #define OP_VCreate 125
8166 #define OP_VDestroy 126
8167 #define OP_VOpen 127
8168 #define OP_VFilter 128
8169 #define OP_VColumn 129
8170 #define OP_VNext 131
8171 #define OP_VRename 132
8172 #define OP_VUpdate 133
8173 #define OP_Pagecount 134
8174 #define OP_MaxPgcnt 135
8175 #define OP_Trace 136
8176 #define OP_Noop 137
8177 #define OP_Explain 138
8179 /* The following opcode values are never used */
8180 #define OP_NotUsed_139 139
8181 #define OP_NotUsed_140 140
8184 /* Properties such as "out2" or "jump" that are specified in
8185 ** comments following the "case" for each opcode in the vdbe.c
8186 ** are encoded into bitvectors as follows:
8188 #define OPFLG_JUMP 0x0001 /* jump: P2 holds jmp target */
8189 #define OPFLG_OUT2_PRERELEASE 0x0002 /* out2-prerelease: */
8190 #define OPFLG_IN1 0x0004 /* in1: P1 is an input */
8191 #define OPFLG_IN2 0x0008 /* in2: P2 is an input */
8192 #define OPFLG_IN3 0x0010 /* in3: P3 is an input */
8193 #define OPFLG_OUT2 0x0020 /* out2: P2 is an output */
8194 #define OPFLG_OUT3 0x0040 /* out3: P3 is an output */
8195 #define OPFLG_INITIALIZER {\
8196 /* 0 */ 0x00, 0x01, 0x05, 0x04, 0x04, 0x10, 0x00, 0x02,\
8197 /* 8 */ 0x02, 0x02, 0x02, 0x02, 0x02, 0x00, 0x24, 0x24,\
8198 /* 16 */ 0x00, 0x00, 0x00, 0x24, 0x04, 0x05, 0x04, 0x00,\
8199 /* 24 */ 0x00, 0x01, 0x05, 0x05, 0x00, 0x00, 0x00, 0x02,\
8200 /* 32 */ 0x00, 0x00, 0x00, 0x02, 0x10, 0x00, 0x00, 0x00,\
8201 /* 40 */ 0x00, 0x00, 0x00, 0x00, 0x11, 0x11, 0x11, 0x11,\
8202 /* 48 */ 0x08, 0x11, 0x11, 0x11, 0x11, 0x02, 0x02, 0x00,\
8203 /* 56 */ 0x00, 0x00, 0x00, 0x00, 0x00, 0x02, 0x00, 0x01,\
8204 /* 64 */ 0x01, 0x01, 0x01, 0x01, 0x4c, 0x4c, 0x08, 0x00,\
8205 /* 72 */ 0x02, 0x05, 0x05, 0x15, 0x15, 0x15, 0x15, 0x15,\
8206 /* 80 */ 0x15, 0x01, 0x4c, 0x4c, 0x4c, 0x4c, 0x4c, 0x4c,\
8207 /* 88 */ 0x4c, 0x4c, 0x4c, 0x4c, 0x01, 0x24, 0x02, 0x02,\
8208 /* 96 */ 0x00, 0x02, 0x02, 0x00, 0x00, 0x00, 0x00, 0x00,\
8209 /* 104 */ 0x00, 0x0c, 0x45, 0x15, 0x01, 0x02, 0x00, 0x01,\
8210 /* 112 */ 0x08, 0x05, 0x05, 0x05, 0x00, 0x00, 0x00, 0x02,\
8211 /* 120 */ 0x00, 0x01, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,\
8212 /* 128 */ 0x01, 0x00, 0x02, 0x01, 0x00, 0x00, 0x02, 0x02,\
8213 /* 136 */ 0x00, 0x00, 0x00, 0x00, 0x00, 0x04, 0x04, 0x04,\
8214 /* 144 */ 0x04, 0x04,}
8216 /************** End of opcodes.h *********************************************/
8217 /************** Continuing where we left off in vdbe.h ***********************/
8220 ** Prototypes for the VDBE interface. See comments on the implementation
8221 ** for a description of what each of these routines does.
8223 SQLITE_PRIVATE Vdbe *sqlite3VdbeCreate(sqlite3*);
8224 SQLITE_PRIVATE int sqlite3VdbeAddOp0(Vdbe*,int);
8225 SQLITE_PRIVATE int sqlite3VdbeAddOp1(Vdbe*,int,int);
8226 SQLITE_PRIVATE int sqlite3VdbeAddOp2(Vdbe*,int,int,int);
8227 SQLITE_PRIVATE int sqlite3VdbeAddOp3(Vdbe*,int,int,int,int);
8228 SQLITE_PRIVATE int sqlite3VdbeAddOp4(Vdbe*,int,int,int,int,const char *zP4,int);
8229 SQLITE_PRIVATE int sqlite3VdbeAddOp4Int(Vdbe*,int,int,int,int,int);
8230 SQLITE_PRIVATE int sqlite3VdbeAddOpList(Vdbe*, int nOp, VdbeOpList const *aOp);
8231 SQLITE_PRIVATE void sqlite3VdbeChangeP1(Vdbe*, int addr, int P1);
8232 SQLITE_PRIVATE void sqlite3VdbeChangeP2(Vdbe*, int addr, int P2);
8233 SQLITE_PRIVATE void sqlite3VdbeChangeP3(Vdbe*, int addr, int P3);
8234 SQLITE_PRIVATE void sqlite3VdbeChangeP5(Vdbe*, u8 P5);
8235 SQLITE_PRIVATE void sqlite3VdbeJumpHere(Vdbe*, int addr);
8236 SQLITE_PRIVATE void sqlite3VdbeChangeToNoop(Vdbe*, int addr, int N);
8237 SQLITE_PRIVATE void sqlite3VdbeChangeP4(Vdbe*, int addr, const char *zP4, int N);
8238 SQLITE_PRIVATE void sqlite3VdbeUsesBtree(Vdbe*, int);
8239 SQLITE_PRIVATE VdbeOp *sqlite3VdbeGetOp(Vdbe*, int);
8240 SQLITE_PRIVATE int sqlite3VdbeMakeLabel(Vdbe*);
8241 SQLITE_PRIVATE void sqlite3VdbeRunOnlyOnce(Vdbe*);
8242 SQLITE_PRIVATE void sqlite3VdbeDelete(Vdbe*);
8243 SQLITE_PRIVATE void sqlite3VdbeDeleteObject(sqlite3*,Vdbe*);
8244 SQLITE_PRIVATE void sqlite3VdbeMakeReady(Vdbe*,int,int,int,int,int,int);
8245 SQLITE_PRIVATE int sqlite3VdbeFinalize(Vdbe*);
8246 SQLITE_PRIVATE void sqlite3VdbeResolveLabel(Vdbe*, int);
8247 SQLITE_PRIVATE int sqlite3VdbeCurrentAddr(Vdbe*);
8248 #ifdef SQLITE_DEBUG
8249 SQLITE_PRIVATE int sqlite3VdbeAssertMayAbort(Vdbe *, int);
8250 SQLITE_PRIVATE void sqlite3VdbeTrace(Vdbe*,FILE*);
8251 #endif
8252 SQLITE_PRIVATE void sqlite3VdbeResetStepResult(Vdbe*);
8253 SQLITE_PRIVATE int sqlite3VdbeReset(Vdbe*);
8254 SQLITE_PRIVATE void sqlite3VdbeSetNumCols(Vdbe*,int);
8255 SQLITE_PRIVATE int sqlite3VdbeSetColName(Vdbe*, int, int, const char *, void(*)(void*));
8256 SQLITE_PRIVATE void sqlite3VdbeCountChanges(Vdbe*);
8257 SQLITE_PRIVATE sqlite3 *sqlite3VdbeDb(Vdbe*);
8258 SQLITE_PRIVATE void sqlite3VdbeSetSql(Vdbe*, const char *z, int n, int);
8259 SQLITE_PRIVATE void sqlite3VdbeSwap(Vdbe*,Vdbe*);
8260 SQLITE_PRIVATE VdbeOp *sqlite3VdbeTakeOpArray(Vdbe*, int*, int*);
8261 SQLITE_PRIVATE sqlite3_value *sqlite3VdbeGetValue(Vdbe*, int, u8);
8262 SQLITE_PRIVATE void sqlite3VdbeSetVarmask(Vdbe*, int);
8263 #ifndef SQLITE_OMIT_TRACE
8264 SQLITE_PRIVATE char *sqlite3VdbeExpandSql(Vdbe*, const char*);
8265 #endif
8267 SQLITE_PRIVATE UnpackedRecord *sqlite3VdbeRecordUnpack(KeyInfo*,int,const void*,char*,int);
8268 SQLITE_PRIVATE void sqlite3VdbeDeleteUnpackedRecord(UnpackedRecord*);
8269 SQLITE_PRIVATE int sqlite3VdbeRecordCompare(int,const void*,UnpackedRecord*);
8271 #ifndef SQLITE_OMIT_TRIGGER
8272 SQLITE_PRIVATE void sqlite3VdbeLinkSubProgram(Vdbe *, SubProgram *);
8273 #endif
8276 #ifndef NDEBUG
8277 SQLITE_PRIVATE void sqlite3VdbeComment(Vdbe*, const char*, ...);
8278 # define VdbeComment(X) sqlite3VdbeComment X
8279 SQLITE_PRIVATE void sqlite3VdbeNoopComment(Vdbe*, const char*, ...);
8280 # define VdbeNoopComment(X) sqlite3VdbeNoopComment X
8281 #else
8282 # define VdbeComment(X)
8283 # define VdbeNoopComment(X)
8284 #endif
8286 #endif
8288 /************** End of vdbe.h ************************************************/
8289 /************** Continuing where we left off in sqliteInt.h ******************/
8290 /************** Include pager.h in the middle of sqliteInt.h *****************/
8291 /************** Begin file pager.h *******************************************/
8293 ** 2001 September 15
8295 ** The author disclaims copyright to this source code. In place of
8296 ** a legal notice, here is a blessing:
8298 ** May you do good and not evil.
8299 ** May you find forgiveness for yourself and forgive others.
8300 ** May you share freely, never taking more than you give.
8302 *************************************************************************
8303 ** This header file defines the interface that the sqlite page cache
8304 ** subsystem. The page cache subsystem reads and writes a file a page
8305 ** at a time and provides a journal for rollback.
8308 #ifndef _PAGER_H_
8309 #define _PAGER_H_
8312 ** Default maximum size for persistent journal files. A negative
8313 ** value means no limit. This value may be overridden using the
8314 ** sqlite3PagerJournalSizeLimit() API. See also "PRAGMA journal_size_limit".
8316 #ifndef SQLITE_DEFAULT_JOURNAL_SIZE_LIMIT
8317 #define SQLITE_DEFAULT_JOURNAL_SIZE_LIMIT -1
8318 #endif
8321 ** The type used to represent a page number. The first page in a file
8322 ** is called page 1. 0 is used to represent "not a page".
8324 typedef u32 Pgno;
8327 ** Each open file is managed by a separate instance of the "Pager" structure.
8329 typedef struct Pager Pager;
8332 ** Handle type for pages.
8334 typedef struct PgHdr DbPage;
8337 ** Page number PAGER_MJ_PGNO is never used in an SQLite database (it is
8338 ** reserved for working around a windows/posix incompatibility). It is
8339 ** used in the journal to signify that the remainder of the journal file
8340 ** is devoted to storing a master journal name - there are no more pages to
8341 ** roll back. See comments for function writeMasterJournal() in pager.c
8342 ** for details.
8344 #define PAGER_MJ_PGNO(x) ((Pgno)((PENDING_BYTE/((x)->pageSize))+1))
8347 ** Allowed values for the flags parameter to sqlite3PagerOpen().
8349 ** NOTE: These values must match the corresponding BTREE_ values in btree.h.
8351 #define PAGER_OMIT_JOURNAL 0x0001 /* Do not use a rollback journal */
8352 #define PAGER_NO_READLOCK 0x0002 /* Omit readlocks on readonly files */
8353 #define PAGER_MEMORY 0x0004 /* In-memory database */
8356 ** Valid values for the second argument to sqlite3PagerLockingMode().
8358 #define PAGER_LOCKINGMODE_QUERY -1
8359 #define PAGER_LOCKINGMODE_NORMAL 0
8360 #define PAGER_LOCKINGMODE_EXCLUSIVE 1
8363 ** Numeric constants that encode the journalmode.
8365 #define PAGER_JOURNALMODE_QUERY (-1) /* Query the value of journalmode */
8366 #define PAGER_JOURNALMODE_DELETE 0 /* Commit by deleting journal file */
8367 #define PAGER_JOURNALMODE_PERSIST 1 /* Commit by zeroing journal header */
8368 #define PAGER_JOURNALMODE_OFF 2 /* Journal omitted. */
8369 #define PAGER_JOURNALMODE_TRUNCATE 3 /* Commit by truncating journal */
8370 #define PAGER_JOURNALMODE_MEMORY 4 /* In-memory journal file */
8371 #define PAGER_JOURNALMODE_WAL 5 /* Use write-ahead logging */
8374 ** The remainder of this file contains the declarations of the functions
8375 ** that make up the Pager sub-system API. See source code comments for
8376 ** a detailed description of each routine.
8379 /* Open and close a Pager connection. */
8380 SQLITE_PRIVATE int sqlite3PagerOpen(
8381 sqlite3_vfs*,
8382 Pager **ppPager,
8383 const char*,
8384 int,
8385 int,
8386 int,
8387 void(*)(DbPage*)
8389 SQLITE_PRIVATE int sqlite3PagerClose(Pager *pPager);
8390 SQLITE_PRIVATE int sqlite3PagerReadFileheader(Pager*, int, unsigned char*);
8392 /* Functions used to configure a Pager object. */
8393 SQLITE_PRIVATE void sqlite3PagerSetBusyhandler(Pager*, int(*)(void *), void *);
8394 SQLITE_PRIVATE int sqlite3PagerSetPagesize(Pager*, u32*, int);
8395 SQLITE_PRIVATE int sqlite3PagerMaxPageCount(Pager*, int);
8396 SQLITE_PRIVATE void sqlite3PagerSetCachesize(Pager*, int);
8397 SQLITE_PRIVATE void sqlite3PagerSetSafetyLevel(Pager*,int,int,int);
8398 SQLITE_PRIVATE int sqlite3PagerLockingMode(Pager *, int);
8399 SQLITE_PRIVATE int sqlite3PagerSetJournalMode(Pager *, int);
8400 SQLITE_PRIVATE int sqlite3PagerGetJournalMode(Pager*);
8401 SQLITE_PRIVATE int sqlite3PagerOkToChangeJournalMode(Pager*);
8402 SQLITE_PRIVATE i64 sqlite3PagerJournalSizeLimit(Pager *, i64);
8403 SQLITE_PRIVATE sqlite3_backup **sqlite3PagerBackupPtr(Pager*);
8405 /* Functions used to obtain and release page references. */
8406 SQLITE_PRIVATE int sqlite3PagerAcquire(Pager *pPager, Pgno pgno, DbPage **ppPage, int clrFlag);
8407 #define sqlite3PagerGet(A,B,C) sqlite3PagerAcquire(A,B,C,0)
8408 SQLITE_PRIVATE DbPage *sqlite3PagerLookup(Pager *pPager, Pgno pgno);
8409 SQLITE_PRIVATE void sqlite3PagerRef(DbPage*);
8410 SQLITE_PRIVATE void sqlite3PagerUnref(DbPage*);
8412 /* Operations on page references. */
8413 SQLITE_PRIVATE int sqlite3PagerWrite(DbPage*);
8414 SQLITE_PRIVATE void sqlite3PagerDontWrite(DbPage*);
8415 SQLITE_PRIVATE int sqlite3PagerMovepage(Pager*,DbPage*,Pgno,int);
8416 SQLITE_PRIVATE int sqlite3PagerPageRefcount(DbPage*);
8417 SQLITE_PRIVATE void *sqlite3PagerGetData(DbPage *);
8418 SQLITE_PRIVATE void *sqlite3PagerGetExtra(DbPage *);
8420 /* Functions used to manage pager transactions and savepoints. */
8421 SQLITE_PRIVATE void sqlite3PagerPagecount(Pager*, int*);
8422 SQLITE_PRIVATE int sqlite3PagerBegin(Pager*, int exFlag, int);
8423 SQLITE_PRIVATE int sqlite3PagerCommitPhaseOne(Pager*,const char *zMaster, int);
8424 SQLITE_PRIVATE int sqlite3PagerExclusiveLock(Pager*);
8425 SQLITE_PRIVATE int sqlite3PagerSync(Pager *pPager);
8426 SQLITE_PRIVATE int sqlite3PagerCommitPhaseTwo(Pager*);
8427 SQLITE_PRIVATE int sqlite3PagerRollback(Pager*);
8428 SQLITE_PRIVATE int sqlite3PagerOpenSavepoint(Pager *pPager, int n);
8429 SQLITE_PRIVATE int sqlite3PagerSavepoint(Pager *pPager, int op, int iSavepoint);
8430 SQLITE_PRIVATE int sqlite3PagerSharedLock(Pager *pPager);
8432 SQLITE_PRIVATE int sqlite3PagerCheckpoint(Pager *pPager, int, int*, int*);
8433 SQLITE_PRIVATE int sqlite3PagerWalSupported(Pager *pPager);
8434 SQLITE_PRIVATE int sqlite3PagerWalCallback(Pager *pPager);
8435 SQLITE_PRIVATE int sqlite3PagerOpenWal(Pager *pPager, int *pisOpen);
8436 SQLITE_PRIVATE int sqlite3PagerCloseWal(Pager *pPager);
8438 /* Functions used to query pager state and configuration. */
8439 SQLITE_PRIVATE u8 sqlite3PagerIsreadonly(Pager*);
8440 SQLITE_PRIVATE int sqlite3PagerRefcount(Pager*);
8441 SQLITE_PRIVATE int sqlite3PagerMemUsed(Pager*);
8442 SQLITE_PRIVATE const char *sqlite3PagerFilename(Pager*);
8443 SQLITE_PRIVATE const sqlite3_vfs *sqlite3PagerVfs(Pager*);
8444 SQLITE_PRIVATE sqlite3_file *sqlite3PagerFile(Pager*);
8445 SQLITE_PRIVATE const char *sqlite3PagerJournalname(Pager*);
8446 SQLITE_PRIVATE int sqlite3PagerNosync(Pager*);
8447 SQLITE_PRIVATE void *sqlite3PagerTempSpace(Pager*);
8448 SQLITE_PRIVATE int sqlite3PagerIsMemdb(Pager*);
8450 /* Functions used to truncate the database file. */
8451 SQLITE_PRIVATE void sqlite3PagerTruncateImage(Pager*,Pgno);
8453 #if defined(SQLITE_HAS_CODEC) && !defined(SQLITE_OMIT_WAL)
8454 SQLITE_PRIVATE void *sqlite3PagerCodec(DbPage *);
8455 #endif
8457 /* Functions to support testing and debugging. */
8458 #if !defined(NDEBUG) || defined(SQLITE_TEST)
8459 SQLITE_PRIVATE Pgno sqlite3PagerPagenumber(DbPage*);
8460 SQLITE_PRIVATE int sqlite3PagerIswriteable(DbPage*);
8461 #endif
8462 #ifdef SQLITE_TEST
8463 SQLITE_PRIVATE int *sqlite3PagerStats(Pager*);
8464 SQLITE_PRIVATE void sqlite3PagerRefdump(Pager*);
8465 void disable_simulated_io_errors(void);
8466 void enable_simulated_io_errors(void);
8467 #else
8468 # define disable_simulated_io_errors()
8469 # define enable_simulated_io_errors()
8470 #endif
8472 #endif /* _PAGER_H_ */
8474 /************** End of pager.h ***********************************************/
8475 /************** Continuing where we left off in sqliteInt.h ******************/
8476 /************** Include pcache.h in the middle of sqliteInt.h ****************/
8477 /************** Begin file pcache.h ******************************************/
8479 ** 2008 August 05
8481 ** The author disclaims copyright to this source code. In place of
8482 ** a legal notice, here is a blessing:
8484 ** May you do good and not evil.
8485 ** May you find forgiveness for yourself and forgive others.
8486 ** May you share freely, never taking more than you give.
8488 *************************************************************************
8489 ** This header file defines the interface that the sqlite page cache
8490 ** subsystem.
8493 #ifndef _PCACHE_H_
8495 typedef struct PgHdr PgHdr;
8496 typedef struct PCache PCache;
8499 ** Every page in the cache is controlled by an instance of the following
8500 ** structure.
8502 struct PgHdr {
8503 void *pData; /* Content of this page */
8504 void *pExtra; /* Extra content */
8505 PgHdr *pDirty; /* Transient list of dirty pages */
8506 Pgno pgno; /* Page number for this page */
8507 Pager *pPager; /* The pager this page is part of */
8508 #ifdef SQLITE_CHECK_PAGES
8509 u32 pageHash; /* Hash of page content */
8510 #endif
8511 u16 flags; /* PGHDR flags defined below */
8513 /**********************************************************************
8514 ** Elements above are public. All that follows is private to pcache.c
8515 ** and should not be accessed by other modules.
8517 i16 nRef; /* Number of users of this page */
8518 PCache *pCache; /* Cache that owns this page */
8520 PgHdr *pDirtyNext; /* Next element in list of dirty pages */
8521 PgHdr *pDirtyPrev; /* Previous element in list of dirty pages */
8524 /* Bit values for PgHdr.flags */
8525 #define PGHDR_DIRTY 0x002 /* Page has changed */
8526 #define PGHDR_NEED_SYNC 0x004 /* Fsync the rollback journal before
8527 ** writing this page to the database */
8528 #define PGHDR_NEED_READ 0x008 /* Content is unread */
8529 #define PGHDR_REUSE_UNLIKELY 0x010 /* A hint that reuse is unlikely */
8530 #define PGHDR_DONT_WRITE 0x020 /* Do not write content to disk */
8532 /* Initialize and shutdown the page cache subsystem */
8533 SQLITE_PRIVATE int sqlite3PcacheInitialize(void);
8534 SQLITE_PRIVATE void sqlite3PcacheShutdown(void);
8536 /* Page cache buffer management:
8537 ** These routines implement SQLITE_CONFIG_PAGECACHE.
8539 SQLITE_PRIVATE void sqlite3PCacheBufferSetup(void *, int sz, int n);
8541 /* Create a new pager cache.
8542 ** Under memory stress, invoke xStress to try to make pages clean.
8543 ** Only clean and unpinned pages can be reclaimed.
8545 SQLITE_PRIVATE void sqlite3PcacheOpen(
8546 int szPage, /* Size of every page */
8547 int szExtra, /* Extra space associated with each page */
8548 int bPurgeable, /* True if pages are on backing store */
8549 int (*xStress)(void*, PgHdr*), /* Call to try to make pages clean */
8550 void *pStress, /* Argument to xStress */
8551 PCache *pToInit /* Preallocated space for the PCache */
8554 /* Modify the page-size after the cache has been created. */
8555 SQLITE_PRIVATE void sqlite3PcacheSetPageSize(PCache *, int);
8557 /* Return the size in bytes of a PCache object. Used to preallocate
8558 ** storage space.
8560 SQLITE_PRIVATE int sqlite3PcacheSize(void);
8562 /* One release per successful fetch. Page is pinned until released.
8563 ** Reference counted.
8565 SQLITE_PRIVATE int sqlite3PcacheFetch(PCache*, Pgno, int createFlag, PgHdr**);
8566 SQLITE_PRIVATE void sqlite3PcacheRelease(PgHdr*);
8568 SQLITE_PRIVATE void sqlite3PcacheDrop(PgHdr*); /* Remove page from cache */
8569 SQLITE_PRIVATE void sqlite3PcacheMakeDirty(PgHdr*); /* Make sure page is marked dirty */
8570 SQLITE_PRIVATE void sqlite3PcacheMakeClean(PgHdr*); /* Mark a single page as clean */
8571 SQLITE_PRIVATE void sqlite3PcacheCleanAll(PCache*); /* Mark all dirty list pages as clean */
8573 /* Change a page number. Used by incr-vacuum. */
8574 SQLITE_PRIVATE void sqlite3PcacheMove(PgHdr*, Pgno);
8576 /* Remove all pages with pgno>x. Reset the cache if x==0 */
8577 SQLITE_PRIVATE void sqlite3PcacheTruncate(PCache*, Pgno x);
8579 /* Get a list of all dirty pages in the cache, sorted by page number */
8580 SQLITE_PRIVATE PgHdr *sqlite3PcacheDirtyList(PCache*);
8582 /* Reset and close the cache object */
8583 SQLITE_PRIVATE void sqlite3PcacheClose(PCache*);
8585 /* Clear flags from pages of the page cache */
8586 SQLITE_PRIVATE void sqlite3PcacheClearSyncFlags(PCache *);
8588 /* Discard the contents of the cache */
8589 SQLITE_PRIVATE void sqlite3PcacheClear(PCache*);
8591 /* Return the total number of outstanding page references */
8592 SQLITE_PRIVATE int sqlite3PcacheRefCount(PCache*);
8594 /* Increment the reference count of an existing page */
8595 SQLITE_PRIVATE void sqlite3PcacheRef(PgHdr*);
8597 SQLITE_PRIVATE int sqlite3PcachePageRefcount(PgHdr*);
8599 /* Return the total number of pages stored in the cache */
8600 SQLITE_PRIVATE int sqlite3PcachePagecount(PCache*);
8602 #if defined(SQLITE_CHECK_PAGES) || defined(SQLITE_DEBUG)
8603 /* Iterate through all dirty pages currently stored in the cache. This
8604 ** interface is only available if SQLITE_CHECK_PAGES is defined when the
8605 ** library is built.
8607 SQLITE_PRIVATE void sqlite3PcacheIterateDirty(PCache *pCache, void (*xIter)(PgHdr *));
8608 #endif
8610 /* Set and get the suggested cache-size for the specified pager-cache.
8612 ** If no global maximum is configured, then the system attempts to limit
8613 ** the total number of pages cached by purgeable pager-caches to the sum
8614 ** of the suggested cache-sizes.
8616 SQLITE_PRIVATE void sqlite3PcacheSetCachesize(PCache *, int);
8617 #ifdef SQLITE_TEST
8618 SQLITE_PRIVATE int sqlite3PcacheGetCachesize(PCache *);
8619 #endif
8621 #ifdef SQLITE_ENABLE_MEMORY_MANAGEMENT
8622 /* Try to return memory used by the pcache module to the main memory heap */
8623 SQLITE_PRIVATE int sqlite3PcacheReleaseMemory(int);
8624 #endif
8626 #ifdef SQLITE_TEST
8627 SQLITE_PRIVATE void sqlite3PcacheStats(int*,int*,int*,int*);
8628 #endif
8630 SQLITE_PRIVATE void sqlite3PCacheSetDefault(void);
8632 #endif /* _PCACHE_H_ */
8634 /************** End of pcache.h **********************************************/
8635 /************** Continuing where we left off in sqliteInt.h ******************/
8637 /************** Include os.h in the middle of sqliteInt.h ********************/
8638 /************** Begin file os.h **********************************************/
8640 ** 2001 September 16
8642 ** The author disclaims copyright to this source code. In place of
8643 ** a legal notice, here is a blessing:
8645 ** May you do good and not evil.
8646 ** May you find forgiveness for yourself and forgive others.
8647 ** May you share freely, never taking more than you give.
8649 ******************************************************************************
8651 ** This header file (together with is companion C source-code file
8652 ** "os.c") attempt to abstract the underlying operating system so that
8653 ** the SQLite library will work on both POSIX and windows systems.
8655 ** This header file is #include-ed by sqliteInt.h and thus ends up
8656 ** being included by every source file.
8658 #ifndef _SQLITE_OS_H_
8659 #define _SQLITE_OS_H_
8662 ** Figure out if we are dealing with Unix, Windows, or some other
8663 ** operating system. After the following block of preprocess macros,
8664 ** all of SQLITE_OS_UNIX, SQLITE_OS_WIN, SQLITE_OS_OS2, and SQLITE_OS_OTHER
8665 ** will defined to either 1 or 0. One of the four will be 1. The other
8666 ** three will be 0.
8668 #if defined(SQLITE_OS_OTHER)
8669 # if SQLITE_OS_OTHER==1
8670 # undef SQLITE_OS_UNIX
8671 # define SQLITE_OS_UNIX 0
8672 # undef SQLITE_OS_WIN
8673 # define SQLITE_OS_WIN 0
8674 # undef SQLITE_OS_OS2
8675 # define SQLITE_OS_OS2 0
8676 # else
8677 # undef SQLITE_OS_OTHER
8678 # endif
8679 #endif
8680 #if !defined(SQLITE_OS_UNIX) && !defined(SQLITE_OS_OTHER)
8681 # define SQLITE_OS_OTHER 0
8682 # ifndef SQLITE_OS_WIN
8683 # if defined(_WIN32) || defined(WIN32) || defined(__CYGWIN__) || defined(__MINGW32__) || defined(__BORLANDC__)
8684 # define SQLITE_OS_WIN 1
8685 # define SQLITE_OS_UNIX 0
8686 # define SQLITE_OS_OS2 0
8687 # elif defined(__EMX__) || defined(_OS2) || defined(OS2) || defined(_OS2_) || defined(__OS2__)
8688 # define SQLITE_OS_WIN 0
8689 # define SQLITE_OS_UNIX 0
8690 # define SQLITE_OS_OS2 1
8691 # else
8692 # define SQLITE_OS_WIN 0
8693 # define SQLITE_OS_UNIX 1
8694 # define SQLITE_OS_OS2 0
8695 # endif
8696 # else
8697 # define SQLITE_OS_UNIX 0
8698 # define SQLITE_OS_OS2 0
8699 # endif
8700 #else
8701 # ifndef SQLITE_OS_WIN
8702 # define SQLITE_OS_WIN 0
8703 # endif
8704 #endif
8707 ** Determine if we are dealing with WindowsCE - which has a much
8708 ** reduced API.
8710 #if defined(_WIN32_WCE)
8711 # define SQLITE_OS_WINCE 1
8712 #else
8713 # define SQLITE_OS_WINCE 0
8714 #endif
8718 ** Define the maximum size of a temporary filename
8720 #if SQLITE_OS_WIN
8721 # include <windows.h>
8722 # define SQLITE_TEMPNAME_SIZE (MAX_PATH+50)
8723 #elif SQLITE_OS_OS2
8724 # if (__GNUC__ > 3 || __GNUC__ == 3 && __GNUC_MINOR__ >= 3) && defined(OS2_HIGH_MEMORY)
8725 # include <os2safe.h> /* has to be included before os2.h for linking to work */
8726 # endif
8727 # define INCL_DOSDATETIME
8728 # define INCL_DOSFILEMGR
8729 # define INCL_DOSERRORS
8730 # define INCL_DOSMISC
8731 # define INCL_DOSPROCESS
8732 # define INCL_DOSMODULEMGR
8733 # define INCL_DOSSEMAPHORES
8734 # include <os2.h>
8735 # include <uconv.h>
8736 # define SQLITE_TEMPNAME_SIZE (CCHMAXPATHCOMP)
8737 #else
8738 # define SQLITE_TEMPNAME_SIZE 200
8739 #endif
8741 /* If the SET_FULLSYNC macro is not defined above, then make it
8742 ** a no-op
8744 #ifndef SET_FULLSYNC
8745 # define SET_FULLSYNC(x,y)
8746 #endif
8749 ** The default size of a disk sector
8751 #ifndef SQLITE_DEFAULT_SECTOR_SIZE
8752 # define SQLITE_DEFAULT_SECTOR_SIZE 512
8753 #endif
8756 ** Temporary files are named starting with this prefix followed by 16 random
8757 ** alphanumeric characters, and no file extension. They are stored in the
8758 ** OS's standard temporary file directory, and are deleted prior to exit.
8759 ** If sqlite is being embedded in another program, you may wish to change the
8760 ** prefix to reflect your program's name, so that if your program exits
8761 ** prematurely, old temporary files can be easily identified. This can be done
8762 ** using -DSQLITE_TEMP_FILE_PREFIX=myprefix_ on the compiler command line.
8764 ** 2006-10-31: The default prefix used to be "sqlite_". But then
8765 ** Mcafee started using SQLite in their anti-virus product and it
8766 ** started putting files with the "sqlite" name in the c:/temp folder.
8767 ** This annoyed many windows users. Those users would then do a
8768 ** Google search for "sqlite", find the telephone numbers of the
8769 ** developers and call to wake them up at night and complain.
8770 ** For this reason, the default name prefix is changed to be "sqlite"
8771 ** spelled backwards. So the temp files are still identified, but
8772 ** anybody smart enough to figure out the code is also likely smart
8773 ** enough to know that calling the developer will not help get rid
8774 ** of the file.
8776 #ifndef SQLITE_TEMP_FILE_PREFIX
8777 # define SQLITE_TEMP_FILE_PREFIX "etilqs_"
8778 #endif
8781 ** The following values may be passed as the second argument to
8782 ** sqlite3OsLock(). The various locks exhibit the following semantics:
8784 ** SHARED: Any number of processes may hold a SHARED lock simultaneously.
8785 ** RESERVED: A single process may hold a RESERVED lock on a file at
8786 ** any time. Other processes may hold and obtain new SHARED locks.
8787 ** PENDING: A single process may hold a PENDING lock on a file at
8788 ** any one time. Existing SHARED locks may persist, but no new
8789 ** SHARED locks may be obtained by other processes.
8790 ** EXCLUSIVE: An EXCLUSIVE lock precludes all other locks.
8792 ** PENDING_LOCK may not be passed directly to sqlite3OsLock(). Instead, a
8793 ** process that requests an EXCLUSIVE lock may actually obtain a PENDING
8794 ** lock. This can be upgraded to an EXCLUSIVE lock by a subsequent call to
8795 ** sqlite3OsLock().
8797 #define NO_LOCK 0
8798 #define SHARED_LOCK 1
8799 #define RESERVED_LOCK 2
8800 #define PENDING_LOCK 3
8801 #define EXCLUSIVE_LOCK 4
8804 ** File Locking Notes: (Mostly about windows but also some info for Unix)
8806 ** We cannot use LockFileEx() or UnlockFileEx() on Win95/98/ME because
8807 ** those functions are not available. So we use only LockFile() and
8808 ** UnlockFile().
8810 ** LockFile() prevents not just writing but also reading by other processes.
8811 ** A SHARED_LOCK is obtained by locking a single randomly-chosen
8812 ** byte out of a specific range of bytes. The lock byte is obtained at
8813 ** random so two separate readers can probably access the file at the
8814 ** same time, unless they are unlucky and choose the same lock byte.
8815 ** An EXCLUSIVE_LOCK is obtained by locking all bytes in the range.
8816 ** There can only be one writer. A RESERVED_LOCK is obtained by locking
8817 ** a single byte of the file that is designated as the reserved lock byte.
8818 ** A PENDING_LOCK is obtained by locking a designated byte different from
8819 ** the RESERVED_LOCK byte.
8821 ** On WinNT/2K/XP systems, LockFileEx() and UnlockFileEx() are available,
8822 ** which means we can use reader/writer locks. When reader/writer locks
8823 ** are used, the lock is placed on the same range of bytes that is used
8824 ** for probabilistic locking in Win95/98/ME. Hence, the locking scheme
8825 ** will support two or more Win95 readers or two or more WinNT readers.
8826 ** But a single Win95 reader will lock out all WinNT readers and a single
8827 ** WinNT reader will lock out all other Win95 readers.
8829 ** The following #defines specify the range of bytes used for locking.
8830 ** SHARED_SIZE is the number of bytes available in the pool from which
8831 ** a random byte is selected for a shared lock. The pool of bytes for
8832 ** shared locks begins at SHARED_FIRST.
8834 ** The same locking strategy and
8835 ** byte ranges are used for Unix. This leaves open the possiblity of having
8836 ** clients on win95, winNT, and unix all talking to the same shared file
8837 ** and all locking correctly. To do so would require that samba (or whatever
8838 ** tool is being used for file sharing) implements locks correctly between
8839 ** windows and unix. I'm guessing that isn't likely to happen, but by
8840 ** using the same locking range we are at least open to the possibility.
8842 ** Locking in windows is manditory. For this reason, we cannot store
8843 ** actual data in the bytes used for locking. The pager never allocates
8844 ** the pages involved in locking therefore. SHARED_SIZE is selected so
8845 ** that all locks will fit on a single page even at the minimum page size.
8846 ** PENDING_BYTE defines the beginning of the locks. By default PENDING_BYTE
8847 ** is set high so that we don't have to allocate an unused page except
8848 ** for very large databases. But one should test the page skipping logic
8849 ** by setting PENDING_BYTE low and running the entire regression suite.
8851 ** Changing the value of PENDING_BYTE results in a subtly incompatible
8852 ** file format. Depending on how it is changed, you might not notice
8853 ** the incompatibility right away, even running a full regression test.
8854 ** The default location of PENDING_BYTE is the first byte past the
8855 ** 1GB boundary.
8858 #ifdef SQLITE_OMIT_WSD
8859 # define PENDING_BYTE (0x40000000)
8860 #else
8861 # define PENDING_BYTE sqlite3PendingByte
8862 #endif
8863 #define RESERVED_BYTE (PENDING_BYTE+1)
8864 #define SHARED_FIRST (PENDING_BYTE+2)
8865 #define SHARED_SIZE 510
8868 ** Wrapper around OS specific sqlite3_os_init() function.
8870 SQLITE_PRIVATE int sqlite3OsInit(void);
8873 ** Functions for accessing sqlite3_file methods
8875 SQLITE_PRIVATE int sqlite3OsClose(sqlite3_file*);
8876 SQLITE_PRIVATE int sqlite3OsRead(sqlite3_file*, void*, int amt, i64 offset);
8877 SQLITE_PRIVATE int sqlite3OsWrite(sqlite3_file*, const void*, int amt, i64 offset);
8878 SQLITE_PRIVATE int sqlite3OsTruncate(sqlite3_file*, i64 size);
8879 SQLITE_PRIVATE int sqlite3OsSync(sqlite3_file*, int);
8880 SQLITE_PRIVATE int sqlite3OsFileSize(sqlite3_file*, i64 *pSize);
8881 SQLITE_PRIVATE int sqlite3OsLock(sqlite3_file*, int);
8882 SQLITE_PRIVATE int sqlite3OsUnlock(sqlite3_file*, int);
8883 SQLITE_PRIVATE int sqlite3OsCheckReservedLock(sqlite3_file *id, int *pResOut);
8884 SQLITE_PRIVATE int sqlite3OsFileControl(sqlite3_file*,int,void*);
8885 #define SQLITE_FCNTL_DB_UNCHANGED 0xca093fa0
8886 SQLITE_PRIVATE int sqlite3OsSectorSize(sqlite3_file *id);
8887 SQLITE_PRIVATE int sqlite3OsDeviceCharacteristics(sqlite3_file *id);
8888 SQLITE_PRIVATE int sqlite3OsShmMap(sqlite3_file *,int,int,int,void volatile **);
8889 SQLITE_PRIVATE int sqlite3OsShmLock(sqlite3_file *id, int, int, int);
8890 SQLITE_PRIVATE void sqlite3OsShmBarrier(sqlite3_file *id);
8891 SQLITE_PRIVATE int sqlite3OsShmUnmap(sqlite3_file *id, int);
8894 ** Functions for accessing sqlite3_vfs methods
8896 SQLITE_PRIVATE int sqlite3OsOpen(sqlite3_vfs *, const char *, sqlite3_file*, int, int *);
8897 SQLITE_PRIVATE int sqlite3OsDelete(sqlite3_vfs *, const char *, int);
8898 SQLITE_PRIVATE int sqlite3OsAccess(sqlite3_vfs *, const char *, int, int *pResOut);
8899 SQLITE_PRIVATE int sqlite3OsFullPathname(sqlite3_vfs *, const char *, int, char *);
8900 #ifndef SQLITE_OMIT_LOAD_EXTENSION
8901 SQLITE_PRIVATE void *sqlite3OsDlOpen(sqlite3_vfs *, const char *);
8902 SQLITE_PRIVATE void sqlite3OsDlError(sqlite3_vfs *, int, char *);
8903 SQLITE_PRIVATE void (*sqlite3OsDlSym(sqlite3_vfs *, void *, const char *))(void);
8904 SQLITE_PRIVATE void sqlite3OsDlClose(sqlite3_vfs *, void *);
8905 #endif /* SQLITE_OMIT_LOAD_EXTENSION */
8906 SQLITE_PRIVATE int sqlite3OsRandomness(sqlite3_vfs *, int, char *);
8907 SQLITE_PRIVATE int sqlite3OsSleep(sqlite3_vfs *, int);
8908 SQLITE_PRIVATE int sqlite3OsCurrentTimeInt64(sqlite3_vfs *, sqlite3_int64*);
8911 ** Convenience functions for opening and closing files using
8912 ** sqlite3_malloc() to obtain space for the file-handle structure.
8914 SQLITE_PRIVATE int sqlite3OsOpenMalloc(sqlite3_vfs *, const char *, sqlite3_file **, int,int*);
8915 SQLITE_PRIVATE int sqlite3OsCloseFree(sqlite3_file *);
8917 #endif /* _SQLITE_OS_H_ */
8919 /************** End of os.h **************************************************/
8920 /************** Continuing where we left off in sqliteInt.h ******************/
8921 /************** Include mutex.h in the middle of sqliteInt.h *****************/
8922 /************** Begin file mutex.h *******************************************/
8924 ** 2007 August 28
8926 ** The author disclaims copyright to this source code. In place of
8927 ** a legal notice, here is a blessing:
8929 ** May you do good and not evil.
8930 ** May you find forgiveness for yourself and forgive others.
8931 ** May you share freely, never taking more than you give.
8933 *************************************************************************
8935 ** This file contains the common header for all mutex implementations.
8936 ** The sqliteInt.h header #includes this file so that it is available
8937 ** to all source files. We break it out in an effort to keep the code
8938 ** better organized.
8940 ** NOTE: source files should *not* #include this header file directly.
8941 ** Source files should #include the sqliteInt.h file and let that file
8942 ** include this one indirectly.
8947 ** Figure out what version of the code to use. The choices are
8949 ** SQLITE_MUTEX_OMIT No mutex logic. Not even stubs. The
8950 ** mutexes implemention cannot be overridden
8951 ** at start-time.
8953 ** SQLITE_MUTEX_NOOP For single-threaded applications. No
8954 ** mutual exclusion is provided. But this
8955 ** implementation can be overridden at
8956 ** start-time.
8958 ** SQLITE_MUTEX_PTHREADS For multi-threaded applications on Unix.
8960 ** SQLITE_MUTEX_W32 For multi-threaded applications on Win32.
8962 ** SQLITE_MUTEX_OS2 For multi-threaded applications on OS/2.
8964 #if !SQLITE_THREADSAFE
8965 # define SQLITE_MUTEX_OMIT
8966 #endif
8967 #if SQLITE_THREADSAFE && !defined(SQLITE_MUTEX_NOOP)
8968 # if SQLITE_OS_UNIX
8969 # define SQLITE_MUTEX_PTHREADS
8970 # elif SQLITE_OS_WIN
8971 # define SQLITE_MUTEX_W32
8972 # elif SQLITE_OS_OS2
8973 # define SQLITE_MUTEX_OS2
8974 # else
8975 # define SQLITE_MUTEX_NOOP
8976 # endif
8977 #endif
8979 #ifdef SQLITE_MUTEX_OMIT
8981 ** If this is a no-op implementation, implement everything as macros.
8983 #define sqlite3_mutex_alloc(X) ((sqlite3_mutex*)8)
8984 #define sqlite3_mutex_free(X)
8985 #define sqlite3_mutex_enter(X)
8986 #define sqlite3_mutex_try(X) SQLITE_OK
8987 #define sqlite3_mutex_leave(X)
8988 #define sqlite3_mutex_held(X) ((void)(X),1)
8989 #define sqlite3_mutex_notheld(X) ((void)(X),1)
8990 #define sqlite3MutexAlloc(X) ((sqlite3_mutex*)8)
8991 #define sqlite3MutexInit() SQLITE_OK
8992 #define sqlite3MutexEnd()
8993 #endif /* defined(SQLITE_MUTEX_OMIT) */
8995 /************** End of mutex.h ***********************************************/
8996 /************** Continuing where we left off in sqliteInt.h ******************/
9000 ** Each database file to be accessed by the system is an instance
9001 ** of the following structure. There are normally two of these structures
9002 ** in the sqlite.aDb[] array. aDb[0] is the main database file and
9003 ** aDb[1] is the database file used to hold temporary tables. Additional
9004 ** databases may be attached.
9006 struct Db {
9007 char *zName; /* Name of this database */
9008 Btree *pBt; /* The B*Tree structure for this database file */
9009 u8 inTrans; /* 0: not writable. 1: Transaction. 2: Checkpoint */
9010 u8 safety_level; /* How aggressive at syncing data to disk */
9011 Schema *pSchema; /* Pointer to database schema (possibly shared) */
9015 ** An instance of the following structure stores a database schema.
9017 ** Most Schema objects are associated with a Btree. The exception is
9018 ** the Schema for the TEMP databaes (sqlite3.aDb[1]) which is free-standing.
9019 ** In shared cache mode, a single Schema object can be shared by multiple
9020 ** Btrees that refer to the same underlying BtShared object.
9022 ** Schema objects are automatically deallocated when the last Btree that
9023 ** references them is destroyed. The TEMP Schema is manually freed by
9024 ** sqlite3_close().
9026 ** A thread must be holding a mutex on the corresponding Btree in order
9027 ** to access Schema content. This implies that the thread must also be
9028 ** holding a mutex on the sqlite3 connection pointer that owns the Btree.
9029 ** For a TEMP Schema, on the connection mutex is required.
9031 struct Schema {
9032 int schema_cookie; /* Database schema version number for this file */
9033 int iGeneration; /* Generation counter. Incremented with each change */
9034 Hash tblHash; /* All tables indexed by name */
9035 Hash idxHash; /* All (named) indices indexed by name */
9036 Hash trigHash; /* All triggers indexed by name */
9037 Hash fkeyHash; /* All foreign keys by referenced table name */
9038 Table *pSeqTab; /* The sqlite_sequence table used by AUTOINCREMENT */
9039 u8 file_format; /* Schema format version for this file */
9040 u8 enc; /* Text encoding used by this database */
9041 u16 flags; /* Flags associated with this schema */
9042 int cache_size; /* Number of pages to use in the cache */
9046 ** These macros can be used to test, set, or clear bits in the
9047 ** Db.pSchema->flags field.
9049 #define DbHasProperty(D,I,P) (((D)->aDb[I].pSchema->flags&(P))==(P))
9050 #define DbHasAnyProperty(D,I,P) (((D)->aDb[I].pSchema->flags&(P))!=0)
9051 #define DbSetProperty(D,I,P) (D)->aDb[I].pSchema->flags|=(P)
9052 #define DbClearProperty(D,I,P) (D)->aDb[I].pSchema->flags&=~(P)
9055 ** Allowed values for the DB.pSchema->flags field.
9057 ** The DB_SchemaLoaded flag is set after the database schema has been
9058 ** read into internal hash tables.
9060 ** DB_UnresetViews means that one or more views have column names that
9061 ** have been filled out. If the schema changes, these column names might
9062 ** changes and so the view will need to be reset.
9064 #define DB_SchemaLoaded 0x0001 /* The schema has been loaded */
9065 #define DB_UnresetViews 0x0002 /* Some views have defined column names */
9066 #define DB_Empty 0x0004 /* The file is empty (length 0 bytes) */
9069 ** The number of different kinds of things that can be limited
9070 ** using the sqlite3_limit() interface.
9072 #define SQLITE_N_LIMIT (SQLITE_LIMIT_TRIGGER_DEPTH+1)
9075 ** Lookaside malloc is a set of fixed-size buffers that can be used
9076 ** to satisfy small transient memory allocation requests for objects
9077 ** associated with a particular database connection. The use of
9078 ** lookaside malloc provides a significant performance enhancement
9079 ** (approx 10%) by avoiding numerous malloc/free requests while parsing
9080 ** SQL statements.
9082 ** The Lookaside structure holds configuration information about the
9083 ** lookaside malloc subsystem. Each available memory allocation in
9084 ** the lookaside subsystem is stored on a linked list of LookasideSlot
9085 ** objects.
9087 ** Lookaside allocations are only allowed for objects that are associated
9088 ** with a particular database connection. Hence, schema information cannot
9089 ** be stored in lookaside because in shared cache mode the schema information
9090 ** is shared by multiple database connections. Therefore, while parsing
9091 ** schema information, the Lookaside.bEnabled flag is cleared so that
9092 ** lookaside allocations are not used to construct the schema objects.
9094 struct Lookaside {
9095 u16 sz; /* Size of each buffer in bytes */
9096 u8 bEnabled; /* False to disable new lookaside allocations */
9097 u8 bMalloced; /* True if pStart obtained from sqlite3_malloc() */
9098 int nOut; /* Number of buffers currently checked out */
9099 int mxOut; /* Highwater mark for nOut */
9100 int anStat[3]; /* 0: hits. 1: size misses. 2: full misses */
9101 LookasideSlot *pFree; /* List of available buffers */
9102 void *pStart; /* First byte of available memory space */
9103 void *pEnd; /* First byte past end of available space */
9105 struct LookasideSlot {
9106 LookasideSlot *pNext; /* Next buffer in the list of free buffers */
9110 ** A hash table for function definitions.
9112 ** Hash each FuncDef structure into one of the FuncDefHash.a[] slots.
9113 ** Collisions are on the FuncDef.pHash chain.
9115 struct FuncDefHash {
9116 FuncDef *a[23]; /* Hash table for functions */
9120 ** Each database connection is an instance of the following structure.
9122 ** The sqlite.lastRowid records the last insert rowid generated by an
9123 ** insert statement. Inserts on views do not affect its value. Each
9124 ** trigger has its own context, so that lastRowid can be updated inside
9125 ** triggers as usual. The previous value will be restored once the trigger
9126 ** exits. Upon entering a before or instead of trigger, lastRowid is no
9127 ** longer (since after version 2.8.12) reset to -1.
9129 ** The sqlite.nChange does not count changes within triggers and keeps no
9130 ** context. It is reset at start of sqlite3_exec.
9131 ** The sqlite.lsChange represents the number of changes made by the last
9132 ** insert, update, or delete statement. It remains constant throughout the
9133 ** length of a statement and is then updated by OP_SetCounts. It keeps a
9134 ** context stack just like lastRowid so that the count of changes
9135 ** within a trigger is not seen outside the trigger. Changes to views do not
9136 ** affect the value of lsChange.
9137 ** The sqlite.csChange keeps track of the number of current changes (since
9138 ** the last statement) and is used to update sqlite_lsChange.
9140 ** The member variables sqlite.errCode, sqlite.zErrMsg and sqlite.zErrMsg16
9141 ** store the most recent error code and, if applicable, string. The
9142 ** internal function sqlite3Error() is used to set these variables
9143 ** consistently.
9145 struct sqlite3 {
9146 sqlite3_vfs *pVfs; /* OS Interface */
9147 int nDb; /* Number of backends currently in use */
9148 Db *aDb; /* All backends */
9149 int flags; /* Miscellaneous flags. See below */
9150 int openFlags; /* Flags passed to sqlite3_vfs.xOpen() */
9151 int errCode; /* Most recent error code (SQLITE_*) */
9152 int errMask; /* & result codes with this before returning */
9153 u8 autoCommit; /* The auto-commit flag. */
9154 u8 temp_store; /* 1: file 2: memory 0: default */
9155 u8 mallocFailed; /* True if we have seen a malloc failure */
9156 u8 dfltLockMode; /* Default locking-mode for attached dbs */
9157 signed char nextAutovac; /* Autovac setting after VACUUM if >=0 */
9158 u8 suppressErr; /* Do not issue error messages if true */
9159 int nextPagesize; /* Pagesize after VACUUM if >0 */
9160 int nTable; /* Number of tables in the database */
9161 CollSeq *pDfltColl; /* The default collating sequence (BINARY) */
9162 i64 lastRowid; /* ROWID of most recent insert (see above) */
9163 u32 magic; /* Magic number for detect library misuse */
9164 int nChange; /* Value returned by sqlite3_changes() */
9165 int nTotalChange; /* Value returned by sqlite3_total_changes() */
9166 sqlite3_mutex *mutex; /* Connection mutex */
9167 int aLimit[SQLITE_N_LIMIT]; /* Limits */
9168 struct sqlite3InitInfo { /* Information used during initialization */
9169 int iDb; /* When back is being initialized */
9170 int newTnum; /* Rootpage of table being initialized */
9171 u8 busy; /* TRUE if currently initializing */
9172 u8 orphanTrigger; /* Last statement is orphaned TEMP trigger */
9173 } init;
9174 int nExtension; /* Number of loaded extensions */
9175 void **aExtension; /* Array of shared library handles */
9176 struct Vdbe *pVdbe; /* List of active virtual machines */
9177 int activeVdbeCnt; /* Number of VDBEs currently executing */
9178 int writeVdbeCnt; /* Number of active VDBEs that are writing */
9179 int vdbeExecCnt; /* Number of nested calls to VdbeExec() */
9180 void (*xTrace)(void*,const char*); /* Trace function */
9181 void *pTraceArg; /* Argument to the trace function */
9182 void (*xProfile)(void*,const char*,u64); /* Profiling function */
9183 void *pProfileArg; /* Argument to profile function */
9184 void *pCommitArg; /* Argument to xCommitCallback() */
9185 int (*xCommitCallback)(void*); /* Invoked at every commit. */
9186 void *pRollbackArg; /* Argument to xRollbackCallback() */
9187 void (*xRollbackCallback)(void*); /* Invoked at every commit. */
9188 void *pUpdateArg;
9189 void (*xUpdateCallback)(void*,int, const char*,const char*,sqlite_int64);
9190 #ifndef SQLITE_OMIT_WAL
9191 int (*xWalCallback)(void *, sqlite3 *, const char *, int);
9192 void *pWalArg;
9193 #endif
9194 void(*xCollNeeded)(void*,sqlite3*,int eTextRep,const char*);
9195 void(*xCollNeeded16)(void*,sqlite3*,int eTextRep,const void*);
9196 void *pCollNeededArg;
9197 sqlite3_value *pErr; /* Most recent error message */
9198 char *zErrMsg; /* Most recent error message (UTF-8 encoded) */
9199 char *zErrMsg16; /* Most recent error message (UTF-16 encoded) */
9200 union {
9201 volatile int isInterrupted; /* True if sqlite3_interrupt has been called */
9202 double notUsed1; /* Spacer */
9203 } u1;
9204 Lookaside lookaside; /* Lookaside malloc configuration */
9205 #ifndef SQLITE_OMIT_AUTHORIZATION
9206 int (*xAuth)(void*,int,const char*,const char*,const char*,const char*);
9207 /* Access authorization function */
9208 void *pAuthArg; /* 1st argument to the access auth function */
9209 #endif
9210 #ifndef SQLITE_OMIT_PROGRESS_CALLBACK
9211 int (*xProgress)(void *); /* The progress callback */
9212 void *pProgressArg; /* Argument to the progress callback */
9213 int nProgressOps; /* Number of opcodes for progress callback */
9214 #endif
9215 #ifndef SQLITE_OMIT_VIRTUALTABLE
9216 Hash aModule; /* populated by sqlite3_create_module() */
9217 Table *pVTab; /* vtab with active Connect/Create method */
9218 VTable **aVTrans; /* Virtual tables with open transactions */
9219 int nVTrans; /* Allocated size of aVTrans */
9220 VTable *pDisconnect; /* Disconnect these in next sqlite3_prepare() */
9221 #endif
9222 FuncDefHash aFunc; /* Hash table of connection functions */
9223 Hash aCollSeq; /* All collating sequences */
9224 BusyHandler busyHandler; /* Busy callback */
9225 int busyTimeout; /* Busy handler timeout, in msec */
9226 Db aDbStatic[2]; /* Static space for the 2 default backends */
9227 Savepoint *pSavepoint; /* List of active savepoints */
9228 int nSavepoint; /* Number of non-transaction savepoints */
9229 int nStatement; /* Number of nested statement-transactions */
9230 u8 isTransactionSavepoint; /* True if the outermost savepoint is a TS */
9231 i64 nDeferredCons; /* Net deferred constraints this transaction. */
9232 int *pnBytesFreed; /* If not NULL, increment this in DbFree() */
9234 #ifdef SQLITE_ENABLE_UNLOCK_NOTIFY
9235 /* The following variables are all protected by the STATIC_MASTER
9236 ** mutex, not by sqlite3.mutex. They are used by code in notify.c.
9238 ** When X.pUnlockConnection==Y, that means that X is waiting for Y to
9239 ** unlock so that it can proceed.
9241 ** When X.pBlockingConnection==Y, that means that something that X tried
9242 ** tried to do recently failed with an SQLITE_LOCKED error due to locks
9243 ** held by Y.
9245 sqlite3 *pBlockingConnection; /* Connection that caused SQLITE_LOCKED */
9246 sqlite3 *pUnlockConnection; /* Connection to watch for unlock */
9247 void *pUnlockArg; /* Argument to xUnlockNotify */
9248 void (*xUnlockNotify)(void **, int); /* Unlock notify callback */
9249 sqlite3 *pNextBlocked; /* Next in list of all blocked connections */
9250 #endif
9254 ** A macro to discover the encoding of a database.
9256 #define ENC(db) ((db)->aDb[0].pSchema->enc)
9259 ** Possible values for the sqlite3.flags.
9261 #define SQLITE_VdbeTrace 0x00000100 /* True to trace VDBE execution */
9262 #define SQLITE_InternChanges 0x00000200 /* Uncommitted Hash table changes */
9263 #define SQLITE_FullColNames 0x00000400 /* Show full column names on SELECT */
9264 #define SQLITE_ShortColNames 0x00000800 /* Show short columns names */
9265 #define SQLITE_CountRows 0x00001000 /* Count rows changed by INSERT, */
9266 /* DELETE, or UPDATE and return */
9267 /* the count using a callback. */
9268 #define SQLITE_NullCallback 0x00002000 /* Invoke the callback once if the */
9269 /* result set is empty */
9270 #define SQLITE_SqlTrace 0x00004000 /* Debug print SQL as it executes */
9271 #define SQLITE_VdbeListing 0x00008000 /* Debug listings of VDBE programs */
9272 #define SQLITE_WriteSchema 0x00010000 /* OK to update SQLITE_MASTER */
9273 #define SQLITE_NoReadlock 0x00020000 /* Readlocks are omitted when
9274 ** accessing read-only databases */
9275 #define SQLITE_IgnoreChecks 0x00040000 /* Do not enforce check constraints */
9276 #define SQLITE_ReadUncommitted 0x0080000 /* For shared-cache mode */
9277 #define SQLITE_LegacyFileFmt 0x00100000 /* Create new databases in format 1 */
9278 #define SQLITE_FullFSync 0x00200000 /* Use full fsync on the backend */
9279 #define SQLITE_CkptFullFSync 0x00400000 /* Use full fsync for checkpoint */
9280 #define SQLITE_RecoveryMode 0x00800000 /* Ignore schema errors */
9281 #define SQLITE_ReverseOrder 0x01000000 /* Reverse unordered SELECTs */
9282 #define SQLITE_RecTriggers 0x02000000 /* Enable recursive triggers */
9283 #define SQLITE_ForeignKeys 0x04000000 /* Enforce foreign key constraints */
9284 #define SQLITE_AutoIndex 0x08000000 /* Enable automatic indexes */
9285 #define SQLITE_PreferBuiltin 0x10000000 /* Preference to built-in funcs */
9286 #define SQLITE_LoadExtension 0x20000000 /* Enable load_extension */
9287 #define SQLITE_EnableTrigger 0x40000000 /* True to enable triggers */
9290 ** Bits of the sqlite3.flags field that are used by the
9291 ** sqlite3_test_control(SQLITE_TESTCTRL_OPTIMIZATIONS,...) interface.
9292 ** These must be the low-order bits of the flags field.
9294 #define SQLITE_QueryFlattener 0x01 /* Disable query flattening */
9295 #define SQLITE_ColumnCache 0x02 /* Disable the column cache */
9296 #define SQLITE_IndexSort 0x04 /* Disable indexes for sorting */
9297 #define SQLITE_IndexSearch 0x08 /* Disable indexes for searching */
9298 #define SQLITE_IndexCover 0x10 /* Disable index covering table */
9299 #define SQLITE_GroupByOrder 0x20 /* Disable GROUPBY cover of ORDERBY */
9300 #define SQLITE_FactorOutConst 0x40 /* Disable factoring out constants */
9301 #define SQLITE_OptMask 0xff /* Mask of all disablable opts */
9304 ** Possible values for the sqlite.magic field.
9305 ** The numbers are obtained at random and have no special meaning, other
9306 ** than being distinct from one another.
9308 #define SQLITE_MAGIC_OPEN 0xa029a697 /* Database is open */
9309 #define SQLITE_MAGIC_CLOSED 0x9f3c2d33 /* Database is closed */
9310 #define SQLITE_MAGIC_SICK 0x4b771290 /* Error and awaiting close */
9311 #define SQLITE_MAGIC_BUSY 0xf03b7906 /* Database currently in use */
9312 #define SQLITE_MAGIC_ERROR 0xb5357930 /* An SQLITE_MISUSE error occurred */
9315 ** Each SQL function is defined by an instance of the following
9316 ** structure. A pointer to this structure is stored in the sqlite.aFunc
9317 ** hash table. When multiple functions have the same name, the hash table
9318 ** points to a linked list of these structures.
9320 struct FuncDef {
9321 i16 nArg; /* Number of arguments. -1 means unlimited */
9322 u8 iPrefEnc; /* Preferred text encoding (SQLITE_UTF8, 16LE, 16BE) */
9323 u8 flags; /* Some combination of SQLITE_FUNC_* */
9324 void *pUserData; /* User data parameter */
9325 FuncDef *pNext; /* Next function with same name */
9326 void (*xFunc)(sqlite3_context*,int,sqlite3_value**); /* Regular function */
9327 void (*xStep)(sqlite3_context*,int,sqlite3_value**); /* Aggregate step */
9328 void (*xFinalize)(sqlite3_context*); /* Aggregate finalizer */
9329 char *zName; /* SQL name of the function. */
9330 FuncDef *pHash; /* Next with a different name but the same hash */
9331 FuncDestructor *pDestructor; /* Reference counted destructor function */
9335 ** This structure encapsulates a user-function destructor callback (as
9336 ** configured using create_function_v2()) and a reference counter. When
9337 ** create_function_v2() is called to create a function with a destructor,
9338 ** a single object of this type is allocated. FuncDestructor.nRef is set to
9339 ** the number of FuncDef objects created (either 1 or 3, depending on whether
9340 ** or not the specified encoding is SQLITE_ANY). The FuncDef.pDestructor
9341 ** member of each of the new FuncDef objects is set to point to the allocated
9342 ** FuncDestructor.
9344 ** Thereafter, when one of the FuncDef objects is deleted, the reference
9345 ** count on this object is decremented. When it reaches 0, the destructor
9346 ** is invoked and the FuncDestructor structure freed.
9348 struct FuncDestructor {
9349 int nRef;
9350 void (*xDestroy)(void *);
9351 void *pUserData;
9355 ** Possible values for FuncDef.flags
9357 #define SQLITE_FUNC_LIKE 0x01 /* Candidate for the LIKE optimization */
9358 #define SQLITE_FUNC_CASE 0x02 /* Case-sensitive LIKE-type function */
9359 #define SQLITE_FUNC_EPHEM 0x04 /* Ephemeral. Delete with VDBE */
9360 #define SQLITE_FUNC_NEEDCOLL 0x08 /* sqlite3GetFuncCollSeq() might be called */
9361 #define SQLITE_FUNC_PRIVATE 0x10 /* Allowed for internal use only */
9362 #define SQLITE_FUNC_COUNT 0x20 /* Built-in count(*) aggregate */
9363 #define SQLITE_FUNC_COALESCE 0x40 /* Built-in coalesce() or ifnull() function */
9366 ** The following three macros, FUNCTION(), LIKEFUNC() and AGGREGATE() are
9367 ** used to create the initializers for the FuncDef structures.
9369 ** FUNCTION(zName, nArg, iArg, bNC, xFunc)
9370 ** Used to create a scalar function definition of a function zName
9371 ** implemented by C function xFunc that accepts nArg arguments. The
9372 ** value passed as iArg is cast to a (void*) and made available
9373 ** as the user-data (sqlite3_user_data()) for the function. If
9374 ** argument bNC is true, then the SQLITE_FUNC_NEEDCOLL flag is set.
9376 ** AGGREGATE(zName, nArg, iArg, bNC, xStep, xFinal)
9377 ** Used to create an aggregate function definition implemented by
9378 ** the C functions xStep and xFinal. The first four parameters
9379 ** are interpreted in the same way as the first 4 parameters to
9380 ** FUNCTION().
9382 ** LIKEFUNC(zName, nArg, pArg, flags)
9383 ** Used to create a scalar function definition of a function zName
9384 ** that accepts nArg arguments and is implemented by a call to C
9385 ** function likeFunc. Argument pArg is cast to a (void *) and made
9386 ** available as the function user-data (sqlite3_user_data()). The
9387 ** FuncDef.flags variable is set to the value passed as the flags
9388 ** parameter.
9390 #define FUNCTION(zName, nArg, iArg, bNC, xFunc) \
9391 {nArg, SQLITE_UTF8, bNC*SQLITE_FUNC_NEEDCOLL, \
9392 SQLITE_INT_TO_PTR(iArg), 0, xFunc, 0, 0, #zName, 0, 0}
9393 #define STR_FUNCTION(zName, nArg, pArg, bNC, xFunc) \
9394 {nArg, SQLITE_UTF8, bNC*SQLITE_FUNC_NEEDCOLL, \
9395 pArg, 0, xFunc, 0, 0, #zName, 0, 0}
9396 #define LIKEFUNC(zName, nArg, arg, flags) \
9397 {nArg, SQLITE_UTF8, flags, (void *)arg, 0, likeFunc, 0, 0, #zName, 0, 0}
9398 #define AGGREGATE(zName, nArg, arg, nc, xStep, xFinal) \
9399 {nArg, SQLITE_UTF8, nc*SQLITE_FUNC_NEEDCOLL, \
9400 SQLITE_INT_TO_PTR(arg), 0, 0, xStep,xFinal,#zName,0,0}
9403 ** All current savepoints are stored in a linked list starting at
9404 ** sqlite3.pSavepoint. The first element in the list is the most recently
9405 ** opened savepoint. Savepoints are added to the list by the vdbe
9406 ** OP_Savepoint instruction.
9408 struct Savepoint {
9409 char *zName; /* Savepoint name (nul-terminated) */
9410 i64 nDeferredCons; /* Number of deferred fk violations */
9411 Savepoint *pNext; /* Parent savepoint (if any) */
9415 ** The following are used as the second parameter to sqlite3Savepoint(),
9416 ** and as the P1 argument to the OP_Savepoint instruction.
9418 #define SAVEPOINT_BEGIN 0
9419 #define SAVEPOINT_RELEASE 1
9420 #define SAVEPOINT_ROLLBACK 2
9424 ** Each SQLite module (virtual table definition) is defined by an
9425 ** instance of the following structure, stored in the sqlite3.aModule
9426 ** hash table.
9428 struct Module {
9429 const sqlite3_module *pModule; /* Callback pointers */
9430 const char *zName; /* Name passed to create_module() */
9431 void *pAux; /* pAux passed to create_module() */
9432 void (*xDestroy)(void *); /* Module destructor function */
9436 ** information about each column of an SQL table is held in an instance
9437 ** of this structure.
9439 struct Column {
9440 char *zName; /* Name of this column */
9441 Expr *pDflt; /* Default value of this column */
9442 char *zDflt; /* Original text of the default value */
9443 char *zType; /* Data type for this column */
9444 char *zColl; /* Collating sequence. If NULL, use the default */
9445 u8 notNull; /* True if there is a NOT NULL constraint */
9446 u8 isPrimKey; /* True if this column is part of the PRIMARY KEY */
9447 char affinity; /* One of the SQLITE_AFF_... values */
9448 #ifndef SQLITE_OMIT_VIRTUALTABLE
9449 u8 isHidden; /* True if this column is 'hidden' */
9450 #endif
9454 ** A "Collating Sequence" is defined by an instance of the following
9455 ** structure. Conceptually, a collating sequence consists of a name and
9456 ** a comparison routine that defines the order of that sequence.
9458 ** There may two separate implementations of the collation function, one
9459 ** that processes text in UTF-8 encoding (CollSeq.xCmp) and another that
9460 ** processes text encoded in UTF-16 (CollSeq.xCmp16), using the machine
9461 ** native byte order. When a collation sequence is invoked, SQLite selects
9462 ** the version that will require the least expensive encoding
9463 ** translations, if any.
9465 ** The CollSeq.pUser member variable is an extra parameter that passed in
9466 ** as the first argument to the UTF-8 comparison function, xCmp.
9467 ** CollSeq.pUser16 is the equivalent for the UTF-16 comparison function,
9468 ** xCmp16.
9470 ** If both CollSeq.xCmp and CollSeq.xCmp16 are NULL, it means that the
9471 ** collating sequence is undefined. Indices built on an undefined
9472 ** collating sequence may not be read or written.
9474 struct CollSeq {
9475 char *zName; /* Name of the collating sequence, UTF-8 encoded */
9476 u8 enc; /* Text encoding handled by xCmp() */
9477 u8 type; /* One of the SQLITE_COLL_... values below */
9478 void *pUser; /* First argument to xCmp() */
9479 int (*xCmp)(void*,int, const void*, int, const void*);
9480 void (*xDel)(void*); /* Destructor for pUser */
9484 ** Allowed values of CollSeq.type:
9486 #define SQLITE_COLL_BINARY 1 /* The default memcmp() collating sequence */
9487 #define SQLITE_COLL_NOCASE 2 /* The built-in NOCASE collating sequence */
9488 #define SQLITE_COLL_REVERSE 3 /* The built-in REVERSE collating sequence */
9489 #define SQLITE_COLL_USER 0 /* Any other user-defined collating sequence */
9492 ** A sort order can be either ASC or DESC.
9494 #define SQLITE_SO_ASC 0 /* Sort in ascending order */
9495 #define SQLITE_SO_DESC 1 /* Sort in ascending order */
9498 ** Column affinity types.
9500 ** These used to have mnemonic name like 'i' for SQLITE_AFF_INTEGER and
9501 ** 't' for SQLITE_AFF_TEXT. But we can save a little space and improve
9502 ** the speed a little by numbering the values consecutively.
9504 ** But rather than start with 0 or 1, we begin with 'a'. That way,
9505 ** when multiple affinity types are concatenated into a string and
9506 ** used as the P4 operand, they will be more readable.
9508 ** Note also that the numeric types are grouped together so that testing
9509 ** for a numeric type is a single comparison.
9511 #define SQLITE_AFF_TEXT 'a'
9512 #define SQLITE_AFF_NONE 'b'
9513 #define SQLITE_AFF_NUMERIC 'c'
9514 #define SQLITE_AFF_INTEGER 'd'
9515 #define SQLITE_AFF_REAL 'e'
9517 #define sqlite3IsNumericAffinity(X) ((X)>=SQLITE_AFF_NUMERIC)
9520 ** The SQLITE_AFF_MASK values masks off the significant bits of an
9521 ** affinity value.
9523 #define SQLITE_AFF_MASK 0x67
9526 ** Additional bit values that can be ORed with an affinity without
9527 ** changing the affinity.
9529 #define SQLITE_JUMPIFNULL 0x08 /* jumps if either operand is NULL */
9530 #define SQLITE_STOREP2 0x10 /* Store result in reg[P2] rather than jump */
9531 #define SQLITE_NULLEQ 0x80 /* NULL=NULL */
9534 ** An object of this type is created for each virtual table present in
9535 ** the database schema.
9537 ** If the database schema is shared, then there is one instance of this
9538 ** structure for each database connection (sqlite3*) that uses the shared
9539 ** schema. This is because each database connection requires its own unique
9540 ** instance of the sqlite3_vtab* handle used to access the virtual table
9541 ** implementation. sqlite3_vtab* handles can not be shared between
9542 ** database connections, even when the rest of the in-memory database
9543 ** schema is shared, as the implementation often stores the database
9544 ** connection handle passed to it via the xConnect() or xCreate() method
9545 ** during initialization internally. This database connection handle may
9546 ** then be used by the virtual table implementation to access real tables
9547 ** within the database. So that they appear as part of the callers
9548 ** transaction, these accesses need to be made via the same database
9549 ** connection as that used to execute SQL operations on the virtual table.
9551 ** All VTable objects that correspond to a single table in a shared
9552 ** database schema are initially stored in a linked-list pointed to by
9553 ** the Table.pVTable member variable of the corresponding Table object.
9554 ** When an sqlite3_prepare() operation is required to access the virtual
9555 ** table, it searches the list for the VTable that corresponds to the
9556 ** database connection doing the preparing so as to use the correct
9557 ** sqlite3_vtab* handle in the compiled query.
9559 ** When an in-memory Table object is deleted (for example when the
9560 ** schema is being reloaded for some reason), the VTable objects are not
9561 ** deleted and the sqlite3_vtab* handles are not xDisconnect()ed
9562 ** immediately. Instead, they are moved from the Table.pVTable list to
9563 ** another linked list headed by the sqlite3.pDisconnect member of the
9564 ** corresponding sqlite3 structure. They are then deleted/xDisconnected
9565 ** next time a statement is prepared using said sqlite3*. This is done
9566 ** to avoid deadlock issues involving multiple sqlite3.mutex mutexes.
9567 ** Refer to comments above function sqlite3VtabUnlockList() for an
9568 ** explanation as to why it is safe to add an entry to an sqlite3.pDisconnect
9569 ** list without holding the corresponding sqlite3.mutex mutex.
9571 ** The memory for objects of this type is always allocated by
9572 ** sqlite3DbMalloc(), using the connection handle stored in VTable.db as
9573 ** the first argument.
9575 struct VTable {
9576 sqlite3 *db; /* Database connection associated with this table */
9577 Module *pMod; /* Pointer to module implementation */
9578 sqlite3_vtab *pVtab; /* Pointer to vtab instance */
9579 int nRef; /* Number of pointers to this structure */
9580 VTable *pNext; /* Next in linked list (see above) */
9584 ** Each SQL table is represented in memory by an instance of the
9585 ** following structure.
9587 ** Table.zName is the name of the table. The case of the original
9588 ** CREATE TABLE statement is stored, but case is not significant for
9589 ** comparisons.
9591 ** Table.nCol is the number of columns in this table. Table.aCol is a
9592 ** pointer to an array of Column structures, one for each column.
9594 ** If the table has an INTEGER PRIMARY KEY, then Table.iPKey is the index of
9595 ** the column that is that key. Otherwise Table.iPKey is negative. Note
9596 ** that the datatype of the PRIMARY KEY must be INTEGER for this field to
9597 ** be set. An INTEGER PRIMARY KEY is used as the rowid for each row of
9598 ** the table. If a table has no INTEGER PRIMARY KEY, then a random rowid
9599 ** is generated for each row of the table. TF_HasPrimaryKey is set if
9600 ** the table has any PRIMARY KEY, INTEGER or otherwise.
9602 ** Table.tnum is the page number for the root BTree page of the table in the
9603 ** database file. If Table.iDb is the index of the database table backend
9604 ** in sqlite.aDb[]. 0 is for the main database and 1 is for the file that
9605 ** holds temporary tables and indices. If TF_Ephemeral is set
9606 ** then the table is stored in a file that is automatically deleted
9607 ** when the VDBE cursor to the table is closed. In this case Table.tnum
9608 ** refers VDBE cursor number that holds the table open, not to the root
9609 ** page number. Transient tables are used to hold the results of a
9610 ** sub-query that appears instead of a real table name in the FROM clause
9611 ** of a SELECT statement.
9613 struct Table {
9614 char *zName; /* Name of the table or view */
9615 int iPKey; /* If not negative, use aCol[iPKey] as the primary key */
9616 int nCol; /* Number of columns in this table */
9617 Column *aCol; /* Information about each column */
9618 Index *pIndex; /* List of SQL indexes on this table. */
9619 int tnum; /* Root BTree node for this table (see note above) */
9620 unsigned nRowEst; /* Estimated rows in table - from sqlite_stat1 table */
9621 Select *pSelect; /* NULL for tables. Points to definition if a view. */
9622 u16 nRef; /* Number of pointers to this Table */
9623 u8 tabFlags; /* Mask of TF_* values */
9624 u8 keyConf; /* What to do in case of uniqueness conflict on iPKey */
9625 FKey *pFKey; /* Linked list of all foreign keys in this table */
9626 char *zColAff; /* String defining the affinity of each column */
9627 #ifndef SQLITE_OMIT_CHECK
9628 Expr *pCheck; /* The AND of all CHECK constraints */
9629 #endif
9630 #ifndef SQLITE_OMIT_ALTERTABLE
9631 int addColOffset; /* Offset in CREATE TABLE stmt to add a new column */
9632 #endif
9633 #ifndef SQLITE_OMIT_VIRTUALTABLE
9634 VTable *pVTable; /* List of VTable objects. */
9635 int nModuleArg; /* Number of arguments to the module */
9636 char **azModuleArg; /* Text of all module args. [0] is module name */
9637 #endif
9638 Trigger *pTrigger; /* List of triggers stored in pSchema */
9639 Schema *pSchema; /* Schema that contains this table */
9640 Table *pNextZombie; /* Next on the Parse.pZombieTab list */
9644 ** Allowed values for Tabe.tabFlags.
9646 #define TF_Readonly 0x01 /* Read-only system table */
9647 #define TF_Ephemeral 0x02 /* An ephemeral table */
9648 #define TF_HasPrimaryKey 0x04 /* Table has a primary key */
9649 #define TF_Autoincrement 0x08 /* Integer primary key is autoincrement */
9650 #define TF_Virtual 0x10 /* Is a virtual table */
9651 #define TF_NeedMetadata 0x20 /* aCol[].zType and aCol[].pColl missing */
9656 ** Test to see whether or not a table is a virtual table. This is
9657 ** done as a macro so that it will be optimized out when virtual
9658 ** table support is omitted from the build.
9660 #ifndef SQLITE_OMIT_VIRTUALTABLE
9661 # define IsVirtual(X) (((X)->tabFlags & TF_Virtual)!=0)
9662 # define IsHiddenColumn(X) ((X)->isHidden)
9663 #else
9664 # define IsVirtual(X) 0
9665 # define IsHiddenColumn(X) 0
9666 #endif
9669 ** Each foreign key constraint is an instance of the following structure.
9671 ** A foreign key is associated with two tables. The "from" table is
9672 ** the table that contains the REFERENCES clause that creates the foreign
9673 ** key. The "to" table is the table that is named in the REFERENCES clause.
9674 ** Consider this example:
9676 ** CREATE TABLE ex1(
9677 ** a INTEGER PRIMARY KEY,
9678 ** b INTEGER CONSTRAINT fk1 REFERENCES ex2(x)
9679 ** );
9681 ** For foreign key "fk1", the from-table is "ex1" and the to-table is "ex2".
9683 ** Each REFERENCES clause generates an instance of the following structure
9684 ** which is attached to the from-table. The to-table need not exist when
9685 ** the from-table is created. The existence of the to-table is not checked.
9687 struct FKey {
9688 Table *pFrom; /* Table containing the REFERENCES clause (aka: Child) */
9689 FKey *pNextFrom; /* Next foreign key in pFrom */
9690 char *zTo; /* Name of table that the key points to (aka: Parent) */
9691 FKey *pNextTo; /* Next foreign key on table named zTo */
9692 FKey *pPrevTo; /* Previous foreign key on table named zTo */
9693 int nCol; /* Number of columns in this key */
9694 /* EV: R-30323-21917 */
9695 u8 isDeferred; /* True if constraint checking is deferred till COMMIT */
9696 u8 aAction[2]; /* ON DELETE and ON UPDATE actions, respectively */
9697 Trigger *apTrigger[2]; /* Triggers for aAction[] actions */
9698 struct sColMap { /* Mapping of columns in pFrom to columns in zTo */
9699 int iFrom; /* Index of column in pFrom */
9700 char *zCol; /* Name of column in zTo. If 0 use PRIMARY KEY */
9701 } aCol[1]; /* One entry for each of nCol column s */
9705 ** SQLite supports many different ways to resolve a constraint
9706 ** error. ROLLBACK processing means that a constraint violation
9707 ** causes the operation in process to fail and for the current transaction
9708 ** to be rolled back. ABORT processing means the operation in process
9709 ** fails and any prior changes from that one operation are backed out,
9710 ** but the transaction is not rolled back. FAIL processing means that
9711 ** the operation in progress stops and returns an error code. But prior
9712 ** changes due to the same operation are not backed out and no rollback
9713 ** occurs. IGNORE means that the particular row that caused the constraint
9714 ** error is not inserted or updated. Processing continues and no error
9715 ** is returned. REPLACE means that preexisting database rows that caused
9716 ** a UNIQUE constraint violation are removed so that the new insert or
9717 ** update can proceed. Processing continues and no error is reported.
9719 ** RESTRICT, SETNULL, and CASCADE actions apply only to foreign keys.
9720 ** RESTRICT is the same as ABORT for IMMEDIATE foreign keys and the
9721 ** same as ROLLBACK for DEFERRED keys. SETNULL means that the foreign
9722 ** key is set to NULL. CASCADE means that a DELETE or UPDATE of the
9723 ** referenced table row is propagated into the row that holds the
9724 ** foreign key.
9726 ** The following symbolic values are used to record which type
9727 ** of action to take.
9729 #define OE_None 0 /* There is no constraint to check */
9730 #define OE_Rollback 1 /* Fail the operation and rollback the transaction */
9731 #define OE_Abort 2 /* Back out changes but do no rollback transaction */
9732 #define OE_Fail 3 /* Stop the operation but leave all prior changes */
9733 #define OE_Ignore 4 /* Ignore the error. Do not do the INSERT or UPDATE */
9734 #define OE_Replace 5 /* Delete existing record, then do INSERT or UPDATE */
9736 #define OE_Restrict 6 /* OE_Abort for IMMEDIATE, OE_Rollback for DEFERRED */
9737 #define OE_SetNull 7 /* Set the foreign key value to NULL */
9738 #define OE_SetDflt 8 /* Set the foreign key value to its default */
9739 #define OE_Cascade 9 /* Cascade the changes */
9741 #define OE_Default 99 /* Do whatever the default action is */
9745 ** An instance of the following structure is passed as the first
9746 ** argument to sqlite3VdbeKeyCompare and is used to control the
9747 ** comparison of the two index keys.
9749 struct KeyInfo {
9750 sqlite3 *db; /* The database connection */
9751 u8 enc; /* Text encoding - one of the SQLITE_UTF* values */
9752 u16 nField; /* Number of entries in aColl[] */
9753 u8 *aSortOrder; /* Sort order for each column. May be NULL */
9754 CollSeq *aColl[1]; /* Collating sequence for each term of the key */
9758 ** An instance of the following structure holds information about a
9759 ** single index record that has already been parsed out into individual
9760 ** values.
9762 ** A record is an object that contains one or more fields of data.
9763 ** Records are used to store the content of a table row and to store
9764 ** the key of an index. A blob encoding of a record is created by
9765 ** the OP_MakeRecord opcode of the VDBE and is disassembled by the
9766 ** OP_Column opcode.
9768 ** This structure holds a record that has already been disassembled
9769 ** into its constituent fields.
9771 struct UnpackedRecord {
9772 KeyInfo *pKeyInfo; /* Collation and sort-order information */
9773 u16 nField; /* Number of entries in apMem[] */
9774 u16 flags; /* Boolean settings. UNPACKED_... below */
9775 i64 rowid; /* Used by UNPACKED_PREFIX_SEARCH */
9776 Mem *aMem; /* Values */
9780 ** Allowed values of UnpackedRecord.flags
9782 #define UNPACKED_NEED_FREE 0x0001 /* Memory is from sqlite3Malloc() */
9783 #define UNPACKED_NEED_DESTROY 0x0002 /* apMem[]s should all be destroyed */
9784 #define UNPACKED_IGNORE_ROWID 0x0004 /* Ignore trailing rowid on key1 */
9785 #define UNPACKED_INCRKEY 0x0008 /* Make this key an epsilon larger */
9786 #define UNPACKED_PREFIX_MATCH 0x0010 /* A prefix match is considered OK */
9787 #define UNPACKED_PREFIX_SEARCH 0x0020 /* A prefix match is considered OK */
9790 ** Each SQL index is represented in memory by an
9791 ** instance of the following structure.
9793 ** The columns of the table that are to be indexed are described
9794 ** by the aiColumn[] field of this structure. For example, suppose
9795 ** we have the following table and index:
9797 ** CREATE TABLE Ex1(c1 int, c2 int, c3 text);
9798 ** CREATE INDEX Ex2 ON Ex1(c3,c1);
9800 ** In the Table structure describing Ex1, nCol==3 because there are
9801 ** three columns in the table. In the Index structure describing
9802 ** Ex2, nColumn==2 since 2 of the 3 columns of Ex1 are indexed.
9803 ** The value of aiColumn is {2, 0}. aiColumn[0]==2 because the
9804 ** first column to be indexed (c3) has an index of 2 in Ex1.aCol[].
9805 ** The second column to be indexed (c1) has an index of 0 in
9806 ** Ex1.aCol[], hence Ex2.aiColumn[1]==0.
9808 ** The Index.onError field determines whether or not the indexed columns
9809 ** must be unique and what to do if they are not. When Index.onError=OE_None,
9810 ** it means this is not a unique index. Otherwise it is a unique index
9811 ** and the value of Index.onError indicate the which conflict resolution
9812 ** algorithm to employ whenever an attempt is made to insert a non-unique
9813 ** element.
9815 struct Index {
9816 char *zName; /* Name of this index */
9817 int nColumn; /* Number of columns in the table used by this index */
9818 int *aiColumn; /* Which columns are used by this index. 1st is 0 */
9819 unsigned *aiRowEst; /* Result of ANALYZE: Est. rows selected by each column */
9820 Table *pTable; /* The SQL table being indexed */
9821 int tnum; /* Page containing root of this index in database file */
9822 u8 onError; /* OE_Abort, OE_Ignore, OE_Replace, or OE_None */
9823 u8 autoIndex; /* True if is automatically created (ex: by UNIQUE) */
9824 u8 bUnordered; /* Use this index for == or IN queries only */
9825 char *zColAff; /* String defining the affinity of each column */
9826 Index *pNext; /* The next index associated with the same table */
9827 Schema *pSchema; /* Schema containing this index */
9828 u8 *aSortOrder; /* Array of size Index.nColumn. True==DESC, False==ASC */
9829 char **azColl; /* Array of collation sequence names for index */
9830 IndexSample *aSample; /* Array of SQLITE_INDEX_SAMPLES samples */
9834 ** Each sample stored in the sqlite_stat2 table is represented in memory
9835 ** using a structure of this type.
9837 struct IndexSample {
9838 union {
9839 char *z; /* Value if eType is SQLITE_TEXT or SQLITE_BLOB */
9840 double r; /* Value if eType is SQLITE_FLOAT or SQLITE_INTEGER */
9841 } u;
9842 u8 eType; /* SQLITE_NULL, SQLITE_INTEGER ... etc. */
9843 u8 nByte; /* Size in byte of text or blob. */
9847 ** Each token coming out of the lexer is an instance of
9848 ** this structure. Tokens are also used as part of an expression.
9850 ** Note if Token.z==0 then Token.dyn and Token.n are undefined and
9851 ** may contain random values. Do not make any assumptions about Token.dyn
9852 ** and Token.n when Token.z==0.
9854 struct Token {
9855 const char *z; /* Text of the token. Not NULL-terminated! */
9856 unsigned int n; /* Number of characters in this token */
9860 ** An instance of this structure contains information needed to generate
9861 ** code for a SELECT that contains aggregate functions.
9863 ** If Expr.op==TK_AGG_COLUMN or TK_AGG_FUNCTION then Expr.pAggInfo is a
9864 ** pointer to this structure. The Expr.iColumn field is the index in
9865 ** AggInfo.aCol[] or AggInfo.aFunc[] of information needed to generate
9866 ** code for that node.
9868 ** AggInfo.pGroupBy and AggInfo.aFunc.pExpr point to fields within the
9869 ** original Select structure that describes the SELECT statement. These
9870 ** fields do not need to be freed when deallocating the AggInfo structure.
9872 struct AggInfo {
9873 u8 directMode; /* Direct rendering mode means take data directly
9874 ** from source tables rather than from accumulators */
9875 u8 useSortingIdx; /* In direct mode, reference the sorting index rather
9876 ** than the source table */
9877 int sortingIdx; /* Cursor number of the sorting index */
9878 ExprList *pGroupBy; /* The group by clause */
9879 int nSortingColumn; /* Number of columns in the sorting index */
9880 struct AggInfo_col { /* For each column used in source tables */
9881 Table *pTab; /* Source table */
9882 int iTable; /* Cursor number of the source table */
9883 int iColumn; /* Column number within the source table */
9884 int iSorterColumn; /* Column number in the sorting index */
9885 int iMem; /* Memory location that acts as accumulator */
9886 Expr *pExpr; /* The original expression */
9887 } *aCol;
9888 int nColumn; /* Number of used entries in aCol[] */
9889 int nColumnAlloc; /* Number of slots allocated for aCol[] */
9890 int nAccumulator; /* Number of columns that show through to the output.
9891 ** Additional columns are used only as parameters to
9892 ** aggregate functions */
9893 struct AggInfo_func { /* For each aggregate function */
9894 Expr *pExpr; /* Expression encoding the function */
9895 FuncDef *pFunc; /* The aggregate function implementation */
9896 int iMem; /* Memory location that acts as accumulator */
9897 int iDistinct; /* Ephemeral table used to enforce DISTINCT */
9898 } *aFunc;
9899 int nFunc; /* Number of entries in aFunc[] */
9900 int nFuncAlloc; /* Number of slots allocated for aFunc[] */
9904 ** The datatype ynVar is a signed integer, either 16-bit or 32-bit.
9905 ** Usually it is 16-bits. But if SQLITE_MAX_VARIABLE_NUMBER is greater
9906 ** than 32767 we have to make it 32-bit. 16-bit is preferred because
9907 ** it uses less memory in the Expr object, which is a big memory user
9908 ** in systems with lots of prepared statements. And few applications
9909 ** need more than about 10 or 20 variables. But some extreme users want
9910 ** to have prepared statements with over 32767 variables, and for them
9911 ** the option is available (at compile-time).
9913 #if SQLITE_MAX_VARIABLE_NUMBER<=32767
9914 typedef i16 ynVar;
9915 #else
9916 typedef int ynVar;
9917 #endif
9920 ** Each node of an expression in the parse tree is an instance
9921 ** of this structure.
9923 ** Expr.op is the opcode. The integer parser token codes are reused
9924 ** as opcodes here. For example, the parser defines TK_GE to be an integer
9925 ** code representing the ">=" operator. This same integer code is reused
9926 ** to represent the greater-than-or-equal-to operator in the expression
9927 ** tree.
9929 ** If the expression is an SQL literal (TK_INTEGER, TK_FLOAT, TK_BLOB,
9930 ** or TK_STRING), then Expr.token contains the text of the SQL literal. If
9931 ** the expression is a variable (TK_VARIABLE), then Expr.token contains the
9932 ** variable name. Finally, if the expression is an SQL function (TK_FUNCTION),
9933 ** then Expr.token contains the name of the function.
9935 ** Expr.pRight and Expr.pLeft are the left and right subexpressions of a
9936 ** binary operator. Either or both may be NULL.
9938 ** Expr.x.pList is a list of arguments if the expression is an SQL function,
9939 ** a CASE expression or an IN expression of the form "<lhs> IN (<y>, <z>...)".
9940 ** Expr.x.pSelect is used if the expression is a sub-select or an expression of
9941 ** the form "<lhs> IN (SELECT ...)". If the EP_xIsSelect bit is set in the
9942 ** Expr.flags mask, then Expr.x.pSelect is valid. Otherwise, Expr.x.pList is
9943 ** valid.
9945 ** An expression of the form ID or ID.ID refers to a column in a table.
9946 ** For such expressions, Expr.op is set to TK_COLUMN and Expr.iTable is
9947 ** the integer cursor number of a VDBE cursor pointing to that table and
9948 ** Expr.iColumn is the column number for the specific column. If the
9949 ** expression is used as a result in an aggregate SELECT, then the
9950 ** value is also stored in the Expr.iAgg column in the aggregate so that
9951 ** it can be accessed after all aggregates are computed.
9953 ** If the expression is an unbound variable marker (a question mark
9954 ** character '?' in the original SQL) then the Expr.iTable holds the index
9955 ** number for that variable.
9957 ** If the expression is a subquery then Expr.iColumn holds an integer
9958 ** register number containing the result of the subquery. If the
9959 ** subquery gives a constant result, then iTable is -1. If the subquery
9960 ** gives a different answer at different times during statement processing
9961 ** then iTable is the address of a subroutine that computes the subquery.
9963 ** If the Expr is of type OP_Column, and the table it is selecting from
9964 ** is a disk table or the "old.*" pseudo-table, then pTab points to the
9965 ** corresponding table definition.
9967 ** ALLOCATION NOTES:
9969 ** Expr objects can use a lot of memory space in database schema. To
9970 ** help reduce memory requirements, sometimes an Expr object will be
9971 ** truncated. And to reduce the number of memory allocations, sometimes
9972 ** two or more Expr objects will be stored in a single memory allocation,
9973 ** together with Expr.zToken strings.
9975 ** If the EP_Reduced and EP_TokenOnly flags are set when
9976 ** an Expr object is truncated. When EP_Reduced is set, then all
9977 ** the child Expr objects in the Expr.pLeft and Expr.pRight subtrees
9978 ** are contained within the same memory allocation. Note, however, that
9979 ** the subtrees in Expr.x.pList or Expr.x.pSelect are always separately
9980 ** allocated, regardless of whether or not EP_Reduced is set.
9982 struct Expr {
9983 u8 op; /* Operation performed by this node */
9984 char affinity; /* The affinity of the column or 0 if not a column */
9985 u16 flags; /* Various flags. EP_* See below */
9986 union {
9987 char *zToken; /* Token value. Zero terminated and dequoted */
9988 int iValue; /* Non-negative integer value if EP_IntValue */
9989 } u;
9991 /* If the EP_TokenOnly flag is set in the Expr.flags mask, then no
9992 ** space is allocated for the fields below this point. An attempt to
9993 ** access them will result in a segfault or malfunction.
9994 *********************************************************************/
9996 Expr *pLeft; /* Left subnode */
9997 Expr *pRight; /* Right subnode */
9998 union {
9999 ExprList *pList; /* Function arguments or in "<expr> IN (<expr-list)" */
10000 Select *pSelect; /* Used for sub-selects and "<expr> IN (<select>)" */
10001 } x;
10002 CollSeq *pColl; /* The collation type of the column or 0 */
10004 /* If the EP_Reduced flag is set in the Expr.flags mask, then no
10005 ** space is allocated for the fields below this point. An attempt to
10006 ** access them will result in a segfault or malfunction.
10007 *********************************************************************/
10009 int iTable; /* TK_COLUMN: cursor number of table holding column
10010 ** TK_REGISTER: register number
10011 ** TK_TRIGGER: 1 -> new, 0 -> old */
10012 ynVar iColumn; /* TK_COLUMN: column index. -1 for rowid.
10013 ** TK_VARIABLE: variable number (always >= 1). */
10014 i16 iAgg; /* Which entry in pAggInfo->aCol[] or ->aFunc[] */
10015 i16 iRightJoinTable; /* If EP_FromJoin, the right table of the join */
10016 u8 flags2; /* Second set of flags. EP2_... */
10017 u8 op2; /* If a TK_REGISTER, the original value of Expr.op */
10018 AggInfo *pAggInfo; /* Used by TK_AGG_COLUMN and TK_AGG_FUNCTION */
10019 Table *pTab; /* Table for TK_COLUMN expressions. */
10020 #if SQLITE_MAX_EXPR_DEPTH>0
10021 int nHeight; /* Height of the tree headed by this node */
10022 #endif
10026 ** The following are the meanings of bits in the Expr.flags field.
10028 #define EP_FromJoin 0x0001 /* Originated in ON or USING clause of a join */
10029 #define EP_Agg 0x0002 /* Contains one or more aggregate functions */
10030 #define EP_Resolved 0x0004 /* IDs have been resolved to COLUMNs */
10031 #define EP_Error 0x0008 /* Expression contains one or more errors */
10032 #define EP_Distinct 0x0010 /* Aggregate function with DISTINCT keyword */
10033 #define EP_VarSelect 0x0020 /* pSelect is correlated, not constant */
10034 #define EP_DblQuoted 0x0040 /* token.z was originally in "..." */
10035 #define EP_InfixFunc 0x0080 /* True for an infix function: LIKE, GLOB, etc */
10036 #define EP_ExpCollate 0x0100 /* Collating sequence specified explicitly */
10037 #define EP_FixedDest 0x0200 /* Result needed in a specific register */
10038 #define EP_IntValue 0x0400 /* Integer value contained in u.iValue */
10039 #define EP_xIsSelect 0x0800 /* x.pSelect is valid (otherwise x.pList is) */
10041 #define EP_Reduced 0x1000 /* Expr struct is EXPR_REDUCEDSIZE bytes only */
10042 #define EP_TokenOnly 0x2000 /* Expr struct is EXPR_TOKENONLYSIZE bytes only */
10043 #define EP_Static 0x4000 /* Held in memory not obtained from malloc() */
10046 ** The following are the meanings of bits in the Expr.flags2 field.
10048 #define EP2_MallocedToken 0x0001 /* Need to sqlite3DbFree() Expr.zToken */
10049 #define EP2_Irreducible 0x0002 /* Cannot EXPRDUP_REDUCE this Expr */
10052 ** The pseudo-routine sqlite3ExprSetIrreducible sets the EP2_Irreducible
10053 ** flag on an expression structure. This flag is used for VV&A only. The
10054 ** routine is implemented as a macro that only works when in debugging mode,
10055 ** so as not to burden production code.
10057 #ifdef SQLITE_DEBUG
10058 # define ExprSetIrreducible(X) (X)->flags2 |= EP2_Irreducible
10059 #else
10060 # define ExprSetIrreducible(X)
10061 #endif
10064 ** These macros can be used to test, set, or clear bits in the
10065 ** Expr.flags field.
10067 #define ExprHasProperty(E,P) (((E)->flags&(P))==(P))
10068 #define ExprHasAnyProperty(E,P) (((E)->flags&(P))!=0)
10069 #define ExprSetProperty(E,P) (E)->flags|=(P)
10070 #define ExprClearProperty(E,P) (E)->flags&=~(P)
10073 ** Macros to determine the number of bytes required by a normal Expr
10074 ** struct, an Expr struct with the EP_Reduced flag set in Expr.flags
10075 ** and an Expr struct with the EP_TokenOnly flag set.
10077 #define EXPR_FULLSIZE sizeof(Expr) /* Full size */
10078 #define EXPR_REDUCEDSIZE offsetof(Expr,iTable) /* Common features */
10079 #define EXPR_TOKENONLYSIZE offsetof(Expr,pLeft) /* Fewer features */
10082 ** Flags passed to the sqlite3ExprDup() function. See the header comment
10083 ** above sqlite3ExprDup() for details.
10085 #define EXPRDUP_REDUCE 0x0001 /* Used reduced-size Expr nodes */
10088 ** A list of expressions. Each expression may optionally have a
10089 ** name. An expr/name combination can be used in several ways, such
10090 ** as the list of "expr AS ID" fields following a "SELECT" or in the
10091 ** list of "ID = expr" items in an UPDATE. A list of expressions can
10092 ** also be used as the argument to a function, in which case the a.zName
10093 ** field is not used.
10095 struct ExprList {
10096 int nExpr; /* Number of expressions on the list */
10097 int nAlloc; /* Number of entries allocated below */
10098 int iECursor; /* VDBE Cursor associated with this ExprList */
10099 struct ExprList_item {
10100 Expr *pExpr; /* The list of expressions */
10101 char *zName; /* Token associated with this expression */
10102 char *zSpan; /* Original text of the expression */
10103 u8 sortOrder; /* 1 for DESC or 0 for ASC */
10104 u8 done; /* A flag to indicate when processing is finished */
10105 u16 iCol; /* For ORDER BY, column number in result set */
10106 u16 iAlias; /* Index into Parse.aAlias[] for zName */
10107 } *a; /* One entry for each expression */
10111 ** An instance of this structure is used by the parser to record both
10112 ** the parse tree for an expression and the span of input text for an
10113 ** expression.
10115 struct ExprSpan {
10116 Expr *pExpr; /* The expression parse tree */
10117 const char *zStart; /* First character of input text */
10118 const char *zEnd; /* One character past the end of input text */
10122 ** An instance of this structure can hold a simple list of identifiers,
10123 ** such as the list "a,b,c" in the following statements:
10125 ** INSERT INTO t(a,b,c) VALUES ...;
10126 ** CREATE INDEX idx ON t(a,b,c);
10127 ** CREATE TRIGGER trig BEFORE UPDATE ON t(a,b,c) ...;
10129 ** The IdList.a.idx field is used when the IdList represents the list of
10130 ** column names after a table name in an INSERT statement. In the statement
10132 ** INSERT INTO t(a,b,c) ...
10134 ** If "a" is the k-th column of table "t", then IdList.a[0].idx==k.
10136 struct IdList {
10137 struct IdList_item {
10138 char *zName; /* Name of the identifier */
10139 int idx; /* Index in some Table.aCol[] of a column named zName */
10140 } *a;
10141 int nId; /* Number of identifiers on the list */
10142 int nAlloc; /* Number of entries allocated for a[] below */
10146 ** The bitmask datatype defined below is used for various optimizations.
10148 ** Changing this from a 64-bit to a 32-bit type limits the number of
10149 ** tables in a join to 32 instead of 64. But it also reduces the size
10150 ** of the library by 738 bytes on ix86.
10152 typedef u64 Bitmask;
10155 ** The number of bits in a Bitmask. "BMS" means "BitMask Size".
10157 #define BMS ((int)(sizeof(Bitmask)*8))
10160 ** The following structure describes the FROM clause of a SELECT statement.
10161 ** Each table or subquery in the FROM clause is a separate element of
10162 ** the SrcList.a[] array.
10164 ** With the addition of multiple database support, the following structure
10165 ** can also be used to describe a particular table such as the table that
10166 ** is modified by an INSERT, DELETE, or UPDATE statement. In standard SQL,
10167 ** such a table must be a simple name: ID. But in SQLite, the table can
10168 ** now be identified by a database name, a dot, then the table name: ID.ID.
10170 ** The jointype starts out showing the join type between the current table
10171 ** and the next table on the list. The parser builds the list this way.
10172 ** But sqlite3SrcListShiftJoinType() later shifts the jointypes so that each
10173 ** jointype expresses the join between the table and the previous table.
10175 ** In the colUsed field, the high-order bit (bit 63) is set if the table
10176 ** contains more than 63 columns and the 64-th or later column is used.
10178 struct SrcList {
10179 i16 nSrc; /* Number of tables or subqueries in the FROM clause */
10180 i16 nAlloc; /* Number of entries allocated in a[] below */
10181 struct SrcList_item {
10182 char *zDatabase; /* Name of database holding this table */
10183 char *zName; /* Name of the table */
10184 char *zAlias; /* The "B" part of a "A AS B" phrase. zName is the "A" */
10185 Table *pTab; /* An SQL table corresponding to zName */
10186 Select *pSelect; /* A SELECT statement used in place of a table name */
10187 u8 isPopulated; /* Temporary table associated with SELECT is populated */
10188 u8 jointype; /* Type of join between this able and the previous */
10189 u8 notIndexed; /* True if there is a NOT INDEXED clause */
10190 #ifndef SQLITE_OMIT_EXPLAIN
10191 u8 iSelectId; /* If pSelect!=0, the id of the sub-select in EQP */
10192 #endif
10193 int iCursor; /* The VDBE cursor number used to access this table */
10194 Expr *pOn; /* The ON clause of a join */
10195 IdList *pUsing; /* The USING clause of a join */
10196 Bitmask colUsed; /* Bit N (1<<N) set if column N of pTab is used */
10197 char *zIndex; /* Identifier from "INDEXED BY <zIndex>" clause */
10198 Index *pIndex; /* Index structure corresponding to zIndex, if any */
10199 } a[1]; /* One entry for each identifier on the list */
10203 ** Permitted values of the SrcList.a.jointype field
10205 #define JT_INNER 0x0001 /* Any kind of inner or cross join */
10206 #define JT_CROSS 0x0002 /* Explicit use of the CROSS keyword */
10207 #define JT_NATURAL 0x0004 /* True for a "natural" join */
10208 #define JT_LEFT 0x0008 /* Left outer join */
10209 #define JT_RIGHT 0x0010 /* Right outer join */
10210 #define JT_OUTER 0x0020 /* The "OUTER" keyword is present */
10211 #define JT_ERROR 0x0040 /* unknown or unsupported join type */
10215 ** A WherePlan object holds information that describes a lookup
10216 ** strategy.
10218 ** This object is intended to be opaque outside of the where.c module.
10219 ** It is included here only so that that compiler will know how big it
10220 ** is. None of the fields in this object should be used outside of
10221 ** the where.c module.
10223 ** Within the union, pIdx is only used when wsFlags&WHERE_INDEXED is true.
10224 ** pTerm is only used when wsFlags&WHERE_MULTI_OR is true. And pVtabIdx
10225 ** is only used when wsFlags&WHERE_VIRTUALTABLE is true. It is never the
10226 ** case that more than one of these conditions is true.
10228 struct WherePlan {
10229 u32 wsFlags; /* WHERE_* flags that describe the strategy */
10230 u32 nEq; /* Number of == constraints */
10231 double nRow; /* Estimated number of rows (for EQP) */
10232 union {
10233 Index *pIdx; /* Index when WHERE_INDEXED is true */
10234 struct WhereTerm *pTerm; /* WHERE clause term for OR-search */
10235 sqlite3_index_info *pVtabIdx; /* Virtual table index to use */
10236 } u;
10240 ** For each nested loop in a WHERE clause implementation, the WhereInfo
10241 ** structure contains a single instance of this structure. This structure
10242 ** is intended to be private the the where.c module and should not be
10243 ** access or modified by other modules.
10245 ** The pIdxInfo field is used to help pick the best index on a
10246 ** virtual table. The pIdxInfo pointer contains indexing
10247 ** information for the i-th table in the FROM clause before reordering.
10248 ** All the pIdxInfo pointers are freed by whereInfoFree() in where.c.
10249 ** All other information in the i-th WhereLevel object for the i-th table
10250 ** after FROM clause ordering.
10252 struct WhereLevel {
10253 WherePlan plan; /* query plan for this element of the FROM clause */
10254 int iLeftJoin; /* Memory cell used to implement LEFT OUTER JOIN */
10255 int iTabCur; /* The VDBE cursor used to access the table */
10256 int iIdxCur; /* The VDBE cursor used to access pIdx */
10257 int addrBrk; /* Jump here to break out of the loop */
10258 int addrNxt; /* Jump here to start the next IN combination */
10259 int addrCont; /* Jump here to continue with the next loop cycle */
10260 int addrFirst; /* First instruction of interior of the loop */
10261 u8 iFrom; /* Which entry in the FROM clause */
10262 u8 op, p5; /* Opcode and P5 of the opcode that ends the loop */
10263 int p1, p2; /* Operands of the opcode used to ends the loop */
10264 union { /* Information that depends on plan.wsFlags */
10265 struct {
10266 int nIn; /* Number of entries in aInLoop[] */
10267 struct InLoop {
10268 int iCur; /* The VDBE cursor used by this IN operator */
10269 int addrInTop; /* Top of the IN loop */
10270 } *aInLoop; /* Information about each nested IN operator */
10271 } in; /* Used when plan.wsFlags&WHERE_IN_ABLE */
10272 } u;
10274 /* The following field is really not part of the current level. But
10275 ** we need a place to cache virtual table index information for each
10276 ** virtual table in the FROM clause and the WhereLevel structure is
10277 ** a convenient place since there is one WhereLevel for each FROM clause
10278 ** element.
10280 sqlite3_index_info *pIdxInfo; /* Index info for n-th source table */
10284 ** Flags appropriate for the wctrlFlags parameter of sqlite3WhereBegin()
10285 ** and the WhereInfo.wctrlFlags member.
10287 #define WHERE_ORDERBY_NORMAL 0x0000 /* No-op */
10288 #define WHERE_ORDERBY_MIN 0x0001 /* ORDER BY processing for min() func */
10289 #define WHERE_ORDERBY_MAX 0x0002 /* ORDER BY processing for max() func */
10290 #define WHERE_ONEPASS_DESIRED 0x0004 /* Want to do one-pass UPDATE/DELETE */
10291 #define WHERE_DUPLICATES_OK 0x0008 /* Ok to return a row more than once */
10292 #define WHERE_OMIT_OPEN 0x0010 /* Table cursors are already open */
10293 #define WHERE_OMIT_CLOSE 0x0020 /* Omit close of table & index cursors */
10294 #define WHERE_FORCE_TABLE 0x0040 /* Do not use an index-only search */
10295 #define WHERE_ONETABLE_ONLY 0x0080 /* Only code the 1st table in pTabList */
10298 ** The WHERE clause processing routine has two halves. The
10299 ** first part does the start of the WHERE loop and the second
10300 ** half does the tail of the WHERE loop. An instance of
10301 ** this structure is returned by the first half and passed
10302 ** into the second half to give some continuity.
10304 struct WhereInfo {
10305 Parse *pParse; /* Parsing and code generating context */
10306 u16 wctrlFlags; /* Flags originally passed to sqlite3WhereBegin() */
10307 u8 okOnePass; /* Ok to use one-pass algorithm for UPDATE or DELETE */
10308 u8 untestedTerms; /* Not all WHERE terms resolved by outer loop */
10309 SrcList *pTabList; /* List of tables in the join */
10310 int iTop; /* The very beginning of the WHERE loop */
10311 int iContinue; /* Jump here to continue with next record */
10312 int iBreak; /* Jump here to break out of the loop */
10313 int nLevel; /* Number of nested loop */
10314 struct WhereClause *pWC; /* Decomposition of the WHERE clause */
10315 double savedNQueryLoop; /* pParse->nQueryLoop outside the WHERE loop */
10316 double nRowOut; /* Estimated number of output rows */
10317 WhereLevel a[1]; /* Information about each nest loop in WHERE */
10321 ** A NameContext defines a context in which to resolve table and column
10322 ** names. The context consists of a list of tables (the pSrcList) field and
10323 ** a list of named expression (pEList). The named expression list may
10324 ** be NULL. The pSrc corresponds to the FROM clause of a SELECT or
10325 ** to the table being operated on by INSERT, UPDATE, or DELETE. The
10326 ** pEList corresponds to the result set of a SELECT and is NULL for
10327 ** other statements.
10329 ** NameContexts can be nested. When resolving names, the inner-most
10330 ** context is searched first. If no match is found, the next outer
10331 ** context is checked. If there is still no match, the next context
10332 ** is checked. This process continues until either a match is found
10333 ** or all contexts are check. When a match is found, the nRef member of
10334 ** the context containing the match is incremented.
10336 ** Each subquery gets a new NameContext. The pNext field points to the
10337 ** NameContext in the parent query. Thus the process of scanning the
10338 ** NameContext list corresponds to searching through successively outer
10339 ** subqueries looking for a match.
10341 struct NameContext {
10342 Parse *pParse; /* The parser */
10343 SrcList *pSrcList; /* One or more tables used to resolve names */
10344 ExprList *pEList; /* Optional list of named expressions */
10345 int nRef; /* Number of names resolved by this context */
10346 int nErr; /* Number of errors encountered while resolving names */
10347 u8 allowAgg; /* Aggregate functions allowed here */
10348 u8 hasAgg; /* True if aggregates are seen */
10349 u8 isCheck; /* True if resolving names in a CHECK constraint */
10350 int nDepth; /* Depth of subquery recursion. 1 for no recursion */
10351 AggInfo *pAggInfo; /* Information about aggregates at this level */
10352 NameContext *pNext; /* Next outer name context. NULL for outermost */
10356 ** An instance of the following structure contains all information
10357 ** needed to generate code for a single SELECT statement.
10359 ** nLimit is set to -1 if there is no LIMIT clause. nOffset is set to 0.
10360 ** If there is a LIMIT clause, the parser sets nLimit to the value of the
10361 ** limit and nOffset to the value of the offset (or 0 if there is not
10362 ** offset). But later on, nLimit and nOffset become the memory locations
10363 ** in the VDBE that record the limit and offset counters.
10365 ** addrOpenEphm[] entries contain the address of OP_OpenEphemeral opcodes.
10366 ** These addresses must be stored so that we can go back and fill in
10367 ** the P4_KEYINFO and P2 parameters later. Neither the KeyInfo nor
10368 ** the number of columns in P2 can be computed at the same time
10369 ** as the OP_OpenEphm instruction is coded because not
10370 ** enough information about the compound query is known at that point.
10371 ** The KeyInfo for addrOpenTran[0] and [1] contains collating sequences
10372 ** for the result set. The KeyInfo for addrOpenTran[2] contains collating
10373 ** sequences for the ORDER BY clause.
10375 struct Select {
10376 ExprList *pEList; /* The fields of the result */
10377 u8 op; /* One of: TK_UNION TK_ALL TK_INTERSECT TK_EXCEPT */
10378 char affinity; /* MakeRecord with this affinity for SRT_Set */
10379 u16 selFlags; /* Various SF_* values */
10380 SrcList *pSrc; /* The FROM clause */
10381 Expr *pWhere; /* The WHERE clause */
10382 ExprList *pGroupBy; /* The GROUP BY clause */
10383 Expr *pHaving; /* The HAVING clause */
10384 ExprList *pOrderBy; /* The ORDER BY clause */
10385 Select *pPrior; /* Prior select in a compound select statement */
10386 Select *pNext; /* Next select to the left in a compound */
10387 Select *pRightmost; /* Right-most select in a compound select statement */
10388 Expr *pLimit; /* LIMIT expression. NULL means not used. */
10389 Expr *pOffset; /* OFFSET expression. NULL means not used. */
10390 int iLimit, iOffset; /* Memory registers holding LIMIT & OFFSET counters */
10391 int addrOpenEphm[3]; /* OP_OpenEphem opcodes related to this select */
10392 double nSelectRow; /* Estimated number of result rows */
10396 ** Allowed values for Select.selFlags. The "SF" prefix stands for
10397 ** "Select Flag".
10399 #define SF_Distinct 0x0001 /* Output should be DISTINCT */
10400 #define SF_Resolved 0x0002 /* Identifiers have been resolved */
10401 #define SF_Aggregate 0x0004 /* Contains aggregate functions */
10402 #define SF_UsesEphemeral 0x0008 /* Uses the OpenEphemeral opcode */
10403 #define SF_Expanded 0x0010 /* sqlite3SelectExpand() called on this */
10404 #define SF_HasTypeInfo 0x0020 /* FROM subqueries have Table metadata */
10408 ** The results of a select can be distributed in several ways. The
10409 ** "SRT" prefix means "SELECT Result Type".
10411 #define SRT_Union 1 /* Store result as keys in an index */
10412 #define SRT_Except 2 /* Remove result from a UNION index */
10413 #define SRT_Exists 3 /* Store 1 if the result is not empty */
10414 #define SRT_Discard 4 /* Do not save the results anywhere */
10416 /* The ORDER BY clause is ignored for all of the above */
10417 #define IgnorableOrderby(X) ((X->eDest)<=SRT_Discard)
10419 #define SRT_Output 5 /* Output each row of result */
10420 #define SRT_Mem 6 /* Store result in a memory cell */
10421 #define SRT_Set 7 /* Store results as keys in an index */
10422 #define SRT_Table 8 /* Store result as data with an automatic rowid */
10423 #define SRT_EphemTab 9 /* Create transient tab and store like SRT_Table */
10424 #define SRT_Coroutine 10 /* Generate a single row of result */
10427 ** A structure used to customize the behavior of sqlite3Select(). See
10428 ** comments above sqlite3Select() for details.
10430 typedef struct SelectDest SelectDest;
10431 struct SelectDest {
10432 u8 eDest; /* How to dispose of the results */
10433 u8 affinity; /* Affinity used when eDest==SRT_Set */
10434 int iParm; /* A parameter used by the eDest disposal method */
10435 int iMem; /* Base register where results are written */
10436 int nMem; /* Number of registers allocated */
10440 ** During code generation of statements that do inserts into AUTOINCREMENT
10441 ** tables, the following information is attached to the Table.u.autoInc.p
10442 ** pointer of each autoincrement table to record some side information that
10443 ** the code generator needs. We have to keep per-table autoincrement
10444 ** information in case inserts are down within triggers. Triggers do not
10445 ** normally coordinate their activities, but we do need to coordinate the
10446 ** loading and saving of autoincrement information.
10448 struct AutoincInfo {
10449 AutoincInfo *pNext; /* Next info block in a list of them all */
10450 Table *pTab; /* Table this info block refers to */
10451 int iDb; /* Index in sqlite3.aDb[] of database holding pTab */
10452 int regCtr; /* Memory register holding the rowid counter */
10456 ** Size of the column cache
10458 #ifndef SQLITE_N_COLCACHE
10459 # define SQLITE_N_COLCACHE 10
10460 #endif
10463 ** At least one instance of the following structure is created for each
10464 ** trigger that may be fired while parsing an INSERT, UPDATE or DELETE
10465 ** statement. All such objects are stored in the linked list headed at
10466 ** Parse.pTriggerPrg and deleted once statement compilation has been
10467 ** completed.
10469 ** A Vdbe sub-program that implements the body and WHEN clause of trigger
10470 ** TriggerPrg.pTrigger, assuming a default ON CONFLICT clause of
10471 ** TriggerPrg.orconf, is stored in the TriggerPrg.pProgram variable.
10472 ** The Parse.pTriggerPrg list never contains two entries with the same
10473 ** values for both pTrigger and orconf.
10475 ** The TriggerPrg.aColmask[0] variable is set to a mask of old.* columns
10476 ** accessed (or set to 0 for triggers fired as a result of INSERT
10477 ** statements). Similarly, the TriggerPrg.aColmask[1] variable is set to
10478 ** a mask of new.* columns used by the program.
10480 struct TriggerPrg {
10481 Trigger *pTrigger; /* Trigger this program was coded from */
10482 int orconf; /* Default ON CONFLICT policy */
10483 SubProgram *pProgram; /* Program implementing pTrigger/orconf */
10484 u32 aColmask[2]; /* Masks of old.*, new.* columns accessed */
10485 TriggerPrg *pNext; /* Next entry in Parse.pTriggerPrg list */
10489 ** The yDbMask datatype for the bitmask of all attached databases.
10491 #if SQLITE_MAX_ATTACHED>30
10492 typedef sqlite3_uint64 yDbMask;
10493 #else
10494 typedef unsigned int yDbMask;
10495 #endif
10498 ** An SQL parser context. A copy of this structure is passed through
10499 ** the parser and down into all the parser action routine in order to
10500 ** carry around information that is global to the entire parse.
10502 ** The structure is divided into two parts. When the parser and code
10503 ** generate call themselves recursively, the first part of the structure
10504 ** is constant but the second part is reset at the beginning and end of
10505 ** each recursion.
10507 ** The nTableLock and aTableLock variables are only used if the shared-cache
10508 ** feature is enabled (if sqlite3Tsd()->useSharedData is true). They are
10509 ** used to store the set of table-locks required by the statement being
10510 ** compiled. Function sqlite3TableLock() is used to add entries to the
10511 ** list.
10513 struct Parse {
10514 sqlite3 *db; /* The main database structure */
10515 int rc; /* Return code from execution */
10516 char *zErrMsg; /* An error message */
10517 Vdbe *pVdbe; /* An engine for executing database bytecode */
10518 u8 colNamesSet; /* TRUE after OP_ColumnName has been issued to pVdbe */
10519 u8 nameClash; /* A permanent table name clashes with temp table name */
10520 u8 checkSchema; /* Causes schema cookie check after an error */
10521 u8 nested; /* Number of nested calls to the parser/code generator */
10522 u8 parseError; /* True after a parsing error. Ticket #1794 */
10523 u8 nTempReg; /* Number of temporary registers in aTempReg[] */
10524 u8 nTempInUse; /* Number of aTempReg[] currently checked out */
10525 int aTempReg[8]; /* Holding area for temporary registers */
10526 int nRangeReg; /* Size of the temporary register block */
10527 int iRangeReg; /* First register in temporary register block */
10528 int nErr; /* Number of errors seen */
10529 int nTab; /* Number of previously allocated VDBE cursors */
10530 int nMem; /* Number of memory cells used so far */
10531 int nSet; /* Number of sets used so far */
10532 int ckBase; /* Base register of data during check constraints */
10533 int iCacheLevel; /* ColCache valid when aColCache[].iLevel<=iCacheLevel */
10534 int iCacheCnt; /* Counter used to generate aColCache[].lru values */
10535 u8 nColCache; /* Number of entries in the column cache */
10536 u8 iColCache; /* Next entry of the cache to replace */
10537 struct yColCache {
10538 int iTable; /* Table cursor number */
10539 int iColumn; /* Table column number */
10540 u8 tempReg; /* iReg is a temp register that needs to be freed */
10541 int iLevel; /* Nesting level */
10542 int iReg; /* Reg with value of this column. 0 means none. */
10543 int lru; /* Least recently used entry has the smallest value */
10544 } aColCache[SQLITE_N_COLCACHE]; /* One for each column cache entry */
10545 yDbMask writeMask; /* Start a write transaction on these databases */
10546 yDbMask cookieMask; /* Bitmask of schema verified databases */
10547 u8 isMultiWrite; /* True if statement may affect/insert multiple rows */
10548 u8 mayAbort; /* True if statement may throw an ABORT exception */
10549 int cookieGoto; /* Address of OP_Goto to cookie verifier subroutine */
10550 int cookieValue[SQLITE_MAX_ATTACHED+2]; /* Values of cookies to verify */
10551 #ifndef SQLITE_OMIT_SHARED_CACHE
10552 int nTableLock; /* Number of locks in aTableLock */
10553 TableLock *aTableLock; /* Required table locks for shared-cache mode */
10554 #endif
10555 int regRowid; /* Register holding rowid of CREATE TABLE entry */
10556 int regRoot; /* Register holding root page number for new objects */
10557 AutoincInfo *pAinc; /* Information about AUTOINCREMENT counters */
10558 int nMaxArg; /* Max args passed to user function by sub-program */
10560 /* Information used while coding trigger programs. */
10561 Parse *pToplevel; /* Parse structure for main program (or NULL) */
10562 Table *pTriggerTab; /* Table triggers are being coded for */
10563 u32 oldmask; /* Mask of old.* columns referenced */
10564 u32 newmask; /* Mask of new.* columns referenced */
10565 u8 eTriggerOp; /* TK_UPDATE, TK_INSERT or TK_DELETE */
10566 u8 eOrconf; /* Default ON CONFLICT policy for trigger steps */
10567 u8 disableTriggers; /* True to disable triggers */
10568 double nQueryLoop; /* Estimated number of iterations of a query */
10570 /* Above is constant between recursions. Below is reset before and after
10571 ** each recursion */
10573 int nVar; /* Number of '?' variables seen in the SQL so far */
10574 int nVarExpr; /* Number of used slots in apVarExpr[] */
10575 int nVarExprAlloc; /* Number of allocated slots in apVarExpr[] */
10576 Expr **apVarExpr; /* Pointers to :aaa and $aaaa wildcard expressions */
10577 Vdbe *pReprepare; /* VM being reprepared (sqlite3Reprepare()) */
10578 int nAlias; /* Number of aliased result set columns */
10579 int nAliasAlloc; /* Number of allocated slots for aAlias[] */
10580 int *aAlias; /* Register used to hold aliased result */
10581 u8 explain; /* True if the EXPLAIN flag is found on the query */
10582 Token sNameToken; /* Token with unqualified schema object name */
10583 Token sLastToken; /* The last token parsed */
10584 const char *zTail; /* All SQL text past the last semicolon parsed */
10585 Table *pNewTable; /* A table being constructed by CREATE TABLE */
10586 Trigger *pNewTrigger; /* Trigger under construct by a CREATE TRIGGER */
10587 const char *zAuthContext; /* The 6th parameter to db->xAuth callbacks */
10588 #ifndef SQLITE_OMIT_VIRTUALTABLE
10589 Token sArg; /* Complete text of a module argument */
10590 u8 declareVtab; /* True if inside sqlite3_declare_vtab() */
10591 int nVtabLock; /* Number of virtual tables to lock */
10592 Table **apVtabLock; /* Pointer to virtual tables needing locking */
10593 #endif
10594 int nHeight; /* Expression tree height of current sub-select */
10595 Table *pZombieTab; /* List of Table objects to delete after code gen */
10596 TriggerPrg *pTriggerPrg; /* Linked list of coded triggers */
10598 #ifndef SQLITE_OMIT_EXPLAIN
10599 int iSelectId;
10600 int iNextSelectId;
10601 #endif
10604 #ifdef SQLITE_OMIT_VIRTUALTABLE
10605 #define IN_DECLARE_VTAB 0
10606 #else
10607 #define IN_DECLARE_VTAB (pParse->declareVtab)
10608 #endif
10611 ** An instance of the following structure can be declared on a stack and used
10612 ** to save the Parse.zAuthContext value so that it can be restored later.
10614 struct AuthContext {
10615 const char *zAuthContext; /* Put saved Parse.zAuthContext here */
10616 Parse *pParse; /* The Parse structure */
10620 ** Bitfield flags for P5 value in OP_Insert and OP_Delete
10622 #define OPFLAG_NCHANGE 0x01 /* Set to update db->nChange */
10623 #define OPFLAG_LASTROWID 0x02 /* Set to update db->lastRowid */
10624 #define OPFLAG_ISUPDATE 0x04 /* This OP_Insert is an sql UPDATE */
10625 #define OPFLAG_APPEND 0x08 /* This is likely to be an append */
10626 #define OPFLAG_USESEEKRESULT 0x10 /* Try to avoid a seek in BtreeInsert() */
10627 #define OPFLAG_CLEARCACHE 0x20 /* Clear pseudo-table cache in OP_Column */
10630 * Each trigger present in the database schema is stored as an instance of
10631 * struct Trigger.
10633 * Pointers to instances of struct Trigger are stored in two ways.
10634 * 1. In the "trigHash" hash table (part of the sqlite3* that represents the
10635 * database). This allows Trigger structures to be retrieved by name.
10636 * 2. All triggers associated with a single table form a linked list, using the
10637 * pNext member of struct Trigger. A pointer to the first element of the
10638 * linked list is stored as the "pTrigger" member of the associated
10639 * struct Table.
10641 * The "step_list" member points to the first element of a linked list
10642 * containing the SQL statements specified as the trigger program.
10644 struct Trigger {
10645 char *zName; /* The name of the trigger */
10646 char *table; /* The table or view to which the trigger applies */
10647 u8 op; /* One of TK_DELETE, TK_UPDATE, TK_INSERT */
10648 u8 tr_tm; /* One of TRIGGER_BEFORE, TRIGGER_AFTER */
10649 Expr *pWhen; /* The WHEN clause of the expression (may be NULL) */
10650 IdList *pColumns; /* If this is an UPDATE OF <column-list> trigger,
10651 the <column-list> is stored here */
10652 Schema *pSchema; /* Schema containing the trigger */
10653 Schema *pTabSchema; /* Schema containing the table */
10654 TriggerStep *step_list; /* Link list of trigger program steps */
10655 Trigger *pNext; /* Next trigger associated with the table */
10659 ** A trigger is either a BEFORE or an AFTER trigger. The following constants
10660 ** determine which.
10662 ** If there are multiple triggers, you might of some BEFORE and some AFTER.
10663 ** In that cases, the constants below can be ORed together.
10665 #define TRIGGER_BEFORE 1
10666 #define TRIGGER_AFTER 2
10669 * An instance of struct TriggerStep is used to store a single SQL statement
10670 * that is a part of a trigger-program.
10672 * Instances of struct TriggerStep are stored in a singly linked list (linked
10673 * using the "pNext" member) referenced by the "step_list" member of the
10674 * associated struct Trigger instance. The first element of the linked list is
10675 * the first step of the trigger-program.
10677 * The "op" member indicates whether this is a "DELETE", "INSERT", "UPDATE" or
10678 * "SELECT" statement. The meanings of the other members is determined by the
10679 * value of "op" as follows:
10681 * (op == TK_INSERT)
10682 * orconf -> stores the ON CONFLICT algorithm
10683 * pSelect -> If this is an INSERT INTO ... SELECT ... statement, then
10684 * this stores a pointer to the SELECT statement. Otherwise NULL.
10685 * target -> A token holding the quoted name of the table to insert into.
10686 * pExprList -> If this is an INSERT INTO ... VALUES ... statement, then
10687 * this stores values to be inserted. Otherwise NULL.
10688 * pIdList -> If this is an INSERT INTO ... (<column-names>) VALUES ...
10689 * statement, then this stores the column-names to be
10690 * inserted into.
10692 * (op == TK_DELETE)
10693 * target -> A token holding the quoted name of the table to delete from.
10694 * pWhere -> The WHERE clause of the DELETE statement if one is specified.
10695 * Otherwise NULL.
10697 * (op == TK_UPDATE)
10698 * target -> A token holding the quoted name of the table to update rows of.
10699 * pWhere -> The WHERE clause of the UPDATE statement if one is specified.
10700 * Otherwise NULL.
10701 * pExprList -> A list of the columns to update and the expressions to update
10702 * them to. See sqlite3Update() documentation of "pChanges"
10703 * argument.
10706 struct TriggerStep {
10707 u8 op; /* One of TK_DELETE, TK_UPDATE, TK_INSERT, TK_SELECT */
10708 u8 orconf; /* OE_Rollback etc. */
10709 Trigger *pTrig; /* The trigger that this step is a part of */
10710 Select *pSelect; /* SELECT statment or RHS of INSERT INTO .. SELECT ... */
10711 Token target; /* Target table for DELETE, UPDATE, INSERT */
10712 Expr *pWhere; /* The WHERE clause for DELETE or UPDATE steps */
10713 ExprList *pExprList; /* SET clause for UPDATE. VALUES clause for INSERT */
10714 IdList *pIdList; /* Column names for INSERT */
10715 TriggerStep *pNext; /* Next in the link-list */
10716 TriggerStep *pLast; /* Last element in link-list. Valid for 1st elem only */
10720 ** The following structure contains information used by the sqliteFix...
10721 ** routines as they walk the parse tree to make database references
10722 ** explicit.
10724 typedef struct DbFixer DbFixer;
10725 struct DbFixer {
10726 Parse *pParse; /* The parsing context. Error messages written here */
10727 const char *zDb; /* Make sure all objects are contained in this database */
10728 const char *zType; /* Type of the container - used for error messages */
10729 const Token *pName; /* Name of the container - used for error messages */
10733 ** An objected used to accumulate the text of a string where we
10734 ** do not necessarily know how big the string will be in the end.
10736 struct StrAccum {
10737 sqlite3 *db; /* Optional database for lookaside. Can be NULL */
10738 char *zBase; /* A base allocation. Not from malloc. */
10739 char *zText; /* The string collected so far */
10740 int nChar; /* Length of the string so far */
10741 int nAlloc; /* Amount of space allocated in zText */
10742 int mxAlloc; /* Maximum allowed string length */
10743 u8 mallocFailed; /* Becomes true if any memory allocation fails */
10744 u8 useMalloc; /* 0: none, 1: sqlite3DbMalloc, 2: sqlite3_malloc */
10745 u8 tooBig; /* Becomes true if string size exceeds limits */
10749 ** A pointer to this structure is used to communicate information
10750 ** from sqlite3Init and OP_ParseSchema into the sqlite3InitCallback.
10752 typedef struct {
10753 sqlite3 *db; /* The database being initialized */
10754 int iDb; /* 0 for main database. 1 for TEMP, 2.. for ATTACHed */
10755 char **pzErrMsg; /* Error message stored here */
10756 int rc; /* Result code stored here */
10757 } InitData;
10760 ** Structure containing global configuration data for the SQLite library.
10762 ** This structure also contains some state information.
10764 struct Sqlite3Config {
10765 int bMemstat; /* True to enable memory status */
10766 int bCoreMutex; /* True to enable core mutexing */
10767 int bFullMutex; /* True to enable full mutexing */
10768 int mxStrlen; /* Maximum string length */
10769 int szLookaside; /* Default lookaside buffer size */
10770 int nLookaside; /* Default lookaside buffer count */
10771 sqlite3_mem_methods m; /* Low-level memory allocation interface */
10772 sqlite3_mutex_methods mutex; /* Low-level mutex interface */
10773 sqlite3_pcache_methods pcache; /* Low-level page-cache interface */
10774 void *pHeap; /* Heap storage space */
10775 int nHeap; /* Size of pHeap[] */
10776 int mnReq, mxReq; /* Min and max heap requests sizes */
10777 void *pScratch; /* Scratch memory */
10778 int szScratch; /* Size of each scratch buffer */
10779 int nScratch; /* Number of scratch buffers */
10780 void *pPage; /* Page cache memory */
10781 int szPage; /* Size of each page in pPage[] */
10782 int nPage; /* Number of pages in pPage[] */
10783 int mxParserStack; /* maximum depth of the parser stack */
10784 int sharedCacheEnabled; /* true if shared-cache mode enabled */
10785 /* The above might be initialized to non-zero. The following need to always
10786 ** initially be zero, however. */
10787 int isInit; /* True after initialization has finished */
10788 int inProgress; /* True while initialization in progress */
10789 int isMutexInit; /* True after mutexes are initialized */
10790 int isMallocInit; /* True after malloc is initialized */
10791 int isPCacheInit; /* True after malloc is initialized */
10792 sqlite3_mutex *pInitMutex; /* Mutex used by sqlite3_initialize() */
10793 int nRefInitMutex; /* Number of users of pInitMutex */
10794 void (*xLog)(void*,int,const char*); /* Function for logging */
10795 void *pLogArg; /* First argument to xLog() */
10799 ** Context pointer passed down through the tree-walk.
10801 struct Walker {
10802 int (*xExprCallback)(Walker*, Expr*); /* Callback for expressions */
10803 int (*xSelectCallback)(Walker*,Select*); /* Callback for SELECTs */
10804 Parse *pParse; /* Parser context. */
10805 union { /* Extra data for callback */
10806 NameContext *pNC; /* Naming context */
10807 int i; /* Integer value */
10808 } u;
10811 /* Forward declarations */
10812 SQLITE_PRIVATE int sqlite3WalkExpr(Walker*, Expr*);
10813 SQLITE_PRIVATE int sqlite3WalkExprList(Walker*, ExprList*);
10814 SQLITE_PRIVATE int sqlite3WalkSelect(Walker*, Select*);
10815 SQLITE_PRIVATE int sqlite3WalkSelectExpr(Walker*, Select*);
10816 SQLITE_PRIVATE int sqlite3WalkSelectFrom(Walker*, Select*);
10819 ** Return code from the parse-tree walking primitives and their
10820 ** callbacks.
10822 #define WRC_Continue 0 /* Continue down into children */
10823 #define WRC_Prune 1 /* Omit children but continue walking siblings */
10824 #define WRC_Abort 2 /* Abandon the tree walk */
10827 ** Assuming zIn points to the first byte of a UTF-8 character,
10828 ** advance zIn to point to the first byte of the next UTF-8 character.
10830 #define SQLITE_SKIP_UTF8(zIn) { \
10831 if( (*(zIn++))>=0xc0 ){ \
10832 while( (*zIn & 0xc0)==0x80 ){ zIn++; } \
10837 ** The SQLITE_*_BKPT macros are substitutes for the error codes with
10838 ** the same name but without the _BKPT suffix. These macros invoke
10839 ** routines that report the line-number on which the error originated
10840 ** using sqlite3_log(). The routines also provide a convenient place
10841 ** to set a debugger breakpoint.
10843 SQLITE_PRIVATE int sqlite3CorruptError(int);
10844 SQLITE_PRIVATE int sqlite3MisuseError(int);
10845 SQLITE_PRIVATE int sqlite3CantopenError(int);
10846 #define SQLITE_CORRUPT_BKPT sqlite3CorruptError(__LINE__)
10847 #define SQLITE_MISUSE_BKPT sqlite3MisuseError(__LINE__)
10848 #define SQLITE_CANTOPEN_BKPT sqlite3CantopenError(__LINE__)
10852 ** FTS4 is really an extension for FTS3. It is enabled using the
10853 ** SQLITE_ENABLE_FTS3 macro. But to avoid confusion we also all
10854 ** the SQLITE_ENABLE_FTS4 macro to serve as an alisse for SQLITE_ENABLE_FTS3.
10856 #if defined(SQLITE_ENABLE_FTS4) && !defined(SQLITE_ENABLE_FTS3)
10857 # define SQLITE_ENABLE_FTS3
10858 #endif
10861 ** The ctype.h header is needed for non-ASCII systems. It is also
10862 ** needed by FTS3 when FTS3 is included in the amalgamation.
10864 #if !defined(SQLITE_ASCII) || \
10865 (defined(SQLITE_ENABLE_FTS3) && defined(SQLITE_AMALGAMATION))
10866 # include <ctype.h>
10867 #endif
10870 ** The CoreServices.h and CoreFoundation.h headers are needed for excluding a
10871 ** -journal file from Time Machine backups when its associated database has
10872 ** previously been excluded by the client code.
10874 #if defined(__APPLE__)
10875 #include <CoreServices/CoreServices.h>
10876 #include <CoreFoundation/CoreFoundation.h>
10877 #endif
10880 ** The following macros mimic the standard library functions toupper(),
10881 ** isspace(), isalnum(), isdigit() and isxdigit(), respectively. The
10882 ** sqlite versions only work for ASCII characters, regardless of locale.
10884 #ifdef SQLITE_ASCII
10885 # define sqlite3Toupper(x) ((x)&~(sqlite3CtypeMap[(unsigned char)(x)]&0x20))
10886 # define sqlite3Isspace(x) (sqlite3CtypeMap[(unsigned char)(x)]&0x01)
10887 # define sqlite3Isalnum(x) (sqlite3CtypeMap[(unsigned char)(x)]&0x06)
10888 # define sqlite3Isalpha(x) (sqlite3CtypeMap[(unsigned char)(x)]&0x02)
10889 # define sqlite3Isdigit(x) (sqlite3CtypeMap[(unsigned char)(x)]&0x04)
10890 # define sqlite3Isxdigit(x) (sqlite3CtypeMap[(unsigned char)(x)]&0x08)
10891 # define sqlite3Tolower(x) (sqlite3UpperToLower[(unsigned char)(x)])
10892 #else
10893 # define sqlite3Toupper(x) toupper((unsigned char)(x))
10894 # define sqlite3Isspace(x) isspace((unsigned char)(x))
10895 # define sqlite3Isalnum(x) isalnum((unsigned char)(x))
10896 # define sqlite3Isalpha(x) isalpha((unsigned char)(x))
10897 # define sqlite3Isdigit(x) isdigit((unsigned char)(x))
10898 # define sqlite3Isxdigit(x) isxdigit((unsigned char)(x))
10899 # define sqlite3Tolower(x) tolower((unsigned char)(x))
10900 #endif
10903 ** Internal function prototypes
10905 SQLITE_PRIVATE int sqlite3StrICmp(const char *, const char *);
10906 SQLITE_PRIVATE int sqlite3Strlen30(const char*);
10907 #define sqlite3StrNICmp sqlite3_strnicmp
10909 SQLITE_PRIVATE int sqlite3MallocInit(void);
10910 SQLITE_PRIVATE void sqlite3MallocEnd(void);
10911 SQLITE_PRIVATE void *sqlite3Malloc(int);
10912 SQLITE_PRIVATE void *sqlite3MallocZero(int);
10913 SQLITE_PRIVATE void *sqlite3DbMallocZero(sqlite3*, int);
10914 SQLITE_PRIVATE void *sqlite3DbMallocRaw(sqlite3*, int);
10915 SQLITE_PRIVATE char *sqlite3DbStrDup(sqlite3*,const char*);
10916 SQLITE_PRIVATE char *sqlite3DbStrNDup(sqlite3*,const char*, int);
10917 SQLITE_PRIVATE void *sqlite3Realloc(void*, int);
10918 SQLITE_PRIVATE void *sqlite3DbReallocOrFree(sqlite3 *, void *, int);
10919 SQLITE_PRIVATE void *sqlite3DbRealloc(sqlite3 *, void *, int);
10920 SQLITE_PRIVATE void sqlite3DbFree(sqlite3*, void*);
10921 SQLITE_PRIVATE int sqlite3MallocSize(void*);
10922 SQLITE_PRIVATE int sqlite3DbMallocSize(sqlite3*, void*);
10923 SQLITE_PRIVATE void *sqlite3ScratchMalloc(int);
10924 SQLITE_PRIVATE void sqlite3ScratchFree(void*);
10925 SQLITE_PRIVATE void *sqlite3PageMalloc(int);
10926 SQLITE_PRIVATE void sqlite3PageFree(void*);
10927 SQLITE_PRIVATE void sqlite3MemSetDefault(void);
10928 SQLITE_PRIVATE void sqlite3BenignMallocHooks(void (*)(void), void (*)(void));
10929 SQLITE_PRIVATE int sqlite3HeapNearlyFull(void);
10932 ** On systems with ample stack space and that support alloca(), make
10933 ** use of alloca() to obtain space for large automatic objects. By default,
10934 ** obtain space from malloc().
10936 ** The alloca() routine never returns NULL. This will cause code paths
10937 ** that deal with sqlite3StackAlloc() failures to be unreachable.
10939 #ifdef SQLITE_USE_ALLOCA
10940 # define sqlite3StackAllocRaw(D,N) alloca(N)
10941 # define sqlite3StackAllocZero(D,N) memset(alloca(N), 0, N)
10942 # define sqlite3StackFree(D,P)
10943 #else
10944 # define sqlite3StackAllocRaw(D,N) sqlite3DbMallocRaw(D,N)
10945 # define sqlite3StackAllocZero(D,N) sqlite3DbMallocZero(D,N)
10946 # define sqlite3StackFree(D,P) sqlite3DbFree(D,P)
10947 #endif
10949 #ifdef SQLITE_ENABLE_MEMSYS3
10950 SQLITE_PRIVATE const sqlite3_mem_methods *sqlite3MemGetMemsys3(void);
10951 #endif
10952 #ifdef SQLITE_ENABLE_MEMSYS5
10953 SQLITE_PRIVATE const sqlite3_mem_methods *sqlite3MemGetMemsys5(void);
10954 #endif
10957 #ifndef SQLITE_MUTEX_OMIT
10958 SQLITE_PRIVATE sqlite3_mutex_methods const *sqlite3DefaultMutex(void);
10959 SQLITE_PRIVATE sqlite3_mutex_methods const *sqlite3NoopMutex(void);
10960 SQLITE_PRIVATE sqlite3_mutex *sqlite3MutexAlloc(int);
10961 SQLITE_PRIVATE int sqlite3MutexInit(void);
10962 SQLITE_PRIVATE int sqlite3MutexEnd(void);
10963 #endif
10965 SQLITE_PRIVATE int sqlite3StatusValue(int);
10966 SQLITE_PRIVATE void sqlite3StatusAdd(int, int);
10967 SQLITE_PRIVATE void sqlite3StatusSet(int, int);
10969 #ifndef SQLITE_OMIT_FLOATING_POINT
10970 SQLITE_PRIVATE int sqlite3IsNaN(double);
10971 #else
10972 # define sqlite3IsNaN(X) 0
10973 #endif
10975 SQLITE_PRIVATE void sqlite3VXPrintf(StrAccum*, int, const char*, va_list);
10976 #ifndef SQLITE_OMIT_TRACE
10977 SQLITE_PRIVATE void sqlite3XPrintf(StrAccum*, const char*, ...);
10978 #endif
10979 SQLITE_PRIVATE char *sqlite3MPrintf(sqlite3*,const char*, ...);
10980 SQLITE_PRIVATE char *sqlite3VMPrintf(sqlite3*,const char*, va_list);
10981 SQLITE_PRIVATE char *sqlite3MAppendf(sqlite3*,char*,const char*,...);
10982 #if defined(SQLITE_TEST) || defined(SQLITE_DEBUG)
10983 SQLITE_PRIVATE void sqlite3DebugPrintf(const char*, ...);
10984 #endif
10985 #if defined(SQLITE_TEST)
10986 SQLITE_PRIVATE void *sqlite3TestTextToPtr(const char*);
10987 #endif
10988 SQLITE_PRIVATE void sqlite3SetString(char **, sqlite3*, const char*, ...);
10989 SQLITE_PRIVATE void sqlite3ErrorMsg(Parse*, const char*, ...);
10990 SQLITE_PRIVATE int sqlite3Dequote(char*);
10991 SQLITE_PRIVATE int sqlite3KeywordCode(const unsigned char*, int);
10992 SQLITE_PRIVATE int sqlite3RunParser(Parse*, const char*, char **);
10993 SQLITE_PRIVATE void sqlite3FinishCoding(Parse*);
10994 SQLITE_PRIVATE int sqlite3GetTempReg(Parse*);
10995 SQLITE_PRIVATE void sqlite3ReleaseTempReg(Parse*,int);
10996 SQLITE_PRIVATE int sqlite3GetTempRange(Parse*,int);
10997 SQLITE_PRIVATE void sqlite3ReleaseTempRange(Parse*,int,int);
10998 SQLITE_PRIVATE Expr *sqlite3ExprAlloc(sqlite3*,int,const Token*,int);
10999 SQLITE_PRIVATE Expr *sqlite3Expr(sqlite3*,int,const char*);
11000 SQLITE_PRIVATE void sqlite3ExprAttachSubtrees(sqlite3*,Expr*,Expr*,Expr*);
11001 SQLITE_PRIVATE Expr *sqlite3PExpr(Parse*, int, Expr*, Expr*, const Token*);
11002 SQLITE_PRIVATE Expr *sqlite3ExprAnd(sqlite3*,Expr*, Expr*);
11003 SQLITE_PRIVATE Expr *sqlite3ExprFunction(Parse*,ExprList*, Token*);
11004 SQLITE_PRIVATE void sqlite3ExprAssignVarNumber(Parse*, Expr*);
11005 SQLITE_PRIVATE void sqlite3ExprDelete(sqlite3*, Expr*);
11006 SQLITE_PRIVATE ExprList *sqlite3ExprListAppend(Parse*,ExprList*,Expr*);
11007 SQLITE_PRIVATE void sqlite3ExprListSetName(Parse*,ExprList*,Token*,int);
11008 SQLITE_PRIVATE void sqlite3ExprListSetSpan(Parse*,ExprList*,ExprSpan*);
11009 SQLITE_PRIVATE void sqlite3ExprListDelete(sqlite3*, ExprList*);
11010 SQLITE_PRIVATE int sqlite3Init(sqlite3*, char**);
11011 SQLITE_PRIVATE int sqlite3InitCallback(void*, int, char**, char**);
11012 SQLITE_PRIVATE void sqlite3Pragma(Parse*,Token*,Token*,Token*,int);
11013 SQLITE_PRIVATE void sqlite3ResetInternalSchema(sqlite3*, int);
11014 SQLITE_PRIVATE void sqlite3BeginParse(Parse*,int);
11015 SQLITE_PRIVATE void sqlite3CommitInternalChanges(sqlite3*);
11016 SQLITE_PRIVATE Table *sqlite3ResultSetOfSelect(Parse*,Select*);
11017 SQLITE_PRIVATE void sqlite3OpenMasterTable(Parse *, int);
11018 SQLITE_PRIVATE void sqlite3StartTable(Parse*,Token*,Token*,int,int,int,int);
11019 SQLITE_PRIVATE void sqlite3AddColumn(Parse*,Token*);
11020 SQLITE_PRIVATE void sqlite3AddNotNull(Parse*, int);
11021 SQLITE_PRIVATE void sqlite3AddPrimaryKey(Parse*, ExprList*, int, int, int);
11022 SQLITE_PRIVATE void sqlite3AddCheckConstraint(Parse*, Expr*);
11023 SQLITE_PRIVATE void sqlite3AddColumnType(Parse*,Token*);
11024 SQLITE_PRIVATE void sqlite3AddDefaultValue(Parse*,ExprSpan*);
11025 SQLITE_PRIVATE void sqlite3AddCollateType(Parse*, Token*);
11026 SQLITE_PRIVATE void sqlite3EndTable(Parse*,Token*,Token*,Select*);
11028 SQLITE_PRIVATE Bitvec *sqlite3BitvecCreate(u32);
11029 SQLITE_PRIVATE int sqlite3BitvecTest(Bitvec*, u32);
11030 SQLITE_PRIVATE int sqlite3BitvecSet(Bitvec*, u32);
11031 SQLITE_PRIVATE void sqlite3BitvecClear(Bitvec*, u32, void*);
11032 SQLITE_PRIVATE void sqlite3BitvecDestroy(Bitvec*);
11033 SQLITE_PRIVATE u32 sqlite3BitvecSize(Bitvec*);
11034 SQLITE_PRIVATE int sqlite3BitvecBuiltinTest(int,int*);
11036 SQLITE_PRIVATE RowSet *sqlite3RowSetInit(sqlite3*, void*, unsigned int);
11037 SQLITE_PRIVATE void sqlite3RowSetClear(RowSet*);
11038 SQLITE_PRIVATE void sqlite3RowSetInsert(RowSet*, i64);
11039 SQLITE_PRIVATE int sqlite3RowSetTest(RowSet*, u8 iBatch, i64);
11040 SQLITE_PRIVATE int sqlite3RowSetNext(RowSet*, i64*);
11042 SQLITE_PRIVATE void sqlite3CreateView(Parse*,Token*,Token*,Token*,Select*,int,int);
11044 #if !defined(SQLITE_OMIT_VIEW) || !defined(SQLITE_OMIT_VIRTUALTABLE)
11045 SQLITE_PRIVATE int sqlite3ViewGetColumnNames(Parse*,Table*);
11046 #else
11047 # define sqlite3ViewGetColumnNames(A,B) 0
11048 #endif
11050 SQLITE_PRIVATE void sqlite3DropTable(Parse*, SrcList*, int, int);
11051 SQLITE_PRIVATE void sqlite3DeleteTable(sqlite3*, Table*);
11052 #ifndef SQLITE_OMIT_AUTOINCREMENT
11053 SQLITE_PRIVATE void sqlite3AutoincrementBegin(Parse *pParse);
11054 SQLITE_PRIVATE void sqlite3AutoincrementEnd(Parse *pParse);
11055 #else
11056 # define sqlite3AutoincrementBegin(X)
11057 # define sqlite3AutoincrementEnd(X)
11058 #endif
11059 SQLITE_PRIVATE void sqlite3Insert(Parse*, SrcList*, ExprList*, Select*, IdList*, int);
11060 SQLITE_PRIVATE void *sqlite3ArrayAllocate(sqlite3*,void*,int,int,int*,int*,int*);
11061 SQLITE_PRIVATE IdList *sqlite3IdListAppend(sqlite3*, IdList*, Token*);
11062 SQLITE_PRIVATE int sqlite3IdListIndex(IdList*,const char*);
11063 SQLITE_PRIVATE SrcList *sqlite3SrcListEnlarge(sqlite3*, SrcList*, int, int);
11064 SQLITE_PRIVATE SrcList *sqlite3SrcListAppend(sqlite3*, SrcList*, Token*, Token*);
11065 SQLITE_PRIVATE SrcList *sqlite3SrcListAppendFromTerm(Parse*, SrcList*, Token*, Token*,
11066 Token*, Select*, Expr*, IdList*);
11067 SQLITE_PRIVATE void sqlite3SrcListIndexedBy(Parse *, SrcList *, Token *);
11068 SQLITE_PRIVATE int sqlite3IndexedByLookup(Parse *, struct SrcList_item *);
11069 SQLITE_PRIVATE void sqlite3SrcListShiftJoinType(SrcList*);
11070 SQLITE_PRIVATE void sqlite3SrcListAssignCursors(Parse*, SrcList*);
11071 SQLITE_PRIVATE void sqlite3IdListDelete(sqlite3*, IdList*);
11072 SQLITE_PRIVATE void sqlite3SrcListDelete(sqlite3*, SrcList*);
11073 SQLITE_PRIVATE Index *sqlite3CreateIndex(Parse*,Token*,Token*,SrcList*,ExprList*,int,Token*,
11074 Token*, int, int);
11075 SQLITE_PRIVATE void sqlite3DropIndex(Parse*, SrcList*, int);
11076 SQLITE_PRIVATE int sqlite3Select(Parse*, Select*, SelectDest*);
11077 SQLITE_PRIVATE Select *sqlite3SelectNew(Parse*,ExprList*,SrcList*,Expr*,ExprList*,
11078 Expr*,ExprList*,int,Expr*,Expr*);
11079 SQLITE_PRIVATE void sqlite3SelectDelete(sqlite3*, Select*);
11080 SQLITE_PRIVATE Table *sqlite3SrcListLookup(Parse*, SrcList*);
11081 SQLITE_PRIVATE int sqlite3IsReadOnly(Parse*, Table*, int);
11082 SQLITE_PRIVATE void sqlite3OpenTable(Parse*, int iCur, int iDb, Table*, int);
11083 #if defined(SQLITE_ENABLE_UPDATE_DELETE_LIMIT) && !defined(SQLITE_OMIT_SUBQUERY)
11084 SQLITE_PRIVATE Expr *sqlite3LimitWhere(Parse *, SrcList *, Expr *, ExprList *, Expr *, Expr *, char *);
11085 #endif
11086 SQLITE_PRIVATE void sqlite3DeleteFrom(Parse*, SrcList*, Expr*);
11087 SQLITE_PRIVATE void sqlite3Update(Parse*, SrcList*, ExprList*, Expr*, int);
11088 SQLITE_PRIVATE WhereInfo *sqlite3WhereBegin(Parse*, SrcList*, Expr*, ExprList**, u16);
11089 SQLITE_PRIVATE void sqlite3WhereEnd(WhereInfo*);
11090 SQLITE_PRIVATE int sqlite3ExprCodeGetColumn(Parse*, Table*, int, int, int);
11091 SQLITE_PRIVATE void sqlite3ExprCodeGetColumnOfTable(Vdbe*, Table*, int, int, int);
11092 SQLITE_PRIVATE void sqlite3ExprCodeMove(Parse*, int, int, int);
11093 SQLITE_PRIVATE void sqlite3ExprCodeCopy(Parse*, int, int, int);
11094 SQLITE_PRIVATE void sqlite3ExprCacheStore(Parse*, int, int, int);
11095 SQLITE_PRIVATE void sqlite3ExprCachePush(Parse*);
11096 SQLITE_PRIVATE void sqlite3ExprCachePop(Parse*, int);
11097 SQLITE_PRIVATE void sqlite3ExprCacheRemove(Parse*, int, int);
11098 SQLITE_PRIVATE void sqlite3ExprCacheClear(Parse*);
11099 SQLITE_PRIVATE void sqlite3ExprCacheAffinityChange(Parse*, int, int);
11100 SQLITE_PRIVATE int sqlite3ExprCode(Parse*, Expr*, int);
11101 SQLITE_PRIVATE int sqlite3ExprCodeTemp(Parse*, Expr*, int*);
11102 SQLITE_PRIVATE int sqlite3ExprCodeTarget(Parse*, Expr*, int);
11103 SQLITE_PRIVATE int sqlite3ExprCodeAndCache(Parse*, Expr*, int);
11104 SQLITE_PRIVATE void sqlite3ExprCodeConstants(Parse*, Expr*);
11105 SQLITE_PRIVATE int sqlite3ExprCodeExprList(Parse*, ExprList*, int, int);
11106 SQLITE_PRIVATE void sqlite3ExprIfTrue(Parse*, Expr*, int, int);
11107 SQLITE_PRIVATE void sqlite3ExprIfFalse(Parse*, Expr*, int, int);
11108 SQLITE_PRIVATE Table *sqlite3FindTable(sqlite3*,const char*, const char*);
11109 SQLITE_PRIVATE Table *sqlite3LocateTable(Parse*,int isView,const char*, const char*);
11110 SQLITE_PRIVATE Index *sqlite3FindIndex(sqlite3*,const char*, const char*);
11111 SQLITE_PRIVATE void sqlite3UnlinkAndDeleteTable(sqlite3*,int,const char*);
11112 SQLITE_PRIVATE void sqlite3UnlinkAndDeleteIndex(sqlite3*,int,const char*);
11113 SQLITE_PRIVATE void sqlite3Vacuum(Parse*);
11114 SQLITE_PRIVATE int sqlite3RunVacuum(char**, sqlite3*);
11115 SQLITE_PRIVATE char *sqlite3NameFromToken(sqlite3*, Token*);
11116 SQLITE_PRIVATE int sqlite3ExprCompare(Expr*, Expr*);
11117 SQLITE_PRIVATE int sqlite3ExprListCompare(ExprList*, ExprList*);
11118 SQLITE_PRIVATE void sqlite3ExprAnalyzeAggregates(NameContext*, Expr*);
11119 SQLITE_PRIVATE void sqlite3ExprAnalyzeAggList(NameContext*,ExprList*);
11120 SQLITE_PRIVATE Vdbe *sqlite3GetVdbe(Parse*);
11121 SQLITE_PRIVATE void sqlite3PrngSaveState(void);
11122 SQLITE_PRIVATE void sqlite3PrngRestoreState(void);
11123 SQLITE_PRIVATE void sqlite3PrngResetState(void);
11124 SQLITE_PRIVATE void sqlite3RollbackAll(sqlite3*);
11125 SQLITE_PRIVATE void sqlite3CodeVerifySchema(Parse*, int);
11126 SQLITE_PRIVATE void sqlite3CodeVerifyNamedSchema(Parse*, const char *zDb);
11127 SQLITE_PRIVATE void sqlite3BeginTransaction(Parse*, int);
11128 SQLITE_PRIVATE void sqlite3CommitTransaction(Parse*);
11129 SQLITE_PRIVATE void sqlite3RollbackTransaction(Parse*);
11130 SQLITE_PRIVATE void sqlite3Savepoint(Parse*, int, Token*);
11131 SQLITE_PRIVATE void sqlite3CloseSavepoints(sqlite3 *);
11132 SQLITE_PRIVATE int sqlite3ExprIsConstant(Expr*);
11133 SQLITE_PRIVATE int sqlite3ExprIsConstantNotJoin(Expr*);
11134 SQLITE_PRIVATE int sqlite3ExprIsConstantOrFunction(Expr*);
11135 SQLITE_PRIVATE int sqlite3ExprIsInteger(Expr*, int*);
11136 SQLITE_PRIVATE int sqlite3ExprCanBeNull(const Expr*);
11137 SQLITE_PRIVATE void sqlite3ExprCodeIsNullJump(Vdbe*, const Expr*, int, int);
11138 SQLITE_PRIVATE int sqlite3ExprNeedsNoAffinityChange(const Expr*, char);
11139 SQLITE_PRIVATE int sqlite3IsRowid(const char*);
11140 SQLITE_PRIVATE void sqlite3GenerateRowDelete(Parse*, Table*, int, int, int, Trigger *, int);
11141 SQLITE_PRIVATE void sqlite3GenerateRowIndexDelete(Parse*, Table*, int, int*);
11142 SQLITE_PRIVATE int sqlite3GenerateIndexKey(Parse*, Index*, int, int, int);
11143 SQLITE_PRIVATE void sqlite3GenerateConstraintChecks(Parse*,Table*,int,int,
11144 int*,int,int,int,int,int*);
11145 SQLITE_PRIVATE void sqlite3CompleteInsertion(Parse*, Table*, int, int, int*, int, int, int);
11146 SQLITE_PRIVATE int sqlite3OpenTableAndIndices(Parse*, Table*, int, int);
11147 SQLITE_PRIVATE void sqlite3BeginWriteOperation(Parse*, int, int);
11148 SQLITE_PRIVATE void sqlite3MultiWrite(Parse*);
11149 SQLITE_PRIVATE void sqlite3MayAbort(Parse*);
11150 SQLITE_PRIVATE void sqlite3HaltConstraint(Parse*, int, char*, int);
11151 SQLITE_PRIVATE Expr *sqlite3ExprDup(sqlite3*,Expr*,int);
11152 SQLITE_PRIVATE ExprList *sqlite3ExprListDup(sqlite3*,ExprList*,int);
11153 SQLITE_PRIVATE SrcList *sqlite3SrcListDup(sqlite3*,SrcList*,int);
11154 SQLITE_PRIVATE IdList *sqlite3IdListDup(sqlite3*,IdList*);
11155 SQLITE_PRIVATE Select *sqlite3SelectDup(sqlite3*,Select*,int);
11156 SQLITE_PRIVATE void sqlite3FuncDefInsert(FuncDefHash*, FuncDef*);
11157 SQLITE_PRIVATE FuncDef *sqlite3FindFunction(sqlite3*,const char*,int,int,u8,int);
11158 SQLITE_PRIVATE void sqlite3RegisterBuiltinFunctions(sqlite3*);
11159 SQLITE_PRIVATE void sqlite3RegisterDateTimeFunctions(void);
11160 SQLITE_PRIVATE void sqlite3RegisterGlobalFunctions(void);
11161 SQLITE_PRIVATE int sqlite3SafetyCheckOk(sqlite3*);
11162 SQLITE_PRIVATE int sqlite3SafetyCheckSickOrOk(sqlite3*);
11163 SQLITE_PRIVATE void sqlite3ChangeCookie(Parse*, int);
11165 #if !defined(SQLITE_OMIT_VIEW) && !defined(SQLITE_OMIT_TRIGGER)
11166 SQLITE_PRIVATE void sqlite3MaterializeView(Parse*, Table*, Expr*, int);
11167 #endif
11169 #ifndef SQLITE_OMIT_TRIGGER
11170 SQLITE_PRIVATE void sqlite3BeginTrigger(Parse*, Token*,Token*,int,int,IdList*,SrcList*,
11171 Expr*,int, int);
11172 SQLITE_PRIVATE void sqlite3FinishTrigger(Parse*, TriggerStep*, Token*);
11173 SQLITE_PRIVATE void sqlite3DropTrigger(Parse*, SrcList*, int);
11174 SQLITE_PRIVATE void sqlite3DropTriggerPtr(Parse*, Trigger*);
11175 SQLITE_PRIVATE Trigger *sqlite3TriggersExist(Parse *, Table*, int, ExprList*, int *pMask);
11176 SQLITE_PRIVATE Trigger *sqlite3TriggerList(Parse *, Table *);
11177 SQLITE_PRIVATE void sqlite3CodeRowTrigger(Parse*, Trigger *, int, ExprList*, int, Table *,
11178 int, int, int);
11179 SQLITE_PRIVATE void sqlite3CodeRowTriggerDirect(Parse *, Trigger *, Table *, int, int, int);
11180 void sqliteViewTriggers(Parse*, Table*, Expr*, int, ExprList*);
11181 SQLITE_PRIVATE void sqlite3DeleteTriggerStep(sqlite3*, TriggerStep*);
11182 SQLITE_PRIVATE TriggerStep *sqlite3TriggerSelectStep(sqlite3*,Select*);
11183 SQLITE_PRIVATE TriggerStep *sqlite3TriggerInsertStep(sqlite3*,Token*, IdList*,
11184 ExprList*,Select*,u8);
11185 SQLITE_PRIVATE TriggerStep *sqlite3TriggerUpdateStep(sqlite3*,Token*,ExprList*, Expr*, u8);
11186 SQLITE_PRIVATE TriggerStep *sqlite3TriggerDeleteStep(sqlite3*,Token*, Expr*);
11187 SQLITE_PRIVATE void sqlite3DeleteTrigger(sqlite3*, Trigger*);
11188 SQLITE_PRIVATE void sqlite3UnlinkAndDeleteTrigger(sqlite3*,int,const char*);
11189 SQLITE_PRIVATE u32 sqlite3TriggerColmask(Parse*,Trigger*,ExprList*,int,int,Table*,int);
11190 # define sqlite3ParseToplevel(p) ((p)->pToplevel ? (p)->pToplevel : (p))
11191 #else
11192 # define sqlite3TriggersExist(B,C,D,E,F) 0
11193 # define sqlite3DeleteTrigger(A,B)
11194 # define sqlite3DropTriggerPtr(A,B)
11195 # define sqlite3UnlinkAndDeleteTrigger(A,B,C)
11196 # define sqlite3CodeRowTrigger(A,B,C,D,E,F,G,H,I)
11197 # define sqlite3CodeRowTriggerDirect(A,B,C,D,E,F)
11198 # define sqlite3TriggerList(X, Y) 0
11199 # define sqlite3ParseToplevel(p) p
11200 # define sqlite3TriggerColmask(A,B,C,D,E,F,G) 0
11201 #endif
11203 SQLITE_PRIVATE int sqlite3JoinType(Parse*, Token*, Token*, Token*);
11204 SQLITE_PRIVATE void sqlite3CreateForeignKey(Parse*, ExprList*, Token*, ExprList*, int);
11205 SQLITE_PRIVATE void sqlite3DeferForeignKey(Parse*, int);
11206 #ifndef SQLITE_OMIT_AUTHORIZATION
11207 SQLITE_PRIVATE void sqlite3AuthRead(Parse*,Expr*,Schema*,SrcList*);
11208 SQLITE_PRIVATE int sqlite3AuthCheck(Parse*,int, const char*, const char*, const char*);
11209 SQLITE_PRIVATE void sqlite3AuthContextPush(Parse*, AuthContext*, const char*);
11210 SQLITE_PRIVATE void sqlite3AuthContextPop(AuthContext*);
11211 SQLITE_PRIVATE int sqlite3AuthReadCol(Parse*, const char *, const char *, int);
11212 #else
11213 # define sqlite3AuthRead(a,b,c,d)
11214 # define sqlite3AuthCheck(a,b,c,d,e) SQLITE_OK
11215 # define sqlite3AuthContextPush(a,b,c)
11216 # define sqlite3AuthContextPop(a) ((void)(a))
11217 #endif
11218 SQLITE_PRIVATE void sqlite3Attach(Parse*, Expr*, Expr*, Expr*);
11219 SQLITE_PRIVATE void sqlite3Detach(Parse*, Expr*);
11220 SQLITE_PRIVATE int sqlite3FixInit(DbFixer*, Parse*, int, const char*, const Token*);
11221 SQLITE_PRIVATE int sqlite3FixSrcList(DbFixer*, SrcList*);
11222 SQLITE_PRIVATE int sqlite3FixSelect(DbFixer*, Select*);
11223 SQLITE_PRIVATE int sqlite3FixExpr(DbFixer*, Expr*);
11224 SQLITE_PRIVATE int sqlite3FixExprList(DbFixer*, ExprList*);
11225 SQLITE_PRIVATE int sqlite3FixTriggerStep(DbFixer*, TriggerStep*);
11226 SQLITE_PRIVATE int sqlite3AtoF(const char *z, double*, int, u8);
11227 SQLITE_PRIVATE int sqlite3GetInt32(const char *, int*);
11228 SQLITE_PRIVATE int sqlite3Atoi(const char*);
11229 SQLITE_PRIVATE int sqlite3Utf16ByteLen(const void *pData, int nChar);
11230 SQLITE_PRIVATE int sqlite3Utf8CharLen(const char *pData, int nByte);
11231 SQLITE_PRIVATE int sqlite3Utf8Read(const u8*, const u8**);
11234 ** Routines to read and write variable-length integers. These used to
11235 ** be defined locally, but now we use the varint routines in the util.c
11236 ** file. Code should use the MACRO forms below, as the Varint32 versions
11237 ** are coded to assume the single byte case is already handled (which
11238 ** the MACRO form does).
11240 SQLITE_PRIVATE int sqlite3PutVarint(unsigned char*, u64);
11241 SQLITE_PRIVATE int sqlite3PutVarint32(unsigned char*, u32);
11242 SQLITE_PRIVATE u8 sqlite3GetVarint(const unsigned char *, u64 *);
11243 SQLITE_PRIVATE u8 sqlite3GetVarint32(const unsigned char *, u32 *);
11244 SQLITE_PRIVATE int sqlite3VarintLen(u64 v);
11247 ** The header of a record consists of a sequence variable-length integers.
11248 ** These integers are almost always small and are encoded as a single byte.
11249 ** The following macros take advantage this fact to provide a fast encode
11250 ** and decode of the integers in a record header. It is faster for the common
11251 ** case where the integer is a single byte. It is a little slower when the
11252 ** integer is two or more bytes. But overall it is faster.
11254 ** The following expressions are equivalent:
11256 ** x = sqlite3GetVarint32( A, &B );
11257 ** x = sqlite3PutVarint32( A, B );
11259 ** x = getVarint32( A, B );
11260 ** x = putVarint32( A, B );
11263 #define getVarint32(A,B) (u8)((*(A)<(u8)0x80) ? ((B) = (u32)*(A)),1 : sqlite3GetVarint32((A), (u32 *)&(B)))
11264 #define putVarint32(A,B) (u8)(((u32)(B)<(u32)0x80) ? (*(A) = (unsigned char)(B)),1 : sqlite3PutVarint32((A), (B)))
11265 #define getVarint sqlite3GetVarint
11266 #define putVarint sqlite3PutVarint
11269 SQLITE_PRIVATE const char *sqlite3IndexAffinityStr(Vdbe *, Index *);
11270 SQLITE_PRIVATE void sqlite3TableAffinityStr(Vdbe *, Table *);
11271 SQLITE_PRIVATE char sqlite3CompareAffinity(Expr *pExpr, char aff2);
11272 SQLITE_PRIVATE int sqlite3IndexAffinityOk(Expr *pExpr, char idx_affinity);
11273 SQLITE_PRIVATE char sqlite3ExprAffinity(Expr *pExpr);
11274 SQLITE_PRIVATE int sqlite3Atoi64(const char*, i64*, int, u8);
11275 SQLITE_PRIVATE void sqlite3Error(sqlite3*, int, const char*,...);
11276 SQLITE_PRIVATE void *sqlite3HexToBlob(sqlite3*, const char *z, int n);
11277 SQLITE_PRIVATE int sqlite3TwoPartName(Parse *, Token *, Token *, Token **);
11278 SQLITE_PRIVATE const char *sqlite3ErrStr(int);
11279 SQLITE_PRIVATE int sqlite3ReadSchema(Parse *pParse);
11280 SQLITE_PRIVATE CollSeq *sqlite3FindCollSeq(sqlite3*,u8 enc, const char*,int);
11281 SQLITE_PRIVATE CollSeq *sqlite3LocateCollSeq(Parse *pParse, const char*zName);
11282 SQLITE_PRIVATE CollSeq *sqlite3ExprCollSeq(Parse *pParse, Expr *pExpr);
11283 SQLITE_PRIVATE Expr *sqlite3ExprSetColl(Expr*, CollSeq*);
11284 SQLITE_PRIVATE Expr *sqlite3ExprSetCollByToken(Parse *pParse, Expr*, Token*);
11285 SQLITE_PRIVATE int sqlite3CheckCollSeq(Parse *, CollSeq *);
11286 SQLITE_PRIVATE int sqlite3CheckObjectName(Parse *, const char *);
11287 SQLITE_PRIVATE void sqlite3VdbeSetChanges(sqlite3 *, int);
11288 SQLITE_PRIVATE int sqlite3AddInt64(i64*,i64);
11289 SQLITE_PRIVATE int sqlite3SubInt64(i64*,i64);
11290 SQLITE_PRIVATE int sqlite3MulInt64(i64*,i64);
11291 SQLITE_PRIVATE int sqlite3AbsInt32(int);
11293 SQLITE_PRIVATE const void *sqlite3ValueText(sqlite3_value*, u8);
11294 SQLITE_PRIVATE int sqlite3ValueBytes(sqlite3_value*, u8);
11295 SQLITE_PRIVATE void sqlite3ValueSetStr(sqlite3_value*, int, const void *,u8,
11296 void(*)(void*));
11297 SQLITE_PRIVATE void sqlite3ValueFree(sqlite3_value*);
11298 SQLITE_PRIVATE sqlite3_value *sqlite3ValueNew(sqlite3 *);
11299 SQLITE_PRIVATE char *sqlite3Utf16to8(sqlite3 *, const void*, int, u8);
11300 #ifdef SQLITE_ENABLE_STAT2
11301 SQLITE_PRIVATE char *sqlite3Utf8to16(sqlite3 *, u8, char *, int, int *);
11302 #endif
11303 SQLITE_PRIVATE int sqlite3ValueFromExpr(sqlite3 *, Expr *, u8, u8, sqlite3_value **);
11304 SQLITE_PRIVATE void sqlite3ValueApplyAffinity(sqlite3_value *, u8, u8);
11305 #ifndef SQLITE_AMALGAMATION
11306 SQLITE_PRIVATE const unsigned char sqlite3OpcodeProperty[];
11307 SQLITE_PRIVATE const unsigned char sqlite3UpperToLower[];
11308 SQLITE_PRIVATE const unsigned char sqlite3CtypeMap[];
11309 SQLITE_PRIVATE const Token sqlite3IntTokens[];
11310 SQLITE_PRIVATE SQLITE_WSD struct Sqlite3Config sqlite3Config;
11311 SQLITE_PRIVATE SQLITE_WSD FuncDefHash sqlite3GlobalFunctions;
11312 #ifndef SQLITE_OMIT_WSD
11313 SQLITE_PRIVATE int sqlite3PendingByte;
11314 #endif
11315 #endif
11316 SQLITE_PRIVATE void sqlite3RootPageMoved(sqlite3*, int, int, int);
11317 SQLITE_PRIVATE void sqlite3Reindex(Parse*, Token*, Token*);
11318 SQLITE_PRIVATE void sqlite3AlterFunctions(void);
11319 SQLITE_PRIVATE void sqlite3AlterRenameTable(Parse*, SrcList*, Token*);
11320 SQLITE_PRIVATE int sqlite3GetToken(const unsigned char *, int *);
11321 SQLITE_PRIVATE void sqlite3NestedParse(Parse*, const char*, ...);
11322 SQLITE_PRIVATE void sqlite3ExpirePreparedStatements(sqlite3*);
11323 SQLITE_PRIVATE int sqlite3CodeSubselect(Parse *, Expr *, int, int);
11324 SQLITE_PRIVATE void sqlite3SelectPrep(Parse*, Select*, NameContext*);
11325 SQLITE_PRIVATE int sqlite3ResolveExprNames(NameContext*, Expr*);
11326 SQLITE_PRIVATE void sqlite3ResolveSelectNames(Parse*, Select*, NameContext*);
11327 SQLITE_PRIVATE int sqlite3ResolveOrderGroupBy(Parse*, Select*, ExprList*, const char*);
11328 SQLITE_PRIVATE void sqlite3ColumnDefault(Vdbe *, Table *, int, int);
11329 SQLITE_PRIVATE void sqlite3AlterFinishAddColumn(Parse *, Token *);
11330 SQLITE_PRIVATE void sqlite3AlterBeginAddColumn(Parse *, SrcList *);
11331 SQLITE_PRIVATE CollSeq *sqlite3GetCollSeq(sqlite3*, u8, CollSeq *, const char*);
11332 SQLITE_PRIVATE char sqlite3AffinityType(const char*);
11333 SQLITE_PRIVATE void sqlite3Analyze(Parse*, Token*, Token*);
11334 SQLITE_PRIVATE int sqlite3InvokeBusyHandler(BusyHandler*);
11335 SQLITE_PRIVATE int sqlite3FindDb(sqlite3*, Token*);
11336 SQLITE_PRIVATE int sqlite3FindDbName(sqlite3 *, const char *);
11337 SQLITE_PRIVATE int sqlite3AnalysisLoad(sqlite3*,int iDB);
11338 SQLITE_PRIVATE void sqlite3DeleteIndexSamples(sqlite3*,Index*);
11339 SQLITE_PRIVATE void sqlite3DefaultRowEst(Index*);
11340 SQLITE_PRIVATE void sqlite3RegisterLikeFunctions(sqlite3*, int);
11341 SQLITE_PRIVATE int sqlite3IsLikeFunction(sqlite3*,Expr*,int*,char*);
11342 SQLITE_PRIVATE void sqlite3MinimumFileFormat(Parse*, int, int);
11343 SQLITE_PRIVATE void sqlite3SchemaClear(void *);
11344 SQLITE_PRIVATE Schema *sqlite3SchemaGet(sqlite3 *, Btree *);
11345 SQLITE_PRIVATE int sqlite3SchemaToIndex(sqlite3 *db, Schema *);
11346 SQLITE_PRIVATE KeyInfo *sqlite3IndexKeyinfo(Parse *, Index *);
11347 SQLITE_PRIVATE int sqlite3CreateFunc(sqlite3 *, const char *, int, int, void *,
11348 void (*)(sqlite3_context*,int,sqlite3_value **),
11349 void (*)(sqlite3_context*,int,sqlite3_value **), void (*)(sqlite3_context*),
11350 FuncDestructor *pDestructor
11352 SQLITE_PRIVATE int sqlite3ApiExit(sqlite3 *db, int);
11353 SQLITE_PRIVATE int sqlite3OpenTempDatabase(Parse *);
11355 SQLITE_PRIVATE void sqlite3StrAccumInit(StrAccum*, char*, int, int);
11356 SQLITE_PRIVATE void sqlite3StrAccumAppend(StrAccum*,const char*,int);
11357 SQLITE_PRIVATE char *sqlite3StrAccumFinish(StrAccum*);
11358 SQLITE_PRIVATE void sqlite3StrAccumReset(StrAccum*);
11359 SQLITE_PRIVATE void sqlite3SelectDestInit(SelectDest*,int,int);
11360 SQLITE_PRIVATE Expr *sqlite3CreateColumnExpr(sqlite3 *, SrcList *, int, int);
11362 SQLITE_PRIVATE void sqlite3BackupRestart(sqlite3_backup *);
11363 SQLITE_PRIVATE void sqlite3BackupUpdate(sqlite3_backup *, Pgno, const u8 *);
11366 ** The interface to the LEMON-generated parser
11368 SQLITE_PRIVATE void *sqlite3ParserAlloc(void*(*)(size_t));
11369 SQLITE_PRIVATE void sqlite3ParserFree(void*, void(*)(void*));
11370 SQLITE_PRIVATE void sqlite3Parser(void*, int, Token, Parse*);
11371 #ifdef YYTRACKMAXSTACKDEPTH
11372 SQLITE_PRIVATE int sqlite3ParserStackPeak(void*);
11373 #endif
11375 SQLITE_PRIVATE void sqlite3AutoLoadExtensions(sqlite3*);
11376 #ifndef SQLITE_OMIT_LOAD_EXTENSION
11377 SQLITE_PRIVATE void sqlite3CloseExtensions(sqlite3*);
11378 #else
11379 # define sqlite3CloseExtensions(X)
11380 #endif
11382 #ifndef SQLITE_OMIT_SHARED_CACHE
11383 SQLITE_PRIVATE void sqlite3TableLock(Parse *, int, int, u8, const char *);
11384 #else
11385 #define sqlite3TableLock(v,w,x,y,z)
11386 #endif
11388 #ifdef SQLITE_TEST
11389 SQLITE_PRIVATE int sqlite3Utf8To8(unsigned char*);
11390 #endif
11392 #ifdef SQLITE_OMIT_VIRTUALTABLE
11393 # define sqlite3VtabClear(Y)
11394 # define sqlite3VtabSync(X,Y) SQLITE_OK
11395 # define sqlite3VtabRollback(X)
11396 # define sqlite3VtabCommit(X)
11397 # define sqlite3VtabInSync(db) 0
11398 # define sqlite3VtabLock(X)
11399 # define sqlite3VtabUnlock(X)
11400 # define sqlite3VtabUnlockList(X)
11401 #else
11402 SQLITE_PRIVATE void sqlite3VtabClear(sqlite3 *db, Table*);
11403 SQLITE_PRIVATE int sqlite3VtabSync(sqlite3 *db, char **);
11404 SQLITE_PRIVATE int sqlite3VtabRollback(sqlite3 *db);
11405 SQLITE_PRIVATE int sqlite3VtabCommit(sqlite3 *db);
11406 SQLITE_PRIVATE void sqlite3VtabLock(VTable *);
11407 SQLITE_PRIVATE void sqlite3VtabUnlock(VTable *);
11408 SQLITE_PRIVATE void sqlite3VtabUnlockList(sqlite3*);
11409 # define sqlite3VtabInSync(db) ((db)->nVTrans>0 && (db)->aVTrans==0)
11410 #endif
11411 SQLITE_PRIVATE void sqlite3VtabMakeWritable(Parse*,Table*);
11412 SQLITE_PRIVATE void sqlite3VtabBeginParse(Parse*, Token*, Token*, Token*);
11413 SQLITE_PRIVATE void sqlite3VtabFinishParse(Parse*, Token*);
11414 SQLITE_PRIVATE void sqlite3VtabArgInit(Parse*);
11415 SQLITE_PRIVATE void sqlite3VtabArgExtend(Parse*, Token*);
11416 SQLITE_PRIVATE int sqlite3VtabCallCreate(sqlite3*, int, const char *, char **);
11417 SQLITE_PRIVATE int sqlite3VtabCallConnect(Parse*, Table*);
11418 SQLITE_PRIVATE int sqlite3VtabCallDestroy(sqlite3*, int, const char *);
11419 SQLITE_PRIVATE int sqlite3VtabBegin(sqlite3 *, VTable *);
11420 SQLITE_PRIVATE FuncDef *sqlite3VtabOverloadFunction(sqlite3 *,FuncDef*, int nArg, Expr*);
11421 SQLITE_PRIVATE void sqlite3InvalidFunction(sqlite3_context*,int,sqlite3_value**);
11422 SQLITE_PRIVATE int sqlite3VdbeParameterIndex(Vdbe*, const char*, int);
11423 SQLITE_PRIVATE int sqlite3TransferBindings(sqlite3_stmt *, sqlite3_stmt *);
11424 SQLITE_PRIVATE int sqlite3Reprepare(Vdbe*);
11425 SQLITE_PRIVATE void sqlite3ExprListCheckLength(Parse*, ExprList*, const char*);
11426 SQLITE_PRIVATE CollSeq *sqlite3BinaryCompareCollSeq(Parse *, Expr *, Expr *);
11427 SQLITE_PRIVATE int sqlite3TempInMemory(const sqlite3*);
11428 SQLITE_PRIVATE VTable *sqlite3GetVTable(sqlite3*, Table*);
11429 SQLITE_PRIVATE const char *sqlite3JournalModename(int);
11430 SQLITE_PRIVATE int sqlite3Checkpoint(sqlite3*, int, int, int*, int*);
11431 SQLITE_PRIVATE int sqlite3WalDefaultHook(void*,sqlite3*,const char*,int);
11433 /* Declarations for functions in fkey.c. All of these are replaced by
11434 ** no-op macros if OMIT_FOREIGN_KEY is defined. In this case no foreign
11435 ** key functionality is available. If OMIT_TRIGGER is defined but
11436 ** OMIT_FOREIGN_KEY is not, only some of the functions are no-oped. In
11437 ** this case foreign keys are parsed, but no other functionality is
11438 ** provided (enforcement of FK constraints requires the triggers sub-system).
11440 #if !defined(SQLITE_OMIT_FOREIGN_KEY) && !defined(SQLITE_OMIT_TRIGGER)
11441 SQLITE_PRIVATE void sqlite3FkCheck(Parse*, Table*, int, int);
11442 SQLITE_PRIVATE void sqlite3FkDropTable(Parse*, SrcList *, Table*);
11443 SQLITE_PRIVATE void sqlite3FkActions(Parse*, Table*, ExprList*, int);
11444 SQLITE_PRIVATE int sqlite3FkRequired(Parse*, Table*, int*, int);
11445 SQLITE_PRIVATE u32 sqlite3FkOldmask(Parse*, Table*);
11446 SQLITE_PRIVATE FKey *sqlite3FkReferences(Table *);
11447 #else
11448 #define sqlite3FkActions(a,b,c,d)
11449 #define sqlite3FkCheck(a,b,c,d)
11450 #define sqlite3FkDropTable(a,b,c)
11451 #define sqlite3FkOldmask(a,b) 0
11452 #define sqlite3FkRequired(a,b,c,d) 0
11453 #endif
11454 #ifndef SQLITE_OMIT_FOREIGN_KEY
11455 SQLITE_PRIVATE void sqlite3FkDelete(sqlite3 *, Table*);
11456 #else
11457 #define sqlite3FkDelete(a,b)
11458 #endif
11462 ** Available fault injectors. Should be numbered beginning with 0.
11464 #define SQLITE_FAULTINJECTOR_MALLOC 0
11465 #define SQLITE_FAULTINJECTOR_COUNT 1
11468 ** The interface to the code in fault.c used for identifying "benign"
11469 ** malloc failures. This is only present if SQLITE_OMIT_BUILTIN_TEST
11470 ** is not defined.
11472 #ifndef SQLITE_OMIT_BUILTIN_TEST
11473 SQLITE_PRIVATE void sqlite3BeginBenignMalloc(void);
11474 SQLITE_PRIVATE void sqlite3EndBenignMalloc(void);
11475 #else
11476 #define sqlite3BeginBenignMalloc()
11477 #define sqlite3EndBenignMalloc()
11478 #endif
11480 #define IN_INDEX_ROWID 1
11481 #define IN_INDEX_EPH 2
11482 #define IN_INDEX_INDEX 3
11483 SQLITE_PRIVATE int sqlite3FindInIndex(Parse *, Expr *, int*);
11485 #ifdef SQLITE_ENABLE_ATOMIC_WRITE
11486 SQLITE_PRIVATE int sqlite3JournalOpen(sqlite3_vfs *, const char *, sqlite3_file *, int, int);
11487 SQLITE_PRIVATE int sqlite3JournalSize(sqlite3_vfs *);
11488 SQLITE_PRIVATE int sqlite3JournalCreate(sqlite3_file *);
11489 #else
11490 #define sqlite3JournalSize(pVfs) ((pVfs)->szOsFile)
11491 #endif
11493 SQLITE_PRIVATE void sqlite3MemJournalOpen(sqlite3_file *);
11494 SQLITE_PRIVATE int sqlite3MemJournalSize(void);
11495 SQLITE_PRIVATE int sqlite3IsMemJournal(sqlite3_file *);
11497 #if SQLITE_MAX_EXPR_DEPTH>0
11498 SQLITE_PRIVATE void sqlite3ExprSetHeight(Parse *pParse, Expr *p);
11499 SQLITE_PRIVATE int sqlite3SelectExprHeight(Select *);
11500 SQLITE_PRIVATE int sqlite3ExprCheckHeight(Parse*, int);
11501 #else
11502 #define sqlite3ExprSetHeight(x,y)
11503 #define sqlite3SelectExprHeight(x) 0
11504 #define sqlite3ExprCheckHeight(x,y)
11505 #endif
11507 SQLITE_PRIVATE u32 sqlite3Get4byte(const u8*);
11508 SQLITE_PRIVATE void sqlite3Put4byte(u8*, u32);
11510 #ifdef SQLITE_ENABLE_UNLOCK_NOTIFY
11511 SQLITE_PRIVATE void sqlite3ConnectionBlocked(sqlite3 *, sqlite3 *);
11512 SQLITE_PRIVATE void sqlite3ConnectionUnlocked(sqlite3 *db);
11513 SQLITE_PRIVATE void sqlite3ConnectionClosed(sqlite3 *db);
11514 #else
11515 #define sqlite3ConnectionBlocked(x,y)
11516 #define sqlite3ConnectionUnlocked(x)
11517 #define sqlite3ConnectionClosed(x)
11518 #endif
11520 #ifdef SQLITE_DEBUG
11521 SQLITE_PRIVATE void sqlite3ParserTrace(FILE*, char *);
11522 #endif
11525 ** If the SQLITE_ENABLE IOTRACE exists then the global variable
11526 ** sqlite3IoTrace is a pointer to a printf-like routine used to
11527 ** print I/O tracing messages.
11529 #ifdef SQLITE_ENABLE_IOTRACE
11530 # define IOTRACE(A) if( sqlite3IoTrace ){ sqlite3IoTrace A; }
11531 SQLITE_PRIVATE void sqlite3VdbeIOTraceSql(Vdbe*);
11532 SQLITE_PRIVATE void (*sqlite3IoTrace)(const char*,...);
11533 #else
11534 # define IOTRACE(A)
11535 # define sqlite3VdbeIOTraceSql(X)
11536 #endif
11539 ** These routines are available for the mem2.c debugging memory allocator
11540 ** only. They are used to verify that different "types" of memory
11541 ** allocations are properly tracked by the system.
11543 ** sqlite3MemdebugSetType() sets the "type" of an allocation to one of
11544 ** the MEMTYPE_* macros defined below. The type must be a bitmask with
11545 ** a single bit set.
11547 ** sqlite3MemdebugHasType() returns true if any of the bits in its second
11548 ** argument match the type set by the previous sqlite3MemdebugSetType().
11549 ** sqlite3MemdebugHasType() is intended for use inside assert() statements.
11551 ** sqlite3MemdebugNoType() returns true if none of the bits in its second
11552 ** argument match the type set by the previous sqlite3MemdebugSetType().
11554 ** Perhaps the most important point is the difference between MEMTYPE_HEAP
11555 ** and MEMTYPE_LOOKASIDE. If an allocation is MEMTYPE_LOOKASIDE, that means
11556 ** it might have been allocated by lookaside, except the allocation was
11557 ** too large or lookaside was already full. It is important to verify
11558 ** that allocations that might have been satisfied by lookaside are not
11559 ** passed back to non-lookaside free() routines. Asserts such as the
11560 ** example above are placed on the non-lookaside free() routines to verify
11561 ** this constraint.
11563 ** All of this is no-op for a production build. It only comes into
11564 ** play when the SQLITE_MEMDEBUG compile-time option is used.
11566 #ifdef SQLITE_MEMDEBUG
11567 SQLITE_PRIVATE void sqlite3MemdebugSetType(void*,u8);
11568 SQLITE_PRIVATE int sqlite3MemdebugHasType(void*,u8);
11569 SQLITE_PRIVATE int sqlite3MemdebugNoType(void*,u8);
11570 #else
11571 # define sqlite3MemdebugSetType(X,Y) /* no-op */
11572 # define sqlite3MemdebugHasType(X,Y) 1
11573 # define sqlite3MemdebugNoType(X,Y) 1
11574 #endif
11575 #define MEMTYPE_HEAP 0x01 /* General heap allocations */
11576 #define MEMTYPE_LOOKASIDE 0x02 /* Might have been lookaside memory */
11577 #define MEMTYPE_SCRATCH 0x04 /* Scratch allocations */
11578 #define MEMTYPE_PCACHE 0x08 /* Page cache allocations */
11579 #define MEMTYPE_DB 0x10 /* Uses sqlite3DbMalloc, not sqlite_malloc */
11581 #endif /* _SQLITEINT_H_ */
11583 /************** End of sqliteInt.h *******************************************/
11584 /************** Begin file global.c ******************************************/
11586 ** 2008 June 13
11588 ** The author disclaims copyright to this source code. In place of
11589 ** a legal notice, here is a blessing:
11591 ** May you do good and not evil.
11592 ** May you find forgiveness for yourself and forgive others.
11593 ** May you share freely, never taking more than you give.
11595 *************************************************************************
11597 ** This file contains definitions of global variables and contants.
11600 /* An array to map all upper-case characters into their corresponding
11601 ** lower-case character.
11603 ** SQLite only considers US-ASCII (or EBCDIC) characters. We do not
11604 ** handle case conversions for the UTF character set since the tables
11605 ** involved are nearly as big or bigger than SQLite itself.
11607 SQLITE_PRIVATE const unsigned char sqlite3UpperToLower[] = {
11608 #ifdef SQLITE_ASCII
11609 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17,
11610 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35,
11611 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53,
11612 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 97, 98, 99,100,101,102,103,
11613 104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120,121,
11614 122, 91, 92, 93, 94, 95, 96, 97, 98, 99,100,101,102,103,104,105,106,107,
11615 108,109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,
11616 126,127,128,129,130,131,132,133,134,135,136,137,138,139,140,141,142,143,
11617 144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160,161,
11618 162,163,164,165,166,167,168,169,170,171,172,173,174,175,176,177,178,179,
11619 180,181,182,183,184,185,186,187,188,189,190,191,192,193,194,195,196,197,
11620 198,199,200,201,202,203,204,205,206,207,208,209,210,211,212,213,214,215,
11621 216,217,218,219,220,221,222,223,224,225,226,227,228,229,230,231,232,233,
11622 234,235,236,237,238,239,240,241,242,243,244,245,246,247,248,249,250,251,
11623 252,253,254,255
11624 #endif
11625 #ifdef SQLITE_EBCDIC
11626 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, /* 0x */
11627 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, /* 1x */
11628 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, /* 2x */
11629 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, /* 3x */
11630 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, /* 4x */
11631 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, /* 5x */
11632 96, 97, 66, 67, 68, 69, 70, 71, 72, 73,106,107,108,109,110,111, /* 6x */
11633 112, 81, 82, 83, 84, 85, 86, 87, 88, 89,122,123,124,125,126,127, /* 7x */
11634 128,129,130,131,132,133,134,135,136,137,138,139,140,141,142,143, /* 8x */
11635 144,145,146,147,148,149,150,151,152,153,154,155,156,157,156,159, /* 9x */
11636 160,161,162,163,164,165,166,167,168,169,170,171,140,141,142,175, /* Ax */
11637 176,177,178,179,180,181,182,183,184,185,186,187,188,189,190,191, /* Bx */
11638 192,129,130,131,132,133,134,135,136,137,202,203,204,205,206,207, /* Cx */
11639 208,145,146,147,148,149,150,151,152,153,218,219,220,221,222,223, /* Dx */
11640 224,225,162,163,164,165,166,167,168,169,232,203,204,205,206,207, /* Ex */
11641 239,240,241,242,243,244,245,246,247,248,249,219,220,221,222,255, /* Fx */
11642 #endif
11646 ** The following 256 byte lookup table is used to support SQLites built-in
11647 ** equivalents to the following standard library functions:
11649 ** isspace() 0x01
11650 ** isalpha() 0x02
11651 ** isdigit() 0x04
11652 ** isalnum() 0x06
11653 ** isxdigit() 0x08
11654 ** toupper() 0x20
11655 ** SQLite identifier character 0x40
11657 ** Bit 0x20 is set if the mapped character requires translation to upper
11658 ** case. i.e. if the character is a lower-case ASCII character.
11659 ** If x is a lower-case ASCII character, then its upper-case equivalent
11660 ** is (x - 0x20). Therefore toupper() can be implemented as:
11662 ** (x & ~(map[x]&0x20))
11664 ** Standard function tolower() is implemented using the sqlite3UpperToLower[]
11665 ** array. tolower() is used more often than toupper() by SQLite.
11667 ** Bit 0x40 is set if the character non-alphanumeric and can be used in an
11668 ** SQLite identifier. Identifiers are alphanumerics, "_", "$", and any
11669 ** non-ASCII UTF character. Hence the test for whether or not a character is
11670 ** part of an identifier is 0x46.
11672 ** SQLite's versions are identical to the standard versions assuming a
11673 ** locale of "C". They are implemented as macros in sqliteInt.h.
11675 #ifdef SQLITE_ASCII
11676 SQLITE_PRIVATE const unsigned char sqlite3CtypeMap[256] = {
11677 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, /* 00..07 ........ */
11678 0x00, 0x01, 0x01, 0x01, 0x01, 0x01, 0x00, 0x00, /* 08..0f ........ */
11679 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, /* 10..17 ........ */
11680 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, /* 18..1f ........ */
11681 0x01, 0x00, 0x00, 0x00, 0x40, 0x00, 0x00, 0x00, /* 20..27 !"#$%&' */
11682 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, /* 28..2f ()*+,-./ */
11683 0x0c, 0x0c, 0x0c, 0x0c, 0x0c, 0x0c, 0x0c, 0x0c, /* 30..37 01234567 */
11684 0x0c, 0x0c, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, /* 38..3f 89:;<=>? */
11686 0x00, 0x0a, 0x0a, 0x0a, 0x0a, 0x0a, 0x0a, 0x02, /* 40..47 @ABCDEFG */
11687 0x02, 0x02, 0x02, 0x02, 0x02, 0x02, 0x02, 0x02, /* 48..4f HIJKLMNO */
11688 0x02, 0x02, 0x02, 0x02, 0x02, 0x02, 0x02, 0x02, /* 50..57 PQRSTUVW */
11689 0x02, 0x02, 0x02, 0x00, 0x00, 0x00, 0x00, 0x40, /* 58..5f XYZ[\]^_ */
11690 0x00, 0x2a, 0x2a, 0x2a, 0x2a, 0x2a, 0x2a, 0x22, /* 60..67 `abcdefg */
11691 0x22, 0x22, 0x22, 0x22, 0x22, 0x22, 0x22, 0x22, /* 68..6f hijklmno */
11692 0x22, 0x22, 0x22, 0x22, 0x22, 0x22, 0x22, 0x22, /* 70..77 pqrstuvw */
11693 0x22, 0x22, 0x22, 0x00, 0x00, 0x00, 0x00, 0x00, /* 78..7f xyz{|}~. */
11695 0x40, 0x40, 0x40, 0x40, 0x40, 0x40, 0x40, 0x40, /* 80..87 ........ */
11696 0x40, 0x40, 0x40, 0x40, 0x40, 0x40, 0x40, 0x40, /* 88..8f ........ */
11697 0x40, 0x40, 0x40, 0x40, 0x40, 0x40, 0x40, 0x40, /* 90..97 ........ */
11698 0x40, 0x40, 0x40, 0x40, 0x40, 0x40, 0x40, 0x40, /* 98..9f ........ */
11699 0x40, 0x40, 0x40, 0x40, 0x40, 0x40, 0x40, 0x40, /* a0..a7 ........ */
11700 0x40, 0x40, 0x40, 0x40, 0x40, 0x40, 0x40, 0x40, /* a8..af ........ */
11701 0x40, 0x40, 0x40, 0x40, 0x40, 0x40, 0x40, 0x40, /* b0..b7 ........ */
11702 0x40, 0x40, 0x40, 0x40, 0x40, 0x40, 0x40, 0x40, /* b8..bf ........ */
11704 0x40, 0x40, 0x40, 0x40, 0x40, 0x40, 0x40, 0x40, /* c0..c7 ........ */
11705 0x40, 0x40, 0x40, 0x40, 0x40, 0x40, 0x40, 0x40, /* c8..cf ........ */
11706 0x40, 0x40, 0x40, 0x40, 0x40, 0x40, 0x40, 0x40, /* d0..d7 ........ */
11707 0x40, 0x40, 0x40, 0x40, 0x40, 0x40, 0x40, 0x40, /* d8..df ........ */
11708 0x40, 0x40, 0x40, 0x40, 0x40, 0x40, 0x40, 0x40, /* e0..e7 ........ */
11709 0x40, 0x40, 0x40, 0x40, 0x40, 0x40, 0x40, 0x40, /* e8..ef ........ */
11710 0x40, 0x40, 0x40, 0x40, 0x40, 0x40, 0x40, 0x40, /* f0..f7 ........ */
11711 0x40, 0x40, 0x40, 0x40, 0x40, 0x40, 0x40, 0x40 /* f8..ff ........ */
11713 #endif
11718 ** The following singleton contains the global configuration for
11719 ** the SQLite library.
11721 SQLITE_PRIVATE SQLITE_WSD struct Sqlite3Config sqlite3Config = {
11722 SQLITE_DEFAULT_MEMSTATUS, /* bMemstat */
11723 1, /* bCoreMutex */
11724 SQLITE_THREADSAFE==1, /* bFullMutex */
11725 0x7ffffffe, /* mxStrlen */
11726 100, /* szLookaside */
11727 500, /* nLookaside */
11728 {0,0,0,0,0,0,0,0}, /* m */
11729 {0,0,0,0,0,0,0,0,0}, /* mutex */
11730 {0,0,0,0,0,0,0,0,0,0,0}, /* pcache */
11731 (void*)0, /* pHeap */
11732 0, /* nHeap */
11733 0, 0, /* mnHeap, mxHeap */
11734 (void*)0, /* pScratch */
11735 0, /* szScratch */
11736 0, /* nScratch */
11737 (void*)0, /* pPage */
11738 0, /* szPage */
11739 0, /* nPage */
11740 0, /* mxParserStack */
11741 0, /* sharedCacheEnabled */
11742 /* All the rest should always be initialized to zero */
11743 0, /* isInit */
11744 0, /* inProgress */
11745 0, /* isMutexInit */
11746 0, /* isMallocInit */
11747 0, /* isPCacheInit */
11748 0, /* pInitMutex */
11749 0, /* nRefInitMutex */
11750 0, /* xLog */
11751 0, /* pLogArg */
11756 ** Hash table for global functions - functions common to all
11757 ** database connections. After initialization, this table is
11758 ** read-only.
11760 SQLITE_PRIVATE SQLITE_WSD FuncDefHash sqlite3GlobalFunctions;
11763 ** Constant tokens for values 0 and 1.
11765 SQLITE_PRIVATE const Token sqlite3IntTokens[] = {
11766 { "0", 1 },
11767 { "1", 1 }
11772 ** The value of the "pending" byte must be 0x40000000 (1 byte past the
11773 ** 1-gibabyte boundary) in a compatible database. SQLite never uses
11774 ** the database page that contains the pending byte. It never attempts
11775 ** to read or write that page. The pending byte page is set assign
11776 ** for use by the VFS layers as space for managing file locks.
11778 ** During testing, it is often desirable to move the pending byte to
11779 ** a different position in the file. This allows code that has to
11780 ** deal with the pending byte to run on files that are much smaller
11781 ** than 1 GiB. The sqlite3_test_control() interface can be used to
11782 ** move the pending byte.
11784 ** IMPORTANT: Changing the pending byte to any value other than
11785 ** 0x40000000 results in an incompatible database file format!
11786 ** Changing the pending byte during operating results in undefined
11787 ** and dileterious behavior.
11789 #ifndef SQLITE_OMIT_WSD
11790 SQLITE_PRIVATE int sqlite3PendingByte = 0x40000000;
11791 #endif
11794 ** Properties of opcodes. The OPFLG_INITIALIZER macro is
11795 ** created by mkopcodeh.awk during compilation. Data is obtained
11796 ** from the comments following the "case OP_xxxx:" statements in
11797 ** the vdbe.c file.
11799 SQLITE_PRIVATE const unsigned char sqlite3OpcodeProperty[] = OPFLG_INITIALIZER;
11801 /************** End of global.c **********************************************/
11802 /************** Begin file ctime.c *******************************************/
11804 ** 2010 February 23
11806 ** The author disclaims copyright to this source code. In place of
11807 ** a legal notice, here is a blessing:
11809 ** May you do good and not evil.
11810 ** May you find forgiveness for yourself and forgive others.
11811 ** May you share freely, never taking more than you give.
11813 *************************************************************************
11815 ** This file implements routines used to report what compile-time options
11816 ** SQLite was built with.
11819 #ifndef SQLITE_OMIT_COMPILEOPTION_DIAGS
11823 ** An array of names of all compile-time options. This array should
11824 ** be sorted A-Z.
11826 ** This array looks large, but in a typical installation actually uses
11827 ** only a handful of compile-time options, so most times this array is usually
11828 ** rather short and uses little memory space.
11830 static const char * const azCompileOpt[] = {
11832 /* These macros are provided to "stringify" the value of the define
11833 ** for those options in which the value is meaningful. */
11834 #define CTIMEOPT_VAL_(opt) #opt
11835 #define CTIMEOPT_VAL(opt) CTIMEOPT_VAL_(opt)
11837 #ifdef SQLITE_32BIT_ROWID
11838 "32BIT_ROWID",
11839 #endif
11840 #ifdef SQLITE_4_BYTE_ALIGNED_MALLOC
11841 "4_BYTE_ALIGNED_MALLOC",
11842 #endif
11843 #ifdef SQLITE_CASE_SENSITIVE_LIKE
11844 "CASE_SENSITIVE_LIKE",
11845 #endif
11846 #ifdef SQLITE_CHECK_PAGES
11847 "CHECK_PAGES",
11848 #endif
11849 #ifdef SQLITE_COVERAGE_TEST
11850 "COVERAGE_TEST",
11851 #endif
11852 #ifdef SQLITE_DEBUG
11853 "DEBUG",
11854 #endif
11855 #ifdef SQLITE_DEFAULT_LOCKING_MODE
11856 "DEFAULT_LOCKING_MODE=" CTIMEOPT_VAL(SQLITE_DEFAULT_LOCKING_MODE),
11857 #endif
11858 #ifdef SQLITE_DISABLE_DIRSYNC
11859 "DISABLE_DIRSYNC",
11860 #endif
11861 #ifdef SQLITE_DISABLE_LFS
11862 "DISABLE_LFS",
11863 #endif
11864 #ifdef SQLITE_ENABLE_ATOMIC_WRITE
11865 "ENABLE_ATOMIC_WRITE",
11866 #endif
11867 #ifdef SQLITE_ENABLE_CEROD
11868 "ENABLE_CEROD",
11869 #endif
11870 #ifdef SQLITE_ENABLE_COLUMN_METADATA
11871 "ENABLE_COLUMN_METADATA",
11872 #endif
11873 #ifdef SQLITE_ENABLE_EXPENSIVE_ASSERT
11874 "ENABLE_EXPENSIVE_ASSERT",
11875 #endif
11876 #ifdef SQLITE_ENABLE_FTS1
11877 "ENABLE_FTS1",
11878 #endif
11879 #ifdef SQLITE_ENABLE_FTS2
11880 "ENABLE_FTS2",
11881 #endif
11882 #ifdef SQLITE_ENABLE_FTS3
11883 "ENABLE_FTS3",
11884 #endif
11885 #ifdef SQLITE_ENABLE_FTS3_PARENTHESIS
11886 "ENABLE_FTS3_PARENTHESIS",
11887 #endif
11888 #ifdef SQLITE_ENABLE_FTS4
11889 "ENABLE_FTS4",
11890 #endif
11891 #ifdef SQLITE_ENABLE_ICU
11892 "ENABLE_ICU",
11893 #endif
11894 #ifdef SQLITE_ENABLE_IOTRACE
11895 "ENABLE_IOTRACE",
11896 #endif
11897 #ifdef SQLITE_ENABLE_LOAD_EXTENSION
11898 "ENABLE_LOAD_EXTENSION",
11899 #endif
11900 #ifdef SQLITE_ENABLE_LOCKING_STYLE
11901 "ENABLE_LOCKING_STYLE=" CTIMEOPT_VAL(SQLITE_ENABLE_LOCKING_STYLE),
11902 #endif
11903 #ifdef SQLITE_ENABLE_MEMORY_MANAGEMENT
11904 "ENABLE_MEMORY_MANAGEMENT",
11905 #endif
11906 #ifdef SQLITE_ENABLE_MEMSYS3
11907 "ENABLE_MEMSYS3",
11908 #endif
11909 #ifdef SQLITE_ENABLE_MEMSYS5
11910 "ENABLE_MEMSYS5",
11911 #endif
11912 #ifdef SQLITE_ENABLE_OVERSIZE_CELL_CHECK
11913 "ENABLE_OVERSIZE_CELL_CHECK",
11914 #endif
11915 #ifdef SQLITE_ENABLE_RTREE
11916 "ENABLE_RTREE",
11917 #endif
11918 #ifdef SQLITE_ENABLE_STAT2
11919 "ENABLE_STAT2",
11920 #endif
11921 #ifdef SQLITE_ENABLE_UNLOCK_NOTIFY
11922 "ENABLE_UNLOCK_NOTIFY",
11923 #endif
11924 #ifdef SQLITE_ENABLE_UPDATE_DELETE_LIMIT
11925 "ENABLE_UPDATE_DELETE_LIMIT",
11926 #endif
11927 #ifdef SQLITE_HAS_CODEC
11928 "HAS_CODEC",
11929 #endif
11930 #ifdef SQLITE_HAVE_ISNAN
11931 "HAVE_ISNAN",
11932 #endif
11933 #ifdef SQLITE_HOMEGROWN_RECURSIVE_MUTEX
11934 "HOMEGROWN_RECURSIVE_MUTEX",
11935 #endif
11936 #ifdef SQLITE_IGNORE_AFP_LOCK_ERRORS
11937 "IGNORE_AFP_LOCK_ERRORS",
11938 #endif
11939 #ifdef SQLITE_IGNORE_FLOCK_LOCK_ERRORS
11940 "IGNORE_FLOCK_LOCK_ERRORS",
11941 #endif
11942 #ifdef SQLITE_INT64_TYPE
11943 "INT64_TYPE",
11944 #endif
11945 #ifdef SQLITE_LOCK_TRACE
11946 "LOCK_TRACE",
11947 #endif
11948 #ifdef SQLITE_MEMDEBUG
11949 "MEMDEBUG",
11950 #endif
11951 #ifdef SQLITE_MIXED_ENDIAN_64BIT_FLOAT
11952 "MIXED_ENDIAN_64BIT_FLOAT",
11953 #endif
11954 #ifdef SQLITE_NO_SYNC
11955 "NO_SYNC",
11956 #endif
11957 #ifdef SQLITE_OMIT_ALTERTABLE
11958 "OMIT_ALTERTABLE",
11959 #endif
11960 #ifdef SQLITE_OMIT_ANALYZE
11961 "OMIT_ANALYZE",
11962 #endif
11963 #ifdef SQLITE_OMIT_ATTACH
11964 "OMIT_ATTACH",
11965 #endif
11966 #ifdef SQLITE_OMIT_AUTHORIZATION
11967 "OMIT_AUTHORIZATION",
11968 #endif
11969 #ifdef SQLITE_OMIT_AUTOINCREMENT
11970 "OMIT_AUTOINCREMENT",
11971 #endif
11972 #ifdef SQLITE_OMIT_AUTOINIT
11973 "OMIT_AUTOINIT",
11974 #endif
11975 #ifdef SQLITE_OMIT_AUTOMATIC_INDEX
11976 "OMIT_AUTOMATIC_INDEX",
11977 #endif
11978 #ifdef SQLITE_OMIT_AUTORESET
11979 "OMIT_AUTORESET",
11980 #endif
11981 #ifdef SQLITE_OMIT_AUTOVACUUM
11982 "OMIT_AUTOVACUUM",
11983 #endif
11984 #ifdef SQLITE_OMIT_BETWEEN_OPTIMIZATION
11985 "OMIT_BETWEEN_OPTIMIZATION",
11986 #endif
11987 #ifdef SQLITE_OMIT_BLOB_LITERAL
11988 "OMIT_BLOB_LITERAL",
11989 #endif
11990 #ifdef SQLITE_OMIT_BTREECOUNT
11991 "OMIT_BTREECOUNT",
11992 #endif
11993 #ifdef SQLITE_OMIT_BUILTIN_TEST
11994 "OMIT_BUILTIN_TEST",
11995 #endif
11996 #ifdef SQLITE_OMIT_CAST
11997 "OMIT_CAST",
11998 #endif
11999 #ifdef SQLITE_OMIT_CHECK
12000 "OMIT_CHECK",
12001 #endif
12002 /* // redundant
12003 ** #ifdef SQLITE_OMIT_COMPILEOPTION_DIAGS
12004 ** "OMIT_COMPILEOPTION_DIAGS",
12005 ** #endif
12007 #ifdef SQLITE_OMIT_COMPLETE
12008 "OMIT_COMPLETE",
12009 #endif
12010 #ifdef SQLITE_OMIT_COMPOUND_SELECT
12011 "OMIT_COMPOUND_SELECT",
12012 #endif
12013 #ifdef SQLITE_OMIT_DATETIME_FUNCS
12014 "OMIT_DATETIME_FUNCS",
12015 #endif
12016 #ifdef SQLITE_OMIT_DECLTYPE
12017 "OMIT_DECLTYPE",
12018 #endif
12019 #ifdef SQLITE_OMIT_DEPRECATED
12020 "OMIT_DEPRECATED",
12021 #endif
12022 #ifdef SQLITE_OMIT_DISKIO
12023 "OMIT_DISKIO",
12024 #endif
12025 #ifdef SQLITE_OMIT_EXPLAIN
12026 "OMIT_EXPLAIN",
12027 #endif
12028 #ifdef SQLITE_OMIT_FLAG_PRAGMAS
12029 "OMIT_FLAG_PRAGMAS",
12030 #endif
12031 #ifdef SQLITE_OMIT_FLOATING_POINT
12032 "OMIT_FLOATING_POINT",
12033 #endif
12034 #ifdef SQLITE_OMIT_FOREIGN_KEY
12035 "OMIT_FOREIGN_KEY",
12036 #endif
12037 #ifdef SQLITE_OMIT_GET_TABLE
12038 "OMIT_GET_TABLE",
12039 #endif
12040 #ifdef SQLITE_OMIT_INCRBLOB
12041 "OMIT_INCRBLOB",
12042 #endif
12043 #ifdef SQLITE_OMIT_INTEGRITY_CHECK
12044 "OMIT_INTEGRITY_CHECK",
12045 #endif
12046 #ifdef SQLITE_OMIT_LIKE_OPTIMIZATION
12047 "OMIT_LIKE_OPTIMIZATION",
12048 #endif
12049 #ifdef SQLITE_OMIT_LOAD_EXTENSION
12050 "OMIT_LOAD_EXTENSION",
12051 #endif
12052 #ifdef SQLITE_OMIT_LOCALTIME
12053 "OMIT_LOCALTIME",
12054 #endif
12055 #ifdef SQLITE_OMIT_LOOKASIDE
12056 "OMIT_LOOKASIDE",
12057 #endif
12058 #ifdef SQLITE_OMIT_MEMORYDB
12059 "OMIT_MEMORYDB",
12060 #endif
12061 #ifdef SQLITE_OMIT_OR_OPTIMIZATION
12062 "OMIT_OR_OPTIMIZATION",
12063 #endif
12064 #ifdef SQLITE_OMIT_PAGER_PRAGMAS
12065 "OMIT_PAGER_PRAGMAS",
12066 #endif
12067 #ifdef SQLITE_OMIT_PRAGMA
12068 "OMIT_PRAGMA",
12069 #endif
12070 #ifdef SQLITE_OMIT_PROGRESS_CALLBACK
12071 "OMIT_PROGRESS_CALLBACK",
12072 #endif
12073 #ifdef SQLITE_OMIT_QUICKBALANCE
12074 "OMIT_QUICKBALANCE",
12075 #endif
12076 #ifdef SQLITE_OMIT_REINDEX
12077 "OMIT_REINDEX",
12078 #endif
12079 #ifdef SQLITE_OMIT_SCHEMA_PRAGMAS
12080 "OMIT_SCHEMA_PRAGMAS",
12081 #endif
12082 #ifdef SQLITE_OMIT_SCHEMA_VERSION_PRAGMAS
12083 "OMIT_SCHEMA_VERSION_PRAGMAS",
12084 #endif
12085 #ifdef SQLITE_OMIT_SHARED_CACHE
12086 "OMIT_SHARED_CACHE",
12087 #endif
12088 #ifdef SQLITE_OMIT_SUBQUERY
12089 "OMIT_SUBQUERY",
12090 #endif
12091 #ifdef SQLITE_OMIT_TCL_VARIABLE
12092 "OMIT_TCL_VARIABLE",
12093 #endif
12094 #ifdef SQLITE_OMIT_TEMPDB
12095 "OMIT_TEMPDB",
12096 #endif
12097 #ifdef SQLITE_OMIT_TRACE
12098 "OMIT_TRACE",
12099 #endif
12100 #ifdef SQLITE_OMIT_TRIGGER
12101 "OMIT_TRIGGER",
12102 #endif
12103 #ifdef SQLITE_OMIT_TRUNCATE_OPTIMIZATION
12104 "OMIT_TRUNCATE_OPTIMIZATION",
12105 #endif
12106 #ifdef SQLITE_OMIT_UTF16
12107 "OMIT_UTF16",
12108 #endif
12109 #ifdef SQLITE_OMIT_VACUUM
12110 "OMIT_VACUUM",
12111 #endif
12112 #ifdef SQLITE_OMIT_VIEW
12113 "OMIT_VIEW",
12114 #endif
12115 #ifdef SQLITE_OMIT_VIRTUALTABLE
12116 "OMIT_VIRTUALTABLE",
12117 #endif
12118 #ifdef SQLITE_OMIT_WAL
12119 "OMIT_WAL",
12120 #endif
12121 #ifdef SQLITE_OMIT_WSD
12122 "OMIT_WSD",
12123 #endif
12124 #ifdef SQLITE_OMIT_XFER_OPT
12125 "OMIT_XFER_OPT",
12126 #endif
12127 #ifdef SQLITE_PERFORMANCE_TRACE
12128 "PERFORMANCE_TRACE",
12129 #endif
12130 #ifdef SQLITE_PROXY_DEBUG
12131 "PROXY_DEBUG",
12132 #endif
12133 #ifdef SQLITE_SECURE_DELETE
12134 "SECURE_DELETE",
12135 #endif
12136 #ifdef SQLITE_SMALL_STACK
12137 "SMALL_STACK",
12138 #endif
12139 #ifdef SQLITE_SOUNDEX
12140 "SOUNDEX",
12141 #endif
12142 #ifdef SQLITE_TCL
12143 "TCL",
12144 #endif
12145 #ifdef SQLITE_TEMP_STORE
12146 "TEMP_STORE=" CTIMEOPT_VAL(SQLITE_TEMP_STORE),
12147 #endif
12148 #ifdef SQLITE_TEST
12149 "TEST",
12150 #endif
12151 #ifdef SQLITE_THREADSAFE
12152 "THREADSAFE=" CTIMEOPT_VAL(SQLITE_THREADSAFE),
12153 #endif
12154 #ifdef SQLITE_USE_ALLOCA
12155 "USE_ALLOCA",
12156 #endif
12157 #ifdef SQLITE_ZERO_MALLOC
12158 "ZERO_MALLOC"
12159 #endif
12163 ** Given the name of a compile-time option, return true if that option
12164 ** was used and false if not.
12166 ** The name can optionally begin with "SQLITE_" but the "SQLITE_" prefix
12167 ** is not required for a match.
12169 SQLITE_API int sqlite3_compileoption_used(const char *zOptName){
12170 int i, n;
12171 if( sqlite3StrNICmp(zOptName, "SQLITE_", 7)==0 ) zOptName += 7;
12172 n = sqlite3Strlen30(zOptName);
12174 /* Since ArraySize(azCompileOpt) is normally in single digits, a
12175 ** linear search is adequate. No need for a binary search. */
12176 for(i=0; i<ArraySize(azCompileOpt); i++){
12177 if( (sqlite3StrNICmp(zOptName, azCompileOpt[i], n)==0)
12178 && ( (azCompileOpt[i][n]==0) || (azCompileOpt[i][n]=='=') ) ) return 1;
12180 return 0;
12184 ** Return the N-th compile-time option string. If N is out of range,
12185 ** return a NULL pointer.
12187 SQLITE_API const char *sqlite3_compileoption_get(int N){
12188 if( N>=0 && N<ArraySize(azCompileOpt) ){
12189 return azCompileOpt[N];
12191 return 0;
12194 #endif /* SQLITE_OMIT_COMPILEOPTION_DIAGS */
12196 /************** End of ctime.c ***********************************************/
12197 /************** Begin file status.c ******************************************/
12199 ** 2008 June 18
12201 ** The author disclaims copyright to this source code. In place of
12202 ** a legal notice, here is a blessing:
12204 ** May you do good and not evil.
12205 ** May you find forgiveness for yourself and forgive others.
12206 ** May you share freely, never taking more than you give.
12208 *************************************************************************
12210 ** This module implements the sqlite3_status() interface and related
12211 ** functionality.
12213 /************** Include vdbeInt.h in the middle of status.c ******************/
12214 /************** Begin file vdbeInt.h *****************************************/
12216 ** 2003 September 6
12218 ** The author disclaims copyright to this source code. In place of
12219 ** a legal notice, here is a blessing:
12221 ** May you do good and not evil.
12222 ** May you find forgiveness for yourself and forgive others.
12223 ** May you share freely, never taking more than you give.
12225 *************************************************************************
12226 ** This is the header file for information that is private to the
12227 ** VDBE. This information used to all be at the top of the single
12228 ** source code file "vdbe.c". When that file became too big (over
12229 ** 6000 lines long) it was split up into several smaller files and
12230 ** this header information was factored out.
12232 #ifndef _VDBEINT_H_
12233 #define _VDBEINT_H_
12236 ** SQL is translated into a sequence of instructions to be
12237 ** executed by a virtual machine. Each instruction is an instance
12238 ** of the following structure.
12240 typedef struct VdbeOp Op;
12243 ** Boolean values
12245 typedef unsigned char Bool;
12248 ** A cursor is a pointer into a single BTree within a database file.
12249 ** The cursor can seek to a BTree entry with a particular key, or
12250 ** loop over all entries of the Btree. You can also insert new BTree
12251 ** entries or retrieve the key or data from the entry that the cursor
12252 ** is currently pointing to.
12254 ** Every cursor that the virtual machine has open is represented by an
12255 ** instance of the following structure.
12257 struct VdbeCursor {
12258 BtCursor *pCursor; /* The cursor structure of the backend */
12259 Btree *pBt; /* Separate file holding temporary table */
12260 KeyInfo *pKeyInfo; /* Info about index keys needed by index cursors */
12261 int iDb; /* Index of cursor database in db->aDb[] (or -1) */
12262 int pseudoTableReg; /* Register holding pseudotable content. */
12263 int nField; /* Number of fields in the header */
12264 Bool zeroed; /* True if zeroed out and ready for reuse */
12265 Bool rowidIsValid; /* True if lastRowid is valid */
12266 Bool atFirst; /* True if pointing to first entry */
12267 Bool useRandomRowid; /* Generate new record numbers semi-randomly */
12268 Bool nullRow; /* True if pointing to a row with no data */
12269 Bool deferredMoveto; /* A call to sqlite3BtreeMoveto() is needed */
12270 Bool isTable; /* True if a table requiring integer keys */
12271 Bool isIndex; /* True if an index containing keys only - no data */
12272 Bool isOrdered; /* True if the underlying table is BTREE_UNORDERED */
12273 sqlite3_vtab_cursor *pVtabCursor; /* The cursor for a virtual table */
12274 const sqlite3_module *pModule; /* Module for cursor pVtabCursor */
12275 i64 seqCount; /* Sequence counter */
12276 i64 movetoTarget; /* Argument to the deferred sqlite3BtreeMoveto() */
12277 i64 lastRowid; /* Last rowid from a Next or NextIdx operation */
12279 /* Result of last sqlite3BtreeMoveto() done by an OP_NotExists or
12280 ** OP_IsUnique opcode on this cursor. */
12281 int seekResult;
12283 /* Cached information about the header for the data record that the
12284 ** cursor is currently pointing to. Only valid if cacheStatus matches
12285 ** Vdbe.cacheCtr. Vdbe.cacheCtr will never take on the value of
12286 ** CACHE_STALE and so setting cacheStatus=CACHE_STALE guarantees that
12287 ** the cache is out of date.
12289 ** aRow might point to (ephemeral) data for the current row, or it might
12290 ** be NULL.
12292 u32 cacheStatus; /* Cache is valid if this matches Vdbe.cacheCtr */
12293 int payloadSize; /* Total number of bytes in the record */
12294 u32 *aType; /* Type values for all entries in the record */
12295 u32 *aOffset; /* Cached offsets to the start of each columns data */
12296 u8 *aRow; /* Data for the current row, if all on one page */
12298 typedef struct VdbeCursor VdbeCursor;
12301 ** When a sub-program is executed (OP_Program), a structure of this type
12302 ** is allocated to store the current value of the program counter, as
12303 ** well as the current memory cell array and various other frame specific
12304 ** values stored in the Vdbe struct. When the sub-program is finished,
12305 ** these values are copied back to the Vdbe from the VdbeFrame structure,
12306 ** restoring the state of the VM to as it was before the sub-program
12307 ** began executing.
12309 ** The memory for a VdbeFrame object is allocated and managed by a memory
12310 ** cell in the parent (calling) frame. When the memory cell is deleted or
12311 ** overwritten, the VdbeFrame object is not freed immediately. Instead, it
12312 ** is linked into the Vdbe.pDelFrame list. The contents of the Vdbe.pDelFrame
12313 ** list is deleted when the VM is reset in VdbeHalt(). The reason for doing
12314 ** this instead of deleting the VdbeFrame immediately is to avoid recursive
12315 ** calls to sqlite3VdbeMemRelease() when the memory cells belonging to the
12316 ** child frame are released.
12318 ** The currently executing frame is stored in Vdbe.pFrame. Vdbe.pFrame is
12319 ** set to NULL if the currently executing frame is the main program.
12321 typedef struct VdbeFrame VdbeFrame;
12322 struct VdbeFrame {
12323 Vdbe *v; /* VM this frame belongs to */
12324 int pc; /* Program Counter in parent (calling) frame */
12325 Op *aOp; /* Program instructions for parent frame */
12326 int nOp; /* Size of aOp array */
12327 Mem *aMem; /* Array of memory cells for parent frame */
12328 int nMem; /* Number of entries in aMem */
12329 VdbeCursor **apCsr; /* Array of Vdbe cursors for parent frame */
12330 u16 nCursor; /* Number of entries in apCsr */
12331 void *token; /* Copy of SubProgram.token */
12332 int nChildMem; /* Number of memory cells for child frame */
12333 int nChildCsr; /* Number of cursors for child frame */
12334 i64 lastRowid; /* Last insert rowid (sqlite3.lastRowid) */
12335 int nChange; /* Statement changes (Vdbe.nChanges) */
12336 VdbeFrame *pParent; /* Parent of this frame, or NULL if parent is main */
12339 #define VdbeFrameMem(p) ((Mem *)&((u8 *)p)[ROUND8(sizeof(VdbeFrame))])
12342 ** A value for VdbeCursor.cacheValid that means the cache is always invalid.
12344 #define CACHE_STALE 0
12347 ** Internally, the vdbe manipulates nearly all SQL values as Mem
12348 ** structures. Each Mem struct may cache multiple representations (string,
12349 ** integer etc.) of the same value.
12351 struct Mem {
12352 sqlite3 *db; /* The associated database connection */
12353 char *z; /* String or BLOB value */
12354 double r; /* Real value */
12355 union {
12356 i64 i; /* Integer value used when MEM_Int is set in flags */
12357 int nZero; /* Used when bit MEM_Zero is set in flags */
12358 FuncDef *pDef; /* Used only when flags==MEM_Agg */
12359 RowSet *pRowSet; /* Used only when flags==MEM_RowSet */
12360 VdbeFrame *pFrame; /* Used when flags==MEM_Frame */
12361 } u;
12362 int n; /* Number of characters in string value, excluding '\0' */
12363 u16 flags; /* Some combination of MEM_Null, MEM_Str, MEM_Dyn, etc. */
12364 u8 type; /* One of SQLITE_NULL, SQLITE_TEXT, SQLITE_INTEGER, etc */
12365 u8 enc; /* SQLITE_UTF8, SQLITE_UTF16BE, SQLITE_UTF16LE */
12366 #ifdef SQLITE_DEBUG
12367 Mem *pScopyFrom; /* This Mem is a shallow copy of pScopyFrom */
12368 void *pFiller; /* So that sizeof(Mem) is a multiple of 8 */
12369 #endif
12370 void (*xDel)(void *); /* If not null, call this function to delete Mem.z */
12371 char *zMalloc; /* Dynamic buffer allocated by sqlite3_malloc() */
12374 /* One or more of the following flags are set to indicate the validOK
12375 ** representations of the value stored in the Mem struct.
12377 ** If the MEM_Null flag is set, then the value is an SQL NULL value.
12378 ** No other flags may be set in this case.
12380 ** If the MEM_Str flag is set then Mem.z points at a string representation.
12381 ** Usually this is encoded in the same unicode encoding as the main
12382 ** database (see below for exceptions). If the MEM_Term flag is also
12383 ** set, then the string is nul terminated. The MEM_Int and MEM_Real
12384 ** flags may coexist with the MEM_Str flag.
12386 #define MEM_Null 0x0001 /* Value is NULL */
12387 #define MEM_Str 0x0002 /* Value is a string */
12388 #define MEM_Int 0x0004 /* Value is an integer */
12389 #define MEM_Real 0x0008 /* Value is a real number */
12390 #define MEM_Blob 0x0010 /* Value is a BLOB */
12391 #define MEM_RowSet 0x0020 /* Value is a RowSet object */
12392 #define MEM_Frame 0x0040 /* Value is a VdbeFrame object */
12393 #define MEM_Invalid 0x0080 /* Value is undefined */
12394 #define MEM_TypeMask 0x00ff /* Mask of type bits */
12396 /* Whenever Mem contains a valid string or blob representation, one of
12397 ** the following flags must be set to determine the memory management
12398 ** policy for Mem.z. The MEM_Term flag tells us whether or not the
12399 ** string is \000 or \u0000 terminated
12401 #define MEM_Term 0x0200 /* String rep is nul terminated */
12402 #define MEM_Dyn 0x0400 /* Need to call sqliteFree() on Mem.z */
12403 #define MEM_Static 0x0800 /* Mem.z points to a static string */
12404 #define MEM_Ephem 0x1000 /* Mem.z points to an ephemeral string */
12405 #define MEM_Agg 0x2000 /* Mem.z points to an agg function context */
12406 #define MEM_Zero 0x4000 /* Mem.i contains count of 0s appended to blob */
12407 #ifdef SQLITE_OMIT_INCRBLOB
12408 #undef MEM_Zero
12409 #define MEM_Zero 0x0000
12410 #endif
12413 ** Clear any existing type flags from a Mem and replace them with f
12415 #define MemSetTypeFlag(p, f) \
12416 ((p)->flags = ((p)->flags&~(MEM_TypeMask|MEM_Zero))|f)
12419 ** Return true if a memory cell is not marked as invalid. This macro
12420 ** is for use inside assert() statements only.
12422 #ifdef SQLITE_DEBUG
12423 #define memIsValid(M) ((M)->flags & MEM_Invalid)==0
12424 #endif
12427 /* A VdbeFunc is just a FuncDef (defined in sqliteInt.h) that contains
12428 ** additional information about auxiliary information bound to arguments
12429 ** of the function. This is used to implement the sqlite3_get_auxdata()
12430 ** and sqlite3_set_auxdata() APIs. The "auxdata" is some auxiliary data
12431 ** that can be associated with a constant argument to a function. This
12432 ** allows functions such as "regexp" to compile their constant regular
12433 ** expression argument once and reused the compiled code for multiple
12434 ** invocations.
12436 struct VdbeFunc {
12437 FuncDef *pFunc; /* The definition of the function */
12438 int nAux; /* Number of entries allocated for apAux[] */
12439 struct AuxData {
12440 void *pAux; /* Aux data for the i-th argument */
12441 void (*xDelete)(void *); /* Destructor for the aux data */
12442 } apAux[1]; /* One slot for each function argument */
12446 ** The "context" argument for a installable function. A pointer to an
12447 ** instance of this structure is the first argument to the routines used
12448 ** implement the SQL functions.
12450 ** There is a typedef for this structure in sqlite.h. So all routines,
12451 ** even the public interface to SQLite, can use a pointer to this structure.
12452 ** But this file is the only place where the internal details of this
12453 ** structure are known.
12455 ** This structure is defined inside of vdbeInt.h because it uses substructures
12456 ** (Mem) which are only defined there.
12458 struct sqlite3_context {
12459 FuncDef *pFunc; /* Pointer to function information. MUST BE FIRST */
12460 VdbeFunc *pVdbeFunc; /* Auxilary data, if created. */
12461 Mem s; /* The return value is stored here */
12462 Mem *pMem; /* Memory cell used to store aggregate context */
12463 int isError; /* Error code returned by the function. */
12464 CollSeq *pColl; /* Collating sequence */
12468 ** An instance of the virtual machine. This structure contains the complete
12469 ** state of the virtual machine.
12471 ** The "sqlite3_stmt" structure pointer that is returned by sqlite3_prepare()
12472 ** is really a pointer to an instance of this structure.
12474 ** The Vdbe.inVtabMethod variable is set to non-zero for the duration of
12475 ** any virtual table method invocations made by the vdbe program. It is
12476 ** set to 2 for xDestroy method calls and 1 for all other methods. This
12477 ** variable is used for two purposes: to allow xDestroy methods to execute
12478 ** "DROP TABLE" statements and to prevent some nasty side effects of
12479 ** malloc failure when SQLite is invoked recursively by a virtual table
12480 ** method function.
12482 struct Vdbe {
12483 sqlite3 *db; /* The database connection that owns this statement */
12484 Op *aOp; /* Space to hold the virtual machine's program */
12485 Mem *aMem; /* The memory locations */
12486 Mem **apArg; /* Arguments to currently executing user function */
12487 Mem *aColName; /* Column names to return */
12488 Mem *pResultSet; /* Pointer to an array of results */
12489 int nMem; /* Number of memory locations currently allocated */
12490 int nOp; /* Number of instructions in the program */
12491 int nOpAlloc; /* Number of slots allocated for aOp[] */
12492 int nLabel; /* Number of labels used */
12493 int nLabelAlloc; /* Number of slots allocated in aLabel[] */
12494 int *aLabel; /* Space to hold the labels */
12495 u16 nResColumn; /* Number of columns in one row of the result set */
12496 u16 nCursor; /* Number of slots in apCsr[] */
12497 u32 magic; /* Magic number for sanity checking */
12498 char *zErrMsg; /* Error message written here */
12499 Vdbe *pPrev,*pNext; /* Linked list of VDBEs with the same Vdbe.db */
12500 VdbeCursor **apCsr; /* One element of this array for each open cursor */
12501 Mem *aVar; /* Values for the OP_Variable opcode. */
12502 char **azVar; /* Name of variables */
12503 ynVar nVar; /* Number of entries in aVar[] */
12504 u32 cacheCtr; /* VdbeCursor row cache generation counter */
12505 int pc; /* The program counter */
12506 int rc; /* Value to return */
12507 u8 errorAction; /* Recovery action to do in case of an error */
12508 u8 okVar; /* True if azVar[] has been initialized */
12509 u8 explain; /* True if EXPLAIN present on SQL command */
12510 u8 changeCntOn; /* True to update the change-counter */
12511 u8 expired; /* True if the VM needs to be recompiled */
12512 u8 runOnlyOnce; /* Automatically expire on reset */
12513 u8 minWriteFileFormat; /* Minimum file format for writable database files */
12514 u8 inVtabMethod; /* See comments above */
12515 u8 usesStmtJournal; /* True if uses a statement journal */
12516 u8 readOnly; /* True for read-only statements */
12517 u8 isPrepareV2; /* True if prepared with prepare_v2() */
12518 int nChange; /* Number of db changes made since last reset */
12519 yDbMask btreeMask; /* Bitmask of db->aDb[] entries referenced */
12520 yDbMask lockMask; /* Subset of btreeMask that requires a lock */
12521 int iStatement; /* Statement number (or 0 if has not opened stmt) */
12522 int aCounter[3]; /* Counters used by sqlite3_stmt_status() */
12523 #ifndef SQLITE_OMIT_TRACE
12524 i64 startTime; /* Time when query started - used for profiling */
12525 #endif
12526 i64 nFkConstraint; /* Number of imm. FK constraints this VM */
12527 i64 nStmtDefCons; /* Number of def. constraints when stmt started */
12528 char *zSql; /* Text of the SQL statement that generated this */
12529 void *pFree; /* Free this when deleting the vdbe */
12530 #ifdef SQLITE_DEBUG
12531 FILE *trace; /* Write an execution trace here, if not NULL */
12532 #endif
12533 VdbeFrame *pFrame; /* Parent frame */
12534 VdbeFrame *pDelFrame; /* List of frame objects to free on VM reset */
12535 int nFrame; /* Number of frames in pFrame list */
12536 u32 expmask; /* Binding to these vars invalidates VM */
12537 SubProgram *pProgram; /* Linked list of all sub-programs used by VM */
12541 ** The following are allowed values for Vdbe.magic
12543 #define VDBE_MAGIC_INIT 0x26bceaa5 /* Building a VDBE program */
12544 #define VDBE_MAGIC_RUN 0xbdf20da3 /* VDBE is ready to execute */
12545 #define VDBE_MAGIC_HALT 0x519c2973 /* VDBE has completed execution */
12546 #define VDBE_MAGIC_DEAD 0xb606c3c8 /* The VDBE has been deallocated */
12549 ** Function prototypes
12551 SQLITE_PRIVATE void sqlite3VdbeFreeCursor(Vdbe *, VdbeCursor*);
12552 void sqliteVdbePopStack(Vdbe*,int);
12553 SQLITE_PRIVATE int sqlite3VdbeCursorMoveto(VdbeCursor*);
12554 #if defined(SQLITE_DEBUG) || defined(VDBE_PROFILE)
12555 SQLITE_PRIVATE void sqlite3VdbePrintOp(FILE*, int, Op*);
12556 #endif
12557 SQLITE_PRIVATE u32 sqlite3VdbeSerialTypeLen(u32);
12558 SQLITE_PRIVATE u32 sqlite3VdbeSerialType(Mem*, int);
12559 SQLITE_PRIVATE u32 sqlite3VdbeSerialPut(unsigned char*, int, Mem*, int);
12560 SQLITE_PRIVATE u32 sqlite3VdbeSerialGet(const unsigned char*, u32, Mem*);
12561 SQLITE_PRIVATE void sqlite3VdbeDeleteAuxData(VdbeFunc*, int);
12563 int sqlite2BtreeKeyCompare(BtCursor *, const void *, int, int, int *);
12564 SQLITE_PRIVATE int sqlite3VdbeIdxKeyCompare(VdbeCursor*,UnpackedRecord*,int*);
12565 SQLITE_PRIVATE int sqlite3VdbeIdxRowid(sqlite3*, BtCursor *, i64 *);
12566 SQLITE_PRIVATE int sqlite3MemCompare(const Mem*, const Mem*, const CollSeq*);
12567 SQLITE_PRIVATE int sqlite3VdbeExec(Vdbe*);
12568 SQLITE_PRIVATE int sqlite3VdbeList(Vdbe*);
12569 SQLITE_PRIVATE int sqlite3VdbeHalt(Vdbe*);
12570 SQLITE_PRIVATE int sqlite3VdbeChangeEncoding(Mem *, int);
12571 SQLITE_PRIVATE int sqlite3VdbeMemTooBig(Mem*);
12572 SQLITE_PRIVATE int sqlite3VdbeMemCopy(Mem*, const Mem*);
12573 SQLITE_PRIVATE void sqlite3VdbeMemShallowCopy(Mem*, const Mem*, int);
12574 SQLITE_PRIVATE void sqlite3VdbeMemMove(Mem*, Mem*);
12575 SQLITE_PRIVATE int sqlite3VdbeMemNulTerminate(Mem*);
12576 SQLITE_PRIVATE int sqlite3VdbeMemSetStr(Mem*, const char*, int, u8, void(*)(void*));
12577 SQLITE_PRIVATE void sqlite3VdbeMemSetInt64(Mem*, i64);
12578 #ifdef SQLITE_OMIT_FLOATING_POINT
12579 # define sqlite3VdbeMemSetDouble sqlite3VdbeMemSetInt64
12580 #else
12581 SQLITE_PRIVATE void sqlite3VdbeMemSetDouble(Mem*, double);
12582 #endif
12583 SQLITE_PRIVATE void sqlite3VdbeMemSetNull(Mem*);
12584 SQLITE_PRIVATE void sqlite3VdbeMemSetZeroBlob(Mem*,int);
12585 SQLITE_PRIVATE void sqlite3VdbeMemSetRowSet(Mem*);
12586 SQLITE_PRIVATE int sqlite3VdbeMemMakeWriteable(Mem*);
12587 SQLITE_PRIVATE int sqlite3VdbeMemStringify(Mem*, int);
12588 SQLITE_PRIVATE i64 sqlite3VdbeIntValue(Mem*);
12589 SQLITE_PRIVATE int sqlite3VdbeMemIntegerify(Mem*);
12590 SQLITE_PRIVATE double sqlite3VdbeRealValue(Mem*);
12591 SQLITE_PRIVATE void sqlite3VdbeIntegerAffinity(Mem*);
12592 SQLITE_PRIVATE int sqlite3VdbeMemRealify(Mem*);
12593 SQLITE_PRIVATE int sqlite3VdbeMemNumerify(Mem*);
12594 SQLITE_PRIVATE int sqlite3VdbeMemFromBtree(BtCursor*,int,int,int,Mem*);
12595 SQLITE_PRIVATE void sqlite3VdbeMemRelease(Mem *p);
12596 SQLITE_PRIVATE void sqlite3VdbeMemReleaseExternal(Mem *p);
12597 SQLITE_PRIVATE int sqlite3VdbeMemFinalize(Mem*, FuncDef*);
12598 SQLITE_PRIVATE const char *sqlite3OpcodeName(int);
12599 SQLITE_PRIVATE int sqlite3VdbeMemGrow(Mem *pMem, int n, int preserve);
12600 SQLITE_PRIVATE int sqlite3VdbeCloseStatement(Vdbe *, int);
12601 SQLITE_PRIVATE void sqlite3VdbeFrameDelete(VdbeFrame*);
12602 SQLITE_PRIVATE int sqlite3VdbeFrameRestore(VdbeFrame *);
12603 SQLITE_PRIVATE void sqlite3VdbeMemStoreType(Mem *pMem);
12605 #if !defined(SQLITE_OMIT_SHARED_CACHE) && SQLITE_THREADSAFE>0
12606 SQLITE_PRIVATE void sqlite3VdbeEnter(Vdbe*);
12607 SQLITE_PRIVATE void sqlite3VdbeLeave(Vdbe*);
12608 #else
12609 # define sqlite3VdbeEnter(X)
12610 # define sqlite3VdbeLeave(X)
12611 #endif
12613 #ifdef SQLITE_DEBUG
12614 SQLITE_PRIVATE void sqlite3VdbeMemPrepareToChange(Vdbe*,Mem*);
12615 #endif
12617 #ifndef SQLITE_OMIT_FOREIGN_KEY
12618 SQLITE_PRIVATE int sqlite3VdbeCheckFk(Vdbe *, int);
12619 #else
12620 # define sqlite3VdbeCheckFk(p,i) 0
12621 #endif
12623 SQLITE_PRIVATE int sqlite3VdbeMemTranslate(Mem*, u8);
12624 #ifdef SQLITE_DEBUG
12625 SQLITE_PRIVATE void sqlite3VdbePrintSql(Vdbe*);
12626 SQLITE_PRIVATE void sqlite3VdbeMemPrettyPrint(Mem *pMem, char *zBuf);
12627 #endif
12628 SQLITE_PRIVATE int sqlite3VdbeMemHandleBom(Mem *pMem);
12630 #ifndef SQLITE_OMIT_INCRBLOB
12631 SQLITE_PRIVATE int sqlite3VdbeMemExpandBlob(Mem *);
12632 #else
12633 #define sqlite3VdbeMemExpandBlob(x) SQLITE_OK
12634 #endif
12636 #endif /* !defined(_VDBEINT_H_) */
12638 /************** End of vdbeInt.h *********************************************/
12639 /************** Continuing where we left off in status.c *********************/
12642 ** Variables in which to record status information.
12644 typedef struct sqlite3StatType sqlite3StatType;
12645 static SQLITE_WSD struct sqlite3StatType {
12646 int nowValue[10]; /* Current value */
12647 int mxValue[10]; /* Maximum value */
12648 } sqlite3Stat = { {0,}, {0,} };
12651 /* The "wsdStat" macro will resolve to the status information
12652 ** state vector. If writable static data is unsupported on the target,
12653 ** we have to locate the state vector at run-time. In the more common
12654 ** case where writable static data is supported, wsdStat can refer directly
12655 ** to the "sqlite3Stat" state vector declared above.
12657 #ifdef SQLITE_OMIT_WSD
12658 # define wsdStatInit sqlite3StatType *x = &GLOBAL(sqlite3StatType,sqlite3Stat)
12659 # define wsdStat x[0]
12660 #else
12661 # define wsdStatInit
12662 # define wsdStat sqlite3Stat
12663 #endif
12666 ** Return the current value of a status parameter.
12668 SQLITE_PRIVATE int sqlite3StatusValue(int op){
12669 wsdStatInit;
12670 assert( op>=0 && op<ArraySize(wsdStat.nowValue) );
12671 return wsdStat.nowValue[op];
12675 ** Add N to the value of a status record. It is assumed that the
12676 ** caller holds appropriate locks.
12678 SQLITE_PRIVATE void sqlite3StatusAdd(int op, int N){
12679 wsdStatInit;
12680 assert( op>=0 && op<ArraySize(wsdStat.nowValue) );
12681 wsdStat.nowValue[op] += N;
12682 if( wsdStat.nowValue[op]>wsdStat.mxValue[op] ){
12683 wsdStat.mxValue[op] = wsdStat.nowValue[op];
12688 ** Set the value of a status to X.
12690 SQLITE_PRIVATE void sqlite3StatusSet(int op, int X){
12691 wsdStatInit;
12692 assert( op>=0 && op<ArraySize(wsdStat.nowValue) );
12693 wsdStat.nowValue[op] = X;
12694 if( wsdStat.nowValue[op]>wsdStat.mxValue[op] ){
12695 wsdStat.mxValue[op] = wsdStat.nowValue[op];
12700 ** Query status information.
12702 ** This implementation assumes that reading or writing an aligned
12703 ** 32-bit integer is an atomic operation. If that assumption is not true,
12704 ** then this routine is not threadsafe.
12706 SQLITE_API int sqlite3_status(int op, int *pCurrent, int *pHighwater, int resetFlag){
12707 wsdStatInit;
12708 if( op<0 || op>=ArraySize(wsdStat.nowValue) ){
12709 return SQLITE_MISUSE_BKPT;
12711 *pCurrent = wsdStat.nowValue[op];
12712 *pHighwater = wsdStat.mxValue[op];
12713 if( resetFlag ){
12714 wsdStat.mxValue[op] = wsdStat.nowValue[op];
12716 return SQLITE_OK;
12720 ** Query status information for a single database connection
12722 SQLITE_API int sqlite3_db_status(
12723 sqlite3 *db, /* The database connection whose status is desired */
12724 int op, /* Status verb */
12725 int *pCurrent, /* Write current value here */
12726 int *pHighwater, /* Write high-water mark here */
12727 int resetFlag /* Reset high-water mark if true */
12729 int rc = SQLITE_OK; /* Return code */
12730 sqlite3_mutex_enter(db->mutex);
12731 switch( op ){
12732 case SQLITE_DBSTATUS_LOOKASIDE_USED: {
12733 *pCurrent = db->lookaside.nOut;
12734 *pHighwater = db->lookaside.mxOut;
12735 if( resetFlag ){
12736 db->lookaside.mxOut = db->lookaside.nOut;
12738 break;
12741 case SQLITE_DBSTATUS_LOOKASIDE_HIT:
12742 case SQLITE_DBSTATUS_LOOKASIDE_MISS_SIZE:
12743 case SQLITE_DBSTATUS_LOOKASIDE_MISS_FULL: {
12744 testcase( op==SQLITE_DBSTATUS_LOOKASIDE_HIT );
12745 testcase( op==SQLITE_DBSTATUS_LOOKASIDE_MISS_SIZE );
12746 testcase( op==SQLITE_DBSTATUS_LOOKASIDE_MISS_FULL );
12747 assert( (op-SQLITE_DBSTATUS_LOOKASIDE_HIT)>=0 );
12748 assert( (op-SQLITE_DBSTATUS_LOOKASIDE_HIT)<3 );
12749 *pCurrent = 0;
12750 *pHighwater = db->lookaside.anStat[op - SQLITE_DBSTATUS_LOOKASIDE_HIT];
12751 if( resetFlag ){
12752 db->lookaside.anStat[op - SQLITE_DBSTATUS_LOOKASIDE_HIT] = 0;
12754 break;
12758 ** Return an approximation for the amount of memory currently used
12759 ** by all pagers associated with the given database connection. The
12760 ** highwater mark is meaningless and is returned as zero.
12762 case SQLITE_DBSTATUS_CACHE_USED: {
12763 int totalUsed = 0;
12764 int i;
12765 sqlite3BtreeEnterAll(db);
12766 for(i=0; i<db->nDb; i++){
12767 Btree *pBt = db->aDb[i].pBt;
12768 if( pBt ){
12769 Pager *pPager = sqlite3BtreePager(pBt);
12770 totalUsed += sqlite3PagerMemUsed(pPager);
12773 sqlite3BtreeLeaveAll(db);
12774 *pCurrent = totalUsed;
12775 *pHighwater = 0;
12776 break;
12780 ** *pCurrent gets an accurate estimate of the amount of memory used
12781 ** to store the schema for all databases (main, temp, and any ATTACHed
12782 ** databases. *pHighwater is set to zero.
12784 case SQLITE_DBSTATUS_SCHEMA_USED: {
12785 int i; /* Used to iterate through schemas */
12786 int nByte = 0; /* Used to accumulate return value */
12788 sqlite3BtreeEnterAll(db);
12789 db->pnBytesFreed = &nByte;
12790 for(i=0; i<db->nDb; i++){
12791 Schema *pSchema = db->aDb[i].pSchema;
12792 if( ALWAYS(pSchema!=0) ){
12793 HashElem *p;
12795 nByte += sqlite3GlobalConfig.m.xRoundup(sizeof(HashElem)) * (
12796 pSchema->tblHash.count
12797 + pSchema->trigHash.count
12798 + pSchema->idxHash.count
12799 + pSchema->fkeyHash.count
12801 nByte += sqlite3MallocSize(pSchema->tblHash.ht);
12802 nByte += sqlite3MallocSize(pSchema->trigHash.ht);
12803 nByte += sqlite3MallocSize(pSchema->idxHash.ht);
12804 nByte += sqlite3MallocSize(pSchema->fkeyHash.ht);
12806 for(p=sqliteHashFirst(&pSchema->trigHash); p; p=sqliteHashNext(p)){
12807 sqlite3DeleteTrigger(db, (Trigger*)sqliteHashData(p));
12809 for(p=sqliteHashFirst(&pSchema->tblHash); p; p=sqliteHashNext(p)){
12810 sqlite3DeleteTable(db, (Table *)sqliteHashData(p));
12814 db->pnBytesFreed = 0;
12815 sqlite3BtreeLeaveAll(db);
12817 *pHighwater = 0;
12818 *pCurrent = nByte;
12819 break;
12823 ** *pCurrent gets an accurate estimate of the amount of memory used
12824 ** to store all prepared statements.
12825 ** *pHighwater is set to zero.
12827 case SQLITE_DBSTATUS_STMT_USED: {
12828 struct Vdbe *pVdbe; /* Used to iterate through VMs */
12829 int nByte = 0; /* Used to accumulate return value */
12831 db->pnBytesFreed = &nByte;
12832 for(pVdbe=db->pVdbe; pVdbe; pVdbe=pVdbe->pNext){
12833 sqlite3VdbeDeleteObject(db, pVdbe);
12835 db->pnBytesFreed = 0;
12837 *pHighwater = 0;
12838 *pCurrent = nByte;
12840 break;
12843 default: {
12844 rc = SQLITE_ERROR;
12847 sqlite3_mutex_leave(db->mutex);
12848 return rc;
12851 /************** End of status.c **********************************************/
12852 /************** Begin file date.c ********************************************/
12854 ** 2003 October 31
12856 ** The author disclaims copyright to this source code. In place of
12857 ** a legal notice, here is a blessing:
12859 ** May you do good and not evil.
12860 ** May you find forgiveness for yourself and forgive others.
12861 ** May you share freely, never taking more than you give.
12863 *************************************************************************
12864 ** This file contains the C functions that implement date and time
12865 ** functions for SQLite.
12867 ** There is only one exported symbol in this file - the function
12868 ** sqlite3RegisterDateTimeFunctions() found at the bottom of the file.
12869 ** All other code has file scope.
12871 ** SQLite processes all times and dates as Julian Day numbers. The
12872 ** dates and times are stored as the number of days since noon
12873 ** in Greenwich on November 24, 4714 B.C. according to the Gregorian
12874 ** calendar system.
12876 ** 1970-01-01 00:00:00 is JD 2440587.5
12877 ** 2000-01-01 00:00:00 is JD 2451544.5
12879 ** This implemention requires years to be expressed as a 4-digit number
12880 ** which means that only dates between 0000-01-01 and 9999-12-31 can
12881 ** be represented, even though julian day numbers allow a much wider
12882 ** range of dates.
12884 ** The Gregorian calendar system is used for all dates and times,
12885 ** even those that predate the Gregorian calendar. Historians usually
12886 ** use the Julian calendar for dates prior to 1582-10-15 and for some
12887 ** dates afterwards, depending on locale. Beware of this difference.
12889 ** The conversion algorithms are implemented based on descriptions
12890 ** in the following text:
12892 ** Jean Meeus
12893 ** Astronomical Algorithms, 2nd Edition, 1998
12894 ** ISBM 0-943396-61-1
12895 ** Willmann-Bell, Inc
12896 ** Richmond, Virginia (USA)
12898 #include <time.h>
12900 #ifndef SQLITE_OMIT_DATETIME_FUNCS
12903 ** On recent Windows platforms, the localtime_s() function is available
12904 ** as part of the "Secure CRT". It is essentially equivalent to
12905 ** localtime_r() available under most POSIX platforms, except that the
12906 ** order of the parameters is reversed.
12908 ** See http://msdn.microsoft.com/en-us/library/a442x3ye(VS.80).aspx.
12910 ** If the user has not indicated to use localtime_r() or localtime_s()
12911 ** already, check for an MSVC build environment that provides
12912 ** localtime_s().
12914 #if !defined(HAVE_LOCALTIME_R) && !defined(HAVE_LOCALTIME_S) && \
12915 defined(_MSC_VER) && defined(_CRT_INSECURE_DEPRECATE)
12916 #define HAVE_LOCALTIME_S 1
12917 #endif
12920 ** A structure for holding a single date and time.
12922 typedef struct DateTime DateTime;
12923 struct DateTime {
12924 sqlite3_int64 iJD; /* The julian day number times 86400000 */
12925 int Y, M, D; /* Year, month, and day */
12926 int h, m; /* Hour and minutes */
12927 int tz; /* Timezone offset in minutes */
12928 double s; /* Seconds */
12929 char validYMD; /* True (1) if Y,M,D are valid */
12930 char validHMS; /* True (1) if h,m,s are valid */
12931 char validJD; /* True (1) if iJD is valid */
12932 char validTZ; /* True (1) if tz is valid */
12937 ** Convert zDate into one or more integers. Additional arguments
12938 ** come in groups of 5 as follows:
12940 ** N number of digits in the integer
12941 ** min minimum allowed value of the integer
12942 ** max maximum allowed value of the integer
12943 ** nextC first character after the integer
12944 ** pVal where to write the integers value.
12946 ** Conversions continue until one with nextC==0 is encountered.
12947 ** The function returns the number of successful conversions.
12949 static int getDigits(const char *zDate, ...){
12950 va_list ap;
12951 int val;
12952 int N;
12953 int min;
12954 int max;
12955 int nextC;
12956 int *pVal;
12957 int cnt = 0;
12958 va_start(ap, zDate);
12960 N = va_arg(ap, int);
12961 min = va_arg(ap, int);
12962 max = va_arg(ap, int);
12963 nextC = va_arg(ap, int);
12964 pVal = va_arg(ap, int*);
12965 val = 0;
12966 while( N-- ){
12967 if( !sqlite3Isdigit(*zDate) ){
12968 goto end_getDigits;
12970 val = val*10 + *zDate - '0';
12971 zDate++;
12973 if( val<min || val>max || (nextC!=0 && nextC!=*zDate) ){
12974 goto end_getDigits;
12976 *pVal = val;
12977 zDate++;
12978 cnt++;
12979 }while( nextC );
12980 end_getDigits:
12981 va_end(ap);
12982 return cnt;
12986 ** Parse a timezone extension on the end of a date-time.
12987 ** The extension is of the form:
12989 ** (+/-)HH:MM
12991 ** Or the "zulu" notation:
12993 ** Z
12995 ** If the parse is successful, write the number of minutes
12996 ** of change in p->tz and return 0. If a parser error occurs,
12997 ** return non-zero.
12999 ** A missing specifier is not considered an error.
13001 static int parseTimezone(const char *zDate, DateTime *p){
13002 int sgn = 0;
13003 int nHr, nMn;
13004 int c;
13005 while( sqlite3Isspace(*zDate) ){ zDate++; }
13006 p->tz = 0;
13007 c = *zDate;
13008 if( c=='-' ){
13009 sgn = -1;
13010 }else if( c=='+' ){
13011 sgn = +1;
13012 }else if( c=='Z' || c=='z' ){
13013 zDate++;
13014 goto zulu_time;
13015 }else{
13016 return c!=0;
13018 zDate++;
13019 if( getDigits(zDate, 2, 0, 14, ':', &nHr, 2, 0, 59, 0, &nMn)!=2 ){
13020 return 1;
13022 zDate += 5;
13023 p->tz = sgn*(nMn + nHr*60);
13024 zulu_time:
13025 while( sqlite3Isspace(*zDate) ){ zDate++; }
13026 return *zDate!=0;
13030 ** Parse times of the form HH:MM or HH:MM:SS or HH:MM:SS.FFFF.
13031 ** The HH, MM, and SS must each be exactly 2 digits. The
13032 ** fractional seconds FFFF can be one or more digits.
13034 ** Return 1 if there is a parsing error and 0 on success.
13036 static int parseHhMmSs(const char *zDate, DateTime *p){
13037 int h, m, s;
13038 double ms = 0.0;
13039 if( getDigits(zDate, 2, 0, 24, ':', &h, 2, 0, 59, 0, &m)!=2 ){
13040 return 1;
13042 zDate += 5;
13043 if( *zDate==':' ){
13044 zDate++;
13045 if( getDigits(zDate, 2, 0, 59, 0, &s)!=1 ){
13046 return 1;
13048 zDate += 2;
13049 if( *zDate=='.' && sqlite3Isdigit(zDate[1]) ){
13050 double rScale = 1.0;
13051 zDate++;
13052 while( sqlite3Isdigit(*zDate) ){
13053 ms = ms*10.0 + *zDate - '0';
13054 rScale *= 10.0;
13055 zDate++;
13057 ms /= rScale;
13059 }else{
13060 s = 0;
13062 p->validJD = 0;
13063 p->validHMS = 1;
13064 p->h = h;
13065 p->m = m;
13066 p->s = s + ms;
13067 if( parseTimezone(zDate, p) ) return 1;
13068 p->validTZ = (p->tz!=0)?1:0;
13069 return 0;
13073 ** Convert from YYYY-MM-DD HH:MM:SS to julian day. We always assume
13074 ** that the YYYY-MM-DD is according to the Gregorian calendar.
13076 ** Reference: Meeus page 61
13078 static void computeJD(DateTime *p){
13079 int Y, M, D, A, B, X1, X2;
13081 if( p->validJD ) return;
13082 if( p->validYMD ){
13083 Y = p->Y;
13084 M = p->M;
13085 D = p->D;
13086 }else{
13087 Y = 2000; /* If no YMD specified, assume 2000-Jan-01 */
13088 M = 1;
13089 D = 1;
13091 if( M<=2 ){
13092 Y--;
13093 M += 12;
13095 A = Y/100;
13096 B = 2 - A + (A/4);
13097 X1 = 36525*(Y+4716)/100;
13098 X2 = 306001*(M+1)/10000;
13099 p->iJD = (sqlite3_int64)((X1 + X2 + D + B - 1524.5 ) * 86400000);
13100 p->validJD = 1;
13101 if( p->validHMS ){
13102 p->iJD += p->h*3600000 + p->m*60000 + (sqlite3_int64)(p->s*1000);
13103 if( p->validTZ ){
13104 p->iJD -= p->tz*60000;
13105 p->validYMD = 0;
13106 p->validHMS = 0;
13107 p->validTZ = 0;
13113 ** Parse dates of the form
13115 ** YYYY-MM-DD HH:MM:SS.FFF
13116 ** YYYY-MM-DD HH:MM:SS
13117 ** YYYY-MM-DD HH:MM
13118 ** YYYY-MM-DD
13120 ** Write the result into the DateTime structure and return 0
13121 ** on success and 1 if the input string is not a well-formed
13122 ** date.
13124 static int parseYyyyMmDd(const char *zDate, DateTime *p){
13125 int Y, M, D, neg;
13127 if( zDate[0]=='-' ){
13128 zDate++;
13129 neg = 1;
13130 }else{
13131 neg = 0;
13133 if( getDigits(zDate,4,0,9999,'-',&Y,2,1,12,'-',&M,2,1,31,0,&D)!=3 ){
13134 return 1;
13136 zDate += 10;
13137 while( sqlite3Isspace(*zDate) || 'T'==*(u8*)zDate ){ zDate++; }
13138 if( parseHhMmSs(zDate, p)==0 ){
13139 /* We got the time */
13140 }else if( *zDate==0 ){
13141 p->validHMS = 0;
13142 }else{
13143 return 1;
13145 p->validJD = 0;
13146 p->validYMD = 1;
13147 p->Y = neg ? -Y : Y;
13148 p->M = M;
13149 p->D = D;
13150 if( p->validTZ ){
13151 computeJD(p);
13153 return 0;
13157 ** Set the time to the current time reported by the VFS
13159 static void setDateTimeToCurrent(sqlite3_context *context, DateTime *p){
13160 sqlite3 *db = sqlite3_context_db_handle(context);
13161 sqlite3OsCurrentTimeInt64(db->pVfs, &p->iJD);
13162 p->validJD = 1;
13166 ** Attempt to parse the given string into a Julian Day Number. Return
13167 ** the number of errors.
13169 ** The following are acceptable forms for the input string:
13171 ** YYYY-MM-DD HH:MM:SS.FFF +/-HH:MM
13172 ** DDDD.DD
13173 ** now
13175 ** In the first form, the +/-HH:MM is always optional. The fractional
13176 ** seconds extension (the ".FFF") is optional. The seconds portion
13177 ** (":SS.FFF") is option. The year and date can be omitted as long
13178 ** as there is a time string. The time string can be omitted as long
13179 ** as there is a year and date.
13181 static int parseDateOrTime(
13182 sqlite3_context *context,
13183 const char *zDate,
13184 DateTime *p
13186 double r;
13187 if( parseYyyyMmDd(zDate,p)==0 ){
13188 return 0;
13189 }else if( parseHhMmSs(zDate, p)==0 ){
13190 return 0;
13191 }else if( sqlite3StrICmp(zDate,"now")==0){
13192 setDateTimeToCurrent(context, p);
13193 return 0;
13194 }else if( sqlite3AtoF(zDate, &r, sqlite3Strlen30(zDate), SQLITE_UTF8) ){
13195 p->iJD = (sqlite3_int64)(r*86400000.0 + 0.5);
13196 p->validJD = 1;
13197 return 0;
13199 return 1;
13203 ** Compute the Year, Month, and Day from the julian day number.
13205 static void computeYMD(DateTime *p){
13206 int Z, A, B, C, D, E, X1;
13207 if( p->validYMD ) return;
13208 if( !p->validJD ){
13209 p->Y = 2000;
13210 p->M = 1;
13211 p->D = 1;
13212 }else{
13213 Z = (int)((p->iJD + 43200000)/86400000);
13214 A = (int)((Z - 1867216.25)/36524.25);
13215 A = Z + 1 + A - (A/4);
13216 B = A + 1524;
13217 C = (int)((B - 122.1)/365.25);
13218 D = (36525*C)/100;
13219 E = (int)((B-D)/30.6001);
13220 X1 = (int)(30.6001*E);
13221 p->D = B - D - X1;
13222 p->M = E<14 ? E-1 : E-13;
13223 p->Y = p->M>2 ? C - 4716 : C - 4715;
13225 p->validYMD = 1;
13229 ** Compute the Hour, Minute, and Seconds from the julian day number.
13231 static void computeHMS(DateTime *p){
13232 int s;
13233 if( p->validHMS ) return;
13234 computeJD(p);
13235 s = (int)((p->iJD + 43200000) % 86400000);
13236 p->s = s/1000.0;
13237 s = (int)p->s;
13238 p->s -= s;
13239 p->h = s/3600;
13240 s -= p->h*3600;
13241 p->m = s/60;
13242 p->s += s - p->m*60;
13243 p->validHMS = 1;
13247 ** Compute both YMD and HMS
13249 static void computeYMD_HMS(DateTime *p){
13250 computeYMD(p);
13251 computeHMS(p);
13255 ** Clear the YMD and HMS and the TZ
13257 static void clearYMD_HMS_TZ(DateTime *p){
13258 p->validYMD = 0;
13259 p->validHMS = 0;
13260 p->validTZ = 0;
13263 #ifndef SQLITE_OMIT_LOCALTIME
13265 ** Compute the difference (in milliseconds)
13266 ** between localtime and UTC (a.k.a. GMT)
13267 ** for the time value p where p is in UTC.
13269 static sqlite3_int64 localtimeOffset(DateTime *p){
13270 DateTime x, y;
13271 time_t t;
13272 x = *p;
13273 computeYMD_HMS(&x);
13274 if( x.Y<1971 || x.Y>=2038 ){
13275 x.Y = 2000;
13276 x.M = 1;
13277 x.D = 1;
13278 x.h = 0;
13279 x.m = 0;
13280 x.s = 0.0;
13281 } else {
13282 int s = (int)(x.s + 0.5);
13283 x.s = s;
13285 x.tz = 0;
13286 x.validJD = 0;
13287 computeJD(&x);
13288 t = (time_t)(x.iJD/1000 - 21086676*(i64)10000);
13289 #ifdef HAVE_LOCALTIME_R
13291 struct tm sLocal;
13292 localtime_r(&t, &sLocal);
13293 y.Y = sLocal.tm_year + 1900;
13294 y.M = sLocal.tm_mon + 1;
13295 y.D = sLocal.tm_mday;
13296 y.h = sLocal.tm_hour;
13297 y.m = sLocal.tm_min;
13298 y.s = sLocal.tm_sec;
13300 #elif defined(HAVE_LOCALTIME_S) && HAVE_LOCALTIME_S
13302 struct tm sLocal;
13303 localtime_s(&sLocal, &t);
13304 y.Y = sLocal.tm_year + 1900;
13305 y.M = sLocal.tm_mon + 1;
13306 y.D = sLocal.tm_mday;
13307 y.h = sLocal.tm_hour;
13308 y.m = sLocal.tm_min;
13309 y.s = sLocal.tm_sec;
13311 #else
13313 struct tm *pTm;
13314 sqlite3_mutex_enter(sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_MASTER));
13315 pTm = localtime(&t);
13316 y.Y = pTm->tm_year + 1900;
13317 y.M = pTm->tm_mon + 1;
13318 y.D = pTm->tm_mday;
13319 y.h = pTm->tm_hour;
13320 y.m = pTm->tm_min;
13321 y.s = pTm->tm_sec;
13322 sqlite3_mutex_leave(sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_MASTER));
13324 #endif
13325 y.validYMD = 1;
13326 y.validHMS = 1;
13327 y.validJD = 0;
13328 y.validTZ = 0;
13329 computeJD(&y);
13330 return y.iJD - x.iJD;
13332 #endif /* SQLITE_OMIT_LOCALTIME */
13335 ** Process a modifier to a date-time stamp. The modifiers are
13336 ** as follows:
13338 ** NNN days
13339 ** NNN hours
13340 ** NNN minutes
13341 ** NNN.NNNN seconds
13342 ** NNN months
13343 ** NNN years
13344 ** start of month
13345 ** start of year
13346 ** start of week
13347 ** start of day
13348 ** weekday N
13349 ** unixepoch
13350 ** localtime
13351 ** utc
13353 ** Return 0 on success and 1 if there is any kind of error.
13355 static int parseModifier(const char *zMod, DateTime *p){
13356 int rc = 1;
13357 int n;
13358 double r;
13359 char *z, zBuf[30];
13360 z = zBuf;
13361 for(n=0; n<ArraySize(zBuf)-1 && zMod[n]; n++){
13362 z[n] = (char)sqlite3UpperToLower[(u8)zMod[n]];
13364 z[n] = 0;
13365 switch( z[0] ){
13366 #ifndef SQLITE_OMIT_LOCALTIME
13367 case 'l': {
13368 /* localtime
13370 ** Assuming the current time value is UTC (a.k.a. GMT), shift it to
13371 ** show local time.
13373 if( strcmp(z, "localtime")==0 ){
13374 computeJD(p);
13375 p->iJD += localtimeOffset(p);
13376 clearYMD_HMS_TZ(p);
13377 rc = 0;
13379 break;
13381 #endif
13382 case 'u': {
13384 ** unixepoch
13386 ** Treat the current value of p->iJD as the number of
13387 ** seconds since 1970. Convert to a real julian day number.
13389 if( strcmp(z, "unixepoch")==0 && p->validJD ){
13390 p->iJD = (p->iJD + 43200)/86400 + 21086676*(i64)10000000;
13391 clearYMD_HMS_TZ(p);
13392 rc = 0;
13394 #ifndef SQLITE_OMIT_LOCALTIME
13395 else if( strcmp(z, "utc")==0 ){
13396 sqlite3_int64 c1;
13397 computeJD(p);
13398 c1 = localtimeOffset(p);
13399 p->iJD -= c1;
13400 clearYMD_HMS_TZ(p);
13401 p->iJD += c1 - localtimeOffset(p);
13402 rc = 0;
13404 #endif
13405 break;
13407 case 'w': {
13409 ** weekday N
13411 ** Move the date to the same time on the next occurrence of
13412 ** weekday N where 0==Sunday, 1==Monday, and so forth. If the
13413 ** date is already on the appropriate weekday, this is a no-op.
13415 if( strncmp(z, "weekday ", 8)==0
13416 && sqlite3AtoF(&z[8], &r, sqlite3Strlen30(&z[8]), SQLITE_UTF8)
13417 && (n=(int)r)==r && n>=0 && r<7 ){
13418 sqlite3_int64 Z;
13419 computeYMD_HMS(p);
13420 p->validTZ = 0;
13421 p->validJD = 0;
13422 computeJD(p);
13423 Z = ((p->iJD + 129600000)/86400000) % 7;
13424 if( Z>n ) Z -= 7;
13425 p->iJD += (n - Z)*86400000;
13426 clearYMD_HMS_TZ(p);
13427 rc = 0;
13429 break;
13431 case 's': {
13433 ** start of TTTTT
13435 ** Move the date backwards to the beginning of the current day,
13436 ** or month or year.
13438 if( strncmp(z, "start of ", 9)!=0 ) break;
13439 z += 9;
13440 computeYMD(p);
13441 p->validHMS = 1;
13442 p->h = p->m = 0;
13443 p->s = 0.0;
13444 p->validTZ = 0;
13445 p->validJD = 0;
13446 if( strcmp(z,"month")==0 ){
13447 p->D = 1;
13448 rc = 0;
13449 }else if( strcmp(z,"year")==0 ){
13450 computeYMD(p);
13451 p->M = 1;
13452 p->D = 1;
13453 rc = 0;
13454 }else if( strcmp(z,"day")==0 ){
13455 rc = 0;
13457 break;
13459 case '+':
13460 case '-':
13461 case '0':
13462 case '1':
13463 case '2':
13464 case '3':
13465 case '4':
13466 case '5':
13467 case '6':
13468 case '7':
13469 case '8':
13470 case '9': {
13471 double rRounder;
13472 for(n=1; z[n] && z[n]!=':' && !sqlite3Isspace(z[n]); n++){}
13473 if( !sqlite3AtoF(z, &r, n, SQLITE_UTF8) ){
13474 rc = 1;
13475 break;
13477 if( z[n]==':' ){
13478 /* A modifier of the form (+|-)HH:MM:SS.FFF adds (or subtracts) the
13479 ** specified number of hours, minutes, seconds, and fractional seconds
13480 ** to the time. The ".FFF" may be omitted. The ":SS.FFF" may be
13481 ** omitted.
13483 const char *z2 = z;
13484 DateTime tx;
13485 sqlite3_int64 day;
13486 if( !sqlite3Isdigit(*z2) ) z2++;
13487 memset(&tx, 0, sizeof(tx));
13488 if( parseHhMmSs(z2, &tx) ) break;
13489 computeJD(&tx);
13490 tx.iJD -= 43200000;
13491 day = tx.iJD/86400000;
13492 tx.iJD -= day*86400000;
13493 if( z[0]=='-' ) tx.iJD = -tx.iJD;
13494 computeJD(p);
13495 clearYMD_HMS_TZ(p);
13496 p->iJD += tx.iJD;
13497 rc = 0;
13498 break;
13500 z += n;
13501 while( sqlite3Isspace(*z) ) z++;
13502 n = sqlite3Strlen30(z);
13503 if( n>10 || n<3 ) break;
13504 if( z[n-1]=='s' ){ z[n-1] = 0; n--; }
13505 computeJD(p);
13506 rc = 0;
13507 rRounder = r<0 ? -0.5 : +0.5;
13508 if( n==3 && strcmp(z,"day")==0 ){
13509 p->iJD += (sqlite3_int64)(r*86400000.0 + rRounder);
13510 }else if( n==4 && strcmp(z,"hour")==0 ){
13511 p->iJD += (sqlite3_int64)(r*(86400000.0/24.0) + rRounder);
13512 }else if( n==6 && strcmp(z,"minute")==0 ){
13513 p->iJD += (sqlite3_int64)(r*(86400000.0/(24.0*60.0)) + rRounder);
13514 }else if( n==6 && strcmp(z,"second")==0 ){
13515 p->iJD += (sqlite3_int64)(r*(86400000.0/(24.0*60.0*60.0)) + rRounder);
13516 }else if( n==5 && strcmp(z,"month")==0 ){
13517 int x, y;
13518 computeYMD_HMS(p);
13519 p->M += (int)r;
13520 x = p->M>0 ? (p->M-1)/12 : (p->M-12)/12;
13521 p->Y += x;
13522 p->M -= x*12;
13523 p->validJD = 0;
13524 computeJD(p);
13525 y = (int)r;
13526 if( y!=r ){
13527 p->iJD += (sqlite3_int64)((r - y)*30.0*86400000.0 + rRounder);
13529 }else if( n==4 && strcmp(z,"year")==0 ){
13530 int y = (int)r;
13531 computeYMD_HMS(p);
13532 p->Y += y;
13533 p->validJD = 0;
13534 computeJD(p);
13535 if( y!=r ){
13536 p->iJD += (sqlite3_int64)((r - y)*365.0*86400000.0 + rRounder);
13538 }else{
13539 rc = 1;
13541 clearYMD_HMS_TZ(p);
13542 break;
13544 default: {
13545 break;
13548 return rc;
13552 ** Process time function arguments. argv[0] is a date-time stamp.
13553 ** argv[1] and following are modifiers. Parse them all and write
13554 ** the resulting time into the DateTime structure p. Return 0
13555 ** on success and 1 if there are any errors.
13557 ** If there are zero parameters (if even argv[0] is undefined)
13558 ** then assume a default value of "now" for argv[0].
13560 static int isDate(
13561 sqlite3_context *context,
13562 int argc,
13563 sqlite3_value **argv,
13564 DateTime *p
13566 int i;
13567 const unsigned char *z;
13568 int eType;
13569 memset(p, 0, sizeof(*p));
13570 if( argc==0 ){
13571 setDateTimeToCurrent(context, p);
13572 }else if( (eType = sqlite3_value_type(argv[0]))==SQLITE_FLOAT
13573 || eType==SQLITE_INTEGER ){
13574 p->iJD = (sqlite3_int64)(sqlite3_value_double(argv[0])*86400000.0 + 0.5);
13575 p->validJD = 1;
13576 }else{
13577 z = sqlite3_value_text(argv[0]);
13578 if( !z || parseDateOrTime(context, (char*)z, p) ){
13579 return 1;
13582 for(i=1; i<argc; i++){
13583 if( (z = sqlite3_value_text(argv[i]))==0 || parseModifier((char*)z, p) ){
13584 return 1;
13587 return 0;
13592 ** The following routines implement the various date and time functions
13593 ** of SQLite.
13597 ** julianday( TIMESTRING, MOD, MOD, ...)
13599 ** Return the julian day number of the date specified in the arguments
13601 static void juliandayFunc(
13602 sqlite3_context *context,
13603 int argc,
13604 sqlite3_value **argv
13606 DateTime x;
13607 if( isDate(context, argc, argv, &x)==0 ){
13608 computeJD(&x);
13609 sqlite3_result_double(context, x.iJD/86400000.0);
13614 ** datetime( TIMESTRING, MOD, MOD, ...)
13616 ** Return YYYY-MM-DD HH:MM:SS
13618 static void datetimeFunc(
13619 sqlite3_context *context,
13620 int argc,
13621 sqlite3_value **argv
13623 DateTime x;
13624 if( isDate(context, argc, argv, &x)==0 ){
13625 char zBuf[100];
13626 computeYMD_HMS(&x);
13627 sqlite3_snprintf(sizeof(zBuf), zBuf, "%04d-%02d-%02d %02d:%02d:%02d",
13628 x.Y, x.M, x.D, x.h, x.m, (int)(x.s));
13629 sqlite3_result_text(context, zBuf, -1, SQLITE_TRANSIENT);
13634 ** time( TIMESTRING, MOD, MOD, ...)
13636 ** Return HH:MM:SS
13638 static void timeFunc(
13639 sqlite3_context *context,
13640 int argc,
13641 sqlite3_value **argv
13643 DateTime x;
13644 if( isDate(context, argc, argv, &x)==0 ){
13645 char zBuf[100];
13646 computeHMS(&x);
13647 sqlite3_snprintf(sizeof(zBuf), zBuf, "%02d:%02d:%02d", x.h, x.m, (int)x.s);
13648 sqlite3_result_text(context, zBuf, -1, SQLITE_TRANSIENT);
13653 ** date( TIMESTRING, MOD, MOD, ...)
13655 ** Return YYYY-MM-DD
13657 static void dateFunc(
13658 sqlite3_context *context,
13659 int argc,
13660 sqlite3_value **argv
13662 DateTime x;
13663 if( isDate(context, argc, argv, &x)==0 ){
13664 char zBuf[100];
13665 computeYMD(&x);
13666 sqlite3_snprintf(sizeof(zBuf), zBuf, "%04d-%02d-%02d", x.Y, x.M, x.D);
13667 sqlite3_result_text(context, zBuf, -1, SQLITE_TRANSIENT);
13672 ** strftime( FORMAT, TIMESTRING, MOD, MOD, ...)
13674 ** Return a string described by FORMAT. Conversions as follows:
13676 ** %d day of month
13677 ** %f ** fractional seconds SS.SSS
13678 ** %H hour 00-24
13679 ** %j day of year 000-366
13680 ** %J ** Julian day number
13681 ** %m month 01-12
13682 ** %M minute 00-59
13683 ** %s seconds since 1970-01-01
13684 ** %S seconds 00-59
13685 ** %w day of week 0-6 sunday==0
13686 ** %W week of year 00-53
13687 ** %Y year 0000-9999
13688 ** %% %
13690 static void strftimeFunc(
13691 sqlite3_context *context,
13692 int argc,
13693 sqlite3_value **argv
13695 DateTime x;
13696 u64 n;
13697 size_t i,j;
13698 char *z;
13699 sqlite3 *db;
13700 const char *zFmt = (const char*)sqlite3_value_text(argv[0]);
13701 char zBuf[100];
13702 if( zFmt==0 || isDate(context, argc-1, argv+1, &x) ) return;
13703 db = sqlite3_context_db_handle(context);
13704 for(i=0, n=1; zFmt[i]; i++, n++){
13705 if( zFmt[i]=='%' ){
13706 switch( zFmt[i+1] ){
13707 case 'd':
13708 case 'H':
13709 case 'm':
13710 case 'M':
13711 case 'S':
13712 case 'W':
13713 n++;
13714 /* fall thru */
13715 case 'w':
13716 case '%':
13717 break;
13718 case 'f':
13719 n += 8;
13720 break;
13721 case 'j':
13722 n += 3;
13723 break;
13724 case 'Y':
13725 n += 8;
13726 break;
13727 case 's':
13728 case 'J':
13729 n += 50;
13730 break;
13731 default:
13732 return; /* ERROR. return a NULL */
13734 i++;
13737 testcase( n==sizeof(zBuf)-1 );
13738 testcase( n==sizeof(zBuf) );
13739 testcase( n==(u64)db->aLimit[SQLITE_LIMIT_LENGTH]+1 );
13740 testcase( n==(u64)db->aLimit[SQLITE_LIMIT_LENGTH] );
13741 if( n<sizeof(zBuf) ){
13742 z = zBuf;
13743 }else if( n>(u64)db->aLimit[SQLITE_LIMIT_LENGTH] ){
13744 sqlite3_result_error_toobig(context);
13745 return;
13746 }else{
13747 z = sqlite3DbMallocRaw(db, (int)n);
13748 if( z==0 ){
13749 sqlite3_result_error_nomem(context);
13750 return;
13753 computeJD(&x);
13754 computeYMD_HMS(&x);
13755 for(i=j=0; zFmt[i]; i++){
13756 if( zFmt[i]!='%' ){
13757 z[j++] = zFmt[i];
13758 }else{
13759 i++;
13760 switch( zFmt[i] ){
13761 case 'd': sqlite3_snprintf(3, &z[j],"%02d",x.D); j+=2; break;
13762 case 'f': {
13763 double s = x.s;
13764 if( s>59.999 ) s = 59.999;
13765 sqlite3_snprintf(7, &z[j],"%06.3f", s);
13766 j += sqlite3Strlen30(&z[j]);
13767 break;
13769 case 'H': sqlite3_snprintf(3, &z[j],"%02d",x.h); j+=2; break;
13770 case 'W': /* Fall thru */
13771 case 'j': {
13772 int nDay; /* Number of days since 1st day of year */
13773 DateTime y = x;
13774 y.validJD = 0;
13775 y.M = 1;
13776 y.D = 1;
13777 computeJD(&y);
13778 nDay = (int)((x.iJD-y.iJD+43200000)/86400000);
13779 if( zFmt[i]=='W' ){
13780 int wd; /* 0=Monday, 1=Tuesday, ... 6=Sunday */
13781 wd = (int)(((x.iJD+43200000)/86400000)%7);
13782 sqlite3_snprintf(3, &z[j],"%02d",(nDay+7-wd)/7);
13783 j += 2;
13784 }else{
13785 sqlite3_snprintf(4, &z[j],"%03d",nDay+1);
13786 j += 3;
13788 break;
13790 case 'J': {
13791 sqlite3_snprintf(20, &z[j],"%.16g",x.iJD/86400000.0);
13792 j+=sqlite3Strlen30(&z[j]);
13793 break;
13795 case 'm': sqlite3_snprintf(3, &z[j],"%02d",x.M); j+=2; break;
13796 case 'M': sqlite3_snprintf(3, &z[j],"%02d",x.m); j+=2; break;
13797 case 's': {
13798 sqlite3_snprintf(30,&z[j],"%lld",
13799 (i64)(x.iJD/1000 - 21086676*(i64)10000));
13800 j += sqlite3Strlen30(&z[j]);
13801 break;
13803 case 'S': sqlite3_snprintf(3,&z[j],"%02d",(int)x.s); j+=2; break;
13804 case 'w': {
13805 z[j++] = (char)(((x.iJD+129600000)/86400000) % 7) + '0';
13806 break;
13808 case 'Y': {
13809 sqlite3_snprintf(5,&z[j],"%04d",x.Y); j+=sqlite3Strlen30(&z[j]);
13810 break;
13812 default: z[j++] = '%'; break;
13816 z[j] = 0;
13817 sqlite3_result_text(context, z, -1,
13818 z==zBuf ? SQLITE_TRANSIENT : SQLITE_DYNAMIC);
13822 ** current_time()
13824 ** This function returns the same value as time('now').
13826 static void ctimeFunc(
13827 sqlite3_context *context,
13828 int NotUsed,
13829 sqlite3_value **NotUsed2
13831 UNUSED_PARAMETER2(NotUsed, NotUsed2);
13832 timeFunc(context, 0, 0);
13836 ** current_date()
13838 ** This function returns the same value as date('now').
13840 static void cdateFunc(
13841 sqlite3_context *context,
13842 int NotUsed,
13843 sqlite3_value **NotUsed2
13845 UNUSED_PARAMETER2(NotUsed, NotUsed2);
13846 dateFunc(context, 0, 0);
13850 ** current_timestamp()
13852 ** This function returns the same value as datetime('now').
13854 static void ctimestampFunc(
13855 sqlite3_context *context,
13856 int NotUsed,
13857 sqlite3_value **NotUsed2
13859 UNUSED_PARAMETER2(NotUsed, NotUsed2);
13860 datetimeFunc(context, 0, 0);
13862 #endif /* !defined(SQLITE_OMIT_DATETIME_FUNCS) */
13864 #ifdef SQLITE_OMIT_DATETIME_FUNCS
13866 ** If the library is compiled to omit the full-scale date and time
13867 ** handling (to get a smaller binary), the following minimal version
13868 ** of the functions current_time(), current_date() and current_timestamp()
13869 ** are included instead. This is to support column declarations that
13870 ** include "DEFAULT CURRENT_TIME" etc.
13872 ** This function uses the C-library functions time(), gmtime()
13873 ** and strftime(). The format string to pass to strftime() is supplied
13874 ** as the user-data for the function.
13876 static void currentTimeFunc(
13877 sqlite3_context *context,
13878 int argc,
13879 sqlite3_value **argv
13881 time_t t;
13882 char *zFormat = (char *)sqlite3_user_data(context);
13883 sqlite3 *db;
13884 sqlite3_int64 iT;
13885 char zBuf[20];
13887 UNUSED_PARAMETER(argc);
13888 UNUSED_PARAMETER(argv);
13890 db = sqlite3_context_db_handle(context);
13891 sqlite3OsCurrentTimeInt64(db->pVfs, &iT);
13892 t = iT/1000 - 10000*(sqlite3_int64)21086676;
13893 #ifdef HAVE_GMTIME_R
13895 struct tm sNow;
13896 gmtime_r(&t, &sNow);
13897 strftime(zBuf, 20, zFormat, &sNow);
13899 #else
13901 struct tm *pTm;
13902 sqlite3_mutex_enter(sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_MASTER));
13903 pTm = gmtime(&t);
13904 strftime(zBuf, 20, zFormat, pTm);
13905 sqlite3_mutex_leave(sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_MASTER));
13907 #endif
13909 sqlite3_result_text(context, zBuf, -1, SQLITE_TRANSIENT);
13911 #endif
13914 ** This function registered all of the above C functions as SQL
13915 ** functions. This should be the only routine in this file with
13916 ** external linkage.
13918 SQLITE_PRIVATE void sqlite3RegisterDateTimeFunctions(void){
13919 static SQLITE_WSD FuncDef aDateTimeFuncs[] = {
13920 #ifndef SQLITE_OMIT_DATETIME_FUNCS
13921 FUNCTION(julianday, -1, 0, 0, juliandayFunc ),
13922 FUNCTION(date, -1, 0, 0, dateFunc ),
13923 FUNCTION(time, -1, 0, 0, timeFunc ),
13924 FUNCTION(datetime, -1, 0, 0, datetimeFunc ),
13925 FUNCTION(strftime, -1, 0, 0, strftimeFunc ),
13926 FUNCTION(current_time, 0, 0, 0, ctimeFunc ),
13927 FUNCTION(current_timestamp, 0, 0, 0, ctimestampFunc),
13928 FUNCTION(current_date, 0, 0, 0, cdateFunc ),
13929 #else
13930 STR_FUNCTION(current_time, 0, "%H:%M:%S", 0, currentTimeFunc),
13931 STR_FUNCTION(current_date, 0, "%Y-%m-%d", 0, currentTimeFunc),
13932 STR_FUNCTION(current_timestamp, 0, "%Y-%m-%d %H:%M:%S", 0, currentTimeFunc),
13933 #endif
13935 int i;
13936 FuncDefHash *pHash = &GLOBAL(FuncDefHash, sqlite3GlobalFunctions);
13937 FuncDef *aFunc = (FuncDef*)&GLOBAL(FuncDef, aDateTimeFuncs);
13939 for(i=0; i<ArraySize(aDateTimeFuncs); i++){
13940 sqlite3FuncDefInsert(pHash, &aFunc[i]);
13944 /************** End of date.c ************************************************/
13945 /************** Begin file os.c **********************************************/
13947 ** 2005 November 29
13949 ** The author disclaims copyright to this source code. In place of
13950 ** a legal notice, here is a blessing:
13952 ** May you do good and not evil.
13953 ** May you find forgiveness for yourself and forgive others.
13954 ** May you share freely, never taking more than you give.
13956 ******************************************************************************
13958 ** This file contains OS interface code that is common to all
13959 ** architectures.
13961 #define _SQLITE_OS_C_ 1
13962 #undef _SQLITE_OS_C_
13965 ** The default SQLite sqlite3_vfs implementations do not allocate
13966 ** memory (actually, os_unix.c allocates a small amount of memory
13967 ** from within OsOpen()), but some third-party implementations may.
13968 ** So we test the effects of a malloc() failing and the sqlite3OsXXX()
13969 ** function returning SQLITE_IOERR_NOMEM using the DO_OS_MALLOC_TEST macro.
13971 ** The following functions are instrumented for malloc() failure
13972 ** testing:
13974 ** sqlite3OsOpen()
13975 ** sqlite3OsRead()
13976 ** sqlite3OsWrite()
13977 ** sqlite3OsSync()
13978 ** sqlite3OsLock()
13981 #if defined(SQLITE_TEST)
13982 SQLITE_API int sqlite3_memdebug_vfs_oom_test = 1;
13983 #define DO_OS_MALLOC_TEST(x) \
13984 if (sqlite3_memdebug_vfs_oom_test && (!x || !sqlite3IsMemJournal(x))) { \
13985 void *pTstAlloc = sqlite3Malloc(10); \
13986 if (!pTstAlloc) return SQLITE_IOERR_NOMEM; \
13987 sqlite3_free(pTstAlloc); \
13989 #else
13990 #define DO_OS_MALLOC_TEST(x)
13991 #endif
13994 ** The following routines are convenience wrappers around methods
13995 ** of the sqlite3_file object. This is mostly just syntactic sugar. All
13996 ** of this would be completely automatic if SQLite were coded using
13997 ** C++ instead of plain old C.
13999 SQLITE_PRIVATE int sqlite3OsClose(sqlite3_file *pId){
14000 int rc = SQLITE_OK;
14001 if( pId->pMethods ){
14002 rc = pId->pMethods->xClose(pId);
14003 pId->pMethods = 0;
14005 return rc;
14007 SQLITE_PRIVATE int sqlite3OsRead(sqlite3_file *id, void *pBuf, int amt, i64 offset){
14008 DO_OS_MALLOC_TEST(id);
14009 return id->pMethods->xRead(id, pBuf, amt, offset);
14011 SQLITE_PRIVATE int sqlite3OsWrite(sqlite3_file *id, const void *pBuf, int amt, i64 offset){
14012 DO_OS_MALLOC_TEST(id);
14013 return id->pMethods->xWrite(id, pBuf, amt, offset);
14015 SQLITE_PRIVATE int sqlite3OsTruncate(sqlite3_file *id, i64 size){
14016 return id->pMethods->xTruncate(id, size);
14018 SQLITE_PRIVATE int sqlite3OsSync(sqlite3_file *id, int flags){
14019 DO_OS_MALLOC_TEST(id);
14020 return id->pMethods->xSync(id, flags);
14022 SQLITE_PRIVATE int sqlite3OsFileSize(sqlite3_file *id, i64 *pSize){
14023 DO_OS_MALLOC_TEST(id);
14024 return id->pMethods->xFileSize(id, pSize);
14026 SQLITE_PRIVATE int sqlite3OsLock(sqlite3_file *id, int lockType){
14027 DO_OS_MALLOC_TEST(id);
14028 return id->pMethods->xLock(id, lockType);
14030 SQLITE_PRIVATE int sqlite3OsUnlock(sqlite3_file *id, int lockType){
14031 return id->pMethods->xUnlock(id, lockType);
14033 SQLITE_PRIVATE int sqlite3OsCheckReservedLock(sqlite3_file *id, int *pResOut){
14034 DO_OS_MALLOC_TEST(id);
14035 return id->pMethods->xCheckReservedLock(id, pResOut);
14037 SQLITE_PRIVATE int sqlite3OsFileControl(sqlite3_file *id, int op, void *pArg){
14038 return id->pMethods->xFileControl(id, op, pArg);
14040 SQLITE_PRIVATE int sqlite3OsSectorSize(sqlite3_file *id){
14041 int (*xSectorSize)(sqlite3_file*) = id->pMethods->xSectorSize;
14042 return (xSectorSize ? xSectorSize(id) : SQLITE_DEFAULT_SECTOR_SIZE);
14044 SQLITE_PRIVATE int sqlite3OsDeviceCharacteristics(sqlite3_file *id){
14045 return id->pMethods->xDeviceCharacteristics(id);
14047 SQLITE_PRIVATE int sqlite3OsShmLock(sqlite3_file *id, int offset, int n, int flags){
14048 return id->pMethods->xShmLock(id, offset, n, flags);
14050 SQLITE_PRIVATE void sqlite3OsShmBarrier(sqlite3_file *id){
14051 id->pMethods->xShmBarrier(id);
14053 SQLITE_PRIVATE int sqlite3OsShmUnmap(sqlite3_file *id, int deleteFlag){
14054 return id->pMethods->xShmUnmap(id, deleteFlag);
14056 SQLITE_PRIVATE int sqlite3OsShmMap(
14057 sqlite3_file *id, /* Database file handle */
14058 int iPage,
14059 int pgsz,
14060 int bExtend, /* True to extend file if necessary */
14061 void volatile **pp /* OUT: Pointer to mapping */
14063 return id->pMethods->xShmMap(id, iPage, pgsz, bExtend, pp);
14067 ** The next group of routines are convenience wrappers around the
14068 ** VFS methods.
14070 SQLITE_PRIVATE int sqlite3OsOpen(
14071 sqlite3_vfs *pVfs,
14072 const char *zPath,
14073 sqlite3_file *pFile,
14074 int flags,
14075 int *pFlagsOut
14077 int rc;
14078 DO_OS_MALLOC_TEST(0);
14079 /* 0x87f3f is a mask of SQLITE_OPEN_ flags that are valid to be passed
14080 ** down into the VFS layer. Some SQLITE_OPEN_ flags (for example,
14081 ** SQLITE_OPEN_FULLMUTEX or SQLITE_OPEN_SHAREDCACHE) are blocked before
14082 ** reaching the VFS. */
14083 rc = pVfs->xOpen(pVfs, zPath, pFile, flags & 0x87f3f, pFlagsOut);
14084 assert( rc==SQLITE_OK || pFile->pMethods==0 );
14085 return rc;
14087 SQLITE_PRIVATE int sqlite3OsDelete(sqlite3_vfs *pVfs, const char *zPath, int dirSync){
14088 return pVfs->xDelete(pVfs, zPath, dirSync);
14090 SQLITE_PRIVATE int sqlite3OsAccess(
14091 sqlite3_vfs *pVfs,
14092 const char *zPath,
14093 int flags,
14094 int *pResOut
14096 DO_OS_MALLOC_TEST(0);
14097 return pVfs->xAccess(pVfs, zPath, flags, pResOut);
14099 SQLITE_PRIVATE int sqlite3OsFullPathname(
14100 sqlite3_vfs *pVfs,
14101 const char *zPath,
14102 int nPathOut,
14103 char *zPathOut
14105 zPathOut[0] = 0;
14106 return pVfs->xFullPathname(pVfs, zPath, nPathOut, zPathOut);
14108 #ifndef SQLITE_OMIT_LOAD_EXTENSION
14109 SQLITE_PRIVATE void *sqlite3OsDlOpen(sqlite3_vfs *pVfs, const char *zPath){
14110 return pVfs->xDlOpen(pVfs, zPath);
14112 SQLITE_PRIVATE void sqlite3OsDlError(sqlite3_vfs *pVfs, int nByte, char *zBufOut){
14113 pVfs->xDlError(pVfs, nByte, zBufOut);
14115 SQLITE_PRIVATE void (*sqlite3OsDlSym(sqlite3_vfs *pVfs, void *pHdle, const char *zSym))(void){
14116 return pVfs->xDlSym(pVfs, pHdle, zSym);
14118 SQLITE_PRIVATE void sqlite3OsDlClose(sqlite3_vfs *pVfs, void *pHandle){
14119 pVfs->xDlClose(pVfs, pHandle);
14121 #endif /* SQLITE_OMIT_LOAD_EXTENSION */
14122 SQLITE_PRIVATE int sqlite3OsRandomness(sqlite3_vfs *pVfs, int nByte, char *zBufOut){
14123 return pVfs->xRandomness(pVfs, nByte, zBufOut);
14125 SQLITE_PRIVATE int sqlite3OsSleep(sqlite3_vfs *pVfs, int nMicro){
14126 return pVfs->xSleep(pVfs, nMicro);
14128 SQLITE_PRIVATE int sqlite3OsCurrentTimeInt64(sqlite3_vfs *pVfs, sqlite3_int64 *pTimeOut){
14129 int rc;
14130 /* IMPLEMENTATION-OF: R-49045-42493 SQLite will use the xCurrentTimeInt64()
14131 ** method to get the current date and time if that method is available
14132 ** (if iVersion is 2 or greater and the function pointer is not NULL) and
14133 ** will fall back to xCurrentTime() if xCurrentTimeInt64() is
14134 ** unavailable.
14136 if( pVfs->iVersion>=2 && pVfs->xCurrentTimeInt64 ){
14137 rc = pVfs->xCurrentTimeInt64(pVfs, pTimeOut);
14138 }else{
14139 double r;
14140 rc = pVfs->xCurrentTime(pVfs, &r);
14141 *pTimeOut = (sqlite3_int64)(r*86400000.0);
14143 return rc;
14146 SQLITE_PRIVATE int sqlite3OsOpenMalloc(
14147 sqlite3_vfs *pVfs,
14148 const char *zFile,
14149 sqlite3_file **ppFile,
14150 int flags,
14151 int *pOutFlags
14153 int rc = SQLITE_NOMEM;
14154 sqlite3_file *pFile;
14155 pFile = (sqlite3_file *)sqlite3Malloc(pVfs->szOsFile);
14156 if( pFile ){
14157 rc = sqlite3OsOpen(pVfs, zFile, pFile, flags, pOutFlags);
14158 if( rc!=SQLITE_OK ){
14159 sqlite3_free(pFile);
14160 }else{
14161 *ppFile = pFile;
14164 return rc;
14166 SQLITE_PRIVATE int sqlite3OsCloseFree(sqlite3_file *pFile){
14167 int rc = SQLITE_OK;
14168 assert( pFile );
14169 rc = sqlite3OsClose(pFile);
14170 sqlite3_free(pFile);
14171 return rc;
14175 ** This function is a wrapper around the OS specific implementation of
14176 ** sqlite3_os_init(). The purpose of the wrapper is to provide the
14177 ** ability to simulate a malloc failure, so that the handling of an
14178 ** error in sqlite3_os_init() by the upper layers can be tested.
14180 SQLITE_PRIVATE int sqlite3OsInit(void){
14181 void *p = sqlite3_malloc(10);
14182 if( p==0 ) return SQLITE_NOMEM;
14183 sqlite3_free(p);
14184 return sqlite3_os_init();
14188 ** The list of all registered VFS implementations.
14190 static sqlite3_vfs * SQLITE_WSD vfsList = 0;
14191 #define vfsList GLOBAL(sqlite3_vfs *, vfsList)
14194 ** Locate a VFS by name. If no name is given, simply return the
14195 ** first VFS on the list.
14197 SQLITE_API sqlite3_vfs *sqlite3_vfs_find(const char *zVfs){
14198 sqlite3_vfs *pVfs = 0;
14199 #if SQLITE_THREADSAFE
14200 sqlite3_mutex *mutex;
14201 #endif
14202 #ifndef SQLITE_OMIT_AUTOINIT
14203 int rc = sqlite3_initialize();
14204 if( rc ) return 0;
14205 #endif
14206 #if SQLITE_THREADSAFE
14207 mutex = sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_MASTER);
14208 #endif
14209 sqlite3_mutex_enter(mutex);
14210 for(pVfs = vfsList; pVfs; pVfs=pVfs->pNext){
14211 if( zVfs==0 ) break;
14212 if( strcmp(zVfs, pVfs->zName)==0 ) break;
14214 sqlite3_mutex_leave(mutex);
14215 return pVfs;
14219 ** Unlink a VFS from the linked list
14221 static void vfsUnlink(sqlite3_vfs *pVfs){
14222 assert( sqlite3_mutex_held(sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_MASTER)) );
14223 if( pVfs==0 ){
14224 /* No-op */
14225 }else if( vfsList==pVfs ){
14226 vfsList = pVfs->pNext;
14227 }else if( vfsList ){
14228 sqlite3_vfs *p = vfsList;
14229 while( p->pNext && p->pNext!=pVfs ){
14230 p = p->pNext;
14232 if( p->pNext==pVfs ){
14233 p->pNext = pVfs->pNext;
14239 ** Register a VFS with the system. It is harmless to register the same
14240 ** VFS multiple times. The new VFS becomes the default if makeDflt is
14241 ** true.
14243 SQLITE_API int sqlite3_vfs_register(sqlite3_vfs *pVfs, int makeDflt){
14244 sqlite3_mutex *mutex = 0;
14245 #ifndef SQLITE_OMIT_AUTOINIT
14246 int rc = sqlite3_initialize();
14247 if( rc ) return rc;
14248 #endif
14249 mutex = sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_MASTER);
14250 sqlite3_mutex_enter(mutex);
14251 vfsUnlink(pVfs);
14252 if( makeDflt || vfsList==0 ){
14253 pVfs->pNext = vfsList;
14254 vfsList = pVfs;
14255 }else{
14256 pVfs->pNext = vfsList->pNext;
14257 vfsList->pNext = pVfs;
14259 assert(vfsList);
14260 sqlite3_mutex_leave(mutex);
14261 return SQLITE_OK;
14265 ** Unregister a VFS so that it is no longer accessible.
14267 SQLITE_API int sqlite3_vfs_unregister(sqlite3_vfs *pVfs){
14268 #if SQLITE_THREADSAFE
14269 sqlite3_mutex *mutex = sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_MASTER);
14270 #endif
14271 sqlite3_mutex_enter(mutex);
14272 vfsUnlink(pVfs);
14273 sqlite3_mutex_leave(mutex);
14274 return SQLITE_OK;
14277 /************** End of os.c **************************************************/
14278 /************** Begin file fault.c *******************************************/
14280 ** 2008 Jan 22
14282 ** The author disclaims copyright to this source code. In place of
14283 ** a legal notice, here is a blessing:
14285 ** May you do good and not evil.
14286 ** May you find forgiveness for yourself and forgive others.
14287 ** May you share freely, never taking more than you give.
14289 *************************************************************************
14291 ** This file contains code to support the concept of "benign"
14292 ** malloc failures (when the xMalloc() or xRealloc() method of the
14293 ** sqlite3_mem_methods structure fails to allocate a block of memory
14294 ** and returns 0).
14296 ** Most malloc failures are non-benign. After they occur, SQLite
14297 ** abandons the current operation and returns an error code (usually
14298 ** SQLITE_NOMEM) to the user. However, sometimes a fault is not necessarily
14299 ** fatal. For example, if a malloc fails while resizing a hash table, this
14300 ** is completely recoverable simply by not carrying out the resize. The
14301 ** hash table will continue to function normally. So a malloc failure
14302 ** during a hash table resize is a benign fault.
14306 #ifndef SQLITE_OMIT_BUILTIN_TEST
14309 ** Global variables.
14311 typedef struct BenignMallocHooks BenignMallocHooks;
14312 static SQLITE_WSD struct BenignMallocHooks {
14313 void (*xBenignBegin)(void);
14314 void (*xBenignEnd)(void);
14315 } sqlite3Hooks = { 0, 0 };
14317 /* The "wsdHooks" macro will resolve to the appropriate BenignMallocHooks
14318 ** structure. If writable static data is unsupported on the target,
14319 ** we have to locate the state vector at run-time. In the more common
14320 ** case where writable static data is supported, wsdHooks can refer directly
14321 ** to the "sqlite3Hooks" state vector declared above.
14323 #ifdef SQLITE_OMIT_WSD
14324 # define wsdHooksInit \
14325 BenignMallocHooks *x = &GLOBAL(BenignMallocHooks,sqlite3Hooks)
14326 # define wsdHooks x[0]
14327 #else
14328 # define wsdHooksInit
14329 # define wsdHooks sqlite3Hooks
14330 #endif
14334 ** Register hooks to call when sqlite3BeginBenignMalloc() and
14335 ** sqlite3EndBenignMalloc() are called, respectively.
14337 SQLITE_PRIVATE void sqlite3BenignMallocHooks(
14338 void (*xBenignBegin)(void),
14339 void (*xBenignEnd)(void)
14341 wsdHooksInit;
14342 wsdHooks.xBenignBegin = xBenignBegin;
14343 wsdHooks.xBenignEnd = xBenignEnd;
14347 ** This (sqlite3EndBenignMalloc()) is called by SQLite code to indicate that
14348 ** subsequent malloc failures are benign. A call to sqlite3EndBenignMalloc()
14349 ** indicates that subsequent malloc failures are non-benign.
14351 SQLITE_PRIVATE void sqlite3BeginBenignMalloc(void){
14352 wsdHooksInit;
14353 if( wsdHooks.xBenignBegin ){
14354 wsdHooks.xBenignBegin();
14357 SQLITE_PRIVATE void sqlite3EndBenignMalloc(void){
14358 wsdHooksInit;
14359 if( wsdHooks.xBenignEnd ){
14360 wsdHooks.xBenignEnd();
14364 #endif /* #ifndef SQLITE_OMIT_BUILTIN_TEST */
14366 /************** End of fault.c ***********************************************/
14367 /************** Begin file mem0.c ********************************************/
14369 ** 2008 October 28
14371 ** The author disclaims copyright to this source code. In place of
14372 ** a legal notice, here is a blessing:
14374 ** May you do good and not evil.
14375 ** May you find forgiveness for yourself and forgive others.
14376 ** May you share freely, never taking more than you give.
14378 *************************************************************************
14380 ** This file contains a no-op memory allocation drivers for use when
14381 ** SQLITE_ZERO_MALLOC is defined. The allocation drivers implemented
14382 ** here always fail. SQLite will not operate with these drivers. These
14383 ** are merely placeholders. Real drivers must be substituted using
14384 ** sqlite3_config() before SQLite will operate.
14388 ** This version of the memory allocator is the default. It is
14389 ** used when no other memory allocator is specified using compile-time
14390 ** macros.
14392 #ifdef SQLITE_ZERO_MALLOC
14395 ** No-op versions of all memory allocation routines
14397 static void *sqlite3MemMalloc(int nByte){ return 0; }
14398 static void sqlite3MemFree(void *pPrior){ return; }
14399 static void *sqlite3MemRealloc(void *pPrior, int nByte){ return 0; }
14400 static int sqlite3MemSize(void *pPrior){ return 0; }
14401 static int sqlite3MemRoundup(int n){ return n; }
14402 static int sqlite3MemInit(void *NotUsed){ return SQLITE_OK; }
14403 static void sqlite3MemShutdown(void *NotUsed){ return; }
14406 ** This routine is the only routine in this file with external linkage.
14408 ** Populate the low-level memory allocation function pointers in
14409 ** sqlite3GlobalConfig.m with pointers to the routines in this file.
14411 SQLITE_PRIVATE void sqlite3MemSetDefault(void){
14412 static const sqlite3_mem_methods defaultMethods = {
14413 sqlite3MemMalloc,
14414 sqlite3MemFree,
14415 sqlite3MemRealloc,
14416 sqlite3MemSize,
14417 sqlite3MemRoundup,
14418 sqlite3MemInit,
14419 sqlite3MemShutdown,
14422 sqlite3_config(SQLITE_CONFIG_MALLOC, &defaultMethods);
14425 #endif /* SQLITE_ZERO_MALLOC */
14427 /************** End of mem0.c ************************************************/
14428 /************** Begin file mem1.c ********************************************/
14430 ** 2007 August 14
14432 ** The author disclaims copyright to this source code. In place of
14433 ** a legal notice, here is a blessing:
14435 ** May you do good and not evil.
14436 ** May you find forgiveness for yourself and forgive others.
14437 ** May you share freely, never taking more than you give.
14439 *************************************************************************
14441 ** This file contains low-level memory allocation drivers for when
14442 ** SQLite will use the standard C-library malloc/realloc/free interface
14443 ** to obtain the memory it needs.
14445 ** This file contains implementations of the low-level memory allocation
14446 ** routines specified in the sqlite3_mem_methods object.
14450 ** This version of the memory allocator is the default. It is
14451 ** used when no other memory allocator is specified using compile-time
14452 ** macros.
14454 #ifdef SQLITE_SYSTEM_MALLOC
14457 ** Like malloc(), but remember the size of the allocation
14458 ** so that we can find it later using sqlite3MemSize().
14460 ** For this low-level routine, we are guaranteed that nByte>0 because
14461 ** cases of nByte<=0 will be intercepted and dealt with by higher level
14462 ** routines.
14464 static void *sqlite3MemMalloc(int nByte){
14465 sqlite3_int64 *p;
14466 assert( nByte>0 );
14467 nByte = ROUND8(nByte);
14468 p = malloc( nByte+8 );
14469 if( p ){
14470 p[0] = nByte;
14471 p++;
14472 }else{
14473 testcase( sqlite3GlobalConfig.xLog!=0 );
14474 sqlite3_log(SQLITE_NOMEM, "failed to allocate %u bytes of memory", nByte);
14476 return (void *)p;
14480 ** Like free() but works for allocations obtained from sqlite3MemMalloc()
14481 ** or sqlite3MemRealloc().
14483 ** For this low-level routine, we already know that pPrior!=0 since
14484 ** cases where pPrior==0 will have been intecepted and dealt with
14485 ** by higher-level routines.
14487 static void sqlite3MemFree(void *pPrior){
14488 sqlite3_int64 *p = (sqlite3_int64*)pPrior;
14489 assert( pPrior!=0 );
14490 p--;
14491 free(p);
14495 ** Report the allocated size of a prior return from xMalloc()
14496 ** or xRealloc().
14498 static int sqlite3MemSize(void *pPrior){
14499 sqlite3_int64 *p;
14500 if( pPrior==0 ) return 0;
14501 p = (sqlite3_int64*)pPrior;
14502 p--;
14503 return (int)p[0];
14507 ** Like realloc(). Resize an allocation previously obtained from
14508 ** sqlite3MemMalloc().
14510 ** For this low-level interface, we know that pPrior!=0. Cases where
14511 ** pPrior==0 while have been intercepted by higher-level routine and
14512 ** redirected to xMalloc. Similarly, we know that nByte>0 becauses
14513 ** cases where nByte<=0 will have been intercepted by higher-level
14514 ** routines and redirected to xFree.
14516 static void *sqlite3MemRealloc(void *pPrior, int nByte){
14517 sqlite3_int64 *p = (sqlite3_int64*)pPrior;
14518 assert( pPrior!=0 && nByte>0 );
14519 assert( nByte==ROUND8(nByte) ); /* EV: R-46199-30249 */
14520 p--;
14521 p = realloc(p, nByte+8 );
14522 if( p ){
14523 p[0] = nByte;
14524 p++;
14525 }else{
14526 testcase( sqlite3GlobalConfig.xLog!=0 );
14527 sqlite3_log(SQLITE_NOMEM,
14528 "failed memory resize %u to %u bytes",
14529 sqlite3MemSize(pPrior), nByte);
14531 return (void*)p;
14535 ** Round up a request size to the next valid allocation size.
14537 static int sqlite3MemRoundup(int n){
14538 return ROUND8(n);
14542 ** Initialize this module.
14544 static int sqlite3MemInit(void *NotUsed){
14545 UNUSED_PARAMETER(NotUsed);
14546 return SQLITE_OK;
14550 ** Deinitialize this module.
14552 static void sqlite3MemShutdown(void *NotUsed){
14553 UNUSED_PARAMETER(NotUsed);
14554 return;
14558 ** This routine is the only routine in this file with external linkage.
14560 ** Populate the low-level memory allocation function pointers in
14561 ** sqlite3GlobalConfig.m with pointers to the routines in this file.
14563 SQLITE_PRIVATE void sqlite3MemSetDefault(void){
14564 static const sqlite3_mem_methods defaultMethods = {
14565 sqlite3MemMalloc,
14566 sqlite3MemFree,
14567 sqlite3MemRealloc,
14568 sqlite3MemSize,
14569 sqlite3MemRoundup,
14570 sqlite3MemInit,
14571 sqlite3MemShutdown,
14574 sqlite3_config(SQLITE_CONFIG_MALLOC, &defaultMethods);
14577 #endif /* SQLITE_SYSTEM_MALLOC */
14579 /************** End of mem1.c ************************************************/
14580 /************** Begin file mem2.c ********************************************/
14582 ** 2007 August 15
14584 ** The author disclaims copyright to this source code. In place of
14585 ** a legal notice, here is a blessing:
14587 ** May you do good and not evil.
14588 ** May you find forgiveness for yourself and forgive others.
14589 ** May you share freely, never taking more than you give.
14591 *************************************************************************
14593 ** This file contains low-level memory allocation drivers for when
14594 ** SQLite will use the standard C-library malloc/realloc/free interface
14595 ** to obtain the memory it needs while adding lots of additional debugging
14596 ** information to each allocation in order to help detect and fix memory
14597 ** leaks and memory usage errors.
14599 ** This file contains implementations of the low-level memory allocation
14600 ** routines specified in the sqlite3_mem_methods object.
14604 ** This version of the memory allocator is used only if the
14605 ** SQLITE_MEMDEBUG macro is defined
14607 #ifdef SQLITE_MEMDEBUG
14610 ** The backtrace functionality is only available with GLIBC
14612 #ifdef __GLIBC__
14613 extern int backtrace(void**,int);
14614 extern void backtrace_symbols_fd(void*const*,int,int);
14615 #else
14616 # define backtrace(A,B) 1
14617 # define backtrace_symbols_fd(A,B,C)
14618 #endif
14621 ** Each memory allocation looks like this:
14623 ** ------------------------------------------------------------------------
14624 ** | Title | backtrace pointers | MemBlockHdr | allocation | EndGuard |
14625 ** ------------------------------------------------------------------------
14627 ** The application code sees only a pointer to the allocation. We have
14628 ** to back up from the allocation pointer to find the MemBlockHdr. The
14629 ** MemBlockHdr tells us the size of the allocation and the number of
14630 ** backtrace pointers. There is also a guard word at the end of the
14631 ** MemBlockHdr.
14633 struct MemBlockHdr {
14634 i64 iSize; /* Size of this allocation */
14635 struct MemBlockHdr *pNext, *pPrev; /* Linked list of all unfreed memory */
14636 char nBacktrace; /* Number of backtraces on this alloc */
14637 char nBacktraceSlots; /* Available backtrace slots */
14638 u8 nTitle; /* Bytes of title; includes '\0' */
14639 u8 eType; /* Allocation type code */
14640 int iForeGuard; /* Guard word for sanity */
14644 ** Guard words
14646 #define FOREGUARD 0x80F5E153
14647 #define REARGUARD 0xE4676B53
14650 ** Number of malloc size increments to track.
14652 #define NCSIZE 1000
14655 ** All of the static variables used by this module are collected
14656 ** into a single structure named "mem". This is to keep the
14657 ** static variables organized and to reduce namespace pollution
14658 ** when this module is combined with other in the amalgamation.
14660 static struct {
14663 ** Mutex to control access to the memory allocation subsystem.
14665 sqlite3_mutex *mutex;
14668 ** Head and tail of a linked list of all outstanding allocations
14670 struct MemBlockHdr *pFirst;
14671 struct MemBlockHdr *pLast;
14674 ** The number of levels of backtrace to save in new allocations.
14676 int nBacktrace;
14677 void (*xBacktrace)(int, int, void **);
14680 ** Title text to insert in front of each block
14682 int nTitle; /* Bytes of zTitle to save. Includes '\0' and padding */
14683 char zTitle[100]; /* The title text */
14686 ** sqlite3MallocDisallow() increments the following counter.
14687 ** sqlite3MallocAllow() decrements it.
14689 int disallow; /* Do not allow memory allocation */
14692 ** Gather statistics on the sizes of memory allocations.
14693 ** nAlloc[i] is the number of allocation attempts of i*8
14694 ** bytes. i==NCSIZE is the number of allocation attempts for
14695 ** sizes more than NCSIZE*8 bytes.
14697 int nAlloc[NCSIZE]; /* Total number of allocations */
14698 int nCurrent[NCSIZE]; /* Current number of allocations */
14699 int mxCurrent[NCSIZE]; /* Highwater mark for nCurrent */
14701 } mem;
14705 ** Adjust memory usage statistics
14707 static void adjustStats(int iSize, int increment){
14708 int i = ROUND8(iSize)/8;
14709 if( i>NCSIZE-1 ){
14710 i = NCSIZE - 1;
14712 if( increment>0 ){
14713 mem.nAlloc[i]++;
14714 mem.nCurrent[i]++;
14715 if( mem.nCurrent[i]>mem.mxCurrent[i] ){
14716 mem.mxCurrent[i] = mem.nCurrent[i];
14718 }else{
14719 mem.nCurrent[i]--;
14720 assert( mem.nCurrent[i]>=0 );
14725 ** Given an allocation, find the MemBlockHdr for that allocation.
14727 ** This routine checks the guards at either end of the allocation and
14728 ** if they are incorrect it asserts.
14730 static struct MemBlockHdr *sqlite3MemsysGetHeader(void *pAllocation){
14731 struct MemBlockHdr *p;
14732 int *pInt;
14733 u8 *pU8;
14734 int nReserve;
14736 p = (struct MemBlockHdr*)pAllocation;
14737 p--;
14738 assert( p->iForeGuard==(int)FOREGUARD );
14739 nReserve = ROUND8(p->iSize);
14740 pInt = (int*)pAllocation;
14741 pU8 = (u8*)pAllocation;
14742 assert( pInt[nReserve/sizeof(int)]==(int)REARGUARD );
14743 /* This checks any of the "extra" bytes allocated due
14744 ** to rounding up to an 8 byte boundary to ensure
14745 ** they haven't been overwritten.
14747 while( nReserve-- > p->iSize ) assert( pU8[nReserve]==0x65 );
14748 return p;
14752 ** Return the number of bytes currently allocated at address p.
14754 static int sqlite3MemSize(void *p){
14755 struct MemBlockHdr *pHdr;
14756 if( !p ){
14757 return 0;
14759 pHdr = sqlite3MemsysGetHeader(p);
14760 return pHdr->iSize;
14764 ** Initialize the memory allocation subsystem.
14766 static int sqlite3MemInit(void *NotUsed){
14767 UNUSED_PARAMETER(NotUsed);
14768 assert( (sizeof(struct MemBlockHdr)&7) == 0 );
14769 if( !sqlite3GlobalConfig.bMemstat ){
14770 /* If memory status is enabled, then the malloc.c wrapper will already
14771 ** hold the STATIC_MEM mutex when the routines here are invoked. */
14772 mem.mutex = sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_MEM);
14774 return SQLITE_OK;
14778 ** Deinitialize the memory allocation subsystem.
14780 static void sqlite3MemShutdown(void *NotUsed){
14781 UNUSED_PARAMETER(NotUsed);
14782 mem.mutex = 0;
14786 ** Round up a request size to the next valid allocation size.
14788 static int sqlite3MemRoundup(int n){
14789 return ROUND8(n);
14793 ** Fill a buffer with pseudo-random bytes. This is used to preset
14794 ** the content of a new memory allocation to unpredictable values and
14795 ** to clear the content of a freed allocation to unpredictable values.
14797 static void randomFill(char *pBuf, int nByte){
14798 unsigned int x, y, r;
14799 x = SQLITE_PTR_TO_INT(pBuf);
14800 y = nByte | 1;
14801 while( nByte >= 4 ){
14802 x = (x>>1) ^ (-(x&1) & 0xd0000001);
14803 y = y*1103515245 + 12345;
14804 r = x ^ y;
14805 *(int*)pBuf = r;
14806 pBuf += 4;
14807 nByte -= 4;
14809 while( nByte-- > 0 ){
14810 x = (x>>1) ^ (-(x&1) & 0xd0000001);
14811 y = y*1103515245 + 12345;
14812 r = x ^ y;
14813 *(pBuf++) = r & 0xff;
14818 ** Allocate nByte bytes of memory.
14820 static void *sqlite3MemMalloc(int nByte){
14821 struct MemBlockHdr *pHdr;
14822 void **pBt;
14823 char *z;
14824 int *pInt;
14825 void *p = 0;
14826 int totalSize;
14827 int nReserve;
14828 sqlite3_mutex_enter(mem.mutex);
14829 assert( mem.disallow==0 );
14830 nReserve = ROUND8(nByte);
14831 totalSize = nReserve + sizeof(*pHdr) + sizeof(int) +
14832 mem.nBacktrace*sizeof(void*) + mem.nTitle;
14833 p = malloc(totalSize);
14834 if( p ){
14835 z = p;
14836 pBt = (void**)&z[mem.nTitle];
14837 pHdr = (struct MemBlockHdr*)&pBt[mem.nBacktrace];
14838 pHdr->pNext = 0;
14839 pHdr->pPrev = mem.pLast;
14840 if( mem.pLast ){
14841 mem.pLast->pNext = pHdr;
14842 }else{
14843 mem.pFirst = pHdr;
14845 mem.pLast = pHdr;
14846 pHdr->iForeGuard = FOREGUARD;
14847 pHdr->eType = MEMTYPE_HEAP;
14848 pHdr->nBacktraceSlots = mem.nBacktrace;
14849 pHdr->nTitle = mem.nTitle;
14850 if( mem.nBacktrace ){
14851 void *aAddr[40];
14852 pHdr->nBacktrace = backtrace(aAddr, mem.nBacktrace+1)-1;
14853 memcpy(pBt, &aAddr[1], pHdr->nBacktrace*sizeof(void*));
14854 assert(pBt[0]);
14855 if( mem.xBacktrace ){
14856 mem.xBacktrace(nByte, pHdr->nBacktrace-1, &aAddr[1]);
14858 }else{
14859 pHdr->nBacktrace = 0;
14861 if( mem.nTitle ){
14862 memcpy(z, mem.zTitle, mem.nTitle);
14864 pHdr->iSize = nByte;
14865 adjustStats(nByte, +1);
14866 pInt = (int*)&pHdr[1];
14867 pInt[nReserve/sizeof(int)] = REARGUARD;
14868 randomFill((char*)pInt, nByte);
14869 memset(((char*)pInt)+nByte, 0x65, nReserve-nByte);
14870 p = (void*)pInt;
14872 sqlite3_mutex_leave(mem.mutex);
14873 return p;
14877 ** Free memory.
14879 static void sqlite3MemFree(void *pPrior){
14880 struct MemBlockHdr *pHdr;
14881 void **pBt;
14882 char *z;
14883 assert( sqlite3GlobalConfig.bMemstat || sqlite3GlobalConfig.bCoreMutex==0
14884 || mem.mutex!=0 );
14885 pHdr = sqlite3MemsysGetHeader(pPrior);
14886 pBt = (void**)pHdr;
14887 pBt -= pHdr->nBacktraceSlots;
14888 sqlite3_mutex_enter(mem.mutex);
14889 if( pHdr->pPrev ){
14890 assert( pHdr->pPrev->pNext==pHdr );
14891 pHdr->pPrev->pNext = pHdr->pNext;
14892 }else{
14893 assert( mem.pFirst==pHdr );
14894 mem.pFirst = pHdr->pNext;
14896 if( pHdr->pNext ){
14897 assert( pHdr->pNext->pPrev==pHdr );
14898 pHdr->pNext->pPrev = pHdr->pPrev;
14899 }else{
14900 assert( mem.pLast==pHdr );
14901 mem.pLast = pHdr->pPrev;
14903 z = (char*)pBt;
14904 z -= pHdr->nTitle;
14905 adjustStats(pHdr->iSize, -1);
14906 randomFill(z, sizeof(void*)*pHdr->nBacktraceSlots + sizeof(*pHdr) +
14907 pHdr->iSize + sizeof(int) + pHdr->nTitle);
14908 free(z);
14909 sqlite3_mutex_leave(mem.mutex);
14913 ** Change the size of an existing memory allocation.
14915 ** For this debugging implementation, we *always* make a copy of the
14916 ** allocation into a new place in memory. In this way, if the
14917 ** higher level code is using pointer to the old allocation, it is
14918 ** much more likely to break and we are much more liking to find
14919 ** the error.
14921 static void *sqlite3MemRealloc(void *pPrior, int nByte){
14922 struct MemBlockHdr *pOldHdr;
14923 void *pNew;
14924 assert( mem.disallow==0 );
14925 assert( (nByte & 7)==0 ); /* EV: R-46199-30249 */
14926 pOldHdr = sqlite3MemsysGetHeader(pPrior);
14927 pNew = sqlite3MemMalloc(nByte);
14928 if( pNew ){
14929 memcpy(pNew, pPrior, nByte<pOldHdr->iSize ? nByte : pOldHdr->iSize);
14930 if( nByte>pOldHdr->iSize ){
14931 randomFill(&((char*)pNew)[pOldHdr->iSize], nByte - pOldHdr->iSize);
14933 sqlite3MemFree(pPrior);
14935 return pNew;
14939 ** Populate the low-level memory allocation function pointers in
14940 ** sqlite3GlobalConfig.m with pointers to the routines in this file.
14942 SQLITE_PRIVATE void sqlite3MemSetDefault(void){
14943 static const sqlite3_mem_methods defaultMethods = {
14944 sqlite3MemMalloc,
14945 sqlite3MemFree,
14946 sqlite3MemRealloc,
14947 sqlite3MemSize,
14948 sqlite3MemRoundup,
14949 sqlite3MemInit,
14950 sqlite3MemShutdown,
14953 sqlite3_config(SQLITE_CONFIG_MALLOC, &defaultMethods);
14957 ** Set the "type" of an allocation.
14959 SQLITE_PRIVATE void sqlite3MemdebugSetType(void *p, u8 eType){
14960 if( p && sqlite3GlobalConfig.m.xMalloc==sqlite3MemMalloc ){
14961 struct MemBlockHdr *pHdr;
14962 pHdr = sqlite3MemsysGetHeader(p);
14963 assert( pHdr->iForeGuard==FOREGUARD );
14964 pHdr->eType = eType;
14969 ** Return TRUE if the mask of type in eType matches the type of the
14970 ** allocation p. Also return true if p==NULL.
14972 ** This routine is designed for use within an assert() statement, to
14973 ** verify the type of an allocation. For example:
14975 ** assert( sqlite3MemdebugHasType(p, MEMTYPE_DB) );
14977 SQLITE_PRIVATE int sqlite3MemdebugHasType(void *p, u8 eType){
14978 int rc = 1;
14979 if( p && sqlite3GlobalConfig.m.xMalloc==sqlite3MemMalloc ){
14980 struct MemBlockHdr *pHdr;
14981 pHdr = sqlite3MemsysGetHeader(p);
14982 assert( pHdr->iForeGuard==FOREGUARD ); /* Allocation is valid */
14983 if( (pHdr->eType&eType)==0 ){
14984 rc = 0;
14987 return rc;
14991 ** Return TRUE if the mask of type in eType matches no bits of the type of the
14992 ** allocation p. Also return true if p==NULL.
14994 ** This routine is designed for use within an assert() statement, to
14995 ** verify the type of an allocation. For example:
14997 ** assert( sqlite3MemdebugNoType(p, MEMTYPE_DB) );
14999 SQLITE_PRIVATE int sqlite3MemdebugNoType(void *p, u8 eType){
15000 int rc = 1;
15001 if( p && sqlite3GlobalConfig.m.xMalloc==sqlite3MemMalloc ){
15002 struct MemBlockHdr *pHdr;
15003 pHdr = sqlite3MemsysGetHeader(p);
15004 assert( pHdr->iForeGuard==FOREGUARD ); /* Allocation is valid */
15005 if( (pHdr->eType&eType)!=0 ){
15006 rc = 0;
15009 return rc;
15013 ** Set the number of backtrace levels kept for each allocation.
15014 ** A value of zero turns off backtracing. The number is always rounded
15015 ** up to a multiple of 2.
15017 SQLITE_PRIVATE void sqlite3MemdebugBacktrace(int depth){
15018 if( depth<0 ){ depth = 0; }
15019 if( depth>20 ){ depth = 20; }
15020 depth = (depth+1)&0xfe;
15021 mem.nBacktrace = depth;
15024 SQLITE_PRIVATE void sqlite3MemdebugBacktraceCallback(void (*xBacktrace)(int, int, void **)){
15025 mem.xBacktrace = xBacktrace;
15029 ** Set the title string for subsequent allocations.
15031 SQLITE_PRIVATE void sqlite3MemdebugSettitle(const char *zTitle){
15032 unsigned int n = sqlite3Strlen30(zTitle) + 1;
15033 sqlite3_mutex_enter(mem.mutex);
15034 if( n>=sizeof(mem.zTitle) ) n = sizeof(mem.zTitle)-1;
15035 memcpy(mem.zTitle, zTitle, n);
15036 mem.zTitle[n] = 0;
15037 mem.nTitle = ROUND8(n);
15038 sqlite3_mutex_leave(mem.mutex);
15041 SQLITE_PRIVATE void sqlite3MemdebugSync(){
15042 struct MemBlockHdr *pHdr;
15043 for(pHdr=mem.pFirst; pHdr; pHdr=pHdr->pNext){
15044 void **pBt = (void**)pHdr;
15045 pBt -= pHdr->nBacktraceSlots;
15046 mem.xBacktrace(pHdr->iSize, pHdr->nBacktrace-1, &pBt[1]);
15051 ** Open the file indicated and write a log of all unfreed memory
15052 ** allocations into that log.
15054 SQLITE_PRIVATE void sqlite3MemdebugDump(const char *zFilename){
15055 FILE *out;
15056 struct MemBlockHdr *pHdr;
15057 void **pBt;
15058 int i;
15059 out = fopen(zFilename, "w");
15060 if( out==0 ){
15061 fprintf(stderr, "** Unable to output memory debug output log: %s **\n",
15062 zFilename);
15063 return;
15065 for(pHdr=mem.pFirst; pHdr; pHdr=pHdr->pNext){
15066 char *z = (char*)pHdr;
15067 z -= pHdr->nBacktraceSlots*sizeof(void*) + pHdr->nTitle;
15068 fprintf(out, "**** %lld bytes at %p from %s ****\n",
15069 pHdr->iSize, &pHdr[1], pHdr->nTitle ? z : "???");
15070 if( pHdr->nBacktrace ){
15071 fflush(out);
15072 pBt = (void**)pHdr;
15073 pBt -= pHdr->nBacktraceSlots;
15074 backtrace_symbols_fd(pBt, pHdr->nBacktrace, fileno(out));
15075 fprintf(out, "\n");
15078 fprintf(out, "COUNTS:\n");
15079 for(i=0; i<NCSIZE-1; i++){
15080 if( mem.nAlloc[i] ){
15081 fprintf(out, " %5d: %10d %10d %10d\n",
15082 i*8, mem.nAlloc[i], mem.nCurrent[i], mem.mxCurrent[i]);
15085 if( mem.nAlloc[NCSIZE-1] ){
15086 fprintf(out, " %5d: %10d %10d %10d\n",
15087 NCSIZE*8-8, mem.nAlloc[NCSIZE-1],
15088 mem.nCurrent[NCSIZE-1], mem.mxCurrent[NCSIZE-1]);
15090 fclose(out);
15094 ** Return the number of times sqlite3MemMalloc() has been called.
15096 SQLITE_PRIVATE int sqlite3MemdebugMallocCount(){
15097 int i;
15098 int nTotal = 0;
15099 for(i=0; i<NCSIZE; i++){
15100 nTotal += mem.nAlloc[i];
15102 return nTotal;
15106 #endif /* SQLITE_MEMDEBUG */
15108 /************** End of mem2.c ************************************************/
15109 /************** Begin file mem3.c ********************************************/
15111 ** 2007 October 14
15113 ** The author disclaims copyright to this source code. In place of
15114 ** a legal notice, here is a blessing:
15116 ** May you do good and not evil.
15117 ** May you find forgiveness for yourself and forgive others.
15118 ** May you share freely, never taking more than you give.
15120 *************************************************************************
15121 ** This file contains the C functions that implement a memory
15122 ** allocation subsystem for use by SQLite.
15124 ** This version of the memory allocation subsystem omits all
15125 ** use of malloc(). The SQLite user supplies a block of memory
15126 ** before calling sqlite3_initialize() from which allocations
15127 ** are made and returned by the xMalloc() and xRealloc()
15128 ** implementations. Once sqlite3_initialize() has been called,
15129 ** the amount of memory available to SQLite is fixed and cannot
15130 ** be changed.
15132 ** This version of the memory allocation subsystem is included
15133 ** in the build only if SQLITE_ENABLE_MEMSYS3 is defined.
15137 ** This version of the memory allocator is only built into the library
15138 ** SQLITE_ENABLE_MEMSYS3 is defined. Defining this symbol does not
15139 ** mean that the library will use a memory-pool by default, just that
15140 ** it is available. The mempool allocator is activated by calling
15141 ** sqlite3_config().
15143 #ifdef SQLITE_ENABLE_MEMSYS3
15146 ** Maximum size (in Mem3Blocks) of a "small" chunk.
15148 #define MX_SMALL 10
15152 ** Number of freelist hash slots
15154 #define N_HASH 61
15157 ** A memory allocation (also called a "chunk") consists of two or
15158 ** more blocks where each block is 8 bytes. The first 8 bytes are
15159 ** a header that is not returned to the user.
15161 ** A chunk is two or more blocks that is either checked out or
15162 ** free. The first block has format u.hdr. u.hdr.size4x is 4 times the
15163 ** size of the allocation in blocks if the allocation is free.
15164 ** The u.hdr.size4x&1 bit is true if the chunk is checked out and
15165 ** false if the chunk is on the freelist. The u.hdr.size4x&2 bit
15166 ** is true if the previous chunk is checked out and false if the
15167 ** previous chunk is free. The u.hdr.prevSize field is the size of
15168 ** the previous chunk in blocks if the previous chunk is on the
15169 ** freelist. If the previous chunk is checked out, then
15170 ** u.hdr.prevSize can be part of the data for that chunk and should
15171 ** not be read or written.
15173 ** We often identify a chunk by its index in mem3.aPool[]. When
15174 ** this is done, the chunk index refers to the second block of
15175 ** the chunk. In this way, the first chunk has an index of 1.
15176 ** A chunk index of 0 means "no such chunk" and is the equivalent
15177 ** of a NULL pointer.
15179 ** The second block of free chunks is of the form u.list. The
15180 ** two fields form a double-linked list of chunks of related sizes.
15181 ** Pointers to the head of the list are stored in mem3.aiSmall[]
15182 ** for smaller chunks and mem3.aiHash[] for larger chunks.
15184 ** The second block of a chunk is user data if the chunk is checked
15185 ** out. If a chunk is checked out, the user data may extend into
15186 ** the u.hdr.prevSize value of the following chunk.
15188 typedef struct Mem3Block Mem3Block;
15189 struct Mem3Block {
15190 union {
15191 struct {
15192 u32 prevSize; /* Size of previous chunk in Mem3Block elements */
15193 u32 size4x; /* 4x the size of current chunk in Mem3Block elements */
15194 } hdr;
15195 struct {
15196 u32 next; /* Index in mem3.aPool[] of next free chunk */
15197 u32 prev; /* Index in mem3.aPool[] of previous free chunk */
15198 } list;
15199 } u;
15203 ** All of the static variables used by this module are collected
15204 ** into a single structure named "mem3". This is to keep the
15205 ** static variables organized and to reduce namespace pollution
15206 ** when this module is combined with other in the amalgamation.
15208 static SQLITE_WSD struct Mem3Global {
15210 ** Memory available for allocation. nPool is the size of the array
15211 ** (in Mem3Blocks) pointed to by aPool less 2.
15213 u32 nPool;
15214 Mem3Block *aPool;
15217 ** True if we are evaluating an out-of-memory callback.
15219 int alarmBusy;
15222 ** Mutex to control access to the memory allocation subsystem.
15224 sqlite3_mutex *mutex;
15227 ** The minimum amount of free space that we have seen.
15229 u32 mnMaster;
15232 ** iMaster is the index of the master chunk. Most new allocations
15233 ** occur off of this chunk. szMaster is the size (in Mem3Blocks)
15234 ** of the current master. iMaster is 0 if there is not master chunk.
15235 ** The master chunk is not in either the aiHash[] or aiSmall[].
15237 u32 iMaster;
15238 u32 szMaster;
15241 ** Array of lists of free blocks according to the block size
15242 ** for smaller chunks, or a hash on the block size for larger
15243 ** chunks.
15245 u32 aiSmall[MX_SMALL-1]; /* For sizes 2 through MX_SMALL, inclusive */
15246 u32 aiHash[N_HASH]; /* For sizes MX_SMALL+1 and larger */
15247 } mem3 = { 97535575 };
15249 #define mem3 GLOBAL(struct Mem3Global, mem3)
15252 ** Unlink the chunk at mem3.aPool[i] from list it is currently
15253 ** on. *pRoot is the list that i is a member of.
15255 static void memsys3UnlinkFromList(u32 i, u32 *pRoot){
15256 u32 next = mem3.aPool[i].u.list.next;
15257 u32 prev = mem3.aPool[i].u.list.prev;
15258 assert( sqlite3_mutex_held(mem3.mutex) );
15259 if( prev==0 ){
15260 *pRoot = next;
15261 }else{
15262 mem3.aPool[prev].u.list.next = next;
15264 if( next ){
15265 mem3.aPool[next].u.list.prev = prev;
15267 mem3.aPool[i].u.list.next = 0;
15268 mem3.aPool[i].u.list.prev = 0;
15272 ** Unlink the chunk at index i from
15273 ** whatever list is currently a member of.
15275 static void memsys3Unlink(u32 i){
15276 u32 size, hash;
15277 assert( sqlite3_mutex_held(mem3.mutex) );
15278 assert( (mem3.aPool[i-1].u.hdr.size4x & 1)==0 );
15279 assert( i>=1 );
15280 size = mem3.aPool[i-1].u.hdr.size4x/4;
15281 assert( size==mem3.aPool[i+size-1].u.hdr.prevSize );
15282 assert( size>=2 );
15283 if( size <= MX_SMALL ){
15284 memsys3UnlinkFromList(i, &mem3.aiSmall[size-2]);
15285 }else{
15286 hash = size % N_HASH;
15287 memsys3UnlinkFromList(i, &mem3.aiHash[hash]);
15292 ** Link the chunk at mem3.aPool[i] so that is on the list rooted
15293 ** at *pRoot.
15295 static void memsys3LinkIntoList(u32 i, u32 *pRoot){
15296 assert( sqlite3_mutex_held(mem3.mutex) );
15297 mem3.aPool[i].u.list.next = *pRoot;
15298 mem3.aPool[i].u.list.prev = 0;
15299 if( *pRoot ){
15300 mem3.aPool[*pRoot].u.list.prev = i;
15302 *pRoot = i;
15306 ** Link the chunk at index i into either the appropriate
15307 ** small chunk list, or into the large chunk hash table.
15309 static void memsys3Link(u32 i){
15310 u32 size, hash;
15311 assert( sqlite3_mutex_held(mem3.mutex) );
15312 assert( i>=1 );
15313 assert( (mem3.aPool[i-1].u.hdr.size4x & 1)==0 );
15314 size = mem3.aPool[i-1].u.hdr.size4x/4;
15315 assert( size==mem3.aPool[i+size-1].u.hdr.prevSize );
15316 assert( size>=2 );
15317 if( size <= MX_SMALL ){
15318 memsys3LinkIntoList(i, &mem3.aiSmall[size-2]);
15319 }else{
15320 hash = size % N_HASH;
15321 memsys3LinkIntoList(i, &mem3.aiHash[hash]);
15326 ** If the STATIC_MEM mutex is not already held, obtain it now. The mutex
15327 ** will already be held (obtained by code in malloc.c) if
15328 ** sqlite3GlobalConfig.bMemStat is true.
15330 static void memsys3Enter(void){
15331 if( sqlite3GlobalConfig.bMemstat==0 && mem3.mutex==0 ){
15332 mem3.mutex = sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_MEM);
15334 sqlite3_mutex_enter(mem3.mutex);
15336 static void memsys3Leave(void){
15337 sqlite3_mutex_leave(mem3.mutex);
15341 ** Called when we are unable to satisfy an allocation of nBytes.
15343 static void memsys3OutOfMemory(int nByte){
15344 if( !mem3.alarmBusy ){
15345 mem3.alarmBusy = 1;
15346 assert( sqlite3_mutex_held(mem3.mutex) );
15347 sqlite3_mutex_leave(mem3.mutex);
15348 sqlite3_release_memory(nByte);
15349 sqlite3_mutex_enter(mem3.mutex);
15350 mem3.alarmBusy = 0;
15356 ** Chunk i is a free chunk that has been unlinked. Adjust its
15357 ** size parameters for check-out and return a pointer to the
15358 ** user portion of the chunk.
15360 static void *memsys3Checkout(u32 i, u32 nBlock){
15361 u32 x;
15362 assert( sqlite3_mutex_held(mem3.mutex) );
15363 assert( i>=1 );
15364 assert( mem3.aPool[i-1].u.hdr.size4x/4==nBlock );
15365 assert( mem3.aPool[i+nBlock-1].u.hdr.prevSize==nBlock );
15366 x = mem3.aPool[i-1].u.hdr.size4x;
15367 mem3.aPool[i-1].u.hdr.size4x = nBlock*4 | 1 | (x&2);
15368 mem3.aPool[i+nBlock-1].u.hdr.prevSize = nBlock;
15369 mem3.aPool[i+nBlock-1].u.hdr.size4x |= 2;
15370 return &mem3.aPool[i];
15374 ** Carve a piece off of the end of the mem3.iMaster free chunk.
15375 ** Return a pointer to the new allocation. Or, if the master chunk
15376 ** is not large enough, return 0.
15378 static void *memsys3FromMaster(u32 nBlock){
15379 assert( sqlite3_mutex_held(mem3.mutex) );
15380 assert( mem3.szMaster>=nBlock );
15381 if( nBlock>=mem3.szMaster-1 ){
15382 /* Use the entire master */
15383 void *p = memsys3Checkout(mem3.iMaster, mem3.szMaster);
15384 mem3.iMaster = 0;
15385 mem3.szMaster = 0;
15386 mem3.mnMaster = 0;
15387 return p;
15388 }else{
15389 /* Split the master block. Return the tail. */
15390 u32 newi, x;
15391 newi = mem3.iMaster + mem3.szMaster - nBlock;
15392 assert( newi > mem3.iMaster+1 );
15393 mem3.aPool[mem3.iMaster+mem3.szMaster-1].u.hdr.prevSize = nBlock;
15394 mem3.aPool[mem3.iMaster+mem3.szMaster-1].u.hdr.size4x |= 2;
15395 mem3.aPool[newi-1].u.hdr.size4x = nBlock*4 + 1;
15396 mem3.szMaster -= nBlock;
15397 mem3.aPool[newi-1].u.hdr.prevSize = mem3.szMaster;
15398 x = mem3.aPool[mem3.iMaster-1].u.hdr.size4x & 2;
15399 mem3.aPool[mem3.iMaster-1].u.hdr.size4x = mem3.szMaster*4 | x;
15400 if( mem3.szMaster < mem3.mnMaster ){
15401 mem3.mnMaster = mem3.szMaster;
15403 return (void*)&mem3.aPool[newi];
15408 ** *pRoot is the head of a list of free chunks of the same size
15409 ** or same size hash. In other words, *pRoot is an entry in either
15410 ** mem3.aiSmall[] or mem3.aiHash[].
15412 ** This routine examines all entries on the given list and tries
15413 ** to coalesce each entries with adjacent free chunks.
15415 ** If it sees a chunk that is larger than mem3.iMaster, it replaces
15416 ** the current mem3.iMaster with the new larger chunk. In order for
15417 ** this mem3.iMaster replacement to work, the master chunk must be
15418 ** linked into the hash tables. That is not the normal state of
15419 ** affairs, of course. The calling routine must link the master
15420 ** chunk before invoking this routine, then must unlink the (possibly
15421 ** changed) master chunk once this routine has finished.
15423 static void memsys3Merge(u32 *pRoot){
15424 u32 iNext, prev, size, i, x;
15426 assert( sqlite3_mutex_held(mem3.mutex) );
15427 for(i=*pRoot; i>0; i=iNext){
15428 iNext = mem3.aPool[i].u.list.next;
15429 size = mem3.aPool[i-1].u.hdr.size4x;
15430 assert( (size&1)==0 );
15431 if( (size&2)==0 ){
15432 memsys3UnlinkFromList(i, pRoot);
15433 assert( i > mem3.aPool[i-1].u.hdr.prevSize );
15434 prev = i - mem3.aPool[i-1].u.hdr.prevSize;
15435 if( prev==iNext ){
15436 iNext = mem3.aPool[prev].u.list.next;
15438 memsys3Unlink(prev);
15439 size = i + size/4 - prev;
15440 x = mem3.aPool[prev-1].u.hdr.size4x & 2;
15441 mem3.aPool[prev-1].u.hdr.size4x = size*4 | x;
15442 mem3.aPool[prev+size-1].u.hdr.prevSize = size;
15443 memsys3Link(prev);
15444 i = prev;
15445 }else{
15446 size /= 4;
15448 if( size>mem3.szMaster ){
15449 mem3.iMaster = i;
15450 mem3.szMaster = size;
15456 ** Return a block of memory of at least nBytes in size.
15457 ** Return NULL if unable.
15459 ** This function assumes that the necessary mutexes, if any, are
15460 ** already held by the caller. Hence "Unsafe".
15462 static void *memsys3MallocUnsafe(int nByte){
15463 u32 i;
15464 u32 nBlock;
15465 u32 toFree;
15467 assert( sqlite3_mutex_held(mem3.mutex) );
15468 assert( sizeof(Mem3Block)==8 );
15469 if( nByte<=12 ){
15470 nBlock = 2;
15471 }else{
15472 nBlock = (nByte + 11)/8;
15474 assert( nBlock>=2 );
15476 /* STEP 1:
15477 ** Look for an entry of the correct size in either the small
15478 ** chunk table or in the large chunk hash table. This is
15479 ** successful most of the time (about 9 times out of 10).
15481 if( nBlock <= MX_SMALL ){
15482 i = mem3.aiSmall[nBlock-2];
15483 if( i>0 ){
15484 memsys3UnlinkFromList(i, &mem3.aiSmall[nBlock-2]);
15485 return memsys3Checkout(i, nBlock);
15487 }else{
15488 int hash = nBlock % N_HASH;
15489 for(i=mem3.aiHash[hash]; i>0; i=mem3.aPool[i].u.list.next){
15490 if( mem3.aPool[i-1].u.hdr.size4x/4==nBlock ){
15491 memsys3UnlinkFromList(i, &mem3.aiHash[hash]);
15492 return memsys3Checkout(i, nBlock);
15497 /* STEP 2:
15498 ** Try to satisfy the allocation by carving a piece off of the end
15499 ** of the master chunk. This step usually works if step 1 fails.
15501 if( mem3.szMaster>=nBlock ){
15502 return memsys3FromMaster(nBlock);
15506 /* STEP 3:
15507 ** Loop through the entire memory pool. Coalesce adjacent free
15508 ** chunks. Recompute the master chunk as the largest free chunk.
15509 ** Then try again to satisfy the allocation by carving a piece off
15510 ** of the end of the master chunk. This step happens very
15511 ** rarely (we hope!)
15513 for(toFree=nBlock*16; toFree<(mem3.nPool*16); toFree *= 2){
15514 memsys3OutOfMemory(toFree);
15515 if( mem3.iMaster ){
15516 memsys3Link(mem3.iMaster);
15517 mem3.iMaster = 0;
15518 mem3.szMaster = 0;
15520 for(i=0; i<N_HASH; i++){
15521 memsys3Merge(&mem3.aiHash[i]);
15523 for(i=0; i<MX_SMALL-1; i++){
15524 memsys3Merge(&mem3.aiSmall[i]);
15526 if( mem3.szMaster ){
15527 memsys3Unlink(mem3.iMaster);
15528 if( mem3.szMaster>=nBlock ){
15529 return memsys3FromMaster(nBlock);
15534 /* If none of the above worked, then we fail. */
15535 return 0;
15539 ** Free an outstanding memory allocation.
15541 ** This function assumes that the necessary mutexes, if any, are
15542 ** already held by the caller. Hence "Unsafe".
15544 void memsys3FreeUnsafe(void *pOld){
15545 Mem3Block *p = (Mem3Block*)pOld;
15546 int i;
15547 u32 size, x;
15548 assert( sqlite3_mutex_held(mem3.mutex) );
15549 assert( p>mem3.aPool && p<&mem3.aPool[mem3.nPool] );
15550 i = p - mem3.aPool;
15551 assert( (mem3.aPool[i-1].u.hdr.size4x&1)==1 );
15552 size = mem3.aPool[i-1].u.hdr.size4x/4;
15553 assert( i+size<=mem3.nPool+1 );
15554 mem3.aPool[i-1].u.hdr.size4x &= ~1;
15555 mem3.aPool[i+size-1].u.hdr.prevSize = size;
15556 mem3.aPool[i+size-1].u.hdr.size4x &= ~2;
15557 memsys3Link(i);
15559 /* Try to expand the master using the newly freed chunk */
15560 if( mem3.iMaster ){
15561 while( (mem3.aPool[mem3.iMaster-1].u.hdr.size4x&2)==0 ){
15562 size = mem3.aPool[mem3.iMaster-1].u.hdr.prevSize;
15563 mem3.iMaster -= size;
15564 mem3.szMaster += size;
15565 memsys3Unlink(mem3.iMaster);
15566 x = mem3.aPool[mem3.iMaster-1].u.hdr.size4x & 2;
15567 mem3.aPool[mem3.iMaster-1].u.hdr.size4x = mem3.szMaster*4 | x;
15568 mem3.aPool[mem3.iMaster+mem3.szMaster-1].u.hdr.prevSize = mem3.szMaster;
15570 x = mem3.aPool[mem3.iMaster-1].u.hdr.size4x & 2;
15571 while( (mem3.aPool[mem3.iMaster+mem3.szMaster-1].u.hdr.size4x&1)==0 ){
15572 memsys3Unlink(mem3.iMaster+mem3.szMaster);
15573 mem3.szMaster += mem3.aPool[mem3.iMaster+mem3.szMaster-1].u.hdr.size4x/4;
15574 mem3.aPool[mem3.iMaster-1].u.hdr.size4x = mem3.szMaster*4 | x;
15575 mem3.aPool[mem3.iMaster+mem3.szMaster-1].u.hdr.prevSize = mem3.szMaster;
15581 ** Return the size of an outstanding allocation, in bytes. The
15582 ** size returned omits the 8-byte header overhead. This only
15583 ** works for chunks that are currently checked out.
15585 static int memsys3Size(void *p){
15586 Mem3Block *pBlock;
15587 if( p==0 ) return 0;
15588 pBlock = (Mem3Block*)p;
15589 assert( (pBlock[-1].u.hdr.size4x&1)!=0 );
15590 return (pBlock[-1].u.hdr.size4x&~3)*2 - 4;
15594 ** Round up a request size to the next valid allocation size.
15596 static int memsys3Roundup(int n){
15597 if( n<=12 ){
15598 return 12;
15599 }else{
15600 return ((n+11)&~7) - 4;
15605 ** Allocate nBytes of memory.
15607 static void *memsys3Malloc(int nBytes){
15608 sqlite3_int64 *p;
15609 assert( nBytes>0 ); /* malloc.c filters out 0 byte requests */
15610 memsys3Enter();
15611 p = memsys3MallocUnsafe(nBytes);
15612 memsys3Leave();
15613 return (void*)p;
15617 ** Free memory.
15619 void memsys3Free(void *pPrior){
15620 assert( pPrior );
15621 memsys3Enter();
15622 memsys3FreeUnsafe(pPrior);
15623 memsys3Leave();
15627 ** Change the size of an existing memory allocation
15629 void *memsys3Realloc(void *pPrior, int nBytes){
15630 int nOld;
15631 void *p;
15632 if( pPrior==0 ){
15633 return sqlite3_malloc(nBytes);
15635 if( nBytes<=0 ){
15636 sqlite3_free(pPrior);
15637 return 0;
15639 nOld = memsys3Size(pPrior);
15640 if( nBytes<=nOld && nBytes>=nOld-128 ){
15641 return pPrior;
15643 memsys3Enter();
15644 p = memsys3MallocUnsafe(nBytes);
15645 if( p ){
15646 if( nOld<nBytes ){
15647 memcpy(p, pPrior, nOld);
15648 }else{
15649 memcpy(p, pPrior, nBytes);
15651 memsys3FreeUnsafe(pPrior);
15653 memsys3Leave();
15654 return p;
15658 ** Initialize this module.
15660 static int memsys3Init(void *NotUsed){
15661 UNUSED_PARAMETER(NotUsed);
15662 if( !sqlite3GlobalConfig.pHeap ){
15663 return SQLITE_ERROR;
15666 /* Store a pointer to the memory block in global structure mem3. */
15667 assert( sizeof(Mem3Block)==8 );
15668 mem3.aPool = (Mem3Block *)sqlite3GlobalConfig.pHeap;
15669 mem3.nPool = (sqlite3GlobalConfig.nHeap / sizeof(Mem3Block)) - 2;
15671 /* Initialize the master block. */
15672 mem3.szMaster = mem3.nPool;
15673 mem3.mnMaster = mem3.szMaster;
15674 mem3.iMaster = 1;
15675 mem3.aPool[0].u.hdr.size4x = (mem3.szMaster<<2) + 2;
15676 mem3.aPool[mem3.nPool].u.hdr.prevSize = mem3.nPool;
15677 mem3.aPool[mem3.nPool].u.hdr.size4x = 1;
15679 return SQLITE_OK;
15683 ** Deinitialize this module.
15685 static void memsys3Shutdown(void *NotUsed){
15686 UNUSED_PARAMETER(NotUsed);
15687 mem3.mutex = 0;
15688 return;
15694 ** Open the file indicated and write a log of all unfreed memory
15695 ** allocations into that log.
15697 SQLITE_PRIVATE void sqlite3Memsys3Dump(const char *zFilename){
15698 #ifdef SQLITE_DEBUG
15699 FILE *out;
15700 u32 i, j;
15701 u32 size;
15702 if( zFilename==0 || zFilename[0]==0 ){
15703 out = stdout;
15704 }else{
15705 out = fopen(zFilename, "w");
15706 if( out==0 ){
15707 fprintf(stderr, "** Unable to output memory debug output log: %s **\n",
15708 zFilename);
15709 return;
15712 memsys3Enter();
15713 fprintf(out, "CHUNKS:\n");
15714 for(i=1; i<=mem3.nPool; i+=size/4){
15715 size = mem3.aPool[i-1].u.hdr.size4x;
15716 if( size/4<=1 ){
15717 fprintf(out, "%p size error\n", &mem3.aPool[i]);
15718 assert( 0 );
15719 break;
15721 if( (size&1)==0 && mem3.aPool[i+size/4-1].u.hdr.prevSize!=size/4 ){
15722 fprintf(out, "%p tail size does not match\n", &mem3.aPool[i]);
15723 assert( 0 );
15724 break;
15726 if( ((mem3.aPool[i+size/4-1].u.hdr.size4x&2)>>1)!=(size&1) ){
15727 fprintf(out, "%p tail checkout bit is incorrect\n", &mem3.aPool[i]);
15728 assert( 0 );
15729 break;
15731 if( size&1 ){
15732 fprintf(out, "%p %6d bytes checked out\n", &mem3.aPool[i], (size/4)*8-8);
15733 }else{
15734 fprintf(out, "%p %6d bytes free%s\n", &mem3.aPool[i], (size/4)*8-8,
15735 i==mem3.iMaster ? " **master**" : "");
15738 for(i=0; i<MX_SMALL-1; i++){
15739 if( mem3.aiSmall[i]==0 ) continue;
15740 fprintf(out, "small(%2d):", i);
15741 for(j = mem3.aiSmall[i]; j>0; j=mem3.aPool[j].u.list.next){
15742 fprintf(out, " %p(%d)", &mem3.aPool[j],
15743 (mem3.aPool[j-1].u.hdr.size4x/4)*8-8);
15745 fprintf(out, "\n");
15747 for(i=0; i<N_HASH; i++){
15748 if( mem3.aiHash[i]==0 ) continue;
15749 fprintf(out, "hash(%2d):", i);
15750 for(j = mem3.aiHash[i]; j>0; j=mem3.aPool[j].u.list.next){
15751 fprintf(out, " %p(%d)", &mem3.aPool[j],
15752 (mem3.aPool[j-1].u.hdr.size4x/4)*8-8);
15754 fprintf(out, "\n");
15756 fprintf(out, "master=%d\n", mem3.iMaster);
15757 fprintf(out, "nowUsed=%d\n", mem3.nPool*8 - mem3.szMaster*8);
15758 fprintf(out, "mxUsed=%d\n", mem3.nPool*8 - mem3.mnMaster*8);
15759 sqlite3_mutex_leave(mem3.mutex);
15760 if( out==stdout ){
15761 fflush(stdout);
15762 }else{
15763 fclose(out);
15765 #else
15766 UNUSED_PARAMETER(zFilename);
15767 #endif
15771 ** This routine is the only routine in this file with external
15772 ** linkage.
15774 ** Populate the low-level memory allocation function pointers in
15775 ** sqlite3GlobalConfig.m with pointers to the routines in this file. The
15776 ** arguments specify the block of memory to manage.
15778 ** This routine is only called by sqlite3_config(), and therefore
15779 ** is not required to be threadsafe (it is not).
15781 SQLITE_PRIVATE const sqlite3_mem_methods *sqlite3MemGetMemsys3(void){
15782 static const sqlite3_mem_methods mempoolMethods = {
15783 memsys3Malloc,
15784 memsys3Free,
15785 memsys3Realloc,
15786 memsys3Size,
15787 memsys3Roundup,
15788 memsys3Init,
15789 memsys3Shutdown,
15792 return &mempoolMethods;
15795 #endif /* SQLITE_ENABLE_MEMSYS3 */
15797 /************** End of mem3.c ************************************************/
15798 /************** Begin file mem5.c ********************************************/
15800 ** 2007 October 14
15802 ** The author disclaims copyright to this source code. In place of
15803 ** a legal notice, here is a blessing:
15805 ** May you do good and not evil.
15806 ** May you find forgiveness for yourself and forgive others.
15807 ** May you share freely, never taking more than you give.
15809 *************************************************************************
15810 ** This file contains the C functions that implement a memory
15811 ** allocation subsystem for use by SQLite.
15813 ** This version of the memory allocation subsystem omits all
15814 ** use of malloc(). The application gives SQLite a block of memory
15815 ** before calling sqlite3_initialize() from which allocations
15816 ** are made and returned by the xMalloc() and xRealloc()
15817 ** implementations. Once sqlite3_initialize() has been called,
15818 ** the amount of memory available to SQLite is fixed and cannot
15819 ** be changed.
15821 ** This version of the memory allocation subsystem is included
15822 ** in the build only if SQLITE_ENABLE_MEMSYS5 is defined.
15824 ** This memory allocator uses the following algorithm:
15826 ** 1. All memory allocations sizes are rounded up to a power of 2.
15828 ** 2. If two adjacent free blocks are the halves of a larger block,
15829 ** then the two blocks are coalesed into the single larger block.
15831 ** 3. New memory is allocated from the first available free block.
15833 ** This algorithm is described in: J. M. Robson. "Bounds for Some Functions
15834 ** Concerning Dynamic Storage Allocation". Journal of the Association for
15835 ** Computing Machinery, Volume 21, Number 8, July 1974, pages 491-499.
15837 ** Let n be the size of the largest allocation divided by the minimum
15838 ** allocation size (after rounding all sizes up to a power of 2.) Let M
15839 ** be the maximum amount of memory ever outstanding at one time. Let
15840 ** N be the total amount of memory available for allocation. Robson
15841 ** proved that this memory allocator will never breakdown due to
15842 ** fragmentation as long as the following constraint holds:
15844 ** N >= M*(1 + log2(n)/2) - n + 1
15846 ** The sqlite3_status() logic tracks the maximum values of n and M so
15847 ** that an application can, at any time, verify this constraint.
15851 ** This version of the memory allocator is used only when
15852 ** SQLITE_ENABLE_MEMSYS5 is defined.
15854 #ifdef SQLITE_ENABLE_MEMSYS5
15857 ** A minimum allocation is an instance of the following structure.
15858 ** Larger allocations are an array of these structures where the
15859 ** size of the array is a power of 2.
15861 ** The size of this object must be a power of two. That fact is
15862 ** verified in memsys5Init().
15864 typedef struct Mem5Link Mem5Link;
15865 struct Mem5Link {
15866 int next; /* Index of next free chunk */
15867 int prev; /* Index of previous free chunk */
15871 ** Maximum size of any allocation is ((1<<LOGMAX)*mem5.szAtom). Since
15872 ** mem5.szAtom is always at least 8 and 32-bit integers are used,
15873 ** it is not actually possible to reach this limit.
15875 #define LOGMAX 30
15878 ** Masks used for mem5.aCtrl[] elements.
15880 #define CTRL_LOGSIZE 0x1f /* Log2 Size of this block */
15881 #define CTRL_FREE 0x20 /* True if not checked out */
15884 ** All of the static variables used by this module are collected
15885 ** into a single structure named "mem5". This is to keep the
15886 ** static variables organized and to reduce namespace pollution
15887 ** when this module is combined with other in the amalgamation.
15889 static SQLITE_WSD struct Mem5Global {
15891 ** Memory available for allocation
15893 int szAtom; /* Smallest possible allocation in bytes */
15894 int nBlock; /* Number of szAtom sized blocks in zPool */
15895 u8 *zPool; /* Memory available to be allocated */
15898 ** Mutex to control access to the memory allocation subsystem.
15900 sqlite3_mutex *mutex;
15903 ** Performance statistics
15905 u64 nAlloc; /* Total number of calls to malloc */
15906 u64 totalAlloc; /* Total of all malloc calls - includes internal frag */
15907 u64 totalExcess; /* Total internal fragmentation */
15908 u32 currentOut; /* Current checkout, including internal fragmentation */
15909 u32 currentCount; /* Current number of distinct checkouts */
15910 u32 maxOut; /* Maximum instantaneous currentOut */
15911 u32 maxCount; /* Maximum instantaneous currentCount */
15912 u32 maxRequest; /* Largest allocation (exclusive of internal frag) */
15915 ** Lists of free blocks. aiFreelist[0] is a list of free blocks of
15916 ** size mem5.szAtom. aiFreelist[1] holds blocks of size szAtom*2.
15917 ** and so forth.
15919 int aiFreelist[LOGMAX+1];
15922 ** Space for tracking which blocks are checked out and the size
15923 ** of each block. One byte per block.
15925 u8 *aCtrl;
15927 } mem5;
15930 ** Access the static variable through a macro for SQLITE_OMIT_WSD
15932 #define mem5 GLOBAL(struct Mem5Global, mem5)
15935 ** Assuming mem5.zPool is divided up into an array of Mem5Link
15936 ** structures, return a pointer to the idx-th such lik.
15938 #define MEM5LINK(idx) ((Mem5Link *)(&mem5.zPool[(idx)*mem5.szAtom]))
15941 ** Unlink the chunk at mem5.aPool[i] from list it is currently
15942 ** on. It should be found on mem5.aiFreelist[iLogsize].
15944 static void memsys5Unlink(int i, int iLogsize){
15945 int next, prev;
15946 assert( i>=0 && i<mem5.nBlock );
15947 assert( iLogsize>=0 && iLogsize<=LOGMAX );
15948 assert( (mem5.aCtrl[i] & CTRL_LOGSIZE)==iLogsize );
15950 next = MEM5LINK(i)->next;
15951 prev = MEM5LINK(i)->prev;
15952 if( prev<0 ){
15953 mem5.aiFreelist[iLogsize] = next;
15954 }else{
15955 MEM5LINK(prev)->next = next;
15957 if( next>=0 ){
15958 MEM5LINK(next)->prev = prev;
15963 ** Link the chunk at mem5.aPool[i] so that is on the iLogsize
15964 ** free list.
15966 static void memsys5Link(int i, int iLogsize){
15967 int x;
15968 assert( sqlite3_mutex_held(mem5.mutex) );
15969 assert( i>=0 && i<mem5.nBlock );
15970 assert( iLogsize>=0 && iLogsize<=LOGMAX );
15971 assert( (mem5.aCtrl[i] & CTRL_LOGSIZE)==iLogsize );
15973 x = MEM5LINK(i)->next = mem5.aiFreelist[iLogsize];
15974 MEM5LINK(i)->prev = -1;
15975 if( x>=0 ){
15976 assert( x<mem5.nBlock );
15977 MEM5LINK(x)->prev = i;
15979 mem5.aiFreelist[iLogsize] = i;
15983 ** If the STATIC_MEM mutex is not already held, obtain it now. The mutex
15984 ** will already be held (obtained by code in malloc.c) if
15985 ** sqlite3GlobalConfig.bMemStat is true.
15987 static void memsys5Enter(void){
15988 sqlite3_mutex_enter(mem5.mutex);
15990 static void memsys5Leave(void){
15991 sqlite3_mutex_leave(mem5.mutex);
15995 ** Return the size of an outstanding allocation, in bytes. The
15996 ** size returned omits the 8-byte header overhead. This only
15997 ** works for chunks that are currently checked out.
15999 static int memsys5Size(void *p){
16000 int iSize = 0;
16001 if( p ){
16002 int i = ((u8 *)p-mem5.zPool)/mem5.szAtom;
16003 assert( i>=0 && i<mem5.nBlock );
16004 iSize = mem5.szAtom * (1 << (mem5.aCtrl[i]&CTRL_LOGSIZE));
16006 return iSize;
16010 ** Find the first entry on the freelist iLogsize. Unlink that
16011 ** entry and return its index.
16013 static int memsys5UnlinkFirst(int iLogsize){
16014 int i;
16015 int iFirst;
16017 assert( iLogsize>=0 && iLogsize<=LOGMAX );
16018 i = iFirst = mem5.aiFreelist[iLogsize];
16019 assert( iFirst>=0 );
16020 while( i>0 ){
16021 if( i<iFirst ) iFirst = i;
16022 i = MEM5LINK(i)->next;
16024 memsys5Unlink(iFirst, iLogsize);
16025 return iFirst;
16029 ** Return a block of memory of at least nBytes in size.
16030 ** Return NULL if unable. Return NULL if nBytes==0.
16032 ** The caller guarantees that nByte positive.
16034 ** The caller has obtained a mutex prior to invoking this
16035 ** routine so there is never any chance that two or more
16036 ** threads can be in this routine at the same time.
16038 static void *memsys5MallocUnsafe(int nByte){
16039 int i; /* Index of a mem5.aPool[] slot */
16040 int iBin; /* Index into mem5.aiFreelist[] */
16041 int iFullSz; /* Size of allocation rounded up to power of 2 */
16042 int iLogsize; /* Log2 of iFullSz/POW2_MIN */
16044 /* nByte must be a positive */
16045 assert( nByte>0 );
16047 /* Keep track of the maximum allocation request. Even unfulfilled
16048 ** requests are counted */
16049 if( (u32)nByte>mem5.maxRequest ){
16050 mem5.maxRequest = nByte;
16053 /* Abort if the requested allocation size is larger than the largest
16054 ** power of two that we can represent using 32-bit signed integers.
16056 if( nByte > 0x40000000 ){
16057 return 0;
16060 /* Round nByte up to the next valid power of two */
16061 for(iFullSz=mem5.szAtom, iLogsize=0; iFullSz<nByte; iFullSz *= 2, iLogsize++){}
16063 /* Make sure mem5.aiFreelist[iLogsize] contains at least one free
16064 ** block. If not, then split a block of the next larger power of
16065 ** two in order to create a new free block of size iLogsize.
16067 for(iBin=iLogsize; mem5.aiFreelist[iBin]<0 && iBin<=LOGMAX; iBin++){}
16068 if( iBin>LOGMAX ){
16069 testcase( sqlite3GlobalConfig.xLog!=0 );
16070 sqlite3_log(SQLITE_NOMEM, "failed to allocate %u bytes", nByte);
16071 return 0;
16073 i = memsys5UnlinkFirst(iBin);
16074 while( iBin>iLogsize ){
16075 int newSize;
16077 iBin--;
16078 newSize = 1 << iBin;
16079 mem5.aCtrl[i+newSize] = CTRL_FREE | iBin;
16080 memsys5Link(i+newSize, iBin);
16082 mem5.aCtrl[i] = iLogsize;
16084 /* Update allocator performance statistics. */
16085 mem5.nAlloc++;
16086 mem5.totalAlloc += iFullSz;
16087 mem5.totalExcess += iFullSz - nByte;
16088 mem5.currentCount++;
16089 mem5.currentOut += iFullSz;
16090 if( mem5.maxCount<mem5.currentCount ) mem5.maxCount = mem5.currentCount;
16091 if( mem5.maxOut<mem5.currentOut ) mem5.maxOut = mem5.currentOut;
16093 /* Return a pointer to the allocated memory. */
16094 return (void*)&mem5.zPool[i*mem5.szAtom];
16098 ** Free an outstanding memory allocation.
16100 static void memsys5FreeUnsafe(void *pOld){
16101 u32 size, iLogsize;
16102 int iBlock;
16104 /* Set iBlock to the index of the block pointed to by pOld in
16105 ** the array of mem5.szAtom byte blocks pointed to by mem5.zPool.
16107 iBlock = ((u8 *)pOld-mem5.zPool)/mem5.szAtom;
16109 /* Check that the pointer pOld points to a valid, non-free block. */
16110 assert( iBlock>=0 && iBlock<mem5.nBlock );
16111 assert( ((u8 *)pOld-mem5.zPool)%mem5.szAtom==0 );
16112 assert( (mem5.aCtrl[iBlock] & CTRL_FREE)==0 );
16114 iLogsize = mem5.aCtrl[iBlock] & CTRL_LOGSIZE;
16115 size = 1<<iLogsize;
16116 assert( iBlock+size-1<(u32)mem5.nBlock );
16118 mem5.aCtrl[iBlock] |= CTRL_FREE;
16119 mem5.aCtrl[iBlock+size-1] |= CTRL_FREE;
16120 assert( mem5.currentCount>0 );
16121 assert( mem5.currentOut>=(size*mem5.szAtom) );
16122 mem5.currentCount--;
16123 mem5.currentOut -= size*mem5.szAtom;
16124 assert( mem5.currentOut>0 || mem5.currentCount==0 );
16125 assert( mem5.currentCount>0 || mem5.currentOut==0 );
16127 mem5.aCtrl[iBlock] = CTRL_FREE | iLogsize;
16128 while( ALWAYS(iLogsize<LOGMAX) ){
16129 int iBuddy;
16130 if( (iBlock>>iLogsize) & 1 ){
16131 iBuddy = iBlock - size;
16132 }else{
16133 iBuddy = iBlock + size;
16135 assert( iBuddy>=0 );
16136 if( (iBuddy+(1<<iLogsize))>mem5.nBlock ) break;
16137 if( mem5.aCtrl[iBuddy]!=(CTRL_FREE | iLogsize) ) break;
16138 memsys5Unlink(iBuddy, iLogsize);
16139 iLogsize++;
16140 if( iBuddy<iBlock ){
16141 mem5.aCtrl[iBuddy] = CTRL_FREE | iLogsize;
16142 mem5.aCtrl[iBlock] = 0;
16143 iBlock = iBuddy;
16144 }else{
16145 mem5.aCtrl[iBlock] = CTRL_FREE | iLogsize;
16146 mem5.aCtrl[iBuddy] = 0;
16148 size *= 2;
16150 memsys5Link(iBlock, iLogsize);
16154 ** Allocate nBytes of memory
16156 static void *memsys5Malloc(int nBytes){
16157 sqlite3_int64 *p = 0;
16158 if( nBytes>0 ){
16159 memsys5Enter();
16160 p = memsys5MallocUnsafe(nBytes);
16161 memsys5Leave();
16163 return (void*)p;
16167 ** Free memory.
16169 ** The outer layer memory allocator prevents this routine from
16170 ** being called with pPrior==0.
16172 static void memsys5Free(void *pPrior){
16173 assert( pPrior!=0 );
16174 memsys5Enter();
16175 memsys5FreeUnsafe(pPrior);
16176 memsys5Leave();
16180 ** Change the size of an existing memory allocation.
16182 ** The outer layer memory allocator prevents this routine from
16183 ** being called with pPrior==0.
16185 ** nBytes is always a value obtained from a prior call to
16186 ** memsys5Round(). Hence nBytes is always a non-negative power
16187 ** of two. If nBytes==0 that means that an oversize allocation
16188 ** (an allocation larger than 0x40000000) was requested and this
16189 ** routine should return 0 without freeing pPrior.
16191 static void *memsys5Realloc(void *pPrior, int nBytes){
16192 int nOld;
16193 void *p;
16194 assert( pPrior!=0 );
16195 assert( (nBytes&(nBytes-1))==0 ); /* EV: R-46199-30249 */
16196 assert( nBytes>=0 );
16197 if( nBytes==0 ){
16198 return 0;
16200 nOld = memsys5Size(pPrior);
16201 if( nBytes<=nOld ){
16202 return pPrior;
16204 memsys5Enter();
16205 p = memsys5MallocUnsafe(nBytes);
16206 if( p ){
16207 memcpy(p, pPrior, nOld);
16208 memsys5FreeUnsafe(pPrior);
16210 memsys5Leave();
16211 return p;
16215 ** Round up a request size to the next valid allocation size. If
16216 ** the allocation is too large to be handled by this allocation system,
16217 ** return 0.
16219 ** All allocations must be a power of two and must be expressed by a
16220 ** 32-bit signed integer. Hence the largest allocation is 0x40000000
16221 ** or 1073741824 bytes.
16223 static int memsys5Roundup(int n){
16224 int iFullSz;
16225 if( n > 0x40000000 ) return 0;
16226 for(iFullSz=mem5.szAtom; iFullSz<n; iFullSz *= 2);
16227 return iFullSz;
16231 ** Return the ceiling of the logarithm base 2 of iValue.
16233 ** Examples: memsys5Log(1) -> 0
16234 ** memsys5Log(2) -> 1
16235 ** memsys5Log(4) -> 2
16236 ** memsys5Log(5) -> 3
16237 ** memsys5Log(8) -> 3
16238 ** memsys5Log(9) -> 4
16240 static int memsys5Log(int iValue){
16241 int iLog;
16242 for(iLog=0; (iLog<(int)((sizeof(int)*8)-1)) && (1<<iLog)<iValue; iLog++);
16243 return iLog;
16247 ** Initialize the memory allocator.
16249 ** This routine is not threadsafe. The caller must be holding a mutex
16250 ** to prevent multiple threads from entering at the same time.
16252 static int memsys5Init(void *NotUsed){
16253 int ii; /* Loop counter */
16254 int nByte; /* Number of bytes of memory available to this allocator */
16255 u8 *zByte; /* Memory usable by this allocator */
16256 int nMinLog; /* Log base 2 of minimum allocation size in bytes */
16257 int iOffset; /* An offset into mem5.aCtrl[] */
16259 UNUSED_PARAMETER(NotUsed);
16261 /* For the purposes of this routine, disable the mutex */
16262 mem5.mutex = 0;
16264 /* The size of a Mem5Link object must be a power of two. Verify that
16265 ** this is case.
16267 assert( (sizeof(Mem5Link)&(sizeof(Mem5Link)-1))==0 );
16269 nByte = sqlite3GlobalConfig.nHeap;
16270 zByte = (u8*)sqlite3GlobalConfig.pHeap;
16271 assert( zByte!=0 ); /* sqlite3_config() does not allow otherwise */
16273 /* boundaries on sqlite3GlobalConfig.mnReq are enforced in sqlite3_config() */
16274 nMinLog = memsys5Log(sqlite3GlobalConfig.mnReq);
16275 mem5.szAtom = (1<<nMinLog);
16276 while( (int)sizeof(Mem5Link)>mem5.szAtom ){
16277 mem5.szAtom = mem5.szAtom << 1;
16280 mem5.nBlock = (nByte / (mem5.szAtom+sizeof(u8)));
16281 mem5.zPool = zByte;
16282 mem5.aCtrl = (u8 *)&mem5.zPool[mem5.nBlock*mem5.szAtom];
16284 for(ii=0; ii<=LOGMAX; ii++){
16285 mem5.aiFreelist[ii] = -1;
16288 iOffset = 0;
16289 for(ii=LOGMAX; ii>=0; ii--){
16290 int nAlloc = (1<<ii);
16291 if( (iOffset+nAlloc)<=mem5.nBlock ){
16292 mem5.aCtrl[iOffset] = ii | CTRL_FREE;
16293 memsys5Link(iOffset, ii);
16294 iOffset += nAlloc;
16296 assert((iOffset+nAlloc)>mem5.nBlock);
16299 /* If a mutex is required for normal operation, allocate one */
16300 if( sqlite3GlobalConfig.bMemstat==0 ){
16301 mem5.mutex = sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_MEM);
16304 return SQLITE_OK;
16308 ** Deinitialize this module.
16310 static void memsys5Shutdown(void *NotUsed){
16311 UNUSED_PARAMETER(NotUsed);
16312 mem5.mutex = 0;
16313 return;
16316 #ifdef SQLITE_TEST
16318 ** Open the file indicated and write a log of all unfreed memory
16319 ** allocations into that log.
16321 SQLITE_PRIVATE void sqlite3Memsys5Dump(const char *zFilename){
16322 FILE *out;
16323 int i, j, n;
16324 int nMinLog;
16326 if( zFilename==0 || zFilename[0]==0 ){
16327 out = stdout;
16328 }else{
16329 out = fopen(zFilename, "w");
16330 if( out==0 ){
16331 fprintf(stderr, "** Unable to output memory debug output log: %s **\n",
16332 zFilename);
16333 return;
16336 memsys5Enter();
16337 nMinLog = memsys5Log(mem5.szAtom);
16338 for(i=0; i<=LOGMAX && i+nMinLog<32; i++){
16339 for(n=0, j=mem5.aiFreelist[i]; j>=0; j = MEM5LINK(j)->next, n++){}
16340 fprintf(out, "freelist items of size %d: %d\n", mem5.szAtom << i, n);
16342 fprintf(out, "mem5.nAlloc = %llu\n", mem5.nAlloc);
16343 fprintf(out, "mem5.totalAlloc = %llu\n", mem5.totalAlloc);
16344 fprintf(out, "mem5.totalExcess = %llu\n", mem5.totalExcess);
16345 fprintf(out, "mem5.currentOut = %u\n", mem5.currentOut);
16346 fprintf(out, "mem5.currentCount = %u\n", mem5.currentCount);
16347 fprintf(out, "mem5.maxOut = %u\n", mem5.maxOut);
16348 fprintf(out, "mem5.maxCount = %u\n", mem5.maxCount);
16349 fprintf(out, "mem5.maxRequest = %u\n", mem5.maxRequest);
16350 memsys5Leave();
16351 if( out==stdout ){
16352 fflush(stdout);
16353 }else{
16354 fclose(out);
16357 #endif
16360 ** This routine is the only routine in this file with external
16361 ** linkage. It returns a pointer to a static sqlite3_mem_methods
16362 ** struct populated with the memsys5 methods.
16364 SQLITE_PRIVATE const sqlite3_mem_methods *sqlite3MemGetMemsys5(void){
16365 static const sqlite3_mem_methods memsys5Methods = {
16366 memsys5Malloc,
16367 memsys5Free,
16368 memsys5Realloc,
16369 memsys5Size,
16370 memsys5Roundup,
16371 memsys5Init,
16372 memsys5Shutdown,
16375 return &memsys5Methods;
16378 #endif /* SQLITE_ENABLE_MEMSYS5 */
16380 /************** End of mem5.c ************************************************/
16381 /************** Begin file mutex.c *******************************************/
16383 ** 2007 August 14
16385 ** The author disclaims copyright to this source code. In place of
16386 ** a legal notice, here is a blessing:
16388 ** May you do good and not evil.
16389 ** May you find forgiveness for yourself and forgive others.
16390 ** May you share freely, never taking more than you give.
16392 *************************************************************************
16393 ** This file contains the C functions that implement mutexes.
16395 ** This file contains code that is common across all mutex implementations.
16398 #if defined(SQLITE_DEBUG) && !defined(SQLITE_MUTEX_OMIT)
16400 ** For debugging purposes, record when the mutex subsystem is initialized
16401 ** and uninitialized so that we can assert() if there is an attempt to
16402 ** allocate a mutex while the system is uninitialized.
16404 static SQLITE_WSD int mutexIsInit = 0;
16405 #endif /* SQLITE_DEBUG */
16408 #ifndef SQLITE_MUTEX_OMIT
16410 ** Initialize the mutex system.
16412 SQLITE_PRIVATE int sqlite3MutexInit(void){
16413 int rc = SQLITE_OK;
16414 if( !sqlite3GlobalConfig.mutex.xMutexAlloc ){
16415 /* If the xMutexAlloc method has not been set, then the user did not
16416 ** install a mutex implementation via sqlite3_config() prior to
16417 ** sqlite3_initialize() being called. This block copies pointers to
16418 ** the default implementation into the sqlite3GlobalConfig structure.
16420 sqlite3_mutex_methods const *pFrom;
16421 sqlite3_mutex_methods *pTo = &sqlite3GlobalConfig.mutex;
16423 if( sqlite3GlobalConfig.bCoreMutex ){
16424 pFrom = sqlite3DefaultMutex();
16425 }else{
16426 pFrom = sqlite3NoopMutex();
16428 memcpy(pTo, pFrom, offsetof(sqlite3_mutex_methods, xMutexAlloc));
16429 memcpy(&pTo->xMutexFree, &pFrom->xMutexFree,
16430 sizeof(*pTo) - offsetof(sqlite3_mutex_methods, xMutexFree));
16431 pTo->xMutexAlloc = pFrom->xMutexAlloc;
16433 rc = sqlite3GlobalConfig.mutex.xMutexInit();
16435 #ifdef SQLITE_DEBUG
16436 GLOBAL(int, mutexIsInit) = 1;
16437 #endif
16439 return rc;
16443 ** Shutdown the mutex system. This call frees resources allocated by
16444 ** sqlite3MutexInit().
16446 SQLITE_PRIVATE int sqlite3MutexEnd(void){
16447 int rc = SQLITE_OK;
16448 if( sqlite3GlobalConfig.mutex.xMutexEnd ){
16449 rc = sqlite3GlobalConfig.mutex.xMutexEnd();
16452 #ifdef SQLITE_DEBUG
16453 GLOBAL(int, mutexIsInit) = 0;
16454 #endif
16456 return rc;
16460 ** Retrieve a pointer to a static mutex or allocate a new dynamic one.
16462 SQLITE_API sqlite3_mutex *sqlite3_mutex_alloc(int id){
16463 #ifndef SQLITE_OMIT_AUTOINIT
16464 if( sqlite3_initialize() ) return 0;
16465 #endif
16466 return sqlite3GlobalConfig.mutex.xMutexAlloc(id);
16469 SQLITE_PRIVATE sqlite3_mutex *sqlite3MutexAlloc(int id){
16470 if( !sqlite3GlobalConfig.bCoreMutex ){
16471 return 0;
16473 assert( GLOBAL(int, mutexIsInit) );
16474 return sqlite3GlobalConfig.mutex.xMutexAlloc(id);
16478 ** Free a dynamic mutex.
16480 SQLITE_API void sqlite3_mutex_free(sqlite3_mutex *p){
16481 if( p ){
16482 sqlite3GlobalConfig.mutex.xMutexFree(p);
16487 ** Obtain the mutex p. If some other thread already has the mutex, block
16488 ** until it can be obtained.
16490 SQLITE_API void sqlite3_mutex_enter(sqlite3_mutex *p){
16491 if( p ){
16492 sqlite3GlobalConfig.mutex.xMutexEnter(p);
16497 ** Obtain the mutex p. If successful, return SQLITE_OK. Otherwise, if another
16498 ** thread holds the mutex and it cannot be obtained, return SQLITE_BUSY.
16500 SQLITE_API int sqlite3_mutex_try(sqlite3_mutex *p){
16501 int rc = SQLITE_OK;
16502 if( p ){
16503 return sqlite3GlobalConfig.mutex.xMutexTry(p);
16505 return rc;
16509 ** The sqlite3_mutex_leave() routine exits a mutex that was previously
16510 ** entered by the same thread. The behavior is undefined if the mutex
16511 ** is not currently entered. If a NULL pointer is passed as an argument
16512 ** this function is a no-op.
16514 SQLITE_API void sqlite3_mutex_leave(sqlite3_mutex *p){
16515 if( p ){
16516 sqlite3GlobalConfig.mutex.xMutexLeave(p);
16520 #ifndef NDEBUG
16522 ** The sqlite3_mutex_held() and sqlite3_mutex_notheld() routine are
16523 ** intended for use inside assert() statements.
16525 SQLITE_API int sqlite3_mutex_held(sqlite3_mutex *p){
16526 return p==0 || sqlite3GlobalConfig.mutex.xMutexHeld(p);
16528 SQLITE_API int sqlite3_mutex_notheld(sqlite3_mutex *p){
16529 return p==0 || sqlite3GlobalConfig.mutex.xMutexNotheld(p);
16531 #endif
16533 #endif /* SQLITE_MUTEX_OMIT */
16535 /************** End of mutex.c ***********************************************/
16536 /************** Begin file mutex_noop.c **************************************/
16538 ** 2008 October 07
16540 ** The author disclaims copyright to this source code. In place of
16541 ** a legal notice, here is a blessing:
16543 ** May you do good and not evil.
16544 ** May you find forgiveness for yourself and forgive others.
16545 ** May you share freely, never taking more than you give.
16547 *************************************************************************
16548 ** This file contains the C functions that implement mutexes.
16550 ** This implementation in this file does not provide any mutual
16551 ** exclusion and is thus suitable for use only in applications
16552 ** that use SQLite in a single thread. The routines defined
16553 ** here are place-holders. Applications can substitute working
16554 ** mutex routines at start-time using the
16556 ** sqlite3_config(SQLITE_CONFIG_MUTEX,...)
16558 ** interface.
16560 ** If compiled with SQLITE_DEBUG, then additional logic is inserted
16561 ** that does error checking on mutexes to make sure they are being
16562 ** called correctly.
16565 #ifndef SQLITE_MUTEX_OMIT
16567 #ifndef SQLITE_DEBUG
16569 ** Stub routines for all mutex methods.
16571 ** This routines provide no mutual exclusion or error checking.
16573 static int noopMutexInit(void){ return SQLITE_OK; }
16574 static int noopMutexEnd(void){ return SQLITE_OK; }
16575 static sqlite3_mutex *noopMutexAlloc(int id){
16576 UNUSED_PARAMETER(id);
16577 return (sqlite3_mutex*)8;
16579 static void noopMutexFree(sqlite3_mutex *p){ UNUSED_PARAMETER(p); return; }
16580 static void noopMutexEnter(sqlite3_mutex *p){ UNUSED_PARAMETER(p); return; }
16581 static int noopMutexTry(sqlite3_mutex *p){
16582 UNUSED_PARAMETER(p);
16583 return SQLITE_OK;
16585 static void noopMutexLeave(sqlite3_mutex *p){ UNUSED_PARAMETER(p); return; }
16587 SQLITE_PRIVATE sqlite3_mutex_methods const *sqlite3NoopMutex(void){
16588 static const sqlite3_mutex_methods sMutex = {
16589 noopMutexInit,
16590 noopMutexEnd,
16591 noopMutexAlloc,
16592 noopMutexFree,
16593 noopMutexEnter,
16594 noopMutexTry,
16595 noopMutexLeave,
16601 return &sMutex;
16603 #endif /* !SQLITE_DEBUG */
16605 #ifdef SQLITE_DEBUG
16607 ** In this implementation, error checking is provided for testing
16608 ** and debugging purposes. The mutexes still do not provide any
16609 ** mutual exclusion.
16613 ** The mutex object
16615 typedef struct sqlite3_debug_mutex {
16616 int id; /* The mutex type */
16617 int cnt; /* Number of entries without a matching leave */
16618 } sqlite3_debug_mutex;
16621 ** The sqlite3_mutex_held() and sqlite3_mutex_notheld() routine are
16622 ** intended for use inside assert() statements.
16624 static int debugMutexHeld(sqlite3_mutex *pX){
16625 sqlite3_debug_mutex *p = (sqlite3_debug_mutex*)pX;
16626 return p==0 || p->cnt>0;
16628 static int debugMutexNotheld(sqlite3_mutex *pX){
16629 sqlite3_debug_mutex *p = (sqlite3_debug_mutex*)pX;
16630 return p==0 || p->cnt==0;
16634 ** Initialize and deinitialize the mutex subsystem.
16636 static int debugMutexInit(void){ return SQLITE_OK; }
16637 static int debugMutexEnd(void){ return SQLITE_OK; }
16640 ** The sqlite3_mutex_alloc() routine allocates a new
16641 ** mutex and returns a pointer to it. If it returns NULL
16642 ** that means that a mutex could not be allocated.
16644 static sqlite3_mutex *debugMutexAlloc(int id){
16645 static sqlite3_debug_mutex aStatic[6];
16646 sqlite3_debug_mutex *pNew = 0;
16647 switch( id ){
16648 case SQLITE_MUTEX_FAST:
16649 case SQLITE_MUTEX_RECURSIVE: {
16650 pNew = sqlite3Malloc(sizeof(*pNew));
16651 if( pNew ){
16652 pNew->id = id;
16653 pNew->cnt = 0;
16655 break;
16657 default: {
16658 assert( id-2 >= 0 );
16659 assert( id-2 < (int)(sizeof(aStatic)/sizeof(aStatic[0])) );
16660 pNew = &aStatic[id-2];
16661 pNew->id = id;
16662 break;
16665 return (sqlite3_mutex*)pNew;
16669 ** This routine deallocates a previously allocated mutex.
16671 static void debugMutexFree(sqlite3_mutex *pX){
16672 sqlite3_debug_mutex *p = (sqlite3_debug_mutex*)pX;
16673 assert( p->cnt==0 );
16674 assert( p->id==SQLITE_MUTEX_FAST || p->id==SQLITE_MUTEX_RECURSIVE );
16675 sqlite3_free(p);
16679 ** The sqlite3_mutex_enter() and sqlite3_mutex_try() routines attempt
16680 ** to enter a mutex. If another thread is already within the mutex,
16681 ** sqlite3_mutex_enter() will block and sqlite3_mutex_try() will return
16682 ** SQLITE_BUSY. The sqlite3_mutex_try() interface returns SQLITE_OK
16683 ** upon successful entry. Mutexes created using SQLITE_MUTEX_RECURSIVE can
16684 ** be entered multiple times by the same thread. In such cases the,
16685 ** mutex must be exited an equal number of times before another thread
16686 ** can enter. If the same thread tries to enter any other kind of mutex
16687 ** more than once, the behavior is undefined.
16689 static void debugMutexEnter(sqlite3_mutex *pX){
16690 sqlite3_debug_mutex *p = (sqlite3_debug_mutex*)pX;
16691 assert( p->id==SQLITE_MUTEX_RECURSIVE || debugMutexNotheld(pX) );
16692 p->cnt++;
16694 static int debugMutexTry(sqlite3_mutex *pX){
16695 sqlite3_debug_mutex *p = (sqlite3_debug_mutex*)pX;
16696 assert( p->id==SQLITE_MUTEX_RECURSIVE || debugMutexNotheld(pX) );
16697 p->cnt++;
16698 return SQLITE_OK;
16702 ** The sqlite3_mutex_leave() routine exits a mutex that was
16703 ** previously entered by the same thread. The behavior
16704 ** is undefined if the mutex is not currently entered or
16705 ** is not currently allocated. SQLite will never do either.
16707 static void debugMutexLeave(sqlite3_mutex *pX){
16708 sqlite3_debug_mutex *p = (sqlite3_debug_mutex*)pX;
16709 assert( debugMutexHeld(pX) );
16710 p->cnt--;
16711 assert( p->id==SQLITE_MUTEX_RECURSIVE || debugMutexNotheld(pX) );
16714 SQLITE_PRIVATE sqlite3_mutex_methods const *sqlite3NoopMutex(void){
16715 static const sqlite3_mutex_methods sMutex = {
16716 debugMutexInit,
16717 debugMutexEnd,
16718 debugMutexAlloc,
16719 debugMutexFree,
16720 debugMutexEnter,
16721 debugMutexTry,
16722 debugMutexLeave,
16724 debugMutexHeld,
16725 debugMutexNotheld
16728 return &sMutex;
16730 #endif /* SQLITE_DEBUG */
16733 ** If compiled with SQLITE_MUTEX_NOOP, then the no-op mutex implementation
16734 ** is used regardless of the run-time threadsafety setting.
16736 #ifdef SQLITE_MUTEX_NOOP
16737 SQLITE_PRIVATE sqlite3_mutex_methods const *sqlite3DefaultMutex(void){
16738 return sqlite3NoopMutex();
16740 #endif /* SQLITE_MUTEX_NOOP */
16741 #endif /* SQLITE_MUTEX_OMIT */
16743 /************** End of mutex_noop.c ******************************************/
16744 /************** Begin file mutex_os2.c ***************************************/
16746 ** 2007 August 28
16748 ** The author disclaims copyright to this source code. In place of
16749 ** a legal notice, here is a blessing:
16751 ** May you do good and not evil.
16752 ** May you find forgiveness for yourself and forgive others.
16753 ** May you share freely, never taking more than you give.
16755 *************************************************************************
16756 ** This file contains the C functions that implement mutexes for OS/2
16760 ** The code in this file is only used if SQLITE_MUTEX_OS2 is defined.
16761 ** See the mutex.h file for details.
16763 #ifdef SQLITE_MUTEX_OS2
16765 /********************** OS/2 Mutex Implementation **********************
16767 ** This implementation of mutexes is built using the OS/2 API.
16771 ** The mutex object
16772 ** Each recursive mutex is an instance of the following structure.
16774 struct sqlite3_mutex {
16775 HMTX mutex; /* Mutex controlling the lock */
16776 int id; /* Mutex type */
16777 #ifdef SQLITE_DEBUG
16778 int trace; /* True to trace changes */
16779 #endif
16782 #ifdef SQLITE_DEBUG
16783 #define SQLITE3_MUTEX_INITIALIZER { 0, 0, 0 }
16784 #else
16785 #define SQLITE3_MUTEX_INITIALIZER { 0, 0 }
16786 #endif
16789 ** Initialize and deinitialize the mutex subsystem.
16791 static int os2MutexInit(void){ return SQLITE_OK; }
16792 static int os2MutexEnd(void){ return SQLITE_OK; }
16795 ** The sqlite3_mutex_alloc() routine allocates a new
16796 ** mutex and returns a pointer to it. If it returns NULL
16797 ** that means that a mutex could not be allocated.
16798 ** SQLite will unwind its stack and return an error. The argument
16799 ** to sqlite3_mutex_alloc() is one of these integer constants:
16801 ** <ul>
16802 ** <li> SQLITE_MUTEX_FAST
16803 ** <li> SQLITE_MUTEX_RECURSIVE
16804 ** <li> SQLITE_MUTEX_STATIC_MASTER
16805 ** <li> SQLITE_MUTEX_STATIC_MEM
16806 ** <li> SQLITE_MUTEX_STATIC_MEM2
16807 ** <li> SQLITE_MUTEX_STATIC_PRNG
16808 ** <li> SQLITE_MUTEX_STATIC_LRU
16809 ** <li> SQLITE_MUTEX_STATIC_LRU2
16810 ** </ul>
16812 ** The first two constants cause sqlite3_mutex_alloc() to create
16813 ** a new mutex. The new mutex is recursive when SQLITE_MUTEX_RECURSIVE
16814 ** is used but not necessarily so when SQLITE_MUTEX_FAST is used.
16815 ** The mutex implementation does not need to make a distinction
16816 ** between SQLITE_MUTEX_RECURSIVE and SQLITE_MUTEX_FAST if it does
16817 ** not want to. But SQLite will only request a recursive mutex in
16818 ** cases where it really needs one. If a faster non-recursive mutex
16819 ** implementation is available on the host platform, the mutex subsystem
16820 ** might return such a mutex in response to SQLITE_MUTEX_FAST.
16822 ** The other allowed parameters to sqlite3_mutex_alloc() each return
16823 ** a pointer to a static preexisting mutex. Six static mutexes are
16824 ** used by the current version of SQLite. Future versions of SQLite
16825 ** may add additional static mutexes. Static mutexes are for internal
16826 ** use by SQLite only. Applications that use SQLite mutexes should
16827 ** use only the dynamic mutexes returned by SQLITE_MUTEX_FAST or
16828 ** SQLITE_MUTEX_RECURSIVE.
16830 ** Note that if one of the dynamic mutex parameters (SQLITE_MUTEX_FAST
16831 ** or SQLITE_MUTEX_RECURSIVE) is used then sqlite3_mutex_alloc()
16832 ** returns a different mutex on every call. But for the static
16833 ** mutex types, the same mutex is returned on every call that has
16834 ** the same type number.
16836 static sqlite3_mutex *os2MutexAlloc(int iType){
16837 sqlite3_mutex *p = NULL;
16838 switch( iType ){
16839 case SQLITE_MUTEX_FAST:
16840 case SQLITE_MUTEX_RECURSIVE: {
16841 p = sqlite3MallocZero( sizeof(*p) );
16842 if( p ){
16843 p->id = iType;
16844 if( DosCreateMutexSem( 0, &p->mutex, 0, FALSE ) != NO_ERROR ){
16845 sqlite3_free( p );
16846 p = NULL;
16849 break;
16851 default: {
16852 static volatile int isInit = 0;
16853 static sqlite3_mutex staticMutexes[6] = {
16854 SQLITE3_MUTEX_INITIALIZER,
16855 SQLITE3_MUTEX_INITIALIZER,
16856 SQLITE3_MUTEX_INITIALIZER,
16857 SQLITE3_MUTEX_INITIALIZER,
16858 SQLITE3_MUTEX_INITIALIZER,
16859 SQLITE3_MUTEX_INITIALIZER,
16861 if ( !isInit ){
16862 APIRET rc;
16863 PTIB ptib;
16864 PPIB ppib;
16865 HMTX mutex;
16866 char name[32];
16867 DosGetInfoBlocks( &ptib, &ppib );
16868 sqlite3_snprintf( sizeof(name), name, "\\SEM32\\SQLITE%04x",
16869 ppib->pib_ulpid );
16870 while( !isInit ){
16871 mutex = 0;
16872 rc = DosCreateMutexSem( name, &mutex, 0, FALSE);
16873 if( rc == NO_ERROR ){
16874 unsigned int i;
16875 if( !isInit ){
16876 for( i = 0; i < sizeof(staticMutexes)/sizeof(staticMutexes[0]); i++ ){
16877 DosCreateMutexSem( 0, &staticMutexes[i].mutex, 0, FALSE );
16879 isInit = 1;
16881 DosCloseMutexSem( mutex );
16882 }else if( rc == ERROR_DUPLICATE_NAME ){
16883 DosSleep( 1 );
16884 }else{
16885 return p;
16889 assert( iType-2 >= 0 );
16890 assert( iType-2 < sizeof(staticMutexes)/sizeof(staticMutexes[0]) );
16891 p = &staticMutexes[iType-2];
16892 p->id = iType;
16893 break;
16896 return p;
16901 ** This routine deallocates a previously allocated mutex.
16902 ** SQLite is careful to deallocate every mutex that it allocates.
16904 static void os2MutexFree(sqlite3_mutex *p){
16905 #ifdef SQLITE_DEBUG
16906 TID tid;
16907 PID pid;
16908 ULONG ulCount;
16909 DosQueryMutexSem(p->mutex, &pid, &tid, &ulCount);
16910 assert( ulCount==0 );
16911 assert( p->id==SQLITE_MUTEX_FAST || p->id==SQLITE_MUTEX_RECURSIVE );
16912 #endif
16913 DosCloseMutexSem( p->mutex );
16914 sqlite3_free( p );
16917 #ifdef SQLITE_DEBUG
16919 ** The sqlite3_mutex_held() and sqlite3_mutex_notheld() routine are
16920 ** intended for use inside assert() statements.
16922 static int os2MutexHeld(sqlite3_mutex *p){
16923 TID tid;
16924 PID pid;
16925 ULONG ulCount;
16926 PTIB ptib;
16927 DosQueryMutexSem(p->mutex, &pid, &tid, &ulCount);
16928 if( ulCount==0 || ( ulCount>1 && p->id!=SQLITE_MUTEX_RECURSIVE ) )
16929 return 0;
16930 DosGetInfoBlocks(&ptib, NULL);
16931 return tid==ptib->tib_ptib2->tib2_ultid;
16933 static int os2MutexNotheld(sqlite3_mutex *p){
16934 TID tid;
16935 PID pid;
16936 ULONG ulCount;
16937 PTIB ptib;
16938 DosQueryMutexSem(p->mutex, &pid, &tid, &ulCount);
16939 if( ulCount==0 )
16940 return 1;
16941 DosGetInfoBlocks(&ptib, NULL);
16942 return tid!=ptib->tib_ptib2->tib2_ultid;
16944 static void os2MutexTrace(sqlite3_mutex *p, char *pAction){
16945 TID tid;
16946 PID pid;
16947 ULONG ulCount;
16948 DosQueryMutexSem(p->mutex, &pid, &tid, &ulCount);
16949 printf("%s mutex %p (%d) with nRef=%ld\n", pAction, (void*)p, p->trace, ulCount);
16951 #endif
16954 ** The sqlite3_mutex_enter() and sqlite3_mutex_try() routines attempt
16955 ** to enter a mutex. If another thread is already within the mutex,
16956 ** sqlite3_mutex_enter() will block and sqlite3_mutex_try() will return
16957 ** SQLITE_BUSY. The sqlite3_mutex_try() interface returns SQLITE_OK
16958 ** upon successful entry. Mutexes created using SQLITE_MUTEX_RECURSIVE can
16959 ** be entered multiple times by the same thread. In such cases the,
16960 ** mutex must be exited an equal number of times before another thread
16961 ** can enter. If the same thread tries to enter any other kind of mutex
16962 ** more than once, the behavior is undefined.
16964 static void os2MutexEnter(sqlite3_mutex *p){
16965 assert( p->id==SQLITE_MUTEX_RECURSIVE || os2MutexNotheld(p) );
16966 DosRequestMutexSem(p->mutex, SEM_INDEFINITE_WAIT);
16967 #ifdef SQLITE_DEBUG
16968 if( p->trace ) os2MutexTrace(p, "enter");
16969 #endif
16971 static int os2MutexTry(sqlite3_mutex *p){
16972 int rc = SQLITE_BUSY;
16973 assert( p->id==SQLITE_MUTEX_RECURSIVE || os2MutexNotheld(p) );
16974 if( DosRequestMutexSem(p->mutex, SEM_IMMEDIATE_RETURN) == NO_ERROR ) {
16975 rc = SQLITE_OK;
16976 #ifdef SQLITE_DEBUG
16977 if( p->trace ) os2MutexTrace(p, "try");
16978 #endif
16980 return rc;
16984 ** The sqlite3_mutex_leave() routine exits a mutex that was
16985 ** previously entered by the same thread. The behavior
16986 ** is undefined if the mutex is not currently entered or
16987 ** is not currently allocated. SQLite will never do either.
16989 static void os2MutexLeave(sqlite3_mutex *p){
16990 assert( os2MutexHeld(p) );
16991 DosReleaseMutexSem(p->mutex);
16992 #ifdef SQLITE_DEBUG
16993 if( p->trace ) os2MutexTrace(p, "leave");
16994 #endif
16997 SQLITE_PRIVATE sqlite3_mutex_methods const *sqlite3DefaultMutex(void){
16998 static const sqlite3_mutex_methods sMutex = {
16999 os2MutexInit,
17000 os2MutexEnd,
17001 os2MutexAlloc,
17002 os2MutexFree,
17003 os2MutexEnter,
17004 os2MutexTry,
17005 os2MutexLeave,
17006 #ifdef SQLITE_DEBUG
17007 os2MutexHeld,
17008 os2MutexNotheld
17009 #else
17012 #endif
17015 return &sMutex;
17017 #endif /* SQLITE_MUTEX_OS2 */
17019 /************** End of mutex_os2.c *******************************************/
17020 /************** Begin file mutex_unix.c **************************************/
17022 ** 2007 August 28
17024 ** The author disclaims copyright to this source code. In place of
17025 ** a legal notice, here is a blessing:
17027 ** May you do good and not evil.
17028 ** May you find forgiveness for yourself and forgive others.
17029 ** May you share freely, never taking more than you give.
17031 *************************************************************************
17032 ** This file contains the C functions that implement mutexes for pthreads
17036 ** The code in this file is only used if we are compiling threadsafe
17037 ** under unix with pthreads.
17039 ** Note that this implementation requires a version of pthreads that
17040 ** supports recursive mutexes.
17042 #ifdef SQLITE_MUTEX_PTHREADS
17044 #include <pthread.h>
17047 ** The sqlite3_mutex.id, sqlite3_mutex.nRef, and sqlite3_mutex.owner fields
17048 ** are necessary under two condidtions: (1) Debug builds and (2) using
17049 ** home-grown mutexes. Encapsulate these conditions into a single #define.
17051 #if defined(SQLITE_DEBUG) || defined(SQLITE_HOMEGROWN_RECURSIVE_MUTEX)
17052 # define SQLITE_MUTEX_NREF 1
17053 #else
17054 # define SQLITE_MUTEX_NREF 0
17055 #endif
17058 ** Each recursive mutex is an instance of the following structure.
17060 struct sqlite3_mutex {
17061 pthread_mutex_t mutex; /* Mutex controlling the lock */
17062 #if SQLITE_MUTEX_NREF
17063 int id; /* Mutex type */
17064 volatile int nRef; /* Number of entrances */
17065 volatile pthread_t owner; /* Thread that is within this mutex */
17066 int trace; /* True to trace changes */
17067 #endif
17069 #if SQLITE_MUTEX_NREF
17070 #define SQLITE3_MUTEX_INITIALIZER { PTHREAD_MUTEX_INITIALIZER, 0, 0, (pthread_t)0, 0 }
17071 #else
17072 #define SQLITE3_MUTEX_INITIALIZER { PTHREAD_MUTEX_INITIALIZER }
17073 #endif
17076 ** The sqlite3_mutex_held() and sqlite3_mutex_notheld() routine are
17077 ** intended for use only inside assert() statements. On some platforms,
17078 ** there might be race conditions that can cause these routines to
17079 ** deliver incorrect results. In particular, if pthread_equal() is
17080 ** not an atomic operation, then these routines might delivery
17081 ** incorrect results. On most platforms, pthread_equal() is a
17082 ** comparison of two integers and is therefore atomic. But we are
17083 ** told that HPUX is not such a platform. If so, then these routines
17084 ** will not always work correctly on HPUX.
17086 ** On those platforms where pthread_equal() is not atomic, SQLite
17087 ** should be compiled without -DSQLITE_DEBUG and with -DNDEBUG to
17088 ** make sure no assert() statements are evaluated and hence these
17089 ** routines are never called.
17091 #if !defined(NDEBUG) || defined(SQLITE_DEBUG)
17092 static int pthreadMutexHeld(sqlite3_mutex *p){
17093 return (p->nRef!=0 && pthread_equal(p->owner, pthread_self()));
17095 static int pthreadMutexNotheld(sqlite3_mutex *p){
17096 return p->nRef==0 || pthread_equal(p->owner, pthread_self())==0;
17098 #endif
17101 ** Initialize and deinitialize the mutex subsystem.
17103 static int pthreadMutexInit(void){ return SQLITE_OK; }
17104 static int pthreadMutexEnd(void){ return SQLITE_OK; }
17107 ** The sqlite3_mutex_alloc() routine allocates a new
17108 ** mutex and returns a pointer to it. If it returns NULL
17109 ** that means that a mutex could not be allocated. SQLite
17110 ** will unwind its stack and return an error. The argument
17111 ** to sqlite3_mutex_alloc() is one of these integer constants:
17113 ** <ul>
17114 ** <li> SQLITE_MUTEX_FAST
17115 ** <li> SQLITE_MUTEX_RECURSIVE
17116 ** <li> SQLITE_MUTEX_STATIC_MASTER
17117 ** <li> SQLITE_MUTEX_STATIC_MEM
17118 ** <li> SQLITE_MUTEX_STATIC_MEM2
17119 ** <li> SQLITE_MUTEX_STATIC_PRNG
17120 ** <li> SQLITE_MUTEX_STATIC_LRU
17121 ** <li> SQLITE_MUTEX_STATIC_PMEM
17122 ** </ul>
17124 ** The first two constants cause sqlite3_mutex_alloc() to create
17125 ** a new mutex. The new mutex is recursive when SQLITE_MUTEX_RECURSIVE
17126 ** is used but not necessarily so when SQLITE_MUTEX_FAST is used.
17127 ** The mutex implementation does not need to make a distinction
17128 ** between SQLITE_MUTEX_RECURSIVE and SQLITE_MUTEX_FAST if it does
17129 ** not want to. But SQLite will only request a recursive mutex in
17130 ** cases where it really needs one. If a faster non-recursive mutex
17131 ** implementation is available on the host platform, the mutex subsystem
17132 ** might return such a mutex in response to SQLITE_MUTEX_FAST.
17134 ** The other allowed parameters to sqlite3_mutex_alloc() each return
17135 ** a pointer to a static preexisting mutex. Six static mutexes are
17136 ** used by the current version of SQLite. Future versions of SQLite
17137 ** may add additional static mutexes. Static mutexes are for internal
17138 ** use by SQLite only. Applications that use SQLite mutexes should
17139 ** use only the dynamic mutexes returned by SQLITE_MUTEX_FAST or
17140 ** SQLITE_MUTEX_RECURSIVE.
17142 ** Note that if one of the dynamic mutex parameters (SQLITE_MUTEX_FAST
17143 ** or SQLITE_MUTEX_RECURSIVE) is used then sqlite3_mutex_alloc()
17144 ** returns a different mutex on every call. But for the static
17145 ** mutex types, the same mutex is returned on every call that has
17146 ** the same type number.
17148 static sqlite3_mutex *pthreadMutexAlloc(int iType){
17149 static sqlite3_mutex staticMutexes[] = {
17150 SQLITE3_MUTEX_INITIALIZER,
17151 SQLITE3_MUTEX_INITIALIZER,
17152 SQLITE3_MUTEX_INITIALIZER,
17153 SQLITE3_MUTEX_INITIALIZER,
17154 SQLITE3_MUTEX_INITIALIZER,
17155 SQLITE3_MUTEX_INITIALIZER
17157 sqlite3_mutex *p;
17158 switch( iType ){
17159 case SQLITE_MUTEX_RECURSIVE: {
17160 p = sqlite3MallocZero( sizeof(*p) );
17161 if( p ){
17162 #ifdef SQLITE_HOMEGROWN_RECURSIVE_MUTEX
17163 /* If recursive mutexes are not available, we will have to
17164 ** build our own. See below. */
17165 pthread_mutex_init(&p->mutex, 0);
17166 #else
17167 /* Use a recursive mutex if it is available */
17168 pthread_mutexattr_t recursiveAttr;
17169 pthread_mutexattr_init(&recursiveAttr);
17170 pthread_mutexattr_settype(&recursiveAttr, PTHREAD_MUTEX_RECURSIVE);
17171 pthread_mutex_init(&p->mutex, &recursiveAttr);
17172 pthread_mutexattr_destroy(&recursiveAttr);
17173 #endif
17174 #if SQLITE_MUTEX_NREF
17175 p->id = iType;
17176 #endif
17178 break;
17180 case SQLITE_MUTEX_FAST: {
17181 p = sqlite3MallocZero( sizeof(*p) );
17182 if( p ){
17183 #if SQLITE_MUTEX_NREF
17184 p->id = iType;
17185 #endif
17186 pthread_mutex_init(&p->mutex, 0);
17188 break;
17190 default: {
17191 assert( iType-2 >= 0 );
17192 assert( iType-2 < ArraySize(staticMutexes) );
17193 p = &staticMutexes[iType-2];
17194 #if SQLITE_MUTEX_NREF
17195 p->id = iType;
17196 #endif
17197 break;
17200 return p;
17205 ** This routine deallocates a previously
17206 ** allocated mutex. SQLite is careful to deallocate every
17207 ** mutex that it allocates.
17209 static void pthreadMutexFree(sqlite3_mutex *p){
17210 assert( p->nRef==0 );
17211 assert( p->id==SQLITE_MUTEX_FAST || p->id==SQLITE_MUTEX_RECURSIVE );
17212 pthread_mutex_destroy(&p->mutex);
17213 sqlite3_free(p);
17217 ** The sqlite3_mutex_enter() and sqlite3_mutex_try() routines attempt
17218 ** to enter a mutex. If another thread is already within the mutex,
17219 ** sqlite3_mutex_enter() will block and sqlite3_mutex_try() will return
17220 ** SQLITE_BUSY. The sqlite3_mutex_try() interface returns SQLITE_OK
17221 ** upon successful entry. Mutexes created using SQLITE_MUTEX_RECURSIVE can
17222 ** be entered multiple times by the same thread. In such cases the,
17223 ** mutex must be exited an equal number of times before another thread
17224 ** can enter. If the same thread tries to enter any other kind of mutex
17225 ** more than once, the behavior is undefined.
17227 static void pthreadMutexEnter(sqlite3_mutex *p){
17228 assert( p->id==SQLITE_MUTEX_RECURSIVE || pthreadMutexNotheld(p) );
17230 #ifdef SQLITE_HOMEGROWN_RECURSIVE_MUTEX
17231 /* If recursive mutexes are not available, then we have to grow
17232 ** our own. This implementation assumes that pthread_equal()
17233 ** is atomic - that it cannot be deceived into thinking self
17234 ** and p->owner are equal if p->owner changes between two values
17235 ** that are not equal to self while the comparison is taking place.
17236 ** This implementation also assumes a coherent cache - that
17237 ** separate processes cannot read different values from the same
17238 ** address at the same time. If either of these two conditions
17239 ** are not met, then the mutexes will fail and problems will result.
17242 pthread_t self = pthread_self();
17243 if( p->nRef>0 && pthread_equal(p->owner, self) ){
17244 p->nRef++;
17245 }else{
17246 pthread_mutex_lock(&p->mutex);
17247 assert( p->nRef==0 );
17248 p->owner = self;
17249 p->nRef = 1;
17252 #else
17253 /* Use the built-in recursive mutexes if they are available.
17255 pthread_mutex_lock(&p->mutex);
17256 #if SQLITE_MUTEX_NREF
17257 assert( p->nRef>0 || p->owner==0 );
17258 p->owner = pthread_self();
17259 p->nRef++;
17260 #endif
17261 #endif
17263 #ifdef SQLITE_DEBUG
17264 if( p->trace ){
17265 printf("enter mutex %p (%d) with nRef=%d\n", p, p->trace, p->nRef);
17267 #endif
17269 static int pthreadMutexTry(sqlite3_mutex *p){
17270 int rc;
17271 assert( p->id==SQLITE_MUTEX_RECURSIVE || pthreadMutexNotheld(p) );
17273 #ifdef SQLITE_HOMEGROWN_RECURSIVE_MUTEX
17274 /* If recursive mutexes are not available, then we have to grow
17275 ** our own. This implementation assumes that pthread_equal()
17276 ** is atomic - that it cannot be deceived into thinking self
17277 ** and p->owner are equal if p->owner changes between two values
17278 ** that are not equal to self while the comparison is taking place.
17279 ** This implementation also assumes a coherent cache - that
17280 ** separate processes cannot read different values from the same
17281 ** address at the same time. If either of these two conditions
17282 ** are not met, then the mutexes will fail and problems will result.
17285 pthread_t self = pthread_self();
17286 if( p->nRef>0 && pthread_equal(p->owner, self) ){
17287 p->nRef++;
17288 rc = SQLITE_OK;
17289 }else if( pthread_mutex_trylock(&p->mutex)==0 ){
17290 assert( p->nRef==0 );
17291 p->owner = self;
17292 p->nRef = 1;
17293 rc = SQLITE_OK;
17294 }else{
17295 rc = SQLITE_BUSY;
17298 #else
17299 /* Use the built-in recursive mutexes if they are available.
17301 if( pthread_mutex_trylock(&p->mutex)==0 ){
17302 #if SQLITE_MUTEX_NREF
17303 p->owner = pthread_self();
17304 p->nRef++;
17305 #endif
17306 rc = SQLITE_OK;
17307 }else{
17308 rc = SQLITE_BUSY;
17310 #endif
17312 #ifdef SQLITE_DEBUG
17313 if( rc==SQLITE_OK && p->trace ){
17314 printf("enter mutex %p (%d) with nRef=%d\n", p, p->trace, p->nRef);
17316 #endif
17317 return rc;
17321 ** The sqlite3_mutex_leave() routine exits a mutex that was
17322 ** previously entered by the same thread. The behavior
17323 ** is undefined if the mutex is not currently entered or
17324 ** is not currently allocated. SQLite will never do either.
17326 static void pthreadMutexLeave(sqlite3_mutex *p){
17327 assert( pthreadMutexHeld(p) );
17328 #if SQLITE_MUTEX_NREF
17329 p->nRef--;
17330 if( p->nRef==0 ) p->owner = 0;
17331 #endif
17332 assert( p->nRef==0 || p->id==SQLITE_MUTEX_RECURSIVE );
17334 #ifdef SQLITE_HOMEGROWN_RECURSIVE_MUTEX
17335 if( p->nRef==0 ){
17336 pthread_mutex_unlock(&p->mutex);
17338 #else
17339 pthread_mutex_unlock(&p->mutex);
17340 #endif
17342 #ifdef SQLITE_DEBUG
17343 if( p->trace ){
17344 printf("leave mutex %p (%d) with nRef=%d\n", p, p->trace, p->nRef);
17346 #endif
17349 SQLITE_PRIVATE sqlite3_mutex_methods const *sqlite3DefaultMutex(void){
17350 static const sqlite3_mutex_methods sMutex = {
17351 pthreadMutexInit,
17352 pthreadMutexEnd,
17353 pthreadMutexAlloc,
17354 pthreadMutexFree,
17355 pthreadMutexEnter,
17356 pthreadMutexTry,
17357 pthreadMutexLeave,
17358 #ifdef SQLITE_DEBUG
17359 pthreadMutexHeld,
17360 pthreadMutexNotheld
17361 #else
17364 #endif
17367 return &sMutex;
17370 #endif /* SQLITE_MUTEX_PTHREAD */
17372 /************** End of mutex_unix.c ******************************************/
17373 /************** Begin file mutex_w32.c ***************************************/
17375 ** 2007 August 14
17377 ** The author disclaims copyright to this source code. In place of
17378 ** a legal notice, here is a blessing:
17380 ** May you do good and not evil.
17381 ** May you find forgiveness for yourself and forgive others.
17382 ** May you share freely, never taking more than you give.
17384 *************************************************************************
17385 ** This file contains the C functions that implement mutexes for win32
17389 ** The code in this file is only used if we are compiling multithreaded
17390 ** on a win32 system.
17392 #ifdef SQLITE_MUTEX_W32
17395 ** Each recursive mutex is an instance of the following structure.
17397 struct sqlite3_mutex {
17398 CRITICAL_SECTION mutex; /* Mutex controlling the lock */
17399 int id; /* Mutex type */
17400 #ifdef SQLITE_DEBUG
17401 volatile int nRef; /* Number of enterances */
17402 volatile DWORD owner; /* Thread holding this mutex */
17403 int trace; /* True to trace changes */
17404 #endif
17406 #define SQLITE_W32_MUTEX_INITIALIZER { 0 }
17407 #ifdef SQLITE_DEBUG
17408 #define SQLITE3_MUTEX_INITIALIZER { SQLITE_W32_MUTEX_INITIALIZER, 0, 0L, (DWORD)0, 0 }
17409 #else
17410 #define SQLITE3_MUTEX_INITIALIZER { SQLITE_W32_MUTEX_INITIALIZER, 0 }
17411 #endif
17414 ** Return true (non-zero) if we are running under WinNT, Win2K, WinXP,
17415 ** or WinCE. Return false (zero) for Win95, Win98, or WinME.
17417 ** Here is an interesting observation: Win95, Win98, and WinME lack
17418 ** the LockFileEx() API. But we can still statically link against that
17419 ** API as long as we don't call it win running Win95/98/ME. A call to
17420 ** this routine is used to determine if the host is Win95/98/ME or
17421 ** WinNT/2K/XP so that we will know whether or not we can safely call
17422 ** the LockFileEx() API.
17424 ** mutexIsNT() is only used for the TryEnterCriticalSection() API call,
17425 ** which is only available if your application was compiled with
17426 ** _WIN32_WINNT defined to a value >= 0x0400. Currently, the only
17427 ** call to TryEnterCriticalSection() is #ifdef'ed out, so #ifdef
17428 ** this out as well.
17430 #if 0
17431 #if SQLITE_OS_WINCE
17432 # define mutexIsNT() (1)
17433 #else
17434 static int mutexIsNT(void){
17435 static int osType = 0;
17436 if( osType==0 ){
17437 OSVERSIONINFO sInfo;
17438 sInfo.dwOSVersionInfoSize = sizeof(sInfo);
17439 GetVersionEx(&sInfo);
17440 osType = sInfo.dwPlatformId==VER_PLATFORM_WIN32_NT ? 2 : 1;
17442 return osType==2;
17444 #endif /* SQLITE_OS_WINCE */
17445 #endif
17447 #ifdef SQLITE_DEBUG
17449 ** The sqlite3_mutex_held() and sqlite3_mutex_notheld() routine are
17450 ** intended for use only inside assert() statements.
17452 static int winMutexHeld(sqlite3_mutex *p){
17453 return p->nRef!=0 && p->owner==GetCurrentThreadId();
17455 static int winMutexNotheld2(sqlite3_mutex *p, DWORD tid){
17456 return p->nRef==0 || p->owner!=tid;
17458 static int winMutexNotheld(sqlite3_mutex *p){
17459 DWORD tid = GetCurrentThreadId();
17460 return winMutexNotheld2(p, tid);
17462 #endif
17466 ** Initialize and deinitialize the mutex subsystem.
17468 static sqlite3_mutex winMutex_staticMutexes[6] = {
17469 SQLITE3_MUTEX_INITIALIZER,
17470 SQLITE3_MUTEX_INITIALIZER,
17471 SQLITE3_MUTEX_INITIALIZER,
17472 SQLITE3_MUTEX_INITIALIZER,
17473 SQLITE3_MUTEX_INITIALIZER,
17474 SQLITE3_MUTEX_INITIALIZER
17476 static int winMutex_isInit = 0;
17477 /* As winMutexInit() and winMutexEnd() are called as part
17478 ** of the sqlite3_initialize and sqlite3_shutdown()
17479 ** processing, the "interlocked" magic is probably not
17480 ** strictly necessary.
17482 static long winMutex_lock = 0;
17484 static int winMutexInit(void){
17485 /* The first to increment to 1 does actual initialization */
17486 if( InterlockedCompareExchange(&winMutex_lock, 1, 0)==0 ){
17487 int i;
17488 for(i=0; i<ArraySize(winMutex_staticMutexes); i++){
17489 InitializeCriticalSection(&winMutex_staticMutexes[i].mutex);
17491 winMutex_isInit = 1;
17492 }else{
17493 /* Someone else is in the process of initing the static mutexes */
17494 while( !winMutex_isInit ){
17495 Sleep(1);
17498 return SQLITE_OK;
17501 static int winMutexEnd(void){
17502 /* The first to decrement to 0 does actual shutdown
17503 ** (which should be the last to shutdown.) */
17504 if( InterlockedCompareExchange(&winMutex_lock, 0, 1)==1 ){
17505 if( winMutex_isInit==1 ){
17506 int i;
17507 for(i=0; i<ArraySize(winMutex_staticMutexes); i++){
17508 DeleteCriticalSection(&winMutex_staticMutexes[i].mutex);
17510 winMutex_isInit = 0;
17513 return SQLITE_OK;
17517 ** The sqlite3_mutex_alloc() routine allocates a new
17518 ** mutex and returns a pointer to it. If it returns NULL
17519 ** that means that a mutex could not be allocated. SQLite
17520 ** will unwind its stack and return an error. The argument
17521 ** to sqlite3_mutex_alloc() is one of these integer constants:
17523 ** <ul>
17524 ** <li> SQLITE_MUTEX_FAST
17525 ** <li> SQLITE_MUTEX_RECURSIVE
17526 ** <li> SQLITE_MUTEX_STATIC_MASTER
17527 ** <li> SQLITE_MUTEX_STATIC_MEM
17528 ** <li> SQLITE_MUTEX_STATIC_MEM2
17529 ** <li> SQLITE_MUTEX_STATIC_PRNG
17530 ** <li> SQLITE_MUTEX_STATIC_LRU
17531 ** <li> SQLITE_MUTEX_STATIC_PMEM
17532 ** </ul>
17534 ** The first two constants cause sqlite3_mutex_alloc() to create
17535 ** a new mutex. The new mutex is recursive when SQLITE_MUTEX_RECURSIVE
17536 ** is used but not necessarily so when SQLITE_MUTEX_FAST is used.
17537 ** The mutex implementation does not need to make a distinction
17538 ** between SQLITE_MUTEX_RECURSIVE and SQLITE_MUTEX_FAST if it does
17539 ** not want to. But SQLite will only request a recursive mutex in
17540 ** cases where it really needs one. If a faster non-recursive mutex
17541 ** implementation is available on the host platform, the mutex subsystem
17542 ** might return such a mutex in response to SQLITE_MUTEX_FAST.
17544 ** The other allowed parameters to sqlite3_mutex_alloc() each return
17545 ** a pointer to a static preexisting mutex. Six static mutexes are
17546 ** used by the current version of SQLite. Future versions of SQLite
17547 ** may add additional static mutexes. Static mutexes are for internal
17548 ** use by SQLite only. Applications that use SQLite mutexes should
17549 ** use only the dynamic mutexes returned by SQLITE_MUTEX_FAST or
17550 ** SQLITE_MUTEX_RECURSIVE.
17552 ** Note that if one of the dynamic mutex parameters (SQLITE_MUTEX_FAST
17553 ** or SQLITE_MUTEX_RECURSIVE) is used then sqlite3_mutex_alloc()
17554 ** returns a different mutex on every call. But for the static
17555 ** mutex types, the same mutex is returned on every call that has
17556 ** the same type number.
17558 static sqlite3_mutex *winMutexAlloc(int iType){
17559 sqlite3_mutex *p;
17561 switch( iType ){
17562 case SQLITE_MUTEX_FAST:
17563 case SQLITE_MUTEX_RECURSIVE: {
17564 p = sqlite3MallocZero( sizeof(*p) );
17565 if( p ){
17566 #ifdef SQLITE_DEBUG
17567 p->id = iType;
17568 #endif
17569 InitializeCriticalSection(&p->mutex);
17571 break;
17573 default: {
17574 assert( winMutex_isInit==1 );
17575 assert( iType-2 >= 0 );
17576 assert( iType-2 < ArraySize(winMutex_staticMutexes) );
17577 p = &winMutex_staticMutexes[iType-2];
17578 #ifdef SQLITE_DEBUG
17579 p->id = iType;
17580 #endif
17581 break;
17584 return p;
17589 ** This routine deallocates a previously
17590 ** allocated mutex. SQLite is careful to deallocate every
17591 ** mutex that it allocates.
17593 static void winMutexFree(sqlite3_mutex *p){
17594 assert( p );
17595 assert( p->nRef==0 && p->owner==0 );
17596 assert( p->id==SQLITE_MUTEX_FAST || p->id==SQLITE_MUTEX_RECURSIVE );
17597 DeleteCriticalSection(&p->mutex);
17598 sqlite3_free(p);
17602 ** The sqlite3_mutex_enter() and sqlite3_mutex_try() routines attempt
17603 ** to enter a mutex. If another thread is already within the mutex,
17604 ** sqlite3_mutex_enter() will block and sqlite3_mutex_try() will return
17605 ** SQLITE_BUSY. The sqlite3_mutex_try() interface returns SQLITE_OK
17606 ** upon successful entry. Mutexes created using SQLITE_MUTEX_RECURSIVE can
17607 ** be entered multiple times by the same thread. In such cases the,
17608 ** mutex must be exited an equal number of times before another thread
17609 ** can enter. If the same thread tries to enter any other kind of mutex
17610 ** more than once, the behavior is undefined.
17612 static void winMutexEnter(sqlite3_mutex *p){
17613 #ifdef SQLITE_DEBUG
17614 DWORD tid = GetCurrentThreadId();
17615 assert( p->id==SQLITE_MUTEX_RECURSIVE || winMutexNotheld2(p, tid) );
17616 #endif
17617 EnterCriticalSection(&p->mutex);
17618 #ifdef SQLITE_DEBUG
17619 assert( p->nRef>0 || p->owner==0 );
17620 p->owner = tid;
17621 p->nRef++;
17622 if( p->trace ){
17623 printf("enter mutex %p (%d) with nRef=%d\n", p, p->trace, p->nRef);
17625 #endif
17627 static int winMutexTry(sqlite3_mutex *p){
17628 #ifndef NDEBUG
17629 DWORD tid = GetCurrentThreadId();
17630 #endif
17631 int rc = SQLITE_BUSY;
17632 assert( p->id==SQLITE_MUTEX_RECURSIVE || winMutexNotheld2(p, tid) );
17634 ** The sqlite3_mutex_try() routine is very rarely used, and when it
17635 ** is used it is merely an optimization. So it is OK for it to always
17636 ** fail.
17638 ** The TryEnterCriticalSection() interface is only available on WinNT.
17639 ** And some windows compilers complain if you try to use it without
17640 ** first doing some #defines that prevent SQLite from building on Win98.
17641 ** For that reason, we will omit this optimization for now. See
17642 ** ticket #2685.
17644 #if 0
17645 if( mutexIsNT() && TryEnterCriticalSection(&p->mutex) ){
17646 p->owner = tid;
17647 p->nRef++;
17648 rc = SQLITE_OK;
17650 #else
17651 UNUSED_PARAMETER(p);
17652 #endif
17653 #ifdef SQLITE_DEBUG
17654 if( rc==SQLITE_OK && p->trace ){
17655 printf("try mutex %p (%d) with nRef=%d\n", p, p->trace, p->nRef);
17657 #endif
17658 return rc;
17662 ** The sqlite3_mutex_leave() routine exits a mutex that was
17663 ** previously entered by the same thread. The behavior
17664 ** is undefined if the mutex is not currently entered or
17665 ** is not currently allocated. SQLite will never do either.
17667 static void winMutexLeave(sqlite3_mutex *p){
17668 #ifndef NDEBUG
17669 DWORD tid = GetCurrentThreadId();
17670 assert( p->nRef>0 );
17671 assert( p->owner==tid );
17672 p->nRef--;
17673 if( p->nRef==0 ) p->owner = 0;
17674 assert( p->nRef==0 || p->id==SQLITE_MUTEX_RECURSIVE );
17675 #endif
17676 LeaveCriticalSection(&p->mutex);
17677 #ifdef SQLITE_DEBUG
17678 if( p->trace ){
17679 printf("leave mutex %p (%d) with nRef=%d\n", p, p->trace, p->nRef);
17681 #endif
17684 SQLITE_PRIVATE sqlite3_mutex_methods const *sqlite3DefaultMutex(void){
17685 static const sqlite3_mutex_methods sMutex = {
17686 winMutexInit,
17687 winMutexEnd,
17688 winMutexAlloc,
17689 winMutexFree,
17690 winMutexEnter,
17691 winMutexTry,
17692 winMutexLeave,
17693 #ifdef SQLITE_DEBUG
17694 winMutexHeld,
17695 winMutexNotheld
17696 #else
17699 #endif
17702 return &sMutex;
17704 #endif /* SQLITE_MUTEX_W32 */
17706 /************** End of mutex_w32.c *******************************************/
17707 /************** Begin file malloc.c ******************************************/
17709 ** 2001 September 15
17711 ** The author disclaims copyright to this source code. In place of
17712 ** a legal notice, here is a blessing:
17714 ** May you do good and not evil.
17715 ** May you find forgiveness for yourself and forgive others.
17716 ** May you share freely, never taking more than you give.
17718 *************************************************************************
17720 ** Memory allocation functions used throughout sqlite.
17724 ** Attempt to release up to n bytes of non-essential memory currently
17725 ** held by SQLite. An example of non-essential memory is memory used to
17726 ** cache database pages that are not currently in use.
17728 SQLITE_API int sqlite3_release_memory(int n){
17729 #ifdef SQLITE_ENABLE_MEMORY_MANAGEMENT
17730 return sqlite3PcacheReleaseMemory(n);
17731 #else
17732 /* IMPLEMENTATION-OF: R-34391-24921 The sqlite3_release_memory() routine
17733 ** is a no-op returning zero if SQLite is not compiled with
17734 ** SQLITE_ENABLE_MEMORY_MANAGEMENT. */
17735 UNUSED_PARAMETER(n);
17736 return 0;
17737 #endif
17741 ** An instance of the following object records the location of
17742 ** each unused scratch buffer.
17744 typedef struct ScratchFreeslot {
17745 struct ScratchFreeslot *pNext; /* Next unused scratch buffer */
17746 } ScratchFreeslot;
17749 ** State information local to the memory allocation subsystem.
17751 static SQLITE_WSD struct Mem0Global {
17752 sqlite3_mutex *mutex; /* Mutex to serialize access */
17755 ** The alarm callback and its arguments. The mem0.mutex lock will
17756 ** be held while the callback is running. Recursive calls into
17757 ** the memory subsystem are allowed, but no new callbacks will be
17758 ** issued.
17760 sqlite3_int64 alarmThreshold;
17761 void (*alarmCallback)(void*, sqlite3_int64,int);
17762 void *alarmArg;
17765 ** Pointers to the end of sqlite3GlobalConfig.pScratch memory
17766 ** (so that a range test can be used to determine if an allocation
17767 ** being freed came from pScratch) and a pointer to the list of
17768 ** unused scratch allocations.
17770 void *pScratchEnd;
17771 ScratchFreeslot *pScratchFree;
17772 u32 nScratchFree;
17775 ** True if heap is nearly "full" where "full" is defined by the
17776 ** sqlite3_soft_heap_limit() setting.
17778 int nearlyFull;
17779 } mem0 = { 0, 0, 0, 0, 0, 0, 0, 0 };
17781 #define mem0 GLOBAL(struct Mem0Global, mem0)
17784 ** This routine runs when the memory allocator sees that the
17785 ** total memory allocation is about to exceed the soft heap
17786 ** limit.
17788 static void softHeapLimitEnforcer(
17789 void *NotUsed,
17790 sqlite3_int64 NotUsed2,
17791 int allocSize
17793 UNUSED_PARAMETER2(NotUsed, NotUsed2);
17794 sqlite3_release_memory(allocSize);
17798 ** Change the alarm callback
17800 static int sqlite3MemoryAlarm(
17801 void(*xCallback)(void *pArg, sqlite3_int64 used,int N),
17802 void *pArg,
17803 sqlite3_int64 iThreshold
17805 int nUsed;
17806 sqlite3_mutex_enter(mem0.mutex);
17807 mem0.alarmCallback = xCallback;
17808 mem0.alarmArg = pArg;
17809 mem0.alarmThreshold = iThreshold;
17810 nUsed = sqlite3StatusValue(SQLITE_STATUS_MEMORY_USED);
17811 mem0.nearlyFull = (iThreshold>0 && iThreshold<=nUsed);
17812 sqlite3_mutex_leave(mem0.mutex);
17813 return SQLITE_OK;
17816 #ifndef SQLITE_OMIT_DEPRECATED
17818 ** Deprecated external interface. Internal/core SQLite code
17819 ** should call sqlite3MemoryAlarm.
17821 SQLITE_API int sqlite3_memory_alarm(
17822 void(*xCallback)(void *pArg, sqlite3_int64 used,int N),
17823 void *pArg,
17824 sqlite3_int64 iThreshold
17826 return sqlite3MemoryAlarm(xCallback, pArg, iThreshold);
17828 #endif
17831 ** Set the soft heap-size limit for the library. Passing a zero or
17832 ** negative value indicates no limit.
17834 SQLITE_API sqlite3_int64 sqlite3_soft_heap_limit64(sqlite3_int64 n){
17835 sqlite3_int64 priorLimit;
17836 sqlite3_int64 excess;
17837 #ifndef SQLITE_OMIT_AUTOINIT
17838 sqlite3_initialize();
17839 #endif
17840 sqlite3_mutex_enter(mem0.mutex);
17841 priorLimit = mem0.alarmThreshold;
17842 sqlite3_mutex_leave(mem0.mutex);
17843 if( n<0 ) return priorLimit;
17844 if( n>0 ){
17845 sqlite3MemoryAlarm(softHeapLimitEnforcer, 0, n);
17846 }else{
17847 sqlite3MemoryAlarm(0, 0, 0);
17849 excess = sqlite3_memory_used() - n;
17850 if( excess>0 ) sqlite3_release_memory((int)(excess & 0x7fffffff));
17851 return priorLimit;
17853 SQLITE_API void sqlite3_soft_heap_limit(int n){
17854 if( n<0 ) n = 0;
17855 sqlite3_soft_heap_limit64(n);
17859 ** Initialize the memory allocation subsystem.
17861 SQLITE_PRIVATE int sqlite3MallocInit(void){
17862 if( sqlite3GlobalConfig.m.xMalloc==0 ){
17863 sqlite3MemSetDefault();
17865 memset(&mem0, 0, sizeof(mem0));
17866 if( sqlite3GlobalConfig.bCoreMutex ){
17867 mem0.mutex = sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_MEM);
17869 if( sqlite3GlobalConfig.pScratch && sqlite3GlobalConfig.szScratch>=100
17870 && sqlite3GlobalConfig.nScratch>0 ){
17871 int i, n, sz;
17872 ScratchFreeslot *pSlot;
17873 sz = ROUNDDOWN8(sqlite3GlobalConfig.szScratch);
17874 sqlite3GlobalConfig.szScratch = sz;
17875 pSlot = (ScratchFreeslot*)sqlite3GlobalConfig.pScratch;
17876 n = sqlite3GlobalConfig.nScratch;
17877 mem0.pScratchFree = pSlot;
17878 mem0.nScratchFree = n;
17879 for(i=0; i<n-1; i++){
17880 pSlot->pNext = (ScratchFreeslot*)(sz+(char*)pSlot);
17881 pSlot = pSlot->pNext;
17883 pSlot->pNext = 0;
17884 mem0.pScratchEnd = (void*)&pSlot[1];
17885 }else{
17886 mem0.pScratchEnd = 0;
17887 sqlite3GlobalConfig.pScratch = 0;
17888 sqlite3GlobalConfig.szScratch = 0;
17889 sqlite3GlobalConfig.nScratch = 0;
17891 if( sqlite3GlobalConfig.pPage==0 || sqlite3GlobalConfig.szPage<512
17892 || sqlite3GlobalConfig.nPage<1 ){
17893 sqlite3GlobalConfig.pPage = 0;
17894 sqlite3GlobalConfig.szPage = 0;
17895 sqlite3GlobalConfig.nPage = 0;
17897 return sqlite3GlobalConfig.m.xInit(sqlite3GlobalConfig.m.pAppData);
17901 ** Return true if the heap is currently under memory pressure - in other
17902 ** words if the amount of heap used is close to the limit set by
17903 ** sqlite3_soft_heap_limit().
17905 SQLITE_PRIVATE int sqlite3HeapNearlyFull(void){
17906 return mem0.nearlyFull;
17910 ** Deinitialize the memory allocation subsystem.
17912 SQLITE_PRIVATE void sqlite3MallocEnd(void){
17913 if( sqlite3GlobalConfig.m.xShutdown ){
17914 sqlite3GlobalConfig.m.xShutdown(sqlite3GlobalConfig.m.pAppData);
17916 memset(&mem0, 0, sizeof(mem0));
17920 ** Return the amount of memory currently checked out.
17922 SQLITE_API sqlite3_int64 sqlite3_memory_used(void){
17923 int n, mx;
17924 sqlite3_int64 res;
17925 sqlite3_status(SQLITE_STATUS_MEMORY_USED, &n, &mx, 0);
17926 res = (sqlite3_int64)n; /* Work around bug in Borland C. Ticket #3216 */
17927 return res;
17931 ** Return the maximum amount of memory that has ever been
17932 ** checked out since either the beginning of this process
17933 ** or since the most recent reset.
17935 SQLITE_API sqlite3_int64 sqlite3_memory_highwater(int resetFlag){
17936 int n, mx;
17937 sqlite3_int64 res;
17938 sqlite3_status(SQLITE_STATUS_MEMORY_USED, &n, &mx, resetFlag);
17939 res = (sqlite3_int64)mx; /* Work around bug in Borland C. Ticket #3216 */
17940 return res;
17944 ** Trigger the alarm
17946 static void sqlite3MallocAlarm(int nByte){
17947 void (*xCallback)(void*,sqlite3_int64,int);
17948 sqlite3_int64 nowUsed;
17949 void *pArg;
17950 if( mem0.alarmCallback==0 ) return;
17951 xCallback = mem0.alarmCallback;
17952 nowUsed = sqlite3StatusValue(SQLITE_STATUS_MEMORY_USED);
17953 pArg = mem0.alarmArg;
17954 mem0.alarmCallback = 0;
17955 sqlite3_mutex_leave(mem0.mutex);
17956 xCallback(pArg, nowUsed, nByte);
17957 sqlite3_mutex_enter(mem0.mutex);
17958 mem0.alarmCallback = xCallback;
17959 mem0.alarmArg = pArg;
17963 ** Do a memory allocation with statistics and alarms. Assume the
17964 ** lock is already held.
17966 static int mallocWithAlarm(int n, void **pp){
17967 int nFull;
17968 void *p;
17969 assert( sqlite3_mutex_held(mem0.mutex) );
17970 nFull = sqlite3GlobalConfig.m.xRoundup(n);
17971 sqlite3StatusSet(SQLITE_STATUS_MALLOC_SIZE, n);
17972 if( mem0.alarmCallback!=0 ){
17973 int nUsed = sqlite3StatusValue(SQLITE_STATUS_MEMORY_USED);
17974 if( nUsed+nFull >= mem0.alarmThreshold ){
17975 mem0.nearlyFull = 1;
17976 sqlite3MallocAlarm(nFull);
17977 }else{
17978 mem0.nearlyFull = 0;
17981 p = sqlite3GlobalConfig.m.xMalloc(nFull);
17982 #ifdef SQLITE_ENABLE_MEMORY_MANAGEMENT
17983 if( p==0 && mem0.alarmCallback ){
17984 sqlite3MallocAlarm(nFull);
17985 p = sqlite3GlobalConfig.m.xMalloc(nFull);
17987 #endif
17988 if( p ){
17989 nFull = sqlite3MallocSize(p);
17990 sqlite3StatusAdd(SQLITE_STATUS_MEMORY_USED, nFull);
17991 sqlite3StatusAdd(SQLITE_STATUS_MALLOC_COUNT, 1);
17993 *pp = p;
17994 return nFull;
17998 ** Allocate memory. This routine is like sqlite3_malloc() except that it
17999 ** assumes the memory subsystem has already been initialized.
18001 SQLITE_PRIVATE void *sqlite3Malloc(int n){
18002 void *p;
18003 if( n<=0 /* IMP: R-65312-04917 */
18004 || n>=0x7fffff00
18006 /* A memory allocation of a number of bytes which is near the maximum
18007 ** signed integer value might cause an integer overflow inside of the
18008 ** xMalloc(). Hence we limit the maximum size to 0x7fffff00, giving
18009 ** 255 bytes of overhead. SQLite itself will never use anything near
18010 ** this amount. The only way to reach the limit is with sqlite3_malloc() */
18011 p = 0;
18012 }else if( sqlite3GlobalConfig.bMemstat ){
18013 sqlite3_mutex_enter(mem0.mutex);
18014 mallocWithAlarm(n, &p);
18015 sqlite3_mutex_leave(mem0.mutex);
18016 }else{
18017 p = sqlite3GlobalConfig.m.xMalloc(n);
18019 assert( EIGHT_BYTE_ALIGNMENT(p) ); /* IMP: R-04675-44850 */
18020 return p;
18024 ** This version of the memory allocation is for use by the application.
18025 ** First make sure the memory subsystem is initialized, then do the
18026 ** allocation.
18028 SQLITE_API void *sqlite3_malloc(int n){
18029 #ifndef SQLITE_OMIT_AUTOINIT
18030 if( sqlite3_initialize() ) return 0;
18031 #endif
18032 return sqlite3Malloc(n);
18036 ** Each thread may only have a single outstanding allocation from
18037 ** xScratchMalloc(). We verify this constraint in the single-threaded
18038 ** case by setting scratchAllocOut to 1 when an allocation
18039 ** is outstanding clearing it when the allocation is freed.
18041 #if SQLITE_THREADSAFE==0 && !defined(NDEBUG)
18042 static int scratchAllocOut = 0;
18043 #endif
18047 ** Allocate memory that is to be used and released right away.
18048 ** This routine is similar to alloca() in that it is not intended
18049 ** for situations where the memory might be held long-term. This
18050 ** routine is intended to get memory to old large transient data
18051 ** structures that would not normally fit on the stack of an
18052 ** embedded processor.
18054 SQLITE_PRIVATE void *sqlite3ScratchMalloc(int n){
18055 void *p;
18056 assert( n>0 );
18058 sqlite3_mutex_enter(mem0.mutex);
18059 if( mem0.nScratchFree && sqlite3GlobalConfig.szScratch>=n ){
18060 p = mem0.pScratchFree;
18061 mem0.pScratchFree = mem0.pScratchFree->pNext;
18062 mem0.nScratchFree--;
18063 sqlite3StatusAdd(SQLITE_STATUS_SCRATCH_USED, 1);
18064 sqlite3StatusSet(SQLITE_STATUS_SCRATCH_SIZE, n);
18065 sqlite3_mutex_leave(mem0.mutex);
18066 }else{
18067 if( sqlite3GlobalConfig.bMemstat ){
18068 sqlite3StatusSet(SQLITE_STATUS_SCRATCH_SIZE, n);
18069 n = mallocWithAlarm(n, &p);
18070 if( p ) sqlite3StatusAdd(SQLITE_STATUS_SCRATCH_OVERFLOW, n);
18071 sqlite3_mutex_leave(mem0.mutex);
18072 }else{
18073 sqlite3_mutex_leave(mem0.mutex);
18074 p = sqlite3GlobalConfig.m.xMalloc(n);
18076 sqlite3MemdebugSetType(p, MEMTYPE_SCRATCH);
18078 assert( sqlite3_mutex_notheld(mem0.mutex) );
18081 #if SQLITE_THREADSAFE==0 && !defined(NDEBUG)
18082 /* Verify that no more than two scratch allocations per thread
18083 ** are outstanding at one time. (This is only checked in the
18084 ** single-threaded case since checking in the multi-threaded case
18085 ** would be much more complicated.) */
18086 assert( scratchAllocOut<=1 );
18087 if( p ) scratchAllocOut++;
18088 #endif
18090 return p;
18092 SQLITE_PRIVATE void sqlite3ScratchFree(void *p){
18093 if( p ){
18095 #if SQLITE_THREADSAFE==0 && !defined(NDEBUG)
18096 /* Verify that no more than two scratch allocation per thread
18097 ** is outstanding at one time. (This is only checked in the
18098 ** single-threaded case since checking in the multi-threaded case
18099 ** would be much more complicated.) */
18100 assert( scratchAllocOut>=1 && scratchAllocOut<=2 );
18101 scratchAllocOut--;
18102 #endif
18104 if( p>=sqlite3GlobalConfig.pScratch && p<mem0.pScratchEnd ){
18105 /* Release memory from the SQLITE_CONFIG_SCRATCH allocation */
18106 ScratchFreeslot *pSlot;
18107 pSlot = (ScratchFreeslot*)p;
18108 sqlite3_mutex_enter(mem0.mutex);
18109 pSlot->pNext = mem0.pScratchFree;
18110 mem0.pScratchFree = pSlot;
18111 mem0.nScratchFree++;
18112 assert( mem0.nScratchFree <= (u32)sqlite3GlobalConfig.nScratch );
18113 sqlite3StatusAdd(SQLITE_STATUS_SCRATCH_USED, -1);
18114 sqlite3_mutex_leave(mem0.mutex);
18115 }else{
18116 /* Release memory back to the heap */
18117 assert( sqlite3MemdebugHasType(p, MEMTYPE_SCRATCH) );
18118 assert( sqlite3MemdebugNoType(p, ~MEMTYPE_SCRATCH) );
18119 sqlite3MemdebugSetType(p, MEMTYPE_HEAP);
18120 if( sqlite3GlobalConfig.bMemstat ){
18121 int iSize = sqlite3MallocSize(p);
18122 sqlite3_mutex_enter(mem0.mutex);
18123 sqlite3StatusAdd(SQLITE_STATUS_SCRATCH_OVERFLOW, -iSize);
18124 sqlite3StatusAdd(SQLITE_STATUS_MEMORY_USED, -iSize);
18125 sqlite3StatusAdd(SQLITE_STATUS_MALLOC_COUNT, -1);
18126 sqlite3GlobalConfig.m.xFree(p);
18127 sqlite3_mutex_leave(mem0.mutex);
18128 }else{
18129 sqlite3GlobalConfig.m.xFree(p);
18136 ** TRUE if p is a lookaside memory allocation from db
18138 #ifndef SQLITE_OMIT_LOOKASIDE
18139 static int isLookaside(sqlite3 *db, void *p){
18140 return p && p>=db->lookaside.pStart && p<db->lookaside.pEnd;
18142 #else
18143 #define isLookaside(A,B) 0
18144 #endif
18147 ** Return the size of a memory allocation previously obtained from
18148 ** sqlite3Malloc() or sqlite3_malloc().
18150 SQLITE_PRIVATE int sqlite3MallocSize(void *p){
18151 assert( sqlite3MemdebugHasType(p, MEMTYPE_HEAP) );
18152 assert( sqlite3MemdebugNoType(p, MEMTYPE_DB) );
18153 return sqlite3GlobalConfig.m.xSize(p);
18155 SQLITE_PRIVATE int sqlite3DbMallocSize(sqlite3 *db, void *p){
18156 assert( db==0 || sqlite3_mutex_held(db->mutex) );
18157 if( db && isLookaside(db, p) ){
18158 return db->lookaside.sz;
18159 }else{
18160 assert( sqlite3MemdebugHasType(p, MEMTYPE_DB) );
18161 assert( sqlite3MemdebugHasType(p, MEMTYPE_LOOKASIDE|MEMTYPE_HEAP) );
18162 assert( db!=0 || sqlite3MemdebugNoType(p, MEMTYPE_LOOKASIDE) );
18163 return sqlite3GlobalConfig.m.xSize(p);
18168 ** Free memory previously obtained from sqlite3Malloc().
18170 SQLITE_API void sqlite3_free(void *p){
18171 if( p==0 ) return; /* IMP: R-49053-54554 */
18172 assert( sqlite3MemdebugNoType(p, MEMTYPE_DB) );
18173 assert( sqlite3MemdebugHasType(p, MEMTYPE_HEAP) );
18174 if( sqlite3GlobalConfig.bMemstat ){
18175 sqlite3_mutex_enter(mem0.mutex);
18176 sqlite3StatusAdd(SQLITE_STATUS_MEMORY_USED, -sqlite3MallocSize(p));
18177 sqlite3StatusAdd(SQLITE_STATUS_MALLOC_COUNT, -1);
18178 sqlite3GlobalConfig.m.xFree(p);
18179 sqlite3_mutex_leave(mem0.mutex);
18180 }else{
18181 sqlite3GlobalConfig.m.xFree(p);
18186 ** Free memory that might be associated with a particular database
18187 ** connection.
18189 SQLITE_PRIVATE void sqlite3DbFree(sqlite3 *db, void *p){
18190 assert( db==0 || sqlite3_mutex_held(db->mutex) );
18191 if( db ){
18192 if( db->pnBytesFreed ){
18193 *db->pnBytesFreed += sqlite3DbMallocSize(db, p);
18194 return;
18196 if( isLookaside(db, p) ){
18197 LookasideSlot *pBuf = (LookasideSlot*)p;
18198 pBuf->pNext = db->lookaside.pFree;
18199 db->lookaside.pFree = pBuf;
18200 db->lookaside.nOut--;
18201 return;
18204 assert( sqlite3MemdebugHasType(p, MEMTYPE_DB) );
18205 assert( sqlite3MemdebugHasType(p, MEMTYPE_LOOKASIDE|MEMTYPE_HEAP) );
18206 assert( db!=0 || sqlite3MemdebugNoType(p, MEMTYPE_LOOKASIDE) );
18207 sqlite3MemdebugSetType(p, MEMTYPE_HEAP);
18208 sqlite3_free(p);
18212 ** Change the size of an existing memory allocation
18214 SQLITE_PRIVATE void *sqlite3Realloc(void *pOld, int nBytes){
18215 int nOld, nNew;
18216 void *pNew;
18217 if( pOld==0 ){
18218 return sqlite3Malloc(nBytes); /* IMP: R-28354-25769 */
18220 if( nBytes<=0 ){
18221 sqlite3_free(pOld); /* IMP: R-31593-10574 */
18222 return 0;
18224 if( nBytes>=0x7fffff00 ){
18225 /* The 0x7ffff00 limit term is explained in comments on sqlite3Malloc() */
18226 return 0;
18228 nOld = sqlite3MallocSize(pOld);
18229 /* IMPLEMENTATION-OF: R-46199-30249 SQLite guarantees that the second
18230 ** argument to xRealloc is always a value returned by a prior call to
18231 ** xRoundup. */
18232 nNew = sqlite3GlobalConfig.m.xRoundup(nBytes);
18233 if( nOld==nNew ){
18234 pNew = pOld;
18235 }else if( sqlite3GlobalConfig.bMemstat ){
18236 sqlite3_mutex_enter(mem0.mutex);
18237 sqlite3StatusSet(SQLITE_STATUS_MALLOC_SIZE, nBytes);
18238 if( sqlite3StatusValue(SQLITE_STATUS_MEMORY_USED)+nNew-nOld >=
18239 mem0.alarmThreshold ){
18240 sqlite3MallocAlarm(nNew-nOld);
18242 assert( sqlite3MemdebugHasType(pOld, MEMTYPE_HEAP) );
18243 assert( sqlite3MemdebugNoType(pOld, ~MEMTYPE_HEAP) );
18244 pNew = sqlite3GlobalConfig.m.xRealloc(pOld, nNew);
18245 if( pNew==0 && mem0.alarmCallback ){
18246 sqlite3MallocAlarm(nBytes);
18247 pNew = sqlite3GlobalConfig.m.xRealloc(pOld, nNew);
18249 if( pNew ){
18250 nNew = sqlite3MallocSize(pNew);
18251 sqlite3StatusAdd(SQLITE_STATUS_MEMORY_USED, nNew-nOld);
18253 sqlite3_mutex_leave(mem0.mutex);
18254 }else{
18255 pNew = sqlite3GlobalConfig.m.xRealloc(pOld, nNew);
18257 assert( EIGHT_BYTE_ALIGNMENT(pNew) ); /* IMP: R-04675-44850 */
18258 return pNew;
18262 ** The public interface to sqlite3Realloc. Make sure that the memory
18263 ** subsystem is initialized prior to invoking sqliteRealloc.
18265 SQLITE_API void *sqlite3_realloc(void *pOld, int n){
18266 #ifndef SQLITE_OMIT_AUTOINIT
18267 if( sqlite3_initialize() ) return 0;
18268 #endif
18269 return sqlite3Realloc(pOld, n);
18274 ** Allocate and zero memory.
18276 SQLITE_PRIVATE void *sqlite3MallocZero(int n){
18277 void *p = sqlite3Malloc(n);
18278 if( p ){
18279 memset(p, 0, n);
18281 return p;
18285 ** Allocate and zero memory. If the allocation fails, make
18286 ** the mallocFailed flag in the connection pointer.
18288 SQLITE_PRIVATE void *sqlite3DbMallocZero(sqlite3 *db, int n){
18289 void *p = sqlite3DbMallocRaw(db, n);
18290 if( p ){
18291 memset(p, 0, n);
18293 return p;
18297 ** Allocate and zero memory. If the allocation fails, make
18298 ** the mallocFailed flag in the connection pointer.
18300 ** If db!=0 and db->mallocFailed is true (indicating a prior malloc
18301 ** failure on the same database connection) then always return 0.
18302 ** Hence for a particular database connection, once malloc starts
18303 ** failing, it fails consistently until mallocFailed is reset.
18304 ** This is an important assumption. There are many places in the
18305 ** code that do things like this:
18307 ** int *a = (int*)sqlite3DbMallocRaw(db, 100);
18308 ** int *b = (int*)sqlite3DbMallocRaw(db, 200);
18309 ** if( b ) a[10] = 9;
18311 ** In other words, if a subsequent malloc (ex: "b") worked, it is assumed
18312 ** that all prior mallocs (ex: "a") worked too.
18314 SQLITE_PRIVATE void *sqlite3DbMallocRaw(sqlite3 *db, int n){
18315 void *p;
18316 assert( db==0 || sqlite3_mutex_held(db->mutex) );
18317 assert( db==0 || db->pnBytesFreed==0 );
18318 #ifndef SQLITE_OMIT_LOOKASIDE
18319 if( db ){
18320 LookasideSlot *pBuf;
18321 if( db->mallocFailed ){
18322 return 0;
18324 if( db->lookaside.bEnabled ){
18325 if( n>db->lookaside.sz ){
18326 db->lookaside.anStat[1]++;
18327 }else if( (pBuf = db->lookaside.pFree)==0 ){
18328 db->lookaside.anStat[2]++;
18329 }else{
18330 db->lookaside.pFree = pBuf->pNext;
18331 db->lookaside.nOut++;
18332 db->lookaside.anStat[0]++;
18333 if( db->lookaside.nOut>db->lookaside.mxOut ){
18334 db->lookaside.mxOut = db->lookaside.nOut;
18336 return (void*)pBuf;
18340 #else
18341 if( db && db->mallocFailed ){
18342 return 0;
18344 #endif
18345 p = sqlite3Malloc(n);
18346 if( !p && db ){
18347 db->mallocFailed = 1;
18349 sqlite3MemdebugSetType(p, MEMTYPE_DB |
18350 ((db && db->lookaside.bEnabled) ? MEMTYPE_LOOKASIDE : MEMTYPE_HEAP));
18351 return p;
18355 ** Resize the block of memory pointed to by p to n bytes. If the
18356 ** resize fails, set the mallocFailed flag in the connection object.
18358 SQLITE_PRIVATE void *sqlite3DbRealloc(sqlite3 *db, void *p, int n){
18359 void *pNew = 0;
18360 assert( db!=0 );
18361 assert( sqlite3_mutex_held(db->mutex) );
18362 if( db->mallocFailed==0 ){
18363 if( p==0 ){
18364 return sqlite3DbMallocRaw(db, n);
18366 if( isLookaside(db, p) ){
18367 if( n<=db->lookaside.sz ){
18368 return p;
18370 pNew = sqlite3DbMallocRaw(db, n);
18371 if( pNew ){
18372 memcpy(pNew, p, db->lookaside.sz);
18373 sqlite3DbFree(db, p);
18375 }else{
18376 assert( sqlite3MemdebugHasType(p, MEMTYPE_DB) );
18377 assert( sqlite3MemdebugHasType(p, MEMTYPE_LOOKASIDE|MEMTYPE_HEAP) );
18378 sqlite3MemdebugSetType(p, MEMTYPE_HEAP);
18379 pNew = sqlite3_realloc(p, n);
18380 if( !pNew ){
18381 sqlite3MemdebugSetType(p, MEMTYPE_DB|MEMTYPE_HEAP);
18382 db->mallocFailed = 1;
18384 sqlite3MemdebugSetType(pNew, MEMTYPE_DB |
18385 (db->lookaside.bEnabled ? MEMTYPE_LOOKASIDE : MEMTYPE_HEAP));
18388 return pNew;
18392 ** Attempt to reallocate p. If the reallocation fails, then free p
18393 ** and set the mallocFailed flag in the database connection.
18395 SQLITE_PRIVATE void *sqlite3DbReallocOrFree(sqlite3 *db, void *p, int n){
18396 void *pNew;
18397 pNew = sqlite3DbRealloc(db, p, n);
18398 if( !pNew ){
18399 sqlite3DbFree(db, p);
18401 return pNew;
18405 ** Make a copy of a string in memory obtained from sqliteMalloc(). These
18406 ** functions call sqlite3MallocRaw() directly instead of sqliteMalloc(). This
18407 ** is because when memory debugging is turned on, these two functions are
18408 ** called via macros that record the current file and line number in the
18409 ** ThreadData structure.
18411 SQLITE_PRIVATE char *sqlite3DbStrDup(sqlite3 *db, const char *z){
18412 char *zNew;
18413 size_t n;
18414 if( z==0 ){
18415 return 0;
18417 n = sqlite3Strlen30(z) + 1;
18418 assert( (n&0x7fffffff)==n );
18419 zNew = sqlite3DbMallocRaw(db, (int)n);
18420 if( zNew ){
18421 memcpy(zNew, z, n);
18423 return zNew;
18425 SQLITE_PRIVATE char *sqlite3DbStrNDup(sqlite3 *db, const char *z, int n){
18426 char *zNew;
18427 if( z==0 ){
18428 return 0;
18430 assert( (n&0x7fffffff)==n );
18431 zNew = sqlite3DbMallocRaw(db, n+1);
18432 if( zNew ){
18433 memcpy(zNew, z, n);
18434 zNew[n] = 0;
18436 return zNew;
18440 ** Create a string from the zFromat argument and the va_list that follows.
18441 ** Store the string in memory obtained from sqliteMalloc() and make *pz
18442 ** point to that string.
18444 SQLITE_PRIVATE void sqlite3SetString(char **pz, sqlite3 *db, const char *zFormat, ...){
18445 va_list ap;
18446 char *z;
18448 va_start(ap, zFormat);
18449 z = sqlite3VMPrintf(db, zFormat, ap);
18450 va_end(ap);
18451 sqlite3DbFree(db, *pz);
18452 *pz = z;
18457 ** This function must be called before exiting any API function (i.e.
18458 ** returning control to the user) that has called sqlite3_malloc or
18459 ** sqlite3_realloc.
18461 ** The returned value is normally a copy of the second argument to this
18462 ** function. However, if a malloc() failure has occurred since the previous
18463 ** invocation SQLITE_NOMEM is returned instead.
18465 ** If the first argument, db, is not NULL and a malloc() error has occurred,
18466 ** then the connection error-code (the value returned by sqlite3_errcode())
18467 ** is set to SQLITE_NOMEM.
18469 SQLITE_PRIVATE int sqlite3ApiExit(sqlite3* db, int rc){
18470 /* If the db handle is not NULL, then we must hold the connection handle
18471 ** mutex here. Otherwise the read (and possible write) of db->mallocFailed
18472 ** is unsafe, as is the call to sqlite3Error().
18474 assert( !db || sqlite3_mutex_held(db->mutex) );
18475 if( db && (db->mallocFailed || rc==SQLITE_IOERR_NOMEM) ){
18476 sqlite3Error(db, SQLITE_NOMEM, 0);
18477 db->mallocFailed = 0;
18478 rc = SQLITE_NOMEM;
18480 return rc & (db ? db->errMask : 0xff);
18483 /************** End of malloc.c **********************************************/
18484 /************** Begin file printf.c ******************************************/
18486 ** The "printf" code that follows dates from the 1980's. It is in
18487 ** the public domain. The original comments are included here for
18488 ** completeness. They are very out-of-date but might be useful as
18489 ** an historical reference. Most of the "enhancements" have been backed
18490 ** out so that the functionality is now the same as standard printf().
18492 **************************************************************************
18494 ** The following modules is an enhanced replacement for the "printf" subroutines
18495 ** found in the standard C library. The following enhancements are
18496 ** supported:
18498 ** + Additional functions. The standard set of "printf" functions
18499 ** includes printf, fprintf, sprintf, vprintf, vfprintf, and
18500 ** vsprintf. This module adds the following:
18502 ** * snprintf -- Works like sprintf, but has an extra argument
18503 ** which is the size of the buffer written to.
18505 ** * mprintf -- Similar to sprintf. Writes output to memory
18506 ** obtained from malloc.
18508 ** * xprintf -- Calls a function to dispose of output.
18510 ** * nprintf -- No output, but returns the number of characters
18511 ** that would have been output by printf.
18513 ** * A v- version (ex: vsnprintf) of every function is also
18514 ** supplied.
18516 ** + A few extensions to the formatting notation are supported:
18518 ** * The "=" flag (similar to "-") causes the output to be
18519 ** be centered in the appropriately sized field.
18521 ** * The %b field outputs an integer in binary notation.
18523 ** * The %c field now accepts a precision. The character output
18524 ** is repeated by the number of times the precision specifies.
18526 ** * The %' field works like %c, but takes as its character the
18527 ** next character of the format string, instead of the next
18528 ** argument. For example, printf("%.78'-") prints 78 minus
18529 ** signs, the same as printf("%.78c",'-').
18531 ** + When compiled using GCC on a SPARC, this version of printf is
18532 ** faster than the library printf for SUN OS 4.1.
18534 ** + All functions are fully reentrant.
18539 ** Conversion types fall into various categories as defined by the
18540 ** following enumeration.
18542 #define etRADIX 1 /* Integer types. %d, %x, %o, and so forth */
18543 #define etFLOAT 2 /* Floating point. %f */
18544 #define etEXP 3 /* Exponentional notation. %e and %E */
18545 #define etGENERIC 4 /* Floating or exponential, depending on exponent. %g */
18546 #define etSIZE 5 /* Return number of characters processed so far. %n */
18547 #define etSTRING 6 /* Strings. %s */
18548 #define etDYNSTRING 7 /* Dynamically allocated strings. %z */
18549 #define etPERCENT 8 /* Percent symbol. %% */
18550 #define etCHARX 9 /* Characters. %c */
18551 /* The rest are extensions, not normally found in printf() */
18552 #define etSQLESCAPE 10 /* Strings with '\'' doubled. %q */
18553 #define etSQLESCAPE2 11 /* Strings with '\'' doubled and enclosed in '',
18554 NULL pointers replaced by SQL NULL. %Q */
18555 #define etTOKEN 12 /* a pointer to a Token structure */
18556 #define etSRCLIST 13 /* a pointer to a SrcList */
18557 #define etPOINTER 14 /* The %p conversion */
18558 #define etSQLESCAPE3 15 /* %w -> Strings with '\"' doubled */
18559 #define etORDINAL 16 /* %r -> 1st, 2nd, 3rd, 4th, etc. English only */
18561 #define etINVALID 0 /* Any unrecognized conversion type */
18565 ** An "etByte" is an 8-bit unsigned value.
18567 typedef unsigned char etByte;
18570 ** Each builtin conversion character (ex: the 'd' in "%d") is described
18571 ** by an instance of the following structure
18573 typedef struct et_info { /* Information about each format field */
18574 char fmttype; /* The format field code letter */
18575 etByte base; /* The base for radix conversion */
18576 etByte flags; /* One or more of FLAG_ constants below */
18577 etByte type; /* Conversion paradigm */
18578 etByte charset; /* Offset into aDigits[] of the digits string */
18579 etByte prefix; /* Offset into aPrefix[] of the prefix string */
18580 } et_info;
18583 ** Allowed values for et_info.flags
18585 #define FLAG_SIGNED 1 /* True if the value to convert is signed */
18586 #define FLAG_INTERN 2 /* True if for internal use only */
18587 #define FLAG_STRING 4 /* Allow infinity precision */
18591 ** The following table is searched linearly, so it is good to put the
18592 ** most frequently used conversion types first.
18594 static const char aDigits[] = "0123456789ABCDEF0123456789abcdef";
18595 static const char aPrefix[] = "-x0\000X0";
18596 static const et_info fmtinfo[] = {
18597 { 'd', 10, 1, etRADIX, 0, 0 },
18598 { 's', 0, 4, etSTRING, 0, 0 },
18599 { 'g', 0, 1, etGENERIC, 30, 0 },
18600 { 'z', 0, 4, etDYNSTRING, 0, 0 },
18601 { 'q', 0, 4, etSQLESCAPE, 0, 0 },
18602 { 'Q', 0, 4, etSQLESCAPE2, 0, 0 },
18603 { 'w', 0, 4, etSQLESCAPE3, 0, 0 },
18604 { 'c', 0, 0, etCHARX, 0, 0 },
18605 { 'o', 8, 0, etRADIX, 0, 2 },
18606 { 'u', 10, 0, etRADIX, 0, 0 },
18607 { 'x', 16, 0, etRADIX, 16, 1 },
18608 { 'X', 16, 0, etRADIX, 0, 4 },
18609 #ifndef SQLITE_OMIT_FLOATING_POINT
18610 { 'f', 0, 1, etFLOAT, 0, 0 },
18611 { 'e', 0, 1, etEXP, 30, 0 },
18612 { 'E', 0, 1, etEXP, 14, 0 },
18613 { 'G', 0, 1, etGENERIC, 14, 0 },
18614 #endif
18615 { 'i', 10, 1, etRADIX, 0, 0 },
18616 { 'n', 0, 0, etSIZE, 0, 0 },
18617 { '%', 0, 0, etPERCENT, 0, 0 },
18618 { 'p', 16, 0, etPOINTER, 0, 1 },
18620 /* All the rest have the FLAG_INTERN bit set and are thus for internal
18621 ** use only */
18622 { 'T', 0, 2, etTOKEN, 0, 0 },
18623 { 'S', 0, 2, etSRCLIST, 0, 0 },
18624 { 'r', 10, 3, etORDINAL, 0, 0 },
18628 ** If SQLITE_OMIT_FLOATING_POINT is defined, then none of the floating point
18629 ** conversions will work.
18631 #ifndef SQLITE_OMIT_FLOATING_POINT
18633 ** "*val" is a double such that 0.1 <= *val < 10.0
18634 ** Return the ascii code for the leading digit of *val, then
18635 ** multiply "*val" by 10.0 to renormalize.
18637 ** Example:
18638 ** input: *val = 3.14159
18639 ** output: *val = 1.4159 function return = '3'
18641 ** The counter *cnt is incremented each time. After counter exceeds
18642 ** 16 (the number of significant digits in a 64-bit float) '0' is
18643 ** always returned.
18645 static char et_getdigit(LONGDOUBLE_TYPE *val, int *cnt){
18646 int digit;
18647 LONGDOUBLE_TYPE d;
18648 if( (*cnt)++ >= 16 ) return '0';
18649 digit = (int)*val;
18650 d = digit;
18651 digit += '0';
18652 *val = (*val - d)*10.0;
18653 return (char)digit;
18655 #endif /* SQLITE_OMIT_FLOATING_POINT */
18658 ** Append N space characters to the given string buffer.
18660 static void appendSpace(StrAccum *pAccum, int N){
18661 static const char zSpaces[] = " ";
18662 while( N>=(int)sizeof(zSpaces)-1 ){
18663 sqlite3StrAccumAppend(pAccum, zSpaces, sizeof(zSpaces)-1);
18664 N -= sizeof(zSpaces)-1;
18666 if( N>0 ){
18667 sqlite3StrAccumAppend(pAccum, zSpaces, N);
18672 ** On machines with a small stack size, you can redefine the
18673 ** SQLITE_PRINT_BUF_SIZE to be less than 350.
18675 #ifndef SQLITE_PRINT_BUF_SIZE
18676 # if defined(SQLITE_SMALL_STACK)
18677 # define SQLITE_PRINT_BUF_SIZE 50
18678 # else
18679 # define SQLITE_PRINT_BUF_SIZE 350
18680 # endif
18681 #endif
18682 #define etBUFSIZE SQLITE_PRINT_BUF_SIZE /* Size of the output buffer */
18685 ** The root program. All variations call this core.
18687 ** INPUTS:
18688 ** func This is a pointer to a function taking three arguments
18689 ** 1. A pointer to anything. Same as the "arg" parameter.
18690 ** 2. A pointer to the list of characters to be output
18691 ** (Note, this list is NOT null terminated.)
18692 ** 3. An integer number of characters to be output.
18693 ** (Note: This number might be zero.)
18695 ** arg This is the pointer to anything which will be passed as the
18696 ** first argument to "func". Use it for whatever you like.
18698 ** fmt This is the format string, as in the usual print.
18700 ** ap This is a pointer to a list of arguments. Same as in
18701 ** vfprint.
18703 ** OUTPUTS:
18704 ** The return value is the total number of characters sent to
18705 ** the function "func". Returns -1 on a error.
18707 ** Note that the order in which automatic variables are declared below
18708 ** seems to make a big difference in determining how fast this beast
18709 ** will run.
18711 SQLITE_PRIVATE void sqlite3VXPrintf(
18712 StrAccum *pAccum, /* Accumulate results here */
18713 int useExtended, /* Allow extended %-conversions */
18714 const char *fmt, /* Format string */
18715 va_list ap /* arguments */
18717 int c; /* Next character in the format string */
18718 char *bufpt; /* Pointer to the conversion buffer */
18719 int precision; /* Precision of the current field */
18720 int length; /* Length of the field */
18721 int idx; /* A general purpose loop counter */
18722 int width; /* Width of the current field */
18723 etByte flag_leftjustify; /* True if "-" flag is present */
18724 etByte flag_plussign; /* True if "+" flag is present */
18725 etByte flag_blanksign; /* True if " " flag is present */
18726 etByte flag_alternateform; /* True if "#" flag is present */
18727 etByte flag_altform2; /* True if "!" flag is present */
18728 etByte flag_zeropad; /* True if field width constant starts with zero */
18729 etByte flag_long; /* True if "l" flag is present */
18730 etByte flag_longlong; /* True if the "ll" flag is present */
18731 etByte done; /* Loop termination flag */
18732 sqlite_uint64 longvalue; /* Value for integer types */
18733 LONGDOUBLE_TYPE realvalue; /* Value for real types */
18734 const et_info *infop; /* Pointer to the appropriate info structure */
18735 char buf[etBUFSIZE]; /* Conversion buffer */
18736 char prefix; /* Prefix character. "+" or "-" or " " or '\0'. */
18737 etByte xtype = 0; /* Conversion paradigm */
18738 char *zExtra; /* Extra memory used for etTCLESCAPE conversions */
18739 #ifndef SQLITE_OMIT_FLOATING_POINT
18740 int exp, e2; /* exponent of real numbers */
18741 double rounder; /* Used for rounding floating point values */
18742 etByte flag_dp; /* True if decimal point should be shown */
18743 etByte flag_rtz; /* True if trailing zeros should be removed */
18744 etByte flag_exp; /* True to force display of the exponent */
18745 int nsd; /* Number of significant digits returned */
18746 #endif
18748 length = 0;
18749 bufpt = 0;
18750 for(; (c=(*fmt))!=0; ++fmt){
18751 if( c!='%' ){
18752 int amt;
18753 bufpt = (char *)fmt;
18754 amt = 1;
18755 while( (c=(*++fmt))!='%' && c!=0 ) amt++;
18756 sqlite3StrAccumAppend(pAccum, bufpt, amt);
18757 if( c==0 ) break;
18759 if( (c=(*++fmt))==0 ){
18760 sqlite3StrAccumAppend(pAccum, "%", 1);
18761 break;
18763 /* Find out what flags are present */
18764 flag_leftjustify = flag_plussign = flag_blanksign =
18765 flag_alternateform = flag_altform2 = flag_zeropad = 0;
18766 done = 0;
18768 switch( c ){
18769 case '-': flag_leftjustify = 1; break;
18770 case '+': flag_plussign = 1; break;
18771 case ' ': flag_blanksign = 1; break;
18772 case '#': flag_alternateform = 1; break;
18773 case '!': flag_altform2 = 1; break;
18774 case '0': flag_zeropad = 1; break;
18775 default: done = 1; break;
18777 }while( !done && (c=(*++fmt))!=0 );
18778 /* Get the field width */
18779 width = 0;
18780 if( c=='*' ){
18781 width = va_arg(ap,int);
18782 if( width<0 ){
18783 flag_leftjustify = 1;
18784 width = -width;
18786 c = *++fmt;
18787 }else{
18788 while( c>='0' && c<='9' ){
18789 width = width*10 + c - '0';
18790 c = *++fmt;
18793 if( width > etBUFSIZE-10 ){
18794 width = etBUFSIZE-10;
18796 /* Get the precision */
18797 if( c=='.' ){
18798 precision = 0;
18799 c = *++fmt;
18800 if( c=='*' ){
18801 precision = va_arg(ap,int);
18802 if( precision<0 ) precision = -precision;
18803 c = *++fmt;
18804 }else{
18805 while( c>='0' && c<='9' ){
18806 precision = precision*10 + c - '0';
18807 c = *++fmt;
18810 }else{
18811 precision = -1;
18813 /* Get the conversion type modifier */
18814 if( c=='l' ){
18815 flag_long = 1;
18816 c = *++fmt;
18817 if( c=='l' ){
18818 flag_longlong = 1;
18819 c = *++fmt;
18820 }else{
18821 flag_longlong = 0;
18823 }else{
18824 flag_long = flag_longlong = 0;
18826 /* Fetch the info entry for the field */
18827 infop = &fmtinfo[0];
18828 xtype = etINVALID;
18829 for(idx=0; idx<ArraySize(fmtinfo); idx++){
18830 if( c==fmtinfo[idx].fmttype ){
18831 infop = &fmtinfo[idx];
18832 if( useExtended || (infop->flags & FLAG_INTERN)==0 ){
18833 xtype = infop->type;
18834 }else{
18835 return;
18837 break;
18840 zExtra = 0;
18843 /* Limit the precision to prevent overflowing buf[] during conversion */
18844 if( precision>etBUFSIZE-40 && (infop->flags & FLAG_STRING)==0 ){
18845 precision = etBUFSIZE-40;
18849 ** At this point, variables are initialized as follows:
18851 ** flag_alternateform TRUE if a '#' is present.
18852 ** flag_altform2 TRUE if a '!' is present.
18853 ** flag_plussign TRUE if a '+' is present.
18854 ** flag_leftjustify TRUE if a '-' is present or if the
18855 ** field width was negative.
18856 ** flag_zeropad TRUE if the width began with 0.
18857 ** flag_long TRUE if the letter 'l' (ell) prefixed
18858 ** the conversion character.
18859 ** flag_longlong TRUE if the letter 'll' (ell ell) prefixed
18860 ** the conversion character.
18861 ** flag_blanksign TRUE if a ' ' is present.
18862 ** width The specified field width. This is
18863 ** always non-negative. Zero is the default.
18864 ** precision The specified precision. The default
18865 ** is -1.
18866 ** xtype The class of the conversion.
18867 ** infop Pointer to the appropriate info struct.
18869 switch( xtype ){
18870 case etPOINTER:
18871 flag_longlong = sizeof(char*)==sizeof(i64);
18872 flag_long = sizeof(char*)==sizeof(long int);
18873 /* Fall through into the next case */
18874 case etORDINAL:
18875 case etRADIX:
18876 if( infop->flags & FLAG_SIGNED ){
18877 i64 v;
18878 if( flag_longlong ){
18879 v = va_arg(ap,i64);
18880 }else if( flag_long ){
18881 v = va_arg(ap,long int);
18882 }else{
18883 v = va_arg(ap,int);
18885 if( v<0 ){
18886 if( v==SMALLEST_INT64 ){
18887 longvalue = ((u64)1)<<63;
18888 }else{
18889 longvalue = -v;
18891 prefix = '-';
18892 }else{
18893 longvalue = v;
18894 if( flag_plussign ) prefix = '+';
18895 else if( flag_blanksign ) prefix = ' ';
18896 else prefix = 0;
18898 }else{
18899 if( flag_longlong ){
18900 longvalue = va_arg(ap,u64);
18901 }else if( flag_long ){
18902 longvalue = va_arg(ap,unsigned long int);
18903 }else{
18904 longvalue = va_arg(ap,unsigned int);
18906 prefix = 0;
18908 if( longvalue==0 ) flag_alternateform = 0;
18909 if( flag_zeropad && precision<width-(prefix!=0) ){
18910 precision = width-(prefix!=0);
18912 bufpt = &buf[etBUFSIZE-1];
18913 if( xtype==etORDINAL ){
18914 static const char zOrd[] = "thstndrd";
18915 int x = (int)(longvalue % 10);
18916 if( x>=4 || (longvalue/10)%10==1 ){
18917 x = 0;
18919 buf[etBUFSIZE-3] = zOrd[x*2];
18920 buf[etBUFSIZE-2] = zOrd[x*2+1];
18921 bufpt -= 2;
18924 register const char *cset; /* Use registers for speed */
18925 register int base;
18926 cset = &aDigits[infop->charset];
18927 base = infop->base;
18928 do{ /* Convert to ascii */
18929 *(--bufpt) = cset[longvalue%base];
18930 longvalue = longvalue/base;
18931 }while( longvalue>0 );
18933 length = (int)(&buf[etBUFSIZE-1]-bufpt);
18934 for(idx=precision-length; idx>0; idx--){
18935 *(--bufpt) = '0'; /* Zero pad */
18937 if( prefix ) *(--bufpt) = prefix; /* Add sign */
18938 if( flag_alternateform && infop->prefix ){ /* Add "0" or "0x" */
18939 const char *pre;
18940 char x;
18941 pre = &aPrefix[infop->prefix];
18942 for(; (x=(*pre))!=0; pre++) *(--bufpt) = x;
18944 length = (int)(&buf[etBUFSIZE-1]-bufpt);
18945 break;
18946 case etFLOAT:
18947 case etEXP:
18948 case etGENERIC:
18949 realvalue = va_arg(ap,double);
18950 #ifdef SQLITE_OMIT_FLOATING_POINT
18951 length = 0;
18952 #else
18953 if( precision<0 ) precision = 6; /* Set default precision */
18954 if( precision>etBUFSIZE/2-10 ) precision = etBUFSIZE/2-10;
18955 if( realvalue<0.0 ){
18956 realvalue = -realvalue;
18957 prefix = '-';
18958 }else{
18959 if( flag_plussign ) prefix = '+';
18960 else if( flag_blanksign ) prefix = ' ';
18961 else prefix = 0;
18963 if( xtype==etGENERIC && precision>0 ) precision--;
18964 #if 0
18965 /* Rounding works like BSD when the constant 0.4999 is used. Wierd! */
18966 for(idx=precision, rounder=0.4999; idx>0; idx--, rounder*=0.1);
18967 #else
18968 /* It makes more sense to use 0.5 */
18969 for(idx=precision, rounder=0.5; idx>0; idx--, rounder*=0.1){}
18970 #endif
18971 if( xtype==etFLOAT ) realvalue += rounder;
18972 /* Normalize realvalue to within 10.0 > realvalue >= 1.0 */
18973 exp = 0;
18974 if( sqlite3IsNaN((double)realvalue) ){
18975 bufpt = "NaN";
18976 length = 3;
18977 break;
18979 if( realvalue>0.0 ){
18980 while( realvalue>=1e32 && exp<=350 ){ realvalue *= 1e-32; exp+=32; }
18981 while( realvalue>=1e8 && exp<=350 ){ realvalue *= 1e-8; exp+=8; }
18982 while( realvalue>=10.0 && exp<=350 ){ realvalue *= 0.1; exp++; }
18983 while( realvalue<1e-8 ){ realvalue *= 1e8; exp-=8; }
18984 while( realvalue<1.0 ){ realvalue *= 10.0; exp--; }
18985 if( exp>350 ){
18986 if( prefix=='-' ){
18987 bufpt = "-Inf";
18988 }else if( prefix=='+' ){
18989 bufpt = "+Inf";
18990 }else{
18991 bufpt = "Inf";
18993 length = sqlite3Strlen30(bufpt);
18994 break;
18997 bufpt = buf;
18999 ** If the field type is etGENERIC, then convert to either etEXP
19000 ** or etFLOAT, as appropriate.
19002 flag_exp = xtype==etEXP;
19003 if( xtype!=etFLOAT ){
19004 realvalue += rounder;
19005 if( realvalue>=10.0 ){ realvalue *= 0.1; exp++; }
19007 if( xtype==etGENERIC ){
19008 flag_rtz = !flag_alternateform;
19009 if( exp<-4 || exp>precision ){
19010 xtype = etEXP;
19011 }else{
19012 precision = precision - exp;
19013 xtype = etFLOAT;
19015 }else{
19016 flag_rtz = 0;
19018 if( xtype==etEXP ){
19019 e2 = 0;
19020 }else{
19021 e2 = exp;
19023 nsd = 0;
19024 flag_dp = (precision>0 ?1:0) | flag_alternateform | flag_altform2;
19025 /* The sign in front of the number */
19026 if( prefix ){
19027 *(bufpt++) = prefix;
19029 /* Digits prior to the decimal point */
19030 if( e2<0 ){
19031 *(bufpt++) = '0';
19032 }else{
19033 for(; e2>=0; e2--){
19034 *(bufpt++) = et_getdigit(&realvalue,&nsd);
19037 /* The decimal point */
19038 if( flag_dp ){
19039 *(bufpt++) = '.';
19041 /* "0" digits after the decimal point but before the first
19042 ** significant digit of the number */
19043 for(e2++; e2<0; precision--, e2++){
19044 assert( precision>0 );
19045 *(bufpt++) = '0';
19047 /* Significant digits after the decimal point */
19048 while( (precision--)>0 ){
19049 *(bufpt++) = et_getdigit(&realvalue,&nsd);
19051 /* Remove trailing zeros and the "." if no digits follow the "." */
19052 if( flag_rtz && flag_dp ){
19053 while( bufpt[-1]=='0' ) *(--bufpt) = 0;
19054 assert( bufpt>buf );
19055 if( bufpt[-1]=='.' ){
19056 if( flag_altform2 ){
19057 *(bufpt++) = '0';
19058 }else{
19059 *(--bufpt) = 0;
19063 /* Add the "eNNN" suffix */
19064 if( flag_exp || xtype==etEXP ){
19065 *(bufpt++) = aDigits[infop->charset];
19066 if( exp<0 ){
19067 *(bufpt++) = '-'; exp = -exp;
19068 }else{
19069 *(bufpt++) = '+';
19071 if( exp>=100 ){
19072 *(bufpt++) = (char)((exp/100)+'0'); /* 100's digit */
19073 exp %= 100;
19075 *(bufpt++) = (char)(exp/10+'0'); /* 10's digit */
19076 *(bufpt++) = (char)(exp%10+'0'); /* 1's digit */
19078 *bufpt = 0;
19080 /* The converted number is in buf[] and zero terminated. Output it.
19081 ** Note that the number is in the usual order, not reversed as with
19082 ** integer conversions. */
19083 length = (int)(bufpt-buf);
19084 bufpt = buf;
19086 /* Special case: Add leading zeros if the flag_zeropad flag is
19087 ** set and we are not left justified */
19088 if( flag_zeropad && !flag_leftjustify && length < width){
19089 int i;
19090 int nPad = width - length;
19091 for(i=width; i>=nPad; i--){
19092 bufpt[i] = bufpt[i-nPad];
19094 i = prefix!=0;
19095 while( nPad-- ) bufpt[i++] = '0';
19096 length = width;
19098 #endif /* !defined(SQLITE_OMIT_FLOATING_POINT) */
19099 break;
19100 case etSIZE:
19101 *(va_arg(ap,int*)) = pAccum->nChar;
19102 length = width = 0;
19103 break;
19104 case etPERCENT:
19105 buf[0] = '%';
19106 bufpt = buf;
19107 length = 1;
19108 break;
19109 case etCHARX:
19110 c = va_arg(ap,int);
19111 buf[0] = (char)c;
19112 if( precision>=0 ){
19113 for(idx=1; idx<precision; idx++) buf[idx] = (char)c;
19114 length = precision;
19115 }else{
19116 length =1;
19118 bufpt = buf;
19119 break;
19120 case etSTRING:
19121 case etDYNSTRING:
19122 bufpt = va_arg(ap,char*);
19123 if( bufpt==0 ){
19124 bufpt = "";
19125 }else if( xtype==etDYNSTRING ){
19126 zExtra = bufpt;
19128 if( precision>=0 ){
19129 for(length=0; length<precision && bufpt[length]; length++){}
19130 }else{
19131 length = sqlite3Strlen30(bufpt);
19133 break;
19134 case etSQLESCAPE:
19135 case etSQLESCAPE2:
19136 case etSQLESCAPE3: {
19137 int i, j, k, n, isnull;
19138 int needQuote;
19139 char ch;
19140 char q = ((xtype==etSQLESCAPE3)?'"':'\''); /* Quote character */
19141 char *escarg = va_arg(ap,char*);
19142 isnull = escarg==0;
19143 if( isnull ) escarg = (xtype==etSQLESCAPE2 ? "NULL" : "(NULL)");
19144 k = precision;
19145 for(i=n=0; k!=0 && (ch=escarg[i])!=0; i++, k--){
19146 if( ch==q ) n++;
19148 needQuote = !isnull && xtype==etSQLESCAPE2;
19149 n += i + 1 + needQuote*2;
19150 if( n>etBUFSIZE ){
19151 bufpt = zExtra = sqlite3Malloc( n );
19152 if( bufpt==0 ){
19153 pAccum->mallocFailed = 1;
19154 return;
19156 }else{
19157 bufpt = buf;
19159 j = 0;
19160 if( needQuote ) bufpt[j++] = q;
19161 k = i;
19162 for(i=0; i<k; i++){
19163 bufpt[j++] = ch = escarg[i];
19164 if( ch==q ) bufpt[j++] = ch;
19166 if( needQuote ) bufpt[j++] = q;
19167 bufpt[j] = 0;
19168 length = j;
19169 /* The precision in %q and %Q means how many input characters to
19170 ** consume, not the length of the output...
19171 ** if( precision>=0 && precision<length ) length = precision; */
19172 break;
19174 case etTOKEN: {
19175 Token *pToken = va_arg(ap, Token*);
19176 if( pToken ){
19177 sqlite3StrAccumAppend(pAccum, (const char*)pToken->z, pToken->n);
19179 length = width = 0;
19180 break;
19182 case etSRCLIST: {
19183 SrcList *pSrc = va_arg(ap, SrcList*);
19184 int k = va_arg(ap, int);
19185 struct SrcList_item *pItem = &pSrc->a[k];
19186 assert( k>=0 && k<pSrc->nSrc );
19187 if( pItem->zDatabase ){
19188 sqlite3StrAccumAppend(pAccum, pItem->zDatabase, -1);
19189 sqlite3StrAccumAppend(pAccum, ".", 1);
19191 sqlite3StrAccumAppend(pAccum, pItem->zName, -1);
19192 length = width = 0;
19193 break;
19195 default: {
19196 assert( xtype==etINVALID );
19197 return;
19199 }/* End switch over the format type */
19201 ** The text of the conversion is pointed to by "bufpt" and is
19202 ** "length" characters long. The field width is "width". Do
19203 ** the output.
19205 if( !flag_leftjustify ){
19206 register int nspace;
19207 nspace = width-length;
19208 if( nspace>0 ){
19209 appendSpace(pAccum, nspace);
19212 if( length>0 ){
19213 sqlite3StrAccumAppend(pAccum, bufpt, length);
19215 if( flag_leftjustify ){
19216 register int nspace;
19217 nspace = width-length;
19218 if( nspace>0 ){
19219 appendSpace(pAccum, nspace);
19222 if( zExtra ){
19223 sqlite3_free(zExtra);
19225 }/* End for loop over the format string */
19226 } /* End of function */
19229 ** Append N bytes of text from z to the StrAccum object.
19231 SQLITE_PRIVATE void sqlite3StrAccumAppend(StrAccum *p, const char *z, int N){
19232 assert( z!=0 || N==0 );
19233 if( p->tooBig | p->mallocFailed ){
19234 testcase(p->tooBig);
19235 testcase(p->mallocFailed);
19236 return;
19238 if( N<0 ){
19239 N = sqlite3Strlen30(z);
19241 if( N==0 || NEVER(z==0) ){
19242 return;
19244 if( p->nChar+N >= p->nAlloc ){
19245 char *zNew;
19246 if( !p->useMalloc ){
19247 p->tooBig = 1;
19248 N = p->nAlloc - p->nChar - 1;
19249 if( N<=0 ){
19250 return;
19252 }else{
19253 char *zOld = (p->zText==p->zBase ? 0 : p->zText);
19254 i64 szNew = p->nChar;
19255 szNew += N + 1;
19256 if( szNew > p->mxAlloc ){
19257 sqlite3StrAccumReset(p);
19258 p->tooBig = 1;
19259 return;
19260 }else{
19261 p->nAlloc = (int)szNew;
19263 if( p->useMalloc==1 ){
19264 zNew = sqlite3DbRealloc(p->db, zOld, p->nAlloc);
19265 }else{
19266 zNew = sqlite3_realloc(zOld, p->nAlloc);
19268 if( zNew ){
19269 if( zOld==0 ) memcpy(zNew, p->zText, p->nChar);
19270 p->zText = zNew;
19271 }else{
19272 p->mallocFailed = 1;
19273 sqlite3StrAccumReset(p);
19274 return;
19278 memcpy(&p->zText[p->nChar], z, N);
19279 p->nChar += N;
19283 ** Finish off a string by making sure it is zero-terminated.
19284 ** Return a pointer to the resulting string. Return a NULL
19285 ** pointer if any kind of error was encountered.
19287 SQLITE_PRIVATE char *sqlite3StrAccumFinish(StrAccum *p){
19288 if( p->zText ){
19289 p->zText[p->nChar] = 0;
19290 if( p->useMalloc && p->zText==p->zBase ){
19291 if( p->useMalloc==1 ){
19292 p->zText = sqlite3DbMallocRaw(p->db, p->nChar+1 );
19293 }else{
19294 p->zText = sqlite3_malloc(p->nChar+1);
19296 if( p->zText ){
19297 memcpy(p->zText, p->zBase, p->nChar+1);
19298 }else{
19299 p->mallocFailed = 1;
19303 return p->zText;
19307 ** Reset an StrAccum string. Reclaim all malloced memory.
19309 SQLITE_PRIVATE void sqlite3StrAccumReset(StrAccum *p){
19310 if( p->zText!=p->zBase ){
19311 if( p->useMalloc==1 ){
19312 sqlite3DbFree(p->db, p->zText);
19313 }else{
19314 sqlite3_free(p->zText);
19317 p->zText = 0;
19321 ** Initialize a string accumulator
19323 SQLITE_PRIVATE void sqlite3StrAccumInit(StrAccum *p, char *zBase, int n, int mx){
19324 p->zText = p->zBase = zBase;
19325 p->db = 0;
19326 p->nChar = 0;
19327 p->nAlloc = n;
19328 p->mxAlloc = mx;
19329 p->useMalloc = 1;
19330 p->tooBig = 0;
19331 p->mallocFailed = 0;
19335 ** Print into memory obtained from sqliteMalloc(). Use the internal
19336 ** %-conversion extensions.
19338 SQLITE_PRIVATE char *sqlite3VMPrintf(sqlite3 *db, const char *zFormat, va_list ap){
19339 char *z;
19340 char zBase[SQLITE_PRINT_BUF_SIZE];
19341 StrAccum acc;
19342 assert( db!=0 );
19343 sqlite3StrAccumInit(&acc, zBase, sizeof(zBase),
19344 db->aLimit[SQLITE_LIMIT_LENGTH]);
19345 acc.db = db;
19346 sqlite3VXPrintf(&acc, 1, zFormat, ap);
19347 z = sqlite3StrAccumFinish(&acc);
19348 if( acc.mallocFailed ){
19349 db->mallocFailed = 1;
19351 return z;
19355 ** Print into memory obtained from sqliteMalloc(). Use the internal
19356 ** %-conversion extensions.
19358 SQLITE_PRIVATE char *sqlite3MPrintf(sqlite3 *db, const char *zFormat, ...){
19359 va_list ap;
19360 char *z;
19361 va_start(ap, zFormat);
19362 z = sqlite3VMPrintf(db, zFormat, ap);
19363 va_end(ap);
19364 return z;
19368 ** Like sqlite3MPrintf(), but call sqlite3DbFree() on zStr after formatting
19369 ** the string and before returnning. This routine is intended to be used
19370 ** to modify an existing string. For example:
19372 ** x = sqlite3MPrintf(db, x, "prefix %s suffix", x);
19375 SQLITE_PRIVATE char *sqlite3MAppendf(sqlite3 *db, char *zStr, const char *zFormat, ...){
19376 va_list ap;
19377 char *z;
19378 va_start(ap, zFormat);
19379 z = sqlite3VMPrintf(db, zFormat, ap);
19380 va_end(ap);
19381 sqlite3DbFree(db, zStr);
19382 return z;
19386 ** Print into memory obtained from sqlite3_malloc(). Omit the internal
19387 ** %-conversion extensions.
19389 SQLITE_API char *sqlite3_vmprintf(const char *zFormat, va_list ap){
19390 char *z;
19391 char zBase[SQLITE_PRINT_BUF_SIZE];
19392 StrAccum acc;
19393 #ifndef SQLITE_OMIT_AUTOINIT
19394 if( sqlite3_initialize() ) return 0;
19395 #endif
19396 sqlite3StrAccumInit(&acc, zBase, sizeof(zBase), SQLITE_MAX_LENGTH);
19397 acc.useMalloc = 2;
19398 sqlite3VXPrintf(&acc, 0, zFormat, ap);
19399 z = sqlite3StrAccumFinish(&acc);
19400 return z;
19404 ** Print into memory obtained from sqlite3_malloc()(). Omit the internal
19405 ** %-conversion extensions.
19407 SQLITE_API char *sqlite3_mprintf(const char *zFormat, ...){
19408 va_list ap;
19409 char *z;
19410 #ifndef SQLITE_OMIT_AUTOINIT
19411 if( sqlite3_initialize() ) return 0;
19412 #endif
19413 va_start(ap, zFormat);
19414 z = sqlite3_vmprintf(zFormat, ap);
19415 va_end(ap);
19416 return z;
19420 ** sqlite3_snprintf() works like snprintf() except that it ignores the
19421 ** current locale settings. This is important for SQLite because we
19422 ** are not able to use a "," as the decimal point in place of "." as
19423 ** specified by some locales.
19425 ** Oops: The first two arguments of sqlite3_snprintf() are backwards
19426 ** from the snprintf() standard. Unfortunately, it is too late to change
19427 ** this without breaking compatibility, so we just have to live with the
19428 ** mistake.
19430 ** sqlite3_vsnprintf() is the varargs version.
19432 SQLITE_API char *sqlite3_vsnprintf(int n, char *zBuf, const char *zFormat, va_list ap){
19433 StrAccum acc;
19434 if( n<=0 ) return zBuf;
19435 sqlite3StrAccumInit(&acc, zBuf, n, 0);
19436 acc.useMalloc = 0;
19437 sqlite3VXPrintf(&acc, 0, zFormat, ap);
19438 return sqlite3StrAccumFinish(&acc);
19440 SQLITE_API char *sqlite3_snprintf(int n, char *zBuf, const char *zFormat, ...){
19441 char *z;
19442 va_list ap;
19443 va_start(ap,zFormat);
19444 z = sqlite3_vsnprintf(n, zBuf, zFormat, ap);
19445 va_end(ap);
19446 return z;
19450 ** This is the routine that actually formats the sqlite3_log() message.
19451 ** We house it in a separate routine from sqlite3_log() to avoid using
19452 ** stack space on small-stack systems when logging is disabled.
19454 ** sqlite3_log() must render into a static buffer. It cannot dynamically
19455 ** allocate memory because it might be called while the memory allocator
19456 ** mutex is held.
19458 static void renderLogMsg(int iErrCode, const char *zFormat, va_list ap){
19459 StrAccum acc; /* String accumulator */
19460 char zMsg[SQLITE_PRINT_BUF_SIZE*3]; /* Complete log message */
19462 sqlite3StrAccumInit(&acc, zMsg, sizeof(zMsg), 0);
19463 acc.useMalloc = 0;
19464 sqlite3VXPrintf(&acc, 0, zFormat, ap);
19465 sqlite3GlobalConfig.xLog(sqlite3GlobalConfig.pLogArg, iErrCode,
19466 sqlite3StrAccumFinish(&acc));
19470 ** Format and write a message to the log if logging is enabled.
19472 SQLITE_API void sqlite3_log(int iErrCode, const char *zFormat, ...){
19473 va_list ap; /* Vararg list */
19474 if( sqlite3GlobalConfig.xLog ){
19475 va_start(ap, zFormat);
19476 renderLogMsg(iErrCode, zFormat, ap);
19477 va_end(ap);
19481 #if defined(SQLITE_DEBUG)
19483 ** A version of printf() that understands %lld. Used for debugging.
19484 ** The printf() built into some versions of windows does not understand %lld
19485 ** and segfaults if you give it a long long int.
19487 SQLITE_PRIVATE void sqlite3DebugPrintf(const char *zFormat, ...){
19488 va_list ap;
19489 StrAccum acc;
19490 char zBuf[500];
19491 sqlite3StrAccumInit(&acc, zBuf, sizeof(zBuf), 0);
19492 acc.useMalloc = 0;
19493 va_start(ap,zFormat);
19494 sqlite3VXPrintf(&acc, 0, zFormat, ap);
19495 va_end(ap);
19496 sqlite3StrAccumFinish(&acc);
19497 fprintf(stdout,"%s", zBuf);
19498 fflush(stdout);
19500 #endif
19502 #ifndef SQLITE_OMIT_TRACE
19504 ** variable-argument wrapper around sqlite3VXPrintf().
19506 SQLITE_PRIVATE void sqlite3XPrintf(StrAccum *p, const char *zFormat, ...){
19507 va_list ap;
19508 va_start(ap,zFormat);
19509 sqlite3VXPrintf(p, 1, zFormat, ap);
19510 va_end(ap);
19512 #endif
19514 /************** End of printf.c **********************************************/
19515 /************** Begin file random.c ******************************************/
19517 ** 2001 September 15
19519 ** The author disclaims copyright to this source code. In place of
19520 ** a legal notice, here is a blessing:
19522 ** May you do good and not evil.
19523 ** May you find forgiveness for yourself and forgive others.
19524 ** May you share freely, never taking more than you give.
19526 *************************************************************************
19527 ** This file contains code to implement a pseudo-random number
19528 ** generator (PRNG) for SQLite.
19530 ** Random numbers are used by some of the database backends in order
19531 ** to generate random integer keys for tables or random filenames.
19535 /* All threads share a single random number generator.
19536 ** This structure is the current state of the generator.
19538 static SQLITE_WSD struct sqlite3PrngType {
19539 unsigned char isInit; /* True if initialized */
19540 unsigned char i, j; /* State variables */
19541 unsigned char s[256]; /* State variables */
19542 } sqlite3Prng;
19545 ** Get a single 8-bit random value from the RC4 PRNG. The Mutex
19546 ** must be held while executing this routine.
19548 ** Why not just use a library random generator like lrand48() for this?
19549 ** Because the OP_NewRowid opcode in the VDBE depends on having a very
19550 ** good source of random numbers. The lrand48() library function may
19551 ** well be good enough. But maybe not. Or maybe lrand48() has some
19552 ** subtle problems on some systems that could cause problems. It is hard
19553 ** to know. To minimize the risk of problems due to bad lrand48()
19554 ** implementations, SQLite uses this random number generator based
19555 ** on RC4, which we know works very well.
19557 ** (Later): Actually, OP_NewRowid does not depend on a good source of
19558 ** randomness any more. But we will leave this code in all the same.
19560 static u8 randomByte(void){
19561 unsigned char t;
19564 /* The "wsdPrng" macro will resolve to the pseudo-random number generator
19565 ** state vector. If writable static data is unsupported on the target,
19566 ** we have to locate the state vector at run-time. In the more common
19567 ** case where writable static data is supported, wsdPrng can refer directly
19568 ** to the "sqlite3Prng" state vector declared above.
19570 #ifdef SQLITE_OMIT_WSD
19571 struct sqlite3PrngType *p = &GLOBAL(struct sqlite3PrngType, sqlite3Prng);
19572 # define wsdPrng p[0]
19573 #else
19574 # define wsdPrng sqlite3Prng
19575 #endif
19578 /* Initialize the state of the random number generator once,
19579 ** the first time this routine is called. The seed value does
19580 ** not need to contain a lot of randomness since we are not
19581 ** trying to do secure encryption or anything like that...
19583 ** Nothing in this file or anywhere else in SQLite does any kind of
19584 ** encryption. The RC4 algorithm is being used as a PRNG (pseudo-random
19585 ** number generator) not as an encryption device.
19587 if( !wsdPrng.isInit ){
19588 int i;
19589 char k[256];
19590 wsdPrng.j = 0;
19591 wsdPrng.i = 0;
19592 sqlite3OsRandomness(sqlite3_vfs_find(0), 256, k);
19593 for(i=0; i<256; i++){
19594 wsdPrng.s[i] = (u8)i;
19596 for(i=0; i<256; i++){
19597 wsdPrng.j += wsdPrng.s[i] + k[i];
19598 t = wsdPrng.s[wsdPrng.j];
19599 wsdPrng.s[wsdPrng.j] = wsdPrng.s[i];
19600 wsdPrng.s[i] = t;
19602 wsdPrng.isInit = 1;
19605 /* Generate and return single random byte
19607 wsdPrng.i++;
19608 t = wsdPrng.s[wsdPrng.i];
19609 wsdPrng.j += t;
19610 wsdPrng.s[wsdPrng.i] = wsdPrng.s[wsdPrng.j];
19611 wsdPrng.s[wsdPrng.j] = t;
19612 t += wsdPrng.s[wsdPrng.i];
19613 return wsdPrng.s[t];
19617 ** Return N random bytes.
19619 SQLITE_API void sqlite3_randomness(int N, void *pBuf){
19620 unsigned char *zBuf = pBuf;
19621 #if SQLITE_THREADSAFE
19622 sqlite3_mutex *mutex = sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_PRNG);
19623 #endif
19624 sqlite3_mutex_enter(mutex);
19625 while( N-- ){
19626 *(zBuf++) = randomByte();
19628 sqlite3_mutex_leave(mutex);
19631 #ifndef SQLITE_OMIT_BUILTIN_TEST
19633 ** For testing purposes, we sometimes want to preserve the state of
19634 ** PRNG and restore the PRNG to its saved state at a later time, or
19635 ** to reset the PRNG to its initial state. These routines accomplish
19636 ** those tasks.
19638 ** The sqlite3_test_control() interface calls these routines to
19639 ** control the PRNG.
19641 static SQLITE_WSD struct sqlite3PrngType sqlite3SavedPrng;
19642 SQLITE_PRIVATE void sqlite3PrngSaveState(void){
19643 memcpy(
19644 &GLOBAL(struct sqlite3PrngType, sqlite3SavedPrng),
19645 &GLOBAL(struct sqlite3PrngType, sqlite3Prng),
19646 sizeof(sqlite3Prng)
19649 SQLITE_PRIVATE void sqlite3PrngRestoreState(void){
19650 memcpy(
19651 &GLOBAL(struct sqlite3PrngType, sqlite3Prng),
19652 &GLOBAL(struct sqlite3PrngType, sqlite3SavedPrng),
19653 sizeof(sqlite3Prng)
19656 SQLITE_PRIVATE void sqlite3PrngResetState(void){
19657 GLOBAL(struct sqlite3PrngType, sqlite3Prng).isInit = 0;
19659 #endif /* SQLITE_OMIT_BUILTIN_TEST */
19661 /************** End of random.c **********************************************/
19662 /************** Begin file utf.c *********************************************/
19664 ** 2004 April 13
19666 ** The author disclaims copyright to this source code. In place of
19667 ** a legal notice, here is a blessing:
19669 ** May you do good and not evil.
19670 ** May you find forgiveness for yourself and forgive others.
19671 ** May you share freely, never taking more than you give.
19673 *************************************************************************
19674 ** This file contains routines used to translate between UTF-8,
19675 ** UTF-16, UTF-16BE, and UTF-16LE.
19677 ** Notes on UTF-8:
19679 ** Byte-0 Byte-1 Byte-2 Byte-3 Value
19680 ** 0xxxxxxx 00000000 00000000 0xxxxxxx
19681 ** 110yyyyy 10xxxxxx 00000000 00000yyy yyxxxxxx
19682 ** 1110zzzz 10yyyyyy 10xxxxxx 00000000 zzzzyyyy yyxxxxxx
19683 ** 11110uuu 10uuzzzz 10yyyyyy 10xxxxxx 000uuuuu zzzzyyyy yyxxxxxx
19686 ** Notes on UTF-16: (with wwww+1==uuuuu)
19688 ** Word-0 Word-1 Value
19689 ** 110110ww wwzzzzyy 110111yy yyxxxxxx 000uuuuu zzzzyyyy yyxxxxxx
19690 ** zzzzyyyy yyxxxxxx 00000000 zzzzyyyy yyxxxxxx
19693 ** BOM or Byte Order Mark:
19694 ** 0xff 0xfe little-endian utf-16 follows
19695 ** 0xfe 0xff big-endian utf-16 follows
19699 #ifndef SQLITE_AMALGAMATION
19701 ** The following constant value is used by the SQLITE_BIGENDIAN and
19702 ** SQLITE_LITTLEENDIAN macros.
19704 SQLITE_PRIVATE const int sqlite3one = 1;
19705 #endif /* SQLITE_AMALGAMATION */
19708 ** This lookup table is used to help decode the first byte of
19709 ** a multi-byte UTF8 character.
19711 static const unsigned char sqlite3Utf8Trans1[] = {
19712 0x00, 0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07,
19713 0x08, 0x09, 0x0a, 0x0b, 0x0c, 0x0d, 0x0e, 0x0f,
19714 0x10, 0x11, 0x12, 0x13, 0x14, 0x15, 0x16, 0x17,
19715 0x18, 0x19, 0x1a, 0x1b, 0x1c, 0x1d, 0x1e, 0x1f,
19716 0x00, 0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07,
19717 0x08, 0x09, 0x0a, 0x0b, 0x0c, 0x0d, 0x0e, 0x0f,
19718 0x00, 0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07,
19719 0x00, 0x01, 0x02, 0x03, 0x00, 0x01, 0x00, 0x00,
19723 #define WRITE_UTF8(zOut, c) { \
19724 if( c<0x00080 ){ \
19725 *zOut++ = (u8)(c&0xFF); \
19727 else if( c<0x00800 ){ \
19728 *zOut++ = 0xC0 + (u8)((c>>6)&0x1F); \
19729 *zOut++ = 0x80 + (u8)(c & 0x3F); \
19731 else if( c<0x10000 ){ \
19732 *zOut++ = 0xE0 + (u8)((c>>12)&0x0F); \
19733 *zOut++ = 0x80 + (u8)((c>>6) & 0x3F); \
19734 *zOut++ = 0x80 + (u8)(c & 0x3F); \
19735 }else{ \
19736 *zOut++ = 0xF0 + (u8)((c>>18) & 0x07); \
19737 *zOut++ = 0x80 + (u8)((c>>12) & 0x3F); \
19738 *zOut++ = 0x80 + (u8)((c>>6) & 0x3F); \
19739 *zOut++ = 0x80 + (u8)(c & 0x3F); \
19743 #define WRITE_UTF16LE(zOut, c) { \
19744 if( c<=0xFFFF ){ \
19745 *zOut++ = (u8)(c&0x00FF); \
19746 *zOut++ = (u8)((c>>8)&0x00FF); \
19747 }else{ \
19748 *zOut++ = (u8)(((c>>10)&0x003F) + (((c-0x10000)>>10)&0x00C0)); \
19749 *zOut++ = (u8)(0x00D8 + (((c-0x10000)>>18)&0x03)); \
19750 *zOut++ = (u8)(c&0x00FF); \
19751 *zOut++ = (u8)(0x00DC + ((c>>8)&0x03)); \
19755 #define WRITE_UTF16BE(zOut, c) { \
19756 if( c<=0xFFFF ){ \
19757 *zOut++ = (u8)((c>>8)&0x00FF); \
19758 *zOut++ = (u8)(c&0x00FF); \
19759 }else{ \
19760 *zOut++ = (u8)(0x00D8 + (((c-0x10000)>>18)&0x03)); \
19761 *zOut++ = (u8)(((c>>10)&0x003F) + (((c-0x10000)>>10)&0x00C0)); \
19762 *zOut++ = (u8)(0x00DC + ((c>>8)&0x03)); \
19763 *zOut++ = (u8)(c&0x00FF); \
19767 #define READ_UTF16LE(zIn, TERM, c){ \
19768 c = (*zIn++); \
19769 c += ((*zIn++)<<8); \
19770 if( c>=0xD800 && c<0xE000 && TERM ){ \
19771 int c2 = (*zIn++); \
19772 c2 += ((*zIn++)<<8); \
19773 c = (c2&0x03FF) + ((c&0x003F)<<10) + (((c&0x03C0)+0x0040)<<10); \
19777 #define READ_UTF16BE(zIn, TERM, c){ \
19778 c = ((*zIn++)<<8); \
19779 c += (*zIn++); \
19780 if( c>=0xD800 && c<0xE000 && TERM ){ \
19781 int c2 = ((*zIn++)<<8); \
19782 c2 += (*zIn++); \
19783 c = (c2&0x03FF) + ((c&0x003F)<<10) + (((c&0x03C0)+0x0040)<<10); \
19788 ** Translate a single UTF-8 character. Return the unicode value.
19790 ** During translation, assume that the byte that zTerm points
19791 ** is a 0x00.
19793 ** Write a pointer to the next unread byte back into *pzNext.
19795 ** Notes On Invalid UTF-8:
19797 ** * This routine never allows a 7-bit character (0x00 through 0x7f) to
19798 ** be encoded as a multi-byte character. Any multi-byte character that
19799 ** attempts to encode a value between 0x00 and 0x7f is rendered as 0xfffd.
19801 ** * This routine never allows a UTF16 surrogate value to be encoded.
19802 ** If a multi-byte character attempts to encode a value between
19803 ** 0xd800 and 0xe000 then it is rendered as 0xfffd.
19805 ** * Bytes in the range of 0x80 through 0xbf which occur as the first
19806 ** byte of a character are interpreted as single-byte characters
19807 ** and rendered as themselves even though they are technically
19808 ** invalid characters.
19810 ** * This routine accepts an infinite number of different UTF8 encodings
19811 ** for unicode values 0x80 and greater. It do not change over-length
19812 ** encodings to 0xfffd as some systems recommend.
19814 #define READ_UTF8(zIn, zTerm, c) \
19815 c = *(zIn++); \
19816 if( c>=0xc0 ){ \
19817 c = sqlite3Utf8Trans1[c-0xc0]; \
19818 while( zIn!=zTerm && (*zIn & 0xc0)==0x80 ){ \
19819 c = (c<<6) + (0x3f & *(zIn++)); \
19821 if( c<0x80 \
19822 || (c&0xFFFFF800)==0xD800 \
19823 || (c&0xFFFFFFFE)==0xFFFE ){ c = 0xFFFD; } \
19825 SQLITE_PRIVATE int sqlite3Utf8Read(
19826 const unsigned char *zIn, /* First byte of UTF-8 character */
19827 const unsigned char **pzNext /* Write first byte past UTF-8 char here */
19829 unsigned int c;
19831 /* Same as READ_UTF8() above but without the zTerm parameter.
19832 ** For this routine, we assume the UTF8 string is always zero-terminated.
19834 c = *(zIn++);
19835 if( c>=0xc0 ){
19836 c = sqlite3Utf8Trans1[c-0xc0];
19837 while( (*zIn & 0xc0)==0x80 ){
19838 c = (c<<6) + (0x3f & *(zIn++));
19840 if( c<0x80
19841 || (c&0xFFFFF800)==0xD800
19842 || (c&0xFFFFFFFE)==0xFFFE ){ c = 0xFFFD; }
19844 *pzNext = zIn;
19845 return c;
19852 ** If the TRANSLATE_TRACE macro is defined, the value of each Mem is
19853 ** printed on stderr on the way into and out of sqlite3VdbeMemTranslate().
19855 /* #define TRANSLATE_TRACE 1 */
19857 #ifndef SQLITE_OMIT_UTF16
19859 ** This routine transforms the internal text encoding used by pMem to
19860 ** desiredEnc. It is an error if the string is already of the desired
19861 ** encoding, or if *pMem does not contain a string value.
19863 SQLITE_PRIVATE int sqlite3VdbeMemTranslate(Mem *pMem, u8 desiredEnc){
19864 int len; /* Maximum length of output string in bytes */
19865 unsigned char *zOut; /* Output buffer */
19866 unsigned char *zIn; /* Input iterator */
19867 unsigned char *zTerm; /* End of input */
19868 unsigned char *z; /* Output iterator */
19869 unsigned int c;
19871 assert( pMem->db==0 || sqlite3_mutex_held(pMem->db->mutex) );
19872 assert( pMem->flags&MEM_Str );
19873 assert( pMem->enc!=desiredEnc );
19874 assert( pMem->enc!=0 );
19875 assert( pMem->n>=0 );
19877 #if defined(TRANSLATE_TRACE) && defined(SQLITE_DEBUG)
19879 char zBuf[100];
19880 sqlite3VdbeMemPrettyPrint(pMem, zBuf);
19881 fprintf(stderr, "INPUT: %s\n", zBuf);
19883 #endif
19885 /* If the translation is between UTF-16 little and big endian, then
19886 ** all that is required is to swap the byte order. This case is handled
19887 ** differently from the others.
19889 if( pMem->enc!=SQLITE_UTF8 && desiredEnc!=SQLITE_UTF8 ){
19890 u8 temp;
19891 int rc;
19892 rc = sqlite3VdbeMemMakeWriteable(pMem);
19893 if( rc!=SQLITE_OK ){
19894 assert( rc==SQLITE_NOMEM );
19895 return SQLITE_NOMEM;
19897 zIn = (u8*)pMem->z;
19898 zTerm = &zIn[pMem->n&~1];
19899 while( zIn<zTerm ){
19900 temp = *zIn;
19901 *zIn = *(zIn+1);
19902 zIn++;
19903 *zIn++ = temp;
19905 pMem->enc = desiredEnc;
19906 goto translate_out;
19909 /* Set len to the maximum number of bytes required in the output buffer. */
19910 if( desiredEnc==SQLITE_UTF8 ){
19911 /* When converting from UTF-16, the maximum growth results from
19912 ** translating a 2-byte character to a 4-byte UTF-8 character.
19913 ** A single byte is required for the output string
19914 ** nul-terminator.
19916 pMem->n &= ~1;
19917 len = pMem->n * 2 + 1;
19918 }else{
19919 /* When converting from UTF-8 to UTF-16 the maximum growth is caused
19920 ** when a 1-byte UTF-8 character is translated into a 2-byte UTF-16
19921 ** character. Two bytes are required in the output buffer for the
19922 ** nul-terminator.
19924 len = pMem->n * 2 + 2;
19927 /* Set zIn to point at the start of the input buffer and zTerm to point 1
19928 ** byte past the end.
19930 ** Variable zOut is set to point at the output buffer, space obtained
19931 ** from sqlite3_malloc().
19933 zIn = (u8*)pMem->z;
19934 zTerm = &zIn[pMem->n];
19935 zOut = sqlite3DbMallocRaw(pMem->db, len);
19936 if( !zOut ){
19937 return SQLITE_NOMEM;
19939 z = zOut;
19941 if( pMem->enc==SQLITE_UTF8 ){
19942 if( desiredEnc==SQLITE_UTF16LE ){
19943 /* UTF-8 -> UTF-16 Little-endian */
19944 while( zIn<zTerm ){
19945 /* c = sqlite3Utf8Read(zIn, zTerm, (const u8**)&zIn); */
19946 READ_UTF8(zIn, zTerm, c);
19947 WRITE_UTF16LE(z, c);
19949 }else{
19950 assert( desiredEnc==SQLITE_UTF16BE );
19951 /* UTF-8 -> UTF-16 Big-endian */
19952 while( zIn<zTerm ){
19953 /* c = sqlite3Utf8Read(zIn, zTerm, (const u8**)&zIn); */
19954 READ_UTF8(zIn, zTerm, c);
19955 WRITE_UTF16BE(z, c);
19958 pMem->n = (int)(z - zOut);
19959 *z++ = 0;
19960 }else{
19961 assert( desiredEnc==SQLITE_UTF8 );
19962 if( pMem->enc==SQLITE_UTF16LE ){
19963 /* UTF-16 Little-endian -> UTF-8 */
19964 while( zIn<zTerm ){
19965 READ_UTF16LE(zIn, zIn<zTerm, c);
19966 WRITE_UTF8(z, c);
19968 }else{
19969 /* UTF-16 Big-endian -> UTF-8 */
19970 while( zIn<zTerm ){
19971 READ_UTF16BE(zIn, zIn<zTerm, c);
19972 WRITE_UTF8(z, c);
19975 pMem->n = (int)(z - zOut);
19977 *z = 0;
19978 assert( (pMem->n+(desiredEnc==SQLITE_UTF8?1:2))<=len );
19980 sqlite3VdbeMemRelease(pMem);
19981 pMem->flags &= ~(MEM_Static|MEM_Dyn|MEM_Ephem);
19982 pMem->enc = desiredEnc;
19983 pMem->flags |= (MEM_Term|MEM_Dyn);
19984 pMem->z = (char*)zOut;
19985 pMem->zMalloc = pMem->z;
19987 translate_out:
19988 #if defined(TRANSLATE_TRACE) && defined(SQLITE_DEBUG)
19990 char zBuf[100];
19991 sqlite3VdbeMemPrettyPrint(pMem, zBuf);
19992 fprintf(stderr, "OUTPUT: %s\n", zBuf);
19994 #endif
19995 return SQLITE_OK;
19999 ** This routine checks for a byte-order mark at the beginning of the
20000 ** UTF-16 string stored in *pMem. If one is present, it is removed and
20001 ** the encoding of the Mem adjusted. This routine does not do any
20002 ** byte-swapping, it just sets Mem.enc appropriately.
20004 ** The allocation (static, dynamic etc.) and encoding of the Mem may be
20005 ** changed by this function.
20007 SQLITE_PRIVATE int sqlite3VdbeMemHandleBom(Mem *pMem){
20008 int rc = SQLITE_OK;
20009 u8 bom = 0;
20011 assert( pMem->n>=0 );
20012 if( pMem->n>1 ){
20013 u8 b1 = *(u8 *)pMem->z;
20014 u8 b2 = *(((u8 *)pMem->z) + 1);
20015 if( b1==0xFE && b2==0xFF ){
20016 bom = SQLITE_UTF16BE;
20018 if( b1==0xFF && b2==0xFE ){
20019 bom = SQLITE_UTF16LE;
20023 if( bom ){
20024 rc = sqlite3VdbeMemMakeWriteable(pMem);
20025 if( rc==SQLITE_OK ){
20026 pMem->n -= 2;
20027 memmove(pMem->z, &pMem->z[2], pMem->n);
20028 pMem->z[pMem->n] = '\0';
20029 pMem->z[pMem->n+1] = '\0';
20030 pMem->flags |= MEM_Term;
20031 pMem->enc = bom;
20034 return rc;
20036 #endif /* SQLITE_OMIT_UTF16 */
20039 ** pZ is a UTF-8 encoded unicode string. If nByte is less than zero,
20040 ** return the number of unicode characters in pZ up to (but not including)
20041 ** the first 0x00 byte. If nByte is not less than zero, return the
20042 ** number of unicode characters in the first nByte of pZ (or up to
20043 ** the first 0x00, whichever comes first).
20045 SQLITE_PRIVATE int sqlite3Utf8CharLen(const char *zIn, int nByte){
20046 int r = 0;
20047 const u8 *z = (const u8*)zIn;
20048 const u8 *zTerm;
20049 if( nByte>=0 ){
20050 zTerm = &z[nByte];
20051 }else{
20052 zTerm = (const u8*)(-1);
20054 assert( z<=zTerm );
20055 while( *z!=0 && z<zTerm ){
20056 SQLITE_SKIP_UTF8(z);
20057 r++;
20059 return r;
20062 /* This test function is not currently used by the automated test-suite.
20063 ** Hence it is only available in debug builds.
20065 #if defined(SQLITE_TEST) && defined(SQLITE_DEBUG)
20067 ** Translate UTF-8 to UTF-8.
20069 ** This has the effect of making sure that the string is well-formed
20070 ** UTF-8. Miscoded characters are removed.
20072 ** The translation is done in-place and aborted if the output
20073 ** overruns the input.
20075 SQLITE_PRIVATE int sqlite3Utf8To8(unsigned char *zIn){
20076 unsigned char *zOut = zIn;
20077 unsigned char *zStart = zIn;
20078 u32 c;
20080 while( zIn[0] && zOut<=zIn ){
20081 c = sqlite3Utf8Read(zIn, (const u8**)&zIn);
20082 if( c!=0xfffd ){
20083 WRITE_UTF8(zOut, c);
20086 *zOut = 0;
20087 return (int)(zOut - zStart);
20089 #endif
20091 #ifndef SQLITE_OMIT_UTF16
20093 ** Convert a UTF-16 string in the native encoding into a UTF-8 string.
20094 ** Memory to hold the UTF-8 string is obtained from sqlite3_malloc and must
20095 ** be freed by the calling function.
20097 ** NULL is returned if there is an allocation error.
20099 SQLITE_PRIVATE char *sqlite3Utf16to8(sqlite3 *db, const void *z, int nByte, u8 enc){
20100 Mem m;
20101 memset(&m, 0, sizeof(m));
20102 m.db = db;
20103 sqlite3VdbeMemSetStr(&m, z, nByte, enc, SQLITE_STATIC);
20104 sqlite3VdbeChangeEncoding(&m, SQLITE_UTF8);
20105 if( db->mallocFailed ){
20106 sqlite3VdbeMemRelease(&m);
20107 m.z = 0;
20109 assert( (m.flags & MEM_Term)!=0 || db->mallocFailed );
20110 assert( (m.flags & MEM_Str)!=0 || db->mallocFailed );
20111 assert( (m.flags & MEM_Dyn)!=0 || db->mallocFailed );
20112 assert( m.z || db->mallocFailed );
20113 return m.z;
20117 ** Convert a UTF-8 string to the UTF-16 encoding specified by parameter
20118 ** enc. A pointer to the new string is returned, and the value of *pnOut
20119 ** is set to the length of the returned string in bytes. The call should
20120 ** arrange to call sqlite3DbFree() on the returned pointer when it is
20121 ** no longer required.
20123 ** If a malloc failure occurs, NULL is returned and the db.mallocFailed
20124 ** flag set.
20126 #ifdef SQLITE_ENABLE_STAT2
20127 SQLITE_PRIVATE char *sqlite3Utf8to16(sqlite3 *db, u8 enc, char *z, int n, int *pnOut){
20128 Mem m;
20129 memset(&m, 0, sizeof(m));
20130 m.db = db;
20131 sqlite3VdbeMemSetStr(&m, z, n, SQLITE_UTF8, SQLITE_STATIC);
20132 if( sqlite3VdbeMemTranslate(&m, enc) ){
20133 assert( db->mallocFailed );
20134 return 0;
20136 assert( m.z==m.zMalloc );
20137 *pnOut = m.n;
20138 return m.z;
20140 #endif
20143 ** zIn is a UTF-16 encoded unicode string at least nChar characters long.
20144 ** Return the number of bytes in the first nChar unicode characters
20145 ** in pZ. nChar must be non-negative.
20147 SQLITE_PRIVATE int sqlite3Utf16ByteLen(const void *zIn, int nChar){
20148 int c;
20149 unsigned char const *z = zIn;
20150 int n = 0;
20152 if( SQLITE_UTF16NATIVE==SQLITE_UTF16BE ){
20153 while( n<nChar ){
20154 READ_UTF16BE(z, 1, c);
20155 n++;
20157 }else{
20158 while( n<nChar ){
20159 READ_UTF16LE(z, 1, c);
20160 n++;
20163 return (int)(z-(unsigned char const *)zIn);
20166 #if defined(SQLITE_TEST)
20168 ** This routine is called from the TCL test function "translate_selftest".
20169 ** It checks that the primitives for serializing and deserializing
20170 ** characters in each encoding are inverses of each other.
20172 SQLITE_PRIVATE void sqlite3UtfSelfTest(void){
20173 unsigned int i, t;
20174 unsigned char zBuf[20];
20175 unsigned char *z;
20176 int n;
20177 unsigned int c;
20179 for(i=0; i<0x00110000; i++){
20180 z = zBuf;
20181 WRITE_UTF8(z, i);
20182 n = (int)(z-zBuf);
20183 assert( n>0 && n<=4 );
20184 z[0] = 0;
20185 z = zBuf;
20186 c = sqlite3Utf8Read(z, (const u8**)&z);
20187 t = i;
20188 if( i>=0xD800 && i<=0xDFFF ) t = 0xFFFD;
20189 if( (i&0xFFFFFFFE)==0xFFFE ) t = 0xFFFD;
20190 assert( c==t );
20191 assert( (z-zBuf)==n );
20193 for(i=0; i<0x00110000; i++){
20194 if( i>=0xD800 && i<0xE000 ) continue;
20195 z = zBuf;
20196 WRITE_UTF16LE(z, i);
20197 n = (int)(z-zBuf);
20198 assert( n>0 && n<=4 );
20199 z[0] = 0;
20200 z = zBuf;
20201 READ_UTF16LE(z, 1, c);
20202 assert( c==i );
20203 assert( (z-zBuf)==n );
20205 for(i=0; i<0x00110000; i++){
20206 if( i>=0xD800 && i<0xE000 ) continue;
20207 z = zBuf;
20208 WRITE_UTF16BE(z, i);
20209 n = (int)(z-zBuf);
20210 assert( n>0 && n<=4 );
20211 z[0] = 0;
20212 z = zBuf;
20213 READ_UTF16BE(z, 1, c);
20214 assert( c==i );
20215 assert( (z-zBuf)==n );
20218 #endif /* SQLITE_TEST */
20219 #endif /* SQLITE_OMIT_UTF16 */
20221 /************** End of utf.c *************************************************/
20222 /************** Begin file util.c ********************************************/
20224 ** 2001 September 15
20226 ** The author disclaims copyright to this source code. In place of
20227 ** a legal notice, here is a blessing:
20229 ** May you do good and not evil.
20230 ** May you find forgiveness for yourself and forgive others.
20231 ** May you share freely, never taking more than you give.
20233 *************************************************************************
20234 ** Utility functions used throughout sqlite.
20236 ** This file contains functions for allocating memory, comparing
20237 ** strings, and stuff like that.
20240 #ifdef SQLITE_HAVE_ISNAN
20241 # include <math.h>
20242 #endif
20245 ** Routine needed to support the testcase() macro.
20247 #ifdef SQLITE_COVERAGE_TEST
20248 SQLITE_PRIVATE void sqlite3Coverage(int x){
20249 static unsigned dummy = 0;
20250 dummy += (unsigned)x;
20252 #endif
20254 #ifndef SQLITE_OMIT_FLOATING_POINT
20256 ** Return true if the floating point value is Not a Number (NaN).
20258 ** Use the math library isnan() function if compiled with SQLITE_HAVE_ISNAN.
20259 ** Otherwise, we have our own implementation that works on most systems.
20261 SQLITE_PRIVATE int sqlite3IsNaN(double x){
20262 int rc; /* The value return */
20263 #if !defined(SQLITE_HAVE_ISNAN)
20265 ** Systems that support the isnan() library function should probably
20266 ** make use of it by compiling with -DSQLITE_HAVE_ISNAN. But we have
20267 ** found that many systems do not have a working isnan() function so
20268 ** this implementation is provided as an alternative.
20270 ** This NaN test sometimes fails if compiled on GCC with -ffast-math.
20271 ** On the other hand, the use of -ffast-math comes with the following
20272 ** warning:
20274 ** This option [-ffast-math] should never be turned on by any
20275 ** -O option since it can result in incorrect output for programs
20276 ** which depend on an exact implementation of IEEE or ISO
20277 ** rules/specifications for math functions.
20279 ** Under MSVC, this NaN test may fail if compiled with a floating-
20280 ** point precision mode other than /fp:precise. From the MSDN
20281 ** documentation:
20283 ** The compiler [with /fp:precise] will properly handle comparisons
20284 ** involving NaN. For example, x != x evaluates to true if x is NaN
20285 ** ...
20287 #ifdef __FAST_MATH__
20288 # error SQLite will not work correctly with the -ffast-math option of GCC.
20289 #endif
20290 volatile double y = x;
20291 volatile double z = y;
20292 rc = (y!=z);
20293 #else /* if defined(SQLITE_HAVE_ISNAN) */
20294 rc = isnan(x);
20295 #endif /* SQLITE_HAVE_ISNAN */
20296 testcase( rc );
20297 return rc;
20299 #endif /* SQLITE_OMIT_FLOATING_POINT */
20302 ** Compute a string length that is limited to what can be stored in
20303 ** lower 30 bits of a 32-bit signed integer.
20305 ** The value returned will never be negative. Nor will it ever be greater
20306 ** than the actual length of the string. For very long strings (greater
20307 ** than 1GiB) the value returned might be less than the true string length.
20309 SQLITE_PRIVATE int sqlite3Strlen30(const char *z){
20310 const char *z2 = z;
20311 if( z==0 ) return 0;
20312 while( *z2 ){ z2++; }
20313 return 0x3fffffff & (int)(z2 - z);
20317 ** Set the most recent error code and error string for the sqlite
20318 ** handle "db". The error code is set to "err_code".
20320 ** If it is not NULL, string zFormat specifies the format of the
20321 ** error string in the style of the printf functions: The following
20322 ** format characters are allowed:
20324 ** %s Insert a string
20325 ** %z A string that should be freed after use
20326 ** %d Insert an integer
20327 ** %T Insert a token
20328 ** %S Insert the first element of a SrcList
20330 ** zFormat and any string tokens that follow it are assumed to be
20331 ** encoded in UTF-8.
20333 ** To clear the most recent error for sqlite handle "db", sqlite3Error
20334 ** should be called with err_code set to SQLITE_OK and zFormat set
20335 ** to NULL.
20337 SQLITE_PRIVATE void sqlite3Error(sqlite3 *db, int err_code, const char *zFormat, ...){
20338 if( db && (db->pErr || (db->pErr = sqlite3ValueNew(db))!=0) ){
20339 db->errCode = err_code;
20340 if( zFormat ){
20341 char *z;
20342 va_list ap;
20343 va_start(ap, zFormat);
20344 z = sqlite3VMPrintf(db, zFormat, ap);
20345 va_end(ap);
20346 sqlite3ValueSetStr(db->pErr, -1, z, SQLITE_UTF8, SQLITE_DYNAMIC);
20347 }else{
20348 sqlite3ValueSetStr(db->pErr, 0, 0, SQLITE_UTF8, SQLITE_STATIC);
20354 ** Add an error message to pParse->zErrMsg and increment pParse->nErr.
20355 ** The following formatting characters are allowed:
20357 ** %s Insert a string
20358 ** %z A string that should be freed after use
20359 ** %d Insert an integer
20360 ** %T Insert a token
20361 ** %S Insert the first element of a SrcList
20363 ** This function should be used to report any error that occurs whilst
20364 ** compiling an SQL statement (i.e. within sqlite3_prepare()). The
20365 ** last thing the sqlite3_prepare() function does is copy the error
20366 ** stored by this function into the database handle using sqlite3Error().
20367 ** Function sqlite3Error() should be used during statement execution
20368 ** (sqlite3_step() etc.).
20370 SQLITE_PRIVATE void sqlite3ErrorMsg(Parse *pParse, const char *zFormat, ...){
20371 char *zMsg;
20372 va_list ap;
20373 sqlite3 *db = pParse->db;
20374 va_start(ap, zFormat);
20375 zMsg = sqlite3VMPrintf(db, zFormat, ap);
20376 va_end(ap);
20377 if( db->suppressErr ){
20378 sqlite3DbFree(db, zMsg);
20379 }else{
20380 pParse->nErr++;
20381 sqlite3DbFree(db, pParse->zErrMsg);
20382 pParse->zErrMsg = zMsg;
20383 pParse->rc = SQLITE_ERROR;
20388 ** Convert an SQL-style quoted string into a normal string by removing
20389 ** the quote characters. The conversion is done in-place. If the
20390 ** input does not begin with a quote character, then this routine
20391 ** is a no-op.
20393 ** The input string must be zero-terminated. A new zero-terminator
20394 ** is added to the dequoted string.
20396 ** The return value is -1 if no dequoting occurs or the length of the
20397 ** dequoted string, exclusive of the zero terminator, if dequoting does
20398 ** occur.
20400 ** 2002-Feb-14: This routine is extended to remove MS-Access style
20401 ** brackets from around identifers. For example: "[a-b-c]" becomes
20402 ** "a-b-c".
20404 SQLITE_PRIVATE int sqlite3Dequote(char *z){
20405 char quote;
20406 int i, j;
20407 if( z==0 ) return -1;
20408 quote = z[0];
20409 switch( quote ){
20410 case '\'': break;
20411 case '"': break;
20412 case '`': break; /* For MySQL compatibility */
20413 case '[': quote = ']'; break; /* For MS SqlServer compatibility */
20414 default: return -1;
20416 for(i=1, j=0; ALWAYS(z[i]); i++){
20417 if( z[i]==quote ){
20418 if( z[i+1]==quote ){
20419 z[j++] = quote;
20420 i++;
20421 }else{
20422 break;
20424 }else{
20425 z[j++] = z[i];
20428 z[j] = 0;
20429 return j;
20432 /* Convenient short-hand */
20433 #define UpperToLower sqlite3UpperToLower
20436 ** Some systems have stricmp(). Others have strcasecmp(). Because
20437 ** there is no consistency, we will define our own.
20439 ** IMPLEMENTATION-OF: R-20522-24639 The sqlite3_strnicmp() API allows
20440 ** applications and extensions to compare the contents of two buffers
20441 ** containing UTF-8 strings in a case-independent fashion, using the same
20442 ** definition of case independence that SQLite uses internally when
20443 ** comparing identifiers.
20445 SQLITE_PRIVATE int sqlite3StrICmp(const char *zLeft, const char *zRight){
20446 register unsigned char *a, *b;
20447 a = (unsigned char *)zLeft;
20448 b = (unsigned char *)zRight;
20449 while( *a!=0 && UpperToLower[*a]==UpperToLower[*b]){ a++; b++; }
20450 return UpperToLower[*a] - UpperToLower[*b];
20452 SQLITE_API int sqlite3_strnicmp(const char *zLeft, const char *zRight, int N){
20453 register unsigned char *a, *b;
20454 a = (unsigned char *)zLeft;
20455 b = (unsigned char *)zRight;
20456 while( N-- > 0 && *a!=0 && UpperToLower[*a]==UpperToLower[*b]){ a++; b++; }
20457 return N<0 ? 0 : UpperToLower[*a] - UpperToLower[*b];
20461 ** The string z[] is an text representation of a real number.
20462 ** Convert this string to a double and write it into *pResult.
20464 ** The string z[] is length bytes in length (bytes, not characters) and
20465 ** uses the encoding enc. The string is not necessarily zero-terminated.
20467 ** Return TRUE if the result is a valid real number (or integer) and FALSE
20468 ** if the string is empty or contains extraneous text. Valid numbers
20469 ** are in one of these formats:
20471 ** [+-]digits[E[+-]digits]
20472 ** [+-]digits.[digits][E[+-]digits]
20473 ** [+-].digits[E[+-]digits]
20475 ** Leading and trailing whitespace is ignored for the purpose of determining
20476 ** validity.
20478 ** If some prefix of the input string is a valid number, this routine
20479 ** returns FALSE but it still converts the prefix and writes the result
20480 ** into *pResult.
20482 SQLITE_PRIVATE int sqlite3AtoF(const char *z, double *pResult, int length, u8 enc){
20483 #ifndef SQLITE_OMIT_FLOATING_POINT
20484 int incr = (enc==SQLITE_UTF8?1:2);
20485 const char *zEnd = z + length;
20486 /* sign * significand * (10 ^ (esign * exponent)) */
20487 int sign = 1; /* sign of significand */
20488 i64 s = 0; /* significand */
20489 int d = 0; /* adjust exponent for shifting decimal point */
20490 int esign = 1; /* sign of exponent */
20491 int e = 0; /* exponent */
20492 int eValid = 1; /* True exponent is either not used or is well-formed */
20493 double result;
20494 int nDigits = 0;
20496 *pResult = 0.0; /* Default return value, in case of an error */
20498 if( enc==SQLITE_UTF16BE ) z++;
20500 /* skip leading spaces */
20501 while( z<zEnd && sqlite3Isspace(*z) ) z+=incr;
20502 if( z>=zEnd ) return 0;
20504 /* get sign of significand */
20505 if( *z=='-' ){
20506 sign = -1;
20507 z+=incr;
20508 }else if( *z=='+' ){
20509 z+=incr;
20512 /* skip leading zeroes */
20513 while( z<zEnd && z[0]=='0' ) z+=incr, nDigits++;
20515 /* copy max significant digits to significand */
20516 while( z<zEnd && sqlite3Isdigit(*z) && s<((LARGEST_INT64-9)/10) ){
20517 s = s*10 + (*z - '0');
20518 z+=incr, nDigits++;
20521 /* skip non-significant significand digits
20522 ** (increase exponent by d to shift decimal left) */
20523 while( z<zEnd && sqlite3Isdigit(*z) ) z+=incr, nDigits++, d++;
20524 if( z>=zEnd ) goto do_atof_calc;
20526 /* if decimal point is present */
20527 if( *z=='.' ){
20528 z+=incr;
20529 /* copy digits from after decimal to significand
20530 ** (decrease exponent by d to shift decimal right) */
20531 while( z<zEnd && sqlite3Isdigit(*z) && s<((LARGEST_INT64-9)/10) ){
20532 s = s*10 + (*z - '0');
20533 z+=incr, nDigits++, d--;
20535 /* skip non-significant digits */
20536 while( z<zEnd && sqlite3Isdigit(*z) ) z+=incr, nDigits++;
20538 if( z>=zEnd ) goto do_atof_calc;
20540 /* if exponent is present */
20541 if( *z=='e' || *z=='E' ){
20542 z+=incr;
20543 eValid = 0;
20544 if( z>=zEnd ) goto do_atof_calc;
20545 /* get sign of exponent */
20546 if( *z=='-' ){
20547 esign = -1;
20548 z+=incr;
20549 }else if( *z=='+' ){
20550 z+=incr;
20552 /* copy digits to exponent */
20553 while( z<zEnd && sqlite3Isdigit(*z) ){
20554 e = e*10 + (*z - '0');
20555 z+=incr;
20556 eValid = 1;
20560 /* skip trailing spaces */
20561 if( nDigits && eValid ){
20562 while( z<zEnd && sqlite3Isspace(*z) ) z+=incr;
20565 do_atof_calc:
20566 /* adjust exponent by d, and update sign */
20567 e = (e*esign) + d;
20568 if( e<0 ) {
20569 esign = -1;
20570 e *= -1;
20571 } else {
20572 esign = 1;
20575 /* if 0 significand */
20576 if( !s ) {
20577 /* In the IEEE 754 standard, zero is signed.
20578 ** Add the sign if we've seen at least one digit */
20579 result = (sign<0 && nDigits) ? -(double)0 : (double)0;
20580 } else {
20581 /* attempt to reduce exponent */
20582 if( esign>0 ){
20583 while( s<(LARGEST_INT64/10) && e>0 ) e--,s*=10;
20584 }else{
20585 while( !(s%10) && e>0 ) e--,s/=10;
20588 /* adjust the sign of significand */
20589 s = sign<0 ? -s : s;
20591 /* if exponent, scale significand as appropriate
20592 ** and store in result. */
20593 if( e ){
20594 double scale = 1.0;
20595 /* attempt to handle extremely small/large numbers better */
20596 if( e>307 && e<342 ){
20597 while( e%308 ) { scale *= 1.0e+1; e -= 1; }
20598 if( esign<0 ){
20599 result = s / scale;
20600 result /= 1.0e+308;
20601 }else{
20602 result = s * scale;
20603 result *= 1.0e+308;
20605 }else{
20606 /* 1.0e+22 is the largest power of 10 than can be
20607 ** represented exactly. */
20608 while( e%22 ) { scale *= 1.0e+1; e -= 1; }
20609 while( e>0 ) { scale *= 1.0e+22; e -= 22; }
20610 if( esign<0 ){
20611 result = s / scale;
20612 }else{
20613 result = s * scale;
20616 } else {
20617 result = (double)s;
20621 /* store the result */
20622 *pResult = result;
20624 /* return true if number and no extra non-whitespace chracters after */
20625 return z>=zEnd && nDigits>0 && eValid;
20626 #else
20627 return !sqlite3Atoi64(z, pResult, length, enc);
20628 #endif /* SQLITE_OMIT_FLOATING_POINT */
20632 ** Compare the 19-character string zNum against the text representation
20633 ** value 2^63: 9223372036854775808. Return negative, zero, or positive
20634 ** if zNum is less than, equal to, or greater than the string.
20635 ** Note that zNum must contain exactly 19 characters.
20637 ** Unlike memcmp() this routine is guaranteed to return the difference
20638 ** in the values of the last digit if the only difference is in the
20639 ** last digit. So, for example,
20641 ** compare2pow63("9223372036854775800", 1)
20643 ** will return -8.
20645 static int compare2pow63(const char *zNum, int incr){
20646 int c = 0;
20647 int i;
20648 /* 012345678901234567 */
20649 const char *pow63 = "922337203685477580";
20650 for(i=0; c==0 && i<18; i++){
20651 c = (zNum[i*incr]-pow63[i])*10;
20653 if( c==0 ){
20654 c = zNum[18*incr] - '8';
20655 testcase( c==(-1) );
20656 testcase( c==0 );
20657 testcase( c==(+1) );
20659 return c;
20664 ** Convert zNum to a 64-bit signed integer.
20666 ** If the zNum value is representable as a 64-bit twos-complement
20667 ** integer, then write that value into *pNum and return 0.
20669 ** If zNum is exactly 9223372036854665808, return 2. This special
20670 ** case is broken out because while 9223372036854665808 cannot be a
20671 ** signed 64-bit integer, its negative -9223372036854665808 can be.
20673 ** If zNum is too big for a 64-bit integer and is not
20674 ** 9223372036854665808 then return 1.
20676 ** length is the number of bytes in the string (bytes, not characters).
20677 ** The string is not necessarily zero-terminated. The encoding is
20678 ** given by enc.
20680 SQLITE_PRIVATE int sqlite3Atoi64(const char *zNum, i64 *pNum, int length, u8 enc){
20681 int incr = (enc==SQLITE_UTF8?1:2);
20682 u64 u = 0;
20683 int neg = 0; /* assume positive */
20684 int i;
20685 int c = 0;
20686 const char *zStart;
20687 const char *zEnd = zNum + length;
20688 if( enc==SQLITE_UTF16BE ) zNum++;
20689 while( zNum<zEnd && sqlite3Isspace(*zNum) ) zNum+=incr;
20690 if( zNum<zEnd ){
20691 if( *zNum=='-' ){
20692 neg = 1;
20693 zNum+=incr;
20694 }else if( *zNum=='+' ){
20695 zNum+=incr;
20698 zStart = zNum;
20699 while( zNum<zEnd && zNum[0]=='0' ){ zNum+=incr; } /* Skip leading zeros. */
20700 for(i=0; &zNum[i]<zEnd && (c=zNum[i])>='0' && c<='9'; i+=incr){
20701 u = u*10 + c - '0';
20703 if( u>LARGEST_INT64 ){
20704 *pNum = SMALLEST_INT64;
20705 }else if( neg ){
20706 *pNum = -(i64)u;
20707 }else{
20708 *pNum = (i64)u;
20710 testcase( i==18 );
20711 testcase( i==19 );
20712 testcase( i==20 );
20713 if( (c!=0 && &zNum[i]<zEnd) || (i==0 && zStart==zNum) || i>19*incr ){
20714 /* zNum is empty or contains non-numeric text or is longer
20715 ** than 19 digits (thus guaranteeing that it is too large) */
20716 return 1;
20717 }else if( i<19*incr ){
20718 /* Less than 19 digits, so we know that it fits in 64 bits */
20719 assert( u<=LARGEST_INT64 );
20720 return 0;
20721 }else{
20722 /* zNum is a 19-digit numbers. Compare it against 9223372036854775808. */
20723 c = compare2pow63(zNum, incr);
20724 if( c<0 ){
20725 /* zNum is less than 9223372036854775808 so it fits */
20726 assert( u<=LARGEST_INT64 );
20727 return 0;
20728 }else if( c>0 ){
20729 /* zNum is greater than 9223372036854775808 so it overflows */
20730 return 1;
20731 }else{
20732 /* zNum is exactly 9223372036854775808. Fits if negative. The
20733 ** special case 2 overflow if positive */
20734 assert( u-1==LARGEST_INT64 );
20735 assert( (*pNum)==SMALLEST_INT64 );
20736 return neg ? 0 : 2;
20742 ** If zNum represents an integer that will fit in 32-bits, then set
20743 ** *pValue to that integer and return true. Otherwise return false.
20745 ** Any non-numeric characters that following zNum are ignored.
20746 ** This is different from sqlite3Atoi64() which requires the
20747 ** input number to be zero-terminated.
20749 SQLITE_PRIVATE int sqlite3GetInt32(const char *zNum, int *pValue){
20750 sqlite_int64 v = 0;
20751 int i, c;
20752 int neg = 0;
20753 if( zNum[0]=='-' ){
20754 neg = 1;
20755 zNum++;
20756 }else if( zNum[0]=='+' ){
20757 zNum++;
20759 while( zNum[0]=='0' ) zNum++;
20760 for(i=0; i<11 && (c = zNum[i] - '0')>=0 && c<=9; i++){
20761 v = v*10 + c;
20764 /* The longest decimal representation of a 32 bit integer is 10 digits:
20766 ** 1234567890
20767 ** 2^31 -> 2147483648
20769 testcase( i==10 );
20770 if( i>10 ){
20771 return 0;
20773 testcase( v-neg==2147483647 );
20774 if( v-neg>2147483647 ){
20775 return 0;
20777 if( neg ){
20778 v = -v;
20780 *pValue = (int)v;
20781 return 1;
20785 ** Return a 32-bit integer value extracted from a string. If the
20786 ** string is not an integer, just return 0.
20788 SQLITE_PRIVATE int sqlite3Atoi(const char *z){
20789 int x = 0;
20790 if( z ) sqlite3GetInt32(z, &x);
20791 return x;
20795 ** The variable-length integer encoding is as follows:
20797 ** KEY:
20798 ** A = 0xxxxxxx 7 bits of data and one flag bit
20799 ** B = 1xxxxxxx 7 bits of data and one flag bit
20800 ** C = xxxxxxxx 8 bits of data
20802 ** 7 bits - A
20803 ** 14 bits - BA
20804 ** 21 bits - BBA
20805 ** 28 bits - BBBA
20806 ** 35 bits - BBBBA
20807 ** 42 bits - BBBBBA
20808 ** 49 bits - BBBBBBA
20809 ** 56 bits - BBBBBBBA
20810 ** 64 bits - BBBBBBBBC
20814 ** Write a 64-bit variable-length integer to memory starting at p[0].
20815 ** The length of data write will be between 1 and 9 bytes. The number
20816 ** of bytes written is returned.
20818 ** A variable-length integer consists of the lower 7 bits of each byte
20819 ** for all bytes that have the 8th bit set and one byte with the 8th
20820 ** bit clear. Except, if we get to the 9th byte, it stores the full
20821 ** 8 bits and is the last byte.
20823 SQLITE_PRIVATE int sqlite3PutVarint(unsigned char *p, u64 v){
20824 int i, j, n;
20825 u8 buf[10];
20826 if( v & (((u64)0xff000000)<<32) ){
20827 p[8] = (u8)v;
20828 v >>= 8;
20829 for(i=7; i>=0; i--){
20830 p[i] = (u8)((v & 0x7f) | 0x80);
20831 v >>= 7;
20833 return 9;
20835 n = 0;
20837 buf[n++] = (u8)((v & 0x7f) | 0x80);
20838 v >>= 7;
20839 }while( v!=0 );
20840 buf[0] &= 0x7f;
20841 assert( n<=9 );
20842 for(i=0, j=n-1; j>=0; j--, i++){
20843 p[i] = buf[j];
20845 return n;
20849 ** This routine is a faster version of sqlite3PutVarint() that only
20850 ** works for 32-bit positive integers and which is optimized for
20851 ** the common case of small integers. A MACRO version, putVarint32,
20852 ** is provided which inlines the single-byte case. All code should use
20853 ** the MACRO version as this function assumes the single-byte case has
20854 ** already been handled.
20856 SQLITE_PRIVATE int sqlite3PutVarint32(unsigned char *p, u32 v){
20857 #ifndef putVarint32
20858 if( (v & ~0x7f)==0 ){
20859 p[0] = v;
20860 return 1;
20862 #endif
20863 if( (v & ~0x3fff)==0 ){
20864 p[0] = (u8)((v>>7) | 0x80);
20865 p[1] = (u8)(v & 0x7f);
20866 return 2;
20868 return sqlite3PutVarint(p, v);
20872 ** Bitmasks used by sqlite3GetVarint(). These precomputed constants
20873 ** are defined here rather than simply putting the constant expressions
20874 ** inline in order to work around bugs in the RVT compiler.
20876 ** SLOT_2_0 A mask for (0x7f<<14) | 0x7f
20878 ** SLOT_4_2_0 A mask for (0x7f<<28) | SLOT_2_0
20880 #define SLOT_2_0 0x001fc07f
20881 #define SLOT_4_2_0 0xf01fc07f
20885 ** Read a 64-bit variable-length integer from memory starting at p[0].
20886 ** Return the number of bytes read. The value is stored in *v.
20888 SQLITE_PRIVATE u8 sqlite3GetVarint(const unsigned char *p, u64 *v){
20889 u32 a,b,s;
20891 a = *p;
20892 /* a: p0 (unmasked) */
20893 if (!(a&0x80))
20895 *v = a;
20896 return 1;
20899 p++;
20900 b = *p;
20901 /* b: p1 (unmasked) */
20902 if (!(b&0x80))
20904 a &= 0x7f;
20905 a = a<<7;
20906 a |= b;
20907 *v = a;
20908 return 2;
20911 /* Verify that constants are precomputed correctly */
20912 assert( SLOT_2_0 == ((0x7f<<14) | (0x7f)) );
20913 assert( SLOT_4_2_0 == ((0xfU<<28) | (0x7f<<14) | (0x7f)) );
20915 p++;
20916 a = a<<14;
20917 a |= *p;
20918 /* a: p0<<14 | p2 (unmasked) */
20919 if (!(a&0x80))
20921 a &= SLOT_2_0;
20922 b &= 0x7f;
20923 b = b<<7;
20924 a |= b;
20925 *v = a;
20926 return 3;
20929 /* CSE1 from below */
20930 a &= SLOT_2_0;
20931 p++;
20932 b = b<<14;
20933 b |= *p;
20934 /* b: p1<<14 | p3 (unmasked) */
20935 if (!(b&0x80))
20937 b &= SLOT_2_0;
20938 /* moved CSE1 up */
20939 /* a &= (0x7f<<14)|(0x7f); */
20940 a = a<<7;
20941 a |= b;
20942 *v = a;
20943 return 4;
20946 /* a: p0<<14 | p2 (masked) */
20947 /* b: p1<<14 | p3 (unmasked) */
20948 /* 1:save off p0<<21 | p1<<14 | p2<<7 | p3 (masked) */
20949 /* moved CSE1 up */
20950 /* a &= (0x7f<<14)|(0x7f); */
20951 b &= SLOT_2_0;
20952 s = a;
20953 /* s: p0<<14 | p2 (masked) */
20955 p++;
20956 a = a<<14;
20957 a |= *p;
20958 /* a: p0<<28 | p2<<14 | p4 (unmasked) */
20959 if (!(a&0x80))
20961 /* we can skip these cause they were (effectively) done above in calc'ing s */
20962 /* a &= (0x7f<<28)|(0x7f<<14)|(0x7f); */
20963 /* b &= (0x7f<<14)|(0x7f); */
20964 b = b<<7;
20965 a |= b;
20966 s = s>>18;
20967 *v = ((u64)s)<<32 | a;
20968 return 5;
20971 /* 2:save off p0<<21 | p1<<14 | p2<<7 | p3 (masked) */
20972 s = s<<7;
20973 s |= b;
20974 /* s: p0<<21 | p1<<14 | p2<<7 | p3 (masked) */
20976 p++;
20977 b = b<<14;
20978 b |= *p;
20979 /* b: p1<<28 | p3<<14 | p5 (unmasked) */
20980 if (!(b&0x80))
20982 /* we can skip this cause it was (effectively) done above in calc'ing s */
20983 /* b &= (0x7f<<28)|(0x7f<<14)|(0x7f); */
20984 a &= SLOT_2_0;
20985 a = a<<7;
20986 a |= b;
20987 s = s>>18;
20988 *v = ((u64)s)<<32 | a;
20989 return 6;
20992 p++;
20993 a = a<<14;
20994 a |= *p;
20995 /* a: p2<<28 | p4<<14 | p6 (unmasked) */
20996 if (!(a&0x80))
20998 a &= SLOT_4_2_0;
20999 b &= SLOT_2_0;
21000 b = b<<7;
21001 a |= b;
21002 s = s>>11;
21003 *v = ((u64)s)<<32 | a;
21004 return 7;
21007 /* CSE2 from below */
21008 a &= SLOT_2_0;
21009 p++;
21010 b = b<<14;
21011 b |= *p;
21012 /* b: p3<<28 | p5<<14 | p7 (unmasked) */
21013 if (!(b&0x80))
21015 b &= SLOT_4_2_0;
21016 /* moved CSE2 up */
21017 /* a &= (0x7f<<14)|(0x7f); */
21018 a = a<<7;
21019 a |= b;
21020 s = s>>4;
21021 *v = ((u64)s)<<32 | a;
21022 return 8;
21025 p++;
21026 a = a<<15;
21027 a |= *p;
21028 /* a: p4<<29 | p6<<15 | p8 (unmasked) */
21030 /* moved CSE2 up */
21031 /* a &= (0x7f<<29)|(0x7f<<15)|(0xff); */
21032 b &= SLOT_2_0;
21033 b = b<<8;
21034 a |= b;
21036 s = s<<4;
21037 b = p[-4];
21038 b &= 0x7f;
21039 b = b>>3;
21040 s |= b;
21042 *v = ((u64)s)<<32 | a;
21044 return 9;
21048 ** Read a 32-bit variable-length integer from memory starting at p[0].
21049 ** Return the number of bytes read. The value is stored in *v.
21051 ** If the varint stored in p[0] is larger than can fit in a 32-bit unsigned
21052 ** integer, then set *v to 0xffffffff.
21054 ** A MACRO version, getVarint32, is provided which inlines the
21055 ** single-byte case. All code should use the MACRO version as
21056 ** this function assumes the single-byte case has already been handled.
21058 SQLITE_PRIVATE u8 sqlite3GetVarint32(const unsigned char *p, u32 *v){
21059 u32 a,b;
21061 /* The 1-byte case. Overwhelmingly the most common. Handled inline
21062 ** by the getVarin32() macro */
21063 a = *p;
21064 /* a: p0 (unmasked) */
21065 #ifndef getVarint32
21066 if (!(a&0x80))
21068 /* Values between 0 and 127 */
21069 *v = a;
21070 return 1;
21072 #endif
21074 /* The 2-byte case */
21075 p++;
21076 b = *p;
21077 /* b: p1 (unmasked) */
21078 if (!(b&0x80))
21080 /* Values between 128 and 16383 */
21081 a &= 0x7f;
21082 a = a<<7;
21083 *v = a | b;
21084 return 2;
21087 /* The 3-byte case */
21088 p++;
21089 a = a<<14;
21090 a |= *p;
21091 /* a: p0<<14 | p2 (unmasked) */
21092 if (!(a&0x80))
21094 /* Values between 16384 and 2097151 */
21095 a &= (0x7f<<14)|(0x7f);
21096 b &= 0x7f;
21097 b = b<<7;
21098 *v = a | b;
21099 return 3;
21102 /* A 32-bit varint is used to store size information in btrees.
21103 ** Objects are rarely larger than 2MiB limit of a 3-byte varint.
21104 ** A 3-byte varint is sufficient, for example, to record the size
21105 ** of a 1048569-byte BLOB or string.
21107 ** We only unroll the first 1-, 2-, and 3- byte cases. The very
21108 ** rare larger cases can be handled by the slower 64-bit varint
21109 ** routine.
21111 #if 1
21113 u64 v64;
21114 u8 n;
21116 p -= 2;
21117 n = sqlite3GetVarint(p, &v64);
21118 assert( n>3 && n<=9 );
21119 if( (v64 & SQLITE_MAX_U32)!=v64 ){
21120 *v = 0xffffffff;
21121 }else{
21122 *v = (u32)v64;
21124 return n;
21127 #else
21128 /* For following code (kept for historical record only) shows an
21129 ** unrolling for the 3- and 4-byte varint cases. This code is
21130 ** slightly faster, but it is also larger and much harder to test.
21132 p++;
21133 b = b<<14;
21134 b |= *p;
21135 /* b: p1<<14 | p3 (unmasked) */
21136 if (!(b&0x80))
21138 /* Values between 2097152 and 268435455 */
21139 b &= (0x7f<<14)|(0x7f);
21140 a &= (0x7f<<14)|(0x7f);
21141 a = a<<7;
21142 *v = a | b;
21143 return 4;
21146 p++;
21147 a = a<<14;
21148 a |= *p;
21149 /* a: p0<<28 | p2<<14 | p4 (unmasked) */
21150 if (!(a&0x80))
21152 /* Values between 268435456 and 34359738367 */
21153 a &= SLOT_4_2_0;
21154 b &= SLOT_4_2_0;
21155 b = b<<7;
21156 *v = a | b;
21157 return 5;
21160 /* We can only reach this point when reading a corrupt database
21161 ** file. In that case we are not in any hurry. Use the (relatively
21162 ** slow) general-purpose sqlite3GetVarint() routine to extract the
21163 ** value. */
21165 u64 v64;
21166 u8 n;
21168 p -= 4;
21169 n = sqlite3GetVarint(p, &v64);
21170 assert( n>5 && n<=9 );
21171 *v = (u32)v64;
21172 return n;
21174 #endif
21178 ** Return the number of bytes that will be needed to store the given
21179 ** 64-bit integer.
21181 SQLITE_PRIVATE int sqlite3VarintLen(u64 v){
21182 int i = 0;
21184 i++;
21185 v >>= 7;
21186 }while( v!=0 && ALWAYS(i<9) );
21187 return i;
21192 ** Read or write a four-byte big-endian integer value.
21194 SQLITE_PRIVATE u32 sqlite3Get4byte(const u8 *p){
21195 return (p[0]<<24) | (p[1]<<16) | (p[2]<<8) | p[3];
21197 SQLITE_PRIVATE void sqlite3Put4byte(unsigned char *p, u32 v){
21198 p[0] = (u8)(v>>24);
21199 p[1] = (u8)(v>>16);
21200 p[2] = (u8)(v>>8);
21201 p[3] = (u8)v;
21206 #if !defined(SQLITE_OMIT_BLOB_LITERAL) || defined(SQLITE_HAS_CODEC)
21208 ** Translate a single byte of Hex into an integer.
21209 ** This routine only works if h really is a valid hexadecimal
21210 ** character: 0..9a..fA..F
21212 static u8 hexToInt(int h){
21213 assert( (h>='0' && h<='9') || (h>='a' && h<='f') || (h>='A' && h<='F') );
21214 #ifdef SQLITE_ASCII
21215 h += 9*(1&(h>>6));
21216 #endif
21217 #ifdef SQLITE_EBCDIC
21218 h += 9*(1&~(h>>4));
21219 #endif
21220 return (u8)(h & 0xf);
21222 #endif /* !SQLITE_OMIT_BLOB_LITERAL || SQLITE_HAS_CODEC */
21224 #if !defined(SQLITE_OMIT_BLOB_LITERAL) || defined(SQLITE_HAS_CODEC)
21226 ** Convert a BLOB literal of the form "x'hhhhhh'" into its binary
21227 ** value. Return a pointer to its binary value. Space to hold the
21228 ** binary value has been obtained from malloc and must be freed by
21229 ** the calling routine.
21231 SQLITE_PRIVATE void *sqlite3HexToBlob(sqlite3 *db, const char *z, int n){
21232 char *zBlob;
21233 int i;
21235 zBlob = (char *)sqlite3DbMallocRaw(db, n/2 + 1);
21236 n--;
21237 if( zBlob ){
21238 for(i=0; i<n; i+=2){
21239 zBlob[i/2] = (hexToInt(z[i])<<4) | hexToInt(z[i+1]);
21241 zBlob[i/2] = 0;
21243 return zBlob;
21245 #endif /* !SQLITE_OMIT_BLOB_LITERAL || SQLITE_HAS_CODEC */
21248 ** Log an error that is an API call on a connection pointer that should
21249 ** not have been used. The "type" of connection pointer is given as the
21250 ** argument. The zType is a word like "NULL" or "closed" or "invalid".
21252 static void logBadConnection(const char *zType){
21253 sqlite3_log(SQLITE_MISUSE,
21254 "API call with %s database connection pointer",
21255 zType
21260 ** Check to make sure we have a valid db pointer. This test is not
21261 ** foolproof but it does provide some measure of protection against
21262 ** misuse of the interface such as passing in db pointers that are
21263 ** NULL or which have been previously closed. If this routine returns
21264 ** 1 it means that the db pointer is valid and 0 if it should not be
21265 ** dereferenced for any reason. The calling function should invoke
21266 ** SQLITE_MISUSE immediately.
21268 ** sqlite3SafetyCheckOk() requires that the db pointer be valid for
21269 ** use. sqlite3SafetyCheckSickOrOk() allows a db pointer that failed to
21270 ** open properly and is not fit for general use but which can be
21271 ** used as an argument to sqlite3_errmsg() or sqlite3_close().
21273 SQLITE_PRIVATE int sqlite3SafetyCheckOk(sqlite3 *db){
21274 u32 magic;
21275 if( db==0 ){
21276 logBadConnection("NULL");
21277 return 0;
21279 magic = db->magic;
21280 if( magic!=SQLITE_MAGIC_OPEN ){
21281 if( sqlite3SafetyCheckSickOrOk(db) ){
21282 testcase( sqlite3GlobalConfig.xLog!=0 );
21283 logBadConnection("unopened");
21285 return 0;
21286 }else{
21287 return 1;
21290 SQLITE_PRIVATE int sqlite3SafetyCheckSickOrOk(sqlite3 *db){
21291 u32 magic;
21292 magic = db->magic;
21293 if( magic!=SQLITE_MAGIC_SICK &&
21294 magic!=SQLITE_MAGIC_OPEN &&
21295 magic!=SQLITE_MAGIC_BUSY ){
21296 testcase( sqlite3GlobalConfig.xLog!=0 );
21297 logBadConnection("invalid");
21298 return 0;
21299 }else{
21300 return 1;
21305 ** Attempt to add, substract, or multiply the 64-bit signed value iB against
21306 ** the other 64-bit signed integer at *pA and store the result in *pA.
21307 ** Return 0 on success. Or if the operation would have resulted in an
21308 ** overflow, leave *pA unchanged and return 1.
21310 SQLITE_PRIVATE int sqlite3AddInt64(i64 *pA, i64 iB){
21311 i64 iA = *pA;
21312 testcase( iA==0 ); testcase( iA==1 );
21313 testcase( iB==-1 ); testcase( iB==0 );
21314 if( iB>=0 ){
21315 testcase( iA>0 && LARGEST_INT64 - iA == iB );
21316 testcase( iA>0 && LARGEST_INT64 - iA == iB - 1 );
21317 if( iA>0 && LARGEST_INT64 - iA < iB ) return 1;
21318 *pA += iB;
21319 }else{
21320 testcase( iA<0 && -(iA + LARGEST_INT64) == iB + 1 );
21321 testcase( iA<0 && -(iA + LARGEST_INT64) == iB + 2 );
21322 if( iA<0 && -(iA + LARGEST_INT64) > iB + 1 ) return 1;
21323 *pA += iB;
21325 return 0;
21327 SQLITE_PRIVATE int sqlite3SubInt64(i64 *pA, i64 iB){
21328 testcase( iB==SMALLEST_INT64+1 );
21329 if( iB==SMALLEST_INT64 ){
21330 testcase( (*pA)==(-1) ); testcase( (*pA)==0 );
21331 if( (*pA)>=0 ) return 1;
21332 *pA -= iB;
21333 return 0;
21334 }else{
21335 return sqlite3AddInt64(pA, -iB);
21338 #define TWOPOWER32 (((i64)1)<<32)
21339 #define TWOPOWER31 (((i64)1)<<31)
21340 SQLITE_PRIVATE int sqlite3MulInt64(i64 *pA, i64 iB){
21341 i64 iA = *pA;
21342 i64 iA1, iA0, iB1, iB0, r;
21344 iA1 = iA/TWOPOWER32;
21345 iA0 = iA % TWOPOWER32;
21346 iB1 = iB/TWOPOWER32;
21347 iB0 = iB % TWOPOWER32;
21348 if( iA1*iB1 != 0 ) return 1;
21349 assert( iA1*iB0==0 || iA0*iB1==0 );
21350 r = iA1*iB0 + iA0*iB1;
21351 testcase( r==(-TWOPOWER31)-1 );
21352 testcase( r==(-TWOPOWER31) );
21353 testcase( r==TWOPOWER31 );
21354 testcase( r==TWOPOWER31-1 );
21355 if( r<(-TWOPOWER31) || r>=TWOPOWER31 ) return 1;
21356 r *= TWOPOWER32;
21357 if( sqlite3AddInt64(&r, iA0*iB0) ) return 1;
21358 *pA = r;
21359 return 0;
21363 ** Compute the absolute value of a 32-bit signed integer, of possible. Or
21364 ** if the integer has a value of -2147483648, return +2147483647
21366 SQLITE_PRIVATE int sqlite3AbsInt32(int x){
21367 if( x>=0 ) return x;
21368 if( x==(int)0x80000000 ) return 0x7fffffff;
21369 return -x;
21372 /************** End of util.c ************************************************/
21373 /************** Begin file hash.c ********************************************/
21375 ** 2001 September 22
21377 ** The author disclaims copyright to this source code. In place of
21378 ** a legal notice, here is a blessing:
21380 ** May you do good and not evil.
21381 ** May you find forgiveness for yourself and forgive others.
21382 ** May you share freely, never taking more than you give.
21384 *************************************************************************
21385 ** This is the implementation of generic hash-tables
21386 ** used in SQLite.
21389 /* Turn bulk memory into a hash table object by initializing the
21390 ** fields of the Hash structure.
21392 ** "pNew" is a pointer to the hash table that is to be initialized.
21394 SQLITE_PRIVATE void sqlite3HashInit(Hash *pNew){
21395 assert( pNew!=0 );
21396 pNew->first = 0;
21397 pNew->count = 0;
21398 pNew->htsize = 0;
21399 pNew->ht = 0;
21402 /* Remove all entries from a hash table. Reclaim all memory.
21403 ** Call this routine to delete a hash table or to reset a hash table
21404 ** to the empty state.
21406 SQLITE_PRIVATE void sqlite3HashClear(Hash *pH){
21407 HashElem *elem; /* For looping over all elements of the table */
21409 assert( pH!=0 );
21410 elem = pH->first;
21411 pH->first = 0;
21412 sqlite3_free(pH->ht);
21413 pH->ht = 0;
21414 pH->htsize = 0;
21415 while( elem ){
21416 HashElem *next_elem = elem->next;
21417 sqlite3_free(elem);
21418 elem = next_elem;
21420 pH->count = 0;
21424 ** The hashing function.
21426 static unsigned int strHash(const char *z, int nKey){
21427 int h = 0;
21428 assert( nKey>=0 );
21429 while( nKey > 0 ){
21430 h = (h<<3) ^ h ^ sqlite3UpperToLower[(unsigned char)*z++];
21431 nKey--;
21433 return h;
21437 /* Link pNew element into the hash table pH. If pEntry!=0 then also
21438 ** insert pNew into the pEntry hash bucket.
21440 static void insertElement(
21441 Hash *pH, /* The complete hash table */
21442 struct _ht *pEntry, /* The entry into which pNew is inserted */
21443 HashElem *pNew /* The element to be inserted */
21445 HashElem *pHead; /* First element already in pEntry */
21446 if( pEntry ){
21447 pHead = pEntry->count ? pEntry->chain : 0;
21448 pEntry->count++;
21449 pEntry->chain = pNew;
21450 }else{
21451 pHead = 0;
21453 if( pHead ){
21454 pNew->next = pHead;
21455 pNew->prev = pHead->prev;
21456 if( pHead->prev ){ pHead->prev->next = pNew; }
21457 else { pH->first = pNew; }
21458 pHead->prev = pNew;
21459 }else{
21460 pNew->next = pH->first;
21461 if( pH->first ){ pH->first->prev = pNew; }
21462 pNew->prev = 0;
21463 pH->first = pNew;
21468 /* Resize the hash table so that it cantains "new_size" buckets.
21470 ** The hash table might fail to resize if sqlite3_malloc() fails or
21471 ** if the new size is the same as the prior size.
21472 ** Return TRUE if the resize occurs and false if not.
21474 static int rehash(Hash *pH, unsigned int new_size){
21475 struct _ht *new_ht; /* The new hash table */
21476 HashElem *elem, *next_elem; /* For looping over existing elements */
21478 #if SQLITE_MALLOC_SOFT_LIMIT>0
21479 if( new_size*sizeof(struct _ht)>SQLITE_MALLOC_SOFT_LIMIT ){
21480 new_size = SQLITE_MALLOC_SOFT_LIMIT/sizeof(struct _ht);
21482 if( new_size==pH->htsize ) return 0;
21483 #endif
21485 /* The inability to allocates space for a larger hash table is
21486 ** a performance hit but it is not a fatal error. So mark the
21487 ** allocation as a benign.
21489 sqlite3BeginBenignMalloc();
21490 new_ht = (struct _ht *)sqlite3Malloc( new_size*sizeof(struct _ht) );
21491 sqlite3EndBenignMalloc();
21493 if( new_ht==0 ) return 0;
21494 sqlite3_free(pH->ht);
21495 pH->ht = new_ht;
21496 pH->htsize = new_size = sqlite3MallocSize(new_ht)/sizeof(struct _ht);
21497 memset(new_ht, 0, new_size*sizeof(struct _ht));
21498 for(elem=pH->first, pH->first=0; elem; elem = next_elem){
21499 unsigned int h = strHash(elem->pKey, elem->nKey) % new_size;
21500 next_elem = elem->next;
21501 insertElement(pH, &new_ht[h], elem);
21503 return 1;
21506 /* This function (for internal use only) locates an element in an
21507 ** hash table that matches the given key. The hash for this key has
21508 ** already been computed and is passed as the 4th parameter.
21510 static HashElem *findElementGivenHash(
21511 const Hash *pH, /* The pH to be searched */
21512 const char *pKey, /* The key we are searching for */
21513 int nKey, /* Bytes in key (not counting zero terminator) */
21514 unsigned int h /* The hash for this key. */
21516 HashElem *elem; /* Used to loop thru the element list */
21517 int count; /* Number of elements left to test */
21519 if( pH->ht ){
21520 struct _ht *pEntry = &pH->ht[h];
21521 elem = pEntry->chain;
21522 count = pEntry->count;
21523 }else{
21524 elem = pH->first;
21525 count = pH->count;
21527 while( count-- && ALWAYS(elem) ){
21528 if( elem->nKey==nKey && sqlite3StrNICmp(elem->pKey,pKey,nKey)==0 ){
21529 return elem;
21531 elem = elem->next;
21533 return 0;
21536 /* Remove a single entry from the hash table given a pointer to that
21537 ** element and a hash on the element's key.
21539 static void removeElementGivenHash(
21540 Hash *pH, /* The pH containing "elem" */
21541 HashElem* elem, /* The element to be removed from the pH */
21542 unsigned int h /* Hash value for the element */
21544 struct _ht *pEntry;
21545 if( elem->prev ){
21546 elem->prev->next = elem->next;
21547 }else{
21548 pH->first = elem->next;
21550 if( elem->next ){
21551 elem->next->prev = elem->prev;
21553 if( pH->ht ){
21554 pEntry = &pH->ht[h];
21555 if( pEntry->chain==elem ){
21556 pEntry->chain = elem->next;
21558 pEntry->count--;
21559 assert( pEntry->count>=0 );
21561 sqlite3_free( elem );
21562 pH->count--;
21563 if( pH->count<=0 ){
21564 assert( pH->first==0 );
21565 assert( pH->count==0 );
21566 sqlite3HashClear(pH);
21570 /* Attempt to locate an element of the hash table pH with a key
21571 ** that matches pKey,nKey. Return the data for this element if it is
21572 ** found, or NULL if there is no match.
21574 SQLITE_PRIVATE void *sqlite3HashFind(const Hash *pH, const char *pKey, int nKey){
21575 HashElem *elem; /* The element that matches key */
21576 unsigned int h; /* A hash on key */
21578 assert( pH!=0 );
21579 assert( pKey!=0 );
21580 assert( nKey>=0 );
21581 if( pH->ht ){
21582 h = strHash(pKey, nKey) % pH->htsize;
21583 }else{
21584 h = 0;
21586 elem = findElementGivenHash(pH, pKey, nKey, h);
21587 return elem ? elem->data : 0;
21590 /* Insert an element into the hash table pH. The key is pKey,nKey
21591 ** and the data is "data".
21593 ** If no element exists with a matching key, then a new
21594 ** element is created and NULL is returned.
21596 ** If another element already exists with the same key, then the
21597 ** new data replaces the old data and the old data is returned.
21598 ** The key is not copied in this instance. If a malloc fails, then
21599 ** the new data is returned and the hash table is unchanged.
21601 ** If the "data" parameter to this function is NULL, then the
21602 ** element corresponding to "key" is removed from the hash table.
21604 SQLITE_PRIVATE void *sqlite3HashInsert(Hash *pH, const char *pKey, int nKey, void *data){
21605 unsigned int h; /* the hash of the key modulo hash table size */
21606 HashElem *elem; /* Used to loop thru the element list */
21607 HashElem *new_elem; /* New element added to the pH */
21609 assert( pH!=0 );
21610 assert( pKey!=0 );
21611 assert( nKey>=0 );
21612 if( pH->htsize ){
21613 h = strHash(pKey, nKey) % pH->htsize;
21614 }else{
21615 h = 0;
21617 elem = findElementGivenHash(pH,pKey,nKey,h);
21618 if( elem ){
21619 void *old_data = elem->data;
21620 if( data==0 ){
21621 removeElementGivenHash(pH,elem,h);
21622 }else{
21623 elem->data = data;
21624 elem->pKey = pKey;
21625 assert(nKey==elem->nKey);
21627 return old_data;
21629 if( data==0 ) return 0;
21630 new_elem = (HashElem*)sqlite3Malloc( sizeof(HashElem) );
21631 if( new_elem==0 ) return data;
21632 new_elem->pKey = pKey;
21633 new_elem->nKey = nKey;
21634 new_elem->data = data;
21635 pH->count++;
21636 if( pH->count>=10 && pH->count > 2*pH->htsize ){
21637 if( rehash(pH, pH->count*2) ){
21638 assert( pH->htsize>0 );
21639 h = strHash(pKey, nKey) % pH->htsize;
21642 if( pH->ht ){
21643 insertElement(pH, &pH->ht[h], new_elem);
21644 }else{
21645 insertElement(pH, 0, new_elem);
21647 return 0;
21650 /************** End of hash.c ************************************************/
21651 /************** Begin file opcodes.c *****************************************/
21652 /* Automatically generated. Do not edit */
21653 /* See the mkopcodec.awk script for details. */
21654 #if !defined(SQLITE_OMIT_EXPLAIN) || !defined(NDEBUG) || defined(VDBE_PROFILE) || defined(SQLITE_DEBUG)
21655 SQLITE_PRIVATE const char *sqlite3OpcodeName(int i){
21656 static const char *const azName[] = { "?",
21657 /* 1 */ "Goto",
21658 /* 2 */ "Gosub",
21659 /* 3 */ "Return",
21660 /* 4 */ "Yield",
21661 /* 5 */ "HaltIfNull",
21662 /* 6 */ "Halt",
21663 /* 7 */ "Integer",
21664 /* 8 */ "Int64",
21665 /* 9 */ "String",
21666 /* 10 */ "Null",
21667 /* 11 */ "Blob",
21668 /* 12 */ "Variable",
21669 /* 13 */ "Move",
21670 /* 14 */ "Copy",
21671 /* 15 */ "SCopy",
21672 /* 16 */ "ResultRow",
21673 /* 17 */ "CollSeq",
21674 /* 18 */ "Function",
21675 /* 19 */ "Not",
21676 /* 20 */ "AddImm",
21677 /* 21 */ "MustBeInt",
21678 /* 22 */ "RealAffinity",
21679 /* 23 */ "Permutation",
21680 /* 24 */ "Compare",
21681 /* 25 */ "Jump",
21682 /* 26 */ "If",
21683 /* 27 */ "IfNot",
21684 /* 28 */ "Column",
21685 /* 29 */ "Affinity",
21686 /* 30 */ "MakeRecord",
21687 /* 31 */ "Count",
21688 /* 32 */ "Savepoint",
21689 /* 33 */ "AutoCommit",
21690 /* 34 */ "Transaction",
21691 /* 35 */ "ReadCookie",
21692 /* 36 */ "SetCookie",
21693 /* 37 */ "VerifyCookie",
21694 /* 38 */ "OpenRead",
21695 /* 39 */ "OpenWrite",
21696 /* 40 */ "OpenAutoindex",
21697 /* 41 */ "OpenEphemeral",
21698 /* 42 */ "OpenPseudo",
21699 /* 43 */ "Close",
21700 /* 44 */ "SeekLt",
21701 /* 45 */ "SeekLe",
21702 /* 46 */ "SeekGe",
21703 /* 47 */ "SeekGt",
21704 /* 48 */ "Seek",
21705 /* 49 */ "NotFound",
21706 /* 50 */ "Found",
21707 /* 51 */ "IsUnique",
21708 /* 52 */ "NotExists",
21709 /* 53 */ "Sequence",
21710 /* 54 */ "NewRowid",
21711 /* 55 */ "Insert",
21712 /* 56 */ "InsertInt",
21713 /* 57 */ "Delete",
21714 /* 58 */ "ResetCount",
21715 /* 59 */ "RowKey",
21716 /* 60 */ "RowData",
21717 /* 61 */ "Rowid",
21718 /* 62 */ "NullRow",
21719 /* 63 */ "Last",
21720 /* 64 */ "Sort",
21721 /* 65 */ "Rewind",
21722 /* 66 */ "Prev",
21723 /* 67 */ "Next",
21724 /* 68 */ "Or",
21725 /* 69 */ "And",
21726 /* 70 */ "IdxInsert",
21727 /* 71 */ "IdxDelete",
21728 /* 72 */ "IdxRowid",
21729 /* 73 */ "IsNull",
21730 /* 74 */ "NotNull",
21731 /* 75 */ "Ne",
21732 /* 76 */ "Eq",
21733 /* 77 */ "Gt",
21734 /* 78 */ "Le",
21735 /* 79 */ "Lt",
21736 /* 80 */ "Ge",
21737 /* 81 */ "IdxLT",
21738 /* 82 */ "BitAnd",
21739 /* 83 */ "BitOr",
21740 /* 84 */ "ShiftLeft",
21741 /* 85 */ "ShiftRight",
21742 /* 86 */ "Add",
21743 /* 87 */ "Subtract",
21744 /* 88 */ "Multiply",
21745 /* 89 */ "Divide",
21746 /* 90 */ "Remainder",
21747 /* 91 */ "Concat",
21748 /* 92 */ "IdxGE",
21749 /* 93 */ "BitNot",
21750 /* 94 */ "String8",
21751 /* 95 */ "Destroy",
21752 /* 96 */ "Clear",
21753 /* 97 */ "CreateIndex",
21754 /* 98 */ "CreateTable",
21755 /* 99 */ "ParseSchema",
21756 /* 100 */ "LoadAnalysis",
21757 /* 101 */ "DropTable",
21758 /* 102 */ "DropIndex",
21759 /* 103 */ "DropTrigger",
21760 /* 104 */ "IntegrityCk",
21761 /* 105 */ "RowSetAdd",
21762 /* 106 */ "RowSetRead",
21763 /* 107 */ "RowSetTest",
21764 /* 108 */ "Program",
21765 /* 109 */ "Param",
21766 /* 110 */ "FkCounter",
21767 /* 111 */ "FkIfZero",
21768 /* 112 */ "MemMax",
21769 /* 113 */ "IfPos",
21770 /* 114 */ "IfNeg",
21771 /* 115 */ "IfZero",
21772 /* 116 */ "AggStep",
21773 /* 117 */ "AggFinal",
21774 /* 118 */ "Checkpoint",
21775 /* 119 */ "JournalMode",
21776 /* 120 */ "Vacuum",
21777 /* 121 */ "IncrVacuum",
21778 /* 122 */ "Expire",
21779 /* 123 */ "TableLock",
21780 /* 124 */ "VBegin",
21781 /* 125 */ "VCreate",
21782 /* 126 */ "VDestroy",
21783 /* 127 */ "VOpen",
21784 /* 128 */ "VFilter",
21785 /* 129 */ "VColumn",
21786 /* 130 */ "Real",
21787 /* 131 */ "VNext",
21788 /* 132 */ "VRename",
21789 /* 133 */ "VUpdate",
21790 /* 134 */ "Pagecount",
21791 /* 135 */ "MaxPgcnt",
21792 /* 136 */ "Trace",
21793 /* 137 */ "Noop",
21794 /* 138 */ "Explain",
21795 /* 139 */ "NotUsed_139",
21796 /* 140 */ "NotUsed_140",
21797 /* 141 */ "ToText",
21798 /* 142 */ "ToBlob",
21799 /* 143 */ "ToNumeric",
21800 /* 144 */ "ToInt",
21801 /* 145 */ "ToReal",
21803 return azName[i];
21805 #endif
21807 /************** End of opcodes.c *********************************************/
21808 /************** Begin file os_os2.c ******************************************/
21810 ** 2006 Feb 14
21812 ** The author disclaims copyright to this source code. In place of
21813 ** a legal notice, here is a blessing:
21815 ** May you do good and not evil.
21816 ** May you find forgiveness for yourself and forgive others.
21817 ** May you share freely, never taking more than you give.
21819 ******************************************************************************
21821 ** This file contains code that is specific to OS/2.
21825 #if SQLITE_OS_OS2
21828 ** A Note About Memory Allocation:
21830 ** This driver uses malloc()/free() directly rather than going through
21831 ** the SQLite-wrappers sqlite3_malloc()/sqlite3_free(). Those wrappers
21832 ** are designed for use on embedded systems where memory is scarce and
21833 ** malloc failures happen frequently. OS/2 does not typically run on
21834 ** embedded systems, and when it does the developers normally have bigger
21835 ** problems to worry about than running out of memory. So there is not
21836 ** a compelling need to use the wrappers.
21838 ** But there is a good reason to not use the wrappers. If we use the
21839 ** wrappers then we will get simulated malloc() failures within this
21840 ** driver. And that causes all kinds of problems for our tests. We
21841 ** could enhance SQLite to deal with simulated malloc failures within
21842 ** the OS driver, but the code to deal with those failure would not
21843 ** be exercised on Linux (which does not need to malloc() in the driver)
21844 ** and so we would have difficulty writing coverage tests for that
21845 ** code. Better to leave the code out, we think.
21847 ** The point of this discussion is as follows: When creating a new
21848 ** OS layer for an embedded system, if you use this file as an example,
21849 ** avoid the use of malloc()/free(). Those routines work ok on OS/2
21850 ** desktops but not so well in embedded systems.
21854 ** Macros used to determine whether or not to use threads.
21856 #if defined(SQLITE_THREADSAFE) && SQLITE_THREADSAFE
21857 # define SQLITE_OS2_THREADS 1
21858 #endif
21861 ** Include code that is common to all os_*.c files
21863 /************** Include os_common.h in the middle of os_os2.c ****************/
21864 /************** Begin file os_common.h ***************************************/
21866 ** 2004 May 22
21868 ** The author disclaims copyright to this source code. In place of
21869 ** a legal notice, here is a blessing:
21871 ** May you do good and not evil.
21872 ** May you find forgiveness for yourself and forgive others.
21873 ** May you share freely, never taking more than you give.
21875 ******************************************************************************
21877 ** This file contains macros and a little bit of code that is common to
21878 ** all of the platform-specific files (os_*.c) and is #included into those
21879 ** files.
21881 ** This file should be #included by the os_*.c files only. It is not a
21882 ** general purpose header file.
21884 #ifndef _OS_COMMON_H_
21885 #define _OS_COMMON_H_
21888 ** At least two bugs have slipped in because we changed the MEMORY_DEBUG
21889 ** macro to SQLITE_DEBUG and some older makefiles have not yet made the
21890 ** switch. The following code should catch this problem at compile-time.
21892 #ifdef MEMORY_DEBUG
21893 # error "The MEMORY_DEBUG macro is obsolete. Use SQLITE_DEBUG instead."
21894 #endif
21896 #ifdef SQLITE_DEBUG
21897 SQLITE_PRIVATE int sqlite3OSTrace = 0;
21898 #define OSTRACE(X) if( sqlite3OSTrace ) sqlite3DebugPrintf X
21899 #else
21900 #define OSTRACE(X)
21901 #endif
21904 ** Macros for performance tracing. Normally turned off. Only works
21905 ** on i486 hardware.
21907 #ifdef SQLITE_PERFORMANCE_TRACE
21910 ** hwtime.h contains inline assembler code for implementing
21911 ** high-performance timing routines.
21913 /************** Include hwtime.h in the middle of os_common.h ****************/
21914 /************** Begin file hwtime.h ******************************************/
21916 ** 2008 May 27
21918 ** The author disclaims copyright to this source code. In place of
21919 ** a legal notice, here is a blessing:
21921 ** May you do good and not evil.
21922 ** May you find forgiveness for yourself and forgive others.
21923 ** May you share freely, never taking more than you give.
21925 ******************************************************************************
21927 ** This file contains inline asm code for retrieving "high-performance"
21928 ** counters for x86 class CPUs.
21930 #ifndef _HWTIME_H_
21931 #define _HWTIME_H_
21934 ** The following routine only works on pentium-class (or newer) processors.
21935 ** It uses the RDTSC opcode to read the cycle count value out of the
21936 ** processor and returns that value. This can be used for high-res
21937 ** profiling.
21939 #if (defined(__GNUC__) || defined(_MSC_VER)) && \
21940 (defined(i386) || defined(__i386__) || defined(_M_IX86))
21942 #if defined(__GNUC__)
21944 __inline__ sqlite_uint64 sqlite3Hwtime(void){
21945 unsigned int lo, hi;
21946 __asm__ __volatile__ ("rdtsc" : "=a" (lo), "=d" (hi));
21947 return (sqlite_uint64)hi << 32 | lo;
21950 #elif defined(_MSC_VER)
21952 __declspec(naked) __inline sqlite_uint64 __cdecl sqlite3Hwtime(void){
21953 __asm {
21954 rdtsc
21955 ret ; return value at EDX:EAX
21959 #endif
21961 #elif (defined(__GNUC__) && defined(__x86_64__))
21963 __inline__ sqlite_uint64 sqlite3Hwtime(void){
21964 unsigned long val;
21965 __asm__ __volatile__ ("rdtsc" : "=A" (val));
21966 return val;
21969 #elif (defined(__GNUC__) && defined(__ppc__))
21971 __inline__ sqlite_uint64 sqlite3Hwtime(void){
21972 unsigned long long retval;
21973 unsigned long junk;
21974 __asm__ __volatile__ ("\n\
21975 1: mftbu %1\n\
21976 mftb %L0\n\
21977 mftbu %0\n\
21978 cmpw %0,%1\n\
21979 bne 1b"
21980 : "=r" (retval), "=r" (junk));
21981 return retval;
21984 #else
21986 #error Need implementation of sqlite3Hwtime() for your platform.
21989 ** To compile without implementing sqlite3Hwtime() for your platform,
21990 ** you can remove the above #error and use the following
21991 ** stub function. You will lose timing support for many
21992 ** of the debugging and testing utilities, but it should at
21993 ** least compile and run.
21995 SQLITE_PRIVATE sqlite_uint64 sqlite3Hwtime(void){ return ((sqlite_uint64)0); }
21997 #endif
21999 #endif /* !defined(_HWTIME_H_) */
22001 /************** End of hwtime.h **********************************************/
22002 /************** Continuing where we left off in os_common.h ******************/
22004 static sqlite_uint64 g_start;
22005 static sqlite_uint64 g_elapsed;
22006 #define TIMER_START g_start=sqlite3Hwtime()
22007 #define TIMER_END g_elapsed=sqlite3Hwtime()-g_start
22008 #define TIMER_ELAPSED g_elapsed
22009 #else
22010 #define TIMER_START
22011 #define TIMER_END
22012 #define TIMER_ELAPSED ((sqlite_uint64)0)
22013 #endif
22016 ** If we compile with the SQLITE_TEST macro set, then the following block
22017 ** of code will give us the ability to simulate a disk I/O error. This
22018 ** is used for testing the I/O recovery logic.
22020 #ifdef SQLITE_TEST
22021 SQLITE_API int sqlite3_io_error_hit = 0; /* Total number of I/O Errors */
22022 SQLITE_API int sqlite3_io_error_hardhit = 0; /* Number of non-benign errors */
22023 SQLITE_API int sqlite3_io_error_pending = 0; /* Count down to first I/O error */
22024 SQLITE_API int sqlite3_io_error_persist = 0; /* True if I/O errors persist */
22025 SQLITE_API int sqlite3_io_error_benign = 0; /* True if errors are benign */
22026 SQLITE_API int sqlite3_diskfull_pending = 0;
22027 SQLITE_API int sqlite3_diskfull = 0;
22028 #define SimulateIOErrorBenign(X) sqlite3_io_error_benign=(X)
22029 #define SimulateIOError(CODE) \
22030 if( (sqlite3_io_error_persist && sqlite3_io_error_hit) \
22031 || sqlite3_io_error_pending-- == 1 ) \
22032 { local_ioerr(); CODE; }
22033 static void local_ioerr(){
22034 IOTRACE(("IOERR\n"));
22035 sqlite3_io_error_hit++;
22036 if( !sqlite3_io_error_benign ) sqlite3_io_error_hardhit++;
22038 #define SimulateDiskfullError(CODE) \
22039 if( sqlite3_diskfull_pending ){ \
22040 if( sqlite3_diskfull_pending == 1 ){ \
22041 local_ioerr(); \
22042 sqlite3_diskfull = 1; \
22043 sqlite3_io_error_hit = 1; \
22044 CODE; \
22045 }else{ \
22046 sqlite3_diskfull_pending--; \
22049 #else
22050 #define SimulateIOErrorBenign(X)
22051 #define SimulateIOError(A)
22052 #define SimulateDiskfullError(A)
22053 #endif
22056 ** When testing, keep a count of the number of open files.
22058 #ifdef SQLITE_TEST
22059 SQLITE_API int sqlite3_open_file_count = 0;
22060 #define OpenCounter(X) sqlite3_open_file_count+=(X)
22061 #else
22062 #define OpenCounter(X)
22063 #endif
22065 #endif /* !defined(_OS_COMMON_H_) */
22067 /************** End of os_common.h *******************************************/
22068 /************** Continuing where we left off in os_os2.c *********************/
22070 /* Forward references */
22071 typedef struct os2File os2File; /* The file structure */
22072 typedef struct os2ShmNode os2ShmNode; /* A shared descritive memory node */
22073 typedef struct os2ShmLink os2ShmLink; /* A connection to shared-memory */
22076 ** The os2File structure is subclass of sqlite3_file specific for the OS/2
22077 ** protability layer.
22079 struct os2File {
22080 const sqlite3_io_methods *pMethod; /* Always the first entry */
22081 HFILE h; /* Handle for accessing the file */
22082 int flags; /* Flags provided to os2Open() */
22083 int locktype; /* Type of lock currently held on this file */
22084 int szChunk; /* Chunk size configured by FCNTL_CHUNK_SIZE */
22085 char *zFullPathCp; /* Full path name of this file */
22086 os2ShmLink *pShmLink; /* Instance of shared memory on this file */
22089 #define LOCK_TIMEOUT 10L /* the default locking timeout */
22092 ** Missing from some versions of the OS/2 toolkit -
22093 ** used to allocate from high memory if possible
22095 #ifndef OBJ_ANY
22096 # define OBJ_ANY 0x00000400
22097 #endif
22099 /*****************************************************************************
22100 ** The next group of routines implement the I/O methods specified
22101 ** by the sqlite3_io_methods object.
22102 ******************************************************************************/
22105 ** Close a file.
22107 static int os2Close( sqlite3_file *id ){
22108 APIRET rc;
22109 os2File *pFile = (os2File*)id;
22111 assert( id!=0 );
22112 OSTRACE(( "CLOSE %d (%s)\n", pFile->h, pFile->zFullPathCp ));
22114 rc = DosClose( pFile->h );
22116 if( pFile->flags & SQLITE_OPEN_DELETEONCLOSE )
22117 DosForceDelete( (PSZ)pFile->zFullPathCp );
22119 free( pFile->zFullPathCp );
22120 pFile->zFullPathCp = NULL;
22121 pFile->locktype = NO_LOCK;
22122 pFile->h = (HFILE)-1;
22123 pFile->flags = 0;
22125 OpenCounter( -1 );
22126 return rc == NO_ERROR ? SQLITE_OK : SQLITE_IOERR;
22130 ** Read data from a file into a buffer. Return SQLITE_OK if all
22131 ** bytes were read successfully and SQLITE_IOERR if anything goes
22132 ** wrong.
22134 static int os2Read(
22135 sqlite3_file *id, /* File to read from */
22136 void *pBuf, /* Write content into this buffer */
22137 int amt, /* Number of bytes to read */
22138 sqlite3_int64 offset /* Begin reading at this offset */
22140 ULONG fileLocation = 0L;
22141 ULONG got;
22142 os2File *pFile = (os2File*)id;
22143 assert( id!=0 );
22144 SimulateIOError( return SQLITE_IOERR_READ );
22145 OSTRACE(( "READ %d lock=%d\n", pFile->h, pFile->locktype ));
22146 if( DosSetFilePtr(pFile->h, offset, FILE_BEGIN, &fileLocation) != NO_ERROR ){
22147 return SQLITE_IOERR;
22149 if( DosRead( pFile->h, pBuf, amt, &got ) != NO_ERROR ){
22150 return SQLITE_IOERR_READ;
22152 if( got == (ULONG)amt )
22153 return SQLITE_OK;
22154 else {
22155 /* Unread portions of the input buffer must be zero-filled */
22156 memset(&((char*)pBuf)[got], 0, amt-got);
22157 return SQLITE_IOERR_SHORT_READ;
22162 ** Write data from a buffer into a file. Return SQLITE_OK on success
22163 ** or some other error code on failure.
22165 static int os2Write(
22166 sqlite3_file *id, /* File to write into */
22167 const void *pBuf, /* The bytes to be written */
22168 int amt, /* Number of bytes to write */
22169 sqlite3_int64 offset /* Offset into the file to begin writing at */
22171 ULONG fileLocation = 0L;
22172 APIRET rc = NO_ERROR;
22173 ULONG wrote;
22174 os2File *pFile = (os2File*)id;
22175 assert( id!=0 );
22176 SimulateIOError( return SQLITE_IOERR_WRITE );
22177 SimulateDiskfullError( return SQLITE_FULL );
22178 OSTRACE(( "WRITE %d lock=%d\n", pFile->h, pFile->locktype ));
22179 if( DosSetFilePtr(pFile->h, offset, FILE_BEGIN, &fileLocation) != NO_ERROR ){
22180 return SQLITE_IOERR;
22182 assert( amt>0 );
22183 while( amt > 0 &&
22184 ( rc = DosWrite( pFile->h, (PVOID)pBuf, amt, &wrote ) ) == NO_ERROR &&
22185 wrote > 0
22187 amt -= wrote;
22188 pBuf = &((char*)pBuf)[wrote];
22191 return ( rc != NO_ERROR || amt > (int)wrote ) ? SQLITE_FULL : SQLITE_OK;
22195 ** Truncate an open file to a specified size
22197 static int os2Truncate( sqlite3_file *id, i64 nByte ){
22198 APIRET rc;
22199 os2File *pFile = (os2File*)id;
22200 assert( id!=0 );
22201 OSTRACE(( "TRUNCATE %d %lld\n", pFile->h, nByte ));
22202 SimulateIOError( return SQLITE_IOERR_TRUNCATE );
22204 /* If the user has configured a chunk-size for this file, truncate the
22205 ** file so that it consists of an integer number of chunks (i.e. the
22206 ** actual file size after the operation may be larger than the requested
22207 ** size).
22209 if( pFile->szChunk ){
22210 nByte = ((nByte + pFile->szChunk - 1)/pFile->szChunk) * pFile->szChunk;
22213 rc = DosSetFileSize( pFile->h, nByte );
22214 return rc == NO_ERROR ? SQLITE_OK : SQLITE_IOERR_TRUNCATE;
22217 #ifdef SQLITE_TEST
22219 ** Count the number of fullsyncs and normal syncs. This is used to test
22220 ** that syncs and fullsyncs are occuring at the right times.
22222 SQLITE_API int sqlite3_sync_count = 0;
22223 SQLITE_API int sqlite3_fullsync_count = 0;
22224 #endif
22227 ** Make sure all writes to a particular file are committed to disk.
22229 static int os2Sync( sqlite3_file *id, int flags ){
22230 os2File *pFile = (os2File*)id;
22231 OSTRACE(( "SYNC %d lock=%d\n", pFile->h, pFile->locktype ));
22232 #ifdef SQLITE_TEST
22233 if( flags & SQLITE_SYNC_FULL){
22234 sqlite3_fullsync_count++;
22236 sqlite3_sync_count++;
22237 #endif
22238 /* If we compiled with the SQLITE_NO_SYNC flag, then syncing is a
22239 ** no-op
22241 #ifdef SQLITE_NO_SYNC
22242 UNUSED_PARAMETER(pFile);
22243 return SQLITE_OK;
22244 #else
22245 return DosResetBuffer( pFile->h ) == NO_ERROR ? SQLITE_OK : SQLITE_IOERR;
22246 #endif
22250 ** Determine the current size of a file in bytes
22252 static int os2FileSize( sqlite3_file *id, sqlite3_int64 *pSize ){
22253 APIRET rc = NO_ERROR;
22254 FILESTATUS3 fsts3FileInfo;
22255 memset(&fsts3FileInfo, 0, sizeof(fsts3FileInfo));
22256 assert( id!=0 );
22257 SimulateIOError( return SQLITE_IOERR_FSTAT );
22258 rc = DosQueryFileInfo( ((os2File*)id)->h, FIL_STANDARD, &fsts3FileInfo, sizeof(FILESTATUS3) );
22259 if( rc == NO_ERROR ){
22260 *pSize = fsts3FileInfo.cbFile;
22261 return SQLITE_OK;
22262 }else{
22263 return SQLITE_IOERR_FSTAT;
22268 ** Acquire a reader lock.
22270 static int getReadLock( os2File *pFile ){
22271 FILELOCK LockArea,
22272 UnlockArea;
22273 APIRET res;
22274 memset(&LockArea, 0, sizeof(LockArea));
22275 memset(&UnlockArea, 0, sizeof(UnlockArea));
22276 LockArea.lOffset = SHARED_FIRST;
22277 LockArea.lRange = SHARED_SIZE;
22278 UnlockArea.lOffset = 0L;
22279 UnlockArea.lRange = 0L;
22280 res = DosSetFileLocks( pFile->h, &UnlockArea, &LockArea, LOCK_TIMEOUT, 1L );
22281 OSTRACE(( "GETREADLOCK %d res=%d\n", pFile->h, res ));
22282 return res;
22286 ** Undo a readlock
22288 static int unlockReadLock( os2File *id ){
22289 FILELOCK LockArea,
22290 UnlockArea;
22291 APIRET res;
22292 memset(&LockArea, 0, sizeof(LockArea));
22293 memset(&UnlockArea, 0, sizeof(UnlockArea));
22294 LockArea.lOffset = 0L;
22295 LockArea.lRange = 0L;
22296 UnlockArea.lOffset = SHARED_FIRST;
22297 UnlockArea.lRange = SHARED_SIZE;
22298 res = DosSetFileLocks( id->h, &UnlockArea, &LockArea, LOCK_TIMEOUT, 1L );
22299 OSTRACE(( "UNLOCK-READLOCK file handle=%d res=%d?\n", id->h, res ));
22300 return res;
22304 ** Lock the file with the lock specified by parameter locktype - one
22305 ** of the following:
22307 ** (1) SHARED_LOCK
22308 ** (2) RESERVED_LOCK
22309 ** (3) PENDING_LOCK
22310 ** (4) EXCLUSIVE_LOCK
22312 ** Sometimes when requesting one lock state, additional lock states
22313 ** are inserted in between. The locking might fail on one of the later
22314 ** transitions leaving the lock state different from what it started but
22315 ** still short of its goal. The following chart shows the allowed
22316 ** transitions and the inserted intermediate states:
22318 ** UNLOCKED -> SHARED
22319 ** SHARED -> RESERVED
22320 ** SHARED -> (PENDING) -> EXCLUSIVE
22321 ** RESERVED -> (PENDING) -> EXCLUSIVE
22322 ** PENDING -> EXCLUSIVE
22324 ** This routine will only increase a lock. The os2Unlock() routine
22325 ** erases all locks at once and returns us immediately to locking level 0.
22326 ** It is not possible to lower the locking level one step at a time. You
22327 ** must go straight to locking level 0.
22329 static int os2Lock( sqlite3_file *id, int locktype ){
22330 int rc = SQLITE_OK; /* Return code from subroutines */
22331 APIRET res = NO_ERROR; /* Result of an OS/2 lock call */
22332 int newLocktype; /* Set pFile->locktype to this value before exiting */
22333 int gotPendingLock = 0;/* True if we acquired a PENDING lock this time */
22334 FILELOCK LockArea,
22335 UnlockArea;
22336 os2File *pFile = (os2File*)id;
22337 memset(&LockArea, 0, sizeof(LockArea));
22338 memset(&UnlockArea, 0, sizeof(UnlockArea));
22339 assert( pFile!=0 );
22340 OSTRACE(( "LOCK %d %d was %d\n", pFile->h, locktype, pFile->locktype ));
22342 /* If there is already a lock of this type or more restrictive on the
22343 ** os2File, do nothing. Don't use the end_lock: exit path, as
22344 ** sqlite3_mutex_enter() hasn't been called yet.
22346 if( pFile->locktype>=locktype ){
22347 OSTRACE(( "LOCK %d %d ok (already held)\n", pFile->h, locktype ));
22348 return SQLITE_OK;
22351 /* Make sure the locking sequence is correct
22353 assert( pFile->locktype!=NO_LOCK || locktype==SHARED_LOCK );
22354 assert( locktype!=PENDING_LOCK );
22355 assert( locktype!=RESERVED_LOCK || pFile->locktype==SHARED_LOCK );
22357 /* Lock the PENDING_LOCK byte if we need to acquire a PENDING lock or
22358 ** a SHARED lock. If we are acquiring a SHARED lock, the acquisition of
22359 ** the PENDING_LOCK byte is temporary.
22361 newLocktype = pFile->locktype;
22362 if( pFile->locktype==NO_LOCK
22363 || (locktype==EXCLUSIVE_LOCK && pFile->locktype==RESERVED_LOCK)
22365 LockArea.lOffset = PENDING_BYTE;
22366 LockArea.lRange = 1L;
22367 UnlockArea.lOffset = 0L;
22368 UnlockArea.lRange = 0L;
22370 /* wait longer than LOCK_TIMEOUT here not to have to try multiple times */
22371 res = DosSetFileLocks( pFile->h, &UnlockArea, &LockArea, 100L, 0L );
22372 if( res == NO_ERROR ){
22373 gotPendingLock = 1;
22374 OSTRACE(( "LOCK %d pending lock boolean set. res=%d\n", pFile->h, res ));
22378 /* Acquire a shared lock
22380 if( locktype==SHARED_LOCK && res == NO_ERROR ){
22381 assert( pFile->locktype==NO_LOCK );
22382 res = getReadLock(pFile);
22383 if( res == NO_ERROR ){
22384 newLocktype = SHARED_LOCK;
22386 OSTRACE(( "LOCK %d acquire shared lock. res=%d\n", pFile->h, res ));
22389 /* Acquire a RESERVED lock
22391 if( locktype==RESERVED_LOCK && res == NO_ERROR ){
22392 assert( pFile->locktype==SHARED_LOCK );
22393 LockArea.lOffset = RESERVED_BYTE;
22394 LockArea.lRange = 1L;
22395 UnlockArea.lOffset = 0L;
22396 UnlockArea.lRange = 0L;
22397 res = DosSetFileLocks( pFile->h, &UnlockArea, &LockArea, LOCK_TIMEOUT, 0L );
22398 if( res == NO_ERROR ){
22399 newLocktype = RESERVED_LOCK;
22401 OSTRACE(( "LOCK %d acquire reserved lock. res=%d\n", pFile->h, res ));
22404 /* Acquire a PENDING lock
22406 if( locktype==EXCLUSIVE_LOCK && res == NO_ERROR ){
22407 newLocktype = PENDING_LOCK;
22408 gotPendingLock = 0;
22409 OSTRACE(( "LOCK %d acquire pending lock. pending lock boolean unset.\n",
22410 pFile->h ));
22413 /* Acquire an EXCLUSIVE lock
22415 if( locktype==EXCLUSIVE_LOCK && res == NO_ERROR ){
22416 assert( pFile->locktype>=SHARED_LOCK );
22417 res = unlockReadLock(pFile);
22418 OSTRACE(( "unreadlock = %d\n", res ));
22419 LockArea.lOffset = SHARED_FIRST;
22420 LockArea.lRange = SHARED_SIZE;
22421 UnlockArea.lOffset = 0L;
22422 UnlockArea.lRange = 0L;
22423 res = DosSetFileLocks( pFile->h, &UnlockArea, &LockArea, LOCK_TIMEOUT, 0L );
22424 if( res == NO_ERROR ){
22425 newLocktype = EXCLUSIVE_LOCK;
22426 }else{
22427 OSTRACE(( "OS/2 error-code = %d\n", res ));
22428 getReadLock(pFile);
22430 OSTRACE(( "LOCK %d acquire exclusive lock. res=%d\n", pFile->h, res ));
22433 /* If we are holding a PENDING lock that ought to be released, then
22434 ** release it now.
22436 if( gotPendingLock && locktype==SHARED_LOCK ){
22437 int r;
22438 LockArea.lOffset = 0L;
22439 LockArea.lRange = 0L;
22440 UnlockArea.lOffset = PENDING_BYTE;
22441 UnlockArea.lRange = 1L;
22442 r = DosSetFileLocks( pFile->h, &UnlockArea, &LockArea, LOCK_TIMEOUT, 0L );
22443 OSTRACE(( "LOCK %d unlocking pending/is shared. r=%d\n", pFile->h, r ));
22446 /* Update the state of the lock has held in the file descriptor then
22447 ** return the appropriate result code.
22449 if( res == NO_ERROR ){
22450 rc = SQLITE_OK;
22451 }else{
22452 OSTRACE(( "LOCK FAILED %d trying for %d but got %d\n", pFile->h,
22453 locktype, newLocktype ));
22454 rc = SQLITE_BUSY;
22456 pFile->locktype = newLocktype;
22457 OSTRACE(( "LOCK %d now %d\n", pFile->h, pFile->locktype ));
22458 return rc;
22462 ** This routine checks if there is a RESERVED lock held on the specified
22463 ** file by this or any other process. If such a lock is held, return
22464 ** non-zero, otherwise zero.
22466 static int os2CheckReservedLock( sqlite3_file *id, int *pOut ){
22467 int r = 0;
22468 os2File *pFile = (os2File*)id;
22469 assert( pFile!=0 );
22470 if( pFile->locktype>=RESERVED_LOCK ){
22471 r = 1;
22472 OSTRACE(( "TEST WR-LOCK %d %d (local)\n", pFile->h, r ));
22473 }else{
22474 FILELOCK LockArea,
22475 UnlockArea;
22476 APIRET rc = NO_ERROR;
22477 memset(&LockArea, 0, sizeof(LockArea));
22478 memset(&UnlockArea, 0, sizeof(UnlockArea));
22479 LockArea.lOffset = RESERVED_BYTE;
22480 LockArea.lRange = 1L;
22481 UnlockArea.lOffset = 0L;
22482 UnlockArea.lRange = 0L;
22483 rc = DosSetFileLocks( pFile->h, &UnlockArea, &LockArea, LOCK_TIMEOUT, 0L );
22484 OSTRACE(( "TEST WR-LOCK %d lock reserved byte rc=%d\n", pFile->h, rc ));
22485 if( rc == NO_ERROR ){
22486 APIRET rcu = NO_ERROR; /* return code for unlocking */
22487 LockArea.lOffset = 0L;
22488 LockArea.lRange = 0L;
22489 UnlockArea.lOffset = RESERVED_BYTE;
22490 UnlockArea.lRange = 1L;
22491 rcu = DosSetFileLocks( pFile->h, &UnlockArea, &LockArea, LOCK_TIMEOUT, 0L );
22492 OSTRACE(( "TEST WR-LOCK %d unlock reserved byte r=%d\n", pFile->h, rcu ));
22494 r = !(rc == NO_ERROR);
22495 OSTRACE(( "TEST WR-LOCK %d %d (remote)\n", pFile->h, r ));
22497 *pOut = r;
22498 return SQLITE_OK;
22502 ** Lower the locking level on file descriptor id to locktype. locktype
22503 ** must be either NO_LOCK or SHARED_LOCK.
22505 ** If the locking level of the file descriptor is already at or below
22506 ** the requested locking level, this routine is a no-op.
22508 ** It is not possible for this routine to fail if the second argument
22509 ** is NO_LOCK. If the second argument is SHARED_LOCK then this routine
22510 ** might return SQLITE_IOERR;
22512 static int os2Unlock( sqlite3_file *id, int locktype ){
22513 int type;
22514 os2File *pFile = (os2File*)id;
22515 APIRET rc = SQLITE_OK;
22516 APIRET res = NO_ERROR;
22517 FILELOCK LockArea,
22518 UnlockArea;
22519 memset(&LockArea, 0, sizeof(LockArea));
22520 memset(&UnlockArea, 0, sizeof(UnlockArea));
22521 assert( pFile!=0 );
22522 assert( locktype<=SHARED_LOCK );
22523 OSTRACE(( "UNLOCK %d to %d was %d\n", pFile->h, locktype, pFile->locktype ));
22524 type = pFile->locktype;
22525 if( type>=EXCLUSIVE_LOCK ){
22526 LockArea.lOffset = 0L;
22527 LockArea.lRange = 0L;
22528 UnlockArea.lOffset = SHARED_FIRST;
22529 UnlockArea.lRange = SHARED_SIZE;
22530 res = DosSetFileLocks( pFile->h, &UnlockArea, &LockArea, LOCK_TIMEOUT, 0L );
22531 OSTRACE(( "UNLOCK %d exclusive lock res=%d\n", pFile->h, res ));
22532 if( locktype==SHARED_LOCK && getReadLock(pFile) != NO_ERROR ){
22533 /* This should never happen. We should always be able to
22534 ** reacquire the read lock */
22535 OSTRACE(( "UNLOCK %d to %d getReadLock() failed\n", pFile->h, locktype ));
22536 rc = SQLITE_IOERR_UNLOCK;
22539 if( type>=RESERVED_LOCK ){
22540 LockArea.lOffset = 0L;
22541 LockArea.lRange = 0L;
22542 UnlockArea.lOffset = RESERVED_BYTE;
22543 UnlockArea.lRange = 1L;
22544 res = DosSetFileLocks( pFile->h, &UnlockArea, &LockArea, LOCK_TIMEOUT, 0L );
22545 OSTRACE(( "UNLOCK %d reserved res=%d\n", pFile->h, res ));
22547 if( locktype==NO_LOCK && type>=SHARED_LOCK ){
22548 res = unlockReadLock(pFile);
22549 OSTRACE(( "UNLOCK %d is %d want %d res=%d\n",
22550 pFile->h, type, locktype, res ));
22552 if( type>=PENDING_LOCK ){
22553 LockArea.lOffset = 0L;
22554 LockArea.lRange = 0L;
22555 UnlockArea.lOffset = PENDING_BYTE;
22556 UnlockArea.lRange = 1L;
22557 res = DosSetFileLocks( pFile->h, &UnlockArea, &LockArea, LOCK_TIMEOUT, 0L );
22558 OSTRACE(( "UNLOCK %d pending res=%d\n", pFile->h, res ));
22560 pFile->locktype = locktype;
22561 OSTRACE(( "UNLOCK %d now %d\n", pFile->h, pFile->locktype ));
22562 return rc;
22566 ** Control and query of the open file handle.
22568 static int os2FileControl(sqlite3_file *id, int op, void *pArg){
22569 switch( op ){
22570 case SQLITE_FCNTL_LOCKSTATE: {
22571 *(int*)pArg = ((os2File*)id)->locktype;
22572 OSTRACE(( "FCNTL_LOCKSTATE %d lock=%d\n",
22573 ((os2File*)id)->h, ((os2File*)id)->locktype ));
22574 return SQLITE_OK;
22576 case SQLITE_FCNTL_CHUNK_SIZE: {
22577 ((os2File*)id)->szChunk = *(int*)pArg;
22578 return SQLITE_OK;
22580 case SQLITE_FCNTL_SIZE_HINT: {
22581 sqlite3_int64 sz = *(sqlite3_int64*)pArg;
22582 SimulateIOErrorBenign(1);
22583 os2Truncate(id, sz);
22584 SimulateIOErrorBenign(0);
22585 return SQLITE_OK;
22587 case SQLITE_FCNTL_SYNC_OMITTED: {
22588 return SQLITE_OK;
22591 return SQLITE_NOTFOUND;
22595 ** Return the sector size in bytes of the underlying block device for
22596 ** the specified file. This is almost always 512 bytes, but may be
22597 ** larger for some devices.
22599 ** SQLite code assumes this function cannot fail. It also assumes that
22600 ** if two files are created in the same file-system directory (i.e.
22601 ** a database and its journal file) that the sector size will be the
22602 ** same for both.
22604 static int os2SectorSize(sqlite3_file *id){
22605 UNUSED_PARAMETER(id);
22606 return SQLITE_DEFAULT_SECTOR_SIZE;
22610 ** Return a vector of device characteristics.
22612 static int os2DeviceCharacteristics(sqlite3_file *id){
22613 UNUSED_PARAMETER(id);
22614 return SQLITE_IOCAP_UNDELETABLE_WHEN_OPEN;
22619 ** Character set conversion objects used by conversion routines.
22621 static UconvObject ucUtf8 = NULL; /* convert between UTF-8 and UCS-2 */
22622 static UconvObject uclCp = NULL; /* convert between local codepage and UCS-2 */
22625 ** Helper function to initialize the conversion objects from and to UTF-8.
22627 static void initUconvObjects( void ){
22628 if( UniCreateUconvObject( UTF_8, &ucUtf8 ) != ULS_SUCCESS )
22629 ucUtf8 = NULL;
22630 if ( UniCreateUconvObject( (UniChar *)L"@path=yes", &uclCp ) != ULS_SUCCESS )
22631 uclCp = NULL;
22635 ** Helper function to free the conversion objects from and to UTF-8.
22637 static void freeUconvObjects( void ){
22638 if ( ucUtf8 )
22639 UniFreeUconvObject( ucUtf8 );
22640 if ( uclCp )
22641 UniFreeUconvObject( uclCp );
22642 ucUtf8 = NULL;
22643 uclCp = NULL;
22647 ** Helper function to convert UTF-8 filenames to local OS/2 codepage.
22648 ** The two-step process: first convert the incoming UTF-8 string
22649 ** into UCS-2 and then from UCS-2 to the current codepage.
22650 ** The returned char pointer has to be freed.
22652 static char *convertUtf8PathToCp( const char *in ){
22653 UniChar tempPath[CCHMAXPATH];
22654 char *out = (char *)calloc( CCHMAXPATH, 1 );
22656 if( !out )
22657 return NULL;
22659 if( !ucUtf8 || !uclCp )
22660 initUconvObjects();
22662 /* determine string for the conversion of UTF-8 which is CP1208 */
22663 if( UniStrToUcs( ucUtf8, tempPath, (char *)in, CCHMAXPATH ) != ULS_SUCCESS )
22664 return out; /* if conversion fails, return the empty string */
22666 /* conversion for current codepage which can be used for paths */
22667 UniStrFromUcs( uclCp, out, tempPath, CCHMAXPATH );
22669 return out;
22673 ** Helper function to convert filenames from local codepage to UTF-8.
22674 ** The two-step process: first convert the incoming codepage-specific
22675 ** string into UCS-2 and then from UCS-2 to the codepage of UTF-8.
22676 ** The returned char pointer has to be freed.
22678 ** This function is non-static to be able to use this in shell.c and
22679 ** similar applications that take command line arguments.
22681 char *convertCpPathToUtf8( const char *in ){
22682 UniChar tempPath[CCHMAXPATH];
22683 char *out = (char *)calloc( CCHMAXPATH, 1 );
22685 if( !out )
22686 return NULL;
22688 if( !ucUtf8 || !uclCp )
22689 initUconvObjects();
22691 /* conversion for current codepage which can be used for paths */
22692 if( UniStrToUcs( uclCp, tempPath, (char *)in, CCHMAXPATH ) != ULS_SUCCESS )
22693 return out; /* if conversion fails, return the empty string */
22695 /* determine string for the conversion of UTF-8 which is CP1208 */
22696 UniStrFromUcs( ucUtf8, out, tempPath, CCHMAXPATH );
22698 return out;
22702 #ifndef SQLITE_OMIT_WAL
22705 ** Use main database file for interprocess locking. If un-defined
22706 ** a separate file is created for this purpose. The file will be
22707 ** used only to set file locks. There will be no data written to it.
22709 #define SQLITE_OS2_NO_WAL_LOCK_FILE
22711 #if 0
22712 static void _ERR_TRACE( const char *fmt, ... ) {
22713 va_list ap;
22714 va_start(ap, fmt);
22715 vfprintf(stderr, fmt, ap);
22716 fflush(stderr);
22718 #define ERR_TRACE(rc, msg) \
22719 if( (rc) != SQLITE_OK ) _ERR_TRACE msg;
22720 #else
22721 #define ERR_TRACE(rc, msg)
22722 #endif
22725 ** Helper functions to obtain and relinquish the global mutex. The
22726 ** global mutex is used to protect os2ShmNodeList.
22728 ** Function os2ShmMutexHeld() is used to assert() that the global mutex
22729 ** is held when required. This function is only used as part of assert()
22730 ** statements. e.g.
22732 ** os2ShmEnterMutex()
22733 ** assert( os2ShmMutexHeld() );
22734 ** os2ShmLeaveMutex()
22736 static void os2ShmEnterMutex(void){
22737 sqlite3_mutex_enter(sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_MASTER));
22739 static void os2ShmLeaveMutex(void){
22740 sqlite3_mutex_leave(sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_MASTER));
22742 #ifdef SQLITE_DEBUG
22743 static int os2ShmMutexHeld(void) {
22744 return sqlite3_mutex_held(sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_MASTER));
22746 int GetCurrentProcessId(void) {
22747 PPIB pib;
22748 DosGetInfoBlocks(NULL, &pib);
22749 return (int)pib->pib_ulpid;
22751 #endif
22754 ** Object used to represent a the shared memory area for a single log file.
22755 ** When multiple threads all reference the same log-summary, each thread has
22756 ** its own os2File object, but they all point to a single instance of this
22757 ** object. In other words, each log-summary is opened only once per process.
22759 ** os2ShmMutexHeld() must be true when creating or destroying
22760 ** this object or while reading or writing the following fields:
22762 ** nRef
22763 ** pNext
22765 ** The following fields are read-only after the object is created:
22767 ** szRegion
22768 ** hLockFile
22769 ** shmBaseName
22771 ** Either os2ShmNode.mutex must be held or os2ShmNode.nRef==0 and
22772 ** os2ShmMutexHeld() is true when reading or writing any other field
22773 ** in this structure.
22776 struct os2ShmNode {
22777 sqlite3_mutex *mutex; /* Mutex to access this object */
22778 os2ShmNode *pNext; /* Next in list of all os2ShmNode objects */
22780 int szRegion; /* Size of shared-memory regions */
22782 int nRegion; /* Size of array apRegion */
22783 void **apRegion; /* Array of pointers to shared-memory regions */
22785 int nRef; /* Number of os2ShmLink objects pointing to this */
22786 os2ShmLink *pFirst; /* First os2ShmLink object pointing to this */
22788 HFILE hLockFile; /* File used for inter-process memory locking */
22789 char shmBaseName[1]; /* Name of the memory object !!! must last !!! */
22794 ** Structure used internally by this VFS to record the state of an
22795 ** open shared memory connection.
22797 ** The following fields are initialized when this object is created and
22798 ** are read-only thereafter:
22800 ** os2Shm.pShmNode
22801 ** os2Shm.id
22803 ** All other fields are read/write. The os2Shm.pShmNode->mutex must be held
22804 ** while accessing any read/write fields.
22806 struct os2ShmLink {
22807 os2ShmNode *pShmNode; /* The underlying os2ShmNode object */
22808 os2ShmLink *pNext; /* Next os2Shm with the same os2ShmNode */
22809 u32 sharedMask; /* Mask of shared locks held */
22810 u32 exclMask; /* Mask of exclusive locks held */
22811 #ifdef SQLITE_DEBUG
22812 u8 id; /* Id of this connection with its os2ShmNode */
22813 #endif
22818 ** A global list of all os2ShmNode objects.
22820 ** The os2ShmMutexHeld() must be true while reading or writing this list.
22822 static os2ShmNode *os2ShmNodeList = NULL;
22825 ** Constants used for locking
22827 #ifdef SQLITE_OS2_NO_WAL_LOCK_FILE
22828 #define OS2_SHM_BASE (PENDING_BYTE + 0x10000) /* first lock byte */
22829 #else
22830 #define OS2_SHM_BASE ((22+SQLITE_SHM_NLOCK)*4) /* first lock byte */
22831 #endif
22833 #define OS2_SHM_DMS (OS2_SHM_BASE+SQLITE_SHM_NLOCK) /* deadman switch */
22836 ** Apply advisory locks for all n bytes beginning at ofst.
22838 #define _SHM_UNLCK 1 /* no lock */
22839 #define _SHM_RDLCK 2 /* shared lock, no wait */
22840 #define _SHM_WRLCK 3 /* exlusive lock, no wait */
22841 #define _SHM_WRLCK_WAIT 4 /* exclusive lock, wait */
22842 static int os2ShmSystemLock(
22843 os2ShmNode *pNode, /* Apply locks to this open shared-memory segment */
22844 int lockType, /* _SHM_UNLCK, _SHM_RDLCK, _SHM_WRLCK or _SHM_WRLCK_WAIT */
22845 int ofst, /* Offset to first byte to be locked/unlocked */
22846 int nByte /* Number of bytes to lock or unlock */
22848 APIRET rc;
22849 FILELOCK area;
22850 ULONG mode, timeout;
22852 /* Access to the os2ShmNode object is serialized by the caller */
22853 assert( sqlite3_mutex_held(pNode->mutex) || pNode->nRef==0 );
22855 mode = 1; /* shared lock */
22856 timeout = 0; /* no wait */
22857 area.lOffset = ofst;
22858 area.lRange = nByte;
22860 switch( lockType ) {
22861 case _SHM_WRLCK_WAIT:
22862 timeout = (ULONG)-1; /* wait forever */
22863 case _SHM_WRLCK:
22864 mode = 0; /* exclusive lock */
22865 case _SHM_RDLCK:
22866 rc = DosSetFileLocks(pNode->hLockFile,
22867 NULL, &area, timeout, mode);
22868 break;
22869 /* case _SHM_UNLCK: */
22870 default:
22871 rc = DosSetFileLocks(pNode->hLockFile,
22872 &area, NULL, 0, 0);
22873 break;
22876 OSTRACE(("SHM-LOCK %d %s %s 0x%08lx\n",
22877 pNode->hLockFile,
22878 rc==SQLITE_OK ? "ok" : "failed",
22879 lockType==_SHM_UNLCK ? "Unlock" : "Lock",
22880 rc));
22882 ERR_TRACE(rc, ("os2ShmSystemLock: %d %s\n", rc, pNode->shmBaseName))
22884 return ( rc == 0 ) ? SQLITE_OK : SQLITE_BUSY;
22888 ** Find an os2ShmNode in global list or allocate a new one, if not found.
22890 ** This is not a VFS shared-memory method; it is a utility function called
22891 ** by VFS shared-memory methods.
22893 static int os2OpenSharedMemory( os2File *fd, int szRegion ) {
22894 os2ShmLink *pLink;
22895 os2ShmNode *pNode;
22896 int cbShmName, rc = SQLITE_OK;
22897 char shmName[CCHMAXPATH + 30];
22898 #ifndef SQLITE_OS2_NO_WAL_LOCK_FILE
22899 ULONG action;
22900 #endif
22902 /* We need some additional space at the end to append the region number */
22903 cbShmName = sprintf(shmName, "\\SHAREMEM\\%s", fd->zFullPathCp );
22904 if( cbShmName >= CCHMAXPATH-8 )
22905 return SQLITE_IOERR_SHMOPEN;
22907 /* Replace colon in file name to form a valid shared memory name */
22908 shmName[10+1] = '!';
22910 /* Allocate link object (we free it later in case of failure) */
22911 pLink = sqlite3_malloc( sizeof(*pLink) );
22912 if( !pLink )
22913 return SQLITE_NOMEM;
22915 /* Access node list */
22916 os2ShmEnterMutex();
22918 /* Find node by it's shared memory base name */
22919 for( pNode = os2ShmNodeList;
22920 pNode && stricmp(shmName, pNode->shmBaseName) != 0;
22921 pNode = pNode->pNext ) ;
22923 /* Not found: allocate a new node */
22924 if( !pNode ) {
22925 pNode = sqlite3_malloc( sizeof(*pNode) + cbShmName );
22926 if( pNode ) {
22927 memset(pNode, 0, sizeof(*pNode) );
22928 pNode->szRegion = szRegion;
22929 pNode->hLockFile = (HFILE)-1;
22930 strcpy(pNode->shmBaseName, shmName);
22932 #ifdef SQLITE_OS2_NO_WAL_LOCK_FILE
22933 if( DosDupHandle(fd->h, &pNode->hLockFile) != 0 ) {
22934 #else
22935 sprintf(shmName, "%s-lck", fd->zFullPathCp);
22936 if( DosOpen((PSZ)shmName, &pNode->hLockFile, &action, 0, FILE_NORMAL,
22937 OPEN_ACTION_OPEN_IF_EXISTS | OPEN_ACTION_CREATE_IF_NEW,
22938 OPEN_ACCESS_READWRITE | OPEN_SHARE_DENYNONE |
22939 OPEN_FLAGS_NOINHERIT | OPEN_FLAGS_FAIL_ON_ERROR,
22940 NULL) != 0 ) {
22941 #endif
22942 sqlite3_free(pNode);
22943 rc = SQLITE_IOERR;
22944 } else {
22945 pNode->mutex = sqlite3_mutex_alloc(SQLITE_MUTEX_FAST);
22946 if( !pNode->mutex ) {
22947 sqlite3_free(pNode);
22948 rc = SQLITE_NOMEM;
22951 } else {
22952 rc = SQLITE_NOMEM;
22955 if( rc == SQLITE_OK ) {
22956 pNode->pNext = os2ShmNodeList;
22957 os2ShmNodeList = pNode;
22958 } else {
22959 pNode = NULL;
22961 } else if( pNode->szRegion != szRegion ) {
22962 rc = SQLITE_IOERR_SHMSIZE;
22963 pNode = NULL;
22966 if( pNode ) {
22967 sqlite3_mutex_enter(pNode->mutex);
22969 memset(pLink, 0, sizeof(*pLink));
22971 pLink->pShmNode = pNode;
22972 pLink->pNext = pNode->pFirst;
22973 pNode->pFirst = pLink;
22974 pNode->nRef++;
22976 fd->pShmLink = pLink;
22978 sqlite3_mutex_leave(pNode->mutex);
22980 } else {
22981 /* Error occured. Free our link object. */
22982 sqlite3_free(pLink);
22985 os2ShmLeaveMutex();
22987 ERR_TRACE(rc, ("os2OpenSharedMemory: %d %s\n", rc, fd->zFullPathCp))
22989 return rc;
22993 ** Purge the os2ShmNodeList list of all entries with nRef==0.
22995 ** This is not a VFS shared-memory method; it is a utility function called
22996 ** by VFS shared-memory methods.
22998 static void os2PurgeShmNodes( int deleteFlag ) {
22999 os2ShmNode *pNode;
23000 os2ShmNode **ppNode;
23002 os2ShmEnterMutex();
23004 ppNode = &os2ShmNodeList;
23006 while( *ppNode ) {
23007 pNode = *ppNode;
23009 if( pNode->nRef == 0 ) {
23010 *ppNode = pNode->pNext;
23012 if( pNode->apRegion ) {
23013 /* Prevent other processes from resizing the shared memory */
23014 os2ShmSystemLock(pNode, _SHM_WRLCK_WAIT, OS2_SHM_DMS, 1);
23016 while( pNode->nRegion-- ) {
23017 #ifdef SQLITE_DEBUG
23018 int rc =
23019 #endif
23020 DosFreeMem(pNode->apRegion[pNode->nRegion]);
23022 OSTRACE(("SHM-PURGE pid-%d unmap region=%d %s\n",
23023 (int)GetCurrentProcessId(), pNode->nRegion,
23024 rc == 0 ? "ok" : "failed"));
23027 /* Allow other processes to resize the shared memory */
23028 os2ShmSystemLock(pNode, _SHM_UNLCK, OS2_SHM_DMS, 1);
23030 sqlite3_free(pNode->apRegion);
23033 DosClose(pNode->hLockFile);
23035 #ifndef SQLITE_OS2_NO_WAL_LOCK_FILE
23036 if( deleteFlag ) {
23037 char fileName[CCHMAXPATH];
23038 /* Skip "\\SHAREMEM\\" */
23039 sprintf(fileName, "%s-lck", pNode->shmBaseName + 10);
23040 /* restore colon */
23041 fileName[1] = ':';
23043 DosForceDelete(fileName);
23045 #endif
23047 sqlite3_mutex_free(pNode->mutex);
23049 sqlite3_free(pNode);
23051 } else {
23052 ppNode = &pNode->pNext;
23056 os2ShmLeaveMutex();
23060 ** This function is called to obtain a pointer to region iRegion of the
23061 ** shared-memory associated with the database file id. Shared-memory regions
23062 ** are numbered starting from zero. Each shared-memory region is szRegion
23063 ** bytes in size.
23065 ** If an error occurs, an error code is returned and *pp is set to NULL.
23067 ** Otherwise, if the bExtend parameter is 0 and the requested shared-memory
23068 ** region has not been allocated (by any client, including one running in a
23069 ** separate process), then *pp is set to NULL and SQLITE_OK returned. If
23070 ** bExtend is non-zero and the requested shared-memory region has not yet
23071 ** been allocated, it is allocated by this function.
23073 ** If the shared-memory region has already been allocated or is allocated by
23074 ** this call as described above, then it is mapped into this processes
23075 ** address space (if it is not already), *pp is set to point to the mapped
23076 ** memory and SQLITE_OK returned.
23078 static int os2ShmMap(
23079 sqlite3_file *id, /* Handle open on database file */
23080 int iRegion, /* Region to retrieve */
23081 int szRegion, /* Size of regions */
23082 int bExtend, /* True to extend block if necessary */
23083 void volatile **pp /* OUT: Mapped memory */
23085 PVOID pvTemp;
23086 void **apRegion;
23087 os2ShmNode *pNode;
23088 int n, rc = SQLITE_OK;
23089 char shmName[CCHMAXPATH];
23090 os2File *pFile = (os2File*)id;
23092 *pp = NULL;
23094 if( !pFile->pShmLink )
23095 rc = os2OpenSharedMemory( pFile, szRegion );
23097 if( rc == SQLITE_OK ) {
23098 pNode = pFile->pShmLink->pShmNode ;
23100 sqlite3_mutex_enter(pNode->mutex);
23102 assert( szRegion==pNode->szRegion );
23104 /* Unmapped region ? */
23105 if( iRegion >= pNode->nRegion ) {
23106 /* Prevent other processes from resizing the shared memory */
23107 os2ShmSystemLock(pNode, _SHM_WRLCK_WAIT, OS2_SHM_DMS, 1);
23109 apRegion = sqlite3_realloc(
23110 pNode->apRegion, (iRegion + 1) * sizeof(apRegion[0]));
23112 if( apRegion ) {
23113 pNode->apRegion = apRegion;
23115 while( pNode->nRegion <= iRegion ) {
23116 sprintf(shmName, "%s-%u",
23117 pNode->shmBaseName, pNode->nRegion);
23119 if( DosGetNamedSharedMem(&pvTemp, (PSZ)shmName,
23120 PAG_READ | PAG_WRITE) != NO_ERROR ) {
23121 if( !bExtend )
23122 break;
23124 if( DosAllocSharedMem(&pvTemp, (PSZ)shmName, szRegion,
23125 PAG_READ | PAG_WRITE | PAG_COMMIT | OBJ_ANY) != NO_ERROR &&
23126 DosAllocSharedMem(&pvTemp, (PSZ)shmName, szRegion,
23127 PAG_READ | PAG_WRITE | PAG_COMMIT) != NO_ERROR ) {
23128 rc = SQLITE_NOMEM;
23129 break;
23133 apRegion[pNode->nRegion++] = pvTemp;
23136 /* zero out remaining entries */
23137 for( n = pNode->nRegion; n <= iRegion; n++ )
23138 pNode->apRegion[n] = NULL;
23140 /* Return this region (maybe zero) */
23141 *pp = pNode->apRegion[iRegion];
23142 } else {
23143 rc = SQLITE_NOMEM;
23146 /* Allow other processes to resize the shared memory */
23147 os2ShmSystemLock(pNode, _SHM_UNLCK, OS2_SHM_DMS, 1);
23149 } else {
23150 /* Region has been mapped previously */
23151 *pp = pNode->apRegion[iRegion];
23154 sqlite3_mutex_leave(pNode->mutex);
23157 ERR_TRACE(rc, ("os2ShmMap: %s iRgn = %d, szRgn = %d, bExt = %d : %d\n",
23158 pFile->zFullPathCp, iRegion, szRegion, bExtend, rc))
23160 return rc;
23164 ** Close a connection to shared-memory. Delete the underlying
23165 ** storage if deleteFlag is true.
23167 ** If there is no shared memory associated with the connection then this
23168 ** routine is a harmless no-op.
23170 static int os2ShmUnmap(
23171 sqlite3_file *id, /* The underlying database file */
23172 int deleteFlag /* Delete shared-memory if true */
23174 os2File *pFile = (os2File*)id;
23175 os2ShmLink *pLink = pFile->pShmLink;
23177 if( pLink ) {
23178 int nRef = -1;
23179 os2ShmLink **ppLink;
23180 os2ShmNode *pNode = pLink->pShmNode;
23182 sqlite3_mutex_enter(pNode->mutex);
23184 for( ppLink = &pNode->pFirst;
23185 *ppLink && *ppLink != pLink;
23186 ppLink = &(*ppLink)->pNext ) ;
23188 assert(*ppLink);
23190 if( *ppLink ) {
23191 *ppLink = pLink->pNext;
23192 nRef = --pNode->nRef;
23193 } else {
23194 ERR_TRACE(1, ("os2ShmUnmap: link not found ! %s\n",
23195 pNode->shmBaseName))
23198 pFile->pShmLink = NULL;
23199 sqlite3_free(pLink);
23201 sqlite3_mutex_leave(pNode->mutex);
23203 if( nRef == 0 )
23204 os2PurgeShmNodes( deleteFlag );
23207 return SQLITE_OK;
23211 ** Change the lock state for a shared-memory segment.
23213 ** Note that the relationship between SHAREd and EXCLUSIVE locks is a little
23214 ** different here than in posix. In xShmLock(), one can go from unlocked
23215 ** to shared and back or from unlocked to exclusive and back. But one may
23216 ** not go from shared to exclusive or from exclusive to shared.
23218 static int os2ShmLock(
23219 sqlite3_file *id, /* Database file holding the shared memory */
23220 int ofst, /* First lock to acquire or release */
23221 int n, /* Number of locks to acquire or release */
23222 int flags /* What to do with the lock */
23224 u32 mask; /* Mask of locks to take or release */
23225 int rc = SQLITE_OK; /* Result code */
23226 os2File *pFile = (os2File*)id;
23227 os2ShmLink *p = pFile->pShmLink; /* The shared memory being locked */
23228 os2ShmLink *pX; /* For looping over all siblings */
23229 os2ShmNode *pShmNode = p->pShmNode; /* Our node */
23231 assert( ofst>=0 && ofst+n<=SQLITE_SHM_NLOCK );
23232 assert( n>=1 );
23233 assert( flags==(SQLITE_SHM_LOCK | SQLITE_SHM_SHARED)
23234 || flags==(SQLITE_SHM_LOCK | SQLITE_SHM_EXCLUSIVE)
23235 || flags==(SQLITE_SHM_UNLOCK | SQLITE_SHM_SHARED)
23236 || flags==(SQLITE_SHM_UNLOCK | SQLITE_SHM_EXCLUSIVE) );
23237 assert( n==1 || (flags & SQLITE_SHM_EXCLUSIVE)!=0 );
23239 mask = (u32)((1U<<(ofst+n)) - (1U<<ofst));
23240 assert( n>1 || mask==(1<<ofst) );
23243 sqlite3_mutex_enter(pShmNode->mutex);
23245 if( flags & SQLITE_SHM_UNLOCK ){
23246 u32 allMask = 0; /* Mask of locks held by siblings */
23248 /* See if any siblings hold this same lock */
23249 for(pX=pShmNode->pFirst; pX; pX=pX->pNext){
23250 if( pX==p ) continue;
23251 assert( (pX->exclMask & (p->exclMask|p->sharedMask))==0 );
23252 allMask |= pX->sharedMask;
23255 /* Unlock the system-level locks */
23256 if( (mask & allMask)==0 ){
23257 rc = os2ShmSystemLock(pShmNode, _SHM_UNLCK, ofst+OS2_SHM_BASE, n);
23258 }else{
23259 rc = SQLITE_OK;
23262 /* Undo the local locks */
23263 if( rc==SQLITE_OK ){
23264 p->exclMask &= ~mask;
23265 p->sharedMask &= ~mask;
23267 }else if( flags & SQLITE_SHM_SHARED ){
23268 u32 allShared = 0; /* Union of locks held by connections other than "p" */
23270 /* Find out which shared locks are already held by sibling connections.
23271 ** If any sibling already holds an exclusive lock, go ahead and return
23272 ** SQLITE_BUSY.
23274 for(pX=pShmNode->pFirst; pX; pX=pX->pNext){
23275 if( (pX->exclMask & mask)!=0 ){
23276 rc = SQLITE_BUSY;
23277 break;
23279 allShared |= pX->sharedMask;
23282 /* Get shared locks at the system level, if necessary */
23283 if( rc==SQLITE_OK ){
23284 if( (allShared & mask)==0 ){
23285 rc = os2ShmSystemLock(pShmNode, _SHM_RDLCK, ofst+OS2_SHM_BASE, n);
23286 }else{
23287 rc = SQLITE_OK;
23291 /* Get the local shared locks */
23292 if( rc==SQLITE_OK ){
23293 p->sharedMask |= mask;
23295 }else{
23296 /* Make sure no sibling connections hold locks that will block this
23297 ** lock. If any do, return SQLITE_BUSY right away.
23299 for(pX=pShmNode->pFirst; pX; pX=pX->pNext){
23300 if( (pX->exclMask & mask)!=0 || (pX->sharedMask & mask)!=0 ){
23301 rc = SQLITE_BUSY;
23302 break;
23306 /* Get the exclusive locks at the system level. Then if successful
23307 ** also mark the local connection as being locked.
23309 if( rc==SQLITE_OK ){
23310 rc = os2ShmSystemLock(pShmNode, _SHM_WRLCK, ofst+OS2_SHM_BASE, n);
23311 if( rc==SQLITE_OK ){
23312 assert( (p->sharedMask & mask)==0 );
23313 p->exclMask |= mask;
23318 sqlite3_mutex_leave(pShmNode->mutex);
23320 OSTRACE(("SHM-LOCK shmid-%d, pid-%d got %03x,%03x %s\n",
23321 p->id, (int)GetCurrentProcessId(), p->sharedMask, p->exclMask,
23322 rc ? "failed" : "ok"));
23324 ERR_TRACE(rc, ("os2ShmLock: ofst = %d, n = %d, flags = 0x%x -> %d \n",
23325 ofst, n, flags, rc))
23327 return rc;
23331 ** Implement a memory barrier or memory fence on shared memory.
23333 ** All loads and stores begun before the barrier must complete before
23334 ** any load or store begun after the barrier.
23336 static void os2ShmBarrier(
23337 sqlite3_file *id /* Database file holding the shared memory */
23339 UNUSED_PARAMETER(id);
23340 os2ShmEnterMutex();
23341 os2ShmLeaveMutex();
23344 #else
23345 # define os2ShmMap 0
23346 # define os2ShmLock 0
23347 # define os2ShmBarrier 0
23348 # define os2ShmUnmap 0
23349 #endif /* #ifndef SQLITE_OMIT_WAL */
23353 ** This vector defines all the methods that can operate on an
23354 ** sqlite3_file for os2.
23356 static const sqlite3_io_methods os2IoMethod = {
23357 2, /* iVersion */
23358 os2Close, /* xClose */
23359 os2Read, /* xRead */
23360 os2Write, /* xWrite */
23361 os2Truncate, /* xTruncate */
23362 os2Sync, /* xSync */
23363 os2FileSize, /* xFileSize */
23364 os2Lock, /* xLock */
23365 os2Unlock, /* xUnlock */
23366 os2CheckReservedLock, /* xCheckReservedLock */
23367 os2FileControl, /* xFileControl */
23368 os2SectorSize, /* xSectorSize */
23369 os2DeviceCharacteristics, /* xDeviceCharacteristics */
23370 os2ShmMap, /* xShmMap */
23371 os2ShmLock, /* xShmLock */
23372 os2ShmBarrier, /* xShmBarrier */
23373 os2ShmUnmap /* xShmUnmap */
23377 /***************************************************************************
23378 ** Here ends the I/O methods that form the sqlite3_io_methods object.
23380 ** The next block of code implements the VFS methods.
23381 ****************************************************************************/
23384 ** Create a temporary file name in zBuf. zBuf must be big enough to
23385 ** hold at pVfs->mxPathname characters.
23387 static int getTempname(int nBuf, char *zBuf ){
23388 static const char zChars[] =
23389 "abcdefghijklmnopqrstuvwxyz"
23390 "ABCDEFGHIJKLMNOPQRSTUVWXYZ"
23391 "0123456789";
23392 int i, j;
23393 PSZ zTempPathCp;
23394 char zTempPath[CCHMAXPATH];
23395 ULONG ulDriveNum, ulDriveMap;
23397 /* It's odd to simulate an io-error here, but really this is just
23398 ** using the io-error infrastructure to test that SQLite handles this
23399 ** function failing.
23401 SimulateIOError( return SQLITE_IOERR );
23403 if( sqlite3_temp_directory ) {
23404 sqlite3_snprintf(CCHMAXPATH-30, zTempPath, "%s", sqlite3_temp_directory);
23405 } else if( DosScanEnv( (PSZ)"TEMP", &zTempPathCp ) == NO_ERROR ||
23406 DosScanEnv( (PSZ)"TMP", &zTempPathCp ) == NO_ERROR ||
23407 DosScanEnv( (PSZ)"TMPDIR", &zTempPathCp ) == NO_ERROR ) {
23408 char *zTempPathUTF = convertCpPathToUtf8( (char *)zTempPathCp );
23409 sqlite3_snprintf(CCHMAXPATH-30, zTempPath, "%s", zTempPathUTF);
23410 free( zTempPathUTF );
23411 } else if( DosQueryCurrentDisk( &ulDriveNum, &ulDriveMap ) == NO_ERROR ) {
23412 zTempPath[0] = (char)('A' + ulDriveNum - 1);
23413 zTempPath[1] = ':';
23414 zTempPath[2] = '\0';
23415 } else {
23416 zTempPath[0] = '\0';
23419 /* Strip off a trailing slashes or backslashes, otherwise we would get *
23420 * multiple (back)slashes which causes DosOpen() to fail. *
23421 * Trailing spaces are not allowed, either. */
23422 j = sqlite3Strlen30(zTempPath);
23423 while( j > 0 && ( zTempPath[j-1] == '\\' || zTempPath[j-1] == '/' ||
23424 zTempPath[j-1] == ' ' ) ){
23425 j--;
23427 zTempPath[j] = '\0';
23429 /* We use 20 bytes to randomize the name */
23430 sqlite3_snprintf(nBuf-22, zBuf,
23431 "%s\\"SQLITE_TEMP_FILE_PREFIX, zTempPath);
23432 j = sqlite3Strlen30(zBuf);
23433 sqlite3_randomness( 20, &zBuf[j] );
23434 for( i = 0; i < 20; i++, j++ ){
23435 zBuf[j] = zChars[ ((unsigned char)zBuf[j])%(sizeof(zChars)-1) ];
23437 zBuf[j] = 0;
23439 OSTRACE(( "TEMP FILENAME: %s\n", zBuf ));
23440 return SQLITE_OK;
23445 ** Turn a relative pathname into a full pathname. Write the full
23446 ** pathname into zFull[]. zFull[] will be at least pVfs->mxPathname
23447 ** bytes in size.
23449 static int os2FullPathname(
23450 sqlite3_vfs *pVfs, /* Pointer to vfs object */
23451 const char *zRelative, /* Possibly relative input path */
23452 int nFull, /* Size of output buffer in bytes */
23453 char *zFull /* Output buffer */
23455 char *zRelativeCp = convertUtf8PathToCp( zRelative );
23456 char zFullCp[CCHMAXPATH] = "\0";
23457 char *zFullUTF;
23458 APIRET rc = DosQueryPathInfo( (PSZ)zRelativeCp, FIL_QUERYFULLNAME,
23459 zFullCp, CCHMAXPATH );
23460 free( zRelativeCp );
23461 zFullUTF = convertCpPathToUtf8( zFullCp );
23462 sqlite3_snprintf( nFull, zFull, zFullUTF );
23463 free( zFullUTF );
23464 return rc == NO_ERROR ? SQLITE_OK : SQLITE_IOERR;
23469 ** Open a file.
23471 static int os2Open(
23472 sqlite3_vfs *pVfs, /* Not used */
23473 const char *zName, /* Name of the file (UTF-8) */
23474 sqlite3_file *id, /* Write the SQLite file handle here */
23475 int flags, /* Open mode flags */
23476 int *pOutFlags /* Status return flags */
23478 HFILE h;
23479 ULONG ulOpenFlags = 0;
23480 ULONG ulOpenMode = 0;
23481 ULONG ulAction = 0;
23482 ULONG rc;
23483 os2File *pFile = (os2File*)id;
23484 const char *zUtf8Name = zName;
23485 char *zNameCp;
23486 char zTmpname[CCHMAXPATH];
23488 int isExclusive = (flags & SQLITE_OPEN_EXCLUSIVE);
23489 int isCreate = (flags & SQLITE_OPEN_CREATE);
23490 int isReadWrite = (flags & SQLITE_OPEN_READWRITE);
23491 #ifndef NDEBUG
23492 int isDelete = (flags & SQLITE_OPEN_DELETEONCLOSE);
23493 int isReadonly = (flags & SQLITE_OPEN_READONLY);
23494 int eType = (flags & 0xFFFFFF00);
23495 int isOpenJournal = (isCreate && (
23496 eType==SQLITE_OPEN_MASTER_JOURNAL
23497 || eType==SQLITE_OPEN_MAIN_JOURNAL
23498 || eType==SQLITE_OPEN_WAL
23500 #endif
23502 UNUSED_PARAMETER(pVfs);
23503 assert( id!=0 );
23505 /* Check the following statements are true:
23507 ** (a) Exactly one of the READWRITE and READONLY flags must be set, and
23508 ** (b) if CREATE is set, then READWRITE must also be set, and
23509 ** (c) if EXCLUSIVE is set, then CREATE must also be set.
23510 ** (d) if DELETEONCLOSE is set, then CREATE must also be set.
23512 assert((isReadonly==0 || isReadWrite==0) && (isReadWrite || isReadonly));
23513 assert(isCreate==0 || isReadWrite);
23514 assert(isExclusive==0 || isCreate);
23515 assert(isDelete==0 || isCreate);
23517 /* The main DB, main journal, WAL file and master journal are never
23518 ** automatically deleted. Nor are they ever temporary files. */
23519 assert( (!isDelete && zName) || eType!=SQLITE_OPEN_MAIN_DB );
23520 assert( (!isDelete && zName) || eType!=SQLITE_OPEN_MAIN_JOURNAL );
23521 assert( (!isDelete && zName) || eType!=SQLITE_OPEN_MASTER_JOURNAL );
23522 assert( (!isDelete && zName) || eType!=SQLITE_OPEN_WAL );
23524 /* Assert that the upper layer has set one of the "file-type" flags. */
23525 assert( eType==SQLITE_OPEN_MAIN_DB || eType==SQLITE_OPEN_TEMP_DB
23526 || eType==SQLITE_OPEN_MAIN_JOURNAL || eType==SQLITE_OPEN_TEMP_JOURNAL
23527 || eType==SQLITE_OPEN_SUBJOURNAL || eType==SQLITE_OPEN_MASTER_JOURNAL
23528 || eType==SQLITE_OPEN_TRANSIENT_DB || eType==SQLITE_OPEN_WAL
23531 memset( pFile, 0, sizeof(*pFile) );
23532 pFile->h = (HFILE)-1;
23534 /* If the second argument to this function is NULL, generate a
23535 ** temporary file name to use
23537 if( !zUtf8Name ){
23538 assert(isDelete && !isOpenJournal);
23539 rc = getTempname(CCHMAXPATH, zTmpname);
23540 if( rc!=SQLITE_OK ){
23541 return rc;
23543 zUtf8Name = zTmpname;
23546 if( isReadWrite ){
23547 ulOpenMode |= OPEN_ACCESS_READWRITE;
23548 }else{
23549 ulOpenMode |= OPEN_ACCESS_READONLY;
23552 /* Open in random access mode for possibly better speed. Allow full
23553 ** sharing because file locks will provide exclusive access when needed.
23554 ** The handle should not be inherited by child processes and we don't
23555 ** want popups from the critical error handler.
23557 ulOpenMode |= OPEN_FLAGS_RANDOM | OPEN_SHARE_DENYNONE |
23558 OPEN_FLAGS_NOINHERIT | OPEN_FLAGS_FAIL_ON_ERROR;
23560 /* SQLITE_OPEN_EXCLUSIVE is used to make sure that a new file is
23561 ** created. SQLite doesn't use it to indicate "exclusive access"
23562 ** as it is usually understood.
23564 if( isExclusive ){
23565 /* Creates a new file, only if it does not already exist. */
23566 /* If the file exists, it fails. */
23567 ulOpenFlags |= OPEN_ACTION_CREATE_IF_NEW | OPEN_ACTION_FAIL_IF_EXISTS;
23568 }else if( isCreate ){
23569 /* Open existing file, or create if it doesn't exist */
23570 ulOpenFlags |= OPEN_ACTION_CREATE_IF_NEW | OPEN_ACTION_OPEN_IF_EXISTS;
23571 }else{
23572 /* Opens a file, only if it exists. */
23573 ulOpenFlags |= OPEN_ACTION_FAIL_IF_NEW | OPEN_ACTION_OPEN_IF_EXISTS;
23576 zNameCp = convertUtf8PathToCp( zUtf8Name );
23577 rc = DosOpen( (PSZ)zNameCp,
23579 &ulAction,
23581 FILE_NORMAL,
23582 ulOpenFlags,
23583 ulOpenMode,
23584 (PEAOP2)NULL );
23585 free( zNameCp );
23587 if( rc != NO_ERROR ){
23588 OSTRACE(( "OPEN Invalid handle rc=%d: zName=%s, ulAction=%#lx, ulFlags=%#lx, ulMode=%#lx\n",
23589 rc, zUtf8Name, ulAction, ulOpenFlags, ulOpenMode ));
23591 if( isReadWrite ){
23592 return os2Open( pVfs, zName, id,
23593 ((flags|SQLITE_OPEN_READONLY)&~(SQLITE_OPEN_CREATE|SQLITE_OPEN_READWRITE)),
23594 pOutFlags );
23595 }else{
23596 return SQLITE_CANTOPEN;
23600 if( pOutFlags ){
23601 *pOutFlags = isReadWrite ? SQLITE_OPEN_READWRITE : SQLITE_OPEN_READONLY;
23604 os2FullPathname( pVfs, zUtf8Name, sizeof( zTmpname ), zTmpname );
23605 pFile->zFullPathCp = convertUtf8PathToCp( zTmpname );
23606 pFile->pMethod = &os2IoMethod;
23607 pFile->flags = flags;
23608 pFile->h = h;
23610 OpenCounter(+1);
23611 OSTRACE(( "OPEN %d pOutFlags=%d\n", pFile->h, pOutFlags ));
23612 return SQLITE_OK;
23616 ** Delete the named file.
23618 static int os2Delete(
23619 sqlite3_vfs *pVfs, /* Not used on os2 */
23620 const char *zFilename, /* Name of file to delete */
23621 int syncDir /* Not used on os2 */
23623 APIRET rc;
23624 char *zFilenameCp;
23625 SimulateIOError( return SQLITE_IOERR_DELETE );
23626 zFilenameCp = convertUtf8PathToCp( zFilename );
23627 rc = DosDelete( (PSZ)zFilenameCp );
23628 free( zFilenameCp );
23629 OSTRACE(( "DELETE \"%s\"\n", zFilename ));
23630 return (rc == NO_ERROR ||
23631 rc == ERROR_FILE_NOT_FOUND ||
23632 rc == ERROR_PATH_NOT_FOUND ) ? SQLITE_OK : SQLITE_IOERR_DELETE;
23636 ** Check the existance and status of a file.
23638 static int os2Access(
23639 sqlite3_vfs *pVfs, /* Not used on os2 */
23640 const char *zFilename, /* Name of file to check */
23641 int flags, /* Type of test to make on this file */
23642 int *pOut /* Write results here */
23644 APIRET rc;
23645 FILESTATUS3 fsts3ConfigInfo;
23646 char *zFilenameCp;
23648 UNUSED_PARAMETER(pVfs);
23649 SimulateIOError( return SQLITE_IOERR_ACCESS; );
23651 zFilenameCp = convertUtf8PathToCp( zFilename );
23652 rc = DosQueryPathInfo( (PSZ)zFilenameCp, FIL_STANDARD,
23653 &fsts3ConfigInfo, sizeof(FILESTATUS3) );
23654 free( zFilenameCp );
23655 OSTRACE(( "ACCESS fsts3ConfigInfo.attrFile=%d flags=%d rc=%d\n",
23656 fsts3ConfigInfo.attrFile, flags, rc ));
23658 switch( flags ){
23659 case SQLITE_ACCESS_EXISTS:
23660 /* For an SQLITE_ACCESS_EXISTS query, treat a zero-length file
23661 ** as if it does not exist.
23663 if( fsts3ConfigInfo.cbFile == 0 )
23664 rc = ERROR_FILE_NOT_FOUND;
23665 break;
23666 case SQLITE_ACCESS_READ:
23667 break;
23668 case SQLITE_ACCESS_READWRITE:
23669 if( fsts3ConfigInfo.attrFile & FILE_READONLY )
23670 rc = ERROR_ACCESS_DENIED;
23671 break;
23672 default:
23673 rc = ERROR_FILE_NOT_FOUND;
23674 assert( !"Invalid flags argument" );
23677 *pOut = (rc == NO_ERROR);
23678 OSTRACE(( "ACCESS %s flags %d: rc=%d\n", zFilename, flags, *pOut ));
23680 return SQLITE_OK;
23684 #ifndef SQLITE_OMIT_LOAD_EXTENSION
23686 ** Interfaces for opening a shared library, finding entry points
23687 ** within the shared library, and closing the shared library.
23690 ** Interfaces for opening a shared library, finding entry points
23691 ** within the shared library, and closing the shared library.
23693 static void *os2DlOpen(sqlite3_vfs *pVfs, const char *zFilename){
23694 HMODULE hmod;
23695 APIRET rc;
23696 char *zFilenameCp = convertUtf8PathToCp(zFilename);
23697 rc = DosLoadModule(NULL, 0, (PSZ)zFilenameCp, &hmod);
23698 free(zFilenameCp);
23699 return rc != NO_ERROR ? 0 : (void*)hmod;
23702 ** A no-op since the error code is returned on the DosLoadModule call.
23703 ** os2Dlopen returns zero if DosLoadModule is not successful.
23705 static void os2DlError(sqlite3_vfs *pVfs, int nBuf, char *zBufOut){
23706 /* no-op */
23708 static void (*os2DlSym(sqlite3_vfs *pVfs, void *pHandle, const char *zSymbol))(void){
23709 PFN pfn;
23710 APIRET rc;
23711 rc = DosQueryProcAddr((HMODULE)pHandle, 0L, (PSZ)zSymbol, &pfn);
23712 if( rc != NO_ERROR ){
23713 /* if the symbol itself was not found, search again for the same
23714 * symbol with an extra underscore, that might be needed depending
23715 * on the calling convention */
23716 char _zSymbol[256] = "_";
23717 strncat(_zSymbol, zSymbol, 254);
23718 rc = DosQueryProcAddr((HMODULE)pHandle, 0L, (PSZ)_zSymbol, &pfn);
23720 return rc != NO_ERROR ? 0 : (void(*)(void))pfn;
23722 static void os2DlClose(sqlite3_vfs *pVfs, void *pHandle){
23723 DosFreeModule((HMODULE)pHandle);
23725 #else /* if SQLITE_OMIT_LOAD_EXTENSION is defined: */
23726 #define os2DlOpen 0
23727 #define os2DlError 0
23728 #define os2DlSym 0
23729 #define os2DlClose 0
23730 #endif
23734 ** Write up to nBuf bytes of randomness into zBuf.
23736 static int os2Randomness(sqlite3_vfs *pVfs, int nBuf, char *zBuf ){
23737 int n = 0;
23738 #if defined(SQLITE_TEST)
23739 n = nBuf;
23740 memset(zBuf, 0, nBuf);
23741 #else
23742 int i;
23743 PPIB ppib;
23744 PTIB ptib;
23745 DATETIME dt;
23746 static unsigned c = 0;
23747 /* Ordered by variation probability */
23748 static ULONG svIdx[6] = { QSV_MS_COUNT, QSV_TIME_LOW,
23749 QSV_MAXPRMEM, QSV_MAXSHMEM,
23750 QSV_TOTAVAILMEM, QSV_TOTRESMEM };
23752 /* 8 bytes; timezone and weekday don't increase the randomness much */
23753 if( (int)sizeof(dt)-3 <= nBuf - n ){
23754 c += 0x0100;
23755 DosGetDateTime(&dt);
23756 dt.year = (USHORT)((dt.year - 1900) | c);
23757 memcpy(&zBuf[n], &dt, sizeof(dt)-3);
23758 n += sizeof(dt)-3;
23761 /* 4 bytes; PIDs and TIDs are 16 bit internally, so combine them */
23762 if( (int)sizeof(ULONG) <= nBuf - n ){
23763 DosGetInfoBlocks(&ptib, &ppib);
23764 *(PULONG)&zBuf[n] = MAKELONG(ppib->pib_ulpid,
23765 ptib->tib_ptib2->tib2_ultid);
23766 n += sizeof(ULONG);
23769 /* Up to 6 * 4 bytes; variables depend on the system state */
23770 for( i = 0; i < 6 && (int)sizeof(ULONG) <= nBuf - n; i++ ){
23771 DosQuerySysInfo(svIdx[i], svIdx[i],
23772 (PULONG)&zBuf[n], sizeof(ULONG));
23773 n += sizeof(ULONG);
23775 #endif
23777 return n;
23781 ** Sleep for a little while. Return the amount of time slept.
23782 ** The argument is the number of microseconds we want to sleep.
23783 ** The return value is the number of microseconds of sleep actually
23784 ** requested from the underlying operating system, a number which
23785 ** might be greater than or equal to the argument, but not less
23786 ** than the argument.
23788 static int os2Sleep( sqlite3_vfs *pVfs, int microsec ){
23789 DosSleep( (microsec/1000) );
23790 return microsec;
23794 ** The following variable, if set to a non-zero value, becomes the result
23795 ** returned from sqlite3OsCurrentTime(). This is used for testing.
23797 #ifdef SQLITE_TEST
23798 SQLITE_API int sqlite3_current_time = 0;
23799 #endif
23802 ** Find the current time (in Universal Coordinated Time). Write into *piNow
23803 ** the current time and date as a Julian Day number times 86_400_000. In
23804 ** other words, write into *piNow the number of milliseconds since the Julian
23805 ** epoch of noon in Greenwich on November 24, 4714 B.C according to the
23806 ** proleptic Gregorian calendar.
23808 ** On success, return 0. Return 1 if the time and date cannot be found.
23810 static int os2CurrentTimeInt64(sqlite3_vfs *pVfs, sqlite3_int64 *piNow){
23811 #ifdef SQLITE_TEST
23812 static const sqlite3_int64 unixEpoch = 24405875*(sqlite3_int64)8640000;
23813 #endif
23814 int year, month, datepart, timepart;
23816 DATETIME dt;
23817 DosGetDateTime( &dt );
23819 year = dt.year;
23820 month = dt.month;
23822 /* Calculations from http://www.astro.keele.ac.uk/~rno/Astronomy/hjd.html
23823 ** http://www.astro.keele.ac.uk/~rno/Astronomy/hjd-0.1.c
23824 ** Calculate the Julian days
23826 datepart = (int)dt.day - 32076 +
23827 1461*(year + 4800 + (month - 14)/12)/4 +
23828 367*(month - 2 - (month - 14)/12*12)/12 -
23829 3*((year + 4900 + (month - 14)/12)/100)/4;
23831 /* Time in milliseconds, hours to noon added */
23832 timepart = 12*3600*1000 + dt.hundredths*10 + dt.seconds*1000 +
23833 ((int)dt.minutes + dt.timezone)*60*1000 + dt.hours*3600*1000;
23835 *piNow = (sqlite3_int64)datepart*86400*1000 + timepart;
23837 #ifdef SQLITE_TEST
23838 if( sqlite3_current_time ){
23839 *piNow = 1000*(sqlite3_int64)sqlite3_current_time + unixEpoch;
23841 #endif
23843 UNUSED_PARAMETER(pVfs);
23844 return 0;
23848 ** Find the current time (in Universal Coordinated Time). Write the
23849 ** current time and date as a Julian Day number into *prNow and
23850 ** return 0. Return 1 if the time and date cannot be found.
23852 static int os2CurrentTime( sqlite3_vfs *pVfs, double *prNow ){
23853 int rc;
23854 sqlite3_int64 i;
23855 rc = os2CurrentTimeInt64(pVfs, &i);
23856 if( !rc ){
23857 *prNow = i/86400000.0;
23859 return rc;
23863 ** The idea is that this function works like a combination of
23864 ** GetLastError() and FormatMessage() on windows (or errno and
23865 ** strerror_r() on unix). After an error is returned by an OS
23866 ** function, SQLite calls this function with zBuf pointing to
23867 ** a buffer of nBuf bytes. The OS layer should populate the
23868 ** buffer with a nul-terminated UTF-8 encoded error message
23869 ** describing the last IO error to have occurred within the calling
23870 ** thread.
23872 ** If the error message is too large for the supplied buffer,
23873 ** it should be truncated. The return value of xGetLastError
23874 ** is zero if the error message fits in the buffer, or non-zero
23875 ** otherwise (if the message was truncated). If non-zero is returned,
23876 ** then it is not necessary to include the nul-terminator character
23877 ** in the output buffer.
23879 ** Not supplying an error message will have no adverse effect
23880 ** on SQLite. It is fine to have an implementation that never
23881 ** returns an error message:
23883 ** int xGetLastError(sqlite3_vfs *pVfs, int nBuf, char *zBuf){
23884 ** assert(zBuf[0]=='\0');
23885 ** return 0;
23886 ** }
23888 ** However if an error message is supplied, it will be incorporated
23889 ** by sqlite into the error message available to the user using
23890 ** sqlite3_errmsg(), possibly making IO errors easier to debug.
23892 static int os2GetLastError(sqlite3_vfs *pVfs, int nBuf, char *zBuf){
23893 assert(zBuf[0]=='\0');
23894 return 0;
23898 ** Initialize and deinitialize the operating system interface.
23900 SQLITE_API int sqlite3_os_init(void){
23901 static sqlite3_vfs os2Vfs = {
23902 3, /* iVersion */
23903 sizeof(os2File), /* szOsFile */
23904 CCHMAXPATH, /* mxPathname */
23905 0, /* pNext */
23906 "os2", /* zName */
23907 0, /* pAppData */
23909 os2Open, /* xOpen */
23910 os2Delete, /* xDelete */
23911 os2Access, /* xAccess */
23912 os2FullPathname, /* xFullPathname */
23913 os2DlOpen, /* xDlOpen */
23914 os2DlError, /* xDlError */
23915 os2DlSym, /* xDlSym */
23916 os2DlClose, /* xDlClose */
23917 os2Randomness, /* xRandomness */
23918 os2Sleep, /* xSleep */
23919 os2CurrentTime, /* xCurrentTime */
23920 os2GetLastError, /* xGetLastError */
23921 os2CurrentTimeInt64, /* xCurrentTimeInt64 */
23922 0, /* xSetSystemCall */
23923 0, /* xGetSystemCall */
23924 0 /* xNextSystemCall */
23926 sqlite3_vfs_register(&os2Vfs, 1);
23927 initUconvObjects();
23928 /* sqlite3OSTrace = 1; */
23929 return SQLITE_OK;
23931 SQLITE_API int sqlite3_os_end(void){
23932 freeUconvObjects();
23933 return SQLITE_OK;
23936 #endif /* SQLITE_OS_OS2 */
23938 /************** End of os_os2.c **********************************************/
23939 /************** Begin file os_unix.c *****************************************/
23941 ** 2004 May 22
23943 ** The author disclaims copyright to this source code. In place of
23944 ** a legal notice, here is a blessing:
23946 ** May you do good and not evil.
23947 ** May you find forgiveness for yourself and forgive others.
23948 ** May you share freely, never taking more than you give.
23950 ******************************************************************************
23952 ** This file contains the VFS implementation for unix-like operating systems
23953 ** include Linux, MacOSX, *BSD, QNX, VxWorks, AIX, HPUX, and others.
23955 ** There are actually several different VFS implementations in this file.
23956 ** The differences are in the way that file locking is done. The default
23957 ** implementation uses Posix Advisory Locks. Alternative implementations
23958 ** use flock(), dot-files, various proprietary locking schemas, or simply
23959 ** skip locking all together.
23961 ** This source file is organized into divisions where the logic for various
23962 ** subfunctions is contained within the appropriate division. PLEASE
23963 ** KEEP THE STRUCTURE OF THIS FILE INTACT. New code should be placed
23964 ** in the correct division and should be clearly labeled.
23966 ** The layout of divisions is as follows:
23968 ** * General-purpose declarations and utility functions.
23969 ** * Unique file ID logic used by VxWorks.
23970 ** * Various locking primitive implementations (all except proxy locking):
23971 ** + for Posix Advisory Locks
23972 ** + for no-op locks
23973 ** + for dot-file locks
23974 ** + for flock() locking
23975 ** + for named semaphore locks (VxWorks only)
23976 ** + for AFP filesystem locks (MacOSX only)
23977 ** * sqlite3_file methods not associated with locking.
23978 ** * Definitions of sqlite3_io_methods objects for all locking
23979 ** methods plus "finder" functions for each locking method.
23980 ** * sqlite3_vfs method implementations.
23981 ** * Locking primitives for the proxy uber-locking-method. (MacOSX only)
23982 ** * Definitions of sqlite3_vfs objects for all locking methods
23983 ** plus implementations of sqlite3_os_init() and sqlite3_os_end().
23985 #if SQLITE_OS_UNIX /* This file is used on unix only */
23988 ** There are various methods for file locking used for concurrency
23989 ** control:
23991 ** 1. POSIX locking (the default),
23992 ** 2. No locking,
23993 ** 3. Dot-file locking,
23994 ** 4. flock() locking,
23995 ** 5. AFP locking (OSX only),
23996 ** 6. Named POSIX semaphores (VXWorks only),
23997 ** 7. proxy locking. (OSX only)
23999 ** Styles 4, 5, and 7 are only available of SQLITE_ENABLE_LOCKING_STYLE
24000 ** is defined to 1. The SQLITE_ENABLE_LOCKING_STYLE also enables automatic
24001 ** selection of the appropriate locking style based on the filesystem
24002 ** where the database is located.
24004 #if !defined(SQLITE_ENABLE_LOCKING_STYLE)
24005 # if defined(__APPLE__)
24006 # define SQLITE_ENABLE_LOCKING_STYLE 1
24007 # else
24008 # define SQLITE_ENABLE_LOCKING_STYLE 0
24009 # endif
24010 #endif
24013 ** Define the OS_VXWORKS pre-processor macro to 1 if building on
24014 ** vxworks, or 0 otherwise.
24016 #ifndef OS_VXWORKS
24017 # if defined(__RTP__) || defined(_WRS_KERNEL)
24018 # define OS_VXWORKS 1
24019 # else
24020 # define OS_VXWORKS 0
24021 # endif
24022 #endif
24025 ** These #defines should enable >2GB file support on Posix if the
24026 ** underlying operating system supports it. If the OS lacks
24027 ** large file support, these should be no-ops.
24029 ** Large file support can be disabled using the -DSQLITE_DISABLE_LFS switch
24030 ** on the compiler command line. This is necessary if you are compiling
24031 ** on a recent machine (ex: RedHat 7.2) but you want your code to work
24032 ** on an older machine (ex: RedHat 6.0). If you compile on RedHat 7.2
24033 ** without this option, LFS is enable. But LFS does not exist in the kernel
24034 ** in RedHat 6.0, so the code won't work. Hence, for maximum binary
24035 ** portability you should omit LFS.
24037 ** The previous paragraph was written in 2005. (This paragraph is written
24038 ** on 2008-11-28.) These days, all Linux kernels support large files, so
24039 ** you should probably leave LFS enabled. But some embedded platforms might
24040 ** lack LFS in which case the SQLITE_DISABLE_LFS macro might still be useful.
24042 #ifndef SQLITE_DISABLE_LFS
24043 # define _LARGE_FILE 1
24044 # ifndef _FILE_OFFSET_BITS
24045 # define _FILE_OFFSET_BITS 64
24046 # endif
24047 # define _LARGEFILE_SOURCE 1
24048 #endif
24051 ** standard include files.
24053 #include <sys/types.h>
24054 #include <sys/stat.h>
24055 #include <fcntl.h>
24056 #include <unistd.h>
24057 #include <sys/time.h>
24058 #include <errno.h>
24059 #ifndef SQLITE_OMIT_WAL
24060 #include <sys/mman.h>
24061 #endif
24063 #if SQLITE_ENABLE_LOCKING_STYLE
24064 # include <sys/ioctl.h>
24065 # if OS_VXWORKS
24066 # include <semaphore.h>
24067 # include <limits.h>
24068 # else
24069 # include <sys/file.h>
24070 # include <sys/param.h>
24071 # endif
24072 #endif /* SQLITE_ENABLE_LOCKING_STYLE */
24074 #if defined(__APPLE__) || (SQLITE_ENABLE_LOCKING_STYLE && !OS_VXWORKS)
24075 # include <sys/mount.h>
24076 #endif
24079 ** Allowed values of unixFile.fsFlags
24081 #define SQLITE_FSFLAGS_IS_MSDOS 0x1
24084 ** If we are to be thread-safe, include the pthreads header and define
24085 ** the SQLITE_UNIX_THREADS macro.
24087 #if SQLITE_THREADSAFE
24088 # define SQLITE_UNIX_THREADS 1
24089 #endif
24092 ** Default permissions when creating a new file
24094 #ifndef SQLITE_DEFAULT_FILE_PERMISSIONS
24095 # define SQLITE_DEFAULT_FILE_PERMISSIONS 0644
24096 #endif
24099 ** Default permissions when creating auto proxy dir
24101 #ifndef SQLITE_DEFAULT_PROXYDIR_PERMISSIONS
24102 # define SQLITE_DEFAULT_PROXYDIR_PERMISSIONS 0755
24103 #endif
24106 ** Maximum supported path-length.
24108 #define MAX_PATHNAME 512
24111 ** Only set the lastErrno if the error code is a real error and not
24112 ** a normal expected return code of SQLITE_BUSY or SQLITE_OK
24114 #define IS_LOCK_ERROR(x) ((x != SQLITE_OK) && (x != SQLITE_BUSY))
24116 /* Forward references */
24117 typedef struct unixShm unixShm; /* Connection shared memory */
24118 typedef struct unixShmNode unixShmNode; /* Shared memory instance */
24119 typedef struct unixInodeInfo unixInodeInfo; /* An i-node */
24120 typedef struct UnixUnusedFd UnixUnusedFd; /* An unused file descriptor */
24123 ** Sometimes, after a file handle is closed by SQLite, the file descriptor
24124 ** cannot be closed immediately. In these cases, instances of the following
24125 ** structure are used to store the file descriptor while waiting for an
24126 ** opportunity to either close or reuse it.
24128 struct UnixUnusedFd {
24129 int fd; /* File descriptor to close */
24130 int flags; /* Flags this file descriptor was opened with */
24131 UnixUnusedFd *pNext; /* Next unused file descriptor on same file */
24135 ** The unixFile structure is subclass of sqlite3_file specific to the unix
24136 ** VFS implementations.
24138 typedef struct unixFile unixFile;
24139 struct unixFile {
24140 sqlite3_io_methods const *pMethod; /* Always the first entry */
24141 unixInodeInfo *pInode; /* Info about locks on this inode */
24142 int h; /* The file descriptor */
24143 unsigned char eFileLock; /* The type of lock held on this fd */
24144 unsigned char ctrlFlags; /* Behavioral bits. UNIXFILE_* flags */
24145 int lastErrno; /* The unix errno from last I/O error */
24146 void *lockingContext; /* Locking style specific state */
24147 UnixUnusedFd *pUnused; /* Pre-allocated UnixUnusedFd */
24148 const char *zPath; /* Name of the file */
24149 unixShm *pShm; /* Shared memory segment information */
24150 int szChunk; /* Configured by FCNTL_CHUNK_SIZE */
24151 #if SQLITE_ENABLE_LOCKING_STYLE
24152 int openFlags; /* The flags specified at open() */
24153 #endif
24154 #if SQLITE_ENABLE_LOCKING_STYLE || defined(__APPLE__)
24155 unsigned fsFlags; /* cached details from statfs() */
24156 #endif
24157 #if OS_VXWORKS
24158 int isDelete; /* Delete on close if true */
24159 struct vxworksFileId *pId; /* Unique file ID */
24160 #endif
24161 #ifndef NDEBUG
24162 /* The next group of variables are used to track whether or not the
24163 ** transaction counter in bytes 24-27 of database files are updated
24164 ** whenever any part of the database changes. An assertion fault will
24165 ** occur if a file is updated without also updating the transaction
24166 ** counter. This test is made to avoid new problems similar to the
24167 ** one described by ticket #3584.
24169 unsigned char transCntrChng; /* True if the transaction counter changed */
24170 unsigned char dbUpdate; /* True if any part of database file changed */
24171 unsigned char inNormalWrite; /* True if in a normal write operation */
24172 #endif
24173 #ifdef SQLITE_TEST
24174 /* In test mode, increase the size of this structure a bit so that
24175 ** it is larger than the struct CrashFile defined in test6.c.
24177 char aPadding[32];
24178 #endif
24182 ** Allowed values for the unixFile.ctrlFlags bitmask:
24184 #define UNIXFILE_EXCL 0x01 /* Connections from one process only */
24185 #define UNIXFILE_RDONLY 0x02 /* Connection is read only */
24186 #define UNIXFILE_DIRSYNC 0x04 /* Directory sync needed */
24189 ** Include code that is common to all os_*.c files
24191 /************** Include os_common.h in the middle of os_unix.c ***************/
24192 /************** Begin file os_common.h ***************************************/
24194 ** 2004 May 22
24196 ** The author disclaims copyright to this source code. In place of
24197 ** a legal notice, here is a blessing:
24199 ** May you do good and not evil.
24200 ** May you find forgiveness for yourself and forgive others.
24201 ** May you share freely, never taking more than you give.
24203 ******************************************************************************
24205 ** This file contains macros and a little bit of code that is common to
24206 ** all of the platform-specific files (os_*.c) and is #included into those
24207 ** files.
24209 ** This file should be #included by the os_*.c files only. It is not a
24210 ** general purpose header file.
24212 #ifndef _OS_COMMON_H_
24213 #define _OS_COMMON_H_
24216 ** At least two bugs have slipped in because we changed the MEMORY_DEBUG
24217 ** macro to SQLITE_DEBUG and some older makefiles have not yet made the
24218 ** switch. The following code should catch this problem at compile-time.
24220 #ifdef MEMORY_DEBUG
24221 # error "The MEMORY_DEBUG macro is obsolete. Use SQLITE_DEBUG instead."
24222 #endif
24224 #ifdef SQLITE_DEBUG
24225 SQLITE_PRIVATE int sqlite3OSTrace = 0;
24226 #define OSTRACE(X) if( sqlite3OSTrace ) sqlite3DebugPrintf X
24227 #else
24228 #define OSTRACE(X)
24229 #endif
24232 ** Macros for performance tracing. Normally turned off. Only works
24233 ** on i486 hardware.
24235 #ifdef SQLITE_PERFORMANCE_TRACE
24238 ** hwtime.h contains inline assembler code for implementing
24239 ** high-performance timing routines.
24241 /************** Include hwtime.h in the middle of os_common.h ****************/
24242 /************** Begin file hwtime.h ******************************************/
24244 ** 2008 May 27
24246 ** The author disclaims copyright to this source code. In place of
24247 ** a legal notice, here is a blessing:
24249 ** May you do good and not evil.
24250 ** May you find forgiveness for yourself and forgive others.
24251 ** May you share freely, never taking more than you give.
24253 ******************************************************************************
24255 ** This file contains inline asm code for retrieving "high-performance"
24256 ** counters for x86 class CPUs.
24258 #ifndef _HWTIME_H_
24259 #define _HWTIME_H_
24262 ** The following routine only works on pentium-class (or newer) processors.
24263 ** It uses the RDTSC opcode to read the cycle count value out of the
24264 ** processor and returns that value. This can be used for high-res
24265 ** profiling.
24267 #if (defined(__GNUC__) || defined(_MSC_VER)) && \
24268 (defined(i386) || defined(__i386__) || defined(_M_IX86))
24270 #if defined(__GNUC__)
24272 __inline__ sqlite_uint64 sqlite3Hwtime(void){
24273 unsigned int lo, hi;
24274 __asm__ __volatile__ ("rdtsc" : "=a" (lo), "=d" (hi));
24275 return (sqlite_uint64)hi << 32 | lo;
24278 #elif defined(_MSC_VER)
24280 __declspec(naked) __inline sqlite_uint64 __cdecl sqlite3Hwtime(void){
24281 __asm {
24282 rdtsc
24283 ret ; return value at EDX:EAX
24287 #endif
24289 #elif (defined(__GNUC__) && defined(__x86_64__))
24291 __inline__ sqlite_uint64 sqlite3Hwtime(void){
24292 unsigned long val;
24293 __asm__ __volatile__ ("rdtsc" : "=A" (val));
24294 return val;
24297 #elif (defined(__GNUC__) && defined(__ppc__))
24299 __inline__ sqlite_uint64 sqlite3Hwtime(void){
24300 unsigned long long retval;
24301 unsigned long junk;
24302 __asm__ __volatile__ ("\n\
24303 1: mftbu %1\n\
24304 mftb %L0\n\
24305 mftbu %0\n\
24306 cmpw %0,%1\n\
24307 bne 1b"
24308 : "=r" (retval), "=r" (junk));
24309 return retval;
24312 #else
24314 #error Need implementation of sqlite3Hwtime() for your platform.
24317 ** To compile without implementing sqlite3Hwtime() for your platform,
24318 ** you can remove the above #error and use the following
24319 ** stub function. You will lose timing support for many
24320 ** of the debugging and testing utilities, but it should at
24321 ** least compile and run.
24323 SQLITE_PRIVATE sqlite_uint64 sqlite3Hwtime(void){ return ((sqlite_uint64)0); }
24325 #endif
24327 #endif /* !defined(_HWTIME_H_) */
24329 /************** End of hwtime.h **********************************************/
24330 /************** Continuing where we left off in os_common.h ******************/
24332 static sqlite_uint64 g_start;
24333 static sqlite_uint64 g_elapsed;
24334 #define TIMER_START g_start=sqlite3Hwtime()
24335 #define TIMER_END g_elapsed=sqlite3Hwtime()-g_start
24336 #define TIMER_ELAPSED g_elapsed
24337 #else
24338 #define TIMER_START
24339 #define TIMER_END
24340 #define TIMER_ELAPSED ((sqlite_uint64)0)
24341 #endif
24344 ** If we compile with the SQLITE_TEST macro set, then the following block
24345 ** of code will give us the ability to simulate a disk I/O error. This
24346 ** is used for testing the I/O recovery logic.
24348 #ifdef SQLITE_TEST
24349 SQLITE_API int sqlite3_io_error_hit = 0; /* Total number of I/O Errors */
24350 SQLITE_API int sqlite3_io_error_hardhit = 0; /* Number of non-benign errors */
24351 SQLITE_API int sqlite3_io_error_pending = 0; /* Count down to first I/O error */
24352 SQLITE_API int sqlite3_io_error_persist = 0; /* True if I/O errors persist */
24353 SQLITE_API int sqlite3_io_error_benign = 0; /* True if errors are benign */
24354 SQLITE_API int sqlite3_diskfull_pending = 0;
24355 SQLITE_API int sqlite3_diskfull = 0;
24356 #define SimulateIOErrorBenign(X) sqlite3_io_error_benign=(X)
24357 #define SimulateIOError(CODE) \
24358 if( (sqlite3_io_error_persist && sqlite3_io_error_hit) \
24359 || sqlite3_io_error_pending-- == 1 ) \
24360 { local_ioerr(); CODE; }
24361 static void local_ioerr(){
24362 IOTRACE(("IOERR\n"));
24363 sqlite3_io_error_hit++;
24364 if( !sqlite3_io_error_benign ) sqlite3_io_error_hardhit++;
24366 #define SimulateDiskfullError(CODE) \
24367 if( sqlite3_diskfull_pending ){ \
24368 if( sqlite3_diskfull_pending == 1 ){ \
24369 local_ioerr(); \
24370 sqlite3_diskfull = 1; \
24371 sqlite3_io_error_hit = 1; \
24372 CODE; \
24373 }else{ \
24374 sqlite3_diskfull_pending--; \
24377 #else
24378 #define SimulateIOErrorBenign(X)
24379 #define SimulateIOError(A)
24380 #define SimulateDiskfullError(A)
24381 #endif
24384 ** When testing, keep a count of the number of open files.
24386 #ifdef SQLITE_TEST
24387 SQLITE_API int sqlite3_open_file_count = 0;
24388 #define OpenCounter(X) sqlite3_open_file_count+=(X)
24389 #else
24390 #define OpenCounter(X)
24391 #endif
24393 #endif /* !defined(_OS_COMMON_H_) */
24395 /************** End of os_common.h *******************************************/
24396 /************** Continuing where we left off in os_unix.c ********************/
24399 ** Define various macros that are missing from some systems.
24401 #ifndef O_LARGEFILE
24402 # define O_LARGEFILE 0
24403 #endif
24404 #ifdef SQLITE_DISABLE_LFS
24405 # undef O_LARGEFILE
24406 # define O_LARGEFILE 0
24407 #endif
24408 #ifndef O_NOFOLLOW
24409 # define O_NOFOLLOW 0
24410 #endif
24411 #ifndef O_BINARY
24412 # define O_BINARY 0
24413 #endif
24416 ** The threadid macro resolves to the thread-id or to 0. Used for
24417 ** testing and debugging only.
24419 #if SQLITE_THREADSAFE
24420 #define threadid pthread_self()
24421 #else
24422 #define threadid 0
24423 #endif
24425 /* Forward reference */
24426 static int openDirectory(const char*, int*);
24429 ** Many system calls are accessed through pointer-to-functions so that
24430 ** they may be overridden at runtime to facilitate fault injection during
24431 ** testing and sandboxing. The following array holds the names and pointers
24432 ** to all overrideable system calls.
24434 static struct unix_syscall {
24435 const char *zName; /* Name of the sytem call */
24436 sqlite3_syscall_ptr pCurrent; /* Current value of the system call */
24437 sqlite3_syscall_ptr pDefault; /* Default value */
24438 } aSyscall[] = {
24439 { "open", (sqlite3_syscall_ptr)open, 0 },
24440 #define osOpen ((int(*)(const char*,int,...))aSyscall[0].pCurrent)
24442 { "close", (sqlite3_syscall_ptr)close, 0 },
24443 #define osClose ((int(*)(int))aSyscall[1].pCurrent)
24445 { "access", (sqlite3_syscall_ptr)access, 0 },
24446 #define osAccess ((int(*)(const char*,int))aSyscall[2].pCurrent)
24448 { "getcwd", (sqlite3_syscall_ptr)getcwd, 0 },
24449 #define osGetcwd ((char*(*)(char*,size_t))aSyscall[3].pCurrent)
24451 { "stat", (sqlite3_syscall_ptr)stat, 0 },
24452 #define osStat ((int(*)(const char*,struct stat*))aSyscall[4].pCurrent)
24455 ** The DJGPP compiler environment looks mostly like Unix, but it
24456 ** lacks the fcntl() system call. So redefine fcntl() to be something
24457 ** that always succeeds. This means that locking does not occur under
24458 ** DJGPP. But it is DOS - what did you expect?
24460 #ifdef __DJGPP__
24461 { "fstat", 0, 0 },
24462 #define osFstat(a,b,c) 0
24463 #else
24464 { "fstat", (sqlite3_syscall_ptr)fstat, 0 },
24465 #define osFstat ((int(*)(int,struct stat*))aSyscall[5].pCurrent)
24466 #endif
24468 { "ftruncate", (sqlite3_syscall_ptr)ftruncate, 0 },
24469 #define osFtruncate ((int(*)(int,off_t))aSyscall[6].pCurrent)
24471 { "fcntl", (sqlite3_syscall_ptr)fcntl, 0 },
24472 #define osFcntl ((int(*)(int,int,...))aSyscall[7].pCurrent)
24474 { "read", (sqlite3_syscall_ptr)read, 0 },
24475 #define osRead ((ssize_t(*)(int,void*,size_t))aSyscall[8].pCurrent)
24477 #if defined(USE_PREAD) || defined(SQLITE_ENABLE_LOCKING_STYLE)
24478 { "pread", (sqlite3_syscall_ptr)pread, 0 },
24479 #else
24480 { "pread", (sqlite3_syscall_ptr)0, 0 },
24481 #endif
24482 #define osPread ((ssize_t(*)(int,void*,size_t,off_t))aSyscall[9].pCurrent)
24484 #if defined(USE_PREAD64)
24485 { "pread64", (sqlite3_syscall_ptr)pread64, 0 },
24486 #else
24487 { "pread64", (sqlite3_syscall_ptr)0, 0 },
24488 #endif
24489 #define osPread64 ((ssize_t(*)(int,void*,size_t,off_t))aSyscall[10].pCurrent)
24491 { "write", (sqlite3_syscall_ptr)write, 0 },
24492 #define osWrite ((ssize_t(*)(int,const void*,size_t))aSyscall[11].pCurrent)
24494 #if defined(USE_PREAD) || defined(SQLITE_ENABLE_LOCKING_STYLE)
24495 { "pwrite", (sqlite3_syscall_ptr)pwrite, 0 },
24496 #else
24497 { "pwrite", (sqlite3_syscall_ptr)0, 0 },
24498 #endif
24499 #define osPwrite ((ssize_t(*)(int,const void*,size_t,off_t))\
24500 aSyscall[12].pCurrent)
24502 #if defined(USE_PREAD64)
24503 { "pwrite64", (sqlite3_syscall_ptr)pwrite64, 0 },
24504 #else
24505 { "pwrite64", (sqlite3_syscall_ptr)0, 0 },
24506 #endif
24507 #define osPwrite64 ((ssize_t(*)(int,const void*,size_t,off_t))\
24508 aSyscall[13].pCurrent)
24510 #if SQLITE_ENABLE_LOCKING_STYLE
24511 { "fchmod", (sqlite3_syscall_ptr)fchmod, 0 },
24512 #else
24513 { "fchmod", (sqlite3_syscall_ptr)0, 0 },
24514 #endif
24515 #define osFchmod ((int(*)(int,mode_t))aSyscall[14].pCurrent)
24517 #if defined(HAVE_POSIX_FALLOCATE) && HAVE_POSIX_FALLOCATE
24518 { "fallocate", (sqlite3_syscall_ptr)posix_fallocate, 0 },
24519 #else
24520 { "fallocate", (sqlite3_syscall_ptr)0, 0 },
24521 #endif
24522 #define osFallocate ((int(*)(int,off_t,off_t))aSyscall[15].pCurrent)
24524 { "unlink", (sqlite3_syscall_ptr)unlink, 0 },
24525 #define osUnlink ((int(*)(const char*))aSyscall[16].pCurrent)
24527 { "openDirectory", (sqlite3_syscall_ptr)openDirectory, 0 },
24528 #define osOpenDirectory ((int(*)(const char*,int*))aSyscall[17].pCurrent)
24530 }; /* End of the overrideable system calls */
24533 ** This is the xSetSystemCall() method of sqlite3_vfs for all of the
24534 ** "unix" VFSes. Return SQLITE_OK opon successfully updating the
24535 ** system call pointer, or SQLITE_NOTFOUND if there is no configurable
24536 ** system call named zName.
24538 static int unixSetSystemCall(
24539 sqlite3_vfs *pNotUsed, /* The VFS pointer. Not used */
24540 const char *zName, /* Name of system call to override */
24541 sqlite3_syscall_ptr pNewFunc /* Pointer to new system call value */
24543 unsigned int i;
24544 int rc = SQLITE_NOTFOUND;
24546 UNUSED_PARAMETER(pNotUsed);
24547 if( zName==0 ){
24548 /* If no zName is given, restore all system calls to their default
24549 ** settings and return NULL
24551 rc = SQLITE_OK;
24552 for(i=0; i<sizeof(aSyscall)/sizeof(aSyscall[0]); i++){
24553 if( aSyscall[i].pDefault ){
24554 aSyscall[i].pCurrent = aSyscall[i].pDefault;
24557 }else{
24558 /* If zName is specified, operate on only the one system call
24559 ** specified.
24561 for(i=0; i<sizeof(aSyscall)/sizeof(aSyscall[0]); i++){
24562 if( strcmp(zName, aSyscall[i].zName)==0 ){
24563 if( aSyscall[i].pDefault==0 ){
24564 aSyscall[i].pDefault = aSyscall[i].pCurrent;
24566 rc = SQLITE_OK;
24567 if( pNewFunc==0 ) pNewFunc = aSyscall[i].pDefault;
24568 aSyscall[i].pCurrent = pNewFunc;
24569 break;
24573 return rc;
24577 ** Return the value of a system call. Return NULL if zName is not a
24578 ** recognized system call name. NULL is also returned if the system call
24579 ** is currently undefined.
24581 static sqlite3_syscall_ptr unixGetSystemCall(
24582 sqlite3_vfs *pNotUsed,
24583 const char *zName
24585 unsigned int i;
24587 UNUSED_PARAMETER(pNotUsed);
24588 for(i=0; i<sizeof(aSyscall)/sizeof(aSyscall[0]); i++){
24589 if( strcmp(zName, aSyscall[i].zName)==0 ) return aSyscall[i].pCurrent;
24591 return 0;
24595 ** Return the name of the first system call after zName. If zName==NULL
24596 ** then return the name of the first system call. Return NULL if zName
24597 ** is the last system call or if zName is not the name of a valid
24598 ** system call.
24600 static const char *unixNextSystemCall(sqlite3_vfs *p, const char *zName){
24601 int i = -1;
24603 UNUSED_PARAMETER(p);
24604 if( zName ){
24605 for(i=0; i<ArraySize(aSyscall)-1; i++){
24606 if( strcmp(zName, aSyscall[i].zName)==0 ) break;
24609 for(i++; i<ArraySize(aSyscall); i++){
24610 if( aSyscall[i].pCurrent!=0 ) return aSyscall[i].zName;
24612 return 0;
24616 ** Retry open() calls that fail due to EINTR
24618 static int robust_open(const char *z, int f, int m){
24619 int rc;
24620 do{ rc = osOpen(z,f,m); }while( rc<0 && errno==EINTR );
24621 return rc;
24625 ** Helper functions to obtain and relinquish the global mutex. The
24626 ** global mutex is used to protect the unixInodeInfo and
24627 ** vxworksFileId objects used by this file, all of which may be
24628 ** shared by multiple threads.
24630 ** Function unixMutexHeld() is used to assert() that the global mutex
24631 ** is held when required. This function is only used as part of assert()
24632 ** statements. e.g.
24634 ** unixEnterMutex()
24635 ** assert( unixMutexHeld() );
24636 ** unixEnterLeave()
24638 static void unixEnterMutex(void){
24639 sqlite3_mutex_enter(sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_MASTER));
24641 static void unixLeaveMutex(void){
24642 sqlite3_mutex_leave(sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_MASTER));
24644 #ifdef SQLITE_DEBUG
24645 static int unixMutexHeld(void) {
24646 return sqlite3_mutex_held(sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_MASTER));
24648 #endif
24651 #ifdef SQLITE_DEBUG
24653 ** Helper function for printing out trace information from debugging
24654 ** binaries. This returns the string represetation of the supplied
24655 ** integer lock-type.
24657 static const char *azFileLock(int eFileLock){
24658 switch( eFileLock ){
24659 case NO_LOCK: return "NONE";
24660 case SHARED_LOCK: return "SHARED";
24661 case RESERVED_LOCK: return "RESERVED";
24662 case PENDING_LOCK: return "PENDING";
24663 case EXCLUSIVE_LOCK: return "EXCLUSIVE";
24665 return "ERROR";
24667 #endif
24669 #ifdef SQLITE_LOCK_TRACE
24671 ** Print out information about all locking operations.
24673 ** This routine is used for troubleshooting locks on multithreaded
24674 ** platforms. Enable by compiling with the -DSQLITE_LOCK_TRACE
24675 ** command-line option on the compiler. This code is normally
24676 ** turned off.
24678 static int lockTrace(int fd, int op, struct flock *p){
24679 char *zOpName, *zType;
24680 int s;
24681 int savedErrno;
24682 if( op==F_GETLK ){
24683 zOpName = "GETLK";
24684 }else if( op==F_SETLK ){
24685 zOpName = "SETLK";
24686 }else{
24687 s = osFcntl(fd, op, p);
24688 sqlite3DebugPrintf("fcntl unknown %d %d %d\n", fd, op, s);
24689 return s;
24691 if( p->l_type==F_RDLCK ){
24692 zType = "RDLCK";
24693 }else if( p->l_type==F_WRLCK ){
24694 zType = "WRLCK";
24695 }else if( p->l_type==F_UNLCK ){
24696 zType = "UNLCK";
24697 }else{
24698 assert( 0 );
24700 assert( p->l_whence==SEEK_SET );
24701 s = osFcntl(fd, op, p);
24702 savedErrno = errno;
24703 sqlite3DebugPrintf("fcntl %d %d %s %s %d %d %d %d\n",
24704 threadid, fd, zOpName, zType, (int)p->l_start, (int)p->l_len,
24705 (int)p->l_pid, s);
24706 if( s==(-1) && op==F_SETLK && (p->l_type==F_RDLCK || p->l_type==F_WRLCK) ){
24707 struct flock l2;
24708 l2 = *p;
24709 osFcntl(fd, F_GETLK, &l2);
24710 if( l2.l_type==F_RDLCK ){
24711 zType = "RDLCK";
24712 }else if( l2.l_type==F_WRLCK ){
24713 zType = "WRLCK";
24714 }else if( l2.l_type==F_UNLCK ){
24715 zType = "UNLCK";
24716 }else{
24717 assert( 0 );
24719 sqlite3DebugPrintf("fcntl-failure-reason: %s %d %d %d\n",
24720 zType, (int)l2.l_start, (int)l2.l_len, (int)l2.l_pid);
24722 errno = savedErrno;
24723 return s;
24725 #undef osFcntl
24726 #define osFcntl lockTrace
24727 #endif /* SQLITE_LOCK_TRACE */
24730 ** Retry ftruncate() calls that fail due to EINTR
24732 static int robust_ftruncate(int h, sqlite3_int64 sz){
24733 int rc;
24734 do{ rc = osFtruncate(h,sz); }while( rc<0 && errno==EINTR );
24735 return rc;
24739 ** This routine translates a standard POSIX errno code into something
24740 ** useful to the clients of the sqlite3 functions. Specifically, it is
24741 ** intended to translate a variety of "try again" errors into SQLITE_BUSY
24742 ** and a variety of "please close the file descriptor NOW" errors into
24743 ** SQLITE_IOERR
24745 ** Errors during initialization of locks, or file system support for locks,
24746 ** should handle ENOLCK, ENOTSUP, EOPNOTSUPP separately.
24748 static int sqliteErrorFromPosixError(int posixError, int sqliteIOErr) {
24749 switch (posixError) {
24750 #if 0
24751 /* At one point this code was not commented out. In theory, this branch
24752 ** should never be hit, as this function should only be called after
24753 ** a locking-related function (i.e. fcntl()) has returned non-zero with
24754 ** the value of errno as the first argument. Since a system call has failed,
24755 ** errno should be non-zero.
24757 ** Despite this, if errno really is zero, we still don't want to return
24758 ** SQLITE_OK. The system call failed, and *some* SQLite error should be
24759 ** propagated back to the caller. Commenting this branch out means errno==0
24760 ** will be handled by the "default:" case below.
24762 case 0:
24763 return SQLITE_OK;
24764 #endif
24766 case EAGAIN:
24767 case ETIMEDOUT:
24768 case EBUSY:
24769 case EINTR:
24770 case ENOLCK:
24771 /* random NFS retry error, unless during file system support
24772 * introspection, in which it actually means what it says */
24773 return SQLITE_BUSY;
24775 case EACCES:
24776 /* EACCES is like EAGAIN during locking operations, but not any other time*/
24777 if( (sqliteIOErr == SQLITE_IOERR_LOCK) ||
24778 (sqliteIOErr == SQLITE_IOERR_UNLOCK) ||
24779 (sqliteIOErr == SQLITE_IOERR_RDLOCK) ||
24780 (sqliteIOErr == SQLITE_IOERR_CHECKRESERVEDLOCK) ){
24781 return SQLITE_BUSY;
24783 /* else fall through */
24784 case EPERM:
24785 return SQLITE_PERM;
24787 /* EDEADLK is only possible if a call to fcntl(F_SETLKW) is made. And
24788 ** this module never makes such a call. And the code in SQLite itself
24789 ** asserts that SQLITE_IOERR_BLOCKED is never returned. For these reasons
24790 ** this case is also commented out. If the system does set errno to EDEADLK,
24791 ** the default SQLITE_IOERR_XXX code will be returned. */
24792 #if 0
24793 case EDEADLK:
24794 return SQLITE_IOERR_BLOCKED;
24795 #endif
24797 #if EOPNOTSUPP!=ENOTSUP
24798 case EOPNOTSUPP:
24799 /* something went terribly awry, unless during file system support
24800 * introspection, in which it actually means what it says */
24801 #endif
24802 #ifdef ENOTSUP
24803 case ENOTSUP:
24804 /* invalid fd, unless during file system support introspection, in which
24805 * it actually means what it says */
24806 #endif
24807 case EIO:
24808 case EBADF:
24809 case EINVAL:
24810 case ENOTCONN:
24811 case ENODEV:
24812 case ENXIO:
24813 case ENOENT:
24814 case ESTALE:
24815 case ENOSYS:
24816 /* these should force the client to close the file and reconnect */
24818 default:
24819 return sqliteIOErr;
24825 /******************************************************************************
24826 ****************** Begin Unique File ID Utility Used By VxWorks ***************
24828 ** On most versions of unix, we can get a unique ID for a file by concatenating
24829 ** the device number and the inode number. But this does not work on VxWorks.
24830 ** On VxWorks, a unique file id must be based on the canonical filename.
24832 ** A pointer to an instance of the following structure can be used as a
24833 ** unique file ID in VxWorks. Each instance of this structure contains
24834 ** a copy of the canonical filename. There is also a reference count.
24835 ** The structure is reclaimed when the number of pointers to it drops to
24836 ** zero.
24838 ** There are never very many files open at one time and lookups are not
24839 ** a performance-critical path, so it is sufficient to put these
24840 ** structures on a linked list.
24842 struct vxworksFileId {
24843 struct vxworksFileId *pNext; /* Next in a list of them all */
24844 int nRef; /* Number of references to this one */
24845 int nName; /* Length of the zCanonicalName[] string */
24846 char *zCanonicalName; /* Canonical filename */
24849 #if OS_VXWORKS
24851 ** All unique filenames are held on a linked list headed by this
24852 ** variable:
24854 static struct vxworksFileId *vxworksFileList = 0;
24857 ** Simplify a filename into its canonical form
24858 ** by making the following changes:
24860 ** * removing any trailing and duplicate /
24861 ** * convert /./ into just /
24862 ** * convert /A/../ where A is any simple name into just /
24864 ** Changes are made in-place. Return the new name length.
24866 ** The original filename is in z[0..n-1]. Return the number of
24867 ** characters in the simplified name.
24869 static int vxworksSimplifyName(char *z, int n){
24870 int i, j;
24871 while( n>1 && z[n-1]=='/' ){ n--; }
24872 for(i=j=0; i<n; i++){
24873 if( z[i]=='/' ){
24874 if( z[i+1]=='/' ) continue;
24875 if( z[i+1]=='.' && i+2<n && z[i+2]=='/' ){
24876 i += 1;
24877 continue;
24879 if( z[i+1]=='.' && i+3<n && z[i+2]=='.' && z[i+3]=='/' ){
24880 while( j>0 && z[j-1]!='/' ){ j--; }
24881 if( j>0 ){ j--; }
24882 i += 2;
24883 continue;
24886 z[j++] = z[i];
24888 z[j] = 0;
24889 return j;
24893 ** Find a unique file ID for the given absolute pathname. Return
24894 ** a pointer to the vxworksFileId object. This pointer is the unique
24895 ** file ID.
24897 ** The nRef field of the vxworksFileId object is incremented before
24898 ** the object is returned. A new vxworksFileId object is created
24899 ** and added to the global list if necessary.
24901 ** If a memory allocation error occurs, return NULL.
24903 static struct vxworksFileId *vxworksFindFileId(const char *zAbsoluteName){
24904 struct vxworksFileId *pNew; /* search key and new file ID */
24905 struct vxworksFileId *pCandidate; /* For looping over existing file IDs */
24906 int n; /* Length of zAbsoluteName string */
24908 assert( zAbsoluteName[0]=='/' );
24909 n = (int)strlen(zAbsoluteName);
24910 pNew = sqlite3_malloc( sizeof(*pNew) + (n+1) );
24911 if( pNew==0 ) return 0;
24912 pNew->zCanonicalName = (char*)&pNew[1];
24913 memcpy(pNew->zCanonicalName, zAbsoluteName, n+1);
24914 n = vxworksSimplifyName(pNew->zCanonicalName, n);
24916 /* Search for an existing entry that matching the canonical name.
24917 ** If found, increment the reference count and return a pointer to
24918 ** the existing file ID.
24920 unixEnterMutex();
24921 for(pCandidate=vxworksFileList; pCandidate; pCandidate=pCandidate->pNext){
24922 if( pCandidate->nName==n
24923 && memcmp(pCandidate->zCanonicalName, pNew->zCanonicalName, n)==0
24925 sqlite3_free(pNew);
24926 pCandidate->nRef++;
24927 unixLeaveMutex();
24928 return pCandidate;
24932 /* No match was found. We will make a new file ID */
24933 pNew->nRef = 1;
24934 pNew->nName = n;
24935 pNew->pNext = vxworksFileList;
24936 vxworksFileList = pNew;
24937 unixLeaveMutex();
24938 return pNew;
24942 ** Decrement the reference count on a vxworksFileId object. Free
24943 ** the object when the reference count reaches zero.
24945 static void vxworksReleaseFileId(struct vxworksFileId *pId){
24946 unixEnterMutex();
24947 assert( pId->nRef>0 );
24948 pId->nRef--;
24949 if( pId->nRef==0 ){
24950 struct vxworksFileId **pp;
24951 for(pp=&vxworksFileList; *pp && *pp!=pId; pp = &((*pp)->pNext)){}
24952 assert( *pp==pId );
24953 *pp = pId->pNext;
24954 sqlite3_free(pId);
24956 unixLeaveMutex();
24958 #endif /* OS_VXWORKS */
24959 /*************** End of Unique File ID Utility Used By VxWorks ****************
24960 ******************************************************************************/
24963 /******************************************************************************
24964 *************************** Posix Advisory Locking ****************************
24966 ** POSIX advisory locks are broken by design. ANSI STD 1003.1 (1996)
24967 ** section 6.5.2.2 lines 483 through 490 specify that when a process
24968 ** sets or clears a lock, that operation overrides any prior locks set
24969 ** by the same process. It does not explicitly say so, but this implies
24970 ** that it overrides locks set by the same process using a different
24971 ** file descriptor. Consider this test case:
24973 ** int fd1 = open("./file1", O_RDWR|O_CREAT, 0644);
24974 ** int fd2 = open("./file2", O_RDWR|O_CREAT, 0644);
24976 ** Suppose ./file1 and ./file2 are really the same file (because
24977 ** one is a hard or symbolic link to the other) then if you set
24978 ** an exclusive lock on fd1, then try to get an exclusive lock
24979 ** on fd2, it works. I would have expected the second lock to
24980 ** fail since there was already a lock on the file due to fd1.
24981 ** But not so. Since both locks came from the same process, the
24982 ** second overrides the first, even though they were on different
24983 ** file descriptors opened on different file names.
24985 ** This means that we cannot use POSIX locks to synchronize file access
24986 ** among competing threads of the same process. POSIX locks will work fine
24987 ** to synchronize access for threads in separate processes, but not
24988 ** threads within the same process.
24990 ** To work around the problem, SQLite has to manage file locks internally
24991 ** on its own. Whenever a new database is opened, we have to find the
24992 ** specific inode of the database file (the inode is determined by the
24993 ** st_dev and st_ino fields of the stat structure that fstat() fills in)
24994 ** and check for locks already existing on that inode. When locks are
24995 ** created or removed, we have to look at our own internal record of the
24996 ** locks to see if another thread has previously set a lock on that same
24997 ** inode.
24999 ** (Aside: The use of inode numbers as unique IDs does not work on VxWorks.
25000 ** For VxWorks, we have to use the alternative unique ID system based on
25001 ** canonical filename and implemented in the previous division.)
25003 ** The sqlite3_file structure for POSIX is no longer just an integer file
25004 ** descriptor. It is now a structure that holds the integer file
25005 ** descriptor and a pointer to a structure that describes the internal
25006 ** locks on the corresponding inode. There is one locking structure
25007 ** per inode, so if the same inode is opened twice, both unixFile structures
25008 ** point to the same locking structure. The locking structure keeps
25009 ** a reference count (so we will know when to delete it) and a "cnt"
25010 ** field that tells us its internal lock status. cnt==0 means the
25011 ** file is unlocked. cnt==-1 means the file has an exclusive lock.
25012 ** cnt>0 means there are cnt shared locks on the file.
25014 ** Any attempt to lock or unlock a file first checks the locking
25015 ** structure. The fcntl() system call is only invoked to set a
25016 ** POSIX lock if the internal lock structure transitions between
25017 ** a locked and an unlocked state.
25019 ** But wait: there are yet more problems with POSIX advisory locks.
25021 ** If you close a file descriptor that points to a file that has locks,
25022 ** all locks on that file that are owned by the current process are
25023 ** released. To work around this problem, each unixInodeInfo object
25024 ** maintains a count of the number of pending locks on tha inode.
25025 ** When an attempt is made to close an unixFile, if there are
25026 ** other unixFile open on the same inode that are holding locks, the call
25027 ** to close() the file descriptor is deferred until all of the locks clear.
25028 ** The unixInodeInfo structure keeps a list of file descriptors that need to
25029 ** be closed and that list is walked (and cleared) when the last lock
25030 ** clears.
25032 ** Yet another problem: LinuxThreads do not play well with posix locks.
25034 ** Many older versions of linux use the LinuxThreads library which is
25035 ** not posix compliant. Under LinuxThreads, a lock created by thread
25036 ** A cannot be modified or overridden by a different thread B.
25037 ** Only thread A can modify the lock. Locking behavior is correct
25038 ** if the appliation uses the newer Native Posix Thread Library (NPTL)
25039 ** on linux - with NPTL a lock created by thread A can override locks
25040 ** in thread B. But there is no way to know at compile-time which
25041 ** threading library is being used. So there is no way to know at
25042 ** compile-time whether or not thread A can override locks on thread B.
25043 ** One has to do a run-time check to discover the behavior of the
25044 ** current process.
25046 ** SQLite used to support LinuxThreads. But support for LinuxThreads
25047 ** was dropped beginning with version 3.7.0. SQLite will still work with
25048 ** LinuxThreads provided that (1) there is no more than one connection
25049 ** per database file in the same process and (2) database connections
25050 ** do not move across threads.
25054 ** An instance of the following structure serves as the key used
25055 ** to locate a particular unixInodeInfo object.
25057 struct unixFileId {
25058 dev_t dev; /* Device number */
25059 #if OS_VXWORKS
25060 struct vxworksFileId *pId; /* Unique file ID for vxworks. */
25061 #else
25062 ino_t ino; /* Inode number */
25063 #endif
25067 ** An instance of the following structure is allocated for each open
25068 ** inode. Or, on LinuxThreads, there is one of these structures for
25069 ** each inode opened by each thread.
25071 ** A single inode can have multiple file descriptors, so each unixFile
25072 ** structure contains a pointer to an instance of this object and this
25073 ** object keeps a count of the number of unixFile pointing to it.
25075 struct unixInodeInfo {
25076 struct unixFileId fileId; /* The lookup key */
25077 int nShared; /* Number of SHARED locks held */
25078 unsigned char eFileLock; /* One of SHARED_LOCK, RESERVED_LOCK etc. */
25079 unsigned char bProcessLock; /* An exclusive process lock is held */
25080 int nRef; /* Number of pointers to this structure */
25081 unixShmNode *pShmNode; /* Shared memory associated with this inode */
25082 int nLock; /* Number of outstanding file locks */
25083 UnixUnusedFd *pUnused; /* Unused file descriptors to close */
25084 unixInodeInfo *pNext; /* List of all unixInodeInfo objects */
25085 unixInodeInfo *pPrev; /* .... doubly linked */
25086 #if defined(SQLITE_ENABLE_LOCKING_STYLE)
25087 unsigned long long sharedByte; /* for AFP simulated shared lock */
25088 #endif
25089 #if OS_VXWORKS
25090 sem_t *pSem; /* Named POSIX semaphore */
25091 char aSemName[MAX_PATHNAME+2]; /* Name of that semaphore */
25092 #endif
25096 ** A lists of all unixInodeInfo objects.
25098 static unixInodeInfo *inodeList = 0;
25102 ** This function - unixLogError_x(), is only ever called via the macro
25103 ** unixLogError().
25105 ** It is invoked after an error occurs in an OS function and errno has been
25106 ** set. It logs a message using sqlite3_log() containing the current value of
25107 ** errno and, if possible, the human-readable equivalent from strerror() or
25108 ** strerror_r().
25110 ** The first argument passed to the macro should be the error code that
25111 ** will be returned to SQLite (e.g. SQLITE_IOERR_DELETE, SQLITE_CANTOPEN).
25112 ** The two subsequent arguments should be the name of the OS function that
25113 ** failed (e.g. "unlink", "open") and the the associated file-system path,
25114 ** if any.
25116 #define unixLogError(a,b,c) unixLogErrorAtLine(a,b,c,__LINE__)
25117 static int unixLogErrorAtLine(
25118 int errcode, /* SQLite error code */
25119 const char *zFunc, /* Name of OS function that failed */
25120 const char *zPath, /* File path associated with error */
25121 int iLine /* Source line number where error occurred */
25123 char *zErr; /* Message from strerror() or equivalent */
25124 int iErrno = errno; /* Saved syscall error number */
25126 /* If this is not a threadsafe build (SQLITE_THREADSAFE==0), then use
25127 ** the strerror() function to obtain the human-readable error message
25128 ** equivalent to errno. Otherwise, use strerror_r().
25130 #if SQLITE_THREADSAFE && defined(HAVE_STRERROR_R)
25131 char aErr[80];
25132 memset(aErr, 0, sizeof(aErr));
25133 zErr = aErr;
25135 /* If STRERROR_R_CHAR_P (set by autoconf scripts) or __USE_GNU is defined,
25136 ** assume that the system provides the the GNU version of strerror_r() that
25137 ** returns a pointer to a buffer containing the error message. That pointer
25138 ** may point to aErr[], or it may point to some static storage somewhere.
25139 ** Otherwise, assume that the system provides the POSIX version of
25140 ** strerror_r(), which always writes an error message into aErr[].
25142 ** If the code incorrectly assumes that it is the POSIX version that is
25143 ** available, the error message will often be an empty string. Not a
25144 ** huge problem. Incorrectly concluding that the GNU version is available
25145 ** could lead to a segfault though.
25147 #if defined(STRERROR_R_CHAR_P) || defined(__USE_GNU)
25148 zErr =
25149 # endif
25150 strerror_r(iErrno, aErr, sizeof(aErr)-1);
25152 #elif SQLITE_THREADSAFE
25153 /* This is a threadsafe build, but strerror_r() is not available. */
25154 zErr = "";
25155 #else
25156 /* Non-threadsafe build, use strerror(). */
25157 zErr = strerror(iErrno);
25158 #endif
25160 assert( errcode!=SQLITE_OK );
25161 if( zPath==0 ) zPath = "";
25162 sqlite3_log(errcode,
25163 "os_unix.c:%d: (%d) %s(%s) - %s",
25164 iLine, iErrno, zFunc, zPath, zErr
25167 return errcode;
25171 ** Close a file descriptor.
25173 ** We assume that close() almost always works, since it is only in a
25174 ** very sick application or on a very sick platform that it might fail.
25175 ** If it does fail, simply leak the file descriptor, but do log the
25176 ** error.
25178 ** Note that it is not safe to retry close() after EINTR since the
25179 ** file descriptor might have already been reused by another thread.
25180 ** So we don't even try to recover from an EINTR. Just log the error
25181 ** and move on.
25183 static void robust_close(unixFile *pFile, int h, int lineno){
25184 if( osClose(h) ){
25185 unixLogErrorAtLine(SQLITE_IOERR_CLOSE, "close",
25186 pFile ? pFile->zPath : 0, lineno);
25191 ** Close all file descriptors accumuated in the unixInodeInfo->pUnused list.
25193 static void closePendingFds(unixFile *pFile){
25194 unixInodeInfo *pInode = pFile->pInode;
25195 UnixUnusedFd *p;
25196 UnixUnusedFd *pNext;
25197 for(p=pInode->pUnused; p; p=pNext){
25198 pNext = p->pNext;
25199 robust_close(pFile, p->fd, __LINE__);
25200 sqlite3_free(p);
25202 pInode->pUnused = 0;
25206 ** Release a unixInodeInfo structure previously allocated by findInodeInfo().
25208 ** The mutex entered using the unixEnterMutex() function must be held
25209 ** when this function is called.
25211 static void releaseInodeInfo(unixFile *pFile){
25212 unixInodeInfo *pInode = pFile->pInode;
25213 assert( unixMutexHeld() );
25214 if( ALWAYS(pInode) ){
25215 pInode->nRef--;
25216 if( pInode->nRef==0 ){
25217 assert( pInode->pShmNode==0 );
25218 closePendingFds(pFile);
25219 if( pInode->pPrev ){
25220 assert( pInode->pPrev->pNext==pInode );
25221 pInode->pPrev->pNext = pInode->pNext;
25222 }else{
25223 assert( inodeList==pInode );
25224 inodeList = pInode->pNext;
25226 if( pInode->pNext ){
25227 assert( pInode->pNext->pPrev==pInode );
25228 pInode->pNext->pPrev = pInode->pPrev;
25230 sqlite3_free(pInode);
25236 ** Given a file descriptor, locate the unixInodeInfo object that
25237 ** describes that file descriptor. Create a new one if necessary. The
25238 ** return value might be uninitialized if an error occurs.
25240 ** The mutex entered using the unixEnterMutex() function must be held
25241 ** when this function is called.
25243 ** Return an appropriate error code.
25245 static int findInodeInfo(
25246 unixFile *pFile, /* Unix file with file desc used in the key */
25247 unixInodeInfo **ppInode /* Return the unixInodeInfo object here */
25249 int rc; /* System call return code */
25250 int fd; /* The file descriptor for pFile */
25251 struct unixFileId fileId; /* Lookup key for the unixInodeInfo */
25252 struct stat statbuf; /* Low-level file information */
25253 unixInodeInfo *pInode = 0; /* Candidate unixInodeInfo object */
25255 assert( unixMutexHeld() );
25257 /* Get low-level information about the file that we can used to
25258 ** create a unique name for the file.
25260 fd = pFile->h;
25261 rc = osFstat(fd, &statbuf);
25262 if( rc!=0 ){
25263 pFile->lastErrno = errno;
25264 #ifdef EOVERFLOW
25265 if( pFile->lastErrno==EOVERFLOW ) return SQLITE_NOLFS;
25266 #endif
25267 return SQLITE_IOERR;
25270 #ifdef __APPLE__
25271 /* On OS X on an msdos filesystem, the inode number is reported
25272 ** incorrectly for zero-size files. See ticket #3260. To work
25273 ** around this problem (we consider it a bug in OS X, not SQLite)
25274 ** we always increase the file size to 1 by writing a single byte
25275 ** prior to accessing the inode number. The one byte written is
25276 ** an ASCII 'S' character which also happens to be the first byte
25277 ** in the header of every SQLite database. In this way, if there
25278 ** is a race condition such that another thread has already populated
25279 ** the first page of the database, no damage is done.
25281 if( statbuf.st_size==0 && (pFile->fsFlags & SQLITE_FSFLAGS_IS_MSDOS)!=0 ){
25282 do{ rc = osWrite(fd, "S", 1); }while( rc<0 && errno==EINTR );
25283 if( rc!=1 ){
25284 pFile->lastErrno = errno;
25285 return SQLITE_IOERR;
25287 rc = osFstat(fd, &statbuf);
25288 if( rc!=0 ){
25289 pFile->lastErrno = errno;
25290 return SQLITE_IOERR;
25293 #endif
25295 memset(&fileId, 0, sizeof(fileId));
25296 fileId.dev = statbuf.st_dev;
25297 #if OS_VXWORKS
25298 fileId.pId = pFile->pId;
25299 #else
25300 fileId.ino = statbuf.st_ino;
25301 #endif
25302 pInode = inodeList;
25303 while( pInode && memcmp(&fileId, &pInode->fileId, sizeof(fileId)) ){
25304 pInode = pInode->pNext;
25306 if( pInode==0 ){
25307 pInode = sqlite3_malloc( sizeof(*pInode) );
25308 if( pInode==0 ){
25309 return SQLITE_NOMEM;
25311 memset(pInode, 0, sizeof(*pInode));
25312 memcpy(&pInode->fileId, &fileId, sizeof(fileId));
25313 pInode->nRef = 1;
25314 pInode->pNext = inodeList;
25315 pInode->pPrev = 0;
25316 if( inodeList ) inodeList->pPrev = pInode;
25317 inodeList = pInode;
25318 }else{
25319 pInode->nRef++;
25321 *ppInode = pInode;
25322 return SQLITE_OK;
25327 ** This routine checks if there is a RESERVED lock held on the specified
25328 ** file by this or any other process. If such a lock is held, set *pResOut
25329 ** to a non-zero value otherwise *pResOut is set to zero. The return value
25330 ** is set to SQLITE_OK unless an I/O error occurs during lock checking.
25332 static int unixCheckReservedLock(sqlite3_file *id, int *pResOut){
25333 int rc = SQLITE_OK;
25334 int reserved = 0;
25335 unixFile *pFile = (unixFile*)id;
25337 SimulateIOError( return SQLITE_IOERR_CHECKRESERVEDLOCK; );
25339 assert( pFile );
25340 unixEnterMutex(); /* Because pFile->pInode is shared across threads */
25342 /* Check if a thread in this process holds such a lock */
25343 if( pFile->pInode->eFileLock>SHARED_LOCK ){
25344 reserved = 1;
25347 /* Otherwise see if some other process holds it.
25349 #ifndef __DJGPP__
25350 if( !reserved && !pFile->pInode->bProcessLock ){
25351 struct flock lock;
25352 lock.l_whence = SEEK_SET;
25353 lock.l_start = RESERVED_BYTE;
25354 lock.l_len = 1;
25355 lock.l_type = F_WRLCK;
25356 if( osFcntl(pFile->h, F_GETLK, &lock) ){
25357 rc = SQLITE_IOERR_CHECKRESERVEDLOCK;
25358 pFile->lastErrno = errno;
25359 } else if( lock.l_type!=F_UNLCK ){
25360 reserved = 1;
25363 #endif
25365 unixLeaveMutex();
25366 OSTRACE(("TEST WR-LOCK %d %d %d (unix)\n", pFile->h, rc, reserved));
25368 *pResOut = reserved;
25369 return rc;
25373 ** Attempt to set a system-lock on the file pFile. The lock is
25374 ** described by pLock.
25376 ** If the pFile was opened read/write from unix-excl, then the only lock
25377 ** ever obtained is an exclusive lock, and it is obtained exactly once
25378 ** the first time any lock is attempted. All subsequent system locking
25379 ** operations become no-ops. Locking operations still happen internally,
25380 ** in order to coordinate access between separate database connections
25381 ** within this process, but all of that is handled in memory and the
25382 ** operating system does not participate.
25384 ** This function is a pass-through to fcntl(F_SETLK) if pFile is using
25385 ** any VFS other than "unix-excl" or if pFile is opened on "unix-excl"
25386 ** and is read-only.
25388 ** Zero is returned if the call completes successfully, or -1 if a call
25389 ** to fcntl() fails. In this case, errno is set appropriately (by fcntl()).
25391 static int unixFileLock(unixFile *pFile, struct flock *pLock){
25392 int rc;
25393 unixInodeInfo *pInode = pFile->pInode;
25394 assert( unixMutexHeld() );
25395 assert( pInode!=0 );
25396 if( ((pFile->ctrlFlags & UNIXFILE_EXCL)!=0 || pInode->bProcessLock)
25397 && ((pFile->ctrlFlags & UNIXFILE_RDONLY)==0)
25399 if( pInode->bProcessLock==0 ){
25400 struct flock lock;
25401 assert( pInode->nLock==0 );
25402 lock.l_whence = SEEK_SET;
25403 lock.l_start = SHARED_FIRST;
25404 lock.l_len = SHARED_SIZE;
25405 lock.l_type = F_WRLCK;
25406 rc = osFcntl(pFile->h, F_SETLK, &lock);
25407 if( rc<0 ) return rc;
25408 pInode->bProcessLock = 1;
25409 pInode->nLock++;
25410 }else{
25411 rc = 0;
25413 }else{
25414 rc = osFcntl(pFile->h, F_SETLK, pLock);
25416 return rc;
25420 ** Lock the file with the lock specified by parameter eFileLock - one
25421 ** of the following:
25423 ** (1) SHARED_LOCK
25424 ** (2) RESERVED_LOCK
25425 ** (3) PENDING_LOCK
25426 ** (4) EXCLUSIVE_LOCK
25428 ** Sometimes when requesting one lock state, additional lock states
25429 ** are inserted in between. The locking might fail on one of the later
25430 ** transitions leaving the lock state different from what it started but
25431 ** still short of its goal. The following chart shows the allowed
25432 ** transitions and the inserted intermediate states:
25434 ** UNLOCKED -> SHARED
25435 ** SHARED -> RESERVED
25436 ** SHARED -> (PENDING) -> EXCLUSIVE
25437 ** RESERVED -> (PENDING) -> EXCLUSIVE
25438 ** PENDING -> EXCLUSIVE
25440 ** This routine will only increase a lock. Use the sqlite3OsUnlock()
25441 ** routine to lower a locking level.
25443 static int unixLock(sqlite3_file *id, int eFileLock){
25444 /* The following describes the implementation of the various locks and
25445 ** lock transitions in terms of the POSIX advisory shared and exclusive
25446 ** lock primitives (called read-locks and write-locks below, to avoid
25447 ** confusion with SQLite lock names). The algorithms are complicated
25448 ** slightly in order to be compatible with windows systems simultaneously
25449 ** accessing the same database file, in case that is ever required.
25451 ** Symbols defined in os.h indentify the 'pending byte' and the 'reserved
25452 ** byte', each single bytes at well known offsets, and the 'shared byte
25453 ** range', a range of 510 bytes at a well known offset.
25455 ** To obtain a SHARED lock, a read-lock is obtained on the 'pending
25456 ** byte'. If this is successful, a random byte from the 'shared byte
25457 ** range' is read-locked and the lock on the 'pending byte' released.
25459 ** A process may only obtain a RESERVED lock after it has a SHARED lock.
25460 ** A RESERVED lock is implemented by grabbing a write-lock on the
25461 ** 'reserved byte'.
25463 ** A process may only obtain a PENDING lock after it has obtained a
25464 ** SHARED lock. A PENDING lock is implemented by obtaining a write-lock
25465 ** on the 'pending byte'. This ensures that no new SHARED locks can be
25466 ** obtained, but existing SHARED locks are allowed to persist. A process
25467 ** does not have to obtain a RESERVED lock on the way to a PENDING lock.
25468 ** This property is used by the algorithm for rolling back a journal file
25469 ** after a crash.
25471 ** An EXCLUSIVE lock, obtained after a PENDING lock is held, is
25472 ** implemented by obtaining a write-lock on the entire 'shared byte
25473 ** range'. Since all other locks require a read-lock on one of the bytes
25474 ** within this range, this ensures that no other locks are held on the
25475 ** database.
25477 ** The reason a single byte cannot be used instead of the 'shared byte
25478 ** range' is that some versions of windows do not support read-locks. By
25479 ** locking a random byte from a range, concurrent SHARED locks may exist
25480 ** even if the locking primitive used is always a write-lock.
25482 int rc = SQLITE_OK;
25483 unixFile *pFile = (unixFile*)id;
25484 unixInodeInfo *pInode = pFile->pInode;
25485 struct flock lock;
25486 int tErrno = 0;
25488 assert( pFile );
25489 OSTRACE(("LOCK %d %s was %s(%s,%d) pid=%d (unix)\n", pFile->h,
25490 azFileLock(eFileLock), azFileLock(pFile->eFileLock),
25491 azFileLock(pInode->eFileLock), pInode->nShared , getpid()));
25493 /* If there is already a lock of this type or more restrictive on the
25494 ** unixFile, do nothing. Don't use the end_lock: exit path, as
25495 ** unixEnterMutex() hasn't been called yet.
25497 if( pFile->eFileLock>=eFileLock ){
25498 OSTRACE(("LOCK %d %s ok (already held) (unix)\n", pFile->h,
25499 azFileLock(eFileLock)));
25500 return SQLITE_OK;
25503 /* Make sure the locking sequence is correct.
25504 ** (1) We never move from unlocked to anything higher than shared lock.
25505 ** (2) SQLite never explicitly requests a pendig lock.
25506 ** (3) A shared lock is always held when a reserve lock is requested.
25508 assert( pFile->eFileLock!=NO_LOCK || eFileLock==SHARED_LOCK );
25509 assert( eFileLock!=PENDING_LOCK );
25510 assert( eFileLock!=RESERVED_LOCK || pFile->eFileLock==SHARED_LOCK );
25512 /* This mutex is needed because pFile->pInode is shared across threads
25514 unixEnterMutex();
25515 pInode = pFile->pInode;
25517 /* If some thread using this PID has a lock via a different unixFile*
25518 ** handle that precludes the requested lock, return BUSY.
25520 if( (pFile->eFileLock!=pInode->eFileLock &&
25521 (pInode->eFileLock>=PENDING_LOCK || eFileLock>SHARED_LOCK))
25523 rc = SQLITE_BUSY;
25524 goto end_lock;
25527 /* If a SHARED lock is requested, and some thread using this PID already
25528 ** has a SHARED or RESERVED lock, then increment reference counts and
25529 ** return SQLITE_OK.
25531 if( eFileLock==SHARED_LOCK &&
25532 (pInode->eFileLock==SHARED_LOCK || pInode->eFileLock==RESERVED_LOCK) ){
25533 assert( eFileLock==SHARED_LOCK );
25534 assert( pFile->eFileLock==0 );
25535 assert( pInode->nShared>0 );
25536 pFile->eFileLock = SHARED_LOCK;
25537 pInode->nShared++;
25538 pInode->nLock++;
25539 goto end_lock;
25543 /* A PENDING lock is needed before acquiring a SHARED lock and before
25544 ** acquiring an EXCLUSIVE lock. For the SHARED lock, the PENDING will
25545 ** be released.
25547 lock.l_len = 1L;
25548 lock.l_whence = SEEK_SET;
25549 if( eFileLock==SHARED_LOCK
25550 || (eFileLock==EXCLUSIVE_LOCK && pFile->eFileLock<PENDING_LOCK)
25552 lock.l_type = (eFileLock==SHARED_LOCK?F_RDLCK:F_WRLCK);
25553 lock.l_start = PENDING_BYTE;
25554 if( unixFileLock(pFile, &lock) ){
25555 tErrno = errno;
25556 rc = sqliteErrorFromPosixError(tErrno, SQLITE_IOERR_LOCK);
25557 if( rc!=SQLITE_BUSY ){
25558 pFile->lastErrno = tErrno;
25560 goto end_lock;
25565 /* If control gets to this point, then actually go ahead and make
25566 ** operating system calls for the specified lock.
25568 if( eFileLock==SHARED_LOCK ){
25569 assert( pInode->nShared==0 );
25570 assert( pInode->eFileLock==0 );
25571 assert( rc==SQLITE_OK );
25573 /* Now get the read-lock */
25574 lock.l_start = SHARED_FIRST;
25575 lock.l_len = SHARED_SIZE;
25576 if( unixFileLock(pFile, &lock) ){
25577 tErrno = errno;
25578 rc = sqliteErrorFromPosixError(tErrno, SQLITE_IOERR_LOCK);
25581 /* Drop the temporary PENDING lock */
25582 lock.l_start = PENDING_BYTE;
25583 lock.l_len = 1L;
25584 lock.l_type = F_UNLCK;
25585 if( unixFileLock(pFile, &lock) && rc==SQLITE_OK ){
25586 /* This could happen with a network mount */
25587 tErrno = errno;
25588 rc = SQLITE_IOERR_UNLOCK;
25591 if( rc ){
25592 if( rc!=SQLITE_BUSY ){
25593 pFile->lastErrno = tErrno;
25595 goto end_lock;
25596 }else{
25597 pFile->eFileLock = SHARED_LOCK;
25598 pInode->nLock++;
25599 pInode->nShared = 1;
25601 }else if( eFileLock==EXCLUSIVE_LOCK && pInode->nShared>1 ){
25602 /* We are trying for an exclusive lock but another thread in this
25603 ** same process is still holding a shared lock. */
25604 rc = SQLITE_BUSY;
25605 }else{
25606 /* The request was for a RESERVED or EXCLUSIVE lock. It is
25607 ** assumed that there is a SHARED or greater lock on the file
25608 ** already.
25610 assert( 0!=pFile->eFileLock );
25611 lock.l_type = F_WRLCK;
25613 assert( eFileLock==RESERVED_LOCK || eFileLock==EXCLUSIVE_LOCK );
25614 if( eFileLock==RESERVED_LOCK ){
25615 lock.l_start = RESERVED_BYTE;
25616 lock.l_len = 1L;
25617 }else{
25618 lock.l_start = SHARED_FIRST;
25619 lock.l_len = SHARED_SIZE;
25622 if( unixFileLock(pFile, &lock) ){
25623 tErrno = errno;
25624 rc = sqliteErrorFromPosixError(tErrno, SQLITE_IOERR_LOCK);
25625 if( rc!=SQLITE_BUSY ){
25626 pFile->lastErrno = tErrno;
25632 #ifndef NDEBUG
25633 /* Set up the transaction-counter change checking flags when
25634 ** transitioning from a SHARED to a RESERVED lock. The change
25635 ** from SHARED to RESERVED marks the beginning of a normal
25636 ** write operation (not a hot journal rollback).
25638 if( rc==SQLITE_OK
25639 && pFile->eFileLock<=SHARED_LOCK
25640 && eFileLock==RESERVED_LOCK
25642 pFile->transCntrChng = 0;
25643 pFile->dbUpdate = 0;
25644 pFile->inNormalWrite = 1;
25646 #endif
25649 if( rc==SQLITE_OK ){
25650 pFile->eFileLock = eFileLock;
25651 pInode->eFileLock = eFileLock;
25652 }else if( eFileLock==EXCLUSIVE_LOCK ){
25653 pFile->eFileLock = PENDING_LOCK;
25654 pInode->eFileLock = PENDING_LOCK;
25657 end_lock:
25658 unixLeaveMutex();
25659 OSTRACE(("LOCK %d %s %s (unix)\n", pFile->h, azFileLock(eFileLock),
25660 rc==SQLITE_OK ? "ok" : "failed"));
25661 return rc;
25665 ** Add the file descriptor used by file handle pFile to the corresponding
25666 ** pUnused list.
25668 static void setPendingFd(unixFile *pFile){
25669 unixInodeInfo *pInode = pFile->pInode;
25670 UnixUnusedFd *p = pFile->pUnused;
25671 p->pNext = pInode->pUnused;
25672 pInode->pUnused = p;
25673 pFile->h = -1;
25674 pFile->pUnused = 0;
25678 ** Lower the locking level on file descriptor pFile to eFileLock. eFileLock
25679 ** must be either NO_LOCK or SHARED_LOCK.
25681 ** If the locking level of the file descriptor is already at or below
25682 ** the requested locking level, this routine is a no-op.
25684 ** If handleNFSUnlock is true, then on downgrading an EXCLUSIVE_LOCK to SHARED
25685 ** the byte range is divided into 2 parts and the first part is unlocked then
25686 ** set to a read lock, then the other part is simply unlocked. This works
25687 ** around a bug in BSD NFS lockd (also seen on MacOSX 10.3+) that fails to
25688 ** remove the write lock on a region when a read lock is set.
25690 static int posixUnlock(sqlite3_file *id, int eFileLock, int handleNFSUnlock){
25691 unixFile *pFile = (unixFile*)id;
25692 unixInodeInfo *pInode;
25693 struct flock lock;
25694 int rc = SQLITE_OK;
25695 int h;
25697 assert( pFile );
25698 OSTRACE(("UNLOCK %d %d was %d(%d,%d) pid=%d (unix)\n", pFile->h, eFileLock,
25699 pFile->eFileLock, pFile->pInode->eFileLock, pFile->pInode->nShared,
25700 getpid()));
25702 assert( eFileLock<=SHARED_LOCK );
25703 if( pFile->eFileLock<=eFileLock ){
25704 return SQLITE_OK;
25706 unixEnterMutex();
25707 h = pFile->h;
25708 pInode = pFile->pInode;
25709 assert( pInode->nShared!=0 );
25710 if( pFile->eFileLock>SHARED_LOCK ){
25711 assert( pInode->eFileLock==pFile->eFileLock );
25712 SimulateIOErrorBenign(1);
25713 SimulateIOError( h=(-1) )
25714 SimulateIOErrorBenign(0);
25716 #ifndef NDEBUG
25717 /* When reducing a lock such that other processes can start
25718 ** reading the database file again, make sure that the
25719 ** transaction counter was updated if any part of the database
25720 ** file changed. If the transaction counter is not updated,
25721 ** other connections to the same file might not realize that
25722 ** the file has changed and hence might not know to flush their
25723 ** cache. The use of a stale cache can lead to database corruption.
25725 #if 0
25726 assert( pFile->inNormalWrite==0
25727 || pFile->dbUpdate==0
25728 || pFile->transCntrChng==1 );
25729 #endif
25730 pFile->inNormalWrite = 0;
25731 #endif
25733 /* downgrading to a shared lock on NFS involves clearing the write lock
25734 ** before establishing the readlock - to avoid a race condition we downgrade
25735 ** the lock in 2 blocks, so that part of the range will be covered by a
25736 ** write lock until the rest is covered by a read lock:
25737 ** 1: [WWWWW]
25738 ** 2: [....W]
25739 ** 3: [RRRRW]
25740 ** 4: [RRRR.]
25742 if( eFileLock==SHARED_LOCK ){
25744 #if !defined(__APPLE__) || !SQLITE_ENABLE_LOCKING_STYLE
25745 (void)handleNFSUnlock;
25746 assert( handleNFSUnlock==0 );
25747 #endif
25748 #if defined(__APPLE__) && SQLITE_ENABLE_LOCKING_STYLE
25749 if( handleNFSUnlock ){
25750 int tErrno; /* Error code from system call errors */
25751 off_t divSize = SHARED_SIZE - 1;
25753 lock.l_type = F_UNLCK;
25754 lock.l_whence = SEEK_SET;
25755 lock.l_start = SHARED_FIRST;
25756 lock.l_len = divSize;
25757 if( unixFileLock(pFile, &lock)==(-1) ){
25758 tErrno = errno;
25759 rc = SQLITE_IOERR_UNLOCK;
25760 if( IS_LOCK_ERROR(rc) ){
25761 pFile->lastErrno = tErrno;
25763 goto end_unlock;
25765 lock.l_type = F_RDLCK;
25766 lock.l_whence = SEEK_SET;
25767 lock.l_start = SHARED_FIRST;
25768 lock.l_len = divSize;
25769 if( unixFileLock(pFile, &lock)==(-1) ){
25770 tErrno = errno;
25771 rc = sqliteErrorFromPosixError(tErrno, SQLITE_IOERR_RDLOCK);
25772 if( IS_LOCK_ERROR(rc) ){
25773 pFile->lastErrno = tErrno;
25775 goto end_unlock;
25777 lock.l_type = F_UNLCK;
25778 lock.l_whence = SEEK_SET;
25779 lock.l_start = SHARED_FIRST+divSize;
25780 lock.l_len = SHARED_SIZE-divSize;
25781 if( unixFileLock(pFile, &lock)==(-1) ){
25782 tErrno = errno;
25783 rc = SQLITE_IOERR_UNLOCK;
25784 if( IS_LOCK_ERROR(rc) ){
25785 pFile->lastErrno = tErrno;
25787 goto end_unlock;
25789 }else
25790 #endif /* defined(__APPLE__) && SQLITE_ENABLE_LOCKING_STYLE */
25792 lock.l_type = F_RDLCK;
25793 lock.l_whence = SEEK_SET;
25794 lock.l_start = SHARED_FIRST;
25795 lock.l_len = SHARED_SIZE;
25796 if( unixFileLock(pFile, &lock) ){
25797 /* In theory, the call to unixFileLock() cannot fail because another
25798 ** process is holding an incompatible lock. If it does, this
25799 ** indicates that the other process is not following the locking
25800 ** protocol. If this happens, return SQLITE_IOERR_RDLOCK. Returning
25801 ** SQLITE_BUSY would confuse the upper layer (in practice it causes
25802 ** an assert to fail). */
25803 rc = SQLITE_IOERR_RDLOCK;
25804 pFile->lastErrno = errno;
25805 goto end_unlock;
25809 lock.l_type = F_UNLCK;
25810 lock.l_whence = SEEK_SET;
25811 lock.l_start = PENDING_BYTE;
25812 lock.l_len = 2L; assert( PENDING_BYTE+1==RESERVED_BYTE );
25813 if( unixFileLock(pFile, &lock)==0 ){
25814 pInode->eFileLock = SHARED_LOCK;
25815 }else{
25816 rc = SQLITE_IOERR_UNLOCK;
25817 pFile->lastErrno = errno;
25818 goto end_unlock;
25821 if( eFileLock==NO_LOCK ){
25822 /* Decrement the shared lock counter. Release the lock using an
25823 ** OS call only when all threads in this same process have released
25824 ** the lock.
25826 pInode->nShared--;
25827 if( pInode->nShared==0 ){
25828 lock.l_type = F_UNLCK;
25829 lock.l_whence = SEEK_SET;
25830 lock.l_start = lock.l_len = 0L;
25831 SimulateIOErrorBenign(1);
25832 SimulateIOError( h=(-1) )
25833 SimulateIOErrorBenign(0);
25834 if( unixFileLock(pFile, &lock)==0 ){
25835 pInode->eFileLock = NO_LOCK;
25836 }else{
25837 rc = SQLITE_IOERR_UNLOCK;
25838 pFile->lastErrno = errno;
25839 pInode->eFileLock = NO_LOCK;
25840 pFile->eFileLock = NO_LOCK;
25844 /* Decrement the count of locks against this same file. When the
25845 ** count reaches zero, close any other file descriptors whose close
25846 ** was deferred because of outstanding locks.
25848 pInode->nLock--;
25849 assert( pInode->nLock>=0 );
25850 if( pInode->nLock==0 ){
25851 closePendingFds(pFile);
25855 end_unlock:
25856 unixLeaveMutex();
25857 if( rc==SQLITE_OK ) pFile->eFileLock = eFileLock;
25858 return rc;
25862 ** Lower the locking level on file descriptor pFile to eFileLock. eFileLock
25863 ** must be either NO_LOCK or SHARED_LOCK.
25865 ** If the locking level of the file descriptor is already at or below
25866 ** the requested locking level, this routine is a no-op.
25868 static int unixUnlock(sqlite3_file *id, int eFileLock){
25869 return posixUnlock(id, eFileLock, 0);
25873 ** This function performs the parts of the "close file" operation
25874 ** common to all locking schemes. It closes the directory and file
25875 ** handles, if they are valid, and sets all fields of the unixFile
25876 ** structure to 0.
25878 ** It is *not* necessary to hold the mutex when this routine is called,
25879 ** even on VxWorks. A mutex will be acquired on VxWorks by the
25880 ** vxworksReleaseFileId() routine.
25882 static int closeUnixFile(sqlite3_file *id){
25883 unixFile *pFile = (unixFile*)id;
25884 if( pFile->h>=0 ){
25885 robust_close(pFile, pFile->h, __LINE__);
25886 pFile->h = -1;
25888 #if OS_VXWORKS
25889 if( pFile->pId ){
25890 if( pFile->isDelete ){
25891 osUnlink(pFile->pId->zCanonicalName);
25893 vxworksReleaseFileId(pFile->pId);
25894 pFile->pId = 0;
25896 #endif
25897 OSTRACE(("CLOSE %-3d\n", pFile->h));
25898 OpenCounter(-1);
25899 sqlite3_free(pFile->pUnused);
25900 memset(pFile, 0, sizeof(unixFile));
25901 return SQLITE_OK;
25905 ** Close a file.
25907 static int unixClose(sqlite3_file *id){
25908 int rc = SQLITE_OK;
25909 unixFile *pFile = (unixFile *)id;
25910 unixUnlock(id, NO_LOCK);
25911 unixEnterMutex();
25913 /* unixFile.pInode is always valid here. Otherwise, a different close
25914 ** routine (e.g. nolockClose()) would be called instead.
25916 assert( pFile->pInode->nLock>0 || pFile->pInode->bProcessLock==0 );
25917 if( ALWAYS(pFile->pInode) && pFile->pInode->nLock ){
25918 /* If there are outstanding locks, do not actually close the file just
25919 ** yet because that would clear those locks. Instead, add the file
25920 ** descriptor to pInode->pUnused list. It will be automatically closed
25921 ** when the last lock is cleared.
25923 setPendingFd(pFile);
25925 releaseInodeInfo(pFile);
25926 rc = closeUnixFile(id);
25927 unixLeaveMutex();
25928 return rc;
25931 /************** End of the posix advisory lock implementation *****************
25932 ******************************************************************************/
25934 /******************************************************************************
25935 ****************************** No-op Locking **********************************
25937 ** Of the various locking implementations available, this is by far the
25938 ** simplest: locking is ignored. No attempt is made to lock the database
25939 ** file for reading or writing.
25941 ** This locking mode is appropriate for use on read-only databases
25942 ** (ex: databases that are burned into CD-ROM, for example.) It can
25943 ** also be used if the application employs some external mechanism to
25944 ** prevent simultaneous access of the same database by two or more
25945 ** database connections. But there is a serious risk of database
25946 ** corruption if this locking mode is used in situations where multiple
25947 ** database connections are accessing the same database file at the same
25948 ** time and one or more of those connections are writing.
25951 static int nolockCheckReservedLock(sqlite3_file *NotUsed, int *pResOut){
25952 UNUSED_PARAMETER(NotUsed);
25953 *pResOut = 0;
25954 return SQLITE_OK;
25956 static int nolockLock(sqlite3_file *NotUsed, int NotUsed2){
25957 UNUSED_PARAMETER2(NotUsed, NotUsed2);
25958 return SQLITE_OK;
25960 static int nolockUnlock(sqlite3_file *NotUsed, int NotUsed2){
25961 UNUSED_PARAMETER2(NotUsed, NotUsed2);
25962 return SQLITE_OK;
25966 ** Close the file.
25968 static int nolockClose(sqlite3_file *id) {
25969 return closeUnixFile(id);
25972 /******************* End of the no-op lock implementation *********************
25973 ******************************************************************************/
25975 /******************************************************************************
25976 ************************* Begin dot-file Locking ******************************
25978 ** The dotfile locking implementation uses the existance of separate lock
25979 ** files in order to control access to the database. This works on just
25980 ** about every filesystem imaginable. But there are serious downsides:
25982 ** (1) There is zero concurrency. A single reader blocks all other
25983 ** connections from reading or writing the database.
25985 ** (2) An application crash or power loss can leave stale lock files
25986 ** sitting around that need to be cleared manually.
25988 ** Nevertheless, a dotlock is an appropriate locking mode for use if no
25989 ** other locking strategy is available.
25991 ** Dotfile locking works by creating a file in the same directory as the
25992 ** database and with the same name but with a ".lock" extension added.
25993 ** The existance of a lock file implies an EXCLUSIVE lock. All other lock
25994 ** types (SHARED, RESERVED, PENDING) are mapped into EXCLUSIVE.
25998 ** The file suffix added to the data base filename in order to create the
25999 ** lock file.
26001 #define DOTLOCK_SUFFIX ".lock"
26004 ** This routine checks if there is a RESERVED lock held on the specified
26005 ** file by this or any other process. If such a lock is held, set *pResOut
26006 ** to a non-zero value otherwise *pResOut is set to zero. The return value
26007 ** is set to SQLITE_OK unless an I/O error occurs during lock checking.
26009 ** In dotfile locking, either a lock exists or it does not. So in this
26010 ** variation of CheckReservedLock(), *pResOut is set to true if any lock
26011 ** is held on the file and false if the file is unlocked.
26013 static int dotlockCheckReservedLock(sqlite3_file *id, int *pResOut) {
26014 int rc = SQLITE_OK;
26015 int reserved = 0;
26016 unixFile *pFile = (unixFile*)id;
26018 SimulateIOError( return SQLITE_IOERR_CHECKRESERVEDLOCK; );
26020 assert( pFile );
26022 /* Check if a thread in this process holds such a lock */
26023 if( pFile->eFileLock>SHARED_LOCK ){
26024 /* Either this connection or some other connection in the same process
26025 ** holds a lock on the file. No need to check further. */
26026 reserved = 1;
26027 }else{
26028 /* The lock is held if and only if the lockfile exists */
26029 const char *zLockFile = (const char*)pFile->lockingContext;
26030 reserved = osAccess(zLockFile, 0)==0;
26032 OSTRACE(("TEST WR-LOCK %d %d %d (dotlock)\n", pFile->h, rc, reserved));
26033 *pResOut = reserved;
26034 return rc;
26038 ** Lock the file with the lock specified by parameter eFileLock - one
26039 ** of the following:
26041 ** (1) SHARED_LOCK
26042 ** (2) RESERVED_LOCK
26043 ** (3) PENDING_LOCK
26044 ** (4) EXCLUSIVE_LOCK
26046 ** Sometimes when requesting one lock state, additional lock states
26047 ** are inserted in between. The locking might fail on one of the later
26048 ** transitions leaving the lock state different from what it started but
26049 ** still short of its goal. The following chart shows the allowed
26050 ** transitions and the inserted intermediate states:
26052 ** UNLOCKED -> SHARED
26053 ** SHARED -> RESERVED
26054 ** SHARED -> (PENDING) -> EXCLUSIVE
26055 ** RESERVED -> (PENDING) -> EXCLUSIVE
26056 ** PENDING -> EXCLUSIVE
26058 ** This routine will only increase a lock. Use the sqlite3OsUnlock()
26059 ** routine to lower a locking level.
26061 ** With dotfile locking, we really only support state (4): EXCLUSIVE.
26062 ** But we track the other locking levels internally.
26064 static int dotlockLock(sqlite3_file *id, int eFileLock) {
26065 unixFile *pFile = (unixFile*)id;
26066 int fd;
26067 char *zLockFile = (char *)pFile->lockingContext;
26068 int rc = SQLITE_OK;
26071 /* If we have any lock, then the lock file already exists. All we have
26072 ** to do is adjust our internal record of the lock level.
26074 if( pFile->eFileLock > NO_LOCK ){
26075 pFile->eFileLock = eFileLock;
26076 #if !OS_VXWORKS
26077 /* Always update the timestamp on the old file */
26078 utimes(zLockFile, NULL);
26079 #endif
26080 return SQLITE_OK;
26083 /* grab an exclusive lock */
26084 fd = robust_open(zLockFile,O_RDONLY|O_CREAT|O_EXCL,0600);
26085 if( fd<0 ){
26086 /* failed to open/create the file, someone else may have stolen the lock */
26087 int tErrno = errno;
26088 if( EEXIST == tErrno ){
26089 rc = SQLITE_BUSY;
26090 } else {
26091 rc = sqliteErrorFromPosixError(tErrno, SQLITE_IOERR_LOCK);
26092 if( IS_LOCK_ERROR(rc) ){
26093 pFile->lastErrno = tErrno;
26096 return rc;
26098 robust_close(pFile, fd, __LINE__);
26100 /* got it, set the type and return ok */
26101 pFile->eFileLock = eFileLock;
26102 return rc;
26106 ** Lower the locking level on file descriptor pFile to eFileLock. eFileLock
26107 ** must be either NO_LOCK or SHARED_LOCK.
26109 ** If the locking level of the file descriptor is already at or below
26110 ** the requested locking level, this routine is a no-op.
26112 ** When the locking level reaches NO_LOCK, delete the lock file.
26114 static int dotlockUnlock(sqlite3_file *id, int eFileLock) {
26115 unixFile *pFile = (unixFile*)id;
26116 char *zLockFile = (char *)pFile->lockingContext;
26118 assert( pFile );
26119 OSTRACE(("UNLOCK %d %d was %d pid=%d (dotlock)\n", pFile->h, eFileLock,
26120 pFile->eFileLock, getpid()));
26121 assert( eFileLock<=SHARED_LOCK );
26123 /* no-op if possible */
26124 if( pFile->eFileLock==eFileLock ){
26125 return SQLITE_OK;
26128 /* To downgrade to shared, simply update our internal notion of the
26129 ** lock state. No need to mess with the file on disk.
26131 if( eFileLock==SHARED_LOCK ){
26132 pFile->eFileLock = SHARED_LOCK;
26133 return SQLITE_OK;
26136 /* To fully unlock the database, delete the lock file */
26137 assert( eFileLock==NO_LOCK );
26138 if( osUnlink(zLockFile) ){
26139 int rc = 0;
26140 int tErrno = errno;
26141 if( ENOENT != tErrno ){
26142 rc = SQLITE_IOERR_UNLOCK;
26144 if( IS_LOCK_ERROR(rc) ){
26145 pFile->lastErrno = tErrno;
26147 return rc;
26149 pFile->eFileLock = NO_LOCK;
26150 return SQLITE_OK;
26154 ** Close a file. Make sure the lock has been released before closing.
26156 static int dotlockClose(sqlite3_file *id) {
26157 int rc;
26158 if( id ){
26159 unixFile *pFile = (unixFile*)id;
26160 dotlockUnlock(id, NO_LOCK);
26161 sqlite3_free(pFile->lockingContext);
26163 rc = closeUnixFile(id);
26164 return rc;
26166 /****************** End of the dot-file lock implementation *******************
26167 ******************************************************************************/
26169 /******************************************************************************
26170 ************************** Begin flock Locking ********************************
26172 ** Use the flock() system call to do file locking.
26174 ** flock() locking is like dot-file locking in that the various
26175 ** fine-grain locking levels supported by SQLite are collapsed into
26176 ** a single exclusive lock. In other words, SHARED, RESERVED, and
26177 ** PENDING locks are the same thing as an EXCLUSIVE lock. SQLite
26178 ** still works when you do this, but concurrency is reduced since
26179 ** only a single process can be reading the database at a time.
26181 ** Omit this section if SQLITE_ENABLE_LOCKING_STYLE is turned off or if
26182 ** compiling for VXWORKS.
26184 #if SQLITE_ENABLE_LOCKING_STYLE && !OS_VXWORKS
26187 ** Retry flock() calls that fail with EINTR
26189 #ifdef EINTR
26190 static int robust_flock(int fd, int op){
26191 int rc;
26192 do{ rc = flock(fd,op); }while( rc<0 && errno==EINTR );
26193 return rc;
26195 #else
26196 # define robust_flock(a,b) flock(a,b)
26197 #endif
26201 ** This routine checks if there is a RESERVED lock held on the specified
26202 ** file by this or any other process. If such a lock is held, set *pResOut
26203 ** to a non-zero value otherwise *pResOut is set to zero. The return value
26204 ** is set to SQLITE_OK unless an I/O error occurs during lock checking.
26206 static int flockCheckReservedLock(sqlite3_file *id, int *pResOut){
26207 int rc = SQLITE_OK;
26208 int reserved = 0;
26209 unixFile *pFile = (unixFile*)id;
26211 SimulateIOError( return SQLITE_IOERR_CHECKRESERVEDLOCK; );
26213 assert( pFile );
26215 /* Check if a thread in this process holds such a lock */
26216 if( pFile->eFileLock>SHARED_LOCK ){
26217 reserved = 1;
26220 /* Otherwise see if some other process holds it. */
26221 if( !reserved ){
26222 /* attempt to get the lock */
26223 int lrc = robust_flock(pFile->h, LOCK_EX | LOCK_NB);
26224 if( !lrc ){
26225 /* got the lock, unlock it */
26226 lrc = robust_flock(pFile->h, LOCK_UN);
26227 if ( lrc ) {
26228 int tErrno = errno;
26229 /* unlock failed with an error */
26230 lrc = SQLITE_IOERR_UNLOCK;
26231 if( IS_LOCK_ERROR(lrc) ){
26232 pFile->lastErrno = tErrno;
26233 rc = lrc;
26236 } else {
26237 int tErrno = errno;
26238 reserved = 1;
26239 /* someone else might have it reserved */
26240 lrc = sqliteErrorFromPosixError(tErrno, SQLITE_IOERR_LOCK);
26241 if( IS_LOCK_ERROR(lrc) ){
26242 pFile->lastErrno = tErrno;
26243 rc = lrc;
26247 OSTRACE(("TEST WR-LOCK %d %d %d (flock)\n", pFile->h, rc, reserved));
26249 #ifdef SQLITE_IGNORE_FLOCK_LOCK_ERRORS
26250 if( (rc & SQLITE_IOERR) == SQLITE_IOERR ){
26251 rc = SQLITE_OK;
26252 reserved=1;
26254 #endif /* SQLITE_IGNORE_FLOCK_LOCK_ERRORS */
26255 *pResOut = reserved;
26256 return rc;
26260 ** Lock the file with the lock specified by parameter eFileLock - one
26261 ** of the following:
26263 ** (1) SHARED_LOCK
26264 ** (2) RESERVED_LOCK
26265 ** (3) PENDING_LOCK
26266 ** (4) EXCLUSIVE_LOCK
26268 ** Sometimes when requesting one lock state, additional lock states
26269 ** are inserted in between. The locking might fail on one of the later
26270 ** transitions leaving the lock state different from what it started but
26271 ** still short of its goal. The following chart shows the allowed
26272 ** transitions and the inserted intermediate states:
26274 ** UNLOCKED -> SHARED
26275 ** SHARED -> RESERVED
26276 ** SHARED -> (PENDING) -> EXCLUSIVE
26277 ** RESERVED -> (PENDING) -> EXCLUSIVE
26278 ** PENDING -> EXCLUSIVE
26280 ** flock() only really support EXCLUSIVE locks. We track intermediate
26281 ** lock states in the sqlite3_file structure, but all locks SHARED or
26282 ** above are really EXCLUSIVE locks and exclude all other processes from
26283 ** access the file.
26285 ** This routine will only increase a lock. Use the sqlite3OsUnlock()
26286 ** routine to lower a locking level.
26288 static int flockLock(sqlite3_file *id, int eFileLock) {
26289 int rc = SQLITE_OK;
26290 unixFile *pFile = (unixFile*)id;
26292 assert( pFile );
26294 /* if we already have a lock, it is exclusive.
26295 ** Just adjust level and punt on outta here. */
26296 if (pFile->eFileLock > NO_LOCK) {
26297 pFile->eFileLock = eFileLock;
26298 return SQLITE_OK;
26301 /* grab an exclusive lock */
26303 if (robust_flock(pFile->h, LOCK_EX | LOCK_NB)) {
26304 int tErrno = errno;
26305 /* didn't get, must be busy */
26306 rc = sqliteErrorFromPosixError(tErrno, SQLITE_IOERR_LOCK);
26307 if( IS_LOCK_ERROR(rc) ){
26308 pFile->lastErrno = tErrno;
26310 } else {
26311 /* got it, set the type and return ok */
26312 pFile->eFileLock = eFileLock;
26314 OSTRACE(("LOCK %d %s %s (flock)\n", pFile->h, azFileLock(eFileLock),
26315 rc==SQLITE_OK ? "ok" : "failed"));
26316 #ifdef SQLITE_IGNORE_FLOCK_LOCK_ERRORS
26317 if( (rc & SQLITE_IOERR) == SQLITE_IOERR ){
26318 rc = SQLITE_BUSY;
26320 #endif /* SQLITE_IGNORE_FLOCK_LOCK_ERRORS */
26321 return rc;
26326 ** Lower the locking level on file descriptor pFile to eFileLock. eFileLock
26327 ** must be either NO_LOCK or SHARED_LOCK.
26329 ** If the locking level of the file descriptor is already at or below
26330 ** the requested locking level, this routine is a no-op.
26332 static int flockUnlock(sqlite3_file *id, int eFileLock) {
26333 unixFile *pFile = (unixFile*)id;
26335 assert( pFile );
26336 OSTRACE(("UNLOCK %d %d was %d pid=%d (flock)\n", pFile->h, eFileLock,
26337 pFile->eFileLock, getpid()));
26338 assert( eFileLock<=SHARED_LOCK );
26340 /* no-op if possible */
26341 if( pFile->eFileLock==eFileLock ){
26342 return SQLITE_OK;
26345 /* shared can just be set because we always have an exclusive */
26346 if (eFileLock==SHARED_LOCK) {
26347 pFile->eFileLock = eFileLock;
26348 return SQLITE_OK;
26351 /* no, really, unlock. */
26352 if( robust_flock(pFile->h, LOCK_UN) ){
26353 #ifdef SQLITE_IGNORE_FLOCK_LOCK_ERRORS
26354 return SQLITE_OK;
26355 #endif /* SQLITE_IGNORE_FLOCK_LOCK_ERRORS */
26356 return SQLITE_IOERR_UNLOCK;
26357 }else{
26358 pFile->eFileLock = NO_LOCK;
26359 return SQLITE_OK;
26364 ** Close a file.
26366 static int flockClose(sqlite3_file *id) {
26367 if( id ){
26368 flockUnlock(id, NO_LOCK);
26370 return closeUnixFile(id);
26373 #endif /* SQLITE_ENABLE_LOCKING_STYLE && !OS_VXWORK */
26375 /******************* End of the flock lock implementation *********************
26376 ******************************************************************************/
26378 /******************************************************************************
26379 ************************ Begin Named Semaphore Locking ************************
26381 ** Named semaphore locking is only supported on VxWorks.
26383 ** Semaphore locking is like dot-lock and flock in that it really only
26384 ** supports EXCLUSIVE locking. Only a single process can read or write
26385 ** the database file at a time. This reduces potential concurrency, but
26386 ** makes the lock implementation much easier.
26388 #if OS_VXWORKS
26391 ** This routine checks if there is a RESERVED lock held on the specified
26392 ** file by this or any other process. If such a lock is held, set *pResOut
26393 ** to a non-zero value otherwise *pResOut is set to zero. The return value
26394 ** is set to SQLITE_OK unless an I/O error occurs during lock checking.
26396 static int semCheckReservedLock(sqlite3_file *id, int *pResOut) {
26397 int rc = SQLITE_OK;
26398 int reserved = 0;
26399 unixFile *pFile = (unixFile*)id;
26401 SimulateIOError( return SQLITE_IOERR_CHECKRESERVEDLOCK; );
26403 assert( pFile );
26405 /* Check if a thread in this process holds such a lock */
26406 if( pFile->eFileLock>SHARED_LOCK ){
26407 reserved = 1;
26410 /* Otherwise see if some other process holds it. */
26411 if( !reserved ){
26412 sem_t *pSem = pFile->pInode->pSem;
26413 struct stat statBuf;
26415 if( sem_trywait(pSem)==-1 ){
26416 int tErrno = errno;
26417 if( EAGAIN != tErrno ){
26418 rc = sqliteErrorFromPosixError(tErrno, SQLITE_IOERR_CHECKRESERVEDLOCK);
26419 pFile->lastErrno = tErrno;
26420 } else {
26421 /* someone else has the lock when we are in NO_LOCK */
26422 reserved = (pFile->eFileLock < SHARED_LOCK);
26424 }else{
26425 /* we could have it if we want it */
26426 sem_post(pSem);
26429 OSTRACE(("TEST WR-LOCK %d %d %d (sem)\n", pFile->h, rc, reserved));
26431 *pResOut = reserved;
26432 return rc;
26436 ** Lock the file with the lock specified by parameter eFileLock - one
26437 ** of the following:
26439 ** (1) SHARED_LOCK
26440 ** (2) RESERVED_LOCK
26441 ** (3) PENDING_LOCK
26442 ** (4) EXCLUSIVE_LOCK
26444 ** Sometimes when requesting one lock state, additional lock states
26445 ** are inserted in between. The locking might fail on one of the later
26446 ** transitions leaving the lock state different from what it started but
26447 ** still short of its goal. The following chart shows the allowed
26448 ** transitions and the inserted intermediate states:
26450 ** UNLOCKED -> SHARED
26451 ** SHARED -> RESERVED
26452 ** SHARED -> (PENDING) -> EXCLUSIVE
26453 ** RESERVED -> (PENDING) -> EXCLUSIVE
26454 ** PENDING -> EXCLUSIVE
26456 ** Semaphore locks only really support EXCLUSIVE locks. We track intermediate
26457 ** lock states in the sqlite3_file structure, but all locks SHARED or
26458 ** above are really EXCLUSIVE locks and exclude all other processes from
26459 ** access the file.
26461 ** This routine will only increase a lock. Use the sqlite3OsUnlock()
26462 ** routine to lower a locking level.
26464 static int semLock(sqlite3_file *id, int eFileLock) {
26465 unixFile *pFile = (unixFile*)id;
26466 int fd;
26467 sem_t *pSem = pFile->pInode->pSem;
26468 int rc = SQLITE_OK;
26470 /* if we already have a lock, it is exclusive.
26471 ** Just adjust level and punt on outta here. */
26472 if (pFile->eFileLock > NO_LOCK) {
26473 pFile->eFileLock = eFileLock;
26474 rc = SQLITE_OK;
26475 goto sem_end_lock;
26478 /* lock semaphore now but bail out when already locked. */
26479 if( sem_trywait(pSem)==-1 ){
26480 rc = SQLITE_BUSY;
26481 goto sem_end_lock;
26484 /* got it, set the type and return ok */
26485 pFile->eFileLock = eFileLock;
26487 sem_end_lock:
26488 return rc;
26492 ** Lower the locking level on file descriptor pFile to eFileLock. eFileLock
26493 ** must be either NO_LOCK or SHARED_LOCK.
26495 ** If the locking level of the file descriptor is already at or below
26496 ** the requested locking level, this routine is a no-op.
26498 static int semUnlock(sqlite3_file *id, int eFileLock) {
26499 unixFile *pFile = (unixFile*)id;
26500 sem_t *pSem = pFile->pInode->pSem;
26502 assert( pFile );
26503 assert( pSem );
26504 OSTRACE(("UNLOCK %d %d was %d pid=%d (sem)\n", pFile->h, eFileLock,
26505 pFile->eFileLock, getpid()));
26506 assert( eFileLock<=SHARED_LOCK );
26508 /* no-op if possible */
26509 if( pFile->eFileLock==eFileLock ){
26510 return SQLITE_OK;
26513 /* shared can just be set because we always have an exclusive */
26514 if (eFileLock==SHARED_LOCK) {
26515 pFile->eFileLock = eFileLock;
26516 return SQLITE_OK;
26519 /* no, really unlock. */
26520 if ( sem_post(pSem)==-1 ) {
26521 int rc, tErrno = errno;
26522 rc = sqliteErrorFromPosixError(tErrno, SQLITE_IOERR_UNLOCK);
26523 if( IS_LOCK_ERROR(rc) ){
26524 pFile->lastErrno = tErrno;
26526 return rc;
26528 pFile->eFileLock = NO_LOCK;
26529 return SQLITE_OK;
26533 ** Close a file.
26535 static int semClose(sqlite3_file *id) {
26536 if( id ){
26537 unixFile *pFile = (unixFile*)id;
26538 semUnlock(id, NO_LOCK);
26539 assert( pFile );
26540 unixEnterMutex();
26541 releaseInodeInfo(pFile);
26542 unixLeaveMutex();
26543 closeUnixFile(id);
26545 return SQLITE_OK;
26548 #endif /* OS_VXWORKS */
26550 ** Named semaphore locking is only available on VxWorks.
26552 *************** End of the named semaphore lock implementation ****************
26553 ******************************************************************************/
26556 /******************************************************************************
26557 *************************** Begin AFP Locking *********************************
26559 ** AFP is the Apple Filing Protocol. AFP is a network filesystem found
26560 ** on Apple Macintosh computers - both OS9 and OSX.
26562 ** Third-party implementations of AFP are available. But this code here
26563 ** only works on OSX.
26566 #if defined(__APPLE__) && SQLITE_ENABLE_LOCKING_STYLE
26568 ** The afpLockingContext structure contains all afp lock specific state
26570 typedef struct afpLockingContext afpLockingContext;
26571 struct afpLockingContext {
26572 int reserved;
26573 const char *dbPath; /* Name of the open file */
26576 struct ByteRangeLockPB2
26578 unsigned long long offset; /* offset to first byte to lock */
26579 unsigned long long length; /* nbr of bytes to lock */
26580 unsigned long long retRangeStart; /* nbr of 1st byte locked if successful */
26581 unsigned char unLockFlag; /* 1 = unlock, 0 = lock */
26582 unsigned char startEndFlag; /* 1=rel to end of fork, 0=rel to start */
26583 int fd; /* file desc to assoc this lock with */
26586 #define afpfsByteRangeLock2FSCTL _IOWR('z', 23, struct ByteRangeLockPB2)
26589 ** This is a utility for setting or clearing a bit-range lock on an
26590 ** AFP filesystem.
26592 ** Return SQLITE_OK on success, SQLITE_BUSY on failure.
26594 static int afpSetLock(
26595 const char *path, /* Name of the file to be locked or unlocked */
26596 unixFile *pFile, /* Open file descriptor on path */
26597 unsigned long long offset, /* First byte to be locked */
26598 unsigned long long length, /* Number of bytes to lock */
26599 int setLockFlag /* True to set lock. False to clear lock */
26601 struct ByteRangeLockPB2 pb;
26602 int err;
26604 pb.unLockFlag = setLockFlag ? 0 : 1;
26605 pb.startEndFlag = 0;
26606 pb.offset = offset;
26607 pb.length = length;
26608 pb.fd = pFile->h;
26610 OSTRACE(("AFPSETLOCK [%s] for %d%s in range %llx:%llx\n",
26611 (setLockFlag?"ON":"OFF"), pFile->h, (pb.fd==-1?"[testval-1]":""),
26612 offset, length));
26613 err = fsctl(path, afpfsByteRangeLock2FSCTL, &pb, 0);
26614 if ( err==-1 ) {
26615 int rc;
26616 int tErrno = errno;
26617 OSTRACE(("AFPSETLOCK failed to fsctl() '%s' %d %s\n",
26618 path, tErrno, strerror(tErrno)));
26619 #ifdef SQLITE_IGNORE_AFP_LOCK_ERRORS
26620 rc = SQLITE_BUSY;
26621 #else
26622 rc = sqliteErrorFromPosixError(tErrno,
26623 setLockFlag ? SQLITE_IOERR_LOCK : SQLITE_IOERR_UNLOCK);
26624 #endif /* SQLITE_IGNORE_AFP_LOCK_ERRORS */
26625 if( IS_LOCK_ERROR(rc) ){
26626 pFile->lastErrno = tErrno;
26628 return rc;
26629 } else {
26630 return SQLITE_OK;
26635 ** This routine checks if there is a RESERVED lock held on the specified
26636 ** file by this or any other process. If such a lock is held, set *pResOut
26637 ** to a non-zero value otherwise *pResOut is set to zero. The return value
26638 ** is set to SQLITE_OK unless an I/O error occurs during lock checking.
26640 static int afpCheckReservedLock(sqlite3_file *id, int *pResOut){
26641 int rc = SQLITE_OK;
26642 int reserved = 0;
26643 unixFile *pFile = (unixFile*)id;
26645 SimulateIOError( return SQLITE_IOERR_CHECKRESERVEDLOCK; );
26647 assert( pFile );
26648 afpLockingContext *context = (afpLockingContext *) pFile->lockingContext;
26649 if( context->reserved ){
26650 *pResOut = 1;
26651 return SQLITE_OK;
26653 unixEnterMutex(); /* Because pFile->pInode is shared across threads */
26655 /* Check if a thread in this process holds such a lock */
26656 if( pFile->pInode->eFileLock>SHARED_LOCK ){
26657 reserved = 1;
26660 /* Otherwise see if some other process holds it.
26662 if( !reserved ){
26663 /* lock the RESERVED byte */
26664 int lrc = afpSetLock(context->dbPath, pFile, RESERVED_BYTE, 1,1);
26665 if( SQLITE_OK==lrc ){
26666 /* if we succeeded in taking the reserved lock, unlock it to restore
26667 ** the original state */
26668 lrc = afpSetLock(context->dbPath, pFile, RESERVED_BYTE, 1, 0);
26669 } else {
26670 /* if we failed to get the lock then someone else must have it */
26671 reserved = 1;
26673 if( IS_LOCK_ERROR(lrc) ){
26674 rc=lrc;
26678 unixLeaveMutex();
26679 OSTRACE(("TEST WR-LOCK %d %d %d (afp)\n", pFile->h, rc, reserved));
26681 *pResOut = reserved;
26682 return rc;
26686 ** Lock the file with the lock specified by parameter eFileLock - one
26687 ** of the following:
26689 ** (1) SHARED_LOCK
26690 ** (2) RESERVED_LOCK
26691 ** (3) PENDING_LOCK
26692 ** (4) EXCLUSIVE_LOCK
26694 ** Sometimes when requesting one lock state, additional lock states
26695 ** are inserted in between. The locking might fail on one of the later
26696 ** transitions leaving the lock state different from what it started but
26697 ** still short of its goal. The following chart shows the allowed
26698 ** transitions and the inserted intermediate states:
26700 ** UNLOCKED -> SHARED
26701 ** SHARED -> RESERVED
26702 ** SHARED -> (PENDING) -> EXCLUSIVE
26703 ** RESERVED -> (PENDING) -> EXCLUSIVE
26704 ** PENDING -> EXCLUSIVE
26706 ** This routine will only increase a lock. Use the sqlite3OsUnlock()
26707 ** routine to lower a locking level.
26709 static int afpLock(sqlite3_file *id, int eFileLock){
26710 int rc = SQLITE_OK;
26711 unixFile *pFile = (unixFile*)id;
26712 unixInodeInfo *pInode = pFile->pInode;
26713 afpLockingContext *context = (afpLockingContext *) pFile->lockingContext;
26715 assert( pFile );
26716 OSTRACE(("LOCK %d %s was %s(%s,%d) pid=%d (afp)\n", pFile->h,
26717 azFileLock(eFileLock), azFileLock(pFile->eFileLock),
26718 azFileLock(pInode->eFileLock), pInode->nShared , getpid()));
26720 /* If there is already a lock of this type or more restrictive on the
26721 ** unixFile, do nothing. Don't use the afp_end_lock: exit path, as
26722 ** unixEnterMutex() hasn't been called yet.
26724 if( pFile->eFileLock>=eFileLock ){
26725 OSTRACE(("LOCK %d %s ok (already held) (afp)\n", pFile->h,
26726 azFileLock(eFileLock)));
26727 return SQLITE_OK;
26730 /* Make sure the locking sequence is correct
26731 ** (1) We never move from unlocked to anything higher than shared lock.
26732 ** (2) SQLite never explicitly requests a pendig lock.
26733 ** (3) A shared lock is always held when a reserve lock is requested.
26735 assert( pFile->eFileLock!=NO_LOCK || eFileLock==SHARED_LOCK );
26736 assert( eFileLock!=PENDING_LOCK );
26737 assert( eFileLock!=RESERVED_LOCK || pFile->eFileLock==SHARED_LOCK );
26739 /* This mutex is needed because pFile->pInode is shared across threads
26741 unixEnterMutex();
26742 pInode = pFile->pInode;
26744 /* If some thread using this PID has a lock via a different unixFile*
26745 ** handle that precludes the requested lock, return BUSY.
26747 if( (pFile->eFileLock!=pInode->eFileLock &&
26748 (pInode->eFileLock>=PENDING_LOCK || eFileLock>SHARED_LOCK))
26750 rc = SQLITE_BUSY;
26751 goto afp_end_lock;
26754 /* If a SHARED lock is requested, and some thread using this PID already
26755 ** has a SHARED or RESERVED lock, then increment reference counts and
26756 ** return SQLITE_OK.
26758 if( eFileLock==SHARED_LOCK &&
26759 (pInode->eFileLock==SHARED_LOCK || pInode->eFileLock==RESERVED_LOCK) ){
26760 assert( eFileLock==SHARED_LOCK );
26761 assert( pFile->eFileLock==0 );
26762 assert( pInode->nShared>0 );
26763 pFile->eFileLock = SHARED_LOCK;
26764 pInode->nShared++;
26765 pInode->nLock++;
26766 goto afp_end_lock;
26769 /* A PENDING lock is needed before acquiring a SHARED lock and before
26770 ** acquiring an EXCLUSIVE lock. For the SHARED lock, the PENDING will
26771 ** be released.
26773 if( eFileLock==SHARED_LOCK
26774 || (eFileLock==EXCLUSIVE_LOCK && pFile->eFileLock<PENDING_LOCK)
26776 int failed;
26777 failed = afpSetLock(context->dbPath, pFile, PENDING_BYTE, 1, 1);
26778 if (failed) {
26779 rc = failed;
26780 goto afp_end_lock;
26784 /* If control gets to this point, then actually go ahead and make
26785 ** operating system calls for the specified lock.
26787 if( eFileLock==SHARED_LOCK ){
26788 int lrc1, lrc2, lrc1Errno;
26789 long lk, mask;
26791 assert( pInode->nShared==0 );
26792 assert( pInode->eFileLock==0 );
26794 mask = (sizeof(long)==8) ? LARGEST_INT64 : 0x7fffffff;
26795 /* Now get the read-lock SHARED_LOCK */
26796 /* note that the quality of the randomness doesn't matter that much */
26797 lk = random();
26798 pInode->sharedByte = (lk & mask)%(SHARED_SIZE - 1);
26799 lrc1 = afpSetLock(context->dbPath, pFile,
26800 SHARED_FIRST+pInode->sharedByte, 1, 1);
26801 if( IS_LOCK_ERROR(lrc1) ){
26802 lrc1Errno = pFile->lastErrno;
26804 /* Drop the temporary PENDING lock */
26805 lrc2 = afpSetLock(context->dbPath, pFile, PENDING_BYTE, 1, 0);
26807 if( IS_LOCK_ERROR(lrc1) ) {
26808 pFile->lastErrno = lrc1Errno;
26809 rc = lrc1;
26810 goto afp_end_lock;
26811 } else if( IS_LOCK_ERROR(lrc2) ){
26812 rc = lrc2;
26813 goto afp_end_lock;
26814 } else if( lrc1 != SQLITE_OK ) {
26815 rc = lrc1;
26816 } else {
26817 pFile->eFileLock = SHARED_LOCK;
26818 pInode->nLock++;
26819 pInode->nShared = 1;
26821 }else if( eFileLock==EXCLUSIVE_LOCK && pInode->nShared>1 ){
26822 /* We are trying for an exclusive lock but another thread in this
26823 ** same process is still holding a shared lock. */
26824 rc = SQLITE_BUSY;
26825 }else{
26826 /* The request was for a RESERVED or EXCLUSIVE lock. It is
26827 ** assumed that there is a SHARED or greater lock on the file
26828 ** already.
26830 int failed = 0;
26831 assert( 0!=pFile->eFileLock );
26832 if (eFileLock >= RESERVED_LOCK && pFile->eFileLock < RESERVED_LOCK) {
26833 /* Acquire a RESERVED lock */
26834 failed = afpSetLock(context->dbPath, pFile, RESERVED_BYTE, 1,1);
26835 if( !failed ){
26836 context->reserved = 1;
26839 if (!failed && eFileLock == EXCLUSIVE_LOCK) {
26840 /* Acquire an EXCLUSIVE lock */
26842 /* Remove the shared lock before trying the range. we'll need to
26843 ** reestablish the shared lock if we can't get the afpUnlock
26845 if( !(failed = afpSetLock(context->dbPath, pFile, SHARED_FIRST +
26846 pInode->sharedByte, 1, 0)) ){
26847 int failed2 = SQLITE_OK;
26848 /* now attemmpt to get the exclusive lock range */
26849 failed = afpSetLock(context->dbPath, pFile, SHARED_FIRST,
26850 SHARED_SIZE, 1);
26851 if( failed && (failed2 = afpSetLock(context->dbPath, pFile,
26852 SHARED_FIRST + pInode->sharedByte, 1, 1)) ){
26853 /* Can't reestablish the shared lock. Sqlite can't deal, this is
26854 ** a critical I/O error
26856 rc = ((failed & SQLITE_IOERR) == SQLITE_IOERR) ? failed2 :
26857 SQLITE_IOERR_LOCK;
26858 goto afp_end_lock;
26860 }else{
26861 rc = failed;
26864 if( failed ){
26865 rc = failed;
26869 if( rc==SQLITE_OK ){
26870 pFile->eFileLock = eFileLock;
26871 pInode->eFileLock = eFileLock;
26872 }else if( eFileLock==EXCLUSIVE_LOCK ){
26873 pFile->eFileLock = PENDING_LOCK;
26874 pInode->eFileLock = PENDING_LOCK;
26877 afp_end_lock:
26878 unixLeaveMutex();
26879 OSTRACE(("LOCK %d %s %s (afp)\n", pFile->h, azFileLock(eFileLock),
26880 rc==SQLITE_OK ? "ok" : "failed"));
26881 return rc;
26885 ** Lower the locking level on file descriptor pFile to eFileLock. eFileLock
26886 ** must be either NO_LOCK or SHARED_LOCK.
26888 ** If the locking level of the file descriptor is already at or below
26889 ** the requested locking level, this routine is a no-op.
26891 static int afpUnlock(sqlite3_file *id, int eFileLock) {
26892 int rc = SQLITE_OK;
26893 unixFile *pFile = (unixFile*)id;
26894 unixInodeInfo *pInode;
26895 afpLockingContext *context = (afpLockingContext *) pFile->lockingContext;
26896 int skipShared = 0;
26897 #ifdef SQLITE_TEST
26898 int h = pFile->h;
26899 #endif
26901 assert( pFile );
26902 OSTRACE(("UNLOCK %d %d was %d(%d,%d) pid=%d (afp)\n", pFile->h, eFileLock,
26903 pFile->eFileLock, pFile->pInode->eFileLock, pFile->pInode->nShared,
26904 getpid()));
26906 assert( eFileLock<=SHARED_LOCK );
26907 if( pFile->eFileLock<=eFileLock ){
26908 return SQLITE_OK;
26910 unixEnterMutex();
26911 pInode = pFile->pInode;
26912 assert( pInode->nShared!=0 );
26913 if( pFile->eFileLock>SHARED_LOCK ){
26914 assert( pInode->eFileLock==pFile->eFileLock );
26915 SimulateIOErrorBenign(1);
26916 SimulateIOError( h=(-1) )
26917 SimulateIOErrorBenign(0);
26919 #ifndef NDEBUG
26920 /* When reducing a lock such that other processes can start
26921 ** reading the database file again, make sure that the
26922 ** transaction counter was updated if any part of the database
26923 ** file changed. If the transaction counter is not updated,
26924 ** other connections to the same file might not realize that
26925 ** the file has changed and hence might not know to flush their
26926 ** cache. The use of a stale cache can lead to database corruption.
26928 assert( pFile->inNormalWrite==0
26929 || pFile->dbUpdate==0
26930 || pFile->transCntrChng==1 );
26931 pFile->inNormalWrite = 0;
26932 #endif
26934 if( pFile->eFileLock==EXCLUSIVE_LOCK ){
26935 rc = afpSetLock(context->dbPath, pFile, SHARED_FIRST, SHARED_SIZE, 0);
26936 if( rc==SQLITE_OK && (eFileLock==SHARED_LOCK || pInode->nShared>1) ){
26937 /* only re-establish the shared lock if necessary */
26938 int sharedLockByte = SHARED_FIRST+pInode->sharedByte;
26939 rc = afpSetLock(context->dbPath, pFile, sharedLockByte, 1, 1);
26940 } else {
26941 skipShared = 1;
26944 if( rc==SQLITE_OK && pFile->eFileLock>=PENDING_LOCK ){
26945 rc = afpSetLock(context->dbPath, pFile, PENDING_BYTE, 1, 0);
26947 if( rc==SQLITE_OK && pFile->eFileLock>=RESERVED_LOCK && context->reserved ){
26948 rc = afpSetLock(context->dbPath, pFile, RESERVED_BYTE, 1, 0);
26949 if( !rc ){
26950 context->reserved = 0;
26953 if( rc==SQLITE_OK && (eFileLock==SHARED_LOCK || pInode->nShared>1)){
26954 pInode->eFileLock = SHARED_LOCK;
26957 if( rc==SQLITE_OK && eFileLock==NO_LOCK ){
26959 /* Decrement the shared lock counter. Release the lock using an
26960 ** OS call only when all threads in this same process have released
26961 ** the lock.
26963 unsigned long long sharedLockByte = SHARED_FIRST+pInode->sharedByte;
26964 pInode->nShared--;
26965 if( pInode->nShared==0 ){
26966 SimulateIOErrorBenign(1);
26967 SimulateIOError( h=(-1) )
26968 SimulateIOErrorBenign(0);
26969 if( !skipShared ){
26970 rc = afpSetLock(context->dbPath, pFile, sharedLockByte, 1, 0);
26972 if( !rc ){
26973 pInode->eFileLock = NO_LOCK;
26974 pFile->eFileLock = NO_LOCK;
26977 if( rc==SQLITE_OK ){
26978 pInode->nLock--;
26979 assert( pInode->nLock>=0 );
26980 if( pInode->nLock==0 ){
26981 closePendingFds(pFile);
26986 unixLeaveMutex();
26987 if( rc==SQLITE_OK ) pFile->eFileLock = eFileLock;
26988 return rc;
26992 ** Close a file & cleanup AFP specific locking context
26994 static int afpClose(sqlite3_file *id) {
26995 int rc = SQLITE_OK;
26996 if( id ){
26997 unixFile *pFile = (unixFile*)id;
26998 afpUnlock(id, NO_LOCK);
26999 unixEnterMutex();
27000 if( pFile->pInode && pFile->pInode->nLock ){
27001 /* If there are outstanding locks, do not actually close the file just
27002 ** yet because that would clear those locks. Instead, add the file
27003 ** descriptor to pInode->aPending. It will be automatically closed when
27004 ** the last lock is cleared.
27006 setPendingFd(pFile);
27008 releaseInodeInfo(pFile);
27009 sqlite3_free(pFile->lockingContext);
27010 rc = closeUnixFile(id);
27011 unixLeaveMutex();
27013 return rc;
27016 #endif /* defined(__APPLE__) && SQLITE_ENABLE_LOCKING_STYLE */
27018 ** The code above is the AFP lock implementation. The code is specific
27019 ** to MacOSX and does not work on other unix platforms. No alternative
27020 ** is available. If you don't compile for a mac, then the "unix-afp"
27021 ** VFS is not available.
27023 ********************* End of the AFP lock implementation **********************
27024 ******************************************************************************/
27026 /******************************************************************************
27027 *************************** Begin NFS Locking ********************************/
27029 #if defined(__APPLE__) && SQLITE_ENABLE_LOCKING_STYLE
27031 ** Lower the locking level on file descriptor pFile to eFileLock. eFileLock
27032 ** must be either NO_LOCK or SHARED_LOCK.
27034 ** If the locking level of the file descriptor is already at or below
27035 ** the requested locking level, this routine is a no-op.
27037 static int nfsUnlock(sqlite3_file *id, int eFileLock){
27038 return posixUnlock(id, eFileLock, 1);
27041 #endif /* defined(__APPLE__) && SQLITE_ENABLE_LOCKING_STYLE */
27043 ** The code above is the NFS lock implementation. The code is specific
27044 ** to MacOSX and does not work on other unix platforms. No alternative
27045 ** is available.
27047 ********************* End of the NFS lock implementation **********************
27048 ******************************************************************************/
27050 /******************************************************************************
27051 **************** Non-locking sqlite3_file methods *****************************
27053 ** The next division contains implementations for all methods of the
27054 ** sqlite3_file object other than the locking methods. The locking
27055 ** methods were defined in divisions above (one locking method per
27056 ** division). Those methods that are common to all locking modes
27057 ** are gather together into this division.
27061 ** Seek to the offset passed as the second argument, then read cnt
27062 ** bytes into pBuf. Return the number of bytes actually read.
27064 ** NB: If you define USE_PREAD or USE_PREAD64, then it might also
27065 ** be necessary to define _XOPEN_SOURCE to be 500. This varies from
27066 ** one system to another. Since SQLite does not define USE_PREAD
27067 ** any any form by default, we will not attempt to define _XOPEN_SOURCE.
27068 ** See tickets #2741 and #2681.
27070 ** To avoid stomping the errno value on a failed read the lastErrno value
27071 ** is set before returning.
27073 static int seekAndRead(unixFile *id, sqlite3_int64 offset, void *pBuf, int cnt){
27074 int got;
27075 #if (!defined(USE_PREAD) && !defined(USE_PREAD64))
27076 i64 newOffset;
27077 #endif
27078 TIMER_START;
27079 #if defined(USE_PREAD)
27080 do{ got = osPread(id->h, pBuf, cnt, offset); }while( got<0 && errno==EINTR );
27081 SimulateIOError( got = -1 );
27082 #elif defined(USE_PREAD64)
27083 do{ got = osPread64(id->h, pBuf, cnt, offset); }while( got<0 && errno==EINTR);
27084 SimulateIOError( got = -1 );
27085 #else
27086 newOffset = lseek(id->h, offset, SEEK_SET);
27087 SimulateIOError( newOffset-- );
27088 if( newOffset!=offset ){
27089 if( newOffset == -1 ){
27090 ((unixFile*)id)->lastErrno = errno;
27091 }else{
27092 ((unixFile*)id)->lastErrno = 0;
27094 return -1;
27096 do{ got = osRead(id->h, pBuf, cnt); }while( got<0 && errno==EINTR );
27097 #endif
27098 TIMER_END;
27099 if( got<0 ){
27100 ((unixFile*)id)->lastErrno = errno;
27102 OSTRACE(("READ %-3d %5d %7lld %llu\n", id->h, got, offset, TIMER_ELAPSED));
27103 return got;
27107 ** Read data from a file into a buffer. Return SQLITE_OK if all
27108 ** bytes were read successfully and SQLITE_IOERR if anything goes
27109 ** wrong.
27111 static int unixRead(
27112 sqlite3_file *id,
27113 void *pBuf,
27114 int amt,
27115 sqlite3_int64 offset
27117 unixFile *pFile = (unixFile *)id;
27118 int got;
27119 assert( id );
27121 /* If this is a database file (not a journal, master-journal or temp
27122 ** file), the bytes in the locking range should never be read or written. */
27123 #if 0
27124 assert( pFile->pUnused==0
27125 || offset>=PENDING_BYTE+512
27126 || offset+amt<=PENDING_BYTE
27128 #endif
27130 got = seekAndRead(pFile, offset, pBuf, amt);
27131 if( got==amt ){
27132 return SQLITE_OK;
27133 }else if( got<0 ){
27134 /* lastErrno set by seekAndRead */
27135 return SQLITE_IOERR_READ;
27136 }else{
27137 pFile->lastErrno = 0; /* not a system error */
27138 /* Unread parts of the buffer must be zero-filled */
27139 memset(&((char*)pBuf)[got], 0, amt-got);
27140 return SQLITE_IOERR_SHORT_READ;
27145 ** Seek to the offset in id->offset then read cnt bytes into pBuf.
27146 ** Return the number of bytes actually read. Update the offset.
27148 ** To avoid stomping the errno value on a failed write the lastErrno value
27149 ** is set before returning.
27151 static int seekAndWrite(unixFile *id, i64 offset, const void *pBuf, int cnt){
27152 int got;
27153 #if (!defined(USE_PREAD) && !defined(USE_PREAD64))
27154 i64 newOffset;
27155 #endif
27156 TIMER_START;
27157 #if defined(USE_PREAD)
27158 do{ got = osPwrite(id->h, pBuf, cnt, offset); }while( got<0 && errno==EINTR );
27159 #elif defined(USE_PREAD64)
27160 do{ got = osPwrite64(id->h, pBuf, cnt, offset);}while( got<0 && errno==EINTR);
27161 #else
27162 newOffset = lseek(id->h, offset, SEEK_SET);
27163 SimulateIOError( newOffset-- );
27164 if( newOffset!=offset ){
27165 if( newOffset == -1 ){
27166 ((unixFile*)id)->lastErrno = errno;
27167 }else{
27168 ((unixFile*)id)->lastErrno = 0;
27170 return -1;
27172 do{ got = osWrite(id->h, pBuf, cnt); }while( got<0 && errno==EINTR );
27173 #endif
27174 TIMER_END;
27175 if( got<0 ){
27176 ((unixFile*)id)->lastErrno = errno;
27179 OSTRACE(("WRITE %-3d %5d %7lld %llu\n", id->h, got, offset, TIMER_ELAPSED));
27180 return got;
27185 ** Write data from a buffer into a file. Return SQLITE_OK on success
27186 ** or some other error code on failure.
27188 static int unixWrite(
27189 sqlite3_file *id,
27190 const void *pBuf,
27191 int amt,
27192 sqlite3_int64 offset
27194 unixFile *pFile = (unixFile*)id;
27195 int wrote = 0;
27196 assert( id );
27197 assert( amt>0 );
27199 /* If this is a database file (not a journal, master-journal or temp
27200 ** file), the bytes in the locking range should never be read or written. */
27201 #if 0
27202 assert( pFile->pUnused==0
27203 || offset>=PENDING_BYTE+512
27204 || offset+amt<=PENDING_BYTE
27206 #endif
27208 #ifndef NDEBUG
27209 /* If we are doing a normal write to a database file (as opposed to
27210 ** doing a hot-journal rollback or a write to some file other than a
27211 ** normal database file) then record the fact that the database
27212 ** has changed. If the transaction counter is modified, record that
27213 ** fact too.
27215 if( pFile->inNormalWrite ){
27216 pFile->dbUpdate = 1; /* The database has been modified */
27217 if( offset<=24 && offset+amt>=27 ){
27218 int rc;
27219 char oldCntr[4];
27220 SimulateIOErrorBenign(1);
27221 rc = seekAndRead(pFile, 24, oldCntr, 4);
27222 SimulateIOErrorBenign(0);
27223 if( rc!=4 || memcmp(oldCntr, &((char*)pBuf)[24-offset], 4)!=0 ){
27224 pFile->transCntrChng = 1; /* The transaction counter has changed */
27228 #endif
27230 while( amt>0 && (wrote = seekAndWrite(pFile, offset, pBuf, amt))>0 ){
27231 amt -= wrote;
27232 offset += wrote;
27233 pBuf = &((char*)pBuf)[wrote];
27235 SimulateIOError(( wrote=(-1), amt=1 ));
27236 SimulateDiskfullError(( wrote=0, amt=1 ));
27238 if( amt>0 ){
27239 if( wrote<0 ){
27240 /* lastErrno set by seekAndWrite */
27241 return SQLITE_IOERR_WRITE;
27242 }else{
27243 pFile->lastErrno = 0; /* not a system error */
27244 return SQLITE_FULL;
27248 return SQLITE_OK;
27251 #ifdef SQLITE_TEST
27253 ** Count the number of fullsyncs and normal syncs. This is used to test
27254 ** that syncs and fullsyncs are occurring at the right times.
27256 SQLITE_API int sqlite3_sync_count = 0;
27257 SQLITE_API int sqlite3_fullsync_count = 0;
27258 #endif
27261 ** We do not trust systems to provide a working fdatasync(). Some do.
27262 ** Others do no. To be safe, we will stick with the (slower) fsync().
27263 ** If you know that your system does support fdatasync() correctly,
27264 ** then simply compile with -Dfdatasync=fdatasync
27266 #if !defined(fdatasync) && !defined(__linux__)
27267 # define fdatasync fsync
27268 #endif
27271 ** Define HAVE_FULLFSYNC to 0 or 1 depending on whether or not
27272 ** the F_FULLFSYNC macro is defined. F_FULLFSYNC is currently
27273 ** only available on Mac OS X. But that could change.
27275 #ifdef F_FULLFSYNC
27276 # define HAVE_FULLFSYNC 1
27277 #else
27278 # define HAVE_FULLFSYNC 0
27279 #endif
27283 ** The fsync() system call does not work as advertised on many
27284 ** unix systems. The following procedure is an attempt to make
27285 ** it work better.
27287 ** The SQLITE_NO_SYNC macro disables all fsync()s. This is useful
27288 ** for testing when we want to run through the test suite quickly.
27289 ** You are strongly advised *not* to deploy with SQLITE_NO_SYNC
27290 ** enabled, however, since with SQLITE_NO_SYNC enabled, an OS crash
27291 ** or power failure will likely corrupt the database file.
27293 ** SQLite sets the dataOnly flag if the size of the file is unchanged.
27294 ** The idea behind dataOnly is that it should only write the file content
27295 ** to disk, not the inode. We only set dataOnly if the file size is
27296 ** unchanged since the file size is part of the inode. However,
27297 ** Ted Ts'o tells us that fdatasync() will also write the inode if the
27298 ** file size has changed. The only real difference between fdatasync()
27299 ** and fsync(), Ted tells us, is that fdatasync() will not flush the
27300 ** inode if the mtime or owner or other inode attributes have changed.
27301 ** We only care about the file size, not the other file attributes, so
27302 ** as far as SQLite is concerned, an fdatasync() is always adequate.
27303 ** So, we always use fdatasync() if it is available, regardless of
27304 ** the value of the dataOnly flag.
27306 static int full_fsync(int fd, int fullSync, int dataOnly){
27307 int rc;
27309 /* The following "ifdef/elif/else/" block has the same structure as
27310 ** the one below. It is replicated here solely to avoid cluttering
27311 ** up the real code with the UNUSED_PARAMETER() macros.
27313 #ifdef SQLITE_NO_SYNC
27314 UNUSED_PARAMETER(fd);
27315 UNUSED_PARAMETER(fullSync);
27316 UNUSED_PARAMETER(dataOnly);
27317 #elif HAVE_FULLFSYNC
27318 UNUSED_PARAMETER(dataOnly);
27319 #else
27320 UNUSED_PARAMETER(fullSync);
27321 UNUSED_PARAMETER(dataOnly);
27322 #endif
27324 /* Record the number of times that we do a normal fsync() and
27325 ** FULLSYNC. This is used during testing to verify that this procedure
27326 ** gets called with the correct arguments.
27328 #ifdef SQLITE_TEST
27329 if( fullSync ) sqlite3_fullsync_count++;
27330 sqlite3_sync_count++;
27331 #endif
27333 /* If we compiled with the SQLITE_NO_SYNC flag, then syncing is a
27334 ** no-op
27336 #ifdef SQLITE_NO_SYNC
27337 rc = SQLITE_OK;
27338 #elif HAVE_FULLFSYNC
27339 if( fullSync ){
27340 rc = osFcntl(fd, F_FULLFSYNC, 0);
27341 }else{
27342 rc = 1;
27344 /* If the FULLFSYNC failed, fall back to attempting an fsync().
27345 ** It shouldn't be possible for fullfsync to fail on the local
27346 ** file system (on OSX), so failure indicates that FULLFSYNC
27347 ** isn't supported for this file system. So, attempt an fsync
27348 ** and (for now) ignore the overhead of a superfluous fcntl call.
27349 ** It'd be better to detect fullfsync support once and avoid
27350 ** the fcntl call every time sync is called.
27352 if( rc ) rc = fsync(fd);
27354 #elif defined(__APPLE__)
27355 /* fdatasync() on HFS+ doesn't yet flush the file size if it changed correctly
27356 ** so currently we default to the macro that redefines fdatasync to fsync
27358 rc = fsync(fd);
27359 #else
27360 rc = fdatasync(fd);
27361 #if OS_VXWORKS
27362 if( rc==-1 && errno==ENOTSUP ){
27363 rc = fsync(fd);
27365 #endif /* OS_VXWORKS */
27366 #endif /* ifdef SQLITE_NO_SYNC elif HAVE_FULLFSYNC */
27368 if( OS_VXWORKS && rc!= -1 ){
27369 rc = 0;
27371 return rc;
27375 ** Open a file descriptor to the directory containing file zFilename.
27376 ** If successful, *pFd is set to the opened file descriptor and
27377 ** SQLITE_OK is returned. If an error occurs, either SQLITE_NOMEM
27378 ** or SQLITE_CANTOPEN is returned and *pFd is set to an undefined
27379 ** value.
27381 ** The directory file descriptor is used for only one thing - to
27382 ** fsync() a directory to make sure file creation and deletion events
27383 ** are flushed to disk. Such fsyncs are not needed on newer
27384 ** journaling filesystems, but are required on older filesystems.
27386 ** This routine can be overridden using the xSetSysCall interface.
27387 ** The ability to override this routine was added in support of the
27388 ** chromium sandbox. Opening a directory is a security risk (we are
27389 ** told) so making it overrideable allows the chromium sandbox to
27390 ** replace this routine with a harmless no-op. To make this routine
27391 ** a no-op, replace it with a stub that returns SQLITE_OK but leaves
27392 ** *pFd set to a negative number.
27394 ** If SQLITE_OK is returned, the caller is responsible for closing
27395 ** the file descriptor *pFd using close().
27397 static int openDirectory(const char *zFilename, int *pFd){
27398 int ii;
27399 int fd = -1;
27400 char zDirname[MAX_PATHNAME+1];
27402 sqlite3_snprintf(MAX_PATHNAME, zDirname, "%s", zFilename);
27403 for(ii=(int)strlen(zDirname); ii>1 && zDirname[ii]!='/'; ii--);
27404 if( ii>0 ){
27405 zDirname[ii] = '\0';
27406 fd = robust_open(zDirname, O_RDONLY|O_BINARY, 0);
27407 if( fd>=0 ){
27408 #ifdef FD_CLOEXEC
27409 osFcntl(fd, F_SETFD, osFcntl(fd, F_GETFD, 0) | FD_CLOEXEC);
27410 #endif
27411 OSTRACE(("OPENDIR %-3d %s\n", fd, zDirname));
27414 *pFd = fd;
27415 return (fd>=0?SQLITE_OK:unixLogError(SQLITE_CANTOPEN_BKPT, "open", zDirname));
27419 ** Make sure all writes to a particular file are committed to disk.
27421 ** If dataOnly==0 then both the file itself and its metadata (file
27422 ** size, access time, etc) are synced. If dataOnly!=0 then only the
27423 ** file data is synced.
27425 ** Under Unix, also make sure that the directory entry for the file
27426 ** has been created by fsync-ing the directory that contains the file.
27427 ** If we do not do this and we encounter a power failure, the directory
27428 ** entry for the journal might not exist after we reboot. The next
27429 ** SQLite to access the file will not know that the journal exists (because
27430 ** the directory entry for the journal was never created) and the transaction
27431 ** will not roll back - possibly leading to database corruption.
27433 static int unixSync(sqlite3_file *id, int flags){
27434 int rc;
27435 unixFile *pFile = (unixFile*)id;
27437 int isDataOnly = (flags&SQLITE_SYNC_DATAONLY);
27438 int isFullsync = (flags&0x0F)==SQLITE_SYNC_FULL;
27440 /* Check that one of SQLITE_SYNC_NORMAL or FULL was passed */
27441 assert((flags&0x0F)==SQLITE_SYNC_NORMAL
27442 || (flags&0x0F)==SQLITE_SYNC_FULL
27445 /* Unix cannot, but some systems may return SQLITE_FULL from here. This
27446 ** line is to test that doing so does not cause any problems.
27448 SimulateDiskfullError( return SQLITE_FULL );
27450 assert( pFile );
27451 OSTRACE(("SYNC %-3d\n", pFile->h));
27452 rc = full_fsync(pFile->h, isFullsync, isDataOnly);
27453 SimulateIOError( rc=1 );
27454 if( rc ){
27455 pFile->lastErrno = errno;
27456 return unixLogError(SQLITE_IOERR_FSYNC, "full_fsync", pFile->zPath);
27459 /* Also fsync the directory containing the file if the DIRSYNC flag
27460 ** is set. This is a one-time occurrance. Many systems (examples: AIX)
27461 ** are unable to fsync a directory, so ignore errors on the fsync.
27463 if( pFile->ctrlFlags & UNIXFILE_DIRSYNC ){
27464 int dirfd;
27465 OSTRACE(("DIRSYNC %s (have_fullfsync=%d fullsync=%d)\n", pFile->zPath,
27466 HAVE_FULLFSYNC, isFullsync));
27467 rc = osOpenDirectory(pFile->zPath, &dirfd);
27468 if( rc==SQLITE_OK && dirfd>=0 ){
27469 full_fsync(dirfd, 0, 0);
27470 robust_close(pFile, dirfd, __LINE__);
27471 }else if( rc==SQLITE_CANTOPEN ){
27472 rc = SQLITE_OK;
27474 pFile->ctrlFlags &= ~UNIXFILE_DIRSYNC;
27476 return rc;
27480 ** Truncate an open file to a specified size
27482 static int unixTruncate(sqlite3_file *id, i64 nByte){
27483 unixFile *pFile = (unixFile *)id;
27484 int rc;
27485 assert( pFile );
27486 SimulateIOError( return SQLITE_IOERR_TRUNCATE );
27488 /* If the user has configured a chunk-size for this file, truncate the
27489 ** file so that it consists of an integer number of chunks (i.e. the
27490 ** actual file size after the operation may be larger than the requested
27491 ** size).
27493 if( pFile->szChunk ){
27494 nByte = ((nByte + pFile->szChunk - 1)/pFile->szChunk) * pFile->szChunk;
27497 rc = robust_ftruncate(pFile->h, (off_t)nByte);
27498 if( rc ){
27499 pFile->lastErrno = errno;
27500 return unixLogError(SQLITE_IOERR_TRUNCATE, "ftruncate", pFile->zPath);
27501 }else{
27502 #ifndef NDEBUG
27503 /* If we are doing a normal write to a database file (as opposed to
27504 ** doing a hot-journal rollback or a write to some file other than a
27505 ** normal database file) and we truncate the file to zero length,
27506 ** that effectively updates the change counter. This might happen
27507 ** when restoring a database using the backup API from a zero-length
27508 ** source.
27510 if( pFile->inNormalWrite && nByte==0 ){
27511 pFile->transCntrChng = 1;
27513 #endif
27515 return SQLITE_OK;
27520 ** Determine the current size of a file in bytes
27522 static int unixFileSize(sqlite3_file *id, i64 *pSize){
27523 int rc;
27524 struct stat buf;
27525 assert( id );
27526 rc = osFstat(((unixFile*)id)->h, &buf);
27527 SimulateIOError( rc=1 );
27528 if( rc!=0 ){
27529 ((unixFile*)id)->lastErrno = errno;
27530 return SQLITE_IOERR_FSTAT;
27532 *pSize = buf.st_size;
27534 /* When opening a zero-size database, the findInodeInfo() procedure
27535 ** writes a single byte into that file in order to work around a bug
27536 ** in the OS-X msdos filesystem. In order to avoid problems with upper
27537 ** layers, we need to report this file size as zero even though it is
27538 ** really 1. Ticket #3260.
27540 if( *pSize==1 ) *pSize = 0;
27543 return SQLITE_OK;
27546 #if SQLITE_ENABLE_LOCKING_STYLE && defined(__APPLE__)
27548 ** Handler for proxy-locking file-control verbs. Defined below in the
27549 ** proxying locking division.
27551 static int proxyFileControl(sqlite3_file*,int,void*);
27552 #endif
27555 ** This function is called to handle the SQLITE_FCNTL_SIZE_HINT
27556 ** file-control operation.
27558 ** If the user has configured a chunk-size for this file, it could be
27559 ** that the file needs to be extended at this point. Otherwise, the
27560 ** SQLITE_FCNTL_SIZE_HINT operation is a no-op for Unix.
27562 static int fcntlSizeHint(unixFile *pFile, i64 nByte){
27563 if( pFile->szChunk ){
27564 i64 nSize; /* Required file size */
27565 struct stat buf; /* Used to hold return values of fstat() */
27567 if( osFstat(pFile->h, &buf) ) return SQLITE_IOERR_FSTAT;
27569 nSize = ((nByte+pFile->szChunk-1) / pFile->szChunk) * pFile->szChunk;
27570 if( nSize>(i64)buf.st_size ){
27572 #if defined(HAVE_POSIX_FALLOCATE) && HAVE_POSIX_FALLOCATE
27573 /* The code below is handling the return value of osFallocate()
27574 ** correctly. posix_fallocate() is defined to "returns zero on success,
27575 ** or an error number on failure". See the manpage for details. */
27576 int err;
27578 err = osFallocate(pFile->h, buf.st_size, nSize-buf.st_size);
27579 }while( err==EINTR );
27580 if( err ) return SQLITE_IOERR_WRITE;
27581 #else
27582 /* If the OS does not have posix_fallocate(), fake it. First use
27583 ** ftruncate() to set the file size, then write a single byte to
27584 ** the last byte in each block within the extended region. This
27585 ** is the same technique used by glibc to implement posix_fallocate()
27586 ** on systems that do not have a real fallocate() system call.
27588 int nBlk = buf.st_blksize; /* File-system block size */
27589 i64 iWrite; /* Next offset to write to */
27591 if( robust_ftruncate(pFile->h, nSize) ){
27592 pFile->lastErrno = errno;
27593 return unixLogError(SQLITE_IOERR_TRUNCATE, "ftruncate", pFile->zPath);
27595 iWrite = ((buf.st_size + 2*nBlk - 1)/nBlk)*nBlk-1;
27596 while( iWrite<nSize ){
27597 int nWrite = seekAndWrite(pFile, iWrite, "", 1);
27598 if( nWrite!=1 ) return SQLITE_IOERR_WRITE;
27599 iWrite += nBlk;
27601 #endif
27605 return SQLITE_OK;
27609 ** Information and control of an open file handle.
27611 static int unixFileControl(sqlite3_file *id, int op, void *pArg){
27612 switch( op ){
27613 case SQLITE_FCNTL_LOCKSTATE: {
27614 *(int*)pArg = ((unixFile*)id)->eFileLock;
27615 return SQLITE_OK;
27617 case SQLITE_LAST_ERRNO: {
27618 *(int*)pArg = ((unixFile*)id)->lastErrno;
27619 return SQLITE_OK;
27621 case SQLITE_FCNTL_CHUNK_SIZE: {
27622 ((unixFile*)id)->szChunk = *(int *)pArg;
27623 return SQLITE_OK;
27625 case SQLITE_FCNTL_SIZE_HINT: {
27626 return fcntlSizeHint((unixFile *)id, *(i64 *)pArg);
27628 #ifndef NDEBUG
27629 /* The pager calls this method to signal that it has done
27630 ** a rollback and that the database is therefore unchanged and
27631 ** it hence it is OK for the transaction change counter to be
27632 ** unchanged.
27634 case SQLITE_FCNTL_DB_UNCHANGED: {
27635 ((unixFile*)id)->dbUpdate = 0;
27636 return SQLITE_OK;
27638 #endif
27639 #if SQLITE_ENABLE_LOCKING_STYLE && defined(__APPLE__)
27640 case SQLITE_SET_LOCKPROXYFILE:
27641 case SQLITE_GET_LOCKPROXYFILE: {
27642 return proxyFileControl(id,op,pArg);
27644 #endif /* SQLITE_ENABLE_LOCKING_STYLE && defined(__APPLE__) */
27645 case SQLITE_FCNTL_SYNC_OMITTED: {
27646 return SQLITE_OK; /* A no-op */
27649 return SQLITE_NOTFOUND;
27653 ** Return the sector size in bytes of the underlying block device for
27654 ** the specified file. This is almost always 512 bytes, but may be
27655 ** larger for some devices.
27657 ** SQLite code assumes this function cannot fail. It also assumes that
27658 ** if two files are created in the same file-system directory (i.e.
27659 ** a database and its journal file) that the sector size will be the
27660 ** same for both.
27662 static int unixSectorSize(sqlite3_file *NotUsed){
27663 UNUSED_PARAMETER(NotUsed);
27664 return SQLITE_DEFAULT_SECTOR_SIZE;
27668 ** Return the device characteristics for the file. This is always 0 for unix.
27670 static int unixDeviceCharacteristics(sqlite3_file *NotUsed){
27671 UNUSED_PARAMETER(NotUsed);
27672 return 0;
27675 #ifndef SQLITE_OMIT_WAL
27679 ** Object used to represent an shared memory buffer.
27681 ** When multiple threads all reference the same wal-index, each thread
27682 ** has its own unixShm object, but they all point to a single instance
27683 ** of this unixShmNode object. In other words, each wal-index is opened
27684 ** only once per process.
27686 ** Each unixShmNode object is connected to a single unixInodeInfo object.
27687 ** We could coalesce this object into unixInodeInfo, but that would mean
27688 ** every open file that does not use shared memory (in other words, most
27689 ** open files) would have to carry around this extra information. So
27690 ** the unixInodeInfo object contains a pointer to this unixShmNode object
27691 ** and the unixShmNode object is created only when needed.
27693 ** unixMutexHeld() must be true when creating or destroying
27694 ** this object or while reading or writing the following fields:
27696 ** nRef
27698 ** The following fields are read-only after the object is created:
27700 ** fid
27701 ** zFilename
27703 ** Either unixShmNode.mutex must be held or unixShmNode.nRef==0 and
27704 ** unixMutexHeld() is true when reading or writing any other field
27705 ** in this structure.
27707 struct unixShmNode {
27708 unixInodeInfo *pInode; /* unixInodeInfo that owns this SHM node */
27709 sqlite3_mutex *mutex; /* Mutex to access this object */
27710 char *zFilename; /* Name of the mmapped file */
27711 int h; /* Open file descriptor */
27712 int szRegion; /* Size of shared-memory regions */
27713 int nRegion; /* Size of array apRegion */
27714 char **apRegion; /* Array of mapped shared-memory regions */
27715 int nRef; /* Number of unixShm objects pointing to this */
27716 unixShm *pFirst; /* All unixShm objects pointing to this */
27717 #ifdef SQLITE_DEBUG
27718 u8 exclMask; /* Mask of exclusive locks held */
27719 u8 sharedMask; /* Mask of shared locks held */
27720 u8 nextShmId; /* Next available unixShm.id value */
27721 #endif
27725 ** Structure used internally by this VFS to record the state of an
27726 ** open shared memory connection.
27728 ** The following fields are initialized when this object is created and
27729 ** are read-only thereafter:
27731 ** unixShm.pFile
27732 ** unixShm.id
27734 ** All other fields are read/write. The unixShm.pFile->mutex must be held
27735 ** while accessing any read/write fields.
27737 struct unixShm {
27738 unixShmNode *pShmNode; /* The underlying unixShmNode object */
27739 unixShm *pNext; /* Next unixShm with the same unixShmNode */
27740 u8 hasMutex; /* True if holding the unixShmNode mutex */
27741 u16 sharedMask; /* Mask of shared locks held */
27742 u16 exclMask; /* Mask of exclusive locks held */
27743 #ifdef SQLITE_DEBUG
27744 u8 id; /* Id of this connection within its unixShmNode */
27745 #endif
27749 ** Constants used for locking
27751 #define UNIX_SHM_BASE ((22+SQLITE_SHM_NLOCK)*4) /* first lock byte */
27752 #define UNIX_SHM_DMS (UNIX_SHM_BASE+SQLITE_SHM_NLOCK) /* deadman switch */
27755 ** Apply posix advisory locks for all bytes from ofst through ofst+n-1.
27757 ** Locks block if the mask is exactly UNIX_SHM_C and are non-blocking
27758 ** otherwise.
27760 static int unixShmSystemLock(
27761 unixShmNode *pShmNode, /* Apply locks to this open shared-memory segment */
27762 int lockType, /* F_UNLCK, F_RDLCK, or F_WRLCK */
27763 int ofst, /* First byte of the locking range */
27764 int n /* Number of bytes to lock */
27766 struct flock f; /* The posix advisory locking structure */
27767 int rc = SQLITE_OK; /* Result code form fcntl() */
27769 /* Access to the unixShmNode object is serialized by the caller */
27770 assert( sqlite3_mutex_held(pShmNode->mutex) || pShmNode->nRef==0 );
27772 /* Shared locks never span more than one byte */
27773 assert( n==1 || lockType!=F_RDLCK );
27775 /* Locks are within range */
27776 assert( n>=1 && n<SQLITE_SHM_NLOCK );
27778 if( pShmNode->h>=0 ){
27779 /* Initialize the locking parameters */
27780 memset(&f, 0, sizeof(f));
27781 f.l_type = lockType;
27782 f.l_whence = SEEK_SET;
27783 f.l_start = ofst;
27784 f.l_len = n;
27786 rc = osFcntl(pShmNode->h, F_SETLK, &f);
27787 rc = (rc!=(-1)) ? SQLITE_OK : SQLITE_BUSY;
27790 /* Update the global lock state and do debug tracing */
27791 #ifdef SQLITE_DEBUG
27792 { u16 mask;
27793 OSTRACE(("SHM-LOCK "));
27794 mask = (1<<(ofst+n)) - (1<<ofst);
27795 if( rc==SQLITE_OK ){
27796 if( lockType==F_UNLCK ){
27797 OSTRACE(("unlock %d ok", ofst));
27798 pShmNode->exclMask &= ~mask;
27799 pShmNode->sharedMask &= ~mask;
27800 }else if( lockType==F_RDLCK ){
27801 OSTRACE(("read-lock %d ok", ofst));
27802 pShmNode->exclMask &= ~mask;
27803 pShmNode->sharedMask |= mask;
27804 }else{
27805 assert( lockType==F_WRLCK );
27806 OSTRACE(("write-lock %d ok", ofst));
27807 pShmNode->exclMask |= mask;
27808 pShmNode->sharedMask &= ~mask;
27810 }else{
27811 if( lockType==F_UNLCK ){
27812 OSTRACE(("unlock %d failed", ofst));
27813 }else if( lockType==F_RDLCK ){
27814 OSTRACE(("read-lock failed"));
27815 }else{
27816 assert( lockType==F_WRLCK );
27817 OSTRACE(("write-lock %d failed", ofst));
27820 OSTRACE((" - afterwards %03x,%03x\n",
27821 pShmNode->sharedMask, pShmNode->exclMask));
27823 #endif
27825 return rc;
27830 ** Purge the unixShmNodeList list of all entries with unixShmNode.nRef==0.
27832 ** This is not a VFS shared-memory method; it is a utility function called
27833 ** by VFS shared-memory methods.
27835 static void unixShmPurge(unixFile *pFd){
27836 unixShmNode *p = pFd->pInode->pShmNode;
27837 assert( unixMutexHeld() );
27838 if( p && p->nRef==0 ){
27839 int i;
27840 assert( p->pInode==pFd->pInode );
27841 if( p->mutex ) sqlite3_mutex_free(p->mutex);
27842 for(i=0; i<p->nRegion; i++){
27843 if( p->h>=0 ){
27844 munmap(p->apRegion[i], p->szRegion);
27845 }else{
27846 sqlite3_free(p->apRegion[i]);
27849 sqlite3_free(p->apRegion);
27850 if( p->h>=0 ){
27851 robust_close(pFd, p->h, __LINE__);
27852 p->h = -1;
27854 p->pInode->pShmNode = 0;
27855 sqlite3_free(p);
27860 ** Open a shared-memory area associated with open database file pDbFd.
27861 ** This particular implementation uses mmapped files.
27863 ** The file used to implement shared-memory is in the same directory
27864 ** as the open database file and has the same name as the open database
27865 ** file with the "-shm" suffix added. For example, if the database file
27866 ** is "/home/user1/config.db" then the file that is created and mmapped
27867 ** for shared memory will be called "/home/user1/config.db-shm".
27869 ** Another approach to is to use files in /dev/shm or /dev/tmp or an
27870 ** some other tmpfs mount. But if a file in a different directory
27871 ** from the database file is used, then differing access permissions
27872 ** or a chroot() might cause two different processes on the same
27873 ** database to end up using different files for shared memory -
27874 ** meaning that their memory would not really be shared - resulting
27875 ** in database corruption. Nevertheless, this tmpfs file usage
27876 ** can be enabled at compile-time using -DSQLITE_SHM_DIRECTORY="/dev/shm"
27877 ** or the equivalent. The use of the SQLITE_SHM_DIRECTORY compile-time
27878 ** option results in an incompatible build of SQLite; builds of SQLite
27879 ** that with differing SQLITE_SHM_DIRECTORY settings attempt to use the
27880 ** same database file at the same time, database corruption will likely
27881 ** result. The SQLITE_SHM_DIRECTORY compile-time option is considered
27882 ** "unsupported" and may go away in a future SQLite release.
27884 ** When opening a new shared-memory file, if no other instances of that
27885 ** file are currently open, in this process or in other processes, then
27886 ** the file must be truncated to zero length or have its header cleared.
27888 ** If the original database file (pDbFd) is using the "unix-excl" VFS
27889 ** that means that an exclusive lock is held on the database file and
27890 ** that no other processes are able to read or write the database. In
27891 ** that case, we do not really need shared memory. No shared memory
27892 ** file is created. The shared memory will be simulated with heap memory.
27894 static int unixOpenSharedMemory(unixFile *pDbFd){
27895 struct unixShm *p = 0; /* The connection to be opened */
27896 struct unixShmNode *pShmNode; /* The underlying mmapped file */
27897 int rc; /* Result code */
27898 unixInodeInfo *pInode; /* The inode of fd */
27899 char *zShmFilename; /* Name of the file used for SHM */
27900 int nShmFilename; /* Size of the SHM filename in bytes */
27902 /* Allocate space for the new unixShm object. */
27903 p = sqlite3_malloc( sizeof(*p) );
27904 if( p==0 ) return SQLITE_NOMEM;
27905 memset(p, 0, sizeof(*p));
27906 assert( pDbFd->pShm==0 );
27908 /* Check to see if a unixShmNode object already exists. Reuse an existing
27909 ** one if present. Create a new one if necessary.
27911 unixEnterMutex();
27912 pInode = pDbFd->pInode;
27913 pShmNode = pInode->pShmNode;
27914 if( pShmNode==0 ){
27915 struct stat sStat; /* fstat() info for database file */
27917 /* Call fstat() to figure out the permissions on the database file. If
27918 ** a new *-shm file is created, an attempt will be made to create it
27919 ** with the same permissions. The actual permissions the file is created
27920 ** with are subject to the current umask setting.
27922 if( osFstat(pDbFd->h, &sStat) && pInode->bProcessLock==0 ){
27923 rc = SQLITE_IOERR_FSTAT;
27924 goto shm_open_err;
27927 #ifdef SQLITE_SHM_DIRECTORY
27928 nShmFilename = sizeof(SQLITE_SHM_DIRECTORY) + 30;
27929 #else
27930 nShmFilename = 5 + (int)strlen(pDbFd->zPath);
27931 #endif
27932 pShmNode = sqlite3_malloc( sizeof(*pShmNode) + nShmFilename );
27933 if( pShmNode==0 ){
27934 rc = SQLITE_NOMEM;
27935 goto shm_open_err;
27937 memset(pShmNode, 0, sizeof(*pShmNode));
27938 zShmFilename = pShmNode->zFilename = (char*)&pShmNode[1];
27939 #ifdef SQLITE_SHM_DIRECTORY
27940 sqlite3_snprintf(nShmFilename, zShmFilename,
27941 SQLITE_SHM_DIRECTORY "/sqlite-shm-%x-%x",
27942 (u32)sStat.st_ino, (u32)sStat.st_dev);
27943 #else
27944 sqlite3_snprintf(nShmFilename, zShmFilename, "%s-shm", pDbFd->zPath);
27945 #endif
27946 pShmNode->h = -1;
27947 pDbFd->pInode->pShmNode = pShmNode;
27948 pShmNode->pInode = pDbFd->pInode;
27949 pShmNode->mutex = sqlite3_mutex_alloc(SQLITE_MUTEX_FAST);
27950 if( pShmNode->mutex==0 ){
27951 rc = SQLITE_NOMEM;
27952 goto shm_open_err;
27955 if( pInode->bProcessLock==0 ){
27956 pShmNode->h = robust_open(zShmFilename, O_RDWR|O_CREAT,
27957 (sStat.st_mode & 0777));
27958 if( pShmNode->h<0 ){
27959 rc = unixLogError(SQLITE_CANTOPEN_BKPT, "open", zShmFilename);
27960 goto shm_open_err;
27963 /* Check to see if another process is holding the dead-man switch.
27964 ** If not, truncate the file to zero length.
27966 rc = SQLITE_OK;
27967 if( unixShmSystemLock(pShmNode, F_WRLCK, UNIX_SHM_DMS, 1)==SQLITE_OK ){
27968 if( robust_ftruncate(pShmNode->h, 0) ){
27969 rc = unixLogError(SQLITE_IOERR_SHMOPEN, "ftruncate", zShmFilename);
27972 if( rc==SQLITE_OK ){
27973 rc = unixShmSystemLock(pShmNode, F_RDLCK, UNIX_SHM_DMS, 1);
27975 if( rc ) goto shm_open_err;
27979 /* Make the new connection a child of the unixShmNode */
27980 p->pShmNode = pShmNode;
27981 #ifdef SQLITE_DEBUG
27982 p->id = pShmNode->nextShmId++;
27983 #endif
27984 pShmNode->nRef++;
27985 pDbFd->pShm = p;
27986 unixLeaveMutex();
27988 /* The reference count on pShmNode has already been incremented under
27989 ** the cover of the unixEnterMutex() mutex and the pointer from the
27990 ** new (struct unixShm) object to the pShmNode has been set. All that is
27991 ** left to do is to link the new object into the linked list starting
27992 ** at pShmNode->pFirst. This must be done while holding the pShmNode->mutex
27993 ** mutex.
27995 sqlite3_mutex_enter(pShmNode->mutex);
27996 p->pNext = pShmNode->pFirst;
27997 pShmNode->pFirst = p;
27998 sqlite3_mutex_leave(pShmNode->mutex);
27999 return SQLITE_OK;
28001 /* Jump here on any error */
28002 shm_open_err:
28003 unixShmPurge(pDbFd); /* This call frees pShmNode if required */
28004 sqlite3_free(p);
28005 unixLeaveMutex();
28006 return rc;
28010 ** This function is called to obtain a pointer to region iRegion of the
28011 ** shared-memory associated with the database file fd. Shared-memory regions
28012 ** are numbered starting from zero. Each shared-memory region is szRegion
28013 ** bytes in size.
28015 ** If an error occurs, an error code is returned and *pp is set to NULL.
28017 ** Otherwise, if the bExtend parameter is 0 and the requested shared-memory
28018 ** region has not been allocated (by any client, including one running in a
28019 ** separate process), then *pp is set to NULL and SQLITE_OK returned. If
28020 ** bExtend is non-zero and the requested shared-memory region has not yet
28021 ** been allocated, it is allocated by this function.
28023 ** If the shared-memory region has already been allocated or is allocated by
28024 ** this call as described above, then it is mapped into this processes
28025 ** address space (if it is not already), *pp is set to point to the mapped
28026 ** memory and SQLITE_OK returned.
28028 static int unixShmMap(
28029 sqlite3_file *fd, /* Handle open on database file */
28030 int iRegion, /* Region to retrieve */
28031 int szRegion, /* Size of regions */
28032 int bExtend, /* True to extend file if necessary */
28033 void volatile **pp /* OUT: Mapped memory */
28035 unixFile *pDbFd = (unixFile*)fd;
28036 unixShm *p;
28037 unixShmNode *pShmNode;
28038 int rc = SQLITE_OK;
28040 /* If the shared-memory file has not yet been opened, open it now. */
28041 if( pDbFd->pShm==0 ){
28042 rc = unixOpenSharedMemory(pDbFd);
28043 if( rc!=SQLITE_OK ) return rc;
28046 p = pDbFd->pShm;
28047 pShmNode = p->pShmNode;
28048 sqlite3_mutex_enter(pShmNode->mutex);
28049 assert( szRegion==pShmNode->szRegion || pShmNode->nRegion==0 );
28050 assert( pShmNode->pInode==pDbFd->pInode );
28051 assert( pShmNode->h>=0 || pDbFd->pInode->bProcessLock==1 );
28052 assert( pShmNode->h<0 || pDbFd->pInode->bProcessLock==0 );
28054 if( pShmNode->nRegion<=iRegion ){
28055 char **apNew; /* New apRegion[] array */
28056 int nByte = (iRegion+1)*szRegion; /* Minimum required file size */
28057 struct stat sStat; /* Used by fstat() */
28059 pShmNode->szRegion = szRegion;
28061 if( pShmNode->h>=0 ){
28062 /* The requested region is not mapped into this processes address space.
28063 ** Check to see if it has been allocated (i.e. if the wal-index file is
28064 ** large enough to contain the requested region).
28066 if( osFstat(pShmNode->h, &sStat) ){
28067 rc = SQLITE_IOERR_SHMSIZE;
28068 goto shmpage_out;
28071 if( sStat.st_size<nByte ){
28072 /* The requested memory region does not exist. If bExtend is set to
28073 ** false, exit early. *pp will be set to NULL and SQLITE_OK returned.
28075 ** Alternatively, if bExtend is true, use ftruncate() to allocate
28076 ** the requested memory region.
28078 if( !bExtend ) goto shmpage_out;
28079 if( robust_ftruncate(pShmNode->h, nByte) ){
28080 rc = unixLogError(SQLITE_IOERR_SHMSIZE, "ftruncate",
28081 pShmNode->zFilename);
28082 goto shmpage_out;
28087 /* Map the requested memory region into this processes address space. */
28088 apNew = (char **)sqlite3_realloc(
28089 pShmNode->apRegion, (iRegion+1)*sizeof(char *)
28091 if( !apNew ){
28092 rc = SQLITE_IOERR_NOMEM;
28093 goto shmpage_out;
28095 pShmNode->apRegion = apNew;
28096 while(pShmNode->nRegion<=iRegion){
28097 void *pMem;
28098 if( pShmNode->h>=0 ){
28099 pMem = mmap(0, szRegion, PROT_READ|PROT_WRITE,
28100 MAP_SHARED, pShmNode->h, pShmNode->nRegion*szRegion
28102 if( pMem==MAP_FAILED ){
28103 rc = SQLITE_IOERR;
28104 goto shmpage_out;
28106 }else{
28107 pMem = sqlite3_malloc(szRegion);
28108 if( pMem==0 ){
28109 rc = SQLITE_NOMEM;
28110 goto shmpage_out;
28112 memset(pMem, 0, szRegion);
28114 pShmNode->apRegion[pShmNode->nRegion] = pMem;
28115 pShmNode->nRegion++;
28119 shmpage_out:
28120 if( pShmNode->nRegion>iRegion ){
28121 *pp = pShmNode->apRegion[iRegion];
28122 }else{
28123 *pp = 0;
28125 sqlite3_mutex_leave(pShmNode->mutex);
28126 return rc;
28130 ** Change the lock state for a shared-memory segment.
28132 ** Note that the relationship between SHAREd and EXCLUSIVE locks is a little
28133 ** different here than in posix. In xShmLock(), one can go from unlocked
28134 ** to shared and back or from unlocked to exclusive and back. But one may
28135 ** not go from shared to exclusive or from exclusive to shared.
28137 static int unixShmLock(
28138 sqlite3_file *fd, /* Database file holding the shared memory */
28139 int ofst, /* First lock to acquire or release */
28140 int n, /* Number of locks to acquire or release */
28141 int flags /* What to do with the lock */
28143 unixFile *pDbFd = (unixFile*)fd; /* Connection holding shared memory */
28144 unixShm *p = pDbFd->pShm; /* The shared memory being locked */
28145 unixShm *pX; /* For looping over all siblings */
28146 unixShmNode *pShmNode = p->pShmNode; /* The underlying file iNode */
28147 int rc = SQLITE_OK; /* Result code */
28148 u16 mask; /* Mask of locks to take or release */
28150 assert( pShmNode==pDbFd->pInode->pShmNode );
28151 assert( pShmNode->pInode==pDbFd->pInode );
28152 assert( ofst>=0 && ofst+n<=SQLITE_SHM_NLOCK );
28153 assert( n>=1 );
28154 assert( flags==(SQLITE_SHM_LOCK | SQLITE_SHM_SHARED)
28155 || flags==(SQLITE_SHM_LOCK | SQLITE_SHM_EXCLUSIVE)
28156 || flags==(SQLITE_SHM_UNLOCK | SQLITE_SHM_SHARED)
28157 || flags==(SQLITE_SHM_UNLOCK | SQLITE_SHM_EXCLUSIVE) );
28158 assert( n==1 || (flags & SQLITE_SHM_EXCLUSIVE)!=0 );
28159 assert( pShmNode->h>=0 || pDbFd->pInode->bProcessLock==1 );
28160 assert( pShmNode->h<0 || pDbFd->pInode->bProcessLock==0 );
28162 mask = (1<<(ofst+n)) - (1<<ofst);
28163 assert( n>1 || mask==(1<<ofst) );
28164 sqlite3_mutex_enter(pShmNode->mutex);
28165 if( flags & SQLITE_SHM_UNLOCK ){
28166 u16 allMask = 0; /* Mask of locks held by siblings */
28168 /* See if any siblings hold this same lock */
28169 for(pX=pShmNode->pFirst; pX; pX=pX->pNext){
28170 if( pX==p ) continue;
28171 assert( (pX->exclMask & (p->exclMask|p->sharedMask))==0 );
28172 allMask |= pX->sharedMask;
28175 /* Unlock the system-level locks */
28176 if( (mask & allMask)==0 ){
28177 rc = unixShmSystemLock(pShmNode, F_UNLCK, ofst+UNIX_SHM_BASE, n);
28178 }else{
28179 rc = SQLITE_OK;
28182 /* Undo the local locks */
28183 if( rc==SQLITE_OK ){
28184 p->exclMask &= ~mask;
28185 p->sharedMask &= ~mask;
28187 }else if( flags & SQLITE_SHM_SHARED ){
28188 u16 allShared = 0; /* Union of locks held by connections other than "p" */
28190 /* Find out which shared locks are already held by sibling connections.
28191 ** If any sibling already holds an exclusive lock, go ahead and return
28192 ** SQLITE_BUSY.
28194 for(pX=pShmNode->pFirst; pX; pX=pX->pNext){
28195 if( (pX->exclMask & mask)!=0 ){
28196 rc = SQLITE_BUSY;
28197 break;
28199 allShared |= pX->sharedMask;
28202 /* Get shared locks at the system level, if necessary */
28203 if( rc==SQLITE_OK ){
28204 if( (allShared & mask)==0 ){
28205 rc = unixShmSystemLock(pShmNode, F_RDLCK, ofst+UNIX_SHM_BASE, n);
28206 }else{
28207 rc = SQLITE_OK;
28211 /* Get the local shared locks */
28212 if( rc==SQLITE_OK ){
28213 p->sharedMask |= mask;
28215 }else{
28216 /* Make sure no sibling connections hold locks that will block this
28217 ** lock. If any do, return SQLITE_BUSY right away.
28219 for(pX=pShmNode->pFirst; pX; pX=pX->pNext){
28220 if( (pX->exclMask & mask)!=0 || (pX->sharedMask & mask)!=0 ){
28221 rc = SQLITE_BUSY;
28222 break;
28226 /* Get the exclusive locks at the system level. Then if successful
28227 ** also mark the local connection as being locked.
28229 if( rc==SQLITE_OK ){
28230 rc = unixShmSystemLock(pShmNode, F_WRLCK, ofst+UNIX_SHM_BASE, n);
28231 if( rc==SQLITE_OK ){
28232 assert( (p->sharedMask & mask)==0 );
28233 p->exclMask |= mask;
28237 sqlite3_mutex_leave(pShmNode->mutex);
28238 OSTRACE(("SHM-LOCK shmid-%d, pid-%d got %03x,%03x\n",
28239 p->id, getpid(), p->sharedMask, p->exclMask));
28240 return rc;
28244 ** Implement a memory barrier or memory fence on shared memory.
28246 ** All loads and stores begun before the barrier must complete before
28247 ** any load or store begun after the barrier.
28249 static void unixShmBarrier(
28250 sqlite3_file *fd /* Database file holding the shared memory */
28252 UNUSED_PARAMETER(fd);
28253 unixEnterMutex();
28254 unixLeaveMutex();
28258 ** Close a connection to shared-memory. Delete the underlying
28259 ** storage if deleteFlag is true.
28261 ** If there is no shared memory associated with the connection then this
28262 ** routine is a harmless no-op.
28264 static int unixShmUnmap(
28265 sqlite3_file *fd, /* The underlying database file */
28266 int deleteFlag /* Delete shared-memory if true */
28268 unixShm *p; /* The connection to be closed */
28269 unixShmNode *pShmNode; /* The underlying shared-memory file */
28270 unixShm **pp; /* For looping over sibling connections */
28271 unixFile *pDbFd; /* The underlying database file */
28273 pDbFd = (unixFile*)fd;
28274 p = pDbFd->pShm;
28275 if( p==0 ) return SQLITE_OK;
28276 pShmNode = p->pShmNode;
28278 assert( pShmNode==pDbFd->pInode->pShmNode );
28279 assert( pShmNode->pInode==pDbFd->pInode );
28281 /* Remove connection p from the set of connections associated
28282 ** with pShmNode */
28283 sqlite3_mutex_enter(pShmNode->mutex);
28284 for(pp=&pShmNode->pFirst; (*pp)!=p; pp = &(*pp)->pNext){}
28285 *pp = p->pNext;
28287 /* Free the connection p */
28288 sqlite3_free(p);
28289 pDbFd->pShm = 0;
28290 sqlite3_mutex_leave(pShmNode->mutex);
28292 /* If pShmNode->nRef has reached 0, then close the underlying
28293 ** shared-memory file, too */
28294 unixEnterMutex();
28295 assert( pShmNode->nRef>0 );
28296 pShmNode->nRef--;
28297 if( pShmNode->nRef==0 ){
28298 if( deleteFlag && pShmNode->h>=0 ) osUnlink(pShmNode->zFilename);
28299 unixShmPurge(pDbFd);
28301 unixLeaveMutex();
28303 return SQLITE_OK;
28307 #else
28308 # define unixShmMap 0
28309 # define unixShmLock 0
28310 # define unixShmBarrier 0
28311 # define unixShmUnmap 0
28312 #endif /* #ifndef SQLITE_OMIT_WAL */
28315 ** Here ends the implementation of all sqlite3_file methods.
28317 ********************** End sqlite3_file Methods *******************************
28318 ******************************************************************************/
28321 ** This division contains definitions of sqlite3_io_methods objects that
28322 ** implement various file locking strategies. It also contains definitions
28323 ** of "finder" functions. A finder-function is used to locate the appropriate
28324 ** sqlite3_io_methods object for a particular database file. The pAppData
28325 ** field of the sqlite3_vfs VFS objects are initialized to be pointers to
28326 ** the correct finder-function for that VFS.
28328 ** Most finder functions return a pointer to a fixed sqlite3_io_methods
28329 ** object. The only interesting finder-function is autolockIoFinder, which
28330 ** looks at the filesystem type and tries to guess the best locking
28331 ** strategy from that.
28333 ** For finder-funtion F, two objects are created:
28335 ** (1) The real finder-function named "FImpt()".
28337 ** (2) A constant pointer to this function named just "F".
28340 ** A pointer to the F pointer is used as the pAppData value for VFS
28341 ** objects. We have to do this instead of letting pAppData point
28342 ** directly at the finder-function since C90 rules prevent a void*
28343 ** from be cast into a function pointer.
28346 ** Each instance of this macro generates two objects:
28348 ** * A constant sqlite3_io_methods object call METHOD that has locking
28349 ** methods CLOSE, LOCK, UNLOCK, CKRESLOCK.
28351 ** * An I/O method finder function called FINDER that returns a pointer
28352 ** to the METHOD object in the previous bullet.
28354 #define IOMETHODS(FINDER, METHOD, VERSION, CLOSE, LOCK, UNLOCK, CKLOCK) \
28355 static const sqlite3_io_methods METHOD = { \
28356 VERSION, /* iVersion */ \
28357 CLOSE, /* xClose */ \
28358 unixRead, /* xRead */ \
28359 unixWrite, /* xWrite */ \
28360 unixTruncate, /* xTruncate */ \
28361 unixSync, /* xSync */ \
28362 unixFileSize, /* xFileSize */ \
28363 LOCK, /* xLock */ \
28364 UNLOCK, /* xUnlock */ \
28365 CKLOCK, /* xCheckReservedLock */ \
28366 unixFileControl, /* xFileControl */ \
28367 unixSectorSize, /* xSectorSize */ \
28368 unixDeviceCharacteristics, /* xDeviceCapabilities */ \
28369 unixShmMap, /* xShmMap */ \
28370 unixShmLock, /* xShmLock */ \
28371 unixShmBarrier, /* xShmBarrier */ \
28372 unixShmUnmap /* xShmUnmap */ \
28373 }; \
28374 static const sqlite3_io_methods *FINDER##Impl(const char *z, unixFile *p){ \
28375 UNUSED_PARAMETER(z); UNUSED_PARAMETER(p); \
28376 return &METHOD; \
28378 static const sqlite3_io_methods *(*const FINDER)(const char*,unixFile *p) \
28379 = FINDER##Impl;
28382 ** Here are all of the sqlite3_io_methods objects for each of the
28383 ** locking strategies. Functions that return pointers to these methods
28384 ** are also created.
28386 IOMETHODS(
28387 posixIoFinder, /* Finder function name */
28388 posixIoMethods, /* sqlite3_io_methods object name */
28389 2, /* shared memory is enabled */
28390 unixClose, /* xClose method */
28391 unixLock, /* xLock method */
28392 unixUnlock, /* xUnlock method */
28393 unixCheckReservedLock /* xCheckReservedLock method */
28395 IOMETHODS(
28396 nolockIoFinder, /* Finder function name */
28397 nolockIoMethods, /* sqlite3_io_methods object name */
28398 1, /* shared memory is disabled */
28399 nolockClose, /* xClose method */
28400 nolockLock, /* xLock method */
28401 nolockUnlock, /* xUnlock method */
28402 nolockCheckReservedLock /* xCheckReservedLock method */
28404 IOMETHODS(
28405 dotlockIoFinder, /* Finder function name */
28406 dotlockIoMethods, /* sqlite3_io_methods object name */
28407 1, /* shared memory is disabled */
28408 dotlockClose, /* xClose method */
28409 dotlockLock, /* xLock method */
28410 dotlockUnlock, /* xUnlock method */
28411 dotlockCheckReservedLock /* xCheckReservedLock method */
28414 #if SQLITE_ENABLE_LOCKING_STYLE && !OS_VXWORKS
28415 IOMETHODS(
28416 flockIoFinder, /* Finder function name */
28417 flockIoMethods, /* sqlite3_io_methods object name */
28418 1, /* shared memory is disabled */
28419 flockClose, /* xClose method */
28420 flockLock, /* xLock method */
28421 flockUnlock, /* xUnlock method */
28422 flockCheckReservedLock /* xCheckReservedLock method */
28424 #endif
28426 #if OS_VXWORKS
28427 IOMETHODS(
28428 semIoFinder, /* Finder function name */
28429 semIoMethods, /* sqlite3_io_methods object name */
28430 1, /* shared memory is disabled */
28431 semClose, /* xClose method */
28432 semLock, /* xLock method */
28433 semUnlock, /* xUnlock method */
28434 semCheckReservedLock /* xCheckReservedLock method */
28436 #endif
28438 #if defined(__APPLE__) && SQLITE_ENABLE_LOCKING_STYLE
28439 IOMETHODS(
28440 afpIoFinder, /* Finder function name */
28441 afpIoMethods, /* sqlite3_io_methods object name */
28442 1, /* shared memory is disabled */
28443 afpClose, /* xClose method */
28444 afpLock, /* xLock method */
28445 afpUnlock, /* xUnlock method */
28446 afpCheckReservedLock /* xCheckReservedLock method */
28448 #endif
28451 ** The proxy locking method is a "super-method" in the sense that it
28452 ** opens secondary file descriptors for the conch and lock files and
28453 ** it uses proxy, dot-file, AFP, and flock() locking methods on those
28454 ** secondary files. For this reason, the division that implements
28455 ** proxy locking is located much further down in the file. But we need
28456 ** to go ahead and define the sqlite3_io_methods and finder function
28457 ** for proxy locking here. So we forward declare the I/O methods.
28459 #if defined(__APPLE__) && SQLITE_ENABLE_LOCKING_STYLE
28460 static int proxyClose(sqlite3_file*);
28461 static int proxyLock(sqlite3_file*, int);
28462 static int proxyUnlock(sqlite3_file*, int);
28463 static int proxyCheckReservedLock(sqlite3_file*, int*);
28464 IOMETHODS(
28465 proxyIoFinder, /* Finder function name */
28466 proxyIoMethods, /* sqlite3_io_methods object name */
28467 1, /* shared memory is disabled */
28468 proxyClose, /* xClose method */
28469 proxyLock, /* xLock method */
28470 proxyUnlock, /* xUnlock method */
28471 proxyCheckReservedLock /* xCheckReservedLock method */
28473 #endif
28475 /* nfs lockd on OSX 10.3+ doesn't clear write locks when a read lock is set */
28476 #if defined(__APPLE__) && SQLITE_ENABLE_LOCKING_STYLE
28477 IOMETHODS(
28478 nfsIoFinder, /* Finder function name */
28479 nfsIoMethods, /* sqlite3_io_methods object name */
28480 1, /* shared memory is disabled */
28481 unixClose, /* xClose method */
28482 unixLock, /* xLock method */
28483 nfsUnlock, /* xUnlock method */
28484 unixCheckReservedLock /* xCheckReservedLock method */
28486 #endif
28488 #if defined(__APPLE__) && SQLITE_ENABLE_LOCKING_STYLE
28490 ** This "finder" function attempts to determine the best locking strategy
28491 ** for the database file "filePath". It then returns the sqlite3_io_methods
28492 ** object that implements that strategy.
28494 ** This is for MacOSX only.
28496 static const sqlite3_io_methods *autolockIoFinderImpl(
28497 const char *filePath, /* name of the database file */
28498 unixFile *pNew /* open file object for the database file */
28500 static const struct Mapping {
28501 const char *zFilesystem; /* Filesystem type name */
28502 const sqlite3_io_methods *pMethods; /* Appropriate locking method */
28503 } aMap[] = {
28504 { "hfs", &posixIoMethods },
28505 { "ufs", &posixIoMethods },
28506 { "afpfs", &afpIoMethods },
28507 { "smbfs", &afpIoMethods },
28508 { "webdav", &nolockIoMethods },
28509 { 0, 0 }
28511 int i;
28512 struct statfs fsInfo;
28513 struct flock lockInfo;
28515 if( !filePath ){
28516 /* If filePath==NULL that means we are dealing with a transient file
28517 ** that does not need to be locked. */
28518 return &nolockIoMethods;
28520 if( statfs(filePath, &fsInfo) != -1 ){
28521 if( fsInfo.f_flags & MNT_RDONLY ){
28522 return &nolockIoMethods;
28524 for(i=0; aMap[i].zFilesystem; i++){
28525 if( strcmp(fsInfo.f_fstypename, aMap[i].zFilesystem)==0 ){
28526 return aMap[i].pMethods;
28531 /* Default case. Handles, amongst others, "nfs".
28532 ** Test byte-range lock using fcntl(). If the call succeeds,
28533 ** assume that the file-system supports POSIX style locks.
28535 lockInfo.l_len = 1;
28536 lockInfo.l_start = 0;
28537 lockInfo.l_whence = SEEK_SET;
28538 lockInfo.l_type = F_RDLCK;
28539 if( osFcntl(pNew->h, F_GETLK, &lockInfo)!=-1 ) {
28540 if( strcmp(fsInfo.f_fstypename, "nfs")==0 ){
28541 return &nfsIoMethods;
28542 } else {
28543 return &posixIoMethods;
28545 }else{
28546 return &dotlockIoMethods;
28549 static const sqlite3_io_methods
28550 *(*const autolockIoFinder)(const char*,unixFile*) = autolockIoFinderImpl;
28552 #endif /* defined(__APPLE__) && SQLITE_ENABLE_LOCKING_STYLE */
28554 #if OS_VXWORKS && SQLITE_ENABLE_LOCKING_STYLE
28556 ** This "finder" function attempts to determine the best locking strategy
28557 ** for the database file "filePath". It then returns the sqlite3_io_methods
28558 ** object that implements that strategy.
28560 ** This is for VXWorks only.
28562 static const sqlite3_io_methods *autolockIoFinderImpl(
28563 const char *filePath, /* name of the database file */
28564 unixFile *pNew /* the open file object */
28566 struct flock lockInfo;
28568 if( !filePath ){
28569 /* If filePath==NULL that means we are dealing with a transient file
28570 ** that does not need to be locked. */
28571 return &nolockIoMethods;
28574 /* Test if fcntl() is supported and use POSIX style locks.
28575 ** Otherwise fall back to the named semaphore method.
28577 lockInfo.l_len = 1;
28578 lockInfo.l_start = 0;
28579 lockInfo.l_whence = SEEK_SET;
28580 lockInfo.l_type = F_RDLCK;
28581 if( osFcntl(pNew->h, F_GETLK, &lockInfo)!=-1 ) {
28582 return &posixIoMethods;
28583 }else{
28584 return &semIoMethods;
28587 static const sqlite3_io_methods
28588 *(*const autolockIoFinder)(const char*,unixFile*) = autolockIoFinderImpl;
28590 #endif /* OS_VXWORKS && SQLITE_ENABLE_LOCKING_STYLE */
28593 ** An abstract type for a pointer to a IO method finder function:
28595 typedef const sqlite3_io_methods *(*finder_type)(const char*,unixFile*);
28598 /****************************************************************************
28599 **************************** sqlite3_vfs methods ****************************
28601 ** This division contains the implementation of methods on the
28602 ** sqlite3_vfs object.
28606 ** Initializes a unixFile structure with zeros.
28608 void initUnixFile(sqlite3_file* file) {
28609 memset(file, 0, sizeof(unixFile));
28613 ** Initialize the contents of the unixFile structure pointed to by pId.
28615 int fillInUnixFile(
28616 sqlite3_vfs *pVfs, /* Pointer to vfs object */
28617 int h, /* Open file descriptor of file being opened */
28618 int syncDir, /* True to sync directory on first sync */
28619 sqlite3_file *pId, /* Write to the unixFile structure here */
28620 const char *zFilename, /* Name of the file being opened */
28621 int noLock, /* Omit locking if true */
28622 int isDelete, /* Delete on close if true */
28623 int isReadOnly /* True if the file is opened read-only */
28625 const sqlite3_io_methods *pLockingStyle;
28626 unixFile *pNew = (unixFile *)pId;
28627 int rc = SQLITE_OK;
28629 assert( pNew->pInode==NULL );
28631 /* Parameter isDelete is only used on vxworks. Express this explicitly
28632 ** here to prevent compiler warnings about unused parameters.
28634 UNUSED_PARAMETER(isDelete);
28636 /* Usually the path zFilename should not be a relative pathname. The
28637 ** exception is when opening the proxy "conch" file in builds that
28638 ** include the special Apple locking styles.
28640 #if defined(__APPLE__) && SQLITE_ENABLE_LOCKING_STYLE
28641 assert( zFilename==0 || zFilename[0]=='/'
28642 || pVfs->pAppData==(void*)&autolockIoFinder );
28643 #else
28644 assert( zFilename==0 || zFilename[0]=='/' );
28645 #endif
28647 OSTRACE(("OPEN %-3d %s\n", h, zFilename));
28648 pNew->h = h;
28649 pNew->zPath = zFilename;
28650 if( strcmp(pVfs->zName,"unix-excl")==0 ){
28651 pNew->ctrlFlags = UNIXFILE_EXCL;
28652 }else{
28653 pNew->ctrlFlags = 0;
28655 if( isReadOnly ){
28656 pNew->ctrlFlags |= UNIXFILE_RDONLY;
28658 if( syncDir ){
28659 pNew->ctrlFlags |= UNIXFILE_DIRSYNC;
28662 #if OS_VXWORKS
28663 pNew->pId = vxworksFindFileId(zFilename);
28664 if( pNew->pId==0 ){
28665 noLock = 1;
28666 rc = SQLITE_NOMEM;
28668 #endif
28670 if( noLock ){
28671 pLockingStyle = &nolockIoMethods;
28672 }else{
28673 pLockingStyle = (**(finder_type*)pVfs->pAppData)(zFilename, pNew);
28674 #if SQLITE_ENABLE_LOCKING_STYLE
28675 /* Cache zFilename in the locking context (AFP and dotlock override) for
28676 ** proxyLock activation is possible (remote proxy is based on db name)
28677 ** zFilename remains valid until file is closed, to support */
28678 pNew->lockingContext = (void*)zFilename;
28679 #endif
28682 if( pLockingStyle == &posixIoMethods
28683 #if defined(__APPLE__) && SQLITE_ENABLE_LOCKING_STYLE
28684 || pLockingStyle == &nfsIoMethods
28685 #endif
28687 unixEnterMutex();
28688 rc = findInodeInfo(pNew, &pNew->pInode);
28689 if( rc!=SQLITE_OK ){
28690 /* If an error occured in findInodeInfo(), close the file descriptor
28691 ** immediately, before releasing the mutex. findInodeInfo() may fail
28692 ** in two scenarios:
28694 ** (a) A call to fstat() failed.
28695 ** (b) A malloc failed.
28697 ** Scenario (b) may only occur if the process is holding no other
28698 ** file descriptors open on the same file. If there were other file
28699 ** descriptors on this file, then no malloc would be required by
28700 ** findInodeInfo(). If this is the case, it is quite safe to close
28701 ** handle h - as it is guaranteed that no posix locks will be released
28702 ** by doing so.
28704 ** If scenario (a) caused the error then things are not so safe. The
28705 ** implicit assumption here is that if fstat() fails, things are in
28706 ** such bad shape that dropping a lock or two doesn't matter much.
28708 robust_close(pNew, h, __LINE__);
28709 h = -1;
28711 unixLeaveMutex();
28714 #if SQLITE_ENABLE_LOCKING_STYLE && defined(__APPLE__)
28715 else if( pLockingStyle == &afpIoMethods ){
28716 /* AFP locking uses the file path so it needs to be included in
28717 ** the afpLockingContext.
28719 afpLockingContext *pCtx;
28720 pNew->lockingContext = pCtx = sqlite3_malloc( sizeof(*pCtx) );
28721 if( pCtx==0 ){
28722 rc = SQLITE_NOMEM;
28723 }else{
28724 /* NB: zFilename exists and remains valid until the file is closed
28725 ** according to requirement F11141. So we do not need to make a
28726 ** copy of the filename. */
28727 pCtx->dbPath = zFilename;
28728 pCtx->reserved = 0;
28729 srandomdev();
28730 unixEnterMutex();
28731 rc = findInodeInfo(pNew, &pNew->pInode);
28732 if( rc!=SQLITE_OK ){
28733 sqlite3_free(pNew->lockingContext);
28734 robust_close(pNew, h, __LINE__);
28735 h = -1;
28737 unixLeaveMutex();
28740 #endif
28742 else if( pLockingStyle == &dotlockIoMethods ){
28743 /* Dotfile locking uses the file path so it needs to be included in
28744 ** the dotlockLockingContext
28746 char *zLockFile;
28747 int nFilename;
28748 nFilename = (int)strlen(zFilename) + 6;
28749 zLockFile = (char *)sqlite3_malloc(nFilename);
28750 if( zLockFile==0 ){
28751 rc = SQLITE_NOMEM;
28752 }else{
28753 sqlite3_snprintf(nFilename, zLockFile, "%s" DOTLOCK_SUFFIX, zFilename);
28755 pNew->lockingContext = zLockFile;
28758 #if OS_VXWORKS
28759 else if( pLockingStyle == &semIoMethods ){
28760 /* Named semaphore locking uses the file path so it needs to be
28761 ** included in the semLockingContext
28763 unixEnterMutex();
28764 rc = findInodeInfo(pNew, &pNew->pInode);
28765 if( (rc==SQLITE_OK) && (pNew->pInode->pSem==NULL) ){
28766 char *zSemName = pNew->pInode->aSemName;
28767 int n;
28768 sqlite3_snprintf(MAX_PATHNAME, zSemName, "/%s.sem",
28769 pNew->pId->zCanonicalName);
28770 for( n=1; zSemName[n]; n++ )
28771 if( zSemName[n]=='/' ) zSemName[n] = '_';
28772 pNew->pInode->pSem = sem_open(zSemName, O_CREAT, 0666, 1);
28773 if( pNew->pInode->pSem == SEM_FAILED ){
28774 rc = SQLITE_NOMEM;
28775 pNew->pInode->aSemName[0] = '\0';
28778 unixLeaveMutex();
28780 #endif
28782 pNew->lastErrno = 0;
28783 #if OS_VXWORKS
28784 if( rc!=SQLITE_OK ){
28785 if( h>=0 ) robust_close(pNew, h, __LINE__);
28786 h = -1;
28787 osUnlink(zFilename);
28788 isDelete = 0;
28790 pNew->isDelete = isDelete;
28791 #endif
28792 if( rc!=SQLITE_OK ){
28793 if( h>=0 ) robust_close(pNew, h, __LINE__);
28794 }else{
28795 pNew->pMethod = pLockingStyle;
28796 OpenCounter(+1);
28798 return rc;
28802 ** Return the name of a directory in which to put temporary files.
28803 ** If no suitable temporary file directory can be found, return NULL.
28805 static const char *unixTempFileDir(void){
28806 static const char *azDirs[] = {
28809 "/var/tmp",
28810 "/usr/tmp",
28811 "/tmp",
28812 0 /* List terminator */
28814 unsigned int i;
28815 struct stat buf;
28816 const char *zDir = 0;
28818 azDirs[0] = sqlite3_temp_directory;
28819 if( !azDirs[1] ) azDirs[1] = getenv("TMPDIR");
28820 for(i=0; i<sizeof(azDirs)/sizeof(azDirs[0]); zDir=azDirs[i++]){
28821 if( zDir==0 ) continue;
28822 if( osStat(zDir, &buf) ) continue;
28823 if( !S_ISDIR(buf.st_mode) ) continue;
28824 if( osAccess(zDir, 07) ) continue;
28825 break;
28827 return zDir;
28831 ** Create a temporary file name in zBuf. zBuf must be allocated
28832 ** by the calling process and must be big enough to hold at least
28833 ** pVfs->mxPathname bytes.
28835 static int unixGetTempname(int nBuf, char *zBuf){
28836 static const unsigned char zChars[] =
28837 "abcdefghijklmnopqrstuvwxyz"
28838 "ABCDEFGHIJKLMNOPQRSTUVWXYZ"
28839 "0123456789";
28840 unsigned int i, j;
28841 const char *zDir;
28843 /* It's odd to simulate an io-error here, but really this is just
28844 ** using the io-error infrastructure to test that SQLite handles this
28845 ** function failing.
28847 SimulateIOError( return SQLITE_IOERR );
28849 zDir = unixTempFileDir();
28850 if( zDir==0 ) zDir = ".";
28852 /* Check that the output buffer is large enough for the temporary file
28853 ** name. If it is not, return SQLITE_ERROR.
28855 if( (strlen(zDir) + strlen(SQLITE_TEMP_FILE_PREFIX) + 17) >= (size_t)nBuf ){
28856 return SQLITE_ERROR;
28860 sqlite3_snprintf(nBuf-17, zBuf, "%s/"SQLITE_TEMP_FILE_PREFIX, zDir);
28861 j = (int)strlen(zBuf);
28862 sqlite3_randomness(15, &zBuf[j]);
28863 for(i=0; i<15; i++, j++){
28864 zBuf[j] = (char)zChars[ ((unsigned char)zBuf[j])%(sizeof(zChars)-1) ];
28866 zBuf[j] = 0;
28867 }while( osAccess(zBuf,0)==0 );
28868 return SQLITE_OK;
28871 #if SQLITE_ENABLE_LOCKING_STYLE && defined(__APPLE__)
28873 ** Routine to transform a unixFile into a proxy-locking unixFile.
28874 ** Implementation in the proxy-lock division, but used by unixOpen()
28875 ** if SQLITE_PREFER_PROXY_LOCKING is defined.
28877 static int proxyTransformUnixFile(unixFile*, const char*);
28878 #endif
28881 ** Search for an unused file descriptor that was opened on the database
28882 ** file (not a journal or master-journal file) identified by pathname
28883 ** zPath with SQLITE_OPEN_XXX flags matching those passed as the second
28884 ** argument to this function.
28886 ** Such a file descriptor may exist if a database connection was closed
28887 ** but the associated file descriptor could not be closed because some
28888 ** other file descriptor open on the same file is holding a file-lock.
28889 ** Refer to comments in the unixClose() function and the lengthy comment
28890 ** describing "Posix Advisory Locking" at the start of this file for
28891 ** further details. Also, ticket #4018.
28893 ** If a suitable file descriptor is found, then it is returned. If no
28894 ** such file descriptor is located, -1 is returned.
28896 static UnixUnusedFd *findReusableFd(const char *zPath, int flags){
28897 UnixUnusedFd *pUnused = 0;
28899 /* Do not search for an unused file descriptor on vxworks. Not because
28900 ** vxworks would not benefit from the change (it might, we're not sure),
28901 ** but because no way to test it is currently available. It is better
28902 ** not to risk breaking vxworks support for the sake of such an obscure
28903 ** feature. */
28904 #if !OS_VXWORKS
28905 struct stat sStat; /* Results of stat() call */
28907 /* A stat() call may fail for various reasons. If this happens, it is
28908 ** almost certain that an open() call on the same path will also fail.
28909 ** For this reason, if an error occurs in the stat() call here, it is
28910 ** ignored and -1 is returned. The caller will try to open a new file
28911 ** descriptor on the same path, fail, and return an error to SQLite.
28913 ** Even if a subsequent open() call does succeed, the consequences of
28914 ** not searching for a resusable file descriptor are not dire. */
28915 if( 0==osStat(zPath, &sStat) ){
28916 unixInodeInfo *pInode;
28918 unixEnterMutex();
28919 pInode = inodeList;
28920 while( pInode && (pInode->fileId.dev!=sStat.st_dev
28921 || pInode->fileId.ino!=sStat.st_ino) ){
28922 pInode = pInode->pNext;
28924 if( pInode ){
28925 UnixUnusedFd **pp;
28926 for(pp=&pInode->pUnused; *pp && (*pp)->flags!=flags; pp=&((*pp)->pNext));
28927 pUnused = *pp;
28928 if( pUnused ){
28929 *pp = pUnused->pNext;
28932 unixLeaveMutex();
28934 #endif /* if !OS_VXWORKS */
28935 return pUnused;
28939 ** This function is called by unixOpen() to determine the unix permissions
28940 ** to create new files with. If no error occurs, then SQLITE_OK is returned
28941 ** and a value suitable for passing as the third argument to open(2) is
28942 ** written to *pMode. If an IO error occurs, an SQLite error code is
28943 ** returned and the value of *pMode is not modified.
28945 ** If the file being opened is a temporary file, it is always created with
28946 ** the octal permissions 0600 (read/writable by owner only). If the file
28947 ** is a database or master journal file, it is created with the permissions
28948 ** mask SQLITE_DEFAULT_FILE_PERMISSIONS.
28950 ** Finally, if the file being opened is a WAL or regular journal file, then
28951 ** this function queries the file-system for the permissions on the
28952 ** corresponding database file and sets *pMode to this value. Whenever
28953 ** possible, WAL and journal files are created using the same permissions
28954 ** as the associated database file.
28956 static int findCreateFileMode(
28957 const char *zPath, /* Path of file (possibly) being created */
28958 int flags, /* Flags passed as 4th argument to xOpen() */
28959 mode_t *pMode /* OUT: Permissions to open file with */
28961 int rc = SQLITE_OK; /* Return Code */
28962 if( flags & (SQLITE_OPEN_WAL|SQLITE_OPEN_MAIN_JOURNAL) ){
28963 char zDb[MAX_PATHNAME+1]; /* Database file path */
28964 int nDb; /* Number of valid bytes in zDb */
28965 struct stat sStat; /* Output of stat() on database file */
28967 /* zPath is a path to a WAL or journal file. The following block derives
28968 ** the path to the associated database file from zPath. This block handles
28969 ** the following naming conventions:
28971 ** "<path to db>-journal"
28972 ** "<path to db>-wal"
28973 ** "<path to db>-journal-NNNN"
28974 ** "<path to db>-wal-NNNN"
28976 ** where NNNN is a 4 digit decimal number. The NNNN naming schemes are
28977 ** used by the test_multiplex.c module.
28979 nDb = sqlite3Strlen30(zPath) - 1;
28980 while( nDb>0 && zPath[nDb]!='l' ) nDb--;
28981 nDb -= ((flags & SQLITE_OPEN_WAL) ? 3 : 7);
28982 memcpy(zDb, zPath, nDb);
28983 zDb[nDb] = '\0';
28985 if( 0==osStat(zDb, &sStat) ){
28986 *pMode = sStat.st_mode & 0777;
28987 }else{
28988 rc = SQLITE_IOERR_FSTAT;
28990 }else if( flags & SQLITE_OPEN_DELETEONCLOSE ){
28991 *pMode = 0600;
28992 }else{
28993 *pMode = SQLITE_DEFAULT_FILE_PERMISSIONS;
28995 return rc;
28999 ** Initializes a unixFile structure with zeros.
29001 void chromium_sqlite3_initialize_unix_sqlite3_file(sqlite3_file* file) {
29002 memset(file, 0, sizeof(unixFile));
29005 int chromium_sqlite3_fill_in_unix_sqlite3_file(sqlite3_vfs* vfs,
29006 int fd,
29007 int dirfd,
29008 sqlite3_file* file,
29009 const char* fileName,
29010 int noLock,
29011 int isDelete) {
29012 return fillInUnixFile(vfs, fd, dirfd, file, fileName, noLock, isDelete, 0);
29016 ** Search for an unused file descriptor that was opened on the database file.
29017 ** If a suitable file descriptor if found, then it is stored in *fd; otherwise,
29018 ** *fd is not modified.
29020 ** If a reusable file descriptor is not found, and a new UnixUnusedFd cannot
29021 ** be allocated, SQLITE_NOMEM is returned. Otherwise, SQLITE_OK is returned.
29023 int chromium_sqlite3_get_reusable_file_handle(sqlite3_file* file,
29024 const char* fileName,
29025 int flags,
29026 int* fd) {
29027 unixFile* unixSQLite3File = (unixFile*)file;
29028 int fileType = flags & 0xFFFFFF00;
29029 if (fileType == SQLITE_OPEN_MAIN_DB) {
29030 UnixUnusedFd *unusedFd = findReusableFd(fileName, flags);
29031 if (unusedFd) {
29032 *fd = unusedFd->fd;
29033 } else {
29034 unusedFd = sqlite3_malloc(sizeof(*unusedFd));
29035 if (!unusedFd) {
29036 return SQLITE_NOMEM;
29039 unixSQLite3File->pUnused = unusedFd;
29041 return SQLITE_OK;
29045 ** Marks 'fd' as the unused file descriptor for 'pFile'.
29047 void chromium_sqlite3_update_reusable_file_handle(sqlite3_file* file,
29048 int fd,
29049 int flags) {
29050 unixFile* unixSQLite3File = (unixFile*)file;
29051 if (unixSQLite3File->pUnused) {
29052 unixSQLite3File->pUnused->fd = fd;
29053 unixSQLite3File->pUnused->flags = flags;
29058 ** Destroys pFile's field that keeps track of the unused file descriptor.
29060 void chromium_sqlite3_destroy_reusable_file_handle(sqlite3_file* file) {
29061 unixFile* unixSQLite3File = (unixFile*)file;
29062 sqlite3_free(unixSQLite3File->pUnused);
29066 ** Open the file zPath.
29068 ** Previously, the SQLite OS layer used three functions in place of this
29069 ** one:
29071 ** sqlite3OsOpenReadWrite();
29072 ** sqlite3OsOpenReadOnly();
29073 ** sqlite3OsOpenExclusive();
29075 ** These calls correspond to the following combinations of flags:
29077 ** ReadWrite() -> (READWRITE | CREATE)
29078 ** ReadOnly() -> (READONLY)
29079 ** OpenExclusive() -> (READWRITE | CREATE | EXCLUSIVE)
29081 ** The old OpenExclusive() accepted a boolean argument - "delFlag". If
29082 ** true, the file was configured to be automatically deleted when the
29083 ** file handle closed. To achieve the same effect using this new
29084 ** interface, add the DELETEONCLOSE flag to those specified above for
29085 ** OpenExclusive().
29087 static int unixOpen(
29088 sqlite3_vfs *pVfs, /* The VFS for which this is the xOpen method */
29089 const char *zPath, /* Pathname of file to be opened */
29090 sqlite3_file *pFile, /* The file descriptor to be filled in */
29091 int flags, /* Input flags to control the opening */
29092 int *pOutFlags /* Output flags returned to SQLite core */
29094 unixFile *p = (unixFile *)pFile;
29095 int fd = -1; /* File descriptor returned by open() */
29096 int openFlags = 0; /* Flags to pass to open() */
29097 int eType = flags&0xFFFFFF00; /* Type of file to open */
29098 int noLock; /* True to omit locking primitives */
29099 int rc = SQLITE_OK; /* Function Return Code */
29101 int isExclusive = (flags & SQLITE_OPEN_EXCLUSIVE);
29102 int isDelete = (flags & SQLITE_OPEN_DELETEONCLOSE);
29103 int isCreate = (flags & SQLITE_OPEN_CREATE);
29104 int isReadonly = (flags & SQLITE_OPEN_READONLY);
29105 int isReadWrite = (flags & SQLITE_OPEN_READWRITE);
29106 #if SQLITE_ENABLE_LOCKING_STYLE
29107 int isAutoProxy = (flags & SQLITE_OPEN_AUTOPROXY);
29108 #endif
29110 /* If creating a master or main-file journal, this function will open
29111 ** a file-descriptor on the directory too. The first time unixSync()
29112 ** is called the directory file descriptor will be fsync()ed and close()d.
29114 int syncDir = (isCreate && (
29115 eType==SQLITE_OPEN_MASTER_JOURNAL
29116 || eType==SQLITE_OPEN_MAIN_JOURNAL
29117 || eType==SQLITE_OPEN_WAL
29120 /* If argument zPath is a NULL pointer, this function is required to open
29121 ** a temporary file. Use this buffer to store the file name in.
29123 char zTmpname[MAX_PATHNAME+1];
29124 const char *zName = zPath;
29126 /* Check the following statements are true:
29128 ** (a) Exactly one of the READWRITE and READONLY flags must be set, and
29129 ** (b) if CREATE is set, then READWRITE must also be set, and
29130 ** (c) if EXCLUSIVE is set, then CREATE must also be set.
29131 ** (d) if DELETEONCLOSE is set, then CREATE must also be set.
29133 assert((isReadonly==0 || isReadWrite==0) && (isReadWrite || isReadonly));
29134 assert(isCreate==0 || isReadWrite);
29135 assert(isExclusive==0 || isCreate);
29136 assert(isDelete==0 || isCreate);
29138 /* The main DB, main journal, WAL file and master journal are never
29139 ** automatically deleted. Nor are they ever temporary files. */
29140 assert( (!isDelete && zName) || eType!=SQLITE_OPEN_MAIN_DB );
29141 assert( (!isDelete && zName) || eType!=SQLITE_OPEN_MAIN_JOURNAL );
29142 assert( (!isDelete && zName) || eType!=SQLITE_OPEN_MASTER_JOURNAL );
29143 assert( (!isDelete && zName) || eType!=SQLITE_OPEN_WAL );
29145 /* Assert that the upper layer has set one of the "file-type" flags. */
29146 assert( eType==SQLITE_OPEN_MAIN_DB || eType==SQLITE_OPEN_TEMP_DB
29147 || eType==SQLITE_OPEN_MAIN_JOURNAL || eType==SQLITE_OPEN_TEMP_JOURNAL
29148 || eType==SQLITE_OPEN_SUBJOURNAL || eType==SQLITE_OPEN_MASTER_JOURNAL
29149 || eType==SQLITE_OPEN_TRANSIENT_DB || eType==SQLITE_OPEN_WAL
29152 chromium_sqlite3_initialize_unix_sqlite3_file(pFile);
29154 if( eType==SQLITE_OPEN_MAIN_DB ){
29155 rc = chromium_sqlite3_get_reusable_file_handle(pFile, zName, flags, &fd);
29156 if( rc!=SQLITE_OK ){
29157 return rc;
29159 }else if( !zName ){
29160 /* If zName is NULL, the upper layer is requesting a temp file. */
29161 assert(isDelete && !syncDir);
29162 rc = unixGetTempname(MAX_PATHNAME+1, zTmpname);
29163 if( rc!=SQLITE_OK ){
29164 return rc;
29166 zName = zTmpname;
29169 /* Determine the value of the flags parameter passed to POSIX function
29170 ** open(). These must be calculated even if open() is not called, as
29171 ** they may be stored as part of the file handle and used by the
29172 ** 'conch file' locking functions later on. */
29173 if( isReadonly ) openFlags |= O_RDONLY;
29174 if( isReadWrite ) openFlags |= O_RDWR;
29175 if( isCreate ) openFlags |= O_CREAT;
29176 if( isExclusive ) openFlags |= (O_EXCL|O_NOFOLLOW);
29177 openFlags |= (O_LARGEFILE|O_BINARY);
29179 if( fd<0 ){
29180 mode_t openMode; /* Permissions to create file with */
29181 rc = findCreateFileMode(zName, flags, &openMode);
29182 if( rc!=SQLITE_OK ){
29183 assert( !p->pUnused );
29184 assert( eType==SQLITE_OPEN_WAL || eType==SQLITE_OPEN_MAIN_JOURNAL );
29185 return rc;
29187 fd = robust_open(zName, openFlags, openMode);
29188 OSTRACE(("OPENX %-3d %s 0%o\n", fd, zName, openFlags));
29189 if( fd<0 && errno!=EISDIR && isReadWrite && !isExclusive ){
29190 /* Failed to open the file for read/write access. Try read-only. */
29191 flags &= ~(SQLITE_OPEN_READWRITE|SQLITE_OPEN_CREATE);
29192 openFlags &= ~(O_RDWR|O_CREAT);
29193 flags |= SQLITE_OPEN_READONLY;
29194 openFlags |= O_RDONLY;
29195 isReadonly = 1;
29196 fd = robust_open(zName, openFlags, openMode);
29198 if( fd<0 ){
29199 rc = unixLogError(SQLITE_CANTOPEN_BKPT, "open", zName);
29200 goto open_finished;
29203 assert( fd>=0 );
29204 if( pOutFlags ){
29205 *pOutFlags = flags;
29208 chromium_sqlite3_update_reusable_file_handle(pFile, fd, flags);
29210 if( isDelete ){
29211 #if OS_VXWORKS
29212 zPath = zName;
29213 #else
29214 osUnlink(zName);
29215 #endif
29217 #if SQLITE_ENABLE_LOCKING_STYLE
29218 else{
29219 p->openFlags = openFlags;
29221 #endif
29223 #ifdef FD_CLOEXEC
29224 osFcntl(fd, F_SETFD, osFcntl(fd, F_GETFD, 0) | FD_CLOEXEC);
29225 #endif
29227 noLock = eType!=SQLITE_OPEN_MAIN_DB;
29230 #if defined(__APPLE__) || SQLITE_ENABLE_LOCKING_STYLE
29231 struct statfs fsInfo;
29232 if( fstatfs(fd, &fsInfo) == -1 ){
29233 ((unixFile*)pFile)->lastErrno = errno;
29234 robust_close(p, fd, __LINE__);
29235 return SQLITE_IOERR_ACCESS;
29237 if (0 == strncmp("msdos", fsInfo.f_fstypename, 5)) {
29238 ((unixFile*)pFile)->fsFlags |= SQLITE_FSFLAGS_IS_MSDOS;
29240 #endif
29242 #if SQLITE_ENABLE_LOCKING_STYLE
29243 #if SQLITE_PREFER_PROXY_LOCKING
29244 isAutoProxy = 1;
29245 #endif
29246 if( isAutoProxy && (zPath!=NULL) && (!noLock) && pVfs->xOpen ){
29247 char *envforce = getenv("SQLITE_FORCE_PROXY_LOCKING");
29248 int useProxy = 0;
29250 /* SQLITE_FORCE_PROXY_LOCKING==1 means force always use proxy, 0 means
29251 ** never use proxy, NULL means use proxy for non-local files only. */
29252 if( envforce!=NULL ){
29253 useProxy = atoi(envforce)>0;
29254 }else{
29255 struct statfs fsInfo;
29256 if( statfs(zPath, &fsInfo) == -1 ){
29257 /* In theory, the close(fd) call is sub-optimal. If the file opened
29258 ** with fd is a database file, and there are other connections open
29259 ** on that file that are currently holding advisory locks on it,
29260 ** then the call to close() will cancel those locks. In practice,
29261 ** we're assuming that statfs() doesn't fail very often. At least
29262 ** not while other file descriptors opened by the same process on
29263 ** the same file are working. */
29264 p->lastErrno = errno;
29265 robust_close(p, fd, __LINE__);
29266 rc = SQLITE_IOERR_ACCESS;
29267 goto open_finished;
29269 useProxy = !(fsInfo.f_flags&MNT_LOCAL);
29271 if( useProxy ){
29272 rc = fillInUnixFile(pVfs, fd, syncDir, pFile, zPath, noLock,
29273 isDelete, isReadonly);
29274 if( rc==SQLITE_OK ){
29275 rc = proxyTransformUnixFile((unixFile*)pFile, ":auto:");
29276 if( rc!=SQLITE_OK ){
29277 /* Use unixClose to clean up the resources added in fillInUnixFile
29278 ** and clear all the structure's references. Specifically,
29279 ** pFile->pMethods will be NULL so sqlite3OsClose will be a no-op
29281 unixClose(pFile);
29282 return rc;
29285 goto open_finished;
29288 #endif
29290 rc = fillInUnixFile(pVfs, fd, syncDir, pFile, zPath, noLock,
29291 isDelete, isReadonly);
29292 open_finished:
29293 if( rc!=SQLITE_OK ){
29294 chromium_sqlite3_destroy_reusable_file_handle(pFile);
29296 return rc;
29301 ** Delete the file at zPath. If the dirSync argument is true, fsync()
29302 ** the directory after deleting the file.
29304 static int unixDelete(
29305 sqlite3_vfs *NotUsed, /* VFS containing this as the xDelete method */
29306 const char *zPath, /* Name of file to be deleted */
29307 int dirSync /* If true, fsync() directory after deleting file */
29309 int rc = SQLITE_OK;
29310 UNUSED_PARAMETER(NotUsed);
29311 SimulateIOError(return SQLITE_IOERR_DELETE);
29312 if( osUnlink(zPath)==(-1) && errno!=ENOENT ){
29313 return unixLogError(SQLITE_IOERR_DELETE, "unlink", zPath);
29315 #ifndef SQLITE_DISABLE_DIRSYNC
29316 if( dirSync ){
29317 int fd;
29318 rc = osOpenDirectory(zPath, &fd);
29319 if( rc==SQLITE_OK ){
29320 #if OS_VXWORKS
29321 if( fsync(fd)==-1 )
29322 #else
29323 if( fsync(fd) )
29324 #endif
29326 rc = unixLogError(SQLITE_IOERR_DIR_FSYNC, "fsync", zPath);
29328 robust_close(0, fd, __LINE__);
29329 }else if( rc==SQLITE_CANTOPEN ){
29330 rc = SQLITE_OK;
29333 #endif
29334 return rc;
29338 ** Test the existance of or access permissions of file zPath. The
29339 ** test performed depends on the value of flags:
29341 ** SQLITE_ACCESS_EXISTS: Return 1 if the file exists
29342 ** SQLITE_ACCESS_READWRITE: Return 1 if the file is read and writable.
29343 ** SQLITE_ACCESS_READONLY: Return 1 if the file is readable.
29345 ** Otherwise return 0.
29347 static int unixAccess(
29348 sqlite3_vfs *NotUsed, /* The VFS containing this xAccess method */
29349 const char *zPath, /* Path of the file to examine */
29350 int flags, /* What do we want to learn about the zPath file? */
29351 int *pResOut /* Write result boolean here */
29353 int amode = 0;
29354 UNUSED_PARAMETER(NotUsed);
29355 SimulateIOError( return SQLITE_IOERR_ACCESS; );
29356 switch( flags ){
29357 case SQLITE_ACCESS_EXISTS:
29358 amode = F_OK;
29359 break;
29360 case SQLITE_ACCESS_READWRITE:
29361 amode = W_OK|R_OK;
29362 break;
29363 case SQLITE_ACCESS_READ:
29364 amode = R_OK;
29365 break;
29367 default:
29368 assert(!"Invalid flags argument");
29370 *pResOut = (osAccess(zPath, amode)==0);
29371 if( flags==SQLITE_ACCESS_EXISTS && *pResOut ){
29372 struct stat buf;
29373 if( 0==osStat(zPath, &buf) && buf.st_size==0 ){
29374 *pResOut = 0;
29377 return SQLITE_OK;
29382 ** Turn a relative pathname into a full pathname. The relative path
29383 ** is stored as a nul-terminated string in the buffer pointed to by
29384 ** zPath.
29386 ** zOut points to a buffer of at least sqlite3_vfs.mxPathname bytes
29387 ** (in this case, MAX_PATHNAME bytes). The full-path is written to
29388 ** this buffer before returning.
29390 static int unixFullPathname(
29391 sqlite3_vfs *pVfs, /* Pointer to vfs object */
29392 const char *zPath, /* Possibly relative input path */
29393 int nOut, /* Size of output buffer in bytes */
29394 char *zOut /* Output buffer */
29397 /* It's odd to simulate an io-error here, but really this is just
29398 ** using the io-error infrastructure to test that SQLite handles this
29399 ** function failing. This function could fail if, for example, the
29400 ** current working directory has been unlinked.
29402 SimulateIOError( return SQLITE_ERROR );
29404 assert( pVfs->mxPathname==MAX_PATHNAME );
29405 UNUSED_PARAMETER(pVfs);
29407 zOut[nOut-1] = '\0';
29408 if( zPath[0]=='/' ){
29409 sqlite3_snprintf(nOut, zOut, "%s", zPath);
29410 }else{
29411 int nCwd;
29412 if( osGetcwd(zOut, nOut-1)==0 ){
29413 return unixLogError(SQLITE_CANTOPEN_BKPT, "getcwd", zPath);
29415 nCwd = (int)strlen(zOut);
29416 sqlite3_snprintf(nOut-nCwd, &zOut[nCwd], "/%s", zPath);
29418 return SQLITE_OK;
29422 #ifndef SQLITE_OMIT_LOAD_EXTENSION
29424 ** Interfaces for opening a shared library, finding entry points
29425 ** within the shared library, and closing the shared library.
29427 #include <dlfcn.h>
29428 static void *unixDlOpen(sqlite3_vfs *NotUsed, const char *zFilename){
29429 UNUSED_PARAMETER(NotUsed);
29430 return dlopen(zFilename, RTLD_NOW | RTLD_GLOBAL);
29434 ** SQLite calls this function immediately after a call to unixDlSym() or
29435 ** unixDlOpen() fails (returns a null pointer). If a more detailed error
29436 ** message is available, it is written to zBufOut. If no error message
29437 ** is available, zBufOut is left unmodified and SQLite uses a default
29438 ** error message.
29440 static void unixDlError(sqlite3_vfs *NotUsed, int nBuf, char *zBufOut){
29441 const char *zErr;
29442 UNUSED_PARAMETER(NotUsed);
29443 unixEnterMutex();
29444 zErr = dlerror();
29445 if( zErr ){
29446 sqlite3_snprintf(nBuf, zBufOut, "%s", zErr);
29448 unixLeaveMutex();
29450 static void (*unixDlSym(sqlite3_vfs *NotUsed, void *p, const char*zSym))(void){
29452 ** GCC with -pedantic-errors says that C90 does not allow a void* to be
29453 ** cast into a pointer to a function. And yet the library dlsym() routine
29454 ** returns a void* which is really a pointer to a function. So how do we
29455 ** use dlsym() with -pedantic-errors?
29457 ** Variable x below is defined to be a pointer to a function taking
29458 ** parameters void* and const char* and returning a pointer to a function.
29459 ** We initialize x by assigning it a pointer to the dlsym() function.
29460 ** (That assignment requires a cast.) Then we call the function that
29461 ** x points to.
29463 ** This work-around is unlikely to work correctly on any system where
29464 ** you really cannot cast a function pointer into void*. But then, on the
29465 ** other hand, dlsym() will not work on such a system either, so we have
29466 ** not really lost anything.
29468 void (*(*x)(void*,const char*))(void);
29469 UNUSED_PARAMETER(NotUsed);
29470 x = (void(*(*)(void*,const char*))(void))dlsym;
29471 return (*x)(p, zSym);
29473 static void unixDlClose(sqlite3_vfs *NotUsed, void *pHandle){
29474 UNUSED_PARAMETER(NotUsed);
29475 dlclose(pHandle);
29477 #else /* if SQLITE_OMIT_LOAD_EXTENSION is defined: */
29478 #define unixDlOpen 0
29479 #define unixDlError 0
29480 #define unixDlSym 0
29481 #define unixDlClose 0
29482 #endif
29485 ** Write nBuf bytes of random data to the supplied buffer zBuf.
29487 static int unixRandomness(sqlite3_vfs *NotUsed, int nBuf, char *zBuf){
29488 UNUSED_PARAMETER(NotUsed);
29489 assert((size_t)nBuf>=(sizeof(time_t)+sizeof(int)));
29491 /* We have to initialize zBuf to prevent valgrind from reporting
29492 ** errors. The reports issued by valgrind are incorrect - we would
29493 ** prefer that the randomness be increased by making use of the
29494 ** uninitialized space in zBuf - but valgrind errors tend to worry
29495 ** some users. Rather than argue, it seems easier just to initialize
29496 ** the whole array and silence valgrind, even if that means less randomness
29497 ** in the random seed.
29499 ** When testing, initializing zBuf[] to zero is all we do. That means
29500 ** that we always use the same random number sequence. This makes the
29501 ** tests repeatable.
29503 memset(zBuf, 0, nBuf);
29504 #if !defined(SQLITE_TEST)
29506 int pid, fd;
29507 fd = robust_open("/dev/urandom", O_RDONLY, 0);
29508 if( fd<0 ){
29509 time_t t;
29510 time(&t);
29511 memcpy(zBuf, &t, sizeof(t));
29512 pid = getpid();
29513 memcpy(&zBuf[sizeof(t)], &pid, sizeof(pid));
29514 assert( sizeof(t)+sizeof(pid)<=(size_t)nBuf );
29515 nBuf = sizeof(t) + sizeof(pid);
29516 }else{
29517 do{ nBuf = osRead(fd, zBuf, nBuf); }while( nBuf<0 && errno==EINTR );
29518 robust_close(0, fd, __LINE__);
29521 #endif
29522 return nBuf;
29527 ** Sleep for a little while. Return the amount of time slept.
29528 ** The argument is the number of microseconds we want to sleep.
29529 ** The return value is the number of microseconds of sleep actually
29530 ** requested from the underlying operating system, a number which
29531 ** might be greater than or equal to the argument, but not less
29532 ** than the argument.
29534 static int unixSleep(sqlite3_vfs *NotUsed, int microseconds){
29535 #if OS_VXWORKS
29536 struct timespec sp;
29538 sp.tv_sec = microseconds / 1000000;
29539 sp.tv_nsec = (microseconds % 1000000) * 1000;
29540 nanosleep(&sp, NULL);
29541 UNUSED_PARAMETER(NotUsed);
29542 return microseconds;
29543 #elif defined(HAVE_USLEEP) && HAVE_USLEEP
29544 usleep(microseconds);
29545 UNUSED_PARAMETER(NotUsed);
29546 return microseconds;
29547 #else
29548 int seconds = (microseconds+999999)/1000000;
29549 sleep(seconds);
29550 UNUSED_PARAMETER(NotUsed);
29551 return seconds*1000000;
29552 #endif
29556 ** The following variable, if set to a non-zero value, is interpreted as
29557 ** the number of seconds since 1970 and is used to set the result of
29558 ** sqlite3OsCurrentTime() during testing.
29560 #ifdef SQLITE_TEST
29561 SQLITE_API int sqlite3_current_time = 0; /* Fake system time in seconds since 1970. */
29562 #endif
29565 ** Find the current time (in Universal Coordinated Time). Write into *piNow
29566 ** the current time and date as a Julian Day number times 86_400_000. In
29567 ** other words, write into *piNow the number of milliseconds since the Julian
29568 ** epoch of noon in Greenwich on November 24, 4714 B.C according to the
29569 ** proleptic Gregorian calendar.
29571 ** On success, return 0. Return 1 if the time and date cannot be found.
29573 static int unixCurrentTimeInt64(sqlite3_vfs *NotUsed, sqlite3_int64 *piNow){
29574 static const sqlite3_int64 unixEpoch = 24405875*(sqlite3_int64)8640000;
29575 #if defined(NO_GETTOD)
29576 time_t t;
29577 time(&t);
29578 *piNow = ((sqlite3_int64)t)*1000 + unixEpoch;
29579 #elif OS_VXWORKS
29580 struct timespec sNow;
29581 clock_gettime(CLOCK_REALTIME, &sNow);
29582 *piNow = unixEpoch + 1000*(sqlite3_int64)sNow.tv_sec + sNow.tv_nsec/1000000;
29583 #else
29584 struct timeval sNow;
29585 gettimeofday(&sNow, 0);
29586 *piNow = unixEpoch + 1000*(sqlite3_int64)sNow.tv_sec + sNow.tv_usec/1000;
29587 #endif
29589 #ifdef SQLITE_TEST
29590 if( sqlite3_current_time ){
29591 *piNow = 1000*(sqlite3_int64)sqlite3_current_time + unixEpoch;
29593 #endif
29594 UNUSED_PARAMETER(NotUsed);
29595 return 0;
29599 ** Find the current time (in Universal Coordinated Time). Write the
29600 ** current time and date as a Julian Day number into *prNow and
29601 ** return 0. Return 1 if the time and date cannot be found.
29603 static int unixCurrentTime(sqlite3_vfs *NotUsed, double *prNow){
29604 sqlite3_int64 i;
29605 UNUSED_PARAMETER(NotUsed);
29606 unixCurrentTimeInt64(0, &i);
29607 *prNow = i/86400000.0;
29608 return 0;
29612 ** We added the xGetLastError() method with the intention of providing
29613 ** better low-level error messages when operating-system problems come up
29614 ** during SQLite operation. But so far, none of that has been implemented
29615 ** in the core. So this routine is never called. For now, it is merely
29616 ** a place-holder.
29618 static int unixGetLastError(sqlite3_vfs *NotUsed, int NotUsed2, char *NotUsed3){
29619 UNUSED_PARAMETER(NotUsed);
29620 UNUSED_PARAMETER(NotUsed2);
29621 UNUSED_PARAMETER(NotUsed3);
29622 return 0;
29627 ************************ End of sqlite3_vfs methods ***************************
29628 ******************************************************************************/
29630 /******************************************************************************
29631 ************************** Begin Proxy Locking ********************************
29633 ** Proxy locking is a "uber-locking-method" in this sense: It uses the
29634 ** other locking methods on secondary lock files. Proxy locking is a
29635 ** meta-layer over top of the primitive locking implemented above. For
29636 ** this reason, the division that implements of proxy locking is deferred
29637 ** until late in the file (here) after all of the other I/O methods have
29638 ** been defined - so that the primitive locking methods are available
29639 ** as services to help with the implementation of proxy locking.
29641 ****
29643 ** The default locking schemes in SQLite use byte-range locks on the
29644 ** database file to coordinate safe, concurrent access by multiple readers
29645 ** and writers [http://sqlite.org/lockingv3.html]. The five file locking
29646 ** states (UNLOCKED, PENDING, SHARED, RESERVED, EXCLUSIVE) are implemented
29647 ** as POSIX read & write locks over fixed set of locations (via fsctl),
29648 ** on AFP and SMB only exclusive byte-range locks are available via fsctl
29649 ** with _IOWR('z', 23, struct ByteRangeLockPB2) to track the same 5 states.
29650 ** To simulate a F_RDLCK on the shared range, on AFP a randomly selected
29651 ** address in the shared range is taken for a SHARED lock, the entire
29652 ** shared range is taken for an EXCLUSIVE lock):
29654 ** PENDING_BYTE 0x40000000
29655 ** RESERVED_BYTE 0x40000001
29656 ** SHARED_RANGE 0x40000002 -> 0x40000200
29658 ** This works well on the local file system, but shows a nearly 100x
29659 ** slowdown in read performance on AFP because the AFP client disables
29660 ** the read cache when byte-range locks are present. Enabling the read
29661 ** cache exposes a cache coherency problem that is present on all OS X
29662 ** supported network file systems. NFS and AFP both observe the
29663 ** close-to-open semantics for ensuring cache coherency
29664 ** [http://nfs.sourceforge.net/#faq_a8], which does not effectively
29665 ** address the requirements for concurrent database access by multiple
29666 ** readers and writers
29667 ** [http://www.nabble.com/SQLite-on-NFS-cache-coherency-td15655701.html].
29669 ** To address the performance and cache coherency issues, proxy file locking
29670 ** changes the way database access is controlled by limiting access to a
29671 ** single host at a time and moving file locks off of the database file
29672 ** and onto a proxy file on the local file system.
29675 ** Using proxy locks
29676 ** -----------------
29678 ** C APIs
29680 ** sqlite3_file_control(db, dbname, SQLITE_SET_LOCKPROXYFILE,
29681 ** <proxy_path> | ":auto:");
29682 ** sqlite3_file_control(db, dbname, SQLITE_GET_LOCKPROXYFILE, &<proxy_path>);
29685 ** SQL pragmas
29687 ** PRAGMA [database.]lock_proxy_file=<proxy_path> | :auto:
29688 ** PRAGMA [database.]lock_proxy_file
29690 ** Specifying ":auto:" means that if there is a conch file with a matching
29691 ** host ID in it, the proxy path in the conch file will be used, otherwise
29692 ** a proxy path based on the user's temp dir
29693 ** (via confstr(_CS_DARWIN_USER_TEMP_DIR,...)) will be used and the
29694 ** actual proxy file name is generated from the name and path of the
29695 ** database file. For example:
29697 ** For database path "/Users/me/foo.db"
29698 ** The lock path will be "<tmpdir>/sqliteplocks/_Users_me_foo.db:auto:")
29700 ** Once a lock proxy is configured for a database connection, it can not
29701 ** be removed, however it may be switched to a different proxy path via
29702 ** the above APIs (assuming the conch file is not being held by another
29703 ** connection or process).
29706 ** How proxy locking works
29707 ** -----------------------
29709 ** Proxy file locking relies primarily on two new supporting files:
29711 ** * conch file to limit access to the database file to a single host
29712 ** at a time
29714 ** * proxy file to act as a proxy for the advisory locks normally
29715 ** taken on the database
29717 ** The conch file - to use a proxy file, sqlite must first "hold the conch"
29718 ** by taking an sqlite-style shared lock on the conch file, reading the
29719 ** contents and comparing the host's unique host ID (see below) and lock
29720 ** proxy path against the values stored in the conch. The conch file is
29721 ** stored in the same directory as the database file and the file name
29722 ** is patterned after the database file name as ".<databasename>-conch".
29723 ** If the conch file does not exist, or it's contents do not match the
29724 ** host ID and/or proxy path, then the lock is escalated to an exclusive
29725 ** lock and the conch file contents is updated with the host ID and proxy
29726 ** path and the lock is downgraded to a shared lock again. If the conch
29727 ** is held by another process (with a shared lock), the exclusive lock
29728 ** will fail and SQLITE_BUSY is returned.
29730 ** The proxy file - a single-byte file used for all advisory file locks
29731 ** normally taken on the database file. This allows for safe sharing
29732 ** of the database file for multiple readers and writers on the same
29733 ** host (the conch ensures that they all use the same local lock file).
29735 ** Requesting the lock proxy does not immediately take the conch, it is
29736 ** only taken when the first request to lock database file is made.
29737 ** This matches the semantics of the traditional locking behavior, where
29738 ** opening a connection to a database file does not take a lock on it.
29739 ** The shared lock and an open file descriptor are maintained until
29740 ** the connection to the database is closed.
29742 ** The proxy file and the lock file are never deleted so they only need
29743 ** to be created the first time they are used.
29745 ** Configuration options
29746 ** ---------------------
29748 ** SQLITE_PREFER_PROXY_LOCKING
29750 ** Database files accessed on non-local file systems are
29751 ** automatically configured for proxy locking, lock files are
29752 ** named automatically using the same logic as
29753 ** PRAGMA lock_proxy_file=":auto:"
29755 ** SQLITE_PROXY_DEBUG
29757 ** Enables the logging of error messages during host id file
29758 ** retrieval and creation
29760 ** LOCKPROXYDIR
29762 ** Overrides the default directory used for lock proxy files that
29763 ** are named automatically via the ":auto:" setting
29765 ** SQLITE_DEFAULT_PROXYDIR_PERMISSIONS
29767 ** Permissions to use when creating a directory for storing the
29768 ** lock proxy files, only used when LOCKPROXYDIR is not set.
29771 ** As mentioned above, when compiled with SQLITE_PREFER_PROXY_LOCKING,
29772 ** setting the environment variable SQLITE_FORCE_PROXY_LOCKING to 1 will
29773 ** force proxy locking to be used for every database file opened, and 0
29774 ** will force automatic proxy locking to be disabled for all database
29775 ** files (explicity calling the SQLITE_SET_LOCKPROXYFILE pragma or
29776 ** sqlite_file_control API is not affected by SQLITE_FORCE_PROXY_LOCKING).
29780 ** Proxy locking is only available on MacOSX
29782 #if defined(__APPLE__) && SQLITE_ENABLE_LOCKING_STYLE
29785 ** The proxyLockingContext has the path and file structures for the remote
29786 ** and local proxy files in it
29788 typedef struct proxyLockingContext proxyLockingContext;
29789 struct proxyLockingContext {
29790 unixFile *conchFile; /* Open conch file */
29791 char *conchFilePath; /* Name of the conch file */
29792 unixFile *lockProxy; /* Open proxy lock file */
29793 char *lockProxyPath; /* Name of the proxy lock file */
29794 char *dbPath; /* Name of the open file */
29795 int conchHeld; /* 1 if the conch is held, -1 if lockless */
29796 void *oldLockingContext; /* Original lockingcontext to restore on close */
29797 sqlite3_io_methods const *pOldMethod; /* Original I/O methods for close */
29801 ** The proxy lock file path for the database at dbPath is written into lPath,
29802 ** which must point to valid, writable memory large enough for a maxLen length
29803 ** file path.
29805 static int proxyGetLockPath(const char *dbPath, char *lPath, size_t maxLen){
29806 int len;
29807 int dbLen;
29808 int i;
29810 #ifdef LOCKPROXYDIR
29811 len = strlcpy(lPath, LOCKPROXYDIR, maxLen);
29812 #else
29813 # ifdef _CS_DARWIN_USER_TEMP_DIR
29815 if( !confstr(_CS_DARWIN_USER_TEMP_DIR, lPath, maxLen) ){
29816 OSTRACE(("GETLOCKPATH failed %s errno=%d pid=%d\n",
29817 lPath, errno, getpid()));
29818 return SQLITE_IOERR_LOCK;
29820 len = strlcat(lPath, "sqliteplocks", maxLen);
29822 # else
29823 len = strlcpy(lPath, "/tmp/", maxLen);
29824 # endif
29825 #endif
29827 if( lPath[len-1]!='/' ){
29828 len = strlcat(lPath, "/", maxLen);
29831 /* transform the db path to a unique cache name */
29832 dbLen = (int)strlen(dbPath);
29833 for( i=0; i<dbLen && (i+len+7)<(int)maxLen; i++){
29834 char c = dbPath[i];
29835 lPath[i+len] = (c=='/')?'_':c;
29837 lPath[i+len]='\0';
29838 strlcat(lPath, ":auto:", maxLen);
29839 OSTRACE(("GETLOCKPATH proxy lock path=%s pid=%d\n", lPath, getpid()));
29840 return SQLITE_OK;
29844 ** Creates the lock file and any missing directories in lockPath
29846 static int proxyCreateLockPath(const char *lockPath){
29847 int i, len;
29848 char buf[MAXPATHLEN];
29849 int start = 0;
29851 assert(lockPath!=NULL);
29852 /* try to create all the intermediate directories */
29853 len = (int)strlen(lockPath);
29854 buf[0] = lockPath[0];
29855 for( i=1; i<len; i++ ){
29856 if( lockPath[i] == '/' && (i - start > 0) ){
29857 /* only mkdir if leaf dir != "." or "/" or ".." */
29858 if( i-start>2 || (i-start==1 && buf[start] != '.' && buf[start] != '/')
29859 || (i-start==2 && buf[start] != '.' && buf[start+1] != '.') ){
29860 buf[i]='\0';
29861 if( mkdir(buf, SQLITE_DEFAULT_PROXYDIR_PERMISSIONS) ){
29862 int err=errno;
29863 if( err!=EEXIST ) {
29864 OSTRACE(("CREATELOCKPATH FAILED creating %s, "
29865 "'%s' proxy lock path=%s pid=%d\n",
29866 buf, strerror(err), lockPath, getpid()));
29867 return err;
29871 start=i+1;
29873 buf[i] = lockPath[i];
29875 OSTRACE(("CREATELOCKPATH proxy lock path=%s pid=%d\n", lockPath, getpid()));
29876 return 0;
29880 ** Create a new VFS file descriptor (stored in memory obtained from
29881 ** sqlite3_malloc) and open the file named "path" in the file descriptor.
29883 ** The caller is responsible not only for closing the file descriptor
29884 ** but also for freeing the memory associated with the file descriptor.
29886 static int proxyCreateUnixFile(
29887 const char *path, /* path for the new unixFile */
29888 unixFile **ppFile, /* unixFile created and returned by ref */
29889 int islockfile /* if non zero missing dirs will be created */
29891 int fd = -1;
29892 unixFile *pNew;
29893 int rc = SQLITE_OK;
29894 int openFlags = O_RDWR | O_CREAT;
29895 sqlite3_vfs dummyVfs;
29896 int terrno = 0;
29897 UnixUnusedFd *pUnused = NULL;
29899 /* 1. first try to open/create the file
29900 ** 2. if that fails, and this is a lock file (not-conch), try creating
29901 ** the parent directories and then try again.
29902 ** 3. if that fails, try to open the file read-only
29903 ** otherwise return BUSY (if lock file) or CANTOPEN for the conch file
29905 pUnused = findReusableFd(path, openFlags);
29906 if( pUnused ){
29907 fd = pUnused->fd;
29908 }else{
29909 pUnused = sqlite3_malloc(sizeof(*pUnused));
29910 if( !pUnused ){
29911 return SQLITE_NOMEM;
29914 if( fd<0 ){
29915 fd = robust_open(path, openFlags, SQLITE_DEFAULT_FILE_PERMISSIONS);
29916 terrno = errno;
29917 if( fd<0 && errno==ENOENT && islockfile ){
29918 if( proxyCreateLockPath(path) == SQLITE_OK ){
29919 fd = robust_open(path, openFlags, SQLITE_DEFAULT_FILE_PERMISSIONS);
29923 if( fd<0 ){
29924 openFlags = O_RDONLY;
29925 fd = robust_open(path, openFlags, SQLITE_DEFAULT_FILE_PERMISSIONS);
29926 terrno = errno;
29928 if( fd<0 ){
29929 if( islockfile ){
29930 return SQLITE_BUSY;
29932 switch (terrno) {
29933 case EACCES:
29934 return SQLITE_PERM;
29935 case EIO:
29936 return SQLITE_IOERR_LOCK; /* even though it is the conch */
29937 default:
29938 return SQLITE_CANTOPEN_BKPT;
29942 pNew = (unixFile *)sqlite3_malloc(sizeof(*pNew));
29943 if( pNew==NULL ){
29944 rc = SQLITE_NOMEM;
29945 goto end_create_proxy;
29947 memset(pNew, 0, sizeof(unixFile));
29948 pNew->openFlags = openFlags;
29949 memset(&dummyVfs, 0, sizeof(dummyVfs));
29950 dummyVfs.pAppData = (void*)&autolockIoFinder;
29951 dummyVfs.zName = "dummy";
29952 pUnused->fd = fd;
29953 pUnused->flags = openFlags;
29954 pNew->pUnused = pUnused;
29956 rc = fillInUnixFile(&dummyVfs, fd, 0, (sqlite3_file*)pNew, path, 0, 0, 0);
29957 if( rc==SQLITE_OK ){
29958 *ppFile = pNew;
29959 return SQLITE_OK;
29961 end_create_proxy:
29962 robust_close(pNew, fd, __LINE__);
29963 sqlite3_free(pNew);
29964 sqlite3_free(pUnused);
29965 return rc;
29968 #ifdef SQLITE_TEST
29969 /* simulate multiple hosts by creating unique hostid file paths */
29970 SQLITE_API int sqlite3_hostid_num = 0;
29971 #endif
29973 #define PROXY_HOSTIDLEN 16 /* conch file host id length */
29975 /* Not always defined in the headers as it ought to be */
29976 extern int gethostuuid(uuid_t id, const struct timespec *wait);
29978 /* get the host ID via gethostuuid(), pHostID must point to PROXY_HOSTIDLEN
29979 ** bytes of writable memory.
29981 static int proxyGetHostID(unsigned char *pHostID, int *pError){
29982 assert(PROXY_HOSTIDLEN == sizeof(uuid_t));
29983 memset(pHostID, 0, PROXY_HOSTIDLEN);
29984 #if defined(__MAX_OS_X_VERSION_MIN_REQUIRED)\
29985 && __MAC_OS_X_VERSION_MIN_REQUIRED<1050
29987 static const struct timespec timeout = {1, 0}; /* 1 sec timeout */
29988 if( gethostuuid(pHostID, &timeout) ){
29989 int err = errno;
29990 if( pError ){
29991 *pError = err;
29993 return SQLITE_IOERR;
29996 #endif
29997 #ifdef SQLITE_TEST
29998 /* simulate multiple hosts by creating unique hostid file paths */
29999 if( sqlite3_hostid_num != 0){
30000 pHostID[0] = (char)(pHostID[0] + (char)(sqlite3_hostid_num & 0xFF));
30002 #endif
30004 return SQLITE_OK;
30007 /* The conch file contains the header, host id and lock file path
30009 #define PROXY_CONCHVERSION 2 /* 1-byte header, 16-byte host id, path */
30010 #define PROXY_HEADERLEN 1 /* conch file header length */
30011 #define PROXY_PATHINDEX (PROXY_HEADERLEN+PROXY_HOSTIDLEN)
30012 #define PROXY_MAXCONCHLEN (PROXY_HEADERLEN+PROXY_HOSTIDLEN+MAXPATHLEN)
30015 ** Takes an open conch file, copies the contents to a new path and then moves
30016 ** it back. The newly created file's file descriptor is assigned to the
30017 ** conch file structure and finally the original conch file descriptor is
30018 ** closed. Returns zero if successful.
30020 static int proxyBreakConchLock(unixFile *pFile, uuid_t myHostID){
30021 proxyLockingContext *pCtx = (proxyLockingContext *)pFile->lockingContext;
30022 unixFile *conchFile = pCtx->conchFile;
30023 char tPath[MAXPATHLEN];
30024 char buf[PROXY_MAXCONCHLEN];
30025 char *cPath = pCtx->conchFilePath;
30026 size_t readLen = 0;
30027 size_t pathLen = 0;
30028 char errmsg[64] = "";
30029 int fd = -1;
30030 int rc = -1;
30031 UNUSED_PARAMETER(myHostID);
30033 /* create a new path by replace the trailing '-conch' with '-break' */
30034 pathLen = strlcpy(tPath, cPath, MAXPATHLEN);
30035 if( pathLen>MAXPATHLEN || pathLen<6 ||
30036 (strlcpy(&tPath[pathLen-5], "break", 6) != 5) ){
30037 sqlite3_snprintf(sizeof(errmsg),errmsg,"path error (len %d)",(int)pathLen);
30038 goto end_breaklock;
30040 /* read the conch content */
30041 readLen = osPread(conchFile->h, buf, PROXY_MAXCONCHLEN, 0);
30042 if( readLen<PROXY_PATHINDEX ){
30043 sqlite3_snprintf(sizeof(errmsg),errmsg,"read error (len %d)",(int)readLen);
30044 goto end_breaklock;
30046 /* write it out to the temporary break file */
30047 fd = robust_open(tPath, (O_RDWR|O_CREAT|O_EXCL),
30048 SQLITE_DEFAULT_FILE_PERMISSIONS);
30049 if( fd<0 ){
30050 sqlite3_snprintf(sizeof(errmsg), errmsg, "create failed (%d)", errno);
30051 goto end_breaklock;
30053 if( osPwrite(fd, buf, readLen, 0) != (ssize_t)readLen ){
30054 sqlite3_snprintf(sizeof(errmsg), errmsg, "write failed (%d)", errno);
30055 goto end_breaklock;
30057 if( rename(tPath, cPath) ){
30058 sqlite3_snprintf(sizeof(errmsg), errmsg, "rename failed (%d)", errno);
30059 goto end_breaklock;
30061 rc = 0;
30062 fprintf(stderr, "broke stale lock on %s\n", cPath);
30063 robust_close(pFile, conchFile->h, __LINE__);
30064 conchFile->h = fd;
30065 conchFile->openFlags = O_RDWR | O_CREAT;
30067 end_breaklock:
30068 if( rc ){
30069 if( fd>=0 ){
30070 osUnlink(tPath);
30071 robust_close(pFile, fd, __LINE__);
30073 fprintf(stderr, "failed to break stale lock on %s, %s\n", cPath, errmsg);
30075 return rc;
30078 /* Take the requested lock on the conch file and break a stale lock if the
30079 ** host id matches.
30081 static int proxyConchLock(unixFile *pFile, uuid_t myHostID, int lockType){
30082 proxyLockingContext *pCtx = (proxyLockingContext *)pFile->lockingContext;
30083 unixFile *conchFile = pCtx->conchFile;
30084 int rc = SQLITE_OK;
30085 int nTries = 0;
30086 struct timespec conchModTime;
30088 do {
30089 rc = conchFile->pMethod->xLock((sqlite3_file*)conchFile, lockType);
30090 nTries ++;
30091 if( rc==SQLITE_BUSY ){
30092 /* If the lock failed (busy):
30093 * 1st try: get the mod time of the conch, wait 0.5s and try again.
30094 * 2nd try: fail if the mod time changed or host id is different, wait
30095 * 10 sec and try again
30096 * 3rd try: break the lock unless the mod time has changed.
30098 struct stat buf;
30099 if( osFstat(conchFile->h, &buf) ){
30100 pFile->lastErrno = errno;
30101 return SQLITE_IOERR_LOCK;
30104 if( nTries==1 ){
30105 conchModTime = buf.st_mtimespec;
30106 usleep(500000); /* wait 0.5 sec and try the lock again*/
30107 continue;
30110 assert( nTries>1 );
30111 if( conchModTime.tv_sec != buf.st_mtimespec.tv_sec ||
30112 conchModTime.tv_nsec != buf.st_mtimespec.tv_nsec ){
30113 return SQLITE_BUSY;
30116 if( nTries==2 ){
30117 char tBuf[PROXY_MAXCONCHLEN];
30118 int len = osPread(conchFile->h, tBuf, PROXY_MAXCONCHLEN, 0);
30119 if( len<0 ){
30120 pFile->lastErrno = errno;
30121 return SQLITE_IOERR_LOCK;
30123 if( len>PROXY_PATHINDEX && tBuf[0]==(char)PROXY_CONCHVERSION){
30124 /* don't break the lock if the host id doesn't match */
30125 if( 0!=memcmp(&tBuf[PROXY_HEADERLEN], myHostID, PROXY_HOSTIDLEN) ){
30126 return SQLITE_BUSY;
30128 }else{
30129 /* don't break the lock on short read or a version mismatch */
30130 return SQLITE_BUSY;
30132 usleep(10000000); /* wait 10 sec and try the lock again */
30133 continue;
30136 assert( nTries==3 );
30137 if( 0==proxyBreakConchLock(pFile, myHostID) ){
30138 rc = SQLITE_OK;
30139 if( lockType==EXCLUSIVE_LOCK ){
30140 rc = conchFile->pMethod->xLock((sqlite3_file*)conchFile, SHARED_LOCK);
30142 if( !rc ){
30143 rc = conchFile->pMethod->xLock((sqlite3_file*)conchFile, lockType);
30147 } while( rc==SQLITE_BUSY && nTries<3 );
30149 return rc;
30152 /* Takes the conch by taking a shared lock and read the contents conch, if
30153 ** lockPath is non-NULL, the host ID and lock file path must match. A NULL
30154 ** lockPath means that the lockPath in the conch file will be used if the
30155 ** host IDs match, or a new lock path will be generated automatically
30156 ** and written to the conch file.
30158 static int proxyTakeConch(unixFile *pFile){
30159 proxyLockingContext *pCtx = (proxyLockingContext *)pFile->lockingContext;
30161 if( pCtx->conchHeld!=0 ){
30162 return SQLITE_OK;
30163 }else{
30164 unixFile *conchFile = pCtx->conchFile;
30165 uuid_t myHostID;
30166 int pError = 0;
30167 char readBuf[PROXY_MAXCONCHLEN];
30168 char lockPath[MAXPATHLEN];
30169 char *tempLockPath = NULL;
30170 int rc = SQLITE_OK;
30171 int createConch = 0;
30172 int hostIdMatch = 0;
30173 int readLen = 0;
30174 int tryOldLockPath = 0;
30175 int forceNewLockPath = 0;
30177 OSTRACE(("TAKECONCH %d for %s pid=%d\n", conchFile->h,
30178 (pCtx->lockProxyPath ? pCtx->lockProxyPath : ":auto:"), getpid()));
30180 rc = proxyGetHostID(myHostID, &pError);
30181 if( (rc&0xff)==SQLITE_IOERR ){
30182 pFile->lastErrno = pError;
30183 goto end_takeconch;
30185 rc = proxyConchLock(pFile, myHostID, SHARED_LOCK);
30186 if( rc!=SQLITE_OK ){
30187 goto end_takeconch;
30189 /* read the existing conch file */
30190 readLen = seekAndRead((unixFile*)conchFile, 0, readBuf, PROXY_MAXCONCHLEN);
30191 if( readLen<0 ){
30192 /* I/O error: lastErrno set by seekAndRead */
30193 pFile->lastErrno = conchFile->lastErrno;
30194 rc = SQLITE_IOERR_READ;
30195 goto end_takeconch;
30196 }else if( readLen<=(PROXY_HEADERLEN+PROXY_HOSTIDLEN) ||
30197 readBuf[0]!=(char)PROXY_CONCHVERSION ){
30198 /* a short read or version format mismatch means we need to create a new
30199 ** conch file.
30201 createConch = 1;
30203 /* if the host id matches and the lock path already exists in the conch
30204 ** we'll try to use the path there, if we can't open that path, we'll
30205 ** retry with a new auto-generated path
30207 do { /* in case we need to try again for an :auto: named lock file */
30209 if( !createConch && !forceNewLockPath ){
30210 hostIdMatch = !memcmp(&readBuf[PROXY_HEADERLEN], myHostID,
30211 PROXY_HOSTIDLEN);
30212 /* if the conch has data compare the contents */
30213 if( !pCtx->lockProxyPath ){
30214 /* for auto-named local lock file, just check the host ID and we'll
30215 ** use the local lock file path that's already in there
30217 if( hostIdMatch ){
30218 size_t pathLen = (readLen - PROXY_PATHINDEX);
30220 if( pathLen>=MAXPATHLEN ){
30221 pathLen=MAXPATHLEN-1;
30223 memcpy(lockPath, &readBuf[PROXY_PATHINDEX], pathLen);
30224 lockPath[pathLen] = 0;
30225 tempLockPath = lockPath;
30226 tryOldLockPath = 1;
30227 /* create a copy of the lock path if the conch is taken */
30228 goto end_takeconch;
30230 }else if( hostIdMatch
30231 && !strncmp(pCtx->lockProxyPath, &readBuf[PROXY_PATHINDEX],
30232 readLen-PROXY_PATHINDEX)
30234 /* conch host and lock path match */
30235 goto end_takeconch;
30239 /* if the conch isn't writable and doesn't match, we can't take it */
30240 if( (conchFile->openFlags&O_RDWR) == 0 ){
30241 rc = SQLITE_BUSY;
30242 goto end_takeconch;
30245 /* either the conch didn't match or we need to create a new one */
30246 if( !pCtx->lockProxyPath ){
30247 proxyGetLockPath(pCtx->dbPath, lockPath, MAXPATHLEN);
30248 tempLockPath = lockPath;
30249 /* create a copy of the lock path _only_ if the conch is taken */
30252 /* update conch with host and path (this will fail if other process
30253 ** has a shared lock already), if the host id matches, use the big
30254 ** stick.
30256 futimes(conchFile->h, NULL);
30257 if( hostIdMatch && !createConch ){
30258 if( conchFile->pInode && conchFile->pInode->nShared>1 ){
30259 /* We are trying for an exclusive lock but another thread in this
30260 ** same process is still holding a shared lock. */
30261 rc = SQLITE_BUSY;
30262 } else {
30263 rc = proxyConchLock(pFile, myHostID, EXCLUSIVE_LOCK);
30265 }else{
30266 rc = conchFile->pMethod->xLock((sqlite3_file*)conchFile, EXCLUSIVE_LOCK);
30268 if( rc==SQLITE_OK ){
30269 char writeBuffer[PROXY_MAXCONCHLEN];
30270 int writeSize = 0;
30272 writeBuffer[0] = (char)PROXY_CONCHVERSION;
30273 memcpy(&writeBuffer[PROXY_HEADERLEN], myHostID, PROXY_HOSTIDLEN);
30274 if( pCtx->lockProxyPath!=NULL ){
30275 strlcpy(&writeBuffer[PROXY_PATHINDEX], pCtx->lockProxyPath, MAXPATHLEN);
30276 }else{
30277 strlcpy(&writeBuffer[PROXY_PATHINDEX], tempLockPath, MAXPATHLEN);
30279 writeSize = PROXY_PATHINDEX + strlen(&writeBuffer[PROXY_PATHINDEX]);
30280 robust_ftruncate(conchFile->h, writeSize);
30281 rc = unixWrite((sqlite3_file *)conchFile, writeBuffer, writeSize, 0);
30282 fsync(conchFile->h);
30283 /* If we created a new conch file (not just updated the contents of a
30284 ** valid conch file), try to match the permissions of the database
30286 if( rc==SQLITE_OK && createConch ){
30287 struct stat buf;
30288 int err = osFstat(pFile->h, &buf);
30289 if( err==0 ){
30290 mode_t cmode = buf.st_mode&(S_IRUSR|S_IWUSR | S_IRGRP|S_IWGRP |
30291 S_IROTH|S_IWOTH);
30292 /* try to match the database file R/W permissions, ignore failure */
30293 #ifndef SQLITE_PROXY_DEBUG
30294 osFchmod(conchFile->h, cmode);
30295 #else
30297 rc = osFchmod(conchFile->h, cmode);
30298 }while( rc==(-1) && errno==EINTR );
30299 if( rc!=0 ){
30300 int code = errno;
30301 fprintf(stderr, "fchmod %o FAILED with %d %s\n",
30302 cmode, code, strerror(code));
30303 } else {
30304 fprintf(stderr, "fchmod %o SUCCEDED\n",cmode);
30306 }else{
30307 int code = errno;
30308 fprintf(stderr, "STAT FAILED[%d] with %d %s\n",
30309 err, code, strerror(code));
30310 #endif
30314 conchFile->pMethod->xUnlock((sqlite3_file*)conchFile, SHARED_LOCK);
30316 end_takeconch:
30317 OSTRACE(("TRANSPROXY: CLOSE %d\n", pFile->h));
30318 if( rc==SQLITE_OK && pFile->openFlags ){
30319 if( pFile->h>=0 ){
30320 robust_close(pFile, pFile->h, __LINE__);
30322 pFile->h = -1;
30323 int fd = robust_open(pCtx->dbPath, pFile->openFlags,
30324 SQLITE_DEFAULT_FILE_PERMISSIONS);
30325 OSTRACE(("TRANSPROXY: OPEN %d\n", fd));
30326 if( fd>=0 ){
30327 pFile->h = fd;
30328 }else{
30329 rc=SQLITE_CANTOPEN_BKPT; /* SQLITE_BUSY? proxyTakeConch called
30330 during locking */
30333 if( rc==SQLITE_OK && !pCtx->lockProxy ){
30334 char *path = tempLockPath ? tempLockPath : pCtx->lockProxyPath;
30335 rc = proxyCreateUnixFile(path, &pCtx->lockProxy, 1);
30336 if( rc!=SQLITE_OK && rc!=SQLITE_NOMEM && tryOldLockPath ){
30337 /* we couldn't create the proxy lock file with the old lock file path
30338 ** so try again via auto-naming
30340 forceNewLockPath = 1;
30341 tryOldLockPath = 0;
30342 continue; /* go back to the do {} while start point, try again */
30345 if( rc==SQLITE_OK ){
30346 /* Need to make a copy of path if we extracted the value
30347 ** from the conch file or the path was allocated on the stack
30349 if( tempLockPath ){
30350 pCtx->lockProxyPath = sqlite3DbStrDup(0, tempLockPath);
30351 if( !pCtx->lockProxyPath ){
30352 rc = SQLITE_NOMEM;
30356 if( rc==SQLITE_OK ){
30357 pCtx->conchHeld = 1;
30359 if( pCtx->lockProxy->pMethod == &afpIoMethods ){
30360 afpLockingContext *afpCtx;
30361 afpCtx = (afpLockingContext *)pCtx->lockProxy->lockingContext;
30362 afpCtx->dbPath = pCtx->lockProxyPath;
30364 } else {
30365 conchFile->pMethod->xUnlock((sqlite3_file*)conchFile, NO_LOCK);
30367 OSTRACE(("TAKECONCH %d %s\n", conchFile->h,
30368 rc==SQLITE_OK?"ok":"failed"));
30369 return rc;
30370 } while (1); /* in case we need to retry the :auto: lock file -
30371 ** we should never get here except via the 'continue' call. */
30376 ** If pFile holds a lock on a conch file, then release that lock.
30378 static int proxyReleaseConch(unixFile *pFile){
30379 int rc = SQLITE_OK; /* Subroutine return code */
30380 proxyLockingContext *pCtx; /* The locking context for the proxy lock */
30381 unixFile *conchFile; /* Name of the conch file */
30383 pCtx = (proxyLockingContext *)pFile->lockingContext;
30384 conchFile = pCtx->conchFile;
30385 OSTRACE(("RELEASECONCH %d for %s pid=%d\n", conchFile->h,
30386 (pCtx->lockProxyPath ? pCtx->lockProxyPath : ":auto:"),
30387 getpid()));
30388 if( pCtx->conchHeld>0 ){
30389 rc = conchFile->pMethod->xUnlock((sqlite3_file*)conchFile, NO_LOCK);
30391 pCtx->conchHeld = 0;
30392 OSTRACE(("RELEASECONCH %d %s\n", conchFile->h,
30393 (rc==SQLITE_OK ? "ok" : "failed")));
30394 return rc;
30398 ** Given the name of a database file, compute the name of its conch file.
30399 ** Store the conch filename in memory obtained from sqlite3_malloc().
30400 ** Make *pConchPath point to the new name. Return SQLITE_OK on success
30401 ** or SQLITE_NOMEM if unable to obtain memory.
30403 ** The caller is responsible for ensuring that the allocated memory
30404 ** space is eventually freed.
30406 ** *pConchPath is set to NULL if a memory allocation error occurs.
30408 static int proxyCreateConchPathname(char *dbPath, char **pConchPath){
30409 int i; /* Loop counter */
30410 int len = (int)strlen(dbPath); /* Length of database filename - dbPath */
30411 char *conchPath; /* buffer in which to construct conch name */
30413 /* Allocate space for the conch filename and initialize the name to
30414 ** the name of the original database file. */
30415 *pConchPath = conchPath = (char *)sqlite3_malloc(len + 8);
30416 if( conchPath==0 ){
30417 return SQLITE_NOMEM;
30419 memcpy(conchPath, dbPath, len+1);
30421 /* now insert a "." before the last / character */
30422 for( i=(len-1); i>=0; i-- ){
30423 if( conchPath[i]=='/' ){
30424 i++;
30425 break;
30428 conchPath[i]='.';
30429 while ( i<len ){
30430 conchPath[i+1]=dbPath[i];
30431 i++;
30434 /* append the "-conch" suffix to the file */
30435 memcpy(&conchPath[i+1], "-conch", 7);
30436 assert( (int)strlen(conchPath) == len+7 );
30438 return SQLITE_OK;
30442 /* Takes a fully configured proxy locking-style unix file and switches
30443 ** the local lock file path
30445 static int switchLockProxyPath(unixFile *pFile, const char *path) {
30446 proxyLockingContext *pCtx = (proxyLockingContext*)pFile->lockingContext;
30447 char *oldPath = pCtx->lockProxyPath;
30448 int rc = SQLITE_OK;
30450 if( pFile->eFileLock!=NO_LOCK ){
30451 return SQLITE_BUSY;
30454 /* nothing to do if the path is NULL, :auto: or matches the existing path */
30455 if( !path || path[0]=='\0' || !strcmp(path, ":auto:") ||
30456 (oldPath && !strncmp(oldPath, path, MAXPATHLEN)) ){
30457 return SQLITE_OK;
30458 }else{
30459 unixFile *lockProxy = pCtx->lockProxy;
30460 pCtx->lockProxy=NULL;
30461 pCtx->conchHeld = 0;
30462 if( lockProxy!=NULL ){
30463 rc=lockProxy->pMethod->xClose((sqlite3_file *)lockProxy);
30464 if( rc ) return rc;
30465 sqlite3_free(lockProxy);
30467 sqlite3_free(oldPath);
30468 pCtx->lockProxyPath = sqlite3DbStrDup(0, path);
30471 return rc;
30475 ** pFile is a file that has been opened by a prior xOpen call. dbPath
30476 ** is a string buffer at least MAXPATHLEN+1 characters in size.
30478 ** This routine find the filename associated with pFile and writes it
30479 ** int dbPath.
30481 static int proxyGetDbPathForUnixFile(unixFile *pFile, char *dbPath){
30482 #if defined(__APPLE__)
30483 if( pFile->pMethod == &afpIoMethods ){
30484 /* afp style keeps a reference to the db path in the filePath field
30485 ** of the struct */
30486 assert( (int)strlen((char*)pFile->lockingContext)<=MAXPATHLEN );
30487 strlcpy(dbPath, ((afpLockingContext *)pFile->lockingContext)->dbPath, MAXPATHLEN);
30488 } else
30489 #endif
30490 if( pFile->pMethod == &dotlockIoMethods ){
30491 /* dot lock style uses the locking context to store the dot lock
30492 ** file path */
30493 int len = strlen((char *)pFile->lockingContext) - strlen(DOTLOCK_SUFFIX);
30494 memcpy(dbPath, (char *)pFile->lockingContext, len + 1);
30495 }else{
30496 /* all other styles use the locking context to store the db file path */
30497 assert( strlen((char*)pFile->lockingContext)<=MAXPATHLEN );
30498 strlcpy(dbPath, (char *)pFile->lockingContext, MAXPATHLEN);
30500 return SQLITE_OK;
30504 ** Takes an already filled in unix file and alters it so all file locking
30505 ** will be performed on the local proxy lock file. The following fields
30506 ** are preserved in the locking context so that they can be restored and
30507 ** the unix structure properly cleaned up at close time:
30508 ** ->lockingContext
30509 ** ->pMethod
30511 static int proxyTransformUnixFile(unixFile *pFile, const char *path) {
30512 proxyLockingContext *pCtx;
30513 char dbPath[MAXPATHLEN+1]; /* Name of the database file */
30514 char *lockPath=NULL;
30515 int rc = SQLITE_OK;
30517 if( pFile->eFileLock!=NO_LOCK ){
30518 return SQLITE_BUSY;
30520 proxyGetDbPathForUnixFile(pFile, dbPath);
30521 if( !path || path[0]=='\0' || !strcmp(path, ":auto:") ){
30522 lockPath=NULL;
30523 }else{
30524 lockPath=(char *)path;
30527 OSTRACE(("TRANSPROXY %d for %s pid=%d\n", pFile->h,
30528 (lockPath ? lockPath : ":auto:"), getpid()));
30530 pCtx = sqlite3_malloc( sizeof(*pCtx) );
30531 if( pCtx==0 ){
30532 return SQLITE_NOMEM;
30534 memset(pCtx, 0, sizeof(*pCtx));
30536 rc = proxyCreateConchPathname(dbPath, &pCtx->conchFilePath);
30537 if( rc==SQLITE_OK ){
30538 rc = proxyCreateUnixFile(pCtx->conchFilePath, &pCtx->conchFile, 0);
30539 if( rc==SQLITE_CANTOPEN && ((pFile->openFlags&O_RDWR) == 0) ){
30540 /* if (a) the open flags are not O_RDWR, (b) the conch isn't there, and
30541 ** (c) the file system is read-only, then enable no-locking access.
30542 ** Ugh, since O_RDONLY==0x0000 we test for !O_RDWR since unixOpen asserts
30543 ** that openFlags will have only one of O_RDONLY or O_RDWR.
30545 struct statfs fsInfo;
30546 struct stat conchInfo;
30547 int goLockless = 0;
30549 if( osStat(pCtx->conchFilePath, &conchInfo) == -1 ) {
30550 int err = errno;
30551 if( (err==ENOENT) && (statfs(dbPath, &fsInfo) != -1) ){
30552 goLockless = (fsInfo.f_flags&MNT_RDONLY) == MNT_RDONLY;
30555 if( goLockless ){
30556 pCtx->conchHeld = -1; /* read only FS/ lockless */
30557 rc = SQLITE_OK;
30561 if( rc==SQLITE_OK && lockPath ){
30562 pCtx->lockProxyPath = sqlite3DbStrDup(0, lockPath);
30565 if( rc==SQLITE_OK ){
30566 pCtx->dbPath = sqlite3DbStrDup(0, dbPath);
30567 if( pCtx->dbPath==NULL ){
30568 rc = SQLITE_NOMEM;
30571 if( rc==SQLITE_OK ){
30572 /* all memory is allocated, proxys are created and assigned,
30573 ** switch the locking context and pMethod then return.
30575 pCtx->oldLockingContext = pFile->lockingContext;
30576 pFile->lockingContext = pCtx;
30577 pCtx->pOldMethod = pFile->pMethod;
30578 pFile->pMethod = &proxyIoMethods;
30579 }else{
30580 if( pCtx->conchFile ){
30581 pCtx->conchFile->pMethod->xClose((sqlite3_file *)pCtx->conchFile);
30582 sqlite3_free(pCtx->conchFile);
30584 sqlite3DbFree(0, pCtx->lockProxyPath);
30585 sqlite3_free(pCtx->conchFilePath);
30586 sqlite3_free(pCtx);
30588 OSTRACE(("TRANSPROXY %d %s\n", pFile->h,
30589 (rc==SQLITE_OK ? "ok" : "failed")));
30590 return rc;
30595 ** This routine handles sqlite3_file_control() calls that are specific
30596 ** to proxy locking.
30598 static int proxyFileControl(sqlite3_file *id, int op, void *pArg){
30599 switch( op ){
30600 case SQLITE_GET_LOCKPROXYFILE: {
30601 unixFile *pFile = (unixFile*)id;
30602 if( pFile->pMethod == &proxyIoMethods ){
30603 proxyLockingContext *pCtx = (proxyLockingContext*)pFile->lockingContext;
30604 proxyTakeConch(pFile);
30605 if( pCtx->lockProxyPath ){
30606 *(const char **)pArg = pCtx->lockProxyPath;
30607 }else{
30608 *(const char **)pArg = ":auto: (not held)";
30610 } else {
30611 *(const char **)pArg = NULL;
30613 return SQLITE_OK;
30615 case SQLITE_SET_LOCKPROXYFILE: {
30616 unixFile *pFile = (unixFile*)id;
30617 int rc = SQLITE_OK;
30618 int isProxyStyle = (pFile->pMethod == &proxyIoMethods);
30619 if( pArg==NULL || (const char *)pArg==0 ){
30620 if( isProxyStyle ){
30621 /* turn off proxy locking - not supported */
30622 rc = SQLITE_ERROR /*SQLITE_PROTOCOL? SQLITE_MISUSE?*/;
30623 }else{
30624 /* turn off proxy locking - already off - NOOP */
30625 rc = SQLITE_OK;
30627 }else{
30628 const char *proxyPath = (const char *)pArg;
30629 if( isProxyStyle ){
30630 proxyLockingContext *pCtx =
30631 (proxyLockingContext*)pFile->lockingContext;
30632 if( !strcmp(pArg, ":auto:")
30633 || (pCtx->lockProxyPath &&
30634 !strncmp(pCtx->lockProxyPath, proxyPath, MAXPATHLEN))
30636 rc = SQLITE_OK;
30637 }else{
30638 rc = switchLockProxyPath(pFile, proxyPath);
30640 }else{
30641 /* turn on proxy file locking */
30642 rc = proxyTransformUnixFile(pFile, proxyPath);
30645 return rc;
30647 default: {
30648 assert( 0 ); /* The call assures that only valid opcodes are sent */
30651 /*NOTREACHED*/
30652 return SQLITE_ERROR;
30656 ** Within this division (the proxying locking implementation) the procedures
30657 ** above this point are all utilities. The lock-related methods of the
30658 ** proxy-locking sqlite3_io_method object follow.
30663 ** This routine checks if there is a RESERVED lock held on the specified
30664 ** file by this or any other process. If such a lock is held, set *pResOut
30665 ** to a non-zero value otherwise *pResOut is set to zero. The return value
30666 ** is set to SQLITE_OK unless an I/O error occurs during lock checking.
30668 static int proxyCheckReservedLock(sqlite3_file *id, int *pResOut) {
30669 unixFile *pFile = (unixFile*)id;
30670 int rc = proxyTakeConch(pFile);
30671 if( rc==SQLITE_OK ){
30672 proxyLockingContext *pCtx = (proxyLockingContext *)pFile->lockingContext;
30673 if( pCtx->conchHeld>0 ){
30674 unixFile *proxy = pCtx->lockProxy;
30675 return proxy->pMethod->xCheckReservedLock((sqlite3_file*)proxy, pResOut);
30676 }else{ /* conchHeld < 0 is lockless */
30677 pResOut=0;
30680 return rc;
30684 ** Lock the file with the lock specified by parameter eFileLock - one
30685 ** of the following:
30687 ** (1) SHARED_LOCK
30688 ** (2) RESERVED_LOCK
30689 ** (3) PENDING_LOCK
30690 ** (4) EXCLUSIVE_LOCK
30692 ** Sometimes when requesting one lock state, additional lock states
30693 ** are inserted in between. The locking might fail on one of the later
30694 ** transitions leaving the lock state different from what it started but
30695 ** still short of its goal. The following chart shows the allowed
30696 ** transitions and the inserted intermediate states:
30698 ** UNLOCKED -> SHARED
30699 ** SHARED -> RESERVED
30700 ** SHARED -> (PENDING) -> EXCLUSIVE
30701 ** RESERVED -> (PENDING) -> EXCLUSIVE
30702 ** PENDING -> EXCLUSIVE
30704 ** This routine will only increase a lock. Use the sqlite3OsUnlock()
30705 ** routine to lower a locking level.
30707 static int proxyLock(sqlite3_file *id, int eFileLock) {
30708 unixFile *pFile = (unixFile*)id;
30709 int rc = proxyTakeConch(pFile);
30710 if( rc==SQLITE_OK ){
30711 proxyLockingContext *pCtx = (proxyLockingContext *)pFile->lockingContext;
30712 if( pCtx->conchHeld>0 ){
30713 unixFile *proxy = pCtx->lockProxy;
30714 rc = proxy->pMethod->xLock((sqlite3_file*)proxy, eFileLock);
30715 pFile->eFileLock = proxy->eFileLock;
30716 }else{
30717 /* conchHeld < 0 is lockless */
30720 return rc;
30725 ** Lower the locking level on file descriptor pFile to eFileLock. eFileLock
30726 ** must be either NO_LOCK or SHARED_LOCK.
30728 ** If the locking level of the file descriptor is already at or below
30729 ** the requested locking level, this routine is a no-op.
30731 static int proxyUnlock(sqlite3_file *id, int eFileLock) {
30732 unixFile *pFile = (unixFile*)id;
30733 int rc = proxyTakeConch(pFile);
30734 if( rc==SQLITE_OK ){
30735 proxyLockingContext *pCtx = (proxyLockingContext *)pFile->lockingContext;
30736 if( pCtx->conchHeld>0 ){
30737 unixFile *proxy = pCtx->lockProxy;
30738 rc = proxy->pMethod->xUnlock((sqlite3_file*)proxy, eFileLock);
30739 pFile->eFileLock = proxy->eFileLock;
30740 }else{
30741 /* conchHeld < 0 is lockless */
30744 return rc;
30748 ** Close a file that uses proxy locks.
30750 static int proxyClose(sqlite3_file *id) {
30751 if( id ){
30752 unixFile *pFile = (unixFile*)id;
30753 proxyLockingContext *pCtx = (proxyLockingContext *)pFile->lockingContext;
30754 unixFile *lockProxy = pCtx->lockProxy;
30755 unixFile *conchFile = pCtx->conchFile;
30756 int rc = SQLITE_OK;
30758 if( lockProxy ){
30759 rc = lockProxy->pMethod->xUnlock((sqlite3_file*)lockProxy, NO_LOCK);
30760 if( rc ) return rc;
30761 rc = lockProxy->pMethod->xClose((sqlite3_file*)lockProxy);
30762 if( rc ) return rc;
30763 sqlite3_free(lockProxy);
30764 pCtx->lockProxy = 0;
30766 if( conchFile ){
30767 if( pCtx->conchHeld ){
30768 rc = proxyReleaseConch(pFile);
30769 if( rc ) return rc;
30771 rc = conchFile->pMethod->xClose((sqlite3_file*)conchFile);
30772 if( rc ) return rc;
30773 sqlite3_free(conchFile);
30775 sqlite3DbFree(0, pCtx->lockProxyPath);
30776 sqlite3_free(pCtx->conchFilePath);
30777 sqlite3DbFree(0, pCtx->dbPath);
30778 /* restore the original locking context and pMethod then close it */
30779 pFile->lockingContext = pCtx->oldLockingContext;
30780 pFile->pMethod = pCtx->pOldMethod;
30781 sqlite3_free(pCtx);
30782 return pFile->pMethod->xClose(id);
30784 return SQLITE_OK;
30789 #endif /* defined(__APPLE__) && SQLITE_ENABLE_LOCKING_STYLE */
30791 ** The proxy locking style is intended for use with AFP filesystems.
30792 ** And since AFP is only supported on MacOSX, the proxy locking is also
30793 ** restricted to MacOSX.
30796 ******************* End of the proxy lock implementation **********************
30797 ******************************************************************************/
30800 ** Initialize the operating system interface.
30802 ** This routine registers all VFS implementations for unix-like operating
30803 ** systems. This routine, and the sqlite3_os_end() routine that follows,
30804 ** should be the only routines in this file that are visible from other
30805 ** files.
30807 ** This routine is called once during SQLite initialization and by a
30808 ** single thread. The memory allocation and mutex subsystems have not
30809 ** necessarily been initialized when this routine is called, and so they
30810 ** should not be used.
30812 SQLITE_API int sqlite3_os_init(void){
30814 ** The following macro defines an initializer for an sqlite3_vfs object.
30815 ** The name of the VFS is NAME. The pAppData is a pointer to a pointer
30816 ** to the "finder" function. (pAppData is a pointer to a pointer because
30817 ** silly C90 rules prohibit a void* from being cast to a function pointer
30818 ** and so we have to go through the intermediate pointer to avoid problems
30819 ** when compiling with -pedantic-errors on GCC.)
30821 ** The FINDER parameter to this macro is the name of the pointer to the
30822 ** finder-function. The finder-function returns a pointer to the
30823 ** sqlite_io_methods object that implements the desired locking
30824 ** behaviors. See the division above that contains the IOMETHODS
30825 ** macro for addition information on finder-functions.
30827 ** Most finders simply return a pointer to a fixed sqlite3_io_methods
30828 ** object. But the "autolockIoFinder" available on MacOSX does a little
30829 ** more than that; it looks at the filesystem type that hosts the
30830 ** database file and tries to choose an locking method appropriate for
30831 ** that filesystem time.
30833 #define UNIXVFS(VFSNAME, FINDER) { \
30834 3, /* iVersion */ \
30835 sizeof(unixFile), /* szOsFile */ \
30836 MAX_PATHNAME, /* mxPathname */ \
30837 0, /* pNext */ \
30838 VFSNAME, /* zName */ \
30839 (void*)&FINDER, /* pAppData */ \
30840 unixOpen, /* xOpen */ \
30841 unixDelete, /* xDelete */ \
30842 unixAccess, /* xAccess */ \
30843 unixFullPathname, /* xFullPathname */ \
30844 unixDlOpen, /* xDlOpen */ \
30845 unixDlError, /* xDlError */ \
30846 unixDlSym, /* xDlSym */ \
30847 unixDlClose, /* xDlClose */ \
30848 unixRandomness, /* xRandomness */ \
30849 unixSleep, /* xSleep */ \
30850 unixCurrentTime, /* xCurrentTime */ \
30851 unixGetLastError, /* xGetLastError */ \
30852 unixCurrentTimeInt64, /* xCurrentTimeInt64 */ \
30853 unixSetSystemCall, /* xSetSystemCall */ \
30854 unixGetSystemCall, /* xGetSystemCall */ \
30855 unixNextSystemCall, /* xNextSystemCall */ \
30859 ** All default VFSes for unix are contained in the following array.
30861 ** Note that the sqlite3_vfs.pNext field of the VFS object is modified
30862 ** by the SQLite core when the VFS is registered. So the following
30863 ** array cannot be const.
30865 static sqlite3_vfs aVfs[] = {
30866 #if SQLITE_ENABLE_LOCKING_STYLE && (OS_VXWORKS || defined(__APPLE__))
30867 UNIXVFS("unix", autolockIoFinder ),
30868 #else
30869 UNIXVFS("unix", posixIoFinder ),
30870 #endif
30871 UNIXVFS("unix-none", nolockIoFinder ),
30872 UNIXVFS("unix-dotfile", dotlockIoFinder ),
30873 UNIXVFS("unix-excl", posixIoFinder ),
30874 #if OS_VXWORKS
30875 UNIXVFS("unix-namedsem", semIoFinder ),
30876 #endif
30877 #if SQLITE_ENABLE_LOCKING_STYLE
30878 UNIXVFS("unix-posix", posixIoFinder ),
30879 #if !OS_VXWORKS
30880 UNIXVFS("unix-flock", flockIoFinder ),
30881 #endif
30882 #endif
30883 #if SQLITE_ENABLE_LOCKING_STYLE && defined(__APPLE__)
30884 UNIXVFS("unix-afp", afpIoFinder ),
30885 UNIXVFS("unix-nfs", nfsIoFinder ),
30886 UNIXVFS("unix-proxy", proxyIoFinder ),
30887 #endif
30889 unsigned int i; /* Loop counter */
30891 /* Double-check that the aSyscall[] array has been constructed
30892 ** correctly. See ticket [bb3a86e890c8e96ab] */
30893 assert( ArraySize(aSyscall)==18 );
30895 /* Register all VFSes defined in the aVfs[] array */
30896 for(i=0; i<(sizeof(aVfs)/sizeof(sqlite3_vfs)); i++){
30897 sqlite3_vfs_register(&aVfs[i], i==0);
30899 return SQLITE_OK;
30903 ** Shutdown the operating system interface.
30905 ** Some operating systems might need to do some cleanup in this routine,
30906 ** to release dynamically allocated objects. But not on unix.
30907 ** This routine is a no-op for unix.
30909 SQLITE_API int sqlite3_os_end(void){
30910 return SQLITE_OK;
30913 #endif /* SQLITE_OS_UNIX */
30915 /************** End of os_unix.c *********************************************/
30916 /************** Begin file os_win.c ******************************************/
30918 ** 2004 May 22
30920 ** The author disclaims copyright to this source code. In place of
30921 ** a legal notice, here is a blessing:
30923 ** May you do good and not evil.
30924 ** May you find forgiveness for yourself and forgive others.
30925 ** May you share freely, never taking more than you give.
30927 ******************************************************************************
30929 ** This file contains code that is specific to windows.
30931 #if SQLITE_OS_WIN /* This file is used for windows only */
30935 ** A Note About Memory Allocation:
30937 ** This driver uses malloc()/free() directly rather than going through
30938 ** the SQLite-wrappers sqlite3_malloc()/sqlite3_free(). Those wrappers
30939 ** are designed for use on embedded systems where memory is scarce and
30940 ** malloc failures happen frequently. Win32 does not typically run on
30941 ** embedded systems, and when it does the developers normally have bigger
30942 ** problems to worry about than running out of memory. So there is not
30943 ** a compelling need to use the wrappers.
30945 ** But there is a good reason to not use the wrappers. If we use the
30946 ** wrappers then we will get simulated malloc() failures within this
30947 ** driver. And that causes all kinds of problems for our tests. We
30948 ** could enhance SQLite to deal with simulated malloc failures within
30949 ** the OS driver, but the code to deal with those failure would not
30950 ** be exercised on Linux (which does not need to malloc() in the driver)
30951 ** and so we would have difficulty writing coverage tests for that
30952 ** code. Better to leave the code out, we think.
30954 ** The point of this discussion is as follows: When creating a new
30955 ** OS layer for an embedded system, if you use this file as an example,
30956 ** avoid the use of malloc()/free(). Those routines work ok on windows
30957 ** desktops but not so well in embedded systems.
30960 #include <winbase.h>
30962 #ifdef __CYGWIN__
30963 # include <sys/cygwin.h>
30964 #endif
30967 ** Macros used to determine whether or not to use threads.
30969 #if defined(THREADSAFE) && THREADSAFE
30970 # define SQLITE_W32_THREADS 1
30971 #endif
30974 ** Include code that is common to all os_*.c files
30976 /************** Include os_common.h in the middle of os_win.c ****************/
30977 /************** Begin file os_common.h ***************************************/
30979 ** 2004 May 22
30981 ** The author disclaims copyright to this source code. In place of
30982 ** a legal notice, here is a blessing:
30984 ** May you do good and not evil.
30985 ** May you find forgiveness for yourself and forgive others.
30986 ** May you share freely, never taking more than you give.
30988 ******************************************************************************
30990 ** This file contains macros and a little bit of code that is common to
30991 ** all of the platform-specific files (os_*.c) and is #included into those
30992 ** files.
30994 ** This file should be #included by the os_*.c files only. It is not a
30995 ** general purpose header file.
30997 #ifndef _OS_COMMON_H_
30998 #define _OS_COMMON_H_
31001 ** At least two bugs have slipped in because we changed the MEMORY_DEBUG
31002 ** macro to SQLITE_DEBUG and some older makefiles have not yet made the
31003 ** switch. The following code should catch this problem at compile-time.
31005 #ifdef MEMORY_DEBUG
31006 # error "The MEMORY_DEBUG macro is obsolete. Use SQLITE_DEBUG instead."
31007 #endif
31009 #ifdef SQLITE_DEBUG
31010 SQLITE_PRIVATE int sqlite3OSTrace = 0;
31011 #define OSTRACE(X) if( sqlite3OSTrace ) sqlite3DebugPrintf X
31012 #else
31013 #define OSTRACE(X)
31014 #endif
31017 ** Macros for performance tracing. Normally turned off. Only works
31018 ** on i486 hardware.
31020 #ifdef SQLITE_PERFORMANCE_TRACE
31023 ** hwtime.h contains inline assembler code for implementing
31024 ** high-performance timing routines.
31026 /************** Include hwtime.h in the middle of os_common.h ****************/
31027 /************** Begin file hwtime.h ******************************************/
31029 ** 2008 May 27
31031 ** The author disclaims copyright to this source code. In place of
31032 ** a legal notice, here is a blessing:
31034 ** May you do good and not evil.
31035 ** May you find forgiveness for yourself and forgive others.
31036 ** May you share freely, never taking more than you give.
31038 ******************************************************************************
31040 ** This file contains inline asm code for retrieving "high-performance"
31041 ** counters for x86 class CPUs.
31043 #ifndef _HWTIME_H_
31044 #define _HWTIME_H_
31047 ** The following routine only works on pentium-class (or newer) processors.
31048 ** It uses the RDTSC opcode to read the cycle count value out of the
31049 ** processor and returns that value. This can be used for high-res
31050 ** profiling.
31052 #if (defined(__GNUC__) || defined(_MSC_VER)) && \
31053 (defined(i386) || defined(__i386__) || defined(_M_IX86))
31055 #if defined(__GNUC__)
31057 __inline__ sqlite_uint64 sqlite3Hwtime(void){
31058 unsigned int lo, hi;
31059 __asm__ __volatile__ ("rdtsc" : "=a" (lo), "=d" (hi));
31060 return (sqlite_uint64)hi << 32 | lo;
31063 #elif defined(_MSC_VER)
31065 __declspec(naked) __inline sqlite_uint64 __cdecl sqlite3Hwtime(void){
31066 __asm {
31067 rdtsc
31068 ret ; return value at EDX:EAX
31072 #endif
31074 #elif (defined(__GNUC__) && defined(__x86_64__))
31076 __inline__ sqlite_uint64 sqlite3Hwtime(void){
31077 unsigned long val;
31078 __asm__ __volatile__ ("rdtsc" : "=A" (val));
31079 return val;
31082 #elif (defined(__GNUC__) && defined(__ppc__))
31084 __inline__ sqlite_uint64 sqlite3Hwtime(void){
31085 unsigned long long retval;
31086 unsigned long junk;
31087 __asm__ __volatile__ ("\n\
31088 1: mftbu %1\n\
31089 mftb %L0\n\
31090 mftbu %0\n\
31091 cmpw %0,%1\n\
31092 bne 1b"
31093 : "=r" (retval), "=r" (junk));
31094 return retval;
31097 #else
31099 #error Need implementation of sqlite3Hwtime() for your platform.
31102 ** To compile without implementing sqlite3Hwtime() for your platform,
31103 ** you can remove the above #error and use the following
31104 ** stub function. You will lose timing support for many
31105 ** of the debugging and testing utilities, but it should at
31106 ** least compile and run.
31108 SQLITE_PRIVATE sqlite_uint64 sqlite3Hwtime(void){ return ((sqlite_uint64)0); }
31110 #endif
31112 #endif /* !defined(_HWTIME_H_) */
31114 /************** End of hwtime.h **********************************************/
31115 /************** Continuing where we left off in os_common.h ******************/
31117 static sqlite_uint64 g_start;
31118 static sqlite_uint64 g_elapsed;
31119 #define TIMER_START g_start=sqlite3Hwtime()
31120 #define TIMER_END g_elapsed=sqlite3Hwtime()-g_start
31121 #define TIMER_ELAPSED g_elapsed
31122 #else
31123 #define TIMER_START
31124 #define TIMER_END
31125 #define TIMER_ELAPSED ((sqlite_uint64)0)
31126 #endif
31129 ** If we compile with the SQLITE_TEST macro set, then the following block
31130 ** of code will give us the ability to simulate a disk I/O error. This
31131 ** is used for testing the I/O recovery logic.
31133 #ifdef SQLITE_TEST
31134 SQLITE_API int sqlite3_io_error_hit = 0; /* Total number of I/O Errors */
31135 SQLITE_API int sqlite3_io_error_hardhit = 0; /* Number of non-benign errors */
31136 SQLITE_API int sqlite3_io_error_pending = 0; /* Count down to first I/O error */
31137 SQLITE_API int sqlite3_io_error_persist = 0; /* True if I/O errors persist */
31138 SQLITE_API int sqlite3_io_error_benign = 0; /* True if errors are benign */
31139 SQLITE_API int sqlite3_diskfull_pending = 0;
31140 SQLITE_API int sqlite3_diskfull = 0;
31141 #define SimulateIOErrorBenign(X) sqlite3_io_error_benign=(X)
31142 #define SimulateIOError(CODE) \
31143 if( (sqlite3_io_error_persist && sqlite3_io_error_hit) \
31144 || sqlite3_io_error_pending-- == 1 ) \
31145 { local_ioerr(); CODE; }
31146 static void local_ioerr(){
31147 IOTRACE(("IOERR\n"));
31148 sqlite3_io_error_hit++;
31149 if( !sqlite3_io_error_benign ) sqlite3_io_error_hardhit++;
31151 #define SimulateDiskfullError(CODE) \
31152 if( sqlite3_diskfull_pending ){ \
31153 if( sqlite3_diskfull_pending == 1 ){ \
31154 local_ioerr(); \
31155 sqlite3_diskfull = 1; \
31156 sqlite3_io_error_hit = 1; \
31157 CODE; \
31158 }else{ \
31159 sqlite3_diskfull_pending--; \
31162 #else
31163 #define SimulateIOErrorBenign(X)
31164 #define SimulateIOError(A)
31165 #define SimulateDiskfullError(A)
31166 #endif
31169 ** When testing, keep a count of the number of open files.
31171 #ifdef SQLITE_TEST
31172 SQLITE_API int sqlite3_open_file_count = 0;
31173 #define OpenCounter(X) sqlite3_open_file_count+=(X)
31174 #else
31175 #define OpenCounter(X)
31176 #endif
31178 #endif /* !defined(_OS_COMMON_H_) */
31180 /************** End of os_common.h *******************************************/
31181 /************** Continuing where we left off in os_win.c *********************/
31184 ** Some microsoft compilers lack this definition.
31186 #ifndef INVALID_FILE_ATTRIBUTES
31187 # define INVALID_FILE_ATTRIBUTES ((DWORD)-1)
31188 #endif
31191 ** Determine if we are dealing with WindowsCE - which has a much
31192 ** reduced API.
31194 #if SQLITE_OS_WINCE
31195 # define AreFileApisANSI() 1
31196 # define FormatMessageW(a,b,c,d,e,f,g) 0
31197 #endif
31199 /* Forward references */
31200 typedef struct winShm winShm; /* A connection to shared-memory */
31201 typedef struct winShmNode winShmNode; /* A region of shared-memory */
31204 ** WinCE lacks native support for file locking so we have to fake it
31205 ** with some code of our own.
31207 #if SQLITE_OS_WINCE
31208 typedef struct winceLock {
31209 int nReaders; /* Number of reader locks obtained */
31210 BOOL bPending; /* Indicates a pending lock has been obtained */
31211 BOOL bReserved; /* Indicates a reserved lock has been obtained */
31212 BOOL bExclusive; /* Indicates an exclusive lock has been obtained */
31213 } winceLock;
31214 #endif
31217 ** The winFile structure is a subclass of sqlite3_file* specific to the win32
31218 ** portability layer.
31220 typedef struct winFile winFile;
31221 struct winFile {
31222 const sqlite3_io_methods *pMethod; /*** Must be first ***/
31223 sqlite3_vfs *pVfs; /* The VFS used to open this file */
31224 HANDLE h; /* Handle for accessing the file */
31225 unsigned char locktype; /* Type of lock currently held on this file */
31226 short sharedLockByte; /* Randomly chosen byte used as a shared lock */
31227 DWORD lastErrno; /* The Windows errno from the last I/O error */
31228 DWORD sectorSize; /* Sector size of the device file is on */
31229 winShm *pShm; /* Instance of shared memory on this file */
31230 const char *zPath; /* Full pathname of this file */
31231 int szChunk; /* Chunk size configured by FCNTL_CHUNK_SIZE */
31232 #if SQLITE_OS_WINCE
31233 WCHAR *zDeleteOnClose; /* Name of file to delete when closing */
31234 HANDLE hMutex; /* Mutex used to control access to shared lock */
31235 HANDLE hShared; /* Shared memory segment used for locking */
31236 winceLock local; /* Locks obtained by this instance of winFile */
31237 winceLock *shared; /* Global shared lock memory for the file */
31238 #endif
31242 ** Forward prototypes.
31244 static int getSectorSize(
31245 sqlite3_vfs *pVfs,
31246 const char *zRelative /* UTF-8 file name */
31250 ** The following variable is (normally) set once and never changes
31251 ** thereafter. It records whether the operating system is Win95
31252 ** or WinNT.
31254 ** 0: Operating system unknown.
31255 ** 1: Operating system is Win95.
31256 ** 2: Operating system is WinNT.
31258 ** In order to facilitate testing on a WinNT system, the test fixture
31259 ** can manually set this value to 1 to emulate Win98 behavior.
31261 #ifdef SQLITE_TEST
31262 SQLITE_API int sqlite3_os_type = 0;
31263 #else
31264 static int sqlite3_os_type = 0;
31265 #endif
31268 ** Return true (non-zero) if we are running under WinNT, Win2K, WinXP,
31269 ** or WinCE. Return false (zero) for Win95, Win98, or WinME.
31271 ** Here is an interesting observation: Win95, Win98, and WinME lack
31272 ** the LockFileEx() API. But we can still statically link against that
31273 ** API as long as we don't call it when running Win95/98/ME. A call to
31274 ** this routine is used to determine if the host is Win95/98/ME or
31275 ** WinNT/2K/XP so that we will know whether or not we can safely call
31276 ** the LockFileEx() API.
31278 #if SQLITE_OS_WINCE
31279 # define isNT() (1)
31280 #else
31281 static int isNT(void){
31282 if( sqlite3_os_type==0 ){
31283 OSVERSIONINFO sInfo;
31284 sInfo.dwOSVersionInfoSize = sizeof(sInfo);
31285 GetVersionEx(&sInfo);
31286 sqlite3_os_type = sInfo.dwPlatformId==VER_PLATFORM_WIN32_NT ? 2 : 1;
31288 return sqlite3_os_type==2;
31290 #endif /* SQLITE_OS_WINCE */
31293 ** Convert a UTF-8 string to microsoft unicode (UTF-16?).
31295 ** Space to hold the returned string is obtained from malloc.
31297 static WCHAR *utf8ToUnicode(const char *zFilename){
31298 int nChar;
31299 WCHAR *zWideFilename;
31301 nChar = MultiByteToWideChar(CP_UTF8, 0, zFilename, -1, NULL, 0);
31302 zWideFilename = malloc( nChar*sizeof(zWideFilename[0]) );
31303 if( zWideFilename==0 ){
31304 return 0;
31306 nChar = MultiByteToWideChar(CP_UTF8, 0, zFilename, -1, zWideFilename, nChar);
31307 if( nChar==0 ){
31308 free(zWideFilename);
31309 zWideFilename = 0;
31311 return zWideFilename;
31315 ** Convert microsoft unicode to UTF-8. Space to hold the returned string is
31316 ** obtained from malloc().
31318 static char *unicodeToUtf8(const WCHAR *zWideFilename){
31319 int nByte;
31320 char *zFilename;
31322 nByte = WideCharToMultiByte(CP_UTF8, 0, zWideFilename, -1, 0, 0, 0, 0);
31323 zFilename = malloc( nByte );
31324 if( zFilename==0 ){
31325 return 0;
31327 nByte = WideCharToMultiByte(CP_UTF8, 0, zWideFilename, -1, zFilename, nByte,
31328 0, 0);
31329 if( nByte == 0 ){
31330 free(zFilename);
31331 zFilename = 0;
31333 return zFilename;
31337 ** Convert an ansi string to microsoft unicode, based on the
31338 ** current codepage settings for file apis.
31340 ** Space to hold the returned string is obtained
31341 ** from malloc.
31343 static WCHAR *mbcsToUnicode(const char *zFilename){
31344 int nByte;
31345 WCHAR *zMbcsFilename;
31346 int codepage = AreFileApisANSI() ? CP_ACP : CP_OEMCP;
31348 nByte = MultiByteToWideChar(codepage, 0, zFilename, -1, NULL,0)*sizeof(WCHAR);
31349 zMbcsFilename = malloc( nByte*sizeof(zMbcsFilename[0]) );
31350 if( zMbcsFilename==0 ){
31351 return 0;
31353 nByte = MultiByteToWideChar(codepage, 0, zFilename, -1, zMbcsFilename, nByte);
31354 if( nByte==0 ){
31355 free(zMbcsFilename);
31356 zMbcsFilename = 0;
31358 return zMbcsFilename;
31362 ** Convert microsoft unicode to multibyte character string, based on the
31363 ** user's Ansi codepage.
31365 ** Space to hold the returned string is obtained from
31366 ** malloc().
31368 static char *unicodeToMbcs(const WCHAR *zWideFilename){
31369 int nByte;
31370 char *zFilename;
31371 int codepage = AreFileApisANSI() ? CP_ACP : CP_OEMCP;
31373 nByte = WideCharToMultiByte(codepage, 0, zWideFilename, -1, 0, 0, 0, 0);
31374 zFilename = malloc( nByte );
31375 if( zFilename==0 ){
31376 return 0;
31378 nByte = WideCharToMultiByte(codepage, 0, zWideFilename, -1, zFilename, nByte,
31379 0, 0);
31380 if( nByte == 0 ){
31381 free(zFilename);
31382 zFilename = 0;
31384 return zFilename;
31388 ** Convert multibyte character string to UTF-8. Space to hold the
31389 ** returned string is obtained from malloc().
31391 SQLITE_API char *sqlite3_win32_mbcs_to_utf8(const char *zFilename){
31392 char *zFilenameUtf8;
31393 WCHAR *zTmpWide;
31395 zTmpWide = mbcsToUnicode(zFilename);
31396 if( zTmpWide==0 ){
31397 return 0;
31399 zFilenameUtf8 = unicodeToUtf8(zTmpWide);
31400 free(zTmpWide);
31401 return zFilenameUtf8;
31405 ** Convert UTF-8 to multibyte character string. Space to hold the
31406 ** returned string is obtained from malloc().
31408 static char *utf8ToMbcs(const char *zFilename){
31409 char *zFilenameMbcs;
31410 WCHAR *zTmpWide;
31412 zTmpWide = utf8ToUnicode(zFilename);
31413 if( zTmpWide==0 ){
31414 return 0;
31416 zFilenameMbcs = unicodeToMbcs(zTmpWide);
31417 free(zTmpWide);
31418 return zFilenameMbcs;
31421 #if SQLITE_OS_WINCE
31422 /*************************************************************************
31423 ** This section contains code for WinCE only.
31426 ** WindowsCE does not have a localtime() function. So create a
31427 ** substitute.
31429 struct tm *__cdecl localtime(const time_t *t)
31431 static struct tm y;
31432 FILETIME uTm, lTm;
31433 SYSTEMTIME pTm;
31434 sqlite3_int64 t64;
31435 t64 = *t;
31436 t64 = (t64 + 11644473600)*10000000;
31437 uTm.dwLowDateTime = (DWORD)(t64 & 0xFFFFFFFF);
31438 uTm.dwHighDateTime= (DWORD)(t64 >> 32);
31439 FileTimeToLocalFileTime(&uTm,&lTm);
31440 FileTimeToSystemTime(&lTm,&pTm);
31441 y.tm_year = pTm.wYear - 1900;
31442 y.tm_mon = pTm.wMonth - 1;
31443 y.tm_wday = pTm.wDayOfWeek;
31444 y.tm_mday = pTm.wDay;
31445 y.tm_hour = pTm.wHour;
31446 y.tm_min = pTm.wMinute;
31447 y.tm_sec = pTm.wSecond;
31448 return &y;
31451 /* This will never be called, but defined to make the code compile */
31452 #define GetTempPathA(a,b)
31454 #define LockFile(a,b,c,d,e) winceLockFile(&a, b, c, d, e)
31455 #define UnlockFile(a,b,c,d,e) winceUnlockFile(&a, b, c, d, e)
31456 #define LockFileEx(a,b,c,d,e,f) winceLockFileEx(&a, b, c, d, e, f)
31458 #define HANDLE_TO_WINFILE(a) (winFile*)&((char*)a)[-(int)offsetof(winFile,h)]
31461 ** Acquire a lock on the handle h
31463 static void winceMutexAcquire(HANDLE h){
31464 DWORD dwErr;
31465 do {
31466 dwErr = WaitForSingleObject(h, INFINITE);
31467 } while (dwErr != WAIT_OBJECT_0 && dwErr != WAIT_ABANDONED);
31470 ** Release a lock acquired by winceMutexAcquire()
31472 #define winceMutexRelease(h) ReleaseMutex(h)
31475 ** Create the mutex and shared memory used for locking in the file
31476 ** descriptor pFile
31478 static BOOL winceCreateLock(const char *zFilename, winFile *pFile){
31479 WCHAR *zTok;
31480 WCHAR *zName = utf8ToUnicode(zFilename);
31481 BOOL bInit = TRUE;
31483 /* Initialize the local lockdata */
31484 ZeroMemory(&pFile->local, sizeof(pFile->local));
31486 /* Replace the backslashes from the filename and lowercase it
31487 ** to derive a mutex name. */
31488 zTok = CharLowerW(zName);
31489 for (;*zTok;zTok++){
31490 if (*zTok == '\\') *zTok = '_';
31493 /* Create/open the named mutex */
31494 pFile->hMutex = CreateMutexW(NULL, FALSE, zName);
31495 if (!pFile->hMutex){
31496 pFile->lastErrno = GetLastError();
31497 free(zName);
31498 return FALSE;
31501 /* Acquire the mutex before continuing */
31502 winceMutexAcquire(pFile->hMutex);
31504 /* Since the names of named mutexes, semaphores, file mappings etc are
31505 ** case-sensitive, take advantage of that by uppercasing the mutex name
31506 ** and using that as the shared filemapping name.
31508 CharUpperW(zName);
31509 pFile->hShared = CreateFileMappingW(INVALID_HANDLE_VALUE, NULL,
31510 PAGE_READWRITE, 0, sizeof(winceLock),
31511 zName);
31513 /* Set a flag that indicates we're the first to create the memory so it
31514 ** must be zero-initialized */
31515 if (GetLastError() == ERROR_ALREADY_EXISTS){
31516 bInit = FALSE;
31519 free(zName);
31521 /* If we succeeded in making the shared memory handle, map it. */
31522 if (pFile->hShared){
31523 pFile->shared = (winceLock*)MapViewOfFile(pFile->hShared,
31524 FILE_MAP_READ|FILE_MAP_WRITE, 0, 0, sizeof(winceLock));
31525 /* If mapping failed, close the shared memory handle and erase it */
31526 if (!pFile->shared){
31527 pFile->lastErrno = GetLastError();
31528 CloseHandle(pFile->hShared);
31529 pFile->hShared = NULL;
31533 /* If shared memory could not be created, then close the mutex and fail */
31534 if (pFile->hShared == NULL){
31535 winceMutexRelease(pFile->hMutex);
31536 CloseHandle(pFile->hMutex);
31537 pFile->hMutex = NULL;
31538 return FALSE;
31541 /* Initialize the shared memory if we're supposed to */
31542 if (bInit) {
31543 ZeroMemory(pFile->shared, sizeof(winceLock));
31546 winceMutexRelease(pFile->hMutex);
31547 return TRUE;
31551 ** Destroy the part of winFile that deals with wince locks
31553 static void winceDestroyLock(winFile *pFile){
31554 if (pFile->hMutex){
31555 /* Acquire the mutex */
31556 winceMutexAcquire(pFile->hMutex);
31558 /* The following blocks should probably assert in debug mode, but they
31559 are to cleanup in case any locks remained open */
31560 if (pFile->local.nReaders){
31561 pFile->shared->nReaders --;
31563 if (pFile->local.bReserved){
31564 pFile->shared->bReserved = FALSE;
31566 if (pFile->local.bPending){
31567 pFile->shared->bPending = FALSE;
31569 if (pFile->local.bExclusive){
31570 pFile->shared->bExclusive = FALSE;
31573 /* De-reference and close our copy of the shared memory handle */
31574 UnmapViewOfFile(pFile->shared);
31575 CloseHandle(pFile->hShared);
31577 /* Done with the mutex */
31578 winceMutexRelease(pFile->hMutex);
31579 CloseHandle(pFile->hMutex);
31580 pFile->hMutex = NULL;
31585 ** An implementation of the LockFile() API of windows for wince
31587 static BOOL winceLockFile(
31588 HANDLE *phFile,
31589 DWORD dwFileOffsetLow,
31590 DWORD dwFileOffsetHigh,
31591 DWORD nNumberOfBytesToLockLow,
31592 DWORD nNumberOfBytesToLockHigh
31594 winFile *pFile = HANDLE_TO_WINFILE(phFile);
31595 BOOL bReturn = FALSE;
31597 UNUSED_PARAMETER(dwFileOffsetHigh);
31598 UNUSED_PARAMETER(nNumberOfBytesToLockHigh);
31600 if (!pFile->hMutex) return TRUE;
31601 winceMutexAcquire(pFile->hMutex);
31603 /* Wanting an exclusive lock? */
31604 if (dwFileOffsetLow == (DWORD)SHARED_FIRST
31605 && nNumberOfBytesToLockLow == (DWORD)SHARED_SIZE){
31606 if (pFile->shared->nReaders == 0 && pFile->shared->bExclusive == 0){
31607 pFile->shared->bExclusive = TRUE;
31608 pFile->local.bExclusive = TRUE;
31609 bReturn = TRUE;
31613 /* Want a read-only lock? */
31614 else if (dwFileOffsetLow == (DWORD)SHARED_FIRST &&
31615 nNumberOfBytesToLockLow == 1){
31616 if (pFile->shared->bExclusive == 0){
31617 pFile->local.nReaders ++;
31618 if (pFile->local.nReaders == 1){
31619 pFile->shared->nReaders ++;
31621 bReturn = TRUE;
31625 /* Want a pending lock? */
31626 else if (dwFileOffsetLow == (DWORD)PENDING_BYTE && nNumberOfBytesToLockLow == 1){
31627 /* If no pending lock has been acquired, then acquire it */
31628 if (pFile->shared->bPending == 0) {
31629 pFile->shared->bPending = TRUE;
31630 pFile->local.bPending = TRUE;
31631 bReturn = TRUE;
31635 /* Want a reserved lock? */
31636 else if (dwFileOffsetLow == (DWORD)RESERVED_BYTE && nNumberOfBytesToLockLow == 1){
31637 if (pFile->shared->bReserved == 0) {
31638 pFile->shared->bReserved = TRUE;
31639 pFile->local.bReserved = TRUE;
31640 bReturn = TRUE;
31644 winceMutexRelease(pFile->hMutex);
31645 return bReturn;
31649 ** An implementation of the UnlockFile API of windows for wince
31651 static BOOL winceUnlockFile(
31652 HANDLE *phFile,
31653 DWORD dwFileOffsetLow,
31654 DWORD dwFileOffsetHigh,
31655 DWORD nNumberOfBytesToUnlockLow,
31656 DWORD nNumberOfBytesToUnlockHigh
31658 winFile *pFile = HANDLE_TO_WINFILE(phFile);
31659 BOOL bReturn = FALSE;
31661 UNUSED_PARAMETER(dwFileOffsetHigh);
31662 UNUSED_PARAMETER(nNumberOfBytesToUnlockHigh);
31664 if (!pFile->hMutex) return TRUE;
31665 winceMutexAcquire(pFile->hMutex);
31667 /* Releasing a reader lock or an exclusive lock */
31668 if (dwFileOffsetLow == (DWORD)SHARED_FIRST){
31669 /* Did we have an exclusive lock? */
31670 if (pFile->local.bExclusive){
31671 assert(nNumberOfBytesToUnlockLow == (DWORD)SHARED_SIZE);
31672 pFile->local.bExclusive = FALSE;
31673 pFile->shared->bExclusive = FALSE;
31674 bReturn = TRUE;
31677 /* Did we just have a reader lock? */
31678 else if (pFile->local.nReaders){
31679 assert(nNumberOfBytesToUnlockLow == (DWORD)SHARED_SIZE || nNumberOfBytesToUnlockLow == 1);
31680 pFile->local.nReaders --;
31681 if (pFile->local.nReaders == 0)
31683 pFile->shared->nReaders --;
31685 bReturn = TRUE;
31689 /* Releasing a pending lock */
31690 else if (dwFileOffsetLow == (DWORD)PENDING_BYTE && nNumberOfBytesToUnlockLow == 1){
31691 if (pFile->local.bPending){
31692 pFile->local.bPending = FALSE;
31693 pFile->shared->bPending = FALSE;
31694 bReturn = TRUE;
31697 /* Releasing a reserved lock */
31698 else if (dwFileOffsetLow == (DWORD)RESERVED_BYTE && nNumberOfBytesToUnlockLow == 1){
31699 if (pFile->local.bReserved) {
31700 pFile->local.bReserved = FALSE;
31701 pFile->shared->bReserved = FALSE;
31702 bReturn = TRUE;
31706 winceMutexRelease(pFile->hMutex);
31707 return bReturn;
31711 ** An implementation of the LockFileEx() API of windows for wince
31713 static BOOL winceLockFileEx(
31714 HANDLE *phFile,
31715 DWORD dwFlags,
31716 DWORD dwReserved,
31717 DWORD nNumberOfBytesToLockLow,
31718 DWORD nNumberOfBytesToLockHigh,
31719 LPOVERLAPPED lpOverlapped
31721 UNUSED_PARAMETER(dwReserved);
31722 UNUSED_PARAMETER(nNumberOfBytesToLockHigh);
31724 /* If the caller wants a shared read lock, forward this call
31725 ** to winceLockFile */
31726 if (lpOverlapped->Offset == (DWORD)SHARED_FIRST &&
31727 dwFlags == 1 &&
31728 nNumberOfBytesToLockLow == (DWORD)SHARED_SIZE){
31729 return winceLockFile(phFile, SHARED_FIRST, 0, 1, 0);
31731 return FALSE;
31734 ** End of the special code for wince
31735 *****************************************************************************/
31736 #endif /* SQLITE_OS_WINCE */
31738 /*****************************************************************************
31739 ** The next group of routines implement the I/O methods specified
31740 ** by the sqlite3_io_methods object.
31741 ******************************************************************************/
31744 ** Some microsoft compilers lack this definition.
31746 #ifndef INVALID_SET_FILE_POINTER
31747 # define INVALID_SET_FILE_POINTER ((DWORD)-1)
31748 #endif
31751 ** Move the current position of the file handle passed as the first
31752 ** argument to offset iOffset within the file. If successful, return 0.
31753 ** Otherwise, set pFile->lastErrno and return non-zero.
31755 static int seekWinFile(winFile *pFile, sqlite3_int64 iOffset){
31756 LONG upperBits; /* Most sig. 32 bits of new offset */
31757 LONG lowerBits; /* Least sig. 32 bits of new offset */
31758 DWORD dwRet; /* Value returned by SetFilePointer() */
31760 upperBits = (LONG)((iOffset>>32) & 0x7fffffff);
31761 lowerBits = (LONG)(iOffset & 0xffffffff);
31763 /* API oddity: If successful, SetFilePointer() returns a dword
31764 ** containing the lower 32-bits of the new file-offset. Or, if it fails,
31765 ** it returns INVALID_SET_FILE_POINTER. However according to MSDN,
31766 ** INVALID_SET_FILE_POINTER may also be a valid new offset. So to determine
31767 ** whether an error has actually occured, it is also necessary to call
31768 ** GetLastError().
31770 dwRet = SetFilePointer(pFile->h, lowerBits, &upperBits, FILE_BEGIN);
31771 if( (dwRet==INVALID_SET_FILE_POINTER && GetLastError()!=NO_ERROR) ){
31772 pFile->lastErrno = GetLastError();
31773 return 1;
31776 return 0;
31780 ** Close a file.
31782 ** It is reported that an attempt to close a handle might sometimes
31783 ** fail. This is a very unreasonable result, but windows is notorious
31784 ** for being unreasonable so I do not doubt that it might happen. If
31785 ** the close fails, we pause for 100 milliseconds and try again. As
31786 ** many as MX_CLOSE_ATTEMPT attempts to close the handle are made before
31787 ** giving up and returning an error.
31789 #define MX_CLOSE_ATTEMPT 3
31790 static int winClose(sqlite3_file *id){
31791 int rc, cnt = 0;
31792 winFile *pFile = (winFile*)id;
31794 assert( id!=0 );
31795 assert( pFile->pShm==0 );
31796 OSTRACE(("CLOSE %d\n", pFile->h));
31798 rc = CloseHandle(pFile->h);
31799 /* SimulateIOError( rc=0; cnt=MX_CLOSE_ATTEMPT; ); */
31800 }while( rc==0 && ++cnt < MX_CLOSE_ATTEMPT && (Sleep(100), 1) );
31801 #if SQLITE_OS_WINCE
31802 #define WINCE_DELETION_ATTEMPTS 3
31803 winceDestroyLock(pFile);
31804 if( pFile->zDeleteOnClose ){
31805 int cnt = 0;
31806 while(
31807 DeleteFileW(pFile->zDeleteOnClose)==0
31808 && GetFileAttributesW(pFile->zDeleteOnClose)!=0xffffffff
31809 && cnt++ < WINCE_DELETION_ATTEMPTS
31811 Sleep(100); /* Wait a little before trying again */
31813 free(pFile->zDeleteOnClose);
31815 #endif
31816 OSTRACE(("CLOSE %d %s\n", pFile->h, rc ? "ok" : "failed"));
31817 OpenCounter(-1);
31818 return rc ? SQLITE_OK : SQLITE_IOERR;
31822 ** Read data from a file into a buffer. Return SQLITE_OK if all
31823 ** bytes were read successfully and SQLITE_IOERR if anything goes
31824 ** wrong.
31826 static int winRead(
31827 sqlite3_file *id, /* File to read from */
31828 void *pBuf, /* Write content into this buffer */
31829 int amt, /* Number of bytes to read */
31830 sqlite3_int64 offset /* Begin reading at this offset */
31832 winFile *pFile = (winFile*)id; /* file handle */
31833 DWORD nRead; /* Number of bytes actually read from file */
31835 assert( id!=0 );
31836 SimulateIOError(return SQLITE_IOERR_READ);
31837 OSTRACE(("READ %d lock=%d\n", pFile->h, pFile->locktype));
31839 if( seekWinFile(pFile, offset) ){
31840 return SQLITE_FULL;
31842 if( !ReadFile(pFile->h, pBuf, amt, &nRead, 0) ){
31843 pFile->lastErrno = GetLastError();
31844 return SQLITE_IOERR_READ;
31846 if( nRead<(DWORD)amt ){
31847 /* Unread parts of the buffer must be zero-filled */
31848 memset(&((char*)pBuf)[nRead], 0, amt-nRead);
31849 return SQLITE_IOERR_SHORT_READ;
31852 return SQLITE_OK;
31856 ** Write data from a buffer into a file. Return SQLITE_OK on success
31857 ** or some other error code on failure.
31859 static int winWrite(
31860 sqlite3_file *id, /* File to write into */
31861 const void *pBuf, /* The bytes to be written */
31862 int amt, /* Number of bytes to write */
31863 sqlite3_int64 offset /* Offset into the file to begin writing at */
31865 int rc; /* True if error has occured, else false */
31866 winFile *pFile = (winFile*)id; /* File handle */
31868 assert( amt>0 );
31869 assert( pFile );
31870 SimulateIOError(return SQLITE_IOERR_WRITE);
31871 SimulateDiskfullError(return SQLITE_FULL);
31873 OSTRACE(("WRITE %d lock=%d\n", pFile->h, pFile->locktype));
31875 rc = seekWinFile(pFile, offset);
31876 if( rc==0 ){
31877 u8 *aRem = (u8 *)pBuf; /* Data yet to be written */
31878 int nRem = amt; /* Number of bytes yet to be written */
31879 DWORD nWrite; /* Bytes written by each WriteFile() call */
31881 while( nRem>0 && WriteFile(pFile->h, aRem, nRem, &nWrite, 0) && nWrite>0 ){
31882 aRem += nWrite;
31883 nRem -= nWrite;
31885 if( nRem>0 ){
31886 pFile->lastErrno = GetLastError();
31887 rc = 1;
31891 if( rc ){
31892 if( pFile->lastErrno==ERROR_HANDLE_DISK_FULL ){
31893 return SQLITE_FULL;
31895 return SQLITE_IOERR_WRITE;
31897 return SQLITE_OK;
31901 ** Truncate an open file to a specified size
31903 static int winTruncate(sqlite3_file *id, sqlite3_int64 nByte){
31904 winFile *pFile = (winFile*)id; /* File handle object */
31905 int rc = SQLITE_OK; /* Return code for this function */
31907 assert( pFile );
31909 OSTRACE(("TRUNCATE %d %lld\n", pFile->h, nByte));
31910 SimulateIOError(return SQLITE_IOERR_TRUNCATE);
31912 /* If the user has configured a chunk-size for this file, truncate the
31913 ** file so that it consists of an integer number of chunks (i.e. the
31914 ** actual file size after the operation may be larger than the requested
31915 ** size).
31917 if( pFile->szChunk ){
31918 nByte = ((nByte + pFile->szChunk - 1)/pFile->szChunk) * pFile->szChunk;
31921 /* SetEndOfFile() returns non-zero when successful, or zero when it fails. */
31922 if( seekWinFile(pFile, nByte) ){
31923 rc = SQLITE_IOERR_TRUNCATE;
31924 }else if( 0==SetEndOfFile(pFile->h) ){
31925 pFile->lastErrno = GetLastError();
31926 rc = SQLITE_IOERR_TRUNCATE;
31929 OSTRACE(("TRUNCATE %d %lld %s\n", pFile->h, nByte, rc ? "failed" : "ok"));
31930 return rc;
31933 #ifdef SQLITE_TEST
31935 ** Count the number of fullsyncs and normal syncs. This is used to test
31936 ** that syncs and fullsyncs are occuring at the right times.
31938 SQLITE_API int sqlite3_sync_count = 0;
31939 SQLITE_API int sqlite3_fullsync_count = 0;
31940 #endif
31943 ** Make sure all writes to a particular file are committed to disk.
31945 static int winSync(sqlite3_file *id, int flags){
31946 #if !defined(NDEBUG) || !defined(SQLITE_NO_SYNC) || defined(SQLITE_DEBUG)
31947 winFile *pFile = (winFile*)id;
31948 #else
31949 UNUSED_PARAMETER(id);
31950 #endif
31952 assert( pFile );
31953 /* Check that one of SQLITE_SYNC_NORMAL or FULL was passed */
31954 assert((flags&0x0F)==SQLITE_SYNC_NORMAL
31955 || (flags&0x0F)==SQLITE_SYNC_FULL
31958 OSTRACE(("SYNC %d lock=%d\n", pFile->h, pFile->locktype));
31960 #ifndef SQLITE_TEST
31961 UNUSED_PARAMETER(flags);
31962 #else
31963 if( flags & SQLITE_SYNC_FULL ){
31964 sqlite3_fullsync_count++;
31966 sqlite3_sync_count++;
31967 #endif
31969 /* Unix cannot, but some systems may return SQLITE_FULL from here. This
31970 ** line is to test that doing so does not cause any problems.
31972 SimulateDiskfullError( return SQLITE_FULL );
31973 SimulateIOError( return SQLITE_IOERR; );
31975 /* If we compiled with the SQLITE_NO_SYNC flag, then syncing is a
31976 ** no-op
31978 #ifdef SQLITE_NO_SYNC
31979 return SQLITE_OK;
31980 #else
31981 if( FlushFileBuffers(pFile->h) ){
31982 return SQLITE_OK;
31983 }else{
31984 pFile->lastErrno = GetLastError();
31985 return SQLITE_IOERR;
31987 #endif
31991 ** Determine the current size of a file in bytes
31993 static int winFileSize(sqlite3_file *id, sqlite3_int64 *pSize){
31994 DWORD upperBits;
31995 DWORD lowerBits;
31996 winFile *pFile = (winFile*)id;
31997 DWORD error;
31999 assert( id!=0 );
32000 SimulateIOError(return SQLITE_IOERR_FSTAT);
32001 lowerBits = GetFileSize(pFile->h, &upperBits);
32002 if( (lowerBits == INVALID_FILE_SIZE)
32003 && ((error = GetLastError()) != NO_ERROR) )
32005 pFile->lastErrno = error;
32006 return SQLITE_IOERR_FSTAT;
32008 *pSize = (((sqlite3_int64)upperBits)<<32) + lowerBits;
32009 return SQLITE_OK;
32013 ** LOCKFILE_FAIL_IMMEDIATELY is undefined on some Windows systems.
32015 #ifndef LOCKFILE_FAIL_IMMEDIATELY
32016 # define LOCKFILE_FAIL_IMMEDIATELY 1
32017 #endif
32020 ** Acquire a reader lock.
32021 ** Different API routines are called depending on whether or not this
32022 ** is Win95 or WinNT.
32024 static int getReadLock(winFile *pFile){
32025 int res;
32026 if( isNT() ){
32027 OVERLAPPED ovlp;
32028 ovlp.Offset = SHARED_FIRST;
32029 ovlp.OffsetHigh = 0;
32030 ovlp.hEvent = 0;
32031 res = LockFileEx(pFile->h, LOCKFILE_FAIL_IMMEDIATELY,
32032 0, SHARED_SIZE, 0, &ovlp);
32033 /* isNT() is 1 if SQLITE_OS_WINCE==1, so this else is never executed.
32035 #if SQLITE_OS_WINCE==0
32036 }else{
32037 int lk;
32038 sqlite3_randomness(sizeof(lk), &lk);
32039 pFile->sharedLockByte = (short)((lk & 0x7fffffff)%(SHARED_SIZE - 1));
32040 res = LockFile(pFile->h, SHARED_FIRST+pFile->sharedLockByte, 0, 1, 0);
32041 #endif
32043 if( res == 0 ){
32044 pFile->lastErrno = GetLastError();
32046 return res;
32050 ** Undo a readlock
32052 static int unlockReadLock(winFile *pFile){
32053 int res;
32054 if( isNT() ){
32055 res = UnlockFile(pFile->h, SHARED_FIRST, 0, SHARED_SIZE, 0);
32056 /* isNT() is 1 if SQLITE_OS_WINCE==1, so this else is never executed.
32058 #if SQLITE_OS_WINCE==0
32059 }else{
32060 res = UnlockFile(pFile->h, SHARED_FIRST + pFile->sharedLockByte, 0, 1, 0);
32061 #endif
32063 if( res == 0 ){
32064 pFile->lastErrno = GetLastError();
32066 return res;
32070 ** Lock the file with the lock specified by parameter locktype - one
32071 ** of the following:
32073 ** (1) SHARED_LOCK
32074 ** (2) RESERVED_LOCK
32075 ** (3) PENDING_LOCK
32076 ** (4) EXCLUSIVE_LOCK
32078 ** Sometimes when requesting one lock state, additional lock states
32079 ** are inserted in between. The locking might fail on one of the later
32080 ** transitions leaving the lock state different from what it started but
32081 ** still short of its goal. The following chart shows the allowed
32082 ** transitions and the inserted intermediate states:
32084 ** UNLOCKED -> SHARED
32085 ** SHARED -> RESERVED
32086 ** SHARED -> (PENDING) -> EXCLUSIVE
32087 ** RESERVED -> (PENDING) -> EXCLUSIVE
32088 ** PENDING -> EXCLUSIVE
32090 ** This routine will only increase a lock. The winUnlock() routine
32091 ** erases all locks at once and returns us immediately to locking level 0.
32092 ** It is not possible to lower the locking level one step at a time. You
32093 ** must go straight to locking level 0.
32095 static int winLock(sqlite3_file *id, int locktype){
32096 int rc = SQLITE_OK; /* Return code from subroutines */
32097 int res = 1; /* Result of a windows lock call */
32098 int newLocktype; /* Set pFile->locktype to this value before exiting */
32099 int gotPendingLock = 0;/* True if we acquired a PENDING lock this time */
32100 winFile *pFile = (winFile*)id;
32101 DWORD error = NO_ERROR;
32103 assert( id!=0 );
32104 OSTRACE(("LOCK %d %d was %d(%d)\n",
32105 pFile->h, locktype, pFile->locktype, pFile->sharedLockByte));
32107 /* If there is already a lock of this type or more restrictive on the
32108 ** OsFile, do nothing. Don't use the end_lock: exit path, as
32109 ** sqlite3OsEnterMutex() hasn't been called yet.
32111 if( pFile->locktype>=locktype ){
32112 return SQLITE_OK;
32115 /* Make sure the locking sequence is correct
32117 assert( pFile->locktype!=NO_LOCK || locktype==SHARED_LOCK );
32118 assert( locktype!=PENDING_LOCK );
32119 assert( locktype!=RESERVED_LOCK || pFile->locktype==SHARED_LOCK );
32121 /* Lock the PENDING_LOCK byte if we need to acquire a PENDING lock or
32122 ** a SHARED lock. If we are acquiring a SHARED lock, the acquisition of
32123 ** the PENDING_LOCK byte is temporary.
32125 newLocktype = pFile->locktype;
32126 if( (pFile->locktype==NO_LOCK)
32127 || ( (locktype==EXCLUSIVE_LOCK)
32128 && (pFile->locktype==RESERVED_LOCK))
32130 int cnt = 3;
32131 while( cnt-->0 && (res = LockFile(pFile->h, PENDING_BYTE, 0, 1, 0))==0 ){
32132 /* Try 3 times to get the pending lock. The pending lock might be
32133 ** held by another reader process who will release it momentarily.
32135 OSTRACE(("could not get a PENDING lock. cnt=%d\n", cnt));
32136 Sleep(1);
32138 gotPendingLock = res;
32139 if( !res ){
32140 error = GetLastError();
32144 /* Acquire a shared lock
32146 if( locktype==SHARED_LOCK && res ){
32147 assert( pFile->locktype==NO_LOCK );
32148 res = getReadLock(pFile);
32149 if( res ){
32150 newLocktype = SHARED_LOCK;
32151 }else{
32152 error = GetLastError();
32156 /* Acquire a RESERVED lock
32158 if( locktype==RESERVED_LOCK && res ){
32159 assert( pFile->locktype==SHARED_LOCK );
32160 res = LockFile(pFile->h, RESERVED_BYTE, 0, 1, 0);
32161 if( res ){
32162 newLocktype = RESERVED_LOCK;
32163 }else{
32164 error = GetLastError();
32168 /* Acquire a PENDING lock
32170 if( locktype==EXCLUSIVE_LOCK && res ){
32171 newLocktype = PENDING_LOCK;
32172 gotPendingLock = 0;
32175 /* Acquire an EXCLUSIVE lock
32177 if( locktype==EXCLUSIVE_LOCK && res ){
32178 assert( pFile->locktype>=SHARED_LOCK );
32179 res = unlockReadLock(pFile);
32180 OSTRACE(("unreadlock = %d\n", res));
32181 res = LockFile(pFile->h, SHARED_FIRST, 0, SHARED_SIZE, 0);
32182 if( res ){
32183 newLocktype = EXCLUSIVE_LOCK;
32184 }else{
32185 error = GetLastError();
32186 OSTRACE(("error-code = %d\n", error));
32187 getReadLock(pFile);
32191 /* If we are holding a PENDING lock that ought to be released, then
32192 ** release it now.
32194 if( gotPendingLock && locktype==SHARED_LOCK ){
32195 UnlockFile(pFile->h, PENDING_BYTE, 0, 1, 0);
32198 /* Update the state of the lock has held in the file descriptor then
32199 ** return the appropriate result code.
32201 if( res ){
32202 rc = SQLITE_OK;
32203 }else{
32204 OSTRACE(("LOCK FAILED %d trying for %d but got %d\n", pFile->h,
32205 locktype, newLocktype));
32206 pFile->lastErrno = error;
32207 rc = SQLITE_BUSY;
32209 pFile->locktype = (u8)newLocktype;
32210 return rc;
32214 ** This routine checks if there is a RESERVED lock held on the specified
32215 ** file by this or any other process. If such a lock is held, return
32216 ** non-zero, otherwise zero.
32218 static int winCheckReservedLock(sqlite3_file *id, int *pResOut){
32219 int rc;
32220 winFile *pFile = (winFile*)id;
32222 SimulateIOError( return SQLITE_IOERR_CHECKRESERVEDLOCK; );
32224 assert( id!=0 );
32225 if( pFile->locktype>=RESERVED_LOCK ){
32226 rc = 1;
32227 OSTRACE(("TEST WR-LOCK %d %d (local)\n", pFile->h, rc));
32228 }else{
32229 rc = LockFile(pFile->h, RESERVED_BYTE, 0, 1, 0);
32230 if( rc ){
32231 UnlockFile(pFile->h, RESERVED_BYTE, 0, 1, 0);
32233 rc = !rc;
32234 OSTRACE(("TEST WR-LOCK %d %d (remote)\n", pFile->h, rc));
32236 *pResOut = rc;
32237 return SQLITE_OK;
32241 ** Lower the locking level on file descriptor id to locktype. locktype
32242 ** must be either NO_LOCK or SHARED_LOCK.
32244 ** If the locking level of the file descriptor is already at or below
32245 ** the requested locking level, this routine is a no-op.
32247 ** It is not possible for this routine to fail if the second argument
32248 ** is NO_LOCK. If the second argument is SHARED_LOCK then this routine
32249 ** might return SQLITE_IOERR;
32251 static int winUnlock(sqlite3_file *id, int locktype){
32252 int type;
32253 winFile *pFile = (winFile*)id;
32254 int rc = SQLITE_OK;
32255 assert( pFile!=0 );
32256 assert( locktype<=SHARED_LOCK );
32257 OSTRACE(("UNLOCK %d to %d was %d(%d)\n", pFile->h, locktype,
32258 pFile->locktype, pFile->sharedLockByte));
32259 type = pFile->locktype;
32260 if( type>=EXCLUSIVE_LOCK ){
32261 UnlockFile(pFile->h, SHARED_FIRST, 0, SHARED_SIZE, 0);
32262 if( locktype==SHARED_LOCK && !getReadLock(pFile) ){
32263 /* This should never happen. We should always be able to
32264 ** reacquire the read lock */
32265 rc = SQLITE_IOERR_UNLOCK;
32268 if( type>=RESERVED_LOCK ){
32269 UnlockFile(pFile->h, RESERVED_BYTE, 0, 1, 0);
32271 if( locktype==NO_LOCK && type>=SHARED_LOCK ){
32272 unlockReadLock(pFile);
32274 if( type>=PENDING_LOCK ){
32275 UnlockFile(pFile->h, PENDING_BYTE, 0, 1, 0);
32277 pFile->locktype = (u8)locktype;
32278 return rc;
32282 ** Control and query of the open file handle.
32284 static int winFileControl(sqlite3_file *id, int op, void *pArg){
32285 switch( op ){
32286 case SQLITE_FCNTL_LOCKSTATE: {
32287 *(int*)pArg = ((winFile*)id)->locktype;
32288 return SQLITE_OK;
32290 case SQLITE_LAST_ERRNO: {
32291 *(int*)pArg = (int)((winFile*)id)->lastErrno;
32292 return SQLITE_OK;
32294 case SQLITE_FCNTL_CHUNK_SIZE: {
32295 ((winFile*)id)->szChunk = *(int *)pArg;
32296 return SQLITE_OK;
32298 case SQLITE_FCNTL_SIZE_HINT: {
32299 sqlite3_int64 sz = *(sqlite3_int64*)pArg;
32300 SimulateIOErrorBenign(1);
32301 winTruncate(id, sz);
32302 SimulateIOErrorBenign(0);
32303 return SQLITE_OK;
32305 case SQLITE_FCNTL_SYNC_OMITTED: {
32306 return SQLITE_OK;
32309 return SQLITE_NOTFOUND;
32313 ** Return the sector size in bytes of the underlying block device for
32314 ** the specified file. This is almost always 512 bytes, but may be
32315 ** larger for some devices.
32317 ** SQLite code assumes this function cannot fail. It also assumes that
32318 ** if two files are created in the same file-system directory (i.e.
32319 ** a database and its journal file) that the sector size will be the
32320 ** same for both.
32322 static int winSectorSize(sqlite3_file *id){
32323 assert( id!=0 );
32324 return (int)(((winFile*)id)->sectorSize);
32328 ** Return a vector of device characteristics.
32330 static int winDeviceCharacteristics(sqlite3_file *id){
32331 UNUSED_PARAMETER(id);
32332 return SQLITE_IOCAP_UNDELETABLE_WHEN_OPEN;
32335 #ifndef SQLITE_OMIT_WAL
32338 ** Windows will only let you create file view mappings
32339 ** on allocation size granularity boundaries.
32340 ** During sqlite3_os_init() we do a GetSystemInfo()
32341 ** to get the granularity size.
32343 SYSTEM_INFO winSysInfo;
32346 ** Helper functions to obtain and relinquish the global mutex. The
32347 ** global mutex is used to protect the winLockInfo objects used by
32348 ** this file, all of which may be shared by multiple threads.
32350 ** Function winShmMutexHeld() is used to assert() that the global mutex
32351 ** is held when required. This function is only used as part of assert()
32352 ** statements. e.g.
32354 ** winShmEnterMutex()
32355 ** assert( winShmMutexHeld() );
32356 ** winShmLeaveMutex()
32358 static void winShmEnterMutex(void){
32359 sqlite3_mutex_enter(sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_MASTER));
32361 static void winShmLeaveMutex(void){
32362 sqlite3_mutex_leave(sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_MASTER));
32364 #ifdef SQLITE_DEBUG
32365 static int winShmMutexHeld(void) {
32366 return sqlite3_mutex_held(sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_MASTER));
32368 #endif
32371 ** Object used to represent a single file opened and mmapped to provide
32372 ** shared memory. When multiple threads all reference the same
32373 ** log-summary, each thread has its own winFile object, but they all
32374 ** point to a single instance of this object. In other words, each
32375 ** log-summary is opened only once per process.
32377 ** winShmMutexHeld() must be true when creating or destroying
32378 ** this object or while reading or writing the following fields:
32380 ** nRef
32381 ** pNext
32383 ** The following fields are read-only after the object is created:
32385 ** fid
32386 ** zFilename
32388 ** Either winShmNode.mutex must be held or winShmNode.nRef==0 and
32389 ** winShmMutexHeld() is true when reading or writing any other field
32390 ** in this structure.
32393 struct winShmNode {
32394 sqlite3_mutex *mutex; /* Mutex to access this object */
32395 char *zFilename; /* Name of the file */
32396 winFile hFile; /* File handle from winOpen */
32398 int szRegion; /* Size of shared-memory regions */
32399 int nRegion; /* Size of array apRegion */
32400 struct ShmRegion {
32401 HANDLE hMap; /* File handle from CreateFileMapping */
32402 void *pMap;
32403 } *aRegion;
32404 DWORD lastErrno; /* The Windows errno from the last I/O error */
32406 int nRef; /* Number of winShm objects pointing to this */
32407 winShm *pFirst; /* All winShm objects pointing to this */
32408 winShmNode *pNext; /* Next in list of all winShmNode objects */
32409 #ifdef SQLITE_DEBUG
32410 u8 nextShmId; /* Next available winShm.id value */
32411 #endif
32415 ** A global array of all winShmNode objects.
32417 ** The winShmMutexHeld() must be true while reading or writing this list.
32419 static winShmNode *winShmNodeList = 0;
32422 ** Structure used internally by this VFS to record the state of an
32423 ** open shared memory connection.
32425 ** The following fields are initialized when this object is created and
32426 ** are read-only thereafter:
32428 ** winShm.pShmNode
32429 ** winShm.id
32431 ** All other fields are read/write. The winShm.pShmNode->mutex must be held
32432 ** while accessing any read/write fields.
32434 struct winShm {
32435 winShmNode *pShmNode; /* The underlying winShmNode object */
32436 winShm *pNext; /* Next winShm with the same winShmNode */
32437 u8 hasMutex; /* True if holding the winShmNode mutex */
32438 u16 sharedMask; /* Mask of shared locks held */
32439 u16 exclMask; /* Mask of exclusive locks held */
32440 #ifdef SQLITE_DEBUG
32441 u8 id; /* Id of this connection with its winShmNode */
32442 #endif
32446 ** Constants used for locking
32448 #define WIN_SHM_BASE ((22+SQLITE_SHM_NLOCK)*4) /* first lock byte */
32449 #define WIN_SHM_DMS (WIN_SHM_BASE+SQLITE_SHM_NLOCK) /* deadman switch */
32452 ** Apply advisory locks for all n bytes beginning at ofst.
32454 #define _SHM_UNLCK 1
32455 #define _SHM_RDLCK 2
32456 #define _SHM_WRLCK 3
32457 static int winShmSystemLock(
32458 winShmNode *pFile, /* Apply locks to this open shared-memory segment */
32459 int lockType, /* _SHM_UNLCK, _SHM_RDLCK, or _SHM_WRLCK */
32460 int ofst, /* Offset to first byte to be locked/unlocked */
32461 int nByte /* Number of bytes to lock or unlock */
32463 OVERLAPPED ovlp;
32464 DWORD dwFlags;
32465 int rc = 0; /* Result code form Lock/UnlockFileEx() */
32467 /* Access to the winShmNode object is serialized by the caller */
32468 assert( sqlite3_mutex_held(pFile->mutex) || pFile->nRef==0 );
32470 /* Initialize the locking parameters */
32471 dwFlags = LOCKFILE_FAIL_IMMEDIATELY;
32472 if( lockType == _SHM_WRLCK ) dwFlags |= LOCKFILE_EXCLUSIVE_LOCK;
32474 memset(&ovlp, 0, sizeof(OVERLAPPED));
32475 ovlp.Offset = ofst;
32477 /* Release/Acquire the system-level lock */
32478 if( lockType==_SHM_UNLCK ){
32479 rc = UnlockFileEx(pFile->hFile.h, 0, nByte, 0, &ovlp);
32480 }else{
32481 rc = LockFileEx(pFile->hFile.h, dwFlags, 0, nByte, 0, &ovlp);
32484 if( rc!= 0 ){
32485 rc = SQLITE_OK;
32486 }else{
32487 pFile->lastErrno = GetLastError();
32488 rc = SQLITE_BUSY;
32491 OSTRACE(("SHM-LOCK %d %s %s 0x%08lx\n",
32492 pFile->hFile.h,
32493 rc==SQLITE_OK ? "ok" : "failed",
32494 lockType==_SHM_UNLCK ? "UnlockFileEx" : "LockFileEx",
32495 pFile->lastErrno));
32497 return rc;
32500 /* Forward references to VFS methods */
32501 static int winOpen(sqlite3_vfs*,const char*,sqlite3_file*,int,int*);
32502 static int winDelete(sqlite3_vfs *,const char*,int);
32505 ** Purge the winShmNodeList list of all entries with winShmNode.nRef==0.
32507 ** This is not a VFS shared-memory method; it is a utility function called
32508 ** by VFS shared-memory methods.
32510 static void winShmPurge(sqlite3_vfs *pVfs, int deleteFlag){
32511 winShmNode **pp;
32512 winShmNode *p;
32513 BOOL bRc;
32514 assert( winShmMutexHeld() );
32515 pp = &winShmNodeList;
32516 while( (p = *pp)!=0 ){
32517 if( p->nRef==0 ){
32518 int i;
32519 if( p->mutex ) sqlite3_mutex_free(p->mutex);
32520 for(i=0; i<p->nRegion; i++){
32521 bRc = UnmapViewOfFile(p->aRegion[i].pMap);
32522 OSTRACE(("SHM-PURGE pid-%d unmap region=%d %s\n",
32523 (int)GetCurrentProcessId(), i,
32524 bRc ? "ok" : "failed"));
32525 bRc = CloseHandle(p->aRegion[i].hMap);
32526 OSTRACE(("SHM-PURGE pid-%d close region=%d %s\n",
32527 (int)GetCurrentProcessId(), i,
32528 bRc ? "ok" : "failed"));
32530 if( p->hFile.h != INVALID_HANDLE_VALUE ){
32531 SimulateIOErrorBenign(1);
32532 winClose((sqlite3_file *)&p->hFile);
32533 SimulateIOErrorBenign(0);
32535 if( deleteFlag ){
32536 SimulateIOErrorBenign(1);
32537 winDelete(pVfs, p->zFilename, 0);
32538 SimulateIOErrorBenign(0);
32540 *pp = p->pNext;
32541 sqlite3_free(p->aRegion);
32542 sqlite3_free(p);
32543 }else{
32544 pp = &p->pNext;
32550 ** Open the shared-memory area associated with database file pDbFd.
32552 ** When opening a new shared-memory file, if no other instances of that
32553 ** file are currently open, in this process or in other processes, then
32554 ** the file must be truncated to zero length or have its header cleared.
32556 static int winOpenSharedMemory(winFile *pDbFd){
32557 struct winShm *p; /* The connection to be opened */
32558 struct winShmNode *pShmNode = 0; /* The underlying mmapped file */
32559 int rc; /* Result code */
32560 struct winShmNode *pNew; /* Newly allocated winShmNode */
32561 int nName; /* Size of zName in bytes */
32563 assert( pDbFd->pShm==0 ); /* Not previously opened */
32565 /* Allocate space for the new sqlite3_shm object. Also speculatively
32566 ** allocate space for a new winShmNode and filename.
32568 p = sqlite3_malloc( sizeof(*p) );
32569 if( p==0 ) return SQLITE_NOMEM;
32570 memset(p, 0, sizeof(*p));
32571 nName = sqlite3Strlen30(pDbFd->zPath);
32572 pNew = sqlite3_malloc( sizeof(*pShmNode) + nName + 15 );
32573 if( pNew==0 ){
32574 sqlite3_free(p);
32575 return SQLITE_NOMEM;
32577 memset(pNew, 0, sizeof(*pNew));
32578 pNew->zFilename = (char*)&pNew[1];
32579 sqlite3_snprintf(nName+15, pNew->zFilename, "%s-shm", pDbFd->zPath);
32581 /* Look to see if there is an existing winShmNode that can be used.
32582 ** If no matching winShmNode currently exists, create a new one.
32584 winShmEnterMutex();
32585 for(pShmNode = winShmNodeList; pShmNode; pShmNode=pShmNode->pNext){
32586 /* TBD need to come up with better match here. Perhaps
32587 ** use FILE_ID_BOTH_DIR_INFO Structure.
32589 if( sqlite3StrICmp(pShmNode->zFilename, pNew->zFilename)==0 ) break;
32591 if( pShmNode ){
32592 sqlite3_free(pNew);
32593 }else{
32594 pShmNode = pNew;
32595 pNew = 0;
32596 ((winFile*)(&pShmNode->hFile))->h = INVALID_HANDLE_VALUE;
32597 pShmNode->pNext = winShmNodeList;
32598 winShmNodeList = pShmNode;
32600 pShmNode->mutex = sqlite3_mutex_alloc(SQLITE_MUTEX_FAST);
32601 if( pShmNode->mutex==0 ){
32602 rc = SQLITE_NOMEM;
32603 goto shm_open_err;
32606 rc = winOpen(pDbFd->pVfs,
32607 pShmNode->zFilename, /* Name of the file (UTF-8) */
32608 (sqlite3_file*)&pShmNode->hFile, /* File handle here */
32609 SQLITE_OPEN_WAL | SQLITE_OPEN_READWRITE | SQLITE_OPEN_CREATE, /* Mode flags */
32611 if( SQLITE_OK!=rc ){
32612 rc = SQLITE_CANTOPEN_BKPT;
32613 goto shm_open_err;
32616 /* Check to see if another process is holding the dead-man switch.
32617 ** If not, truncate the file to zero length.
32619 if( winShmSystemLock(pShmNode, _SHM_WRLCK, WIN_SHM_DMS, 1)==SQLITE_OK ){
32620 rc = winTruncate((sqlite3_file *)&pShmNode->hFile, 0);
32621 if( rc!=SQLITE_OK ){
32622 rc = SQLITE_IOERR_SHMOPEN;
32625 if( rc==SQLITE_OK ){
32626 winShmSystemLock(pShmNode, _SHM_UNLCK, WIN_SHM_DMS, 1);
32627 rc = winShmSystemLock(pShmNode, _SHM_RDLCK, WIN_SHM_DMS, 1);
32629 if( rc ) goto shm_open_err;
32632 /* Make the new connection a child of the winShmNode */
32633 p->pShmNode = pShmNode;
32634 #ifdef SQLITE_DEBUG
32635 p->id = pShmNode->nextShmId++;
32636 #endif
32637 pShmNode->nRef++;
32638 pDbFd->pShm = p;
32639 winShmLeaveMutex();
32641 /* The reference count on pShmNode has already been incremented under
32642 ** the cover of the winShmEnterMutex() mutex and the pointer from the
32643 ** new (struct winShm) object to the pShmNode has been set. All that is
32644 ** left to do is to link the new object into the linked list starting
32645 ** at pShmNode->pFirst. This must be done while holding the pShmNode->mutex
32646 ** mutex.
32648 sqlite3_mutex_enter(pShmNode->mutex);
32649 p->pNext = pShmNode->pFirst;
32650 pShmNode->pFirst = p;
32651 sqlite3_mutex_leave(pShmNode->mutex);
32652 return SQLITE_OK;
32654 /* Jump here on any error */
32655 shm_open_err:
32656 winShmSystemLock(pShmNode, _SHM_UNLCK, WIN_SHM_DMS, 1);
32657 winShmPurge(pDbFd->pVfs, 0); /* This call frees pShmNode if required */
32658 sqlite3_free(p);
32659 sqlite3_free(pNew);
32660 winShmLeaveMutex();
32661 return rc;
32665 ** Close a connection to shared-memory. Delete the underlying
32666 ** storage if deleteFlag is true.
32668 static int winShmUnmap(
32669 sqlite3_file *fd, /* Database holding shared memory */
32670 int deleteFlag /* Delete after closing if true */
32672 winFile *pDbFd; /* Database holding shared-memory */
32673 winShm *p; /* The connection to be closed */
32674 winShmNode *pShmNode; /* The underlying shared-memory file */
32675 winShm **pp; /* For looping over sibling connections */
32677 pDbFd = (winFile*)fd;
32678 p = pDbFd->pShm;
32679 if( p==0 ) return SQLITE_OK;
32680 pShmNode = p->pShmNode;
32682 /* Remove connection p from the set of connections associated
32683 ** with pShmNode */
32684 sqlite3_mutex_enter(pShmNode->mutex);
32685 for(pp=&pShmNode->pFirst; (*pp)!=p; pp = &(*pp)->pNext){}
32686 *pp = p->pNext;
32688 /* Free the connection p */
32689 sqlite3_free(p);
32690 pDbFd->pShm = 0;
32691 sqlite3_mutex_leave(pShmNode->mutex);
32693 /* If pShmNode->nRef has reached 0, then close the underlying
32694 ** shared-memory file, too */
32695 winShmEnterMutex();
32696 assert( pShmNode->nRef>0 );
32697 pShmNode->nRef--;
32698 if( pShmNode->nRef==0 ){
32699 winShmPurge(pDbFd->pVfs, deleteFlag);
32701 winShmLeaveMutex();
32703 return SQLITE_OK;
32707 ** Change the lock state for a shared-memory segment.
32709 static int winShmLock(
32710 sqlite3_file *fd, /* Database file holding the shared memory */
32711 int ofst, /* First lock to acquire or release */
32712 int n, /* Number of locks to acquire or release */
32713 int flags /* What to do with the lock */
32715 winFile *pDbFd = (winFile*)fd; /* Connection holding shared memory */
32716 winShm *p = pDbFd->pShm; /* The shared memory being locked */
32717 winShm *pX; /* For looping over all siblings */
32718 winShmNode *pShmNode = p->pShmNode;
32719 int rc = SQLITE_OK; /* Result code */
32720 u16 mask; /* Mask of locks to take or release */
32722 assert( ofst>=0 && ofst+n<=SQLITE_SHM_NLOCK );
32723 assert( n>=1 );
32724 assert( flags==(SQLITE_SHM_LOCK | SQLITE_SHM_SHARED)
32725 || flags==(SQLITE_SHM_LOCK | SQLITE_SHM_EXCLUSIVE)
32726 || flags==(SQLITE_SHM_UNLOCK | SQLITE_SHM_SHARED)
32727 || flags==(SQLITE_SHM_UNLOCK | SQLITE_SHM_EXCLUSIVE) );
32728 assert( n==1 || (flags & SQLITE_SHM_EXCLUSIVE)!=0 );
32730 mask = (u16)((1U<<(ofst+n)) - (1U<<ofst));
32731 assert( n>1 || mask==(1<<ofst) );
32732 sqlite3_mutex_enter(pShmNode->mutex);
32733 if( flags & SQLITE_SHM_UNLOCK ){
32734 u16 allMask = 0; /* Mask of locks held by siblings */
32736 /* See if any siblings hold this same lock */
32737 for(pX=pShmNode->pFirst; pX; pX=pX->pNext){
32738 if( pX==p ) continue;
32739 assert( (pX->exclMask & (p->exclMask|p->sharedMask))==0 );
32740 allMask |= pX->sharedMask;
32743 /* Unlock the system-level locks */
32744 if( (mask & allMask)==0 ){
32745 rc = winShmSystemLock(pShmNode, _SHM_UNLCK, ofst+WIN_SHM_BASE, n);
32746 }else{
32747 rc = SQLITE_OK;
32750 /* Undo the local locks */
32751 if( rc==SQLITE_OK ){
32752 p->exclMask &= ~mask;
32753 p->sharedMask &= ~mask;
32755 }else if( flags & SQLITE_SHM_SHARED ){
32756 u16 allShared = 0; /* Union of locks held by connections other than "p" */
32758 /* Find out which shared locks are already held by sibling connections.
32759 ** If any sibling already holds an exclusive lock, go ahead and return
32760 ** SQLITE_BUSY.
32762 for(pX=pShmNode->pFirst; pX; pX=pX->pNext){
32763 if( (pX->exclMask & mask)!=0 ){
32764 rc = SQLITE_BUSY;
32765 break;
32767 allShared |= pX->sharedMask;
32770 /* Get shared locks at the system level, if necessary */
32771 if( rc==SQLITE_OK ){
32772 if( (allShared & mask)==0 ){
32773 rc = winShmSystemLock(pShmNode, _SHM_RDLCK, ofst+WIN_SHM_BASE, n);
32774 }else{
32775 rc = SQLITE_OK;
32779 /* Get the local shared locks */
32780 if( rc==SQLITE_OK ){
32781 p->sharedMask |= mask;
32783 }else{
32784 /* Make sure no sibling connections hold locks that will block this
32785 ** lock. If any do, return SQLITE_BUSY right away.
32787 for(pX=pShmNode->pFirst; pX; pX=pX->pNext){
32788 if( (pX->exclMask & mask)!=0 || (pX->sharedMask & mask)!=0 ){
32789 rc = SQLITE_BUSY;
32790 break;
32794 /* Get the exclusive locks at the system level. Then if successful
32795 ** also mark the local connection as being locked.
32797 if( rc==SQLITE_OK ){
32798 rc = winShmSystemLock(pShmNode, _SHM_WRLCK, ofst+WIN_SHM_BASE, n);
32799 if( rc==SQLITE_OK ){
32800 assert( (p->sharedMask & mask)==0 );
32801 p->exclMask |= mask;
32805 sqlite3_mutex_leave(pShmNode->mutex);
32806 OSTRACE(("SHM-LOCK shmid-%d, pid-%d got %03x,%03x %s\n",
32807 p->id, (int)GetCurrentProcessId(), p->sharedMask, p->exclMask,
32808 rc ? "failed" : "ok"));
32809 return rc;
32813 ** Implement a memory barrier or memory fence on shared memory.
32815 ** All loads and stores begun before the barrier must complete before
32816 ** any load or store begun after the barrier.
32818 static void winShmBarrier(
32819 sqlite3_file *fd /* Database holding the shared memory */
32821 UNUSED_PARAMETER(fd);
32822 /* MemoryBarrier(); // does not work -- do not know why not */
32823 winShmEnterMutex();
32824 winShmLeaveMutex();
32828 ** This function is called to obtain a pointer to region iRegion of the
32829 ** shared-memory associated with the database file fd. Shared-memory regions
32830 ** are numbered starting from zero. Each shared-memory region is szRegion
32831 ** bytes in size.
32833 ** If an error occurs, an error code is returned and *pp is set to NULL.
32835 ** Otherwise, if the isWrite parameter is 0 and the requested shared-memory
32836 ** region has not been allocated (by any client, including one running in a
32837 ** separate process), then *pp is set to NULL and SQLITE_OK returned. If
32838 ** isWrite is non-zero and the requested shared-memory region has not yet
32839 ** been allocated, it is allocated by this function.
32841 ** If the shared-memory region has already been allocated or is allocated by
32842 ** this call as described above, then it is mapped into this processes
32843 ** address space (if it is not already), *pp is set to point to the mapped
32844 ** memory and SQLITE_OK returned.
32846 static int winShmMap(
32847 sqlite3_file *fd, /* Handle open on database file */
32848 int iRegion, /* Region to retrieve */
32849 int szRegion, /* Size of regions */
32850 int isWrite, /* True to extend file if necessary */
32851 void volatile **pp /* OUT: Mapped memory */
32853 winFile *pDbFd = (winFile*)fd;
32854 winShm *p = pDbFd->pShm;
32855 winShmNode *pShmNode;
32856 int rc = SQLITE_OK;
32858 if( !p ){
32859 rc = winOpenSharedMemory(pDbFd);
32860 if( rc!=SQLITE_OK ) return rc;
32861 p = pDbFd->pShm;
32863 pShmNode = p->pShmNode;
32865 sqlite3_mutex_enter(pShmNode->mutex);
32866 assert( szRegion==pShmNode->szRegion || pShmNode->nRegion==0 );
32868 if( pShmNode->nRegion<=iRegion ){
32869 struct ShmRegion *apNew; /* New aRegion[] array */
32870 int nByte = (iRegion+1)*szRegion; /* Minimum required file size */
32871 sqlite3_int64 sz; /* Current size of wal-index file */
32873 pShmNode->szRegion = szRegion;
32875 /* The requested region is not mapped into this processes address space.
32876 ** Check to see if it has been allocated (i.e. if the wal-index file is
32877 ** large enough to contain the requested region).
32879 rc = winFileSize((sqlite3_file *)&pShmNode->hFile, &sz);
32880 if( rc!=SQLITE_OK ){
32881 rc = SQLITE_IOERR_SHMSIZE;
32882 goto shmpage_out;
32885 if( sz<nByte ){
32886 /* The requested memory region does not exist. If isWrite is set to
32887 ** zero, exit early. *pp will be set to NULL and SQLITE_OK returned.
32889 ** Alternatively, if isWrite is non-zero, use ftruncate() to allocate
32890 ** the requested memory region.
32892 if( !isWrite ) goto shmpage_out;
32893 rc = winTruncate((sqlite3_file *)&pShmNode->hFile, nByte);
32894 if( rc!=SQLITE_OK ){
32895 rc = SQLITE_IOERR_SHMSIZE;
32896 goto shmpage_out;
32900 /* Map the requested memory region into this processes address space. */
32901 apNew = (struct ShmRegion *)sqlite3_realloc(
32902 pShmNode->aRegion, (iRegion+1)*sizeof(apNew[0])
32904 if( !apNew ){
32905 rc = SQLITE_IOERR_NOMEM;
32906 goto shmpage_out;
32908 pShmNode->aRegion = apNew;
32910 while( pShmNode->nRegion<=iRegion ){
32911 HANDLE hMap; /* file-mapping handle */
32912 void *pMap = 0; /* Mapped memory region */
32914 hMap = CreateFileMapping(pShmNode->hFile.h,
32915 NULL, PAGE_READWRITE, 0, nByte, NULL
32917 OSTRACE(("SHM-MAP pid-%d create region=%d nbyte=%d %s\n",
32918 (int)GetCurrentProcessId(), pShmNode->nRegion, nByte,
32919 hMap ? "ok" : "failed"));
32920 if( hMap ){
32921 int iOffset = pShmNode->nRegion*szRegion;
32922 int iOffsetShift = iOffset % winSysInfo.dwAllocationGranularity;
32923 pMap = MapViewOfFile(hMap, FILE_MAP_WRITE | FILE_MAP_READ,
32924 0, iOffset - iOffsetShift, szRegion + iOffsetShift
32926 OSTRACE(("SHM-MAP pid-%d map region=%d offset=%d size=%d %s\n",
32927 (int)GetCurrentProcessId(), pShmNode->nRegion, iOffset, szRegion,
32928 pMap ? "ok" : "failed"));
32930 if( !pMap ){
32931 pShmNode->lastErrno = GetLastError();
32932 rc = SQLITE_IOERR;
32933 if( hMap ) CloseHandle(hMap);
32934 goto shmpage_out;
32937 pShmNode->aRegion[pShmNode->nRegion].pMap = pMap;
32938 pShmNode->aRegion[pShmNode->nRegion].hMap = hMap;
32939 pShmNode->nRegion++;
32943 shmpage_out:
32944 if( pShmNode->nRegion>iRegion ){
32945 int iOffset = iRegion*szRegion;
32946 int iOffsetShift = iOffset % winSysInfo.dwAllocationGranularity;
32947 char *p = (char *)pShmNode->aRegion[iRegion].pMap;
32948 *pp = (void *)&p[iOffsetShift];
32949 }else{
32950 *pp = 0;
32952 sqlite3_mutex_leave(pShmNode->mutex);
32953 return rc;
32956 #else
32957 # define winShmMap 0
32958 # define winShmLock 0
32959 # define winShmBarrier 0
32960 # define winShmUnmap 0
32961 #endif /* #ifndef SQLITE_OMIT_WAL */
32964 ** Here ends the implementation of all sqlite3_file methods.
32966 ********************** End sqlite3_file Methods *******************************
32967 ******************************************************************************/
32970 ** This vector defines all the methods that can operate on an
32971 ** sqlite3_file for win32.
32973 static const sqlite3_io_methods winIoMethod = {
32974 2, /* iVersion */
32975 winClose, /* xClose */
32976 winRead, /* xRead */
32977 winWrite, /* xWrite */
32978 winTruncate, /* xTruncate */
32979 winSync, /* xSync */
32980 winFileSize, /* xFileSize */
32981 winLock, /* xLock */
32982 winUnlock, /* xUnlock */
32983 winCheckReservedLock, /* xCheckReservedLock */
32984 winFileControl, /* xFileControl */
32985 winSectorSize, /* xSectorSize */
32986 winDeviceCharacteristics, /* xDeviceCharacteristics */
32987 winShmMap, /* xShmMap */
32988 winShmLock, /* xShmLock */
32989 winShmBarrier, /* xShmBarrier */
32990 winShmUnmap /* xShmUnmap */
32993 /****************************************************************************
32994 **************************** sqlite3_vfs methods ****************************
32996 ** This division contains the implementation of methods on the
32997 ** sqlite3_vfs object.
33001 ** Convert a UTF-8 filename into whatever form the underlying
33002 ** operating system wants filenames in. Space to hold the result
33003 ** is obtained from malloc and must be freed by the calling
33004 ** function.
33006 static void *convertUtf8Filename(const char *zFilename){
33007 void *zConverted = 0;
33008 if( isNT() ){
33009 zConverted = utf8ToUnicode(zFilename);
33010 /* isNT() is 1 if SQLITE_OS_WINCE==1, so this else is never executed.
33012 #if SQLITE_OS_WINCE==0
33013 }else{
33014 zConverted = utf8ToMbcs(zFilename);
33015 #endif
33017 /* caller will handle out of memory */
33018 return zConverted;
33022 ** Create a temporary file name in zBuf. zBuf must be big enough to
33023 ** hold at pVfs->mxPathname characters.
33025 static int getTempname(int nBuf, char *zBuf){
33026 static char zChars[] =
33027 "abcdefghijklmnopqrstuvwxyz"
33028 "ABCDEFGHIJKLMNOPQRSTUVWXYZ"
33029 "0123456789";
33030 size_t i, j;
33031 char zTempPath[MAX_PATH+1];
33033 /* It's odd to simulate an io-error here, but really this is just
33034 ** using the io-error infrastructure to test that SQLite handles this
33035 ** function failing.
33037 SimulateIOError( return SQLITE_IOERR );
33039 if( sqlite3_temp_directory ){
33040 sqlite3_snprintf(MAX_PATH-30, zTempPath, "%s", sqlite3_temp_directory);
33041 }else if( isNT() ){
33042 char *zMulti;
33043 WCHAR zWidePath[MAX_PATH];
33044 GetTempPathW(MAX_PATH-30, zWidePath);
33045 zMulti = unicodeToUtf8(zWidePath);
33046 if( zMulti ){
33047 sqlite3_snprintf(MAX_PATH-30, zTempPath, "%s", zMulti);
33048 free(zMulti);
33049 }else{
33050 return SQLITE_NOMEM;
33052 /* isNT() is 1 if SQLITE_OS_WINCE==1, so this else is never executed.
33053 ** Since the ASCII version of these Windows API do not exist for WINCE,
33054 ** it's important to not reference them for WINCE builds.
33056 #if SQLITE_OS_WINCE==0
33057 }else{
33058 char *zUtf8;
33059 char zMbcsPath[MAX_PATH];
33060 GetTempPathA(MAX_PATH-30, zMbcsPath);
33061 zUtf8 = sqlite3_win32_mbcs_to_utf8(zMbcsPath);
33062 if( zUtf8 ){
33063 sqlite3_snprintf(MAX_PATH-30, zTempPath, "%s", zUtf8);
33064 free(zUtf8);
33065 }else{
33066 return SQLITE_NOMEM;
33068 #endif
33071 /* Check that the output buffer is large enough for the temporary file
33072 ** name. If it is not, return SQLITE_ERROR.
33074 if( (sqlite3Strlen30(zTempPath) + sqlite3Strlen30(SQLITE_TEMP_FILE_PREFIX) + 17) >= nBuf ){
33075 return SQLITE_ERROR;
33078 for(i=sqlite3Strlen30(zTempPath); i>0 && zTempPath[i-1]=='\\'; i--){}
33079 zTempPath[i] = 0;
33081 sqlite3_snprintf(nBuf-17, zBuf,
33082 "%s\\"SQLITE_TEMP_FILE_PREFIX, zTempPath);
33083 j = sqlite3Strlen30(zBuf);
33084 sqlite3_randomness(15, &zBuf[j]);
33085 for(i=0; i<15; i++, j++){
33086 zBuf[j] = (char)zChars[ ((unsigned char)zBuf[j])%(sizeof(zChars)-1) ];
33088 zBuf[j] = 0;
33090 OSTRACE(("TEMP FILENAME: %s\n", zBuf));
33091 return SQLITE_OK;
33095 ** The return value of getLastErrorMsg
33096 ** is zero if the error message fits in the buffer, or non-zero
33097 ** otherwise (if the message was truncated).
33099 static int getLastErrorMsg(int nBuf, char *zBuf){
33100 /* FormatMessage returns 0 on failure. Otherwise it
33101 ** returns the number of TCHARs written to the output
33102 ** buffer, excluding the terminating null char.
33104 DWORD error = GetLastError();
33105 DWORD dwLen = 0;
33106 char *zOut = 0;
33108 if( isNT() ){
33109 WCHAR *zTempWide = NULL;
33110 dwLen = FormatMessageW(FORMAT_MESSAGE_ALLOCATE_BUFFER | FORMAT_MESSAGE_FROM_SYSTEM | FORMAT_MESSAGE_IGNORE_INSERTS,
33111 NULL,
33112 error,
33114 (LPWSTR) &zTempWide,
33117 if( dwLen > 0 ){
33118 /* allocate a buffer and convert to UTF8 */
33119 zOut = unicodeToUtf8(zTempWide);
33120 /* free the system buffer allocated by FormatMessage */
33121 LocalFree(zTempWide);
33123 /* isNT() is 1 if SQLITE_OS_WINCE==1, so this else is never executed.
33124 ** Since the ASCII version of these Windows API do not exist for WINCE,
33125 ** it's important to not reference them for WINCE builds.
33127 #if SQLITE_OS_WINCE==0
33128 }else{
33129 char *zTemp = NULL;
33130 dwLen = FormatMessageA(FORMAT_MESSAGE_ALLOCATE_BUFFER | FORMAT_MESSAGE_FROM_SYSTEM | FORMAT_MESSAGE_IGNORE_INSERTS,
33131 NULL,
33132 error,
33134 (LPSTR) &zTemp,
33137 if( dwLen > 0 ){
33138 /* allocate a buffer and convert to UTF8 */
33139 zOut = sqlite3_win32_mbcs_to_utf8(zTemp);
33140 /* free the system buffer allocated by FormatMessage */
33141 LocalFree(zTemp);
33143 #endif
33145 if( 0 == dwLen ){
33146 sqlite3_snprintf(nBuf, zBuf, "OsError 0x%x (%u)", error, error);
33147 }else{
33148 /* copy a maximum of nBuf chars to output buffer */
33149 sqlite3_snprintf(nBuf, zBuf, "%s", zOut);
33150 /* free the UTF8 buffer */
33151 free(zOut);
33153 return 0;
33157 ** Open a file.
33159 static int winOpen(
33160 sqlite3_vfs *pVfs, /* Not used */
33161 const char *zName, /* Name of the file (UTF-8) */
33162 sqlite3_file *id, /* Write the SQLite file handle here */
33163 int flags, /* Open mode flags */
33164 int *pOutFlags /* Status return flags */
33166 HANDLE h;
33167 DWORD dwDesiredAccess;
33168 DWORD dwShareMode;
33169 DWORD dwCreationDisposition;
33170 DWORD dwFlagsAndAttributes = 0;
33171 #if SQLITE_OS_WINCE
33172 int isTemp = 0;
33173 #endif
33174 winFile *pFile = (winFile*)id;
33175 void *zConverted; /* Filename in OS encoding */
33176 const char *zUtf8Name = zName; /* Filename in UTF-8 encoding */
33178 /* If argument zPath is a NULL pointer, this function is required to open
33179 ** a temporary file. Use this buffer to store the file name in.
33181 char zTmpname[MAX_PATH+1]; /* Buffer used to create temp filename */
33183 int rc = SQLITE_OK; /* Function Return Code */
33184 #if !defined(NDEBUG) || SQLITE_OS_WINCE
33185 int eType = flags&0xFFFFFF00; /* Type of file to open */
33186 #endif
33188 int isExclusive = (flags & SQLITE_OPEN_EXCLUSIVE);
33189 int isDelete = (flags & SQLITE_OPEN_DELETEONCLOSE);
33190 int isCreate = (flags & SQLITE_OPEN_CREATE);
33191 #ifndef NDEBUG
33192 int isReadonly = (flags & SQLITE_OPEN_READONLY);
33193 #endif
33194 int isReadWrite = (flags & SQLITE_OPEN_READWRITE);
33196 #ifndef NDEBUG
33197 int isOpenJournal = (isCreate && (
33198 eType==SQLITE_OPEN_MASTER_JOURNAL
33199 || eType==SQLITE_OPEN_MAIN_JOURNAL
33200 || eType==SQLITE_OPEN_WAL
33202 #endif
33204 /* Check the following statements are true:
33206 ** (a) Exactly one of the READWRITE and READONLY flags must be set, and
33207 ** (b) if CREATE is set, then READWRITE must also be set, and
33208 ** (c) if EXCLUSIVE is set, then CREATE must also be set.
33209 ** (d) if DELETEONCLOSE is set, then CREATE must also be set.
33211 assert((isReadonly==0 || isReadWrite==0) && (isReadWrite || isReadonly));
33212 assert(isCreate==0 || isReadWrite);
33213 assert(isExclusive==0 || isCreate);
33214 assert(isDelete==0 || isCreate);
33216 /* The main DB, main journal, WAL file and master journal are never
33217 ** automatically deleted. Nor are they ever temporary files. */
33218 assert( (!isDelete && zName) || eType!=SQLITE_OPEN_MAIN_DB );
33219 assert( (!isDelete && zName) || eType!=SQLITE_OPEN_MAIN_JOURNAL );
33220 assert( (!isDelete && zName) || eType!=SQLITE_OPEN_MASTER_JOURNAL );
33221 assert( (!isDelete && zName) || eType!=SQLITE_OPEN_WAL );
33223 /* Assert that the upper layer has set one of the "file-type" flags. */
33224 assert( eType==SQLITE_OPEN_MAIN_DB || eType==SQLITE_OPEN_TEMP_DB
33225 || eType==SQLITE_OPEN_MAIN_JOURNAL || eType==SQLITE_OPEN_TEMP_JOURNAL
33226 || eType==SQLITE_OPEN_SUBJOURNAL || eType==SQLITE_OPEN_MASTER_JOURNAL
33227 || eType==SQLITE_OPEN_TRANSIENT_DB || eType==SQLITE_OPEN_WAL
33230 assert( id!=0 );
33231 UNUSED_PARAMETER(pVfs);
33233 pFile->h = INVALID_HANDLE_VALUE;
33235 /* If the second argument to this function is NULL, generate a
33236 ** temporary file name to use
33238 if( !zUtf8Name ){
33239 assert(isDelete && !isOpenJournal);
33240 rc = getTempname(MAX_PATH+1, zTmpname);
33241 if( rc!=SQLITE_OK ){
33242 return rc;
33244 zUtf8Name = zTmpname;
33247 /* Convert the filename to the system encoding. */
33248 zConverted = convertUtf8Filename(zUtf8Name);
33249 if( zConverted==0 ){
33250 return SQLITE_NOMEM;
33253 if( isReadWrite ){
33254 dwDesiredAccess = GENERIC_READ | GENERIC_WRITE;
33255 }else{
33256 dwDesiredAccess = GENERIC_READ;
33259 /* SQLITE_OPEN_EXCLUSIVE is used to make sure that a new file is
33260 ** created. SQLite doesn't use it to indicate "exclusive access"
33261 ** as it is usually understood.
33263 if( isExclusive ){
33264 /* Creates a new file, only if it does not already exist. */
33265 /* If the file exists, it fails. */
33266 dwCreationDisposition = CREATE_NEW;
33267 }else if( isCreate ){
33268 /* Open existing file, or create if it doesn't exist */
33269 dwCreationDisposition = OPEN_ALWAYS;
33270 }else{
33271 /* Opens a file, only if it exists. */
33272 dwCreationDisposition = OPEN_EXISTING;
33275 dwShareMode = FILE_SHARE_READ | FILE_SHARE_WRITE;
33277 if( isDelete ){
33278 #if SQLITE_OS_WINCE
33279 dwFlagsAndAttributes = FILE_ATTRIBUTE_HIDDEN;
33280 isTemp = 1;
33281 #else
33282 dwFlagsAndAttributes = FILE_ATTRIBUTE_TEMPORARY
33283 | FILE_ATTRIBUTE_HIDDEN
33284 | FILE_FLAG_DELETE_ON_CLOSE;
33285 #endif
33286 }else{
33287 dwFlagsAndAttributes = FILE_ATTRIBUTE_NORMAL;
33289 /* Reports from the internet are that performance is always
33290 ** better if FILE_FLAG_RANDOM_ACCESS is used. Ticket #2699. */
33291 #if SQLITE_OS_WINCE
33292 dwFlagsAndAttributes |= FILE_FLAG_RANDOM_ACCESS;
33293 #endif
33295 if( isNT() ){
33296 h = CreateFileW((WCHAR*)zConverted,
33297 dwDesiredAccess,
33298 dwShareMode,
33299 NULL,
33300 dwCreationDisposition,
33301 dwFlagsAndAttributes,
33302 NULL
33304 /* isNT() is 1 if SQLITE_OS_WINCE==1, so this else is never executed.
33305 ** Since the ASCII version of these Windows API do not exist for WINCE,
33306 ** it's important to not reference them for WINCE builds.
33308 #if SQLITE_OS_WINCE==0
33309 }else{
33310 h = CreateFileA((char*)zConverted,
33311 dwDesiredAccess,
33312 dwShareMode,
33313 NULL,
33314 dwCreationDisposition,
33315 dwFlagsAndAttributes,
33316 NULL
33318 #endif
33321 OSTRACE(("OPEN %d %s 0x%lx %s\n",
33322 h, zName, dwDesiredAccess,
33323 h==INVALID_HANDLE_VALUE ? "failed" : "ok"));
33325 if( h==INVALID_HANDLE_VALUE ){
33326 pFile->lastErrno = GetLastError();
33327 free(zConverted);
33328 if( isReadWrite ){
33329 return winOpen(pVfs, zName, id,
33330 ((flags|SQLITE_OPEN_READONLY)&~(SQLITE_OPEN_CREATE|SQLITE_OPEN_READWRITE)), pOutFlags);
33331 }else{
33332 return SQLITE_CANTOPEN_BKPT;
33336 if( pOutFlags ){
33337 if( isReadWrite ){
33338 *pOutFlags = SQLITE_OPEN_READWRITE;
33339 }else{
33340 *pOutFlags = SQLITE_OPEN_READONLY;
33344 memset(pFile, 0, sizeof(*pFile));
33345 pFile->pMethod = &winIoMethod;
33346 pFile->h = h;
33347 pFile->lastErrno = NO_ERROR;
33348 pFile->pVfs = pVfs;
33349 pFile->pShm = 0;
33350 pFile->zPath = zName;
33351 pFile->sectorSize = getSectorSize(pVfs, zUtf8Name);
33353 #if SQLITE_OS_WINCE
33354 if( isReadWrite && eType==SQLITE_OPEN_MAIN_DB
33355 && !winceCreateLock(zName, pFile)
33357 CloseHandle(h);
33358 free(zConverted);
33359 return SQLITE_CANTOPEN_BKPT;
33361 if( isTemp ){
33362 pFile->zDeleteOnClose = zConverted;
33363 }else
33364 #endif
33366 free(zConverted);
33369 OpenCounter(+1);
33370 return rc;
33374 ** Delete the named file.
33376 ** Note that windows does not allow a file to be deleted if some other
33377 ** process has it open. Sometimes a virus scanner or indexing program
33378 ** will open a journal file shortly after it is created in order to do
33379 ** whatever it does. While this other process is holding the
33380 ** file open, we will be unable to delete it. To work around this
33381 ** problem, we delay 100 milliseconds and try to delete again. Up
33382 ** to MX_DELETION_ATTEMPTs deletion attempts are run before giving
33383 ** up and returning an error.
33385 #define MX_DELETION_ATTEMPTS 5
33386 static int winDelete(
33387 sqlite3_vfs *pVfs, /* Not used on win32 */
33388 const char *zFilename, /* Name of file to delete */
33389 int syncDir /* Not used on win32 */
33391 int cnt = 0;
33392 DWORD rc;
33393 DWORD error = 0;
33394 void *zConverted;
33395 UNUSED_PARAMETER(pVfs);
33396 UNUSED_PARAMETER(syncDir);
33398 SimulateIOError(return SQLITE_IOERR_DELETE);
33399 zConverted = convertUtf8Filename(zFilename);
33400 if( zConverted==0 ){
33401 return SQLITE_NOMEM;
33403 if( isNT() ){
33405 DeleteFileW(zConverted);
33406 }while( ( ((rc = GetFileAttributesW(zConverted)) != INVALID_FILE_ATTRIBUTES)
33407 || ((error = GetLastError()) == ERROR_ACCESS_DENIED))
33408 && (++cnt < MX_DELETION_ATTEMPTS)
33409 && (Sleep(100), 1) );
33410 /* isNT() is 1 if SQLITE_OS_WINCE==1, so this else is never executed.
33411 ** Since the ASCII version of these Windows API do not exist for WINCE,
33412 ** it's important to not reference them for WINCE builds.
33414 #if SQLITE_OS_WINCE==0
33415 }else{
33417 DeleteFileA(zConverted);
33418 }while( ( ((rc = GetFileAttributesA(zConverted)) != INVALID_FILE_ATTRIBUTES)
33419 || ((error = GetLastError()) == ERROR_ACCESS_DENIED))
33420 && (++cnt < MX_DELETION_ATTEMPTS)
33421 && (Sleep(100), 1) );
33422 #endif
33424 free(zConverted);
33425 OSTRACE(("DELETE \"%s\" %s\n", zFilename,
33426 ( (rc==INVALID_FILE_ATTRIBUTES) && (error==ERROR_FILE_NOT_FOUND)) ?
33427 "ok" : "failed" ));
33429 return ( (rc == INVALID_FILE_ATTRIBUTES)
33430 && (error == ERROR_FILE_NOT_FOUND)) ? SQLITE_OK : SQLITE_IOERR_DELETE;
33434 ** Check the existance and status of a file.
33436 static int winAccess(
33437 sqlite3_vfs *pVfs, /* Not used on win32 */
33438 const char *zFilename, /* Name of file to check */
33439 int flags, /* Type of test to make on this file */
33440 int *pResOut /* OUT: Result */
33442 DWORD attr;
33443 int rc = 0;
33444 void *zConverted;
33445 UNUSED_PARAMETER(pVfs);
33447 SimulateIOError( return SQLITE_IOERR_ACCESS; );
33448 zConverted = convertUtf8Filename(zFilename);
33449 if( zConverted==0 ){
33450 return SQLITE_NOMEM;
33452 if( isNT() ){
33453 WIN32_FILE_ATTRIBUTE_DATA sAttrData;
33454 memset(&sAttrData, 0, sizeof(sAttrData));
33455 if( GetFileAttributesExW((WCHAR*)zConverted,
33456 GetFileExInfoStandard,
33457 &sAttrData) ){
33458 /* For an SQLITE_ACCESS_EXISTS query, treat a zero-length file
33459 ** as if it does not exist.
33461 if( flags==SQLITE_ACCESS_EXISTS
33462 && sAttrData.nFileSizeHigh==0
33463 && sAttrData.nFileSizeLow==0 ){
33464 attr = INVALID_FILE_ATTRIBUTES;
33465 }else{
33466 attr = sAttrData.dwFileAttributes;
33468 }else{
33469 if( GetLastError()!=ERROR_FILE_NOT_FOUND ){
33470 free(zConverted);
33471 return SQLITE_IOERR_ACCESS;
33472 }else{
33473 attr = INVALID_FILE_ATTRIBUTES;
33476 /* isNT() is 1 if SQLITE_OS_WINCE==1, so this else is never executed.
33477 ** Since the ASCII version of these Windows API do not exist for WINCE,
33478 ** it's important to not reference them for WINCE builds.
33480 #if SQLITE_OS_WINCE==0
33481 }else{
33482 attr = GetFileAttributesA((char*)zConverted);
33483 #endif
33485 free(zConverted);
33486 switch( flags ){
33487 case SQLITE_ACCESS_READ:
33488 case SQLITE_ACCESS_EXISTS:
33489 rc = attr!=INVALID_FILE_ATTRIBUTES;
33490 break;
33491 case SQLITE_ACCESS_READWRITE:
33492 rc = (attr & FILE_ATTRIBUTE_READONLY)==0;
33493 break;
33494 default:
33495 assert(!"Invalid flags argument");
33497 *pResOut = rc;
33498 return SQLITE_OK;
33503 ** Turn a relative pathname into a full pathname. Write the full
33504 ** pathname into zOut[]. zOut[] will be at least pVfs->mxPathname
33505 ** bytes in size.
33507 static int winFullPathname(
33508 sqlite3_vfs *pVfs, /* Pointer to vfs object */
33509 const char *zRelative, /* Possibly relative input path */
33510 int nFull, /* Size of output buffer in bytes */
33511 char *zFull /* Output buffer */
33514 #if defined(__CYGWIN__)
33515 SimulateIOError( return SQLITE_ERROR );
33516 UNUSED_PARAMETER(nFull);
33517 cygwin_conv_to_full_win32_path(zRelative, zFull);
33518 return SQLITE_OK;
33519 #endif
33521 #if SQLITE_OS_WINCE
33522 SimulateIOError( return SQLITE_ERROR );
33523 UNUSED_PARAMETER(nFull);
33524 /* WinCE has no concept of a relative pathname, or so I am told. */
33525 sqlite3_snprintf(pVfs->mxPathname, zFull, "%s", zRelative);
33526 return SQLITE_OK;
33527 #endif
33529 #if !SQLITE_OS_WINCE && !defined(__CYGWIN__)
33530 int nByte;
33531 void *zConverted;
33532 char *zOut;
33534 /* It's odd to simulate an io-error here, but really this is just
33535 ** using the io-error infrastructure to test that SQLite handles this
33536 ** function failing. This function could fail if, for example, the
33537 ** current working directory has been unlinked.
33539 SimulateIOError( return SQLITE_ERROR );
33540 UNUSED_PARAMETER(nFull);
33541 zConverted = convertUtf8Filename(zRelative);
33542 if( isNT() ){
33543 WCHAR *zTemp;
33544 nByte = GetFullPathNameW((WCHAR*)zConverted, 0, 0, 0) + 3;
33545 zTemp = malloc( nByte*sizeof(zTemp[0]) );
33546 if( zTemp==0 ){
33547 free(zConverted);
33548 return SQLITE_NOMEM;
33550 GetFullPathNameW((WCHAR*)zConverted, nByte, zTemp, 0);
33551 free(zConverted);
33552 zOut = unicodeToUtf8(zTemp);
33553 free(zTemp);
33554 /* isNT() is 1 if SQLITE_OS_WINCE==1, so this else is never executed.
33555 ** Since the ASCII version of these Windows API do not exist for WINCE,
33556 ** it's important to not reference them for WINCE builds.
33558 #if SQLITE_OS_WINCE==0
33559 }else{
33560 char *zTemp;
33561 nByte = GetFullPathNameA((char*)zConverted, 0, 0, 0) + 3;
33562 zTemp = malloc( nByte*sizeof(zTemp[0]) );
33563 if( zTemp==0 ){
33564 free(zConverted);
33565 return SQLITE_NOMEM;
33567 GetFullPathNameA((char*)zConverted, nByte, zTemp, 0);
33568 free(zConverted);
33569 zOut = sqlite3_win32_mbcs_to_utf8(zTemp);
33570 free(zTemp);
33571 #endif
33573 if( zOut ){
33574 sqlite3_snprintf(pVfs->mxPathname, zFull, "%s", zOut);
33575 free(zOut);
33576 return SQLITE_OK;
33577 }else{
33578 return SQLITE_NOMEM;
33580 #endif
33584 ** Get the sector size of the device used to store
33585 ** file.
33587 static int getSectorSize(
33588 sqlite3_vfs *pVfs,
33589 const char *zRelative /* UTF-8 file name */
33591 DWORD bytesPerSector = SQLITE_DEFAULT_SECTOR_SIZE;
33592 /* GetDiskFreeSpace is not supported under WINCE */
33593 #if SQLITE_OS_WINCE
33594 UNUSED_PARAMETER(pVfs);
33595 UNUSED_PARAMETER(zRelative);
33596 #else
33597 char zFullpath[MAX_PATH+1];
33598 int rc;
33599 DWORD dwRet = 0;
33600 DWORD dwDummy;
33603 ** We need to get the full path name of the file
33604 ** to get the drive letter to look up the sector
33605 ** size.
33607 SimulateIOErrorBenign(1);
33608 rc = winFullPathname(pVfs, zRelative, MAX_PATH, zFullpath);
33609 SimulateIOErrorBenign(0);
33610 if( rc == SQLITE_OK )
33612 void *zConverted = convertUtf8Filename(zFullpath);
33613 if( zConverted ){
33614 if( isNT() ){
33615 /* trim path to just drive reference */
33616 WCHAR *p = zConverted;
33617 for(;*p;p++){
33618 if( *p == '\\' ){
33619 *p = '\0';
33620 break;
33623 dwRet = GetDiskFreeSpaceW((WCHAR*)zConverted,
33624 &dwDummy,
33625 &bytesPerSector,
33626 &dwDummy,
33627 &dwDummy);
33628 }else{
33629 /* trim path to just drive reference */
33630 char *p = (char *)zConverted;
33631 for(;*p;p++){
33632 if( *p == '\\' ){
33633 *p = '\0';
33634 break;
33637 dwRet = GetDiskFreeSpaceA((char*)zConverted,
33638 &dwDummy,
33639 &bytesPerSector,
33640 &dwDummy,
33641 &dwDummy);
33643 free(zConverted);
33645 if( !dwRet ){
33646 bytesPerSector = SQLITE_DEFAULT_SECTOR_SIZE;
33649 #endif
33650 return (int) bytesPerSector;
33653 #ifndef SQLITE_OMIT_LOAD_EXTENSION
33655 ** Interfaces for opening a shared library, finding entry points
33656 ** within the shared library, and closing the shared library.
33659 ** Interfaces for opening a shared library, finding entry points
33660 ** within the shared library, and closing the shared library.
33662 static void *winDlOpen(sqlite3_vfs *pVfs, const char *zFilename){
33663 HANDLE h;
33664 void *zConverted = convertUtf8Filename(zFilename);
33665 UNUSED_PARAMETER(pVfs);
33666 if( zConverted==0 ){
33667 return 0;
33669 if( isNT() ){
33670 h = LoadLibraryW((WCHAR*)zConverted);
33671 /* isNT() is 1 if SQLITE_OS_WINCE==1, so this else is never executed.
33672 ** Since the ASCII version of these Windows API do not exist for WINCE,
33673 ** it's important to not reference them for WINCE builds.
33675 #if SQLITE_OS_WINCE==0
33676 }else{
33677 h = LoadLibraryA((char*)zConverted);
33678 #endif
33680 free(zConverted);
33681 return (void*)h;
33683 static void winDlError(sqlite3_vfs *pVfs, int nBuf, char *zBufOut){
33684 UNUSED_PARAMETER(pVfs);
33685 getLastErrorMsg(nBuf, zBufOut);
33687 void (*winDlSym(sqlite3_vfs *pVfs, void *pHandle, const char *zSymbol))(void){
33688 UNUSED_PARAMETER(pVfs);
33689 #if SQLITE_OS_WINCE
33690 /* The GetProcAddressA() routine is only available on wince. */
33691 return (void(*)(void))GetProcAddressA((HANDLE)pHandle, zSymbol);
33692 #else
33693 /* All other windows platforms expect GetProcAddress() to take
33694 ** an Ansi string regardless of the _UNICODE setting */
33695 return (void(*)(void))GetProcAddress((HANDLE)pHandle, zSymbol);
33696 #endif
33698 void winDlClose(sqlite3_vfs *pVfs, void *pHandle){
33699 UNUSED_PARAMETER(pVfs);
33700 FreeLibrary((HANDLE)pHandle);
33702 #else /* if SQLITE_OMIT_LOAD_EXTENSION is defined: */
33703 #define winDlOpen 0
33704 #define winDlError 0
33705 #define winDlSym 0
33706 #define winDlClose 0
33707 #endif
33711 ** Write up to nBuf bytes of randomness into zBuf.
33713 static int winRandomness(sqlite3_vfs *pVfs, int nBuf, char *zBuf){
33714 int n = 0;
33715 UNUSED_PARAMETER(pVfs);
33716 #if defined(SQLITE_TEST)
33717 n = nBuf;
33718 memset(zBuf, 0, nBuf);
33719 #else
33720 if( sizeof(SYSTEMTIME)<=nBuf-n ){
33721 SYSTEMTIME x;
33722 GetSystemTime(&x);
33723 memcpy(&zBuf[n], &x, sizeof(x));
33724 n += sizeof(x);
33726 if( sizeof(DWORD)<=nBuf-n ){
33727 DWORD pid = GetCurrentProcessId();
33728 memcpy(&zBuf[n], &pid, sizeof(pid));
33729 n += sizeof(pid);
33731 if( sizeof(DWORD)<=nBuf-n ){
33732 DWORD cnt = GetTickCount();
33733 memcpy(&zBuf[n], &cnt, sizeof(cnt));
33734 n += sizeof(cnt);
33736 if( sizeof(LARGE_INTEGER)<=nBuf-n ){
33737 LARGE_INTEGER i;
33738 QueryPerformanceCounter(&i);
33739 memcpy(&zBuf[n], &i, sizeof(i));
33740 n += sizeof(i);
33742 #endif
33743 return n;
33748 ** Sleep for a little while. Return the amount of time slept.
33750 static int winSleep(sqlite3_vfs *pVfs, int microsec){
33751 Sleep((microsec+999)/1000);
33752 UNUSED_PARAMETER(pVfs);
33753 return ((microsec+999)/1000)*1000;
33757 ** The following variable, if set to a non-zero value, is interpreted as
33758 ** the number of seconds since 1970 and is used to set the result of
33759 ** sqlite3OsCurrentTime() during testing.
33761 #ifdef SQLITE_TEST
33762 SQLITE_API int sqlite3_current_time = 0; /* Fake system time in seconds since 1970. */
33763 #endif
33766 ** Find the current time (in Universal Coordinated Time). Write into *piNow
33767 ** the current time and date as a Julian Day number times 86_400_000. In
33768 ** other words, write into *piNow the number of milliseconds since the Julian
33769 ** epoch of noon in Greenwich on November 24, 4714 B.C according to the
33770 ** proleptic Gregorian calendar.
33772 ** On success, return 0. Return 1 if the time and date cannot be found.
33774 static int winCurrentTimeInt64(sqlite3_vfs *pVfs, sqlite3_int64 *piNow){
33775 /* FILETIME structure is a 64-bit value representing the number of
33776 100-nanosecond intervals since January 1, 1601 (= JD 2305813.5).
33778 FILETIME ft;
33779 static const sqlite3_int64 winFiletimeEpoch = 23058135*(sqlite3_int64)8640000;
33780 #ifdef SQLITE_TEST
33781 static const sqlite3_int64 unixEpoch = 24405875*(sqlite3_int64)8640000;
33782 #endif
33783 /* 2^32 - to avoid use of LL and warnings in gcc */
33784 static const sqlite3_int64 max32BitValue =
33785 (sqlite3_int64)2000000000 + (sqlite3_int64)2000000000 + (sqlite3_int64)294967296;
33787 #if SQLITE_OS_WINCE
33788 SYSTEMTIME time;
33789 GetSystemTime(&time);
33790 /* if SystemTimeToFileTime() fails, it returns zero. */
33791 if (!SystemTimeToFileTime(&time,&ft)){
33792 return 1;
33794 #else
33795 GetSystemTimeAsFileTime( &ft );
33796 #endif
33798 *piNow = winFiletimeEpoch +
33799 ((((sqlite3_int64)ft.dwHighDateTime)*max32BitValue) +
33800 (sqlite3_int64)ft.dwLowDateTime)/(sqlite3_int64)10000;
33802 #ifdef SQLITE_TEST
33803 if( sqlite3_current_time ){
33804 *piNow = 1000*(sqlite3_int64)sqlite3_current_time + unixEpoch;
33806 #endif
33807 UNUSED_PARAMETER(pVfs);
33808 return 0;
33812 ** Find the current time (in Universal Coordinated Time). Write the
33813 ** current time and date as a Julian Day number into *prNow and
33814 ** return 0. Return 1 if the time and date cannot be found.
33816 int winCurrentTime(sqlite3_vfs *pVfs, double *prNow){
33817 int rc;
33818 sqlite3_int64 i;
33819 rc = winCurrentTimeInt64(pVfs, &i);
33820 if( !rc ){
33821 *prNow = i/86400000.0;
33823 return rc;
33827 ** The idea is that this function works like a combination of
33828 ** GetLastError() and FormatMessage() on windows (or errno and
33829 ** strerror_r() on unix). After an error is returned by an OS
33830 ** function, SQLite calls this function with zBuf pointing to
33831 ** a buffer of nBuf bytes. The OS layer should populate the
33832 ** buffer with a nul-terminated UTF-8 encoded error message
33833 ** describing the last IO error to have occurred within the calling
33834 ** thread.
33836 ** If the error message is too large for the supplied buffer,
33837 ** it should be truncated. The return value of xGetLastError
33838 ** is zero if the error message fits in the buffer, or non-zero
33839 ** otherwise (if the message was truncated). If non-zero is returned,
33840 ** then it is not necessary to include the nul-terminator character
33841 ** in the output buffer.
33843 ** Not supplying an error message will have no adverse effect
33844 ** on SQLite. It is fine to have an implementation that never
33845 ** returns an error message:
33847 ** int xGetLastError(sqlite3_vfs *pVfs, int nBuf, char *zBuf){
33848 ** assert(zBuf[0]=='\0');
33849 ** return 0;
33850 ** }
33852 ** However if an error message is supplied, it will be incorporated
33853 ** by sqlite into the error message available to the user using
33854 ** sqlite3_errmsg(), possibly making IO errors easier to debug.
33856 static int winGetLastError(sqlite3_vfs *pVfs, int nBuf, char *zBuf){
33857 UNUSED_PARAMETER(pVfs);
33858 return getLastErrorMsg(nBuf, zBuf);
33864 ** Initialize and deinitialize the operating system interface.
33866 SQLITE_API int sqlite3_os_init(void){
33867 static sqlite3_vfs winVfs = {
33868 3, /* iVersion */
33869 sizeof(winFile), /* szOsFile */
33870 MAX_PATH, /* mxPathname */
33871 0, /* pNext */
33872 "win32", /* zName */
33873 0, /* pAppData */
33874 winOpen, /* xOpen */
33875 winDelete, /* xDelete */
33876 winAccess, /* xAccess */
33877 winFullPathname, /* xFullPathname */
33878 winDlOpen, /* xDlOpen */
33879 winDlError, /* xDlError */
33880 winDlSym, /* xDlSym */
33881 winDlClose, /* xDlClose */
33882 winRandomness, /* xRandomness */
33883 winSleep, /* xSleep */
33884 winCurrentTime, /* xCurrentTime */
33885 winGetLastError, /* xGetLastError */
33886 winCurrentTimeInt64, /* xCurrentTimeInt64 */
33887 0, /* xSetSystemCall */
33888 0, /* xGetSystemCall */
33889 0, /* xNextSystemCall */
33892 #ifndef SQLITE_OMIT_WAL
33893 /* get memory map allocation granularity */
33894 memset(&winSysInfo, 0, sizeof(SYSTEM_INFO));
33895 GetSystemInfo(&winSysInfo);
33896 assert(winSysInfo.dwAllocationGranularity > 0);
33897 #endif
33899 sqlite3_vfs_register(&winVfs, 1);
33900 return SQLITE_OK;
33902 SQLITE_API int sqlite3_os_end(void){
33903 return SQLITE_OK;
33906 void chromium_sqlite3_initialize_win_sqlite3_file(sqlite3_file* file, HANDLE handle) {
33907 winFile* winSQLite3File = (winFile*)file;
33908 memset(file, 0, sizeof(*file));
33909 winSQLite3File->pMethod = &winIoMethod;
33910 winSQLite3File->h = handle;
33913 #endif /* SQLITE_OS_WIN */
33915 /************** End of os_win.c **********************************************/
33916 /************** Begin file bitvec.c ******************************************/
33918 ** 2008 February 16
33920 ** The author disclaims copyright to this source code. In place of
33921 ** a legal notice, here is a blessing:
33923 ** May you do good and not evil.
33924 ** May you find forgiveness for yourself and forgive others.
33925 ** May you share freely, never taking more than you give.
33927 *************************************************************************
33928 ** This file implements an object that represents a fixed-length
33929 ** bitmap. Bits are numbered starting with 1.
33931 ** A bitmap is used to record which pages of a database file have been
33932 ** journalled during a transaction, or which pages have the "dont-write"
33933 ** property. Usually only a few pages are meet either condition.
33934 ** So the bitmap is usually sparse and has low cardinality.
33935 ** But sometimes (for example when during a DROP of a large table) most
33936 ** or all of the pages in a database can get journalled. In those cases,
33937 ** the bitmap becomes dense with high cardinality. The algorithm needs
33938 ** to handle both cases well.
33940 ** The size of the bitmap is fixed when the object is created.
33942 ** All bits are clear when the bitmap is created. Individual bits
33943 ** may be set or cleared one at a time.
33945 ** Test operations are about 100 times more common that set operations.
33946 ** Clear operations are exceedingly rare. There are usually between
33947 ** 5 and 500 set operations per Bitvec object, though the number of sets can
33948 ** sometimes grow into tens of thousands or larger. The size of the
33949 ** Bitvec object is the number of pages in the database file at the
33950 ** start of a transaction, and is thus usually less than a few thousand,
33951 ** but can be as large as 2 billion for a really big database.
33954 /* Size of the Bitvec structure in bytes. */
33955 #define BITVEC_SZ 512
33957 /* Round the union size down to the nearest pointer boundary, since that's how
33958 ** it will be aligned within the Bitvec struct. */
33959 #define BITVEC_USIZE (((BITVEC_SZ-(3*sizeof(u32)))/sizeof(Bitvec*))*sizeof(Bitvec*))
33961 /* Type of the array "element" for the bitmap representation.
33962 ** Should be a power of 2, and ideally, evenly divide into BITVEC_USIZE.
33963 ** Setting this to the "natural word" size of your CPU may improve
33964 ** performance. */
33965 #define BITVEC_TELEM u8
33966 /* Size, in bits, of the bitmap element. */
33967 #define BITVEC_SZELEM 8
33968 /* Number of elements in a bitmap array. */
33969 #define BITVEC_NELEM (BITVEC_USIZE/sizeof(BITVEC_TELEM))
33970 /* Number of bits in the bitmap array. */
33971 #define BITVEC_NBIT (BITVEC_NELEM*BITVEC_SZELEM)
33973 /* Number of u32 values in hash table. */
33974 #define BITVEC_NINT (BITVEC_USIZE/sizeof(u32))
33975 /* Maximum number of entries in hash table before
33976 ** sub-dividing and re-hashing. */
33977 #define BITVEC_MXHASH (BITVEC_NINT/2)
33978 /* Hashing function for the aHash representation.
33979 ** Empirical testing showed that the *37 multiplier
33980 ** (an arbitrary prime)in the hash function provided
33981 ** no fewer collisions than the no-op *1. */
33982 #define BITVEC_HASH(X) (((X)*1)%BITVEC_NINT)
33984 #define BITVEC_NPTR (BITVEC_USIZE/sizeof(Bitvec *))
33988 ** A bitmap is an instance of the following structure.
33990 ** This bitmap records the existance of zero or more bits
33991 ** with values between 1 and iSize, inclusive.
33993 ** There are three possible representations of the bitmap.
33994 ** If iSize<=BITVEC_NBIT, then Bitvec.u.aBitmap[] is a straight
33995 ** bitmap. The least significant bit is bit 1.
33997 ** If iSize>BITVEC_NBIT and iDivisor==0 then Bitvec.u.aHash[] is
33998 ** a hash table that will hold up to BITVEC_MXHASH distinct values.
34000 ** Otherwise, the value i is redirected into one of BITVEC_NPTR
34001 ** sub-bitmaps pointed to by Bitvec.u.apSub[]. Each subbitmap
34002 ** handles up to iDivisor separate values of i. apSub[0] holds
34003 ** values between 1 and iDivisor. apSub[1] holds values between
34004 ** iDivisor+1 and 2*iDivisor. apSub[N] holds values between
34005 ** N*iDivisor+1 and (N+1)*iDivisor. Each subbitmap is normalized
34006 ** to hold deal with values between 1 and iDivisor.
34008 struct Bitvec {
34009 u32 iSize; /* Maximum bit index. Max iSize is 4,294,967,296. */
34010 u32 nSet; /* Number of bits that are set - only valid for aHash
34011 ** element. Max is BITVEC_NINT. For BITVEC_SZ of 512,
34012 ** this would be 125. */
34013 u32 iDivisor; /* Number of bits handled by each apSub[] entry. */
34014 /* Should >=0 for apSub element. */
34015 /* Max iDivisor is max(u32) / BITVEC_NPTR + 1. */
34016 /* For a BITVEC_SZ of 512, this would be 34,359,739. */
34017 union {
34018 BITVEC_TELEM aBitmap[BITVEC_NELEM]; /* Bitmap representation */
34019 u32 aHash[BITVEC_NINT]; /* Hash table representation */
34020 Bitvec *apSub[BITVEC_NPTR]; /* Recursive representation */
34021 } u;
34025 ** Create a new bitmap object able to handle bits between 0 and iSize,
34026 ** inclusive. Return a pointer to the new object. Return NULL if
34027 ** malloc fails.
34029 SQLITE_PRIVATE Bitvec *sqlite3BitvecCreate(u32 iSize){
34030 Bitvec *p;
34031 assert( sizeof(*p)==BITVEC_SZ );
34032 p = sqlite3MallocZero( sizeof(*p) );
34033 if( p ){
34034 p->iSize = iSize;
34036 return p;
34040 ** Check to see if the i-th bit is set. Return true or false.
34041 ** If p is NULL (if the bitmap has not been created) or if
34042 ** i is out of range, then return false.
34044 SQLITE_PRIVATE int sqlite3BitvecTest(Bitvec *p, u32 i){
34045 if( p==0 ) return 0;
34046 if( i>p->iSize || i==0 ) return 0;
34047 i--;
34048 while( p->iDivisor ){
34049 u32 bin = i/p->iDivisor;
34050 i = i%p->iDivisor;
34051 p = p->u.apSub[bin];
34052 if (!p) {
34053 return 0;
34056 if( p->iSize<=BITVEC_NBIT ){
34057 return (p->u.aBitmap[i/BITVEC_SZELEM] & (1<<(i&(BITVEC_SZELEM-1))))!=0;
34058 } else{
34059 u32 h = BITVEC_HASH(i++);
34060 while( p->u.aHash[h] ){
34061 if( p->u.aHash[h]==i ) return 1;
34062 h = (h+1) % BITVEC_NINT;
34064 return 0;
34069 ** Set the i-th bit. Return 0 on success and an error code if
34070 ** anything goes wrong.
34072 ** This routine might cause sub-bitmaps to be allocated. Failing
34073 ** to get the memory needed to hold the sub-bitmap is the only
34074 ** that can go wrong with an insert, assuming p and i are valid.
34076 ** The calling function must ensure that p is a valid Bitvec object
34077 ** and that the value for "i" is within range of the Bitvec object.
34078 ** Otherwise the behavior is undefined.
34080 SQLITE_PRIVATE int sqlite3BitvecSet(Bitvec *p, u32 i){
34081 u32 h;
34082 if( p==0 ) return SQLITE_OK;
34083 assert( i>0 );
34084 assert( i<=p->iSize );
34085 i--;
34086 while((p->iSize > BITVEC_NBIT) && p->iDivisor) {
34087 u32 bin = i/p->iDivisor;
34088 i = i%p->iDivisor;
34089 if( p->u.apSub[bin]==0 ){
34090 p->u.apSub[bin] = sqlite3BitvecCreate( p->iDivisor );
34091 if( p->u.apSub[bin]==0 ) return SQLITE_NOMEM;
34093 p = p->u.apSub[bin];
34095 if( p->iSize<=BITVEC_NBIT ){
34096 p->u.aBitmap[i/BITVEC_SZELEM] |= 1 << (i&(BITVEC_SZELEM-1));
34097 return SQLITE_OK;
34099 h = BITVEC_HASH(i++);
34100 /* if there wasn't a hash collision, and this doesn't */
34101 /* completely fill the hash, then just add it without */
34102 /* worring about sub-dividing and re-hashing. */
34103 if( !p->u.aHash[h] ){
34104 if (p->nSet<(BITVEC_NINT-1)) {
34105 goto bitvec_set_end;
34106 } else {
34107 goto bitvec_set_rehash;
34110 /* there was a collision, check to see if it's already */
34111 /* in hash, if not, try to find a spot for it */
34112 do {
34113 if( p->u.aHash[h]==i ) return SQLITE_OK;
34114 h++;
34115 if( h>=BITVEC_NINT ) h = 0;
34116 } while( p->u.aHash[h] );
34117 /* we didn't find it in the hash. h points to the first */
34118 /* available free spot. check to see if this is going to */
34119 /* make our hash too "full". */
34120 bitvec_set_rehash:
34121 if( p->nSet>=BITVEC_MXHASH ){
34122 unsigned int j;
34123 int rc;
34124 u32 *aiValues = sqlite3StackAllocRaw(0, sizeof(p->u.aHash));
34125 if( aiValues==0 ){
34126 return SQLITE_NOMEM;
34127 }else{
34128 memcpy(aiValues, p->u.aHash, sizeof(p->u.aHash));
34129 memset(p->u.apSub, 0, sizeof(p->u.apSub));
34130 p->iDivisor = (p->iSize + BITVEC_NPTR - 1)/BITVEC_NPTR;
34131 rc = sqlite3BitvecSet(p, i);
34132 for(j=0; j<BITVEC_NINT; j++){
34133 if( aiValues[j] ) rc |= sqlite3BitvecSet(p, aiValues[j]);
34135 sqlite3StackFree(0, aiValues);
34136 return rc;
34139 bitvec_set_end:
34140 p->nSet++;
34141 p->u.aHash[h] = i;
34142 return SQLITE_OK;
34146 ** Clear the i-th bit.
34148 ** pBuf must be a pointer to at least BITVEC_SZ bytes of temporary storage
34149 ** that BitvecClear can use to rebuilt its hash table.
34151 SQLITE_PRIVATE void sqlite3BitvecClear(Bitvec *p, u32 i, void *pBuf){
34152 if( p==0 ) return;
34153 assert( i>0 );
34154 i--;
34155 while( p->iDivisor ){
34156 u32 bin = i/p->iDivisor;
34157 i = i%p->iDivisor;
34158 p = p->u.apSub[bin];
34159 if (!p) {
34160 return;
34163 if( p->iSize<=BITVEC_NBIT ){
34164 p->u.aBitmap[i/BITVEC_SZELEM] &= ~(1 << (i&(BITVEC_SZELEM-1)));
34165 }else{
34166 unsigned int j;
34167 u32 *aiValues = pBuf;
34168 memcpy(aiValues, p->u.aHash, sizeof(p->u.aHash));
34169 memset(p->u.aHash, 0, sizeof(p->u.aHash));
34170 p->nSet = 0;
34171 for(j=0; j<BITVEC_NINT; j++){
34172 if( aiValues[j] && aiValues[j]!=(i+1) ){
34173 u32 h = BITVEC_HASH(aiValues[j]-1);
34174 p->nSet++;
34175 while( p->u.aHash[h] ){
34176 h++;
34177 if( h>=BITVEC_NINT ) h = 0;
34179 p->u.aHash[h] = aiValues[j];
34186 ** Destroy a bitmap object. Reclaim all memory used.
34188 SQLITE_PRIVATE void sqlite3BitvecDestroy(Bitvec *p){
34189 if( p==0 ) return;
34190 if( p->iDivisor ){
34191 unsigned int i;
34192 for(i=0; i<BITVEC_NPTR; i++){
34193 sqlite3BitvecDestroy(p->u.apSub[i]);
34196 sqlite3_free(p);
34200 ** Return the value of the iSize parameter specified when Bitvec *p
34201 ** was created.
34203 SQLITE_PRIVATE u32 sqlite3BitvecSize(Bitvec *p){
34204 return p->iSize;
34207 #ifndef SQLITE_OMIT_BUILTIN_TEST
34209 ** Let V[] be an array of unsigned characters sufficient to hold
34210 ** up to N bits. Let I be an integer between 0 and N. 0<=I<N.
34211 ** Then the following macros can be used to set, clear, or test
34212 ** individual bits within V.
34214 #define SETBIT(V,I) V[I>>3] |= (1<<(I&7))
34215 #define CLEARBIT(V,I) V[I>>3] &= ~(1<<(I&7))
34216 #define TESTBIT(V,I) (V[I>>3]&(1<<(I&7)))!=0
34219 ** This routine runs an extensive test of the Bitvec code.
34221 ** The input is an array of integers that acts as a program
34222 ** to test the Bitvec. The integers are opcodes followed
34223 ** by 0, 1, or 3 operands, depending on the opcode. Another
34224 ** opcode follows immediately after the last operand.
34226 ** There are 6 opcodes numbered from 0 through 5. 0 is the
34227 ** "halt" opcode and causes the test to end.
34229 ** 0 Halt and return the number of errors
34230 ** 1 N S X Set N bits beginning with S and incrementing by X
34231 ** 2 N S X Clear N bits beginning with S and incrementing by X
34232 ** 3 N Set N randomly chosen bits
34233 ** 4 N Clear N randomly chosen bits
34234 ** 5 N S X Set N bits from S increment X in array only, not in bitvec
34236 ** The opcodes 1 through 4 perform set and clear operations are performed
34237 ** on both a Bitvec object and on a linear array of bits obtained from malloc.
34238 ** Opcode 5 works on the linear array only, not on the Bitvec.
34239 ** Opcode 5 is used to deliberately induce a fault in order to
34240 ** confirm that error detection works.
34242 ** At the conclusion of the test the linear array is compared
34243 ** against the Bitvec object. If there are any differences,
34244 ** an error is returned. If they are the same, zero is returned.
34246 ** If a memory allocation error occurs, return -1.
34248 SQLITE_PRIVATE int sqlite3BitvecBuiltinTest(int sz, int *aOp){
34249 Bitvec *pBitvec = 0;
34250 unsigned char *pV = 0;
34251 int rc = -1;
34252 int i, nx, pc, op;
34253 void *pTmpSpace;
34255 /* Allocate the Bitvec to be tested and a linear array of
34256 ** bits to act as the reference */
34257 pBitvec = sqlite3BitvecCreate( sz );
34258 pV = sqlite3_malloc( (sz+7)/8 + 1 );
34259 pTmpSpace = sqlite3_malloc(BITVEC_SZ);
34260 if( pBitvec==0 || pV==0 || pTmpSpace==0 ) goto bitvec_end;
34261 memset(pV, 0, (sz+7)/8 + 1);
34263 /* NULL pBitvec tests */
34264 sqlite3BitvecSet(0, 1);
34265 sqlite3BitvecClear(0, 1, pTmpSpace);
34267 /* Run the program */
34268 pc = 0;
34269 while( (op = aOp[pc])!=0 ){
34270 switch( op ){
34271 case 1:
34272 case 2:
34273 case 5: {
34274 nx = 4;
34275 i = aOp[pc+2] - 1;
34276 aOp[pc+2] += aOp[pc+3];
34277 break;
34279 case 3:
34280 case 4:
34281 default: {
34282 nx = 2;
34283 sqlite3_randomness(sizeof(i), &i);
34284 break;
34287 if( (--aOp[pc+1]) > 0 ) nx = 0;
34288 pc += nx;
34289 i = (i & 0x7fffffff)%sz;
34290 if( (op & 1)!=0 ){
34291 SETBIT(pV, (i+1));
34292 if( op!=5 ){
34293 if( sqlite3BitvecSet(pBitvec, i+1) ) goto bitvec_end;
34295 }else{
34296 CLEARBIT(pV, (i+1));
34297 sqlite3BitvecClear(pBitvec, i+1, pTmpSpace);
34301 /* Test to make sure the linear array exactly matches the
34302 ** Bitvec object. Start with the assumption that they do
34303 ** match (rc==0). Change rc to non-zero if a discrepancy
34304 ** is found.
34306 rc = sqlite3BitvecTest(0,0) + sqlite3BitvecTest(pBitvec, sz+1)
34307 + sqlite3BitvecTest(pBitvec, 0)
34308 + (sqlite3BitvecSize(pBitvec) - sz);
34309 for(i=1; i<=sz; i++){
34310 if( (TESTBIT(pV,i))!=sqlite3BitvecTest(pBitvec,i) ){
34311 rc = i;
34312 break;
34316 /* Free allocated structure */
34317 bitvec_end:
34318 sqlite3_free(pTmpSpace);
34319 sqlite3_free(pV);
34320 sqlite3BitvecDestroy(pBitvec);
34321 return rc;
34323 #endif /* SQLITE_OMIT_BUILTIN_TEST */
34325 /************** End of bitvec.c **********************************************/
34326 /************** Begin file pcache.c ******************************************/
34328 ** 2008 August 05
34330 ** The author disclaims copyright to this source code. In place of
34331 ** a legal notice, here is a blessing:
34333 ** May you do good and not evil.
34334 ** May you find forgiveness for yourself and forgive others.
34335 ** May you share freely, never taking more than you give.
34337 *************************************************************************
34338 ** This file implements that page cache.
34342 ** A complete page cache is an instance of this structure.
34344 struct PCache {
34345 PgHdr *pDirty, *pDirtyTail; /* List of dirty pages in LRU order */
34346 PgHdr *pSynced; /* Last synced page in dirty page list */
34347 int nRef; /* Number of referenced pages */
34348 int nMax; /* Configured cache size */
34349 int szPage; /* Size of every page in this cache */
34350 int szExtra; /* Size of extra space for each page */
34351 int bPurgeable; /* True if pages are on backing store */
34352 int (*xStress)(void*,PgHdr*); /* Call to try make a page clean */
34353 void *pStress; /* Argument to xStress */
34354 sqlite3_pcache *pCache; /* Pluggable cache module */
34355 PgHdr *pPage1; /* Reference to page 1 */
34359 ** Some of the assert() macros in this code are too expensive to run
34360 ** even during normal debugging. Use them only rarely on long-running
34361 ** tests. Enable the expensive asserts using the
34362 ** -DSQLITE_ENABLE_EXPENSIVE_ASSERT=1 compile-time option.
34364 #ifdef SQLITE_ENABLE_EXPENSIVE_ASSERT
34365 # define expensive_assert(X) assert(X)
34366 #else
34367 # define expensive_assert(X)
34368 #endif
34370 /********************************** Linked List Management ********************/
34372 #if !defined(NDEBUG) && defined(SQLITE_ENABLE_EXPENSIVE_ASSERT)
34374 ** Check that the pCache->pSynced variable is set correctly. If it
34375 ** is not, either fail an assert or return zero. Otherwise, return
34376 ** non-zero. This is only used in debugging builds, as follows:
34378 ** expensive_assert( pcacheCheckSynced(pCache) );
34380 static int pcacheCheckSynced(PCache *pCache){
34381 PgHdr *p;
34382 for(p=pCache->pDirtyTail; p!=pCache->pSynced; p=p->pDirtyPrev){
34383 assert( p->nRef || (p->flags&PGHDR_NEED_SYNC) );
34385 return (p==0 || p->nRef || (p->flags&PGHDR_NEED_SYNC)==0);
34387 #endif /* !NDEBUG && SQLITE_ENABLE_EXPENSIVE_ASSERT */
34390 ** Remove page pPage from the list of dirty pages.
34392 static void pcacheRemoveFromDirtyList(PgHdr *pPage){
34393 PCache *p = pPage->pCache;
34395 assert( pPage->pDirtyNext || pPage==p->pDirtyTail );
34396 assert( pPage->pDirtyPrev || pPage==p->pDirty );
34398 /* Update the PCache1.pSynced variable if necessary. */
34399 if( p->pSynced==pPage ){
34400 PgHdr *pSynced = pPage->pDirtyPrev;
34401 while( pSynced && (pSynced->flags&PGHDR_NEED_SYNC) ){
34402 pSynced = pSynced->pDirtyPrev;
34404 p->pSynced = pSynced;
34407 if( pPage->pDirtyNext ){
34408 pPage->pDirtyNext->pDirtyPrev = pPage->pDirtyPrev;
34409 }else{
34410 assert( pPage==p->pDirtyTail );
34411 p->pDirtyTail = pPage->pDirtyPrev;
34413 if( pPage->pDirtyPrev ){
34414 pPage->pDirtyPrev->pDirtyNext = pPage->pDirtyNext;
34415 }else{
34416 assert( pPage==p->pDirty );
34417 p->pDirty = pPage->pDirtyNext;
34419 pPage->pDirtyNext = 0;
34420 pPage->pDirtyPrev = 0;
34422 expensive_assert( pcacheCheckSynced(p) );
34426 ** Add page pPage to the head of the dirty list (PCache1.pDirty is set to
34427 ** pPage).
34429 static void pcacheAddToDirtyList(PgHdr *pPage){
34430 PCache *p = pPage->pCache;
34432 assert( pPage->pDirtyNext==0 && pPage->pDirtyPrev==0 && p->pDirty!=pPage );
34434 pPage->pDirtyNext = p->pDirty;
34435 if( pPage->pDirtyNext ){
34436 assert( pPage->pDirtyNext->pDirtyPrev==0 );
34437 pPage->pDirtyNext->pDirtyPrev = pPage;
34439 p->pDirty = pPage;
34440 if( !p->pDirtyTail ){
34441 p->pDirtyTail = pPage;
34443 if( !p->pSynced && 0==(pPage->flags&PGHDR_NEED_SYNC) ){
34444 p->pSynced = pPage;
34446 expensive_assert( pcacheCheckSynced(p) );
34450 ** Wrapper around the pluggable caches xUnpin method. If the cache is
34451 ** being used for an in-memory database, this function is a no-op.
34453 static void pcacheUnpin(PgHdr *p){
34454 PCache *pCache = p->pCache;
34455 if( pCache->bPurgeable ){
34456 if( p->pgno==1 ){
34457 pCache->pPage1 = 0;
34459 sqlite3GlobalConfig.pcache.xUnpin(pCache->pCache, p, 0);
34463 /*************************************************** General Interfaces ******
34465 ** Initialize and shutdown the page cache subsystem. Neither of these
34466 ** functions are threadsafe.
34468 SQLITE_PRIVATE int sqlite3PcacheInitialize(void){
34469 if( sqlite3GlobalConfig.pcache.xInit==0 ){
34470 /* IMPLEMENTATION-OF: R-26801-64137 If the xInit() method is NULL, then the
34471 ** built-in default page cache is used instead of the application defined
34472 ** page cache. */
34473 sqlite3PCacheSetDefault();
34475 return sqlite3GlobalConfig.pcache.xInit(sqlite3GlobalConfig.pcache.pArg);
34477 SQLITE_PRIVATE void sqlite3PcacheShutdown(void){
34478 if( sqlite3GlobalConfig.pcache.xShutdown ){
34479 /* IMPLEMENTATION-OF: R-26000-56589 The xShutdown() method may be NULL. */
34480 sqlite3GlobalConfig.pcache.xShutdown(sqlite3GlobalConfig.pcache.pArg);
34485 ** Return the size in bytes of a PCache object.
34487 SQLITE_PRIVATE int sqlite3PcacheSize(void){ return sizeof(PCache); }
34490 ** Create a new PCache object. Storage space to hold the object
34491 ** has already been allocated and is passed in as the p pointer.
34492 ** The caller discovers how much space needs to be allocated by
34493 ** calling sqlite3PcacheSize().
34495 SQLITE_PRIVATE void sqlite3PcacheOpen(
34496 int szPage, /* Size of every page */
34497 int szExtra, /* Extra space associated with each page */
34498 int bPurgeable, /* True if pages are on backing store */
34499 int (*xStress)(void*,PgHdr*),/* Call to try to make pages clean */
34500 void *pStress, /* Argument to xStress */
34501 PCache *p /* Preallocated space for the PCache */
34503 memset(p, 0, sizeof(PCache));
34504 p->szPage = szPage;
34505 p->szExtra = szExtra;
34506 p->bPurgeable = bPurgeable;
34507 p->xStress = xStress;
34508 p->pStress = pStress;
34509 p->nMax = 100;
34513 ** Change the page size for PCache object. The caller must ensure that there
34514 ** are no outstanding page references when this function is called.
34516 SQLITE_PRIVATE void sqlite3PcacheSetPageSize(PCache *pCache, int szPage){
34517 assert( pCache->nRef==0 && pCache->pDirty==0 );
34518 if( pCache->pCache ){
34519 sqlite3GlobalConfig.pcache.xDestroy(pCache->pCache);
34520 pCache->pCache = 0;
34521 pCache->pPage1 = 0;
34523 pCache->szPage = szPage;
34527 ** Try to obtain a page from the cache.
34529 SQLITE_PRIVATE int sqlite3PcacheFetch(
34530 PCache *pCache, /* Obtain the page from this cache */
34531 Pgno pgno, /* Page number to obtain */
34532 int createFlag, /* If true, create page if it does not exist already */
34533 PgHdr **ppPage /* Write the page here */
34535 PgHdr *pPage = 0;
34536 int eCreate;
34538 assert( pCache!=0 );
34539 assert( createFlag==1 || createFlag==0 );
34540 assert( pgno>0 );
34542 /* If the pluggable cache (sqlite3_pcache*) has not been allocated,
34543 ** allocate it now.
34545 if( !pCache->pCache && createFlag ){
34546 sqlite3_pcache *p;
34547 int nByte;
34548 nByte = pCache->szPage + pCache->szExtra + sizeof(PgHdr);
34549 p = sqlite3GlobalConfig.pcache.xCreate(nByte, pCache->bPurgeable);
34550 if( !p ){
34551 return SQLITE_NOMEM;
34553 sqlite3GlobalConfig.pcache.xCachesize(p, pCache->nMax);
34554 pCache->pCache = p;
34557 eCreate = createFlag * (1 + (!pCache->bPurgeable || !pCache->pDirty));
34558 if( pCache->pCache ){
34559 pPage = sqlite3GlobalConfig.pcache.xFetch(pCache->pCache, pgno, eCreate);
34562 if( !pPage && eCreate==1 ){
34563 PgHdr *pPg;
34565 /* Find a dirty page to write-out and recycle. First try to find a
34566 ** page that does not require a journal-sync (one with PGHDR_NEED_SYNC
34567 ** cleared), but if that is not possible settle for any other
34568 ** unreferenced dirty page.
34570 expensive_assert( pcacheCheckSynced(pCache) );
34571 for(pPg=pCache->pSynced;
34572 pPg && (pPg->nRef || (pPg->flags&PGHDR_NEED_SYNC));
34573 pPg=pPg->pDirtyPrev
34575 pCache->pSynced = pPg;
34576 if( !pPg ){
34577 for(pPg=pCache->pDirtyTail; pPg && pPg->nRef; pPg=pPg->pDirtyPrev);
34579 if( pPg ){
34580 int rc;
34581 rc = pCache->xStress(pCache->pStress, pPg);
34582 if( rc!=SQLITE_OK && rc!=SQLITE_BUSY ){
34583 return rc;
34587 pPage = sqlite3GlobalConfig.pcache.xFetch(pCache->pCache, pgno, 2);
34590 if( pPage ){
34591 if( !pPage->pData ){
34592 memset(pPage, 0, sizeof(PgHdr));
34593 pPage->pData = (void *)&pPage[1];
34594 pPage->pExtra = (void*)&((char *)pPage->pData)[pCache->szPage];
34595 memset(pPage->pExtra, 0, pCache->szExtra);
34596 pPage->pCache = pCache;
34597 pPage->pgno = pgno;
34599 assert( pPage->pCache==pCache );
34600 assert( pPage->pgno==pgno );
34601 assert( pPage->pData==(void *)&pPage[1] );
34602 assert( pPage->pExtra==(void *)&((char *)&pPage[1])[pCache->szPage] );
34604 if( 0==pPage->nRef ){
34605 pCache->nRef++;
34607 pPage->nRef++;
34608 if( pgno==1 ){
34609 pCache->pPage1 = pPage;
34612 *ppPage = pPage;
34613 return (pPage==0 && eCreate) ? SQLITE_NOMEM : SQLITE_OK;
34617 ** Decrement the reference count on a page. If the page is clean and the
34618 ** reference count drops to 0, then it is made elible for recycling.
34620 SQLITE_PRIVATE void sqlite3PcacheRelease(PgHdr *p){
34621 assert( p->nRef>0 );
34622 p->nRef--;
34623 if( p->nRef==0 ){
34624 PCache *pCache = p->pCache;
34625 pCache->nRef--;
34626 if( (p->flags&PGHDR_DIRTY)==0 ){
34627 pcacheUnpin(p);
34628 }else{
34629 /* Move the page to the head of the dirty list. */
34630 pcacheRemoveFromDirtyList(p);
34631 pcacheAddToDirtyList(p);
34637 ** Increase the reference count of a supplied page by 1.
34639 SQLITE_PRIVATE void sqlite3PcacheRef(PgHdr *p){
34640 assert(p->nRef>0);
34641 p->nRef++;
34645 ** Drop a page from the cache. There must be exactly one reference to the
34646 ** page. This function deletes that reference, so after it returns the
34647 ** page pointed to by p is invalid.
34649 SQLITE_PRIVATE void sqlite3PcacheDrop(PgHdr *p){
34650 PCache *pCache;
34651 assert( p->nRef==1 );
34652 if( p->flags&PGHDR_DIRTY ){
34653 pcacheRemoveFromDirtyList(p);
34655 pCache = p->pCache;
34656 pCache->nRef--;
34657 if( p->pgno==1 ){
34658 pCache->pPage1 = 0;
34660 sqlite3GlobalConfig.pcache.xUnpin(pCache->pCache, p, 1);
34664 ** Make sure the page is marked as dirty. If it isn't dirty already,
34665 ** make it so.
34667 SQLITE_PRIVATE void sqlite3PcacheMakeDirty(PgHdr *p){
34668 p->flags &= ~PGHDR_DONT_WRITE;
34669 assert( p->nRef>0 );
34670 if( 0==(p->flags & PGHDR_DIRTY) ){
34671 p->flags |= PGHDR_DIRTY;
34672 pcacheAddToDirtyList( p);
34677 ** Make sure the page is marked as clean. If it isn't clean already,
34678 ** make it so.
34680 SQLITE_PRIVATE void sqlite3PcacheMakeClean(PgHdr *p){
34681 if( (p->flags & PGHDR_DIRTY) ){
34682 pcacheRemoveFromDirtyList(p);
34683 p->flags &= ~(PGHDR_DIRTY|PGHDR_NEED_SYNC);
34684 if( p->nRef==0 ){
34685 pcacheUnpin(p);
34691 ** Make every page in the cache clean.
34693 SQLITE_PRIVATE void sqlite3PcacheCleanAll(PCache *pCache){
34694 PgHdr *p;
34695 while( (p = pCache->pDirty)!=0 ){
34696 sqlite3PcacheMakeClean(p);
34701 ** Clear the PGHDR_NEED_SYNC flag from all dirty pages.
34703 SQLITE_PRIVATE void sqlite3PcacheClearSyncFlags(PCache *pCache){
34704 PgHdr *p;
34705 for(p=pCache->pDirty; p; p=p->pDirtyNext){
34706 p->flags &= ~PGHDR_NEED_SYNC;
34708 pCache->pSynced = pCache->pDirtyTail;
34712 ** Change the page number of page p to newPgno.
34714 SQLITE_PRIVATE void sqlite3PcacheMove(PgHdr *p, Pgno newPgno){
34715 PCache *pCache = p->pCache;
34716 assert( p->nRef>0 );
34717 assert( newPgno>0 );
34718 sqlite3GlobalConfig.pcache.xRekey(pCache->pCache, p, p->pgno, newPgno);
34719 p->pgno = newPgno;
34720 if( (p->flags&PGHDR_DIRTY) && (p->flags&PGHDR_NEED_SYNC) ){
34721 pcacheRemoveFromDirtyList(p);
34722 pcacheAddToDirtyList(p);
34727 ** Drop every cache entry whose page number is greater than "pgno". The
34728 ** caller must ensure that there are no outstanding references to any pages
34729 ** other than page 1 with a page number greater than pgno.
34731 ** If there is a reference to page 1 and the pgno parameter passed to this
34732 ** function is 0, then the data area associated with page 1 is zeroed, but
34733 ** the page object is not dropped.
34735 SQLITE_PRIVATE void sqlite3PcacheTruncate(PCache *pCache, Pgno pgno){
34736 if( pCache->pCache ){
34737 PgHdr *p;
34738 PgHdr *pNext;
34739 for(p=pCache->pDirty; p; p=pNext){
34740 pNext = p->pDirtyNext;
34741 /* This routine never gets call with a positive pgno except right
34742 ** after sqlite3PcacheCleanAll(). So if there are dirty pages,
34743 ** it must be that pgno==0.
34745 assert( p->pgno>0 );
34746 if( ALWAYS(p->pgno>pgno) ){
34747 assert( p->flags&PGHDR_DIRTY );
34748 sqlite3PcacheMakeClean(p);
34751 if( pgno==0 && pCache->pPage1 ){
34752 memset(pCache->pPage1->pData, 0, pCache->szPage);
34753 pgno = 1;
34755 sqlite3GlobalConfig.pcache.xTruncate(pCache->pCache, pgno+1);
34760 ** Close a cache.
34762 SQLITE_PRIVATE void sqlite3PcacheClose(PCache *pCache){
34763 if( pCache->pCache ){
34764 sqlite3GlobalConfig.pcache.xDestroy(pCache->pCache);
34769 ** Discard the contents of the cache.
34771 SQLITE_PRIVATE void sqlite3PcacheClear(PCache *pCache){
34772 sqlite3PcacheTruncate(pCache, 0);
34776 ** Merge two lists of pages connected by pDirty and in pgno order.
34777 ** Do not both fixing the pDirtyPrev pointers.
34779 static PgHdr *pcacheMergeDirtyList(PgHdr *pA, PgHdr *pB){
34780 PgHdr result, *pTail;
34781 pTail = &result;
34782 while( pA && pB ){
34783 if( pA->pgno<pB->pgno ){
34784 pTail->pDirty = pA;
34785 pTail = pA;
34786 pA = pA->pDirty;
34787 }else{
34788 pTail->pDirty = pB;
34789 pTail = pB;
34790 pB = pB->pDirty;
34793 if( pA ){
34794 pTail->pDirty = pA;
34795 }else if( pB ){
34796 pTail->pDirty = pB;
34797 }else{
34798 pTail->pDirty = 0;
34800 return result.pDirty;
34804 ** Sort the list of pages in accending order by pgno. Pages are
34805 ** connected by pDirty pointers. The pDirtyPrev pointers are
34806 ** corrupted by this sort.
34808 ** Since there cannot be more than 2^31 distinct pages in a database,
34809 ** there cannot be more than 31 buckets required by the merge sorter.
34810 ** One extra bucket is added to catch overflow in case something
34811 ** ever changes to make the previous sentence incorrect.
34813 #define N_SORT_BUCKET 32
34814 static PgHdr *pcacheSortDirtyList(PgHdr *pIn){
34815 PgHdr *a[N_SORT_BUCKET], *p;
34816 int i;
34817 memset(a, 0, sizeof(a));
34818 while( pIn ){
34819 p = pIn;
34820 pIn = p->pDirty;
34821 p->pDirty = 0;
34822 for(i=0; ALWAYS(i<N_SORT_BUCKET-1); i++){
34823 if( a[i]==0 ){
34824 a[i] = p;
34825 break;
34826 }else{
34827 p = pcacheMergeDirtyList(a[i], p);
34828 a[i] = 0;
34831 if( NEVER(i==N_SORT_BUCKET-1) ){
34832 /* To get here, there need to be 2^(N_SORT_BUCKET) elements in
34833 ** the input list. But that is impossible.
34835 a[i] = pcacheMergeDirtyList(a[i], p);
34838 p = a[0];
34839 for(i=1; i<N_SORT_BUCKET; i++){
34840 p = pcacheMergeDirtyList(p, a[i]);
34842 return p;
34846 ** Return a list of all dirty pages in the cache, sorted by page number.
34848 SQLITE_PRIVATE PgHdr *sqlite3PcacheDirtyList(PCache *pCache){
34849 PgHdr *p;
34850 for(p=pCache->pDirty; p; p=p->pDirtyNext){
34851 p->pDirty = p->pDirtyNext;
34853 return pcacheSortDirtyList(pCache->pDirty);
34857 ** Return the total number of referenced pages held by the cache.
34859 SQLITE_PRIVATE int sqlite3PcacheRefCount(PCache *pCache){
34860 return pCache->nRef;
34864 ** Return the number of references to the page supplied as an argument.
34866 SQLITE_PRIVATE int sqlite3PcachePageRefcount(PgHdr *p){
34867 return p->nRef;
34871 ** Return the total number of pages in the cache.
34873 SQLITE_PRIVATE int sqlite3PcachePagecount(PCache *pCache){
34874 int nPage = 0;
34875 if( pCache->pCache ){
34876 nPage = sqlite3GlobalConfig.pcache.xPagecount(pCache->pCache);
34878 return nPage;
34881 #ifdef SQLITE_TEST
34883 ** Get the suggested cache-size value.
34885 SQLITE_PRIVATE int sqlite3PcacheGetCachesize(PCache *pCache){
34886 return pCache->nMax;
34888 #endif
34891 ** Set the suggested cache-size value.
34893 SQLITE_PRIVATE void sqlite3PcacheSetCachesize(PCache *pCache, int mxPage){
34894 pCache->nMax = mxPage;
34895 if( pCache->pCache ){
34896 sqlite3GlobalConfig.pcache.xCachesize(pCache->pCache, mxPage);
34900 #if defined(SQLITE_CHECK_PAGES) || defined(SQLITE_DEBUG)
34902 ** For all dirty pages currently in the cache, invoke the specified
34903 ** callback. This is only used if the SQLITE_CHECK_PAGES macro is
34904 ** defined.
34906 SQLITE_PRIVATE void sqlite3PcacheIterateDirty(PCache *pCache, void (*xIter)(PgHdr *)){
34907 PgHdr *pDirty;
34908 for(pDirty=pCache->pDirty; pDirty; pDirty=pDirty->pDirtyNext){
34909 xIter(pDirty);
34912 #endif
34914 /************** End of pcache.c **********************************************/
34915 /************** Begin file pcache1.c *****************************************/
34917 ** 2008 November 05
34919 ** The author disclaims copyright to this source code. In place of
34920 ** a legal notice, here is a blessing:
34922 ** May you do good and not evil.
34923 ** May you find forgiveness for yourself and forgive others.
34924 ** May you share freely, never taking more than you give.
34926 *************************************************************************
34928 ** This file implements the default page cache implementation (the
34929 ** sqlite3_pcache interface). It also contains part of the implementation
34930 ** of the SQLITE_CONFIG_PAGECACHE and sqlite3_release_memory() features.
34931 ** If the default page cache implementation is overriden, then neither of
34932 ** these two features are available.
34936 typedef struct PCache1 PCache1;
34937 typedef struct PgHdr1 PgHdr1;
34938 typedef struct PgFreeslot PgFreeslot;
34939 typedef struct PGroup PGroup;
34941 /* Each page cache (or PCache) belongs to a PGroup. A PGroup is a set
34942 ** of one or more PCaches that are able to recycle each others unpinned
34943 ** pages when they are under memory pressure. A PGroup is an instance of
34944 ** the following object.
34946 ** This page cache implementation works in one of two modes:
34948 ** (1) Every PCache is the sole member of its own PGroup. There is
34949 ** one PGroup per PCache.
34951 ** (2) There is a single global PGroup that all PCaches are a member
34952 ** of.
34954 ** Mode 1 uses more memory (since PCache instances are not able to rob
34955 ** unused pages from other PCaches) but it also operates without a mutex,
34956 ** and is therefore often faster. Mode 2 requires a mutex in order to be
34957 ** threadsafe, but is able recycle pages more efficient.
34959 ** For mode (1), PGroup.mutex is NULL. For mode (2) there is only a single
34960 ** PGroup which is the pcache1.grp global variable and its mutex is
34961 ** SQLITE_MUTEX_STATIC_LRU.
34963 struct PGroup {
34964 sqlite3_mutex *mutex; /* MUTEX_STATIC_LRU or NULL */
34965 int nMaxPage; /* Sum of nMax for purgeable caches */
34966 int nMinPage; /* Sum of nMin for purgeable caches */
34967 int mxPinned; /* nMaxpage + 10 - nMinPage */
34968 int nCurrentPage; /* Number of purgeable pages allocated */
34969 PgHdr1 *pLruHead, *pLruTail; /* LRU list of unpinned pages */
34972 /* Each page cache is an instance of the following object. Every
34973 ** open database file (including each in-memory database and each
34974 ** temporary or transient database) has a single page cache which
34975 ** is an instance of this object.
34977 ** Pointers to structures of this type are cast and returned as
34978 ** opaque sqlite3_pcache* handles.
34980 struct PCache1 {
34981 /* Cache configuration parameters. Page size (szPage) and the purgeable
34982 ** flag (bPurgeable) are set when the cache is created. nMax may be
34983 ** modified at any time by a call to the pcache1CacheSize() method.
34984 ** The PGroup mutex must be held when accessing nMax.
34986 PGroup *pGroup; /* PGroup this cache belongs to */
34987 int szPage; /* Size of allocated pages in bytes */
34988 int bPurgeable; /* True if cache is purgeable */
34989 unsigned int nMin; /* Minimum number of pages reserved */
34990 unsigned int nMax; /* Configured "cache_size" value */
34991 unsigned int n90pct; /* nMax*9/10 */
34993 /* Hash table of all pages. The following variables may only be accessed
34994 ** when the accessor is holding the PGroup mutex.
34996 unsigned int nRecyclable; /* Number of pages in the LRU list */
34997 unsigned int nPage; /* Total number of pages in apHash */
34998 unsigned int nHash; /* Number of slots in apHash[] */
34999 PgHdr1 **apHash; /* Hash table for fast lookup by key */
35001 unsigned int iMaxKey; /* Largest key seen since xTruncate() */
35005 ** Each cache entry is represented by an instance of the following
35006 ** structure. A buffer of PgHdr1.pCache->szPage bytes is allocated
35007 ** directly before this structure in memory (see the PGHDR1_TO_PAGE()
35008 ** macro below).
35010 struct PgHdr1 {
35011 unsigned int iKey; /* Key value (page number) */
35012 PgHdr1 *pNext; /* Next in hash table chain */
35013 PCache1 *pCache; /* Cache that currently owns this page */
35014 PgHdr1 *pLruNext; /* Next in LRU list of unpinned pages */
35015 PgHdr1 *pLruPrev; /* Previous in LRU list of unpinned pages */
35019 ** Free slots in the allocator used to divide up the buffer provided using
35020 ** the SQLITE_CONFIG_PAGECACHE mechanism.
35022 struct PgFreeslot {
35023 PgFreeslot *pNext; /* Next free slot */
35027 ** Global data used by this cache.
35029 static SQLITE_WSD struct PCacheGlobal {
35030 PGroup grp; /* The global PGroup for mode (2) */
35032 /* Variables related to SQLITE_CONFIG_PAGECACHE settings. The
35033 ** szSlot, nSlot, pStart, pEnd, nReserve, and isInit values are all
35034 ** fixed at sqlite3_initialize() time and do not require mutex protection.
35035 ** The nFreeSlot and pFree values do require mutex protection.
35037 int isInit; /* True if initialized */
35038 int szSlot; /* Size of each free slot */
35039 int nSlot; /* The number of pcache slots */
35040 int nReserve; /* Try to keep nFreeSlot above this */
35041 void *pStart, *pEnd; /* Bounds of pagecache malloc range */
35042 /* Above requires no mutex. Use mutex below for variable that follow. */
35043 sqlite3_mutex *mutex; /* Mutex for accessing the following: */
35044 int nFreeSlot; /* Number of unused pcache slots */
35045 PgFreeslot *pFree; /* Free page blocks */
35046 /* The following value requires a mutex to change. We skip the mutex on
35047 ** reading because (1) most platforms read a 32-bit integer atomically and
35048 ** (2) even if an incorrect value is read, no great harm is done since this
35049 ** is really just an optimization. */
35050 int bUnderPressure; /* True if low on PAGECACHE memory */
35051 } pcache1_g;
35054 ** All code in this file should access the global structure above via the
35055 ** alias "pcache1". This ensures that the WSD emulation is used when
35056 ** compiling for systems that do not support real WSD.
35058 #define pcache1 (GLOBAL(struct PCacheGlobal, pcache1_g))
35061 ** When a PgHdr1 structure is allocated, the associated PCache1.szPage
35062 ** bytes of data are located directly before it in memory (i.e. the total
35063 ** size of the allocation is sizeof(PgHdr1)+PCache1.szPage byte). The
35064 ** PGHDR1_TO_PAGE() macro takes a pointer to a PgHdr1 structure as
35065 ** an argument and returns a pointer to the associated block of szPage
35066 ** bytes. The PAGE_TO_PGHDR1() macro does the opposite: its argument is
35067 ** a pointer to a block of szPage bytes of data and the return value is
35068 ** a pointer to the associated PgHdr1 structure.
35070 ** assert( PGHDR1_TO_PAGE(PAGE_TO_PGHDR1(pCache, X))==X );
35072 #define PGHDR1_TO_PAGE(p) (void*)(((char*)p) - p->pCache->szPage)
35073 #define PAGE_TO_PGHDR1(c, p) (PgHdr1*)(((char*)p) + c->szPage)
35076 ** Macros to enter and leave the PCache LRU mutex.
35078 #define pcache1EnterMutex(X) sqlite3_mutex_enter((X)->mutex)
35079 #define pcache1LeaveMutex(X) sqlite3_mutex_leave((X)->mutex)
35081 /******************************************************************************/
35082 /******** Page Allocation/SQLITE_CONFIG_PCACHE Related Functions **************/
35085 ** This function is called during initialization if a static buffer is
35086 ** supplied to use for the page-cache by passing the SQLITE_CONFIG_PAGECACHE
35087 ** verb to sqlite3_config(). Parameter pBuf points to an allocation large
35088 ** enough to contain 'n' buffers of 'sz' bytes each.
35090 ** This routine is called from sqlite3_initialize() and so it is guaranteed
35091 ** to be serialized already. There is no need for further mutexing.
35093 SQLITE_PRIVATE void sqlite3PCacheBufferSetup(void *pBuf, int sz, int n){
35094 if( pcache1.isInit ){
35095 PgFreeslot *p;
35096 sz = ROUNDDOWN8(sz);
35097 pcache1.szSlot = sz;
35098 pcache1.nSlot = pcache1.nFreeSlot = n;
35099 pcache1.nReserve = n>90 ? 10 : (n/10 + 1);
35100 pcache1.pStart = pBuf;
35101 pcache1.pFree = 0;
35102 pcache1.bUnderPressure = 0;
35103 while( n-- ){
35104 p = (PgFreeslot*)pBuf;
35105 p->pNext = pcache1.pFree;
35106 pcache1.pFree = p;
35107 pBuf = (void*)&((char*)pBuf)[sz];
35109 pcache1.pEnd = pBuf;
35114 ** Malloc function used within this file to allocate space from the buffer
35115 ** configured using sqlite3_config(SQLITE_CONFIG_PAGECACHE) option. If no
35116 ** such buffer exists or there is no space left in it, this function falls
35117 ** back to sqlite3Malloc().
35119 ** Multiple threads can run this routine at the same time. Global variables
35120 ** in pcache1 need to be protected via mutex.
35122 static void *pcache1Alloc(int nByte){
35123 void *p = 0;
35124 assert( sqlite3_mutex_notheld(pcache1.grp.mutex) );
35125 sqlite3StatusSet(SQLITE_STATUS_PAGECACHE_SIZE, nByte);
35126 if( nByte<=pcache1.szSlot ){
35127 sqlite3_mutex_enter(pcache1.mutex);
35128 p = (PgHdr1 *)pcache1.pFree;
35129 if( p ){
35130 pcache1.pFree = pcache1.pFree->pNext;
35131 pcache1.nFreeSlot--;
35132 pcache1.bUnderPressure = pcache1.nFreeSlot<pcache1.nReserve;
35133 assert( pcache1.nFreeSlot>=0 );
35134 sqlite3StatusAdd(SQLITE_STATUS_PAGECACHE_USED, 1);
35136 sqlite3_mutex_leave(pcache1.mutex);
35138 if( p==0 ){
35139 /* Memory is not available in the SQLITE_CONFIG_PAGECACHE pool. Get
35140 ** it from sqlite3Malloc instead.
35142 p = sqlite3Malloc(nByte);
35143 if( p ){
35144 int sz = sqlite3MallocSize(p);
35145 sqlite3_mutex_enter(pcache1.mutex);
35146 sqlite3StatusAdd(SQLITE_STATUS_PAGECACHE_OVERFLOW, sz);
35147 sqlite3_mutex_leave(pcache1.mutex);
35149 sqlite3MemdebugSetType(p, MEMTYPE_PCACHE);
35151 return p;
35155 ** Free an allocated buffer obtained from pcache1Alloc().
35157 static void pcache1Free(void *p){
35158 if( p==0 ) return;
35159 if( p>=pcache1.pStart && p<pcache1.pEnd ){
35160 PgFreeslot *pSlot;
35161 sqlite3_mutex_enter(pcache1.mutex);
35162 sqlite3StatusAdd(SQLITE_STATUS_PAGECACHE_USED, -1);
35163 pSlot = (PgFreeslot*)p;
35164 pSlot->pNext = pcache1.pFree;
35165 pcache1.pFree = pSlot;
35166 pcache1.nFreeSlot++;
35167 pcache1.bUnderPressure = pcache1.nFreeSlot<pcache1.nReserve;
35168 assert( pcache1.nFreeSlot<=pcache1.nSlot );
35169 sqlite3_mutex_leave(pcache1.mutex);
35170 }else{
35171 int iSize;
35172 assert( sqlite3MemdebugHasType(p, MEMTYPE_PCACHE) );
35173 sqlite3MemdebugSetType(p, MEMTYPE_HEAP);
35174 iSize = sqlite3MallocSize(p);
35175 sqlite3_mutex_enter(pcache1.mutex);
35176 sqlite3StatusAdd(SQLITE_STATUS_PAGECACHE_OVERFLOW, -iSize);
35177 sqlite3_mutex_leave(pcache1.mutex);
35178 sqlite3_free(p);
35182 #ifdef SQLITE_ENABLE_MEMORY_MANAGEMENT
35184 ** Return the size of a pcache allocation
35186 static int pcache1MemSize(void *p){
35187 if( p>=pcache1.pStart && p<pcache1.pEnd ){
35188 return pcache1.szSlot;
35189 }else{
35190 int iSize;
35191 assert( sqlite3MemdebugHasType(p, MEMTYPE_PCACHE) );
35192 sqlite3MemdebugSetType(p, MEMTYPE_HEAP);
35193 iSize = sqlite3MallocSize(p);
35194 sqlite3MemdebugSetType(p, MEMTYPE_PCACHE);
35195 return iSize;
35198 #endif /* SQLITE_ENABLE_MEMORY_MANAGEMENT */
35201 ** Allocate a new page object initially associated with cache pCache.
35203 static PgHdr1 *pcache1AllocPage(PCache1 *pCache){
35204 int nByte = sizeof(PgHdr1) + pCache->szPage;
35205 void *pPg = pcache1Alloc(nByte);
35206 PgHdr1 *p;
35207 if( pPg ){
35208 p = PAGE_TO_PGHDR1(pCache, pPg);
35209 if( pCache->bPurgeable ){
35210 pCache->pGroup->nCurrentPage++;
35212 }else{
35213 p = 0;
35215 return p;
35219 ** Free a page object allocated by pcache1AllocPage().
35221 ** The pointer is allowed to be NULL, which is prudent. But it turns out
35222 ** that the current implementation happens to never call this routine
35223 ** with a NULL pointer, so we mark the NULL test with ALWAYS().
35225 static void pcache1FreePage(PgHdr1 *p){
35226 if( ALWAYS(p) ){
35227 PCache1 *pCache = p->pCache;
35228 if( pCache->bPurgeable ){
35229 pCache->pGroup->nCurrentPage--;
35231 pcache1Free(PGHDR1_TO_PAGE(p));
35236 ** Malloc function used by SQLite to obtain space from the buffer configured
35237 ** using sqlite3_config(SQLITE_CONFIG_PAGECACHE) option. If no such buffer
35238 ** exists, this function falls back to sqlite3Malloc().
35240 SQLITE_PRIVATE void *sqlite3PageMalloc(int sz){
35241 return pcache1Alloc(sz);
35245 ** Free an allocated buffer obtained from sqlite3PageMalloc().
35247 SQLITE_PRIVATE void sqlite3PageFree(void *p){
35248 pcache1Free(p);
35253 ** Return true if it desirable to avoid allocating a new page cache
35254 ** entry.
35256 ** If memory was allocated specifically to the page cache using
35257 ** SQLITE_CONFIG_PAGECACHE but that memory has all been used, then
35258 ** it is desirable to avoid allocating a new page cache entry because
35259 ** presumably SQLITE_CONFIG_PAGECACHE was suppose to be sufficient
35260 ** for all page cache needs and we should not need to spill the
35261 ** allocation onto the heap.
35263 ** Or, the heap is used for all page cache memory put the heap is
35264 ** under memory pressure, then again it is desirable to avoid
35265 ** allocating a new page cache entry in order to avoid stressing
35266 ** the heap even further.
35268 static int pcache1UnderMemoryPressure(PCache1 *pCache){
35269 if( pcache1.nSlot && pCache->szPage<=pcache1.szSlot ){
35270 return pcache1.bUnderPressure;
35271 }else{
35272 return sqlite3HeapNearlyFull();
35276 /******************************************************************************/
35277 /******** General Implementation Functions ************************************/
35280 ** This function is used to resize the hash table used by the cache passed
35281 ** as the first argument.
35283 ** The PCache mutex must be held when this function is called.
35285 static int pcache1ResizeHash(PCache1 *p){
35286 PgHdr1 **apNew;
35287 unsigned int nNew;
35288 unsigned int i;
35290 assert( sqlite3_mutex_held(p->pGroup->mutex) );
35292 nNew = p->nHash*2;
35293 if( nNew<256 ){
35294 nNew = 256;
35297 pcache1LeaveMutex(p->pGroup);
35298 if( p->nHash ){ sqlite3BeginBenignMalloc(); }
35299 apNew = (PgHdr1 **)sqlite3_malloc(sizeof(PgHdr1 *)*nNew);
35300 if( p->nHash ){ sqlite3EndBenignMalloc(); }
35301 pcache1EnterMutex(p->pGroup);
35302 if( apNew ){
35303 memset(apNew, 0, sizeof(PgHdr1 *)*nNew);
35304 for(i=0; i<p->nHash; i++){
35305 PgHdr1 *pPage;
35306 PgHdr1 *pNext = p->apHash[i];
35307 while( (pPage = pNext)!=0 ){
35308 unsigned int h = pPage->iKey % nNew;
35309 pNext = pPage->pNext;
35310 pPage->pNext = apNew[h];
35311 apNew[h] = pPage;
35314 sqlite3_free(p->apHash);
35315 p->apHash = apNew;
35316 p->nHash = nNew;
35319 return (p->apHash ? SQLITE_OK : SQLITE_NOMEM);
35323 ** This function is used internally to remove the page pPage from the
35324 ** PGroup LRU list, if is part of it. If pPage is not part of the PGroup
35325 ** LRU list, then this function is a no-op.
35327 ** The PGroup mutex must be held when this function is called.
35329 ** If pPage is NULL then this routine is a no-op.
35331 static void pcache1PinPage(PgHdr1 *pPage){
35332 PCache1 *pCache;
35333 PGroup *pGroup;
35335 if( pPage==0 ) return;
35336 pCache = pPage->pCache;
35337 pGroup = pCache->pGroup;
35338 assert( sqlite3_mutex_held(pGroup->mutex) );
35339 if( pPage->pLruNext || pPage==pGroup->pLruTail ){
35340 if( pPage->pLruPrev ){
35341 pPage->pLruPrev->pLruNext = pPage->pLruNext;
35343 if( pPage->pLruNext ){
35344 pPage->pLruNext->pLruPrev = pPage->pLruPrev;
35346 if( pGroup->pLruHead==pPage ){
35347 pGroup->pLruHead = pPage->pLruNext;
35349 if( pGroup->pLruTail==pPage ){
35350 pGroup->pLruTail = pPage->pLruPrev;
35352 pPage->pLruNext = 0;
35353 pPage->pLruPrev = 0;
35354 pPage->pCache->nRecyclable--;
35360 ** Remove the page supplied as an argument from the hash table
35361 ** (PCache1.apHash structure) that it is currently stored in.
35363 ** The PGroup mutex must be held when this function is called.
35365 static void pcache1RemoveFromHash(PgHdr1 *pPage){
35366 unsigned int h;
35367 PCache1 *pCache = pPage->pCache;
35368 PgHdr1 **pp;
35370 assert( sqlite3_mutex_held(pCache->pGroup->mutex) );
35371 h = pPage->iKey % pCache->nHash;
35372 for(pp=&pCache->apHash[h]; (*pp)!=pPage; pp=&(*pp)->pNext);
35373 *pp = (*pp)->pNext;
35375 pCache->nPage--;
35379 ** If there are currently more than nMaxPage pages allocated, try
35380 ** to recycle pages to reduce the number allocated to nMaxPage.
35382 static void pcache1EnforceMaxPage(PGroup *pGroup){
35383 assert( sqlite3_mutex_held(pGroup->mutex) );
35384 while( pGroup->nCurrentPage>pGroup->nMaxPage && pGroup->pLruTail ){
35385 PgHdr1 *p = pGroup->pLruTail;
35386 assert( p->pCache->pGroup==pGroup );
35387 pcache1PinPage(p);
35388 pcache1RemoveFromHash(p);
35389 pcache1FreePage(p);
35394 ** Discard all pages from cache pCache with a page number (key value)
35395 ** greater than or equal to iLimit. Any pinned pages that meet this
35396 ** criteria are unpinned before they are discarded.
35398 ** The PCache mutex must be held when this function is called.
35400 static void pcache1TruncateUnsafe(
35401 PCache1 *pCache, /* The cache to truncate */
35402 unsigned int iLimit /* Drop pages with this pgno or larger */
35404 TESTONLY( unsigned int nPage = 0; ) /* To assert pCache->nPage is correct */
35405 unsigned int h;
35406 assert( sqlite3_mutex_held(pCache->pGroup->mutex) );
35407 for(h=0; h<pCache->nHash; h++){
35408 PgHdr1 **pp = &pCache->apHash[h];
35409 PgHdr1 *pPage;
35410 while( (pPage = *pp)!=0 ){
35411 if( pPage->iKey>=iLimit ){
35412 pCache->nPage--;
35413 *pp = pPage->pNext;
35414 pcache1PinPage(pPage);
35415 pcache1FreePage(pPage);
35416 }else{
35417 pp = &pPage->pNext;
35418 TESTONLY( nPage++; )
35422 assert( pCache->nPage==nPage );
35425 /******************************************************************************/
35426 /******** sqlite3_pcache Methods **********************************************/
35429 ** Implementation of the sqlite3_pcache.xInit method.
35431 static int pcache1Init(void *NotUsed){
35432 UNUSED_PARAMETER(NotUsed);
35433 assert( pcache1.isInit==0 );
35434 memset(&pcache1, 0, sizeof(pcache1));
35435 if( sqlite3GlobalConfig.bCoreMutex ){
35436 pcache1.grp.mutex = sqlite3_mutex_alloc(SQLITE_MUTEX_STATIC_LRU);
35437 pcache1.mutex = sqlite3_mutex_alloc(SQLITE_MUTEX_STATIC_PMEM);
35439 pcache1.grp.mxPinned = 10;
35440 pcache1.isInit = 1;
35441 return SQLITE_OK;
35445 ** Implementation of the sqlite3_pcache.xShutdown method.
35446 ** Note that the static mutex allocated in xInit does
35447 ** not need to be freed.
35449 static void pcache1Shutdown(void *NotUsed){
35450 UNUSED_PARAMETER(NotUsed);
35451 assert( pcache1.isInit!=0 );
35452 memset(&pcache1, 0, sizeof(pcache1));
35456 ** Implementation of the sqlite3_pcache.xCreate method.
35458 ** Allocate a new cache.
35460 static sqlite3_pcache *pcache1Create(int szPage, int bPurgeable){
35461 PCache1 *pCache; /* The newly created page cache */
35462 PGroup *pGroup; /* The group the new page cache will belong to */
35463 int sz; /* Bytes of memory required to allocate the new cache */
35466 ** The separateCache variable is true if each PCache has its own private
35467 ** PGroup. In other words, separateCache is true for mode (1) where no
35468 ** mutexing is required.
35470 ** * Always use separate caches (mode-1) if SQLITE_SEPARATE_CACHE_POOLS
35472 ** * Always use a unified cache (mode-2) if ENABLE_MEMORY_MANAGEMENT
35474 ** * Always use a unified cache in single-threaded applications
35476 ** * Otherwise (if multi-threaded and ENABLE_MEMORY_MANAGEMENT is off)
35477 ** use separate caches (mode-1)
35479 #ifdef SQLITE_SEPARATE_CACHE_POOLS
35480 const int separateCache = 1;
35481 #elif defined(SQLITE_ENABLE_MEMORY_MANAGEMENT) || SQLITE_THREADSAFE==0
35482 const int separateCache = 0;
35483 #else
35484 int separateCache = sqlite3GlobalConfig.bCoreMutex>0;
35485 #endif
35487 sz = sizeof(PCache1) + sizeof(PGroup)*separateCache;
35488 pCache = (PCache1 *)sqlite3_malloc(sz);
35489 if( pCache ){
35490 memset(pCache, 0, sz);
35491 if( separateCache ){
35492 pGroup = (PGroup*)&pCache[1];
35493 pGroup->mxPinned = 10;
35494 }else{
35495 pGroup = &pcache1_g.grp;
35497 pCache->pGroup = pGroup;
35498 pCache->szPage = szPage;
35499 pCache->bPurgeable = (bPurgeable ? 1 : 0);
35500 if( bPurgeable ){
35501 pCache->nMin = 10;
35502 pcache1EnterMutex(pGroup);
35503 pGroup->nMinPage += pCache->nMin;
35504 pGroup->mxPinned = pGroup->nMaxPage + 10 - pGroup->nMinPage;
35505 pcache1LeaveMutex(pGroup);
35508 return (sqlite3_pcache *)pCache;
35512 ** Implementation of the sqlite3_pcache.xCachesize method.
35514 ** Configure the cache_size limit for a cache.
35516 static void pcache1Cachesize(sqlite3_pcache *p, int nMax){
35517 PCache1 *pCache = (PCache1 *)p;
35518 if( pCache->bPurgeable ){
35519 PGroup *pGroup = pCache->pGroup;
35520 pcache1EnterMutex(pGroup);
35521 pGroup->nMaxPage += (nMax - pCache->nMax);
35522 pGroup->mxPinned = pGroup->nMaxPage + 10 - pGroup->nMinPage;
35523 pCache->nMax = nMax;
35524 pCache->n90pct = pCache->nMax*9/10;
35525 pcache1EnforceMaxPage(pGroup);
35526 pcache1LeaveMutex(pGroup);
35531 ** Implementation of the sqlite3_pcache.xPagecount method.
35533 static int pcache1Pagecount(sqlite3_pcache *p){
35534 int n;
35535 PCache1 *pCache = (PCache1*)p;
35536 pcache1EnterMutex(pCache->pGroup);
35537 n = pCache->nPage;
35538 pcache1LeaveMutex(pCache->pGroup);
35539 return n;
35543 ** Implementation of the sqlite3_pcache.xFetch method.
35545 ** Fetch a page by key value.
35547 ** Whether or not a new page may be allocated by this function depends on
35548 ** the value of the createFlag argument. 0 means do not allocate a new
35549 ** page. 1 means allocate a new page if space is easily available. 2
35550 ** means to try really hard to allocate a new page.
35552 ** For a non-purgeable cache (a cache used as the storage for an in-memory
35553 ** database) there is really no difference between createFlag 1 and 2. So
35554 ** the calling function (pcache.c) will never have a createFlag of 1 on
35555 ** a non-purgable cache.
35557 ** There are three different approaches to obtaining space for a page,
35558 ** depending on the value of parameter createFlag (which may be 0, 1 or 2).
35560 ** 1. Regardless of the value of createFlag, the cache is searched for a
35561 ** copy of the requested page. If one is found, it is returned.
35563 ** 2. If createFlag==0 and the page is not already in the cache, NULL is
35564 ** returned.
35566 ** 3. If createFlag is 1, and the page is not already in the cache, then
35567 ** return NULL (do not allocate a new page) if any of the following
35568 ** conditions are true:
35570 ** (a) the number of pages pinned by the cache is greater than
35571 ** PCache1.nMax, or
35573 ** (b) the number of pages pinned by the cache is greater than
35574 ** the sum of nMax for all purgeable caches, less the sum of
35575 ** nMin for all other purgeable caches, or
35577 ** 4. If none of the first three conditions apply and the cache is marked
35578 ** as purgeable, and if one of the following is true:
35580 ** (a) The number of pages allocated for the cache is already
35581 ** PCache1.nMax, or
35583 ** (b) The number of pages allocated for all purgeable caches is
35584 ** already equal to or greater than the sum of nMax for all
35585 ** purgeable caches,
35587 ** (c) The system is under memory pressure and wants to avoid
35588 ** unnecessary pages cache entry allocations
35590 ** then attempt to recycle a page from the LRU list. If it is the right
35591 ** size, return the recycled buffer. Otherwise, free the buffer and
35592 ** proceed to step 5.
35594 ** 5. Otherwise, allocate and return a new page buffer.
35596 static void *pcache1Fetch(sqlite3_pcache *p, unsigned int iKey, int createFlag){
35597 int nPinned;
35598 PCache1 *pCache = (PCache1 *)p;
35599 PGroup *pGroup;
35600 PgHdr1 *pPage = 0;
35602 assert( pCache->bPurgeable || createFlag!=1 );
35603 assert( pCache->bPurgeable || pCache->nMin==0 );
35604 assert( pCache->bPurgeable==0 || pCache->nMin==10 );
35605 assert( pCache->nMin==0 || pCache->bPurgeable );
35606 pcache1EnterMutex(pGroup = pCache->pGroup);
35608 /* Step 1: Search the hash table for an existing entry. */
35609 if( pCache->nHash>0 ){
35610 unsigned int h = iKey % pCache->nHash;
35611 for(pPage=pCache->apHash[h]; pPage&&pPage->iKey!=iKey; pPage=pPage->pNext);
35614 /* Step 2: Abort if no existing page is found and createFlag is 0 */
35615 if( pPage || createFlag==0 ){
35616 pcache1PinPage(pPage);
35617 goto fetch_out;
35620 /* The pGroup local variable will normally be initialized by the
35621 ** pcache1EnterMutex() macro above. But if SQLITE_MUTEX_OMIT is defined,
35622 ** then pcache1EnterMutex() is a no-op, so we have to initialize the
35623 ** local variable here. Delaying the initialization of pGroup is an
35624 ** optimization: The common case is to exit the module before reaching
35625 ** this point.
35627 #ifdef SQLITE_MUTEX_OMIT
35628 pGroup = pCache->pGroup;
35629 #endif
35632 /* Step 3: Abort if createFlag is 1 but the cache is nearly full */
35633 nPinned = pCache->nPage - pCache->nRecyclable;
35634 assert( nPinned>=0 );
35635 assert( pGroup->mxPinned == pGroup->nMaxPage + 10 - pGroup->nMinPage );
35636 assert( pCache->n90pct == pCache->nMax*9/10 );
35637 if( createFlag==1 && (
35638 nPinned>=pGroup->mxPinned
35639 || nPinned>=(int)pCache->n90pct
35640 || pcache1UnderMemoryPressure(pCache)
35642 goto fetch_out;
35645 if( pCache->nPage>=pCache->nHash && pcache1ResizeHash(pCache) ){
35646 goto fetch_out;
35649 /* Step 4. Try to recycle a page. */
35650 if( pCache->bPurgeable && pGroup->pLruTail && (
35651 (pCache->nPage+1>=pCache->nMax)
35652 || pGroup->nCurrentPage>=pGroup->nMaxPage
35653 || pcache1UnderMemoryPressure(pCache)
35655 PCache1 *pOtherCache;
35656 pPage = pGroup->pLruTail;
35657 pcache1RemoveFromHash(pPage);
35658 pcache1PinPage(pPage);
35659 if( (pOtherCache = pPage->pCache)->szPage!=pCache->szPage ){
35660 pcache1FreePage(pPage);
35661 pPage = 0;
35662 }else{
35663 pGroup->nCurrentPage -=
35664 (pOtherCache->bPurgeable - pCache->bPurgeable);
35668 /* Step 5. If a usable page buffer has still not been found,
35669 ** attempt to allocate a new one.
35671 if( !pPage ){
35672 if( createFlag==1 ) sqlite3BeginBenignMalloc();
35673 pcache1LeaveMutex(pGroup);
35674 pPage = pcache1AllocPage(pCache);
35675 pcache1EnterMutex(pGroup);
35676 if( createFlag==1 ) sqlite3EndBenignMalloc();
35679 if( pPage ){
35680 unsigned int h = iKey % pCache->nHash;
35681 pCache->nPage++;
35682 pPage->iKey = iKey;
35683 pPage->pNext = pCache->apHash[h];
35684 pPage->pCache = pCache;
35685 pPage->pLruPrev = 0;
35686 pPage->pLruNext = 0;
35687 *(void **)(PGHDR1_TO_PAGE(pPage)) = 0;
35688 pCache->apHash[h] = pPage;
35691 fetch_out:
35692 if( pPage && iKey>pCache->iMaxKey ){
35693 pCache->iMaxKey = iKey;
35695 pcache1LeaveMutex(pGroup);
35696 return (pPage ? PGHDR1_TO_PAGE(pPage) : 0);
35701 ** Implementation of the sqlite3_pcache.xUnpin method.
35703 ** Mark a page as unpinned (eligible for asynchronous recycling).
35705 static void pcache1Unpin(sqlite3_pcache *p, void *pPg, int reuseUnlikely){
35706 PCache1 *pCache = (PCache1 *)p;
35707 PgHdr1 *pPage = PAGE_TO_PGHDR1(pCache, pPg);
35708 PGroup *pGroup = pCache->pGroup;
35710 assert( pPage->pCache==pCache );
35711 pcache1EnterMutex(pGroup);
35713 /* It is an error to call this function if the page is already
35714 ** part of the PGroup LRU list.
35716 assert( pPage->pLruPrev==0 && pPage->pLruNext==0 );
35717 assert( pGroup->pLruHead!=pPage && pGroup->pLruTail!=pPage );
35719 if( reuseUnlikely || pGroup->nCurrentPage>pGroup->nMaxPage ){
35720 pcache1RemoveFromHash(pPage);
35721 pcache1FreePage(pPage);
35722 }else{
35723 /* Add the page to the PGroup LRU list. */
35724 if( pGroup->pLruHead ){
35725 pGroup->pLruHead->pLruPrev = pPage;
35726 pPage->pLruNext = pGroup->pLruHead;
35727 pGroup->pLruHead = pPage;
35728 }else{
35729 pGroup->pLruTail = pPage;
35730 pGroup->pLruHead = pPage;
35732 pCache->nRecyclable++;
35735 pcache1LeaveMutex(pCache->pGroup);
35739 ** Implementation of the sqlite3_pcache.xRekey method.
35741 static void pcache1Rekey(
35742 sqlite3_pcache *p,
35743 void *pPg,
35744 unsigned int iOld,
35745 unsigned int iNew
35747 PCache1 *pCache = (PCache1 *)p;
35748 PgHdr1 *pPage = PAGE_TO_PGHDR1(pCache, pPg);
35749 PgHdr1 **pp;
35750 unsigned int h;
35751 assert( pPage->iKey==iOld );
35752 assert( pPage->pCache==pCache );
35754 pcache1EnterMutex(pCache->pGroup);
35756 h = iOld%pCache->nHash;
35757 pp = &pCache->apHash[h];
35758 while( (*pp)!=pPage ){
35759 pp = &(*pp)->pNext;
35761 *pp = pPage->pNext;
35763 h = iNew%pCache->nHash;
35764 pPage->iKey = iNew;
35765 pPage->pNext = pCache->apHash[h];
35766 pCache->apHash[h] = pPage;
35767 if( iNew>pCache->iMaxKey ){
35768 pCache->iMaxKey = iNew;
35771 pcache1LeaveMutex(pCache->pGroup);
35775 ** Implementation of the sqlite3_pcache.xTruncate method.
35777 ** Discard all unpinned pages in the cache with a page number equal to
35778 ** or greater than parameter iLimit. Any pinned pages with a page number
35779 ** equal to or greater than iLimit are implicitly unpinned.
35781 static void pcache1Truncate(sqlite3_pcache *p, unsigned int iLimit){
35782 PCache1 *pCache = (PCache1 *)p;
35783 pcache1EnterMutex(pCache->pGroup);
35784 if( iLimit<=pCache->iMaxKey ){
35785 pcache1TruncateUnsafe(pCache, iLimit);
35786 pCache->iMaxKey = iLimit-1;
35788 pcache1LeaveMutex(pCache->pGroup);
35792 ** Implementation of the sqlite3_pcache.xDestroy method.
35794 ** Destroy a cache allocated using pcache1Create().
35796 static void pcache1Destroy(sqlite3_pcache *p){
35797 PCache1 *pCache = (PCache1 *)p;
35798 PGroup *pGroup = pCache->pGroup;
35799 assert( pCache->bPurgeable || (pCache->nMax==0 && pCache->nMin==0) );
35800 pcache1EnterMutex(pGroup);
35801 pcache1TruncateUnsafe(pCache, 0);
35802 pGroup->nMaxPage -= pCache->nMax;
35803 pGroup->nMinPage -= pCache->nMin;
35804 pGroup->mxPinned = pGroup->nMaxPage + 10 - pGroup->nMinPage;
35805 pcache1EnforceMaxPage(pGroup);
35806 pcache1LeaveMutex(pGroup);
35807 sqlite3_free(pCache->apHash);
35808 sqlite3_free(pCache);
35812 ** This function is called during initialization (sqlite3_initialize()) to
35813 ** install the default pluggable cache module, assuming the user has not
35814 ** already provided an alternative.
35816 SQLITE_PRIVATE void sqlite3PCacheSetDefault(void){
35817 static const sqlite3_pcache_methods defaultMethods = {
35818 0, /* pArg */
35819 pcache1Init, /* xInit */
35820 pcache1Shutdown, /* xShutdown */
35821 pcache1Create, /* xCreate */
35822 pcache1Cachesize, /* xCachesize */
35823 pcache1Pagecount, /* xPagecount */
35824 pcache1Fetch, /* xFetch */
35825 pcache1Unpin, /* xUnpin */
35826 pcache1Rekey, /* xRekey */
35827 pcache1Truncate, /* xTruncate */
35828 pcache1Destroy /* xDestroy */
35830 sqlite3_config(SQLITE_CONFIG_PCACHE, &defaultMethods);
35833 #ifdef SQLITE_ENABLE_MEMORY_MANAGEMENT
35835 ** This function is called to free superfluous dynamically allocated memory
35836 ** held by the pager system. Memory in use by any SQLite pager allocated
35837 ** by the current thread may be sqlite3_free()ed.
35839 ** nReq is the number of bytes of memory required. Once this much has
35840 ** been released, the function returns. The return value is the total number
35841 ** of bytes of memory released.
35843 SQLITE_PRIVATE int sqlite3PcacheReleaseMemory(int nReq){
35844 int nFree = 0;
35845 assert( sqlite3_mutex_notheld(pcache1.grp.mutex) );
35846 assert( sqlite3_mutex_notheld(pcache1.mutex) );
35847 if( pcache1.pStart==0 ){
35848 PgHdr1 *p;
35849 pcache1EnterMutex(&pcache1.grp);
35850 while( (nReq<0 || nFree<nReq) && ((p=pcache1.grp.pLruTail)!=0) ){
35851 nFree += pcache1MemSize(PGHDR1_TO_PAGE(p));
35852 pcache1PinPage(p);
35853 pcache1RemoveFromHash(p);
35854 pcache1FreePage(p);
35856 pcache1LeaveMutex(&pcache1.grp);
35858 return nFree;
35860 #endif /* SQLITE_ENABLE_MEMORY_MANAGEMENT */
35862 #ifdef SQLITE_TEST
35864 ** This function is used by test procedures to inspect the internal state
35865 ** of the global cache.
35867 SQLITE_PRIVATE void sqlite3PcacheStats(
35868 int *pnCurrent, /* OUT: Total number of pages cached */
35869 int *pnMax, /* OUT: Global maximum cache size */
35870 int *pnMin, /* OUT: Sum of PCache1.nMin for purgeable caches */
35871 int *pnRecyclable /* OUT: Total number of pages available for recycling */
35873 PgHdr1 *p;
35874 int nRecyclable = 0;
35875 for(p=pcache1.grp.pLruHead; p; p=p->pLruNext){
35876 nRecyclable++;
35878 *pnCurrent = pcache1.grp.nCurrentPage;
35879 *pnMax = pcache1.grp.nMaxPage;
35880 *pnMin = pcache1.grp.nMinPage;
35881 *pnRecyclable = nRecyclable;
35883 #endif
35885 /************** End of pcache1.c *********************************************/
35886 /************** Begin file rowset.c ******************************************/
35888 ** 2008 December 3
35890 ** The author disclaims copyright to this source code. In place of
35891 ** a legal notice, here is a blessing:
35893 ** May you do good and not evil.
35894 ** May you find forgiveness for yourself and forgive others.
35895 ** May you share freely, never taking more than you give.
35897 *************************************************************************
35899 ** This module implements an object we call a "RowSet".
35901 ** The RowSet object is a collection of rowids. Rowids
35902 ** are inserted into the RowSet in an arbitrary order. Inserts
35903 ** can be intermixed with tests to see if a given rowid has been
35904 ** previously inserted into the RowSet.
35906 ** After all inserts are finished, it is possible to extract the
35907 ** elements of the RowSet in sorted order. Once this extraction
35908 ** process has started, no new elements may be inserted.
35910 ** Hence, the primitive operations for a RowSet are:
35912 ** CREATE
35913 ** INSERT
35914 ** TEST
35915 ** SMALLEST
35916 ** DESTROY
35918 ** The CREATE and DESTROY primitives are the constructor and destructor,
35919 ** obviously. The INSERT primitive adds a new element to the RowSet.
35920 ** TEST checks to see if an element is already in the RowSet. SMALLEST
35921 ** extracts the least value from the RowSet.
35923 ** The INSERT primitive might allocate additional memory. Memory is
35924 ** allocated in chunks so most INSERTs do no allocation. There is an
35925 ** upper bound on the size of allocated memory. No memory is freed
35926 ** until DESTROY.
35928 ** The TEST primitive includes a "batch" number. The TEST primitive
35929 ** will only see elements that were inserted before the last change
35930 ** in the batch number. In other words, if an INSERT occurs between
35931 ** two TESTs where the TESTs have the same batch nubmer, then the
35932 ** value added by the INSERT will not be visible to the second TEST.
35933 ** The initial batch number is zero, so if the very first TEST contains
35934 ** a non-zero batch number, it will see all prior INSERTs.
35936 ** No INSERTs may occurs after a SMALLEST. An assertion will fail if
35937 ** that is attempted.
35939 ** The cost of an INSERT is roughly constant. (Sometime new memory
35940 ** has to be allocated on an INSERT.) The cost of a TEST with a new
35941 ** batch number is O(NlogN) where N is the number of elements in the RowSet.
35942 ** The cost of a TEST using the same batch number is O(logN). The cost
35943 ** of the first SMALLEST is O(NlogN). Second and subsequent SMALLEST
35944 ** primitives are constant time. The cost of DESTROY is O(N).
35946 ** There is an added cost of O(N) when switching between TEST and
35947 ** SMALLEST primitives.
35952 ** Target size for allocation chunks.
35954 #define ROWSET_ALLOCATION_SIZE 1024
35957 ** The number of rowset entries per allocation chunk.
35959 #define ROWSET_ENTRY_PER_CHUNK \
35960 ((ROWSET_ALLOCATION_SIZE-8)/sizeof(struct RowSetEntry))
35963 ** Each entry in a RowSet is an instance of the following object.
35965 struct RowSetEntry {
35966 i64 v; /* ROWID value for this entry */
35967 struct RowSetEntry *pRight; /* Right subtree (larger entries) or list */
35968 struct RowSetEntry *pLeft; /* Left subtree (smaller entries) */
35972 ** RowSetEntry objects are allocated in large chunks (instances of the
35973 ** following structure) to reduce memory allocation overhead. The
35974 ** chunks are kept on a linked list so that they can be deallocated
35975 ** when the RowSet is destroyed.
35977 struct RowSetChunk {
35978 struct RowSetChunk *pNextChunk; /* Next chunk on list of them all */
35979 struct RowSetEntry aEntry[ROWSET_ENTRY_PER_CHUNK]; /* Allocated entries */
35983 ** A RowSet in an instance of the following structure.
35985 ** A typedef of this structure if found in sqliteInt.h.
35987 struct RowSet {
35988 struct RowSetChunk *pChunk; /* List of all chunk allocations */
35989 sqlite3 *db; /* The database connection */
35990 struct RowSetEntry *pEntry; /* List of entries using pRight */
35991 struct RowSetEntry *pLast; /* Last entry on the pEntry list */
35992 struct RowSetEntry *pFresh; /* Source of new entry objects */
35993 struct RowSetEntry *pTree; /* Binary tree of entries */
35994 u16 nFresh; /* Number of objects on pFresh */
35995 u8 isSorted; /* True if pEntry is sorted */
35996 u8 iBatch; /* Current insert batch */
36000 ** Turn bulk memory into a RowSet object. N bytes of memory
36001 ** are available at pSpace. The db pointer is used as a memory context
36002 ** for any subsequent allocations that need to occur.
36003 ** Return a pointer to the new RowSet object.
36005 ** It must be the case that N is sufficient to make a Rowset. If not
36006 ** an assertion fault occurs.
36008 ** If N is larger than the minimum, use the surplus as an initial
36009 ** allocation of entries available to be filled.
36011 SQLITE_PRIVATE RowSet *sqlite3RowSetInit(sqlite3 *db, void *pSpace, unsigned int N){
36012 RowSet *p;
36013 assert( N >= ROUND8(sizeof(*p)) );
36014 p = pSpace;
36015 p->pChunk = 0;
36016 p->db = db;
36017 p->pEntry = 0;
36018 p->pLast = 0;
36019 p->pTree = 0;
36020 p->pFresh = (struct RowSetEntry*)(ROUND8(sizeof(*p)) + (char*)p);
36021 p->nFresh = (u16)((N - ROUND8(sizeof(*p)))/sizeof(struct RowSetEntry));
36022 p->isSorted = 1;
36023 p->iBatch = 0;
36024 return p;
36028 ** Deallocate all chunks from a RowSet. This frees all memory that
36029 ** the RowSet has allocated over its lifetime. This routine is
36030 ** the destructor for the RowSet.
36032 SQLITE_PRIVATE void sqlite3RowSetClear(RowSet *p){
36033 struct RowSetChunk *pChunk, *pNextChunk;
36034 for(pChunk=p->pChunk; pChunk; pChunk = pNextChunk){
36035 pNextChunk = pChunk->pNextChunk;
36036 sqlite3DbFree(p->db, pChunk);
36038 p->pChunk = 0;
36039 p->nFresh = 0;
36040 p->pEntry = 0;
36041 p->pLast = 0;
36042 p->pTree = 0;
36043 p->isSorted = 1;
36047 ** Insert a new value into a RowSet.
36049 ** The mallocFailed flag of the database connection is set if a
36050 ** memory allocation fails.
36052 SQLITE_PRIVATE void sqlite3RowSetInsert(RowSet *p, i64 rowid){
36053 struct RowSetEntry *pEntry; /* The new entry */
36054 struct RowSetEntry *pLast; /* The last prior entry */
36055 assert( p!=0 );
36056 if( p->nFresh==0 ){
36057 struct RowSetChunk *pNew;
36058 pNew = sqlite3DbMallocRaw(p->db, sizeof(*pNew));
36059 if( pNew==0 ){
36060 return;
36062 pNew->pNextChunk = p->pChunk;
36063 p->pChunk = pNew;
36064 p->pFresh = pNew->aEntry;
36065 p->nFresh = ROWSET_ENTRY_PER_CHUNK;
36067 pEntry = p->pFresh++;
36068 p->nFresh--;
36069 pEntry->v = rowid;
36070 pEntry->pRight = 0;
36071 pLast = p->pLast;
36072 if( pLast ){
36073 if( p->isSorted && rowid<=pLast->v ){
36074 p->isSorted = 0;
36076 pLast->pRight = pEntry;
36077 }else{
36078 assert( p->pEntry==0 ); /* Fires if INSERT after SMALLEST */
36079 p->pEntry = pEntry;
36081 p->pLast = pEntry;
36085 ** Merge two lists of RowSetEntry objects. Remove duplicates.
36087 ** The input lists are connected via pRight pointers and are
36088 ** assumed to each already be in sorted order.
36090 static struct RowSetEntry *rowSetMerge(
36091 struct RowSetEntry *pA, /* First sorted list to be merged */
36092 struct RowSetEntry *pB /* Second sorted list to be merged */
36094 struct RowSetEntry head;
36095 struct RowSetEntry *pTail;
36097 pTail = &head;
36098 while( pA && pB ){
36099 assert( pA->pRight==0 || pA->v<=pA->pRight->v );
36100 assert( pB->pRight==0 || pB->v<=pB->pRight->v );
36101 if( pA->v<pB->v ){
36102 pTail->pRight = pA;
36103 pA = pA->pRight;
36104 pTail = pTail->pRight;
36105 }else if( pB->v<pA->v ){
36106 pTail->pRight = pB;
36107 pB = pB->pRight;
36108 pTail = pTail->pRight;
36109 }else{
36110 pA = pA->pRight;
36113 if( pA ){
36114 assert( pA->pRight==0 || pA->v<=pA->pRight->v );
36115 pTail->pRight = pA;
36116 }else{
36117 assert( pB==0 || pB->pRight==0 || pB->v<=pB->pRight->v );
36118 pTail->pRight = pB;
36120 return head.pRight;
36124 ** Sort all elements on the pEntry list of the RowSet into ascending order.
36126 static void rowSetSort(RowSet *p){
36127 unsigned int i;
36128 struct RowSetEntry *pEntry;
36129 struct RowSetEntry *aBucket[40];
36131 assert( p->isSorted==0 );
36132 memset(aBucket, 0, sizeof(aBucket));
36133 while( p->pEntry ){
36134 pEntry = p->pEntry;
36135 p->pEntry = pEntry->pRight;
36136 pEntry->pRight = 0;
36137 for(i=0; aBucket[i]; i++){
36138 pEntry = rowSetMerge(aBucket[i], pEntry);
36139 aBucket[i] = 0;
36141 aBucket[i] = pEntry;
36143 pEntry = 0;
36144 for(i=0; i<sizeof(aBucket)/sizeof(aBucket[0]); i++){
36145 pEntry = rowSetMerge(pEntry, aBucket[i]);
36147 p->pEntry = pEntry;
36148 p->pLast = 0;
36149 p->isSorted = 1;
36154 ** The input, pIn, is a binary tree (or subtree) of RowSetEntry objects.
36155 ** Convert this tree into a linked list connected by the pRight pointers
36156 ** and return pointers to the first and last elements of the new list.
36158 static void rowSetTreeToList(
36159 struct RowSetEntry *pIn, /* Root of the input tree */
36160 struct RowSetEntry **ppFirst, /* Write head of the output list here */
36161 struct RowSetEntry **ppLast /* Write tail of the output list here */
36163 assert( pIn!=0 );
36164 if( pIn->pLeft ){
36165 struct RowSetEntry *p;
36166 rowSetTreeToList(pIn->pLeft, ppFirst, &p);
36167 p->pRight = pIn;
36168 }else{
36169 *ppFirst = pIn;
36171 if( pIn->pRight ){
36172 rowSetTreeToList(pIn->pRight, &pIn->pRight, ppLast);
36173 }else{
36174 *ppLast = pIn;
36176 assert( (*ppLast)->pRight==0 );
36181 ** Convert a sorted list of elements (connected by pRight) into a binary
36182 ** tree with depth of iDepth. A depth of 1 means the tree contains a single
36183 ** node taken from the head of *ppList. A depth of 2 means a tree with
36184 ** three nodes. And so forth.
36186 ** Use as many entries from the input list as required and update the
36187 ** *ppList to point to the unused elements of the list. If the input
36188 ** list contains too few elements, then construct an incomplete tree
36189 ** and leave *ppList set to NULL.
36191 ** Return a pointer to the root of the constructed binary tree.
36193 static struct RowSetEntry *rowSetNDeepTree(
36194 struct RowSetEntry **ppList,
36195 int iDepth
36197 struct RowSetEntry *p; /* Root of the new tree */
36198 struct RowSetEntry *pLeft; /* Left subtree */
36199 if( *ppList==0 ){
36200 return 0;
36202 if( iDepth==1 ){
36203 p = *ppList;
36204 *ppList = p->pRight;
36205 p->pLeft = p->pRight = 0;
36206 return p;
36208 pLeft = rowSetNDeepTree(ppList, iDepth-1);
36209 p = *ppList;
36210 if( p==0 ){
36211 return pLeft;
36213 p->pLeft = pLeft;
36214 *ppList = p->pRight;
36215 p->pRight = rowSetNDeepTree(ppList, iDepth-1);
36216 return p;
36220 ** Convert a sorted list of elements into a binary tree. Make the tree
36221 ** as deep as it needs to be in order to contain the entire list.
36223 static struct RowSetEntry *rowSetListToTree(struct RowSetEntry *pList){
36224 int iDepth; /* Depth of the tree so far */
36225 struct RowSetEntry *p; /* Current tree root */
36226 struct RowSetEntry *pLeft; /* Left subtree */
36228 assert( pList!=0 );
36229 p = pList;
36230 pList = p->pRight;
36231 p->pLeft = p->pRight = 0;
36232 for(iDepth=1; pList; iDepth++){
36233 pLeft = p;
36234 p = pList;
36235 pList = p->pRight;
36236 p->pLeft = pLeft;
36237 p->pRight = rowSetNDeepTree(&pList, iDepth);
36239 return p;
36243 ** Convert the list in p->pEntry into a sorted list if it is not
36244 ** sorted already. If there is a binary tree on p->pTree, then
36245 ** convert it into a list too and merge it into the p->pEntry list.
36247 static void rowSetToList(RowSet *p){
36248 if( !p->isSorted ){
36249 rowSetSort(p);
36251 if( p->pTree ){
36252 struct RowSetEntry *pHead, *pTail;
36253 rowSetTreeToList(p->pTree, &pHead, &pTail);
36254 p->pTree = 0;
36255 p->pEntry = rowSetMerge(p->pEntry, pHead);
36260 ** Extract the smallest element from the RowSet.
36261 ** Write the element into *pRowid. Return 1 on success. Return
36262 ** 0 if the RowSet is already empty.
36264 ** After this routine has been called, the sqlite3RowSetInsert()
36265 ** routine may not be called again.
36267 SQLITE_PRIVATE int sqlite3RowSetNext(RowSet *p, i64 *pRowid){
36268 rowSetToList(p);
36269 if( p->pEntry ){
36270 *pRowid = p->pEntry->v;
36271 p->pEntry = p->pEntry->pRight;
36272 if( p->pEntry==0 ){
36273 sqlite3RowSetClear(p);
36275 return 1;
36276 }else{
36277 return 0;
36282 ** Check to see if element iRowid was inserted into the the rowset as
36283 ** part of any insert batch prior to iBatch. Return 1 or 0.
36285 SQLITE_PRIVATE int sqlite3RowSetTest(RowSet *pRowSet, u8 iBatch, sqlite3_int64 iRowid){
36286 struct RowSetEntry *p;
36287 if( iBatch!=pRowSet->iBatch ){
36288 if( pRowSet->pEntry ){
36289 rowSetToList(pRowSet);
36290 pRowSet->pTree = rowSetListToTree(pRowSet->pEntry);
36291 pRowSet->pEntry = 0;
36292 pRowSet->pLast = 0;
36294 pRowSet->iBatch = iBatch;
36296 p = pRowSet->pTree;
36297 while( p ){
36298 if( p->v<iRowid ){
36299 p = p->pRight;
36300 }else if( p->v>iRowid ){
36301 p = p->pLeft;
36302 }else{
36303 return 1;
36306 return 0;
36309 /************** End of rowset.c **********************************************/
36310 /************** Begin file pager.c *******************************************/
36312 ** 2001 September 15
36314 ** The author disclaims copyright to this source code. In place of
36315 ** a legal notice, here is a blessing:
36317 ** May you do good and not evil.
36318 ** May you find forgiveness for yourself and forgive others.
36319 ** May you share freely, never taking more than you give.
36321 *************************************************************************
36322 ** This is the implementation of the page cache subsystem or "pager".
36324 ** The pager is used to access a database disk file. It implements
36325 ** atomic commit and rollback through the use of a journal file that
36326 ** is separate from the database file. The pager also implements file
36327 ** locking to prevent two processes from writing the same database
36328 ** file simultaneously, or one process from reading the database while
36329 ** another is writing.
36331 #ifndef SQLITE_OMIT_DISKIO
36332 /************** Include wal.h in the middle of pager.c ***********************/
36333 /************** Begin file wal.h *********************************************/
36335 ** 2010 February 1
36337 ** The author disclaims copyright to this source code. In place of
36338 ** a legal notice, here is a blessing:
36340 ** May you do good and not evil.
36341 ** May you find forgiveness for yourself and forgive others.
36342 ** May you share freely, never taking more than you give.
36344 *************************************************************************
36345 ** This header file defines the interface to the write-ahead logging
36346 ** system. Refer to the comments below and the header comment attached to
36347 ** the implementation of each function in log.c for further details.
36350 #ifndef _WAL_H_
36351 #define _WAL_H_
36354 #ifdef SQLITE_OMIT_WAL
36355 # define sqlite3WalOpen(x,y,z) 0
36356 # define sqlite3WalClose(w,x,y,z) 0
36357 # define sqlite3WalBeginReadTransaction(y,z) 0
36358 # define sqlite3WalEndReadTransaction(z)
36359 # define sqlite3WalRead(v,w,x,y,z) 0
36360 # define sqlite3WalDbsize(y) 0
36361 # define sqlite3WalBeginWriteTransaction(y) 0
36362 # define sqlite3WalEndWriteTransaction(x) 0
36363 # define sqlite3WalUndo(x,y,z) 0
36364 # define sqlite3WalSavepoint(y,z)
36365 # define sqlite3WalSavepointUndo(y,z) 0
36366 # define sqlite3WalFrames(u,v,w,x,y,z) 0
36367 # define sqlite3WalCheckpoint(r,s,t,u,v,w,x,y,z) 0
36368 # define sqlite3WalCallback(z) 0
36369 # define sqlite3WalExclusiveMode(y,z) 0
36370 # define sqlite3WalHeapMemory(z) 0
36371 #else
36373 #define WAL_SAVEPOINT_NDATA 4
36375 /* Connection to a write-ahead log (WAL) file.
36376 ** There is one object of this type for each pager.
36378 typedef struct Wal Wal;
36380 /* Open and close a connection to a write-ahead log. */
36381 SQLITE_PRIVATE int sqlite3WalOpen(sqlite3_vfs*, sqlite3_file*, const char *zName, int, Wal**);
36382 SQLITE_PRIVATE int sqlite3WalClose(Wal *pWal, int sync_flags, int, u8 *);
36384 /* Used by readers to open (lock) and close (unlock) a snapshot. A
36385 ** snapshot is like a read-transaction. It is the state of the database
36386 ** at an instant in time. sqlite3WalOpenSnapshot gets a read lock and
36387 ** preserves the current state even if the other threads or processes
36388 ** write to or checkpoint the WAL. sqlite3WalCloseSnapshot() closes the
36389 ** transaction and releases the lock.
36391 SQLITE_PRIVATE int sqlite3WalBeginReadTransaction(Wal *pWal, int *);
36392 SQLITE_PRIVATE void sqlite3WalEndReadTransaction(Wal *pWal);
36394 /* Read a page from the write-ahead log, if it is present. */
36395 SQLITE_PRIVATE int sqlite3WalRead(Wal *pWal, Pgno pgno, int *pInWal, int nOut, u8 *pOut);
36397 /* If the WAL is not empty, return the size of the database. */
36398 SQLITE_PRIVATE Pgno sqlite3WalDbsize(Wal *pWal);
36400 /* Obtain or release the WRITER lock. */
36401 SQLITE_PRIVATE int sqlite3WalBeginWriteTransaction(Wal *pWal);
36402 SQLITE_PRIVATE int sqlite3WalEndWriteTransaction(Wal *pWal);
36404 /* Undo any frames written (but not committed) to the log */
36405 SQLITE_PRIVATE int sqlite3WalUndo(Wal *pWal, int (*xUndo)(void *, Pgno), void *pUndoCtx);
36407 /* Return an integer that records the current (uncommitted) write
36408 ** position in the WAL */
36409 SQLITE_PRIVATE void sqlite3WalSavepoint(Wal *pWal, u32 *aWalData);
36411 /* Move the write position of the WAL back to iFrame. Called in
36412 ** response to a ROLLBACK TO command. */
36413 SQLITE_PRIVATE int sqlite3WalSavepointUndo(Wal *pWal, u32 *aWalData);
36415 /* Write a frame or frames to the log. */
36416 SQLITE_PRIVATE int sqlite3WalFrames(Wal *pWal, int, PgHdr *, Pgno, int, int);
36418 /* Copy pages from the log to the database file */
36419 SQLITE_PRIVATE int sqlite3WalCheckpoint(
36420 Wal *pWal, /* Write-ahead log connection */
36421 int eMode, /* One of PASSIVE, FULL and RESTART */
36422 int (*xBusy)(void*), /* Function to call when busy */
36423 void *pBusyArg, /* Context argument for xBusyHandler */
36424 int sync_flags, /* Flags to sync db file with (or 0) */
36425 int nBuf, /* Size of buffer nBuf */
36426 u8 *zBuf, /* Temporary buffer to use */
36427 int *pnLog, /* OUT: Number of frames in WAL */
36428 int *pnCkpt /* OUT: Number of backfilled frames in WAL */
36431 /* Return the value to pass to a sqlite3_wal_hook callback, the
36432 ** number of frames in the WAL at the point of the last commit since
36433 ** sqlite3WalCallback() was called. If no commits have occurred since
36434 ** the last call, then return 0.
36436 SQLITE_PRIVATE int sqlite3WalCallback(Wal *pWal);
36438 /* Tell the wal layer that an EXCLUSIVE lock has been obtained (or released)
36439 ** by the pager layer on the database file.
36441 SQLITE_PRIVATE int sqlite3WalExclusiveMode(Wal *pWal, int op);
36443 /* Return true if the argument is non-NULL and the WAL module is using
36444 ** heap-memory for the wal-index. Otherwise, if the argument is NULL or the
36445 ** WAL module is using shared-memory, return false.
36447 SQLITE_PRIVATE int sqlite3WalHeapMemory(Wal *pWal);
36449 #endif /* ifndef SQLITE_OMIT_WAL */
36450 #endif /* _WAL_H_ */
36452 /************** End of wal.h *************************************************/
36453 /************** Continuing where we left off in pager.c **********************/
36456 /******************* NOTES ON THE DESIGN OF THE PAGER ************************
36458 ** This comment block describes invariants that hold when using a rollback
36459 ** journal. These invariants do not apply for journal_mode=WAL,
36460 ** journal_mode=MEMORY, or journal_mode=OFF.
36462 ** Within this comment block, a page is deemed to have been synced
36463 ** automatically as soon as it is written when PRAGMA synchronous=OFF.
36464 ** Otherwise, the page is not synced until the xSync method of the VFS
36465 ** is called successfully on the file containing the page.
36467 ** Definition: A page of the database file is said to be "overwriteable" if
36468 ** one or more of the following are true about the page:
36470 ** (a) The original content of the page as it was at the beginning of
36471 ** the transaction has been written into the rollback journal and
36472 ** synced.
36474 ** (b) The page was a freelist leaf page at the start of the transaction.
36476 ** (c) The page number is greater than the largest page that existed in
36477 ** the database file at the start of the transaction.
36479 ** (1) A page of the database file is never overwritten unless one of the
36480 ** following are true:
36482 ** (a) The page and all other pages on the same sector are overwriteable.
36484 ** (b) The atomic page write optimization is enabled, and the entire
36485 ** transaction other than the update of the transaction sequence
36486 ** number consists of a single page change.
36488 ** (2) The content of a page written into the rollback journal exactly matches
36489 ** both the content in the database when the rollback journal was written
36490 ** and the content in the database at the beginning of the current
36491 ** transaction.
36493 ** (3) Writes to the database file are an integer multiple of the page size
36494 ** in length and are aligned on a page boundary.
36496 ** (4) Reads from the database file are either aligned on a page boundary and
36497 ** an integer multiple of the page size in length or are taken from the
36498 ** first 100 bytes of the database file.
36500 ** (5) All writes to the database file are synced prior to the rollback journal
36501 ** being deleted, truncated, or zeroed.
36503 ** (6) If a master journal file is used, then all writes to the database file
36504 ** are synced prior to the master journal being deleted.
36506 ** Definition: Two databases (or the same database at two points it time)
36507 ** are said to be "logically equivalent" if they give the same answer to
36508 ** all queries. Note in particular the the content of freelist leaf
36509 ** pages can be changed arbitarily without effecting the logical equivalence
36510 ** of the database.
36512 ** (7) At any time, if any subset, including the empty set and the total set,
36513 ** of the unsynced changes to a rollback journal are removed and the
36514 ** journal is rolled back, the resulting database file will be logical
36515 ** equivalent to the database file at the beginning of the transaction.
36517 ** (8) When a transaction is rolled back, the xTruncate method of the VFS
36518 ** is called to restore the database file to the same size it was at
36519 ** the beginning of the transaction. (In some VFSes, the xTruncate
36520 ** method is a no-op, but that does not change the fact the SQLite will
36521 ** invoke it.)
36523 ** (9) Whenever the database file is modified, at least one bit in the range
36524 ** of bytes from 24 through 39 inclusive will be changed prior to releasing
36525 ** the EXCLUSIVE lock, thus signaling other connections on the same
36526 ** database to flush their caches.
36528 ** (10) The pattern of bits in bytes 24 through 39 shall not repeat in less
36529 ** than one billion transactions.
36531 ** (11) A database file is well-formed at the beginning and at the conclusion
36532 ** of every transaction.
36534 ** (12) An EXCLUSIVE lock is held on the database file when writing to
36535 ** the database file.
36537 ** (13) A SHARED lock is held on the database file while reading any
36538 ** content out of the database file.
36540 ******************************************************************************/
36543 ** Macros for troubleshooting. Normally turned off
36545 #if 0
36546 int sqlite3PagerTrace=1; /* True to enable tracing */
36547 #define sqlite3DebugPrintf printf
36548 #define PAGERTRACE(X) if( sqlite3PagerTrace ){ sqlite3DebugPrintf X; }
36549 #else
36550 #define PAGERTRACE(X)
36551 #endif
36554 ** The following two macros are used within the PAGERTRACE() macros above
36555 ** to print out file-descriptors.
36557 ** PAGERID() takes a pointer to a Pager struct as its argument. The
36558 ** associated file-descriptor is returned. FILEHANDLEID() takes an sqlite3_file
36559 ** struct as its argument.
36561 #define PAGERID(p) ((int)(p->fd))
36562 #define FILEHANDLEID(fd) ((int)fd)
36565 ** The Pager.eState variable stores the current 'state' of a pager. A
36566 ** pager may be in any one of the seven states shown in the following
36567 ** state diagram.
36569 ** OPEN <------+------+
36570 ** | | |
36571 ** V | |
36572 ** +---------> READER-------+ |
36573 ** | | |
36574 ** | V |
36575 ** |<-------WRITER_LOCKED------> ERROR
36576 ** | | ^
36577 ** | V |
36578 ** |<------WRITER_CACHEMOD-------->|
36579 ** | | |
36580 ** | V |
36581 ** |<-------WRITER_DBMOD---------->|
36582 ** | | |
36583 ** | V |
36584 ** +<------WRITER_FINISHED-------->+
36587 ** List of state transitions and the C [function] that performs each:
36589 ** OPEN -> READER [sqlite3PagerSharedLock]
36590 ** READER -> OPEN [pager_unlock]
36592 ** READER -> WRITER_LOCKED [sqlite3PagerBegin]
36593 ** WRITER_LOCKED -> WRITER_CACHEMOD [pager_open_journal]
36594 ** WRITER_CACHEMOD -> WRITER_DBMOD [syncJournal]
36595 ** WRITER_DBMOD -> WRITER_FINISHED [sqlite3PagerCommitPhaseOne]
36596 ** WRITER_*** -> READER [pager_end_transaction]
36598 ** WRITER_*** -> ERROR [pager_error]
36599 ** ERROR -> OPEN [pager_unlock]
36602 ** OPEN:
36604 ** The pager starts up in this state. Nothing is guaranteed in this
36605 ** state - the file may or may not be locked and the database size is
36606 ** unknown. The database may not be read or written.
36608 ** * No read or write transaction is active.
36609 ** * Any lock, or no lock at all, may be held on the database file.
36610 ** * The dbSize, dbOrigSize and dbFileSize variables may not be trusted.
36612 ** READER:
36614 ** In this state all the requirements for reading the database in
36615 ** rollback (non-WAL) mode are met. Unless the pager is (or recently
36616 ** was) in exclusive-locking mode, a user-level read transaction is
36617 ** open. The database size is known in this state.
36619 ** A connection running with locking_mode=normal enters this state when
36620 ** it opens a read-transaction on the database and returns to state
36621 ** OPEN after the read-transaction is completed. However a connection
36622 ** running in locking_mode=exclusive (including temp databases) remains in
36623 ** this state even after the read-transaction is closed. The only way
36624 ** a locking_mode=exclusive connection can transition from READER to OPEN
36625 ** is via the ERROR state (see below).
36627 ** * A read transaction may be active (but a write-transaction cannot).
36628 ** * A SHARED or greater lock is held on the database file.
36629 ** * The dbSize variable may be trusted (even if a user-level read
36630 ** transaction is not active). The dbOrigSize and dbFileSize variables
36631 ** may not be trusted at this point.
36632 ** * If the database is a WAL database, then the WAL connection is open.
36633 ** * Even if a read-transaction is not open, it is guaranteed that
36634 ** there is no hot-journal in the file-system.
36636 ** WRITER_LOCKED:
36638 ** The pager moves to this state from READER when a write-transaction
36639 ** is first opened on the database. In WRITER_LOCKED state, all locks
36640 ** required to start a write-transaction are held, but no actual
36641 ** modifications to the cache or database have taken place.
36643 ** In rollback mode, a RESERVED or (if the transaction was opened with
36644 ** BEGIN EXCLUSIVE) EXCLUSIVE lock is obtained on the database file when
36645 ** moving to this state, but the journal file is not written to or opened
36646 ** to in this state. If the transaction is committed or rolled back while
36647 ** in WRITER_LOCKED state, all that is required is to unlock the database
36648 ** file.
36650 ** IN WAL mode, WalBeginWriteTransaction() is called to lock the log file.
36651 ** If the connection is running with locking_mode=exclusive, an attempt
36652 ** is made to obtain an EXCLUSIVE lock on the database file.
36654 ** * A write transaction is active.
36655 ** * If the connection is open in rollback-mode, a RESERVED or greater
36656 ** lock is held on the database file.
36657 ** * If the connection is open in WAL-mode, a WAL write transaction
36658 ** is open (i.e. sqlite3WalBeginWriteTransaction() has been successfully
36659 ** called).
36660 ** * The dbSize, dbOrigSize and dbFileSize variables are all valid.
36661 ** * The contents of the pager cache have not been modified.
36662 ** * The journal file may or may not be open.
36663 ** * Nothing (not even the first header) has been written to the journal.
36665 ** WRITER_CACHEMOD:
36667 ** A pager moves from WRITER_LOCKED state to this state when a page is
36668 ** first modified by the upper layer. In rollback mode the journal file
36669 ** is opened (if it is not already open) and a header written to the
36670 ** start of it. The database file on disk has not been modified.
36672 ** * A write transaction is active.
36673 ** * A RESERVED or greater lock is held on the database file.
36674 ** * The journal file is open and the first header has been written
36675 ** to it, but the header has not been synced to disk.
36676 ** * The contents of the page cache have been modified.
36678 ** WRITER_DBMOD:
36680 ** The pager transitions from WRITER_CACHEMOD into WRITER_DBMOD state
36681 ** when it modifies the contents of the database file. WAL connections
36682 ** never enter this state (since they do not modify the database file,
36683 ** just the log file).
36685 ** * A write transaction is active.
36686 ** * An EXCLUSIVE or greater lock is held on the database file.
36687 ** * The journal file is open and the first header has been written
36688 ** and synced to disk.
36689 ** * The contents of the page cache have been modified (and possibly
36690 ** written to disk).
36692 ** WRITER_FINISHED:
36694 ** It is not possible for a WAL connection to enter this state.
36696 ** A rollback-mode pager changes to WRITER_FINISHED state from WRITER_DBMOD
36697 ** state after the entire transaction has been successfully written into the
36698 ** database file. In this state the transaction may be committed simply
36699 ** by finalizing the journal file. Once in WRITER_FINISHED state, it is
36700 ** not possible to modify the database further. At this point, the upper
36701 ** layer must either commit or rollback the transaction.
36703 ** * A write transaction is active.
36704 ** * An EXCLUSIVE or greater lock is held on the database file.
36705 ** * All writing and syncing of journal and database data has finished.
36706 ** If no error occured, all that remains is to finalize the journal to
36707 ** commit the transaction. If an error did occur, the caller will need
36708 ** to rollback the transaction.
36710 ** ERROR:
36712 ** The ERROR state is entered when an IO or disk-full error (including
36713 ** SQLITE_IOERR_NOMEM) occurs at a point in the code that makes it
36714 ** difficult to be sure that the in-memory pager state (cache contents,
36715 ** db size etc.) are consistent with the contents of the file-system.
36717 ** Temporary pager files may enter the ERROR state, but in-memory pagers
36718 ** cannot.
36720 ** For example, if an IO error occurs while performing a rollback,
36721 ** the contents of the page-cache may be left in an inconsistent state.
36722 ** At this point it would be dangerous to change back to READER state
36723 ** (as usually happens after a rollback). Any subsequent readers might
36724 ** report database corruption (due to the inconsistent cache), and if
36725 ** they upgrade to writers, they may inadvertently corrupt the database
36726 ** file. To avoid this hazard, the pager switches into the ERROR state
36727 ** instead of READER following such an error.
36729 ** Once it has entered the ERROR state, any attempt to use the pager
36730 ** to read or write data returns an error. Eventually, once all
36731 ** outstanding transactions have been abandoned, the pager is able to
36732 ** transition back to OPEN state, discarding the contents of the
36733 ** page-cache and any other in-memory state at the same time. Everything
36734 ** is reloaded from disk (and, if necessary, hot-journal rollback peformed)
36735 ** when a read-transaction is next opened on the pager (transitioning
36736 ** the pager into READER state). At that point the system has recovered
36737 ** from the error.
36739 ** Specifically, the pager jumps into the ERROR state if:
36741 ** 1. An error occurs while attempting a rollback. This happens in
36742 ** function sqlite3PagerRollback().
36744 ** 2. An error occurs while attempting to finalize a journal file
36745 ** following a commit in function sqlite3PagerCommitPhaseTwo().
36747 ** 3. An error occurs while attempting to write to the journal or
36748 ** database file in function pagerStress() in order to free up
36749 ** memory.
36751 ** In other cases, the error is returned to the b-tree layer. The b-tree
36752 ** layer then attempts a rollback operation. If the error condition
36753 ** persists, the pager enters the ERROR state via condition (1) above.
36755 ** Condition (3) is necessary because it can be triggered by a read-only
36756 ** statement executed within a transaction. In this case, if the error
36757 ** code were simply returned to the user, the b-tree layer would not
36758 ** automatically attempt a rollback, as it assumes that an error in a
36759 ** read-only statement cannot leave the pager in an internally inconsistent
36760 ** state.
36762 ** * The Pager.errCode variable is set to something other than SQLITE_OK.
36763 ** * There are one or more outstanding references to pages (after the
36764 ** last reference is dropped the pager should move back to OPEN state).
36765 ** * The pager is not an in-memory pager.
36768 ** Notes:
36770 ** * A pager is never in WRITER_DBMOD or WRITER_FINISHED state if the
36771 ** connection is open in WAL mode. A WAL connection is always in one
36772 ** of the first four states.
36774 ** * Normally, a connection open in exclusive mode is never in PAGER_OPEN
36775 ** state. There are two exceptions: immediately after exclusive-mode has
36776 ** been turned on (and before any read or write transactions are
36777 ** executed), and when the pager is leaving the "error state".
36779 ** * See also: assert_pager_state().
36781 #define PAGER_OPEN 0
36782 #define PAGER_READER 1
36783 #define PAGER_WRITER_LOCKED 2
36784 #define PAGER_WRITER_CACHEMOD 3
36785 #define PAGER_WRITER_DBMOD 4
36786 #define PAGER_WRITER_FINISHED 5
36787 #define PAGER_ERROR 6
36790 ** The Pager.eLock variable is almost always set to one of the
36791 ** following locking-states, according to the lock currently held on
36792 ** the database file: NO_LOCK, SHARED_LOCK, RESERVED_LOCK or EXCLUSIVE_LOCK.
36793 ** This variable is kept up to date as locks are taken and released by
36794 ** the pagerLockDb() and pagerUnlockDb() wrappers.
36796 ** If the VFS xLock() or xUnlock() returns an error other than SQLITE_BUSY
36797 ** (i.e. one of the SQLITE_IOERR subtypes), it is not clear whether or not
36798 ** the operation was successful. In these circumstances pagerLockDb() and
36799 ** pagerUnlockDb() take a conservative approach - eLock is always updated
36800 ** when unlocking the file, and only updated when locking the file if the
36801 ** VFS call is successful. This way, the Pager.eLock variable may be set
36802 ** to a less exclusive (lower) value than the lock that is actually held
36803 ** at the system level, but it is never set to a more exclusive value.
36805 ** This is usually safe. If an xUnlock fails or appears to fail, there may
36806 ** be a few redundant xLock() calls or a lock may be held for longer than
36807 ** required, but nothing really goes wrong.
36809 ** The exception is when the database file is unlocked as the pager moves
36810 ** from ERROR to OPEN state. At this point there may be a hot-journal file
36811 ** in the file-system that needs to be rolled back (as part of a OPEN->SHARED
36812 ** transition, by the same pager or any other). If the call to xUnlock()
36813 ** fails at this point and the pager is left holding an EXCLUSIVE lock, this
36814 ** can confuse the call to xCheckReservedLock() call made later as part
36815 ** of hot-journal detection.
36817 ** xCheckReservedLock() is defined as returning true "if there is a RESERVED
36818 ** lock held by this process or any others". So xCheckReservedLock may
36819 ** return true because the caller itself is holding an EXCLUSIVE lock (but
36820 ** doesn't know it because of a previous error in xUnlock). If this happens
36821 ** a hot-journal may be mistaken for a journal being created by an active
36822 ** transaction in another process, causing SQLite to read from the database
36823 ** without rolling it back.
36825 ** To work around this, if a call to xUnlock() fails when unlocking the
36826 ** database in the ERROR state, Pager.eLock is set to UNKNOWN_LOCK. It
36827 ** is only changed back to a real locking state after a successful call
36828 ** to xLock(EXCLUSIVE). Also, the code to do the OPEN->SHARED state transition
36829 ** omits the check for a hot-journal if Pager.eLock is set to UNKNOWN_LOCK
36830 ** lock. Instead, it assumes a hot-journal exists and obtains an EXCLUSIVE
36831 ** lock on the database file before attempting to roll it back. See function
36832 ** PagerSharedLock() for more detail.
36834 ** Pager.eLock may only be set to UNKNOWN_LOCK when the pager is in
36835 ** PAGER_OPEN state.
36837 #define UNKNOWN_LOCK (EXCLUSIVE_LOCK+1)
36840 ** A macro used for invoking the codec if there is one
36842 #ifdef SQLITE_HAS_CODEC
36843 # define CODEC1(P,D,N,X,E) \
36844 if( P->xCodec && P->xCodec(P->pCodec,D,N,X)==0 ){ E; }
36845 # define CODEC2(P,D,N,X,E,O) \
36846 if( P->xCodec==0 ){ O=(char*)D; }else \
36847 if( (O=(char*)(P->xCodec(P->pCodec,D,N,X)))==0 ){ E; }
36848 #else
36849 # define CODEC1(P,D,N,X,E) /* NO-OP */
36850 # define CODEC2(P,D,N,X,E,O) O=(char*)D
36851 #endif
36854 ** The maximum allowed sector size. 64KiB. If the xSectorsize() method
36855 ** returns a value larger than this, then MAX_SECTOR_SIZE is used instead.
36856 ** This could conceivably cause corruption following a power failure on
36857 ** such a system. This is currently an undocumented limit.
36859 #define MAX_SECTOR_SIZE 0x10000
36862 ** An instance of the following structure is allocated for each active
36863 ** savepoint and statement transaction in the system. All such structures
36864 ** are stored in the Pager.aSavepoint[] array, which is allocated and
36865 ** resized using sqlite3Realloc().
36867 ** When a savepoint is created, the PagerSavepoint.iHdrOffset field is
36868 ** set to 0. If a journal-header is written into the main journal while
36869 ** the savepoint is active, then iHdrOffset is set to the byte offset
36870 ** immediately following the last journal record written into the main
36871 ** journal before the journal-header. This is required during savepoint
36872 ** rollback (see pagerPlaybackSavepoint()).
36874 typedef struct PagerSavepoint PagerSavepoint;
36875 struct PagerSavepoint {
36876 i64 iOffset; /* Starting offset in main journal */
36877 i64 iHdrOffset; /* See above */
36878 Bitvec *pInSavepoint; /* Set of pages in this savepoint */
36879 Pgno nOrig; /* Original number of pages in file */
36880 Pgno iSubRec; /* Index of first record in sub-journal */
36881 #ifndef SQLITE_OMIT_WAL
36882 u32 aWalData[WAL_SAVEPOINT_NDATA]; /* WAL savepoint context */
36883 #endif
36887 ** A open page cache is an instance of struct Pager. A description of
36888 ** some of the more important member variables follows:
36890 ** eState
36892 ** The current 'state' of the pager object. See the comment and state
36893 ** diagram above for a description of the pager state.
36895 ** eLock
36897 ** For a real on-disk database, the current lock held on the database file -
36898 ** NO_LOCK, SHARED_LOCK, RESERVED_LOCK or EXCLUSIVE_LOCK.
36900 ** For a temporary or in-memory database (neither of which require any
36901 ** locks), this variable is always set to EXCLUSIVE_LOCK. Since such
36902 ** databases always have Pager.exclusiveMode==1, this tricks the pager
36903 ** logic into thinking that it already has all the locks it will ever
36904 ** need (and no reason to release them).
36906 ** In some (obscure) circumstances, this variable may also be set to
36907 ** UNKNOWN_LOCK. See the comment above the #define of UNKNOWN_LOCK for
36908 ** details.
36910 ** changeCountDone
36912 ** This boolean variable is used to make sure that the change-counter
36913 ** (the 4-byte header field at byte offset 24 of the database file) is
36914 ** not updated more often than necessary.
36916 ** It is set to true when the change-counter field is updated, which
36917 ** can only happen if an exclusive lock is held on the database file.
36918 ** It is cleared (set to false) whenever an exclusive lock is
36919 ** relinquished on the database file. Each time a transaction is committed,
36920 ** The changeCountDone flag is inspected. If it is true, the work of
36921 ** updating the change-counter is omitted for the current transaction.
36923 ** This mechanism means that when running in exclusive mode, a connection
36924 ** need only update the change-counter once, for the first transaction
36925 ** committed.
36927 ** setMaster
36929 ** When PagerCommitPhaseOne() is called to commit a transaction, it may
36930 ** (or may not) specify a master-journal name to be written into the
36931 ** journal file before it is synced to disk.
36933 ** Whether or not a journal file contains a master-journal pointer affects
36934 ** the way in which the journal file is finalized after the transaction is
36935 ** committed or rolled back when running in "journal_mode=PERSIST" mode.
36936 ** If a journal file does not contain a master-journal pointer, it is
36937 ** finalized by overwriting the first journal header with zeroes. If
36938 ** it does contain a master-journal pointer the journal file is finalized
36939 ** by truncating it to zero bytes, just as if the connection were
36940 ** running in "journal_mode=truncate" mode.
36942 ** Journal files that contain master journal pointers cannot be finalized
36943 ** simply by overwriting the first journal-header with zeroes, as the
36944 ** master journal pointer could interfere with hot-journal rollback of any
36945 ** subsequently interrupted transaction that reuses the journal file.
36947 ** The flag is cleared as soon as the journal file is finalized (either
36948 ** by PagerCommitPhaseTwo or PagerRollback). If an IO error prevents the
36949 ** journal file from being successfully finalized, the setMaster flag
36950 ** is cleared anyway (and the pager will move to ERROR state).
36952 ** doNotSpill, doNotSyncSpill
36954 ** These two boolean variables control the behaviour of cache-spills
36955 ** (calls made by the pcache module to the pagerStress() routine to
36956 ** write cached data to the file-system in order to free up memory).
36958 ** When doNotSpill is non-zero, writing to the database from pagerStress()
36959 ** is disabled altogether. This is done in a very obscure case that
36960 ** comes up during savepoint rollback that requires the pcache module
36961 ** to allocate a new page to prevent the journal file from being written
36962 ** while it is being traversed by code in pager_playback().
36964 ** If doNotSyncSpill is non-zero, writing to the database from pagerStress()
36965 ** is permitted, but syncing the journal file is not. This flag is set
36966 ** by sqlite3PagerWrite() when the file-system sector-size is larger than
36967 ** the database page-size in order to prevent a journal sync from happening
36968 ** in between the journalling of two pages on the same sector.
36970 ** subjInMemory
36972 ** This is a boolean variable. If true, then any required sub-journal
36973 ** is opened as an in-memory journal file. If false, then in-memory
36974 ** sub-journals are only used for in-memory pager files.
36976 ** This variable is updated by the upper layer each time a new
36977 ** write-transaction is opened.
36979 ** dbSize, dbOrigSize, dbFileSize
36981 ** Variable dbSize is set to the number of pages in the database file.
36982 ** It is valid in PAGER_READER and higher states (all states except for
36983 ** OPEN and ERROR).
36985 ** dbSize is set based on the size of the database file, which may be
36986 ** larger than the size of the database (the value stored at offset
36987 ** 28 of the database header by the btree). If the size of the file
36988 ** is not an integer multiple of the page-size, the value stored in
36989 ** dbSize is rounded down (i.e. a 5KB file with 2K page-size has dbSize==2).
36990 ** Except, any file that is greater than 0 bytes in size is considered
36991 ** to have at least one page. (i.e. a 1KB file with 2K page-size leads
36992 ** to dbSize==1).
36994 ** During a write-transaction, if pages with page-numbers greater than
36995 ** dbSize are modified in the cache, dbSize is updated accordingly.
36996 ** Similarly, if the database is truncated using PagerTruncateImage(),
36997 ** dbSize is updated.
36999 ** Variables dbOrigSize and dbFileSize are valid in states
37000 ** PAGER_WRITER_LOCKED and higher. dbOrigSize is a copy of the dbSize
37001 ** variable at the start of the transaction. It is used during rollback,
37002 ** and to determine whether or not pages need to be journalled before
37003 ** being modified.
37005 ** Throughout a write-transaction, dbFileSize contains the size of
37006 ** the file on disk in pages. It is set to a copy of dbSize when the
37007 ** write-transaction is first opened, and updated when VFS calls are made
37008 ** to write or truncate the database file on disk.
37010 ** The only reason the dbFileSize variable is required is to suppress
37011 ** unnecessary calls to xTruncate() after committing a transaction. If,
37012 ** when a transaction is committed, the dbFileSize variable indicates
37013 ** that the database file is larger than the database image (Pager.dbSize),
37014 ** pager_truncate() is called. The pager_truncate() call uses xFilesize()
37015 ** to measure the database file on disk, and then truncates it if required.
37016 ** dbFileSize is not used when rolling back a transaction. In this case
37017 ** pager_truncate() is called unconditionally (which means there may be
37018 ** a call to xFilesize() that is not strictly required). In either case,
37019 ** pager_truncate() may cause the file to become smaller or larger.
37021 ** dbHintSize
37023 ** The dbHintSize variable is used to limit the number of calls made to
37024 ** the VFS xFileControl(FCNTL_SIZE_HINT) method.
37026 ** dbHintSize is set to a copy of the dbSize variable when a
37027 ** write-transaction is opened (at the same time as dbFileSize and
37028 ** dbOrigSize). If the xFileControl(FCNTL_SIZE_HINT) method is called,
37029 ** dbHintSize is increased to the number of pages that correspond to the
37030 ** size-hint passed to the method call. See pager_write_pagelist() for
37031 ** details.
37033 ** errCode
37035 ** The Pager.errCode variable is only ever used in PAGER_ERROR state. It
37036 ** is set to zero in all other states. In PAGER_ERROR state, Pager.errCode
37037 ** is always set to SQLITE_FULL, SQLITE_IOERR or one of the SQLITE_IOERR_XXX
37038 ** sub-codes.
37040 struct Pager {
37041 sqlite3_vfs *pVfs; /* OS functions to use for IO */
37042 u8 exclusiveMode; /* Boolean. True if locking_mode==EXCLUSIVE */
37043 u8 journalMode; /* One of the PAGER_JOURNALMODE_* values */
37044 u8 useJournal; /* Use a rollback journal on this file */
37045 u8 noReadlock; /* Do not bother to obtain readlocks */
37046 u8 noSync; /* Do not sync the journal if true */
37047 u8 fullSync; /* Do extra syncs of the journal for robustness */
37048 u8 ckptSyncFlags; /* SYNC_NORMAL or SYNC_FULL for checkpoint */
37049 u8 syncFlags; /* SYNC_NORMAL or SYNC_FULL otherwise */
37050 u8 tempFile; /* zFilename is a temporary file */
37051 u8 readOnly; /* True for a read-only database */
37052 u8 memDb; /* True to inhibit all file I/O */
37054 /**************************************************************************
37055 ** The following block contains those class members that change during
37056 ** routine opertion. Class members not in this block are either fixed
37057 ** when the pager is first created or else only change when there is a
37058 ** significant mode change (such as changing the page_size, locking_mode,
37059 ** or the journal_mode). From another view, these class members describe
37060 ** the "state" of the pager, while other class members describe the
37061 ** "configuration" of the pager.
37063 u8 eState; /* Pager state (OPEN, READER, WRITER_LOCKED..) */
37064 u8 eLock; /* Current lock held on database file */
37065 u8 changeCountDone; /* Set after incrementing the change-counter */
37066 u8 setMaster; /* True if a m-j name has been written to jrnl */
37067 u8 doNotSpill; /* Do not spill the cache when non-zero */
37068 u8 doNotSyncSpill; /* Do not do a spill that requires jrnl sync */
37069 u8 subjInMemory; /* True to use in-memory sub-journals */
37070 Pgno dbSize; /* Number of pages in the database */
37071 Pgno dbOrigSize; /* dbSize before the current transaction */
37072 Pgno dbFileSize; /* Number of pages in the database file */
37073 Pgno dbHintSize; /* Value passed to FCNTL_SIZE_HINT call */
37074 int errCode; /* One of several kinds of errors */
37075 int nRec; /* Pages journalled since last j-header written */
37076 u32 cksumInit; /* Quasi-random value added to every checksum */
37077 u32 nSubRec; /* Number of records written to sub-journal */
37078 Bitvec *pInJournal; /* One bit for each page in the database file */
37079 sqlite3_file *fd; /* File descriptor for database */
37080 sqlite3_file *jfd; /* File descriptor for main journal */
37081 sqlite3_file *sjfd; /* File descriptor for sub-journal */
37082 i64 journalOff; /* Current write offset in the journal file */
37083 i64 journalHdr; /* Byte offset to previous journal header */
37084 sqlite3_backup *pBackup; /* Pointer to list of ongoing backup processes */
37085 PagerSavepoint *aSavepoint; /* Array of active savepoints */
37086 int nSavepoint; /* Number of elements in aSavepoint[] */
37087 char dbFileVers[16]; /* Changes whenever database file changes */
37089 ** End of the routinely-changing class members
37090 ***************************************************************************/
37092 u16 nExtra; /* Add this many bytes to each in-memory page */
37093 i16 nReserve; /* Number of unused bytes at end of each page */
37094 u32 vfsFlags; /* Flags for sqlite3_vfs.xOpen() */
37095 u32 sectorSize; /* Assumed sector size during rollback */
37096 int pageSize; /* Number of bytes in a page */
37097 Pgno mxPgno; /* Maximum allowed size of the database */
37098 i64 journalSizeLimit; /* Size limit for persistent journal files */
37099 char *zFilename; /* Name of the database file */
37100 char *zJournal; /* Name of the journal file */
37101 int (*xBusyHandler)(void*); /* Function to call when busy */
37102 void *pBusyHandlerArg; /* Context argument for xBusyHandler */
37103 #ifdef SQLITE_TEST
37104 int nHit, nMiss; /* Cache hits and missing */
37105 int nRead, nWrite; /* Database pages read/written */
37106 #endif
37107 void (*xReiniter)(DbPage*); /* Call this routine when reloading pages */
37108 #ifdef SQLITE_HAS_CODEC
37109 void *(*xCodec)(void*,void*,Pgno,int); /* Routine for en/decoding data */
37110 void (*xCodecSizeChng)(void*,int,int); /* Notify of page size changes */
37111 void (*xCodecFree)(void*); /* Destructor for the codec */
37112 void *pCodec; /* First argument to xCodec... methods */
37113 #endif
37114 char *pTmpSpace; /* Pager.pageSize bytes of space for tmp use */
37115 PCache *pPCache; /* Pointer to page cache object */
37116 #ifndef SQLITE_OMIT_WAL
37117 Wal *pWal; /* Write-ahead log used by "journal_mode=wal" */
37118 char *zWal; /* File name for write-ahead log */
37119 #endif
37123 ** The following global variables hold counters used for
37124 ** testing purposes only. These variables do not exist in
37125 ** a non-testing build. These variables are not thread-safe.
37127 #ifdef SQLITE_TEST
37128 SQLITE_API int sqlite3_pager_readdb_count = 0; /* Number of full pages read from DB */
37129 SQLITE_API int sqlite3_pager_writedb_count = 0; /* Number of full pages written to DB */
37130 SQLITE_API int sqlite3_pager_writej_count = 0; /* Number of pages written to journal */
37131 # define PAGER_INCR(v) v++
37132 #else
37133 # define PAGER_INCR(v)
37134 #endif
37139 ** Journal files begin with the following magic string. The data
37140 ** was obtained from /dev/random. It is used only as a sanity check.
37142 ** Since version 2.8.0, the journal format contains additional sanity
37143 ** checking information. If the power fails while the journal is being
37144 ** written, semi-random garbage data might appear in the journal
37145 ** file after power is restored. If an attempt is then made
37146 ** to roll the journal back, the database could be corrupted. The additional
37147 ** sanity checking data is an attempt to discover the garbage in the
37148 ** journal and ignore it.
37150 ** The sanity checking information for the new journal format consists
37151 ** of a 32-bit checksum on each page of data. The checksum covers both
37152 ** the page number and the pPager->pageSize bytes of data for the page.
37153 ** This cksum is initialized to a 32-bit random value that appears in the
37154 ** journal file right after the header. The random initializer is important,
37155 ** because garbage data that appears at the end of a journal is likely
37156 ** data that was once in other files that have now been deleted. If the
37157 ** garbage data came from an obsolete journal file, the checksums might
37158 ** be correct. But by initializing the checksum to random value which
37159 ** is different for every journal, we minimize that risk.
37161 static const unsigned char aJournalMagic[] = {
37162 0xd9, 0xd5, 0x05, 0xf9, 0x20, 0xa1, 0x63, 0xd7,
37166 ** The size of the of each page record in the journal is given by
37167 ** the following macro.
37169 #define JOURNAL_PG_SZ(pPager) ((pPager->pageSize) + 8)
37172 ** The journal header size for this pager. This is usually the same
37173 ** size as a single disk sector. See also setSectorSize().
37175 #define JOURNAL_HDR_SZ(pPager) (pPager->sectorSize)
37178 ** The macro MEMDB is true if we are dealing with an in-memory database.
37179 ** We do this as a macro so that if the SQLITE_OMIT_MEMORYDB macro is set,
37180 ** the value of MEMDB will be a constant and the compiler will optimize
37181 ** out code that would never execute.
37183 #ifdef SQLITE_OMIT_MEMORYDB
37184 # define MEMDB 0
37185 #else
37186 # define MEMDB pPager->memDb
37187 #endif
37190 ** The maximum legal page number is (2^31 - 1).
37192 #define PAGER_MAX_PGNO 2147483647
37195 ** The argument to this macro is a file descriptor (type sqlite3_file*).
37196 ** Return 0 if it is not open, or non-zero (but not 1) if it is.
37198 ** This is so that expressions can be written as:
37200 ** if( isOpen(pPager->jfd) ){ ...
37202 ** instead of
37204 ** if( pPager->jfd->pMethods ){ ...
37206 #define isOpen(pFd) ((pFd)->pMethods)
37209 ** Return true if this pager uses a write-ahead log instead of the usual
37210 ** rollback journal. Otherwise false.
37212 #ifndef SQLITE_OMIT_WAL
37213 static int pagerUseWal(Pager *pPager){
37214 return (pPager->pWal!=0);
37216 #else
37217 # define pagerUseWal(x) 0
37218 # define pagerRollbackWal(x) 0
37219 # define pagerWalFrames(v,w,x,y,z) 0
37220 # define pagerOpenWalIfPresent(z) SQLITE_OK
37221 # define pagerBeginReadTransaction(z) SQLITE_OK
37222 #endif
37224 #ifndef NDEBUG
37226 ** Usage:
37228 ** assert( assert_pager_state(pPager) );
37230 ** This function runs many asserts to try to find inconsistencies in
37231 ** the internal state of the Pager object.
37233 static int assert_pager_state(Pager *p){
37234 Pager *pPager = p;
37236 /* State must be valid. */
37237 assert( p->eState==PAGER_OPEN
37238 || p->eState==PAGER_READER
37239 || p->eState==PAGER_WRITER_LOCKED
37240 || p->eState==PAGER_WRITER_CACHEMOD
37241 || p->eState==PAGER_WRITER_DBMOD
37242 || p->eState==PAGER_WRITER_FINISHED
37243 || p->eState==PAGER_ERROR
37246 /* Regardless of the current state, a temp-file connection always behaves
37247 ** as if it has an exclusive lock on the database file. It never updates
37248 ** the change-counter field, so the changeCountDone flag is always set.
37250 assert( p->tempFile==0 || p->eLock==EXCLUSIVE_LOCK );
37251 assert( p->tempFile==0 || pPager->changeCountDone );
37253 /* If the useJournal flag is clear, the journal-mode must be "OFF".
37254 ** And if the journal-mode is "OFF", the journal file must not be open.
37256 assert( p->journalMode==PAGER_JOURNALMODE_OFF || p->useJournal );
37257 assert( p->journalMode!=PAGER_JOURNALMODE_OFF || !isOpen(p->jfd) );
37259 /* Check that MEMDB implies noSync. And an in-memory journal. Since
37260 ** this means an in-memory pager performs no IO at all, it cannot encounter
37261 ** either SQLITE_IOERR or SQLITE_FULL during rollback or while finalizing
37262 ** a journal file. (although the in-memory journal implementation may
37263 ** return SQLITE_IOERR_NOMEM while the journal file is being written). It
37264 ** is therefore not possible for an in-memory pager to enter the ERROR
37265 ** state.
37267 if( MEMDB ){
37268 assert( p->noSync );
37269 assert( p->journalMode==PAGER_JOURNALMODE_OFF
37270 || p->journalMode==PAGER_JOURNALMODE_MEMORY
37272 assert( p->eState!=PAGER_ERROR && p->eState!=PAGER_OPEN );
37273 assert( pagerUseWal(p)==0 );
37276 /* If changeCountDone is set, a RESERVED lock or greater must be held
37277 ** on the file.
37279 assert( pPager->changeCountDone==0 || pPager->eLock>=RESERVED_LOCK );
37280 assert( p->eLock!=PENDING_LOCK );
37282 switch( p->eState ){
37283 case PAGER_OPEN:
37284 assert( !MEMDB );
37285 assert( pPager->errCode==SQLITE_OK );
37286 assert( sqlite3PcacheRefCount(pPager->pPCache)==0 || pPager->tempFile );
37287 break;
37289 case PAGER_READER:
37290 assert( pPager->errCode==SQLITE_OK );
37291 assert( p->eLock!=UNKNOWN_LOCK );
37292 assert( p->eLock>=SHARED_LOCK || p->noReadlock );
37293 break;
37295 case PAGER_WRITER_LOCKED:
37296 assert( p->eLock!=UNKNOWN_LOCK );
37297 assert( pPager->errCode==SQLITE_OK );
37298 if( !pagerUseWal(pPager) ){
37299 assert( p->eLock>=RESERVED_LOCK );
37301 assert( pPager->dbSize==pPager->dbOrigSize );
37302 assert( pPager->dbOrigSize==pPager->dbFileSize );
37303 assert( pPager->dbOrigSize==pPager->dbHintSize );
37304 assert( pPager->setMaster==0 );
37305 break;
37307 case PAGER_WRITER_CACHEMOD:
37308 assert( p->eLock!=UNKNOWN_LOCK );
37309 assert( pPager->errCode==SQLITE_OK );
37310 if( !pagerUseWal(pPager) ){
37311 /* It is possible that if journal_mode=wal here that neither the
37312 ** journal file nor the WAL file are open. This happens during
37313 ** a rollback transaction that switches from journal_mode=off
37314 ** to journal_mode=wal.
37316 assert( p->eLock>=RESERVED_LOCK );
37317 assert( isOpen(p->jfd)
37318 || p->journalMode==PAGER_JOURNALMODE_OFF
37319 || p->journalMode==PAGER_JOURNALMODE_WAL
37322 assert( pPager->dbOrigSize==pPager->dbFileSize );
37323 assert( pPager->dbOrigSize==pPager->dbHintSize );
37324 break;
37326 case PAGER_WRITER_DBMOD:
37327 assert( p->eLock==EXCLUSIVE_LOCK );
37328 assert( pPager->errCode==SQLITE_OK );
37329 assert( !pagerUseWal(pPager) );
37330 assert( p->eLock>=EXCLUSIVE_LOCK );
37331 assert( isOpen(p->jfd)
37332 || p->journalMode==PAGER_JOURNALMODE_OFF
37333 || p->journalMode==PAGER_JOURNALMODE_WAL
37335 assert( pPager->dbOrigSize<=pPager->dbHintSize );
37336 break;
37338 case PAGER_WRITER_FINISHED:
37339 assert( p->eLock==EXCLUSIVE_LOCK );
37340 assert( pPager->errCode==SQLITE_OK );
37341 assert( !pagerUseWal(pPager) );
37342 assert( isOpen(p->jfd)
37343 || p->journalMode==PAGER_JOURNALMODE_OFF
37344 || p->journalMode==PAGER_JOURNALMODE_WAL
37346 break;
37348 case PAGER_ERROR:
37349 /* There must be at least one outstanding reference to the pager if
37350 ** in ERROR state. Otherwise the pager should have already dropped
37351 ** back to OPEN state.
37353 assert( pPager->errCode!=SQLITE_OK );
37354 assert( sqlite3PcacheRefCount(pPager->pPCache)>0 );
37355 break;
37358 return 1;
37360 #endif /* ifndef NDEBUG */
37362 #ifdef SQLITE_DEBUG
37364 ** Return a pointer to a human readable string in a static buffer
37365 ** containing the state of the Pager object passed as an argument. This
37366 ** is intended to be used within debuggers. For example, as an alternative
37367 ** to "print *pPager" in gdb:
37369 ** (gdb) printf "%s", print_pager_state(pPager)
37371 static char *print_pager_state(Pager *p){
37372 static char zRet[1024];
37374 sqlite3_snprintf(1024, zRet,
37375 "Filename: %s\n"
37376 "State: %s errCode=%d\n"
37377 "Lock: %s\n"
37378 "Locking mode: locking_mode=%s\n"
37379 "Journal mode: journal_mode=%s\n"
37380 "Backing store: tempFile=%d memDb=%d useJournal=%d\n"
37381 "Journal: journalOff=%lld journalHdr=%lld\n"
37382 "Size: dbsize=%d dbOrigSize=%d dbFileSize=%d\n"
37383 , p->zFilename
37384 , p->eState==PAGER_OPEN ? "OPEN" :
37385 p->eState==PAGER_READER ? "READER" :
37386 p->eState==PAGER_WRITER_LOCKED ? "WRITER_LOCKED" :
37387 p->eState==PAGER_WRITER_CACHEMOD ? "WRITER_CACHEMOD" :
37388 p->eState==PAGER_WRITER_DBMOD ? "WRITER_DBMOD" :
37389 p->eState==PAGER_WRITER_FINISHED ? "WRITER_FINISHED" :
37390 p->eState==PAGER_ERROR ? "ERROR" : "?error?"
37391 , (int)p->errCode
37392 , p->eLock==NO_LOCK ? "NO_LOCK" :
37393 p->eLock==RESERVED_LOCK ? "RESERVED" :
37394 p->eLock==EXCLUSIVE_LOCK ? "EXCLUSIVE" :
37395 p->eLock==SHARED_LOCK ? "SHARED" :
37396 p->eLock==UNKNOWN_LOCK ? "UNKNOWN" : "?error?"
37397 , p->exclusiveMode ? "exclusive" : "normal"
37398 , p->journalMode==PAGER_JOURNALMODE_MEMORY ? "memory" :
37399 p->journalMode==PAGER_JOURNALMODE_OFF ? "off" :
37400 p->journalMode==PAGER_JOURNALMODE_DELETE ? "delete" :
37401 p->journalMode==PAGER_JOURNALMODE_PERSIST ? "persist" :
37402 p->journalMode==PAGER_JOURNALMODE_TRUNCATE ? "truncate" :
37403 p->journalMode==PAGER_JOURNALMODE_WAL ? "wal" : "?error?"
37404 , (int)p->tempFile, (int)p->memDb, (int)p->useJournal
37405 , p->journalOff, p->journalHdr
37406 , (int)p->dbSize, (int)p->dbOrigSize, (int)p->dbFileSize
37409 return zRet;
37411 #endif
37414 ** Return true if it is necessary to write page *pPg into the sub-journal.
37415 ** A page needs to be written into the sub-journal if there exists one
37416 ** or more open savepoints for which:
37418 ** * The page-number is less than or equal to PagerSavepoint.nOrig, and
37419 ** * The bit corresponding to the page-number is not set in
37420 ** PagerSavepoint.pInSavepoint.
37422 static int subjRequiresPage(PgHdr *pPg){
37423 Pgno pgno = pPg->pgno;
37424 Pager *pPager = pPg->pPager;
37425 int i;
37426 for(i=0; i<pPager->nSavepoint; i++){
37427 PagerSavepoint *p = &pPager->aSavepoint[i];
37428 if( p->nOrig>=pgno && 0==sqlite3BitvecTest(p->pInSavepoint, pgno) ){
37429 return 1;
37432 return 0;
37436 ** Return true if the page is already in the journal file.
37438 static int pageInJournal(PgHdr *pPg){
37439 return sqlite3BitvecTest(pPg->pPager->pInJournal, pPg->pgno);
37443 ** Read a 32-bit integer from the given file descriptor. Store the integer
37444 ** that is read in *pRes. Return SQLITE_OK if everything worked, or an
37445 ** error code is something goes wrong.
37447 ** All values are stored on disk as big-endian.
37449 static int read32bits(sqlite3_file *fd, i64 offset, u32 *pRes){
37450 unsigned char ac[4];
37451 int rc = sqlite3OsRead(fd, ac, sizeof(ac), offset);
37452 if( rc==SQLITE_OK ){
37453 *pRes = sqlite3Get4byte(ac);
37455 return rc;
37459 ** Write a 32-bit integer into a string buffer in big-endian byte order.
37461 #define put32bits(A,B) sqlite3Put4byte((u8*)A,B)
37465 ** Write a 32-bit integer into the given file descriptor. Return SQLITE_OK
37466 ** on success or an error code is something goes wrong.
37468 static int write32bits(sqlite3_file *fd, i64 offset, u32 val){
37469 char ac[4];
37470 put32bits(ac, val);
37471 return sqlite3OsWrite(fd, ac, 4, offset);
37475 ** Unlock the database file to level eLock, which must be either NO_LOCK
37476 ** or SHARED_LOCK. Regardless of whether or not the call to xUnlock()
37477 ** succeeds, set the Pager.eLock variable to match the (attempted) new lock.
37479 ** Except, if Pager.eLock is set to UNKNOWN_LOCK when this function is
37480 ** called, do not modify it. See the comment above the #define of
37481 ** UNKNOWN_LOCK for an explanation of this.
37483 static int pagerUnlockDb(Pager *pPager, int eLock){
37484 int rc = SQLITE_OK;
37486 assert( !pPager->exclusiveMode || pPager->eLock==eLock );
37487 assert( eLock==NO_LOCK || eLock==SHARED_LOCK );
37488 assert( eLock!=NO_LOCK || pagerUseWal(pPager)==0 );
37489 if( isOpen(pPager->fd) ){
37490 assert( pPager->eLock>=eLock );
37491 rc = sqlite3OsUnlock(pPager->fd, eLock);
37492 if( pPager->eLock!=UNKNOWN_LOCK ){
37493 pPager->eLock = (u8)eLock;
37495 IOTRACE(("UNLOCK %p %d\n", pPager, eLock))
37497 return rc;
37501 ** Lock the database file to level eLock, which must be either SHARED_LOCK,
37502 ** RESERVED_LOCK or EXCLUSIVE_LOCK. If the caller is successful, set the
37503 ** Pager.eLock variable to the new locking state.
37505 ** Except, if Pager.eLock is set to UNKNOWN_LOCK when this function is
37506 ** called, do not modify it unless the new locking state is EXCLUSIVE_LOCK.
37507 ** See the comment above the #define of UNKNOWN_LOCK for an explanation
37508 ** of this.
37510 static int pagerLockDb(Pager *pPager, int eLock){
37511 int rc = SQLITE_OK;
37513 assert( eLock==SHARED_LOCK || eLock==RESERVED_LOCK || eLock==EXCLUSIVE_LOCK );
37514 if( pPager->eLock<eLock || pPager->eLock==UNKNOWN_LOCK ){
37515 rc = sqlite3OsLock(pPager->fd, eLock);
37516 if( rc==SQLITE_OK && (pPager->eLock!=UNKNOWN_LOCK||eLock==EXCLUSIVE_LOCK) ){
37517 pPager->eLock = (u8)eLock;
37518 IOTRACE(("LOCK %p %d\n", pPager, eLock))
37521 return rc;
37525 ** This function determines whether or not the atomic-write optimization
37526 ** can be used with this pager. The optimization can be used if:
37528 ** (a) the value returned by OsDeviceCharacteristics() indicates that
37529 ** a database page may be written atomically, and
37530 ** (b) the value returned by OsSectorSize() is less than or equal
37531 ** to the page size.
37533 ** The optimization is also always enabled for temporary files. It is
37534 ** an error to call this function if pPager is opened on an in-memory
37535 ** database.
37537 ** If the optimization cannot be used, 0 is returned. If it can be used,
37538 ** then the value returned is the size of the journal file when it
37539 ** contains rollback data for exactly one page.
37541 #ifdef SQLITE_ENABLE_ATOMIC_WRITE
37542 static int jrnlBufferSize(Pager *pPager){
37543 assert( !MEMDB );
37544 if( !pPager->tempFile ){
37545 int dc; /* Device characteristics */
37546 int nSector; /* Sector size */
37547 int szPage; /* Page size */
37549 assert( isOpen(pPager->fd) );
37550 dc = sqlite3OsDeviceCharacteristics(pPager->fd);
37551 nSector = pPager->sectorSize;
37552 szPage = pPager->pageSize;
37554 assert(SQLITE_IOCAP_ATOMIC512==(512>>8));
37555 assert(SQLITE_IOCAP_ATOMIC64K==(65536>>8));
37556 if( 0==(dc&(SQLITE_IOCAP_ATOMIC|(szPage>>8)) || nSector>szPage) ){
37557 return 0;
37561 return JOURNAL_HDR_SZ(pPager) + JOURNAL_PG_SZ(pPager);
37563 #endif
37566 ** If SQLITE_CHECK_PAGES is defined then we do some sanity checking
37567 ** on the cache using a hash function. This is used for testing
37568 ** and debugging only.
37570 #ifdef SQLITE_CHECK_PAGES
37572 ** Return a 32-bit hash of the page data for pPage.
37574 static u32 pager_datahash(int nByte, unsigned char *pData){
37575 u32 hash = 0;
37576 int i;
37577 for(i=0; i<nByte; i++){
37578 hash = (hash*1039) + pData[i];
37580 return hash;
37582 static u32 pager_pagehash(PgHdr *pPage){
37583 return pager_datahash(pPage->pPager->pageSize, (unsigned char *)pPage->pData);
37585 static void pager_set_pagehash(PgHdr *pPage){
37586 pPage->pageHash = pager_pagehash(pPage);
37590 ** The CHECK_PAGE macro takes a PgHdr* as an argument. If SQLITE_CHECK_PAGES
37591 ** is defined, and NDEBUG is not defined, an assert() statement checks
37592 ** that the page is either dirty or still matches the calculated page-hash.
37594 #define CHECK_PAGE(x) checkPage(x)
37595 static void checkPage(PgHdr *pPg){
37596 Pager *pPager = pPg->pPager;
37597 assert( pPager->eState!=PAGER_ERROR );
37598 assert( (pPg->flags&PGHDR_DIRTY) || pPg->pageHash==pager_pagehash(pPg) );
37601 #else
37602 #define pager_datahash(X,Y) 0
37603 #define pager_pagehash(X) 0
37604 #define pager_set_pagehash(X)
37605 #define CHECK_PAGE(x)
37606 #endif /* SQLITE_CHECK_PAGES */
37609 ** When this is called the journal file for pager pPager must be open.
37610 ** This function attempts to read a master journal file name from the
37611 ** end of the file and, if successful, copies it into memory supplied
37612 ** by the caller. See comments above writeMasterJournal() for the format
37613 ** used to store a master journal file name at the end of a journal file.
37615 ** zMaster must point to a buffer of at least nMaster bytes allocated by
37616 ** the caller. This should be sqlite3_vfs.mxPathname+1 (to ensure there is
37617 ** enough space to write the master journal name). If the master journal
37618 ** name in the journal is longer than nMaster bytes (including a
37619 ** nul-terminator), then this is handled as if no master journal name
37620 ** were present in the journal.
37622 ** If a master journal file name is present at the end of the journal
37623 ** file, then it is copied into the buffer pointed to by zMaster. A
37624 ** nul-terminator byte is appended to the buffer following the master
37625 ** journal file name.
37627 ** If it is determined that no master journal file name is present
37628 ** zMaster[0] is set to 0 and SQLITE_OK returned.
37630 ** If an error occurs while reading from the journal file, an SQLite
37631 ** error code is returned.
37633 static int readMasterJournal(sqlite3_file *pJrnl, char *zMaster, u32 nMaster){
37634 int rc; /* Return code */
37635 u32 len; /* Length in bytes of master journal name */
37636 i64 szJ; /* Total size in bytes of journal file pJrnl */
37637 u32 cksum; /* MJ checksum value read from journal */
37638 u32 u; /* Unsigned loop counter */
37639 unsigned char aMagic[8]; /* A buffer to hold the magic header */
37640 zMaster[0] = '\0';
37642 if( SQLITE_OK!=(rc = sqlite3OsFileSize(pJrnl, &szJ))
37643 || szJ<16
37644 || SQLITE_OK!=(rc = read32bits(pJrnl, szJ-16, &len))
37645 || len>=nMaster
37646 || SQLITE_OK!=(rc = read32bits(pJrnl, szJ-12, &cksum))
37647 || SQLITE_OK!=(rc = sqlite3OsRead(pJrnl, aMagic, 8, szJ-8))
37648 || memcmp(aMagic, aJournalMagic, 8)
37649 || SQLITE_OK!=(rc = sqlite3OsRead(pJrnl, zMaster, len, szJ-16-len))
37651 return rc;
37654 /* See if the checksum matches the master journal name */
37655 for(u=0; u<len; u++){
37656 cksum -= zMaster[u];
37658 if( cksum ){
37659 /* If the checksum doesn't add up, then one or more of the disk sectors
37660 ** containing the master journal filename is corrupted. This means
37661 ** definitely roll back, so just return SQLITE_OK and report a (nul)
37662 ** master-journal filename.
37664 len = 0;
37666 zMaster[len] = '\0';
37668 return SQLITE_OK;
37672 ** Return the offset of the sector boundary at or immediately
37673 ** following the value in pPager->journalOff, assuming a sector
37674 ** size of pPager->sectorSize bytes.
37676 ** i.e for a sector size of 512:
37678 ** Pager.journalOff Return value
37679 ** ---------------------------------------
37680 ** 0 0
37681 ** 512 512
37682 ** 100 512
37683 ** 2000 2048
37686 static i64 journalHdrOffset(Pager *pPager){
37687 i64 offset = 0;
37688 i64 c = pPager->journalOff;
37689 if( c ){
37690 offset = ((c-1)/JOURNAL_HDR_SZ(pPager) + 1) * JOURNAL_HDR_SZ(pPager);
37692 assert( offset%JOURNAL_HDR_SZ(pPager)==0 );
37693 assert( offset>=c );
37694 assert( (offset-c)<JOURNAL_HDR_SZ(pPager) );
37695 return offset;
37699 ** The journal file must be open when this function is called.
37701 ** This function is a no-op if the journal file has not been written to
37702 ** within the current transaction (i.e. if Pager.journalOff==0).
37704 ** If doTruncate is non-zero or the Pager.journalSizeLimit variable is
37705 ** set to 0, then truncate the journal file to zero bytes in size. Otherwise,
37706 ** zero the 28-byte header at the start of the journal file. In either case,
37707 ** if the pager is not in no-sync mode, sync the journal file immediately
37708 ** after writing or truncating it.
37710 ** If Pager.journalSizeLimit is set to a positive, non-zero value, and
37711 ** following the truncation or zeroing described above the size of the
37712 ** journal file in bytes is larger than this value, then truncate the
37713 ** journal file to Pager.journalSizeLimit bytes. The journal file does
37714 ** not need to be synced following this operation.
37716 ** If an IO error occurs, abandon processing and return the IO error code.
37717 ** Otherwise, return SQLITE_OK.
37719 static int zeroJournalHdr(Pager *pPager, int doTruncate){
37720 int rc = SQLITE_OK; /* Return code */
37721 assert( isOpen(pPager->jfd) );
37722 if( pPager->journalOff ){
37723 const i64 iLimit = pPager->journalSizeLimit; /* Local cache of jsl */
37725 IOTRACE(("JZEROHDR %p\n", pPager))
37726 if( doTruncate || iLimit==0 ){
37727 rc = sqlite3OsTruncate(pPager->jfd, 0);
37728 }else{
37729 static const char zeroHdr[28] = {0};
37730 rc = sqlite3OsWrite(pPager->jfd, zeroHdr, sizeof(zeroHdr), 0);
37732 if( rc==SQLITE_OK && !pPager->noSync ){
37733 rc = sqlite3OsSync(pPager->jfd, SQLITE_SYNC_DATAONLY|pPager->syncFlags);
37736 /* At this point the transaction is committed but the write lock
37737 ** is still held on the file. If there is a size limit configured for
37738 ** the persistent journal and the journal file currently consumes more
37739 ** space than that limit allows for, truncate it now. There is no need
37740 ** to sync the file following this operation.
37742 if( rc==SQLITE_OK && iLimit>0 ){
37743 i64 sz;
37744 rc = sqlite3OsFileSize(pPager->jfd, &sz);
37745 if( rc==SQLITE_OK && sz>iLimit ){
37746 rc = sqlite3OsTruncate(pPager->jfd, iLimit);
37750 return rc;
37754 ** The journal file must be open when this routine is called. A journal
37755 ** header (JOURNAL_HDR_SZ bytes) is written into the journal file at the
37756 ** current location.
37758 ** The format for the journal header is as follows:
37759 ** - 8 bytes: Magic identifying journal format.
37760 ** - 4 bytes: Number of records in journal, or -1 no-sync mode is on.
37761 ** - 4 bytes: Random number used for page hash.
37762 ** - 4 bytes: Initial database page count.
37763 ** - 4 bytes: Sector size used by the process that wrote this journal.
37764 ** - 4 bytes: Database page size.
37766 ** Followed by (JOURNAL_HDR_SZ - 28) bytes of unused space.
37768 static int writeJournalHdr(Pager *pPager){
37769 int rc = SQLITE_OK; /* Return code */
37770 char *zHeader = pPager->pTmpSpace; /* Temporary space used to build header */
37771 u32 nHeader = (u32)pPager->pageSize;/* Size of buffer pointed to by zHeader */
37772 u32 nWrite; /* Bytes of header sector written */
37773 int ii; /* Loop counter */
37775 assert( isOpen(pPager->jfd) ); /* Journal file must be open. */
37777 if( nHeader>JOURNAL_HDR_SZ(pPager) ){
37778 nHeader = JOURNAL_HDR_SZ(pPager);
37781 /* If there are active savepoints and any of them were created
37782 ** since the most recent journal header was written, update the
37783 ** PagerSavepoint.iHdrOffset fields now.
37785 for(ii=0; ii<pPager->nSavepoint; ii++){
37786 if( pPager->aSavepoint[ii].iHdrOffset==0 ){
37787 pPager->aSavepoint[ii].iHdrOffset = pPager->journalOff;
37791 pPager->journalHdr = pPager->journalOff = journalHdrOffset(pPager);
37794 ** Write the nRec Field - the number of page records that follow this
37795 ** journal header. Normally, zero is written to this value at this time.
37796 ** After the records are added to the journal (and the journal synced,
37797 ** if in full-sync mode), the zero is overwritten with the true number
37798 ** of records (see syncJournal()).
37800 ** A faster alternative is to write 0xFFFFFFFF to the nRec field. When
37801 ** reading the journal this value tells SQLite to assume that the
37802 ** rest of the journal file contains valid page records. This assumption
37803 ** is dangerous, as if a failure occurred whilst writing to the journal
37804 ** file it may contain some garbage data. There are two scenarios
37805 ** where this risk can be ignored:
37807 ** * When the pager is in no-sync mode. Corruption can follow a
37808 ** power failure in this case anyway.
37810 ** * When the SQLITE_IOCAP_SAFE_APPEND flag is set. This guarantees
37811 ** that garbage data is never appended to the journal file.
37813 assert( isOpen(pPager->fd) || pPager->noSync );
37814 if( pPager->noSync || (pPager->journalMode==PAGER_JOURNALMODE_MEMORY)
37815 || (sqlite3OsDeviceCharacteristics(pPager->fd)&SQLITE_IOCAP_SAFE_APPEND)
37817 memcpy(zHeader, aJournalMagic, sizeof(aJournalMagic));
37818 put32bits(&zHeader[sizeof(aJournalMagic)], 0xffffffff);
37819 }else{
37820 memset(zHeader, 0, sizeof(aJournalMagic)+4);
37823 /* The random check-hash initialiser */
37824 sqlite3_randomness(sizeof(pPager->cksumInit), &pPager->cksumInit);
37825 put32bits(&zHeader[sizeof(aJournalMagic)+4], pPager->cksumInit);
37826 /* The initial database size */
37827 put32bits(&zHeader[sizeof(aJournalMagic)+8], pPager->dbOrigSize);
37828 /* The assumed sector size for this process */
37829 put32bits(&zHeader[sizeof(aJournalMagic)+12], pPager->sectorSize);
37831 /* The page size */
37832 put32bits(&zHeader[sizeof(aJournalMagic)+16], pPager->pageSize);
37834 /* Initializing the tail of the buffer is not necessary. Everything
37835 ** works find if the following memset() is omitted. But initializing
37836 ** the memory prevents valgrind from complaining, so we are willing to
37837 ** take the performance hit.
37839 memset(&zHeader[sizeof(aJournalMagic)+20], 0,
37840 nHeader-(sizeof(aJournalMagic)+20));
37842 /* In theory, it is only necessary to write the 28 bytes that the
37843 ** journal header consumes to the journal file here. Then increment the
37844 ** Pager.journalOff variable by JOURNAL_HDR_SZ so that the next
37845 ** record is written to the following sector (leaving a gap in the file
37846 ** that will be implicitly filled in by the OS).
37848 ** However it has been discovered that on some systems this pattern can
37849 ** be significantly slower than contiguously writing data to the file,
37850 ** even if that means explicitly writing data to the block of
37851 ** (JOURNAL_HDR_SZ - 28) bytes that will not be used. So that is what
37852 ** is done.
37854 ** The loop is required here in case the sector-size is larger than the
37855 ** database page size. Since the zHeader buffer is only Pager.pageSize
37856 ** bytes in size, more than one call to sqlite3OsWrite() may be required
37857 ** to populate the entire journal header sector.
37859 for(nWrite=0; rc==SQLITE_OK&&nWrite<JOURNAL_HDR_SZ(pPager); nWrite+=nHeader){
37860 IOTRACE(("JHDR %p %lld %d\n", pPager, pPager->journalHdr, nHeader))
37861 rc = sqlite3OsWrite(pPager->jfd, zHeader, nHeader, pPager->journalOff);
37862 assert( pPager->journalHdr <= pPager->journalOff );
37863 pPager->journalOff += nHeader;
37866 return rc;
37870 ** The journal file must be open when this is called. A journal header file
37871 ** (JOURNAL_HDR_SZ bytes) is read from the current location in the journal
37872 ** file. The current location in the journal file is given by
37873 ** pPager->journalOff. See comments above function writeJournalHdr() for
37874 ** a description of the journal header format.
37876 ** If the header is read successfully, *pNRec is set to the number of
37877 ** page records following this header and *pDbSize is set to the size of the
37878 ** database before the transaction began, in pages. Also, pPager->cksumInit
37879 ** is set to the value read from the journal header. SQLITE_OK is returned
37880 ** in this case.
37882 ** If the journal header file appears to be corrupted, SQLITE_DONE is
37883 ** returned and *pNRec and *PDbSize are undefined. If JOURNAL_HDR_SZ bytes
37884 ** cannot be read from the journal file an error code is returned.
37886 static int readJournalHdr(
37887 Pager *pPager, /* Pager object */
37888 int isHot,
37889 i64 journalSize, /* Size of the open journal file in bytes */
37890 u32 *pNRec, /* OUT: Value read from the nRec field */
37891 u32 *pDbSize /* OUT: Value of original database size field */
37893 int rc; /* Return code */
37894 unsigned char aMagic[8]; /* A buffer to hold the magic header */
37895 i64 iHdrOff; /* Offset of journal header being read */
37897 assert( isOpen(pPager->jfd) ); /* Journal file must be open. */
37899 /* Advance Pager.journalOff to the start of the next sector. If the
37900 ** journal file is too small for there to be a header stored at this
37901 ** point, return SQLITE_DONE.
37903 pPager->journalOff = journalHdrOffset(pPager);
37904 if( pPager->journalOff+JOURNAL_HDR_SZ(pPager) > journalSize ){
37905 return SQLITE_DONE;
37907 iHdrOff = pPager->journalOff;
37909 /* Read in the first 8 bytes of the journal header. If they do not match
37910 ** the magic string found at the start of each journal header, return
37911 ** SQLITE_DONE. If an IO error occurs, return an error code. Otherwise,
37912 ** proceed.
37914 if( isHot || iHdrOff!=pPager->journalHdr ){
37915 rc = sqlite3OsRead(pPager->jfd, aMagic, sizeof(aMagic), iHdrOff);
37916 if( rc ){
37917 return rc;
37919 if( memcmp(aMagic, aJournalMagic, sizeof(aMagic))!=0 ){
37920 return SQLITE_DONE;
37924 /* Read the first three 32-bit fields of the journal header: The nRec
37925 ** field, the checksum-initializer and the database size at the start
37926 ** of the transaction. Return an error code if anything goes wrong.
37928 if( SQLITE_OK!=(rc = read32bits(pPager->jfd, iHdrOff+8, pNRec))
37929 || SQLITE_OK!=(rc = read32bits(pPager->jfd, iHdrOff+12, &pPager->cksumInit))
37930 || SQLITE_OK!=(rc = read32bits(pPager->jfd, iHdrOff+16, pDbSize))
37932 return rc;
37935 if( pPager->journalOff==0 ){
37936 u32 iPageSize; /* Page-size field of journal header */
37937 u32 iSectorSize; /* Sector-size field of journal header */
37939 /* Read the page-size and sector-size journal header fields. */
37940 if( SQLITE_OK!=(rc = read32bits(pPager->jfd, iHdrOff+20, &iSectorSize))
37941 || SQLITE_OK!=(rc = read32bits(pPager->jfd, iHdrOff+24, &iPageSize))
37943 return rc;
37946 /* Versions of SQLite prior to 3.5.8 set the page-size field of the
37947 ** journal header to zero. In this case, assume that the Pager.pageSize
37948 ** variable is already set to the correct page size.
37950 if( iPageSize==0 ){
37951 iPageSize = pPager->pageSize;
37954 /* Check that the values read from the page-size and sector-size fields
37955 ** are within range. To be 'in range', both values need to be a power
37956 ** of two greater than or equal to 512 or 32, and not greater than their
37957 ** respective compile time maximum limits.
37959 if( iPageSize<512 || iSectorSize<32
37960 || iPageSize>SQLITE_MAX_PAGE_SIZE || iSectorSize>MAX_SECTOR_SIZE
37961 || ((iPageSize-1)&iPageSize)!=0 || ((iSectorSize-1)&iSectorSize)!=0
37963 /* If the either the page-size or sector-size in the journal-header is
37964 ** invalid, then the process that wrote the journal-header must have
37965 ** crashed before the header was synced. In this case stop reading
37966 ** the journal file here.
37968 return SQLITE_DONE;
37971 /* Update the page-size to match the value read from the journal.
37972 ** Use a testcase() macro to make sure that malloc failure within
37973 ** PagerSetPagesize() is tested.
37975 rc = sqlite3PagerSetPagesize(pPager, &iPageSize, -1);
37976 testcase( rc!=SQLITE_OK );
37978 /* Update the assumed sector-size to match the value used by
37979 ** the process that created this journal. If this journal was
37980 ** created by a process other than this one, then this routine
37981 ** is being called from within pager_playback(). The local value
37982 ** of Pager.sectorSize is restored at the end of that routine.
37984 pPager->sectorSize = iSectorSize;
37987 pPager->journalOff += JOURNAL_HDR_SZ(pPager);
37988 return rc;
37993 ** Write the supplied master journal name into the journal file for pager
37994 ** pPager at the current location. The master journal name must be the last
37995 ** thing written to a journal file. If the pager is in full-sync mode, the
37996 ** journal file descriptor is advanced to the next sector boundary before
37997 ** anything is written. The format is:
37999 ** + 4 bytes: PAGER_MJ_PGNO.
38000 ** + N bytes: Master journal filename in utf-8.
38001 ** + 4 bytes: N (length of master journal name in bytes, no nul-terminator).
38002 ** + 4 bytes: Master journal name checksum.
38003 ** + 8 bytes: aJournalMagic[].
38005 ** The master journal page checksum is the sum of the bytes in the master
38006 ** journal name, where each byte is interpreted as a signed 8-bit integer.
38008 ** If zMaster is a NULL pointer (occurs for a single database transaction),
38009 ** this call is a no-op.
38011 static int writeMasterJournal(Pager *pPager, const char *zMaster){
38012 int rc; /* Return code */
38013 int nMaster; /* Length of string zMaster */
38014 i64 iHdrOff; /* Offset of header in journal file */
38015 i64 jrnlSize; /* Size of journal file on disk */
38016 u32 cksum = 0; /* Checksum of string zMaster */
38018 assert( pPager->setMaster==0 );
38019 assert( !pagerUseWal(pPager) );
38021 if( !zMaster
38022 || pPager->journalMode==PAGER_JOURNALMODE_MEMORY
38023 || pPager->journalMode==PAGER_JOURNALMODE_OFF
38025 return SQLITE_OK;
38027 pPager->setMaster = 1;
38028 assert( isOpen(pPager->jfd) );
38029 assert( pPager->journalHdr <= pPager->journalOff );
38031 /* Calculate the length in bytes and the checksum of zMaster */
38032 for(nMaster=0; zMaster[nMaster]; nMaster++){
38033 cksum += zMaster[nMaster];
38036 /* If in full-sync mode, advance to the next disk sector before writing
38037 ** the master journal name. This is in case the previous page written to
38038 ** the journal has already been synced.
38040 if( pPager->fullSync ){
38041 pPager->journalOff = journalHdrOffset(pPager);
38043 iHdrOff = pPager->journalOff;
38045 /* Write the master journal data to the end of the journal file. If
38046 ** an error occurs, return the error code to the caller.
38048 if( (0 != (rc = write32bits(pPager->jfd, iHdrOff, PAGER_MJ_PGNO(pPager))))
38049 || (0 != (rc = sqlite3OsWrite(pPager->jfd, zMaster, nMaster, iHdrOff+4)))
38050 || (0 != (rc = write32bits(pPager->jfd, iHdrOff+4+nMaster, nMaster)))
38051 || (0 != (rc = write32bits(pPager->jfd, iHdrOff+4+nMaster+4, cksum)))
38052 || (0 != (rc = sqlite3OsWrite(pPager->jfd, aJournalMagic, 8, iHdrOff+4+nMaster+8)))
38054 return rc;
38056 pPager->journalOff += (nMaster+20);
38058 /* If the pager is in peristent-journal mode, then the physical
38059 ** journal-file may extend past the end of the master-journal name
38060 ** and 8 bytes of magic data just written to the file. This is
38061 ** dangerous because the code to rollback a hot-journal file
38062 ** will not be able to find the master-journal name to determine
38063 ** whether or not the journal is hot.
38065 ** Easiest thing to do in this scenario is to truncate the journal
38066 ** file to the required size.
38068 if( SQLITE_OK==(rc = sqlite3OsFileSize(pPager->jfd, &jrnlSize))
38069 && jrnlSize>pPager->journalOff
38071 rc = sqlite3OsTruncate(pPager->jfd, pPager->journalOff);
38073 return rc;
38077 ** Find a page in the hash table given its page number. Return
38078 ** a pointer to the page or NULL if the requested page is not
38079 ** already in memory.
38081 static PgHdr *pager_lookup(Pager *pPager, Pgno pgno){
38082 PgHdr *p; /* Return value */
38084 /* It is not possible for a call to PcacheFetch() with createFlag==0 to
38085 ** fail, since no attempt to allocate dynamic memory will be made.
38087 (void)sqlite3PcacheFetch(pPager->pPCache, pgno, 0, &p);
38088 return p;
38092 ** Discard the entire contents of the in-memory page-cache.
38094 static void pager_reset(Pager *pPager){
38095 sqlite3BackupRestart(pPager->pBackup);
38096 sqlite3PcacheClear(pPager->pPCache);
38100 ** Free all structures in the Pager.aSavepoint[] array and set both
38101 ** Pager.aSavepoint and Pager.nSavepoint to zero. Close the sub-journal
38102 ** if it is open and the pager is not in exclusive mode.
38104 static void releaseAllSavepoints(Pager *pPager){
38105 int ii; /* Iterator for looping through Pager.aSavepoint */
38106 for(ii=0; ii<pPager->nSavepoint; ii++){
38107 sqlite3BitvecDestroy(pPager->aSavepoint[ii].pInSavepoint);
38109 if( !pPager->exclusiveMode || sqlite3IsMemJournal(pPager->sjfd) ){
38110 sqlite3OsClose(pPager->sjfd);
38112 sqlite3_free(pPager->aSavepoint);
38113 pPager->aSavepoint = 0;
38114 pPager->nSavepoint = 0;
38115 pPager->nSubRec = 0;
38119 ** Set the bit number pgno in the PagerSavepoint.pInSavepoint
38120 ** bitvecs of all open savepoints. Return SQLITE_OK if successful
38121 ** or SQLITE_NOMEM if a malloc failure occurs.
38123 static int addToSavepointBitvecs(Pager *pPager, Pgno pgno){
38124 int ii; /* Loop counter */
38125 int rc = SQLITE_OK; /* Result code */
38127 for(ii=0; ii<pPager->nSavepoint; ii++){
38128 PagerSavepoint *p = &pPager->aSavepoint[ii];
38129 if( pgno<=p->nOrig ){
38130 rc |= sqlite3BitvecSet(p->pInSavepoint, pgno);
38131 testcase( rc==SQLITE_NOMEM );
38132 assert( rc==SQLITE_OK || rc==SQLITE_NOMEM );
38135 return rc;
38139 ** This function is a no-op if the pager is in exclusive mode and not
38140 ** in the ERROR state. Otherwise, it switches the pager to PAGER_OPEN
38141 ** state.
38143 ** If the pager is not in exclusive-access mode, the database file is
38144 ** completely unlocked. If the file is unlocked and the file-system does
38145 ** not exhibit the UNDELETABLE_WHEN_OPEN property, the journal file is
38146 ** closed (if it is open).
38148 ** If the pager is in ERROR state when this function is called, the
38149 ** contents of the pager cache are discarded before switching back to
38150 ** the OPEN state. Regardless of whether the pager is in exclusive-mode
38151 ** or not, any journal file left in the file-system will be treated
38152 ** as a hot-journal and rolled back the next time a read-transaction
38153 ** is opened (by this or by any other connection).
38155 static void pager_unlock(Pager *pPager){
38157 assert( pPager->eState==PAGER_READER
38158 || pPager->eState==PAGER_OPEN
38159 || pPager->eState==PAGER_ERROR
38162 sqlite3BitvecDestroy(pPager->pInJournal);
38163 pPager->pInJournal = 0;
38164 releaseAllSavepoints(pPager);
38166 if( pagerUseWal(pPager) ){
38167 assert( !isOpen(pPager->jfd) );
38168 sqlite3WalEndReadTransaction(pPager->pWal);
38169 pPager->eState = PAGER_OPEN;
38170 }else if( !pPager->exclusiveMode ){
38171 int rc; /* Error code returned by pagerUnlockDb() */
38172 int iDc = isOpen(pPager->fd)?sqlite3OsDeviceCharacteristics(pPager->fd):0;
38174 /* If the operating system support deletion of open files, then
38175 ** close the journal file when dropping the database lock. Otherwise
38176 ** another connection with journal_mode=delete might delete the file
38177 ** out from under us.
38179 assert( (PAGER_JOURNALMODE_MEMORY & 5)!=1 );
38180 assert( (PAGER_JOURNALMODE_OFF & 5)!=1 );
38181 assert( (PAGER_JOURNALMODE_WAL & 5)!=1 );
38182 assert( (PAGER_JOURNALMODE_DELETE & 5)!=1 );
38183 assert( (PAGER_JOURNALMODE_TRUNCATE & 5)==1 );
38184 assert( (PAGER_JOURNALMODE_PERSIST & 5)==1 );
38185 if( 0==(iDc & SQLITE_IOCAP_UNDELETABLE_WHEN_OPEN)
38186 || 1!=(pPager->journalMode & 5)
38188 sqlite3OsClose(pPager->jfd);
38191 /* If the pager is in the ERROR state and the call to unlock the database
38192 ** file fails, set the current lock to UNKNOWN_LOCK. See the comment
38193 ** above the #define for UNKNOWN_LOCK for an explanation of why this
38194 ** is necessary.
38196 rc = pagerUnlockDb(pPager, NO_LOCK);
38197 if( rc!=SQLITE_OK && pPager->eState==PAGER_ERROR ){
38198 pPager->eLock = UNKNOWN_LOCK;
38201 /* The pager state may be changed from PAGER_ERROR to PAGER_OPEN here
38202 ** without clearing the error code. This is intentional - the error
38203 ** code is cleared and the cache reset in the block below.
38205 assert( pPager->errCode || pPager->eState!=PAGER_ERROR );
38206 pPager->changeCountDone = 0;
38207 pPager->eState = PAGER_OPEN;
38210 /* If Pager.errCode is set, the contents of the pager cache cannot be
38211 ** trusted. Now that there are no outstanding references to the pager,
38212 ** it can safely move back to PAGER_OPEN state. This happens in both
38213 ** normal and exclusive-locking mode.
38215 if( pPager->errCode ){
38216 assert( !MEMDB );
38217 pager_reset(pPager);
38218 pPager->changeCountDone = pPager->tempFile;
38219 pPager->eState = PAGER_OPEN;
38220 pPager->errCode = SQLITE_OK;
38223 pPager->journalOff = 0;
38224 pPager->journalHdr = 0;
38225 pPager->setMaster = 0;
38229 ** This function is called whenever an IOERR or FULL error that requires
38230 ** the pager to transition into the ERROR state may ahve occurred.
38231 ** The first argument is a pointer to the pager structure, the second
38232 ** the error-code about to be returned by a pager API function. The
38233 ** value returned is a copy of the second argument to this function.
38235 ** If the second argument is SQLITE_FULL, SQLITE_IOERR or one of the
38236 ** IOERR sub-codes, the pager enters the ERROR state and the error code
38237 ** is stored in Pager.errCode. While the pager remains in the ERROR state,
38238 ** all major API calls on the Pager will immediately return Pager.errCode.
38240 ** The ERROR state indicates that the contents of the pager-cache
38241 ** cannot be trusted. This state can be cleared by completely discarding
38242 ** the contents of the pager-cache. If a transaction was active when
38243 ** the persistent error occurred, then the rollback journal may need
38244 ** to be replayed to restore the contents of the database file (as if
38245 ** it were a hot-journal).
38247 static int pager_error(Pager *pPager, int rc){
38248 int rc2 = rc & 0xff;
38249 assert( rc==SQLITE_OK || !MEMDB );
38250 assert(
38251 pPager->errCode==SQLITE_FULL ||
38252 pPager->errCode==SQLITE_OK ||
38253 (pPager->errCode & 0xff)==SQLITE_IOERR
38255 if( rc2==SQLITE_FULL || rc2==SQLITE_IOERR ){
38256 pPager->errCode = rc;
38257 pPager->eState = PAGER_ERROR;
38259 return rc;
38263 ** This routine ends a transaction. A transaction is usually ended by
38264 ** either a COMMIT or a ROLLBACK operation. This routine may be called
38265 ** after rollback of a hot-journal, or if an error occurs while opening
38266 ** the journal file or writing the very first journal-header of a
38267 ** database transaction.
38269 ** This routine is never called in PAGER_ERROR state. If it is called
38270 ** in PAGER_NONE or PAGER_SHARED state and the lock held is less
38271 ** exclusive than a RESERVED lock, it is a no-op.
38273 ** Otherwise, any active savepoints are released.
38275 ** If the journal file is open, then it is "finalized". Once a journal
38276 ** file has been finalized it is not possible to use it to roll back a
38277 ** transaction. Nor will it be considered to be a hot-journal by this
38278 ** or any other database connection. Exactly how a journal is finalized
38279 ** depends on whether or not the pager is running in exclusive mode and
38280 ** the current journal-mode (Pager.journalMode value), as follows:
38282 ** journalMode==MEMORY
38283 ** Journal file descriptor is simply closed. This destroys an
38284 ** in-memory journal.
38286 ** journalMode==TRUNCATE
38287 ** Journal file is truncated to zero bytes in size.
38289 ** journalMode==PERSIST
38290 ** The first 28 bytes of the journal file are zeroed. This invalidates
38291 ** the first journal header in the file, and hence the entire journal
38292 ** file. An invalid journal file cannot be rolled back.
38294 ** journalMode==DELETE
38295 ** The journal file is closed and deleted using sqlite3OsDelete().
38297 ** If the pager is running in exclusive mode, this method of finalizing
38298 ** the journal file is never used. Instead, if the journalMode is
38299 ** DELETE and the pager is in exclusive mode, the method described under
38300 ** journalMode==PERSIST is used instead.
38302 ** After the journal is finalized, the pager moves to PAGER_READER state.
38303 ** If running in non-exclusive rollback mode, the lock on the file is
38304 ** downgraded to a SHARED_LOCK.
38306 ** SQLITE_OK is returned if no error occurs. If an error occurs during
38307 ** any of the IO operations to finalize the journal file or unlock the
38308 ** database then the IO error code is returned to the user. If the
38309 ** operation to finalize the journal file fails, then the code still
38310 ** tries to unlock the database file if not in exclusive mode. If the
38311 ** unlock operation fails as well, then the first error code related
38312 ** to the first error encountered (the journal finalization one) is
38313 ** returned.
38315 static int pager_end_transaction(Pager *pPager, int hasMaster){
38316 int rc = SQLITE_OK; /* Error code from journal finalization operation */
38317 int rc2 = SQLITE_OK; /* Error code from db file unlock operation */
38319 /* Do nothing if the pager does not have an open write transaction
38320 ** or at least a RESERVED lock. This function may be called when there
38321 ** is no write-transaction active but a RESERVED or greater lock is
38322 ** held under two circumstances:
38324 ** 1. After a successful hot-journal rollback, it is called with
38325 ** eState==PAGER_NONE and eLock==EXCLUSIVE_LOCK.
38327 ** 2. If a connection with locking_mode=exclusive holding an EXCLUSIVE
38328 ** lock switches back to locking_mode=normal and then executes a
38329 ** read-transaction, this function is called with eState==PAGER_READER
38330 ** and eLock==EXCLUSIVE_LOCK when the read-transaction is closed.
38332 assert( assert_pager_state(pPager) );
38333 assert( pPager->eState!=PAGER_ERROR );
38334 if( pPager->eState<PAGER_WRITER_LOCKED && pPager->eLock<RESERVED_LOCK ){
38335 return SQLITE_OK;
38338 releaseAllSavepoints(pPager);
38339 assert( isOpen(pPager->jfd) || pPager->pInJournal==0 );
38340 if( isOpen(pPager->jfd) ){
38341 assert( !pagerUseWal(pPager) );
38343 /* Finalize the journal file. */
38344 if( sqlite3IsMemJournal(pPager->jfd) ){
38345 assert( pPager->journalMode==PAGER_JOURNALMODE_MEMORY );
38346 sqlite3OsClose(pPager->jfd);
38347 }else if( pPager->journalMode==PAGER_JOURNALMODE_TRUNCATE ){
38348 if( pPager->journalOff==0 ){
38349 rc = SQLITE_OK;
38350 }else{
38351 rc = sqlite3OsTruncate(pPager->jfd, 0);
38353 pPager->journalOff = 0;
38354 }else if( pPager->journalMode==PAGER_JOURNALMODE_PERSIST
38355 || (pPager->exclusiveMode && pPager->journalMode!=PAGER_JOURNALMODE_WAL)
38357 rc = zeroJournalHdr(pPager, hasMaster);
38358 pPager->journalOff = 0;
38359 }else{
38360 /* This branch may be executed with Pager.journalMode==MEMORY if
38361 ** a hot-journal was just rolled back. In this case the journal
38362 ** file should be closed and deleted. If this connection writes to
38363 ** the database file, it will do so using an in-memory journal.
38365 assert( pPager->journalMode==PAGER_JOURNALMODE_DELETE
38366 || pPager->journalMode==PAGER_JOURNALMODE_MEMORY
38367 || pPager->journalMode==PAGER_JOURNALMODE_WAL
38369 sqlite3OsClose(pPager->jfd);
38370 if( !pPager->tempFile ){
38371 rc = sqlite3OsDelete(pPager->pVfs, pPager->zJournal, 0);
38376 #ifdef SQLITE_CHECK_PAGES
38377 sqlite3PcacheIterateDirty(pPager->pPCache, pager_set_pagehash);
38378 if( pPager->dbSize==0 && sqlite3PcacheRefCount(pPager->pPCache)>0 ){
38379 PgHdr *p = pager_lookup(pPager, 1);
38380 if( p ){
38381 p->pageHash = 0;
38382 sqlite3PagerUnref(p);
38385 #endif
38387 sqlite3BitvecDestroy(pPager->pInJournal);
38388 pPager->pInJournal = 0;
38389 pPager->nRec = 0;
38390 sqlite3PcacheCleanAll(pPager->pPCache);
38391 sqlite3PcacheTruncate(pPager->pPCache, pPager->dbSize);
38393 if( pagerUseWal(pPager) ){
38394 /* Drop the WAL write-lock, if any. Also, if the connection was in
38395 ** locking_mode=exclusive mode but is no longer, drop the EXCLUSIVE
38396 ** lock held on the database file.
38398 rc2 = sqlite3WalEndWriteTransaction(pPager->pWal);
38399 assert( rc2==SQLITE_OK );
38401 if( !pPager->exclusiveMode
38402 && (!pagerUseWal(pPager) || sqlite3WalExclusiveMode(pPager->pWal, 0))
38404 rc2 = pagerUnlockDb(pPager, SHARED_LOCK);
38405 pPager->changeCountDone = 0;
38407 pPager->eState = PAGER_READER;
38408 pPager->setMaster = 0;
38410 return (rc==SQLITE_OK?rc2:rc);
38414 ** Execute a rollback if a transaction is active and unlock the
38415 ** database file.
38417 ** If the pager has already entered the ERROR state, do not attempt
38418 ** the rollback at this time. Instead, pager_unlock() is called. The
38419 ** call to pager_unlock() will discard all in-memory pages, unlock
38420 ** the database file and move the pager back to OPEN state. If this
38421 ** means that there is a hot-journal left in the file-system, the next
38422 ** connection to obtain a shared lock on the pager (which may be this one)
38423 ** will roll it back.
38425 ** If the pager has not already entered the ERROR state, but an IO or
38426 ** malloc error occurs during a rollback, then this will itself cause
38427 ** the pager to enter the ERROR state. Which will be cleared by the
38428 ** call to pager_unlock(), as described above.
38430 static void pagerUnlockAndRollback(Pager *pPager){
38431 if( pPager->eState!=PAGER_ERROR && pPager->eState!=PAGER_OPEN ){
38432 assert( assert_pager_state(pPager) );
38433 if( pPager->eState>=PAGER_WRITER_LOCKED ){
38434 sqlite3BeginBenignMalloc();
38435 sqlite3PagerRollback(pPager);
38436 sqlite3EndBenignMalloc();
38437 }else if( !pPager->exclusiveMode ){
38438 assert( pPager->eState==PAGER_READER );
38439 pager_end_transaction(pPager, 0);
38442 pager_unlock(pPager);
38446 ** Parameter aData must point to a buffer of pPager->pageSize bytes
38447 ** of data. Compute and return a checksum based ont the contents of the
38448 ** page of data and the current value of pPager->cksumInit.
38450 ** This is not a real checksum. It is really just the sum of the
38451 ** random initial value (pPager->cksumInit) and every 200th byte
38452 ** of the page data, starting with byte offset (pPager->pageSize%200).
38453 ** Each byte is interpreted as an 8-bit unsigned integer.
38455 ** Changing the formula used to compute this checksum results in an
38456 ** incompatible journal file format.
38458 ** If journal corruption occurs due to a power failure, the most likely
38459 ** scenario is that one end or the other of the record will be changed.
38460 ** It is much less likely that the two ends of the journal record will be
38461 ** correct and the middle be corrupt. Thus, this "checksum" scheme,
38462 ** though fast and simple, catches the mostly likely kind of corruption.
38464 static u32 pager_cksum(Pager *pPager, const u8 *aData){
38465 u32 cksum = pPager->cksumInit; /* Checksum value to return */
38466 int i = pPager->pageSize-200; /* Loop counter */
38467 while( i>0 ){
38468 cksum += aData[i];
38469 i -= 200;
38471 return cksum;
38475 ** Report the current page size and number of reserved bytes back
38476 ** to the codec.
38478 #ifdef SQLITE_HAS_CODEC
38479 static void pagerReportSize(Pager *pPager){
38480 if( pPager->xCodecSizeChng ){
38481 pPager->xCodecSizeChng(pPager->pCodec, pPager->pageSize,
38482 (int)pPager->nReserve);
38485 #else
38486 # define pagerReportSize(X) /* No-op if we do not support a codec */
38487 #endif
38490 ** Read a single page from either the journal file (if isMainJrnl==1) or
38491 ** from the sub-journal (if isMainJrnl==0) and playback that page.
38492 ** The page begins at offset *pOffset into the file. The *pOffset
38493 ** value is increased to the start of the next page in the journal.
38495 ** The main rollback journal uses checksums - the statement journal does
38496 ** not.
38498 ** If the page number of the page record read from the (sub-)journal file
38499 ** is greater than the current value of Pager.dbSize, then playback is
38500 ** skipped and SQLITE_OK is returned.
38502 ** If pDone is not NULL, then it is a record of pages that have already
38503 ** been played back. If the page at *pOffset has already been played back
38504 ** (if the corresponding pDone bit is set) then skip the playback.
38505 ** Make sure the pDone bit corresponding to the *pOffset page is set
38506 ** prior to returning.
38508 ** If the page record is successfully read from the (sub-)journal file
38509 ** and played back, then SQLITE_OK is returned. If an IO error occurs
38510 ** while reading the record from the (sub-)journal file or while writing
38511 ** to the database file, then the IO error code is returned. If data
38512 ** is successfully read from the (sub-)journal file but appears to be
38513 ** corrupted, SQLITE_DONE is returned. Data is considered corrupted in
38514 ** two circumstances:
38516 ** * If the record page-number is illegal (0 or PAGER_MJ_PGNO), or
38517 ** * If the record is being rolled back from the main journal file
38518 ** and the checksum field does not match the record content.
38520 ** Neither of these two scenarios are possible during a savepoint rollback.
38522 ** If this is a savepoint rollback, then memory may have to be dynamically
38523 ** allocated by this function. If this is the case and an allocation fails,
38524 ** SQLITE_NOMEM is returned.
38526 static int pager_playback_one_page(
38527 Pager *pPager, /* The pager being played back */
38528 i64 *pOffset, /* Offset of record to playback */
38529 Bitvec *pDone, /* Bitvec of pages already played back */
38530 int isMainJrnl, /* 1 -> main journal. 0 -> sub-journal. */
38531 int isSavepnt /* True for a savepoint rollback */
38533 int rc;
38534 PgHdr *pPg; /* An existing page in the cache */
38535 Pgno pgno; /* The page number of a page in journal */
38536 u32 cksum; /* Checksum used for sanity checking */
38537 char *aData; /* Temporary storage for the page */
38538 sqlite3_file *jfd; /* The file descriptor for the journal file */
38539 int isSynced; /* True if journal page is synced */
38541 assert( (isMainJrnl&~1)==0 ); /* isMainJrnl is 0 or 1 */
38542 assert( (isSavepnt&~1)==0 ); /* isSavepnt is 0 or 1 */
38543 assert( isMainJrnl || pDone ); /* pDone always used on sub-journals */
38544 assert( isSavepnt || pDone==0 ); /* pDone never used on non-savepoint */
38546 aData = pPager->pTmpSpace;
38547 assert( aData ); /* Temp storage must have already been allocated */
38548 assert( pagerUseWal(pPager)==0 || (!isMainJrnl && isSavepnt) );
38550 /* Either the state is greater than PAGER_WRITER_CACHEMOD (a transaction
38551 ** or savepoint rollback done at the request of the caller) or this is
38552 ** a hot-journal rollback. If it is a hot-journal rollback, the pager
38553 ** is in state OPEN and holds an EXCLUSIVE lock. Hot-journal rollback
38554 ** only reads from the main journal, not the sub-journal.
38556 assert( pPager->eState>=PAGER_WRITER_CACHEMOD
38557 || (pPager->eState==PAGER_OPEN && pPager->eLock==EXCLUSIVE_LOCK)
38559 assert( pPager->eState>=PAGER_WRITER_CACHEMOD || isMainJrnl );
38561 /* Read the page number and page data from the journal or sub-journal
38562 ** file. Return an error code to the caller if an IO error occurs.
38564 jfd = isMainJrnl ? pPager->jfd : pPager->sjfd;
38565 rc = read32bits(jfd, *pOffset, &pgno);
38566 if( rc!=SQLITE_OK ) return rc;
38567 rc = sqlite3OsRead(jfd, (u8*)aData, pPager->pageSize, (*pOffset)+4);
38568 if( rc!=SQLITE_OK ) return rc;
38569 *pOffset += pPager->pageSize + 4 + isMainJrnl*4;
38571 /* Sanity checking on the page. This is more important that I originally
38572 ** thought. If a power failure occurs while the journal is being written,
38573 ** it could cause invalid data to be written into the journal. We need to
38574 ** detect this invalid data (with high probability) and ignore it.
38576 if( pgno==0 || pgno==PAGER_MJ_PGNO(pPager) ){
38577 assert( !isSavepnt );
38578 return SQLITE_DONE;
38580 if( pgno>(Pgno)pPager->dbSize || sqlite3BitvecTest(pDone, pgno) ){
38581 return SQLITE_OK;
38583 if( isMainJrnl ){
38584 rc = read32bits(jfd, (*pOffset)-4, &cksum);
38585 if( rc ) return rc;
38586 if( !isSavepnt && pager_cksum(pPager, (u8*)aData)!=cksum ){
38587 return SQLITE_DONE;
38591 /* If this page has already been played by before during the current
38592 ** rollback, then don't bother to play it back again.
38594 if( pDone && (rc = sqlite3BitvecSet(pDone, pgno))!=SQLITE_OK ){
38595 return rc;
38598 /* When playing back page 1, restore the nReserve setting
38600 if( pgno==1 && pPager->nReserve!=((u8*)aData)[20] ){
38601 pPager->nReserve = ((u8*)aData)[20];
38602 pagerReportSize(pPager);
38605 /* If the pager is in CACHEMOD state, then there must be a copy of this
38606 ** page in the pager cache. In this case just update the pager cache,
38607 ** not the database file. The page is left marked dirty in this case.
38609 ** An exception to the above rule: If the database is in no-sync mode
38610 ** and a page is moved during an incremental vacuum then the page may
38611 ** not be in the pager cache. Later: if a malloc() or IO error occurs
38612 ** during a Movepage() call, then the page may not be in the cache
38613 ** either. So the condition described in the above paragraph is not
38614 ** assert()able.
38616 ** If in WRITER_DBMOD, WRITER_FINISHED or OPEN state, then we update the
38617 ** pager cache if it exists and the main file. The page is then marked
38618 ** not dirty. Since this code is only executed in PAGER_OPEN state for
38619 ** a hot-journal rollback, it is guaranteed that the page-cache is empty
38620 ** if the pager is in OPEN state.
38622 ** Ticket #1171: The statement journal might contain page content that is
38623 ** different from the page content at the start of the transaction.
38624 ** This occurs when a page is changed prior to the start of a statement
38625 ** then changed again within the statement. When rolling back such a
38626 ** statement we must not write to the original database unless we know
38627 ** for certain that original page contents are synced into the main rollback
38628 ** journal. Otherwise, a power loss might leave modified data in the
38629 ** database file without an entry in the rollback journal that can
38630 ** restore the database to its original form. Two conditions must be
38631 ** met before writing to the database files. (1) the database must be
38632 ** locked. (2) we know that the original page content is fully synced
38633 ** in the main journal either because the page is not in cache or else
38634 ** the page is marked as needSync==0.
38636 ** 2008-04-14: When attempting to vacuum a corrupt database file, it
38637 ** is possible to fail a statement on a database that does not yet exist.
38638 ** Do not attempt to write if database file has never been opened.
38640 if( pagerUseWal(pPager) ){
38641 pPg = 0;
38642 }else{
38643 pPg = pager_lookup(pPager, pgno);
38645 assert( pPg || !MEMDB );
38646 assert( pPager->eState!=PAGER_OPEN || pPg==0 );
38647 PAGERTRACE(("PLAYBACK %d page %d hash(%08x) %s\n",
38648 PAGERID(pPager), pgno, pager_datahash(pPager->pageSize, (u8*)aData),
38649 (isMainJrnl?"main-journal":"sub-journal")
38651 if( isMainJrnl ){
38652 isSynced = pPager->noSync || (*pOffset <= pPager->journalHdr);
38653 }else{
38654 isSynced = (pPg==0 || 0==(pPg->flags & PGHDR_NEED_SYNC));
38656 if( isOpen(pPager->fd)
38657 && (pPager->eState>=PAGER_WRITER_DBMOD || pPager->eState==PAGER_OPEN)
38658 && isSynced
38660 i64 ofst = (pgno-1)*(i64)pPager->pageSize;
38661 testcase( !isSavepnt && pPg!=0 && (pPg->flags&PGHDR_NEED_SYNC)!=0 );
38662 assert( !pagerUseWal(pPager) );
38663 rc = sqlite3OsWrite(pPager->fd, (u8*)aData, pPager->pageSize, ofst);
38664 if( pgno>pPager->dbFileSize ){
38665 pPager->dbFileSize = pgno;
38667 if( pPager->pBackup ){
38668 CODEC1(pPager, aData, pgno, 3, rc=SQLITE_NOMEM);
38669 sqlite3BackupUpdate(pPager->pBackup, pgno, (u8*)aData);
38670 CODEC2(pPager, aData, pgno, 7, rc=SQLITE_NOMEM, aData);
38672 }else if( !isMainJrnl && pPg==0 ){
38673 /* If this is a rollback of a savepoint and data was not written to
38674 ** the database and the page is not in-memory, there is a potential
38675 ** problem. When the page is next fetched by the b-tree layer, it
38676 ** will be read from the database file, which may or may not be
38677 ** current.
38679 ** There are a couple of different ways this can happen. All are quite
38680 ** obscure. When running in synchronous mode, this can only happen
38681 ** if the page is on the free-list at the start of the transaction, then
38682 ** populated, then moved using sqlite3PagerMovepage().
38684 ** The solution is to add an in-memory page to the cache containing
38685 ** the data just read from the sub-journal. Mark the page as dirty
38686 ** and if the pager requires a journal-sync, then mark the page as
38687 ** requiring a journal-sync before it is written.
38689 assert( isSavepnt );
38690 assert( pPager->doNotSpill==0 );
38691 pPager->doNotSpill++;
38692 rc = sqlite3PagerAcquire(pPager, pgno, &pPg, 1);
38693 assert( pPager->doNotSpill==1 );
38694 pPager->doNotSpill--;
38695 if( rc!=SQLITE_OK ) return rc;
38696 pPg->flags &= ~PGHDR_NEED_READ;
38697 sqlite3PcacheMakeDirty(pPg);
38699 if( pPg ){
38700 /* No page should ever be explicitly rolled back that is in use, except
38701 ** for page 1 which is held in use in order to keep the lock on the
38702 ** database active. However such a page may be rolled back as a result
38703 ** of an internal error resulting in an automatic call to
38704 ** sqlite3PagerRollback().
38706 void *pData;
38707 pData = pPg->pData;
38708 memcpy(pData, (u8*)aData, pPager->pageSize);
38709 pPager->xReiniter(pPg);
38710 if( isMainJrnl && (!isSavepnt || *pOffset<=pPager->journalHdr) ){
38711 /* If the contents of this page were just restored from the main
38712 ** journal file, then its content must be as they were when the
38713 ** transaction was first opened. In this case we can mark the page
38714 ** as clean, since there will be no need to write it out to the
38715 ** database.
38717 ** There is one exception to this rule. If the page is being rolled
38718 ** back as part of a savepoint (or statement) rollback from an
38719 ** unsynced portion of the main journal file, then it is not safe
38720 ** to mark the page as clean. This is because marking the page as
38721 ** clean will clear the PGHDR_NEED_SYNC flag. Since the page is
38722 ** already in the journal file (recorded in Pager.pInJournal) and
38723 ** the PGHDR_NEED_SYNC flag is cleared, if the page is written to
38724 ** again within this transaction, it will be marked as dirty but
38725 ** the PGHDR_NEED_SYNC flag will not be set. It could then potentially
38726 ** be written out into the database file before its journal file
38727 ** segment is synced. If a crash occurs during or following this,
38728 ** database corruption may ensue.
38730 assert( !pagerUseWal(pPager) );
38731 sqlite3PcacheMakeClean(pPg);
38733 pager_set_pagehash(pPg);
38735 /* If this was page 1, then restore the value of Pager.dbFileVers.
38736 ** Do this before any decoding. */
38737 if( pgno==1 ){
38738 memcpy(&pPager->dbFileVers, &((u8*)pData)[24],sizeof(pPager->dbFileVers));
38741 /* Decode the page just read from disk */
38742 CODEC1(pPager, pData, pPg->pgno, 3, rc=SQLITE_NOMEM);
38743 sqlite3PcacheRelease(pPg);
38745 return rc;
38749 ** Parameter zMaster is the name of a master journal file. A single journal
38750 ** file that referred to the master journal file has just been rolled back.
38751 ** This routine checks if it is possible to delete the master journal file,
38752 ** and does so if it is.
38754 ** Argument zMaster may point to Pager.pTmpSpace. So that buffer is not
38755 ** available for use within this function.
38757 ** When a master journal file is created, it is populated with the names
38758 ** of all of its child journals, one after another, formatted as utf-8
38759 ** encoded text. The end of each child journal file is marked with a
38760 ** nul-terminator byte (0x00). i.e. the entire contents of a master journal
38761 ** file for a transaction involving two databases might be:
38763 ** "/home/bill/a.db-journal\x00/home/bill/b.db-journal\x00"
38765 ** A master journal file may only be deleted once all of its child
38766 ** journals have been rolled back.
38768 ** This function reads the contents of the master-journal file into
38769 ** memory and loops through each of the child journal names. For
38770 ** each child journal, it checks if:
38772 ** * if the child journal exists, and if so
38773 ** * if the child journal contains a reference to master journal
38774 ** file zMaster
38776 ** If a child journal can be found that matches both of the criteria
38777 ** above, this function returns without doing anything. Otherwise, if
38778 ** no such child journal can be found, file zMaster is deleted from
38779 ** the file-system using sqlite3OsDelete().
38781 ** If an IO error within this function, an error code is returned. This
38782 ** function allocates memory by calling sqlite3Malloc(). If an allocation
38783 ** fails, SQLITE_NOMEM is returned. Otherwise, if no IO or malloc errors
38784 ** occur, SQLITE_OK is returned.
38786 ** TODO: This function allocates a single block of memory to load
38787 ** the entire contents of the master journal file. This could be
38788 ** a couple of kilobytes or so - potentially larger than the page
38789 ** size.
38791 static int pager_delmaster(Pager *pPager, const char *zMaster){
38792 sqlite3_vfs *pVfs = pPager->pVfs;
38793 int rc; /* Return code */
38794 sqlite3_file *pMaster; /* Malloc'd master-journal file descriptor */
38795 sqlite3_file *pJournal; /* Malloc'd child-journal file descriptor */
38796 char *zMasterJournal = 0; /* Contents of master journal file */
38797 i64 nMasterJournal; /* Size of master journal file */
38798 char *zJournal; /* Pointer to one journal within MJ file */
38799 char *zMasterPtr; /* Space to hold MJ filename from a journal file */
38800 int nMasterPtr; /* Amount of space allocated to zMasterPtr[] */
38802 /* Allocate space for both the pJournal and pMaster file descriptors.
38803 ** If successful, open the master journal file for reading.
38805 pMaster = (sqlite3_file *)sqlite3MallocZero(pVfs->szOsFile * 2);
38806 pJournal = (sqlite3_file *)(((u8 *)pMaster) + pVfs->szOsFile);
38807 if( !pMaster ){
38808 rc = SQLITE_NOMEM;
38809 }else{
38810 const int flags = (SQLITE_OPEN_READONLY|SQLITE_OPEN_MASTER_JOURNAL);
38811 rc = sqlite3OsOpen(pVfs, zMaster, pMaster, flags, 0);
38813 if( rc!=SQLITE_OK ) goto delmaster_out;
38815 /* Load the entire master journal file into space obtained from
38816 ** sqlite3_malloc() and pointed to by zMasterJournal. Also obtain
38817 ** sufficient space (in zMasterPtr) to hold the names of master
38818 ** journal files extracted from regular rollback-journals.
38820 rc = sqlite3OsFileSize(pMaster, &nMasterJournal);
38821 if( rc!=SQLITE_OK ) goto delmaster_out;
38822 nMasterPtr = pVfs->mxPathname+1;
38823 zMasterJournal = sqlite3Malloc((int)nMasterJournal + nMasterPtr + 1);
38824 if( !zMasterJournal ){
38825 rc = SQLITE_NOMEM;
38826 goto delmaster_out;
38828 zMasterPtr = &zMasterJournal[nMasterJournal+1];
38829 rc = sqlite3OsRead(pMaster, zMasterJournal, (int)nMasterJournal, 0);
38830 if( rc!=SQLITE_OK ) goto delmaster_out;
38831 zMasterJournal[nMasterJournal] = 0;
38833 zJournal = zMasterJournal;
38834 while( (zJournal-zMasterJournal)<nMasterJournal ){
38835 int exists;
38836 rc = sqlite3OsAccess(pVfs, zJournal, SQLITE_ACCESS_EXISTS, &exists);
38837 if( rc!=SQLITE_OK ){
38838 goto delmaster_out;
38840 if( exists ){
38841 /* One of the journals pointed to by the master journal exists.
38842 ** Open it and check if it points at the master journal. If
38843 ** so, return without deleting the master journal file.
38845 int c;
38846 int flags = (SQLITE_OPEN_READONLY|SQLITE_OPEN_MAIN_JOURNAL);
38847 rc = sqlite3OsOpen(pVfs, zJournal, pJournal, flags, 0);
38848 if( rc!=SQLITE_OK ){
38849 goto delmaster_out;
38852 rc = readMasterJournal(pJournal, zMasterPtr, nMasterPtr);
38853 sqlite3OsClose(pJournal);
38854 if( rc!=SQLITE_OK ){
38855 goto delmaster_out;
38858 c = zMasterPtr[0]!=0 && strcmp(zMasterPtr, zMaster)==0;
38859 if( c ){
38860 /* We have a match. Do not delete the master journal file. */
38861 goto delmaster_out;
38864 zJournal += (sqlite3Strlen30(zJournal)+1);
38867 sqlite3OsClose(pMaster);
38868 rc = sqlite3OsDelete(pVfs, zMaster, 0);
38870 delmaster_out:
38871 sqlite3_free(zMasterJournal);
38872 if( pMaster ){
38873 sqlite3OsClose(pMaster);
38874 assert( !isOpen(pJournal) );
38875 sqlite3_free(pMaster);
38877 return rc;
38882 ** This function is used to change the actual size of the database
38883 ** file in the file-system. This only happens when committing a transaction,
38884 ** or rolling back a transaction (including rolling back a hot-journal).
38886 ** If the main database file is not open, or the pager is not in either
38887 ** DBMOD or OPEN state, this function is a no-op. Otherwise, the size
38888 ** of the file is changed to nPage pages (nPage*pPager->pageSize bytes).
38889 ** If the file on disk is currently larger than nPage pages, then use the VFS
38890 ** xTruncate() method to truncate it.
38892 ** Or, it might might be the case that the file on disk is smaller than
38893 ** nPage pages. Some operating system implementations can get confused if
38894 ** you try to truncate a file to some size that is larger than it
38895 ** currently is, so detect this case and write a single zero byte to
38896 ** the end of the new file instead.
38898 ** If successful, return SQLITE_OK. If an IO error occurs while modifying
38899 ** the database file, return the error code to the caller.
38901 static int pager_truncate(Pager *pPager, Pgno nPage){
38902 int rc = SQLITE_OK;
38903 assert( pPager->eState!=PAGER_ERROR );
38904 assert( pPager->eState!=PAGER_READER );
38906 if( isOpen(pPager->fd)
38907 && (pPager->eState>=PAGER_WRITER_DBMOD || pPager->eState==PAGER_OPEN)
38909 i64 currentSize, newSize;
38910 int szPage = pPager->pageSize;
38911 assert( pPager->eLock==EXCLUSIVE_LOCK );
38912 /* TODO: Is it safe to use Pager.dbFileSize here? */
38913 rc = sqlite3OsFileSize(pPager->fd, &currentSize);
38914 newSize = szPage*(i64)nPage;
38915 if( rc==SQLITE_OK && currentSize!=newSize ){
38916 if( currentSize>newSize ){
38917 rc = sqlite3OsTruncate(pPager->fd, newSize);
38918 }else{
38919 char *pTmp = pPager->pTmpSpace;
38920 memset(pTmp, 0, szPage);
38921 testcase( (newSize-szPage) < currentSize );
38922 testcase( (newSize-szPage) == currentSize );
38923 testcase( (newSize-szPage) > currentSize );
38924 rc = sqlite3OsWrite(pPager->fd, pTmp, szPage, newSize-szPage);
38926 if( rc==SQLITE_OK ){
38927 pPager->dbFileSize = nPage;
38931 return rc;
38935 ** Set the value of the Pager.sectorSize variable for the given
38936 ** pager based on the value returned by the xSectorSize method
38937 ** of the open database file. The sector size will be used used
38938 ** to determine the size and alignment of journal header and
38939 ** master journal pointers within created journal files.
38941 ** For temporary files the effective sector size is always 512 bytes.
38943 ** Otherwise, for non-temporary files, the effective sector size is
38944 ** the value returned by the xSectorSize() method rounded up to 32 if
38945 ** it is less than 32, or rounded down to MAX_SECTOR_SIZE if it
38946 ** is greater than MAX_SECTOR_SIZE.
38948 static void setSectorSize(Pager *pPager){
38949 assert( isOpen(pPager->fd) || pPager->tempFile );
38951 if( !pPager->tempFile ){
38952 /* Sector size doesn't matter for temporary files. Also, the file
38953 ** may not have been opened yet, in which case the OsSectorSize()
38954 ** call will segfault.
38956 pPager->sectorSize = sqlite3OsSectorSize(pPager->fd);
38958 if( pPager->sectorSize<32 ){
38959 pPager->sectorSize = 512;
38961 if( pPager->sectorSize>MAX_SECTOR_SIZE ){
38962 assert( MAX_SECTOR_SIZE>=512 );
38963 pPager->sectorSize = MAX_SECTOR_SIZE;
38968 ** Playback the journal and thus restore the database file to
38969 ** the state it was in before we started making changes.
38971 ** The journal file format is as follows:
38973 ** (1) 8 byte prefix. A copy of aJournalMagic[].
38974 ** (2) 4 byte big-endian integer which is the number of valid page records
38975 ** in the journal. If this value is 0xffffffff, then compute the
38976 ** number of page records from the journal size.
38977 ** (3) 4 byte big-endian integer which is the initial value for the
38978 ** sanity checksum.
38979 ** (4) 4 byte integer which is the number of pages to truncate the
38980 ** database to during a rollback.
38981 ** (5) 4 byte big-endian integer which is the sector size. The header
38982 ** is this many bytes in size.
38983 ** (6) 4 byte big-endian integer which is the page size.
38984 ** (7) zero padding out to the next sector size.
38985 ** (8) Zero or more pages instances, each as follows:
38986 ** + 4 byte page number.
38987 ** + pPager->pageSize bytes of data.
38988 ** + 4 byte checksum
38990 ** When we speak of the journal header, we mean the first 7 items above.
38991 ** Each entry in the journal is an instance of the 8th item.
38993 ** Call the value from the second bullet "nRec". nRec is the number of
38994 ** valid page entries in the journal. In most cases, you can compute the
38995 ** value of nRec from the size of the journal file. But if a power
38996 ** failure occurred while the journal was being written, it could be the
38997 ** case that the size of the journal file had already been increased but
38998 ** the extra entries had not yet made it safely to disk. In such a case,
38999 ** the value of nRec computed from the file size would be too large. For
39000 ** that reason, we always use the nRec value in the header.
39002 ** If the nRec value is 0xffffffff it means that nRec should be computed
39003 ** from the file size. This value is used when the user selects the
39004 ** no-sync option for the journal. A power failure could lead to corruption
39005 ** in this case. But for things like temporary table (which will be
39006 ** deleted when the power is restored) we don't care.
39008 ** If the file opened as the journal file is not a well-formed
39009 ** journal file then all pages up to the first corrupted page are rolled
39010 ** back (or no pages if the journal header is corrupted). The journal file
39011 ** is then deleted and SQLITE_OK returned, just as if no corruption had
39012 ** been encountered.
39014 ** If an I/O or malloc() error occurs, the journal-file is not deleted
39015 ** and an error code is returned.
39017 ** The isHot parameter indicates that we are trying to rollback a journal
39018 ** that might be a hot journal. Or, it could be that the journal is
39019 ** preserved because of JOURNALMODE_PERSIST or JOURNALMODE_TRUNCATE.
39020 ** If the journal really is hot, reset the pager cache prior rolling
39021 ** back any content. If the journal is merely persistent, no reset is
39022 ** needed.
39024 static int pager_playback(Pager *pPager, int isHot){
39025 sqlite3_vfs *pVfs = pPager->pVfs;
39026 i64 szJ; /* Size of the journal file in bytes */
39027 u32 nRec; /* Number of Records in the journal */
39028 u32 u; /* Unsigned loop counter */
39029 Pgno mxPg = 0; /* Size of the original file in pages */
39030 int rc; /* Result code of a subroutine */
39031 int res = 1; /* Value returned by sqlite3OsAccess() */
39032 char *zMaster = 0; /* Name of master journal file if any */
39033 int needPagerReset; /* True to reset page prior to first page rollback */
39035 /* Figure out how many records are in the journal. Abort early if
39036 ** the journal is empty.
39038 assert( isOpen(pPager->jfd) );
39039 rc = sqlite3OsFileSize(pPager->jfd, &szJ);
39040 if( rc!=SQLITE_OK ){
39041 goto end_playback;
39044 /* Read the master journal name from the journal, if it is present.
39045 ** If a master journal file name is specified, but the file is not
39046 ** present on disk, then the journal is not hot and does not need to be
39047 ** played back.
39049 ** TODO: Technically the following is an error because it assumes that
39050 ** buffer Pager.pTmpSpace is (mxPathname+1) bytes or larger. i.e. that
39051 ** (pPager->pageSize >= pPager->pVfs->mxPathname+1). Using os_unix.c,
39052 ** mxPathname is 512, which is the same as the minimum allowable value
39053 ** for pageSize.
39055 zMaster = pPager->pTmpSpace;
39056 rc = readMasterJournal(pPager->jfd, zMaster, pPager->pVfs->mxPathname+1);
39057 if( rc==SQLITE_OK && zMaster[0] ){
39058 rc = sqlite3OsAccess(pVfs, zMaster, SQLITE_ACCESS_EXISTS, &res);
39060 zMaster = 0;
39061 if( rc!=SQLITE_OK || !res ){
39062 goto end_playback;
39064 pPager->journalOff = 0;
39065 needPagerReset = isHot;
39067 /* This loop terminates either when a readJournalHdr() or
39068 ** pager_playback_one_page() call returns SQLITE_DONE or an IO error
39069 ** occurs.
39071 while( 1 ){
39072 /* Read the next journal header from the journal file. If there are
39073 ** not enough bytes left in the journal file for a complete header, or
39074 ** it is corrupted, then a process must have failed while writing it.
39075 ** This indicates nothing more needs to be rolled back.
39077 rc = readJournalHdr(pPager, isHot, szJ, &nRec, &mxPg);
39078 if( rc!=SQLITE_OK ){
39079 if( rc==SQLITE_DONE ){
39080 rc = SQLITE_OK;
39082 goto end_playback;
39085 /* If nRec is 0xffffffff, then this journal was created by a process
39086 ** working in no-sync mode. This means that the rest of the journal
39087 ** file consists of pages, there are no more journal headers. Compute
39088 ** the value of nRec based on this assumption.
39090 if( nRec==0xffffffff ){
39091 assert( pPager->journalOff==JOURNAL_HDR_SZ(pPager) );
39092 nRec = (int)((szJ - JOURNAL_HDR_SZ(pPager))/JOURNAL_PG_SZ(pPager));
39095 /* If nRec is 0 and this rollback is of a transaction created by this
39096 ** process and if this is the final header in the journal, then it means
39097 ** that this part of the journal was being filled but has not yet been
39098 ** synced to disk. Compute the number of pages based on the remaining
39099 ** size of the file.
39101 ** The third term of the test was added to fix ticket #2565.
39102 ** When rolling back a hot journal, nRec==0 always means that the next
39103 ** chunk of the journal contains zero pages to be rolled back. But
39104 ** when doing a ROLLBACK and the nRec==0 chunk is the last chunk in
39105 ** the journal, it means that the journal might contain additional
39106 ** pages that need to be rolled back and that the number of pages
39107 ** should be computed based on the journal file size.
39109 if( nRec==0 && !isHot &&
39110 pPager->journalHdr+JOURNAL_HDR_SZ(pPager)==pPager->journalOff ){
39111 nRec = (int)((szJ - pPager->journalOff) / JOURNAL_PG_SZ(pPager));
39114 /* If this is the first header read from the journal, truncate the
39115 ** database file back to its original size.
39117 if( pPager->journalOff==JOURNAL_HDR_SZ(pPager) ){
39118 rc = pager_truncate(pPager, mxPg);
39119 if( rc!=SQLITE_OK ){
39120 goto end_playback;
39122 pPager->dbSize = mxPg;
39125 /* Copy original pages out of the journal and back into the
39126 ** database file and/or page cache.
39128 for(u=0; u<nRec; u++){
39129 if( needPagerReset ){
39130 pager_reset(pPager);
39131 needPagerReset = 0;
39133 rc = pager_playback_one_page(pPager,&pPager->journalOff,0,1,0);
39134 if( rc!=SQLITE_OK ){
39135 if( rc==SQLITE_DONE ){
39136 rc = SQLITE_OK;
39137 pPager->journalOff = szJ;
39138 break;
39139 }else if( rc==SQLITE_IOERR_SHORT_READ ){
39140 /* If the journal has been truncated, simply stop reading and
39141 ** processing the journal. This might happen if the journal was
39142 ** not completely written and synced prior to a crash. In that
39143 ** case, the database should have never been written in the
39144 ** first place so it is OK to simply abandon the rollback. */
39145 rc = SQLITE_OK;
39146 goto end_playback;
39147 }else{
39148 /* If we are unable to rollback, quit and return the error
39149 ** code. This will cause the pager to enter the error state
39150 ** so that no further harm will be done. Perhaps the next
39151 ** process to come along will be able to rollback the database.
39153 goto end_playback;
39158 /*NOTREACHED*/
39159 assert( 0 );
39161 end_playback:
39162 /* Following a rollback, the database file should be back in its original
39163 ** state prior to the start of the transaction, so invoke the
39164 ** SQLITE_FCNTL_DB_UNCHANGED file-control method to disable the
39165 ** assertion that the transaction counter was modified.
39167 assert(
39168 pPager->fd->pMethods==0 ||
39169 sqlite3OsFileControl(pPager->fd,SQLITE_FCNTL_DB_UNCHANGED,0)>=SQLITE_OK
39172 /* If this playback is happening automatically as a result of an IO or
39173 ** malloc error that occurred after the change-counter was updated but
39174 ** before the transaction was committed, then the change-counter
39175 ** modification may just have been reverted. If this happens in exclusive
39176 ** mode, then subsequent transactions performed by the connection will not
39177 ** update the change-counter at all. This may lead to cache inconsistency
39178 ** problems for other processes at some point in the future. So, just
39179 ** in case this has happened, clear the changeCountDone flag now.
39181 pPager->changeCountDone = pPager->tempFile;
39183 if( rc==SQLITE_OK ){
39184 zMaster = pPager->pTmpSpace;
39185 rc = readMasterJournal(pPager->jfd, zMaster, pPager->pVfs->mxPathname+1);
39186 testcase( rc!=SQLITE_OK );
39188 if( rc==SQLITE_OK
39189 && (pPager->eState>=PAGER_WRITER_DBMOD || pPager->eState==PAGER_OPEN)
39191 rc = sqlite3PagerSync(pPager);
39193 if( rc==SQLITE_OK ){
39194 rc = pager_end_transaction(pPager, zMaster[0]!='\0');
39195 testcase( rc!=SQLITE_OK );
39197 if( rc==SQLITE_OK && zMaster[0] && res ){
39198 /* If there was a master journal and this routine will return success,
39199 ** see if it is possible to delete the master journal.
39201 rc = pager_delmaster(pPager, zMaster);
39202 testcase( rc!=SQLITE_OK );
39205 /* The Pager.sectorSize variable may have been updated while rolling
39206 ** back a journal created by a process with a different sector size
39207 ** value. Reset it to the correct value for this process.
39209 setSectorSize(pPager);
39210 return rc;
39215 ** Read the content for page pPg out of the database file and into
39216 ** pPg->pData. A shared lock or greater must be held on the database
39217 ** file before this function is called.
39219 ** If page 1 is read, then the value of Pager.dbFileVers[] is set to
39220 ** the value read from the database file.
39222 ** If an IO error occurs, then the IO error is returned to the caller.
39223 ** Otherwise, SQLITE_OK is returned.
39225 static int readDbPage(PgHdr *pPg){
39226 Pager *pPager = pPg->pPager; /* Pager object associated with page pPg */
39227 Pgno pgno = pPg->pgno; /* Page number to read */
39228 int rc = SQLITE_OK; /* Return code */
39229 int isInWal = 0; /* True if page is in log file */
39230 int pgsz = pPager->pageSize; /* Number of bytes to read */
39232 assert( pPager->eState>=PAGER_READER && !MEMDB );
39233 assert( isOpen(pPager->fd) );
39235 if( NEVER(!isOpen(pPager->fd)) ){
39236 assert( pPager->tempFile );
39237 memset(pPg->pData, 0, pPager->pageSize);
39238 return SQLITE_OK;
39241 if( pagerUseWal(pPager) ){
39242 /* Try to pull the page from the write-ahead log. */
39243 rc = sqlite3WalRead(pPager->pWal, pgno, &isInWal, pgsz, pPg->pData);
39245 if( rc==SQLITE_OK && !isInWal ){
39246 i64 iOffset = (pgno-1)*(i64)pPager->pageSize;
39247 rc = sqlite3OsRead(pPager->fd, pPg->pData, pgsz, iOffset);
39248 if( rc==SQLITE_IOERR_SHORT_READ ){
39249 rc = SQLITE_OK;
39253 if( pgno==1 ){
39254 if( rc ){
39255 /* If the read is unsuccessful, set the dbFileVers[] to something
39256 ** that will never be a valid file version. dbFileVers[] is a copy
39257 ** of bytes 24..39 of the database. Bytes 28..31 should always be
39258 ** zero or the size of the database in page. Bytes 32..35 and 35..39
39259 ** should be page numbers which are never 0xffffffff. So filling
39260 ** pPager->dbFileVers[] with all 0xff bytes should suffice.
39262 ** For an encrypted database, the situation is more complex: bytes
39263 ** 24..39 of the database are white noise. But the probability of
39264 ** white noising equaling 16 bytes of 0xff is vanishingly small so
39265 ** we should still be ok.
39267 memset(pPager->dbFileVers, 0xff, sizeof(pPager->dbFileVers));
39268 }else{
39269 u8 *dbFileVers = &((u8*)pPg->pData)[24];
39270 memcpy(&pPager->dbFileVers, dbFileVers, sizeof(pPager->dbFileVers));
39273 CODEC1(pPager, pPg->pData, pgno, 3, rc = SQLITE_NOMEM);
39275 PAGER_INCR(sqlite3_pager_readdb_count);
39276 PAGER_INCR(pPager->nRead);
39277 IOTRACE(("PGIN %p %d\n", pPager, pgno));
39278 PAGERTRACE(("FETCH %d page %d hash(%08x)\n",
39279 PAGERID(pPager), pgno, pager_pagehash(pPg)));
39281 return rc;
39285 ** Update the value of the change-counter at offsets 24 and 92 in
39286 ** the header and the sqlite version number at offset 96.
39288 ** This is an unconditional update. See also the pager_incr_changecounter()
39289 ** routine which only updates the change-counter if the update is actually
39290 ** needed, as determined by the pPager->changeCountDone state variable.
39292 static void pager_write_changecounter(PgHdr *pPg){
39293 u32 change_counter;
39295 /* Increment the value just read and write it back to byte 24. */
39296 change_counter = sqlite3Get4byte((u8*)pPg->pPager->dbFileVers)+1;
39297 put32bits(((char*)pPg->pData)+24, change_counter);
39299 /* Also store the SQLite version number in bytes 96..99 and in
39300 ** bytes 92..95 store the change counter for which the version number
39301 ** is valid. */
39302 put32bits(((char*)pPg->pData)+92, change_counter);
39303 put32bits(((char*)pPg->pData)+96, SQLITE_VERSION_NUMBER);
39306 #ifndef SQLITE_OMIT_WAL
39308 ** This function is invoked once for each page that has already been
39309 ** written into the log file when a WAL transaction is rolled back.
39310 ** Parameter iPg is the page number of said page. The pCtx argument
39311 ** is actually a pointer to the Pager structure.
39313 ** If page iPg is present in the cache, and has no outstanding references,
39314 ** it is discarded. Otherwise, if there are one or more outstanding
39315 ** references, the page content is reloaded from the database. If the
39316 ** attempt to reload content from the database is required and fails,
39317 ** return an SQLite error code. Otherwise, SQLITE_OK.
39319 static int pagerUndoCallback(void *pCtx, Pgno iPg){
39320 int rc = SQLITE_OK;
39321 Pager *pPager = (Pager *)pCtx;
39322 PgHdr *pPg;
39324 pPg = sqlite3PagerLookup(pPager, iPg);
39325 if( pPg ){
39326 if( sqlite3PcachePageRefcount(pPg)==1 ){
39327 sqlite3PcacheDrop(pPg);
39328 }else{
39329 rc = readDbPage(pPg);
39330 if( rc==SQLITE_OK ){
39331 pPager->xReiniter(pPg);
39333 sqlite3PagerUnref(pPg);
39337 /* Normally, if a transaction is rolled back, any backup processes are
39338 ** updated as data is copied out of the rollback journal and into the
39339 ** database. This is not generally possible with a WAL database, as
39340 ** rollback involves simply truncating the log file. Therefore, if one
39341 ** or more frames have already been written to the log (and therefore
39342 ** also copied into the backup databases) as part of this transaction,
39343 ** the backups must be restarted.
39345 sqlite3BackupRestart(pPager->pBackup);
39347 return rc;
39351 ** This function is called to rollback a transaction on a WAL database.
39353 static int pagerRollbackWal(Pager *pPager){
39354 int rc; /* Return Code */
39355 PgHdr *pList; /* List of dirty pages to revert */
39357 /* For all pages in the cache that are currently dirty or have already
39358 ** been written (but not committed) to the log file, do one of the
39359 ** following:
39361 ** + Discard the cached page (if refcount==0), or
39362 ** + Reload page content from the database (if refcount>0).
39364 pPager->dbSize = pPager->dbOrigSize;
39365 rc = sqlite3WalUndo(pPager->pWal, pagerUndoCallback, (void *)pPager);
39366 pList = sqlite3PcacheDirtyList(pPager->pPCache);
39367 while( pList && rc==SQLITE_OK ){
39368 PgHdr *pNext = pList->pDirty;
39369 rc = pagerUndoCallback((void *)pPager, pList->pgno);
39370 pList = pNext;
39373 return rc;
39377 ** This function is a wrapper around sqlite3WalFrames(). As well as logging
39378 ** the contents of the list of pages headed by pList (connected by pDirty),
39379 ** this function notifies any active backup processes that the pages have
39380 ** changed.
39382 ** The list of pages passed into this routine is always sorted by page number.
39383 ** Hence, if page 1 appears anywhere on the list, it will be the first page.
39385 static int pagerWalFrames(
39386 Pager *pPager, /* Pager object */
39387 PgHdr *pList, /* List of frames to log */
39388 Pgno nTruncate, /* Database size after this commit */
39389 int isCommit, /* True if this is a commit */
39390 int syncFlags /* Flags to pass to OsSync() (or 0) */
39392 int rc; /* Return code */
39393 #if defined(SQLITE_DEBUG) || defined(SQLITE_CHECK_PAGES)
39394 PgHdr *p; /* For looping over pages */
39395 #endif
39397 assert( pPager->pWal );
39398 #ifdef SQLITE_DEBUG
39399 /* Verify that the page list is in accending order */
39400 for(p=pList; p && p->pDirty; p=p->pDirty){
39401 assert( p->pgno < p->pDirty->pgno );
39403 #endif
39405 if( isCommit ){
39406 /* If a WAL transaction is being committed, there is no point in writing
39407 ** any pages with page numbers greater than nTruncate into the WAL file.
39408 ** They will never be read by any client. So remove them from the pDirty
39409 ** list here. */
39410 PgHdr *p;
39411 PgHdr **ppNext = &pList;
39412 for(p=pList; (*ppNext = p); p=p->pDirty){
39413 if( p->pgno<=nTruncate ) ppNext = &p->pDirty;
39415 assert( pList );
39418 if( pList->pgno==1 ) pager_write_changecounter(pList);
39419 rc = sqlite3WalFrames(pPager->pWal,
39420 pPager->pageSize, pList, nTruncate, isCommit, syncFlags
39422 if( rc==SQLITE_OK && pPager->pBackup ){
39423 PgHdr *p;
39424 for(p=pList; p; p=p->pDirty){
39425 sqlite3BackupUpdate(pPager->pBackup, p->pgno, (u8 *)p->pData);
39429 #ifdef SQLITE_CHECK_PAGES
39430 pList = sqlite3PcacheDirtyList(pPager->pPCache);
39431 for(p=pList; p; p=p->pDirty){
39432 pager_set_pagehash(p);
39434 #endif
39436 return rc;
39440 ** Begin a read transaction on the WAL.
39442 ** This routine used to be called "pagerOpenSnapshot()" because it essentially
39443 ** makes a snapshot of the database at the current point in time and preserves
39444 ** that snapshot for use by the reader in spite of concurrently changes by
39445 ** other writers or checkpointers.
39447 static int pagerBeginReadTransaction(Pager *pPager){
39448 int rc; /* Return code */
39449 int changed = 0; /* True if cache must be reset */
39451 assert( pagerUseWal(pPager) );
39452 assert( pPager->eState==PAGER_OPEN || pPager->eState==PAGER_READER );
39454 /* sqlite3WalEndReadTransaction() was not called for the previous
39455 ** transaction in locking_mode=EXCLUSIVE. So call it now. If we
39456 ** are in locking_mode=NORMAL and EndRead() was previously called,
39457 ** the duplicate call is harmless.
39459 sqlite3WalEndReadTransaction(pPager->pWal);
39461 rc = sqlite3WalBeginReadTransaction(pPager->pWal, &changed);
39462 if( rc!=SQLITE_OK || changed ){
39463 pager_reset(pPager);
39466 return rc;
39468 #endif
39471 ** This function is called as part of the transition from PAGER_OPEN
39472 ** to PAGER_READER state to determine the size of the database file
39473 ** in pages (assuming the page size currently stored in Pager.pageSize).
39475 ** If no error occurs, SQLITE_OK is returned and the size of the database
39476 ** in pages is stored in *pnPage. Otherwise, an error code (perhaps
39477 ** SQLITE_IOERR_FSTAT) is returned and *pnPage is left unmodified.
39479 static int pagerPagecount(Pager *pPager, Pgno *pnPage){
39480 Pgno nPage; /* Value to return via *pnPage */
39482 /* Query the WAL sub-system for the database size. The WalDbsize()
39483 ** function returns zero if the WAL is not open (i.e. Pager.pWal==0), or
39484 ** if the database size is not available. The database size is not
39485 ** available from the WAL sub-system if the log file is empty or
39486 ** contains no valid committed transactions.
39488 assert( pPager->eState==PAGER_OPEN );
39489 assert( pPager->eLock>=SHARED_LOCK || pPager->noReadlock );
39490 nPage = sqlite3WalDbsize(pPager->pWal);
39492 /* If the database size was not available from the WAL sub-system,
39493 ** determine it based on the size of the database file. If the size
39494 ** of the database file is not an integer multiple of the page-size,
39495 ** round down to the nearest page. Except, any file larger than 0
39496 ** bytes in size is considered to contain at least one page.
39498 if( nPage==0 ){
39499 i64 n = 0; /* Size of db file in bytes */
39500 assert( isOpen(pPager->fd) || pPager->tempFile );
39501 if( isOpen(pPager->fd) ){
39502 int rc = sqlite3OsFileSize(pPager->fd, &n);
39503 if( rc!=SQLITE_OK ){
39504 return rc;
39507 nPage = (Pgno)(n / pPager->pageSize);
39508 if( nPage==0 && n>0 ){
39509 nPage = 1;
39513 /* If the current number of pages in the file is greater than the
39514 ** configured maximum pager number, increase the allowed limit so
39515 ** that the file can be read.
39517 if( nPage>pPager->mxPgno ){
39518 pPager->mxPgno = (Pgno)nPage;
39521 *pnPage = nPage;
39522 return SQLITE_OK;
39525 #ifndef SQLITE_OMIT_WAL
39527 ** Check if the *-wal file that corresponds to the database opened by pPager
39528 ** exists if the database is not empy, or verify that the *-wal file does
39529 ** not exist (by deleting it) if the database file is empty.
39531 ** If the database is not empty and the *-wal file exists, open the pager
39532 ** in WAL mode. If the database is empty or if no *-wal file exists and
39533 ** if no error occurs, make sure Pager.journalMode is not set to
39534 ** PAGER_JOURNALMODE_WAL.
39536 ** Return SQLITE_OK or an error code.
39538 ** The caller must hold a SHARED lock on the database file to call this
39539 ** function. Because an EXCLUSIVE lock on the db file is required to delete
39540 ** a WAL on a none-empty database, this ensures there is no race condition
39541 ** between the xAccess() below and an xDelete() being executed by some
39542 ** other connection.
39544 static int pagerOpenWalIfPresent(Pager *pPager){
39545 int rc = SQLITE_OK;
39546 assert( pPager->eState==PAGER_OPEN );
39547 assert( pPager->eLock>=SHARED_LOCK || pPager->noReadlock );
39549 if( !pPager->tempFile ){
39550 int isWal; /* True if WAL file exists */
39551 Pgno nPage; /* Size of the database file */
39553 rc = pagerPagecount(pPager, &nPage);
39554 if( rc ) return rc;
39555 if( nPage==0 ){
39556 rc = sqlite3OsDelete(pPager->pVfs, pPager->zWal, 0);
39557 isWal = 0;
39558 }else{
39559 rc = sqlite3OsAccess(
39560 pPager->pVfs, pPager->zWal, SQLITE_ACCESS_EXISTS, &isWal
39563 if( rc==SQLITE_OK ){
39564 if( isWal ){
39565 testcase( sqlite3PcachePagecount(pPager->pPCache)==0 );
39566 rc = sqlite3PagerOpenWal(pPager, 0);
39567 }else if( pPager->journalMode==PAGER_JOURNALMODE_WAL ){
39568 pPager->journalMode = PAGER_JOURNALMODE_DELETE;
39572 return rc;
39574 #endif
39577 ** Playback savepoint pSavepoint. Or, if pSavepoint==NULL, then playback
39578 ** the entire master journal file. The case pSavepoint==NULL occurs when
39579 ** a ROLLBACK TO command is invoked on a SAVEPOINT that is a transaction
39580 ** savepoint.
39582 ** When pSavepoint is not NULL (meaning a non-transaction savepoint is
39583 ** being rolled back), then the rollback consists of up to three stages,
39584 ** performed in the order specified:
39586 ** * Pages are played back from the main journal starting at byte
39587 ** offset PagerSavepoint.iOffset and continuing to
39588 ** PagerSavepoint.iHdrOffset, or to the end of the main journal
39589 ** file if PagerSavepoint.iHdrOffset is zero.
39591 ** * If PagerSavepoint.iHdrOffset is not zero, then pages are played
39592 ** back starting from the journal header immediately following
39593 ** PagerSavepoint.iHdrOffset to the end of the main journal file.
39595 ** * Pages are then played back from the sub-journal file, starting
39596 ** with the PagerSavepoint.iSubRec and continuing to the end of
39597 ** the journal file.
39599 ** Throughout the rollback process, each time a page is rolled back, the
39600 ** corresponding bit is set in a bitvec structure (variable pDone in the
39601 ** implementation below). This is used to ensure that a page is only
39602 ** rolled back the first time it is encountered in either journal.
39604 ** If pSavepoint is NULL, then pages are only played back from the main
39605 ** journal file. There is no need for a bitvec in this case.
39607 ** In either case, before playback commences the Pager.dbSize variable
39608 ** is reset to the value that it held at the start of the savepoint
39609 ** (or transaction). No page with a page-number greater than this value
39610 ** is played back. If one is encountered it is simply skipped.
39612 static int pagerPlaybackSavepoint(Pager *pPager, PagerSavepoint *pSavepoint){
39613 i64 szJ; /* Effective size of the main journal */
39614 i64 iHdrOff; /* End of first segment of main-journal records */
39615 int rc = SQLITE_OK; /* Return code */
39616 Bitvec *pDone = 0; /* Bitvec to ensure pages played back only once */
39618 assert( pPager->eState!=PAGER_ERROR );
39619 assert( pPager->eState>=PAGER_WRITER_LOCKED );
39621 /* Allocate a bitvec to use to store the set of pages rolled back */
39622 if( pSavepoint ){
39623 pDone = sqlite3BitvecCreate(pSavepoint->nOrig);
39624 if( !pDone ){
39625 return SQLITE_NOMEM;
39629 /* Set the database size back to the value it was before the savepoint
39630 ** being reverted was opened.
39632 pPager->dbSize = pSavepoint ? pSavepoint->nOrig : pPager->dbOrigSize;
39633 pPager->changeCountDone = pPager->tempFile;
39635 if( !pSavepoint && pagerUseWal(pPager) ){
39636 return pagerRollbackWal(pPager);
39639 /* Use pPager->journalOff as the effective size of the main rollback
39640 ** journal. The actual file might be larger than this in
39641 ** PAGER_JOURNALMODE_TRUNCATE or PAGER_JOURNALMODE_PERSIST. But anything
39642 ** past pPager->journalOff is off-limits to us.
39644 szJ = pPager->journalOff;
39645 assert( pagerUseWal(pPager)==0 || szJ==0 );
39647 /* Begin by rolling back records from the main journal starting at
39648 ** PagerSavepoint.iOffset and continuing to the next journal header.
39649 ** There might be records in the main journal that have a page number
39650 ** greater than the current database size (pPager->dbSize) but those
39651 ** will be skipped automatically. Pages are added to pDone as they
39652 ** are played back.
39654 if( pSavepoint && !pagerUseWal(pPager) ){
39655 iHdrOff = pSavepoint->iHdrOffset ? pSavepoint->iHdrOffset : szJ;
39656 pPager->journalOff = pSavepoint->iOffset;
39657 while( rc==SQLITE_OK && pPager->journalOff<iHdrOff ){
39658 rc = pager_playback_one_page(pPager, &pPager->journalOff, pDone, 1, 1);
39660 assert( rc!=SQLITE_DONE );
39661 }else{
39662 pPager->journalOff = 0;
39665 /* Continue rolling back records out of the main journal starting at
39666 ** the first journal header seen and continuing until the effective end
39667 ** of the main journal file. Continue to skip out-of-range pages and
39668 ** continue adding pages rolled back to pDone.
39670 while( rc==SQLITE_OK && pPager->journalOff<szJ ){
39671 u32 ii; /* Loop counter */
39672 u32 nJRec = 0; /* Number of Journal Records */
39673 u32 dummy;
39674 rc = readJournalHdr(pPager, 0, szJ, &nJRec, &dummy);
39675 assert( rc!=SQLITE_DONE );
39678 ** The "pPager->journalHdr+JOURNAL_HDR_SZ(pPager)==pPager->journalOff"
39679 ** test is related to ticket #2565. See the discussion in the
39680 ** pager_playback() function for additional information.
39682 if( nJRec==0
39683 && pPager->journalHdr+JOURNAL_HDR_SZ(pPager)==pPager->journalOff
39685 nJRec = (u32)((szJ - pPager->journalOff)/JOURNAL_PG_SZ(pPager));
39687 for(ii=0; rc==SQLITE_OK && ii<nJRec && pPager->journalOff<szJ; ii++){
39688 rc = pager_playback_one_page(pPager, &pPager->journalOff, pDone, 1, 1);
39690 assert( rc!=SQLITE_DONE );
39692 assert( rc!=SQLITE_OK || pPager->journalOff>=szJ );
39694 /* Finally, rollback pages from the sub-journal. Page that were
39695 ** previously rolled back out of the main journal (and are hence in pDone)
39696 ** will be skipped. Out-of-range pages are also skipped.
39698 if( pSavepoint ){
39699 u32 ii; /* Loop counter */
39700 i64 offset = pSavepoint->iSubRec*(4+pPager->pageSize);
39702 if( pagerUseWal(pPager) ){
39703 rc = sqlite3WalSavepointUndo(pPager->pWal, pSavepoint->aWalData);
39705 for(ii=pSavepoint->iSubRec; rc==SQLITE_OK && ii<pPager->nSubRec; ii++){
39706 assert( offset==ii*(4+pPager->pageSize) );
39707 rc = pager_playback_one_page(pPager, &offset, pDone, 0, 1);
39709 assert( rc!=SQLITE_DONE );
39712 sqlite3BitvecDestroy(pDone);
39713 if( rc==SQLITE_OK ){
39714 pPager->journalOff = szJ;
39717 return rc;
39721 ** Change the maximum number of in-memory pages that are allowed.
39723 SQLITE_PRIVATE void sqlite3PagerSetCachesize(Pager *pPager, int mxPage){
39724 sqlite3PcacheSetCachesize(pPager->pPCache, mxPage);
39728 ** Adjust the robustness of the database to damage due to OS crashes
39729 ** or power failures by changing the number of syncs()s when writing
39730 ** the rollback journal. There are three levels:
39732 ** OFF sqlite3OsSync() is never called. This is the default
39733 ** for temporary and transient files.
39735 ** NORMAL The journal is synced once before writes begin on the
39736 ** database. This is normally adequate protection, but
39737 ** it is theoretically possible, though very unlikely,
39738 ** that an inopertune power failure could leave the journal
39739 ** in a state which would cause damage to the database
39740 ** when it is rolled back.
39742 ** FULL The journal is synced twice before writes begin on the
39743 ** database (with some additional information - the nRec field
39744 ** of the journal header - being written in between the two
39745 ** syncs). If we assume that writing a
39746 ** single disk sector is atomic, then this mode provides
39747 ** assurance that the journal will not be corrupted to the
39748 ** point of causing damage to the database during rollback.
39750 ** The above is for a rollback-journal mode. For WAL mode, OFF continues
39751 ** to mean that no syncs ever occur. NORMAL means that the WAL is synced
39752 ** prior to the start of checkpoint and that the database file is synced
39753 ** at the conclusion of the checkpoint if the entire content of the WAL
39754 ** was written back into the database. But no sync operations occur for
39755 ** an ordinary commit in NORMAL mode with WAL. FULL means that the WAL
39756 ** file is synced following each commit operation, in addition to the
39757 ** syncs associated with NORMAL.
39759 ** Do not confuse synchronous=FULL with SQLITE_SYNC_FULL. The
39760 ** SQLITE_SYNC_FULL macro means to use the MacOSX-style full-fsync
39761 ** using fcntl(F_FULLFSYNC). SQLITE_SYNC_NORMAL means to do an
39762 ** ordinary fsync() call. There is no difference between SQLITE_SYNC_FULL
39763 ** and SQLITE_SYNC_NORMAL on platforms other than MacOSX. But the
39764 ** synchronous=FULL versus synchronous=NORMAL setting determines when
39765 ** the xSync primitive is called and is relevant to all platforms.
39767 ** Numeric values associated with these states are OFF==1, NORMAL=2,
39768 ** and FULL=3.
39770 #ifndef SQLITE_OMIT_PAGER_PRAGMAS
39771 SQLITE_PRIVATE void sqlite3PagerSetSafetyLevel(
39772 Pager *pPager, /* The pager to set safety level for */
39773 int level, /* PRAGMA synchronous. 1=OFF, 2=NORMAL, 3=FULL */
39774 int bFullFsync, /* PRAGMA fullfsync */
39775 int bCkptFullFsync /* PRAGMA checkpoint_fullfsync */
39777 assert( level>=1 && level<=3 );
39778 pPager->noSync = (level==1 || pPager->tempFile) ?1:0;
39779 pPager->fullSync = (level==3 && !pPager->tempFile) ?1:0;
39780 if( pPager->noSync ){
39781 pPager->syncFlags = 0;
39782 pPager->ckptSyncFlags = 0;
39783 }else if( bFullFsync ){
39784 pPager->syncFlags = SQLITE_SYNC_FULL;
39785 pPager->ckptSyncFlags = SQLITE_SYNC_FULL;
39786 }else if( bCkptFullFsync ){
39787 pPager->syncFlags = SQLITE_SYNC_NORMAL;
39788 pPager->ckptSyncFlags = SQLITE_SYNC_FULL;
39789 }else{
39790 pPager->syncFlags = SQLITE_SYNC_NORMAL;
39791 pPager->ckptSyncFlags = SQLITE_SYNC_NORMAL;
39794 #endif
39797 ** The following global variable is incremented whenever the library
39798 ** attempts to open a temporary file. This information is used for
39799 ** testing and analysis only.
39801 #ifdef SQLITE_TEST
39802 SQLITE_API int sqlite3_opentemp_count = 0;
39803 #endif
39806 ** Open a temporary file.
39808 ** Write the file descriptor into *pFile. Return SQLITE_OK on success
39809 ** or some other error code if we fail. The OS will automatically
39810 ** delete the temporary file when it is closed.
39812 ** The flags passed to the VFS layer xOpen() call are those specified
39813 ** by parameter vfsFlags ORed with the following:
39815 ** SQLITE_OPEN_READWRITE
39816 ** SQLITE_OPEN_CREATE
39817 ** SQLITE_OPEN_EXCLUSIVE
39818 ** SQLITE_OPEN_DELETEONCLOSE
39820 static int pagerOpentemp(
39821 Pager *pPager, /* The pager object */
39822 sqlite3_file *pFile, /* Write the file descriptor here */
39823 int vfsFlags /* Flags passed through to the VFS */
39825 int rc; /* Return code */
39827 #ifdef SQLITE_TEST
39828 sqlite3_opentemp_count++; /* Used for testing and analysis only */
39829 #endif
39831 vfsFlags |= SQLITE_OPEN_READWRITE | SQLITE_OPEN_CREATE |
39832 SQLITE_OPEN_EXCLUSIVE | SQLITE_OPEN_DELETEONCLOSE;
39833 rc = sqlite3OsOpen(pPager->pVfs, 0, pFile, vfsFlags, 0);
39834 assert( rc!=SQLITE_OK || isOpen(pFile) );
39835 return rc;
39839 ** Set the busy handler function.
39841 ** The pager invokes the busy-handler if sqlite3OsLock() returns
39842 ** SQLITE_BUSY when trying to upgrade from no-lock to a SHARED lock,
39843 ** or when trying to upgrade from a RESERVED lock to an EXCLUSIVE
39844 ** lock. It does *not* invoke the busy handler when upgrading from
39845 ** SHARED to RESERVED, or when upgrading from SHARED to EXCLUSIVE
39846 ** (which occurs during hot-journal rollback). Summary:
39848 ** Transition | Invokes xBusyHandler
39849 ** --------------------------------------------------------
39850 ** NO_LOCK -> SHARED_LOCK | Yes
39851 ** SHARED_LOCK -> RESERVED_LOCK | No
39852 ** SHARED_LOCK -> EXCLUSIVE_LOCK | No
39853 ** RESERVED_LOCK -> EXCLUSIVE_LOCK | Yes
39855 ** If the busy-handler callback returns non-zero, the lock is
39856 ** retried. If it returns zero, then the SQLITE_BUSY error is
39857 ** returned to the caller of the pager API function.
39859 SQLITE_PRIVATE void sqlite3PagerSetBusyhandler(
39860 Pager *pPager, /* Pager object */
39861 int (*xBusyHandler)(void *), /* Pointer to busy-handler function */
39862 void *pBusyHandlerArg /* Argument to pass to xBusyHandler */
39864 pPager->xBusyHandler = xBusyHandler;
39865 pPager->pBusyHandlerArg = pBusyHandlerArg;
39869 ** Change the page size used by the Pager object. The new page size
39870 ** is passed in *pPageSize.
39872 ** If the pager is in the error state when this function is called, it
39873 ** is a no-op. The value returned is the error state error code (i.e.
39874 ** one of SQLITE_IOERR, an SQLITE_IOERR_xxx sub-code or SQLITE_FULL).
39876 ** Otherwise, if all of the following are true:
39878 ** * the new page size (value of *pPageSize) is valid (a power
39879 ** of two between 512 and SQLITE_MAX_PAGE_SIZE, inclusive), and
39881 ** * there are no outstanding page references, and
39883 ** * the database is either not an in-memory database or it is
39884 ** an in-memory database that currently consists of zero pages.
39886 ** then the pager object page size is set to *pPageSize.
39888 ** If the page size is changed, then this function uses sqlite3PagerMalloc()
39889 ** to obtain a new Pager.pTmpSpace buffer. If this allocation attempt
39890 ** fails, SQLITE_NOMEM is returned and the page size remains unchanged.
39891 ** In all other cases, SQLITE_OK is returned.
39893 ** If the page size is not changed, either because one of the enumerated
39894 ** conditions above is not true, the pager was in error state when this
39895 ** function was called, or because the memory allocation attempt failed,
39896 ** then *pPageSize is set to the old, retained page size before returning.
39898 SQLITE_PRIVATE int sqlite3PagerSetPagesize(Pager *pPager, u32 *pPageSize, int nReserve){
39899 int rc = SQLITE_OK;
39901 /* It is not possible to do a full assert_pager_state() here, as this
39902 ** function may be called from within PagerOpen(), before the state
39903 ** of the Pager object is internally consistent.
39905 ** At one point this function returned an error if the pager was in
39906 ** PAGER_ERROR state. But since PAGER_ERROR state guarantees that
39907 ** there is at least one outstanding page reference, this function
39908 ** is a no-op for that case anyhow.
39911 u32 pageSize = *pPageSize;
39912 assert( pageSize==0 || (pageSize>=512 && pageSize<=SQLITE_MAX_PAGE_SIZE) );
39913 if( (pPager->memDb==0 || pPager->dbSize==0)
39914 && sqlite3PcacheRefCount(pPager->pPCache)==0
39915 && pageSize && pageSize!=(u32)pPager->pageSize
39917 char *pNew = NULL; /* New temp space */
39918 i64 nByte = 0;
39920 if( pPager->eState>PAGER_OPEN && isOpen(pPager->fd) ){
39921 rc = sqlite3OsFileSize(pPager->fd, &nByte);
39923 if( rc==SQLITE_OK ){
39924 pNew = (char *)sqlite3PageMalloc(pageSize);
39925 if( !pNew ) rc = SQLITE_NOMEM;
39928 if( rc==SQLITE_OK ){
39929 pager_reset(pPager);
39930 pPager->dbSize = (Pgno)(nByte/pageSize);
39931 pPager->pageSize = pageSize;
39932 sqlite3PageFree(pPager->pTmpSpace);
39933 pPager->pTmpSpace = pNew;
39934 sqlite3PcacheSetPageSize(pPager->pPCache, pageSize);
39938 *pPageSize = pPager->pageSize;
39939 if( rc==SQLITE_OK ){
39940 if( nReserve<0 ) nReserve = pPager->nReserve;
39941 assert( nReserve>=0 && nReserve<1000 );
39942 pPager->nReserve = (i16)nReserve;
39943 pagerReportSize(pPager);
39945 return rc;
39949 ** Return a pointer to the "temporary page" buffer held internally
39950 ** by the pager. This is a buffer that is big enough to hold the
39951 ** entire content of a database page. This buffer is used internally
39952 ** during rollback and will be overwritten whenever a rollback
39953 ** occurs. But other modules are free to use it too, as long as
39954 ** no rollbacks are happening.
39956 SQLITE_PRIVATE void *sqlite3PagerTempSpace(Pager *pPager){
39957 return pPager->pTmpSpace;
39961 ** Attempt to set the maximum database page count if mxPage is positive.
39962 ** Make no changes if mxPage is zero or negative. And never reduce the
39963 ** maximum page count below the current size of the database.
39965 ** Regardless of mxPage, return the current maximum page count.
39967 SQLITE_PRIVATE int sqlite3PagerMaxPageCount(Pager *pPager, int mxPage){
39968 if( mxPage>0 ){
39969 pPager->mxPgno = mxPage;
39971 assert( pPager->eState!=PAGER_OPEN ); /* Called only by OP_MaxPgcnt */
39972 assert( pPager->mxPgno>=pPager->dbSize ); /* OP_MaxPgcnt enforces this */
39973 return pPager->mxPgno;
39977 ** The following set of routines are used to disable the simulated
39978 ** I/O error mechanism. These routines are used to avoid simulated
39979 ** errors in places where we do not care about errors.
39981 ** Unless -DSQLITE_TEST=1 is used, these routines are all no-ops
39982 ** and generate no code.
39984 #ifdef SQLITE_TEST
39985 SQLITE_API extern int sqlite3_io_error_pending;
39986 SQLITE_API extern int sqlite3_io_error_hit;
39987 static int saved_cnt;
39988 void disable_simulated_io_errors(void){
39989 saved_cnt = sqlite3_io_error_pending;
39990 sqlite3_io_error_pending = -1;
39992 void enable_simulated_io_errors(void){
39993 sqlite3_io_error_pending = saved_cnt;
39995 #else
39996 # define disable_simulated_io_errors()
39997 # define enable_simulated_io_errors()
39998 #endif
40001 ** Read the first N bytes from the beginning of the file into memory
40002 ** that pDest points to.
40004 ** If the pager was opened on a transient file (zFilename==""), or
40005 ** opened on a file less than N bytes in size, the output buffer is
40006 ** zeroed and SQLITE_OK returned. The rationale for this is that this
40007 ** function is used to read database headers, and a new transient or
40008 ** zero sized database has a header than consists entirely of zeroes.
40010 ** If any IO error apart from SQLITE_IOERR_SHORT_READ is encountered,
40011 ** the error code is returned to the caller and the contents of the
40012 ** output buffer undefined.
40014 SQLITE_PRIVATE int sqlite3PagerReadFileheader(Pager *pPager, int N, unsigned char *pDest){
40015 int rc = SQLITE_OK;
40016 memset(pDest, 0, N);
40017 assert( isOpen(pPager->fd) || pPager->tempFile );
40019 /* This routine is only called by btree immediately after creating
40020 ** the Pager object. There has not been an opportunity to transition
40021 ** to WAL mode yet.
40023 assert( !pagerUseWal(pPager) );
40025 if( isOpen(pPager->fd) ){
40026 IOTRACE(("DBHDR %p 0 %d\n", pPager, N))
40027 rc = sqlite3OsRead(pPager->fd, pDest, N, 0);
40028 if( rc==SQLITE_IOERR_SHORT_READ ){
40029 rc = SQLITE_OK;
40032 return rc;
40036 ** This function may only be called when a read-transaction is open on
40037 ** the pager. It returns the total number of pages in the database.
40039 ** However, if the file is between 1 and <page-size> bytes in size, then
40040 ** this is considered a 1 page file.
40042 SQLITE_PRIVATE void sqlite3PagerPagecount(Pager *pPager, int *pnPage){
40043 assert( pPager->eState>=PAGER_READER );
40044 assert( pPager->eState!=PAGER_WRITER_FINISHED );
40045 *pnPage = (int)pPager->dbSize;
40050 ** Try to obtain a lock of type locktype on the database file. If
40051 ** a similar or greater lock is already held, this function is a no-op
40052 ** (returning SQLITE_OK immediately).
40054 ** Otherwise, attempt to obtain the lock using sqlite3OsLock(). Invoke
40055 ** the busy callback if the lock is currently not available. Repeat
40056 ** until the busy callback returns false or until the attempt to
40057 ** obtain the lock succeeds.
40059 ** Return SQLITE_OK on success and an error code if we cannot obtain
40060 ** the lock. If the lock is obtained successfully, set the Pager.state
40061 ** variable to locktype before returning.
40063 static int pager_wait_on_lock(Pager *pPager, int locktype){
40064 int rc; /* Return code */
40066 /* Check that this is either a no-op (because the requested lock is
40067 ** already held, or one of the transistions that the busy-handler
40068 ** may be invoked during, according to the comment above
40069 ** sqlite3PagerSetBusyhandler().
40071 assert( (pPager->eLock>=locktype)
40072 || (pPager->eLock==NO_LOCK && locktype==SHARED_LOCK)
40073 || (pPager->eLock==RESERVED_LOCK && locktype==EXCLUSIVE_LOCK)
40076 do {
40077 rc = pagerLockDb(pPager, locktype);
40078 }while( rc==SQLITE_BUSY && pPager->xBusyHandler(pPager->pBusyHandlerArg) );
40079 return rc;
40083 ** Function assertTruncateConstraint(pPager) checks that one of the
40084 ** following is true for all dirty pages currently in the page-cache:
40086 ** a) The page number is less than or equal to the size of the
40087 ** current database image, in pages, OR
40089 ** b) if the page content were written at this time, it would not
40090 ** be necessary to write the current content out to the sub-journal
40091 ** (as determined by function subjRequiresPage()).
40093 ** If the condition asserted by this function were not true, and the
40094 ** dirty page were to be discarded from the cache via the pagerStress()
40095 ** routine, pagerStress() would not write the current page content to
40096 ** the database file. If a savepoint transaction were rolled back after
40097 ** this happened, the correct behaviour would be to restore the current
40098 ** content of the page. However, since this content is not present in either
40099 ** the database file or the portion of the rollback journal and
40100 ** sub-journal rolled back the content could not be restored and the
40101 ** database image would become corrupt. It is therefore fortunate that
40102 ** this circumstance cannot arise.
40104 #if defined(SQLITE_DEBUG)
40105 static void assertTruncateConstraintCb(PgHdr *pPg){
40106 assert( pPg->flags&PGHDR_DIRTY );
40107 assert( !subjRequiresPage(pPg) || pPg->pgno<=pPg->pPager->dbSize );
40109 static void assertTruncateConstraint(Pager *pPager){
40110 sqlite3PcacheIterateDirty(pPager->pPCache, assertTruncateConstraintCb);
40112 #else
40113 # define assertTruncateConstraint(pPager)
40114 #endif
40117 ** Truncate the in-memory database file image to nPage pages. This
40118 ** function does not actually modify the database file on disk. It
40119 ** just sets the internal state of the pager object so that the
40120 ** truncation will be done when the current transaction is committed.
40122 SQLITE_PRIVATE void sqlite3PagerTruncateImage(Pager *pPager, Pgno nPage){
40123 assert( pPager->dbSize>=nPage );
40124 assert( pPager->eState>=PAGER_WRITER_CACHEMOD );
40125 pPager->dbSize = nPage;
40126 assertTruncateConstraint(pPager);
40131 ** This function is called before attempting a hot-journal rollback. It
40132 ** syncs the journal file to disk, then sets pPager->journalHdr to the
40133 ** size of the journal file so that the pager_playback() routine knows
40134 ** that the entire journal file has been synced.
40136 ** Syncing a hot-journal to disk before attempting to roll it back ensures
40137 ** that if a power-failure occurs during the rollback, the process that
40138 ** attempts rollback following system recovery sees the same journal
40139 ** content as this process.
40141 ** If everything goes as planned, SQLITE_OK is returned. Otherwise,
40142 ** an SQLite error code.
40144 static int pagerSyncHotJournal(Pager *pPager){
40145 int rc = SQLITE_OK;
40146 if( !pPager->noSync ){
40147 rc = sqlite3OsSync(pPager->jfd, SQLITE_SYNC_NORMAL);
40149 if( rc==SQLITE_OK ){
40150 rc = sqlite3OsFileSize(pPager->jfd, &pPager->journalHdr);
40152 return rc;
40156 ** Shutdown the page cache. Free all memory and close all files.
40158 ** If a transaction was in progress when this routine is called, that
40159 ** transaction is rolled back. All outstanding pages are invalidated
40160 ** and their memory is freed. Any attempt to use a page associated
40161 ** with this page cache after this function returns will likely
40162 ** result in a coredump.
40164 ** This function always succeeds. If a transaction is active an attempt
40165 ** is made to roll it back. If an error occurs during the rollback
40166 ** a hot journal may be left in the filesystem but no error is returned
40167 ** to the caller.
40169 SQLITE_PRIVATE int sqlite3PagerClose(Pager *pPager){
40170 u8 *pTmp = (u8 *)pPager->pTmpSpace;
40172 disable_simulated_io_errors();
40173 sqlite3BeginBenignMalloc();
40174 /* pPager->errCode = 0; */
40175 pPager->exclusiveMode = 0;
40176 #ifndef SQLITE_OMIT_WAL
40177 sqlite3WalClose(pPager->pWal, pPager->ckptSyncFlags, pPager->pageSize, pTmp);
40178 pPager->pWal = 0;
40179 #endif
40180 pager_reset(pPager);
40181 if( MEMDB ){
40182 pager_unlock(pPager);
40183 }else{
40184 /* If it is open, sync the journal file before calling UnlockAndRollback.
40185 ** If this is not done, then an unsynced portion of the open journal
40186 ** file may be played back into the database. If a power failure occurs
40187 ** while this is happening, the database could become corrupt.
40189 ** If an error occurs while trying to sync the journal, shift the pager
40190 ** into the ERROR state. This causes UnlockAndRollback to unlock the
40191 ** database and close the journal file without attempting to roll it
40192 ** back or finalize it. The next database user will have to do hot-journal
40193 ** rollback before accessing the database file.
40195 if( isOpen(pPager->jfd) ){
40196 pager_error(pPager, pagerSyncHotJournal(pPager));
40198 pagerUnlockAndRollback(pPager);
40200 sqlite3EndBenignMalloc();
40201 enable_simulated_io_errors();
40202 PAGERTRACE(("CLOSE %d\n", PAGERID(pPager)));
40203 IOTRACE(("CLOSE %p\n", pPager))
40204 sqlite3OsClose(pPager->jfd);
40205 sqlite3OsClose(pPager->fd);
40206 sqlite3PageFree(pTmp);
40207 sqlite3PcacheClose(pPager->pPCache);
40209 #ifdef SQLITE_HAS_CODEC
40210 if( pPager->xCodecFree ) pPager->xCodecFree(pPager->pCodec);
40211 #endif
40213 assert( !pPager->aSavepoint && !pPager->pInJournal );
40214 assert( !isOpen(pPager->jfd) && !isOpen(pPager->sjfd) );
40216 sqlite3_free(pPager);
40217 return SQLITE_OK;
40220 #if !defined(NDEBUG) || defined(SQLITE_TEST)
40222 ** Return the page number for page pPg.
40224 SQLITE_PRIVATE Pgno sqlite3PagerPagenumber(DbPage *pPg){
40225 return pPg->pgno;
40227 #endif
40230 ** Increment the reference count for page pPg.
40232 SQLITE_PRIVATE void sqlite3PagerRef(DbPage *pPg){
40233 sqlite3PcacheRef(pPg);
40237 ** Sync the journal. In other words, make sure all the pages that have
40238 ** been written to the journal have actually reached the surface of the
40239 ** disk and can be restored in the event of a hot-journal rollback.
40241 ** If the Pager.noSync flag is set, then this function is a no-op.
40242 ** Otherwise, the actions required depend on the journal-mode and the
40243 ** device characteristics of the the file-system, as follows:
40245 ** * If the journal file is an in-memory journal file, no action need
40246 ** be taken.
40248 ** * Otherwise, if the device does not support the SAFE_APPEND property,
40249 ** then the nRec field of the most recently written journal header
40250 ** is updated to contain the number of journal records that have
40251 ** been written following it. If the pager is operating in full-sync
40252 ** mode, then the journal file is synced before this field is updated.
40254 ** * If the device does not support the SEQUENTIAL property, then
40255 ** journal file is synced.
40257 ** Or, in pseudo-code:
40259 ** if( NOT <in-memory journal> ){
40260 ** if( NOT SAFE_APPEND ){
40261 ** if( <full-sync mode> ) xSync(<journal file>);
40262 ** <update nRec field>
40263 ** }
40264 ** if( NOT SEQUENTIAL ) xSync(<journal file>);
40265 ** }
40267 ** If successful, this routine clears the PGHDR_NEED_SYNC flag of every
40268 ** page currently held in memory before returning SQLITE_OK. If an IO
40269 ** error is encountered, then the IO error code is returned to the caller.
40271 static int syncJournal(Pager *pPager, int newHdr){
40272 int rc; /* Return code */
40274 assert( pPager->eState==PAGER_WRITER_CACHEMOD
40275 || pPager->eState==PAGER_WRITER_DBMOD
40277 assert( assert_pager_state(pPager) );
40278 assert( !pagerUseWal(pPager) );
40280 rc = sqlite3PagerExclusiveLock(pPager);
40281 if( rc!=SQLITE_OK ) return rc;
40283 if( !pPager->noSync ){
40284 assert( !pPager->tempFile );
40285 if( isOpen(pPager->jfd) && pPager->journalMode!=PAGER_JOURNALMODE_MEMORY ){
40286 const int iDc = sqlite3OsDeviceCharacteristics(pPager->fd);
40287 assert( isOpen(pPager->jfd) );
40289 if( 0==(iDc&SQLITE_IOCAP_SAFE_APPEND) ){
40290 /* This block deals with an obscure problem. If the last connection
40291 ** that wrote to this database was operating in persistent-journal
40292 ** mode, then the journal file may at this point actually be larger
40293 ** than Pager.journalOff bytes. If the next thing in the journal
40294 ** file happens to be a journal-header (written as part of the
40295 ** previous connection's transaction), and a crash or power-failure
40296 ** occurs after nRec is updated but before this connection writes
40297 ** anything else to the journal file (or commits/rolls back its
40298 ** transaction), then SQLite may become confused when doing the
40299 ** hot-journal rollback following recovery. It may roll back all
40300 ** of this connections data, then proceed to rolling back the old,
40301 ** out-of-date data that follows it. Database corruption.
40303 ** To work around this, if the journal file does appear to contain
40304 ** a valid header following Pager.journalOff, then write a 0x00
40305 ** byte to the start of it to prevent it from being recognized.
40307 ** Variable iNextHdrOffset is set to the offset at which this
40308 ** problematic header will occur, if it exists. aMagic is used
40309 ** as a temporary buffer to inspect the first couple of bytes of
40310 ** the potential journal header.
40312 i64 iNextHdrOffset;
40313 u8 aMagic[8];
40314 u8 zHeader[sizeof(aJournalMagic)+4];
40316 memcpy(zHeader, aJournalMagic, sizeof(aJournalMagic));
40317 put32bits(&zHeader[sizeof(aJournalMagic)], pPager->nRec);
40319 iNextHdrOffset = journalHdrOffset(pPager);
40320 rc = sqlite3OsRead(pPager->jfd, aMagic, 8, iNextHdrOffset);
40321 if( rc==SQLITE_OK && 0==memcmp(aMagic, aJournalMagic, 8) ){
40322 static const u8 zerobyte = 0;
40323 rc = sqlite3OsWrite(pPager->jfd, &zerobyte, 1, iNextHdrOffset);
40325 if( rc!=SQLITE_OK && rc!=SQLITE_IOERR_SHORT_READ ){
40326 return rc;
40329 /* Write the nRec value into the journal file header. If in
40330 ** full-synchronous mode, sync the journal first. This ensures that
40331 ** all data has really hit the disk before nRec is updated to mark
40332 ** it as a candidate for rollback.
40334 ** This is not required if the persistent media supports the
40335 ** SAFE_APPEND property. Because in this case it is not possible
40336 ** for garbage data to be appended to the file, the nRec field
40337 ** is populated with 0xFFFFFFFF when the journal header is written
40338 ** and never needs to be updated.
40340 if( pPager->fullSync && 0==(iDc&SQLITE_IOCAP_SEQUENTIAL) ){
40341 PAGERTRACE(("SYNC journal of %d\n", PAGERID(pPager)));
40342 IOTRACE(("JSYNC %p\n", pPager))
40343 rc = sqlite3OsSync(pPager->jfd, pPager->syncFlags);
40344 if( rc!=SQLITE_OK ) return rc;
40346 IOTRACE(("JHDR %p %lld\n", pPager, pPager->journalHdr));
40347 rc = sqlite3OsWrite(
40348 pPager->jfd, zHeader, sizeof(zHeader), pPager->journalHdr
40350 if( rc!=SQLITE_OK ) return rc;
40352 if( 0==(iDc&SQLITE_IOCAP_SEQUENTIAL) ){
40353 PAGERTRACE(("SYNC journal of %d\n", PAGERID(pPager)));
40354 IOTRACE(("JSYNC %p\n", pPager))
40355 rc = sqlite3OsSync(pPager->jfd, pPager->syncFlags|
40356 (pPager->syncFlags==SQLITE_SYNC_FULL?SQLITE_SYNC_DATAONLY:0)
40358 if( rc!=SQLITE_OK ) return rc;
40361 pPager->journalHdr = pPager->journalOff;
40362 if( newHdr && 0==(iDc&SQLITE_IOCAP_SAFE_APPEND) ){
40363 pPager->nRec = 0;
40364 rc = writeJournalHdr(pPager);
40365 if( rc!=SQLITE_OK ) return rc;
40367 }else{
40368 pPager->journalHdr = pPager->journalOff;
40372 /* Unless the pager is in noSync mode, the journal file was just
40373 ** successfully synced. Either way, clear the PGHDR_NEED_SYNC flag on
40374 ** all pages.
40376 sqlite3PcacheClearSyncFlags(pPager->pPCache);
40377 pPager->eState = PAGER_WRITER_DBMOD;
40378 assert( assert_pager_state(pPager) );
40379 return SQLITE_OK;
40383 ** The argument is the first in a linked list of dirty pages connected
40384 ** by the PgHdr.pDirty pointer. This function writes each one of the
40385 ** in-memory pages in the list to the database file. The argument may
40386 ** be NULL, representing an empty list. In this case this function is
40387 ** a no-op.
40389 ** The pager must hold at least a RESERVED lock when this function
40390 ** is called. Before writing anything to the database file, this lock
40391 ** is upgraded to an EXCLUSIVE lock. If the lock cannot be obtained,
40392 ** SQLITE_BUSY is returned and no data is written to the database file.
40394 ** If the pager is a temp-file pager and the actual file-system file
40395 ** is not yet open, it is created and opened before any data is
40396 ** written out.
40398 ** Once the lock has been upgraded and, if necessary, the file opened,
40399 ** the pages are written out to the database file in list order. Writing
40400 ** a page is skipped if it meets either of the following criteria:
40402 ** * The page number is greater than Pager.dbSize, or
40403 ** * The PGHDR_DONT_WRITE flag is set on the page.
40405 ** If writing out a page causes the database file to grow, Pager.dbFileSize
40406 ** is updated accordingly. If page 1 is written out, then the value cached
40407 ** in Pager.dbFileVers[] is updated to match the new value stored in
40408 ** the database file.
40410 ** If everything is successful, SQLITE_OK is returned. If an IO error
40411 ** occurs, an IO error code is returned. Or, if the EXCLUSIVE lock cannot
40412 ** be obtained, SQLITE_BUSY is returned.
40414 static int pager_write_pagelist(Pager *pPager, PgHdr *pList){
40415 int rc = SQLITE_OK; /* Return code */
40417 /* This function is only called for rollback pagers in WRITER_DBMOD state. */
40418 assert( !pagerUseWal(pPager) );
40419 assert( pPager->eState==PAGER_WRITER_DBMOD );
40420 assert( pPager->eLock==EXCLUSIVE_LOCK );
40422 /* If the file is a temp-file has not yet been opened, open it now. It
40423 ** is not possible for rc to be other than SQLITE_OK if this branch
40424 ** is taken, as pager_wait_on_lock() is a no-op for temp-files.
40426 if( !isOpen(pPager->fd) ){
40427 assert( pPager->tempFile && rc==SQLITE_OK );
40428 rc = pagerOpentemp(pPager, pPager->fd, pPager->vfsFlags);
40431 /* Before the first write, give the VFS a hint of what the final
40432 ** file size will be.
40434 assert( rc!=SQLITE_OK || isOpen(pPager->fd) );
40435 if( rc==SQLITE_OK && pPager->dbSize>pPager->dbHintSize ){
40436 sqlite3_int64 szFile = pPager->pageSize * (sqlite3_int64)pPager->dbSize;
40437 sqlite3OsFileControl(pPager->fd, SQLITE_FCNTL_SIZE_HINT, &szFile);
40438 pPager->dbHintSize = pPager->dbSize;
40441 while( rc==SQLITE_OK && pList ){
40442 Pgno pgno = pList->pgno;
40444 /* If there are dirty pages in the page cache with page numbers greater
40445 ** than Pager.dbSize, this means sqlite3PagerTruncateImage() was called to
40446 ** make the file smaller (presumably by auto-vacuum code). Do not write
40447 ** any such pages to the file.
40449 ** Also, do not write out any page that has the PGHDR_DONT_WRITE flag
40450 ** set (set by sqlite3PagerDontWrite()).
40452 if( pgno<=pPager->dbSize && 0==(pList->flags&PGHDR_DONT_WRITE) ){
40453 i64 offset = (pgno-1)*(i64)pPager->pageSize; /* Offset to write */
40454 char *pData; /* Data to write */
40456 assert( (pList->flags&PGHDR_NEED_SYNC)==0 );
40457 if( pList->pgno==1 ) pager_write_changecounter(pList);
40459 /* Encode the database */
40460 CODEC2(pPager, pList->pData, pgno, 6, return SQLITE_NOMEM, pData);
40462 /* Write out the page data. */
40463 rc = sqlite3OsWrite(pPager->fd, pData, pPager->pageSize, offset);
40465 /* If page 1 was just written, update Pager.dbFileVers to match
40466 ** the value now stored in the database file. If writing this
40467 ** page caused the database file to grow, update dbFileSize.
40469 if( pgno==1 ){
40470 memcpy(&pPager->dbFileVers, &pData[24], sizeof(pPager->dbFileVers));
40472 if( pgno>pPager->dbFileSize ){
40473 pPager->dbFileSize = pgno;
40476 /* Update any backup objects copying the contents of this pager. */
40477 sqlite3BackupUpdate(pPager->pBackup, pgno, (u8*)pList->pData);
40479 PAGERTRACE(("STORE %d page %d hash(%08x)\n",
40480 PAGERID(pPager), pgno, pager_pagehash(pList)));
40481 IOTRACE(("PGOUT %p %d\n", pPager, pgno));
40482 PAGER_INCR(sqlite3_pager_writedb_count);
40483 PAGER_INCR(pPager->nWrite);
40484 }else{
40485 PAGERTRACE(("NOSTORE %d page %d\n", PAGERID(pPager), pgno));
40487 pager_set_pagehash(pList);
40488 pList = pList->pDirty;
40491 return rc;
40495 ** Ensure that the sub-journal file is open. If it is already open, this
40496 ** function is a no-op.
40498 ** SQLITE_OK is returned if everything goes according to plan. An
40499 ** SQLITE_IOERR_XXX error code is returned if a call to sqlite3OsOpen()
40500 ** fails.
40502 static int openSubJournal(Pager *pPager){
40503 int rc = SQLITE_OK;
40504 if( !isOpen(pPager->sjfd) ){
40505 if( pPager->journalMode==PAGER_JOURNALMODE_MEMORY || pPager->subjInMemory ){
40506 sqlite3MemJournalOpen(pPager->sjfd);
40507 }else{
40508 rc = pagerOpentemp(pPager, pPager->sjfd, SQLITE_OPEN_SUBJOURNAL);
40511 return rc;
40515 ** Append a record of the current state of page pPg to the sub-journal.
40516 ** It is the callers responsibility to use subjRequiresPage() to check
40517 ** that it is really required before calling this function.
40519 ** If successful, set the bit corresponding to pPg->pgno in the bitvecs
40520 ** for all open savepoints before returning.
40522 ** This function returns SQLITE_OK if everything is successful, an IO
40523 ** error code if the attempt to write to the sub-journal fails, or
40524 ** SQLITE_NOMEM if a malloc fails while setting a bit in a savepoint
40525 ** bitvec.
40527 static int subjournalPage(PgHdr *pPg){
40528 int rc = SQLITE_OK;
40529 Pager *pPager = pPg->pPager;
40530 if( pPager->journalMode!=PAGER_JOURNALMODE_OFF ){
40532 /* Open the sub-journal, if it has not already been opened */
40533 assert( pPager->useJournal );
40534 assert( isOpen(pPager->jfd) || pagerUseWal(pPager) );
40535 assert( isOpen(pPager->sjfd) || pPager->nSubRec==0 );
40536 assert( pagerUseWal(pPager)
40537 || pageInJournal(pPg)
40538 || pPg->pgno>pPager->dbOrigSize
40540 rc = openSubJournal(pPager);
40542 /* If the sub-journal was opened successfully (or was already open),
40543 ** write the journal record into the file. */
40544 if( rc==SQLITE_OK ){
40545 void *pData = pPg->pData;
40546 i64 offset = pPager->nSubRec*(4+pPager->pageSize);
40547 char *pData2;
40549 CODEC2(pPager, pData, pPg->pgno, 7, return SQLITE_NOMEM, pData2);
40550 PAGERTRACE(("STMT-JOURNAL %d page %d\n", PAGERID(pPager), pPg->pgno));
40551 rc = write32bits(pPager->sjfd, offset, pPg->pgno);
40552 if( rc==SQLITE_OK ){
40553 rc = sqlite3OsWrite(pPager->sjfd, pData2, pPager->pageSize, offset+4);
40557 if( rc==SQLITE_OK ){
40558 pPager->nSubRec++;
40559 assert( pPager->nSavepoint>0 );
40560 rc = addToSavepointBitvecs(pPager, pPg->pgno);
40562 return rc;
40566 ** This function is called by the pcache layer when it has reached some
40567 ** soft memory limit. The first argument is a pointer to a Pager object
40568 ** (cast as a void*). The pager is always 'purgeable' (not an in-memory
40569 ** database). The second argument is a reference to a page that is
40570 ** currently dirty but has no outstanding references. The page
40571 ** is always associated with the Pager object passed as the first
40572 ** argument.
40574 ** The job of this function is to make pPg clean by writing its contents
40575 ** out to the database file, if possible. This may involve syncing the
40576 ** journal file.
40578 ** If successful, sqlite3PcacheMakeClean() is called on the page and
40579 ** SQLITE_OK returned. If an IO error occurs while trying to make the
40580 ** page clean, the IO error code is returned. If the page cannot be
40581 ** made clean for some other reason, but no error occurs, then SQLITE_OK
40582 ** is returned by sqlite3PcacheMakeClean() is not called.
40584 static int pagerStress(void *p, PgHdr *pPg){
40585 Pager *pPager = (Pager *)p;
40586 int rc = SQLITE_OK;
40588 assert( pPg->pPager==pPager );
40589 assert( pPg->flags&PGHDR_DIRTY );
40591 /* The doNotSyncSpill flag is set during times when doing a sync of
40592 ** journal (and adding a new header) is not allowed. This occurs
40593 ** during calls to sqlite3PagerWrite() while trying to journal multiple
40594 ** pages belonging to the same sector.
40596 ** The doNotSpill flag inhibits all cache spilling regardless of whether
40597 ** or not a sync is required. This is set during a rollback.
40599 ** Spilling is also prohibited when in an error state since that could
40600 ** lead to database corruption. In the current implementaton it
40601 ** is impossible for sqlite3PCacheFetch() to be called with createFlag==1
40602 ** while in the error state, hence it is impossible for this routine to
40603 ** be called in the error state. Nevertheless, we include a NEVER()
40604 ** test for the error state as a safeguard against future changes.
40606 if( NEVER(pPager->errCode) ) return SQLITE_OK;
40607 if( pPager->doNotSpill ) return SQLITE_OK;
40608 if( pPager->doNotSyncSpill && (pPg->flags & PGHDR_NEED_SYNC)!=0 ){
40609 return SQLITE_OK;
40612 pPg->pDirty = 0;
40613 if( pagerUseWal(pPager) ){
40614 /* Write a single frame for this page to the log. */
40615 if( subjRequiresPage(pPg) ){
40616 rc = subjournalPage(pPg);
40618 if( rc==SQLITE_OK ){
40619 rc = pagerWalFrames(pPager, pPg, 0, 0, 0);
40621 }else{
40623 /* Sync the journal file if required. */
40624 if( pPg->flags&PGHDR_NEED_SYNC
40625 || pPager->eState==PAGER_WRITER_CACHEMOD
40627 rc = syncJournal(pPager, 1);
40630 /* If the page number of this page is larger than the current size of
40631 ** the database image, it may need to be written to the sub-journal.
40632 ** This is because the call to pager_write_pagelist() below will not
40633 ** actually write data to the file in this case.
40635 ** Consider the following sequence of events:
40637 ** BEGIN;
40638 ** <journal page X>
40639 ** <modify page X>
40640 ** SAVEPOINT sp;
40641 ** <shrink database file to Y pages>
40642 ** pagerStress(page X)
40643 ** ROLLBACK TO sp;
40645 ** If (X>Y), then when pagerStress is called page X will not be written
40646 ** out to the database file, but will be dropped from the cache. Then,
40647 ** following the "ROLLBACK TO sp" statement, reading page X will read
40648 ** data from the database file. This will be the copy of page X as it
40649 ** was when the transaction started, not as it was when "SAVEPOINT sp"
40650 ** was executed.
40652 ** The solution is to write the current data for page X into the
40653 ** sub-journal file now (if it is not already there), so that it will
40654 ** be restored to its current value when the "ROLLBACK TO sp" is
40655 ** executed.
40657 if( NEVER(
40658 rc==SQLITE_OK && pPg->pgno>pPager->dbSize && subjRequiresPage(pPg)
40659 ) ){
40660 rc = subjournalPage(pPg);
40663 /* Write the contents of the page out to the database file. */
40664 if( rc==SQLITE_OK ){
40665 assert( (pPg->flags&PGHDR_NEED_SYNC)==0 );
40666 rc = pager_write_pagelist(pPager, pPg);
40670 /* Mark the page as clean. */
40671 if( rc==SQLITE_OK ){
40672 PAGERTRACE(("STRESS %d page %d\n", PAGERID(pPager), pPg->pgno));
40673 sqlite3PcacheMakeClean(pPg);
40676 return pager_error(pPager, rc);
40681 ** Allocate and initialize a new Pager object and put a pointer to it
40682 ** in *ppPager. The pager should eventually be freed by passing it
40683 ** to sqlite3PagerClose().
40685 ** The zFilename argument is the path to the database file to open.
40686 ** If zFilename is NULL then a randomly-named temporary file is created
40687 ** and used as the file to be cached. Temporary files are be deleted
40688 ** automatically when they are closed. If zFilename is ":memory:" then
40689 ** all information is held in cache. It is never written to disk.
40690 ** This can be used to implement an in-memory database.
40692 ** The nExtra parameter specifies the number of bytes of space allocated
40693 ** along with each page reference. This space is available to the user
40694 ** via the sqlite3PagerGetExtra() API.
40696 ** The flags argument is used to specify properties that affect the
40697 ** operation of the pager. It should be passed some bitwise combination
40698 ** of the PAGER_OMIT_JOURNAL and PAGER_NO_READLOCK flags.
40700 ** The vfsFlags parameter is a bitmask to pass to the flags parameter
40701 ** of the xOpen() method of the supplied VFS when opening files.
40703 ** If the pager object is allocated and the specified file opened
40704 ** successfully, SQLITE_OK is returned and *ppPager set to point to
40705 ** the new pager object. If an error occurs, *ppPager is set to NULL
40706 ** and error code returned. This function may return SQLITE_NOMEM
40707 ** (sqlite3Malloc() is used to allocate memory), SQLITE_CANTOPEN or
40708 ** various SQLITE_IO_XXX errors.
40710 SQLITE_PRIVATE int sqlite3PagerOpen(
40711 sqlite3_vfs *pVfs, /* The virtual file system to use */
40712 Pager **ppPager, /* OUT: Return the Pager structure here */
40713 const char *zFilename, /* Name of the database file to open */
40714 int nExtra, /* Extra bytes append to each in-memory page */
40715 int flags, /* flags controlling this file */
40716 int vfsFlags, /* flags passed through to sqlite3_vfs.xOpen() */
40717 void (*xReinit)(DbPage*) /* Function to reinitialize pages */
40719 u8 *pPtr;
40720 Pager *pPager = 0; /* Pager object to allocate and return */
40721 int rc = SQLITE_OK; /* Return code */
40722 int tempFile = 0; /* True for temp files (incl. in-memory files) */
40723 int memDb = 0; /* True if this is an in-memory file */
40724 int readOnly = 0; /* True if this is a read-only file */
40725 int journalFileSize; /* Bytes to allocate for each journal fd */
40726 char *zPathname = 0; /* Full path to database file */
40727 int nPathname = 0; /* Number of bytes in zPathname */
40728 int useJournal = (flags & PAGER_OMIT_JOURNAL)==0; /* False to omit journal */
40729 int noReadlock = (flags & PAGER_NO_READLOCK)!=0; /* True to omit read-lock */
40730 int pcacheSize = sqlite3PcacheSize(); /* Bytes to allocate for PCache */
40731 u32 szPageDflt = SQLITE_DEFAULT_PAGE_SIZE; /* Default page size */
40733 /* Figure out how much space is required for each journal file-handle
40734 ** (there are two of them, the main journal and the sub-journal). This
40735 ** is the maximum space required for an in-memory journal file handle
40736 ** and a regular journal file-handle. Note that a "regular journal-handle"
40737 ** may be a wrapper capable of caching the first portion of the journal
40738 ** file in memory to implement the atomic-write optimization (see
40739 ** source file journal.c).
40741 if( sqlite3JournalSize(pVfs)>sqlite3MemJournalSize() ){
40742 journalFileSize = ROUND8(sqlite3JournalSize(pVfs));
40743 }else{
40744 journalFileSize = ROUND8(sqlite3MemJournalSize());
40747 /* Set the output variable to NULL in case an error occurs. */
40748 *ppPager = 0;
40750 #ifndef SQLITE_OMIT_MEMORYDB
40751 if( flags & PAGER_MEMORY ){
40752 memDb = 1;
40753 zFilename = 0;
40755 #endif
40757 /* Compute and store the full pathname in an allocated buffer pointed
40758 ** to by zPathname, length nPathname. Or, if this is a temporary file,
40759 ** leave both nPathname and zPathname set to 0.
40761 if( zFilename && zFilename[0] ){
40762 nPathname = pVfs->mxPathname+1;
40763 zPathname = sqlite3Malloc(nPathname*2);
40764 if( zPathname==0 ){
40765 return SQLITE_NOMEM;
40767 zPathname[0] = 0; /* Make sure initialized even if FullPathname() fails */
40768 rc = sqlite3OsFullPathname(pVfs, zFilename, nPathname, zPathname);
40769 nPathname = sqlite3Strlen30(zPathname);
40770 if( rc==SQLITE_OK && nPathname+8>pVfs->mxPathname ){
40771 /* This branch is taken when the journal path required by
40772 ** the database being opened will be more than pVfs->mxPathname
40773 ** bytes in length. This means the database cannot be opened,
40774 ** as it will not be possible to open the journal file or even
40775 ** check for a hot-journal before reading.
40777 rc = SQLITE_CANTOPEN_BKPT;
40779 if( rc!=SQLITE_OK ){
40780 sqlite3_free(zPathname);
40781 return rc;
40785 /* Allocate memory for the Pager structure, PCache object, the
40786 ** three file descriptors, the database file name and the journal
40787 ** file name. The layout in memory is as follows:
40789 ** Pager object (sizeof(Pager) bytes)
40790 ** PCache object (sqlite3PcacheSize() bytes)
40791 ** Database file handle (pVfs->szOsFile bytes)
40792 ** Sub-journal file handle (journalFileSize bytes)
40793 ** Main journal file handle (journalFileSize bytes)
40794 ** Database file name (nPathname+1 bytes)
40795 ** Journal file name (nPathname+8+1 bytes)
40797 pPtr = (u8 *)sqlite3MallocZero(
40798 ROUND8(sizeof(*pPager)) + /* Pager structure */
40799 ROUND8(pcacheSize) + /* PCache object */
40800 ROUND8(pVfs->szOsFile) + /* The main db file */
40801 journalFileSize * 2 + /* The two journal files */
40802 nPathname + 1 + /* zFilename */
40803 nPathname + 8 + 1 /* zJournal */
40804 #ifndef SQLITE_OMIT_WAL
40805 + nPathname + 4 + 1 /* zWal */
40806 #endif
40808 assert( EIGHT_BYTE_ALIGNMENT(SQLITE_INT_TO_PTR(journalFileSize)) );
40809 if( !pPtr ){
40810 sqlite3_free(zPathname);
40811 return SQLITE_NOMEM;
40813 pPager = (Pager*)(pPtr);
40814 pPager->pPCache = (PCache*)(pPtr += ROUND8(sizeof(*pPager)));
40815 pPager->fd = (sqlite3_file*)(pPtr += ROUND8(pcacheSize));
40816 pPager->sjfd = (sqlite3_file*)(pPtr += ROUND8(pVfs->szOsFile));
40817 pPager->jfd = (sqlite3_file*)(pPtr += journalFileSize);
40818 pPager->zFilename = (char*)(pPtr += journalFileSize);
40819 assert( EIGHT_BYTE_ALIGNMENT(pPager->jfd) );
40821 /* Fill in the Pager.zFilename and Pager.zJournal buffers, if required. */
40822 if( zPathname ){
40823 assert( nPathname>0 );
40824 pPager->zJournal = (char*)(pPtr += nPathname + 1);
40825 memcpy(pPager->zFilename, zPathname, nPathname);
40826 memcpy(pPager->zJournal, zPathname, nPathname);
40827 memcpy(&pPager->zJournal[nPathname], "-journal", 8);
40828 #ifndef SQLITE_OMIT_WAL
40829 pPager->zWal = &pPager->zJournal[nPathname+8+1];
40830 memcpy(pPager->zWal, zPathname, nPathname);
40831 memcpy(&pPager->zWal[nPathname], "-wal", 4);
40832 #endif
40833 sqlite3_free(zPathname);
40835 pPager->pVfs = pVfs;
40836 pPager->vfsFlags = vfsFlags;
40838 /* Open the pager file.
40840 if( zFilename && zFilename[0] ){
40841 int fout = 0; /* VFS flags returned by xOpen() */
40842 rc = sqlite3OsOpen(pVfs, pPager->zFilename, pPager->fd, vfsFlags, &fout);
40843 assert( !memDb );
40844 readOnly = (fout&SQLITE_OPEN_READONLY);
40846 /* If the file was successfully opened for read/write access,
40847 ** choose a default page size in case we have to create the
40848 ** database file. The default page size is the maximum of:
40850 ** + SQLITE_DEFAULT_PAGE_SIZE,
40851 ** + The value returned by sqlite3OsSectorSize()
40852 ** + The largest page size that can be written atomically.
40854 if( rc==SQLITE_OK && !readOnly ){
40855 setSectorSize(pPager);
40856 assert(SQLITE_DEFAULT_PAGE_SIZE<=SQLITE_MAX_DEFAULT_PAGE_SIZE);
40857 if( szPageDflt<pPager->sectorSize ){
40858 if( pPager->sectorSize>SQLITE_MAX_DEFAULT_PAGE_SIZE ){
40859 szPageDflt = SQLITE_MAX_DEFAULT_PAGE_SIZE;
40860 }else{
40861 szPageDflt = (u32)pPager->sectorSize;
40864 #ifdef SQLITE_ENABLE_ATOMIC_WRITE
40866 int iDc = sqlite3OsDeviceCharacteristics(pPager->fd);
40867 int ii;
40868 assert(SQLITE_IOCAP_ATOMIC512==(512>>8));
40869 assert(SQLITE_IOCAP_ATOMIC64K==(65536>>8));
40870 assert(SQLITE_MAX_DEFAULT_PAGE_SIZE<=65536);
40871 for(ii=szPageDflt; ii<=SQLITE_MAX_DEFAULT_PAGE_SIZE; ii=ii*2){
40872 if( iDc&(SQLITE_IOCAP_ATOMIC|(ii>>8)) ){
40873 szPageDflt = ii;
40877 #endif
40879 }else{
40880 /* If a temporary file is requested, it is not opened immediately.
40881 ** In this case we accept the default page size and delay actually
40882 ** opening the file until the first call to OsWrite().
40884 ** This branch is also run for an in-memory database. An in-memory
40885 ** database is the same as a temp-file that is never written out to
40886 ** disk and uses an in-memory rollback journal.
40888 tempFile = 1;
40889 pPager->eState = PAGER_READER;
40890 pPager->eLock = EXCLUSIVE_LOCK;
40891 readOnly = (vfsFlags&SQLITE_OPEN_READONLY);
40894 /* The following call to PagerSetPagesize() serves to set the value of
40895 ** Pager.pageSize and to allocate the Pager.pTmpSpace buffer.
40897 if( rc==SQLITE_OK ){
40898 assert( pPager->memDb==0 );
40899 rc = sqlite3PagerSetPagesize(pPager, &szPageDflt, -1);
40900 testcase( rc!=SQLITE_OK );
40903 /* If an error occurred in either of the blocks above, free the
40904 ** Pager structure and close the file.
40906 if( rc!=SQLITE_OK ){
40907 assert( !pPager->pTmpSpace );
40908 sqlite3OsClose(pPager->fd);
40909 sqlite3_free(pPager);
40910 return rc;
40913 /* Initialize the PCache object. */
40914 assert( nExtra<1000 );
40915 nExtra = ROUND8(nExtra);
40916 sqlite3PcacheOpen(szPageDflt, nExtra, !memDb,
40917 !memDb?pagerStress:0, (void *)pPager, pPager->pPCache);
40919 PAGERTRACE(("OPEN %d %s\n", FILEHANDLEID(pPager->fd), pPager->zFilename));
40920 IOTRACE(("OPEN %p %s\n", pPager, pPager->zFilename))
40922 pPager->useJournal = (u8)useJournal;
40923 pPager->noReadlock = (noReadlock && readOnly) ?1:0;
40924 /* pPager->stmtOpen = 0; */
40925 /* pPager->stmtInUse = 0; */
40926 /* pPager->nRef = 0; */
40927 /* pPager->stmtSize = 0; */
40928 /* pPager->stmtJSize = 0; */
40929 /* pPager->nPage = 0; */
40930 pPager->mxPgno = SQLITE_MAX_PAGE_COUNT;
40931 /* pPager->state = PAGER_UNLOCK; */
40932 #if 0
40933 assert( pPager->state == (tempFile ? PAGER_EXCLUSIVE : PAGER_UNLOCK) );
40934 #endif
40935 /* pPager->errMask = 0; */
40936 pPager->tempFile = (u8)tempFile;
40937 assert( tempFile==PAGER_LOCKINGMODE_NORMAL
40938 || tempFile==PAGER_LOCKINGMODE_EXCLUSIVE );
40939 assert( PAGER_LOCKINGMODE_EXCLUSIVE==1 );
40940 pPager->exclusiveMode = (u8)tempFile;
40941 pPager->changeCountDone = pPager->tempFile;
40942 pPager->memDb = (u8)memDb;
40943 pPager->readOnly = (u8)readOnly;
40944 assert( useJournal || pPager->tempFile );
40945 pPager->noSync = pPager->tempFile;
40946 pPager->fullSync = pPager->noSync ?0:1;
40947 pPager->syncFlags = pPager->noSync ? 0 : SQLITE_SYNC_NORMAL;
40948 pPager->ckptSyncFlags = pPager->syncFlags;
40949 /* pPager->pFirst = 0; */
40950 /* pPager->pFirstSynced = 0; */
40951 /* pPager->pLast = 0; */
40952 pPager->nExtra = (u16)nExtra;
40953 pPager->journalSizeLimit = SQLITE_DEFAULT_JOURNAL_SIZE_LIMIT;
40954 assert( isOpen(pPager->fd) || tempFile );
40955 setSectorSize(pPager);
40956 if( !useJournal ){
40957 pPager->journalMode = PAGER_JOURNALMODE_OFF;
40958 }else if( memDb ){
40959 pPager->journalMode = PAGER_JOURNALMODE_MEMORY;
40961 /* pPager->xBusyHandler = 0; */
40962 /* pPager->pBusyHandlerArg = 0; */
40963 pPager->xReiniter = xReinit;
40964 /* memset(pPager->aHash, 0, sizeof(pPager->aHash)); */
40966 *ppPager = pPager;
40967 return SQLITE_OK;
40973 ** This function is called after transitioning from PAGER_UNLOCK to
40974 ** PAGER_SHARED state. It tests if there is a hot journal present in
40975 ** the file-system for the given pager. A hot journal is one that
40976 ** needs to be played back. According to this function, a hot-journal
40977 ** file exists if the following criteria are met:
40979 ** * The journal file exists in the file system, and
40980 ** * No process holds a RESERVED or greater lock on the database file, and
40981 ** * The database file itself is greater than 0 bytes in size, and
40982 ** * The first byte of the journal file exists and is not 0x00.
40984 ** If the current size of the database file is 0 but a journal file
40985 ** exists, that is probably an old journal left over from a prior
40986 ** database with the same name. In this case the journal file is
40987 ** just deleted using OsDelete, *pExists is set to 0 and SQLITE_OK
40988 ** is returned.
40990 ** This routine does not check if there is a master journal filename
40991 ** at the end of the file. If there is, and that master journal file
40992 ** does not exist, then the journal file is not really hot. In this
40993 ** case this routine will return a false-positive. The pager_playback()
40994 ** routine will discover that the journal file is not really hot and
40995 ** will not roll it back.
40997 ** If a hot-journal file is found to exist, *pExists is set to 1 and
40998 ** SQLITE_OK returned. If no hot-journal file is present, *pExists is
40999 ** set to 0 and SQLITE_OK returned. If an IO error occurs while trying
41000 ** to determine whether or not a hot-journal file exists, the IO error
41001 ** code is returned and the value of *pExists is undefined.
41003 static int hasHotJournal(Pager *pPager, int *pExists){
41004 sqlite3_vfs * const pVfs = pPager->pVfs;
41005 int rc = SQLITE_OK; /* Return code */
41006 int exists = 1; /* True if a journal file is present */
41007 int jrnlOpen = !!isOpen(pPager->jfd);
41009 assert( pPager->useJournal );
41010 assert( isOpen(pPager->fd) );
41011 assert( pPager->eState==PAGER_OPEN );
41013 assert( jrnlOpen==0 || ( sqlite3OsDeviceCharacteristics(pPager->jfd) &
41014 SQLITE_IOCAP_UNDELETABLE_WHEN_OPEN
41017 *pExists = 0;
41018 if( !jrnlOpen ){
41019 rc = sqlite3OsAccess(pVfs, pPager->zJournal, SQLITE_ACCESS_EXISTS, &exists);
41021 if( rc==SQLITE_OK && exists ){
41022 int locked = 0; /* True if some process holds a RESERVED lock */
41024 /* Race condition here: Another process might have been holding the
41025 ** the RESERVED lock and have a journal open at the sqlite3OsAccess()
41026 ** call above, but then delete the journal and drop the lock before
41027 ** we get to the following sqlite3OsCheckReservedLock() call. If that
41028 ** is the case, this routine might think there is a hot journal when
41029 ** in fact there is none. This results in a false-positive which will
41030 ** be dealt with by the playback routine. Ticket #3883.
41032 rc = sqlite3OsCheckReservedLock(pPager->fd, &locked);
41033 if( rc==SQLITE_OK && !locked ){
41034 Pgno nPage; /* Number of pages in database file */
41036 /* Check the size of the database file. If it consists of 0 pages,
41037 ** then delete the journal file. See the header comment above for
41038 ** the reasoning here. Delete the obsolete journal file under
41039 ** a RESERVED lock to avoid race conditions and to avoid violating
41040 ** [H33020].
41042 rc = pagerPagecount(pPager, &nPage);
41043 if( rc==SQLITE_OK ){
41044 if( nPage==0 ){
41045 sqlite3BeginBenignMalloc();
41046 if( pagerLockDb(pPager, RESERVED_LOCK)==SQLITE_OK ){
41047 sqlite3OsDelete(pVfs, pPager->zJournal, 0);
41048 if( !pPager->exclusiveMode ) pagerUnlockDb(pPager, SHARED_LOCK);
41050 sqlite3EndBenignMalloc();
41051 }else{
41052 /* The journal file exists and no other connection has a reserved
41053 ** or greater lock on the database file. Now check that there is
41054 ** at least one non-zero bytes at the start of the journal file.
41055 ** If there is, then we consider this journal to be hot. If not,
41056 ** it can be ignored.
41058 if( !jrnlOpen ){
41059 int f = SQLITE_OPEN_READONLY|SQLITE_OPEN_MAIN_JOURNAL;
41060 rc = sqlite3OsOpen(pVfs, pPager->zJournal, pPager->jfd, f, &f);
41062 if( rc==SQLITE_OK ){
41063 u8 first = 0;
41064 rc = sqlite3OsRead(pPager->jfd, (void *)&first, 1, 0);
41065 if( rc==SQLITE_IOERR_SHORT_READ ){
41066 rc = SQLITE_OK;
41068 if( !jrnlOpen ){
41069 sqlite3OsClose(pPager->jfd);
41071 *pExists = (first!=0);
41072 }else if( rc==SQLITE_CANTOPEN ){
41073 /* If we cannot open the rollback journal file in order to see if
41074 ** its has a zero header, that might be due to an I/O error, or
41075 ** it might be due to the race condition described above and in
41076 ** ticket #3883. Either way, assume that the journal is hot.
41077 ** This might be a false positive. But if it is, then the
41078 ** automatic journal playback and recovery mechanism will deal
41079 ** with it under an EXCLUSIVE lock where we do not need to
41080 ** worry so much with race conditions.
41082 *pExists = 1;
41083 rc = SQLITE_OK;
41090 return rc;
41094 ** This function is called to obtain a shared lock on the database file.
41095 ** It is illegal to call sqlite3PagerAcquire() until after this function
41096 ** has been successfully called. If a shared-lock is already held when
41097 ** this function is called, it is a no-op.
41099 ** The following operations are also performed by this function.
41101 ** 1) If the pager is currently in PAGER_OPEN state (no lock held
41102 ** on the database file), then an attempt is made to obtain a
41103 ** SHARED lock on the database file. Immediately after obtaining
41104 ** the SHARED lock, the file-system is checked for a hot-journal,
41105 ** which is played back if present. Following any hot-journal
41106 ** rollback, the contents of the cache are validated by checking
41107 ** the 'change-counter' field of the database file header and
41108 ** discarded if they are found to be invalid.
41110 ** 2) If the pager is running in exclusive-mode, and there are currently
41111 ** no outstanding references to any pages, and is in the error state,
41112 ** then an attempt is made to clear the error state by discarding
41113 ** the contents of the page cache and rolling back any open journal
41114 ** file.
41116 ** If everything is successful, SQLITE_OK is returned. If an IO error
41117 ** occurs while locking the database, checking for a hot-journal file or
41118 ** rolling back a journal file, the IO error code is returned.
41120 SQLITE_PRIVATE int sqlite3PagerSharedLock(Pager *pPager){
41121 int rc = SQLITE_OK; /* Return code */
41123 /* This routine is only called from b-tree and only when there are no
41124 ** outstanding pages. This implies that the pager state should either
41125 ** be OPEN or READER. READER is only possible if the pager is or was in
41126 ** exclusive access mode.
41128 assert( sqlite3PcacheRefCount(pPager->pPCache)==0 );
41129 assert( assert_pager_state(pPager) );
41130 assert( pPager->eState==PAGER_OPEN || pPager->eState==PAGER_READER );
41131 if( NEVER(MEMDB && pPager->errCode) ){ return pPager->errCode; }
41133 if( !pagerUseWal(pPager) && pPager->eState==PAGER_OPEN ){
41134 int bHotJournal = 1; /* True if there exists a hot journal-file */
41136 assert( !MEMDB );
41137 assert( pPager->noReadlock==0 || pPager->readOnly );
41139 if( pPager->noReadlock==0 ){
41140 rc = pager_wait_on_lock(pPager, SHARED_LOCK);
41141 if( rc!=SQLITE_OK ){
41142 assert( pPager->eLock==NO_LOCK || pPager->eLock==UNKNOWN_LOCK );
41143 goto failed;
41147 /* If a journal file exists, and there is no RESERVED lock on the
41148 ** database file, then it either needs to be played back or deleted.
41150 if( pPager->eLock<=SHARED_LOCK ){
41151 rc = hasHotJournal(pPager, &bHotJournal);
41153 if( rc!=SQLITE_OK ){
41154 goto failed;
41156 if( bHotJournal ){
41157 /* Get an EXCLUSIVE lock on the database file. At this point it is
41158 ** important that a RESERVED lock is not obtained on the way to the
41159 ** EXCLUSIVE lock. If it were, another process might open the
41160 ** database file, detect the RESERVED lock, and conclude that the
41161 ** database is safe to read while this process is still rolling the
41162 ** hot-journal back.
41164 ** Because the intermediate RESERVED lock is not requested, any
41165 ** other process attempting to access the database file will get to
41166 ** this point in the code and fail to obtain its own EXCLUSIVE lock
41167 ** on the database file.
41169 ** Unless the pager is in locking_mode=exclusive mode, the lock is
41170 ** downgraded to SHARED_LOCK before this function returns.
41172 rc = pagerLockDb(pPager, EXCLUSIVE_LOCK);
41173 if( rc!=SQLITE_OK ){
41174 goto failed;
41177 /* If it is not already open and the file exists on disk, open the
41178 ** journal for read/write access. Write access is required because
41179 ** in exclusive-access mode the file descriptor will be kept open
41180 ** and possibly used for a transaction later on. Also, write-access
41181 ** is usually required to finalize the journal in journal_mode=persist
41182 ** mode (and also for journal_mode=truncate on some systems).
41184 ** If the journal does not exist, it usually means that some
41185 ** other connection managed to get in and roll it back before
41186 ** this connection obtained the exclusive lock above. Or, it
41187 ** may mean that the pager was in the error-state when this
41188 ** function was called and the journal file does not exist.
41190 if( !isOpen(pPager->jfd) ){
41191 sqlite3_vfs * const pVfs = pPager->pVfs;
41192 int bExists; /* True if journal file exists */
41193 rc = sqlite3OsAccess(
41194 pVfs, pPager->zJournal, SQLITE_ACCESS_EXISTS, &bExists);
41195 if( rc==SQLITE_OK && bExists ){
41196 int fout = 0;
41197 int f = SQLITE_OPEN_READWRITE|SQLITE_OPEN_MAIN_JOURNAL;
41198 assert( !pPager->tempFile );
41199 rc = sqlite3OsOpen(pVfs, pPager->zJournal, pPager->jfd, f, &fout);
41200 assert( rc!=SQLITE_OK || isOpen(pPager->jfd) );
41201 if( rc==SQLITE_OK && fout&SQLITE_OPEN_READONLY ){
41202 rc = SQLITE_CANTOPEN_BKPT;
41203 sqlite3OsClose(pPager->jfd);
41208 /* Playback and delete the journal. Drop the database write
41209 ** lock and reacquire the read lock. Purge the cache before
41210 ** playing back the hot-journal so that we don't end up with
41211 ** an inconsistent cache. Sync the hot journal before playing
41212 ** it back since the process that crashed and left the hot journal
41213 ** probably did not sync it and we are required to always sync
41214 ** the journal before playing it back.
41216 if( isOpen(pPager->jfd) ){
41217 assert( rc==SQLITE_OK );
41218 rc = pagerSyncHotJournal(pPager);
41219 if( rc==SQLITE_OK ){
41220 rc = pager_playback(pPager, 1);
41221 pPager->eState = PAGER_OPEN;
41223 }else if( !pPager->exclusiveMode ){
41224 pagerUnlockDb(pPager, SHARED_LOCK);
41227 if( rc!=SQLITE_OK ){
41228 /* This branch is taken if an error occurs while trying to open
41229 ** or roll back a hot-journal while holding an EXCLUSIVE lock. The
41230 ** pager_unlock() routine will be called before returning to unlock
41231 ** the file. If the unlock attempt fails, then Pager.eLock must be
41232 ** set to UNKNOWN_LOCK (see the comment above the #define for
41233 ** UNKNOWN_LOCK above for an explanation).
41235 ** In order to get pager_unlock() to do this, set Pager.eState to
41236 ** PAGER_ERROR now. This is not actually counted as a transition
41237 ** to ERROR state in the state diagram at the top of this file,
41238 ** since we know that the same call to pager_unlock() will very
41239 ** shortly transition the pager object to the OPEN state. Calling
41240 ** assert_pager_state() would fail now, as it should not be possible
41241 ** to be in ERROR state when there are zero outstanding page
41242 ** references.
41244 pager_error(pPager, rc);
41245 goto failed;
41248 assert( pPager->eState==PAGER_OPEN );
41249 assert( (pPager->eLock==SHARED_LOCK)
41250 || (pPager->exclusiveMode && pPager->eLock>SHARED_LOCK)
41254 if( !pPager->tempFile
41255 && (pPager->pBackup || sqlite3PcachePagecount(pPager->pPCache)>0)
41257 /* The shared-lock has just been acquired on the database file
41258 ** and there are already pages in the cache (from a previous
41259 ** read or write transaction). Check to see if the database
41260 ** has been modified. If the database has changed, flush the
41261 ** cache.
41263 ** Database changes is detected by looking at 15 bytes beginning
41264 ** at offset 24 into the file. The first 4 of these 16 bytes are
41265 ** a 32-bit counter that is incremented with each change. The
41266 ** other bytes change randomly with each file change when
41267 ** a codec is in use.
41269 ** There is a vanishingly small chance that a change will not be
41270 ** detected. The chance of an undetected change is so small that
41271 ** it can be neglected.
41273 Pgno nPage = 0;
41274 char dbFileVers[sizeof(pPager->dbFileVers)];
41276 rc = pagerPagecount(pPager, &nPage);
41277 if( rc ) goto failed;
41279 if( nPage>0 ){
41280 IOTRACE(("CKVERS %p %d\n", pPager, sizeof(dbFileVers)));
41281 rc = sqlite3OsRead(pPager->fd, &dbFileVers, sizeof(dbFileVers), 24);
41282 if( rc!=SQLITE_OK ){
41283 goto failed;
41285 }else{
41286 memset(dbFileVers, 0, sizeof(dbFileVers));
41289 if( memcmp(pPager->dbFileVers, dbFileVers, sizeof(dbFileVers))!=0 ){
41290 pager_reset(pPager);
41294 /* If there is a WAL file in the file-system, open this database in WAL
41295 ** mode. Otherwise, the following function call is a no-op.
41297 rc = pagerOpenWalIfPresent(pPager);
41298 #ifndef SQLITE_OMIT_WAL
41299 assert( pPager->pWal==0 || rc==SQLITE_OK );
41300 #endif
41303 if( pagerUseWal(pPager) ){
41304 assert( rc==SQLITE_OK );
41305 rc = pagerBeginReadTransaction(pPager);
41308 if( pPager->eState==PAGER_OPEN && rc==SQLITE_OK ){
41309 rc = pagerPagecount(pPager, &pPager->dbSize);
41312 failed:
41313 if( rc!=SQLITE_OK ){
41314 assert( !MEMDB );
41315 pager_unlock(pPager);
41316 assert( pPager->eState==PAGER_OPEN );
41317 }else{
41318 pPager->eState = PAGER_READER;
41320 return rc;
41324 ** If the reference count has reached zero, rollback any active
41325 ** transaction and unlock the pager.
41327 ** Except, in locking_mode=EXCLUSIVE when there is nothing to in
41328 ** the rollback journal, the unlock is not performed and there is
41329 ** nothing to rollback, so this routine is a no-op.
41331 static void pagerUnlockIfUnused(Pager *pPager){
41332 if( (sqlite3PcacheRefCount(pPager->pPCache)==0) ){
41333 pagerUnlockAndRollback(pPager);
41338 ** Acquire a reference to page number pgno in pager pPager (a page
41339 ** reference has type DbPage*). If the requested reference is
41340 ** successfully obtained, it is copied to *ppPage and SQLITE_OK returned.
41342 ** If the requested page is already in the cache, it is returned.
41343 ** Otherwise, a new page object is allocated and populated with data
41344 ** read from the database file. In some cases, the pcache module may
41345 ** choose not to allocate a new page object and may reuse an existing
41346 ** object with no outstanding references.
41348 ** The extra data appended to a page is always initialized to zeros the
41349 ** first time a page is loaded into memory. If the page requested is
41350 ** already in the cache when this function is called, then the extra
41351 ** data is left as it was when the page object was last used.
41353 ** If the database image is smaller than the requested page or if a
41354 ** non-zero value is passed as the noContent parameter and the
41355 ** requested page is not already stored in the cache, then no
41356 ** actual disk read occurs. In this case the memory image of the
41357 ** page is initialized to all zeros.
41359 ** If noContent is true, it means that we do not care about the contents
41360 ** of the page. This occurs in two seperate scenarios:
41362 ** a) When reading a free-list leaf page from the database, and
41364 ** b) When a savepoint is being rolled back and we need to load
41365 ** a new page into the cache to be filled with the data read
41366 ** from the savepoint journal.
41368 ** If noContent is true, then the data returned is zeroed instead of
41369 ** being read from the database. Additionally, the bits corresponding
41370 ** to pgno in Pager.pInJournal (bitvec of pages already written to the
41371 ** journal file) and the PagerSavepoint.pInSavepoint bitvecs of any open
41372 ** savepoints are set. This means if the page is made writable at any
41373 ** point in the future, using a call to sqlite3PagerWrite(), its contents
41374 ** will not be journaled. This saves IO.
41376 ** The acquisition might fail for several reasons. In all cases,
41377 ** an appropriate error code is returned and *ppPage is set to NULL.
41379 ** See also sqlite3PagerLookup(). Both this routine and Lookup() attempt
41380 ** to find a page in the in-memory cache first. If the page is not already
41381 ** in memory, this routine goes to disk to read it in whereas Lookup()
41382 ** just returns 0. This routine acquires a read-lock the first time it
41383 ** has to go to disk, and could also playback an old journal if necessary.
41384 ** Since Lookup() never goes to disk, it never has to deal with locks
41385 ** or journal files.
41387 SQLITE_PRIVATE int sqlite3PagerAcquire(
41388 Pager *pPager, /* The pager open on the database file */
41389 Pgno pgno, /* Page number to fetch */
41390 DbPage **ppPage, /* Write a pointer to the page here */
41391 int noContent /* Do not bother reading content from disk if true */
41393 int rc;
41394 PgHdr *pPg;
41396 assert( pPager->eState>=PAGER_READER );
41397 assert( assert_pager_state(pPager) );
41399 if( pgno==0 ){
41400 return SQLITE_CORRUPT_BKPT;
41403 /* If the pager is in the error state, return an error immediately.
41404 ** Otherwise, request the page from the PCache layer. */
41405 if( pPager->errCode!=SQLITE_OK ){
41406 rc = pPager->errCode;
41407 }else{
41408 rc = sqlite3PcacheFetch(pPager->pPCache, pgno, 1, ppPage);
41411 if( rc!=SQLITE_OK ){
41412 /* Either the call to sqlite3PcacheFetch() returned an error or the
41413 ** pager was already in the error-state when this function was called.
41414 ** Set pPg to 0 and jump to the exception handler. */
41415 pPg = 0;
41416 goto pager_acquire_err;
41418 assert( (*ppPage)->pgno==pgno );
41419 assert( (*ppPage)->pPager==pPager || (*ppPage)->pPager==0 );
41421 if( (*ppPage)->pPager && !noContent ){
41422 /* In this case the pcache already contains an initialized copy of
41423 ** the page. Return without further ado. */
41424 assert( pgno<=PAGER_MAX_PGNO && pgno!=PAGER_MJ_PGNO(pPager) );
41425 PAGER_INCR(pPager->nHit);
41426 return SQLITE_OK;
41428 }else{
41429 /* The pager cache has created a new page. Its content needs to
41430 ** be initialized. */
41432 PAGER_INCR(pPager->nMiss);
41433 pPg = *ppPage;
41434 pPg->pPager = pPager;
41436 /* The maximum page number is 2^31. Return SQLITE_CORRUPT if a page
41437 ** number greater than this, or the unused locking-page, is requested. */
41438 if( pgno>PAGER_MAX_PGNO || pgno==PAGER_MJ_PGNO(pPager) ){
41439 rc = SQLITE_CORRUPT_BKPT;
41440 goto pager_acquire_err;
41443 if( MEMDB || pPager->dbSize<pgno || noContent || !isOpen(pPager->fd) ){
41444 if( pgno>pPager->mxPgno ){
41445 rc = SQLITE_FULL;
41446 goto pager_acquire_err;
41448 if( noContent ){
41449 /* Failure to set the bits in the InJournal bit-vectors is benign.
41450 ** It merely means that we might do some extra work to journal a
41451 ** page that does not need to be journaled. Nevertheless, be sure
41452 ** to test the case where a malloc error occurs while trying to set
41453 ** a bit in a bit vector.
41455 sqlite3BeginBenignMalloc();
41456 if( pgno<=pPager->dbOrigSize ){
41457 TESTONLY( rc = ) sqlite3BitvecSet(pPager->pInJournal, pgno);
41458 testcase( rc==SQLITE_NOMEM );
41460 TESTONLY( rc = ) addToSavepointBitvecs(pPager, pgno);
41461 testcase( rc==SQLITE_NOMEM );
41462 sqlite3EndBenignMalloc();
41464 memset(pPg->pData, 0, pPager->pageSize);
41465 IOTRACE(("ZERO %p %d\n", pPager, pgno));
41466 }else{
41467 assert( pPg->pPager==pPager );
41468 rc = readDbPage(pPg);
41469 if( rc!=SQLITE_OK ){
41470 goto pager_acquire_err;
41473 pager_set_pagehash(pPg);
41476 return SQLITE_OK;
41478 pager_acquire_err:
41479 assert( rc!=SQLITE_OK );
41480 if( pPg ){
41481 sqlite3PcacheDrop(pPg);
41483 pagerUnlockIfUnused(pPager);
41485 *ppPage = 0;
41486 return rc;
41490 ** Acquire a page if it is already in the in-memory cache. Do
41491 ** not read the page from disk. Return a pointer to the page,
41492 ** or 0 if the page is not in cache.
41494 ** See also sqlite3PagerGet(). The difference between this routine
41495 ** and sqlite3PagerGet() is that _get() will go to the disk and read
41496 ** in the page if the page is not already in cache. This routine
41497 ** returns NULL if the page is not in cache or if a disk I/O error
41498 ** has ever happened.
41500 SQLITE_PRIVATE DbPage *sqlite3PagerLookup(Pager *pPager, Pgno pgno){
41501 PgHdr *pPg = 0;
41502 assert( pPager!=0 );
41503 assert( pgno!=0 );
41504 assert( pPager->pPCache!=0 );
41505 assert( pPager->eState>=PAGER_READER && pPager->eState!=PAGER_ERROR );
41506 sqlite3PcacheFetch(pPager->pPCache, pgno, 0, &pPg);
41507 return pPg;
41511 ** Release a page reference.
41513 ** If the number of references to the page drop to zero, then the
41514 ** page is added to the LRU list. When all references to all pages
41515 ** are released, a rollback occurs and the lock on the database is
41516 ** removed.
41518 SQLITE_PRIVATE void sqlite3PagerUnref(DbPage *pPg){
41519 if( pPg ){
41520 Pager *pPager = pPg->pPager;
41521 sqlite3PcacheRelease(pPg);
41522 pagerUnlockIfUnused(pPager);
41526 #if defined(__APPLE__)
41528 ** Create and return a CFURLRef given a cstring containing the path to a file.
41530 static CFURLRef create_cfurl_from_cstring(const char* filePath){
41531 CFStringRef urlString = CFStringCreateWithFileSystemRepresentation(
41532 kCFAllocatorDefault, filePath);
41533 CFURLRef urlRef = CFURLCreateWithFileSystemPath(kCFAllocatorDefault,
41534 urlString, kCFURLPOSIXPathStyle, FALSE);
41535 CFRelease(urlString);
41536 return urlRef;
41538 #endif
41541 ** This function is called at the start of every write transaction.
41542 ** There must already be a RESERVED or EXCLUSIVE lock on the database
41543 ** file when this routine is called.
41545 ** Open the journal file for pager pPager and write a journal header
41546 ** to the start of it. If there are active savepoints, open the sub-journal
41547 ** as well. This function is only used when the journal file is being
41548 ** opened to write a rollback log for a transaction. It is not used
41549 ** when opening a hot journal file to roll it back.
41551 ** If the journal file is already open (as it may be in exclusive mode),
41552 ** then this function just writes a journal header to the start of the
41553 ** already open file.
41555 ** Whether or not the journal file is opened by this function, the
41556 ** Pager.pInJournal bitvec structure is allocated.
41558 ** Return SQLITE_OK if everything is successful. Otherwise, return
41559 ** SQLITE_NOMEM if the attempt to allocate Pager.pInJournal fails, or
41560 ** an IO error code if opening or writing the journal file fails.
41562 static int pager_open_journal(Pager *pPager){
41563 int rc = SQLITE_OK; /* Return code */
41564 sqlite3_vfs * const pVfs = pPager->pVfs; /* Local cache of vfs pointer */
41566 assert( pPager->eState==PAGER_WRITER_LOCKED );
41567 assert( assert_pager_state(pPager) );
41568 assert( pPager->pInJournal==0 );
41570 /* If already in the error state, this function is a no-op. But on
41571 ** the other hand, this routine is never called if we are already in
41572 ** an error state. */
41573 if( NEVER(pPager->errCode) ) return pPager->errCode;
41575 if( !pagerUseWal(pPager) && pPager->journalMode!=PAGER_JOURNALMODE_OFF ){
41576 pPager->pInJournal = sqlite3BitvecCreate(pPager->dbSize);
41577 if( pPager->pInJournal==0 ){
41578 return SQLITE_NOMEM;
41581 /* Open the journal file if it is not already open. */
41582 if( !isOpen(pPager->jfd) ){
41583 if( pPager->journalMode==PAGER_JOURNALMODE_MEMORY ){
41584 sqlite3MemJournalOpen(pPager->jfd);
41585 }else{
41586 const int flags = /* VFS flags to open journal file */
41587 SQLITE_OPEN_READWRITE|SQLITE_OPEN_CREATE|
41588 (pPager->tempFile ?
41589 (SQLITE_OPEN_DELETEONCLOSE|SQLITE_OPEN_TEMP_JOURNAL):
41590 (SQLITE_OPEN_MAIN_JOURNAL)
41592 #ifdef SQLITE_ENABLE_ATOMIC_WRITE
41593 rc = sqlite3JournalOpen(
41594 pVfs, pPager->zJournal, pPager->jfd, flags, jrnlBufferSize(pPager)
41596 #else
41597 rc = sqlite3OsOpen(pVfs, pPager->zJournal, pPager->jfd, flags, 0);
41598 #endif
41599 #if defined(__APPLE__)
41600 /* Set the TimeMachine exclusion metadata for the journal if it has
41601 ** been set for the database. Only do this for unix-type vfs
41602 ** implementations. */
41603 if( rc==SQLITE_OK && pPager->zFilename!=NULL
41604 && strlen(pPager->zFilename)>0
41605 && strncmp(pVfs->zName, "unix", 4)==0
41606 && ( pVfs->zName[4]=='-' || pVfs->zName[4]=='\0' ) ){
41607 CFURLRef database = create_cfurl_from_cstring(pPager->zFilename);
41608 if( CSBackupIsItemExcluded(database, NULL) ){
41609 CFURLRef journal = create_cfurl_from_cstring(pPager->zJournal);
41610 /* Ignore errors from the following exclusion call. */
41611 CSBackupSetItemExcluded(journal, TRUE, FALSE);
41612 CFRelease(journal);
41614 CFRelease(database);
41616 #endif
41618 assert( rc!=SQLITE_OK || isOpen(pPager->jfd) );
41622 /* Write the first journal header to the journal file and open
41623 ** the sub-journal if necessary.
41625 if( rc==SQLITE_OK ){
41626 /* TODO: Check if all of these are really required. */
41627 pPager->nRec = 0;
41628 pPager->journalOff = 0;
41629 pPager->setMaster = 0;
41630 pPager->journalHdr = 0;
41631 rc = writeJournalHdr(pPager);
41635 if( rc!=SQLITE_OK ){
41636 sqlite3BitvecDestroy(pPager->pInJournal);
41637 pPager->pInJournal = 0;
41638 }else{
41639 assert( pPager->eState==PAGER_WRITER_LOCKED );
41640 pPager->eState = PAGER_WRITER_CACHEMOD;
41643 return rc;
41647 ** Begin a write-transaction on the specified pager object. If a
41648 ** write-transaction has already been opened, this function is a no-op.
41650 ** If the exFlag argument is false, then acquire at least a RESERVED
41651 ** lock on the database file. If exFlag is true, then acquire at least
41652 ** an EXCLUSIVE lock. If such a lock is already held, no locking
41653 ** functions need be called.
41655 ** If the subjInMemory argument is non-zero, then any sub-journal opened
41656 ** within this transaction will be opened as an in-memory file. This
41657 ** has no effect if the sub-journal is already opened (as it may be when
41658 ** running in exclusive mode) or if the transaction does not require a
41659 ** sub-journal. If the subjInMemory argument is zero, then any required
41660 ** sub-journal is implemented in-memory if pPager is an in-memory database,
41661 ** or using a temporary file otherwise.
41663 SQLITE_PRIVATE int sqlite3PagerBegin(Pager *pPager, int exFlag, int subjInMemory){
41664 int rc = SQLITE_OK;
41666 if( pPager->errCode ) return pPager->errCode;
41667 assert( pPager->eState>=PAGER_READER && pPager->eState<PAGER_ERROR );
41668 pPager->subjInMemory = (u8)subjInMemory;
41670 if( ALWAYS(pPager->eState==PAGER_READER) ){
41671 assert( pPager->pInJournal==0 );
41673 if( pagerUseWal(pPager) ){
41674 /* If the pager is configured to use locking_mode=exclusive, and an
41675 ** exclusive lock on the database is not already held, obtain it now.
41677 if( pPager->exclusiveMode && sqlite3WalExclusiveMode(pPager->pWal, -1) ){
41678 rc = pagerLockDb(pPager, EXCLUSIVE_LOCK);
41679 if( rc!=SQLITE_OK ){
41680 return rc;
41682 sqlite3WalExclusiveMode(pPager->pWal, 1);
41685 /* Grab the write lock on the log file. If successful, upgrade to
41686 ** PAGER_RESERVED state. Otherwise, return an error code to the caller.
41687 ** The busy-handler is not invoked if another connection already
41688 ** holds the write-lock. If possible, the upper layer will call it.
41690 rc = sqlite3WalBeginWriteTransaction(pPager->pWal);
41691 }else{
41692 /* Obtain a RESERVED lock on the database file. If the exFlag parameter
41693 ** is true, then immediately upgrade this to an EXCLUSIVE lock. The
41694 ** busy-handler callback can be used when upgrading to the EXCLUSIVE
41695 ** lock, but not when obtaining the RESERVED lock.
41697 rc = pagerLockDb(pPager, RESERVED_LOCK);
41698 if( rc==SQLITE_OK && exFlag ){
41699 rc = pager_wait_on_lock(pPager, EXCLUSIVE_LOCK);
41703 if( rc==SQLITE_OK ){
41704 /* Change to WRITER_LOCKED state.
41706 ** WAL mode sets Pager.eState to PAGER_WRITER_LOCKED or CACHEMOD
41707 ** when it has an open transaction, but never to DBMOD or FINISHED.
41708 ** This is because in those states the code to roll back savepoint
41709 ** transactions may copy data from the sub-journal into the database
41710 ** file as well as into the page cache. Which would be incorrect in
41711 ** WAL mode.
41713 pPager->eState = PAGER_WRITER_LOCKED;
41714 pPager->dbHintSize = pPager->dbSize;
41715 pPager->dbFileSize = pPager->dbSize;
41716 pPager->dbOrigSize = pPager->dbSize;
41717 pPager->journalOff = 0;
41720 assert( rc==SQLITE_OK || pPager->eState==PAGER_READER );
41721 assert( rc!=SQLITE_OK || pPager->eState==PAGER_WRITER_LOCKED );
41722 assert( assert_pager_state(pPager) );
41725 PAGERTRACE(("TRANSACTION %d\n", PAGERID(pPager)));
41726 return rc;
41730 ** Mark a single data page as writeable. The page is written into the
41731 ** main journal or sub-journal as required. If the page is written into
41732 ** one of the journals, the corresponding bit is set in the
41733 ** Pager.pInJournal bitvec and the PagerSavepoint.pInSavepoint bitvecs
41734 ** of any open savepoints as appropriate.
41736 static int pager_write(PgHdr *pPg){
41737 void *pData = pPg->pData;
41738 Pager *pPager = pPg->pPager;
41739 int rc = SQLITE_OK;
41741 /* This routine is not called unless a write-transaction has already
41742 ** been started. The journal file may or may not be open at this point.
41743 ** It is never called in the ERROR state.
41745 assert( pPager->eState==PAGER_WRITER_LOCKED
41746 || pPager->eState==PAGER_WRITER_CACHEMOD
41747 || pPager->eState==PAGER_WRITER_DBMOD
41749 assert( assert_pager_state(pPager) );
41751 /* If an error has been previously detected, report the same error
41752 ** again. This should not happen, but the check provides robustness. */
41753 if( NEVER(pPager->errCode) ) return pPager->errCode;
41755 /* Higher-level routines never call this function if database is not
41756 ** writable. But check anyway, just for robustness. */
41757 if( NEVER(pPager->readOnly) ) return SQLITE_PERM;
41759 CHECK_PAGE(pPg);
41761 /* The journal file needs to be opened. Higher level routines have already
41762 ** obtained the necessary locks to begin the write-transaction, but the
41763 ** rollback journal might not yet be open. Open it now if this is the case.
41765 ** This is done before calling sqlite3PcacheMakeDirty() on the page.
41766 ** Otherwise, if it were done after calling sqlite3PcacheMakeDirty(), then
41767 ** an error might occur and the pager would end up in WRITER_LOCKED state
41768 ** with pages marked as dirty in the cache.
41770 if( pPager->eState==PAGER_WRITER_LOCKED ){
41771 rc = pager_open_journal(pPager);
41772 if( rc!=SQLITE_OK ) return rc;
41774 assert( pPager->eState>=PAGER_WRITER_CACHEMOD );
41775 assert( assert_pager_state(pPager) );
41777 /* Mark the page as dirty. If the page has already been written
41778 ** to the journal then we can return right away.
41780 sqlite3PcacheMakeDirty(pPg);
41781 if( pageInJournal(pPg) && !subjRequiresPage(pPg) ){
41782 assert( !pagerUseWal(pPager) );
41783 }else{
41785 /* The transaction journal now exists and we have a RESERVED or an
41786 ** EXCLUSIVE lock on the main database file. Write the current page to
41787 ** the transaction journal if it is not there already.
41789 if( !pageInJournal(pPg) && !pagerUseWal(pPager) ){
41790 assert( pagerUseWal(pPager)==0 );
41791 if( pPg->pgno<=pPager->dbOrigSize && isOpen(pPager->jfd) ){
41792 u32 cksum;
41793 char *pData2;
41794 i64 iOff = pPager->journalOff;
41796 /* We should never write to the journal file the page that
41797 ** contains the database locks. The following assert verifies
41798 ** that we do not. */
41799 assert( pPg->pgno!=PAGER_MJ_PGNO(pPager) );
41801 assert( pPager->journalHdr<=pPager->journalOff );
41802 CODEC2(pPager, pData, pPg->pgno, 7, return SQLITE_NOMEM, pData2);
41803 cksum = pager_cksum(pPager, (u8*)pData2);
41805 /* Even if an IO or diskfull error occurs while journalling the
41806 ** page in the block above, set the need-sync flag for the page.
41807 ** Otherwise, when the transaction is rolled back, the logic in
41808 ** playback_one_page() will think that the page needs to be restored
41809 ** in the database file. And if an IO error occurs while doing so,
41810 ** then corruption may follow.
41812 pPg->flags |= PGHDR_NEED_SYNC;
41814 rc = write32bits(pPager->jfd, iOff, pPg->pgno);
41815 if( rc!=SQLITE_OK ) return rc;
41816 rc = sqlite3OsWrite(pPager->jfd, pData2, pPager->pageSize, iOff+4);
41817 if( rc!=SQLITE_OK ) return rc;
41818 rc = write32bits(pPager->jfd, iOff+pPager->pageSize+4, cksum);
41819 if( rc!=SQLITE_OK ) return rc;
41821 IOTRACE(("JOUT %p %d %lld %d\n", pPager, pPg->pgno,
41822 pPager->journalOff, pPager->pageSize));
41823 PAGER_INCR(sqlite3_pager_writej_count);
41824 PAGERTRACE(("JOURNAL %d page %d needSync=%d hash(%08x)\n",
41825 PAGERID(pPager), pPg->pgno,
41826 ((pPg->flags&PGHDR_NEED_SYNC)?1:0), pager_pagehash(pPg)));
41828 pPager->journalOff += 8 + pPager->pageSize;
41829 pPager->nRec++;
41830 assert( pPager->pInJournal!=0 );
41831 rc = sqlite3BitvecSet(pPager->pInJournal, pPg->pgno);
41832 testcase( rc==SQLITE_NOMEM );
41833 assert( rc==SQLITE_OK || rc==SQLITE_NOMEM );
41834 rc |= addToSavepointBitvecs(pPager, pPg->pgno);
41835 if( rc!=SQLITE_OK ){
41836 assert( rc==SQLITE_NOMEM );
41837 return rc;
41839 }else{
41840 if( pPager->eState!=PAGER_WRITER_DBMOD ){
41841 pPg->flags |= PGHDR_NEED_SYNC;
41843 PAGERTRACE(("APPEND %d page %d needSync=%d\n",
41844 PAGERID(pPager), pPg->pgno,
41845 ((pPg->flags&PGHDR_NEED_SYNC)?1:0)));
41849 /* If the statement journal is open and the page is not in it,
41850 ** then write the current page to the statement journal. Note that
41851 ** the statement journal format differs from the standard journal format
41852 ** in that it omits the checksums and the header.
41854 if( subjRequiresPage(pPg) ){
41855 rc = subjournalPage(pPg);
41859 /* Update the database size and return.
41861 if( pPager->dbSize<pPg->pgno ){
41862 pPager->dbSize = pPg->pgno;
41864 return rc;
41868 ** Mark a data page as writeable. This routine must be called before
41869 ** making changes to a page. The caller must check the return value
41870 ** of this function and be careful not to change any page data unless
41871 ** this routine returns SQLITE_OK.
41873 ** The difference between this function and pager_write() is that this
41874 ** function also deals with the special case where 2 or more pages
41875 ** fit on a single disk sector. In this case all co-resident pages
41876 ** must have been written to the journal file before returning.
41878 ** If an error occurs, SQLITE_NOMEM or an IO error code is returned
41879 ** as appropriate. Otherwise, SQLITE_OK.
41881 SQLITE_PRIVATE int sqlite3PagerWrite(DbPage *pDbPage){
41882 int rc = SQLITE_OK;
41884 PgHdr *pPg = pDbPage;
41885 Pager *pPager = pPg->pPager;
41886 Pgno nPagePerSector = (pPager->sectorSize/pPager->pageSize);
41888 assert( pPager->eState>=PAGER_WRITER_LOCKED );
41889 assert( pPager->eState!=PAGER_ERROR );
41890 assert( assert_pager_state(pPager) );
41892 if( nPagePerSector>1 ){
41893 Pgno nPageCount; /* Total number of pages in database file */
41894 Pgno pg1; /* First page of the sector pPg is located on. */
41895 int nPage = 0; /* Number of pages starting at pg1 to journal */
41896 int ii; /* Loop counter */
41897 int needSync = 0; /* True if any page has PGHDR_NEED_SYNC */
41899 /* Set the doNotSyncSpill flag to 1. This is because we cannot allow
41900 ** a journal header to be written between the pages journaled by
41901 ** this function.
41903 assert( !MEMDB );
41904 assert( pPager->doNotSyncSpill==0 );
41905 pPager->doNotSyncSpill++;
41907 /* This trick assumes that both the page-size and sector-size are
41908 ** an integer power of 2. It sets variable pg1 to the identifier
41909 ** of the first page of the sector pPg is located on.
41911 pg1 = ((pPg->pgno-1) & ~(nPagePerSector-1)) + 1;
41913 nPageCount = pPager->dbSize;
41914 if( pPg->pgno>nPageCount ){
41915 nPage = (pPg->pgno - pg1)+1;
41916 }else if( (pg1+nPagePerSector-1)>nPageCount ){
41917 nPage = nPageCount+1-pg1;
41918 }else{
41919 nPage = nPagePerSector;
41921 assert(nPage>0);
41922 assert(pg1<=pPg->pgno);
41923 assert((pg1+nPage)>pPg->pgno);
41925 for(ii=0; ii<nPage && rc==SQLITE_OK; ii++){
41926 Pgno pg = pg1+ii;
41927 PgHdr *pPage;
41928 if( pg==pPg->pgno || !sqlite3BitvecTest(pPager->pInJournal, pg) ){
41929 if( pg!=PAGER_MJ_PGNO(pPager) ){
41930 rc = sqlite3PagerGet(pPager, pg, &pPage);
41931 if( rc==SQLITE_OK ){
41932 rc = pager_write(pPage);
41933 if( pPage->flags&PGHDR_NEED_SYNC ){
41934 needSync = 1;
41936 sqlite3PagerUnref(pPage);
41939 }else if( (pPage = pager_lookup(pPager, pg))!=0 ){
41940 if( pPage->flags&PGHDR_NEED_SYNC ){
41941 needSync = 1;
41943 sqlite3PagerUnref(pPage);
41947 /* If the PGHDR_NEED_SYNC flag is set for any of the nPage pages
41948 ** starting at pg1, then it needs to be set for all of them. Because
41949 ** writing to any of these nPage pages may damage the others, the
41950 ** journal file must contain sync()ed copies of all of them
41951 ** before any of them can be written out to the database file.
41953 if( rc==SQLITE_OK && needSync ){
41954 assert( !MEMDB );
41955 for(ii=0; ii<nPage; ii++){
41956 PgHdr *pPage = pager_lookup(pPager, pg1+ii);
41957 if( pPage ){
41958 pPage->flags |= PGHDR_NEED_SYNC;
41959 sqlite3PagerUnref(pPage);
41964 assert( pPager->doNotSyncSpill==1 );
41965 pPager->doNotSyncSpill--;
41966 }else{
41967 rc = pager_write(pDbPage);
41969 return rc;
41973 ** Return TRUE if the page given in the argument was previously passed
41974 ** to sqlite3PagerWrite(). In other words, return TRUE if it is ok
41975 ** to change the content of the page.
41977 #ifndef NDEBUG
41978 SQLITE_PRIVATE int sqlite3PagerIswriteable(DbPage *pPg){
41979 return pPg->flags&PGHDR_DIRTY;
41981 #endif
41984 ** A call to this routine tells the pager that it is not necessary to
41985 ** write the information on page pPg back to the disk, even though
41986 ** that page might be marked as dirty. This happens, for example, when
41987 ** the page has been added as a leaf of the freelist and so its
41988 ** content no longer matters.
41990 ** The overlying software layer calls this routine when all of the data
41991 ** on the given page is unused. The pager marks the page as clean so
41992 ** that it does not get written to disk.
41994 ** Tests show that this optimization can quadruple the speed of large
41995 ** DELETE operations.
41997 SQLITE_PRIVATE void sqlite3PagerDontWrite(PgHdr *pPg){
41998 Pager *pPager = pPg->pPager;
41999 if( (pPg->flags&PGHDR_DIRTY) && pPager->nSavepoint==0 ){
42000 PAGERTRACE(("DONT_WRITE page %d of %d\n", pPg->pgno, PAGERID(pPager)));
42001 IOTRACE(("CLEAN %p %d\n", pPager, pPg->pgno))
42002 pPg->flags |= PGHDR_DONT_WRITE;
42003 pager_set_pagehash(pPg);
42008 ** This routine is called to increment the value of the database file
42009 ** change-counter, stored as a 4-byte big-endian integer starting at
42010 ** byte offset 24 of the pager file. The secondary change counter at
42011 ** 92 is also updated, as is the SQLite version number at offset 96.
42013 ** But this only happens if the pPager->changeCountDone flag is false.
42014 ** To avoid excess churning of page 1, the update only happens once.
42015 ** See also the pager_write_changecounter() routine that does an
42016 ** unconditional update of the change counters.
42018 ** If the isDirectMode flag is zero, then this is done by calling
42019 ** sqlite3PagerWrite() on page 1, then modifying the contents of the
42020 ** page data. In this case the file will be updated when the current
42021 ** transaction is committed.
42023 ** The isDirectMode flag may only be non-zero if the library was compiled
42024 ** with the SQLITE_ENABLE_ATOMIC_WRITE macro defined. In this case,
42025 ** if isDirect is non-zero, then the database file is updated directly
42026 ** by writing an updated version of page 1 using a call to the
42027 ** sqlite3OsWrite() function.
42029 static int pager_incr_changecounter(Pager *pPager, int isDirectMode){
42030 int rc = SQLITE_OK;
42032 assert( pPager->eState==PAGER_WRITER_CACHEMOD
42033 || pPager->eState==PAGER_WRITER_DBMOD
42035 assert( assert_pager_state(pPager) );
42037 /* Declare and initialize constant integer 'isDirect'. If the
42038 ** atomic-write optimization is enabled in this build, then isDirect
42039 ** is initialized to the value passed as the isDirectMode parameter
42040 ** to this function. Otherwise, it is always set to zero.
42042 ** The idea is that if the atomic-write optimization is not
42043 ** enabled at compile time, the compiler can omit the tests of
42044 ** 'isDirect' below, as well as the block enclosed in the
42045 ** "if( isDirect )" condition.
42047 #ifndef SQLITE_ENABLE_ATOMIC_WRITE
42048 # define DIRECT_MODE 0
42049 assert( isDirectMode==0 );
42050 UNUSED_PARAMETER(isDirectMode);
42051 #else
42052 # define DIRECT_MODE isDirectMode
42053 #endif
42055 if( !pPager->changeCountDone && pPager->dbSize>0 ){
42056 PgHdr *pPgHdr; /* Reference to page 1 */
42058 assert( !pPager->tempFile && isOpen(pPager->fd) );
42060 /* Open page 1 of the file for writing. */
42061 rc = sqlite3PagerGet(pPager, 1, &pPgHdr);
42062 assert( pPgHdr==0 || rc==SQLITE_OK );
42064 /* If page one was fetched successfully, and this function is not
42065 ** operating in direct-mode, make page 1 writable. When not in
42066 ** direct mode, page 1 is always held in cache and hence the PagerGet()
42067 ** above is always successful - hence the ALWAYS on rc==SQLITE_OK.
42069 if( !DIRECT_MODE && ALWAYS(rc==SQLITE_OK) ){
42070 rc = sqlite3PagerWrite(pPgHdr);
42073 if( rc==SQLITE_OK ){
42074 /* Actually do the update of the change counter */
42075 pager_write_changecounter(pPgHdr);
42077 /* If running in direct mode, write the contents of page 1 to the file. */
42078 if( DIRECT_MODE ){
42079 const void *zBuf;
42080 assert( pPager->dbFileSize>0 );
42081 CODEC2(pPager, pPgHdr->pData, 1, 6, rc=SQLITE_NOMEM, zBuf);
42082 if( rc==SQLITE_OK ){
42083 rc = sqlite3OsWrite(pPager->fd, zBuf, pPager->pageSize, 0);
42085 if( rc==SQLITE_OK ){
42086 pPager->changeCountDone = 1;
42088 }else{
42089 pPager->changeCountDone = 1;
42093 /* Release the page reference. */
42094 sqlite3PagerUnref(pPgHdr);
42096 return rc;
42100 ** Sync the database file to disk. This is a no-op for in-memory databases
42101 ** or pages with the Pager.noSync flag set.
42103 ** If successful, or if called on a pager for which it is a no-op, this
42104 ** function returns SQLITE_OK. Otherwise, an IO error code is returned.
42106 SQLITE_PRIVATE int sqlite3PagerSync(Pager *pPager){
42107 int rc = SQLITE_OK;
42108 if( !pPager->noSync ){
42109 assert( !MEMDB );
42110 rc = sqlite3OsSync(pPager->fd, pPager->syncFlags);
42111 }else if( isOpen(pPager->fd) ){
42112 assert( !MEMDB );
42113 sqlite3OsFileControl(pPager->fd, SQLITE_FCNTL_SYNC_OMITTED, (void *)&rc);
42115 return rc;
42119 ** This function may only be called while a write-transaction is active in
42120 ** rollback. If the connection is in WAL mode, this call is a no-op.
42121 ** Otherwise, if the connection does not already have an EXCLUSIVE lock on
42122 ** the database file, an attempt is made to obtain one.
42124 ** If the EXCLUSIVE lock is already held or the attempt to obtain it is
42125 ** successful, or the connection is in WAL mode, SQLITE_OK is returned.
42126 ** Otherwise, either SQLITE_BUSY or an SQLITE_IOERR_XXX error code is
42127 ** returned.
42129 SQLITE_PRIVATE int sqlite3PagerExclusiveLock(Pager *pPager){
42130 int rc = SQLITE_OK;
42131 assert( pPager->eState==PAGER_WRITER_CACHEMOD
42132 || pPager->eState==PAGER_WRITER_DBMOD
42133 || pPager->eState==PAGER_WRITER_LOCKED
42135 assert( assert_pager_state(pPager) );
42136 if( 0==pagerUseWal(pPager) ){
42137 rc = pager_wait_on_lock(pPager, EXCLUSIVE_LOCK);
42139 return rc;
42143 ** Sync the database file for the pager pPager. zMaster points to the name
42144 ** of a master journal file that should be written into the individual
42145 ** journal file. zMaster may be NULL, which is interpreted as no master
42146 ** journal (a single database transaction).
42148 ** This routine ensures that:
42150 ** * The database file change-counter is updated,
42151 ** * the journal is synced (unless the atomic-write optimization is used),
42152 ** * all dirty pages are written to the database file,
42153 ** * the database file is truncated (if required), and
42154 ** * the database file synced.
42156 ** The only thing that remains to commit the transaction is to finalize
42157 ** (delete, truncate or zero the first part of) the journal file (or
42158 ** delete the master journal file if specified).
42160 ** Note that if zMaster==NULL, this does not overwrite a previous value
42161 ** passed to an sqlite3PagerCommitPhaseOne() call.
42163 ** If the final parameter - noSync - is true, then the database file itself
42164 ** is not synced. The caller must call sqlite3PagerSync() directly to
42165 ** sync the database file before calling CommitPhaseTwo() to delete the
42166 ** journal file in this case.
42168 SQLITE_PRIVATE int sqlite3PagerCommitPhaseOne(
42169 Pager *pPager, /* Pager object */
42170 const char *zMaster, /* If not NULL, the master journal name */
42171 int noSync /* True to omit the xSync on the db file */
42173 int rc = SQLITE_OK; /* Return code */
42175 assert( pPager->eState==PAGER_WRITER_LOCKED
42176 || pPager->eState==PAGER_WRITER_CACHEMOD
42177 || pPager->eState==PAGER_WRITER_DBMOD
42178 || pPager->eState==PAGER_ERROR
42180 assert( assert_pager_state(pPager) );
42182 /* If a prior error occurred, report that error again. */
42183 if( NEVER(pPager->errCode) ) return pPager->errCode;
42185 PAGERTRACE(("DATABASE SYNC: File=%s zMaster=%s nSize=%d\n",
42186 pPager->zFilename, zMaster, pPager->dbSize));
42188 /* If no database changes have been made, return early. */
42189 if( pPager->eState<PAGER_WRITER_CACHEMOD ) return SQLITE_OK;
42191 if( MEMDB ){
42192 /* If this is an in-memory db, or no pages have been written to, or this
42193 ** function has already been called, it is mostly a no-op. However, any
42194 ** backup in progress needs to be restarted.
42196 sqlite3BackupRestart(pPager->pBackup);
42197 }else{
42198 if( pagerUseWal(pPager) ){
42199 PgHdr *pList = sqlite3PcacheDirtyList(pPager->pPCache);
42200 PgHdr *pPageOne = 0;
42201 if( pList==0 ){
42202 /* Must have at least one page for the WAL commit flag.
42203 ** Ticket [2d1a5c67dfc2363e44f29d9bbd57f] 2011-05-18 */
42204 rc = sqlite3PagerGet(pPager, 1, &pPageOne);
42205 pList = pPageOne;
42206 pList->pDirty = 0;
42208 assert( pList!=0 || rc!=SQLITE_OK );
42209 if( pList ){
42210 rc = pagerWalFrames(pPager, pList, pPager->dbSize, 1,
42211 (pPager->fullSync ? pPager->syncFlags : 0)
42214 sqlite3PagerUnref(pPageOne);
42215 if( rc==SQLITE_OK ){
42216 sqlite3PcacheCleanAll(pPager->pPCache);
42218 }else{
42219 /* The following block updates the change-counter. Exactly how it
42220 ** does this depends on whether or not the atomic-update optimization
42221 ** was enabled at compile time, and if this transaction meets the
42222 ** runtime criteria to use the operation:
42224 ** * The file-system supports the atomic-write property for
42225 ** blocks of size page-size, and
42226 ** * This commit is not part of a multi-file transaction, and
42227 ** * Exactly one page has been modified and store in the journal file.
42229 ** If the optimization was not enabled at compile time, then the
42230 ** pager_incr_changecounter() function is called to update the change
42231 ** counter in 'indirect-mode'. If the optimization is compiled in but
42232 ** is not applicable to this transaction, call sqlite3JournalCreate()
42233 ** to make sure the journal file has actually been created, then call
42234 ** pager_incr_changecounter() to update the change-counter in indirect
42235 ** mode.
42237 ** Otherwise, if the optimization is both enabled and applicable,
42238 ** then call pager_incr_changecounter() to update the change-counter
42239 ** in 'direct' mode. In this case the journal file will never be
42240 ** created for this transaction.
42242 #ifdef SQLITE_ENABLE_ATOMIC_WRITE
42243 PgHdr *pPg;
42244 assert( isOpen(pPager->jfd)
42245 || pPager->journalMode==PAGER_JOURNALMODE_OFF
42246 || pPager->journalMode==PAGER_JOURNALMODE_WAL
42248 if( !zMaster && isOpen(pPager->jfd)
42249 && pPager->journalOff==jrnlBufferSize(pPager)
42250 && pPager->dbSize>=pPager->dbOrigSize
42251 && (0==(pPg = sqlite3PcacheDirtyList(pPager->pPCache)) || 0==pPg->pDirty)
42253 /* Update the db file change counter via the direct-write method. The
42254 ** following call will modify the in-memory representation of page 1
42255 ** to include the updated change counter and then write page 1
42256 ** directly to the database file. Because of the atomic-write
42257 ** property of the host file-system, this is safe.
42259 rc = pager_incr_changecounter(pPager, 1);
42260 }else{
42261 rc = sqlite3JournalCreate(pPager->jfd);
42262 if( rc==SQLITE_OK ){
42263 rc = pager_incr_changecounter(pPager, 0);
42266 #else
42267 rc = pager_incr_changecounter(pPager, 0);
42268 #endif
42269 if( rc!=SQLITE_OK ) goto commit_phase_one_exit;
42271 /* If this transaction has made the database smaller, then all pages
42272 ** being discarded by the truncation must be written to the journal
42273 ** file. This can only happen in auto-vacuum mode.
42275 ** Before reading the pages with page numbers larger than the
42276 ** current value of Pager.dbSize, set dbSize back to the value
42277 ** that it took at the start of the transaction. Otherwise, the
42278 ** calls to sqlite3PagerGet() return zeroed pages instead of
42279 ** reading data from the database file.
42281 #ifndef SQLITE_OMIT_AUTOVACUUM
42282 if( pPager->dbSize<pPager->dbOrigSize
42283 && pPager->journalMode!=PAGER_JOURNALMODE_OFF
42285 Pgno i; /* Iterator variable */
42286 const Pgno iSkip = PAGER_MJ_PGNO(pPager); /* Pending lock page */
42287 const Pgno dbSize = pPager->dbSize; /* Database image size */
42288 pPager->dbSize = pPager->dbOrigSize;
42289 for( i=dbSize+1; i<=pPager->dbOrigSize; i++ ){
42290 if( !sqlite3BitvecTest(pPager->pInJournal, i) && i!=iSkip ){
42291 PgHdr *pPage; /* Page to journal */
42292 rc = sqlite3PagerGet(pPager, i, &pPage);
42293 if( rc!=SQLITE_OK ) goto commit_phase_one_exit;
42294 rc = sqlite3PagerWrite(pPage);
42295 sqlite3PagerUnref(pPage);
42296 if( rc!=SQLITE_OK ) goto commit_phase_one_exit;
42299 pPager->dbSize = dbSize;
42301 #endif
42303 /* Write the master journal name into the journal file. If a master
42304 ** journal file name has already been written to the journal file,
42305 ** or if zMaster is NULL (no master journal), then this call is a no-op.
42307 rc = writeMasterJournal(pPager, zMaster);
42308 if( rc!=SQLITE_OK ) goto commit_phase_one_exit;
42310 /* Sync the journal file and write all dirty pages to the database.
42311 ** If the atomic-update optimization is being used, this sync will not
42312 ** create the journal file or perform any real IO.
42314 ** Because the change-counter page was just modified, unless the
42315 ** atomic-update optimization is used it is almost certain that the
42316 ** journal requires a sync here. However, in locking_mode=exclusive
42317 ** on a system under memory pressure it is just possible that this is
42318 ** not the case. In this case it is likely enough that the redundant
42319 ** xSync() call will be changed to a no-op by the OS anyhow.
42321 rc = syncJournal(pPager, 0);
42322 if( rc!=SQLITE_OK ) goto commit_phase_one_exit;
42324 rc = pager_write_pagelist(pPager,sqlite3PcacheDirtyList(pPager->pPCache));
42325 if( rc!=SQLITE_OK ){
42326 assert( rc!=SQLITE_IOERR_BLOCKED );
42327 goto commit_phase_one_exit;
42329 sqlite3PcacheCleanAll(pPager->pPCache);
42331 /* If the file on disk is not the same size as the database image,
42332 ** then use pager_truncate to grow or shrink the file here.
42334 if( pPager->dbSize!=pPager->dbFileSize ){
42335 Pgno nNew = pPager->dbSize - (pPager->dbSize==PAGER_MJ_PGNO(pPager));
42336 assert( pPager->eState==PAGER_WRITER_DBMOD );
42337 rc = pager_truncate(pPager, nNew);
42338 if( rc!=SQLITE_OK ) goto commit_phase_one_exit;
42341 /* Finally, sync the database file. */
42342 if( !noSync ){
42343 rc = sqlite3PagerSync(pPager);
42345 IOTRACE(("DBSYNC %p\n", pPager))
42349 commit_phase_one_exit:
42350 if( rc==SQLITE_OK && !pagerUseWal(pPager) ){
42351 pPager->eState = PAGER_WRITER_FINISHED;
42353 return rc;
42358 ** When this function is called, the database file has been completely
42359 ** updated to reflect the changes made by the current transaction and
42360 ** synced to disk. The journal file still exists in the file-system
42361 ** though, and if a failure occurs at this point it will eventually
42362 ** be used as a hot-journal and the current transaction rolled back.
42364 ** This function finalizes the journal file, either by deleting,
42365 ** truncating or partially zeroing it, so that it cannot be used
42366 ** for hot-journal rollback. Once this is done the transaction is
42367 ** irrevocably committed.
42369 ** If an error occurs, an IO error code is returned and the pager
42370 ** moves into the error state. Otherwise, SQLITE_OK is returned.
42372 SQLITE_PRIVATE int sqlite3PagerCommitPhaseTwo(Pager *pPager){
42373 int rc = SQLITE_OK; /* Return code */
42375 /* This routine should not be called if a prior error has occurred.
42376 ** But if (due to a coding error elsewhere in the system) it does get
42377 ** called, just return the same error code without doing anything. */
42378 if( NEVER(pPager->errCode) ) return pPager->errCode;
42380 assert( pPager->eState==PAGER_WRITER_LOCKED
42381 || pPager->eState==PAGER_WRITER_FINISHED
42382 || (pagerUseWal(pPager) && pPager->eState==PAGER_WRITER_CACHEMOD)
42384 assert( assert_pager_state(pPager) );
42386 /* An optimization. If the database was not actually modified during
42387 ** this transaction, the pager is running in exclusive-mode and is
42388 ** using persistent journals, then this function is a no-op.
42390 ** The start of the journal file currently contains a single journal
42391 ** header with the nRec field set to 0. If such a journal is used as
42392 ** a hot-journal during hot-journal rollback, 0 changes will be made
42393 ** to the database file. So there is no need to zero the journal
42394 ** header. Since the pager is in exclusive mode, there is no need
42395 ** to drop any locks either.
42397 if( pPager->eState==PAGER_WRITER_LOCKED
42398 && pPager->exclusiveMode
42399 && pPager->journalMode==PAGER_JOURNALMODE_PERSIST
42401 assert( pPager->journalOff==JOURNAL_HDR_SZ(pPager) || !pPager->journalOff );
42402 pPager->eState = PAGER_READER;
42403 return SQLITE_OK;
42406 PAGERTRACE(("COMMIT %d\n", PAGERID(pPager)));
42407 rc = pager_end_transaction(pPager, pPager->setMaster);
42408 return pager_error(pPager, rc);
42412 ** If a write transaction is open, then all changes made within the
42413 ** transaction are reverted and the current write-transaction is closed.
42414 ** The pager falls back to PAGER_READER state if successful, or PAGER_ERROR
42415 ** state if an error occurs.
42417 ** If the pager is already in PAGER_ERROR state when this function is called,
42418 ** it returns Pager.errCode immediately. No work is performed in this case.
42420 ** Otherwise, in rollback mode, this function performs two functions:
42422 ** 1) It rolls back the journal file, restoring all database file and
42423 ** in-memory cache pages to the state they were in when the transaction
42424 ** was opened, and
42426 ** 2) It finalizes the journal file, so that it is not used for hot
42427 ** rollback at any point in the future.
42429 ** Finalization of the journal file (task 2) is only performed if the
42430 ** rollback is successful.
42432 ** In WAL mode, all cache-entries containing data modified within the
42433 ** current transaction are either expelled from the cache or reverted to
42434 ** their pre-transaction state by re-reading data from the database or
42435 ** WAL files. The WAL transaction is then closed.
42437 SQLITE_PRIVATE int sqlite3PagerRollback(Pager *pPager){
42438 int rc = SQLITE_OK; /* Return code */
42439 PAGERTRACE(("ROLLBACK %d\n", PAGERID(pPager)));
42441 /* PagerRollback() is a no-op if called in READER or OPEN state. If
42442 ** the pager is already in the ERROR state, the rollback is not
42443 ** attempted here. Instead, the error code is returned to the caller.
42445 assert( assert_pager_state(pPager) );
42446 if( pPager->eState==PAGER_ERROR ) return pPager->errCode;
42447 if( pPager->eState<=PAGER_READER ) return SQLITE_OK;
42449 if( pagerUseWal(pPager) ){
42450 int rc2;
42451 rc = sqlite3PagerSavepoint(pPager, SAVEPOINT_ROLLBACK, -1);
42452 rc2 = pager_end_transaction(pPager, pPager->setMaster);
42453 if( rc==SQLITE_OK ) rc = rc2;
42454 }else if( !isOpen(pPager->jfd) || pPager->eState==PAGER_WRITER_LOCKED ){
42455 int eState = pPager->eState;
42456 rc = pager_end_transaction(pPager, 0);
42457 if( !MEMDB && eState>PAGER_WRITER_LOCKED ){
42458 /* This can happen using journal_mode=off. Move the pager to the error
42459 ** state to indicate that the contents of the cache may not be trusted.
42460 ** Any active readers will get SQLITE_ABORT.
42462 pPager->errCode = SQLITE_ABORT;
42463 pPager->eState = PAGER_ERROR;
42464 return rc;
42466 }else{
42467 rc = pager_playback(pPager, 0);
42470 assert( pPager->eState==PAGER_READER || rc!=SQLITE_OK );
42471 assert( rc==SQLITE_OK || rc==SQLITE_FULL || (rc&0xFF)==SQLITE_IOERR );
42473 /* If an error occurs during a ROLLBACK, we can no longer trust the pager
42474 ** cache. So call pager_error() on the way out to make any error persistent.
42476 return pager_error(pPager, rc);
42480 ** Return TRUE if the database file is opened read-only. Return FALSE
42481 ** if the database is (in theory) writable.
42483 SQLITE_PRIVATE u8 sqlite3PagerIsreadonly(Pager *pPager){
42484 return pPager->readOnly;
42488 ** Return the number of references to the pager.
42490 SQLITE_PRIVATE int sqlite3PagerRefcount(Pager *pPager){
42491 return sqlite3PcacheRefCount(pPager->pPCache);
42495 ** Return the approximate number of bytes of memory currently
42496 ** used by the pager and its associated cache.
42498 SQLITE_PRIVATE int sqlite3PagerMemUsed(Pager *pPager){
42499 int perPageSize = pPager->pageSize + pPager->nExtra + sizeof(PgHdr)
42500 + 5*sizeof(void*);
42501 return perPageSize*sqlite3PcachePagecount(pPager->pPCache)
42502 + sqlite3MallocSize(pPager)
42503 + pPager->pageSize;
42507 ** Return the number of references to the specified page.
42509 SQLITE_PRIVATE int sqlite3PagerPageRefcount(DbPage *pPage){
42510 return sqlite3PcachePageRefcount(pPage);
42513 #ifdef SQLITE_TEST
42515 ** This routine is used for testing and analysis only.
42517 SQLITE_PRIVATE int *sqlite3PagerStats(Pager *pPager){
42518 static int a[11];
42519 a[0] = sqlite3PcacheRefCount(pPager->pPCache);
42520 a[1] = sqlite3PcachePagecount(pPager->pPCache);
42521 a[2] = sqlite3PcacheGetCachesize(pPager->pPCache);
42522 a[3] = pPager->eState==PAGER_OPEN ? -1 : (int) pPager->dbSize;
42523 a[4] = pPager->eState;
42524 a[5] = pPager->errCode;
42525 a[6] = pPager->nHit;
42526 a[7] = pPager->nMiss;
42527 a[8] = 0; /* Used to be pPager->nOvfl */
42528 a[9] = pPager->nRead;
42529 a[10] = pPager->nWrite;
42530 return a;
42532 #endif
42535 ** Return true if this is an in-memory pager.
42537 SQLITE_PRIVATE int sqlite3PagerIsMemdb(Pager *pPager){
42538 return MEMDB;
42542 ** Check that there are at least nSavepoint savepoints open. If there are
42543 ** currently less than nSavepoints open, then open one or more savepoints
42544 ** to make up the difference. If the number of savepoints is already
42545 ** equal to nSavepoint, then this function is a no-op.
42547 ** If a memory allocation fails, SQLITE_NOMEM is returned. If an error
42548 ** occurs while opening the sub-journal file, then an IO error code is
42549 ** returned. Otherwise, SQLITE_OK.
42551 SQLITE_PRIVATE int sqlite3PagerOpenSavepoint(Pager *pPager, int nSavepoint){
42552 int rc = SQLITE_OK; /* Return code */
42553 int nCurrent = pPager->nSavepoint; /* Current number of savepoints */
42555 assert( pPager->eState>=PAGER_WRITER_LOCKED );
42556 assert( assert_pager_state(pPager) );
42558 if( nSavepoint>nCurrent && pPager->useJournal ){
42559 int ii; /* Iterator variable */
42560 PagerSavepoint *aNew; /* New Pager.aSavepoint array */
42562 /* Grow the Pager.aSavepoint array using realloc(). Return SQLITE_NOMEM
42563 ** if the allocation fails. Otherwise, zero the new portion in case a
42564 ** malloc failure occurs while populating it in the for(...) loop below.
42566 aNew = (PagerSavepoint *)sqlite3Realloc(
42567 pPager->aSavepoint, sizeof(PagerSavepoint)*nSavepoint
42569 if( !aNew ){
42570 return SQLITE_NOMEM;
42572 memset(&aNew[nCurrent], 0, (nSavepoint-nCurrent) * sizeof(PagerSavepoint));
42573 pPager->aSavepoint = aNew;
42575 /* Populate the PagerSavepoint structures just allocated. */
42576 for(ii=nCurrent; ii<nSavepoint; ii++){
42577 aNew[ii].nOrig = pPager->dbSize;
42578 if( isOpen(pPager->jfd) && pPager->journalOff>0 ){
42579 aNew[ii].iOffset = pPager->journalOff;
42580 }else{
42581 aNew[ii].iOffset = JOURNAL_HDR_SZ(pPager);
42583 aNew[ii].iSubRec = pPager->nSubRec;
42584 aNew[ii].pInSavepoint = sqlite3BitvecCreate(pPager->dbSize);
42585 if( !aNew[ii].pInSavepoint ){
42586 return SQLITE_NOMEM;
42588 if( pagerUseWal(pPager) ){
42589 sqlite3WalSavepoint(pPager->pWal, aNew[ii].aWalData);
42591 pPager->nSavepoint = ii+1;
42593 assert( pPager->nSavepoint==nSavepoint );
42594 assertTruncateConstraint(pPager);
42597 return rc;
42601 ** This function is called to rollback or release (commit) a savepoint.
42602 ** The savepoint to release or rollback need not be the most recently
42603 ** created savepoint.
42605 ** Parameter op is always either SAVEPOINT_ROLLBACK or SAVEPOINT_RELEASE.
42606 ** If it is SAVEPOINT_RELEASE, then release and destroy the savepoint with
42607 ** index iSavepoint. If it is SAVEPOINT_ROLLBACK, then rollback all changes
42608 ** that have occurred since the specified savepoint was created.
42610 ** The savepoint to rollback or release is identified by parameter
42611 ** iSavepoint. A value of 0 means to operate on the outermost savepoint
42612 ** (the first created). A value of (Pager.nSavepoint-1) means operate
42613 ** on the most recently created savepoint. If iSavepoint is greater than
42614 ** (Pager.nSavepoint-1), then this function is a no-op.
42616 ** If a negative value is passed to this function, then the current
42617 ** transaction is rolled back. This is different to calling
42618 ** sqlite3PagerRollback() because this function does not terminate
42619 ** the transaction or unlock the database, it just restores the
42620 ** contents of the database to its original state.
42622 ** In any case, all savepoints with an index greater than iSavepoint
42623 ** are destroyed. If this is a release operation (op==SAVEPOINT_RELEASE),
42624 ** then savepoint iSavepoint is also destroyed.
42626 ** This function may return SQLITE_NOMEM if a memory allocation fails,
42627 ** or an IO error code if an IO error occurs while rolling back a
42628 ** savepoint. If no errors occur, SQLITE_OK is returned.
42630 SQLITE_PRIVATE int sqlite3PagerSavepoint(Pager *pPager, int op, int iSavepoint){
42631 int rc = pPager->errCode; /* Return code */
42633 assert( op==SAVEPOINT_RELEASE || op==SAVEPOINT_ROLLBACK );
42634 assert( iSavepoint>=0 || op==SAVEPOINT_ROLLBACK );
42636 if( rc==SQLITE_OK && iSavepoint<pPager->nSavepoint ){
42637 int ii; /* Iterator variable */
42638 int nNew; /* Number of remaining savepoints after this op. */
42640 /* Figure out how many savepoints will still be active after this
42641 ** operation. Store this value in nNew. Then free resources associated
42642 ** with any savepoints that are destroyed by this operation.
42644 nNew = iSavepoint + (( op==SAVEPOINT_RELEASE ) ? 0 : 1);
42645 for(ii=nNew; ii<pPager->nSavepoint; ii++){
42646 sqlite3BitvecDestroy(pPager->aSavepoint[ii].pInSavepoint);
42648 pPager->nSavepoint = nNew;
42650 /* If this is a release of the outermost savepoint, truncate
42651 ** the sub-journal to zero bytes in size. */
42652 if( op==SAVEPOINT_RELEASE ){
42653 if( nNew==0 && isOpen(pPager->sjfd) ){
42654 /* Only truncate if it is an in-memory sub-journal. */
42655 if( sqlite3IsMemJournal(pPager->sjfd) ){
42656 rc = sqlite3OsTruncate(pPager->sjfd, 0);
42657 assert( rc==SQLITE_OK );
42659 pPager->nSubRec = 0;
42662 /* Else this is a rollback operation, playback the specified savepoint.
42663 ** If this is a temp-file, it is possible that the journal file has
42664 ** not yet been opened. In this case there have been no changes to
42665 ** the database file, so the playback operation can be skipped.
42667 else if( pagerUseWal(pPager) || isOpen(pPager->jfd) ){
42668 PagerSavepoint *pSavepoint = (nNew==0)?0:&pPager->aSavepoint[nNew-1];
42669 rc = pagerPlaybackSavepoint(pPager, pSavepoint);
42670 assert(rc!=SQLITE_DONE);
42674 return rc;
42678 ** Return the full pathname of the database file.
42680 SQLITE_PRIVATE const char *sqlite3PagerFilename(Pager *pPager){
42681 return pPager->zFilename;
42685 ** Return the VFS structure for the pager.
42687 SQLITE_PRIVATE const sqlite3_vfs *sqlite3PagerVfs(Pager *pPager){
42688 return pPager->pVfs;
42692 ** Return the file handle for the database file associated
42693 ** with the pager. This might return NULL if the file has
42694 ** not yet been opened.
42696 SQLITE_PRIVATE sqlite3_file *sqlite3PagerFile(Pager *pPager){
42697 return pPager->fd;
42701 ** Return the full pathname of the journal file.
42703 SQLITE_PRIVATE const char *sqlite3PagerJournalname(Pager *pPager){
42704 return pPager->zJournal;
42708 ** Return true if fsync() calls are disabled for this pager. Return FALSE
42709 ** if fsync()s are executed normally.
42711 SQLITE_PRIVATE int sqlite3PagerNosync(Pager *pPager){
42712 return pPager->noSync;
42715 #ifdef SQLITE_HAS_CODEC
42717 ** Set or retrieve the codec for this pager
42719 SQLITE_PRIVATE void sqlite3PagerSetCodec(
42720 Pager *pPager,
42721 void *(*xCodec)(void*,void*,Pgno,int),
42722 void (*xCodecSizeChng)(void*,int,int),
42723 void (*xCodecFree)(void*),
42724 void *pCodec
42726 if( pPager->xCodecFree ) pPager->xCodecFree(pPager->pCodec);
42727 pPager->xCodec = pPager->memDb ? 0 : xCodec;
42728 pPager->xCodecSizeChng = xCodecSizeChng;
42729 pPager->xCodecFree = xCodecFree;
42730 pPager->pCodec = pCodec;
42731 pagerReportSize(pPager);
42733 SQLITE_PRIVATE void *sqlite3PagerGetCodec(Pager *pPager){
42734 return pPager->pCodec;
42736 #endif
42738 #ifndef SQLITE_OMIT_AUTOVACUUM
42740 ** Move the page pPg to location pgno in the file.
42742 ** There must be no references to the page previously located at
42743 ** pgno (which we call pPgOld) though that page is allowed to be
42744 ** in cache. If the page previously located at pgno is not already
42745 ** in the rollback journal, it is not put there by by this routine.
42747 ** References to the page pPg remain valid. Updating any
42748 ** meta-data associated with pPg (i.e. data stored in the nExtra bytes
42749 ** allocated along with the page) is the responsibility of the caller.
42751 ** A transaction must be active when this routine is called. It used to be
42752 ** required that a statement transaction was not active, but this restriction
42753 ** has been removed (CREATE INDEX needs to move a page when a statement
42754 ** transaction is active).
42756 ** If the fourth argument, isCommit, is non-zero, then this page is being
42757 ** moved as part of a database reorganization just before the transaction
42758 ** is being committed. In this case, it is guaranteed that the database page
42759 ** pPg refers to will not be written to again within this transaction.
42761 ** This function may return SQLITE_NOMEM or an IO error code if an error
42762 ** occurs. Otherwise, it returns SQLITE_OK.
42764 SQLITE_PRIVATE int sqlite3PagerMovepage(Pager *pPager, DbPage *pPg, Pgno pgno, int isCommit){
42765 PgHdr *pPgOld; /* The page being overwritten. */
42766 Pgno needSyncPgno = 0; /* Old value of pPg->pgno, if sync is required */
42767 int rc; /* Return code */
42768 Pgno origPgno; /* The original page number */
42770 assert( pPg->nRef>0 );
42771 assert( pPager->eState==PAGER_WRITER_CACHEMOD
42772 || pPager->eState==PAGER_WRITER_DBMOD
42774 assert( assert_pager_state(pPager) );
42776 /* In order to be able to rollback, an in-memory database must journal
42777 ** the page we are moving from.
42779 if( MEMDB ){
42780 rc = sqlite3PagerWrite(pPg);
42781 if( rc ) return rc;
42784 /* If the page being moved is dirty and has not been saved by the latest
42785 ** savepoint, then save the current contents of the page into the
42786 ** sub-journal now. This is required to handle the following scenario:
42788 ** BEGIN;
42789 ** <journal page X, then modify it in memory>
42790 ** SAVEPOINT one;
42791 ** <Move page X to location Y>
42792 ** ROLLBACK TO one;
42794 ** If page X were not written to the sub-journal here, it would not
42795 ** be possible to restore its contents when the "ROLLBACK TO one"
42796 ** statement were is processed.
42798 ** subjournalPage() may need to allocate space to store pPg->pgno into
42799 ** one or more savepoint bitvecs. This is the reason this function
42800 ** may return SQLITE_NOMEM.
42802 if( pPg->flags&PGHDR_DIRTY
42803 && subjRequiresPage(pPg)
42804 && SQLITE_OK!=(rc = subjournalPage(pPg))
42806 return rc;
42809 PAGERTRACE(("MOVE %d page %d (needSync=%d) moves to %d\n",
42810 PAGERID(pPager), pPg->pgno, (pPg->flags&PGHDR_NEED_SYNC)?1:0, pgno));
42811 IOTRACE(("MOVE %p %d %d\n", pPager, pPg->pgno, pgno))
42813 /* If the journal needs to be sync()ed before page pPg->pgno can
42814 ** be written to, store pPg->pgno in local variable needSyncPgno.
42816 ** If the isCommit flag is set, there is no need to remember that
42817 ** the journal needs to be sync()ed before database page pPg->pgno
42818 ** can be written to. The caller has already promised not to write to it.
42820 if( (pPg->flags&PGHDR_NEED_SYNC) && !isCommit ){
42821 needSyncPgno = pPg->pgno;
42822 assert( pageInJournal(pPg) || pPg->pgno>pPager->dbOrigSize );
42823 assert( pPg->flags&PGHDR_DIRTY );
42826 /* If the cache contains a page with page-number pgno, remove it
42827 ** from its hash chain. Also, if the PGHDR_NEED_SYNC flag was set for
42828 ** page pgno before the 'move' operation, it needs to be retained
42829 ** for the page moved there.
42831 pPg->flags &= ~PGHDR_NEED_SYNC;
42832 pPgOld = pager_lookup(pPager, pgno);
42833 assert( !pPgOld || pPgOld->nRef==1 );
42834 if( pPgOld ){
42835 pPg->flags |= (pPgOld->flags&PGHDR_NEED_SYNC);
42836 if( MEMDB ){
42837 /* Do not discard pages from an in-memory database since we might
42838 ** need to rollback later. Just move the page out of the way. */
42839 sqlite3PcacheMove(pPgOld, pPager->dbSize+1);
42840 }else{
42841 sqlite3PcacheDrop(pPgOld);
42845 origPgno = pPg->pgno;
42846 sqlite3PcacheMove(pPg, pgno);
42847 sqlite3PcacheMakeDirty(pPg);
42849 /* For an in-memory database, make sure the original page continues
42850 ** to exist, in case the transaction needs to roll back. Use pPgOld
42851 ** as the original page since it has already been allocated.
42853 if( MEMDB ){
42854 assert( pPgOld );
42855 sqlite3PcacheMove(pPgOld, origPgno);
42856 sqlite3PagerUnref(pPgOld);
42859 if( needSyncPgno ){
42860 /* If needSyncPgno is non-zero, then the journal file needs to be
42861 ** sync()ed before any data is written to database file page needSyncPgno.
42862 ** Currently, no such page exists in the page-cache and the
42863 ** "is journaled" bitvec flag has been set. This needs to be remedied by
42864 ** loading the page into the pager-cache and setting the PGHDR_NEED_SYNC
42865 ** flag.
42867 ** If the attempt to load the page into the page-cache fails, (due
42868 ** to a malloc() or IO failure), clear the bit in the pInJournal[]
42869 ** array. Otherwise, if the page is loaded and written again in
42870 ** this transaction, it may be written to the database file before
42871 ** it is synced into the journal file. This way, it may end up in
42872 ** the journal file twice, but that is not a problem.
42874 PgHdr *pPgHdr;
42875 rc = sqlite3PagerGet(pPager, needSyncPgno, &pPgHdr);
42876 if( rc!=SQLITE_OK ){
42877 if( needSyncPgno<=pPager->dbOrigSize ){
42878 assert( pPager->pTmpSpace!=0 );
42879 sqlite3BitvecClear(pPager->pInJournal, needSyncPgno, pPager->pTmpSpace);
42881 return rc;
42883 pPgHdr->flags |= PGHDR_NEED_SYNC;
42884 sqlite3PcacheMakeDirty(pPgHdr);
42885 sqlite3PagerUnref(pPgHdr);
42888 return SQLITE_OK;
42890 #endif
42893 ** Return a pointer to the data for the specified page.
42895 SQLITE_PRIVATE void *sqlite3PagerGetData(DbPage *pPg){
42896 assert( pPg->nRef>0 || pPg->pPager->memDb );
42897 return pPg->pData;
42901 ** Return a pointer to the Pager.nExtra bytes of "extra" space
42902 ** allocated along with the specified page.
42904 SQLITE_PRIVATE void *sqlite3PagerGetExtra(DbPage *pPg){
42905 return pPg->pExtra;
42909 ** Get/set the locking-mode for this pager. Parameter eMode must be one
42910 ** of PAGER_LOCKINGMODE_QUERY, PAGER_LOCKINGMODE_NORMAL or
42911 ** PAGER_LOCKINGMODE_EXCLUSIVE. If the parameter is not _QUERY, then
42912 ** the locking-mode is set to the value specified.
42914 ** The returned value is either PAGER_LOCKINGMODE_NORMAL or
42915 ** PAGER_LOCKINGMODE_EXCLUSIVE, indicating the current (possibly updated)
42916 ** locking-mode.
42918 SQLITE_PRIVATE int sqlite3PagerLockingMode(Pager *pPager, int eMode){
42919 assert( eMode==PAGER_LOCKINGMODE_QUERY
42920 || eMode==PAGER_LOCKINGMODE_NORMAL
42921 || eMode==PAGER_LOCKINGMODE_EXCLUSIVE );
42922 assert( PAGER_LOCKINGMODE_QUERY<0 );
42923 assert( PAGER_LOCKINGMODE_NORMAL>=0 && PAGER_LOCKINGMODE_EXCLUSIVE>=0 );
42924 assert( pPager->exclusiveMode || 0==sqlite3WalHeapMemory(pPager->pWal) );
42925 if( eMode>=0 && !pPager->tempFile && !sqlite3WalHeapMemory(pPager->pWal) ){
42926 pPager->exclusiveMode = (u8)eMode;
42928 return (int)pPager->exclusiveMode;
42932 ** Set the journal-mode for this pager. Parameter eMode must be one of:
42934 ** PAGER_JOURNALMODE_DELETE
42935 ** PAGER_JOURNALMODE_TRUNCATE
42936 ** PAGER_JOURNALMODE_PERSIST
42937 ** PAGER_JOURNALMODE_OFF
42938 ** PAGER_JOURNALMODE_MEMORY
42939 ** PAGER_JOURNALMODE_WAL
42941 ** The journalmode is set to the value specified if the change is allowed.
42942 ** The change may be disallowed for the following reasons:
42944 ** * An in-memory database can only have its journal_mode set to _OFF
42945 ** or _MEMORY.
42947 ** * Temporary databases cannot have _WAL journalmode.
42949 ** The returned indicate the current (possibly updated) journal-mode.
42951 SQLITE_PRIVATE int sqlite3PagerSetJournalMode(Pager *pPager, int eMode){
42952 u8 eOld = pPager->journalMode; /* Prior journalmode */
42954 #ifdef SQLITE_DEBUG
42955 /* The print_pager_state() routine is intended to be used by the debugger
42956 ** only. We invoke it once here to suppress a compiler warning. */
42957 print_pager_state(pPager);
42958 #endif
42961 /* The eMode parameter is always valid */
42962 assert( eMode==PAGER_JOURNALMODE_DELETE
42963 || eMode==PAGER_JOURNALMODE_TRUNCATE
42964 || eMode==PAGER_JOURNALMODE_PERSIST
42965 || eMode==PAGER_JOURNALMODE_OFF
42966 || eMode==PAGER_JOURNALMODE_WAL
42967 || eMode==PAGER_JOURNALMODE_MEMORY );
42969 /* This routine is only called from the OP_JournalMode opcode, and
42970 ** the logic there will never allow a temporary file to be changed
42971 ** to WAL mode.
42973 assert( pPager->tempFile==0 || eMode!=PAGER_JOURNALMODE_WAL );
42975 /* Do allow the journalmode of an in-memory database to be set to
42976 ** anything other than MEMORY or OFF
42978 if( MEMDB ){
42979 assert( eOld==PAGER_JOURNALMODE_MEMORY || eOld==PAGER_JOURNALMODE_OFF );
42980 if( eMode!=PAGER_JOURNALMODE_MEMORY && eMode!=PAGER_JOURNALMODE_OFF ){
42981 eMode = eOld;
42985 if( eMode!=eOld ){
42987 /* Change the journal mode. */
42988 assert( pPager->eState!=PAGER_ERROR );
42989 pPager->journalMode = (u8)eMode;
42991 /* When transistioning from TRUNCATE or PERSIST to any other journal
42992 ** mode except WAL, unless the pager is in locking_mode=exclusive mode,
42993 ** delete the journal file.
42995 assert( (PAGER_JOURNALMODE_TRUNCATE & 5)==1 );
42996 assert( (PAGER_JOURNALMODE_PERSIST & 5)==1 );
42997 assert( (PAGER_JOURNALMODE_DELETE & 5)==0 );
42998 assert( (PAGER_JOURNALMODE_MEMORY & 5)==4 );
42999 assert( (PAGER_JOURNALMODE_OFF & 5)==0 );
43000 assert( (PAGER_JOURNALMODE_WAL & 5)==5 );
43002 assert( isOpen(pPager->fd) || pPager->exclusiveMode );
43003 if( !pPager->exclusiveMode && (eOld & 5)==1 && (eMode & 1)==0 ){
43005 /* In this case we would like to delete the journal file. If it is
43006 ** not possible, then that is not a problem. Deleting the journal file
43007 ** here is an optimization only.
43009 ** Before deleting the journal file, obtain a RESERVED lock on the
43010 ** database file. This ensures that the journal file is not deleted
43011 ** while it is in use by some other client.
43013 sqlite3OsClose(pPager->jfd);
43014 if( pPager->eLock>=RESERVED_LOCK ){
43015 sqlite3OsDelete(pPager->pVfs, pPager->zJournal, 0);
43016 }else{
43017 int rc = SQLITE_OK;
43018 int state = pPager->eState;
43019 assert( state==PAGER_OPEN || state==PAGER_READER );
43020 if( state==PAGER_OPEN ){
43021 rc = sqlite3PagerSharedLock(pPager);
43023 if( pPager->eState==PAGER_READER ){
43024 assert( rc==SQLITE_OK );
43025 rc = pagerLockDb(pPager, RESERVED_LOCK);
43027 if( rc==SQLITE_OK ){
43028 sqlite3OsDelete(pPager->pVfs, pPager->zJournal, 0);
43030 if( rc==SQLITE_OK && state==PAGER_READER ){
43031 pagerUnlockDb(pPager, SHARED_LOCK);
43032 }else if( state==PAGER_OPEN ){
43033 pager_unlock(pPager);
43035 assert( state==pPager->eState );
43040 /* Return the new journal mode */
43041 return (int)pPager->journalMode;
43045 ** Return the current journal mode.
43047 SQLITE_PRIVATE int sqlite3PagerGetJournalMode(Pager *pPager){
43048 return (int)pPager->journalMode;
43052 ** Return TRUE if the pager is in a state where it is OK to change the
43053 ** journalmode. Journalmode changes can only happen when the database
43054 ** is unmodified.
43056 SQLITE_PRIVATE int sqlite3PagerOkToChangeJournalMode(Pager *pPager){
43057 assert( assert_pager_state(pPager) );
43058 if( pPager->eState>=PAGER_WRITER_CACHEMOD ) return 0;
43059 if( NEVER(isOpen(pPager->jfd) && pPager->journalOff>0) ) return 0;
43060 return 1;
43064 ** Get/set the size-limit used for persistent journal files.
43066 ** Setting the size limit to -1 means no limit is enforced.
43067 ** An attempt to set a limit smaller than -1 is a no-op.
43069 SQLITE_PRIVATE i64 sqlite3PagerJournalSizeLimit(Pager *pPager, i64 iLimit){
43070 if( iLimit>=-1 ){
43071 pPager->journalSizeLimit = iLimit;
43073 return pPager->journalSizeLimit;
43077 ** Return a pointer to the pPager->pBackup variable. The backup module
43078 ** in backup.c maintains the content of this variable. This module
43079 ** uses it opaquely as an argument to sqlite3BackupRestart() and
43080 ** sqlite3BackupUpdate() only.
43082 SQLITE_PRIVATE sqlite3_backup **sqlite3PagerBackupPtr(Pager *pPager){
43083 return &pPager->pBackup;
43086 #ifndef SQLITE_OMIT_WAL
43088 ** This function is called when the user invokes "PRAGMA wal_checkpoint",
43089 ** "PRAGMA wal_blocking_checkpoint" or calls the sqlite3_wal_checkpoint()
43090 ** or wal_blocking_checkpoint() API functions.
43092 ** Parameter eMode is one of SQLITE_CHECKPOINT_PASSIVE, FULL or RESTART.
43094 SQLITE_PRIVATE int sqlite3PagerCheckpoint(Pager *pPager, int eMode, int *pnLog, int *pnCkpt){
43095 int rc = SQLITE_OK;
43096 if( pPager->pWal ){
43097 rc = sqlite3WalCheckpoint(pPager->pWal, eMode,
43098 pPager->xBusyHandler, pPager->pBusyHandlerArg,
43099 pPager->ckptSyncFlags, pPager->pageSize, (u8 *)pPager->pTmpSpace,
43100 pnLog, pnCkpt
43103 return rc;
43106 SQLITE_PRIVATE int sqlite3PagerWalCallback(Pager *pPager){
43107 return sqlite3WalCallback(pPager->pWal);
43111 ** Return true if the underlying VFS for the given pager supports the
43112 ** primitives necessary for write-ahead logging.
43114 SQLITE_PRIVATE int sqlite3PagerWalSupported(Pager *pPager){
43115 const sqlite3_io_methods *pMethods = pPager->fd->pMethods;
43116 return pPager->exclusiveMode || (pMethods->iVersion>=2 && pMethods->xShmMap);
43120 ** Attempt to take an exclusive lock on the database file. If a PENDING lock
43121 ** is obtained instead, immediately release it.
43123 static int pagerExclusiveLock(Pager *pPager){
43124 int rc; /* Return code */
43126 assert( pPager->eLock==SHARED_LOCK || pPager->eLock==EXCLUSIVE_LOCK );
43127 rc = pagerLockDb(pPager, EXCLUSIVE_LOCK);
43128 if( rc!=SQLITE_OK ){
43129 /* If the attempt to grab the exclusive lock failed, release the
43130 ** pending lock that may have been obtained instead. */
43131 pagerUnlockDb(pPager, SHARED_LOCK);
43134 return rc;
43138 ** Call sqlite3WalOpen() to open the WAL handle. If the pager is in
43139 ** exclusive-locking mode when this function is called, take an EXCLUSIVE
43140 ** lock on the database file and use heap-memory to store the wal-index
43141 ** in. Otherwise, use the normal shared-memory.
43143 static int pagerOpenWal(Pager *pPager){
43144 int rc = SQLITE_OK;
43146 assert( pPager->pWal==0 && pPager->tempFile==0 );
43147 assert( pPager->eLock==SHARED_LOCK || pPager->eLock==EXCLUSIVE_LOCK || pPager->noReadlock);
43149 /* If the pager is already in exclusive-mode, the WAL module will use
43150 ** heap-memory for the wal-index instead of the VFS shared-memory
43151 ** implementation. Take the exclusive lock now, before opening the WAL
43152 ** file, to make sure this is safe.
43154 if( pPager->exclusiveMode ){
43155 rc = pagerExclusiveLock(pPager);
43158 /* Open the connection to the log file. If this operation fails,
43159 ** (e.g. due to malloc() failure), return an error code.
43161 if( rc==SQLITE_OK ){
43162 rc = sqlite3WalOpen(pPager->pVfs,
43163 pPager->fd, pPager->zWal, pPager->exclusiveMode, &pPager->pWal
43167 return rc;
43172 ** The caller must be holding a SHARED lock on the database file to call
43173 ** this function.
43175 ** If the pager passed as the first argument is open on a real database
43176 ** file (not a temp file or an in-memory database), and the WAL file
43177 ** is not already open, make an attempt to open it now. If successful,
43178 ** return SQLITE_OK. If an error occurs or the VFS used by the pager does
43179 ** not support the xShmXXX() methods, return an error code. *pbOpen is
43180 ** not modified in either case.
43182 ** If the pager is open on a temp-file (or in-memory database), or if
43183 ** the WAL file is already open, set *pbOpen to 1 and return SQLITE_OK
43184 ** without doing anything.
43186 SQLITE_PRIVATE int sqlite3PagerOpenWal(
43187 Pager *pPager, /* Pager object */
43188 int *pbOpen /* OUT: Set to true if call is a no-op */
43190 int rc = SQLITE_OK; /* Return code */
43192 assert( assert_pager_state(pPager) );
43193 assert( pPager->eState==PAGER_OPEN || pbOpen );
43194 assert( pPager->eState==PAGER_READER || !pbOpen );
43195 assert( pbOpen==0 || *pbOpen==0 );
43196 assert( pbOpen!=0 || (!pPager->tempFile && !pPager->pWal) );
43198 if( !pPager->tempFile && !pPager->pWal ){
43199 if( !sqlite3PagerWalSupported(pPager) ) return SQLITE_CANTOPEN;
43201 /* Close any rollback journal previously open */
43202 sqlite3OsClose(pPager->jfd);
43204 rc = pagerOpenWal(pPager);
43205 if( rc==SQLITE_OK ){
43206 pPager->journalMode = PAGER_JOURNALMODE_WAL;
43207 pPager->eState = PAGER_OPEN;
43209 }else{
43210 *pbOpen = 1;
43213 return rc;
43217 ** This function is called to close the connection to the log file prior
43218 ** to switching from WAL to rollback mode.
43220 ** Before closing the log file, this function attempts to take an
43221 ** EXCLUSIVE lock on the database file. If this cannot be obtained, an
43222 ** error (SQLITE_BUSY) is returned and the log connection is not closed.
43223 ** If successful, the EXCLUSIVE lock is not released before returning.
43225 SQLITE_PRIVATE int sqlite3PagerCloseWal(Pager *pPager){
43226 int rc = SQLITE_OK;
43228 assert( pPager->journalMode==PAGER_JOURNALMODE_WAL );
43230 /* If the log file is not already open, but does exist in the file-system,
43231 ** it may need to be checkpointed before the connection can switch to
43232 ** rollback mode. Open it now so this can happen.
43234 if( !pPager->pWal ){
43235 int logexists = 0;
43236 rc = pagerLockDb(pPager, SHARED_LOCK);
43237 if( rc==SQLITE_OK ){
43238 rc = sqlite3OsAccess(
43239 pPager->pVfs, pPager->zWal, SQLITE_ACCESS_EXISTS, &logexists
43242 if( rc==SQLITE_OK && logexists ){
43243 rc = pagerOpenWal(pPager);
43247 /* Checkpoint and close the log. Because an EXCLUSIVE lock is held on
43248 ** the database file, the log and log-summary files will be deleted.
43250 if( rc==SQLITE_OK && pPager->pWal ){
43251 rc = pagerExclusiveLock(pPager);
43252 if( rc==SQLITE_OK ){
43253 rc = sqlite3WalClose(pPager->pWal, pPager->ckptSyncFlags,
43254 pPager->pageSize, (u8*)pPager->pTmpSpace);
43255 pPager->pWal = 0;
43258 return rc;
43261 #ifdef SQLITE_HAS_CODEC
43263 ** This function is called by the wal module when writing page content
43264 ** into the log file.
43266 ** This function returns a pointer to a buffer containing the encrypted
43267 ** page content. If a malloc fails, this function may return NULL.
43269 SQLITE_PRIVATE void *sqlite3PagerCodec(PgHdr *pPg){
43270 void *aData = 0;
43271 CODEC2(pPg->pPager, pPg->pData, pPg->pgno, 6, return 0, aData);
43272 return aData;
43274 #endif /* SQLITE_HAS_CODEC */
43276 #endif /* !SQLITE_OMIT_WAL */
43278 #endif /* SQLITE_OMIT_DISKIO */
43280 /************** End of pager.c ***********************************************/
43281 /************** Begin file wal.c *********************************************/
43283 ** 2010 February 1
43285 ** The author disclaims copyright to this source code. In place of
43286 ** a legal notice, here is a blessing:
43288 ** May you do good and not evil.
43289 ** May you find forgiveness for yourself and forgive others.
43290 ** May you share freely, never taking more than you give.
43292 *************************************************************************
43294 ** This file contains the implementation of a write-ahead log (WAL) used in
43295 ** "journal_mode=WAL" mode.
43297 ** WRITE-AHEAD LOG (WAL) FILE FORMAT
43299 ** A WAL file consists of a header followed by zero or more "frames".
43300 ** Each frame records the revised content of a single page from the
43301 ** database file. All changes to the database are recorded by writing
43302 ** frames into the WAL. Transactions commit when a frame is written that
43303 ** contains a commit marker. A single WAL can and usually does record
43304 ** multiple transactions. Periodically, the content of the WAL is
43305 ** transferred back into the database file in an operation called a
43306 ** "checkpoint".
43308 ** A single WAL file can be used multiple times. In other words, the
43309 ** WAL can fill up with frames and then be checkpointed and then new
43310 ** frames can overwrite the old ones. A WAL always grows from beginning
43311 ** toward the end. Checksums and counters attached to each frame are
43312 ** used to determine which frames within the WAL are valid and which
43313 ** are leftovers from prior checkpoints.
43315 ** The WAL header is 32 bytes in size and consists of the following eight
43316 ** big-endian 32-bit unsigned integer values:
43318 ** 0: Magic number. 0x377f0682 or 0x377f0683
43319 ** 4: File format version. Currently 3007000
43320 ** 8: Database page size. Example: 1024
43321 ** 12: Checkpoint sequence number
43322 ** 16: Salt-1, random integer incremented with each checkpoint
43323 ** 20: Salt-2, a different random integer changing with each ckpt
43324 ** 24: Checksum-1 (first part of checksum for first 24 bytes of header).
43325 ** 28: Checksum-2 (second part of checksum for first 24 bytes of header).
43327 ** Immediately following the wal-header are zero or more frames. Each
43328 ** frame consists of a 24-byte frame-header followed by a <page-size> bytes
43329 ** of page data. The frame-header is six big-endian 32-bit unsigned
43330 ** integer values, as follows:
43332 ** 0: Page number.
43333 ** 4: For commit records, the size of the database image in pages
43334 ** after the commit. For all other records, zero.
43335 ** 8: Salt-1 (copied from the header)
43336 ** 12: Salt-2 (copied from the header)
43337 ** 16: Checksum-1.
43338 ** 20: Checksum-2.
43340 ** A frame is considered valid if and only if the following conditions are
43341 ** true:
43343 ** (1) The salt-1 and salt-2 values in the frame-header match
43344 ** salt values in the wal-header
43346 ** (2) The checksum values in the final 8 bytes of the frame-header
43347 ** exactly match the checksum computed consecutively on the
43348 ** WAL header and the first 8 bytes and the content of all frames
43349 ** up to and including the current frame.
43351 ** The checksum is computed using 32-bit big-endian integers if the
43352 ** magic number in the first 4 bytes of the WAL is 0x377f0683 and it
43353 ** is computed using little-endian if the magic number is 0x377f0682.
43354 ** The checksum values are always stored in the frame header in a
43355 ** big-endian format regardless of which byte order is used to compute
43356 ** the checksum. The checksum is computed by interpreting the input as
43357 ** an even number of unsigned 32-bit integers: x[0] through x[N]. The
43358 ** algorithm used for the checksum is as follows:
43360 ** for i from 0 to n-1 step 2:
43361 ** s0 += x[i] + s1;
43362 ** s1 += x[i+1] + s0;
43363 ** endfor
43365 ** Note that s0 and s1 are both weighted checksums using fibonacci weights
43366 ** in reverse order (the largest fibonacci weight occurs on the first element
43367 ** of the sequence being summed.) The s1 value spans all 32-bit
43368 ** terms of the sequence whereas s0 omits the final term.
43370 ** On a checkpoint, the WAL is first VFS.xSync-ed, then valid content of the
43371 ** WAL is transferred into the database, then the database is VFS.xSync-ed.
43372 ** The VFS.xSync operations serve as write barriers - all writes launched
43373 ** before the xSync must complete before any write that launches after the
43374 ** xSync begins.
43376 ** After each checkpoint, the salt-1 value is incremented and the salt-2
43377 ** value is randomized. This prevents old and new frames in the WAL from
43378 ** being considered valid at the same time and being checkpointing together
43379 ** following a crash.
43381 ** READER ALGORITHM
43383 ** To read a page from the database (call it page number P), a reader
43384 ** first checks the WAL to see if it contains page P. If so, then the
43385 ** last valid instance of page P that is a followed by a commit frame
43386 ** or is a commit frame itself becomes the value read. If the WAL
43387 ** contains no copies of page P that are valid and which are a commit
43388 ** frame or are followed by a commit frame, then page P is read from
43389 ** the database file.
43391 ** To start a read transaction, the reader records the index of the last
43392 ** valid frame in the WAL. The reader uses this recorded "mxFrame" value
43393 ** for all subsequent read operations. New transactions can be appended
43394 ** to the WAL, but as long as the reader uses its original mxFrame value
43395 ** and ignores the newly appended content, it will see a consistent snapshot
43396 ** of the database from a single point in time. This technique allows
43397 ** multiple concurrent readers to view different versions of the database
43398 ** content simultaneously.
43400 ** The reader algorithm in the previous paragraphs works correctly, but
43401 ** because frames for page P can appear anywhere within the WAL, the
43402 ** reader has to scan the entire WAL looking for page P frames. If the
43403 ** WAL is large (multiple megabytes is typical) that scan can be slow,
43404 ** and read performance suffers. To overcome this problem, a separate
43405 ** data structure called the wal-index is maintained to expedite the
43406 ** search for frames of a particular page.
43408 ** WAL-INDEX FORMAT
43410 ** Conceptually, the wal-index is shared memory, though VFS implementations
43411 ** might choose to implement the wal-index using a mmapped file. Because
43412 ** the wal-index is shared memory, SQLite does not support journal_mode=WAL
43413 ** on a network filesystem. All users of the database must be able to
43414 ** share memory.
43416 ** The wal-index is transient. After a crash, the wal-index can (and should
43417 ** be) reconstructed from the original WAL file. In fact, the VFS is required
43418 ** to either truncate or zero the header of the wal-index when the last
43419 ** connection to it closes. Because the wal-index is transient, it can
43420 ** use an architecture-specific format; it does not have to be cross-platform.
43421 ** Hence, unlike the database and WAL file formats which store all values
43422 ** as big endian, the wal-index can store multi-byte values in the native
43423 ** byte order of the host computer.
43425 ** The purpose of the wal-index is to answer this question quickly: Given
43426 ** a page number P, return the index of the last frame for page P in the WAL,
43427 ** or return NULL if there are no frames for page P in the WAL.
43429 ** The wal-index consists of a header region, followed by an one or
43430 ** more index blocks.
43432 ** The wal-index header contains the total number of frames within the WAL
43433 ** in the the mxFrame field.
43435 ** Each index block except for the first contains information on
43436 ** HASHTABLE_NPAGE frames. The first index block contains information on
43437 ** HASHTABLE_NPAGE_ONE frames. The values of HASHTABLE_NPAGE_ONE and
43438 ** HASHTABLE_NPAGE are selected so that together the wal-index header and
43439 ** first index block are the same size as all other index blocks in the
43440 ** wal-index.
43442 ** Each index block contains two sections, a page-mapping that contains the
43443 ** database page number associated with each wal frame, and a hash-table
43444 ** that allows readers to query an index block for a specific page number.
43445 ** The page-mapping is an array of HASHTABLE_NPAGE (or HASHTABLE_NPAGE_ONE
43446 ** for the first index block) 32-bit page numbers. The first entry in the
43447 ** first index-block contains the database page number corresponding to the
43448 ** first frame in the WAL file. The first entry in the second index block
43449 ** in the WAL file corresponds to the (HASHTABLE_NPAGE_ONE+1)th frame in
43450 ** the log, and so on.
43452 ** The last index block in a wal-index usually contains less than the full
43453 ** complement of HASHTABLE_NPAGE (or HASHTABLE_NPAGE_ONE) page-numbers,
43454 ** depending on the contents of the WAL file. This does not change the
43455 ** allocated size of the page-mapping array - the page-mapping array merely
43456 ** contains unused entries.
43458 ** Even without using the hash table, the last frame for page P
43459 ** can be found by scanning the page-mapping sections of each index block
43460 ** starting with the last index block and moving toward the first, and
43461 ** within each index block, starting at the end and moving toward the
43462 ** beginning. The first entry that equals P corresponds to the frame
43463 ** holding the content for that page.
43465 ** The hash table consists of HASHTABLE_NSLOT 16-bit unsigned integers.
43466 ** HASHTABLE_NSLOT = 2*HASHTABLE_NPAGE, and there is one entry in the
43467 ** hash table for each page number in the mapping section, so the hash
43468 ** table is never more than half full. The expected number of collisions
43469 ** prior to finding a match is 1. Each entry of the hash table is an
43470 ** 1-based index of an entry in the mapping section of the same
43471 ** index block. Let K be the 1-based index of the largest entry in
43472 ** the mapping section. (For index blocks other than the last, K will
43473 ** always be exactly HASHTABLE_NPAGE (4096) and for the last index block
43474 ** K will be (mxFrame%HASHTABLE_NPAGE).) Unused slots of the hash table
43475 ** contain a value of 0.
43477 ** To look for page P in the hash table, first compute a hash iKey on
43478 ** P as follows:
43480 ** iKey = (P * 383) % HASHTABLE_NSLOT
43482 ** Then start scanning entries of the hash table, starting with iKey
43483 ** (wrapping around to the beginning when the end of the hash table is
43484 ** reached) until an unused hash slot is found. Let the first unused slot
43485 ** be at index iUnused. (iUnused might be less than iKey if there was
43486 ** wrap-around.) Because the hash table is never more than half full,
43487 ** the search is guaranteed to eventually hit an unused entry. Let
43488 ** iMax be the value between iKey and iUnused, closest to iUnused,
43489 ** where aHash[iMax]==P. If there is no iMax entry (if there exists
43490 ** no hash slot such that aHash[i]==p) then page P is not in the
43491 ** current index block. Otherwise the iMax-th mapping entry of the
43492 ** current index block corresponds to the last entry that references
43493 ** page P.
43495 ** A hash search begins with the last index block and moves toward the
43496 ** first index block, looking for entries corresponding to page P. On
43497 ** average, only two or three slots in each index block need to be
43498 ** examined in order to either find the last entry for page P, or to
43499 ** establish that no such entry exists in the block. Each index block
43500 ** holds over 4000 entries. So two or three index blocks are sufficient
43501 ** to cover a typical 10 megabyte WAL file, assuming 1K pages. 8 or 10
43502 ** comparisons (on average) suffice to either locate a frame in the
43503 ** WAL or to establish that the frame does not exist in the WAL. This
43504 ** is much faster than scanning the entire 10MB WAL.
43506 ** Note that entries are added in order of increasing K. Hence, one
43507 ** reader might be using some value K0 and a second reader that started
43508 ** at a later time (after additional transactions were added to the WAL
43509 ** and to the wal-index) might be using a different value K1, where K1>K0.
43510 ** Both readers can use the same hash table and mapping section to get
43511 ** the correct result. There may be entries in the hash table with
43512 ** K>K0 but to the first reader, those entries will appear to be unused
43513 ** slots in the hash table and so the first reader will get an answer as
43514 ** if no values greater than K0 had ever been inserted into the hash table
43515 ** in the first place - which is what reader one wants. Meanwhile, the
43516 ** second reader using K1 will see additional values that were inserted
43517 ** later, which is exactly what reader two wants.
43519 ** When a rollback occurs, the value of K is decreased. Hash table entries
43520 ** that correspond to frames greater than the new K value are removed
43521 ** from the hash table at this point.
43523 #ifndef SQLITE_OMIT_WAL
43527 ** Trace output macros
43529 #if defined(SQLITE_TEST) && defined(SQLITE_DEBUG)
43530 SQLITE_PRIVATE int sqlite3WalTrace = 0;
43531 # define WALTRACE(X) if(sqlite3WalTrace) sqlite3DebugPrintf X
43532 #else
43533 # define WALTRACE(X)
43534 #endif
43537 ** The maximum (and only) versions of the wal and wal-index formats
43538 ** that may be interpreted by this version of SQLite.
43540 ** If a client begins recovering a WAL file and finds that (a) the checksum
43541 ** values in the wal-header are correct and (b) the version field is not
43542 ** WAL_MAX_VERSION, recovery fails and SQLite returns SQLITE_CANTOPEN.
43544 ** Similarly, if a client successfully reads a wal-index header (i.e. the
43545 ** checksum test is successful) and finds that the version field is not
43546 ** WALINDEX_MAX_VERSION, then no read-transaction is opened and SQLite
43547 ** returns SQLITE_CANTOPEN.
43549 #define WAL_MAX_VERSION 3007000
43550 #define WALINDEX_MAX_VERSION 3007000
43553 ** Indices of various locking bytes. WAL_NREADER is the number
43554 ** of available reader locks and should be at least 3.
43556 #define WAL_WRITE_LOCK 0
43557 #define WAL_ALL_BUT_WRITE 1
43558 #define WAL_CKPT_LOCK 1
43559 #define WAL_RECOVER_LOCK 2
43560 #define WAL_READ_LOCK(I) (3+(I))
43561 #define WAL_NREADER (SQLITE_SHM_NLOCK-3)
43564 /* Object declarations */
43565 typedef struct WalIndexHdr WalIndexHdr;
43566 typedef struct WalIterator WalIterator;
43567 typedef struct WalCkptInfo WalCkptInfo;
43571 ** The following object holds a copy of the wal-index header content.
43573 ** The actual header in the wal-index consists of two copies of this
43574 ** object.
43576 ** The szPage value can be any power of 2 between 512 and 32768, inclusive.
43577 ** Or it can be 1 to represent a 65536-byte page. The latter case was
43578 ** added in 3.7.1 when support for 64K pages was added.
43580 struct WalIndexHdr {
43581 u32 iVersion; /* Wal-index version */
43582 u32 unused; /* Unused (padding) field */
43583 u32 iChange; /* Counter incremented each transaction */
43584 u8 isInit; /* 1 when initialized */
43585 u8 bigEndCksum; /* True if checksums in WAL are big-endian */
43586 u16 szPage; /* Database page size in bytes. 1==64K */
43587 u32 mxFrame; /* Index of last valid frame in the WAL */
43588 u32 nPage; /* Size of database in pages */
43589 u32 aFrameCksum[2]; /* Checksum of last frame in log */
43590 u32 aSalt[2]; /* Two salt values copied from WAL header */
43591 u32 aCksum[2]; /* Checksum over all prior fields */
43595 ** A copy of the following object occurs in the wal-index immediately
43596 ** following the second copy of the WalIndexHdr. This object stores
43597 ** information used by checkpoint.
43599 ** nBackfill is the number of frames in the WAL that have been written
43600 ** back into the database. (We call the act of moving content from WAL to
43601 ** database "backfilling".) The nBackfill number is never greater than
43602 ** WalIndexHdr.mxFrame. nBackfill can only be increased by threads
43603 ** holding the WAL_CKPT_LOCK lock (which includes a recovery thread).
43604 ** However, a WAL_WRITE_LOCK thread can move the value of nBackfill from
43605 ** mxFrame back to zero when the WAL is reset.
43607 ** There is one entry in aReadMark[] for each reader lock. If a reader
43608 ** holds read-lock K, then the value in aReadMark[K] is no greater than
43609 ** the mxFrame for that reader. The value READMARK_NOT_USED (0xffffffff)
43610 ** for any aReadMark[] means that entry is unused. aReadMark[0] is
43611 ** a special case; its value is never used and it exists as a place-holder
43612 ** to avoid having to offset aReadMark[] indexs by one. Readers holding
43613 ** WAL_READ_LOCK(0) always ignore the entire WAL and read all content
43614 ** directly from the database.
43616 ** The value of aReadMark[K] may only be changed by a thread that
43617 ** is holding an exclusive lock on WAL_READ_LOCK(K). Thus, the value of
43618 ** aReadMark[K] cannot changed while there is a reader is using that mark
43619 ** since the reader will be holding a shared lock on WAL_READ_LOCK(K).
43621 ** The checkpointer may only transfer frames from WAL to database where
43622 ** the frame numbers are less than or equal to every aReadMark[] that is
43623 ** in use (that is, every aReadMark[j] for which there is a corresponding
43624 ** WAL_READ_LOCK(j)). New readers (usually) pick the aReadMark[] with the
43625 ** largest value and will increase an unused aReadMark[] to mxFrame if there
43626 ** is not already an aReadMark[] equal to mxFrame. The exception to the
43627 ** previous sentence is when nBackfill equals mxFrame (meaning that everything
43628 ** in the WAL has been backfilled into the database) then new readers
43629 ** will choose aReadMark[0] which has value 0 and hence such reader will
43630 ** get all their all content directly from the database file and ignore
43631 ** the WAL.
43633 ** Writers normally append new frames to the end of the WAL. However,
43634 ** if nBackfill equals mxFrame (meaning that all WAL content has been
43635 ** written back into the database) and if no readers are using the WAL
43636 ** (in other words, if there are no WAL_READ_LOCK(i) where i>0) then
43637 ** the writer will first "reset" the WAL back to the beginning and start
43638 ** writing new content beginning at frame 1.
43640 ** We assume that 32-bit loads are atomic and so no locks are needed in
43641 ** order to read from any aReadMark[] entries.
43643 struct WalCkptInfo {
43644 u32 nBackfill; /* Number of WAL frames backfilled into DB */
43645 u32 aReadMark[WAL_NREADER]; /* Reader marks */
43647 #define READMARK_NOT_USED 0xffffffff
43650 /* A block of WALINDEX_LOCK_RESERVED bytes beginning at
43651 ** WALINDEX_LOCK_OFFSET is reserved for locks. Since some systems
43652 ** only support mandatory file-locks, we do not read or write data
43653 ** from the region of the file on which locks are applied.
43655 #define WALINDEX_LOCK_OFFSET (sizeof(WalIndexHdr)*2 + sizeof(WalCkptInfo))
43656 #define WALINDEX_LOCK_RESERVED 16
43657 #define WALINDEX_HDR_SIZE (WALINDEX_LOCK_OFFSET+WALINDEX_LOCK_RESERVED)
43659 /* Size of header before each frame in wal */
43660 #define WAL_FRAME_HDRSIZE 24
43662 /* Size of write ahead log header, including checksum. */
43663 /* #define WAL_HDRSIZE 24 */
43664 #define WAL_HDRSIZE 32
43666 /* WAL magic value. Either this value, or the same value with the least
43667 ** significant bit also set (WAL_MAGIC | 0x00000001) is stored in 32-bit
43668 ** big-endian format in the first 4 bytes of a WAL file.
43670 ** If the LSB is set, then the checksums for each frame within the WAL
43671 ** file are calculated by treating all data as an array of 32-bit
43672 ** big-endian words. Otherwise, they are calculated by interpreting
43673 ** all data as 32-bit little-endian words.
43675 #define WAL_MAGIC 0x377f0682
43678 ** Return the offset of frame iFrame in the write-ahead log file,
43679 ** assuming a database page size of szPage bytes. The offset returned
43680 ** is to the start of the write-ahead log frame-header.
43682 #define walFrameOffset(iFrame, szPage) ( \
43683 WAL_HDRSIZE + ((iFrame)-1)*(i64)((szPage)+WAL_FRAME_HDRSIZE) \
43687 ** An open write-ahead log file is represented by an instance of the
43688 ** following object.
43690 struct Wal {
43691 sqlite3_vfs *pVfs; /* The VFS used to create pDbFd */
43692 sqlite3_file *pDbFd; /* File handle for the database file */
43693 sqlite3_file *pWalFd; /* File handle for WAL file */
43694 u32 iCallback; /* Value to pass to log callback (or 0) */
43695 int nWiData; /* Size of array apWiData */
43696 volatile u32 **apWiData; /* Pointer to wal-index content in memory */
43697 u32 szPage; /* Database page size */
43698 i16 readLock; /* Which read lock is being held. -1 for none */
43699 u8 exclusiveMode; /* Non-zero if connection is in exclusive mode */
43700 u8 writeLock; /* True if in a write transaction */
43701 u8 ckptLock; /* True if holding a checkpoint lock */
43702 u8 readOnly; /* True if the WAL file is open read-only */
43703 WalIndexHdr hdr; /* Wal-index header for current transaction */
43704 const char *zWalName; /* Name of WAL file */
43705 u32 nCkpt; /* Checkpoint sequence counter in the wal-header */
43706 #ifdef SQLITE_DEBUG
43707 u8 lockError; /* True if a locking error has occurred */
43708 #endif
43712 ** Candidate values for Wal.exclusiveMode.
43714 #define WAL_NORMAL_MODE 0
43715 #define WAL_EXCLUSIVE_MODE 1
43716 #define WAL_HEAPMEMORY_MODE 2
43719 ** Each page of the wal-index mapping contains a hash-table made up of
43720 ** an array of HASHTABLE_NSLOT elements of the following type.
43722 typedef u16 ht_slot;
43725 ** This structure is used to implement an iterator that loops through
43726 ** all frames in the WAL in database page order. Where two or more frames
43727 ** correspond to the same database page, the iterator visits only the
43728 ** frame most recently written to the WAL (in other words, the frame with
43729 ** the largest index).
43731 ** The internals of this structure are only accessed by:
43733 ** walIteratorInit() - Create a new iterator,
43734 ** walIteratorNext() - Step an iterator,
43735 ** walIteratorFree() - Free an iterator.
43737 ** This functionality is used by the checkpoint code (see walCheckpoint()).
43739 struct WalIterator {
43740 int iPrior; /* Last result returned from the iterator */
43741 int nSegment; /* Number of entries in aSegment[] */
43742 struct WalSegment {
43743 int iNext; /* Next slot in aIndex[] not yet returned */
43744 ht_slot *aIndex; /* i0, i1, i2... such that aPgno[iN] ascend */
43745 u32 *aPgno; /* Array of page numbers. */
43746 int nEntry; /* Nr. of entries in aPgno[] and aIndex[] */
43747 int iZero; /* Frame number associated with aPgno[0] */
43748 } aSegment[1]; /* One for every 32KB page in the wal-index */
43752 ** Define the parameters of the hash tables in the wal-index file. There
43753 ** is a hash-table following every HASHTABLE_NPAGE page numbers in the
43754 ** wal-index.
43756 ** Changing any of these constants will alter the wal-index format and
43757 ** create incompatibilities.
43759 #define HASHTABLE_NPAGE 4096 /* Must be power of 2 */
43760 #define HASHTABLE_HASH_1 383 /* Should be prime */
43761 #define HASHTABLE_NSLOT (HASHTABLE_NPAGE*2) /* Must be a power of 2 */
43764 ** The block of page numbers associated with the first hash-table in a
43765 ** wal-index is smaller than usual. This is so that there is a complete
43766 ** hash-table on each aligned 32KB page of the wal-index.
43768 #define HASHTABLE_NPAGE_ONE (HASHTABLE_NPAGE - (WALINDEX_HDR_SIZE/sizeof(u32)))
43770 /* The wal-index is divided into pages of WALINDEX_PGSZ bytes each. */
43771 #define WALINDEX_PGSZ ( \
43772 sizeof(ht_slot)*HASHTABLE_NSLOT + HASHTABLE_NPAGE*sizeof(u32) \
43776 ** Obtain a pointer to the iPage'th page of the wal-index. The wal-index
43777 ** is broken into pages of WALINDEX_PGSZ bytes. Wal-index pages are
43778 ** numbered from zero.
43780 ** If this call is successful, *ppPage is set to point to the wal-index
43781 ** page and SQLITE_OK is returned. If an error (an OOM or VFS error) occurs,
43782 ** then an SQLite error code is returned and *ppPage is set to 0.
43784 static int walIndexPage(Wal *pWal, int iPage, volatile u32 **ppPage){
43785 int rc = SQLITE_OK;
43787 /* Enlarge the pWal->apWiData[] array if required */
43788 if( pWal->nWiData<=iPage ){
43789 int nByte = sizeof(u32*)*(iPage+1);
43790 volatile u32 **apNew;
43791 apNew = (volatile u32 **)sqlite3_realloc((void *)pWal->apWiData, nByte);
43792 if( !apNew ){
43793 *ppPage = 0;
43794 return SQLITE_NOMEM;
43796 memset((void*)&apNew[pWal->nWiData], 0,
43797 sizeof(u32*)*(iPage+1-pWal->nWiData));
43798 pWal->apWiData = apNew;
43799 pWal->nWiData = iPage+1;
43802 /* Request a pointer to the required page from the VFS */
43803 if( pWal->apWiData[iPage]==0 ){
43804 if( pWal->exclusiveMode==WAL_HEAPMEMORY_MODE ){
43805 pWal->apWiData[iPage] = (u32 volatile *)sqlite3MallocZero(WALINDEX_PGSZ);
43806 if( !pWal->apWiData[iPage] ) rc = SQLITE_NOMEM;
43807 }else{
43808 rc = sqlite3OsShmMap(pWal->pDbFd, iPage, WALINDEX_PGSZ,
43809 pWal->writeLock, (void volatile **)&pWal->apWiData[iPage]
43814 *ppPage = pWal->apWiData[iPage];
43815 assert( iPage==0 || *ppPage || rc!=SQLITE_OK );
43816 return rc;
43820 ** Return a pointer to the WalCkptInfo structure in the wal-index.
43822 static volatile WalCkptInfo *walCkptInfo(Wal *pWal){
43823 assert( pWal->nWiData>0 && pWal->apWiData[0] );
43824 return (volatile WalCkptInfo*)&(pWal->apWiData[0][sizeof(WalIndexHdr)/2]);
43828 ** Return a pointer to the WalIndexHdr structure in the wal-index.
43830 static volatile WalIndexHdr *walIndexHdr(Wal *pWal){
43831 assert( pWal->nWiData>0 && pWal->apWiData[0] );
43832 return (volatile WalIndexHdr*)pWal->apWiData[0];
43836 ** The argument to this macro must be of type u32. On a little-endian
43837 ** architecture, it returns the u32 value that results from interpreting
43838 ** the 4 bytes as a big-endian value. On a big-endian architecture, it
43839 ** returns the value that would be produced by intepreting the 4 bytes
43840 ** of the input value as a little-endian integer.
43842 #define BYTESWAP32(x) ( \
43843 (((x)&0x000000FF)<<24) + (((x)&0x0000FF00)<<8) \
43844 + (((x)&0x00FF0000)>>8) + (((x)&0xFF000000)>>24) \
43848 ** Generate or extend an 8 byte checksum based on the data in
43849 ** array aByte[] and the initial values of aIn[0] and aIn[1] (or
43850 ** initial values of 0 and 0 if aIn==NULL).
43852 ** The checksum is written back into aOut[] before returning.
43854 ** nByte must be a positive multiple of 8.
43856 static void walChecksumBytes(
43857 int nativeCksum, /* True for native byte-order, false for non-native */
43858 u8 *a, /* Content to be checksummed */
43859 int nByte, /* Bytes of content in a[]. Must be a multiple of 8. */
43860 const u32 *aIn, /* Initial checksum value input */
43861 u32 *aOut /* OUT: Final checksum value output */
43863 u32 s1, s2;
43864 u32 *aData = (u32 *)a;
43865 u32 *aEnd = (u32 *)&a[nByte];
43867 if( aIn ){
43868 s1 = aIn[0];
43869 s2 = aIn[1];
43870 }else{
43871 s1 = s2 = 0;
43874 assert( nByte>=8 );
43875 assert( (nByte&0x00000007)==0 );
43877 if( nativeCksum ){
43878 do {
43879 s1 += *aData++ + s2;
43880 s2 += *aData++ + s1;
43881 }while( aData<aEnd );
43882 }else{
43883 do {
43884 s1 += BYTESWAP32(aData[0]) + s2;
43885 s2 += BYTESWAP32(aData[1]) + s1;
43886 aData += 2;
43887 }while( aData<aEnd );
43890 aOut[0] = s1;
43891 aOut[1] = s2;
43894 static void walShmBarrier(Wal *pWal){
43895 if( pWal->exclusiveMode!=WAL_HEAPMEMORY_MODE ){
43896 sqlite3OsShmBarrier(pWal->pDbFd);
43901 ** Write the header information in pWal->hdr into the wal-index.
43903 ** The checksum on pWal->hdr is updated before it is written.
43905 static void walIndexWriteHdr(Wal *pWal){
43906 volatile WalIndexHdr *aHdr = walIndexHdr(pWal);
43907 const int nCksum = offsetof(WalIndexHdr, aCksum);
43909 assert( pWal->writeLock );
43910 pWal->hdr.isInit = 1;
43911 pWal->hdr.iVersion = WALINDEX_MAX_VERSION;
43912 walChecksumBytes(1, (u8*)&pWal->hdr, nCksum, 0, pWal->hdr.aCksum);
43913 memcpy((void *)&aHdr[1], (void *)&pWal->hdr, sizeof(WalIndexHdr));
43914 walShmBarrier(pWal);
43915 memcpy((void *)&aHdr[0], (void *)&pWal->hdr, sizeof(WalIndexHdr));
43919 ** This function encodes a single frame header and writes it to a buffer
43920 ** supplied by the caller. A frame-header is made up of a series of
43921 ** 4-byte big-endian integers, as follows:
43923 ** 0: Page number.
43924 ** 4: For commit records, the size of the database image in pages
43925 ** after the commit. For all other records, zero.
43926 ** 8: Salt-1 (copied from the wal-header)
43927 ** 12: Salt-2 (copied from the wal-header)
43928 ** 16: Checksum-1.
43929 ** 20: Checksum-2.
43931 static void walEncodeFrame(
43932 Wal *pWal, /* The write-ahead log */
43933 u32 iPage, /* Database page number for frame */
43934 u32 nTruncate, /* New db size (or 0 for non-commit frames) */
43935 u8 *aData, /* Pointer to page data */
43936 u8 *aFrame /* OUT: Write encoded frame here */
43938 int nativeCksum; /* True for native byte-order checksums */
43939 u32 *aCksum = pWal->hdr.aFrameCksum;
43940 assert( WAL_FRAME_HDRSIZE==24 );
43941 sqlite3Put4byte(&aFrame[0], iPage);
43942 sqlite3Put4byte(&aFrame[4], nTruncate);
43943 memcpy(&aFrame[8], pWal->hdr.aSalt, 8);
43945 nativeCksum = (pWal->hdr.bigEndCksum==SQLITE_BIGENDIAN);
43946 walChecksumBytes(nativeCksum, aFrame, 8, aCksum, aCksum);
43947 walChecksumBytes(nativeCksum, aData, pWal->szPage, aCksum, aCksum);
43949 sqlite3Put4byte(&aFrame[16], aCksum[0]);
43950 sqlite3Put4byte(&aFrame[20], aCksum[1]);
43954 ** Check to see if the frame with header in aFrame[] and content
43955 ** in aData[] is valid. If it is a valid frame, fill *piPage and
43956 ** *pnTruncate and return true. Return if the frame is not valid.
43958 static int walDecodeFrame(
43959 Wal *pWal, /* The write-ahead log */
43960 u32 *piPage, /* OUT: Database page number for frame */
43961 u32 *pnTruncate, /* OUT: New db size (or 0 if not commit) */
43962 u8 *aData, /* Pointer to page data (for checksum) */
43963 u8 *aFrame /* Frame data */
43965 int nativeCksum; /* True for native byte-order checksums */
43966 u32 *aCksum = pWal->hdr.aFrameCksum;
43967 u32 pgno; /* Page number of the frame */
43968 assert( WAL_FRAME_HDRSIZE==24 );
43970 /* A frame is only valid if the salt values in the frame-header
43971 ** match the salt values in the wal-header.
43973 if( memcmp(&pWal->hdr.aSalt, &aFrame[8], 8)!=0 ){
43974 return 0;
43977 /* A frame is only valid if the page number is creater than zero.
43979 pgno = sqlite3Get4byte(&aFrame[0]);
43980 if( pgno==0 ){
43981 return 0;
43984 /* A frame is only valid if a checksum of the WAL header,
43985 ** all prior frams, the first 16 bytes of this frame-header,
43986 ** and the frame-data matches the checksum in the last 8
43987 ** bytes of this frame-header.
43989 nativeCksum = (pWal->hdr.bigEndCksum==SQLITE_BIGENDIAN);
43990 walChecksumBytes(nativeCksum, aFrame, 8, aCksum, aCksum);
43991 walChecksumBytes(nativeCksum, aData, pWal->szPage, aCksum, aCksum);
43992 if( aCksum[0]!=sqlite3Get4byte(&aFrame[16])
43993 || aCksum[1]!=sqlite3Get4byte(&aFrame[20])
43995 /* Checksum failed. */
43996 return 0;
43999 /* If we reach this point, the frame is valid. Return the page number
44000 ** and the new database size.
44002 *piPage = pgno;
44003 *pnTruncate = sqlite3Get4byte(&aFrame[4]);
44004 return 1;
44008 #if defined(SQLITE_TEST) && defined(SQLITE_DEBUG)
44010 ** Names of locks. This routine is used to provide debugging output and is not
44011 ** a part of an ordinary build.
44013 static const char *walLockName(int lockIdx){
44014 if( lockIdx==WAL_WRITE_LOCK ){
44015 return "WRITE-LOCK";
44016 }else if( lockIdx==WAL_CKPT_LOCK ){
44017 return "CKPT-LOCK";
44018 }else if( lockIdx==WAL_RECOVER_LOCK ){
44019 return "RECOVER-LOCK";
44020 }else{
44021 static char zName[15];
44022 sqlite3_snprintf(sizeof(zName), zName, "READ-LOCK[%d]",
44023 lockIdx-WAL_READ_LOCK(0));
44024 return zName;
44027 #endif /*defined(SQLITE_TEST) || defined(SQLITE_DEBUG) */
44031 ** Set or release locks on the WAL. Locks are either shared or exclusive.
44032 ** A lock cannot be moved directly between shared and exclusive - it must go
44033 ** through the unlocked state first.
44035 ** In locking_mode=EXCLUSIVE, all of these routines become no-ops.
44037 static int walLockShared(Wal *pWal, int lockIdx){
44038 int rc;
44039 if( pWal->exclusiveMode ) return SQLITE_OK;
44040 rc = sqlite3OsShmLock(pWal->pDbFd, lockIdx, 1,
44041 SQLITE_SHM_LOCK | SQLITE_SHM_SHARED);
44042 WALTRACE(("WAL%p: acquire SHARED-%s %s\n", pWal,
44043 walLockName(lockIdx), rc ? "failed" : "ok"));
44044 VVA_ONLY( pWal->lockError = (u8)(rc!=SQLITE_OK && rc!=SQLITE_BUSY); )
44045 return rc;
44047 static void walUnlockShared(Wal *pWal, int lockIdx){
44048 if( pWal->exclusiveMode ) return;
44049 (void)sqlite3OsShmLock(pWal->pDbFd, lockIdx, 1,
44050 SQLITE_SHM_UNLOCK | SQLITE_SHM_SHARED);
44051 WALTRACE(("WAL%p: release SHARED-%s\n", pWal, walLockName(lockIdx)));
44053 static int walLockExclusive(Wal *pWal, int lockIdx, int n){
44054 int rc;
44055 if( pWal->exclusiveMode ) return SQLITE_OK;
44056 rc = sqlite3OsShmLock(pWal->pDbFd, lockIdx, n,
44057 SQLITE_SHM_LOCK | SQLITE_SHM_EXCLUSIVE);
44058 WALTRACE(("WAL%p: acquire EXCLUSIVE-%s cnt=%d %s\n", pWal,
44059 walLockName(lockIdx), n, rc ? "failed" : "ok"));
44060 VVA_ONLY( pWal->lockError = (u8)(rc!=SQLITE_OK && rc!=SQLITE_BUSY); )
44061 return rc;
44063 static void walUnlockExclusive(Wal *pWal, int lockIdx, int n){
44064 if( pWal->exclusiveMode ) return;
44065 (void)sqlite3OsShmLock(pWal->pDbFd, lockIdx, n,
44066 SQLITE_SHM_UNLOCK | SQLITE_SHM_EXCLUSIVE);
44067 WALTRACE(("WAL%p: release EXCLUSIVE-%s cnt=%d\n", pWal,
44068 walLockName(lockIdx), n));
44072 ** Compute a hash on a page number. The resulting hash value must land
44073 ** between 0 and (HASHTABLE_NSLOT-1). The walHashNext() function advances
44074 ** the hash to the next value in the event of a collision.
44076 static int walHash(u32 iPage){
44077 assert( iPage>0 );
44078 assert( (HASHTABLE_NSLOT & (HASHTABLE_NSLOT-1))==0 );
44079 return (iPage*HASHTABLE_HASH_1) & (HASHTABLE_NSLOT-1);
44081 static int walNextHash(int iPriorHash){
44082 return (iPriorHash+1)&(HASHTABLE_NSLOT-1);
44086 ** Return pointers to the hash table and page number array stored on
44087 ** page iHash of the wal-index. The wal-index is broken into 32KB pages
44088 ** numbered starting from 0.
44090 ** Set output variable *paHash to point to the start of the hash table
44091 ** in the wal-index file. Set *piZero to one less than the frame
44092 ** number of the first frame indexed by this hash table. If a
44093 ** slot in the hash table is set to N, it refers to frame number
44094 ** (*piZero+N) in the log.
44096 ** Finally, set *paPgno so that *paPgno[1] is the page number of the
44097 ** first frame indexed by the hash table, frame (*piZero+1).
44099 static int walHashGet(
44100 Wal *pWal, /* WAL handle */
44101 int iHash, /* Find the iHash'th table */
44102 volatile ht_slot **paHash, /* OUT: Pointer to hash index */
44103 volatile u32 **paPgno, /* OUT: Pointer to page number array */
44104 u32 *piZero /* OUT: Frame associated with *paPgno[0] */
44106 int rc; /* Return code */
44107 volatile u32 *aPgno;
44109 rc = walIndexPage(pWal, iHash, &aPgno);
44110 assert( rc==SQLITE_OK || iHash>0 );
44112 if( rc==SQLITE_OK ){
44113 u32 iZero;
44114 volatile ht_slot *aHash;
44116 aHash = (volatile ht_slot *)&aPgno[HASHTABLE_NPAGE];
44117 if( iHash==0 ){
44118 aPgno = &aPgno[WALINDEX_HDR_SIZE/sizeof(u32)];
44119 iZero = 0;
44120 }else{
44121 iZero = HASHTABLE_NPAGE_ONE + (iHash-1)*HASHTABLE_NPAGE;
44124 *paPgno = &aPgno[-1];
44125 *paHash = aHash;
44126 *piZero = iZero;
44128 return rc;
44132 ** Return the number of the wal-index page that contains the hash-table
44133 ** and page-number array that contain entries corresponding to WAL frame
44134 ** iFrame. The wal-index is broken up into 32KB pages. Wal-index pages
44135 ** are numbered starting from 0.
44137 static int walFramePage(u32 iFrame){
44138 int iHash = (iFrame+HASHTABLE_NPAGE-HASHTABLE_NPAGE_ONE-1) / HASHTABLE_NPAGE;
44139 assert( (iHash==0 || iFrame>HASHTABLE_NPAGE_ONE)
44140 && (iHash>=1 || iFrame<=HASHTABLE_NPAGE_ONE)
44141 && (iHash<=1 || iFrame>(HASHTABLE_NPAGE_ONE+HASHTABLE_NPAGE))
44142 && (iHash>=2 || iFrame<=HASHTABLE_NPAGE_ONE+HASHTABLE_NPAGE)
44143 && (iHash<=2 || iFrame>(HASHTABLE_NPAGE_ONE+2*HASHTABLE_NPAGE))
44145 return iHash;
44149 ** Return the page number associated with frame iFrame in this WAL.
44151 static u32 walFramePgno(Wal *pWal, u32 iFrame){
44152 int iHash = walFramePage(iFrame);
44153 if( iHash==0 ){
44154 return pWal->apWiData[0][WALINDEX_HDR_SIZE/sizeof(u32) + iFrame - 1];
44156 return pWal->apWiData[iHash][(iFrame-1-HASHTABLE_NPAGE_ONE)%HASHTABLE_NPAGE];
44160 ** Remove entries from the hash table that point to WAL slots greater
44161 ** than pWal->hdr.mxFrame.
44163 ** This function is called whenever pWal->hdr.mxFrame is decreased due
44164 ** to a rollback or savepoint.
44166 ** At most only the hash table containing pWal->hdr.mxFrame needs to be
44167 ** updated. Any later hash tables will be automatically cleared when
44168 ** pWal->hdr.mxFrame advances to the point where those hash tables are
44169 ** actually needed.
44171 static void walCleanupHash(Wal *pWal){
44172 volatile ht_slot *aHash = 0; /* Pointer to hash table to clear */
44173 volatile u32 *aPgno = 0; /* Page number array for hash table */
44174 u32 iZero = 0; /* frame == (aHash[x]+iZero) */
44175 int iLimit = 0; /* Zero values greater than this */
44176 int nByte; /* Number of bytes to zero in aPgno[] */
44177 int i; /* Used to iterate through aHash[] */
44179 assert( pWal->writeLock );
44180 testcase( pWal->hdr.mxFrame==HASHTABLE_NPAGE_ONE-1 );
44181 testcase( pWal->hdr.mxFrame==HASHTABLE_NPAGE_ONE );
44182 testcase( pWal->hdr.mxFrame==HASHTABLE_NPAGE_ONE+1 );
44184 if( pWal->hdr.mxFrame==0 ) return;
44186 /* Obtain pointers to the hash-table and page-number array containing
44187 ** the entry that corresponds to frame pWal->hdr.mxFrame. It is guaranteed
44188 ** that the page said hash-table and array reside on is already mapped.
44190 assert( pWal->nWiData>walFramePage(pWal->hdr.mxFrame) );
44191 assert( pWal->apWiData[walFramePage(pWal->hdr.mxFrame)] );
44192 walHashGet(pWal, walFramePage(pWal->hdr.mxFrame), &aHash, &aPgno, &iZero);
44194 /* Zero all hash-table entries that correspond to frame numbers greater
44195 ** than pWal->hdr.mxFrame.
44197 iLimit = pWal->hdr.mxFrame - iZero;
44198 assert( iLimit>0 );
44199 for(i=0; i<HASHTABLE_NSLOT; i++){
44200 if( aHash[i]>iLimit ){
44201 aHash[i] = 0;
44205 /* Zero the entries in the aPgno array that correspond to frames with
44206 ** frame numbers greater than pWal->hdr.mxFrame.
44208 nByte = (int)((char *)aHash - (char *)&aPgno[iLimit+1]);
44209 memset((void *)&aPgno[iLimit+1], 0, nByte);
44211 #ifdef SQLITE_ENABLE_EXPENSIVE_ASSERT
44212 /* Verify that the every entry in the mapping region is still reachable
44213 ** via the hash table even after the cleanup.
44215 if( iLimit ){
44216 int i; /* Loop counter */
44217 int iKey; /* Hash key */
44218 for(i=1; i<=iLimit; i++){
44219 for(iKey=walHash(aPgno[i]); aHash[iKey]; iKey=walNextHash(iKey)){
44220 if( aHash[iKey]==i ) break;
44222 assert( aHash[iKey]==i );
44225 #endif /* SQLITE_ENABLE_EXPENSIVE_ASSERT */
44230 ** Set an entry in the wal-index that will map database page number
44231 ** pPage into WAL frame iFrame.
44233 static int walIndexAppend(Wal *pWal, u32 iFrame, u32 iPage){
44234 int rc; /* Return code */
44235 u32 iZero = 0; /* One less than frame number of aPgno[1] */
44236 volatile u32 *aPgno = 0; /* Page number array */
44237 volatile ht_slot *aHash = 0; /* Hash table */
44239 rc = walHashGet(pWal, walFramePage(iFrame), &aHash, &aPgno, &iZero);
44241 /* Assuming the wal-index file was successfully mapped, populate the
44242 ** page number array and hash table entry.
44244 if( rc==SQLITE_OK ){
44245 int iKey; /* Hash table key */
44246 int idx; /* Value to write to hash-table slot */
44247 int nCollide; /* Number of hash collisions */
44249 idx = iFrame - iZero;
44250 assert( idx <= HASHTABLE_NSLOT/2 + 1 );
44252 /* If this is the first entry to be added to this hash-table, zero the
44253 ** entire hash table and aPgno[] array before proceding.
44255 if( idx==1 ){
44256 int nByte = (int)((u8 *)&aHash[HASHTABLE_NSLOT] - (u8 *)&aPgno[1]);
44257 memset((void*)&aPgno[1], 0, nByte);
44260 /* If the entry in aPgno[] is already set, then the previous writer
44261 ** must have exited unexpectedly in the middle of a transaction (after
44262 ** writing one or more dirty pages to the WAL to free up memory).
44263 ** Remove the remnants of that writers uncommitted transaction from
44264 ** the hash-table before writing any new entries.
44266 if( aPgno[idx] ){
44267 walCleanupHash(pWal);
44268 assert( !aPgno[idx] );
44271 /* Write the aPgno[] array entry and the hash-table slot. */
44272 nCollide = idx;
44273 for(iKey=walHash(iPage); aHash[iKey]; iKey=walNextHash(iKey)){
44274 if( (nCollide--)==0 ) return SQLITE_CORRUPT_BKPT;
44276 aPgno[idx] = iPage;
44277 aHash[iKey] = (ht_slot)idx;
44279 #ifdef SQLITE_ENABLE_EXPENSIVE_ASSERT
44280 /* Verify that the number of entries in the hash table exactly equals
44281 ** the number of entries in the mapping region.
44284 int i; /* Loop counter */
44285 int nEntry = 0; /* Number of entries in the hash table */
44286 for(i=0; i<HASHTABLE_NSLOT; i++){ if( aHash[i] ) nEntry++; }
44287 assert( nEntry==idx );
44290 /* Verify that the every entry in the mapping region is reachable
44291 ** via the hash table. This turns out to be a really, really expensive
44292 ** thing to check, so only do this occasionally - not on every
44293 ** iteration.
44295 if( (idx&0x3ff)==0 ){
44296 int i; /* Loop counter */
44297 for(i=1; i<=idx; i++){
44298 for(iKey=walHash(aPgno[i]); aHash[iKey]; iKey=walNextHash(iKey)){
44299 if( aHash[iKey]==i ) break;
44301 assert( aHash[iKey]==i );
44304 #endif /* SQLITE_ENABLE_EXPENSIVE_ASSERT */
44308 return rc;
44313 ** Recover the wal-index by reading the write-ahead log file.
44315 ** This routine first tries to establish an exclusive lock on the
44316 ** wal-index to prevent other threads/processes from doing anything
44317 ** with the WAL or wal-index while recovery is running. The
44318 ** WAL_RECOVER_LOCK is also held so that other threads will know
44319 ** that this thread is running recovery. If unable to establish
44320 ** the necessary locks, this routine returns SQLITE_BUSY.
44322 static int walIndexRecover(Wal *pWal){
44323 int rc; /* Return Code */
44324 i64 nSize; /* Size of log file */
44325 u32 aFrameCksum[2] = {0, 0};
44326 int iLock; /* Lock offset to lock for checkpoint */
44327 int nLock; /* Number of locks to hold */
44329 /* Obtain an exclusive lock on all byte in the locking range not already
44330 ** locked by the caller. The caller is guaranteed to have locked the
44331 ** WAL_WRITE_LOCK byte, and may have also locked the WAL_CKPT_LOCK byte.
44332 ** If successful, the same bytes that are locked here are unlocked before
44333 ** this function returns.
44335 assert( pWal->ckptLock==1 || pWal->ckptLock==0 );
44336 assert( WAL_ALL_BUT_WRITE==WAL_WRITE_LOCK+1 );
44337 assert( WAL_CKPT_LOCK==WAL_ALL_BUT_WRITE );
44338 assert( pWal->writeLock );
44339 iLock = WAL_ALL_BUT_WRITE + pWal->ckptLock;
44340 nLock = SQLITE_SHM_NLOCK - iLock;
44341 rc = walLockExclusive(pWal, iLock, nLock);
44342 if( rc ){
44343 return rc;
44345 WALTRACE(("WAL%p: recovery begin...\n", pWal));
44347 memset(&pWal->hdr, 0, sizeof(WalIndexHdr));
44349 rc = sqlite3OsFileSize(pWal->pWalFd, &nSize);
44350 if( rc!=SQLITE_OK ){
44351 goto recovery_error;
44354 if( nSize>WAL_HDRSIZE ){
44355 u8 aBuf[WAL_HDRSIZE]; /* Buffer to load WAL header into */
44356 u8 *aFrame = 0; /* Malloc'd buffer to load entire frame */
44357 int szFrame; /* Number of bytes in buffer aFrame[] */
44358 u8 *aData; /* Pointer to data part of aFrame buffer */
44359 int iFrame; /* Index of last frame read */
44360 i64 iOffset; /* Next offset to read from log file */
44361 int szPage; /* Page size according to the log */
44362 u32 magic; /* Magic value read from WAL header */
44363 u32 version; /* Magic value read from WAL header */
44365 /* Read in the WAL header. */
44366 rc = sqlite3OsRead(pWal->pWalFd, aBuf, WAL_HDRSIZE, 0);
44367 if( rc!=SQLITE_OK ){
44368 goto recovery_error;
44371 /* If the database page size is not a power of two, or is greater than
44372 ** SQLITE_MAX_PAGE_SIZE, conclude that the WAL file contains no valid
44373 ** data. Similarly, if the 'magic' value is invalid, ignore the whole
44374 ** WAL file.
44376 magic = sqlite3Get4byte(&aBuf[0]);
44377 szPage = sqlite3Get4byte(&aBuf[8]);
44378 if( (magic&0xFFFFFFFE)!=WAL_MAGIC
44379 || szPage&(szPage-1)
44380 || szPage>SQLITE_MAX_PAGE_SIZE
44381 || szPage<512
44383 goto finished;
44385 pWal->hdr.bigEndCksum = (u8)(magic&0x00000001);
44386 pWal->szPage = szPage;
44387 pWal->nCkpt = sqlite3Get4byte(&aBuf[12]);
44388 memcpy(&pWal->hdr.aSalt, &aBuf[16], 8);
44390 /* Verify that the WAL header checksum is correct */
44391 walChecksumBytes(pWal->hdr.bigEndCksum==SQLITE_BIGENDIAN,
44392 aBuf, WAL_HDRSIZE-2*4, 0, pWal->hdr.aFrameCksum
44394 if( pWal->hdr.aFrameCksum[0]!=sqlite3Get4byte(&aBuf[24])
44395 || pWal->hdr.aFrameCksum[1]!=sqlite3Get4byte(&aBuf[28])
44397 goto finished;
44400 /* Verify that the version number on the WAL format is one that
44401 ** are able to understand */
44402 version = sqlite3Get4byte(&aBuf[4]);
44403 if( version!=WAL_MAX_VERSION ){
44404 rc = SQLITE_CANTOPEN_BKPT;
44405 goto finished;
44408 /* Malloc a buffer to read frames into. */
44409 szFrame = szPage + WAL_FRAME_HDRSIZE;
44410 aFrame = (u8 *)sqlite3_malloc(szFrame);
44411 if( !aFrame ){
44412 rc = SQLITE_NOMEM;
44413 goto recovery_error;
44415 aData = &aFrame[WAL_FRAME_HDRSIZE];
44417 /* Read all frames from the log file. */
44418 iFrame = 0;
44419 for(iOffset=WAL_HDRSIZE; (iOffset+szFrame)<=nSize; iOffset+=szFrame){
44420 u32 pgno; /* Database page number for frame */
44421 u32 nTruncate; /* dbsize field from frame header */
44422 int isValid; /* True if this frame is valid */
44424 /* Read and decode the next log frame. */
44425 rc = sqlite3OsRead(pWal->pWalFd, aFrame, szFrame, iOffset);
44426 if( rc!=SQLITE_OK ) break;
44427 isValid = walDecodeFrame(pWal, &pgno, &nTruncate, aData, aFrame);
44428 if( !isValid ) break;
44429 rc = walIndexAppend(pWal, ++iFrame, pgno);
44430 if( rc!=SQLITE_OK ) break;
44432 /* If nTruncate is non-zero, this is a commit record. */
44433 if( nTruncate ){
44434 pWal->hdr.mxFrame = iFrame;
44435 pWal->hdr.nPage = nTruncate;
44436 pWal->hdr.szPage = (u16)((szPage&0xff00) | (szPage>>16));
44437 testcase( szPage<=32768 );
44438 testcase( szPage>=65536 );
44439 aFrameCksum[0] = pWal->hdr.aFrameCksum[0];
44440 aFrameCksum[1] = pWal->hdr.aFrameCksum[1];
44444 sqlite3_free(aFrame);
44447 finished:
44448 if( rc==SQLITE_OK ){
44449 volatile WalCkptInfo *pInfo;
44450 int i;
44451 pWal->hdr.aFrameCksum[0] = aFrameCksum[0];
44452 pWal->hdr.aFrameCksum[1] = aFrameCksum[1];
44453 walIndexWriteHdr(pWal);
44455 /* Reset the checkpoint-header. This is safe because this thread is
44456 ** currently holding locks that exclude all other readers, writers and
44457 ** checkpointers.
44459 pInfo = walCkptInfo(pWal);
44460 pInfo->nBackfill = 0;
44461 pInfo->aReadMark[0] = 0;
44462 for(i=1; i<WAL_NREADER; i++) pInfo->aReadMark[i] = READMARK_NOT_USED;
44464 /* If more than one frame was recovered from the log file, report an
44465 ** event via sqlite3_log(). This is to help with identifying performance
44466 ** problems caused by applications routinely shutting down without
44467 ** checkpointing the log file.
44469 if( pWal->hdr.nPage ){
44470 sqlite3_log(SQLITE_OK, "Recovered %d frames from WAL file %s",
44471 pWal->hdr.nPage, pWal->zWalName
44476 recovery_error:
44477 WALTRACE(("WAL%p: recovery %s\n", pWal, rc ? "failed" : "ok"));
44478 walUnlockExclusive(pWal, iLock, nLock);
44479 return rc;
44483 ** Close an open wal-index.
44485 static void walIndexClose(Wal *pWal, int isDelete){
44486 if( pWal->exclusiveMode==WAL_HEAPMEMORY_MODE ){
44487 int i;
44488 for(i=0; i<pWal->nWiData; i++){
44489 sqlite3_free((void *)pWal->apWiData[i]);
44490 pWal->apWiData[i] = 0;
44492 }else{
44493 sqlite3OsShmUnmap(pWal->pDbFd, isDelete);
44498 ** Open a connection to the WAL file zWalName. The database file must
44499 ** already be opened on connection pDbFd. The buffer that zWalName points
44500 ** to must remain valid for the lifetime of the returned Wal* handle.
44502 ** A SHARED lock should be held on the database file when this function
44503 ** is called. The purpose of this SHARED lock is to prevent any other
44504 ** client from unlinking the WAL or wal-index file. If another process
44505 ** were to do this just after this client opened one of these files, the
44506 ** system would be badly broken.
44508 ** If the log file is successfully opened, SQLITE_OK is returned and
44509 ** *ppWal is set to point to a new WAL handle. If an error occurs,
44510 ** an SQLite error code is returned and *ppWal is left unmodified.
44512 SQLITE_PRIVATE int sqlite3WalOpen(
44513 sqlite3_vfs *pVfs, /* vfs module to open wal and wal-index */
44514 sqlite3_file *pDbFd, /* The open database file */
44515 const char *zWalName, /* Name of the WAL file */
44516 int bNoShm, /* True to run in heap-memory mode */
44517 Wal **ppWal /* OUT: Allocated Wal handle */
44519 int rc; /* Return Code */
44520 Wal *pRet; /* Object to allocate and return */
44521 int flags; /* Flags passed to OsOpen() */
44523 assert( zWalName && zWalName[0] );
44524 assert( pDbFd );
44526 /* In the amalgamation, the os_unix.c and os_win.c source files come before
44527 ** this source file. Verify that the #defines of the locking byte offsets
44528 ** in os_unix.c and os_win.c agree with the WALINDEX_LOCK_OFFSET value.
44530 #ifdef WIN_SHM_BASE
44531 assert( WIN_SHM_BASE==WALINDEX_LOCK_OFFSET );
44532 #endif
44533 #ifdef UNIX_SHM_BASE
44534 assert( UNIX_SHM_BASE==WALINDEX_LOCK_OFFSET );
44535 #endif
44538 /* Allocate an instance of struct Wal to return. */
44539 *ppWal = 0;
44540 pRet = (Wal*)sqlite3MallocZero(sizeof(Wal) + pVfs->szOsFile);
44541 if( !pRet ){
44542 return SQLITE_NOMEM;
44545 pRet->pVfs = pVfs;
44546 pRet->pWalFd = (sqlite3_file *)&pRet[1];
44547 pRet->pDbFd = pDbFd;
44548 pRet->readLock = -1;
44549 pRet->zWalName = zWalName;
44550 pRet->exclusiveMode = (bNoShm ? WAL_HEAPMEMORY_MODE: WAL_NORMAL_MODE);
44552 /* Open file handle on the write-ahead log file. */
44553 flags = (SQLITE_OPEN_READWRITE|SQLITE_OPEN_CREATE|SQLITE_OPEN_WAL);
44554 rc = sqlite3OsOpen(pVfs, zWalName, pRet->pWalFd, flags, &flags);
44555 if( rc==SQLITE_OK && flags&SQLITE_OPEN_READONLY ){
44556 pRet->readOnly = 1;
44559 if( rc!=SQLITE_OK ){
44560 walIndexClose(pRet, 0);
44561 sqlite3OsClose(pRet->pWalFd);
44562 sqlite3_free(pRet);
44563 }else{
44564 *ppWal = pRet;
44565 WALTRACE(("WAL%d: opened\n", pRet));
44567 return rc;
44571 ** Find the smallest page number out of all pages held in the WAL that
44572 ** has not been returned by any prior invocation of this method on the
44573 ** same WalIterator object. Write into *piFrame the frame index where
44574 ** that page was last written into the WAL. Write into *piPage the page
44575 ** number.
44577 ** Return 0 on success. If there are no pages in the WAL with a page
44578 ** number larger than *piPage, then return 1.
44580 static int walIteratorNext(
44581 WalIterator *p, /* Iterator */
44582 u32 *piPage, /* OUT: The page number of the next page */
44583 u32 *piFrame /* OUT: Wal frame index of next page */
44585 u32 iMin; /* Result pgno must be greater than iMin */
44586 u32 iRet = 0xFFFFFFFF; /* 0xffffffff is never a valid page number */
44587 int i; /* For looping through segments */
44589 iMin = p->iPrior;
44590 assert( iMin<0xffffffff );
44591 for(i=p->nSegment-1; i>=0; i--){
44592 struct WalSegment *pSegment = &p->aSegment[i];
44593 while( pSegment->iNext<pSegment->nEntry ){
44594 u32 iPg = pSegment->aPgno[pSegment->aIndex[pSegment->iNext]];
44595 if( iPg>iMin ){
44596 if( iPg<iRet ){
44597 iRet = iPg;
44598 *piFrame = pSegment->iZero + pSegment->aIndex[pSegment->iNext];
44600 break;
44602 pSegment->iNext++;
44606 *piPage = p->iPrior = iRet;
44607 return (iRet==0xFFFFFFFF);
44611 ** This function merges two sorted lists into a single sorted list.
44613 ** aLeft[] and aRight[] are arrays of indices. The sort key is
44614 ** aContent[aLeft[]] and aContent[aRight[]]. Upon entry, the following
44615 ** is guaranteed for all J<K:
44617 ** aContent[aLeft[J]] < aContent[aLeft[K]]
44618 ** aContent[aRight[J]] < aContent[aRight[K]]
44620 ** This routine overwrites aRight[] with a new (probably longer) sequence
44621 ** of indices such that the aRight[] contains every index that appears in
44622 ** either aLeft[] or the old aRight[] and such that the second condition
44623 ** above is still met.
44625 ** The aContent[aLeft[X]] values will be unique for all X. And the
44626 ** aContent[aRight[X]] values will be unique too. But there might be
44627 ** one or more combinations of X and Y such that
44629 ** aLeft[X]!=aRight[Y] && aContent[aLeft[X]] == aContent[aRight[Y]]
44631 ** When that happens, omit the aLeft[X] and use the aRight[Y] index.
44633 static void walMerge(
44634 const u32 *aContent, /* Pages in wal - keys for the sort */
44635 ht_slot *aLeft, /* IN: Left hand input list */
44636 int nLeft, /* IN: Elements in array *paLeft */
44637 ht_slot **paRight, /* IN/OUT: Right hand input list */
44638 int *pnRight, /* IN/OUT: Elements in *paRight */
44639 ht_slot *aTmp /* Temporary buffer */
44641 int iLeft = 0; /* Current index in aLeft */
44642 int iRight = 0; /* Current index in aRight */
44643 int iOut = 0; /* Current index in output buffer */
44644 int nRight = *pnRight;
44645 ht_slot *aRight = *paRight;
44647 assert( nLeft>0 && nRight>0 );
44648 while( iRight<nRight || iLeft<nLeft ){
44649 ht_slot logpage;
44650 Pgno dbpage;
44652 if( (iLeft<nLeft)
44653 && (iRight>=nRight || aContent[aLeft[iLeft]]<aContent[aRight[iRight]])
44655 logpage = aLeft[iLeft++];
44656 }else{
44657 logpage = aRight[iRight++];
44659 dbpage = aContent[logpage];
44661 aTmp[iOut++] = logpage;
44662 if( iLeft<nLeft && aContent[aLeft[iLeft]]==dbpage ) iLeft++;
44664 assert( iLeft>=nLeft || aContent[aLeft[iLeft]]>dbpage );
44665 assert( iRight>=nRight || aContent[aRight[iRight]]>dbpage );
44668 *paRight = aLeft;
44669 *pnRight = iOut;
44670 memcpy(aLeft, aTmp, sizeof(aTmp[0])*iOut);
44674 ** Sort the elements in list aList using aContent[] as the sort key.
44675 ** Remove elements with duplicate keys, preferring to keep the
44676 ** larger aList[] values.
44678 ** The aList[] entries are indices into aContent[]. The values in
44679 ** aList[] are to be sorted so that for all J<K:
44681 ** aContent[aList[J]] < aContent[aList[K]]
44683 ** For any X and Y such that
44685 ** aContent[aList[X]] == aContent[aList[Y]]
44687 ** Keep the larger of the two values aList[X] and aList[Y] and discard
44688 ** the smaller.
44690 static void walMergesort(
44691 const u32 *aContent, /* Pages in wal */
44692 ht_slot *aBuffer, /* Buffer of at least *pnList items to use */
44693 ht_slot *aList, /* IN/OUT: List to sort */
44694 int *pnList /* IN/OUT: Number of elements in aList[] */
44696 struct Sublist {
44697 int nList; /* Number of elements in aList */
44698 ht_slot *aList; /* Pointer to sub-list content */
44701 const int nList = *pnList; /* Size of input list */
44702 int nMerge = 0; /* Number of elements in list aMerge */
44703 ht_slot *aMerge = 0; /* List to be merged */
44704 int iList; /* Index into input list */
44705 int iSub = 0; /* Index into aSub array */
44706 struct Sublist aSub[13]; /* Array of sub-lists */
44708 memset(aSub, 0, sizeof(aSub));
44709 assert( nList<=HASHTABLE_NPAGE && nList>0 );
44710 assert( HASHTABLE_NPAGE==(1<<(ArraySize(aSub)-1)) );
44712 for(iList=0; iList<nList; iList++){
44713 nMerge = 1;
44714 aMerge = &aList[iList];
44715 for(iSub=0; iList & (1<<iSub); iSub++){
44716 struct Sublist *p = &aSub[iSub];
44717 assert( p->aList && p->nList<=(1<<iSub) );
44718 assert( p->aList==&aList[iList&~((2<<iSub)-1)] );
44719 walMerge(aContent, p->aList, p->nList, &aMerge, &nMerge, aBuffer);
44721 aSub[iSub].aList = aMerge;
44722 aSub[iSub].nList = nMerge;
44725 for(iSub++; iSub<ArraySize(aSub); iSub++){
44726 if( nList & (1<<iSub) ){
44727 struct Sublist *p = &aSub[iSub];
44728 assert( p->nList<=(1<<iSub) );
44729 assert( p->aList==&aList[nList&~((2<<iSub)-1)] );
44730 walMerge(aContent, p->aList, p->nList, &aMerge, &nMerge, aBuffer);
44733 assert( aMerge==aList );
44734 *pnList = nMerge;
44736 #ifdef SQLITE_DEBUG
44738 int i;
44739 for(i=1; i<*pnList; i++){
44740 assert( aContent[aList[i]] > aContent[aList[i-1]] );
44743 #endif
44747 ** Free an iterator allocated by walIteratorInit().
44749 static void walIteratorFree(WalIterator *p){
44750 sqlite3ScratchFree(p);
44754 ** Construct a WalInterator object that can be used to loop over all
44755 ** pages in the WAL in ascending order. The caller must hold the checkpoint
44756 ** lock.
44758 ** On success, make *pp point to the newly allocated WalInterator object
44759 ** return SQLITE_OK. Otherwise, return an error code. If this routine
44760 ** returns an error, the value of *pp is undefined.
44762 ** The calling routine should invoke walIteratorFree() to destroy the
44763 ** WalIterator object when it has finished with it.
44765 static int walIteratorInit(Wal *pWal, WalIterator **pp){
44766 WalIterator *p; /* Return value */
44767 int nSegment; /* Number of segments to merge */
44768 u32 iLast; /* Last frame in log */
44769 int nByte; /* Number of bytes to allocate */
44770 int i; /* Iterator variable */
44771 ht_slot *aTmp; /* Temp space used by merge-sort */
44772 int rc = SQLITE_OK; /* Return Code */
44774 /* This routine only runs while holding the checkpoint lock. And
44775 ** it only runs if there is actually content in the log (mxFrame>0).
44777 assert( pWal->ckptLock && pWal->hdr.mxFrame>0 );
44778 iLast = pWal->hdr.mxFrame;
44780 /* Allocate space for the WalIterator object. */
44781 nSegment = walFramePage(iLast) + 1;
44782 nByte = sizeof(WalIterator)
44783 + (nSegment-1)*sizeof(struct WalSegment)
44784 + iLast*sizeof(ht_slot);
44785 p = (WalIterator *)sqlite3ScratchMalloc(nByte);
44786 if( !p ){
44787 return SQLITE_NOMEM;
44789 memset(p, 0, nByte);
44790 p->nSegment = nSegment;
44792 /* Allocate temporary space used by the merge-sort routine. This block
44793 ** of memory will be freed before this function returns.
44795 aTmp = (ht_slot *)sqlite3ScratchMalloc(
44796 sizeof(ht_slot) * (iLast>HASHTABLE_NPAGE?HASHTABLE_NPAGE:iLast)
44798 if( !aTmp ){
44799 rc = SQLITE_NOMEM;
44802 for(i=0; rc==SQLITE_OK && i<nSegment; i++){
44803 volatile ht_slot *aHash;
44804 u32 iZero;
44805 volatile u32 *aPgno;
44807 rc = walHashGet(pWal, i, &aHash, &aPgno, &iZero);
44808 if( rc==SQLITE_OK ){
44809 int j; /* Counter variable */
44810 int nEntry; /* Number of entries in this segment */
44811 ht_slot *aIndex; /* Sorted index for this segment */
44813 aPgno++;
44814 if( (i+1)==nSegment ){
44815 nEntry = (int)(iLast - iZero);
44816 }else{
44817 nEntry = (int)((u32*)aHash - (u32*)aPgno);
44819 aIndex = &((ht_slot *)&p->aSegment[p->nSegment])[iZero];
44820 iZero++;
44822 for(j=0; j<nEntry; j++){
44823 aIndex[j] = (ht_slot)j;
44825 walMergesort((u32 *)aPgno, aTmp, aIndex, &nEntry);
44826 p->aSegment[i].iZero = iZero;
44827 p->aSegment[i].nEntry = nEntry;
44828 p->aSegment[i].aIndex = aIndex;
44829 p->aSegment[i].aPgno = (u32 *)aPgno;
44832 sqlite3ScratchFree(aTmp);
44834 if( rc!=SQLITE_OK ){
44835 walIteratorFree(p);
44837 *pp = p;
44838 return rc;
44842 ** Attempt to obtain the exclusive WAL lock defined by parameters lockIdx and
44843 ** n. If the attempt fails and parameter xBusy is not NULL, then it is a
44844 ** busy-handler function. Invoke it and retry the lock until either the
44845 ** lock is successfully obtained or the busy-handler returns 0.
44847 static int walBusyLock(
44848 Wal *pWal, /* WAL connection */
44849 int (*xBusy)(void*), /* Function to call when busy */
44850 void *pBusyArg, /* Context argument for xBusyHandler */
44851 int lockIdx, /* Offset of first byte to lock */
44852 int n /* Number of bytes to lock */
44854 int rc;
44855 do {
44856 rc = walLockExclusive(pWal, lockIdx, n);
44857 }while( xBusy && rc==SQLITE_BUSY && xBusy(pBusyArg) );
44858 return rc;
44862 ** The cache of the wal-index header must be valid to call this function.
44863 ** Return the page-size in bytes used by the database.
44865 static int walPagesize(Wal *pWal){
44866 return (pWal->hdr.szPage&0xfe00) + ((pWal->hdr.szPage&0x0001)<<16);
44870 ** Copy as much content as we can from the WAL back into the database file
44871 ** in response to an sqlite3_wal_checkpoint() request or the equivalent.
44873 ** The amount of information copies from WAL to database might be limited
44874 ** by active readers. This routine will never overwrite a database page
44875 ** that a concurrent reader might be using.
44877 ** All I/O barrier operations (a.k.a fsyncs) occur in this routine when
44878 ** SQLite is in WAL-mode in synchronous=NORMAL. That means that if
44879 ** checkpoints are always run by a background thread or background
44880 ** process, foreground threads will never block on a lengthy fsync call.
44882 ** Fsync is called on the WAL before writing content out of the WAL and
44883 ** into the database. This ensures that if the new content is persistent
44884 ** in the WAL and can be recovered following a power-loss or hard reset.
44886 ** Fsync is also called on the database file if (and only if) the entire
44887 ** WAL content is copied into the database file. This second fsync makes
44888 ** it safe to delete the WAL since the new content will persist in the
44889 ** database file.
44891 ** This routine uses and updates the nBackfill field of the wal-index header.
44892 ** This is the only routine tha will increase the value of nBackfill.
44893 ** (A WAL reset or recovery will revert nBackfill to zero, but not increase
44894 ** its value.)
44896 ** The caller must be holding sufficient locks to ensure that no other
44897 ** checkpoint is running (in any other thread or process) at the same
44898 ** time.
44900 static int walCheckpoint(
44901 Wal *pWal, /* Wal connection */
44902 int eMode, /* One of PASSIVE, FULL or RESTART */
44903 int (*xBusyCall)(void*), /* Function to call when busy */
44904 void *pBusyArg, /* Context argument for xBusyHandler */
44905 int sync_flags, /* Flags for OsSync() (or 0) */
44906 u8 *zBuf /* Temporary buffer to use */
44908 int rc; /* Return code */
44909 int szPage; /* Database page-size */
44910 WalIterator *pIter = 0; /* Wal iterator context */
44911 u32 iDbpage = 0; /* Next database page to write */
44912 u32 iFrame = 0; /* Wal frame containing data for iDbpage */
44913 u32 mxSafeFrame; /* Max frame that can be backfilled */
44914 u32 mxPage; /* Max database page to write */
44915 int i; /* Loop counter */
44916 volatile WalCkptInfo *pInfo; /* The checkpoint status information */
44917 int (*xBusy)(void*) = 0; /* Function to call when waiting for locks */
44919 szPage = walPagesize(pWal);
44920 testcase( szPage<=32768 );
44921 testcase( szPage>=65536 );
44922 pInfo = walCkptInfo(pWal);
44923 if( pInfo->nBackfill>=pWal->hdr.mxFrame ) return SQLITE_OK;
44925 /* Allocate the iterator */
44926 rc = walIteratorInit(pWal, &pIter);
44927 if( rc!=SQLITE_OK ){
44928 return rc;
44930 assert( pIter );
44932 if( eMode!=SQLITE_CHECKPOINT_PASSIVE ) xBusy = xBusyCall;
44934 /* Compute in mxSafeFrame the index of the last frame of the WAL that is
44935 ** safe to write into the database. Frames beyond mxSafeFrame might
44936 ** overwrite database pages that are in use by active readers and thus
44937 ** cannot be backfilled from the WAL.
44939 mxSafeFrame = pWal->hdr.mxFrame;
44940 mxPage = pWal->hdr.nPage;
44941 for(i=1; i<WAL_NREADER; i++){
44942 u32 y = pInfo->aReadMark[i];
44943 if( mxSafeFrame>y ){
44944 assert( y<=pWal->hdr.mxFrame );
44945 rc = walBusyLock(pWal, xBusy, pBusyArg, WAL_READ_LOCK(i), 1);
44946 if( rc==SQLITE_OK ){
44947 pInfo->aReadMark[i] = READMARK_NOT_USED;
44948 walUnlockExclusive(pWal, WAL_READ_LOCK(i), 1);
44949 }else if( rc==SQLITE_BUSY ){
44950 mxSafeFrame = y;
44951 xBusy = 0;
44952 }else{
44953 goto walcheckpoint_out;
44958 if( pInfo->nBackfill<mxSafeFrame
44959 && (rc = walBusyLock(pWal, xBusy, pBusyArg, WAL_READ_LOCK(0), 1))==SQLITE_OK
44961 i64 nSize; /* Current size of database file */
44962 u32 nBackfill = pInfo->nBackfill;
44964 /* Sync the WAL to disk */
44965 if( sync_flags ){
44966 rc = sqlite3OsSync(pWal->pWalFd, sync_flags);
44969 /* If the database file may grow as a result of this checkpoint, hint
44970 ** about the eventual size of the db file to the VFS layer.
44972 if( rc==SQLITE_OK ){
44973 i64 nReq = ((i64)mxPage * szPage);
44974 rc = sqlite3OsFileSize(pWal->pDbFd, &nSize);
44975 if( rc==SQLITE_OK && nSize<nReq ){
44976 sqlite3OsFileControl(pWal->pDbFd, SQLITE_FCNTL_SIZE_HINT, &nReq);
44980 /* Iterate through the contents of the WAL, copying data to the db file. */
44981 while( rc==SQLITE_OK && 0==walIteratorNext(pIter, &iDbpage, &iFrame) ){
44982 i64 iOffset;
44983 assert( walFramePgno(pWal, iFrame)==iDbpage );
44984 if( iFrame<=nBackfill || iFrame>mxSafeFrame || iDbpage>mxPage ) continue;
44985 iOffset = walFrameOffset(iFrame, szPage) + WAL_FRAME_HDRSIZE;
44986 /* testcase( IS_BIG_INT(iOffset) ); // requires a 4GiB WAL file */
44987 rc = sqlite3OsRead(pWal->pWalFd, zBuf, szPage, iOffset);
44988 if( rc!=SQLITE_OK ) break;
44989 iOffset = (iDbpage-1)*(i64)szPage;
44990 testcase( IS_BIG_INT(iOffset) );
44991 rc = sqlite3OsWrite(pWal->pDbFd, zBuf, szPage, iOffset);
44992 if( rc!=SQLITE_OK ) break;
44995 /* If work was actually accomplished... */
44996 if( rc==SQLITE_OK ){
44997 if( mxSafeFrame==walIndexHdr(pWal)->mxFrame ){
44998 i64 szDb = pWal->hdr.nPage*(i64)szPage;
44999 testcase( IS_BIG_INT(szDb) );
45000 rc = sqlite3OsTruncate(pWal->pDbFd, szDb);
45001 if( rc==SQLITE_OK && sync_flags ){
45002 rc = sqlite3OsSync(pWal->pDbFd, sync_flags);
45005 if( rc==SQLITE_OK ){
45006 pInfo->nBackfill = mxSafeFrame;
45010 /* Release the reader lock held while backfilling */
45011 walUnlockExclusive(pWal, WAL_READ_LOCK(0), 1);
45014 if( rc==SQLITE_BUSY ){
45015 /* Reset the return code so as not to report a checkpoint failure
45016 ** just because there are active readers. */
45017 rc = SQLITE_OK;
45020 /* If this is an SQLITE_CHECKPOINT_RESTART operation, and the entire wal
45021 ** file has been copied into the database file, then block until all
45022 ** readers have finished using the wal file. This ensures that the next
45023 ** process to write to the database restarts the wal file.
45025 if( rc==SQLITE_OK && eMode!=SQLITE_CHECKPOINT_PASSIVE ){
45026 assert( pWal->writeLock );
45027 if( pInfo->nBackfill<pWal->hdr.mxFrame ){
45028 rc = SQLITE_BUSY;
45029 }else if( eMode==SQLITE_CHECKPOINT_RESTART ){
45030 assert( mxSafeFrame==pWal->hdr.mxFrame );
45031 rc = walBusyLock(pWal, xBusy, pBusyArg, WAL_READ_LOCK(1), WAL_NREADER-1);
45032 if( rc==SQLITE_OK ){
45033 walUnlockExclusive(pWal, WAL_READ_LOCK(1), WAL_NREADER-1);
45038 walcheckpoint_out:
45039 walIteratorFree(pIter);
45040 return rc;
45044 ** Close a connection to a log file.
45046 SQLITE_PRIVATE int sqlite3WalClose(
45047 Wal *pWal, /* Wal to close */
45048 int sync_flags, /* Flags to pass to OsSync() (or 0) */
45049 int nBuf,
45050 u8 *zBuf /* Buffer of at least nBuf bytes */
45052 int rc = SQLITE_OK;
45053 if( pWal ){
45054 int isDelete = 0; /* True to unlink wal and wal-index files */
45056 /* If an EXCLUSIVE lock can be obtained on the database file (using the
45057 ** ordinary, rollback-mode locking methods, this guarantees that the
45058 ** connection associated with this log file is the only connection to
45059 ** the database. In this case checkpoint the database and unlink both
45060 ** the wal and wal-index files.
45062 ** The EXCLUSIVE lock is not released before returning.
45064 rc = sqlite3OsLock(pWal->pDbFd, SQLITE_LOCK_EXCLUSIVE);
45065 if( rc==SQLITE_OK ){
45066 if( pWal->exclusiveMode==WAL_NORMAL_MODE ){
45067 pWal->exclusiveMode = WAL_EXCLUSIVE_MODE;
45069 rc = sqlite3WalCheckpoint(
45070 pWal, SQLITE_CHECKPOINT_PASSIVE, 0, 0, sync_flags, nBuf, zBuf, 0, 0
45072 if( rc==SQLITE_OK ){
45073 isDelete = 1;
45077 walIndexClose(pWal, isDelete);
45078 sqlite3OsClose(pWal->pWalFd);
45079 if( isDelete ){
45080 sqlite3OsDelete(pWal->pVfs, pWal->zWalName, 0);
45082 WALTRACE(("WAL%p: closed\n", pWal));
45083 sqlite3_free((void *)pWal->apWiData);
45084 sqlite3_free(pWal);
45086 return rc;
45090 ** Try to read the wal-index header. Return 0 on success and 1 if
45091 ** there is a problem.
45093 ** The wal-index is in shared memory. Another thread or process might
45094 ** be writing the header at the same time this procedure is trying to
45095 ** read it, which might result in inconsistency. A dirty read is detected
45096 ** by verifying that both copies of the header are the same and also by
45097 ** a checksum on the header.
45099 ** If and only if the read is consistent and the header is different from
45100 ** pWal->hdr, then pWal->hdr is updated to the content of the new header
45101 ** and *pChanged is set to 1.
45103 ** If the checksum cannot be verified return non-zero. If the header
45104 ** is read successfully and the checksum verified, return zero.
45106 static int walIndexTryHdr(Wal *pWal, int *pChanged){
45107 u32 aCksum[2]; /* Checksum on the header content */
45108 WalIndexHdr h1, h2; /* Two copies of the header content */
45109 WalIndexHdr volatile *aHdr; /* Header in shared memory */
45111 /* The first page of the wal-index must be mapped at this point. */
45112 assert( pWal->nWiData>0 && pWal->apWiData[0] );
45114 /* Read the header. This might happen concurrently with a write to the
45115 ** same area of shared memory on a different CPU in a SMP,
45116 ** meaning it is possible that an inconsistent snapshot is read
45117 ** from the file. If this happens, return non-zero.
45119 ** There are two copies of the header at the beginning of the wal-index.
45120 ** When reading, read [0] first then [1]. Writes are in the reverse order.
45121 ** Memory barriers are used to prevent the compiler or the hardware from
45122 ** reordering the reads and writes.
45124 aHdr = walIndexHdr(pWal);
45125 memcpy(&h1, (void *)&aHdr[0], sizeof(h1));
45126 walShmBarrier(pWal);
45127 memcpy(&h2, (void *)&aHdr[1], sizeof(h2));
45129 if( memcmp(&h1, &h2, sizeof(h1))!=0 ){
45130 return 1; /* Dirty read */
45132 if( h1.isInit==0 ){
45133 return 1; /* Malformed header - probably all zeros */
45135 walChecksumBytes(1, (u8*)&h1, sizeof(h1)-sizeof(h1.aCksum), 0, aCksum);
45136 if( aCksum[0]!=h1.aCksum[0] || aCksum[1]!=h1.aCksum[1] ){
45137 return 1; /* Checksum does not match */
45140 if( memcmp(&pWal->hdr, &h1, sizeof(WalIndexHdr)) ){
45141 *pChanged = 1;
45142 memcpy(&pWal->hdr, &h1, sizeof(WalIndexHdr));
45143 pWal->szPage = (pWal->hdr.szPage&0xfe00) + ((pWal->hdr.szPage&0x0001)<<16);
45144 testcase( pWal->szPage<=32768 );
45145 testcase( pWal->szPage>=65536 );
45148 /* The header was successfully read. Return zero. */
45149 return 0;
45153 ** Read the wal-index header from the wal-index and into pWal->hdr.
45154 ** If the wal-header appears to be corrupt, try to reconstruct the
45155 ** wal-index from the WAL before returning.
45157 ** Set *pChanged to 1 if the wal-index header value in pWal->hdr is
45158 ** changed by this opertion. If pWal->hdr is unchanged, set *pChanged
45159 ** to 0.
45161 ** If the wal-index header is successfully read, return SQLITE_OK.
45162 ** Otherwise an SQLite error code.
45164 static int walIndexReadHdr(Wal *pWal, int *pChanged){
45165 int rc; /* Return code */
45166 int badHdr; /* True if a header read failed */
45167 volatile u32 *page0; /* Chunk of wal-index containing header */
45169 /* Ensure that page 0 of the wal-index (the page that contains the
45170 ** wal-index header) is mapped. Return early if an error occurs here.
45172 assert( pChanged );
45173 rc = walIndexPage(pWal, 0, &page0);
45174 if( rc!=SQLITE_OK ){
45175 return rc;
45177 assert( page0 || pWal->writeLock==0 );
45179 /* If the first page of the wal-index has been mapped, try to read the
45180 ** wal-index header immediately, without holding any lock. This usually
45181 ** works, but may fail if the wal-index header is corrupt or currently
45182 ** being modified by another thread or process.
45184 badHdr = (page0 ? walIndexTryHdr(pWal, pChanged) : 1);
45186 /* If the first attempt failed, it might have been due to a race
45187 ** with a writer. So get a WRITE lock and try again.
45189 assert( badHdr==0 || pWal->writeLock==0 );
45190 if( badHdr && SQLITE_OK==(rc = walLockExclusive(pWal, WAL_WRITE_LOCK, 1)) ){
45191 pWal->writeLock = 1;
45192 if( SQLITE_OK==(rc = walIndexPage(pWal, 0, &page0)) ){
45193 badHdr = walIndexTryHdr(pWal, pChanged);
45194 if( badHdr ){
45195 /* If the wal-index header is still malformed even while holding
45196 ** a WRITE lock, it can only mean that the header is corrupted and
45197 ** needs to be reconstructed. So run recovery to do exactly that.
45199 rc = walIndexRecover(pWal);
45200 *pChanged = 1;
45203 pWal->writeLock = 0;
45204 walUnlockExclusive(pWal, WAL_WRITE_LOCK, 1);
45207 /* If the header is read successfully, check the version number to make
45208 ** sure the wal-index was not constructed with some future format that
45209 ** this version of SQLite cannot understand.
45211 if( badHdr==0 && pWal->hdr.iVersion!=WALINDEX_MAX_VERSION ){
45212 rc = SQLITE_CANTOPEN_BKPT;
45215 return rc;
45219 ** This is the value that walTryBeginRead returns when it needs to
45220 ** be retried.
45222 #define WAL_RETRY (-1)
45225 ** Attempt to start a read transaction. This might fail due to a race or
45226 ** other transient condition. When that happens, it returns WAL_RETRY to
45227 ** indicate to the caller that it is safe to retry immediately.
45229 ** On success return SQLITE_OK. On a permanent failure (such an
45230 ** I/O error or an SQLITE_BUSY because another process is running
45231 ** recovery) return a positive error code.
45233 ** The useWal parameter is true to force the use of the WAL and disable
45234 ** the case where the WAL is bypassed because it has been completely
45235 ** checkpointed. If useWal==0 then this routine calls walIndexReadHdr()
45236 ** to make a copy of the wal-index header into pWal->hdr. If the
45237 ** wal-index header has changed, *pChanged is set to 1 (as an indication
45238 ** to the caller that the local paget cache is obsolete and needs to be
45239 ** flushed.) When useWal==1, the wal-index header is assumed to already
45240 ** be loaded and the pChanged parameter is unused.
45242 ** The caller must set the cnt parameter to the number of prior calls to
45243 ** this routine during the current read attempt that returned WAL_RETRY.
45244 ** This routine will start taking more aggressive measures to clear the
45245 ** race conditions after multiple WAL_RETRY returns, and after an excessive
45246 ** number of errors will ultimately return SQLITE_PROTOCOL. The
45247 ** SQLITE_PROTOCOL return indicates that some other process has gone rogue
45248 ** and is not honoring the locking protocol. There is a vanishingly small
45249 ** chance that SQLITE_PROTOCOL could be returned because of a run of really
45250 ** bad luck when there is lots of contention for the wal-index, but that
45251 ** possibility is so small that it can be safely neglected, we believe.
45253 ** On success, this routine obtains a read lock on
45254 ** WAL_READ_LOCK(pWal->readLock). The pWal->readLock integer is
45255 ** in the range 0 <= pWal->readLock < WAL_NREADER. If pWal->readLock==(-1)
45256 ** that means the Wal does not hold any read lock. The reader must not
45257 ** access any database page that is modified by a WAL frame up to and
45258 ** including frame number aReadMark[pWal->readLock]. The reader will
45259 ** use WAL frames up to and including pWal->hdr.mxFrame if pWal->readLock>0
45260 ** Or if pWal->readLock==0, then the reader will ignore the WAL
45261 ** completely and get all content directly from the database file.
45262 ** If the useWal parameter is 1 then the WAL will never be ignored and
45263 ** this routine will always set pWal->readLock>0 on success.
45264 ** When the read transaction is completed, the caller must release the
45265 ** lock on WAL_READ_LOCK(pWal->readLock) and set pWal->readLock to -1.
45267 ** This routine uses the nBackfill and aReadMark[] fields of the header
45268 ** to select a particular WAL_READ_LOCK() that strives to let the
45269 ** checkpoint process do as much work as possible. This routine might
45270 ** update values of the aReadMark[] array in the header, but if it does
45271 ** so it takes care to hold an exclusive lock on the corresponding
45272 ** WAL_READ_LOCK() while changing values.
45274 static int walTryBeginRead(Wal *pWal, int *pChanged, int useWal, int cnt){
45275 volatile WalCkptInfo *pInfo; /* Checkpoint information in wal-index */
45276 u32 mxReadMark; /* Largest aReadMark[] value */
45277 int mxI; /* Index of largest aReadMark[] value */
45278 int i; /* Loop counter */
45279 int rc = SQLITE_OK; /* Return code */
45281 assert( pWal->readLock<0 ); /* Not currently locked */
45283 /* Take steps to avoid spinning forever if there is a protocol error.
45285 ** Circumstances that cause a RETRY should only last for the briefest
45286 ** instances of time. No I/O or other system calls are done while the
45287 ** locks are held, so the locks should not be held for very long. But
45288 ** if we are unlucky, another process that is holding a lock might get
45289 ** paged out or take a page-fault that is time-consuming to resolve,
45290 ** during the few nanoseconds that it is holding the lock. In that case,
45291 ** it might take longer than normal for the lock to free.
45293 ** After 5 RETRYs, we begin calling sqlite3OsSleep(). The first few
45294 ** calls to sqlite3OsSleep() have a delay of 1 microsecond. Really this
45295 ** is more of a scheduler yield than an actual delay. But on the 10th
45296 ** an subsequent retries, the delays start becoming longer and longer,
45297 ** so that on the 100th (and last) RETRY we delay for 21 milliseconds.
45298 ** The total delay time before giving up is less than 1 second.
45300 if( cnt>5 ){
45301 int nDelay = 1; /* Pause time in microseconds */
45302 if( cnt>100 ){
45303 VVA_ONLY( pWal->lockError = 1; )
45304 return SQLITE_PROTOCOL;
45306 if( cnt>=10 ) nDelay = (cnt-9)*238; /* Max delay 21ms. Total delay 996ms */
45307 sqlite3OsSleep(pWal->pVfs, nDelay);
45310 if( !useWal ){
45311 rc = walIndexReadHdr(pWal, pChanged);
45312 if( rc==SQLITE_BUSY ){
45313 /* If there is not a recovery running in another thread or process
45314 ** then convert BUSY errors to WAL_RETRY. If recovery is known to
45315 ** be running, convert BUSY to BUSY_RECOVERY. There is a race here
45316 ** which might cause WAL_RETRY to be returned even if BUSY_RECOVERY
45317 ** would be technically correct. But the race is benign since with
45318 ** WAL_RETRY this routine will be called again and will probably be
45319 ** right on the second iteration.
45321 if( pWal->apWiData[0]==0 ){
45322 /* This branch is taken when the xShmMap() method returns SQLITE_BUSY.
45323 ** We assume this is a transient condition, so return WAL_RETRY. The
45324 ** xShmMap() implementation used by the default unix and win32 VFS
45325 ** modules may return SQLITE_BUSY due to a race condition in the
45326 ** code that determines whether or not the shared-memory region
45327 ** must be zeroed before the requested page is returned.
45329 rc = WAL_RETRY;
45330 }else if( SQLITE_OK==(rc = walLockShared(pWal, WAL_RECOVER_LOCK)) ){
45331 walUnlockShared(pWal, WAL_RECOVER_LOCK);
45332 rc = WAL_RETRY;
45333 }else if( rc==SQLITE_BUSY ){
45334 rc = SQLITE_BUSY_RECOVERY;
45337 if( rc!=SQLITE_OK ){
45338 return rc;
45342 pInfo = walCkptInfo(pWal);
45343 if( !useWal && pInfo->nBackfill==pWal->hdr.mxFrame ){
45344 /* The WAL has been completely backfilled (or it is empty).
45345 ** and can be safely ignored.
45347 rc = walLockShared(pWal, WAL_READ_LOCK(0));
45348 walShmBarrier(pWal);
45349 if( rc==SQLITE_OK ){
45350 if( memcmp((void *)walIndexHdr(pWal), &pWal->hdr, sizeof(WalIndexHdr)) ){
45351 /* It is not safe to allow the reader to continue here if frames
45352 ** may have been appended to the log before READ_LOCK(0) was obtained.
45353 ** When holding READ_LOCK(0), the reader ignores the entire log file,
45354 ** which implies that the database file contains a trustworthy
45355 ** snapshoT. Since holding READ_LOCK(0) prevents a checkpoint from
45356 ** happening, this is usually correct.
45358 ** However, if frames have been appended to the log (or if the log
45359 ** is wrapped and written for that matter) before the READ_LOCK(0)
45360 ** is obtained, that is not necessarily true. A checkpointer may
45361 ** have started to backfill the appended frames but crashed before
45362 ** it finished. Leaving a corrupt image in the database file.
45364 walUnlockShared(pWal, WAL_READ_LOCK(0));
45365 return WAL_RETRY;
45367 pWal->readLock = 0;
45368 return SQLITE_OK;
45369 }else if( rc!=SQLITE_BUSY ){
45370 return rc;
45374 /* If we get this far, it means that the reader will want to use
45375 ** the WAL to get at content from recent commits. The job now is
45376 ** to select one of the aReadMark[] entries that is closest to
45377 ** but not exceeding pWal->hdr.mxFrame and lock that entry.
45379 mxReadMark = 0;
45380 mxI = 0;
45381 for(i=1; i<WAL_NREADER; i++){
45382 u32 thisMark = pInfo->aReadMark[i];
45383 if( mxReadMark<=thisMark && thisMark<=pWal->hdr.mxFrame ){
45384 assert( thisMark!=READMARK_NOT_USED );
45385 mxReadMark = thisMark;
45386 mxI = i;
45389 /* There was once an "if" here. The extra "{" is to preserve indentation. */
45391 if( mxReadMark < pWal->hdr.mxFrame || mxI==0 ){
45392 for(i=1; i<WAL_NREADER; i++){
45393 rc = walLockExclusive(pWal, WAL_READ_LOCK(i), 1);
45394 if( rc==SQLITE_OK ){
45395 mxReadMark = pInfo->aReadMark[i] = pWal->hdr.mxFrame;
45396 mxI = i;
45397 walUnlockExclusive(pWal, WAL_READ_LOCK(i), 1);
45398 break;
45399 }else if( rc!=SQLITE_BUSY ){
45400 return rc;
45404 if( mxI==0 ){
45405 assert( rc==SQLITE_BUSY );
45406 return WAL_RETRY;
45409 rc = walLockShared(pWal, WAL_READ_LOCK(mxI));
45410 if( rc ){
45411 return rc==SQLITE_BUSY ? WAL_RETRY : rc;
45413 /* Now that the read-lock has been obtained, check that neither the
45414 ** value in the aReadMark[] array or the contents of the wal-index
45415 ** header have changed.
45417 ** It is necessary to check that the wal-index header did not change
45418 ** between the time it was read and when the shared-lock was obtained
45419 ** on WAL_READ_LOCK(mxI) was obtained to account for the possibility
45420 ** that the log file may have been wrapped by a writer, or that frames
45421 ** that occur later in the log than pWal->hdr.mxFrame may have been
45422 ** copied into the database by a checkpointer. If either of these things
45423 ** happened, then reading the database with the current value of
45424 ** pWal->hdr.mxFrame risks reading a corrupted snapshot. So, retry
45425 ** instead.
45427 ** This does not guarantee that the copy of the wal-index header is up to
45428 ** date before proceeding. That would not be possible without somehow
45429 ** blocking writers. It only guarantees that a dangerous checkpoint or
45430 ** log-wrap (either of which would require an exclusive lock on
45431 ** WAL_READ_LOCK(mxI)) has not occurred since the snapshot was valid.
45433 walShmBarrier(pWal);
45434 if( pInfo->aReadMark[mxI]!=mxReadMark
45435 || memcmp((void *)walIndexHdr(pWal), &pWal->hdr, sizeof(WalIndexHdr))
45437 walUnlockShared(pWal, WAL_READ_LOCK(mxI));
45438 return WAL_RETRY;
45439 }else{
45440 assert( mxReadMark<=pWal->hdr.mxFrame );
45441 pWal->readLock = (i16)mxI;
45444 return rc;
45448 ** Begin a read transaction on the database.
45450 ** This routine used to be called sqlite3OpenSnapshot() and with good reason:
45451 ** it takes a snapshot of the state of the WAL and wal-index for the current
45452 ** instant in time. The current thread will continue to use this snapshot.
45453 ** Other threads might append new content to the WAL and wal-index but
45454 ** that extra content is ignored by the current thread.
45456 ** If the database contents have changes since the previous read
45457 ** transaction, then *pChanged is set to 1 before returning. The
45458 ** Pager layer will use this to know that is cache is stale and
45459 ** needs to be flushed.
45461 SQLITE_PRIVATE int sqlite3WalBeginReadTransaction(Wal *pWal, int *pChanged){
45462 int rc; /* Return code */
45463 int cnt = 0; /* Number of TryBeginRead attempts */
45466 rc = walTryBeginRead(pWal, pChanged, 0, ++cnt);
45467 }while( rc==WAL_RETRY );
45468 testcase( (rc&0xff)==SQLITE_BUSY );
45469 testcase( (rc&0xff)==SQLITE_IOERR );
45470 testcase( rc==SQLITE_PROTOCOL );
45471 testcase( rc==SQLITE_OK );
45472 return rc;
45476 ** Finish with a read transaction. All this does is release the
45477 ** read-lock.
45479 SQLITE_PRIVATE void sqlite3WalEndReadTransaction(Wal *pWal){
45480 sqlite3WalEndWriteTransaction(pWal);
45481 if( pWal->readLock>=0 ){
45482 walUnlockShared(pWal, WAL_READ_LOCK(pWal->readLock));
45483 pWal->readLock = -1;
45488 ** Read a page from the WAL, if it is present in the WAL and if the
45489 ** current read transaction is configured to use the WAL.
45491 ** The *pInWal is set to 1 if the requested page is in the WAL and
45492 ** has been loaded. Or *pInWal is set to 0 if the page was not in
45493 ** the WAL and needs to be read out of the database.
45495 SQLITE_PRIVATE int sqlite3WalRead(
45496 Wal *pWal, /* WAL handle */
45497 Pgno pgno, /* Database page number to read data for */
45498 int *pInWal, /* OUT: True if data is read from WAL */
45499 int nOut, /* Size of buffer pOut in bytes */
45500 u8 *pOut /* Buffer to write page data to */
45502 u32 iRead = 0; /* If !=0, WAL frame to return data from */
45503 u32 iLast = pWal->hdr.mxFrame; /* Last page in WAL for this reader */
45504 int iHash; /* Used to loop through N hash tables */
45506 /* This routine is only be called from within a read transaction. */
45507 assert( pWal->readLock>=0 || pWal->lockError );
45509 /* If the "last page" field of the wal-index header snapshot is 0, then
45510 ** no data will be read from the wal under any circumstances. Return early
45511 ** in this case as an optimization. Likewise, if pWal->readLock==0,
45512 ** then the WAL is ignored by the reader so return early, as if the
45513 ** WAL were empty.
45515 if( iLast==0 || pWal->readLock==0 ){
45516 *pInWal = 0;
45517 return SQLITE_OK;
45520 /* Search the hash table or tables for an entry matching page number
45521 ** pgno. Each iteration of the following for() loop searches one
45522 ** hash table (each hash table indexes up to HASHTABLE_NPAGE frames).
45524 ** This code might run concurrently to the code in walIndexAppend()
45525 ** that adds entries to the wal-index (and possibly to this hash
45526 ** table). This means the value just read from the hash
45527 ** slot (aHash[iKey]) may have been added before or after the
45528 ** current read transaction was opened. Values added after the
45529 ** read transaction was opened may have been written incorrectly -
45530 ** i.e. these slots may contain garbage data. However, we assume
45531 ** that any slots written before the current read transaction was
45532 ** opened remain unmodified.
45534 ** For the reasons above, the if(...) condition featured in the inner
45535 ** loop of the following block is more stringent that would be required
45536 ** if we had exclusive access to the hash-table:
45538 ** (aPgno[iFrame]==pgno):
45539 ** This condition filters out normal hash-table collisions.
45541 ** (iFrame<=iLast):
45542 ** This condition filters out entries that were added to the hash
45543 ** table after the current read-transaction had started.
45545 for(iHash=walFramePage(iLast); iHash>=0 && iRead==0; iHash--){
45546 volatile ht_slot *aHash; /* Pointer to hash table */
45547 volatile u32 *aPgno; /* Pointer to array of page numbers */
45548 u32 iZero; /* Frame number corresponding to aPgno[0] */
45549 int iKey; /* Hash slot index */
45550 int nCollide; /* Number of hash collisions remaining */
45551 int rc; /* Error code */
45553 rc = walHashGet(pWal, iHash, &aHash, &aPgno, &iZero);
45554 if( rc!=SQLITE_OK ){
45555 return rc;
45557 nCollide = HASHTABLE_NSLOT;
45558 for(iKey=walHash(pgno); aHash[iKey]; iKey=walNextHash(iKey)){
45559 u32 iFrame = aHash[iKey] + iZero;
45560 if( iFrame<=iLast && aPgno[aHash[iKey]]==pgno ){
45561 assert( iFrame>iRead );
45562 iRead = iFrame;
45564 if( (nCollide--)==0 ){
45565 return SQLITE_CORRUPT_BKPT;
45570 #ifdef SQLITE_ENABLE_EXPENSIVE_ASSERT
45571 /* If expensive assert() statements are available, do a linear search
45572 ** of the wal-index file content. Make sure the results agree with the
45573 ** result obtained using the hash indexes above. */
45575 u32 iRead2 = 0;
45576 u32 iTest;
45577 for(iTest=iLast; iTest>0; iTest--){
45578 if( walFramePgno(pWal, iTest)==pgno ){
45579 iRead2 = iTest;
45580 break;
45583 assert( iRead==iRead2 );
45585 #endif
45587 /* If iRead is non-zero, then it is the log frame number that contains the
45588 ** required page. Read and return data from the log file.
45590 if( iRead ){
45591 int sz;
45592 i64 iOffset;
45593 sz = pWal->hdr.szPage;
45594 sz = (pWal->hdr.szPage&0xfe00) + ((pWal->hdr.szPage&0x0001)<<16);
45595 testcase( sz<=32768 );
45596 testcase( sz>=65536 );
45597 iOffset = walFrameOffset(iRead, sz) + WAL_FRAME_HDRSIZE;
45598 *pInWal = 1;
45599 /* testcase( IS_BIG_INT(iOffset) ); // requires a 4GiB WAL */
45600 return sqlite3OsRead(pWal->pWalFd, pOut, nOut, iOffset);
45603 *pInWal = 0;
45604 return SQLITE_OK;
45609 ** Return the size of the database in pages (or zero, if unknown).
45611 SQLITE_PRIVATE Pgno sqlite3WalDbsize(Wal *pWal){
45612 if( pWal && ALWAYS(pWal->readLock>=0) ){
45613 return pWal->hdr.nPage;
45615 return 0;
45620 ** This function starts a write transaction on the WAL.
45622 ** A read transaction must have already been started by a prior call
45623 ** to sqlite3WalBeginReadTransaction().
45625 ** If another thread or process has written into the database since
45626 ** the read transaction was started, then it is not possible for this
45627 ** thread to write as doing so would cause a fork. So this routine
45628 ** returns SQLITE_BUSY in that case and no write transaction is started.
45630 ** There can only be a single writer active at a time.
45632 SQLITE_PRIVATE int sqlite3WalBeginWriteTransaction(Wal *pWal){
45633 int rc;
45635 /* Cannot start a write transaction without first holding a read
45636 ** transaction. */
45637 assert( pWal->readLock>=0 );
45639 if( pWal->readOnly ){
45640 return SQLITE_READONLY;
45643 /* Only one writer allowed at a time. Get the write lock. Return
45644 ** SQLITE_BUSY if unable.
45646 rc = walLockExclusive(pWal, WAL_WRITE_LOCK, 1);
45647 if( rc ){
45648 return rc;
45650 pWal->writeLock = 1;
45652 /* If another connection has written to the database file since the
45653 ** time the read transaction on this connection was started, then
45654 ** the write is disallowed.
45656 if( memcmp(&pWal->hdr, (void *)walIndexHdr(pWal), sizeof(WalIndexHdr))!=0 ){
45657 walUnlockExclusive(pWal, WAL_WRITE_LOCK, 1);
45658 pWal->writeLock = 0;
45659 rc = SQLITE_BUSY;
45662 return rc;
45666 ** End a write transaction. The commit has already been done. This
45667 ** routine merely releases the lock.
45669 SQLITE_PRIVATE int sqlite3WalEndWriteTransaction(Wal *pWal){
45670 if( pWal->writeLock ){
45671 walUnlockExclusive(pWal, WAL_WRITE_LOCK, 1);
45672 pWal->writeLock = 0;
45674 return SQLITE_OK;
45678 ** If any data has been written (but not committed) to the log file, this
45679 ** function moves the write-pointer back to the start of the transaction.
45681 ** Additionally, the callback function is invoked for each frame written
45682 ** to the WAL since the start of the transaction. If the callback returns
45683 ** other than SQLITE_OK, it is not invoked again and the error code is
45684 ** returned to the caller.
45686 ** Otherwise, if the callback function does not return an error, this
45687 ** function returns SQLITE_OK.
45689 SQLITE_PRIVATE int sqlite3WalUndo(Wal *pWal, int (*xUndo)(void *, Pgno), void *pUndoCtx){
45690 int rc = SQLITE_OK;
45691 if( ALWAYS(pWal->writeLock) ){
45692 Pgno iMax = pWal->hdr.mxFrame;
45693 Pgno iFrame;
45695 /* Restore the clients cache of the wal-index header to the state it
45696 ** was in before the client began writing to the database.
45698 memcpy(&pWal->hdr, (void *)walIndexHdr(pWal), sizeof(WalIndexHdr));
45700 for(iFrame=pWal->hdr.mxFrame+1;
45701 ALWAYS(rc==SQLITE_OK) && iFrame<=iMax;
45702 iFrame++
45704 /* This call cannot fail. Unless the page for which the page number
45705 ** is passed as the second argument is (a) in the cache and
45706 ** (b) has an outstanding reference, then xUndo is either a no-op
45707 ** (if (a) is false) or simply expels the page from the cache (if (b)
45708 ** is false).
45710 ** If the upper layer is doing a rollback, it is guaranteed that there
45711 ** are no outstanding references to any page other than page 1. And
45712 ** page 1 is never written to the log until the transaction is
45713 ** committed. As a result, the call to xUndo may not fail.
45715 assert( walFramePgno(pWal, iFrame)!=1 );
45716 rc = xUndo(pUndoCtx, walFramePgno(pWal, iFrame));
45718 walCleanupHash(pWal);
45720 assert( rc==SQLITE_OK );
45721 return rc;
45725 ** Argument aWalData must point to an array of WAL_SAVEPOINT_NDATA u32
45726 ** values. This function populates the array with values required to
45727 ** "rollback" the write position of the WAL handle back to the current
45728 ** point in the event of a savepoint rollback (via WalSavepointUndo()).
45730 SQLITE_PRIVATE void sqlite3WalSavepoint(Wal *pWal, u32 *aWalData){
45731 assert( pWal->writeLock );
45732 aWalData[0] = pWal->hdr.mxFrame;
45733 aWalData[1] = pWal->hdr.aFrameCksum[0];
45734 aWalData[2] = pWal->hdr.aFrameCksum[1];
45735 aWalData[3] = pWal->nCkpt;
45739 ** Move the write position of the WAL back to the point identified by
45740 ** the values in the aWalData[] array. aWalData must point to an array
45741 ** of WAL_SAVEPOINT_NDATA u32 values that has been previously populated
45742 ** by a call to WalSavepoint().
45744 SQLITE_PRIVATE int sqlite3WalSavepointUndo(Wal *pWal, u32 *aWalData){
45745 int rc = SQLITE_OK;
45747 assert( pWal->writeLock );
45748 assert( aWalData[3]!=pWal->nCkpt || aWalData[0]<=pWal->hdr.mxFrame );
45750 if( aWalData[3]!=pWal->nCkpt ){
45751 /* This savepoint was opened immediately after the write-transaction
45752 ** was started. Right after that, the writer decided to wrap around
45753 ** to the start of the log. Update the savepoint values to match.
45755 aWalData[0] = 0;
45756 aWalData[3] = pWal->nCkpt;
45759 if( aWalData[0]<pWal->hdr.mxFrame ){
45760 pWal->hdr.mxFrame = aWalData[0];
45761 pWal->hdr.aFrameCksum[0] = aWalData[1];
45762 pWal->hdr.aFrameCksum[1] = aWalData[2];
45763 walCleanupHash(pWal);
45766 return rc;
45770 ** This function is called just before writing a set of frames to the log
45771 ** file (see sqlite3WalFrames()). It checks to see if, instead of appending
45772 ** to the current log file, it is possible to overwrite the start of the
45773 ** existing log file with the new frames (i.e. "reset" the log). If so,
45774 ** it sets pWal->hdr.mxFrame to 0. Otherwise, pWal->hdr.mxFrame is left
45775 ** unchanged.
45777 ** SQLITE_OK is returned if no error is encountered (regardless of whether
45778 ** or not pWal->hdr.mxFrame is modified). An SQLite error code is returned
45779 ** if an error occurs.
45781 static int walRestartLog(Wal *pWal){
45782 int rc = SQLITE_OK;
45783 int cnt;
45785 if( pWal->readLock==0 ){
45786 volatile WalCkptInfo *pInfo = walCkptInfo(pWal);
45787 assert( pInfo->nBackfill==pWal->hdr.mxFrame );
45788 if( pInfo->nBackfill>0 ){
45789 u32 salt1;
45790 sqlite3_randomness(4, &salt1);
45791 rc = walLockExclusive(pWal, WAL_READ_LOCK(1), WAL_NREADER-1);
45792 if( rc==SQLITE_OK ){
45793 /* If all readers are using WAL_READ_LOCK(0) (in other words if no
45794 ** readers are currently using the WAL), then the transactions
45795 ** frames will overwrite the start of the existing log. Update the
45796 ** wal-index header to reflect this.
45798 ** In theory it would be Ok to update the cache of the header only
45799 ** at this point. But updating the actual wal-index header is also
45800 ** safe and means there is no special case for sqlite3WalUndo()
45801 ** to handle if this transaction is rolled back.
45803 int i; /* Loop counter */
45804 u32 *aSalt = pWal->hdr.aSalt; /* Big-endian salt values */
45805 pWal->nCkpt++;
45806 pWal->hdr.mxFrame = 0;
45807 sqlite3Put4byte((u8*)&aSalt[0], 1 + sqlite3Get4byte((u8*)&aSalt[0]));
45808 aSalt[1] = salt1;
45809 walIndexWriteHdr(pWal);
45810 pInfo->nBackfill = 0;
45811 for(i=1; i<WAL_NREADER; i++) pInfo->aReadMark[i] = READMARK_NOT_USED;
45812 assert( pInfo->aReadMark[0]==0 );
45813 walUnlockExclusive(pWal, WAL_READ_LOCK(1), WAL_NREADER-1);
45814 }else if( rc!=SQLITE_BUSY ){
45815 return rc;
45818 walUnlockShared(pWal, WAL_READ_LOCK(0));
45819 pWal->readLock = -1;
45820 cnt = 0;
45822 int notUsed;
45823 rc = walTryBeginRead(pWal, &notUsed, 1, ++cnt);
45824 }while( rc==WAL_RETRY );
45825 assert( (rc&0xff)!=SQLITE_BUSY ); /* BUSY not possible when useWal==1 */
45826 testcase( (rc&0xff)==SQLITE_IOERR );
45827 testcase( rc==SQLITE_PROTOCOL );
45828 testcase( rc==SQLITE_OK );
45830 return rc;
45834 ** Write a set of frames to the log. The caller must hold the write-lock
45835 ** on the log file (obtained using sqlite3WalBeginWriteTransaction()).
45837 SQLITE_PRIVATE int sqlite3WalFrames(
45838 Wal *pWal, /* Wal handle to write to */
45839 int szPage, /* Database page-size in bytes */
45840 PgHdr *pList, /* List of dirty pages to write */
45841 Pgno nTruncate, /* Database size after this commit */
45842 int isCommit, /* True if this is a commit */
45843 int sync_flags /* Flags to pass to OsSync() (or 0) */
45845 int rc; /* Used to catch return codes */
45846 u32 iFrame; /* Next frame address */
45847 u8 aFrame[WAL_FRAME_HDRSIZE]; /* Buffer to assemble frame-header in */
45848 PgHdr *p; /* Iterator to run through pList with. */
45849 PgHdr *pLast = 0; /* Last frame in list */
45850 int nLast = 0; /* Number of extra copies of last page */
45852 assert( pList );
45853 assert( pWal->writeLock );
45855 #if defined(SQLITE_TEST) && defined(SQLITE_DEBUG)
45856 { int cnt; for(cnt=0, p=pList; p; p=p->pDirty, cnt++){}
45857 WALTRACE(("WAL%p: frame write begin. %d frames. mxFrame=%d. %s\n",
45858 pWal, cnt, pWal->hdr.mxFrame, isCommit ? "Commit" : "Spill"));
45860 #endif
45862 /* See if it is possible to write these frames into the start of the
45863 ** log file, instead of appending to it at pWal->hdr.mxFrame.
45865 if( SQLITE_OK!=(rc = walRestartLog(pWal)) ){
45866 return rc;
45869 /* If this is the first frame written into the log, write the WAL
45870 ** header to the start of the WAL file. See comments at the top of
45871 ** this source file for a description of the WAL header format.
45873 iFrame = pWal->hdr.mxFrame;
45874 if( iFrame==0 ){
45875 u8 aWalHdr[WAL_HDRSIZE]; /* Buffer to assemble wal-header in */
45876 u32 aCksum[2]; /* Checksum for wal-header */
45878 sqlite3Put4byte(&aWalHdr[0], (WAL_MAGIC | SQLITE_BIGENDIAN));
45879 sqlite3Put4byte(&aWalHdr[4], WAL_MAX_VERSION);
45880 sqlite3Put4byte(&aWalHdr[8], szPage);
45881 sqlite3Put4byte(&aWalHdr[12], pWal->nCkpt);
45882 sqlite3_randomness(8, pWal->hdr.aSalt);
45883 memcpy(&aWalHdr[16], pWal->hdr.aSalt, 8);
45884 walChecksumBytes(1, aWalHdr, WAL_HDRSIZE-2*4, 0, aCksum);
45885 sqlite3Put4byte(&aWalHdr[24], aCksum[0]);
45886 sqlite3Put4byte(&aWalHdr[28], aCksum[1]);
45888 pWal->szPage = szPage;
45889 pWal->hdr.bigEndCksum = SQLITE_BIGENDIAN;
45890 pWal->hdr.aFrameCksum[0] = aCksum[0];
45891 pWal->hdr.aFrameCksum[1] = aCksum[1];
45893 rc = sqlite3OsWrite(pWal->pWalFd, aWalHdr, sizeof(aWalHdr), 0);
45894 WALTRACE(("WAL%p: wal-header write %s\n", pWal, rc ? "failed" : "ok"));
45895 if( rc!=SQLITE_OK ){
45896 return rc;
45899 assert( (int)pWal->szPage==szPage );
45901 /* Write the log file. */
45902 for(p=pList; p; p=p->pDirty){
45903 u32 nDbsize; /* Db-size field for frame header */
45904 i64 iOffset; /* Write offset in log file */
45905 void *pData;
45907 iOffset = walFrameOffset(++iFrame, szPage);
45908 /* testcase( IS_BIG_INT(iOffset) ); // requires a 4GiB WAL */
45910 /* Populate and write the frame header */
45911 nDbsize = (isCommit && p->pDirty==0) ? nTruncate : 0;
45912 #if defined(SQLITE_HAS_CODEC)
45913 if( (pData = sqlite3PagerCodec(p))==0 ) return SQLITE_NOMEM;
45914 #else
45915 pData = p->pData;
45916 #endif
45917 walEncodeFrame(pWal, p->pgno, nDbsize, pData, aFrame);
45918 rc = sqlite3OsWrite(pWal->pWalFd, aFrame, sizeof(aFrame), iOffset);
45919 if( rc!=SQLITE_OK ){
45920 return rc;
45923 /* Write the page data */
45924 rc = sqlite3OsWrite(pWal->pWalFd, pData, szPage, iOffset+sizeof(aFrame));
45925 if( rc!=SQLITE_OK ){
45926 return rc;
45928 pLast = p;
45931 /* Sync the log file if the 'isSync' flag was specified. */
45932 if( sync_flags ){
45933 i64 iSegment = sqlite3OsSectorSize(pWal->pWalFd);
45934 i64 iOffset = walFrameOffset(iFrame+1, szPage);
45936 assert( isCommit );
45937 assert( iSegment>0 );
45939 iSegment = (((iOffset+iSegment-1)/iSegment) * iSegment);
45940 while( iOffset<iSegment ){
45941 void *pData;
45942 #if defined(SQLITE_HAS_CODEC)
45943 if( (pData = sqlite3PagerCodec(pLast))==0 ) return SQLITE_NOMEM;
45944 #else
45945 pData = pLast->pData;
45946 #endif
45947 walEncodeFrame(pWal, pLast->pgno, nTruncate, pData, aFrame);
45948 /* testcase( IS_BIG_INT(iOffset) ); // requires a 4GiB WAL */
45949 rc = sqlite3OsWrite(pWal->pWalFd, aFrame, sizeof(aFrame), iOffset);
45950 if( rc!=SQLITE_OK ){
45951 return rc;
45953 iOffset += WAL_FRAME_HDRSIZE;
45954 rc = sqlite3OsWrite(pWal->pWalFd, pData, szPage, iOffset);
45955 if( rc!=SQLITE_OK ){
45956 return rc;
45958 nLast++;
45959 iOffset += szPage;
45962 rc = sqlite3OsSync(pWal->pWalFd, sync_flags);
45965 /* Append data to the wal-index. It is not necessary to lock the
45966 ** wal-index to do this as the SQLITE_SHM_WRITE lock held on the wal-index
45967 ** guarantees that there are no other writers, and no data that may
45968 ** be in use by existing readers is being overwritten.
45970 iFrame = pWal->hdr.mxFrame;
45971 for(p=pList; p && rc==SQLITE_OK; p=p->pDirty){
45972 iFrame++;
45973 rc = walIndexAppend(pWal, iFrame, p->pgno);
45975 while( nLast>0 && rc==SQLITE_OK ){
45976 iFrame++;
45977 nLast--;
45978 rc = walIndexAppend(pWal, iFrame, pLast->pgno);
45981 if( rc==SQLITE_OK ){
45982 /* Update the private copy of the header. */
45983 pWal->hdr.szPage = (u16)((szPage&0xff00) | (szPage>>16));
45984 testcase( szPage<=32768 );
45985 testcase( szPage>=65536 );
45986 pWal->hdr.mxFrame = iFrame;
45987 if( isCommit ){
45988 pWal->hdr.iChange++;
45989 pWal->hdr.nPage = nTruncate;
45991 /* If this is a commit, update the wal-index header too. */
45992 if( isCommit ){
45993 walIndexWriteHdr(pWal);
45994 pWal->iCallback = iFrame;
45998 WALTRACE(("WAL%p: frame write %s\n", pWal, rc ? "failed" : "ok"));
45999 return rc;
46003 ** This routine is called to implement sqlite3_wal_checkpoint() and
46004 ** related interfaces.
46006 ** Obtain a CHECKPOINT lock and then backfill as much information as
46007 ** we can from WAL into the database.
46009 ** If parameter xBusy is not NULL, it is a pointer to a busy-handler
46010 ** callback. In this case this function runs a blocking checkpoint.
46012 SQLITE_PRIVATE int sqlite3WalCheckpoint(
46013 Wal *pWal, /* Wal connection */
46014 int eMode, /* PASSIVE, FULL or RESTART */
46015 int (*xBusy)(void*), /* Function to call when busy */
46016 void *pBusyArg, /* Context argument for xBusyHandler */
46017 int sync_flags, /* Flags to sync db file with (or 0) */
46018 int nBuf, /* Size of temporary buffer */
46019 u8 *zBuf, /* Temporary buffer to use */
46020 int *pnLog, /* OUT: Number of frames in WAL */
46021 int *pnCkpt /* OUT: Number of backfilled frames in WAL */
46023 int rc; /* Return code */
46024 int isChanged = 0; /* True if a new wal-index header is loaded */
46025 int eMode2 = eMode; /* Mode to pass to walCheckpoint() */
46027 assert( pWal->ckptLock==0 );
46028 assert( pWal->writeLock==0 );
46030 WALTRACE(("WAL%p: checkpoint begins\n", pWal));
46031 rc = walLockExclusive(pWal, WAL_CKPT_LOCK, 1);
46032 if( rc ){
46033 /* Usually this is SQLITE_BUSY meaning that another thread or process
46034 ** is already running a checkpoint, or maybe a recovery. But it might
46035 ** also be SQLITE_IOERR. */
46036 return rc;
46038 pWal->ckptLock = 1;
46040 /* If this is a blocking-checkpoint, then obtain the write-lock as well
46041 ** to prevent any writers from running while the checkpoint is underway.
46042 ** This has to be done before the call to walIndexReadHdr() below.
46044 ** If the writer lock cannot be obtained, then a passive checkpoint is
46045 ** run instead. Since the checkpointer is not holding the writer lock,
46046 ** there is no point in blocking waiting for any readers. Assuming no
46047 ** other error occurs, this function will return SQLITE_BUSY to the caller.
46049 if( eMode!=SQLITE_CHECKPOINT_PASSIVE ){
46050 rc = walBusyLock(pWal, xBusy, pBusyArg, WAL_WRITE_LOCK, 1);
46051 if( rc==SQLITE_OK ){
46052 pWal->writeLock = 1;
46053 }else if( rc==SQLITE_BUSY ){
46054 eMode2 = SQLITE_CHECKPOINT_PASSIVE;
46055 rc = SQLITE_OK;
46059 /* Read the wal-index header. */
46060 if( rc==SQLITE_OK ){
46061 rc = walIndexReadHdr(pWal, &isChanged);
46064 /* Copy data from the log to the database file. */
46065 if( rc==SQLITE_OK ){
46066 if( pWal->hdr.mxFrame && walPagesize(pWal)!=nBuf ){
46067 rc = SQLITE_CORRUPT_BKPT;
46068 }else{
46069 rc = walCheckpoint(pWal, eMode2, xBusy, pBusyArg, sync_flags, zBuf);
46072 /* If no error occurred, set the output variables. */
46073 if( rc==SQLITE_OK || rc==SQLITE_BUSY ){
46074 if( pnLog ) *pnLog = (int)pWal->hdr.mxFrame;
46075 if( pnCkpt ) *pnCkpt = (int)(walCkptInfo(pWal)->nBackfill);
46079 if( isChanged ){
46080 /* If a new wal-index header was loaded before the checkpoint was
46081 ** performed, then the pager-cache associated with pWal is now
46082 ** out of date. So zero the cached wal-index header to ensure that
46083 ** next time the pager opens a snapshot on this database it knows that
46084 ** the cache needs to be reset.
46086 memset(&pWal->hdr, 0, sizeof(WalIndexHdr));
46089 /* Release the locks. */
46090 sqlite3WalEndWriteTransaction(pWal);
46091 walUnlockExclusive(pWal, WAL_CKPT_LOCK, 1);
46092 pWal->ckptLock = 0;
46093 WALTRACE(("WAL%p: checkpoint %s\n", pWal, rc ? "failed" : "ok"));
46094 return (rc==SQLITE_OK && eMode!=eMode2 ? SQLITE_BUSY : rc);
46097 /* Return the value to pass to a sqlite3_wal_hook callback, the
46098 ** number of frames in the WAL at the point of the last commit since
46099 ** sqlite3WalCallback() was called. If no commits have occurred since
46100 ** the last call, then return 0.
46102 SQLITE_PRIVATE int sqlite3WalCallback(Wal *pWal){
46103 u32 ret = 0;
46104 if( pWal ){
46105 ret = pWal->iCallback;
46106 pWal->iCallback = 0;
46108 return (int)ret;
46112 ** This function is called to change the WAL subsystem into or out
46113 ** of locking_mode=EXCLUSIVE.
46115 ** If op is zero, then attempt to change from locking_mode=EXCLUSIVE
46116 ** into locking_mode=NORMAL. This means that we must acquire a lock
46117 ** on the pWal->readLock byte. If the WAL is already in locking_mode=NORMAL
46118 ** or if the acquisition of the lock fails, then return 0. If the
46119 ** transition out of exclusive-mode is successful, return 1. This
46120 ** operation must occur while the pager is still holding the exclusive
46121 ** lock on the main database file.
46123 ** If op is one, then change from locking_mode=NORMAL into
46124 ** locking_mode=EXCLUSIVE. This means that the pWal->readLock must
46125 ** be released. Return 1 if the transition is made and 0 if the
46126 ** WAL is already in exclusive-locking mode - meaning that this
46127 ** routine is a no-op. The pager must already hold the exclusive lock
46128 ** on the main database file before invoking this operation.
46130 ** If op is negative, then do a dry-run of the op==1 case but do
46131 ** not actually change anything. The pager uses this to see if it
46132 ** should acquire the database exclusive lock prior to invoking
46133 ** the op==1 case.
46135 SQLITE_PRIVATE int sqlite3WalExclusiveMode(Wal *pWal, int op){
46136 int rc;
46137 assert( pWal->writeLock==0 );
46138 assert( pWal->exclusiveMode!=WAL_HEAPMEMORY_MODE || op==-1 );
46140 /* pWal->readLock is usually set, but might be -1 if there was a
46141 ** prior error while attempting to acquire are read-lock. This cannot
46142 ** happen if the connection is actually in exclusive mode (as no xShmLock
46143 ** locks are taken in this case). Nor should the pager attempt to
46144 ** upgrade to exclusive-mode following such an error.
46146 assert( pWal->readLock>=0 || pWal->lockError );
46147 assert( pWal->readLock>=0 || (op<=0 && pWal->exclusiveMode==0) );
46149 if( op==0 ){
46150 if( pWal->exclusiveMode ){
46151 pWal->exclusiveMode = 0;
46152 if( walLockShared(pWal, WAL_READ_LOCK(pWal->readLock))!=SQLITE_OK ){
46153 pWal->exclusiveMode = 1;
46155 rc = pWal->exclusiveMode==0;
46156 }else{
46157 /* Already in locking_mode=NORMAL */
46158 rc = 0;
46160 }else if( op>0 ){
46161 assert( pWal->exclusiveMode==0 );
46162 assert( pWal->readLock>=0 );
46163 walUnlockShared(pWal, WAL_READ_LOCK(pWal->readLock));
46164 pWal->exclusiveMode = 1;
46165 rc = 1;
46166 }else{
46167 rc = pWal->exclusiveMode==0;
46169 return rc;
46173 ** Return true if the argument is non-NULL and the WAL module is using
46174 ** heap-memory for the wal-index. Otherwise, if the argument is NULL or the
46175 ** WAL module is using shared-memory, return false.
46177 SQLITE_PRIVATE int sqlite3WalHeapMemory(Wal *pWal){
46178 return (pWal && pWal->exclusiveMode==WAL_HEAPMEMORY_MODE );
46181 #endif /* #ifndef SQLITE_OMIT_WAL */
46183 /************** End of wal.c *************************************************/
46184 /************** Begin file btmutex.c *****************************************/
46186 ** 2007 August 27
46188 ** The author disclaims copyright to this source code. In place of
46189 ** a legal notice, here is a blessing:
46191 ** May you do good and not evil.
46192 ** May you find forgiveness for yourself and forgive others.
46193 ** May you share freely, never taking more than you give.
46195 *************************************************************************
46197 ** This file contains code used to implement mutexes on Btree objects.
46198 ** This code really belongs in btree.c. But btree.c is getting too
46199 ** big and we want to break it down some. This packaged seemed like
46200 ** a good breakout.
46202 /************** Include btreeInt.h in the middle of btmutex.c ****************/
46203 /************** Begin file btreeInt.h ****************************************/
46205 ** 2004 April 6
46207 ** The author disclaims copyright to this source code. In place of
46208 ** a legal notice, here is a blessing:
46210 ** May you do good and not evil.
46211 ** May you find forgiveness for yourself and forgive others.
46212 ** May you share freely, never taking more than you give.
46214 *************************************************************************
46215 ** This file implements a external (disk-based) database using BTrees.
46216 ** For a detailed discussion of BTrees, refer to
46218 ** Donald E. Knuth, THE ART OF COMPUTER PROGRAMMING, Volume 3:
46219 ** "Sorting And Searching", pages 473-480. Addison-Wesley
46220 ** Publishing Company, Reading, Massachusetts.
46222 ** The basic idea is that each page of the file contains N database
46223 ** entries and N+1 pointers to subpages.
46225 ** ----------------------------------------------------------------
46226 ** | Ptr(0) | Key(0) | Ptr(1) | Key(1) | ... | Key(N-1) | Ptr(N) |
46227 ** ----------------------------------------------------------------
46229 ** All of the keys on the page that Ptr(0) points to have values less
46230 ** than Key(0). All of the keys on page Ptr(1) and its subpages have
46231 ** values greater than Key(0) and less than Key(1). All of the keys
46232 ** on Ptr(N) and its subpages have values greater than Key(N-1). And
46233 ** so forth.
46235 ** Finding a particular key requires reading O(log(M)) pages from the
46236 ** disk where M is the number of entries in the tree.
46238 ** In this implementation, a single file can hold one or more separate
46239 ** BTrees. Each BTree is identified by the index of its root page. The
46240 ** key and data for any entry are combined to form the "payload". A
46241 ** fixed amount of payload can be carried directly on the database
46242 ** page. If the payload is larger than the preset amount then surplus
46243 ** bytes are stored on overflow pages. The payload for an entry
46244 ** and the preceding pointer are combined to form a "Cell". Each
46245 ** page has a small header which contains the Ptr(N) pointer and other
46246 ** information such as the size of key and data.
46248 ** FORMAT DETAILS
46250 ** The file is divided into pages. The first page is called page 1,
46251 ** the second is page 2, and so forth. A page number of zero indicates
46252 ** "no such page". The page size can be any power of 2 between 512 and 65536.
46253 ** Each page can be either a btree page, a freelist page, an overflow
46254 ** page, or a pointer-map page.
46256 ** The first page is always a btree page. The first 100 bytes of the first
46257 ** page contain a special header (the "file header") that describes the file.
46258 ** The format of the file header is as follows:
46260 ** OFFSET SIZE DESCRIPTION
46261 ** 0 16 Header string: "SQLite format 3\000"
46262 ** 16 2 Page size in bytes.
46263 ** 18 1 File format write version
46264 ** 19 1 File format read version
46265 ** 20 1 Bytes of unused space at the end of each page
46266 ** 21 1 Max embedded payload fraction
46267 ** 22 1 Min embedded payload fraction
46268 ** 23 1 Min leaf payload fraction
46269 ** 24 4 File change counter
46270 ** 28 4 Reserved for future use
46271 ** 32 4 First freelist page
46272 ** 36 4 Number of freelist pages in the file
46273 ** 40 60 15 4-byte meta values passed to higher layers
46275 ** 40 4 Schema cookie
46276 ** 44 4 File format of schema layer
46277 ** 48 4 Size of page cache
46278 ** 52 4 Largest root-page (auto/incr_vacuum)
46279 ** 56 4 1=UTF-8 2=UTF16le 3=UTF16be
46280 ** 60 4 User version
46281 ** 64 4 Incremental vacuum mode
46282 ** 68 4 unused
46283 ** 72 4 unused
46284 ** 76 4 unused
46286 ** All of the integer values are big-endian (most significant byte first).
46288 ** The file change counter is incremented when the database is changed
46289 ** This counter allows other processes to know when the file has changed
46290 ** and thus when they need to flush their cache.
46292 ** The max embedded payload fraction is the amount of the total usable
46293 ** space in a page that can be consumed by a single cell for standard
46294 ** B-tree (non-LEAFDATA) tables. A value of 255 means 100%. The default
46295 ** is to limit the maximum cell size so that at least 4 cells will fit
46296 ** on one page. Thus the default max embedded payload fraction is 64.
46298 ** If the payload for a cell is larger than the max payload, then extra
46299 ** payload is spilled to overflow pages. Once an overflow page is allocated,
46300 ** as many bytes as possible are moved into the overflow pages without letting
46301 ** the cell size drop below the min embedded payload fraction.
46303 ** The min leaf payload fraction is like the min embedded payload fraction
46304 ** except that it applies to leaf nodes in a LEAFDATA tree. The maximum
46305 ** payload fraction for a LEAFDATA tree is always 100% (or 255) and it
46306 ** not specified in the header.
46308 ** Each btree pages is divided into three sections: The header, the
46309 ** cell pointer array, and the cell content area. Page 1 also has a 100-byte
46310 ** file header that occurs before the page header.
46312 ** |----------------|
46313 ** | file header | 100 bytes. Page 1 only.
46314 ** |----------------|
46315 ** | page header | 8 bytes for leaves. 12 bytes for interior nodes
46316 ** |----------------|
46317 ** | cell pointer | | 2 bytes per cell. Sorted order.
46318 ** | array | | Grows downward
46319 ** | | v
46320 ** |----------------|
46321 ** | unallocated |
46322 ** | space |
46323 ** |----------------| ^ Grows upwards
46324 ** | cell content | | Arbitrary order interspersed with freeblocks.
46325 ** | area | | and free space fragments.
46326 ** |----------------|
46328 ** The page headers looks like this:
46330 ** OFFSET SIZE DESCRIPTION
46331 ** 0 1 Flags. 1: intkey, 2: zerodata, 4: leafdata, 8: leaf
46332 ** 1 2 byte offset to the first freeblock
46333 ** 3 2 number of cells on this page
46334 ** 5 2 first byte of the cell content area
46335 ** 7 1 number of fragmented free bytes
46336 ** 8 4 Right child (the Ptr(N) value). Omitted on leaves.
46338 ** The flags define the format of this btree page. The leaf flag means that
46339 ** this page has no children. The zerodata flag means that this page carries
46340 ** only keys and no data. The intkey flag means that the key is a integer
46341 ** which is stored in the key size entry of the cell header rather than in
46342 ** the payload area.
46344 ** The cell pointer array begins on the first byte after the page header.
46345 ** The cell pointer array contains zero or more 2-byte numbers which are
46346 ** offsets from the beginning of the page to the cell content in the cell
46347 ** content area. The cell pointers occur in sorted order. The system strives
46348 ** to keep free space after the last cell pointer so that new cells can
46349 ** be easily added without having to defragment the page.
46351 ** Cell content is stored at the very end of the page and grows toward the
46352 ** beginning of the page.
46354 ** Unused space within the cell content area is collected into a linked list of
46355 ** freeblocks. Each freeblock is at least 4 bytes in size. The byte offset
46356 ** to the first freeblock is given in the header. Freeblocks occur in
46357 ** increasing order. Because a freeblock must be at least 4 bytes in size,
46358 ** any group of 3 or fewer unused bytes in the cell content area cannot
46359 ** exist on the freeblock chain. A group of 3 or fewer free bytes is called
46360 ** a fragment. The total number of bytes in all fragments is recorded.
46361 ** in the page header at offset 7.
46363 ** SIZE DESCRIPTION
46364 ** 2 Byte offset of the next freeblock
46365 ** 2 Bytes in this freeblock
46367 ** Cells are of variable length. Cells are stored in the cell content area at
46368 ** the end of the page. Pointers to the cells are in the cell pointer array
46369 ** that immediately follows the page header. Cells is not necessarily
46370 ** contiguous or in order, but cell pointers are contiguous and in order.
46372 ** Cell content makes use of variable length integers. A variable
46373 ** length integer is 1 to 9 bytes where the lower 7 bits of each
46374 ** byte are used. The integer consists of all bytes that have bit 8 set and
46375 ** the first byte with bit 8 clear. The most significant byte of the integer
46376 ** appears first. A variable-length integer may not be more than 9 bytes long.
46377 ** As a special case, all 8 bytes of the 9th byte are used as data. This
46378 ** allows a 64-bit integer to be encoded in 9 bytes.
46380 ** 0x00 becomes 0x00000000
46381 ** 0x7f becomes 0x0000007f
46382 ** 0x81 0x00 becomes 0x00000080
46383 ** 0x82 0x00 becomes 0x00000100
46384 ** 0x80 0x7f becomes 0x0000007f
46385 ** 0x8a 0x91 0xd1 0xac 0x78 becomes 0x12345678
46386 ** 0x81 0x81 0x81 0x81 0x01 becomes 0x10204081
46388 ** Variable length integers are used for rowids and to hold the number of
46389 ** bytes of key and data in a btree cell.
46391 ** The content of a cell looks like this:
46393 ** SIZE DESCRIPTION
46394 ** 4 Page number of the left child. Omitted if leaf flag is set.
46395 ** var Number of bytes of data. Omitted if the zerodata flag is set.
46396 ** var Number of bytes of key. Or the key itself if intkey flag is set.
46397 ** * Payload
46398 ** 4 First page of the overflow chain. Omitted if no overflow
46400 ** Overflow pages form a linked list. Each page except the last is completely
46401 ** filled with data (pagesize - 4 bytes). The last page can have as little
46402 ** as 1 byte of data.
46404 ** SIZE DESCRIPTION
46405 ** 4 Page number of next overflow page
46406 ** * Data
46408 ** Freelist pages come in two subtypes: trunk pages and leaf pages. The
46409 ** file header points to the first in a linked list of trunk page. Each trunk
46410 ** page points to multiple leaf pages. The content of a leaf page is
46411 ** unspecified. A trunk page looks like this:
46413 ** SIZE DESCRIPTION
46414 ** 4 Page number of next trunk page
46415 ** 4 Number of leaf pointers on this page
46416 ** * zero or more pages numbers of leaves
46420 /* The following value is the maximum cell size assuming a maximum page
46421 ** size give above.
46423 #define MX_CELL_SIZE(pBt) ((int)(pBt->pageSize-8))
46425 /* The maximum number of cells on a single page of the database. This
46426 ** assumes a minimum cell size of 6 bytes (4 bytes for the cell itself
46427 ** plus 2 bytes for the index to the cell in the page header). Such
46428 ** small cells will be rare, but they are possible.
46430 #define MX_CELL(pBt) ((pBt->pageSize-8)/6)
46432 /* Forward declarations */
46433 typedef struct MemPage MemPage;
46434 typedef struct BtLock BtLock;
46437 ** This is a magic string that appears at the beginning of every
46438 ** SQLite database in order to identify the file as a real database.
46440 ** You can change this value at compile-time by specifying a
46441 ** -DSQLITE_FILE_HEADER="..." on the compiler command-line. The
46442 ** header must be exactly 16 bytes including the zero-terminator so
46443 ** the string itself should be 15 characters long. If you change
46444 ** the header, then your custom library will not be able to read
46445 ** databases generated by the standard tools and the standard tools
46446 ** will not be able to read databases created by your custom library.
46448 #ifndef SQLITE_FILE_HEADER /* 123456789 123456 */
46449 # define SQLITE_FILE_HEADER "SQLite format 3"
46450 #endif
46453 ** Page type flags. An ORed combination of these flags appear as the
46454 ** first byte of on-disk image of every BTree page.
46456 #define PTF_INTKEY 0x01
46457 #define PTF_ZERODATA 0x02
46458 #define PTF_LEAFDATA 0x04
46459 #define PTF_LEAF 0x08
46462 ** As each page of the file is loaded into memory, an instance of the following
46463 ** structure is appended and initialized to zero. This structure stores
46464 ** information about the page that is decoded from the raw file page.
46466 ** The pParent field points back to the parent page. This allows us to
46467 ** walk up the BTree from any leaf to the root. Care must be taken to
46468 ** unref() the parent page pointer when this page is no longer referenced.
46469 ** The pageDestructor() routine handles that chore.
46471 ** Access to all fields of this structure is controlled by the mutex
46472 ** stored in MemPage.pBt->mutex.
46474 struct MemPage {
46475 u8 isInit; /* True if previously initialized. MUST BE FIRST! */
46476 u8 nOverflow; /* Number of overflow cell bodies in aCell[] */
46477 u8 intKey; /* True if intkey flag is set */
46478 u8 leaf; /* True if leaf flag is set */
46479 u8 hasData; /* True if this page stores data */
46480 u8 hdrOffset; /* 100 for page 1. 0 otherwise */
46481 u8 childPtrSize; /* 0 if leaf==1. 4 if leaf==0 */
46482 u16 maxLocal; /* Copy of BtShared.maxLocal or BtShared.maxLeaf */
46483 u16 minLocal; /* Copy of BtShared.minLocal or BtShared.minLeaf */
46484 u16 cellOffset; /* Index in aData of first cell pointer */
46485 u16 nFree; /* Number of free bytes on the page */
46486 u16 nCell; /* Number of cells on this page, local and ovfl */
46487 u16 maskPage; /* Mask for page offset */
46488 struct _OvflCell { /* Cells that will not fit on aData[] */
46489 u8 *pCell; /* Pointers to the body of the overflow cell */
46490 u16 idx; /* Insert this cell before idx-th non-overflow cell */
46491 } aOvfl[5];
46492 BtShared *pBt; /* Pointer to BtShared that this page is part of */
46493 u8 *aData; /* Pointer to disk image of the page data */
46494 DbPage *pDbPage; /* Pager page handle */
46495 Pgno pgno; /* Page number for this page */
46499 ** The in-memory image of a disk page has the auxiliary information appended
46500 ** to the end. EXTRA_SIZE is the number of bytes of space needed to hold
46501 ** that extra information.
46503 #define EXTRA_SIZE sizeof(MemPage)
46506 ** A linked list of the following structures is stored at BtShared.pLock.
46507 ** Locks are added (or upgraded from READ_LOCK to WRITE_LOCK) when a cursor
46508 ** is opened on the table with root page BtShared.iTable. Locks are removed
46509 ** from this list when a transaction is committed or rolled back, or when
46510 ** a btree handle is closed.
46512 struct BtLock {
46513 Btree *pBtree; /* Btree handle holding this lock */
46514 Pgno iTable; /* Root page of table */
46515 u8 eLock; /* READ_LOCK or WRITE_LOCK */
46516 BtLock *pNext; /* Next in BtShared.pLock list */
46519 /* Candidate values for BtLock.eLock */
46520 #define READ_LOCK 1
46521 #define WRITE_LOCK 2
46523 /* A Btree handle
46525 ** A database connection contains a pointer to an instance of
46526 ** this object for every database file that it has open. This structure
46527 ** is opaque to the database connection. The database connection cannot
46528 ** see the internals of this structure and only deals with pointers to
46529 ** this structure.
46531 ** For some database files, the same underlying database cache might be
46532 ** shared between multiple connections. In that case, each connection
46533 ** has it own instance of this object. But each instance of this object
46534 ** points to the same BtShared object. The database cache and the
46535 ** schema associated with the database file are all contained within
46536 ** the BtShared object.
46538 ** All fields in this structure are accessed under sqlite3.mutex.
46539 ** The pBt pointer itself may not be changed while there exists cursors
46540 ** in the referenced BtShared that point back to this Btree since those
46541 ** cursors have to go through this Btree to find their BtShared and
46542 ** they often do so without holding sqlite3.mutex.
46544 struct Btree {
46545 sqlite3 *db; /* The database connection holding this btree */
46546 BtShared *pBt; /* Sharable content of this btree */
46547 u8 inTrans; /* TRANS_NONE, TRANS_READ or TRANS_WRITE */
46548 u8 sharable; /* True if we can share pBt with another db */
46549 u8 locked; /* True if db currently has pBt locked */
46550 int wantToLock; /* Number of nested calls to sqlite3BtreeEnter() */
46551 int nBackup; /* Number of backup operations reading this btree */
46552 Btree *pNext; /* List of other sharable Btrees from the same db */
46553 Btree *pPrev; /* Back pointer of the same list */
46554 #ifndef SQLITE_OMIT_SHARED_CACHE
46555 BtLock lock; /* Object used to lock page 1 */
46556 #endif
46560 ** Btree.inTrans may take one of the following values.
46562 ** If the shared-data extension is enabled, there may be multiple users
46563 ** of the Btree structure. At most one of these may open a write transaction,
46564 ** but any number may have active read transactions.
46566 #define TRANS_NONE 0
46567 #define TRANS_READ 1
46568 #define TRANS_WRITE 2
46571 ** An instance of this object represents a single database file.
46573 ** A single database file can be in use as the same time by two
46574 ** or more database connections. When two or more connections are
46575 ** sharing the same database file, each connection has it own
46576 ** private Btree object for the file and each of those Btrees points
46577 ** to this one BtShared object. BtShared.nRef is the number of
46578 ** connections currently sharing this database file.
46580 ** Fields in this structure are accessed under the BtShared.mutex
46581 ** mutex, except for nRef and pNext which are accessed under the
46582 ** global SQLITE_MUTEX_STATIC_MASTER mutex. The pPager field
46583 ** may not be modified once it is initially set as long as nRef>0.
46584 ** The pSchema field may be set once under BtShared.mutex and
46585 ** thereafter is unchanged as long as nRef>0.
46587 ** isPending:
46589 ** If a BtShared client fails to obtain a write-lock on a database
46590 ** table (because there exists one or more read-locks on the table),
46591 ** the shared-cache enters 'pending-lock' state and isPending is
46592 ** set to true.
46594 ** The shared-cache leaves the 'pending lock' state when either of
46595 ** the following occur:
46597 ** 1) The current writer (BtShared.pWriter) concludes its transaction, OR
46598 ** 2) The number of locks held by other connections drops to zero.
46600 ** while in the 'pending-lock' state, no connection may start a new
46601 ** transaction.
46603 ** This feature is included to help prevent writer-starvation.
46605 struct BtShared {
46606 Pager *pPager; /* The page cache */
46607 sqlite3 *db; /* Database connection currently using this Btree */
46608 BtCursor *pCursor; /* A list of all open cursors */
46609 MemPage *pPage1; /* First page of the database */
46610 u8 readOnly; /* True if the underlying file is readonly */
46611 u8 pageSizeFixed; /* True if the page size can no longer be changed */
46612 u8 secureDelete; /* True if secure_delete is enabled */
46613 u8 initiallyEmpty; /* Database is empty at start of transaction */
46614 u8 openFlags; /* Flags to sqlite3BtreeOpen() */
46615 #ifndef SQLITE_OMIT_AUTOVACUUM
46616 u8 autoVacuum; /* True if auto-vacuum is enabled */
46617 u8 incrVacuum; /* True if incr-vacuum is enabled */
46618 #endif
46619 u8 inTransaction; /* Transaction state */
46620 u8 doNotUseWAL; /* If true, do not open write-ahead-log file */
46621 u16 maxLocal; /* Maximum local payload in non-LEAFDATA tables */
46622 u16 minLocal; /* Minimum local payload in non-LEAFDATA tables */
46623 u16 maxLeaf; /* Maximum local payload in a LEAFDATA table */
46624 u16 minLeaf; /* Minimum local payload in a LEAFDATA table */
46625 u32 pageSize; /* Total number of bytes on a page */
46626 u32 usableSize; /* Number of usable bytes on each page */
46627 int nTransaction; /* Number of open transactions (read + write) */
46628 u32 nPage; /* Number of pages in the database */
46629 void *pSchema; /* Pointer to space allocated by sqlite3BtreeSchema() */
46630 void (*xFreeSchema)(void*); /* Destructor for BtShared.pSchema */
46631 sqlite3_mutex *mutex; /* Non-recursive mutex required to access this object */
46632 Bitvec *pHasContent; /* Set of pages moved to free-list this transaction */
46633 #ifndef SQLITE_OMIT_SHARED_CACHE
46634 int nRef; /* Number of references to this structure */
46635 BtShared *pNext; /* Next on a list of sharable BtShared structs */
46636 BtLock *pLock; /* List of locks held on this shared-btree struct */
46637 Btree *pWriter; /* Btree with currently open write transaction */
46638 u8 isExclusive; /* True if pWriter has an EXCLUSIVE lock on the db */
46639 u8 isPending; /* If waiting for read-locks to clear */
46640 #endif
46641 u8 *pTmpSpace; /* BtShared.pageSize bytes of space for tmp use */
46645 ** An instance of the following structure is used to hold information
46646 ** about a cell. The parseCellPtr() function fills in this structure
46647 ** based on information extract from the raw disk page.
46649 typedef struct CellInfo CellInfo;
46650 struct CellInfo {
46651 i64 nKey; /* The key for INTKEY tables, or number of bytes in key */
46652 u8 *pCell; /* Pointer to the start of cell content */
46653 u32 nData; /* Number of bytes of data */
46654 u32 nPayload; /* Total amount of payload */
46655 u16 nHeader; /* Size of the cell content header in bytes */
46656 u16 nLocal; /* Amount of payload held locally */
46657 u16 iOverflow; /* Offset to overflow page number. Zero if no overflow */
46658 u16 nSize; /* Size of the cell content on the main b-tree page */
46662 ** Maximum depth of an SQLite B-Tree structure. Any B-Tree deeper than
46663 ** this will be declared corrupt. This value is calculated based on a
46664 ** maximum database size of 2^31 pages a minimum fanout of 2 for a
46665 ** root-node and 3 for all other internal nodes.
46667 ** If a tree that appears to be taller than this is encountered, it is
46668 ** assumed that the database is corrupt.
46670 #define BTCURSOR_MAX_DEPTH 20
46673 ** A cursor is a pointer to a particular entry within a particular
46674 ** b-tree within a database file.
46676 ** The entry is identified by its MemPage and the index in
46677 ** MemPage.aCell[] of the entry.
46679 ** A single database file can shared by two more database connections,
46680 ** but cursors cannot be shared. Each cursor is associated with a
46681 ** particular database connection identified BtCursor.pBtree.db.
46683 ** Fields in this structure are accessed under the BtShared.mutex
46684 ** found at self->pBt->mutex.
46686 struct BtCursor {
46687 Btree *pBtree; /* The Btree to which this cursor belongs */
46688 BtShared *pBt; /* The BtShared this cursor points to */
46689 BtCursor *pNext, *pPrev; /* Forms a linked list of all cursors */
46690 struct KeyInfo *pKeyInfo; /* Argument passed to comparison function */
46691 Pgno pgnoRoot; /* The root page of this tree */
46692 sqlite3_int64 cachedRowid; /* Next rowid cache. 0 means not valid */
46693 CellInfo info; /* A parse of the cell we are pointing at */
46694 i64 nKey; /* Size of pKey, or last integer key */
46695 void *pKey; /* Saved key that was cursor's last known position */
46696 int skipNext; /* Prev() is noop if negative. Next() is noop if positive */
46697 u8 wrFlag; /* True if writable */
46698 u8 atLast; /* Cursor pointing to the last entry */
46699 u8 validNKey; /* True if info.nKey is valid */
46700 u8 eState; /* One of the CURSOR_XXX constants (see below) */
46701 #ifndef SQLITE_OMIT_INCRBLOB
46702 Pgno *aOverflow; /* Cache of overflow page locations */
46703 u8 isIncrblobHandle; /* True if this cursor is an incr. io handle */
46704 #endif
46705 i16 iPage; /* Index of current page in apPage */
46706 u16 aiIdx[BTCURSOR_MAX_DEPTH]; /* Current index in apPage[i] */
46707 MemPage *apPage[BTCURSOR_MAX_DEPTH]; /* Pages from root to current page */
46711 ** Potential values for BtCursor.eState.
46713 ** CURSOR_VALID:
46714 ** Cursor points to a valid entry. getPayload() etc. may be called.
46716 ** CURSOR_INVALID:
46717 ** Cursor does not point to a valid entry. This can happen (for example)
46718 ** because the table is empty or because BtreeCursorFirst() has not been
46719 ** called.
46721 ** CURSOR_REQUIRESEEK:
46722 ** The table that this cursor was opened on still exists, but has been
46723 ** modified since the cursor was last used. The cursor position is saved
46724 ** in variables BtCursor.pKey and BtCursor.nKey. When a cursor is in
46725 ** this state, restoreCursorPosition() can be called to attempt to
46726 ** seek the cursor to the saved position.
46728 ** CURSOR_FAULT:
46729 ** A unrecoverable error (an I/O error or a malloc failure) has occurred
46730 ** on a different connection that shares the BtShared cache with this
46731 ** cursor. The error has left the cache in an inconsistent state.
46732 ** Do nothing else with this cursor. Any attempt to use the cursor
46733 ** should return the error code stored in BtCursor.skip
46735 #define CURSOR_INVALID 0
46736 #define CURSOR_VALID 1
46737 #define CURSOR_REQUIRESEEK 2
46738 #define CURSOR_FAULT 3
46741 ** The database page the PENDING_BYTE occupies. This page is never used.
46743 # define PENDING_BYTE_PAGE(pBt) PAGER_MJ_PGNO(pBt)
46746 ** These macros define the location of the pointer-map entry for a
46747 ** database page. The first argument to each is the number of usable
46748 ** bytes on each page of the database (often 1024). The second is the
46749 ** page number to look up in the pointer map.
46751 ** PTRMAP_PAGENO returns the database page number of the pointer-map
46752 ** page that stores the required pointer. PTRMAP_PTROFFSET returns
46753 ** the offset of the requested map entry.
46755 ** If the pgno argument passed to PTRMAP_PAGENO is a pointer-map page,
46756 ** then pgno is returned. So (pgno==PTRMAP_PAGENO(pgsz, pgno)) can be
46757 ** used to test if pgno is a pointer-map page. PTRMAP_ISPAGE implements
46758 ** this test.
46760 #define PTRMAP_PAGENO(pBt, pgno) ptrmapPageno(pBt, pgno)
46761 #define PTRMAP_PTROFFSET(pgptrmap, pgno) (5*(pgno-pgptrmap-1))
46762 #define PTRMAP_ISPAGE(pBt, pgno) (PTRMAP_PAGENO((pBt),(pgno))==(pgno))
46765 ** The pointer map is a lookup table that identifies the parent page for
46766 ** each child page in the database file. The parent page is the page that
46767 ** contains a pointer to the child. Every page in the database contains
46768 ** 0 or 1 parent pages. (In this context 'database page' refers
46769 ** to any page that is not part of the pointer map itself.) Each pointer map
46770 ** entry consists of a single byte 'type' and a 4 byte parent page number.
46771 ** The PTRMAP_XXX identifiers below are the valid types.
46773 ** The purpose of the pointer map is to facility moving pages from one
46774 ** position in the file to another as part of autovacuum. When a page
46775 ** is moved, the pointer in its parent must be updated to point to the
46776 ** new location. The pointer map is used to locate the parent page quickly.
46778 ** PTRMAP_ROOTPAGE: The database page is a root-page. The page-number is not
46779 ** used in this case.
46781 ** PTRMAP_FREEPAGE: The database page is an unused (free) page. The page-number
46782 ** is not used in this case.
46784 ** PTRMAP_OVERFLOW1: The database page is the first page in a list of
46785 ** overflow pages. The page number identifies the page that
46786 ** contains the cell with a pointer to this overflow page.
46788 ** PTRMAP_OVERFLOW2: The database page is the second or later page in a list of
46789 ** overflow pages. The page-number identifies the previous
46790 ** page in the overflow page list.
46792 ** PTRMAP_BTREE: The database page is a non-root btree page. The page number
46793 ** identifies the parent page in the btree.
46795 #define PTRMAP_ROOTPAGE 1
46796 #define PTRMAP_FREEPAGE 2
46797 #define PTRMAP_OVERFLOW1 3
46798 #define PTRMAP_OVERFLOW2 4
46799 #define PTRMAP_BTREE 5
46801 /* A bunch of assert() statements to check the transaction state variables
46802 ** of handle p (type Btree*) are internally consistent.
46804 #define btreeIntegrity(p) \
46805 assert( p->pBt->inTransaction!=TRANS_NONE || p->pBt->nTransaction==0 ); \
46806 assert( p->pBt->inTransaction>=p->inTrans );
46810 ** The ISAUTOVACUUM macro is used within balance_nonroot() to determine
46811 ** if the database supports auto-vacuum or not. Because it is used
46812 ** within an expression that is an argument to another macro
46813 ** (sqliteMallocRaw), it is not possible to use conditional compilation.
46814 ** So, this macro is defined instead.
46816 #ifndef SQLITE_OMIT_AUTOVACUUM
46817 #define ISAUTOVACUUM (pBt->autoVacuum)
46818 #else
46819 #define ISAUTOVACUUM 0
46820 #endif
46824 ** This structure is passed around through all the sanity checking routines
46825 ** in order to keep track of some global state information.
46827 typedef struct IntegrityCk IntegrityCk;
46828 struct IntegrityCk {
46829 BtShared *pBt; /* The tree being checked out */
46830 Pager *pPager; /* The associated pager. Also accessible by pBt->pPager */
46831 Pgno nPage; /* Number of pages in the database */
46832 int *anRef; /* Number of times each page is referenced */
46833 int mxErr; /* Stop accumulating errors when this reaches zero */
46834 int nErr; /* Number of messages written to zErrMsg so far */
46835 int mallocFailed; /* A memory allocation error has occurred */
46836 StrAccum errMsg; /* Accumulate the error message text here */
46840 ** Read or write a two- and four-byte big-endian integer values.
46842 #define get2byte(x) ((x)[0]<<8 | (x)[1])
46843 #define put2byte(p,v) ((p)[0] = (u8)((v)>>8), (p)[1] = (u8)(v))
46844 #define get4byte sqlite3Get4byte
46845 #define put4byte sqlite3Put4byte
46847 /************** End of btreeInt.h ********************************************/
46848 /************** Continuing where we left off in btmutex.c ********************/
46849 #ifndef SQLITE_OMIT_SHARED_CACHE
46850 #if SQLITE_THREADSAFE
46853 ** Obtain the BtShared mutex associated with B-Tree handle p. Also,
46854 ** set BtShared.db to the database handle associated with p and the
46855 ** p->locked boolean to true.
46857 static void lockBtreeMutex(Btree *p){
46858 assert( p->locked==0 );
46859 assert( sqlite3_mutex_notheld(p->pBt->mutex) );
46860 assert( sqlite3_mutex_held(p->db->mutex) );
46862 sqlite3_mutex_enter(p->pBt->mutex);
46863 p->pBt->db = p->db;
46864 p->locked = 1;
46868 ** Release the BtShared mutex associated with B-Tree handle p and
46869 ** clear the p->locked boolean.
46871 static void unlockBtreeMutex(Btree *p){
46872 BtShared *pBt = p->pBt;
46873 assert( p->locked==1 );
46874 assert( sqlite3_mutex_held(pBt->mutex) );
46875 assert( sqlite3_mutex_held(p->db->mutex) );
46876 assert( p->db==pBt->db );
46878 sqlite3_mutex_leave(pBt->mutex);
46879 p->locked = 0;
46883 ** Enter a mutex on the given BTree object.
46885 ** If the object is not sharable, then no mutex is ever required
46886 ** and this routine is a no-op. The underlying mutex is non-recursive.
46887 ** But we keep a reference count in Btree.wantToLock so the behavior
46888 ** of this interface is recursive.
46890 ** To avoid deadlocks, multiple Btrees are locked in the same order
46891 ** by all database connections. The p->pNext is a list of other
46892 ** Btrees belonging to the same database connection as the p Btree
46893 ** which need to be locked after p. If we cannot get a lock on
46894 ** p, then first unlock all of the others on p->pNext, then wait
46895 ** for the lock to become available on p, then relock all of the
46896 ** subsequent Btrees that desire a lock.
46898 SQLITE_PRIVATE void sqlite3BtreeEnter(Btree *p){
46899 Btree *pLater;
46901 /* Some basic sanity checking on the Btree. The list of Btrees
46902 ** connected by pNext and pPrev should be in sorted order by
46903 ** Btree.pBt value. All elements of the list should belong to
46904 ** the same connection. Only shared Btrees are on the list. */
46905 assert( p->pNext==0 || p->pNext->pBt>p->pBt );
46906 assert( p->pPrev==0 || p->pPrev->pBt<p->pBt );
46907 assert( p->pNext==0 || p->pNext->db==p->db );
46908 assert( p->pPrev==0 || p->pPrev->db==p->db );
46909 assert( p->sharable || (p->pNext==0 && p->pPrev==0) );
46911 /* Check for locking consistency */
46912 assert( !p->locked || p->wantToLock>0 );
46913 assert( p->sharable || p->wantToLock==0 );
46915 /* We should already hold a lock on the database connection */
46916 assert( sqlite3_mutex_held(p->db->mutex) );
46918 /* Unless the database is sharable and unlocked, then BtShared.db
46919 ** should already be set correctly. */
46920 assert( (p->locked==0 && p->sharable) || p->pBt->db==p->db );
46922 if( !p->sharable ) return;
46923 p->wantToLock++;
46924 if( p->locked ) return;
46926 /* In most cases, we should be able to acquire the lock we
46927 ** want without having to go throught the ascending lock
46928 ** procedure that follows. Just be sure not to block.
46930 if( sqlite3_mutex_try(p->pBt->mutex)==SQLITE_OK ){
46931 p->pBt->db = p->db;
46932 p->locked = 1;
46933 return;
46936 /* To avoid deadlock, first release all locks with a larger
46937 ** BtShared address. Then acquire our lock. Then reacquire
46938 ** the other BtShared locks that we used to hold in ascending
46939 ** order.
46941 for(pLater=p->pNext; pLater; pLater=pLater->pNext){
46942 assert( pLater->sharable );
46943 assert( pLater->pNext==0 || pLater->pNext->pBt>pLater->pBt );
46944 assert( !pLater->locked || pLater->wantToLock>0 );
46945 if( pLater->locked ){
46946 unlockBtreeMutex(pLater);
46949 lockBtreeMutex(p);
46950 for(pLater=p->pNext; pLater; pLater=pLater->pNext){
46951 if( pLater->wantToLock ){
46952 lockBtreeMutex(pLater);
46958 ** Exit the recursive mutex on a Btree.
46960 SQLITE_PRIVATE void sqlite3BtreeLeave(Btree *p){
46961 if( p->sharable ){
46962 assert( p->wantToLock>0 );
46963 p->wantToLock--;
46964 if( p->wantToLock==0 ){
46965 unlockBtreeMutex(p);
46970 #ifndef NDEBUG
46972 ** Return true if the BtShared mutex is held on the btree, or if the
46973 ** B-Tree is not marked as sharable.
46975 ** This routine is used only from within assert() statements.
46977 SQLITE_PRIVATE int sqlite3BtreeHoldsMutex(Btree *p){
46978 assert( p->sharable==0 || p->locked==0 || p->wantToLock>0 );
46979 assert( p->sharable==0 || p->locked==0 || p->db==p->pBt->db );
46980 assert( p->sharable==0 || p->locked==0 || sqlite3_mutex_held(p->pBt->mutex) );
46981 assert( p->sharable==0 || p->locked==0 || sqlite3_mutex_held(p->db->mutex) );
46983 return (p->sharable==0 || p->locked);
46985 #endif
46988 #ifndef SQLITE_OMIT_INCRBLOB
46990 ** Enter and leave a mutex on a Btree given a cursor owned by that
46991 ** Btree. These entry points are used by incremental I/O and can be
46992 ** omitted if that module is not used.
46994 SQLITE_PRIVATE void sqlite3BtreeEnterCursor(BtCursor *pCur){
46995 sqlite3BtreeEnter(pCur->pBtree);
46997 SQLITE_PRIVATE void sqlite3BtreeLeaveCursor(BtCursor *pCur){
46998 sqlite3BtreeLeave(pCur->pBtree);
47000 #endif /* SQLITE_OMIT_INCRBLOB */
47004 ** Enter the mutex on every Btree associated with a database
47005 ** connection. This is needed (for example) prior to parsing
47006 ** a statement since we will be comparing table and column names
47007 ** against all schemas and we do not want those schemas being
47008 ** reset out from under us.
47010 ** There is a corresponding leave-all procedures.
47012 ** Enter the mutexes in accending order by BtShared pointer address
47013 ** to avoid the possibility of deadlock when two threads with
47014 ** two or more btrees in common both try to lock all their btrees
47015 ** at the same instant.
47017 SQLITE_PRIVATE void sqlite3BtreeEnterAll(sqlite3 *db){
47018 int i;
47019 Btree *p;
47020 assert( sqlite3_mutex_held(db->mutex) );
47021 for(i=0; i<db->nDb; i++){
47022 p = db->aDb[i].pBt;
47023 if( p ) sqlite3BtreeEnter(p);
47026 SQLITE_PRIVATE void sqlite3BtreeLeaveAll(sqlite3 *db){
47027 int i;
47028 Btree *p;
47029 assert( sqlite3_mutex_held(db->mutex) );
47030 for(i=0; i<db->nDb; i++){
47031 p = db->aDb[i].pBt;
47032 if( p ) sqlite3BtreeLeave(p);
47037 ** Return true if a particular Btree requires a lock. Return FALSE if
47038 ** no lock is ever required since it is not sharable.
47040 SQLITE_PRIVATE int sqlite3BtreeSharable(Btree *p){
47041 return p->sharable;
47044 #ifndef NDEBUG
47046 ** Return true if the current thread holds the database connection
47047 ** mutex and all required BtShared mutexes.
47049 ** This routine is used inside assert() statements only.
47051 SQLITE_PRIVATE int sqlite3BtreeHoldsAllMutexes(sqlite3 *db){
47052 int i;
47053 if( !sqlite3_mutex_held(db->mutex) ){
47054 return 0;
47056 for(i=0; i<db->nDb; i++){
47057 Btree *p;
47058 p = db->aDb[i].pBt;
47059 if( p && p->sharable &&
47060 (p->wantToLock==0 || !sqlite3_mutex_held(p->pBt->mutex)) ){
47061 return 0;
47064 return 1;
47066 #endif /* NDEBUG */
47068 #ifndef NDEBUG
47070 ** Return true if the correct mutexes are held for accessing the
47071 ** db->aDb[iDb].pSchema structure. The mutexes required for schema
47072 ** access are:
47074 ** (1) The mutex on db
47075 ** (2) if iDb!=1, then the mutex on db->aDb[iDb].pBt.
47077 ** If pSchema is not NULL, then iDb is computed from pSchema and
47078 ** db using sqlite3SchemaToIndex().
47080 SQLITE_PRIVATE int sqlite3SchemaMutexHeld(sqlite3 *db, int iDb, Schema *pSchema){
47081 Btree *p;
47082 assert( db!=0 );
47083 if( pSchema ) iDb = sqlite3SchemaToIndex(db, pSchema);
47084 assert( iDb>=0 && iDb<db->nDb );
47085 if( !sqlite3_mutex_held(db->mutex) ) return 0;
47086 if( iDb==1 ) return 1;
47087 p = db->aDb[iDb].pBt;
47088 assert( p!=0 );
47089 return p->sharable==0 || p->locked==1;
47091 #endif /* NDEBUG */
47093 #else /* SQLITE_THREADSAFE>0 above. SQLITE_THREADSAFE==0 below */
47095 ** The following are special cases for mutex enter routines for use
47096 ** in single threaded applications that use shared cache. Except for
47097 ** these two routines, all mutex operations are no-ops in that case and
47098 ** are null #defines in btree.h.
47100 ** If shared cache is disabled, then all btree mutex routines, including
47101 ** the ones below, are no-ops and are null #defines in btree.h.
47104 SQLITE_PRIVATE void sqlite3BtreeEnter(Btree *p){
47105 p->pBt->db = p->db;
47107 SQLITE_PRIVATE void sqlite3BtreeEnterAll(sqlite3 *db){
47108 int i;
47109 for(i=0; i<db->nDb; i++){
47110 Btree *p = db->aDb[i].pBt;
47111 if( p ){
47112 p->pBt->db = p->db;
47116 #endif /* if SQLITE_THREADSAFE */
47117 #endif /* ifndef SQLITE_OMIT_SHARED_CACHE */
47119 /************** End of btmutex.c *********************************************/
47120 /************** Begin file btree.c *******************************************/
47122 ** 2004 April 6
47124 ** The author disclaims copyright to this source code. In place of
47125 ** a legal notice, here is a blessing:
47127 ** May you do good and not evil.
47128 ** May you find forgiveness for yourself and forgive others.
47129 ** May you share freely, never taking more than you give.
47131 *************************************************************************
47132 ** This file implements a external (disk-based) database using BTrees.
47133 ** See the header comment on "btreeInt.h" for additional information.
47134 ** Including a description of file format and an overview of operation.
47138 ** The header string that appears at the beginning of every
47139 ** SQLite database.
47141 static const char zMagicHeader[] = SQLITE_FILE_HEADER;
47144 ** Set this global variable to 1 to enable tracing using the TRACE
47145 ** macro.
47147 #if 0
47148 int sqlite3BtreeTrace=1; /* True to enable tracing */
47149 # define TRACE(X) if(sqlite3BtreeTrace){printf X;fflush(stdout);}
47150 #else
47151 # define TRACE(X)
47152 #endif
47155 ** Extract a 2-byte big-endian integer from an array of unsigned bytes.
47156 ** But if the value is zero, make it 65536.
47158 ** This routine is used to extract the "offset to cell content area" value
47159 ** from the header of a btree page. If the page size is 65536 and the page
47160 ** is empty, the offset should be 65536, but the 2-byte value stores zero.
47161 ** This routine makes the necessary adjustment to 65536.
47163 #define get2byteNotZero(X) (((((int)get2byte(X))-1)&0xffff)+1)
47165 #ifndef SQLITE_OMIT_SHARED_CACHE
47167 ** A list of BtShared objects that are eligible for participation
47168 ** in shared cache. This variable has file scope during normal builds,
47169 ** but the test harness needs to access it so we make it global for
47170 ** test builds.
47172 ** Access to this variable is protected by SQLITE_MUTEX_STATIC_MASTER.
47174 #ifdef SQLITE_TEST
47175 SQLITE_PRIVATE BtShared *SQLITE_WSD sqlite3SharedCacheList = 0;
47176 #else
47177 static BtShared *SQLITE_WSD sqlite3SharedCacheList = 0;
47178 #endif
47179 #endif /* SQLITE_OMIT_SHARED_CACHE */
47181 #ifndef SQLITE_OMIT_SHARED_CACHE
47183 ** Enable or disable the shared pager and schema features.
47185 ** This routine has no effect on existing database connections.
47186 ** The shared cache setting effects only future calls to
47187 ** sqlite3_open(), sqlite3_open16(), or sqlite3_open_v2().
47189 SQLITE_API int sqlite3_enable_shared_cache(int enable){
47190 sqlite3GlobalConfig.sharedCacheEnabled = enable;
47191 return SQLITE_OK;
47193 #endif
47197 #ifdef SQLITE_OMIT_SHARED_CACHE
47199 ** The functions querySharedCacheTableLock(), setSharedCacheTableLock(),
47200 ** and clearAllSharedCacheTableLocks()
47201 ** manipulate entries in the BtShared.pLock linked list used to store
47202 ** shared-cache table level locks. If the library is compiled with the
47203 ** shared-cache feature disabled, then there is only ever one user
47204 ** of each BtShared structure and so this locking is not necessary.
47205 ** So define the lock related functions as no-ops.
47207 #define querySharedCacheTableLock(a,b,c) SQLITE_OK
47208 #define setSharedCacheTableLock(a,b,c) SQLITE_OK
47209 #define clearAllSharedCacheTableLocks(a)
47210 #define downgradeAllSharedCacheTableLocks(a)
47211 #define hasSharedCacheTableLock(a,b,c,d) 1
47212 #define hasReadConflicts(a, b) 0
47213 #endif
47215 #ifndef SQLITE_OMIT_SHARED_CACHE
47217 #ifdef SQLITE_DEBUG
47219 **** This function is only used as part of an assert() statement. ***
47221 ** Check to see if pBtree holds the required locks to read or write to the
47222 ** table with root page iRoot. Return 1 if it does and 0 if not.
47224 ** For example, when writing to a table with root-page iRoot via
47225 ** Btree connection pBtree:
47227 ** assert( hasSharedCacheTableLock(pBtree, iRoot, 0, WRITE_LOCK) );
47229 ** When writing to an index that resides in a sharable database, the
47230 ** caller should have first obtained a lock specifying the root page of
47231 ** the corresponding table. This makes things a bit more complicated,
47232 ** as this module treats each table as a separate structure. To determine
47233 ** the table corresponding to the index being written, this
47234 ** function has to search through the database schema.
47236 ** Instead of a lock on the table/index rooted at page iRoot, the caller may
47237 ** hold a write-lock on the schema table (root page 1). This is also
47238 ** acceptable.
47240 static int hasSharedCacheTableLock(
47241 Btree *pBtree, /* Handle that must hold lock */
47242 Pgno iRoot, /* Root page of b-tree */
47243 int isIndex, /* True if iRoot is the root of an index b-tree */
47244 int eLockType /* Required lock type (READ_LOCK or WRITE_LOCK) */
47246 Schema *pSchema = (Schema *)pBtree->pBt->pSchema;
47247 Pgno iTab = 0;
47248 BtLock *pLock;
47250 /* If this database is not shareable, or if the client is reading
47251 ** and has the read-uncommitted flag set, then no lock is required.
47252 ** Return true immediately.
47254 if( (pBtree->sharable==0)
47255 || (eLockType==READ_LOCK && (pBtree->db->flags & SQLITE_ReadUncommitted))
47257 return 1;
47260 /* If the client is reading or writing an index and the schema is
47261 ** not loaded, then it is too difficult to actually check to see if
47262 ** the correct locks are held. So do not bother - just return true.
47263 ** This case does not come up very often anyhow.
47265 if( isIndex && (!pSchema || (pSchema->flags&DB_SchemaLoaded)==0) ){
47266 return 1;
47269 /* Figure out the root-page that the lock should be held on. For table
47270 ** b-trees, this is just the root page of the b-tree being read or
47271 ** written. For index b-trees, it is the root page of the associated
47272 ** table. */
47273 if( isIndex ){
47274 HashElem *p;
47275 for(p=sqliteHashFirst(&pSchema->idxHash); p; p=sqliteHashNext(p)){
47276 Index *pIdx = (Index *)sqliteHashData(p);
47277 if( pIdx->tnum==(int)iRoot ){
47278 iTab = pIdx->pTable->tnum;
47281 }else{
47282 iTab = iRoot;
47285 /* Search for the required lock. Either a write-lock on root-page iTab, a
47286 ** write-lock on the schema table, or (if the client is reading) a
47287 ** read-lock on iTab will suffice. Return 1 if any of these are found. */
47288 for(pLock=pBtree->pBt->pLock; pLock; pLock=pLock->pNext){
47289 if( pLock->pBtree==pBtree
47290 && (pLock->iTable==iTab || (pLock->eLock==WRITE_LOCK && pLock->iTable==1))
47291 && pLock->eLock>=eLockType
47293 return 1;
47297 /* Failed to find the required lock. */
47298 return 0;
47300 #endif /* SQLITE_DEBUG */
47302 #ifdef SQLITE_DEBUG
47304 **** This function may be used as part of assert() statements only. ****
47306 ** Return true if it would be illegal for pBtree to write into the
47307 ** table or index rooted at iRoot because other shared connections are
47308 ** simultaneously reading that same table or index.
47310 ** It is illegal for pBtree to write if some other Btree object that
47311 ** shares the same BtShared object is currently reading or writing
47312 ** the iRoot table. Except, if the other Btree object has the
47313 ** read-uncommitted flag set, then it is OK for the other object to
47314 ** have a read cursor.
47316 ** For example, before writing to any part of the table or index
47317 ** rooted at page iRoot, one should call:
47319 ** assert( !hasReadConflicts(pBtree, iRoot) );
47321 static int hasReadConflicts(Btree *pBtree, Pgno iRoot){
47322 BtCursor *p;
47323 for(p=pBtree->pBt->pCursor; p; p=p->pNext){
47324 if( p->pgnoRoot==iRoot
47325 && p->pBtree!=pBtree
47326 && 0==(p->pBtree->db->flags & SQLITE_ReadUncommitted)
47328 return 1;
47331 return 0;
47333 #endif /* #ifdef SQLITE_DEBUG */
47336 ** Query to see if Btree handle p may obtain a lock of type eLock
47337 ** (READ_LOCK or WRITE_LOCK) on the table with root-page iTab. Return
47338 ** SQLITE_OK if the lock may be obtained (by calling
47339 ** setSharedCacheTableLock()), or SQLITE_LOCKED if not.
47341 static int querySharedCacheTableLock(Btree *p, Pgno iTab, u8 eLock){
47342 BtShared *pBt = p->pBt;
47343 BtLock *pIter;
47345 assert( sqlite3BtreeHoldsMutex(p) );
47346 assert( eLock==READ_LOCK || eLock==WRITE_LOCK );
47347 assert( p->db!=0 );
47348 assert( !(p->db->flags&SQLITE_ReadUncommitted)||eLock==WRITE_LOCK||iTab==1 );
47350 /* If requesting a write-lock, then the Btree must have an open write
47351 ** transaction on this file. And, obviously, for this to be so there
47352 ** must be an open write transaction on the file itself.
47354 assert( eLock==READ_LOCK || (p==pBt->pWriter && p->inTrans==TRANS_WRITE) );
47355 assert( eLock==READ_LOCK || pBt->inTransaction==TRANS_WRITE );
47357 /* This routine is a no-op if the shared-cache is not enabled */
47358 if( !p->sharable ){
47359 return SQLITE_OK;
47362 /* If some other connection is holding an exclusive lock, the
47363 ** requested lock may not be obtained.
47365 if( pBt->pWriter!=p && pBt->isExclusive ){
47366 sqlite3ConnectionBlocked(p->db, pBt->pWriter->db);
47367 return SQLITE_LOCKED_SHAREDCACHE;
47370 for(pIter=pBt->pLock; pIter; pIter=pIter->pNext){
47371 /* The condition (pIter->eLock!=eLock) in the following if(...)
47372 ** statement is a simplification of:
47374 ** (eLock==WRITE_LOCK || pIter->eLock==WRITE_LOCK)
47376 ** since we know that if eLock==WRITE_LOCK, then no other connection
47377 ** may hold a WRITE_LOCK on any table in this file (since there can
47378 ** only be a single writer).
47380 assert( pIter->eLock==READ_LOCK || pIter->eLock==WRITE_LOCK );
47381 assert( eLock==READ_LOCK || pIter->pBtree==p || pIter->eLock==READ_LOCK);
47382 if( pIter->pBtree!=p && pIter->iTable==iTab && pIter->eLock!=eLock ){
47383 sqlite3ConnectionBlocked(p->db, pIter->pBtree->db);
47384 if( eLock==WRITE_LOCK ){
47385 assert( p==pBt->pWriter );
47386 pBt->isPending = 1;
47388 return SQLITE_LOCKED_SHAREDCACHE;
47391 return SQLITE_OK;
47393 #endif /* !SQLITE_OMIT_SHARED_CACHE */
47395 #ifndef SQLITE_OMIT_SHARED_CACHE
47397 ** Add a lock on the table with root-page iTable to the shared-btree used
47398 ** by Btree handle p. Parameter eLock must be either READ_LOCK or
47399 ** WRITE_LOCK.
47401 ** This function assumes the following:
47403 ** (a) The specified Btree object p is connected to a sharable
47404 ** database (one with the BtShared.sharable flag set), and
47406 ** (b) No other Btree objects hold a lock that conflicts
47407 ** with the requested lock (i.e. querySharedCacheTableLock() has
47408 ** already been called and returned SQLITE_OK).
47410 ** SQLITE_OK is returned if the lock is added successfully. SQLITE_NOMEM
47411 ** is returned if a malloc attempt fails.
47413 static int setSharedCacheTableLock(Btree *p, Pgno iTable, u8 eLock){
47414 BtShared *pBt = p->pBt;
47415 BtLock *pLock = 0;
47416 BtLock *pIter;
47418 assert( sqlite3BtreeHoldsMutex(p) );
47419 assert( eLock==READ_LOCK || eLock==WRITE_LOCK );
47420 assert( p->db!=0 );
47422 /* A connection with the read-uncommitted flag set will never try to
47423 ** obtain a read-lock using this function. The only read-lock obtained
47424 ** by a connection in read-uncommitted mode is on the sqlite_master
47425 ** table, and that lock is obtained in BtreeBeginTrans(). */
47426 assert( 0==(p->db->flags&SQLITE_ReadUncommitted) || eLock==WRITE_LOCK );
47428 /* This function should only be called on a sharable b-tree after it
47429 ** has been determined that no other b-tree holds a conflicting lock. */
47430 assert( p->sharable );
47431 assert( SQLITE_OK==querySharedCacheTableLock(p, iTable, eLock) );
47433 /* First search the list for an existing lock on this table. */
47434 for(pIter=pBt->pLock; pIter; pIter=pIter->pNext){
47435 if( pIter->iTable==iTable && pIter->pBtree==p ){
47436 pLock = pIter;
47437 break;
47441 /* If the above search did not find a BtLock struct associating Btree p
47442 ** with table iTable, allocate one and link it into the list.
47444 if( !pLock ){
47445 pLock = (BtLock *)sqlite3MallocZero(sizeof(BtLock));
47446 if( !pLock ){
47447 return SQLITE_NOMEM;
47449 pLock->iTable = iTable;
47450 pLock->pBtree = p;
47451 pLock->pNext = pBt->pLock;
47452 pBt->pLock = pLock;
47455 /* Set the BtLock.eLock variable to the maximum of the current lock
47456 ** and the requested lock. This means if a write-lock was already held
47457 ** and a read-lock requested, we don't incorrectly downgrade the lock.
47459 assert( WRITE_LOCK>READ_LOCK );
47460 if( eLock>pLock->eLock ){
47461 pLock->eLock = eLock;
47464 return SQLITE_OK;
47466 #endif /* !SQLITE_OMIT_SHARED_CACHE */
47468 #ifndef SQLITE_OMIT_SHARED_CACHE
47470 ** Release all the table locks (locks obtained via calls to
47471 ** the setSharedCacheTableLock() procedure) held by Btree object p.
47473 ** This function assumes that Btree p has an open read or write
47474 ** transaction. If it does not, then the BtShared.isPending variable
47475 ** may be incorrectly cleared.
47477 static void clearAllSharedCacheTableLocks(Btree *p){
47478 BtShared *pBt = p->pBt;
47479 BtLock **ppIter = &pBt->pLock;
47481 assert( sqlite3BtreeHoldsMutex(p) );
47482 assert( p->sharable || 0==*ppIter );
47483 assert( p->inTrans>0 );
47485 while( *ppIter ){
47486 BtLock *pLock = *ppIter;
47487 assert( pBt->isExclusive==0 || pBt->pWriter==pLock->pBtree );
47488 assert( pLock->pBtree->inTrans>=pLock->eLock );
47489 if( pLock->pBtree==p ){
47490 *ppIter = pLock->pNext;
47491 assert( pLock->iTable!=1 || pLock==&p->lock );
47492 if( pLock->iTable!=1 ){
47493 sqlite3_free(pLock);
47495 }else{
47496 ppIter = &pLock->pNext;
47500 assert( pBt->isPending==0 || pBt->pWriter );
47501 if( pBt->pWriter==p ){
47502 pBt->pWriter = 0;
47503 pBt->isExclusive = 0;
47504 pBt->isPending = 0;
47505 }else if( pBt->nTransaction==2 ){
47506 /* This function is called when Btree p is concluding its
47507 ** transaction. If there currently exists a writer, and p is not
47508 ** that writer, then the number of locks held by connections other
47509 ** than the writer must be about to drop to zero. In this case
47510 ** set the isPending flag to 0.
47512 ** If there is not currently a writer, then BtShared.isPending must
47513 ** be zero already. So this next line is harmless in that case.
47515 pBt->isPending = 0;
47520 ** This function changes all write-locks held by Btree p into read-locks.
47522 static void downgradeAllSharedCacheTableLocks(Btree *p){
47523 BtShared *pBt = p->pBt;
47524 if( pBt->pWriter==p ){
47525 BtLock *pLock;
47526 pBt->pWriter = 0;
47527 pBt->isExclusive = 0;
47528 pBt->isPending = 0;
47529 for(pLock=pBt->pLock; pLock; pLock=pLock->pNext){
47530 assert( pLock->eLock==READ_LOCK || pLock->pBtree==p );
47531 pLock->eLock = READ_LOCK;
47536 #endif /* SQLITE_OMIT_SHARED_CACHE */
47538 static void releasePage(MemPage *pPage); /* Forward reference */
47541 ***** This routine is used inside of assert() only ****
47543 ** Verify that the cursor holds the mutex on its BtShared
47545 #ifdef SQLITE_DEBUG
47546 static int cursorHoldsMutex(BtCursor *p){
47547 return sqlite3_mutex_held(p->pBt->mutex);
47549 #endif
47552 #ifndef SQLITE_OMIT_INCRBLOB
47554 ** Invalidate the overflow page-list cache for cursor pCur, if any.
47556 static void invalidateOverflowCache(BtCursor *pCur){
47557 assert( cursorHoldsMutex(pCur) );
47558 sqlite3_free(pCur->aOverflow);
47559 pCur->aOverflow = 0;
47563 ** Invalidate the overflow page-list cache for all cursors opened
47564 ** on the shared btree structure pBt.
47566 static void invalidateAllOverflowCache(BtShared *pBt){
47567 BtCursor *p;
47568 assert( sqlite3_mutex_held(pBt->mutex) );
47569 for(p=pBt->pCursor; p; p=p->pNext){
47570 invalidateOverflowCache(p);
47575 ** This function is called before modifying the contents of a table
47576 ** to invalidate any incrblob cursors that are open on the
47577 ** row or one of the rows being modified.
47579 ** If argument isClearTable is true, then the entire contents of the
47580 ** table is about to be deleted. In this case invalidate all incrblob
47581 ** cursors open on any row within the table with root-page pgnoRoot.
47583 ** Otherwise, if argument isClearTable is false, then the row with
47584 ** rowid iRow is being replaced or deleted. In this case invalidate
47585 ** only those incrblob cursors open on that specific row.
47587 static void invalidateIncrblobCursors(
47588 Btree *pBtree, /* The database file to check */
47589 i64 iRow, /* The rowid that might be changing */
47590 int isClearTable /* True if all rows are being deleted */
47592 BtCursor *p;
47593 BtShared *pBt = pBtree->pBt;
47594 assert( sqlite3BtreeHoldsMutex(pBtree) );
47595 for(p=pBt->pCursor; p; p=p->pNext){
47596 if( p->isIncrblobHandle && (isClearTable || p->info.nKey==iRow) ){
47597 p->eState = CURSOR_INVALID;
47602 #else
47603 /* Stub functions when INCRBLOB is omitted */
47604 #define invalidateOverflowCache(x)
47605 #define invalidateAllOverflowCache(x)
47606 #define invalidateIncrblobCursors(x,y,z)
47607 #endif /* SQLITE_OMIT_INCRBLOB */
47610 ** Set bit pgno of the BtShared.pHasContent bitvec. This is called
47611 ** when a page that previously contained data becomes a free-list leaf
47612 ** page.
47614 ** The BtShared.pHasContent bitvec exists to work around an obscure
47615 ** bug caused by the interaction of two useful IO optimizations surrounding
47616 ** free-list leaf pages:
47618 ** 1) When all data is deleted from a page and the page becomes
47619 ** a free-list leaf page, the page is not written to the database
47620 ** (as free-list leaf pages contain no meaningful data). Sometimes
47621 ** such a page is not even journalled (as it will not be modified,
47622 ** why bother journalling it?).
47624 ** 2) When a free-list leaf page is reused, its content is not read
47625 ** from the database or written to the journal file (why should it
47626 ** be, if it is not at all meaningful?).
47628 ** By themselves, these optimizations work fine and provide a handy
47629 ** performance boost to bulk delete or insert operations. However, if
47630 ** a page is moved to the free-list and then reused within the same
47631 ** transaction, a problem comes up. If the page is not journalled when
47632 ** it is moved to the free-list and it is also not journalled when it
47633 ** is extracted from the free-list and reused, then the original data
47634 ** may be lost. In the event of a rollback, it may not be possible
47635 ** to restore the database to its original configuration.
47637 ** The solution is the BtShared.pHasContent bitvec. Whenever a page is
47638 ** moved to become a free-list leaf page, the corresponding bit is
47639 ** set in the bitvec. Whenever a leaf page is extracted from the free-list,
47640 ** optimization 2 above is omitted if the corresponding bit is already
47641 ** set in BtShared.pHasContent. The contents of the bitvec are cleared
47642 ** at the end of every transaction.
47644 static int btreeSetHasContent(BtShared *pBt, Pgno pgno){
47645 int rc = SQLITE_OK;
47646 if( !pBt->pHasContent ){
47647 assert( pgno<=pBt->nPage );
47648 pBt->pHasContent = sqlite3BitvecCreate(pBt->nPage);
47649 if( !pBt->pHasContent ){
47650 rc = SQLITE_NOMEM;
47653 if( rc==SQLITE_OK && pgno<=sqlite3BitvecSize(pBt->pHasContent) ){
47654 rc = sqlite3BitvecSet(pBt->pHasContent, pgno);
47656 return rc;
47660 ** Query the BtShared.pHasContent vector.
47662 ** This function is called when a free-list leaf page is removed from the
47663 ** free-list for reuse. It returns false if it is safe to retrieve the
47664 ** page from the pager layer with the 'no-content' flag set. True otherwise.
47666 static int btreeGetHasContent(BtShared *pBt, Pgno pgno){
47667 Bitvec *p = pBt->pHasContent;
47668 return (p && (pgno>sqlite3BitvecSize(p) || sqlite3BitvecTest(p, pgno)));
47672 ** Clear (destroy) the BtShared.pHasContent bitvec. This should be
47673 ** invoked at the conclusion of each write-transaction.
47675 static void btreeClearHasContent(BtShared *pBt){
47676 sqlite3BitvecDestroy(pBt->pHasContent);
47677 pBt->pHasContent = 0;
47681 ** Save the current cursor position in the variables BtCursor.nKey
47682 ** and BtCursor.pKey. The cursor's state is set to CURSOR_REQUIRESEEK.
47684 ** The caller must ensure that the cursor is valid (has eState==CURSOR_VALID)
47685 ** prior to calling this routine.
47687 static int saveCursorPosition(BtCursor *pCur){
47688 int rc;
47690 assert( CURSOR_VALID==pCur->eState );
47691 assert( 0==pCur->pKey );
47692 assert( cursorHoldsMutex(pCur) );
47694 rc = sqlite3BtreeKeySize(pCur, &pCur->nKey);
47695 assert( rc==SQLITE_OK ); /* KeySize() cannot fail */
47697 /* If this is an intKey table, then the above call to BtreeKeySize()
47698 ** stores the integer key in pCur->nKey. In this case this value is
47699 ** all that is required. Otherwise, if pCur is not open on an intKey
47700 ** table, then malloc space for and store the pCur->nKey bytes of key
47701 ** data.
47703 if( 0==pCur->apPage[0]->intKey ){
47704 void *pKey = sqlite3Malloc( (int)pCur->nKey );
47705 if( pKey ){
47706 rc = sqlite3BtreeKey(pCur, 0, (int)pCur->nKey, pKey);
47707 if( rc==SQLITE_OK ){
47708 pCur->pKey = pKey;
47709 }else{
47710 sqlite3_free(pKey);
47712 }else{
47713 rc = SQLITE_NOMEM;
47716 assert( !pCur->apPage[0]->intKey || !pCur->pKey );
47718 if( rc==SQLITE_OK ){
47719 int i;
47720 for(i=0; i<=pCur->iPage; i++){
47721 releasePage(pCur->apPage[i]);
47722 pCur->apPage[i] = 0;
47724 pCur->iPage = -1;
47725 pCur->eState = CURSOR_REQUIRESEEK;
47728 invalidateOverflowCache(pCur);
47729 return rc;
47733 ** Save the positions of all cursors (except pExcept) that are open on
47734 ** the table with root-page iRoot. Usually, this is called just before cursor
47735 ** pExcept is used to modify the table (BtreeDelete() or BtreeInsert()).
47737 static int saveAllCursors(BtShared *pBt, Pgno iRoot, BtCursor *pExcept){
47738 BtCursor *p;
47739 assert( sqlite3_mutex_held(pBt->mutex) );
47740 assert( pExcept==0 || pExcept->pBt==pBt );
47741 for(p=pBt->pCursor; p; p=p->pNext){
47742 if( p!=pExcept && (0==iRoot || p->pgnoRoot==iRoot) &&
47743 p->eState==CURSOR_VALID ){
47744 int rc = saveCursorPosition(p);
47745 if( SQLITE_OK!=rc ){
47746 return rc;
47750 return SQLITE_OK;
47754 ** Clear the current cursor position.
47756 SQLITE_PRIVATE void sqlite3BtreeClearCursor(BtCursor *pCur){
47757 assert( cursorHoldsMutex(pCur) );
47758 sqlite3_free(pCur->pKey);
47759 pCur->pKey = 0;
47760 pCur->eState = CURSOR_INVALID;
47764 ** In this version of BtreeMoveto, pKey is a packed index record
47765 ** such as is generated by the OP_MakeRecord opcode. Unpack the
47766 ** record and then call BtreeMovetoUnpacked() to do the work.
47768 static int btreeMoveto(
47769 BtCursor *pCur, /* Cursor open on the btree to be searched */
47770 const void *pKey, /* Packed key if the btree is an index */
47771 i64 nKey, /* Integer key for tables. Size of pKey for indices */
47772 int bias, /* Bias search to the high end */
47773 int *pRes /* Write search results here */
47775 int rc; /* Status code */
47776 UnpackedRecord *pIdxKey; /* Unpacked index key */
47777 char aSpace[150]; /* Temp space for pIdxKey - to avoid a malloc */
47779 if( pKey ){
47780 assert( nKey==(i64)(int)nKey );
47781 pIdxKey = sqlite3VdbeRecordUnpack(pCur->pKeyInfo, (int)nKey, pKey,
47782 aSpace, sizeof(aSpace));
47783 if( pIdxKey==0 ) return SQLITE_NOMEM;
47784 }else{
47785 pIdxKey = 0;
47787 rc = sqlite3BtreeMovetoUnpacked(pCur, pIdxKey, nKey, bias, pRes);
47788 if( pKey ){
47789 sqlite3VdbeDeleteUnpackedRecord(pIdxKey);
47791 return rc;
47795 ** Restore the cursor to the position it was in (or as close to as possible)
47796 ** when saveCursorPosition() was called. Note that this call deletes the
47797 ** saved position info stored by saveCursorPosition(), so there can be
47798 ** at most one effective restoreCursorPosition() call after each
47799 ** saveCursorPosition().
47801 static int btreeRestoreCursorPosition(BtCursor *pCur){
47802 int rc;
47803 assert( cursorHoldsMutex(pCur) );
47804 assert( pCur->eState>=CURSOR_REQUIRESEEK );
47805 if( pCur->eState==CURSOR_FAULT ){
47806 return pCur->skipNext;
47808 pCur->eState = CURSOR_INVALID;
47809 rc = btreeMoveto(pCur, pCur->pKey, pCur->nKey, 0, &pCur->skipNext);
47810 if( rc==SQLITE_OK ){
47811 sqlite3_free(pCur->pKey);
47812 pCur->pKey = 0;
47813 assert( pCur->eState==CURSOR_VALID || pCur->eState==CURSOR_INVALID );
47815 return rc;
47818 #define restoreCursorPosition(p) \
47819 (p->eState>=CURSOR_REQUIRESEEK ? \
47820 btreeRestoreCursorPosition(p) : \
47821 SQLITE_OK)
47824 ** Determine whether or not a cursor has moved from the position it
47825 ** was last placed at. Cursors can move when the row they are pointing
47826 ** at is deleted out from under them.
47828 ** This routine returns an error code if something goes wrong. The
47829 ** integer *pHasMoved is set to one if the cursor has moved and 0 if not.
47831 SQLITE_PRIVATE int sqlite3BtreeCursorHasMoved(BtCursor *pCur, int *pHasMoved){
47832 int rc;
47834 rc = restoreCursorPosition(pCur);
47835 if( rc ){
47836 *pHasMoved = 1;
47837 return rc;
47839 if( pCur->eState!=CURSOR_VALID || pCur->skipNext!=0 ){
47840 *pHasMoved = 1;
47841 }else{
47842 *pHasMoved = 0;
47844 return SQLITE_OK;
47847 #ifndef SQLITE_OMIT_AUTOVACUUM
47849 ** Given a page number of a regular database page, return the page
47850 ** number for the pointer-map page that contains the entry for the
47851 ** input page number.
47853 ** Return 0 (not a valid page) for pgno==1 since there is
47854 ** no pointer map associated with page 1. The integrity_check logic
47855 ** requires that ptrmapPageno(*,1)!=1.
47857 static Pgno ptrmapPageno(BtShared *pBt, Pgno pgno){
47858 int nPagesPerMapPage;
47859 Pgno iPtrMap, ret;
47860 assert( sqlite3_mutex_held(pBt->mutex) );
47861 if( pgno<2 ) return 0;
47862 nPagesPerMapPage = (pBt->usableSize/5)+1;
47863 iPtrMap = (pgno-2)/nPagesPerMapPage;
47864 ret = (iPtrMap*nPagesPerMapPage) + 2;
47865 if( ret==PENDING_BYTE_PAGE(pBt) ){
47866 ret++;
47868 return ret;
47872 ** Write an entry into the pointer map.
47874 ** This routine updates the pointer map entry for page number 'key'
47875 ** so that it maps to type 'eType' and parent page number 'pgno'.
47877 ** If *pRC is initially non-zero (non-SQLITE_OK) then this routine is
47878 ** a no-op. If an error occurs, the appropriate error code is written
47879 ** into *pRC.
47881 static void ptrmapPut(BtShared *pBt, Pgno key, u8 eType, Pgno parent, int *pRC){
47882 DbPage *pDbPage; /* The pointer map page */
47883 u8 *pPtrmap; /* The pointer map data */
47884 Pgno iPtrmap; /* The pointer map page number */
47885 int offset; /* Offset in pointer map page */
47886 int rc; /* Return code from subfunctions */
47888 if( *pRC ) return;
47890 assert( sqlite3_mutex_held(pBt->mutex) );
47891 /* The master-journal page number must never be used as a pointer map page */
47892 assert( 0==PTRMAP_ISPAGE(pBt, PENDING_BYTE_PAGE(pBt)) );
47894 assert( pBt->autoVacuum );
47895 if( key==0 ){
47896 *pRC = SQLITE_CORRUPT_BKPT;
47897 return;
47899 iPtrmap = PTRMAP_PAGENO(pBt, key);
47900 rc = sqlite3PagerGet(pBt->pPager, iPtrmap, &pDbPage);
47901 if( rc!=SQLITE_OK ){
47902 *pRC = rc;
47903 return;
47905 offset = PTRMAP_PTROFFSET(iPtrmap, key);
47906 if( offset<0 ){
47907 *pRC = SQLITE_CORRUPT_BKPT;
47908 goto ptrmap_exit;
47910 pPtrmap = (u8 *)sqlite3PagerGetData(pDbPage);
47912 if( eType!=pPtrmap[offset] || get4byte(&pPtrmap[offset+1])!=parent ){
47913 TRACE(("PTRMAP_UPDATE: %d->(%d,%d)\n", key, eType, parent));
47914 *pRC= rc = sqlite3PagerWrite(pDbPage);
47915 if( rc==SQLITE_OK ){
47916 pPtrmap[offset] = eType;
47917 put4byte(&pPtrmap[offset+1], parent);
47921 ptrmap_exit:
47922 sqlite3PagerUnref(pDbPage);
47926 ** Read an entry from the pointer map.
47928 ** This routine retrieves the pointer map entry for page 'key', writing
47929 ** the type and parent page number to *pEType and *pPgno respectively.
47930 ** An error code is returned if something goes wrong, otherwise SQLITE_OK.
47932 static int ptrmapGet(BtShared *pBt, Pgno key, u8 *pEType, Pgno *pPgno){
47933 DbPage *pDbPage; /* The pointer map page */
47934 int iPtrmap; /* Pointer map page index */
47935 u8 *pPtrmap; /* Pointer map page data */
47936 int offset; /* Offset of entry in pointer map */
47937 int rc;
47939 assert( sqlite3_mutex_held(pBt->mutex) );
47941 iPtrmap = PTRMAP_PAGENO(pBt, key);
47942 rc = sqlite3PagerGet(pBt->pPager, iPtrmap, &pDbPage);
47943 if( rc!=0 ){
47944 return rc;
47946 pPtrmap = (u8 *)sqlite3PagerGetData(pDbPage);
47948 offset = PTRMAP_PTROFFSET(iPtrmap, key);
47949 assert( pEType!=0 );
47950 *pEType = pPtrmap[offset];
47951 if( pPgno ) *pPgno = get4byte(&pPtrmap[offset+1]);
47953 sqlite3PagerUnref(pDbPage);
47954 if( *pEType<1 || *pEType>5 ) return SQLITE_CORRUPT_BKPT;
47955 return SQLITE_OK;
47958 #else /* if defined SQLITE_OMIT_AUTOVACUUM */
47959 #define ptrmapPut(w,x,y,z,rc)
47960 #define ptrmapGet(w,x,y,z) SQLITE_OK
47961 #define ptrmapPutOvflPtr(x, y, rc)
47962 #endif
47965 ** Given a btree page and a cell index (0 means the first cell on
47966 ** the page, 1 means the second cell, and so forth) return a pointer
47967 ** to the cell content.
47969 ** This routine works only for pages that do not contain overflow cells.
47971 #define findCell(P,I) \
47972 ((P)->aData + ((P)->maskPage & get2byte(&(P)->aData[(P)->cellOffset+2*(I)])))
47975 ** This a more complex version of findCell() that works for
47976 ** pages that do contain overflow cells.
47978 static u8 *findOverflowCell(MemPage *pPage, int iCell){
47979 int i;
47980 assert( sqlite3_mutex_held(pPage->pBt->mutex) );
47981 for(i=pPage->nOverflow-1; i>=0; i--){
47982 int k;
47983 struct _OvflCell *pOvfl;
47984 pOvfl = &pPage->aOvfl[i];
47985 k = pOvfl->idx;
47986 if( k<=iCell ){
47987 if( k==iCell ){
47988 return pOvfl->pCell;
47990 iCell--;
47993 return findCell(pPage, iCell);
47997 ** Parse a cell content block and fill in the CellInfo structure. There
47998 ** are two versions of this function. btreeParseCell() takes a
47999 ** cell index as the second argument and btreeParseCellPtr()
48000 ** takes a pointer to the body of the cell as its second argument.
48002 ** Within this file, the parseCell() macro can be called instead of
48003 ** btreeParseCellPtr(). Using some compilers, this will be faster.
48005 static void btreeParseCellPtr(
48006 MemPage *pPage, /* Page containing the cell */
48007 u8 *pCell, /* Pointer to the cell text. */
48008 CellInfo *pInfo /* Fill in this structure */
48010 u16 n; /* Number bytes in cell content header */
48011 u32 nPayload; /* Number of bytes of cell payload */
48013 assert( sqlite3_mutex_held(pPage->pBt->mutex) );
48015 pInfo->pCell = pCell;
48016 assert( pPage->leaf==0 || pPage->leaf==1 );
48017 n = pPage->childPtrSize;
48018 assert( n==4-4*pPage->leaf );
48019 if( pPage->intKey ){
48020 if( pPage->hasData ){
48021 n += getVarint32(&pCell[n], nPayload);
48022 }else{
48023 nPayload = 0;
48025 n += getVarint(&pCell[n], (u64*)&pInfo->nKey);
48026 pInfo->nData = nPayload;
48027 }else{
48028 pInfo->nData = 0;
48029 n += getVarint32(&pCell[n], nPayload);
48030 pInfo->nKey = nPayload;
48032 pInfo->nPayload = nPayload;
48033 pInfo->nHeader = n;
48034 testcase( nPayload==pPage->maxLocal );
48035 testcase( nPayload==pPage->maxLocal+1 );
48036 if( likely(nPayload<=pPage->maxLocal) ){
48037 /* This is the (easy) common case where the entire payload fits
48038 ** on the local page. No overflow is required.
48040 if( (pInfo->nSize = (u16)(n+nPayload))<4 ) pInfo->nSize = 4;
48041 pInfo->nLocal = (u16)nPayload;
48042 pInfo->iOverflow = 0;
48043 }else{
48044 /* If the payload will not fit completely on the local page, we have
48045 ** to decide how much to store locally and how much to spill onto
48046 ** overflow pages. The strategy is to minimize the amount of unused
48047 ** space on overflow pages while keeping the amount of local storage
48048 ** in between minLocal and maxLocal.
48050 ** Warning: changing the way overflow payload is distributed in any
48051 ** way will result in an incompatible file format.
48053 int minLocal; /* Minimum amount of payload held locally */
48054 int maxLocal; /* Maximum amount of payload held locally */
48055 int surplus; /* Overflow payload available for local storage */
48057 minLocal = pPage->minLocal;
48058 maxLocal = pPage->maxLocal;
48059 surplus = minLocal + (nPayload - minLocal)%(pPage->pBt->usableSize - 4);
48060 testcase( surplus==maxLocal );
48061 testcase( surplus==maxLocal+1 );
48062 if( surplus <= maxLocal ){
48063 pInfo->nLocal = (u16)surplus;
48064 }else{
48065 pInfo->nLocal = (u16)minLocal;
48067 pInfo->iOverflow = (u16)(pInfo->nLocal + n);
48068 pInfo->nSize = pInfo->iOverflow + 4;
48071 #define parseCell(pPage, iCell, pInfo) \
48072 btreeParseCellPtr((pPage), findCell((pPage), (iCell)), (pInfo))
48073 static void btreeParseCell(
48074 MemPage *pPage, /* Page containing the cell */
48075 int iCell, /* The cell index. First cell is 0 */
48076 CellInfo *pInfo /* Fill in this structure */
48078 parseCell(pPage, iCell, pInfo);
48082 ** Compute the total number of bytes that a Cell needs in the cell
48083 ** data area of the btree-page. The return number includes the cell
48084 ** data header and the local payload, but not any overflow page or
48085 ** the space used by the cell pointer.
48087 static u16 cellSizePtr(MemPage *pPage, u8 *pCell){
48088 u8 *pIter = &pCell[pPage->childPtrSize];
48089 u32 nSize;
48091 #ifdef SQLITE_DEBUG
48092 /* The value returned by this function should always be the same as
48093 ** the (CellInfo.nSize) value found by doing a full parse of the
48094 ** cell. If SQLITE_DEBUG is defined, an assert() at the bottom of
48095 ** this function verifies that this invariant is not violated. */
48096 CellInfo debuginfo;
48097 btreeParseCellPtr(pPage, pCell, &debuginfo);
48098 #endif
48100 if( pPage->intKey ){
48101 u8 *pEnd;
48102 if( pPage->hasData ){
48103 pIter += getVarint32(pIter, nSize);
48104 }else{
48105 nSize = 0;
48108 /* pIter now points at the 64-bit integer key value, a variable length
48109 ** integer. The following block moves pIter to point at the first byte
48110 ** past the end of the key value. */
48111 pEnd = &pIter[9];
48112 while( (*pIter++)&0x80 && pIter<pEnd );
48113 }else{
48114 pIter += getVarint32(pIter, nSize);
48117 testcase( nSize==pPage->maxLocal );
48118 testcase( nSize==pPage->maxLocal+1 );
48119 if( nSize>pPage->maxLocal ){
48120 int minLocal = pPage->minLocal;
48121 nSize = minLocal + (nSize - minLocal) % (pPage->pBt->usableSize - 4);
48122 testcase( nSize==pPage->maxLocal );
48123 testcase( nSize==pPage->maxLocal+1 );
48124 if( nSize>pPage->maxLocal ){
48125 nSize = minLocal;
48127 nSize += 4;
48129 nSize += (u32)(pIter - pCell);
48131 /* The minimum size of any cell is 4 bytes. */
48132 if( nSize<4 ){
48133 nSize = 4;
48136 assert( nSize==debuginfo.nSize );
48137 return (u16)nSize;
48140 #ifdef SQLITE_DEBUG
48141 /* This variation on cellSizePtr() is used inside of assert() statements
48142 ** only. */
48143 static u16 cellSize(MemPage *pPage, int iCell){
48144 return cellSizePtr(pPage, findCell(pPage, iCell));
48146 #endif
48148 #ifndef SQLITE_OMIT_AUTOVACUUM
48150 ** If the cell pCell, part of page pPage contains a pointer
48151 ** to an overflow page, insert an entry into the pointer-map
48152 ** for the overflow page.
48154 static void ptrmapPutOvflPtr(MemPage *pPage, u8 *pCell, int *pRC){
48155 CellInfo info;
48156 if( *pRC ) return;
48157 assert( pCell!=0 );
48158 btreeParseCellPtr(pPage, pCell, &info);
48159 assert( (info.nData+(pPage->intKey?0:info.nKey))==info.nPayload );
48160 if( info.iOverflow ){
48161 Pgno ovfl = get4byte(&pCell[info.iOverflow]);
48162 ptrmapPut(pPage->pBt, ovfl, PTRMAP_OVERFLOW1, pPage->pgno, pRC);
48165 #endif
48169 ** Defragment the page given. All Cells are moved to the
48170 ** end of the page and all free space is collected into one
48171 ** big FreeBlk that occurs in between the header and cell
48172 ** pointer array and the cell content area.
48174 static int defragmentPage(MemPage *pPage){
48175 int i; /* Loop counter */
48176 int pc; /* Address of a i-th cell */
48177 int hdr; /* Offset to the page header */
48178 int size; /* Size of a cell */
48179 int usableSize; /* Number of usable bytes on a page */
48180 int cellOffset; /* Offset to the cell pointer array */
48181 int cbrk; /* Offset to the cell content area */
48182 int nCell; /* Number of cells on the page */
48183 unsigned char *data; /* The page data */
48184 unsigned char *temp; /* Temp area for cell content */
48185 int iCellFirst; /* First allowable cell index */
48186 int iCellLast; /* Last possible cell index */
48189 assert( sqlite3PagerIswriteable(pPage->pDbPage) );
48190 assert( pPage->pBt!=0 );
48191 assert( pPage->pBt->usableSize <= SQLITE_MAX_PAGE_SIZE );
48192 assert( pPage->nOverflow==0 );
48193 assert( sqlite3_mutex_held(pPage->pBt->mutex) );
48194 temp = sqlite3PagerTempSpace(pPage->pBt->pPager);
48195 data = pPage->aData;
48196 hdr = pPage->hdrOffset;
48197 cellOffset = pPage->cellOffset;
48198 nCell = pPage->nCell;
48199 assert( nCell==get2byte(&data[hdr+3]) );
48200 usableSize = pPage->pBt->usableSize;
48201 cbrk = get2byte(&data[hdr+5]);
48202 memcpy(&temp[cbrk], &data[cbrk], usableSize - cbrk);
48203 cbrk = usableSize;
48204 iCellFirst = cellOffset + 2*nCell;
48205 iCellLast = usableSize - 4;
48206 for(i=0; i<nCell; i++){
48207 u8 *pAddr; /* The i-th cell pointer */
48208 pAddr = &data[cellOffset + i*2];
48209 pc = get2byte(pAddr);
48210 testcase( pc==iCellFirst );
48211 testcase( pc==iCellLast );
48212 #if !defined(SQLITE_ENABLE_OVERSIZE_CELL_CHECK)
48213 /* These conditions have already been verified in btreeInitPage()
48214 ** if SQLITE_ENABLE_OVERSIZE_CELL_CHECK is defined
48216 if( pc<iCellFirst || pc>iCellLast ){
48217 return SQLITE_CORRUPT_BKPT;
48219 #endif
48220 assert( pc>=iCellFirst && pc<=iCellLast );
48221 size = cellSizePtr(pPage, &temp[pc]);
48222 cbrk -= size;
48223 #if defined(SQLITE_ENABLE_OVERSIZE_CELL_CHECK)
48224 if( cbrk<iCellFirst ){
48225 return SQLITE_CORRUPT_BKPT;
48227 #else
48228 if( cbrk<iCellFirst || pc+size>usableSize ){
48229 return SQLITE_CORRUPT_BKPT;
48231 #endif
48232 assert( cbrk+size<=usableSize && cbrk>=iCellFirst );
48233 testcase( cbrk+size==usableSize );
48234 testcase( pc+size==usableSize );
48235 memcpy(&data[cbrk], &temp[pc], size);
48236 put2byte(pAddr, cbrk);
48238 assert( cbrk>=iCellFirst );
48239 put2byte(&data[hdr+5], cbrk);
48240 data[hdr+1] = 0;
48241 data[hdr+2] = 0;
48242 data[hdr+7] = 0;
48243 memset(&data[iCellFirst], 0, cbrk-iCellFirst);
48244 assert( sqlite3PagerIswriteable(pPage->pDbPage) );
48245 if( cbrk-iCellFirst!=pPage->nFree ){
48246 return SQLITE_CORRUPT_BKPT;
48248 return SQLITE_OK;
48252 ** Allocate nByte bytes of space from within the B-Tree page passed
48253 ** as the first argument. Write into *pIdx the index into pPage->aData[]
48254 ** of the first byte of allocated space. Return either SQLITE_OK or
48255 ** an error code (usually SQLITE_CORRUPT).
48257 ** The caller guarantees that there is sufficient space to make the
48258 ** allocation. This routine might need to defragment in order to bring
48259 ** all the space together, however. This routine will avoid using
48260 ** the first two bytes past the cell pointer area since presumably this
48261 ** allocation is being made in order to insert a new cell, so we will
48262 ** also end up needing a new cell pointer.
48264 static int allocateSpace(MemPage *pPage, int nByte, int *pIdx){
48265 const int hdr = pPage->hdrOffset; /* Local cache of pPage->hdrOffset */
48266 u8 * const data = pPage->aData; /* Local cache of pPage->aData */
48267 int nFrag; /* Number of fragmented bytes on pPage */
48268 int top; /* First byte of cell content area */
48269 int gap; /* First byte of gap between cell pointers and cell content */
48270 int rc; /* Integer return code */
48271 int usableSize; /* Usable size of the page */
48273 assert( sqlite3PagerIswriteable(pPage->pDbPage) );
48274 assert( pPage->pBt );
48275 assert( sqlite3_mutex_held(pPage->pBt->mutex) );
48276 assert( nByte>=0 ); /* Minimum cell size is 4 */
48277 assert( pPage->nFree>=nByte );
48278 assert( pPage->nOverflow==0 );
48279 usableSize = pPage->pBt->usableSize;
48280 assert( nByte < usableSize-8 );
48282 nFrag = data[hdr+7];
48283 assert( pPage->cellOffset == hdr + 12 - 4*pPage->leaf );
48284 gap = pPage->cellOffset + 2*pPage->nCell;
48285 top = get2byteNotZero(&data[hdr+5]);
48286 if( gap>top ) return SQLITE_CORRUPT_BKPT;
48287 testcase( gap+2==top );
48288 testcase( gap+1==top );
48289 testcase( gap==top );
48291 if( nFrag>=60 ){
48292 /* Always defragment highly fragmented pages */
48293 rc = defragmentPage(pPage);
48294 if( rc ) return rc;
48295 top = get2byteNotZero(&data[hdr+5]);
48296 }else if( gap+2<=top ){
48297 /* Search the freelist looking for a free slot big enough to satisfy
48298 ** the request. The allocation is made from the first free slot in
48299 ** the list that is large enough to accomadate it.
48301 int pc, addr;
48302 for(addr=hdr+1; (pc = get2byte(&data[addr]))>0; addr=pc){
48303 int size; /* Size of the free slot */
48304 if( pc>usableSize-4 || pc<addr+4 ){
48305 return SQLITE_CORRUPT_BKPT;
48307 size = get2byte(&data[pc+2]);
48308 if( size>=nByte ){
48309 int x = size - nByte;
48310 testcase( x==4 );
48311 testcase( x==3 );
48312 if( x<4 ){
48313 /* Remove the slot from the free-list. Update the number of
48314 ** fragmented bytes within the page. */
48315 memcpy(&data[addr], &data[pc], 2);
48316 data[hdr+7] = (u8)(nFrag + x);
48317 }else if( size+pc > usableSize ){
48318 return SQLITE_CORRUPT_BKPT;
48319 }else{
48320 /* The slot remains on the free-list. Reduce its size to account
48321 ** for the portion used by the new allocation. */
48322 put2byte(&data[pc+2], x);
48324 *pIdx = pc + x;
48325 return SQLITE_OK;
48330 /* Check to make sure there is enough space in the gap to satisfy
48331 ** the allocation. If not, defragment.
48333 testcase( gap+2+nByte==top );
48334 if( gap+2+nByte>top ){
48335 rc = defragmentPage(pPage);
48336 if( rc ) return rc;
48337 top = get2byteNotZero(&data[hdr+5]);
48338 assert( gap+nByte<=top );
48342 /* Allocate memory from the gap in between the cell pointer array
48343 ** and the cell content area. The btreeInitPage() call has already
48344 ** validated the freelist. Given that the freelist is valid, there
48345 ** is no way that the allocation can extend off the end of the page.
48346 ** The assert() below verifies the previous sentence.
48348 top -= nByte;
48349 put2byte(&data[hdr+5], top);
48350 assert( top+nByte <= (int)pPage->pBt->usableSize );
48351 *pIdx = top;
48352 return SQLITE_OK;
48356 ** Return a section of the pPage->aData to the freelist.
48357 ** The first byte of the new free block is pPage->aDisk[start]
48358 ** and the size of the block is "size" bytes.
48360 ** Most of the effort here is involved in coalesing adjacent
48361 ** free blocks into a single big free block.
48363 static int freeSpace(MemPage *pPage, int start, int size){
48364 int addr, pbegin, hdr;
48365 int iLast; /* Largest possible freeblock offset */
48366 unsigned char *data = pPage->aData;
48368 assert( pPage->pBt!=0 );
48369 assert( sqlite3PagerIswriteable(pPage->pDbPage) );
48370 assert( start>=pPage->hdrOffset+6+pPage->childPtrSize );
48371 assert( (start + size) <= (int)pPage->pBt->usableSize );
48372 assert( sqlite3_mutex_held(pPage->pBt->mutex) );
48373 assert( size>=0 ); /* Minimum cell size is 4 */
48375 if( pPage->pBt->secureDelete ){
48376 /* Overwrite deleted information with zeros when the secure_delete
48377 ** option is enabled */
48378 memset(&data[start], 0, size);
48381 /* Add the space back into the linked list of freeblocks. Note that
48382 ** even though the freeblock list was checked by btreeInitPage(),
48383 ** btreeInitPage() did not detect overlapping cells or
48384 ** freeblocks that overlapped cells. Nor does it detect when the
48385 ** cell content area exceeds the value in the page header. If these
48386 ** situations arise, then subsequent insert operations might corrupt
48387 ** the freelist. So we do need to check for corruption while scanning
48388 ** the freelist.
48390 hdr = pPage->hdrOffset;
48391 addr = hdr + 1;
48392 iLast = pPage->pBt->usableSize - 4;
48393 assert( start<=iLast );
48394 while( (pbegin = get2byte(&data[addr]))<start && pbegin>0 ){
48395 if( pbegin<addr+4 ){
48396 return SQLITE_CORRUPT_BKPT;
48398 addr = pbegin;
48400 if( pbegin>iLast ){
48401 return SQLITE_CORRUPT_BKPT;
48403 assert( pbegin>addr || pbegin==0 );
48404 put2byte(&data[addr], start);
48405 put2byte(&data[start], pbegin);
48406 put2byte(&data[start+2], size);
48407 pPage->nFree = pPage->nFree + (u16)size;
48409 /* Coalesce adjacent free blocks */
48410 addr = hdr + 1;
48411 while( (pbegin = get2byte(&data[addr]))>0 ){
48412 int pnext, psize, x;
48413 assert( pbegin>addr );
48414 assert( pbegin <= (int)pPage->pBt->usableSize-4 );
48415 pnext = get2byte(&data[pbegin]);
48416 psize = get2byte(&data[pbegin+2]);
48417 if( pbegin + psize + 3 >= pnext && pnext>0 ){
48418 int frag = pnext - (pbegin+psize);
48419 if( (frag<0) || (frag>(int)data[hdr+7]) ){
48420 return SQLITE_CORRUPT_BKPT;
48422 data[hdr+7] -= (u8)frag;
48423 x = get2byte(&data[pnext]);
48424 put2byte(&data[pbegin], x);
48425 x = pnext + get2byte(&data[pnext+2]) - pbegin;
48426 put2byte(&data[pbegin+2], x);
48427 }else{
48428 addr = pbegin;
48432 /* If the cell content area begins with a freeblock, remove it. */
48433 if( data[hdr+1]==data[hdr+5] && data[hdr+2]==data[hdr+6] ){
48434 int top;
48435 pbegin = get2byte(&data[hdr+1]);
48436 memcpy(&data[hdr+1], &data[pbegin], 2);
48437 top = get2byte(&data[hdr+5]) + get2byte(&data[pbegin+2]);
48438 put2byte(&data[hdr+5], top);
48440 assert( sqlite3PagerIswriteable(pPage->pDbPage) );
48441 return SQLITE_OK;
48445 ** Decode the flags byte (the first byte of the header) for a page
48446 ** and initialize fields of the MemPage structure accordingly.
48448 ** Only the following combinations are supported. Anything different
48449 ** indicates a corrupt database files:
48451 ** PTF_ZERODATA
48452 ** PTF_ZERODATA | PTF_LEAF
48453 ** PTF_LEAFDATA | PTF_INTKEY
48454 ** PTF_LEAFDATA | PTF_INTKEY | PTF_LEAF
48456 static int decodeFlags(MemPage *pPage, int flagByte){
48457 BtShared *pBt; /* A copy of pPage->pBt */
48459 assert( pPage->hdrOffset==(pPage->pgno==1 ? 100 : 0) );
48460 assert( sqlite3_mutex_held(pPage->pBt->mutex) );
48461 pPage->leaf = (u8)(flagByte>>3); assert( PTF_LEAF == 1<<3 );
48462 flagByte &= ~PTF_LEAF;
48463 pPage->childPtrSize = 4-4*pPage->leaf;
48464 pBt = pPage->pBt;
48465 if( flagByte==(PTF_LEAFDATA | PTF_INTKEY) ){
48466 pPage->intKey = 1;
48467 pPage->hasData = pPage->leaf;
48468 pPage->maxLocal = pBt->maxLeaf;
48469 pPage->minLocal = pBt->minLeaf;
48470 }else if( flagByte==PTF_ZERODATA ){
48471 pPage->intKey = 0;
48472 pPage->hasData = 0;
48473 pPage->maxLocal = pBt->maxLocal;
48474 pPage->minLocal = pBt->minLocal;
48475 }else{
48476 return SQLITE_CORRUPT_BKPT;
48478 return SQLITE_OK;
48482 ** Initialize the auxiliary information for a disk block.
48484 ** Return SQLITE_OK on success. If we see that the page does
48485 ** not contain a well-formed database page, then return
48486 ** SQLITE_CORRUPT. Note that a return of SQLITE_OK does not
48487 ** guarantee that the page is well-formed. It only shows that
48488 ** we failed to detect any corruption.
48490 static int btreeInitPage(MemPage *pPage){
48492 assert( pPage->pBt!=0 );
48493 assert( sqlite3_mutex_held(pPage->pBt->mutex) );
48494 assert( pPage->pgno==sqlite3PagerPagenumber(pPage->pDbPage) );
48495 assert( pPage == sqlite3PagerGetExtra(pPage->pDbPage) );
48496 assert( pPage->aData == sqlite3PagerGetData(pPage->pDbPage) );
48498 if( !pPage->isInit ){
48499 u16 pc; /* Address of a freeblock within pPage->aData[] */
48500 u8 hdr; /* Offset to beginning of page header */
48501 u8 *data; /* Equal to pPage->aData */
48502 BtShared *pBt; /* The main btree structure */
48503 int usableSize; /* Amount of usable space on each page */
48504 u16 cellOffset; /* Offset from start of page to first cell pointer */
48505 int nFree; /* Number of unused bytes on the page */
48506 int top; /* First byte of the cell content area */
48507 int iCellFirst; /* First allowable cell or freeblock offset */
48508 int iCellLast; /* Last possible cell or freeblock offset */
48510 pBt = pPage->pBt;
48512 hdr = pPage->hdrOffset;
48513 data = pPage->aData;
48514 if( decodeFlags(pPage, data[hdr]) ) return SQLITE_CORRUPT_BKPT;
48515 assert( pBt->pageSize>=512 && pBt->pageSize<=65536 );
48516 pPage->maskPage = (u16)(pBt->pageSize - 1);
48517 pPage->nOverflow = 0;
48518 usableSize = pBt->usableSize;
48519 pPage->cellOffset = cellOffset = hdr + 12 - 4*pPage->leaf;
48520 top = get2byteNotZero(&data[hdr+5]);
48521 pPage->nCell = get2byte(&data[hdr+3]);
48522 if( pPage->nCell>MX_CELL(pBt) ){
48523 /* To many cells for a single page. The page must be corrupt */
48524 return SQLITE_CORRUPT_BKPT;
48526 testcase( pPage->nCell==MX_CELL(pBt) );
48528 /* A malformed database page might cause us to read past the end
48529 ** of page when parsing a cell.
48531 ** The following block of code checks early to see if a cell extends
48532 ** past the end of a page boundary and causes SQLITE_CORRUPT to be
48533 ** returned if it does.
48535 iCellFirst = cellOffset + 2*pPage->nCell;
48536 iCellLast = usableSize - 4;
48537 #if defined(SQLITE_ENABLE_OVERSIZE_CELL_CHECK)
48539 int i; /* Index into the cell pointer array */
48540 int sz; /* Size of a cell */
48542 if( !pPage->leaf ) iCellLast--;
48543 for(i=0; i<pPage->nCell; i++){
48544 pc = get2byte(&data[cellOffset+i*2]);
48545 testcase( pc==iCellFirst );
48546 testcase( pc==iCellLast );
48547 if( pc<iCellFirst || pc>iCellLast ){
48548 return SQLITE_CORRUPT_BKPT;
48550 sz = cellSizePtr(pPage, &data[pc]);
48551 testcase( pc+sz==usableSize );
48552 if( pc+sz>usableSize ){
48553 return SQLITE_CORRUPT_BKPT;
48556 if( !pPage->leaf ) iCellLast++;
48558 #endif
48560 /* Compute the total free space on the page */
48561 pc = get2byte(&data[hdr+1]);
48562 nFree = data[hdr+7] + top;
48563 while( pc>0 ){
48564 u16 next, size;
48565 if( pc<iCellFirst || pc>iCellLast ){
48566 /* Start of free block is off the page */
48567 return SQLITE_CORRUPT_BKPT;
48569 next = get2byte(&data[pc]);
48570 size = get2byte(&data[pc+2]);
48571 if( (next>0 && next<=pc+size+3) || pc+size>usableSize ){
48572 /* Free blocks must be in ascending order. And the last byte of
48573 ** the free-block must lie on the database page. */
48574 return SQLITE_CORRUPT_BKPT;
48576 nFree = nFree + size;
48577 pc = next;
48580 /* At this point, nFree contains the sum of the offset to the start
48581 ** of the cell-content area plus the number of free bytes within
48582 ** the cell-content area. If this is greater than the usable-size
48583 ** of the page, then the page must be corrupted. This check also
48584 ** serves to verify that the offset to the start of the cell-content
48585 ** area, according to the page header, lies within the page.
48587 if( nFree>usableSize ){
48588 return SQLITE_CORRUPT_BKPT;
48590 pPage->nFree = (u16)(nFree - iCellFirst);
48591 pPage->isInit = 1;
48593 return SQLITE_OK;
48597 ** Set up a raw page so that it looks like a database page holding
48598 ** no entries.
48600 static void zeroPage(MemPage *pPage, int flags){
48601 unsigned char *data = pPage->aData;
48602 BtShared *pBt = pPage->pBt;
48603 u8 hdr = pPage->hdrOffset;
48604 u16 first;
48606 assert( sqlite3PagerPagenumber(pPage->pDbPage)==pPage->pgno );
48607 assert( sqlite3PagerGetExtra(pPage->pDbPage) == (void*)pPage );
48608 assert( sqlite3PagerGetData(pPage->pDbPage) == data );
48609 assert( sqlite3PagerIswriteable(pPage->pDbPage) );
48610 assert( sqlite3_mutex_held(pBt->mutex) );
48611 if( pBt->secureDelete ){
48612 memset(&data[hdr], 0, pBt->usableSize - hdr);
48614 data[hdr] = (char)flags;
48615 first = hdr + 8 + 4*((flags&PTF_LEAF)==0 ?1:0);
48616 memset(&data[hdr+1], 0, 4);
48617 data[hdr+7] = 0;
48618 put2byte(&data[hdr+5], pBt->usableSize);
48619 pPage->nFree = (u16)(pBt->usableSize - first);
48620 decodeFlags(pPage, flags);
48621 pPage->hdrOffset = hdr;
48622 pPage->cellOffset = first;
48623 pPage->nOverflow = 0;
48624 assert( pBt->pageSize>=512 && pBt->pageSize<=65536 );
48625 pPage->maskPage = (u16)(pBt->pageSize - 1);
48626 pPage->nCell = 0;
48627 pPage->isInit = 1;
48632 ** Convert a DbPage obtained from the pager into a MemPage used by
48633 ** the btree layer.
48635 static MemPage *btreePageFromDbPage(DbPage *pDbPage, Pgno pgno, BtShared *pBt){
48636 MemPage *pPage = (MemPage*)sqlite3PagerGetExtra(pDbPage);
48637 pPage->aData = sqlite3PagerGetData(pDbPage);
48638 pPage->pDbPage = pDbPage;
48639 pPage->pBt = pBt;
48640 pPage->pgno = pgno;
48641 pPage->hdrOffset = pPage->pgno==1 ? 100 : 0;
48642 return pPage;
48646 ** Get a page from the pager. Initialize the MemPage.pBt and
48647 ** MemPage.aData elements if needed.
48649 ** If the noContent flag is set, it means that we do not care about
48650 ** the content of the page at this time. So do not go to the disk
48651 ** to fetch the content. Just fill in the content with zeros for now.
48652 ** If in the future we call sqlite3PagerWrite() on this page, that
48653 ** means we have started to be concerned about content and the disk
48654 ** read should occur at that point.
48656 static int btreeGetPage(
48657 BtShared *pBt, /* The btree */
48658 Pgno pgno, /* Number of the page to fetch */
48659 MemPage **ppPage, /* Return the page in this parameter */
48660 int noContent /* Do not load page content if true */
48662 int rc;
48663 DbPage *pDbPage;
48665 assert( sqlite3_mutex_held(pBt->mutex) );
48666 rc = sqlite3PagerAcquire(pBt->pPager, pgno, (DbPage**)&pDbPage, noContent);
48667 if( rc ) return rc;
48668 *ppPage = btreePageFromDbPage(pDbPage, pgno, pBt);
48669 return SQLITE_OK;
48673 ** Retrieve a page from the pager cache. If the requested page is not
48674 ** already in the pager cache return NULL. Initialize the MemPage.pBt and
48675 ** MemPage.aData elements if needed.
48677 static MemPage *btreePageLookup(BtShared *pBt, Pgno pgno){
48678 DbPage *pDbPage;
48679 assert( sqlite3_mutex_held(pBt->mutex) );
48680 pDbPage = sqlite3PagerLookup(pBt->pPager, pgno);
48681 if( pDbPage ){
48682 return btreePageFromDbPage(pDbPage, pgno, pBt);
48684 return 0;
48688 ** Return the size of the database file in pages. If there is any kind of
48689 ** error, return ((unsigned int)-1).
48691 static Pgno btreePagecount(BtShared *pBt){
48692 return pBt->nPage;
48694 SQLITE_PRIVATE u32 sqlite3BtreeLastPage(Btree *p){
48695 assert( sqlite3BtreeHoldsMutex(p) );
48696 assert( ((p->pBt->nPage)&0x8000000)==0 );
48697 return (int)btreePagecount(p->pBt);
48701 ** Get a page from the pager and initialize it. This routine is just a
48702 ** convenience wrapper around separate calls to btreeGetPage() and
48703 ** btreeInitPage().
48705 ** If an error occurs, then the value *ppPage is set to is undefined. It
48706 ** may remain unchanged, or it may be set to an invalid value.
48708 static int getAndInitPage(
48709 BtShared *pBt, /* The database file */
48710 Pgno pgno, /* Number of the page to get */
48711 MemPage **ppPage /* Write the page pointer here */
48713 int rc;
48714 assert( sqlite3_mutex_held(pBt->mutex) );
48716 if( pgno>btreePagecount(pBt) ){
48717 rc = SQLITE_CORRUPT_BKPT;
48718 }else{
48719 rc = btreeGetPage(pBt, pgno, ppPage, 0);
48720 if( rc==SQLITE_OK ){
48721 rc = btreeInitPage(*ppPage);
48722 if( rc!=SQLITE_OK ){
48723 releasePage(*ppPage);
48728 testcase( pgno==0 );
48729 assert( pgno!=0 || rc==SQLITE_CORRUPT );
48730 return rc;
48734 ** Release a MemPage. This should be called once for each prior
48735 ** call to btreeGetPage.
48737 static void releasePage(MemPage *pPage){
48738 if( pPage ){
48739 assert( pPage->aData );
48740 assert( pPage->pBt );
48741 assert( sqlite3PagerGetExtra(pPage->pDbPage) == (void*)pPage );
48742 assert( sqlite3PagerGetData(pPage->pDbPage)==pPage->aData );
48743 assert( sqlite3_mutex_held(pPage->pBt->mutex) );
48744 sqlite3PagerUnref(pPage->pDbPage);
48749 ** During a rollback, when the pager reloads information into the cache
48750 ** so that the cache is restored to its original state at the start of
48751 ** the transaction, for each page restored this routine is called.
48753 ** This routine needs to reset the extra data section at the end of the
48754 ** page to agree with the restored data.
48756 static void pageReinit(DbPage *pData){
48757 MemPage *pPage;
48758 pPage = (MemPage *)sqlite3PagerGetExtra(pData);
48759 assert( sqlite3PagerPageRefcount(pData)>0 );
48760 if( pPage->isInit ){
48761 assert( sqlite3_mutex_held(pPage->pBt->mutex) );
48762 pPage->isInit = 0;
48763 if( sqlite3PagerPageRefcount(pData)>1 ){
48764 /* pPage might not be a btree page; it might be an overflow page
48765 ** or ptrmap page or a free page. In those cases, the following
48766 ** call to btreeInitPage() will likely return SQLITE_CORRUPT.
48767 ** But no harm is done by this. And it is very important that
48768 ** btreeInitPage() be called on every btree page so we make
48769 ** the call for every page that comes in for re-initing. */
48770 btreeInitPage(pPage);
48776 ** Invoke the busy handler for a btree.
48778 static int btreeInvokeBusyHandler(void *pArg){
48779 BtShared *pBt = (BtShared*)pArg;
48780 assert( pBt->db );
48781 assert( sqlite3_mutex_held(pBt->db->mutex) );
48782 return sqlite3InvokeBusyHandler(&pBt->db->busyHandler);
48786 ** Open a database file.
48788 ** zFilename is the name of the database file. If zFilename is NULL
48789 ** then an ephemeral database is created. The ephemeral database might
48790 ** be exclusively in memory, or it might use a disk-based memory cache.
48791 ** Either way, the ephemeral database will be automatically deleted
48792 ** when sqlite3BtreeClose() is called.
48794 ** If zFilename is ":memory:" then an in-memory database is created
48795 ** that is automatically destroyed when it is closed.
48797 ** The "flags" parameter is a bitmask that might contain bits
48798 ** BTREE_OMIT_JOURNAL and/or BTREE_NO_READLOCK. The BTREE_NO_READLOCK
48799 ** bit is also set if the SQLITE_NoReadlock flags is set in db->flags.
48800 ** These flags are passed through into sqlite3PagerOpen() and must
48801 ** be the same values as PAGER_OMIT_JOURNAL and PAGER_NO_READLOCK.
48803 ** If the database is already opened in the same database connection
48804 ** and we are in shared cache mode, then the open will fail with an
48805 ** SQLITE_CONSTRAINT error. We cannot allow two or more BtShared
48806 ** objects in the same database connection since doing so will lead
48807 ** to problems with locking.
48809 SQLITE_PRIVATE int sqlite3BtreeOpen(
48810 const char *zFilename, /* Name of the file containing the BTree database */
48811 sqlite3 *db, /* Associated database handle */
48812 Btree **ppBtree, /* Pointer to new Btree object written here */
48813 int flags, /* Options */
48814 int vfsFlags /* Flags passed through to sqlite3_vfs.xOpen() */
48816 sqlite3_vfs *pVfs; /* The VFS to use for this btree */
48817 BtShared *pBt = 0; /* Shared part of btree structure */
48818 Btree *p; /* Handle to return */
48819 sqlite3_mutex *mutexOpen = 0; /* Prevents a race condition. Ticket #3537 */
48820 int rc = SQLITE_OK; /* Result code from this function */
48821 u8 nReserve; /* Byte of unused space on each page */
48822 unsigned char zDbHeader[100]; /* Database header content */
48824 /* True if opening an ephemeral, temporary database */
48825 const int isTempDb = zFilename==0 || zFilename[0]==0;
48827 /* Set the variable isMemdb to true for an in-memory database, or
48828 ** false for a file-based database.
48830 #ifdef SQLITE_OMIT_MEMORYDB
48831 const int isMemdb = 0;
48832 #else
48833 const int isMemdb = (zFilename && strcmp(zFilename, ":memory:")==0)
48834 || (isTempDb && sqlite3TempInMemory(db));
48835 #endif
48837 assert( db!=0 );
48838 assert( sqlite3_mutex_held(db->mutex) );
48839 assert( (flags&0xff)==flags ); /* flags fit in 8 bits */
48841 /* Only a BTREE_SINGLE database can be BTREE_UNORDERED */
48842 assert( (flags & BTREE_UNORDERED)==0 || (flags & BTREE_SINGLE)!=0 );
48844 /* A BTREE_SINGLE database is always a temporary and/or ephemeral */
48845 assert( (flags & BTREE_SINGLE)==0 || isTempDb );
48847 if( db->flags & SQLITE_NoReadlock ){
48848 flags |= BTREE_NO_READLOCK;
48850 if( isMemdb ){
48851 flags |= BTREE_MEMORY;
48853 if( (vfsFlags & SQLITE_OPEN_MAIN_DB)!=0 && (isMemdb || isTempDb) ){
48854 vfsFlags = (vfsFlags & ~SQLITE_OPEN_MAIN_DB) | SQLITE_OPEN_TEMP_DB;
48856 pVfs = db->pVfs;
48857 p = sqlite3MallocZero(sizeof(Btree));
48858 if( !p ){
48859 return SQLITE_NOMEM;
48861 p->inTrans = TRANS_NONE;
48862 p->db = db;
48863 #ifndef SQLITE_OMIT_SHARED_CACHE
48864 p->lock.pBtree = p;
48865 p->lock.iTable = 1;
48866 #endif
48868 #if !defined(SQLITE_OMIT_SHARED_CACHE) && !defined(SQLITE_OMIT_DISKIO)
48870 ** If this Btree is a candidate for shared cache, try to find an
48871 ** existing BtShared object that we can share with
48873 if( isMemdb==0 && isTempDb==0 ){
48874 if( vfsFlags & SQLITE_OPEN_SHAREDCACHE ){
48875 int nFullPathname = pVfs->mxPathname+1;
48876 char *zFullPathname = sqlite3Malloc(nFullPathname);
48877 sqlite3_mutex *mutexShared;
48878 p->sharable = 1;
48879 if( !zFullPathname ){
48880 sqlite3_free(p);
48881 return SQLITE_NOMEM;
48883 sqlite3OsFullPathname(pVfs, zFilename, nFullPathname, zFullPathname);
48884 mutexOpen = sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_OPEN);
48885 sqlite3_mutex_enter(mutexOpen);
48886 mutexShared = sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_MASTER);
48887 sqlite3_mutex_enter(mutexShared);
48888 for(pBt=GLOBAL(BtShared*,sqlite3SharedCacheList); pBt; pBt=pBt->pNext){
48889 assert( pBt->nRef>0 );
48890 if( 0==strcmp(zFullPathname, sqlite3PagerFilename(pBt->pPager))
48891 && sqlite3PagerVfs(pBt->pPager)==pVfs ){
48892 int iDb;
48893 for(iDb=db->nDb-1; iDb>=0; iDb--){
48894 Btree *pExisting = db->aDb[iDb].pBt;
48895 if( pExisting && pExisting->pBt==pBt ){
48896 sqlite3_mutex_leave(mutexShared);
48897 sqlite3_mutex_leave(mutexOpen);
48898 sqlite3_free(zFullPathname);
48899 sqlite3_free(p);
48900 return SQLITE_CONSTRAINT;
48903 p->pBt = pBt;
48904 pBt->nRef++;
48905 break;
48908 sqlite3_mutex_leave(mutexShared);
48909 sqlite3_free(zFullPathname);
48911 #ifdef SQLITE_DEBUG
48912 else{
48913 /* In debug mode, we mark all persistent databases as sharable
48914 ** even when they are not. This exercises the locking code and
48915 ** gives more opportunity for asserts(sqlite3_mutex_held())
48916 ** statements to find locking problems.
48918 p->sharable = 1;
48920 #endif
48922 #endif
48923 if( pBt==0 ){
48925 ** The following asserts make sure that structures used by the btree are
48926 ** the right size. This is to guard against size changes that result
48927 ** when compiling on a different architecture.
48929 assert( sizeof(i64)==8 || sizeof(i64)==4 );
48930 assert( sizeof(u64)==8 || sizeof(u64)==4 );
48931 assert( sizeof(u32)==4 );
48932 assert( sizeof(u16)==2 );
48933 assert( sizeof(Pgno)==4 );
48935 pBt = sqlite3MallocZero( sizeof(*pBt) );
48936 if( pBt==0 ){
48937 rc = SQLITE_NOMEM;
48938 goto btree_open_out;
48940 rc = sqlite3PagerOpen(pVfs, &pBt->pPager, zFilename,
48941 EXTRA_SIZE, flags, vfsFlags, pageReinit);
48942 if( rc==SQLITE_OK ){
48943 rc = sqlite3PagerReadFileheader(pBt->pPager,sizeof(zDbHeader),zDbHeader);
48945 if( rc!=SQLITE_OK ){
48946 goto btree_open_out;
48948 pBt->openFlags = (u8)flags;
48949 pBt->db = db;
48950 sqlite3PagerSetBusyhandler(pBt->pPager, btreeInvokeBusyHandler, pBt);
48951 p->pBt = pBt;
48953 pBt->pCursor = 0;
48954 pBt->pPage1 = 0;
48955 pBt->readOnly = sqlite3PagerIsreadonly(pBt->pPager);
48956 #ifdef SQLITE_SECURE_DELETE
48957 pBt->secureDelete = 1;
48958 #endif
48959 pBt->pageSize = (zDbHeader[16]<<8) | (zDbHeader[17]<<16);
48960 if( pBt->pageSize<512 || pBt->pageSize>SQLITE_MAX_PAGE_SIZE
48961 || ((pBt->pageSize-1)&pBt->pageSize)!=0 ){
48962 pBt->pageSize = 0;
48963 #ifndef SQLITE_OMIT_AUTOVACUUM
48964 /* If the magic name ":memory:" will create an in-memory database, then
48965 ** leave the autoVacuum mode at 0 (do not auto-vacuum), even if
48966 ** SQLITE_DEFAULT_AUTOVACUUM is true. On the other hand, if
48967 ** SQLITE_OMIT_MEMORYDB has been defined, then ":memory:" is just a
48968 ** regular file-name. In this case the auto-vacuum applies as per normal.
48970 if( zFilename && !isMemdb ){
48971 pBt->autoVacuum = (SQLITE_DEFAULT_AUTOVACUUM ? 1 : 0);
48972 pBt->incrVacuum = (SQLITE_DEFAULT_AUTOVACUUM==2 ? 1 : 0);
48974 #endif
48975 nReserve = 0;
48976 }else{
48977 nReserve = zDbHeader[20];
48978 pBt->pageSizeFixed = 1;
48979 #ifndef SQLITE_OMIT_AUTOVACUUM
48980 pBt->autoVacuum = (get4byte(&zDbHeader[36 + 4*4])?1:0);
48981 pBt->incrVacuum = (get4byte(&zDbHeader[36 + 7*4])?1:0);
48982 #endif
48984 rc = sqlite3PagerSetPagesize(pBt->pPager, &pBt->pageSize, nReserve);
48985 if( rc ) goto btree_open_out;
48986 pBt->usableSize = pBt->pageSize - nReserve;
48987 assert( (pBt->pageSize & 7)==0 ); /* 8-byte alignment of pageSize */
48989 #if !defined(SQLITE_OMIT_SHARED_CACHE) && !defined(SQLITE_OMIT_DISKIO)
48990 /* Add the new BtShared object to the linked list sharable BtShareds.
48992 if( p->sharable ){
48993 sqlite3_mutex *mutexShared;
48994 pBt->nRef = 1;
48995 mutexShared = sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_MASTER);
48996 if( SQLITE_THREADSAFE && sqlite3GlobalConfig.bCoreMutex ){
48997 pBt->mutex = sqlite3MutexAlloc(SQLITE_MUTEX_FAST);
48998 if( pBt->mutex==0 ){
48999 rc = SQLITE_NOMEM;
49000 db->mallocFailed = 0;
49001 goto btree_open_out;
49004 sqlite3_mutex_enter(mutexShared);
49005 pBt->pNext = GLOBAL(BtShared*,sqlite3SharedCacheList);
49006 GLOBAL(BtShared*,sqlite3SharedCacheList) = pBt;
49007 sqlite3_mutex_leave(mutexShared);
49009 #endif
49012 #if !defined(SQLITE_OMIT_SHARED_CACHE) && !defined(SQLITE_OMIT_DISKIO)
49013 /* If the new Btree uses a sharable pBtShared, then link the new
49014 ** Btree into the list of all sharable Btrees for the same connection.
49015 ** The list is kept in ascending order by pBt address.
49017 if( p->sharable ){
49018 int i;
49019 Btree *pSib;
49020 for(i=0; i<db->nDb; i++){
49021 if( (pSib = db->aDb[i].pBt)!=0 && pSib->sharable ){
49022 while( pSib->pPrev ){ pSib = pSib->pPrev; }
49023 if( p->pBt<pSib->pBt ){
49024 p->pNext = pSib;
49025 p->pPrev = 0;
49026 pSib->pPrev = p;
49027 }else{
49028 while( pSib->pNext && pSib->pNext->pBt<p->pBt ){
49029 pSib = pSib->pNext;
49031 p->pNext = pSib->pNext;
49032 p->pPrev = pSib;
49033 if( p->pNext ){
49034 p->pNext->pPrev = p;
49036 pSib->pNext = p;
49038 break;
49042 #endif
49043 *ppBtree = p;
49045 btree_open_out:
49046 if( rc!=SQLITE_OK ){
49047 if( pBt && pBt->pPager ){
49048 sqlite3PagerClose(pBt->pPager);
49050 sqlite3_free(pBt);
49051 sqlite3_free(p);
49052 *ppBtree = 0;
49053 }else{
49054 /* If the B-Tree was successfully opened, set the pager-cache size to the
49055 ** default value. Except, when opening on an existing shared pager-cache,
49056 ** do not change the pager-cache size.
49058 if( sqlite3BtreeSchema(p, 0, 0)==0 ){
49059 sqlite3PagerSetCachesize(p->pBt->pPager, SQLITE_DEFAULT_CACHE_SIZE);
49062 if( mutexOpen ){
49063 assert( sqlite3_mutex_held(mutexOpen) );
49064 sqlite3_mutex_leave(mutexOpen);
49066 return rc;
49070 ** Decrement the BtShared.nRef counter. When it reaches zero,
49071 ** remove the BtShared structure from the sharing list. Return
49072 ** true if the BtShared.nRef counter reaches zero and return
49073 ** false if it is still positive.
49075 static int removeFromSharingList(BtShared *pBt){
49076 #ifndef SQLITE_OMIT_SHARED_CACHE
49077 sqlite3_mutex *pMaster;
49078 BtShared *pList;
49079 int removed = 0;
49081 assert( sqlite3_mutex_notheld(pBt->mutex) );
49082 pMaster = sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_MASTER);
49083 sqlite3_mutex_enter(pMaster);
49084 pBt->nRef--;
49085 if( pBt->nRef<=0 ){
49086 if( GLOBAL(BtShared*,sqlite3SharedCacheList)==pBt ){
49087 GLOBAL(BtShared*,sqlite3SharedCacheList) = pBt->pNext;
49088 }else{
49089 pList = GLOBAL(BtShared*,sqlite3SharedCacheList);
49090 while( ALWAYS(pList) && pList->pNext!=pBt ){
49091 pList=pList->pNext;
49093 if( ALWAYS(pList) ){
49094 pList->pNext = pBt->pNext;
49097 if( SQLITE_THREADSAFE ){
49098 sqlite3_mutex_free(pBt->mutex);
49100 removed = 1;
49102 sqlite3_mutex_leave(pMaster);
49103 return removed;
49104 #else
49105 return 1;
49106 #endif
49110 ** Make sure pBt->pTmpSpace points to an allocation of
49111 ** MX_CELL_SIZE(pBt) bytes.
49113 static void allocateTempSpace(BtShared *pBt){
49114 if( !pBt->pTmpSpace ){
49115 pBt->pTmpSpace = sqlite3PageMalloc( pBt->pageSize );
49120 ** Free the pBt->pTmpSpace allocation
49122 static void freeTempSpace(BtShared *pBt){
49123 sqlite3PageFree( pBt->pTmpSpace);
49124 pBt->pTmpSpace = 0;
49128 ** Close an open database and invalidate all cursors.
49130 SQLITE_PRIVATE int sqlite3BtreeClose(Btree *p){
49131 BtShared *pBt = p->pBt;
49132 BtCursor *pCur;
49134 /* Close all cursors opened via this handle. */
49135 assert( sqlite3_mutex_held(p->db->mutex) );
49136 sqlite3BtreeEnter(p);
49137 pCur = pBt->pCursor;
49138 while( pCur ){
49139 BtCursor *pTmp = pCur;
49140 pCur = pCur->pNext;
49141 if( pTmp->pBtree==p ){
49142 sqlite3BtreeCloseCursor(pTmp);
49146 /* Rollback any active transaction and free the handle structure.
49147 ** The call to sqlite3BtreeRollback() drops any table-locks held by
49148 ** this handle.
49150 sqlite3BtreeRollback(p);
49151 sqlite3BtreeLeave(p);
49153 /* If there are still other outstanding references to the shared-btree
49154 ** structure, return now. The remainder of this procedure cleans
49155 ** up the shared-btree.
49157 assert( p->wantToLock==0 && p->locked==0 );
49158 if( !p->sharable || removeFromSharingList(pBt) ){
49159 /* The pBt is no longer on the sharing list, so we can access
49160 ** it without having to hold the mutex.
49162 ** Clean out and delete the BtShared object.
49164 assert( !pBt->pCursor );
49165 sqlite3PagerClose(pBt->pPager);
49166 if( pBt->xFreeSchema && pBt->pSchema ){
49167 pBt->xFreeSchema(pBt->pSchema);
49169 sqlite3DbFree(0, pBt->pSchema);
49170 freeTempSpace(pBt);
49171 sqlite3_free(pBt);
49174 #ifndef SQLITE_OMIT_SHARED_CACHE
49175 assert( p->wantToLock==0 );
49176 assert( p->locked==0 );
49177 if( p->pPrev ) p->pPrev->pNext = p->pNext;
49178 if( p->pNext ) p->pNext->pPrev = p->pPrev;
49179 #endif
49181 sqlite3_free(p);
49182 return SQLITE_OK;
49186 ** Change the limit on the number of pages allowed in the cache.
49188 ** The maximum number of cache pages is set to the absolute
49189 ** value of mxPage. If mxPage is negative, the pager will
49190 ** operate asynchronously - it will not stop to do fsync()s
49191 ** to insure data is written to the disk surface before
49192 ** continuing. Transactions still work if synchronous is off,
49193 ** and the database cannot be corrupted if this program
49194 ** crashes. But if the operating system crashes or there is
49195 ** an abrupt power failure when synchronous is off, the database
49196 ** could be left in an inconsistent and unrecoverable state.
49197 ** Synchronous is on by default so database corruption is not
49198 ** normally a worry.
49200 SQLITE_PRIVATE int sqlite3BtreeSetCacheSize(Btree *p, int mxPage){
49201 BtShared *pBt = p->pBt;
49202 assert( sqlite3_mutex_held(p->db->mutex) );
49203 sqlite3BtreeEnter(p);
49204 sqlite3PagerSetCachesize(pBt->pPager, mxPage);
49205 sqlite3BtreeLeave(p);
49206 return SQLITE_OK;
49210 ** Change the way data is synced to disk in order to increase or decrease
49211 ** how well the database resists damage due to OS crashes and power
49212 ** failures. Level 1 is the same as asynchronous (no syncs() occur and
49213 ** there is a high probability of damage) Level 2 is the default. There
49214 ** is a very low but non-zero probability of damage. Level 3 reduces the
49215 ** probability of damage to near zero but with a write performance reduction.
49217 #ifndef SQLITE_OMIT_PAGER_PRAGMAS
49218 SQLITE_PRIVATE int sqlite3BtreeSetSafetyLevel(
49219 Btree *p, /* The btree to set the safety level on */
49220 int level, /* PRAGMA synchronous. 1=OFF, 2=NORMAL, 3=FULL */
49221 int fullSync, /* PRAGMA fullfsync. */
49222 int ckptFullSync /* PRAGMA checkpoint_fullfync */
49224 BtShared *pBt = p->pBt;
49225 assert( sqlite3_mutex_held(p->db->mutex) );
49226 assert( level>=1 && level<=3 );
49227 sqlite3BtreeEnter(p);
49228 sqlite3PagerSetSafetyLevel(pBt->pPager, level, fullSync, ckptFullSync);
49229 sqlite3BtreeLeave(p);
49230 return SQLITE_OK;
49232 #endif
49235 ** Return TRUE if the given btree is set to safety level 1. In other
49236 ** words, return TRUE if no sync() occurs on the disk files.
49238 SQLITE_PRIVATE int sqlite3BtreeSyncDisabled(Btree *p){
49239 BtShared *pBt = p->pBt;
49240 int rc;
49241 assert( sqlite3_mutex_held(p->db->mutex) );
49242 sqlite3BtreeEnter(p);
49243 assert( pBt && pBt->pPager );
49244 rc = sqlite3PagerNosync(pBt->pPager);
49245 sqlite3BtreeLeave(p);
49246 return rc;
49250 ** Change the default pages size and the number of reserved bytes per page.
49251 ** Or, if the page size has already been fixed, return SQLITE_READONLY
49252 ** without changing anything.
49254 ** The page size must be a power of 2 between 512 and 65536. If the page
49255 ** size supplied does not meet this constraint then the page size is not
49256 ** changed.
49258 ** Page sizes are constrained to be a power of two so that the region
49259 ** of the database file used for locking (beginning at PENDING_BYTE,
49260 ** the first byte past the 1GB boundary, 0x40000000) needs to occur
49261 ** at the beginning of a page.
49263 ** If parameter nReserve is less than zero, then the number of reserved
49264 ** bytes per page is left unchanged.
49266 ** If the iFix!=0 then the pageSizeFixed flag is set so that the page size
49267 ** and autovacuum mode can no longer be changed.
49269 SQLITE_PRIVATE int sqlite3BtreeSetPageSize(Btree *p, int pageSize, int nReserve, int iFix){
49270 int rc = SQLITE_OK;
49271 BtShared *pBt = p->pBt;
49272 assert( nReserve>=-1 && nReserve<=255 );
49273 sqlite3BtreeEnter(p);
49274 if( pBt->pageSizeFixed ){
49275 sqlite3BtreeLeave(p);
49276 return SQLITE_READONLY;
49278 if( nReserve<0 ){
49279 nReserve = pBt->pageSize - pBt->usableSize;
49281 assert( nReserve>=0 && nReserve<=255 );
49282 if( pageSize>=512 && pageSize<=SQLITE_MAX_PAGE_SIZE &&
49283 ((pageSize-1)&pageSize)==0 ){
49284 assert( (pageSize & 7)==0 );
49285 assert( !pBt->pPage1 && !pBt->pCursor );
49286 pBt->pageSize = (u32)pageSize;
49287 freeTempSpace(pBt);
49289 rc = sqlite3PagerSetPagesize(pBt->pPager, &pBt->pageSize, nReserve);
49290 pBt->usableSize = pBt->pageSize - (u16)nReserve;
49291 if( iFix ) pBt->pageSizeFixed = 1;
49292 sqlite3BtreeLeave(p);
49293 return rc;
49297 ** Return the currently defined page size
49299 SQLITE_PRIVATE int sqlite3BtreeGetPageSize(Btree *p){
49300 return p->pBt->pageSize;
49303 #if !defined(SQLITE_OMIT_PAGER_PRAGMAS) || !defined(SQLITE_OMIT_VACUUM)
49305 ** Return the number of bytes of space at the end of every page that
49306 ** are intentually left unused. This is the "reserved" space that is
49307 ** sometimes used by extensions.
49309 SQLITE_PRIVATE int sqlite3BtreeGetReserve(Btree *p){
49310 int n;
49311 sqlite3BtreeEnter(p);
49312 n = p->pBt->pageSize - p->pBt->usableSize;
49313 sqlite3BtreeLeave(p);
49314 return n;
49318 ** Set the maximum page count for a database if mxPage is positive.
49319 ** No changes are made if mxPage is 0 or negative.
49320 ** Regardless of the value of mxPage, return the maximum page count.
49322 SQLITE_PRIVATE int sqlite3BtreeMaxPageCount(Btree *p, int mxPage){
49323 int n;
49324 sqlite3BtreeEnter(p);
49325 n = sqlite3PagerMaxPageCount(p->pBt->pPager, mxPage);
49326 sqlite3BtreeLeave(p);
49327 return n;
49331 ** Set the secureDelete flag if newFlag is 0 or 1. If newFlag is -1,
49332 ** then make no changes. Always return the value of the secureDelete
49333 ** setting after the change.
49335 SQLITE_PRIVATE int sqlite3BtreeSecureDelete(Btree *p, int newFlag){
49336 int b;
49337 if( p==0 ) return 0;
49338 sqlite3BtreeEnter(p);
49339 if( newFlag>=0 ){
49340 p->pBt->secureDelete = (newFlag!=0) ? 1 : 0;
49342 b = p->pBt->secureDelete;
49343 sqlite3BtreeLeave(p);
49344 return b;
49346 #endif /* !defined(SQLITE_OMIT_PAGER_PRAGMAS) || !defined(SQLITE_OMIT_VACUUM) */
49349 ** Change the 'auto-vacuum' property of the database. If the 'autoVacuum'
49350 ** parameter is non-zero, then auto-vacuum mode is enabled. If zero, it
49351 ** is disabled. The default value for the auto-vacuum property is
49352 ** determined by the SQLITE_DEFAULT_AUTOVACUUM macro.
49354 SQLITE_PRIVATE int sqlite3BtreeSetAutoVacuum(Btree *p, int autoVacuum){
49355 #ifdef SQLITE_OMIT_AUTOVACUUM
49356 return SQLITE_READONLY;
49357 #else
49358 BtShared *pBt = p->pBt;
49359 int rc = SQLITE_OK;
49360 u8 av = (u8)autoVacuum;
49362 sqlite3BtreeEnter(p);
49363 if( pBt->pageSizeFixed && (av ?1:0)!=pBt->autoVacuum ){
49364 rc = SQLITE_READONLY;
49365 }else{
49366 pBt->autoVacuum = av ?1:0;
49367 pBt->incrVacuum = av==2 ?1:0;
49369 sqlite3BtreeLeave(p);
49370 return rc;
49371 #endif
49375 ** Return the value of the 'auto-vacuum' property. If auto-vacuum is
49376 ** enabled 1 is returned. Otherwise 0.
49378 SQLITE_PRIVATE int sqlite3BtreeGetAutoVacuum(Btree *p){
49379 #ifdef SQLITE_OMIT_AUTOVACUUM
49380 return BTREE_AUTOVACUUM_NONE;
49381 #else
49382 int rc;
49383 sqlite3BtreeEnter(p);
49384 rc = (
49385 (!p->pBt->autoVacuum)?BTREE_AUTOVACUUM_NONE:
49386 (!p->pBt->incrVacuum)?BTREE_AUTOVACUUM_FULL:
49387 BTREE_AUTOVACUUM_INCR
49389 sqlite3BtreeLeave(p);
49390 return rc;
49391 #endif
49396 ** Get a reference to pPage1 of the database file. This will
49397 ** also acquire a readlock on that file.
49399 ** SQLITE_OK is returned on success. If the file is not a
49400 ** well-formed database file, then SQLITE_CORRUPT is returned.
49401 ** SQLITE_BUSY is returned if the database is locked. SQLITE_NOMEM
49402 ** is returned if we run out of memory.
49404 static int lockBtree(BtShared *pBt){
49405 int rc; /* Result code from subfunctions */
49406 MemPage *pPage1; /* Page 1 of the database file */
49407 int nPage; /* Number of pages in the database */
49408 int nPageFile = 0; /* Number of pages in the database file */
49409 int nPageHeader; /* Number of pages in the database according to hdr */
49411 assert( sqlite3_mutex_held(pBt->mutex) );
49412 assert( pBt->pPage1==0 );
49413 rc = sqlite3PagerSharedLock(pBt->pPager);
49414 if( rc!=SQLITE_OK ) return rc;
49415 rc = btreeGetPage(pBt, 1, &pPage1, 0);
49416 if( rc!=SQLITE_OK ) return rc;
49418 /* Do some checking to help insure the file we opened really is
49419 ** a valid database file.
49421 nPage = nPageHeader = get4byte(28+(u8*)pPage1->aData);
49422 sqlite3PagerPagecount(pBt->pPager, &nPageFile);
49423 if( nPage==0 || memcmp(24+(u8*)pPage1->aData, 92+(u8*)pPage1->aData,4)!=0 ){
49424 nPage = nPageFile;
49426 if( nPage>0 ){
49427 u32 pageSize;
49428 u32 usableSize;
49429 u8 *page1 = pPage1->aData;
49430 rc = SQLITE_NOTADB;
49431 if( memcmp(page1, zMagicHeader, 16)!=0 ){
49432 goto page1_init_failed;
49435 #ifdef SQLITE_OMIT_WAL
49436 if( page1[18]>1 ){
49437 pBt->readOnly = 1;
49439 if( page1[19]>1 ){
49440 goto page1_init_failed;
49442 #else
49443 if( page1[18]>2 ){
49444 pBt->readOnly = 1;
49446 if( page1[19]>2 ){
49447 goto page1_init_failed;
49450 /* If the write version is set to 2, this database should be accessed
49451 ** in WAL mode. If the log is not already open, open it now. Then
49452 ** return SQLITE_OK and return without populating BtShared.pPage1.
49453 ** The caller detects this and calls this function again. This is
49454 ** required as the version of page 1 currently in the page1 buffer
49455 ** may not be the latest version - there may be a newer one in the log
49456 ** file.
49458 if( page1[19]==2 && pBt->doNotUseWAL==0 ){
49459 int isOpen = 0;
49460 rc = sqlite3PagerOpenWal(pBt->pPager, &isOpen);
49461 if( rc!=SQLITE_OK ){
49462 goto page1_init_failed;
49463 }else if( isOpen==0 ){
49464 releasePage(pPage1);
49465 return SQLITE_OK;
49467 rc = SQLITE_NOTADB;
49469 #endif
49471 /* The maximum embedded fraction must be exactly 25%. And the minimum
49472 ** embedded fraction must be 12.5% for both leaf-data and non-leaf-data.
49473 ** The original design allowed these amounts to vary, but as of
49474 ** version 3.6.0, we require them to be fixed.
49476 if( memcmp(&page1[21], "\100\040\040",3)!=0 ){
49477 goto page1_init_failed;
49479 pageSize = (page1[16]<<8) | (page1[17]<<16);
49480 if( ((pageSize-1)&pageSize)!=0
49481 || pageSize>SQLITE_MAX_PAGE_SIZE
49482 || pageSize<=256
49484 goto page1_init_failed;
49486 assert( (pageSize & 7)==0 );
49487 usableSize = pageSize - page1[20];
49488 if( (u32)pageSize!=pBt->pageSize ){
49489 /* After reading the first page of the database assuming a page size
49490 ** of BtShared.pageSize, we have discovered that the page-size is
49491 ** actually pageSize. Unlock the database, leave pBt->pPage1 at
49492 ** zero and return SQLITE_OK. The caller will call this function
49493 ** again with the correct page-size.
49495 releasePage(pPage1);
49496 pBt->usableSize = usableSize;
49497 pBt->pageSize = pageSize;
49498 freeTempSpace(pBt);
49499 rc = sqlite3PagerSetPagesize(pBt->pPager, &pBt->pageSize,
49500 pageSize-usableSize);
49501 return rc;
49503 if( (pBt->db->flags & SQLITE_RecoveryMode)==0 && nPage>nPageFile ){
49504 rc = SQLITE_CORRUPT_BKPT;
49505 goto page1_init_failed;
49507 if( usableSize<480 ){
49508 goto page1_init_failed;
49510 pBt->pageSize = pageSize;
49511 pBt->usableSize = usableSize;
49512 #ifndef SQLITE_OMIT_AUTOVACUUM
49513 pBt->autoVacuum = (get4byte(&page1[36 + 4*4])?1:0);
49514 pBt->incrVacuum = (get4byte(&page1[36 + 7*4])?1:0);
49515 #endif
49518 /* maxLocal is the maximum amount of payload to store locally for
49519 ** a cell. Make sure it is small enough so that at least minFanout
49520 ** cells can will fit on one page. We assume a 10-byte page header.
49521 ** Besides the payload, the cell must store:
49522 ** 2-byte pointer to the cell
49523 ** 4-byte child pointer
49524 ** 9-byte nKey value
49525 ** 4-byte nData value
49526 ** 4-byte overflow page pointer
49527 ** So a cell consists of a 2-byte pointer, a header which is as much as
49528 ** 17 bytes long, 0 to N bytes of payload, and an optional 4 byte overflow
49529 ** page pointer.
49531 pBt->maxLocal = (u16)((pBt->usableSize-12)*64/255 - 23);
49532 pBt->minLocal = (u16)((pBt->usableSize-12)*32/255 - 23);
49533 pBt->maxLeaf = (u16)(pBt->usableSize - 35);
49534 pBt->minLeaf = (u16)((pBt->usableSize-12)*32/255 - 23);
49535 assert( pBt->maxLeaf + 23 <= MX_CELL_SIZE(pBt) );
49536 pBt->pPage1 = pPage1;
49537 pBt->nPage = nPage;
49538 return SQLITE_OK;
49540 page1_init_failed:
49541 releasePage(pPage1);
49542 pBt->pPage1 = 0;
49543 return rc;
49547 ** If there are no outstanding cursors and we are not in the middle
49548 ** of a transaction but there is a read lock on the database, then
49549 ** this routine unrefs the first page of the database file which
49550 ** has the effect of releasing the read lock.
49552 ** If there is a transaction in progress, this routine is a no-op.
49554 static void unlockBtreeIfUnused(BtShared *pBt){
49555 assert( sqlite3_mutex_held(pBt->mutex) );
49556 assert( pBt->pCursor==0 || pBt->inTransaction>TRANS_NONE );
49557 if( pBt->inTransaction==TRANS_NONE && pBt->pPage1!=0 ){
49558 assert( pBt->pPage1->aData );
49559 assert( sqlite3PagerRefcount(pBt->pPager)==1 );
49560 assert( pBt->pPage1->aData );
49561 releasePage(pBt->pPage1);
49562 pBt->pPage1 = 0;
49567 ** If pBt points to an empty file then convert that empty file
49568 ** into a new empty database by initializing the first page of
49569 ** the database.
49571 static int newDatabase(BtShared *pBt){
49572 MemPage *pP1;
49573 unsigned char *data;
49574 int rc;
49576 assert( sqlite3_mutex_held(pBt->mutex) );
49577 if( pBt->nPage>0 ){
49578 return SQLITE_OK;
49580 pP1 = pBt->pPage1;
49581 assert( pP1!=0 );
49582 data = pP1->aData;
49583 rc = sqlite3PagerWrite(pP1->pDbPage);
49584 if( rc ) return rc;
49585 memcpy(data, zMagicHeader, sizeof(zMagicHeader));
49586 assert( sizeof(zMagicHeader)==16 );
49587 data[16] = (u8)((pBt->pageSize>>8)&0xff);
49588 data[17] = (u8)((pBt->pageSize>>16)&0xff);
49589 data[18] = 1;
49590 data[19] = 1;
49591 assert( pBt->usableSize<=pBt->pageSize && pBt->usableSize+255>=pBt->pageSize);
49592 data[20] = (u8)(pBt->pageSize - pBt->usableSize);
49593 data[21] = 64;
49594 data[22] = 32;
49595 data[23] = 32;
49596 memset(&data[24], 0, 100-24);
49597 zeroPage(pP1, PTF_INTKEY|PTF_LEAF|PTF_LEAFDATA );
49598 pBt->pageSizeFixed = 1;
49599 #ifndef SQLITE_OMIT_AUTOVACUUM
49600 assert( pBt->autoVacuum==1 || pBt->autoVacuum==0 );
49601 assert( pBt->incrVacuum==1 || pBt->incrVacuum==0 );
49602 put4byte(&data[36 + 4*4], pBt->autoVacuum);
49603 put4byte(&data[36 + 7*4], pBt->incrVacuum);
49604 #endif
49605 pBt->nPage = 1;
49606 data[31] = 1;
49607 return SQLITE_OK;
49611 ** Attempt to start a new transaction. A write-transaction
49612 ** is started if the second argument is nonzero, otherwise a read-
49613 ** transaction. If the second argument is 2 or more and exclusive
49614 ** transaction is started, meaning that no other process is allowed
49615 ** to access the database. A preexisting transaction may not be
49616 ** upgraded to exclusive by calling this routine a second time - the
49617 ** exclusivity flag only works for a new transaction.
49619 ** A write-transaction must be started before attempting any
49620 ** changes to the database. None of the following routines
49621 ** will work unless a transaction is started first:
49623 ** sqlite3BtreeCreateTable()
49624 ** sqlite3BtreeCreateIndex()
49625 ** sqlite3BtreeClearTable()
49626 ** sqlite3BtreeDropTable()
49627 ** sqlite3BtreeInsert()
49628 ** sqlite3BtreeDelete()
49629 ** sqlite3BtreeUpdateMeta()
49631 ** If an initial attempt to acquire the lock fails because of lock contention
49632 ** and the database was previously unlocked, then invoke the busy handler
49633 ** if there is one. But if there was previously a read-lock, do not
49634 ** invoke the busy handler - just return SQLITE_BUSY. SQLITE_BUSY is
49635 ** returned when there is already a read-lock in order to avoid a deadlock.
49637 ** Suppose there are two processes A and B. A has a read lock and B has
49638 ** a reserved lock. B tries to promote to exclusive but is blocked because
49639 ** of A's read lock. A tries to promote to reserved but is blocked by B.
49640 ** One or the other of the two processes must give way or there can be
49641 ** no progress. By returning SQLITE_BUSY and not invoking the busy callback
49642 ** when A already has a read lock, we encourage A to give up and let B
49643 ** proceed.
49645 SQLITE_PRIVATE int sqlite3BtreeBeginTrans(Btree *p, int wrflag){
49646 sqlite3 *pBlock = 0;
49647 BtShared *pBt = p->pBt;
49648 int rc = SQLITE_OK;
49650 sqlite3BtreeEnter(p);
49651 btreeIntegrity(p);
49653 /* If the btree is already in a write-transaction, or it
49654 ** is already in a read-transaction and a read-transaction
49655 ** is requested, this is a no-op.
49657 if( p->inTrans==TRANS_WRITE || (p->inTrans==TRANS_READ && !wrflag) ){
49658 goto trans_begun;
49661 /* Write transactions are not possible on a read-only database */
49662 if( pBt->readOnly && wrflag ){
49663 rc = SQLITE_READONLY;
49664 goto trans_begun;
49667 #ifndef SQLITE_OMIT_SHARED_CACHE
49668 /* If another database handle has already opened a write transaction
49669 ** on this shared-btree structure and a second write transaction is
49670 ** requested, return SQLITE_LOCKED.
49672 if( (wrflag && pBt->inTransaction==TRANS_WRITE) || pBt->isPending ){
49673 pBlock = pBt->pWriter->db;
49674 }else if( wrflag>1 ){
49675 BtLock *pIter;
49676 for(pIter=pBt->pLock; pIter; pIter=pIter->pNext){
49677 if( pIter->pBtree!=p ){
49678 pBlock = pIter->pBtree->db;
49679 break;
49683 if( pBlock ){
49684 sqlite3ConnectionBlocked(p->db, pBlock);
49685 rc = SQLITE_LOCKED_SHAREDCACHE;
49686 goto trans_begun;
49688 #endif
49690 /* Any read-only or read-write transaction implies a read-lock on
49691 ** page 1. So if some other shared-cache client already has a write-lock
49692 ** on page 1, the transaction cannot be opened. */
49693 rc = querySharedCacheTableLock(p, MASTER_ROOT, READ_LOCK);
49694 if( SQLITE_OK!=rc ) goto trans_begun;
49696 pBt->initiallyEmpty = (u8)(pBt->nPage==0);
49697 do {
49698 /* Call lockBtree() until either pBt->pPage1 is populated or
49699 ** lockBtree() returns something other than SQLITE_OK. lockBtree()
49700 ** may return SQLITE_OK but leave pBt->pPage1 set to 0 if after
49701 ** reading page 1 it discovers that the page-size of the database
49702 ** file is not pBt->pageSize. In this case lockBtree() will update
49703 ** pBt->pageSize to the page-size of the file on disk.
49705 while( pBt->pPage1==0 && SQLITE_OK==(rc = lockBtree(pBt)) );
49707 if( rc==SQLITE_OK && wrflag ){
49708 if( pBt->readOnly ){
49709 rc = SQLITE_READONLY;
49710 }else{
49711 rc = sqlite3PagerBegin(pBt->pPager,wrflag>1,sqlite3TempInMemory(p->db));
49712 if( rc==SQLITE_OK ){
49713 rc = newDatabase(pBt);
49718 if( rc!=SQLITE_OK ){
49719 unlockBtreeIfUnused(pBt);
49721 }while( (rc&0xFF)==SQLITE_BUSY && pBt->inTransaction==TRANS_NONE &&
49722 btreeInvokeBusyHandler(pBt) );
49724 if( rc==SQLITE_OK ){
49725 if( p->inTrans==TRANS_NONE ){
49726 pBt->nTransaction++;
49727 #ifndef SQLITE_OMIT_SHARED_CACHE
49728 if( p->sharable ){
49729 assert( p->lock.pBtree==p && p->lock.iTable==1 );
49730 p->lock.eLock = READ_LOCK;
49731 p->lock.pNext = pBt->pLock;
49732 pBt->pLock = &p->lock;
49734 #endif
49736 p->inTrans = (wrflag?TRANS_WRITE:TRANS_READ);
49737 if( p->inTrans>pBt->inTransaction ){
49738 pBt->inTransaction = p->inTrans;
49740 if( wrflag ){
49741 MemPage *pPage1 = pBt->pPage1;
49742 #ifndef SQLITE_OMIT_SHARED_CACHE
49743 assert( !pBt->pWriter );
49744 pBt->pWriter = p;
49745 pBt->isExclusive = (u8)(wrflag>1);
49746 #endif
49748 /* If the db-size header field is incorrect (as it may be if an old
49749 ** client has been writing the database file), update it now. Doing
49750 ** this sooner rather than later means the database size can safely
49751 ** re-read the database size from page 1 if a savepoint or transaction
49752 ** rollback occurs within the transaction.
49754 if( pBt->nPage!=get4byte(&pPage1->aData[28]) ){
49755 rc = sqlite3PagerWrite(pPage1->pDbPage);
49756 if( rc==SQLITE_OK ){
49757 put4byte(&pPage1->aData[28], pBt->nPage);
49764 trans_begun:
49765 if( rc==SQLITE_OK && wrflag ){
49766 /* This call makes sure that the pager has the correct number of
49767 ** open savepoints. If the second parameter is greater than 0 and
49768 ** the sub-journal is not already open, then it will be opened here.
49770 rc = sqlite3PagerOpenSavepoint(pBt->pPager, p->db->nSavepoint);
49773 btreeIntegrity(p);
49774 sqlite3BtreeLeave(p);
49775 return rc;
49778 #ifndef SQLITE_OMIT_AUTOVACUUM
49781 ** Set the pointer-map entries for all children of page pPage. Also, if
49782 ** pPage contains cells that point to overflow pages, set the pointer
49783 ** map entries for the overflow pages as well.
49785 static int setChildPtrmaps(MemPage *pPage){
49786 int i; /* Counter variable */
49787 int nCell; /* Number of cells in page pPage */
49788 int rc; /* Return code */
49789 BtShared *pBt = pPage->pBt;
49790 u8 isInitOrig = pPage->isInit;
49791 Pgno pgno = pPage->pgno;
49793 assert( sqlite3_mutex_held(pPage->pBt->mutex) );
49794 rc = btreeInitPage(pPage);
49795 if( rc!=SQLITE_OK ){
49796 goto set_child_ptrmaps_out;
49798 nCell = pPage->nCell;
49800 for(i=0; i<nCell; i++){
49801 u8 *pCell = findCell(pPage, i);
49803 ptrmapPutOvflPtr(pPage, pCell, &rc);
49805 if( !pPage->leaf ){
49806 Pgno childPgno = get4byte(pCell);
49807 ptrmapPut(pBt, childPgno, PTRMAP_BTREE, pgno, &rc);
49811 if( !pPage->leaf ){
49812 Pgno childPgno = get4byte(&pPage->aData[pPage->hdrOffset+8]);
49813 ptrmapPut(pBt, childPgno, PTRMAP_BTREE, pgno, &rc);
49816 set_child_ptrmaps_out:
49817 pPage->isInit = isInitOrig;
49818 return rc;
49822 ** Somewhere on pPage is a pointer to page iFrom. Modify this pointer so
49823 ** that it points to iTo. Parameter eType describes the type of pointer to
49824 ** be modified, as follows:
49826 ** PTRMAP_BTREE: pPage is a btree-page. The pointer points at a child
49827 ** page of pPage.
49829 ** PTRMAP_OVERFLOW1: pPage is a btree-page. The pointer points at an overflow
49830 ** page pointed to by one of the cells on pPage.
49832 ** PTRMAP_OVERFLOW2: pPage is an overflow-page. The pointer points at the next
49833 ** overflow page in the list.
49835 static int modifyPagePointer(MemPage *pPage, Pgno iFrom, Pgno iTo, u8 eType){
49836 assert( sqlite3_mutex_held(pPage->pBt->mutex) );
49837 assert( sqlite3PagerIswriteable(pPage->pDbPage) );
49838 if( eType==PTRMAP_OVERFLOW2 ){
49839 /* The pointer is always the first 4 bytes of the page in this case. */
49840 if( get4byte(pPage->aData)!=iFrom ){
49841 return SQLITE_CORRUPT_BKPT;
49843 put4byte(pPage->aData, iTo);
49844 }else{
49845 u8 isInitOrig = pPage->isInit;
49846 int i;
49847 int nCell;
49849 btreeInitPage(pPage);
49850 nCell = pPage->nCell;
49852 for(i=0; i<nCell; i++){
49853 u8 *pCell = findCell(pPage, i);
49854 if( eType==PTRMAP_OVERFLOW1 ){
49855 CellInfo info;
49856 btreeParseCellPtr(pPage, pCell, &info);
49857 if( info.iOverflow ){
49858 if( iFrom==get4byte(&pCell[info.iOverflow]) ){
49859 put4byte(&pCell[info.iOverflow], iTo);
49860 break;
49863 }else{
49864 if( get4byte(pCell)==iFrom ){
49865 put4byte(pCell, iTo);
49866 break;
49871 if( i==nCell ){
49872 if( eType!=PTRMAP_BTREE ||
49873 get4byte(&pPage->aData[pPage->hdrOffset+8])!=iFrom ){
49874 return SQLITE_CORRUPT_BKPT;
49876 put4byte(&pPage->aData[pPage->hdrOffset+8], iTo);
49879 pPage->isInit = isInitOrig;
49881 return SQLITE_OK;
49886 ** Move the open database page pDbPage to location iFreePage in the
49887 ** database. The pDbPage reference remains valid.
49889 ** The isCommit flag indicates that there is no need to remember that
49890 ** the journal needs to be sync()ed before database page pDbPage->pgno
49891 ** can be written to. The caller has already promised not to write to that
49892 ** page.
49894 static int relocatePage(
49895 BtShared *pBt, /* Btree */
49896 MemPage *pDbPage, /* Open page to move */
49897 u8 eType, /* Pointer map 'type' entry for pDbPage */
49898 Pgno iPtrPage, /* Pointer map 'page-no' entry for pDbPage */
49899 Pgno iFreePage, /* The location to move pDbPage to */
49900 int isCommit /* isCommit flag passed to sqlite3PagerMovepage */
49902 MemPage *pPtrPage; /* The page that contains a pointer to pDbPage */
49903 Pgno iDbPage = pDbPage->pgno;
49904 Pager *pPager = pBt->pPager;
49905 int rc;
49907 assert( eType==PTRMAP_OVERFLOW2 || eType==PTRMAP_OVERFLOW1 ||
49908 eType==PTRMAP_BTREE || eType==PTRMAP_ROOTPAGE );
49909 assert( sqlite3_mutex_held(pBt->mutex) );
49910 assert( pDbPage->pBt==pBt );
49912 /* Move page iDbPage from its current location to page number iFreePage */
49913 TRACE(("AUTOVACUUM: Moving %d to free page %d (ptr page %d type %d)\n",
49914 iDbPage, iFreePage, iPtrPage, eType));
49915 rc = sqlite3PagerMovepage(pPager, pDbPage->pDbPage, iFreePage, isCommit);
49916 if( rc!=SQLITE_OK ){
49917 return rc;
49919 pDbPage->pgno = iFreePage;
49921 /* If pDbPage was a btree-page, then it may have child pages and/or cells
49922 ** that point to overflow pages. The pointer map entries for all these
49923 ** pages need to be changed.
49925 ** If pDbPage is an overflow page, then the first 4 bytes may store a
49926 ** pointer to a subsequent overflow page. If this is the case, then
49927 ** the pointer map needs to be updated for the subsequent overflow page.
49929 if( eType==PTRMAP_BTREE || eType==PTRMAP_ROOTPAGE ){
49930 rc = setChildPtrmaps(pDbPage);
49931 if( rc!=SQLITE_OK ){
49932 return rc;
49934 }else{
49935 Pgno nextOvfl = get4byte(pDbPage->aData);
49936 if( nextOvfl!=0 ){
49937 ptrmapPut(pBt, nextOvfl, PTRMAP_OVERFLOW2, iFreePage, &rc);
49938 if( rc!=SQLITE_OK ){
49939 return rc;
49944 /* Fix the database pointer on page iPtrPage that pointed at iDbPage so
49945 ** that it points at iFreePage. Also fix the pointer map entry for
49946 ** iPtrPage.
49948 if( eType!=PTRMAP_ROOTPAGE ){
49949 rc = btreeGetPage(pBt, iPtrPage, &pPtrPage, 0);
49950 if( rc!=SQLITE_OK ){
49951 return rc;
49953 rc = sqlite3PagerWrite(pPtrPage->pDbPage);
49954 if( rc!=SQLITE_OK ){
49955 releasePage(pPtrPage);
49956 return rc;
49958 rc = modifyPagePointer(pPtrPage, iDbPage, iFreePage, eType);
49959 releasePage(pPtrPage);
49960 if( rc==SQLITE_OK ){
49961 ptrmapPut(pBt, iFreePage, eType, iPtrPage, &rc);
49964 return rc;
49967 /* Forward declaration required by incrVacuumStep(). */
49968 static int allocateBtreePage(BtShared *, MemPage **, Pgno *, Pgno, u8);
49971 ** Perform a single step of an incremental-vacuum. If successful,
49972 ** return SQLITE_OK. If there is no work to do (and therefore no
49973 ** point in calling this function again), return SQLITE_DONE.
49975 ** More specificly, this function attempts to re-organize the
49976 ** database so that the last page of the file currently in use
49977 ** is no longer in use.
49979 ** If the nFin parameter is non-zero, this function assumes
49980 ** that the caller will keep calling incrVacuumStep() until
49981 ** it returns SQLITE_DONE or an error, and that nFin is the
49982 ** number of pages the database file will contain after this
49983 ** process is complete. If nFin is zero, it is assumed that
49984 ** incrVacuumStep() will be called a finite amount of times
49985 ** which may or may not empty the freelist. A full autovacuum
49986 ** has nFin>0. A "PRAGMA incremental_vacuum" has nFin==0.
49988 static int incrVacuumStep(BtShared *pBt, Pgno nFin, Pgno iLastPg){
49989 Pgno nFreeList; /* Number of pages still on the free-list */
49990 int rc;
49992 assert( sqlite3_mutex_held(pBt->mutex) );
49993 assert( iLastPg>nFin );
49995 if( !PTRMAP_ISPAGE(pBt, iLastPg) && iLastPg!=PENDING_BYTE_PAGE(pBt) ){
49996 u8 eType;
49997 Pgno iPtrPage;
49999 nFreeList = get4byte(&pBt->pPage1->aData[36]);
50000 if( nFreeList==0 ){
50001 return SQLITE_DONE;
50004 rc = ptrmapGet(pBt, iLastPg, &eType, &iPtrPage);
50005 if( rc!=SQLITE_OK ){
50006 return rc;
50008 if( eType==PTRMAP_ROOTPAGE ){
50009 return SQLITE_CORRUPT_BKPT;
50012 if( eType==PTRMAP_FREEPAGE ){
50013 if( nFin==0 ){
50014 /* Remove the page from the files free-list. This is not required
50015 ** if nFin is non-zero. In that case, the free-list will be
50016 ** truncated to zero after this function returns, so it doesn't
50017 ** matter if it still contains some garbage entries.
50019 Pgno iFreePg;
50020 MemPage *pFreePg;
50021 rc = allocateBtreePage(pBt, &pFreePg, &iFreePg, iLastPg, 1);
50022 if( rc!=SQLITE_OK ){
50023 return rc;
50025 assert( iFreePg==iLastPg );
50026 releasePage(pFreePg);
50028 } else {
50029 Pgno iFreePg; /* Index of free page to move pLastPg to */
50030 MemPage *pLastPg;
50032 rc = btreeGetPage(pBt, iLastPg, &pLastPg, 0);
50033 if( rc!=SQLITE_OK ){
50034 return rc;
50037 /* If nFin is zero, this loop runs exactly once and page pLastPg
50038 ** is swapped with the first free page pulled off the free list.
50040 ** On the other hand, if nFin is greater than zero, then keep
50041 ** looping until a free-page located within the first nFin pages
50042 ** of the file is found.
50044 do {
50045 MemPage *pFreePg;
50046 rc = allocateBtreePage(pBt, &pFreePg, &iFreePg, 0, 0);
50047 if( rc!=SQLITE_OK ){
50048 releasePage(pLastPg);
50049 return rc;
50051 releasePage(pFreePg);
50052 }while( nFin!=0 && iFreePg>nFin );
50053 assert( iFreePg<iLastPg );
50055 rc = sqlite3PagerWrite(pLastPg->pDbPage);
50056 if( rc==SQLITE_OK ){
50057 rc = relocatePage(pBt, pLastPg, eType, iPtrPage, iFreePg, nFin!=0);
50059 releasePage(pLastPg);
50060 if( rc!=SQLITE_OK ){
50061 return rc;
50066 if( nFin==0 ){
50067 iLastPg--;
50068 while( iLastPg==PENDING_BYTE_PAGE(pBt)||PTRMAP_ISPAGE(pBt, iLastPg) ){
50069 if( PTRMAP_ISPAGE(pBt, iLastPg) ){
50070 MemPage *pPg;
50071 rc = btreeGetPage(pBt, iLastPg, &pPg, 0);
50072 if( rc!=SQLITE_OK ){
50073 return rc;
50075 rc = sqlite3PagerWrite(pPg->pDbPage);
50076 releasePage(pPg);
50077 if( rc!=SQLITE_OK ){
50078 return rc;
50081 iLastPg--;
50083 sqlite3PagerTruncateImage(pBt->pPager, iLastPg);
50084 pBt->nPage = iLastPg;
50086 return SQLITE_OK;
50090 ** A write-transaction must be opened before calling this function.
50091 ** It performs a single unit of work towards an incremental vacuum.
50093 ** If the incremental vacuum is finished after this function has run,
50094 ** SQLITE_DONE is returned. If it is not finished, but no error occurred,
50095 ** SQLITE_OK is returned. Otherwise an SQLite error code.
50097 SQLITE_PRIVATE int sqlite3BtreeIncrVacuum(Btree *p){
50098 int rc;
50099 BtShared *pBt = p->pBt;
50101 sqlite3BtreeEnter(p);
50102 assert( pBt->inTransaction==TRANS_WRITE && p->inTrans==TRANS_WRITE );
50103 if( !pBt->autoVacuum ){
50104 rc = SQLITE_DONE;
50105 }else{
50106 invalidateAllOverflowCache(pBt);
50107 rc = incrVacuumStep(pBt, 0, btreePagecount(pBt));
50108 if( rc==SQLITE_OK ){
50109 rc = sqlite3PagerWrite(pBt->pPage1->pDbPage);
50110 put4byte(&pBt->pPage1->aData[28], pBt->nPage);
50113 sqlite3BtreeLeave(p);
50114 return rc;
50118 ** This routine is called prior to sqlite3PagerCommit when a transaction
50119 ** is commited for an auto-vacuum database.
50121 ** If SQLITE_OK is returned, then *pnTrunc is set to the number of pages
50122 ** the database file should be truncated to during the commit process.
50123 ** i.e. the database has been reorganized so that only the first *pnTrunc
50124 ** pages are in use.
50126 static int autoVacuumCommit(BtShared *pBt){
50127 int rc = SQLITE_OK;
50128 Pager *pPager = pBt->pPager;
50129 VVA_ONLY( int nRef = sqlite3PagerRefcount(pPager) );
50131 assert( sqlite3_mutex_held(pBt->mutex) );
50132 invalidateAllOverflowCache(pBt);
50133 assert(pBt->autoVacuum);
50134 if( !pBt->incrVacuum ){
50135 Pgno nFin; /* Number of pages in database after autovacuuming */
50136 Pgno nFree; /* Number of pages on the freelist initially */
50137 Pgno nPtrmap; /* Number of PtrMap pages to be freed */
50138 Pgno iFree; /* The next page to be freed */
50139 int nEntry; /* Number of entries on one ptrmap page */
50140 Pgno nOrig; /* Database size before freeing */
50142 nOrig = btreePagecount(pBt);
50143 if( PTRMAP_ISPAGE(pBt, nOrig) || nOrig==PENDING_BYTE_PAGE(pBt) ){
50144 /* It is not possible to create a database for which the final page
50145 ** is either a pointer-map page or the pending-byte page. If one
50146 ** is encountered, this indicates corruption.
50148 return SQLITE_CORRUPT_BKPT;
50151 nFree = get4byte(&pBt->pPage1->aData[36]);
50152 nEntry = pBt->usableSize/5;
50153 nPtrmap = (nFree-nOrig+PTRMAP_PAGENO(pBt, nOrig)+nEntry)/nEntry;
50154 nFin = nOrig - nFree - nPtrmap;
50155 if( nOrig>PENDING_BYTE_PAGE(pBt) && nFin<PENDING_BYTE_PAGE(pBt) ){
50156 nFin--;
50158 while( PTRMAP_ISPAGE(pBt, nFin) || nFin==PENDING_BYTE_PAGE(pBt) ){
50159 nFin--;
50161 if( nFin>nOrig ) return SQLITE_CORRUPT_BKPT;
50163 for(iFree=nOrig; iFree>nFin && rc==SQLITE_OK; iFree--){
50164 rc = incrVacuumStep(pBt, nFin, iFree);
50166 if( (rc==SQLITE_DONE || rc==SQLITE_OK) && nFree>0 ){
50167 rc = sqlite3PagerWrite(pBt->pPage1->pDbPage);
50168 put4byte(&pBt->pPage1->aData[32], 0);
50169 put4byte(&pBt->pPage1->aData[36], 0);
50170 put4byte(&pBt->pPage1->aData[28], nFin);
50171 sqlite3PagerTruncateImage(pBt->pPager, nFin);
50172 pBt->nPage = nFin;
50174 if( rc!=SQLITE_OK ){
50175 sqlite3PagerRollback(pPager);
50179 assert( nRef==sqlite3PagerRefcount(pPager) );
50180 return rc;
50183 #else /* ifndef SQLITE_OMIT_AUTOVACUUM */
50184 # define setChildPtrmaps(x) SQLITE_OK
50185 #endif
50188 ** This routine does the first phase of a two-phase commit. This routine
50189 ** causes a rollback journal to be created (if it does not already exist)
50190 ** and populated with enough information so that if a power loss occurs
50191 ** the database can be restored to its original state by playing back
50192 ** the journal. Then the contents of the journal are flushed out to
50193 ** the disk. After the journal is safely on oxide, the changes to the
50194 ** database are written into the database file and flushed to oxide.
50195 ** At the end of this call, the rollback journal still exists on the
50196 ** disk and we are still holding all locks, so the transaction has not
50197 ** committed. See sqlite3BtreeCommitPhaseTwo() for the second phase of the
50198 ** commit process.
50200 ** This call is a no-op if no write-transaction is currently active on pBt.
50202 ** Otherwise, sync the database file for the btree pBt. zMaster points to
50203 ** the name of a master journal file that should be written into the
50204 ** individual journal file, or is NULL, indicating no master journal file
50205 ** (single database transaction).
50207 ** When this is called, the master journal should already have been
50208 ** created, populated with this journal pointer and synced to disk.
50210 ** Once this is routine has returned, the only thing required to commit
50211 ** the write-transaction for this database file is to delete the journal.
50213 SQLITE_PRIVATE int sqlite3BtreeCommitPhaseOne(Btree *p, const char *zMaster){
50214 int rc = SQLITE_OK;
50215 if( p->inTrans==TRANS_WRITE ){
50216 BtShared *pBt = p->pBt;
50217 sqlite3BtreeEnter(p);
50218 #ifndef SQLITE_OMIT_AUTOVACUUM
50219 if( pBt->autoVacuum ){
50220 rc = autoVacuumCommit(pBt);
50221 if( rc!=SQLITE_OK ){
50222 sqlite3BtreeLeave(p);
50223 return rc;
50226 #endif
50227 rc = sqlite3PagerCommitPhaseOne(pBt->pPager, zMaster, 0);
50228 sqlite3BtreeLeave(p);
50230 return rc;
50234 ** This function is called from both BtreeCommitPhaseTwo() and BtreeRollback()
50235 ** at the conclusion of a transaction.
50237 static void btreeEndTransaction(Btree *p){
50238 BtShared *pBt = p->pBt;
50239 assert( sqlite3BtreeHoldsMutex(p) );
50241 btreeClearHasContent(pBt);
50242 if( p->inTrans>TRANS_NONE && p->db->activeVdbeCnt>1 ){
50243 /* If there are other active statements that belong to this database
50244 ** handle, downgrade to a read-only transaction. The other statements
50245 ** may still be reading from the database. */
50246 downgradeAllSharedCacheTableLocks(p);
50247 p->inTrans = TRANS_READ;
50248 }else{
50249 /* If the handle had any kind of transaction open, decrement the
50250 ** transaction count of the shared btree. If the transaction count
50251 ** reaches 0, set the shared state to TRANS_NONE. The unlockBtreeIfUnused()
50252 ** call below will unlock the pager. */
50253 if( p->inTrans!=TRANS_NONE ){
50254 clearAllSharedCacheTableLocks(p);
50255 pBt->nTransaction--;
50256 if( 0==pBt->nTransaction ){
50257 pBt->inTransaction = TRANS_NONE;
50261 /* Set the current transaction state to TRANS_NONE and unlock the
50262 ** pager if this call closed the only read or write transaction. */
50263 p->inTrans = TRANS_NONE;
50264 unlockBtreeIfUnused(pBt);
50267 btreeIntegrity(p);
50271 ** Commit the transaction currently in progress.
50273 ** This routine implements the second phase of a 2-phase commit. The
50274 ** sqlite3BtreeCommitPhaseOne() routine does the first phase and should
50275 ** be invoked prior to calling this routine. The sqlite3BtreeCommitPhaseOne()
50276 ** routine did all the work of writing information out to disk and flushing the
50277 ** contents so that they are written onto the disk platter. All this
50278 ** routine has to do is delete or truncate or zero the header in the
50279 ** the rollback journal (which causes the transaction to commit) and
50280 ** drop locks.
50282 ** Normally, if an error occurs while the pager layer is attempting to
50283 ** finalize the underlying journal file, this function returns an error and
50284 ** the upper layer will attempt a rollback. However, if the second argument
50285 ** is non-zero then this b-tree transaction is part of a multi-file
50286 ** transaction. In this case, the transaction has already been committed
50287 ** (by deleting a master journal file) and the caller will ignore this
50288 ** functions return code. So, even if an error occurs in the pager layer,
50289 ** reset the b-tree objects internal state to indicate that the write
50290 ** transaction has been closed. This is quite safe, as the pager will have
50291 ** transitioned to the error state.
50293 ** This will release the write lock on the database file. If there
50294 ** are no active cursors, it also releases the read lock.
50296 SQLITE_PRIVATE int sqlite3BtreeCommitPhaseTwo(Btree *p, int bCleanup){
50298 if( p->inTrans==TRANS_NONE ) return SQLITE_OK;
50299 sqlite3BtreeEnter(p);
50300 btreeIntegrity(p);
50302 /* If the handle has a write-transaction open, commit the shared-btrees
50303 ** transaction and set the shared state to TRANS_READ.
50305 if( p->inTrans==TRANS_WRITE ){
50306 int rc;
50307 BtShared *pBt = p->pBt;
50308 assert( pBt->inTransaction==TRANS_WRITE );
50309 assert( pBt->nTransaction>0 );
50310 rc = sqlite3PagerCommitPhaseTwo(pBt->pPager);
50311 if( rc!=SQLITE_OK && bCleanup==0 ){
50312 sqlite3BtreeLeave(p);
50313 return rc;
50315 pBt->inTransaction = TRANS_READ;
50318 btreeEndTransaction(p);
50319 sqlite3BtreeLeave(p);
50320 return SQLITE_OK;
50324 ** Do both phases of a commit.
50326 SQLITE_PRIVATE int sqlite3BtreeCommit(Btree *p){
50327 int rc;
50328 sqlite3BtreeEnter(p);
50329 rc = sqlite3BtreeCommitPhaseOne(p, 0);
50330 if( rc==SQLITE_OK ){
50331 rc = sqlite3BtreeCommitPhaseTwo(p, 0);
50333 sqlite3BtreeLeave(p);
50334 return rc;
50337 #ifndef NDEBUG
50339 ** Return the number of write-cursors open on this handle. This is for use
50340 ** in assert() expressions, so it is only compiled if NDEBUG is not
50341 ** defined.
50343 ** For the purposes of this routine, a write-cursor is any cursor that
50344 ** is capable of writing to the databse. That means the cursor was
50345 ** originally opened for writing and the cursor has not be disabled
50346 ** by having its state changed to CURSOR_FAULT.
50348 static int countWriteCursors(BtShared *pBt){
50349 BtCursor *pCur;
50350 int r = 0;
50351 for(pCur=pBt->pCursor; pCur; pCur=pCur->pNext){
50352 if( pCur->wrFlag && pCur->eState!=CURSOR_FAULT ) r++;
50354 return r;
50356 #endif
50359 ** This routine sets the state to CURSOR_FAULT and the error
50360 ** code to errCode for every cursor on BtShared that pBtree
50361 ** references.
50363 ** Every cursor is tripped, including cursors that belong
50364 ** to other database connections that happen to be sharing
50365 ** the cache with pBtree.
50367 ** This routine gets called when a rollback occurs.
50368 ** All cursors using the same cache must be tripped
50369 ** to prevent them from trying to use the btree after
50370 ** the rollback. The rollback may have deleted tables
50371 ** or moved root pages, so it is not sufficient to
50372 ** save the state of the cursor. The cursor must be
50373 ** invalidated.
50375 SQLITE_PRIVATE void sqlite3BtreeTripAllCursors(Btree *pBtree, int errCode){
50376 BtCursor *p;
50377 sqlite3BtreeEnter(pBtree);
50378 for(p=pBtree->pBt->pCursor; p; p=p->pNext){
50379 int i;
50380 sqlite3BtreeClearCursor(p);
50381 p->eState = CURSOR_FAULT;
50382 p->skipNext = errCode;
50383 for(i=0; i<=p->iPage; i++){
50384 releasePage(p->apPage[i]);
50385 p->apPage[i] = 0;
50388 sqlite3BtreeLeave(pBtree);
50392 ** Rollback the transaction in progress. All cursors will be
50393 ** invalided by this operation. Any attempt to use a cursor
50394 ** that was open at the beginning of this operation will result
50395 ** in an error.
50397 ** This will release the write lock on the database file. If there
50398 ** are no active cursors, it also releases the read lock.
50400 SQLITE_PRIVATE int sqlite3BtreeRollback(Btree *p){
50401 int rc;
50402 BtShared *pBt = p->pBt;
50403 MemPage *pPage1;
50405 sqlite3BtreeEnter(p);
50406 rc = saveAllCursors(pBt, 0, 0);
50407 #ifndef SQLITE_OMIT_SHARED_CACHE
50408 if( rc!=SQLITE_OK ){
50409 /* This is a horrible situation. An IO or malloc() error occurred whilst
50410 ** trying to save cursor positions. If this is an automatic rollback (as
50411 ** the result of a constraint, malloc() failure or IO error) then
50412 ** the cache may be internally inconsistent (not contain valid trees) so
50413 ** we cannot simply return the error to the caller. Instead, abort
50414 ** all queries that may be using any of the cursors that failed to save.
50416 sqlite3BtreeTripAllCursors(p, rc);
50418 #endif
50419 btreeIntegrity(p);
50421 if( p->inTrans==TRANS_WRITE ){
50422 int rc2;
50424 assert( TRANS_WRITE==pBt->inTransaction );
50425 rc2 = sqlite3PagerRollback(pBt->pPager);
50426 if( rc2!=SQLITE_OK ){
50427 rc = rc2;
50430 /* The rollback may have destroyed the pPage1->aData value. So
50431 ** call btreeGetPage() on page 1 again to make
50432 ** sure pPage1->aData is set correctly. */
50433 if( btreeGetPage(pBt, 1, &pPage1, 0)==SQLITE_OK ){
50434 int nPage = get4byte(28+(u8*)pPage1->aData);
50435 testcase( nPage==0 );
50436 if( nPage==0 ) sqlite3PagerPagecount(pBt->pPager, &nPage);
50437 testcase( pBt->nPage!=nPage );
50438 pBt->nPage = nPage;
50439 releasePage(pPage1);
50441 assert( countWriteCursors(pBt)==0 );
50442 pBt->inTransaction = TRANS_READ;
50445 btreeEndTransaction(p);
50446 sqlite3BtreeLeave(p);
50447 return rc;
50451 ** Start a statement subtransaction. The subtransaction can can be rolled
50452 ** back independently of the main transaction. You must start a transaction
50453 ** before starting a subtransaction. The subtransaction is ended automatically
50454 ** if the main transaction commits or rolls back.
50456 ** Statement subtransactions are used around individual SQL statements
50457 ** that are contained within a BEGIN...COMMIT block. If a constraint
50458 ** error occurs within the statement, the effect of that one statement
50459 ** can be rolled back without having to rollback the entire transaction.
50461 ** A statement sub-transaction is implemented as an anonymous savepoint. The
50462 ** value passed as the second parameter is the total number of savepoints,
50463 ** including the new anonymous savepoint, open on the B-Tree. i.e. if there
50464 ** are no active savepoints and no other statement-transactions open,
50465 ** iStatement is 1. This anonymous savepoint can be released or rolled back
50466 ** using the sqlite3BtreeSavepoint() function.
50468 SQLITE_PRIVATE int sqlite3BtreeBeginStmt(Btree *p, int iStatement){
50469 int rc;
50470 BtShared *pBt = p->pBt;
50471 sqlite3BtreeEnter(p);
50472 assert( p->inTrans==TRANS_WRITE );
50473 assert( pBt->readOnly==0 );
50474 assert( iStatement>0 );
50475 assert( iStatement>p->db->nSavepoint );
50476 assert( pBt->inTransaction==TRANS_WRITE );
50477 /* At the pager level, a statement transaction is a savepoint with
50478 ** an index greater than all savepoints created explicitly using
50479 ** SQL statements. It is illegal to open, release or rollback any
50480 ** such savepoints while the statement transaction savepoint is active.
50482 rc = sqlite3PagerOpenSavepoint(pBt->pPager, iStatement);
50483 sqlite3BtreeLeave(p);
50484 return rc;
50488 ** The second argument to this function, op, is always SAVEPOINT_ROLLBACK
50489 ** or SAVEPOINT_RELEASE. This function either releases or rolls back the
50490 ** savepoint identified by parameter iSavepoint, depending on the value
50491 ** of op.
50493 ** Normally, iSavepoint is greater than or equal to zero. However, if op is
50494 ** SAVEPOINT_ROLLBACK, then iSavepoint may also be -1. In this case the
50495 ** contents of the entire transaction are rolled back. This is different
50496 ** from a normal transaction rollback, as no locks are released and the
50497 ** transaction remains open.
50499 SQLITE_PRIVATE int sqlite3BtreeSavepoint(Btree *p, int op, int iSavepoint){
50500 int rc = SQLITE_OK;
50501 if( p && p->inTrans==TRANS_WRITE ){
50502 BtShared *pBt = p->pBt;
50503 assert( op==SAVEPOINT_RELEASE || op==SAVEPOINT_ROLLBACK );
50504 assert( iSavepoint>=0 || (iSavepoint==-1 && op==SAVEPOINT_ROLLBACK) );
50505 sqlite3BtreeEnter(p);
50506 rc = sqlite3PagerSavepoint(pBt->pPager, op, iSavepoint);
50507 if( rc==SQLITE_OK ){
50508 if( iSavepoint<0 && pBt->initiallyEmpty ) pBt->nPage = 0;
50509 rc = newDatabase(pBt);
50510 pBt->nPage = get4byte(28 + pBt->pPage1->aData);
50512 /* The database size was written into the offset 28 of the header
50513 ** when the transaction started, so we know that the value at offset
50514 ** 28 is nonzero. */
50515 assert( pBt->nPage>0 );
50517 sqlite3BtreeLeave(p);
50519 return rc;
50523 ** Create a new cursor for the BTree whose root is on the page
50524 ** iTable. If a read-only cursor is requested, it is assumed that
50525 ** the caller already has at least a read-only transaction open
50526 ** on the database already. If a write-cursor is requested, then
50527 ** the caller is assumed to have an open write transaction.
50529 ** If wrFlag==0, then the cursor can only be used for reading.
50530 ** If wrFlag==1, then the cursor can be used for reading or for
50531 ** writing if other conditions for writing are also met. These
50532 ** are the conditions that must be met in order for writing to
50533 ** be allowed:
50535 ** 1: The cursor must have been opened with wrFlag==1
50537 ** 2: Other database connections that share the same pager cache
50538 ** but which are not in the READ_UNCOMMITTED state may not have
50539 ** cursors open with wrFlag==0 on the same table. Otherwise
50540 ** the changes made by this write cursor would be visible to
50541 ** the read cursors in the other database connection.
50543 ** 3: The database must be writable (not on read-only media)
50545 ** 4: There must be an active transaction.
50547 ** No checking is done to make sure that page iTable really is the
50548 ** root page of a b-tree. If it is not, then the cursor acquired
50549 ** will not work correctly.
50551 ** It is assumed that the sqlite3BtreeCursorZero() has been called
50552 ** on pCur to initialize the memory space prior to invoking this routine.
50554 static int btreeCursor(
50555 Btree *p, /* The btree */
50556 int iTable, /* Root page of table to open */
50557 int wrFlag, /* 1 to write. 0 read-only */
50558 struct KeyInfo *pKeyInfo, /* First arg to comparison function */
50559 BtCursor *pCur /* Space for new cursor */
50561 BtShared *pBt = p->pBt; /* Shared b-tree handle */
50563 assert( sqlite3BtreeHoldsMutex(p) );
50564 assert( wrFlag==0 || wrFlag==1 );
50566 /* The following assert statements verify that if this is a sharable
50567 ** b-tree database, the connection is holding the required table locks,
50568 ** and that no other connection has any open cursor that conflicts with
50569 ** this lock. */
50570 assert( hasSharedCacheTableLock(p, iTable, pKeyInfo!=0, wrFlag+1) );
50571 assert( wrFlag==0 || !hasReadConflicts(p, iTable) );
50573 /* Assert that the caller has opened the required transaction. */
50574 assert( p->inTrans>TRANS_NONE );
50575 assert( wrFlag==0 || p->inTrans==TRANS_WRITE );
50576 assert( pBt->pPage1 && pBt->pPage1->aData );
50578 if( NEVER(wrFlag && pBt->readOnly) ){
50579 return SQLITE_READONLY;
50581 if( iTable==1 && btreePagecount(pBt)==0 ){
50582 return SQLITE_EMPTY;
50585 /* Now that no other errors can occur, finish filling in the BtCursor
50586 ** variables and link the cursor into the BtShared list. */
50587 pCur->pgnoRoot = (Pgno)iTable;
50588 pCur->iPage = -1;
50589 pCur->pKeyInfo = pKeyInfo;
50590 pCur->pBtree = p;
50591 pCur->pBt = pBt;
50592 pCur->wrFlag = (u8)wrFlag;
50593 pCur->pNext = pBt->pCursor;
50594 if( pCur->pNext ){
50595 pCur->pNext->pPrev = pCur;
50597 pBt->pCursor = pCur;
50598 pCur->eState = CURSOR_INVALID;
50599 pCur->cachedRowid = 0;
50600 return SQLITE_OK;
50602 SQLITE_PRIVATE int sqlite3BtreeCursor(
50603 Btree *p, /* The btree */
50604 int iTable, /* Root page of table to open */
50605 int wrFlag, /* 1 to write. 0 read-only */
50606 struct KeyInfo *pKeyInfo, /* First arg to xCompare() */
50607 BtCursor *pCur /* Write new cursor here */
50609 int rc;
50610 sqlite3BtreeEnter(p);
50611 rc = btreeCursor(p, iTable, wrFlag, pKeyInfo, pCur);
50612 sqlite3BtreeLeave(p);
50613 return rc;
50617 ** Return the size of a BtCursor object in bytes.
50619 ** This interfaces is needed so that users of cursors can preallocate
50620 ** sufficient storage to hold a cursor. The BtCursor object is opaque
50621 ** to users so they cannot do the sizeof() themselves - they must call
50622 ** this routine.
50624 SQLITE_PRIVATE int sqlite3BtreeCursorSize(void){
50625 return ROUND8(sizeof(BtCursor));
50629 ** Initialize memory that will be converted into a BtCursor object.
50631 ** The simple approach here would be to memset() the entire object
50632 ** to zero. But it turns out that the apPage[] and aiIdx[] arrays
50633 ** do not need to be zeroed and they are large, so we can save a lot
50634 ** of run-time by skipping the initialization of those elements.
50636 SQLITE_PRIVATE void sqlite3BtreeCursorZero(BtCursor *p){
50637 memset(p, 0, offsetof(BtCursor, iPage));
50641 ** Set the cached rowid value of every cursor in the same database file
50642 ** as pCur and having the same root page number as pCur. The value is
50643 ** set to iRowid.
50645 ** Only positive rowid values are considered valid for this cache.
50646 ** The cache is initialized to zero, indicating an invalid cache.
50647 ** A btree will work fine with zero or negative rowids. We just cannot
50648 ** cache zero or negative rowids, which means tables that use zero or
50649 ** negative rowids might run a little slower. But in practice, zero
50650 ** or negative rowids are very uncommon so this should not be a problem.
50652 SQLITE_PRIVATE void sqlite3BtreeSetCachedRowid(BtCursor *pCur, sqlite3_int64 iRowid){
50653 BtCursor *p;
50654 for(p=pCur->pBt->pCursor; p; p=p->pNext){
50655 if( p->pgnoRoot==pCur->pgnoRoot ) p->cachedRowid = iRowid;
50657 assert( pCur->cachedRowid==iRowid );
50661 ** Return the cached rowid for the given cursor. A negative or zero
50662 ** return value indicates that the rowid cache is invalid and should be
50663 ** ignored. If the rowid cache has never before been set, then a
50664 ** zero is returned.
50666 SQLITE_PRIVATE sqlite3_int64 sqlite3BtreeGetCachedRowid(BtCursor *pCur){
50667 return pCur->cachedRowid;
50671 ** Close a cursor. The read lock on the database file is released
50672 ** when the last cursor is closed.
50674 SQLITE_PRIVATE int sqlite3BtreeCloseCursor(BtCursor *pCur){
50675 Btree *pBtree = pCur->pBtree;
50676 if( pBtree ){
50677 int i;
50678 BtShared *pBt = pCur->pBt;
50679 sqlite3BtreeEnter(pBtree);
50680 sqlite3BtreeClearCursor(pCur);
50681 if( pCur->pPrev ){
50682 pCur->pPrev->pNext = pCur->pNext;
50683 }else{
50684 pBt->pCursor = pCur->pNext;
50686 if( pCur->pNext ){
50687 pCur->pNext->pPrev = pCur->pPrev;
50689 for(i=0; i<=pCur->iPage; i++){
50690 releasePage(pCur->apPage[i]);
50692 unlockBtreeIfUnused(pBt);
50693 invalidateOverflowCache(pCur);
50694 /* sqlite3_free(pCur); */
50695 sqlite3BtreeLeave(pBtree);
50697 return SQLITE_OK;
50701 ** Make sure the BtCursor* given in the argument has a valid
50702 ** BtCursor.info structure. If it is not already valid, call
50703 ** btreeParseCell() to fill it in.
50705 ** BtCursor.info is a cache of the information in the current cell.
50706 ** Using this cache reduces the number of calls to btreeParseCell().
50708 ** 2007-06-25: There is a bug in some versions of MSVC that cause the
50709 ** compiler to crash when getCellInfo() is implemented as a macro.
50710 ** But there is a measureable speed advantage to using the macro on gcc
50711 ** (when less compiler optimizations like -Os or -O0 are used and the
50712 ** compiler is not doing agressive inlining.) So we use a real function
50713 ** for MSVC and a macro for everything else. Ticket #2457.
50715 #ifndef NDEBUG
50716 static void assertCellInfo(BtCursor *pCur){
50717 CellInfo info;
50718 int iPage = pCur->iPage;
50719 memset(&info, 0, sizeof(info));
50720 btreeParseCell(pCur->apPage[iPage], pCur->aiIdx[iPage], &info);
50721 assert( memcmp(&info, &pCur->info, sizeof(info))==0 );
50723 #else
50724 #define assertCellInfo(x)
50725 #endif
50726 #ifdef _MSC_VER
50727 /* Use a real function in MSVC to work around bugs in that compiler. */
50728 static void getCellInfo(BtCursor *pCur){
50729 if( pCur->info.nSize==0 ){
50730 int iPage = pCur->iPage;
50731 btreeParseCell(pCur->apPage[iPage],pCur->aiIdx[iPage],&pCur->info);
50732 pCur->validNKey = 1;
50733 }else{
50734 assertCellInfo(pCur);
50737 #else /* if not _MSC_VER */
50738 /* Use a macro in all other compilers so that the function is inlined */
50739 #define getCellInfo(pCur) \
50740 if( pCur->info.nSize==0 ){ \
50741 int iPage = pCur->iPage; \
50742 btreeParseCell(pCur->apPage[iPage],pCur->aiIdx[iPage],&pCur->info); \
50743 pCur->validNKey = 1; \
50744 }else{ \
50745 assertCellInfo(pCur); \
50747 #endif /* _MSC_VER */
50749 #ifndef NDEBUG /* The next routine used only within assert() statements */
50751 ** Return true if the given BtCursor is valid. A valid cursor is one
50752 ** that is currently pointing to a row in a (non-empty) table.
50753 ** This is a verification routine is used only within assert() statements.
50755 SQLITE_PRIVATE int sqlite3BtreeCursorIsValid(BtCursor *pCur){
50756 return pCur && pCur->eState==CURSOR_VALID;
50758 #endif /* NDEBUG */
50761 ** Set *pSize to the size of the buffer needed to hold the value of
50762 ** the key for the current entry. If the cursor is not pointing
50763 ** to a valid entry, *pSize is set to 0.
50765 ** For a table with the INTKEY flag set, this routine returns the key
50766 ** itself, not the number of bytes in the key.
50768 ** The caller must position the cursor prior to invoking this routine.
50770 ** This routine cannot fail. It always returns SQLITE_OK.
50772 SQLITE_PRIVATE int sqlite3BtreeKeySize(BtCursor *pCur, i64 *pSize){
50773 assert( cursorHoldsMutex(pCur) );
50774 assert( pCur->eState==CURSOR_INVALID || pCur->eState==CURSOR_VALID );
50775 if( pCur->eState!=CURSOR_VALID ){
50776 *pSize = 0;
50777 }else{
50778 getCellInfo(pCur);
50779 *pSize = pCur->info.nKey;
50781 return SQLITE_OK;
50785 ** Set *pSize to the number of bytes of data in the entry the
50786 ** cursor currently points to.
50788 ** The caller must guarantee that the cursor is pointing to a non-NULL
50789 ** valid entry. In other words, the calling procedure must guarantee
50790 ** that the cursor has Cursor.eState==CURSOR_VALID.
50792 ** Failure is not possible. This function always returns SQLITE_OK.
50793 ** It might just as well be a procedure (returning void) but we continue
50794 ** to return an integer result code for historical reasons.
50796 SQLITE_PRIVATE int sqlite3BtreeDataSize(BtCursor *pCur, u32 *pSize){
50797 assert( cursorHoldsMutex(pCur) );
50798 assert( pCur->eState==CURSOR_VALID );
50799 getCellInfo(pCur);
50800 *pSize = pCur->info.nData;
50801 return SQLITE_OK;
50805 ** Given the page number of an overflow page in the database (parameter
50806 ** ovfl), this function finds the page number of the next page in the
50807 ** linked list of overflow pages. If possible, it uses the auto-vacuum
50808 ** pointer-map data instead of reading the content of page ovfl to do so.
50810 ** If an error occurs an SQLite error code is returned. Otherwise:
50812 ** The page number of the next overflow page in the linked list is
50813 ** written to *pPgnoNext. If page ovfl is the last page in its linked
50814 ** list, *pPgnoNext is set to zero.
50816 ** If ppPage is not NULL, and a reference to the MemPage object corresponding
50817 ** to page number pOvfl was obtained, then *ppPage is set to point to that
50818 ** reference. It is the responsibility of the caller to call releasePage()
50819 ** on *ppPage to free the reference. In no reference was obtained (because
50820 ** the pointer-map was used to obtain the value for *pPgnoNext), then
50821 ** *ppPage is set to zero.
50823 static int getOverflowPage(
50824 BtShared *pBt, /* The database file */
50825 Pgno ovfl, /* Current overflow page number */
50826 MemPage **ppPage, /* OUT: MemPage handle (may be NULL) */
50827 Pgno *pPgnoNext /* OUT: Next overflow page number */
50829 Pgno next = 0;
50830 MemPage *pPage = 0;
50831 int rc = SQLITE_OK;
50833 assert( sqlite3_mutex_held(pBt->mutex) );
50834 assert(pPgnoNext);
50836 #ifndef SQLITE_OMIT_AUTOVACUUM
50837 /* Try to find the next page in the overflow list using the
50838 ** autovacuum pointer-map pages. Guess that the next page in
50839 ** the overflow list is page number (ovfl+1). If that guess turns
50840 ** out to be wrong, fall back to loading the data of page
50841 ** number ovfl to determine the next page number.
50843 if( pBt->autoVacuum ){
50844 Pgno pgno;
50845 Pgno iGuess = ovfl+1;
50846 u8 eType;
50848 while( PTRMAP_ISPAGE(pBt, iGuess) || iGuess==PENDING_BYTE_PAGE(pBt) ){
50849 iGuess++;
50852 if( iGuess<=btreePagecount(pBt) ){
50853 rc = ptrmapGet(pBt, iGuess, &eType, &pgno);
50854 if( rc==SQLITE_OK && eType==PTRMAP_OVERFLOW2 && pgno==ovfl ){
50855 next = iGuess;
50856 rc = SQLITE_DONE;
50860 #endif
50862 assert( next==0 || rc==SQLITE_DONE );
50863 if( rc==SQLITE_OK ){
50864 rc = btreeGetPage(pBt, ovfl, &pPage, 0);
50865 assert( rc==SQLITE_OK || pPage==0 );
50866 if( rc==SQLITE_OK ){
50867 next = get4byte(pPage->aData);
50871 *pPgnoNext = next;
50872 if( ppPage ){
50873 *ppPage = pPage;
50874 }else{
50875 releasePage(pPage);
50877 return (rc==SQLITE_DONE ? SQLITE_OK : rc);
50881 ** Copy data from a buffer to a page, or from a page to a buffer.
50883 ** pPayload is a pointer to data stored on database page pDbPage.
50884 ** If argument eOp is false, then nByte bytes of data are copied
50885 ** from pPayload to the buffer pointed at by pBuf. If eOp is true,
50886 ** then sqlite3PagerWrite() is called on pDbPage and nByte bytes
50887 ** of data are copied from the buffer pBuf to pPayload.
50889 ** SQLITE_OK is returned on success, otherwise an error code.
50891 static int copyPayload(
50892 void *pPayload, /* Pointer to page data */
50893 void *pBuf, /* Pointer to buffer */
50894 int nByte, /* Number of bytes to copy */
50895 int eOp, /* 0 -> copy from page, 1 -> copy to page */
50896 DbPage *pDbPage /* Page containing pPayload */
50898 if( eOp ){
50899 /* Copy data from buffer to page (a write operation) */
50900 int rc = sqlite3PagerWrite(pDbPage);
50901 if( rc!=SQLITE_OK ){
50902 return rc;
50904 memcpy(pPayload, pBuf, nByte);
50905 }else{
50906 /* Copy data from page to buffer (a read operation) */
50907 memcpy(pBuf, pPayload, nByte);
50909 return SQLITE_OK;
50913 ** This function is used to read or overwrite payload information
50914 ** for the entry that the pCur cursor is pointing to. If the eOp
50915 ** parameter is 0, this is a read operation (data copied into
50916 ** buffer pBuf). If it is non-zero, a write (data copied from
50917 ** buffer pBuf).
50919 ** A total of "amt" bytes are read or written beginning at "offset".
50920 ** Data is read to or from the buffer pBuf.
50922 ** The content being read or written might appear on the main page
50923 ** or be scattered out on multiple overflow pages.
50925 ** If the BtCursor.isIncrblobHandle flag is set, and the current
50926 ** cursor entry uses one or more overflow pages, this function
50927 ** allocates space for and lazily popluates the overflow page-list
50928 ** cache array (BtCursor.aOverflow). Subsequent calls use this
50929 ** cache to make seeking to the supplied offset more efficient.
50931 ** Once an overflow page-list cache has been allocated, it may be
50932 ** invalidated if some other cursor writes to the same table, or if
50933 ** the cursor is moved to a different row. Additionally, in auto-vacuum
50934 ** mode, the following events may invalidate an overflow page-list cache.
50936 ** * An incremental vacuum,
50937 ** * A commit in auto_vacuum="full" mode,
50938 ** * Creating a table (may require moving an overflow page).
50940 static int accessPayload(
50941 BtCursor *pCur, /* Cursor pointing to entry to read from */
50942 u32 offset, /* Begin reading this far into payload */
50943 u32 amt, /* Read this many bytes */
50944 unsigned char *pBuf, /* Write the bytes into this buffer */
50945 int eOp /* zero to read. non-zero to write. */
50947 unsigned char *aPayload;
50948 int rc = SQLITE_OK;
50949 u32 nKey;
50950 int iIdx = 0;
50951 MemPage *pPage = pCur->apPage[pCur->iPage]; /* Btree page of current entry */
50952 BtShared *pBt = pCur->pBt; /* Btree this cursor belongs to */
50954 assert( pPage );
50955 assert( pCur->eState==CURSOR_VALID );
50956 assert( pCur->aiIdx[pCur->iPage]<pPage->nCell );
50957 assert( cursorHoldsMutex(pCur) );
50959 getCellInfo(pCur);
50960 aPayload = pCur->info.pCell + pCur->info.nHeader;
50961 nKey = (pPage->intKey ? 0 : (int)pCur->info.nKey);
50963 if( NEVER(offset+amt > nKey+pCur->info.nData)
50964 || &aPayload[pCur->info.nLocal] > &pPage->aData[pBt->usableSize]
50966 /* Trying to read or write past the end of the data is an error */
50967 return SQLITE_CORRUPT_BKPT;
50970 /* Check if data must be read/written to/from the btree page itself. */
50971 if( offset<pCur->info.nLocal ){
50972 int a = amt;
50973 if( a+offset>pCur->info.nLocal ){
50974 a = pCur->info.nLocal - offset;
50976 rc = copyPayload(&aPayload[offset], pBuf, a, eOp, pPage->pDbPage);
50977 offset = 0;
50978 pBuf += a;
50979 amt -= a;
50980 }else{
50981 offset -= pCur->info.nLocal;
50984 if( rc==SQLITE_OK && amt>0 ){
50985 const u32 ovflSize = pBt->usableSize - 4; /* Bytes content per ovfl page */
50986 Pgno nextPage;
50988 nextPage = get4byte(&aPayload[pCur->info.nLocal]);
50990 #ifndef SQLITE_OMIT_INCRBLOB
50991 /* If the isIncrblobHandle flag is set and the BtCursor.aOverflow[]
50992 ** has not been allocated, allocate it now. The array is sized at
50993 ** one entry for each overflow page in the overflow chain. The
50994 ** page number of the first overflow page is stored in aOverflow[0],
50995 ** etc. A value of 0 in the aOverflow[] array means "not yet known"
50996 ** (the cache is lazily populated).
50998 if( pCur->isIncrblobHandle && !pCur->aOverflow ){
50999 int nOvfl = (pCur->info.nPayload-pCur->info.nLocal+ovflSize-1)/ovflSize;
51000 pCur->aOverflow = (Pgno *)sqlite3MallocZero(sizeof(Pgno)*nOvfl);
51001 /* nOvfl is always positive. If it were zero, fetchPayload would have
51002 ** been used instead of this routine. */
51003 if( ALWAYS(nOvfl) && !pCur->aOverflow ){
51004 rc = SQLITE_NOMEM;
51008 /* If the overflow page-list cache has been allocated and the
51009 ** entry for the first required overflow page is valid, skip
51010 ** directly to it.
51012 if( pCur->aOverflow && pCur->aOverflow[offset/ovflSize] ){
51013 iIdx = (offset/ovflSize);
51014 nextPage = pCur->aOverflow[iIdx];
51015 offset = (offset%ovflSize);
51017 #endif
51019 for( ; rc==SQLITE_OK && amt>0 && nextPage; iIdx++){
51021 #ifndef SQLITE_OMIT_INCRBLOB
51022 /* If required, populate the overflow page-list cache. */
51023 if( pCur->aOverflow ){
51024 assert(!pCur->aOverflow[iIdx] || pCur->aOverflow[iIdx]==nextPage);
51025 pCur->aOverflow[iIdx] = nextPage;
51027 #endif
51029 if( offset>=ovflSize ){
51030 /* The only reason to read this page is to obtain the page
51031 ** number for the next page in the overflow chain. The page
51032 ** data is not required. So first try to lookup the overflow
51033 ** page-list cache, if any, then fall back to the getOverflowPage()
51034 ** function.
51036 #ifndef SQLITE_OMIT_INCRBLOB
51037 if( pCur->aOverflow && pCur->aOverflow[iIdx+1] ){
51038 nextPage = pCur->aOverflow[iIdx+1];
51039 } else
51040 #endif
51041 rc = getOverflowPage(pBt, nextPage, 0, &nextPage);
51042 offset -= ovflSize;
51043 }else{
51044 /* Need to read this page properly. It contains some of the
51045 ** range of data that is being read (eOp==0) or written (eOp!=0).
51047 DbPage *pDbPage;
51048 int a = amt;
51049 rc = sqlite3PagerGet(pBt->pPager, nextPage, &pDbPage);
51050 if( rc==SQLITE_OK ){
51051 aPayload = sqlite3PagerGetData(pDbPage);
51052 nextPage = get4byte(aPayload);
51053 if( a + offset > ovflSize ){
51054 a = ovflSize - offset;
51056 rc = copyPayload(&aPayload[offset+4], pBuf, a, eOp, pDbPage);
51057 sqlite3PagerUnref(pDbPage);
51058 offset = 0;
51059 amt -= a;
51060 pBuf += a;
51066 if( rc==SQLITE_OK && amt>0 ){
51067 return SQLITE_CORRUPT_BKPT;
51069 return rc;
51073 ** Read part of the key associated with cursor pCur. Exactly
51074 ** "amt" bytes will be transfered into pBuf[]. The transfer
51075 ** begins at "offset".
51077 ** The caller must ensure that pCur is pointing to a valid row
51078 ** in the table.
51080 ** Return SQLITE_OK on success or an error code if anything goes
51081 ** wrong. An error is returned if "offset+amt" is larger than
51082 ** the available payload.
51084 SQLITE_PRIVATE int sqlite3BtreeKey(BtCursor *pCur, u32 offset, u32 amt, void *pBuf){
51085 assert( cursorHoldsMutex(pCur) );
51086 assert( pCur->eState==CURSOR_VALID );
51087 assert( pCur->iPage>=0 && pCur->apPage[pCur->iPage] );
51088 assert( pCur->aiIdx[pCur->iPage]<pCur->apPage[pCur->iPage]->nCell );
51089 return accessPayload(pCur, offset, amt, (unsigned char*)pBuf, 0);
51093 ** Read part of the data associated with cursor pCur. Exactly
51094 ** "amt" bytes will be transfered into pBuf[]. The transfer
51095 ** begins at "offset".
51097 ** Return SQLITE_OK on success or an error code if anything goes
51098 ** wrong. An error is returned if "offset+amt" is larger than
51099 ** the available payload.
51101 SQLITE_PRIVATE int sqlite3BtreeData(BtCursor *pCur, u32 offset, u32 amt, void *pBuf){
51102 int rc;
51104 #ifndef SQLITE_OMIT_INCRBLOB
51105 if ( pCur->eState==CURSOR_INVALID ){
51106 return SQLITE_ABORT;
51108 #endif
51110 assert( cursorHoldsMutex(pCur) );
51111 rc = restoreCursorPosition(pCur);
51112 if( rc==SQLITE_OK ){
51113 assert( pCur->eState==CURSOR_VALID );
51114 assert( pCur->iPage>=0 && pCur->apPage[pCur->iPage] );
51115 assert( pCur->aiIdx[pCur->iPage]<pCur->apPage[pCur->iPage]->nCell );
51116 rc = accessPayload(pCur, offset, amt, pBuf, 0);
51118 return rc;
51122 ** Return a pointer to payload information from the entry that the
51123 ** pCur cursor is pointing to. The pointer is to the beginning of
51124 ** the key if skipKey==0 and it points to the beginning of data if
51125 ** skipKey==1. The number of bytes of available key/data is written
51126 ** into *pAmt. If *pAmt==0, then the value returned will not be
51127 ** a valid pointer.
51129 ** This routine is an optimization. It is common for the entire key
51130 ** and data to fit on the local page and for there to be no overflow
51131 ** pages. When that is so, this routine can be used to access the
51132 ** key and data without making a copy. If the key and/or data spills
51133 ** onto overflow pages, then accessPayload() must be used to reassemble
51134 ** the key/data and copy it into a preallocated buffer.
51136 ** The pointer returned by this routine looks directly into the cached
51137 ** page of the database. The data might change or move the next time
51138 ** any btree routine is called.
51140 static const unsigned char *fetchPayload(
51141 BtCursor *pCur, /* Cursor pointing to entry to read from */
51142 int *pAmt, /* Write the number of available bytes here */
51143 int skipKey /* read beginning at data if this is true */
51145 unsigned char *aPayload;
51146 MemPage *pPage;
51147 u32 nKey;
51148 u32 nLocal;
51150 assert( pCur!=0 && pCur->iPage>=0 && pCur->apPage[pCur->iPage]);
51151 assert( pCur->eState==CURSOR_VALID );
51152 assert( cursorHoldsMutex(pCur) );
51153 pPage = pCur->apPage[pCur->iPage];
51154 assert( pCur->aiIdx[pCur->iPage]<pPage->nCell );
51155 if( NEVER(pCur->info.nSize==0) ){
51156 btreeParseCell(pCur->apPage[pCur->iPage], pCur->aiIdx[pCur->iPage],
51157 &pCur->info);
51159 aPayload = pCur->info.pCell;
51160 aPayload += pCur->info.nHeader;
51161 if( pPage->intKey ){
51162 nKey = 0;
51163 }else{
51164 nKey = (int)pCur->info.nKey;
51166 if( skipKey ){
51167 aPayload += nKey;
51168 nLocal = pCur->info.nLocal - nKey;
51169 }else{
51170 nLocal = pCur->info.nLocal;
51171 assert( nLocal<=nKey );
51173 *pAmt = nLocal;
51174 return aPayload;
51179 ** For the entry that cursor pCur is point to, return as
51180 ** many bytes of the key or data as are available on the local
51181 ** b-tree page. Write the number of available bytes into *pAmt.
51183 ** The pointer returned is ephemeral. The key/data may move
51184 ** or be destroyed on the next call to any Btree routine,
51185 ** including calls from other threads against the same cache.
51186 ** Hence, a mutex on the BtShared should be held prior to calling
51187 ** this routine.
51189 ** These routines is used to get quick access to key and data
51190 ** in the common case where no overflow pages are used.
51192 SQLITE_PRIVATE const void *sqlite3BtreeKeyFetch(BtCursor *pCur, int *pAmt){
51193 const void *p = 0;
51194 assert( sqlite3_mutex_held(pCur->pBtree->db->mutex) );
51195 assert( cursorHoldsMutex(pCur) );
51196 if( ALWAYS(pCur->eState==CURSOR_VALID) ){
51197 p = (const void*)fetchPayload(pCur, pAmt, 0);
51199 return p;
51201 SQLITE_PRIVATE const void *sqlite3BtreeDataFetch(BtCursor *pCur, int *pAmt){
51202 const void *p = 0;
51203 assert( sqlite3_mutex_held(pCur->pBtree->db->mutex) );
51204 assert( cursorHoldsMutex(pCur) );
51205 if( ALWAYS(pCur->eState==CURSOR_VALID) ){
51206 p = (const void*)fetchPayload(pCur, pAmt, 1);
51208 return p;
51213 ** Move the cursor down to a new child page. The newPgno argument is the
51214 ** page number of the child page to move to.
51216 ** This function returns SQLITE_CORRUPT if the page-header flags field of
51217 ** the new child page does not match the flags field of the parent (i.e.
51218 ** if an intkey page appears to be the parent of a non-intkey page, or
51219 ** vice-versa).
51221 static int moveToChild(BtCursor *pCur, u32 newPgno){
51222 int rc;
51223 int i = pCur->iPage;
51224 MemPage *pNewPage;
51225 BtShared *pBt = pCur->pBt;
51227 assert( cursorHoldsMutex(pCur) );
51228 assert( pCur->eState==CURSOR_VALID );
51229 assert( pCur->iPage<BTCURSOR_MAX_DEPTH );
51230 if( pCur->iPage>=(BTCURSOR_MAX_DEPTH-1) ){
51231 return SQLITE_CORRUPT_BKPT;
51233 rc = getAndInitPage(pBt, newPgno, &pNewPage);
51234 if( rc ) return rc;
51235 pCur->apPage[i+1] = pNewPage;
51236 pCur->aiIdx[i+1] = 0;
51237 pCur->iPage++;
51239 pCur->info.nSize = 0;
51240 pCur->validNKey = 0;
51241 if( pNewPage->nCell<1 || pNewPage->intKey!=pCur->apPage[i]->intKey ){
51242 return SQLITE_CORRUPT_BKPT;
51244 return SQLITE_OK;
51247 #ifndef NDEBUG
51249 ** Page pParent is an internal (non-leaf) tree page. This function
51250 ** asserts that page number iChild is the left-child if the iIdx'th
51251 ** cell in page pParent. Or, if iIdx is equal to the total number of
51252 ** cells in pParent, that page number iChild is the right-child of
51253 ** the page.
51255 static void assertParentIndex(MemPage *pParent, int iIdx, Pgno iChild){
51256 assert( iIdx<=pParent->nCell );
51257 if( iIdx==pParent->nCell ){
51258 assert( get4byte(&pParent->aData[pParent->hdrOffset+8])==iChild );
51259 }else{
51260 assert( get4byte(findCell(pParent, iIdx))==iChild );
51263 #else
51264 # define assertParentIndex(x,y,z)
51265 #endif
51268 ** Move the cursor up to the parent page.
51270 ** pCur->idx is set to the cell index that contains the pointer
51271 ** to the page we are coming from. If we are coming from the
51272 ** right-most child page then pCur->idx is set to one more than
51273 ** the largest cell index.
51275 static void moveToParent(BtCursor *pCur){
51276 assert( cursorHoldsMutex(pCur) );
51277 assert( pCur->eState==CURSOR_VALID );
51278 assert( pCur->iPage>0 );
51279 assert( pCur->apPage[pCur->iPage] );
51280 assertParentIndex(
51281 pCur->apPage[pCur->iPage-1],
51282 pCur->aiIdx[pCur->iPage-1],
51283 pCur->apPage[pCur->iPage]->pgno
51285 releasePage(pCur->apPage[pCur->iPage]);
51286 pCur->iPage--;
51287 pCur->info.nSize = 0;
51288 pCur->validNKey = 0;
51292 ** Move the cursor to point to the root page of its b-tree structure.
51294 ** If the table has a virtual root page, then the cursor is moved to point
51295 ** to the virtual root page instead of the actual root page. A table has a
51296 ** virtual root page when the actual root page contains no cells and a
51297 ** single child page. This can only happen with the table rooted at page 1.
51299 ** If the b-tree structure is empty, the cursor state is set to
51300 ** CURSOR_INVALID. Otherwise, the cursor is set to point to the first
51301 ** cell located on the root (or virtual root) page and the cursor state
51302 ** is set to CURSOR_VALID.
51304 ** If this function returns successfully, it may be assumed that the
51305 ** page-header flags indicate that the [virtual] root-page is the expected
51306 ** kind of b-tree page (i.e. if when opening the cursor the caller did not
51307 ** specify a KeyInfo structure the flags byte is set to 0x05 or 0x0D,
51308 ** indicating a table b-tree, or if the caller did specify a KeyInfo
51309 ** structure the flags byte is set to 0x02 or 0x0A, indicating an index
51310 ** b-tree).
51312 static int moveToRoot(BtCursor *pCur){
51313 MemPage *pRoot;
51314 int rc = SQLITE_OK;
51315 Btree *p = pCur->pBtree;
51316 BtShared *pBt = p->pBt;
51318 assert( cursorHoldsMutex(pCur) );
51319 assert( CURSOR_INVALID < CURSOR_REQUIRESEEK );
51320 assert( CURSOR_VALID < CURSOR_REQUIRESEEK );
51321 assert( CURSOR_FAULT > CURSOR_REQUIRESEEK );
51322 if( pCur->eState>=CURSOR_REQUIRESEEK ){
51323 if( pCur->eState==CURSOR_FAULT ){
51324 assert( pCur->skipNext!=SQLITE_OK );
51325 return pCur->skipNext;
51327 sqlite3BtreeClearCursor(pCur);
51330 if( pCur->iPage>=0 ){
51331 int i;
51332 for(i=1; i<=pCur->iPage; i++){
51333 releasePage(pCur->apPage[i]);
51335 pCur->iPage = 0;
51336 }else{
51337 rc = getAndInitPage(pBt, pCur->pgnoRoot, &pCur->apPage[0]);
51338 if( rc!=SQLITE_OK ){
51339 pCur->eState = CURSOR_INVALID;
51340 return rc;
51342 pCur->iPage = 0;
51344 /* If pCur->pKeyInfo is not NULL, then the caller that opened this cursor
51345 ** expected to open it on an index b-tree. Otherwise, if pKeyInfo is
51346 ** NULL, the caller expects a table b-tree. If this is not the case,
51347 ** return an SQLITE_CORRUPT error. */
51348 assert( pCur->apPage[0]->intKey==1 || pCur->apPage[0]->intKey==0 );
51349 if( (pCur->pKeyInfo==0)!=pCur->apPage[0]->intKey ){
51350 return SQLITE_CORRUPT_BKPT;
51354 /* Assert that the root page is of the correct type. This must be the
51355 ** case as the call to this function that loaded the root-page (either
51356 ** this call or a previous invocation) would have detected corruption
51357 ** if the assumption were not true, and it is not possible for the flags
51358 ** byte to have been modified while this cursor is holding a reference
51359 ** to the page. */
51360 pRoot = pCur->apPage[0];
51361 assert( pRoot->pgno==pCur->pgnoRoot );
51362 assert( pRoot->isInit && (pCur->pKeyInfo==0)==pRoot->intKey );
51364 pCur->aiIdx[0] = 0;
51365 pCur->info.nSize = 0;
51366 pCur->atLast = 0;
51367 pCur->validNKey = 0;
51369 if( pRoot->nCell==0 && !pRoot->leaf ){
51370 Pgno subpage;
51371 if( pRoot->pgno!=1 ) return SQLITE_CORRUPT_BKPT;
51372 subpage = get4byte(&pRoot->aData[pRoot->hdrOffset+8]);
51373 pCur->eState = CURSOR_VALID;
51374 rc = moveToChild(pCur, subpage);
51375 }else{
51376 pCur->eState = ((pRoot->nCell>0)?CURSOR_VALID:CURSOR_INVALID);
51378 return rc;
51382 ** Move the cursor down to the left-most leaf entry beneath the
51383 ** entry to which it is currently pointing.
51385 ** The left-most leaf is the one with the smallest key - the first
51386 ** in ascending order.
51388 static int moveToLeftmost(BtCursor *pCur){
51389 Pgno pgno;
51390 int rc = SQLITE_OK;
51391 MemPage *pPage;
51393 assert( cursorHoldsMutex(pCur) );
51394 assert( pCur->eState==CURSOR_VALID );
51395 while( rc==SQLITE_OK && !(pPage = pCur->apPage[pCur->iPage])->leaf ){
51396 assert( pCur->aiIdx[pCur->iPage]<pPage->nCell );
51397 pgno = get4byte(findCell(pPage, pCur->aiIdx[pCur->iPage]));
51398 rc = moveToChild(pCur, pgno);
51400 return rc;
51404 ** Move the cursor down to the right-most leaf entry beneath the
51405 ** page to which it is currently pointing. Notice the difference
51406 ** between moveToLeftmost() and moveToRightmost(). moveToLeftmost()
51407 ** finds the left-most entry beneath the *entry* whereas moveToRightmost()
51408 ** finds the right-most entry beneath the *page*.
51410 ** The right-most entry is the one with the largest key - the last
51411 ** key in ascending order.
51413 static int moveToRightmost(BtCursor *pCur){
51414 Pgno pgno;
51415 int rc = SQLITE_OK;
51416 MemPage *pPage = 0;
51418 assert( cursorHoldsMutex(pCur) );
51419 assert( pCur->eState==CURSOR_VALID );
51420 while( rc==SQLITE_OK && !(pPage = pCur->apPage[pCur->iPage])->leaf ){
51421 pgno = get4byte(&pPage->aData[pPage->hdrOffset+8]);
51422 pCur->aiIdx[pCur->iPage] = pPage->nCell;
51423 rc = moveToChild(pCur, pgno);
51425 if( rc==SQLITE_OK ){
51426 pCur->aiIdx[pCur->iPage] = pPage->nCell-1;
51427 pCur->info.nSize = 0;
51428 pCur->validNKey = 0;
51430 return rc;
51433 /* Move the cursor to the first entry in the table. Return SQLITE_OK
51434 ** on success. Set *pRes to 0 if the cursor actually points to something
51435 ** or set *pRes to 1 if the table is empty.
51437 SQLITE_PRIVATE int sqlite3BtreeFirst(BtCursor *pCur, int *pRes){
51438 int rc;
51440 assert( cursorHoldsMutex(pCur) );
51441 assert( sqlite3_mutex_held(pCur->pBtree->db->mutex) );
51442 rc = moveToRoot(pCur);
51443 if( rc==SQLITE_OK ){
51444 if( pCur->eState==CURSOR_INVALID ){
51445 assert( pCur->apPage[pCur->iPage]->nCell==0 );
51446 *pRes = 1;
51447 }else{
51448 assert( pCur->apPage[pCur->iPage]->nCell>0 );
51449 *pRes = 0;
51450 rc = moveToLeftmost(pCur);
51453 return rc;
51456 /* Move the cursor to the last entry in the table. Return SQLITE_OK
51457 ** on success. Set *pRes to 0 if the cursor actually points to something
51458 ** or set *pRes to 1 if the table is empty.
51460 SQLITE_PRIVATE int sqlite3BtreeLast(BtCursor *pCur, int *pRes){
51461 int rc;
51463 assert( cursorHoldsMutex(pCur) );
51464 assert( sqlite3_mutex_held(pCur->pBtree->db->mutex) );
51466 /* If the cursor already points to the last entry, this is a no-op. */
51467 if( CURSOR_VALID==pCur->eState && pCur->atLast ){
51468 #ifdef SQLITE_DEBUG
51469 /* This block serves to assert() that the cursor really does point
51470 ** to the last entry in the b-tree. */
51471 int ii;
51472 for(ii=0; ii<pCur->iPage; ii++){
51473 assert( pCur->aiIdx[ii]==pCur->apPage[ii]->nCell );
51475 assert( pCur->aiIdx[pCur->iPage]==pCur->apPage[pCur->iPage]->nCell-1 );
51476 assert( pCur->apPage[pCur->iPage]->leaf );
51477 #endif
51478 return SQLITE_OK;
51481 rc = moveToRoot(pCur);
51482 if( rc==SQLITE_OK ){
51483 if( CURSOR_INVALID==pCur->eState ){
51484 assert( pCur->apPage[pCur->iPage]->nCell==0 );
51485 *pRes = 1;
51486 }else{
51487 assert( pCur->eState==CURSOR_VALID );
51488 *pRes = 0;
51489 rc = moveToRightmost(pCur);
51490 pCur->atLast = rc==SQLITE_OK ?1:0;
51493 return rc;
51496 /* Move the cursor so that it points to an entry near the key
51497 ** specified by pIdxKey or intKey. Return a success code.
51499 ** For INTKEY tables, the intKey parameter is used. pIdxKey
51500 ** must be NULL. For index tables, pIdxKey is used and intKey
51501 ** is ignored.
51503 ** If an exact match is not found, then the cursor is always
51504 ** left pointing at a leaf page which would hold the entry if it
51505 ** were present. The cursor might point to an entry that comes
51506 ** before or after the key.
51508 ** An integer is written into *pRes which is the result of
51509 ** comparing the key with the entry to which the cursor is
51510 ** pointing. The meaning of the integer written into
51511 ** *pRes is as follows:
51513 ** *pRes<0 The cursor is left pointing at an entry that
51514 ** is smaller than intKey/pIdxKey or if the table is empty
51515 ** and the cursor is therefore left point to nothing.
51517 ** *pRes==0 The cursor is left pointing at an entry that
51518 ** exactly matches intKey/pIdxKey.
51520 ** *pRes>0 The cursor is left pointing at an entry that
51521 ** is larger than intKey/pIdxKey.
51524 SQLITE_PRIVATE int sqlite3BtreeMovetoUnpacked(
51525 BtCursor *pCur, /* The cursor to be moved */
51526 UnpackedRecord *pIdxKey, /* Unpacked index key */
51527 i64 intKey, /* The table key */
51528 int biasRight, /* If true, bias the search to the high end */
51529 int *pRes /* Write search results here */
51531 int rc;
51533 assert( cursorHoldsMutex(pCur) );
51534 assert( sqlite3_mutex_held(pCur->pBtree->db->mutex) );
51535 assert( pRes );
51536 assert( (pIdxKey==0)==(pCur->pKeyInfo==0) );
51538 /* If the cursor is already positioned at the point we are trying
51539 ** to move to, then just return without doing any work */
51540 if( pCur->eState==CURSOR_VALID && pCur->validNKey
51541 && pCur->apPage[0]->intKey
51543 if( pCur->info.nKey==intKey ){
51544 *pRes = 0;
51545 return SQLITE_OK;
51547 if( pCur->atLast && pCur->info.nKey<intKey ){
51548 *pRes = -1;
51549 return SQLITE_OK;
51553 rc = moveToRoot(pCur);
51554 if( rc ){
51555 return rc;
51557 assert( pCur->apPage[pCur->iPage] );
51558 assert( pCur->apPage[pCur->iPage]->isInit );
51559 assert( pCur->apPage[pCur->iPage]->nCell>0 || pCur->eState==CURSOR_INVALID );
51560 if( pCur->eState==CURSOR_INVALID ){
51561 *pRes = -1;
51562 assert( pCur->apPage[pCur->iPage]->nCell==0 );
51563 return SQLITE_OK;
51565 assert( pCur->apPage[0]->intKey || pIdxKey );
51566 for(;;){
51567 int lwr, upr;
51568 Pgno chldPg;
51569 MemPage *pPage = pCur->apPage[pCur->iPage];
51570 int c;
51572 /* pPage->nCell must be greater than zero. If this is the root-page
51573 ** the cursor would have been INVALID above and this for(;;) loop
51574 ** not run. If this is not the root-page, then the moveToChild() routine
51575 ** would have already detected db corruption. Similarly, pPage must
51576 ** be the right kind (index or table) of b-tree page. Otherwise
51577 ** a moveToChild() or moveToRoot() call would have detected corruption. */
51578 assert( pPage->nCell>0 );
51579 assert( pPage->intKey==(pIdxKey==0) );
51580 lwr = 0;
51581 upr = pPage->nCell-1;
51582 if( biasRight ){
51583 pCur->aiIdx[pCur->iPage] = (u16)upr;
51584 }else{
51585 pCur->aiIdx[pCur->iPage] = (u16)((upr+lwr)/2);
51587 for(;;){
51588 int idx = pCur->aiIdx[pCur->iPage]; /* Index of current cell in pPage */
51589 u8 *pCell; /* Pointer to current cell in pPage */
51591 pCur->info.nSize = 0;
51592 pCell = findCell(pPage, idx) + pPage->childPtrSize;
51593 if( pPage->intKey ){
51594 i64 nCellKey;
51595 if( pPage->hasData ){
51596 u32 dummy;
51597 pCell += getVarint32(pCell, dummy);
51599 getVarint(pCell, (u64*)&nCellKey);
51600 if( nCellKey==intKey ){
51601 c = 0;
51602 }else if( nCellKey<intKey ){
51603 c = -1;
51604 }else{
51605 assert( nCellKey>intKey );
51606 c = +1;
51608 pCur->validNKey = 1;
51609 pCur->info.nKey = nCellKey;
51610 }else{
51611 /* The maximum supported page-size is 65536 bytes. This means that
51612 ** the maximum number of record bytes stored on an index B-Tree
51613 ** page is less than 16384 bytes and may be stored as a 2-byte
51614 ** varint. This information is used to attempt to avoid parsing
51615 ** the entire cell by checking for the cases where the record is
51616 ** stored entirely within the b-tree page by inspecting the first
51617 ** 2 bytes of the cell.
51619 int nCell = pCell[0];
51620 if( !(nCell & 0x80) && nCell<=pPage->maxLocal ){
51621 /* This branch runs if the record-size field of the cell is a
51622 ** single byte varint and the record fits entirely on the main
51623 ** b-tree page. */
51624 c = sqlite3VdbeRecordCompare(nCell, (void*)&pCell[1], pIdxKey);
51625 }else if( !(pCell[1] & 0x80)
51626 && (nCell = ((nCell&0x7f)<<7) + pCell[1])<=pPage->maxLocal
51628 /* The record-size field is a 2 byte varint and the record
51629 ** fits entirely on the main b-tree page. */
51630 c = sqlite3VdbeRecordCompare(nCell, (void*)&pCell[2], pIdxKey);
51631 }else{
51632 /* The record flows over onto one or more overflow pages. In
51633 ** this case the whole cell needs to be parsed, a buffer allocated
51634 ** and accessPayload() used to retrieve the record into the
51635 ** buffer before VdbeRecordCompare() can be called. */
51636 void *pCellKey;
51637 u8 * const pCellBody = pCell - pPage->childPtrSize;
51638 btreeParseCellPtr(pPage, pCellBody, &pCur->info);
51639 nCell = (int)pCur->info.nKey;
51640 pCellKey = sqlite3Malloc( nCell );
51641 if( pCellKey==0 ){
51642 rc = SQLITE_NOMEM;
51643 goto moveto_finish;
51645 rc = accessPayload(pCur, 0, nCell, (unsigned char*)pCellKey, 0);
51646 if( rc ){
51647 sqlite3_free(pCellKey);
51648 goto moveto_finish;
51650 c = sqlite3VdbeRecordCompare(nCell, pCellKey, pIdxKey);
51651 sqlite3_free(pCellKey);
51654 if( c==0 ){
51655 if( pPage->intKey && !pPage->leaf ){
51656 lwr = idx;
51657 upr = lwr - 1;
51658 break;
51659 }else{
51660 *pRes = 0;
51661 rc = SQLITE_OK;
51662 goto moveto_finish;
51665 if( c<0 ){
51666 lwr = idx+1;
51667 }else{
51668 upr = idx-1;
51670 if( lwr>upr ){
51671 break;
51673 pCur->aiIdx[pCur->iPage] = (u16)((lwr+upr)/2);
51675 assert( lwr==upr+1 );
51676 assert( pPage->isInit );
51677 if( pPage->leaf ){
51678 chldPg = 0;
51679 }else if( lwr>=pPage->nCell ){
51680 chldPg = get4byte(&pPage->aData[pPage->hdrOffset+8]);
51681 }else{
51682 chldPg = get4byte(findCell(pPage, lwr));
51684 if( chldPg==0 ){
51685 assert( pCur->aiIdx[pCur->iPage]<pCur->apPage[pCur->iPage]->nCell );
51686 *pRes = c;
51687 rc = SQLITE_OK;
51688 goto moveto_finish;
51690 pCur->aiIdx[pCur->iPage] = (u16)lwr;
51691 pCur->info.nSize = 0;
51692 pCur->validNKey = 0;
51693 rc = moveToChild(pCur, chldPg);
51694 if( rc ) goto moveto_finish;
51696 moveto_finish:
51697 return rc;
51702 ** Return TRUE if the cursor is not pointing at an entry of the table.
51704 ** TRUE will be returned after a call to sqlite3BtreeNext() moves
51705 ** past the last entry in the table or sqlite3BtreePrev() moves past
51706 ** the first entry. TRUE is also returned if the table is empty.
51708 SQLITE_PRIVATE int sqlite3BtreeEof(BtCursor *pCur){
51709 /* TODO: What if the cursor is in CURSOR_REQUIRESEEK but all table entries
51710 ** have been deleted? This API will need to change to return an error code
51711 ** as well as the boolean result value.
51713 return (CURSOR_VALID!=pCur->eState);
51717 ** Advance the cursor to the next entry in the database. If
51718 ** successful then set *pRes=0. If the cursor
51719 ** was already pointing to the last entry in the database before
51720 ** this routine was called, then set *pRes=1.
51722 SQLITE_PRIVATE int sqlite3BtreeNext(BtCursor *pCur, int *pRes){
51723 int rc;
51724 int idx;
51725 MemPage *pPage;
51727 assert( cursorHoldsMutex(pCur) );
51728 rc = restoreCursorPosition(pCur);
51729 if( rc!=SQLITE_OK ){
51730 return rc;
51732 assert( pRes!=0 );
51733 if( CURSOR_INVALID==pCur->eState ){
51734 *pRes = 1;
51735 return SQLITE_OK;
51737 if( pCur->skipNext>0 ){
51738 pCur->skipNext = 0;
51739 *pRes = 0;
51740 return SQLITE_OK;
51742 pCur->skipNext = 0;
51744 pPage = pCur->apPage[pCur->iPage];
51745 idx = ++pCur->aiIdx[pCur->iPage];
51746 assert( pPage->isInit );
51747 assert( idx<=pPage->nCell );
51749 pCur->info.nSize = 0;
51750 pCur->validNKey = 0;
51751 if( idx>=pPage->nCell ){
51752 if( !pPage->leaf ){
51753 rc = moveToChild(pCur, get4byte(&pPage->aData[pPage->hdrOffset+8]));
51754 if( rc ) return rc;
51755 rc = moveToLeftmost(pCur);
51756 *pRes = 0;
51757 return rc;
51760 if( pCur->iPage==0 ){
51761 *pRes = 1;
51762 pCur->eState = CURSOR_INVALID;
51763 return SQLITE_OK;
51765 moveToParent(pCur);
51766 pPage = pCur->apPage[pCur->iPage];
51767 }while( pCur->aiIdx[pCur->iPage]>=pPage->nCell );
51768 *pRes = 0;
51769 if( pPage->intKey ){
51770 rc = sqlite3BtreeNext(pCur, pRes);
51771 }else{
51772 rc = SQLITE_OK;
51774 return rc;
51776 *pRes = 0;
51777 if( pPage->leaf ){
51778 return SQLITE_OK;
51780 rc = moveToLeftmost(pCur);
51781 return rc;
51786 ** Step the cursor to the back to the previous entry in the database. If
51787 ** successful then set *pRes=0. If the cursor
51788 ** was already pointing to the first entry in the database before
51789 ** this routine was called, then set *pRes=1.
51791 SQLITE_PRIVATE int sqlite3BtreePrevious(BtCursor *pCur, int *pRes){
51792 int rc;
51793 MemPage *pPage;
51795 assert( cursorHoldsMutex(pCur) );
51796 rc = restoreCursorPosition(pCur);
51797 if( rc!=SQLITE_OK ){
51798 return rc;
51800 pCur->atLast = 0;
51801 if( CURSOR_INVALID==pCur->eState ){
51802 *pRes = 1;
51803 return SQLITE_OK;
51805 if( pCur->skipNext<0 ){
51806 pCur->skipNext = 0;
51807 *pRes = 0;
51808 return SQLITE_OK;
51810 pCur->skipNext = 0;
51812 pPage = pCur->apPage[pCur->iPage];
51813 assert( pPage->isInit );
51814 if( !pPage->leaf ){
51815 int idx = pCur->aiIdx[pCur->iPage];
51816 rc = moveToChild(pCur, get4byte(findCell(pPage, idx)));
51817 if( rc ){
51818 return rc;
51820 rc = moveToRightmost(pCur);
51821 }else{
51822 while( pCur->aiIdx[pCur->iPage]==0 ){
51823 if( pCur->iPage==0 ){
51824 pCur->eState = CURSOR_INVALID;
51825 *pRes = 1;
51826 return SQLITE_OK;
51828 moveToParent(pCur);
51830 pCur->info.nSize = 0;
51831 pCur->validNKey = 0;
51833 pCur->aiIdx[pCur->iPage]--;
51834 pPage = pCur->apPage[pCur->iPage];
51835 if( pPage->intKey && !pPage->leaf ){
51836 rc = sqlite3BtreePrevious(pCur, pRes);
51837 }else{
51838 rc = SQLITE_OK;
51841 *pRes = 0;
51842 return rc;
51846 ** Allocate a new page from the database file.
51848 ** The new page is marked as dirty. (In other words, sqlite3PagerWrite()
51849 ** has already been called on the new page.) The new page has also
51850 ** been referenced and the calling routine is responsible for calling
51851 ** sqlite3PagerUnref() on the new page when it is done.
51853 ** SQLITE_OK is returned on success. Any other return value indicates
51854 ** an error. *ppPage and *pPgno are undefined in the event of an error.
51855 ** Do not invoke sqlite3PagerUnref() on *ppPage if an error is returned.
51857 ** If the "nearby" parameter is not 0, then a (feeble) effort is made to
51858 ** locate a page close to the page number "nearby". This can be used in an
51859 ** attempt to keep related pages close to each other in the database file,
51860 ** which in turn can make database access faster.
51862 ** If the "exact" parameter is not 0, and the page-number nearby exists
51863 ** anywhere on the free-list, then it is guarenteed to be returned. This
51864 ** is only used by auto-vacuum databases when allocating a new table.
51866 static int allocateBtreePage(
51867 BtShared *pBt,
51868 MemPage **ppPage,
51869 Pgno *pPgno,
51870 Pgno nearby,
51871 u8 exact
51873 MemPage *pPage1;
51874 int rc;
51875 u32 n; /* Number of pages on the freelist */
51876 u32 k; /* Number of leaves on the trunk of the freelist */
51877 MemPage *pTrunk = 0;
51878 MemPage *pPrevTrunk = 0;
51879 Pgno mxPage; /* Total size of the database file */
51881 assert( sqlite3_mutex_held(pBt->mutex) );
51882 pPage1 = pBt->pPage1;
51883 mxPage = btreePagecount(pBt);
51884 n = get4byte(&pPage1->aData[36]);
51885 testcase( n==mxPage-1 );
51886 if( n>=mxPage ){
51887 return SQLITE_CORRUPT_BKPT;
51889 if( n>0 ){
51890 /* There are pages on the freelist. Reuse one of those pages. */
51891 Pgno iTrunk;
51892 u8 searchList = 0; /* If the free-list must be searched for 'nearby' */
51894 /* If the 'exact' parameter was true and a query of the pointer-map
51895 ** shows that the page 'nearby' is somewhere on the free-list, then
51896 ** the entire-list will be searched for that page.
51898 #ifndef SQLITE_OMIT_AUTOVACUUM
51899 if( exact && nearby<=mxPage ){
51900 u8 eType;
51901 assert( nearby>0 );
51902 assert( pBt->autoVacuum );
51903 rc = ptrmapGet(pBt, nearby, &eType, 0);
51904 if( rc ) return rc;
51905 if( eType==PTRMAP_FREEPAGE ){
51906 searchList = 1;
51908 *pPgno = nearby;
51910 #endif
51912 /* Decrement the free-list count by 1. Set iTrunk to the index of the
51913 ** first free-list trunk page. iPrevTrunk is initially 1.
51915 rc = sqlite3PagerWrite(pPage1->pDbPage);
51916 if( rc ) return rc;
51917 put4byte(&pPage1->aData[36], n-1);
51919 /* The code within this loop is run only once if the 'searchList' variable
51920 ** is not true. Otherwise, it runs once for each trunk-page on the
51921 ** free-list until the page 'nearby' is located.
51923 do {
51924 pPrevTrunk = pTrunk;
51925 if( pPrevTrunk ){
51926 iTrunk = get4byte(&pPrevTrunk->aData[0]);
51927 }else{
51928 iTrunk = get4byte(&pPage1->aData[32]);
51930 testcase( iTrunk==mxPage );
51931 if( iTrunk>mxPage ){
51932 rc = SQLITE_CORRUPT_BKPT;
51933 }else{
51934 rc = btreeGetPage(pBt, iTrunk, &pTrunk, 0);
51936 if( rc ){
51937 pTrunk = 0;
51938 goto end_allocate_page;
51941 k = get4byte(&pTrunk->aData[4]); /* # of leaves on this trunk page */
51942 if( k==0 && !searchList ){
51943 /* The trunk has no leaves and the list is not being searched.
51944 ** So extract the trunk page itself and use it as the newly
51945 ** allocated page */
51946 assert( pPrevTrunk==0 );
51947 rc = sqlite3PagerWrite(pTrunk->pDbPage);
51948 if( rc ){
51949 goto end_allocate_page;
51951 *pPgno = iTrunk;
51952 memcpy(&pPage1->aData[32], &pTrunk->aData[0], 4);
51953 *ppPage = pTrunk;
51954 pTrunk = 0;
51955 TRACE(("ALLOCATE: %d trunk - %d free pages left\n", *pPgno, n-1));
51956 }else if( k>(u32)(pBt->usableSize/4 - 2) ){
51957 /* Value of k is out of range. Database corruption */
51958 rc = SQLITE_CORRUPT_BKPT;
51959 goto end_allocate_page;
51960 #ifndef SQLITE_OMIT_AUTOVACUUM
51961 }else if( searchList && nearby==iTrunk ){
51962 /* The list is being searched and this trunk page is the page
51963 ** to allocate, regardless of whether it has leaves.
51965 assert( *pPgno==iTrunk );
51966 *ppPage = pTrunk;
51967 searchList = 0;
51968 rc = sqlite3PagerWrite(pTrunk->pDbPage);
51969 if( rc ){
51970 goto end_allocate_page;
51972 if( k==0 ){
51973 if( !pPrevTrunk ){
51974 memcpy(&pPage1->aData[32], &pTrunk->aData[0], 4);
51975 }else{
51976 rc = sqlite3PagerWrite(pPrevTrunk->pDbPage);
51977 if( rc!=SQLITE_OK ){
51978 goto end_allocate_page;
51980 memcpy(&pPrevTrunk->aData[0], &pTrunk->aData[0], 4);
51982 }else{
51983 /* The trunk page is required by the caller but it contains
51984 ** pointers to free-list leaves. The first leaf becomes a trunk
51985 ** page in this case.
51987 MemPage *pNewTrunk;
51988 Pgno iNewTrunk = get4byte(&pTrunk->aData[8]);
51989 if( iNewTrunk>mxPage ){
51990 rc = SQLITE_CORRUPT_BKPT;
51991 goto end_allocate_page;
51993 testcase( iNewTrunk==mxPage );
51994 rc = btreeGetPage(pBt, iNewTrunk, &pNewTrunk, 0);
51995 if( rc!=SQLITE_OK ){
51996 goto end_allocate_page;
51998 rc = sqlite3PagerWrite(pNewTrunk->pDbPage);
51999 if( rc!=SQLITE_OK ){
52000 releasePage(pNewTrunk);
52001 goto end_allocate_page;
52003 memcpy(&pNewTrunk->aData[0], &pTrunk->aData[0], 4);
52004 put4byte(&pNewTrunk->aData[4], k-1);
52005 memcpy(&pNewTrunk->aData[8], &pTrunk->aData[12], (k-1)*4);
52006 releasePage(pNewTrunk);
52007 if( !pPrevTrunk ){
52008 assert( sqlite3PagerIswriteable(pPage1->pDbPage) );
52009 put4byte(&pPage1->aData[32], iNewTrunk);
52010 }else{
52011 rc = sqlite3PagerWrite(pPrevTrunk->pDbPage);
52012 if( rc ){
52013 goto end_allocate_page;
52015 put4byte(&pPrevTrunk->aData[0], iNewTrunk);
52018 pTrunk = 0;
52019 TRACE(("ALLOCATE: %d trunk - %d free pages left\n", *pPgno, n-1));
52020 #endif
52021 }else if( k>0 ){
52022 /* Extract a leaf from the trunk */
52023 u32 closest;
52024 Pgno iPage;
52025 unsigned char *aData = pTrunk->aData;
52026 if( nearby>0 ){
52027 u32 i;
52028 int dist;
52029 closest = 0;
52030 dist = sqlite3AbsInt32(get4byte(&aData[8]) - nearby);
52031 for(i=1; i<k; i++){
52032 int d2 = sqlite3AbsInt32(get4byte(&aData[8+i*4]) - nearby);
52033 if( d2<dist ){
52034 closest = i;
52035 dist = d2;
52038 }else{
52039 closest = 0;
52042 iPage = get4byte(&aData[8+closest*4]);
52043 testcase( iPage==mxPage );
52044 if( iPage>mxPage ){
52045 rc = SQLITE_CORRUPT_BKPT;
52046 goto end_allocate_page;
52048 testcase( iPage==mxPage );
52049 if( !searchList || iPage==nearby ){
52050 int noContent;
52051 *pPgno = iPage;
52052 TRACE(("ALLOCATE: %d was leaf %d of %d on trunk %d"
52053 ": %d more free pages\n",
52054 *pPgno, closest+1, k, pTrunk->pgno, n-1));
52055 rc = sqlite3PagerWrite(pTrunk->pDbPage);
52056 if( rc ) goto end_allocate_page;
52057 if( closest<k-1 ){
52058 memcpy(&aData[8+closest*4], &aData[4+k*4], 4);
52060 put4byte(&aData[4], k-1);
52061 noContent = !btreeGetHasContent(pBt, *pPgno);
52062 rc = btreeGetPage(pBt, *pPgno, ppPage, noContent);
52063 if( rc==SQLITE_OK ){
52064 rc = sqlite3PagerWrite((*ppPage)->pDbPage);
52065 if( rc!=SQLITE_OK ){
52066 releasePage(*ppPage);
52069 searchList = 0;
52072 releasePage(pPrevTrunk);
52073 pPrevTrunk = 0;
52074 }while( searchList );
52075 }else{
52076 /* There are no pages on the freelist, so create a new page at the
52077 ** end of the file */
52078 rc = sqlite3PagerWrite(pBt->pPage1->pDbPage);
52079 if( rc ) return rc;
52080 pBt->nPage++;
52081 if( pBt->nPage==PENDING_BYTE_PAGE(pBt) ) pBt->nPage++;
52083 #ifndef SQLITE_OMIT_AUTOVACUUM
52084 if( pBt->autoVacuum && PTRMAP_ISPAGE(pBt, pBt->nPage) ){
52085 /* If *pPgno refers to a pointer-map page, allocate two new pages
52086 ** at the end of the file instead of one. The first allocated page
52087 ** becomes a new pointer-map page, the second is used by the caller.
52089 MemPage *pPg = 0;
52090 TRACE(("ALLOCATE: %d from end of file (pointer-map page)\n", pBt->nPage));
52091 assert( pBt->nPage!=PENDING_BYTE_PAGE(pBt) );
52092 rc = btreeGetPage(pBt, pBt->nPage, &pPg, 1);
52093 if( rc==SQLITE_OK ){
52094 rc = sqlite3PagerWrite(pPg->pDbPage);
52095 releasePage(pPg);
52097 if( rc ) return rc;
52098 pBt->nPage++;
52099 if( pBt->nPage==PENDING_BYTE_PAGE(pBt) ){ pBt->nPage++; }
52101 #endif
52102 put4byte(28 + (u8*)pBt->pPage1->aData, pBt->nPage);
52103 *pPgno = pBt->nPage;
52105 assert( *pPgno!=PENDING_BYTE_PAGE(pBt) );
52106 rc = btreeGetPage(pBt, *pPgno, ppPage, 1);
52107 if( rc ) return rc;
52108 rc = sqlite3PagerWrite((*ppPage)->pDbPage);
52109 if( rc!=SQLITE_OK ){
52110 releasePage(*ppPage);
52112 TRACE(("ALLOCATE: %d from end of file\n", *pPgno));
52115 assert( *pPgno!=PENDING_BYTE_PAGE(pBt) );
52117 end_allocate_page:
52118 releasePage(pTrunk);
52119 releasePage(pPrevTrunk);
52120 if( rc==SQLITE_OK ){
52121 if( sqlite3PagerPageRefcount((*ppPage)->pDbPage)>1 ){
52122 releasePage(*ppPage);
52123 return SQLITE_CORRUPT_BKPT;
52125 (*ppPage)->isInit = 0;
52126 }else{
52127 *ppPage = 0;
52129 assert( rc!=SQLITE_OK || sqlite3PagerIswriteable((*ppPage)->pDbPage) );
52130 return rc;
52134 ** This function is used to add page iPage to the database file free-list.
52135 ** It is assumed that the page is not already a part of the free-list.
52137 ** The value passed as the second argument to this function is optional.
52138 ** If the caller happens to have a pointer to the MemPage object
52139 ** corresponding to page iPage handy, it may pass it as the second value.
52140 ** Otherwise, it may pass NULL.
52142 ** If a pointer to a MemPage object is passed as the second argument,
52143 ** its reference count is not altered by this function.
52145 static int freePage2(BtShared *pBt, MemPage *pMemPage, Pgno iPage){
52146 MemPage *pTrunk = 0; /* Free-list trunk page */
52147 Pgno iTrunk = 0; /* Page number of free-list trunk page */
52148 MemPage *pPage1 = pBt->pPage1; /* Local reference to page 1 */
52149 MemPage *pPage; /* Page being freed. May be NULL. */
52150 int rc; /* Return Code */
52151 int nFree; /* Initial number of pages on free-list */
52153 assert( sqlite3_mutex_held(pBt->mutex) );
52154 assert( iPage>1 );
52155 assert( !pMemPage || pMemPage->pgno==iPage );
52157 if( pMemPage ){
52158 pPage = pMemPage;
52159 sqlite3PagerRef(pPage->pDbPage);
52160 }else{
52161 pPage = btreePageLookup(pBt, iPage);
52164 /* Increment the free page count on pPage1 */
52165 rc = sqlite3PagerWrite(pPage1->pDbPage);
52166 if( rc ) goto freepage_out;
52167 nFree = get4byte(&pPage1->aData[36]);
52168 put4byte(&pPage1->aData[36], nFree+1);
52170 if( pBt->secureDelete ){
52171 /* If the secure_delete option is enabled, then
52172 ** always fully overwrite deleted information with zeros.
52174 if( (!pPage && ((rc = btreeGetPage(pBt, iPage, &pPage, 0))!=0) )
52175 || ((rc = sqlite3PagerWrite(pPage->pDbPage))!=0)
52177 goto freepage_out;
52179 memset(pPage->aData, 0, pPage->pBt->pageSize);
52182 /* If the database supports auto-vacuum, write an entry in the pointer-map
52183 ** to indicate that the page is free.
52185 if( ISAUTOVACUUM ){
52186 ptrmapPut(pBt, iPage, PTRMAP_FREEPAGE, 0, &rc);
52187 if( rc ) goto freepage_out;
52190 /* Now manipulate the actual database free-list structure. There are two
52191 ** possibilities. If the free-list is currently empty, or if the first
52192 ** trunk page in the free-list is full, then this page will become a
52193 ** new free-list trunk page. Otherwise, it will become a leaf of the
52194 ** first trunk page in the current free-list. This block tests if it
52195 ** is possible to add the page as a new free-list leaf.
52197 if( nFree!=0 ){
52198 u32 nLeaf; /* Initial number of leaf cells on trunk page */
52200 iTrunk = get4byte(&pPage1->aData[32]);
52201 rc = btreeGetPage(pBt, iTrunk, &pTrunk, 0);
52202 if( rc!=SQLITE_OK ){
52203 goto freepage_out;
52206 nLeaf = get4byte(&pTrunk->aData[4]);
52207 assert( pBt->usableSize>32 );
52208 if( nLeaf > (u32)pBt->usableSize/4 - 2 ){
52209 rc = SQLITE_CORRUPT_BKPT;
52210 goto freepage_out;
52212 if( nLeaf < (u32)pBt->usableSize/4 - 8 ){
52213 /* In this case there is room on the trunk page to insert the page
52214 ** being freed as a new leaf.
52216 ** Note that the trunk page is not really full until it contains
52217 ** usableSize/4 - 2 entries, not usableSize/4 - 8 entries as we have
52218 ** coded. But due to a coding error in versions of SQLite prior to
52219 ** 3.6.0, databases with freelist trunk pages holding more than
52220 ** usableSize/4 - 8 entries will be reported as corrupt. In order
52221 ** to maintain backwards compatibility with older versions of SQLite,
52222 ** we will continue to restrict the number of entries to usableSize/4 - 8
52223 ** for now. At some point in the future (once everyone has upgraded
52224 ** to 3.6.0 or later) we should consider fixing the conditional above
52225 ** to read "usableSize/4-2" instead of "usableSize/4-8".
52227 rc = sqlite3PagerWrite(pTrunk->pDbPage);
52228 if( rc==SQLITE_OK ){
52229 put4byte(&pTrunk->aData[4], nLeaf+1);
52230 put4byte(&pTrunk->aData[8+nLeaf*4], iPage);
52231 if( pPage && !pBt->secureDelete ){
52232 sqlite3PagerDontWrite(pPage->pDbPage);
52234 rc = btreeSetHasContent(pBt, iPage);
52236 TRACE(("FREE-PAGE: %d leaf on trunk page %d\n",pPage->pgno,pTrunk->pgno));
52237 goto freepage_out;
52241 /* If control flows to this point, then it was not possible to add the
52242 ** the page being freed as a leaf page of the first trunk in the free-list.
52243 ** Possibly because the free-list is empty, or possibly because the
52244 ** first trunk in the free-list is full. Either way, the page being freed
52245 ** will become the new first trunk page in the free-list.
52247 if( pPage==0 && SQLITE_OK!=(rc = btreeGetPage(pBt, iPage, &pPage, 0)) ){
52248 goto freepage_out;
52250 rc = sqlite3PagerWrite(pPage->pDbPage);
52251 if( rc!=SQLITE_OK ){
52252 goto freepage_out;
52254 put4byte(pPage->aData, iTrunk);
52255 put4byte(&pPage->aData[4], 0);
52256 put4byte(&pPage1->aData[32], iPage);
52257 TRACE(("FREE-PAGE: %d new trunk page replacing %d\n", pPage->pgno, iTrunk));
52259 freepage_out:
52260 if( pPage ){
52261 pPage->isInit = 0;
52263 releasePage(pPage);
52264 releasePage(pTrunk);
52265 return rc;
52267 static void freePage(MemPage *pPage, int *pRC){
52268 if( (*pRC)==SQLITE_OK ){
52269 *pRC = freePage2(pPage->pBt, pPage, pPage->pgno);
52274 ** Free any overflow pages associated with the given Cell.
52276 static int clearCell(MemPage *pPage, unsigned char *pCell){
52277 BtShared *pBt = pPage->pBt;
52278 CellInfo info;
52279 Pgno ovflPgno;
52280 int rc;
52281 int nOvfl;
52282 u32 ovflPageSize;
52284 assert( sqlite3_mutex_held(pPage->pBt->mutex) );
52285 btreeParseCellPtr(pPage, pCell, &info);
52286 if( info.iOverflow==0 ){
52287 return SQLITE_OK; /* No overflow pages. Return without doing anything */
52289 ovflPgno = get4byte(&pCell[info.iOverflow]);
52290 assert( pBt->usableSize > 4 );
52291 ovflPageSize = pBt->usableSize - 4;
52292 nOvfl = (info.nPayload - info.nLocal + ovflPageSize - 1)/ovflPageSize;
52293 assert( ovflPgno==0 || nOvfl>0 );
52294 while( nOvfl-- ){
52295 Pgno iNext = 0;
52296 MemPage *pOvfl = 0;
52297 if( ovflPgno<2 || ovflPgno>btreePagecount(pBt) ){
52298 /* 0 is not a legal page number and page 1 cannot be an
52299 ** overflow page. Therefore if ovflPgno<2 or past the end of the
52300 ** file the database must be corrupt. */
52301 return SQLITE_CORRUPT_BKPT;
52303 if( nOvfl ){
52304 rc = getOverflowPage(pBt, ovflPgno, &pOvfl, &iNext);
52305 if( rc ) return rc;
52308 if( ( pOvfl || ((pOvfl = btreePageLookup(pBt, ovflPgno))!=0) )
52309 && sqlite3PagerPageRefcount(pOvfl->pDbPage)!=1
52311 /* There is no reason any cursor should have an outstanding reference
52312 ** to an overflow page belonging to a cell that is being deleted/updated.
52313 ** So if there exists more than one reference to this page, then it
52314 ** must not really be an overflow page and the database must be corrupt.
52315 ** It is helpful to detect this before calling freePage2(), as
52316 ** freePage2() may zero the page contents if secure-delete mode is
52317 ** enabled. If this 'overflow' page happens to be a page that the
52318 ** caller is iterating through or using in some other way, this
52319 ** can be problematic.
52321 rc = SQLITE_CORRUPT_BKPT;
52322 }else{
52323 rc = freePage2(pBt, pOvfl, ovflPgno);
52326 if( pOvfl ){
52327 sqlite3PagerUnref(pOvfl->pDbPage);
52329 if( rc ) return rc;
52330 ovflPgno = iNext;
52332 return SQLITE_OK;
52336 ** Create the byte sequence used to represent a cell on page pPage
52337 ** and write that byte sequence into pCell[]. Overflow pages are
52338 ** allocated and filled in as necessary. The calling procedure
52339 ** is responsible for making sure sufficient space has been allocated
52340 ** for pCell[].
52342 ** Note that pCell does not necessary need to point to the pPage->aData
52343 ** area. pCell might point to some temporary storage. The cell will
52344 ** be constructed in this temporary area then copied into pPage->aData
52345 ** later.
52347 static int fillInCell(
52348 MemPage *pPage, /* The page that contains the cell */
52349 unsigned char *pCell, /* Complete text of the cell */
52350 const void *pKey, i64 nKey, /* The key */
52351 const void *pData,int nData, /* The data */
52352 int nZero, /* Extra zero bytes to append to pData */
52353 int *pnSize /* Write cell size here */
52355 int nPayload;
52356 const u8 *pSrc;
52357 int nSrc, n, rc;
52358 int spaceLeft;
52359 MemPage *pOvfl = 0;
52360 MemPage *pToRelease = 0;
52361 unsigned char *pPrior;
52362 unsigned char *pPayload;
52363 BtShared *pBt = pPage->pBt;
52364 Pgno pgnoOvfl = 0;
52365 int nHeader;
52366 CellInfo info;
52368 assert( sqlite3_mutex_held(pPage->pBt->mutex) );
52370 /* pPage is not necessarily writeable since pCell might be auxiliary
52371 ** buffer space that is separate from the pPage buffer area */
52372 assert( pCell<pPage->aData || pCell>=&pPage->aData[pBt->pageSize]
52373 || sqlite3PagerIswriteable(pPage->pDbPage) );
52375 /* Fill in the header. */
52376 nHeader = 0;
52377 if( !pPage->leaf ){
52378 nHeader += 4;
52380 if( pPage->hasData ){
52381 nHeader += putVarint(&pCell[nHeader], nData+nZero);
52382 }else{
52383 nData = nZero = 0;
52385 nHeader += putVarint(&pCell[nHeader], *(u64*)&nKey);
52386 btreeParseCellPtr(pPage, pCell, &info);
52387 assert( info.nHeader==nHeader );
52388 assert( info.nKey==nKey );
52389 assert( info.nData==(u32)(nData+nZero) );
52391 /* Fill in the payload */
52392 nPayload = nData + nZero;
52393 if( pPage->intKey ){
52394 pSrc = pData;
52395 nSrc = nData;
52396 nData = 0;
52397 }else{
52398 if( NEVER(nKey>0x7fffffff || pKey==0) ){
52399 return SQLITE_CORRUPT_BKPT;
52401 nPayload += (int)nKey;
52402 pSrc = pKey;
52403 nSrc = (int)nKey;
52405 *pnSize = info.nSize;
52406 spaceLeft = info.nLocal;
52407 pPayload = &pCell[nHeader];
52408 pPrior = &pCell[info.iOverflow];
52410 while( nPayload>0 ){
52411 if( spaceLeft==0 ){
52412 #ifndef SQLITE_OMIT_AUTOVACUUM
52413 Pgno pgnoPtrmap = pgnoOvfl; /* Overflow page pointer-map entry page */
52414 if( pBt->autoVacuum ){
52416 pgnoOvfl++;
52417 } while(
52418 PTRMAP_ISPAGE(pBt, pgnoOvfl) || pgnoOvfl==PENDING_BYTE_PAGE(pBt)
52421 #endif
52422 rc = allocateBtreePage(pBt, &pOvfl, &pgnoOvfl, pgnoOvfl, 0);
52423 #ifndef SQLITE_OMIT_AUTOVACUUM
52424 /* If the database supports auto-vacuum, and the second or subsequent
52425 ** overflow page is being allocated, add an entry to the pointer-map
52426 ** for that page now.
52428 ** If this is the first overflow page, then write a partial entry
52429 ** to the pointer-map. If we write nothing to this pointer-map slot,
52430 ** then the optimistic overflow chain processing in clearCell()
52431 ** may misinterpret the uninitialised values and delete the
52432 ** wrong pages from the database.
52434 if( pBt->autoVacuum && rc==SQLITE_OK ){
52435 u8 eType = (pgnoPtrmap?PTRMAP_OVERFLOW2:PTRMAP_OVERFLOW1);
52436 ptrmapPut(pBt, pgnoOvfl, eType, pgnoPtrmap, &rc);
52437 if( rc ){
52438 releasePage(pOvfl);
52441 #endif
52442 if( rc ){
52443 releasePage(pToRelease);
52444 return rc;
52447 /* If pToRelease is not zero than pPrior points into the data area
52448 ** of pToRelease. Make sure pToRelease is still writeable. */
52449 assert( pToRelease==0 || sqlite3PagerIswriteable(pToRelease->pDbPage) );
52451 /* If pPrior is part of the data area of pPage, then make sure pPage
52452 ** is still writeable */
52453 assert( pPrior<pPage->aData || pPrior>=&pPage->aData[pBt->pageSize]
52454 || sqlite3PagerIswriteable(pPage->pDbPage) );
52456 put4byte(pPrior, pgnoOvfl);
52457 releasePage(pToRelease);
52458 pToRelease = pOvfl;
52459 pPrior = pOvfl->aData;
52460 put4byte(pPrior, 0);
52461 pPayload = &pOvfl->aData[4];
52462 spaceLeft = pBt->usableSize - 4;
52464 n = nPayload;
52465 if( n>spaceLeft ) n = spaceLeft;
52467 /* If pToRelease is not zero than pPayload points into the data area
52468 ** of pToRelease. Make sure pToRelease is still writeable. */
52469 assert( pToRelease==0 || sqlite3PagerIswriteable(pToRelease->pDbPage) );
52471 /* If pPayload is part of the data area of pPage, then make sure pPage
52472 ** is still writeable */
52473 assert( pPayload<pPage->aData || pPayload>=&pPage->aData[pBt->pageSize]
52474 || sqlite3PagerIswriteable(pPage->pDbPage) );
52476 if( nSrc>0 ){
52477 if( n>nSrc ) n = nSrc;
52478 assert( pSrc );
52479 memcpy(pPayload, pSrc, n);
52480 }else{
52481 memset(pPayload, 0, n);
52483 nPayload -= n;
52484 pPayload += n;
52485 pSrc += n;
52486 nSrc -= n;
52487 spaceLeft -= n;
52488 if( nSrc==0 ){
52489 nSrc = nData;
52490 pSrc = pData;
52493 releasePage(pToRelease);
52494 return SQLITE_OK;
52498 ** Remove the i-th cell from pPage. This routine effects pPage only.
52499 ** The cell content is not freed or deallocated. It is assumed that
52500 ** the cell content has been copied someplace else. This routine just
52501 ** removes the reference to the cell from pPage.
52503 ** "sz" must be the number of bytes in the cell.
52505 static void dropCell(MemPage *pPage, int idx, int sz, int *pRC){
52506 int i; /* Loop counter */
52507 u32 pc; /* Offset to cell content of cell being deleted */
52508 u8 *data; /* pPage->aData */
52509 u8 *ptr; /* Used to move bytes around within data[] */
52510 int rc; /* The return code */
52511 int hdr; /* Beginning of the header. 0 most pages. 100 page 1 */
52513 if( *pRC ) return;
52515 assert( idx>=0 && idx<pPage->nCell );
52516 assert( sz==cellSize(pPage, idx) );
52517 assert( sqlite3PagerIswriteable(pPage->pDbPage) );
52518 assert( sqlite3_mutex_held(pPage->pBt->mutex) );
52519 data = pPage->aData;
52520 ptr = &data[pPage->cellOffset + 2*idx];
52521 pc = get2byte(ptr);
52522 hdr = pPage->hdrOffset;
52523 testcase( pc==get2byte(&data[hdr+5]) );
52524 testcase( pc+sz==pPage->pBt->usableSize );
52525 if( pc < (u32)get2byte(&data[hdr+5]) || pc+sz > pPage->pBt->usableSize ){
52526 *pRC = SQLITE_CORRUPT_BKPT;
52527 return;
52529 rc = freeSpace(pPage, pc, sz);
52530 if( rc ){
52531 *pRC = rc;
52532 return;
52534 for(i=idx+1; i<pPage->nCell; i++, ptr+=2){
52535 ptr[0] = ptr[2];
52536 ptr[1] = ptr[3];
52538 pPage->nCell--;
52539 put2byte(&data[hdr+3], pPage->nCell);
52540 pPage->nFree += 2;
52544 ** Insert a new cell on pPage at cell index "i". pCell points to the
52545 ** content of the cell.
52547 ** If the cell content will fit on the page, then put it there. If it
52548 ** will not fit, then make a copy of the cell content into pTemp if
52549 ** pTemp is not null. Regardless of pTemp, allocate a new entry
52550 ** in pPage->aOvfl[] and make it point to the cell content (either
52551 ** in pTemp or the original pCell) and also record its index.
52552 ** Allocating a new entry in pPage->aCell[] implies that
52553 ** pPage->nOverflow is incremented.
52555 ** If nSkip is non-zero, then do not copy the first nSkip bytes of the
52556 ** cell. The caller will overwrite them after this function returns. If
52557 ** nSkip is non-zero, then pCell may not point to an invalid memory location
52558 ** (but pCell+nSkip is always valid).
52560 static void insertCell(
52561 MemPage *pPage, /* Page into which we are copying */
52562 int i, /* New cell becomes the i-th cell of the page */
52563 u8 *pCell, /* Content of the new cell */
52564 int sz, /* Bytes of content in pCell */
52565 u8 *pTemp, /* Temp storage space for pCell, if needed */
52566 Pgno iChild, /* If non-zero, replace first 4 bytes with this value */
52567 int *pRC /* Read and write return code from here */
52569 int idx = 0; /* Where to write new cell content in data[] */
52570 int j; /* Loop counter */
52571 int end; /* First byte past the last cell pointer in data[] */
52572 int ins; /* Index in data[] where new cell pointer is inserted */
52573 int cellOffset; /* Address of first cell pointer in data[] */
52574 u8 *data; /* The content of the whole page */
52575 u8 *ptr; /* Used for moving information around in data[] */
52577 int nSkip = (iChild ? 4 : 0);
52579 if( *pRC ) return;
52581 assert( i>=0 && i<=pPage->nCell+pPage->nOverflow );
52582 assert( pPage->nCell<=MX_CELL(pPage->pBt) && MX_CELL(pPage->pBt)<=10921 );
52583 assert( pPage->nOverflow<=ArraySize(pPage->aOvfl) );
52584 assert( sqlite3_mutex_held(pPage->pBt->mutex) );
52585 /* The cell should normally be sized correctly. However, when moving a
52586 ** malformed cell from a leaf page to an interior page, if the cell size
52587 ** wanted to be less than 4 but got rounded up to 4 on the leaf, then size
52588 ** might be less than 8 (leaf-size + pointer) on the interior node. Hence
52589 ** the term after the || in the following assert(). */
52590 assert( sz==cellSizePtr(pPage, pCell) || (sz==8 && iChild>0) );
52591 if( pPage->nOverflow || sz+2>pPage->nFree ){
52592 if( pTemp ){
52593 memcpy(pTemp+nSkip, pCell+nSkip, sz-nSkip);
52594 pCell = pTemp;
52596 if( iChild ){
52597 put4byte(pCell, iChild);
52599 j = pPage->nOverflow++;
52600 assert( j<(int)(sizeof(pPage->aOvfl)/sizeof(pPage->aOvfl[0])) );
52601 pPage->aOvfl[j].pCell = pCell;
52602 pPage->aOvfl[j].idx = (u16)i;
52603 }else{
52604 int rc = sqlite3PagerWrite(pPage->pDbPage);
52605 if( rc!=SQLITE_OK ){
52606 *pRC = rc;
52607 return;
52609 assert( sqlite3PagerIswriteable(pPage->pDbPage) );
52610 data = pPage->aData;
52611 cellOffset = pPage->cellOffset;
52612 end = cellOffset + 2*pPage->nCell;
52613 ins = cellOffset + 2*i;
52614 rc = allocateSpace(pPage, sz, &idx);
52615 if( rc ){ *pRC = rc; return; }
52616 /* The allocateSpace() routine guarantees the following two properties
52617 ** if it returns success */
52618 assert( idx >= end+2 );
52619 assert( idx+sz <= (int)pPage->pBt->usableSize );
52620 pPage->nCell++;
52621 pPage->nFree -= (u16)(2 + sz);
52622 memcpy(&data[idx+nSkip], pCell+nSkip, sz-nSkip);
52623 if( iChild ){
52624 put4byte(&data[idx], iChild);
52626 for(j=end, ptr=&data[j]; j>ins; j-=2, ptr-=2){
52627 ptr[0] = ptr[-2];
52628 ptr[1] = ptr[-1];
52630 put2byte(&data[ins], idx);
52631 put2byte(&data[pPage->hdrOffset+3], pPage->nCell);
52632 #ifndef SQLITE_OMIT_AUTOVACUUM
52633 if( pPage->pBt->autoVacuum ){
52634 /* The cell may contain a pointer to an overflow page. If so, write
52635 ** the entry for the overflow page into the pointer map.
52637 ptrmapPutOvflPtr(pPage, pCell, pRC);
52639 #endif
52644 ** Add a list of cells to a page. The page should be initially empty.
52645 ** The cells are guaranteed to fit on the page.
52647 static void assemblePage(
52648 MemPage *pPage, /* The page to be assemblied */
52649 int nCell, /* The number of cells to add to this page */
52650 u8 **apCell, /* Pointers to cell bodies */
52651 u16 *aSize /* Sizes of the cells */
52653 int i; /* Loop counter */
52654 u8 *pCellptr; /* Address of next cell pointer */
52655 int cellbody; /* Address of next cell body */
52656 u8 * const data = pPage->aData; /* Pointer to data for pPage */
52657 const int hdr = pPage->hdrOffset; /* Offset of header on pPage */
52658 const int nUsable = pPage->pBt->usableSize; /* Usable size of page */
52660 assert( pPage->nOverflow==0 );
52661 assert( sqlite3_mutex_held(pPage->pBt->mutex) );
52662 assert( nCell>=0 && nCell<=(int)MX_CELL(pPage->pBt)
52663 && (int)MX_CELL(pPage->pBt)<=10921);
52664 assert( sqlite3PagerIswriteable(pPage->pDbPage) );
52666 /* Check that the page has just been zeroed by zeroPage() */
52667 assert( pPage->nCell==0 );
52668 assert( get2byteNotZero(&data[hdr+5])==nUsable );
52670 pCellptr = &data[pPage->cellOffset + nCell*2];
52671 cellbody = nUsable;
52672 for(i=nCell-1; i>=0; i--){
52673 pCellptr -= 2;
52674 cellbody -= aSize[i];
52675 put2byte(pCellptr, cellbody);
52676 memcpy(&data[cellbody], apCell[i], aSize[i]);
52678 put2byte(&data[hdr+3], nCell);
52679 put2byte(&data[hdr+5], cellbody);
52680 pPage->nFree -= (nCell*2 + nUsable - cellbody);
52681 pPage->nCell = (u16)nCell;
52685 ** The following parameters determine how many adjacent pages get involved
52686 ** in a balancing operation. NN is the number of neighbors on either side
52687 ** of the page that participate in the balancing operation. NB is the
52688 ** total number of pages that participate, including the target page and
52689 ** NN neighbors on either side.
52691 ** The minimum value of NN is 1 (of course). Increasing NN above 1
52692 ** (to 2 or 3) gives a modest improvement in SELECT and DELETE performance
52693 ** in exchange for a larger degradation in INSERT and UPDATE performance.
52694 ** The value of NN appears to give the best results overall.
52696 #define NN 1 /* Number of neighbors on either side of pPage */
52697 #define NB (NN*2+1) /* Total pages involved in the balance */
52700 #ifndef SQLITE_OMIT_QUICKBALANCE
52702 ** This version of balance() handles the common special case where
52703 ** a new entry is being inserted on the extreme right-end of the
52704 ** tree, in other words, when the new entry will become the largest
52705 ** entry in the tree.
52707 ** Instead of trying to balance the 3 right-most leaf pages, just add
52708 ** a new page to the right-hand side and put the one new entry in
52709 ** that page. This leaves the right side of the tree somewhat
52710 ** unbalanced. But odds are that we will be inserting new entries
52711 ** at the end soon afterwards so the nearly empty page will quickly
52712 ** fill up. On average.
52714 ** pPage is the leaf page which is the right-most page in the tree.
52715 ** pParent is its parent. pPage must have a single overflow entry
52716 ** which is also the right-most entry on the page.
52718 ** The pSpace buffer is used to store a temporary copy of the divider
52719 ** cell that will be inserted into pParent. Such a cell consists of a 4
52720 ** byte page number followed by a variable length integer. In other
52721 ** words, at most 13 bytes. Hence the pSpace buffer must be at
52722 ** least 13 bytes in size.
52724 static int balance_quick(MemPage *pParent, MemPage *pPage, u8 *pSpace){
52725 BtShared *const pBt = pPage->pBt; /* B-Tree Database */
52726 MemPage *pNew; /* Newly allocated page */
52727 int rc; /* Return Code */
52728 Pgno pgnoNew; /* Page number of pNew */
52730 assert( sqlite3_mutex_held(pPage->pBt->mutex) );
52731 assert( sqlite3PagerIswriteable(pParent->pDbPage) );
52732 assert( pPage->nOverflow==1 );
52734 /* This error condition is now caught prior to reaching this function */
52735 if( pPage->nCell<=0 ) return SQLITE_CORRUPT_BKPT;
52737 /* Allocate a new page. This page will become the right-sibling of
52738 ** pPage. Make the parent page writable, so that the new divider cell
52739 ** may be inserted. If both these operations are successful, proceed.
52741 rc = allocateBtreePage(pBt, &pNew, &pgnoNew, 0, 0);
52743 if( rc==SQLITE_OK ){
52745 u8 *pOut = &pSpace[4];
52746 u8 *pCell = pPage->aOvfl[0].pCell;
52747 u16 szCell = cellSizePtr(pPage, pCell);
52748 u8 *pStop;
52750 assert( sqlite3PagerIswriteable(pNew->pDbPage) );
52751 assert( pPage->aData[0]==(PTF_INTKEY|PTF_LEAFDATA|PTF_LEAF) );
52752 zeroPage(pNew, PTF_INTKEY|PTF_LEAFDATA|PTF_LEAF);
52753 assemblePage(pNew, 1, &pCell, &szCell);
52755 /* If this is an auto-vacuum database, update the pointer map
52756 ** with entries for the new page, and any pointer from the
52757 ** cell on the page to an overflow page. If either of these
52758 ** operations fails, the return code is set, but the contents
52759 ** of the parent page are still manipulated by thh code below.
52760 ** That is Ok, at this point the parent page is guaranteed to
52761 ** be marked as dirty. Returning an error code will cause a
52762 ** rollback, undoing any changes made to the parent page.
52764 if( ISAUTOVACUUM ){
52765 ptrmapPut(pBt, pgnoNew, PTRMAP_BTREE, pParent->pgno, &rc);
52766 if( szCell>pNew->minLocal ){
52767 ptrmapPutOvflPtr(pNew, pCell, &rc);
52771 /* Create a divider cell to insert into pParent. The divider cell
52772 ** consists of a 4-byte page number (the page number of pPage) and
52773 ** a variable length key value (which must be the same value as the
52774 ** largest key on pPage).
52776 ** To find the largest key value on pPage, first find the right-most
52777 ** cell on pPage. The first two fields of this cell are the
52778 ** record-length (a variable length integer at most 32-bits in size)
52779 ** and the key value (a variable length integer, may have any value).
52780 ** The first of the while(...) loops below skips over the record-length
52781 ** field. The second while(...) loop copies the key value from the
52782 ** cell on pPage into the pSpace buffer.
52784 pCell = findCell(pPage, pPage->nCell-1);
52785 pStop = &pCell[9];
52786 while( (*(pCell++)&0x80) && pCell<pStop );
52787 pStop = &pCell[9];
52788 while( ((*(pOut++) = *(pCell++))&0x80) && pCell<pStop );
52790 /* Insert the new divider cell into pParent. */
52791 insertCell(pParent, pParent->nCell, pSpace, (int)(pOut-pSpace),
52792 0, pPage->pgno, &rc);
52794 /* Set the right-child pointer of pParent to point to the new page. */
52795 put4byte(&pParent->aData[pParent->hdrOffset+8], pgnoNew);
52797 /* Release the reference to the new page. */
52798 releasePage(pNew);
52801 return rc;
52803 #endif /* SQLITE_OMIT_QUICKBALANCE */
52805 #if 0
52807 ** This function does not contribute anything to the operation of SQLite.
52808 ** it is sometimes activated temporarily while debugging code responsible
52809 ** for setting pointer-map entries.
52811 static int ptrmapCheckPages(MemPage **apPage, int nPage){
52812 int i, j;
52813 for(i=0; i<nPage; i++){
52814 Pgno n;
52815 u8 e;
52816 MemPage *pPage = apPage[i];
52817 BtShared *pBt = pPage->pBt;
52818 assert( pPage->isInit );
52820 for(j=0; j<pPage->nCell; j++){
52821 CellInfo info;
52822 u8 *z;
52824 z = findCell(pPage, j);
52825 btreeParseCellPtr(pPage, z, &info);
52826 if( info.iOverflow ){
52827 Pgno ovfl = get4byte(&z[info.iOverflow]);
52828 ptrmapGet(pBt, ovfl, &e, &n);
52829 assert( n==pPage->pgno && e==PTRMAP_OVERFLOW1 );
52831 if( !pPage->leaf ){
52832 Pgno child = get4byte(z);
52833 ptrmapGet(pBt, child, &e, &n);
52834 assert( n==pPage->pgno && e==PTRMAP_BTREE );
52837 if( !pPage->leaf ){
52838 Pgno child = get4byte(&pPage->aData[pPage->hdrOffset+8]);
52839 ptrmapGet(pBt, child, &e, &n);
52840 assert( n==pPage->pgno && e==PTRMAP_BTREE );
52843 return 1;
52845 #endif
52848 ** This function is used to copy the contents of the b-tree node stored
52849 ** on page pFrom to page pTo. If page pFrom was not a leaf page, then
52850 ** the pointer-map entries for each child page are updated so that the
52851 ** parent page stored in the pointer map is page pTo. If pFrom contained
52852 ** any cells with overflow page pointers, then the corresponding pointer
52853 ** map entries are also updated so that the parent page is page pTo.
52855 ** If pFrom is currently carrying any overflow cells (entries in the
52856 ** MemPage.aOvfl[] array), they are not copied to pTo.
52858 ** Before returning, page pTo is reinitialized using btreeInitPage().
52860 ** The performance of this function is not critical. It is only used by
52861 ** the balance_shallower() and balance_deeper() procedures, neither of
52862 ** which are called often under normal circumstances.
52864 static void copyNodeContent(MemPage *pFrom, MemPage *pTo, int *pRC){
52865 if( (*pRC)==SQLITE_OK ){
52866 BtShared * const pBt = pFrom->pBt;
52867 u8 * const aFrom = pFrom->aData;
52868 u8 * const aTo = pTo->aData;
52869 int const iFromHdr = pFrom->hdrOffset;
52870 int const iToHdr = ((pTo->pgno==1) ? 100 : 0);
52871 int rc;
52872 int iData;
52875 assert( pFrom->isInit );
52876 assert( pFrom->nFree>=iToHdr );
52877 assert( get2byte(&aFrom[iFromHdr+5]) <= (int)pBt->usableSize );
52879 /* Copy the b-tree node content from page pFrom to page pTo. */
52880 iData = get2byte(&aFrom[iFromHdr+5]);
52881 memcpy(&aTo[iData], &aFrom[iData], pBt->usableSize-iData);
52882 memcpy(&aTo[iToHdr], &aFrom[iFromHdr], pFrom->cellOffset + 2*pFrom->nCell);
52884 /* Reinitialize page pTo so that the contents of the MemPage structure
52885 ** match the new data. The initialization of pTo can actually fail under
52886 ** fairly obscure circumstances, even though it is a copy of initialized
52887 ** page pFrom.
52889 pTo->isInit = 0;
52890 rc = btreeInitPage(pTo);
52891 if( rc!=SQLITE_OK ){
52892 *pRC = rc;
52893 return;
52896 /* If this is an auto-vacuum database, update the pointer-map entries
52897 ** for any b-tree or overflow pages that pTo now contains the pointers to.
52899 if( ISAUTOVACUUM ){
52900 *pRC = setChildPtrmaps(pTo);
52906 ** This routine redistributes cells on the iParentIdx'th child of pParent
52907 ** (hereafter "the page") and up to 2 siblings so that all pages have about the
52908 ** same amount of free space. Usually a single sibling on either side of the
52909 ** page are used in the balancing, though both siblings might come from one
52910 ** side if the page is the first or last child of its parent. If the page
52911 ** has fewer than 2 siblings (something which can only happen if the page
52912 ** is a root page or a child of a root page) then all available siblings
52913 ** participate in the balancing.
52915 ** The number of siblings of the page might be increased or decreased by
52916 ** one or two in an effort to keep pages nearly full but not over full.
52918 ** Note that when this routine is called, some of the cells on the page
52919 ** might not actually be stored in MemPage.aData[]. This can happen
52920 ** if the page is overfull. This routine ensures that all cells allocated
52921 ** to the page and its siblings fit into MemPage.aData[] before returning.
52923 ** In the course of balancing the page and its siblings, cells may be
52924 ** inserted into or removed from the parent page (pParent). Doing so
52925 ** may cause the parent page to become overfull or underfull. If this
52926 ** happens, it is the responsibility of the caller to invoke the correct
52927 ** balancing routine to fix this problem (see the balance() routine).
52929 ** If this routine fails for any reason, it might leave the database
52930 ** in a corrupted state. So if this routine fails, the database should
52931 ** be rolled back.
52933 ** The third argument to this function, aOvflSpace, is a pointer to a
52934 ** buffer big enough to hold one page. If while inserting cells into the parent
52935 ** page (pParent) the parent page becomes overfull, this buffer is
52936 ** used to store the parent's overflow cells. Because this function inserts
52937 ** a maximum of four divider cells into the parent page, and the maximum
52938 ** size of a cell stored within an internal node is always less than 1/4
52939 ** of the page-size, the aOvflSpace[] buffer is guaranteed to be large
52940 ** enough for all overflow cells.
52942 ** If aOvflSpace is set to a null pointer, this function returns
52943 ** SQLITE_NOMEM.
52945 static int balance_nonroot(
52946 MemPage *pParent, /* Parent page of siblings being balanced */
52947 int iParentIdx, /* Index of "the page" in pParent */
52948 u8 *aOvflSpace, /* page-size bytes of space for parent ovfl */
52949 int isRoot /* True if pParent is a root-page */
52951 BtShared *pBt; /* The whole database */
52952 int nCell = 0; /* Number of cells in apCell[] */
52953 int nMaxCells = 0; /* Allocated size of apCell, szCell, aFrom. */
52954 int nNew = 0; /* Number of pages in apNew[] */
52955 int nOld; /* Number of pages in apOld[] */
52956 int i, j, k; /* Loop counters */
52957 int nxDiv; /* Next divider slot in pParent->aCell[] */
52958 int rc = SQLITE_OK; /* The return code */
52959 u16 leafCorrection; /* 4 if pPage is a leaf. 0 if not */
52960 int leafData; /* True if pPage is a leaf of a LEAFDATA tree */
52961 int usableSpace; /* Bytes in pPage beyond the header */
52962 int pageFlags; /* Value of pPage->aData[0] */
52963 int subtotal; /* Subtotal of bytes in cells on one page */
52964 int iSpace1 = 0; /* First unused byte of aSpace1[] */
52965 int iOvflSpace = 0; /* First unused byte of aOvflSpace[] */
52966 int szScratch; /* Size of scratch memory requested */
52967 MemPage *apOld[NB]; /* pPage and up to two siblings */
52968 MemPage *apCopy[NB]; /* Private copies of apOld[] pages */
52969 MemPage *apNew[NB+2]; /* pPage and up to NB siblings after balancing */
52970 u8 *pRight; /* Location in parent of right-sibling pointer */
52971 u8 *apDiv[NB-1]; /* Divider cells in pParent */
52972 int cntNew[NB+2]; /* Index in aCell[] of cell after i-th page */
52973 int szNew[NB+2]; /* Combined size of cells place on i-th page */
52974 u8 **apCell = 0; /* All cells begin balanced */
52975 u16 *szCell; /* Local size of all cells in apCell[] */
52976 u8 *aSpace1; /* Space for copies of dividers cells */
52977 Pgno pgno; /* Temp var to store a page number in */
52979 pBt = pParent->pBt;
52980 assert( sqlite3_mutex_held(pBt->mutex) );
52981 assert( sqlite3PagerIswriteable(pParent->pDbPage) );
52983 #if 0
52984 TRACE(("BALANCE: begin page %d child of %d\n", pPage->pgno, pParent->pgno));
52985 #endif
52987 /* At this point pParent may have at most one overflow cell. And if
52988 ** this overflow cell is present, it must be the cell with
52989 ** index iParentIdx. This scenario comes about when this function
52990 ** is called (indirectly) from sqlite3BtreeDelete().
52992 assert( pParent->nOverflow==0 || pParent->nOverflow==1 );
52993 assert( pParent->nOverflow==0 || pParent->aOvfl[0].idx==iParentIdx );
52995 if( !aOvflSpace ){
52996 return SQLITE_NOMEM;
52999 /* Find the sibling pages to balance. Also locate the cells in pParent
53000 ** that divide the siblings. An attempt is made to find NN siblings on
53001 ** either side of pPage. More siblings are taken from one side, however,
53002 ** if there are fewer than NN siblings on the other side. If pParent
53003 ** has NB or fewer children then all children of pParent are taken.
53005 ** This loop also drops the divider cells from the parent page. This
53006 ** way, the remainder of the function does not have to deal with any
53007 ** overflow cells in the parent page, since if any existed they will
53008 ** have already been removed.
53010 i = pParent->nOverflow + pParent->nCell;
53011 if( i<2 ){
53012 nxDiv = 0;
53013 nOld = i+1;
53014 }else{
53015 nOld = 3;
53016 if( iParentIdx==0 ){
53017 nxDiv = 0;
53018 }else if( iParentIdx==i ){
53019 nxDiv = i-2;
53020 }else{
53021 nxDiv = iParentIdx-1;
53023 i = 2;
53025 if( (i+nxDiv-pParent->nOverflow)==pParent->nCell ){
53026 pRight = &pParent->aData[pParent->hdrOffset+8];
53027 }else{
53028 pRight = findCell(pParent, i+nxDiv-pParent->nOverflow);
53030 pgno = get4byte(pRight);
53031 while( 1 ){
53032 rc = getAndInitPage(pBt, pgno, &apOld[i]);
53033 if( rc ){
53034 memset(apOld, 0, (i+1)*sizeof(MemPage*));
53035 goto balance_cleanup;
53037 nMaxCells += 1+apOld[i]->nCell+apOld[i]->nOverflow;
53038 if( (i--)==0 ) break;
53040 if( i+nxDiv==pParent->aOvfl[0].idx && pParent->nOverflow ){
53041 apDiv[i] = pParent->aOvfl[0].pCell;
53042 pgno = get4byte(apDiv[i]);
53043 szNew[i] = cellSizePtr(pParent, apDiv[i]);
53044 pParent->nOverflow = 0;
53045 }else{
53046 apDiv[i] = findCell(pParent, i+nxDiv-pParent->nOverflow);
53047 pgno = get4byte(apDiv[i]);
53048 szNew[i] = cellSizePtr(pParent, apDiv[i]);
53050 /* Drop the cell from the parent page. apDiv[i] still points to
53051 ** the cell within the parent, even though it has been dropped.
53052 ** This is safe because dropping a cell only overwrites the first
53053 ** four bytes of it, and this function does not need the first
53054 ** four bytes of the divider cell. So the pointer is safe to use
53055 ** later on.
53057 ** Unless SQLite is compiled in secure-delete mode. In this case,
53058 ** the dropCell() routine will overwrite the entire cell with zeroes.
53059 ** In this case, temporarily copy the cell into the aOvflSpace[]
53060 ** buffer. It will be copied out again as soon as the aSpace[] buffer
53061 ** is allocated. */
53062 if( pBt->secureDelete ){
53063 int iOff = SQLITE_PTR_TO_INT(apDiv[i]) - SQLITE_PTR_TO_INT(pParent->aData);
53064 if( (iOff+szNew[i])>(int)pBt->usableSize ){
53065 rc = SQLITE_CORRUPT_BKPT;
53066 memset(apOld, 0, (i+1)*sizeof(MemPage*));
53067 goto balance_cleanup;
53068 }else{
53069 memcpy(&aOvflSpace[iOff], apDiv[i], szNew[i]);
53070 apDiv[i] = &aOvflSpace[apDiv[i]-pParent->aData];
53073 dropCell(pParent, i+nxDiv-pParent->nOverflow, szNew[i], &rc);
53077 /* Make nMaxCells a multiple of 4 in order to preserve 8-byte
53078 ** alignment */
53079 nMaxCells = (nMaxCells + 3)&~3;
53082 ** Allocate space for memory structures
53084 k = pBt->pageSize + ROUND8(sizeof(MemPage));
53085 szScratch =
53086 nMaxCells*sizeof(u8*) /* apCell */
53087 + nMaxCells*sizeof(u16) /* szCell */
53088 + pBt->pageSize /* aSpace1 */
53089 + k*nOld; /* Page copies (apCopy) */
53090 apCell = sqlite3ScratchMalloc( szScratch );
53091 if( apCell==0 ){
53092 rc = SQLITE_NOMEM;
53093 goto balance_cleanup;
53095 szCell = (u16*)&apCell[nMaxCells];
53096 aSpace1 = (u8*)&szCell[nMaxCells];
53097 assert( EIGHT_BYTE_ALIGNMENT(aSpace1) );
53100 ** Load pointers to all cells on sibling pages and the divider cells
53101 ** into the local apCell[] array. Make copies of the divider cells
53102 ** into space obtained from aSpace1[] and remove the the divider Cells
53103 ** from pParent.
53105 ** If the siblings are on leaf pages, then the child pointers of the
53106 ** divider cells are stripped from the cells before they are copied
53107 ** into aSpace1[]. In this way, all cells in apCell[] are without
53108 ** child pointers. If siblings are not leaves, then all cell in
53109 ** apCell[] include child pointers. Either way, all cells in apCell[]
53110 ** are alike.
53112 ** leafCorrection: 4 if pPage is a leaf. 0 if pPage is not a leaf.
53113 ** leafData: 1 if pPage holds key+data and pParent holds only keys.
53115 leafCorrection = apOld[0]->leaf*4;
53116 leafData = apOld[0]->hasData;
53117 for(i=0; i<nOld; i++){
53118 int limit;
53120 /* Before doing anything else, take a copy of the i'th original sibling
53121 ** The rest of this function will use data from the copies rather
53122 ** that the original pages since the original pages will be in the
53123 ** process of being overwritten. */
53124 MemPage *pOld = apCopy[i] = (MemPage*)&aSpace1[pBt->pageSize + k*i];
53125 memcpy(pOld, apOld[i], sizeof(MemPage));
53126 pOld->aData = (void*)&pOld[1];
53127 memcpy(pOld->aData, apOld[i]->aData, pBt->pageSize);
53129 limit = pOld->nCell+pOld->nOverflow;
53130 for(j=0; j<limit; j++){
53131 assert( nCell<nMaxCells );
53132 apCell[nCell] = findOverflowCell(pOld, j);
53133 szCell[nCell] = cellSizePtr(pOld, apCell[nCell]);
53134 nCell++;
53136 if( i<nOld-1 && !leafData){
53137 u16 sz = (u16)szNew[i];
53138 u8 *pTemp;
53139 assert( nCell<nMaxCells );
53140 szCell[nCell] = sz;
53141 pTemp = &aSpace1[iSpace1];
53142 iSpace1 += sz;
53143 assert( sz<=pBt->maxLocal+23 );
53144 assert( iSpace1 <= (int)pBt->pageSize );
53145 memcpy(pTemp, apDiv[i], sz);
53146 apCell[nCell] = pTemp+leafCorrection;
53147 assert( leafCorrection==0 || leafCorrection==4 );
53148 szCell[nCell] = szCell[nCell] - leafCorrection;
53149 if( !pOld->leaf ){
53150 assert( leafCorrection==0 );
53151 assert( pOld->hdrOffset==0 );
53152 /* The right pointer of the child page pOld becomes the left
53153 ** pointer of the divider cell */
53154 memcpy(apCell[nCell], &pOld->aData[8], 4);
53155 }else{
53156 assert( leafCorrection==4 );
53157 if( szCell[nCell]<4 ){
53158 /* Do not allow any cells smaller than 4 bytes. */
53159 szCell[nCell] = 4;
53162 nCell++;
53167 ** Figure out the number of pages needed to hold all nCell cells.
53168 ** Store this number in "k". Also compute szNew[] which is the total
53169 ** size of all cells on the i-th page and cntNew[] which is the index
53170 ** in apCell[] of the cell that divides page i from page i+1.
53171 ** cntNew[k] should equal nCell.
53173 ** Values computed by this block:
53175 ** k: The total number of sibling pages
53176 ** szNew[i]: Spaced used on the i-th sibling page.
53177 ** cntNew[i]: Index in apCell[] and szCell[] for the first cell to
53178 ** the right of the i-th sibling page.
53179 ** usableSpace: Number of bytes of space available on each sibling.
53182 usableSpace = pBt->usableSize - 12 + leafCorrection;
53183 for(subtotal=k=i=0; i<nCell; i++){
53184 assert( i<nMaxCells );
53185 subtotal += szCell[i] + 2;
53186 if( subtotal > usableSpace ){
53187 szNew[k] = subtotal - szCell[i];
53188 cntNew[k] = i;
53189 if( leafData ){ i--; }
53190 subtotal = 0;
53191 k++;
53192 if( k>NB+1 ){ rc = SQLITE_CORRUPT_BKPT; goto balance_cleanup; }
53195 szNew[k] = subtotal;
53196 cntNew[k] = nCell;
53197 k++;
53200 ** The packing computed by the previous block is biased toward the siblings
53201 ** on the left side. The left siblings are always nearly full, while the
53202 ** right-most sibling might be nearly empty. This block of code attempts
53203 ** to adjust the packing of siblings to get a better balance.
53205 ** This adjustment is more than an optimization. The packing above might
53206 ** be so out of balance as to be illegal. For example, the right-most
53207 ** sibling might be completely empty. This adjustment is not optional.
53209 for(i=k-1; i>0; i--){
53210 int szRight = szNew[i]; /* Size of sibling on the right */
53211 int szLeft = szNew[i-1]; /* Size of sibling on the left */
53212 int r; /* Index of right-most cell in left sibling */
53213 int d; /* Index of first cell to the left of right sibling */
53215 r = cntNew[i-1] - 1;
53216 d = r + 1 - leafData;
53217 assert( d<nMaxCells );
53218 assert( r<nMaxCells );
53219 while( szRight==0 || szRight+szCell[d]+2<=szLeft-(szCell[r]+2) ){
53220 szRight += szCell[d] + 2;
53221 szLeft -= szCell[r] + 2;
53222 cntNew[i-1]--;
53223 r = cntNew[i-1] - 1;
53224 d = r + 1 - leafData;
53226 szNew[i] = szRight;
53227 szNew[i-1] = szLeft;
53230 /* Either we found one or more cells (cntnew[0])>0) or pPage is
53231 ** a virtual root page. A virtual root page is when the real root
53232 ** page is page 1 and we are the only child of that page.
53234 assert( cntNew[0]>0 || (pParent->pgno==1 && pParent->nCell==0) );
53236 TRACE(("BALANCE: old: %d %d %d ",
53237 apOld[0]->pgno,
53238 nOld>=2 ? apOld[1]->pgno : 0,
53239 nOld>=3 ? apOld[2]->pgno : 0
53243 ** Allocate k new pages. Reuse old pages where possible.
53245 if( apOld[0]->pgno<=1 ){
53246 rc = SQLITE_CORRUPT_BKPT;
53247 goto balance_cleanup;
53249 pageFlags = apOld[0]->aData[0];
53250 for(i=0; i<k; i++){
53251 MemPage *pNew;
53252 if( i<nOld ){
53253 pNew = apNew[i] = apOld[i];
53254 apOld[i] = 0;
53255 rc = sqlite3PagerWrite(pNew->pDbPage);
53256 nNew++;
53257 if( rc ) goto balance_cleanup;
53258 }else{
53259 assert( i>0 );
53260 rc = allocateBtreePage(pBt, &pNew, &pgno, pgno, 0);
53261 if( rc ) goto balance_cleanup;
53262 apNew[i] = pNew;
53263 nNew++;
53265 /* Set the pointer-map entry for the new sibling page. */
53266 if( ISAUTOVACUUM ){
53267 ptrmapPut(pBt, pNew->pgno, PTRMAP_BTREE, pParent->pgno, &rc);
53268 if( rc!=SQLITE_OK ){
53269 goto balance_cleanup;
53275 /* Free any old pages that were not reused as new pages.
53277 while( i<nOld ){
53278 freePage(apOld[i], &rc);
53279 if( rc ) goto balance_cleanup;
53280 releasePage(apOld[i]);
53281 apOld[i] = 0;
53282 i++;
53286 ** Put the new pages in accending order. This helps to
53287 ** keep entries in the disk file in order so that a scan
53288 ** of the table is a linear scan through the file. That
53289 ** in turn helps the operating system to deliver pages
53290 ** from the disk more rapidly.
53292 ** An O(n^2) insertion sort algorithm is used, but since
53293 ** n is never more than NB (a small constant), that should
53294 ** not be a problem.
53296 ** When NB==3, this one optimization makes the database
53297 ** about 25% faster for large insertions and deletions.
53299 for(i=0; i<k-1; i++){
53300 int minV = apNew[i]->pgno;
53301 int minI = i;
53302 for(j=i+1; j<k; j++){
53303 if( apNew[j]->pgno<(unsigned)minV ){
53304 minI = j;
53305 minV = apNew[j]->pgno;
53308 if( minI>i ){
53309 MemPage *pT;
53310 pT = apNew[i];
53311 apNew[i] = apNew[minI];
53312 apNew[minI] = pT;
53315 TRACE(("new: %d(%d) %d(%d) %d(%d) %d(%d) %d(%d)\n",
53316 apNew[0]->pgno, szNew[0],
53317 nNew>=2 ? apNew[1]->pgno : 0, nNew>=2 ? szNew[1] : 0,
53318 nNew>=3 ? apNew[2]->pgno : 0, nNew>=3 ? szNew[2] : 0,
53319 nNew>=4 ? apNew[3]->pgno : 0, nNew>=4 ? szNew[3] : 0,
53320 nNew>=5 ? apNew[4]->pgno : 0, nNew>=5 ? szNew[4] : 0));
53322 assert( sqlite3PagerIswriteable(pParent->pDbPage) );
53323 put4byte(pRight, apNew[nNew-1]->pgno);
53326 ** Evenly distribute the data in apCell[] across the new pages.
53327 ** Insert divider cells into pParent as necessary.
53329 j = 0;
53330 for(i=0; i<nNew; i++){
53331 /* Assemble the new sibling page. */
53332 MemPage *pNew = apNew[i];
53333 assert( j<nMaxCells );
53334 zeroPage(pNew, pageFlags);
53335 assemblePage(pNew, cntNew[i]-j, &apCell[j], &szCell[j]);
53336 assert( pNew->nCell>0 || (nNew==1 && cntNew[0]==0) );
53337 assert( pNew->nOverflow==0 );
53339 j = cntNew[i];
53341 /* If the sibling page assembled above was not the right-most sibling,
53342 ** insert a divider cell into the parent page.
53344 assert( i<nNew-1 || j==nCell );
53345 if( j<nCell ){
53346 u8 *pCell;
53347 u8 *pTemp;
53348 int sz;
53350 assert( j<nMaxCells );
53351 pCell = apCell[j];
53352 sz = szCell[j] + leafCorrection;
53353 pTemp = &aOvflSpace[iOvflSpace];
53354 if( !pNew->leaf ){
53355 memcpy(&pNew->aData[8], pCell, 4);
53356 }else if( leafData ){
53357 /* If the tree is a leaf-data tree, and the siblings are leaves,
53358 ** then there is no divider cell in apCell[]. Instead, the divider
53359 ** cell consists of the integer key for the right-most cell of
53360 ** the sibling-page assembled above only.
53362 CellInfo info;
53363 j--;
53364 btreeParseCellPtr(pNew, apCell[j], &info);
53365 pCell = pTemp;
53366 sz = 4 + putVarint(&pCell[4], info.nKey);
53367 pTemp = 0;
53368 }else{
53369 pCell -= 4;
53370 /* Obscure case for non-leaf-data trees: If the cell at pCell was
53371 ** previously stored on a leaf node, and its reported size was 4
53372 ** bytes, then it may actually be smaller than this
53373 ** (see btreeParseCellPtr(), 4 bytes is the minimum size of
53374 ** any cell). But it is important to pass the correct size to
53375 ** insertCell(), so reparse the cell now.
53377 ** Note that this can never happen in an SQLite data file, as all
53378 ** cells are at least 4 bytes. It only happens in b-trees used
53379 ** to evaluate "IN (SELECT ...)" and similar clauses.
53381 if( szCell[j]==4 ){
53382 assert(leafCorrection==4);
53383 sz = cellSizePtr(pParent, pCell);
53386 iOvflSpace += sz;
53387 assert( sz<=pBt->maxLocal+23 );
53388 assert( iOvflSpace <= (int)pBt->pageSize );
53389 insertCell(pParent, nxDiv, pCell, sz, pTemp, pNew->pgno, &rc);
53390 if( rc!=SQLITE_OK ) goto balance_cleanup;
53391 assert( sqlite3PagerIswriteable(pParent->pDbPage) );
53393 j++;
53394 nxDiv++;
53397 assert( j==nCell );
53398 assert( nOld>0 );
53399 assert( nNew>0 );
53400 if( (pageFlags & PTF_LEAF)==0 ){
53401 u8 *zChild = &apCopy[nOld-1]->aData[8];
53402 memcpy(&apNew[nNew-1]->aData[8], zChild, 4);
53405 if( isRoot && pParent->nCell==0 && pParent->hdrOffset<=apNew[0]->nFree ){
53406 /* The root page of the b-tree now contains no cells. The only sibling
53407 ** page is the right-child of the parent. Copy the contents of the
53408 ** child page into the parent, decreasing the overall height of the
53409 ** b-tree structure by one. This is described as the "balance-shallower"
53410 ** sub-algorithm in some documentation.
53412 ** If this is an auto-vacuum database, the call to copyNodeContent()
53413 ** sets all pointer-map entries corresponding to database image pages
53414 ** for which the pointer is stored within the content being copied.
53416 ** The second assert below verifies that the child page is defragmented
53417 ** (it must be, as it was just reconstructed using assemblePage()). This
53418 ** is important if the parent page happens to be page 1 of the database
53419 ** image. */
53420 assert( nNew==1 );
53421 assert( apNew[0]->nFree ==
53422 (get2byte(&apNew[0]->aData[5])-apNew[0]->cellOffset-apNew[0]->nCell*2)
53424 copyNodeContent(apNew[0], pParent, &rc);
53425 freePage(apNew[0], &rc);
53426 }else if( ISAUTOVACUUM ){
53427 /* Fix the pointer-map entries for all the cells that were shifted around.
53428 ** There are several different types of pointer-map entries that need to
53429 ** be dealt with by this routine. Some of these have been set already, but
53430 ** many have not. The following is a summary:
53432 ** 1) The entries associated with new sibling pages that were not
53433 ** siblings when this function was called. These have already
53434 ** been set. We don't need to worry about old siblings that were
53435 ** moved to the free-list - the freePage() code has taken care
53436 ** of those.
53438 ** 2) The pointer-map entries associated with the first overflow
53439 ** page in any overflow chains used by new divider cells. These
53440 ** have also already been taken care of by the insertCell() code.
53442 ** 3) If the sibling pages are not leaves, then the child pages of
53443 ** cells stored on the sibling pages may need to be updated.
53445 ** 4) If the sibling pages are not internal intkey nodes, then any
53446 ** overflow pages used by these cells may need to be updated
53447 ** (internal intkey nodes never contain pointers to overflow pages).
53449 ** 5) If the sibling pages are not leaves, then the pointer-map
53450 ** entries for the right-child pages of each sibling may need
53451 ** to be updated.
53453 ** Cases 1 and 2 are dealt with above by other code. The next
53454 ** block deals with cases 3 and 4 and the one after that, case 5. Since
53455 ** setting a pointer map entry is a relatively expensive operation, this
53456 ** code only sets pointer map entries for child or overflow pages that have
53457 ** actually moved between pages. */
53458 MemPage *pNew = apNew[0];
53459 MemPage *pOld = apCopy[0];
53460 int nOverflow = pOld->nOverflow;
53461 int iNextOld = pOld->nCell + nOverflow;
53462 int iOverflow = (nOverflow ? pOld->aOvfl[0].idx : -1);
53463 j = 0; /* Current 'old' sibling page */
53464 k = 0; /* Current 'new' sibling page */
53465 for(i=0; i<nCell; i++){
53466 int isDivider = 0;
53467 while( i==iNextOld ){
53468 /* Cell i is the cell immediately following the last cell on old
53469 ** sibling page j. If the siblings are not leaf pages of an
53470 ** intkey b-tree, then cell i was a divider cell. */
53471 pOld = apCopy[++j];
53472 iNextOld = i + !leafData + pOld->nCell + pOld->nOverflow;
53473 if( pOld->nOverflow ){
53474 nOverflow = pOld->nOverflow;
53475 iOverflow = i + !leafData + pOld->aOvfl[0].idx;
53477 isDivider = !leafData;
53480 assert(nOverflow>0 || iOverflow<i );
53481 assert(nOverflow<2 || pOld->aOvfl[0].idx==pOld->aOvfl[1].idx-1);
53482 assert(nOverflow<3 || pOld->aOvfl[1].idx==pOld->aOvfl[2].idx-1);
53483 if( i==iOverflow ){
53484 isDivider = 1;
53485 if( (--nOverflow)>0 ){
53486 iOverflow++;
53490 if( i==cntNew[k] ){
53491 /* Cell i is the cell immediately following the last cell on new
53492 ** sibling page k. If the siblings are not leaf pages of an
53493 ** intkey b-tree, then cell i is a divider cell. */
53494 pNew = apNew[++k];
53495 if( !leafData ) continue;
53497 assert( j<nOld );
53498 assert( k<nNew );
53500 /* If the cell was originally divider cell (and is not now) or
53501 ** an overflow cell, or if the cell was located on a different sibling
53502 ** page before the balancing, then the pointer map entries associated
53503 ** with any child or overflow pages need to be updated. */
53504 if( isDivider || pOld->pgno!=pNew->pgno ){
53505 if( !leafCorrection ){
53506 ptrmapPut(pBt, get4byte(apCell[i]), PTRMAP_BTREE, pNew->pgno, &rc);
53508 if( szCell[i]>pNew->minLocal ){
53509 ptrmapPutOvflPtr(pNew, apCell[i], &rc);
53514 if( !leafCorrection ){
53515 for(i=0; i<nNew; i++){
53516 u32 key = get4byte(&apNew[i]->aData[8]);
53517 ptrmapPut(pBt, key, PTRMAP_BTREE, apNew[i]->pgno, &rc);
53521 #if 0
53522 /* The ptrmapCheckPages() contains assert() statements that verify that
53523 ** all pointer map pages are set correctly. This is helpful while
53524 ** debugging. This is usually disabled because a corrupt database may
53525 ** cause an assert() statement to fail. */
53526 ptrmapCheckPages(apNew, nNew);
53527 ptrmapCheckPages(&pParent, 1);
53528 #endif
53531 assert( pParent->isInit );
53532 TRACE(("BALANCE: finished: old=%d new=%d cells=%d\n",
53533 nOld, nNew, nCell));
53536 ** Cleanup before returning.
53538 balance_cleanup:
53539 sqlite3ScratchFree(apCell);
53540 for(i=0; i<nOld; i++){
53541 releasePage(apOld[i]);
53543 for(i=0; i<nNew; i++){
53544 releasePage(apNew[i]);
53547 return rc;
53552 ** This function is called when the root page of a b-tree structure is
53553 ** overfull (has one or more overflow pages).
53555 ** A new child page is allocated and the contents of the current root
53556 ** page, including overflow cells, are copied into the child. The root
53557 ** page is then overwritten to make it an empty page with the right-child
53558 ** pointer pointing to the new page.
53560 ** Before returning, all pointer-map entries corresponding to pages
53561 ** that the new child-page now contains pointers to are updated. The
53562 ** entry corresponding to the new right-child pointer of the root
53563 ** page is also updated.
53565 ** If successful, *ppChild is set to contain a reference to the child
53566 ** page and SQLITE_OK is returned. In this case the caller is required
53567 ** to call releasePage() on *ppChild exactly once. If an error occurs,
53568 ** an error code is returned and *ppChild is set to 0.
53570 static int balance_deeper(MemPage *pRoot, MemPage **ppChild){
53571 int rc; /* Return value from subprocedures */
53572 MemPage *pChild = 0; /* Pointer to a new child page */
53573 Pgno pgnoChild = 0; /* Page number of the new child page */
53574 BtShared *pBt = pRoot->pBt; /* The BTree */
53576 assert( pRoot->nOverflow>0 );
53577 assert( sqlite3_mutex_held(pBt->mutex) );
53579 /* Make pRoot, the root page of the b-tree, writable. Allocate a new
53580 ** page that will become the new right-child of pPage. Copy the contents
53581 ** of the node stored on pRoot into the new child page.
53583 rc = sqlite3PagerWrite(pRoot->pDbPage);
53584 if( rc==SQLITE_OK ){
53585 rc = allocateBtreePage(pBt,&pChild,&pgnoChild,pRoot->pgno,0);
53586 copyNodeContent(pRoot, pChild, &rc);
53587 if( ISAUTOVACUUM ){
53588 ptrmapPut(pBt, pgnoChild, PTRMAP_BTREE, pRoot->pgno, &rc);
53591 if( rc ){
53592 *ppChild = 0;
53593 releasePage(pChild);
53594 return rc;
53596 assert( sqlite3PagerIswriteable(pChild->pDbPage) );
53597 assert( sqlite3PagerIswriteable(pRoot->pDbPage) );
53598 assert( pChild->nCell==pRoot->nCell );
53600 TRACE(("BALANCE: copy root %d into %d\n", pRoot->pgno, pChild->pgno));
53602 /* Copy the overflow cells from pRoot to pChild */
53603 memcpy(pChild->aOvfl, pRoot->aOvfl, pRoot->nOverflow*sizeof(pRoot->aOvfl[0]));
53604 pChild->nOverflow = pRoot->nOverflow;
53606 /* Zero the contents of pRoot. Then install pChild as the right-child. */
53607 zeroPage(pRoot, pChild->aData[0] & ~PTF_LEAF);
53608 put4byte(&pRoot->aData[pRoot->hdrOffset+8], pgnoChild);
53610 *ppChild = pChild;
53611 return SQLITE_OK;
53615 ** The page that pCur currently points to has just been modified in
53616 ** some way. This function figures out if this modification means the
53617 ** tree needs to be balanced, and if so calls the appropriate balancing
53618 ** routine. Balancing routines are:
53620 ** balance_quick()
53621 ** balance_deeper()
53622 ** balance_nonroot()
53624 static int balance(BtCursor *pCur){
53625 int rc = SQLITE_OK;
53626 const int nMin = pCur->pBt->usableSize * 2 / 3;
53627 u8 aBalanceQuickSpace[13];
53628 u8 *pFree = 0;
53630 TESTONLY( int balance_quick_called = 0 );
53631 TESTONLY( int balance_deeper_called = 0 );
53633 do {
53634 int iPage = pCur->iPage;
53635 MemPage *pPage = pCur->apPage[iPage];
53637 if( iPage==0 ){
53638 if( pPage->nOverflow ){
53639 /* The root page of the b-tree is overfull. In this case call the
53640 ** balance_deeper() function to create a new child for the root-page
53641 ** and copy the current contents of the root-page to it. The
53642 ** next iteration of the do-loop will balance the child page.
53644 assert( (balance_deeper_called++)==0 );
53645 rc = balance_deeper(pPage, &pCur->apPage[1]);
53646 if( rc==SQLITE_OK ){
53647 pCur->iPage = 1;
53648 pCur->aiIdx[0] = 0;
53649 pCur->aiIdx[1] = 0;
53650 assert( pCur->apPage[1]->nOverflow );
53652 }else{
53653 break;
53655 }else if( pPage->nOverflow==0 && pPage->nFree<=nMin ){
53656 break;
53657 }else{
53658 MemPage * const pParent = pCur->apPage[iPage-1];
53659 int const iIdx = pCur->aiIdx[iPage-1];
53661 rc = sqlite3PagerWrite(pParent->pDbPage);
53662 if( rc==SQLITE_OK ){
53663 #ifndef SQLITE_OMIT_QUICKBALANCE
53664 if( pPage->hasData
53665 && pPage->nOverflow==1
53666 && pPage->aOvfl[0].idx==pPage->nCell
53667 && pParent->pgno!=1
53668 && pParent->nCell==iIdx
53670 /* Call balance_quick() to create a new sibling of pPage on which
53671 ** to store the overflow cell. balance_quick() inserts a new cell
53672 ** into pParent, which may cause pParent overflow. If this
53673 ** happens, the next interation of the do-loop will balance pParent
53674 ** use either balance_nonroot() or balance_deeper(). Until this
53675 ** happens, the overflow cell is stored in the aBalanceQuickSpace[]
53676 ** buffer.
53678 ** The purpose of the following assert() is to check that only a
53679 ** single call to balance_quick() is made for each call to this
53680 ** function. If this were not verified, a subtle bug involving reuse
53681 ** of the aBalanceQuickSpace[] might sneak in.
53683 assert( (balance_quick_called++)==0 );
53684 rc = balance_quick(pParent, pPage, aBalanceQuickSpace);
53685 }else
53686 #endif
53688 /* In this case, call balance_nonroot() to redistribute cells
53689 ** between pPage and up to 2 of its sibling pages. This involves
53690 ** modifying the contents of pParent, which may cause pParent to
53691 ** become overfull or underfull. The next iteration of the do-loop
53692 ** will balance the parent page to correct this.
53694 ** If the parent page becomes overfull, the overflow cell or cells
53695 ** are stored in the pSpace buffer allocated immediately below.
53696 ** A subsequent iteration of the do-loop will deal with this by
53697 ** calling balance_nonroot() (balance_deeper() may be called first,
53698 ** but it doesn't deal with overflow cells - just moves them to a
53699 ** different page). Once this subsequent call to balance_nonroot()
53700 ** has completed, it is safe to release the pSpace buffer used by
53701 ** the previous call, as the overflow cell data will have been
53702 ** copied either into the body of a database page or into the new
53703 ** pSpace buffer passed to the latter call to balance_nonroot().
53705 u8 *pSpace = sqlite3PageMalloc(pCur->pBt->pageSize);
53706 rc = balance_nonroot(pParent, iIdx, pSpace, iPage==1);
53707 if( pFree ){
53708 /* If pFree is not NULL, it points to the pSpace buffer used
53709 ** by a previous call to balance_nonroot(). Its contents are
53710 ** now stored either on real database pages or within the
53711 ** new pSpace buffer, so it may be safely freed here. */
53712 sqlite3PageFree(pFree);
53715 /* The pSpace buffer will be freed after the next call to
53716 ** balance_nonroot(), or just before this function returns, whichever
53717 ** comes first. */
53718 pFree = pSpace;
53722 pPage->nOverflow = 0;
53724 /* The next iteration of the do-loop balances the parent page. */
53725 releasePage(pPage);
53726 pCur->iPage--;
53728 }while( rc==SQLITE_OK );
53730 if( pFree ){
53731 sqlite3PageFree(pFree);
53733 return rc;
53738 ** Insert a new record into the BTree. The key is given by (pKey,nKey)
53739 ** and the data is given by (pData,nData). The cursor is used only to
53740 ** define what table the record should be inserted into. The cursor
53741 ** is left pointing at a random location.
53743 ** For an INTKEY table, only the nKey value of the key is used. pKey is
53744 ** ignored. For a ZERODATA table, the pData and nData are both ignored.
53746 ** If the seekResult parameter is non-zero, then a successful call to
53747 ** MovetoUnpacked() to seek cursor pCur to (pKey, nKey) has already
53748 ** been performed. seekResult is the search result returned (a negative
53749 ** number if pCur points at an entry that is smaller than (pKey, nKey), or
53750 ** a positive value if pCur points at an etry that is larger than
53751 ** (pKey, nKey)).
53753 ** If the seekResult parameter is non-zero, then the caller guarantees that
53754 ** cursor pCur is pointing at the existing copy of a row that is to be
53755 ** overwritten. If the seekResult parameter is 0, then cursor pCur may
53756 ** point to any entry or to no entry at all and so this function has to seek
53757 ** the cursor before the new key can be inserted.
53759 SQLITE_PRIVATE int sqlite3BtreeInsert(
53760 BtCursor *pCur, /* Insert data into the table of this cursor */
53761 const void *pKey, i64 nKey, /* The key of the new record */
53762 const void *pData, int nData, /* The data of the new record */
53763 int nZero, /* Number of extra 0 bytes to append to data */
53764 int appendBias, /* True if this is likely an append */
53765 int seekResult /* Result of prior MovetoUnpacked() call */
53767 int rc;
53768 int loc = seekResult; /* -1: before desired location +1: after */
53769 int szNew = 0;
53770 int idx;
53771 MemPage *pPage;
53772 Btree *p = pCur->pBtree;
53773 BtShared *pBt = p->pBt;
53774 unsigned char *oldCell;
53775 unsigned char *newCell = 0;
53777 if( pCur->eState==CURSOR_FAULT ){
53778 assert( pCur->skipNext!=SQLITE_OK );
53779 return pCur->skipNext;
53782 assert( cursorHoldsMutex(pCur) );
53783 assert( pCur->wrFlag && pBt->inTransaction==TRANS_WRITE && !pBt->readOnly );
53784 assert( hasSharedCacheTableLock(p, pCur->pgnoRoot, pCur->pKeyInfo!=0, 2) );
53786 /* Assert that the caller has been consistent. If this cursor was opened
53787 ** expecting an index b-tree, then the caller should be inserting blob
53788 ** keys with no associated data. If the cursor was opened expecting an
53789 ** intkey table, the caller should be inserting integer keys with a
53790 ** blob of associated data. */
53791 assert( (pKey==0)==(pCur->pKeyInfo==0) );
53793 /* If this is an insert into a table b-tree, invalidate any incrblob
53794 ** cursors open on the row being replaced (assuming this is a replace
53795 ** operation - if it is not, the following is a no-op). */
53796 if( pCur->pKeyInfo==0 ){
53797 invalidateIncrblobCursors(p, nKey, 0);
53800 /* Save the positions of any other cursors open on this table.
53802 ** In some cases, the call to btreeMoveto() below is a no-op. For
53803 ** example, when inserting data into a table with auto-generated integer
53804 ** keys, the VDBE layer invokes sqlite3BtreeLast() to figure out the
53805 ** integer key to use. It then calls this function to actually insert the
53806 ** data into the intkey B-Tree. In this case btreeMoveto() recognizes
53807 ** that the cursor is already where it needs to be and returns without
53808 ** doing any work. To avoid thwarting these optimizations, it is important
53809 ** not to clear the cursor here.
53811 rc = saveAllCursors(pBt, pCur->pgnoRoot, pCur);
53812 if( rc ) return rc;
53813 if( !loc ){
53814 rc = btreeMoveto(pCur, pKey, nKey, appendBias, &loc);
53815 if( rc ) return rc;
53817 assert( pCur->eState==CURSOR_VALID || (pCur->eState==CURSOR_INVALID && loc) );
53819 pPage = pCur->apPage[pCur->iPage];
53820 assert( pPage->intKey || nKey>=0 );
53821 assert( pPage->leaf || !pPage->intKey );
53823 TRACE(("INSERT: table=%d nkey=%lld ndata=%d page=%d %s\n",
53824 pCur->pgnoRoot, nKey, nData, pPage->pgno,
53825 loc==0 ? "overwrite" : "new entry"));
53826 assert( pPage->isInit );
53827 allocateTempSpace(pBt);
53828 newCell = pBt->pTmpSpace;
53829 if( newCell==0 ) return SQLITE_NOMEM;
53830 rc = fillInCell(pPage, newCell, pKey, nKey, pData, nData, nZero, &szNew);
53831 if( rc ) goto end_insert;
53832 assert( szNew==cellSizePtr(pPage, newCell) );
53833 assert( szNew <= MX_CELL_SIZE(pBt) );
53834 idx = pCur->aiIdx[pCur->iPage];
53835 if( loc==0 ){
53836 u16 szOld;
53837 assert( idx<pPage->nCell );
53838 rc = sqlite3PagerWrite(pPage->pDbPage);
53839 if( rc ){
53840 goto end_insert;
53842 oldCell = findCell(pPage, idx);
53843 if( !pPage->leaf ){
53844 memcpy(newCell, oldCell, 4);
53846 szOld = cellSizePtr(pPage, oldCell);
53847 rc = clearCell(pPage, oldCell);
53848 dropCell(pPage, idx, szOld, &rc);
53849 if( rc ) goto end_insert;
53850 }else if( loc<0 && pPage->nCell>0 ){
53851 assert( pPage->leaf );
53852 idx = ++pCur->aiIdx[pCur->iPage];
53853 }else{
53854 assert( pPage->leaf );
53856 insertCell(pPage, idx, newCell, szNew, 0, 0, &rc);
53857 assert( rc!=SQLITE_OK || pPage->nCell>0 || pPage->nOverflow>0 );
53859 /* If no error has occured and pPage has an overflow cell, call balance()
53860 ** to redistribute the cells within the tree. Since balance() may move
53861 ** the cursor, zero the BtCursor.info.nSize and BtCursor.validNKey
53862 ** variables.
53864 ** Previous versions of SQLite called moveToRoot() to move the cursor
53865 ** back to the root page as balance() used to invalidate the contents
53866 ** of BtCursor.apPage[] and BtCursor.aiIdx[]. Instead of doing that,
53867 ** set the cursor state to "invalid". This makes common insert operations
53868 ** slightly faster.
53870 ** There is a subtle but important optimization here too. When inserting
53871 ** multiple records into an intkey b-tree using a single cursor (as can
53872 ** happen while processing an "INSERT INTO ... SELECT" statement), it
53873 ** is advantageous to leave the cursor pointing to the last entry in
53874 ** the b-tree if possible. If the cursor is left pointing to the last
53875 ** entry in the table, and the next row inserted has an integer key
53876 ** larger than the largest existing key, it is possible to insert the
53877 ** row without seeking the cursor. This can be a big performance boost.
53879 pCur->info.nSize = 0;
53880 pCur->validNKey = 0;
53881 if( rc==SQLITE_OK && pPage->nOverflow ){
53882 rc = balance(pCur);
53884 /* Must make sure nOverflow is reset to zero even if the balance()
53885 ** fails. Internal data structure corruption will result otherwise.
53886 ** Also, set the cursor state to invalid. This stops saveCursorPosition()
53887 ** from trying to save the current position of the cursor. */
53888 pCur->apPage[pCur->iPage]->nOverflow = 0;
53889 pCur->eState = CURSOR_INVALID;
53891 assert( pCur->apPage[pCur->iPage]->nOverflow==0 );
53893 end_insert:
53894 return rc;
53898 ** Delete the entry that the cursor is pointing to. The cursor
53899 ** is left pointing at a arbitrary location.
53901 SQLITE_PRIVATE int sqlite3BtreeDelete(BtCursor *pCur){
53902 Btree *p = pCur->pBtree;
53903 BtShared *pBt = p->pBt;
53904 int rc; /* Return code */
53905 MemPage *pPage; /* Page to delete cell from */
53906 unsigned char *pCell; /* Pointer to cell to delete */
53907 int iCellIdx; /* Index of cell to delete */
53908 int iCellDepth; /* Depth of node containing pCell */
53910 assert( cursorHoldsMutex(pCur) );
53911 assert( pBt->inTransaction==TRANS_WRITE );
53912 assert( !pBt->readOnly );
53913 assert( pCur->wrFlag );
53914 assert( hasSharedCacheTableLock(p, pCur->pgnoRoot, pCur->pKeyInfo!=0, 2) );
53915 assert( !hasReadConflicts(p, pCur->pgnoRoot) );
53917 if( NEVER(pCur->aiIdx[pCur->iPage]>=pCur->apPage[pCur->iPage]->nCell)
53918 || NEVER(pCur->eState!=CURSOR_VALID)
53920 return SQLITE_ERROR; /* Something has gone awry. */
53923 /* If this is a delete operation to remove a row from a table b-tree,
53924 ** invalidate any incrblob cursors open on the row being deleted. */
53925 if( pCur->pKeyInfo==0 ){
53926 invalidateIncrblobCursors(p, pCur->info.nKey, 0);
53929 iCellDepth = pCur->iPage;
53930 iCellIdx = pCur->aiIdx[iCellDepth];
53931 pPage = pCur->apPage[iCellDepth];
53932 pCell = findCell(pPage, iCellIdx);
53934 /* If the page containing the entry to delete is not a leaf page, move
53935 ** the cursor to the largest entry in the tree that is smaller than
53936 ** the entry being deleted. This cell will replace the cell being deleted
53937 ** from the internal node. The 'previous' entry is used for this instead
53938 ** of the 'next' entry, as the previous entry is always a part of the
53939 ** sub-tree headed by the child page of the cell being deleted. This makes
53940 ** balancing the tree following the delete operation easier. */
53941 if( !pPage->leaf ){
53942 int notUsed;
53943 rc = sqlite3BtreePrevious(pCur, &notUsed);
53944 if( rc ) return rc;
53947 /* Save the positions of any other cursors open on this table before
53948 ** making any modifications. Make the page containing the entry to be
53949 ** deleted writable. Then free any overflow pages associated with the
53950 ** entry and finally remove the cell itself from within the page.
53952 rc = saveAllCursors(pBt, pCur->pgnoRoot, pCur);
53953 if( rc ) return rc;
53954 rc = sqlite3PagerWrite(pPage->pDbPage);
53955 if( rc ) return rc;
53956 rc = clearCell(pPage, pCell);
53957 dropCell(pPage, iCellIdx, cellSizePtr(pPage, pCell), &rc);
53958 if( rc ) return rc;
53960 /* If the cell deleted was not located on a leaf page, then the cursor
53961 ** is currently pointing to the largest entry in the sub-tree headed
53962 ** by the child-page of the cell that was just deleted from an internal
53963 ** node. The cell from the leaf node needs to be moved to the internal
53964 ** node to replace the deleted cell. */
53965 if( !pPage->leaf ){
53966 MemPage *pLeaf = pCur->apPage[pCur->iPage];
53967 int nCell;
53968 Pgno n = pCur->apPage[iCellDepth+1]->pgno;
53969 unsigned char *pTmp;
53971 pCell = findCell(pLeaf, pLeaf->nCell-1);
53972 nCell = cellSizePtr(pLeaf, pCell);
53973 assert( MX_CELL_SIZE(pBt) >= nCell );
53975 allocateTempSpace(pBt);
53976 pTmp = pBt->pTmpSpace;
53978 rc = sqlite3PagerWrite(pLeaf->pDbPage);
53979 insertCell(pPage, iCellIdx, pCell-4, nCell+4, pTmp, n, &rc);
53980 dropCell(pLeaf, pLeaf->nCell-1, nCell, &rc);
53981 if( rc ) return rc;
53984 /* Balance the tree. If the entry deleted was located on a leaf page,
53985 ** then the cursor still points to that page. In this case the first
53986 ** call to balance() repairs the tree, and the if(...) condition is
53987 ** never true.
53989 ** Otherwise, if the entry deleted was on an internal node page, then
53990 ** pCur is pointing to the leaf page from which a cell was removed to
53991 ** replace the cell deleted from the internal node. This is slightly
53992 ** tricky as the leaf node may be underfull, and the internal node may
53993 ** be either under or overfull. In this case run the balancing algorithm
53994 ** on the leaf node first. If the balance proceeds far enough up the
53995 ** tree that we can be sure that any problem in the internal node has
53996 ** been corrected, so be it. Otherwise, after balancing the leaf node,
53997 ** walk the cursor up the tree to the internal node and balance it as
53998 ** well. */
53999 rc = balance(pCur);
54000 if( rc==SQLITE_OK && pCur->iPage>iCellDepth ){
54001 while( pCur->iPage>iCellDepth ){
54002 releasePage(pCur->apPage[pCur->iPage--]);
54004 rc = balance(pCur);
54007 if( rc==SQLITE_OK ){
54008 moveToRoot(pCur);
54010 return rc;
54014 ** Create a new BTree table. Write into *piTable the page
54015 ** number for the root page of the new table.
54017 ** The type of type is determined by the flags parameter. Only the
54018 ** following values of flags are currently in use. Other values for
54019 ** flags might not work:
54021 ** BTREE_INTKEY|BTREE_LEAFDATA Used for SQL tables with rowid keys
54022 ** BTREE_ZERODATA Used for SQL indices
54024 static int btreeCreateTable(Btree *p, int *piTable, int createTabFlags){
54025 BtShared *pBt = p->pBt;
54026 MemPage *pRoot;
54027 Pgno pgnoRoot;
54028 int rc;
54029 int ptfFlags; /* Page-type flage for the root page of new table */
54031 assert( sqlite3BtreeHoldsMutex(p) );
54032 assert( pBt->inTransaction==TRANS_WRITE );
54033 assert( !pBt->readOnly );
54035 #ifdef SQLITE_OMIT_AUTOVACUUM
54036 rc = allocateBtreePage(pBt, &pRoot, &pgnoRoot, 1, 0);
54037 if( rc ){
54038 return rc;
54040 #else
54041 if( pBt->autoVacuum ){
54042 Pgno pgnoMove; /* Move a page here to make room for the root-page */
54043 MemPage *pPageMove; /* The page to move to. */
54045 /* Creating a new table may probably require moving an existing database
54046 ** to make room for the new tables root page. In case this page turns
54047 ** out to be an overflow page, delete all overflow page-map caches
54048 ** held by open cursors.
54050 invalidateAllOverflowCache(pBt);
54052 /* Read the value of meta[3] from the database to determine where the
54053 ** root page of the new table should go. meta[3] is the largest root-page
54054 ** created so far, so the new root-page is (meta[3]+1).
54056 sqlite3BtreeGetMeta(p, BTREE_LARGEST_ROOT_PAGE, &pgnoRoot);
54057 pgnoRoot++;
54059 /* The new root-page may not be allocated on a pointer-map page, or the
54060 ** PENDING_BYTE page.
54062 while( pgnoRoot==PTRMAP_PAGENO(pBt, pgnoRoot) ||
54063 pgnoRoot==PENDING_BYTE_PAGE(pBt) ){
54064 pgnoRoot++;
54066 assert( pgnoRoot>=3 );
54068 /* Allocate a page. The page that currently resides at pgnoRoot will
54069 ** be moved to the allocated page (unless the allocated page happens
54070 ** to reside at pgnoRoot).
54072 rc = allocateBtreePage(pBt, &pPageMove, &pgnoMove, pgnoRoot, 1);
54073 if( rc!=SQLITE_OK ){
54074 return rc;
54077 if( pgnoMove!=pgnoRoot ){
54078 /* pgnoRoot is the page that will be used for the root-page of
54079 ** the new table (assuming an error did not occur). But we were
54080 ** allocated pgnoMove. If required (i.e. if it was not allocated
54081 ** by extending the file), the current page at position pgnoMove
54082 ** is already journaled.
54084 u8 eType = 0;
54085 Pgno iPtrPage = 0;
54087 releasePage(pPageMove);
54089 /* Move the page currently at pgnoRoot to pgnoMove. */
54090 rc = btreeGetPage(pBt, pgnoRoot, &pRoot, 0);
54091 if( rc!=SQLITE_OK ){
54092 return rc;
54094 rc = ptrmapGet(pBt, pgnoRoot, &eType, &iPtrPage);
54095 if( eType==PTRMAP_ROOTPAGE || eType==PTRMAP_FREEPAGE ){
54096 rc = SQLITE_CORRUPT_BKPT;
54098 if( rc!=SQLITE_OK ){
54099 releasePage(pRoot);
54100 return rc;
54102 assert( eType!=PTRMAP_ROOTPAGE );
54103 assert( eType!=PTRMAP_FREEPAGE );
54104 rc = relocatePage(pBt, pRoot, eType, iPtrPage, pgnoMove, 0);
54105 releasePage(pRoot);
54107 /* Obtain the page at pgnoRoot */
54108 if( rc!=SQLITE_OK ){
54109 return rc;
54111 rc = btreeGetPage(pBt, pgnoRoot, &pRoot, 0);
54112 if( rc!=SQLITE_OK ){
54113 return rc;
54115 rc = sqlite3PagerWrite(pRoot->pDbPage);
54116 if( rc!=SQLITE_OK ){
54117 releasePage(pRoot);
54118 return rc;
54120 }else{
54121 pRoot = pPageMove;
54124 /* Update the pointer-map and meta-data with the new root-page number. */
54125 ptrmapPut(pBt, pgnoRoot, PTRMAP_ROOTPAGE, 0, &rc);
54126 if( rc ){
54127 releasePage(pRoot);
54128 return rc;
54131 /* When the new root page was allocated, page 1 was made writable in
54132 ** order either to increase the database filesize, or to decrement the
54133 ** freelist count. Hence, the sqlite3BtreeUpdateMeta() call cannot fail.
54135 assert( sqlite3PagerIswriteable(pBt->pPage1->pDbPage) );
54136 rc = sqlite3BtreeUpdateMeta(p, 4, pgnoRoot);
54137 if( NEVER(rc) ){
54138 releasePage(pRoot);
54139 return rc;
54142 }else{
54143 rc = allocateBtreePage(pBt, &pRoot, &pgnoRoot, 1, 0);
54144 if( rc ) return rc;
54146 #endif
54147 assert( sqlite3PagerIswriteable(pRoot->pDbPage) );
54148 if( createTabFlags & BTREE_INTKEY ){
54149 ptfFlags = PTF_INTKEY | PTF_LEAFDATA | PTF_LEAF;
54150 }else{
54151 ptfFlags = PTF_ZERODATA | PTF_LEAF;
54153 zeroPage(pRoot, ptfFlags);
54154 sqlite3PagerUnref(pRoot->pDbPage);
54155 assert( (pBt->openFlags & BTREE_SINGLE)==0 || pgnoRoot==2 );
54156 *piTable = (int)pgnoRoot;
54157 return SQLITE_OK;
54159 SQLITE_PRIVATE int sqlite3BtreeCreateTable(Btree *p, int *piTable, int flags){
54160 int rc;
54161 sqlite3BtreeEnter(p);
54162 rc = btreeCreateTable(p, piTable, flags);
54163 sqlite3BtreeLeave(p);
54164 return rc;
54168 ** Erase the given database page and all its children. Return
54169 ** the page to the freelist.
54171 static int clearDatabasePage(
54172 BtShared *pBt, /* The BTree that contains the table */
54173 Pgno pgno, /* Page number to clear */
54174 int freePageFlag, /* Deallocate page if true */
54175 int *pnChange /* Add number of Cells freed to this counter */
54177 MemPage *pPage;
54178 int rc;
54179 unsigned char *pCell;
54180 int i;
54182 assert( sqlite3_mutex_held(pBt->mutex) );
54183 if( pgno>btreePagecount(pBt) ){
54184 return SQLITE_CORRUPT_BKPT;
54187 rc = getAndInitPage(pBt, pgno, &pPage);
54188 if( rc ) return rc;
54189 for(i=0; i<pPage->nCell; i++){
54190 pCell = findCell(pPage, i);
54191 if( !pPage->leaf ){
54192 rc = clearDatabasePage(pBt, get4byte(pCell), 1, pnChange);
54193 if( rc ) goto cleardatabasepage_out;
54195 rc = clearCell(pPage, pCell);
54196 if( rc ) goto cleardatabasepage_out;
54198 if( !pPage->leaf ){
54199 rc = clearDatabasePage(pBt, get4byte(&pPage->aData[8]), 1, pnChange);
54200 if( rc ) goto cleardatabasepage_out;
54201 }else if( pnChange ){
54202 assert( pPage->intKey );
54203 *pnChange += pPage->nCell;
54205 if( freePageFlag ){
54206 freePage(pPage, &rc);
54207 }else if( (rc = sqlite3PagerWrite(pPage->pDbPage))==0 ){
54208 zeroPage(pPage, pPage->aData[0] | PTF_LEAF);
54211 cleardatabasepage_out:
54212 releasePage(pPage);
54213 return rc;
54217 ** Delete all information from a single table in the database. iTable is
54218 ** the page number of the root of the table. After this routine returns,
54219 ** the root page is empty, but still exists.
54221 ** This routine will fail with SQLITE_LOCKED if there are any open
54222 ** read cursors on the table. Open write cursors are moved to the
54223 ** root of the table.
54225 ** If pnChange is not NULL, then table iTable must be an intkey table. The
54226 ** integer value pointed to by pnChange is incremented by the number of
54227 ** entries in the table.
54229 SQLITE_PRIVATE int sqlite3BtreeClearTable(Btree *p, int iTable, int *pnChange){
54230 int rc;
54231 BtShared *pBt = p->pBt;
54232 sqlite3BtreeEnter(p);
54233 assert( p->inTrans==TRANS_WRITE );
54235 /* Invalidate all incrblob cursors open on table iTable (assuming iTable
54236 ** is the root of a table b-tree - if it is not, the following call is
54237 ** a no-op). */
54238 invalidateIncrblobCursors(p, 0, 1);
54240 rc = saveAllCursors(pBt, (Pgno)iTable, 0);
54241 if( SQLITE_OK==rc ){
54242 rc = clearDatabasePage(pBt, (Pgno)iTable, 0, pnChange);
54244 sqlite3BtreeLeave(p);
54245 return rc;
54249 ** Erase all information in a table and add the root of the table to
54250 ** the freelist. Except, the root of the principle table (the one on
54251 ** page 1) is never added to the freelist.
54253 ** This routine will fail with SQLITE_LOCKED if there are any open
54254 ** cursors on the table.
54256 ** If AUTOVACUUM is enabled and the page at iTable is not the last
54257 ** root page in the database file, then the last root page
54258 ** in the database file is moved into the slot formerly occupied by
54259 ** iTable and that last slot formerly occupied by the last root page
54260 ** is added to the freelist instead of iTable. In this say, all
54261 ** root pages are kept at the beginning of the database file, which
54262 ** is necessary for AUTOVACUUM to work right. *piMoved is set to the
54263 ** page number that used to be the last root page in the file before
54264 ** the move. If no page gets moved, *piMoved is set to 0.
54265 ** The last root page is recorded in meta[3] and the value of
54266 ** meta[3] is updated by this procedure.
54268 static int btreeDropTable(Btree *p, Pgno iTable, int *piMoved){
54269 int rc;
54270 MemPage *pPage = 0;
54271 BtShared *pBt = p->pBt;
54273 assert( sqlite3BtreeHoldsMutex(p) );
54274 assert( p->inTrans==TRANS_WRITE );
54276 /* It is illegal to drop a table if any cursors are open on the
54277 ** database. This is because in auto-vacuum mode the backend may
54278 ** need to move another root-page to fill a gap left by the deleted
54279 ** root page. If an open cursor was using this page a problem would
54280 ** occur.
54282 ** This error is caught long before control reaches this point.
54284 if( NEVER(pBt->pCursor) ){
54285 sqlite3ConnectionBlocked(p->db, pBt->pCursor->pBtree->db);
54286 return SQLITE_LOCKED_SHAREDCACHE;
54289 rc = btreeGetPage(pBt, (Pgno)iTable, &pPage, 0);
54290 if( rc ) return rc;
54291 rc = sqlite3BtreeClearTable(p, iTable, 0);
54292 if( rc ){
54293 releasePage(pPage);
54294 return rc;
54297 *piMoved = 0;
54299 if( iTable>1 ){
54300 #ifdef SQLITE_OMIT_AUTOVACUUM
54301 freePage(pPage, &rc);
54302 releasePage(pPage);
54303 #else
54304 if( pBt->autoVacuum ){
54305 Pgno maxRootPgno;
54306 sqlite3BtreeGetMeta(p, BTREE_LARGEST_ROOT_PAGE, &maxRootPgno);
54308 if( iTable==maxRootPgno ){
54309 /* If the table being dropped is the table with the largest root-page
54310 ** number in the database, put the root page on the free list.
54312 freePage(pPage, &rc);
54313 releasePage(pPage);
54314 if( rc!=SQLITE_OK ){
54315 return rc;
54317 }else{
54318 /* The table being dropped does not have the largest root-page
54319 ** number in the database. So move the page that does into the
54320 ** gap left by the deleted root-page.
54322 MemPage *pMove;
54323 releasePage(pPage);
54324 rc = btreeGetPage(pBt, maxRootPgno, &pMove, 0);
54325 if( rc!=SQLITE_OK ){
54326 return rc;
54328 rc = relocatePage(pBt, pMove, PTRMAP_ROOTPAGE, 0, iTable, 0);
54329 releasePage(pMove);
54330 if( rc!=SQLITE_OK ){
54331 return rc;
54333 pMove = 0;
54334 rc = btreeGetPage(pBt, maxRootPgno, &pMove, 0);
54335 freePage(pMove, &rc);
54336 releasePage(pMove);
54337 if( rc!=SQLITE_OK ){
54338 return rc;
54340 *piMoved = maxRootPgno;
54343 /* Set the new 'max-root-page' value in the database header. This
54344 ** is the old value less one, less one more if that happens to
54345 ** be a root-page number, less one again if that is the
54346 ** PENDING_BYTE_PAGE.
54348 maxRootPgno--;
54349 while( maxRootPgno==PENDING_BYTE_PAGE(pBt)
54350 || PTRMAP_ISPAGE(pBt, maxRootPgno) ){
54351 maxRootPgno--;
54353 assert( maxRootPgno!=PENDING_BYTE_PAGE(pBt) );
54355 rc = sqlite3BtreeUpdateMeta(p, 4, maxRootPgno);
54356 }else{
54357 freePage(pPage, &rc);
54358 releasePage(pPage);
54360 #endif
54361 }else{
54362 /* If sqlite3BtreeDropTable was called on page 1.
54363 ** This really never should happen except in a corrupt
54364 ** database.
54366 zeroPage(pPage, PTF_INTKEY|PTF_LEAF );
54367 releasePage(pPage);
54369 return rc;
54371 SQLITE_PRIVATE int sqlite3BtreeDropTable(Btree *p, int iTable, int *piMoved){
54372 int rc;
54373 sqlite3BtreeEnter(p);
54374 rc = btreeDropTable(p, iTable, piMoved);
54375 sqlite3BtreeLeave(p);
54376 return rc;
54381 ** This function may only be called if the b-tree connection already
54382 ** has a read or write transaction open on the database.
54384 ** Read the meta-information out of a database file. Meta[0]
54385 ** is the number of free pages currently in the database. Meta[1]
54386 ** through meta[15] are available for use by higher layers. Meta[0]
54387 ** is read-only, the others are read/write.
54389 ** The schema layer numbers meta values differently. At the schema
54390 ** layer (and the SetCookie and ReadCookie opcodes) the number of
54391 ** free pages is not visible. So Cookie[0] is the same as Meta[1].
54393 SQLITE_PRIVATE void sqlite3BtreeGetMeta(Btree *p, int idx, u32 *pMeta){
54394 BtShared *pBt = p->pBt;
54396 sqlite3BtreeEnter(p);
54397 assert( p->inTrans>TRANS_NONE );
54398 assert( SQLITE_OK==querySharedCacheTableLock(p, MASTER_ROOT, READ_LOCK) );
54399 assert( pBt->pPage1 );
54400 assert( idx>=0 && idx<=15 );
54402 *pMeta = get4byte(&pBt->pPage1->aData[36 + idx*4]);
54404 /* If auto-vacuum is disabled in this build and this is an auto-vacuum
54405 ** database, mark the database as read-only. */
54406 #ifdef SQLITE_OMIT_AUTOVACUUM
54407 if( idx==BTREE_LARGEST_ROOT_PAGE && *pMeta>0 ) pBt->readOnly = 1;
54408 #endif
54410 sqlite3BtreeLeave(p);
54414 ** Write meta-information back into the database. Meta[0] is
54415 ** read-only and may not be written.
54417 SQLITE_PRIVATE int sqlite3BtreeUpdateMeta(Btree *p, int idx, u32 iMeta){
54418 BtShared *pBt = p->pBt;
54419 unsigned char *pP1;
54420 int rc;
54421 assert( idx>=1 && idx<=15 );
54422 sqlite3BtreeEnter(p);
54423 assert( p->inTrans==TRANS_WRITE );
54424 assert( pBt->pPage1!=0 );
54425 pP1 = pBt->pPage1->aData;
54426 rc = sqlite3PagerWrite(pBt->pPage1->pDbPage);
54427 if( rc==SQLITE_OK ){
54428 put4byte(&pP1[36 + idx*4], iMeta);
54429 #ifndef SQLITE_OMIT_AUTOVACUUM
54430 if( idx==BTREE_INCR_VACUUM ){
54431 assert( pBt->autoVacuum || iMeta==0 );
54432 assert( iMeta==0 || iMeta==1 );
54433 pBt->incrVacuum = (u8)iMeta;
54435 #endif
54437 sqlite3BtreeLeave(p);
54438 return rc;
54441 #ifndef SQLITE_OMIT_BTREECOUNT
54443 ** The first argument, pCur, is a cursor opened on some b-tree. Count the
54444 ** number of entries in the b-tree and write the result to *pnEntry.
54446 ** SQLITE_OK is returned if the operation is successfully executed.
54447 ** Otherwise, if an error is encountered (i.e. an IO error or database
54448 ** corruption) an SQLite error code is returned.
54450 SQLITE_PRIVATE int sqlite3BtreeCount(BtCursor *pCur, i64 *pnEntry){
54451 i64 nEntry = 0; /* Value to return in *pnEntry */
54452 int rc; /* Return code */
54453 rc = moveToRoot(pCur);
54455 /* Unless an error occurs, the following loop runs one iteration for each
54456 ** page in the B-Tree structure (not including overflow pages).
54458 while( rc==SQLITE_OK ){
54459 int iIdx; /* Index of child node in parent */
54460 MemPage *pPage; /* Current page of the b-tree */
54462 /* If this is a leaf page or the tree is not an int-key tree, then
54463 ** this page contains countable entries. Increment the entry counter
54464 ** accordingly.
54466 pPage = pCur->apPage[pCur->iPage];
54467 if( pPage->leaf || !pPage->intKey ){
54468 nEntry += pPage->nCell;
54471 /* pPage is a leaf node. This loop navigates the cursor so that it
54472 ** points to the first interior cell that it points to the parent of
54473 ** the next page in the tree that has not yet been visited. The
54474 ** pCur->aiIdx[pCur->iPage] value is set to the index of the parent cell
54475 ** of the page, or to the number of cells in the page if the next page
54476 ** to visit is the right-child of its parent.
54478 ** If all pages in the tree have been visited, return SQLITE_OK to the
54479 ** caller.
54481 if( pPage->leaf ){
54482 do {
54483 if( pCur->iPage==0 ){
54484 /* All pages of the b-tree have been visited. Return successfully. */
54485 *pnEntry = nEntry;
54486 return SQLITE_OK;
54488 moveToParent(pCur);
54489 }while ( pCur->aiIdx[pCur->iPage]>=pCur->apPage[pCur->iPage]->nCell );
54491 pCur->aiIdx[pCur->iPage]++;
54492 pPage = pCur->apPage[pCur->iPage];
54495 /* Descend to the child node of the cell that the cursor currently
54496 ** points at. This is the right-child if (iIdx==pPage->nCell).
54498 iIdx = pCur->aiIdx[pCur->iPage];
54499 if( iIdx==pPage->nCell ){
54500 rc = moveToChild(pCur, get4byte(&pPage->aData[pPage->hdrOffset+8]));
54501 }else{
54502 rc = moveToChild(pCur, get4byte(findCell(pPage, iIdx)));
54506 /* An error has occurred. Return an error code. */
54507 return rc;
54509 #endif
54512 ** Return the pager associated with a BTree. This routine is used for
54513 ** testing and debugging only.
54515 SQLITE_PRIVATE Pager *sqlite3BtreePager(Btree *p){
54516 return p->pBt->pPager;
54519 #ifndef SQLITE_OMIT_INTEGRITY_CHECK
54521 ** Append a message to the error message string.
54523 static void checkAppendMsg(
54524 IntegrityCk *pCheck,
54525 char *zMsg1,
54526 const char *zFormat,
54529 va_list ap;
54530 if( !pCheck->mxErr ) return;
54531 pCheck->mxErr--;
54532 pCheck->nErr++;
54533 va_start(ap, zFormat);
54534 if( pCheck->errMsg.nChar ){
54535 sqlite3StrAccumAppend(&pCheck->errMsg, "\n", 1);
54537 if( zMsg1 ){
54538 sqlite3StrAccumAppend(&pCheck->errMsg, zMsg1, -1);
54540 sqlite3VXPrintf(&pCheck->errMsg, 1, zFormat, ap);
54541 va_end(ap);
54542 if( pCheck->errMsg.mallocFailed ){
54543 pCheck->mallocFailed = 1;
54546 #endif /* SQLITE_OMIT_INTEGRITY_CHECK */
54548 #ifndef SQLITE_OMIT_INTEGRITY_CHECK
54550 ** Add 1 to the reference count for page iPage. If this is the second
54551 ** reference to the page, add an error message to pCheck->zErrMsg.
54552 ** Return 1 if there are 2 ore more references to the page and 0 if
54553 ** if this is the first reference to the page.
54555 ** Also check that the page number is in bounds.
54557 static int checkRef(IntegrityCk *pCheck, Pgno iPage, char *zContext){
54558 if( iPage==0 ) return 1;
54559 if( iPage>pCheck->nPage ){
54560 checkAppendMsg(pCheck, zContext, "invalid page number %d", iPage);
54561 return 1;
54563 if( pCheck->anRef[iPage]==1 ){
54564 checkAppendMsg(pCheck, zContext, "2nd reference to page %d", iPage);
54565 return 1;
54567 return (pCheck->anRef[iPage]++)>1;
54570 #ifndef SQLITE_OMIT_AUTOVACUUM
54572 ** Check that the entry in the pointer-map for page iChild maps to
54573 ** page iParent, pointer type ptrType. If not, append an error message
54574 ** to pCheck.
54576 static void checkPtrmap(
54577 IntegrityCk *pCheck, /* Integrity check context */
54578 Pgno iChild, /* Child page number */
54579 u8 eType, /* Expected pointer map type */
54580 Pgno iParent, /* Expected pointer map parent page number */
54581 char *zContext /* Context description (used for error msg) */
54583 int rc;
54584 u8 ePtrmapType;
54585 Pgno iPtrmapParent;
54587 rc = ptrmapGet(pCheck->pBt, iChild, &ePtrmapType, &iPtrmapParent);
54588 if( rc!=SQLITE_OK ){
54589 if( rc==SQLITE_NOMEM || rc==SQLITE_IOERR_NOMEM ) pCheck->mallocFailed = 1;
54590 checkAppendMsg(pCheck, zContext, "Failed to read ptrmap key=%d", iChild);
54591 return;
54594 if( ePtrmapType!=eType || iPtrmapParent!=iParent ){
54595 checkAppendMsg(pCheck, zContext,
54596 "Bad ptr map entry key=%d expected=(%d,%d) got=(%d,%d)",
54597 iChild, eType, iParent, ePtrmapType, iPtrmapParent);
54600 #endif
54603 ** Check the integrity of the freelist or of an overflow page list.
54604 ** Verify that the number of pages on the list is N.
54606 static void checkList(
54607 IntegrityCk *pCheck, /* Integrity checking context */
54608 int isFreeList, /* True for a freelist. False for overflow page list */
54609 int iPage, /* Page number for first page in the list */
54610 int N, /* Expected number of pages in the list */
54611 char *zContext /* Context for error messages */
54613 int i;
54614 int expected = N;
54615 int iFirst = iPage;
54616 while( N-- > 0 && pCheck->mxErr ){
54617 DbPage *pOvflPage;
54618 unsigned char *pOvflData;
54619 if( iPage<1 ){
54620 checkAppendMsg(pCheck, zContext,
54621 "%d of %d pages missing from overflow list starting at %d",
54622 N+1, expected, iFirst);
54623 break;
54625 if( checkRef(pCheck, iPage, zContext) ) break;
54626 if( sqlite3PagerGet(pCheck->pPager, (Pgno)iPage, &pOvflPage) ){
54627 checkAppendMsg(pCheck, zContext, "failed to get page %d", iPage);
54628 break;
54630 pOvflData = (unsigned char *)sqlite3PagerGetData(pOvflPage);
54631 if( isFreeList ){
54632 int n = get4byte(&pOvflData[4]);
54633 #ifndef SQLITE_OMIT_AUTOVACUUM
54634 if( pCheck->pBt->autoVacuum ){
54635 checkPtrmap(pCheck, iPage, PTRMAP_FREEPAGE, 0, zContext);
54637 #endif
54638 if( n>(int)pCheck->pBt->usableSize/4-2 ){
54639 checkAppendMsg(pCheck, zContext,
54640 "freelist leaf count too big on page %d", iPage);
54641 N--;
54642 }else{
54643 for(i=0; i<n; i++){
54644 Pgno iFreePage = get4byte(&pOvflData[8+i*4]);
54645 #ifndef SQLITE_OMIT_AUTOVACUUM
54646 if( pCheck->pBt->autoVacuum ){
54647 checkPtrmap(pCheck, iFreePage, PTRMAP_FREEPAGE, 0, zContext);
54649 #endif
54650 checkRef(pCheck, iFreePage, zContext);
54652 N -= n;
54655 #ifndef SQLITE_OMIT_AUTOVACUUM
54656 else{
54657 /* If this database supports auto-vacuum and iPage is not the last
54658 ** page in this overflow list, check that the pointer-map entry for
54659 ** the following page matches iPage.
54661 if( pCheck->pBt->autoVacuum && N>0 ){
54662 i = get4byte(pOvflData);
54663 checkPtrmap(pCheck, i, PTRMAP_OVERFLOW2, iPage, zContext);
54666 #endif
54667 iPage = get4byte(pOvflData);
54668 sqlite3PagerUnref(pOvflPage);
54671 #endif /* SQLITE_OMIT_INTEGRITY_CHECK */
54673 #ifndef SQLITE_OMIT_INTEGRITY_CHECK
54675 ** Do various sanity checks on a single page of a tree. Return
54676 ** the tree depth. Root pages return 0. Parents of root pages
54677 ** return 1, and so forth.
54679 ** These checks are done:
54681 ** 1. Make sure that cells and freeblocks do not overlap
54682 ** but combine to completely cover the page.
54683 ** NO 2. Make sure cell keys are in order.
54684 ** NO 3. Make sure no key is less than or equal to zLowerBound.
54685 ** NO 4. Make sure no key is greater than or equal to zUpperBound.
54686 ** 5. Check the integrity of overflow pages.
54687 ** 6. Recursively call checkTreePage on all children.
54688 ** 7. Verify that the depth of all children is the same.
54689 ** 8. Make sure this page is at least 33% full or else it is
54690 ** the root of the tree.
54692 static int checkTreePage(
54693 IntegrityCk *pCheck, /* Context for the sanity check */
54694 int iPage, /* Page number of the page to check */
54695 char *zParentContext, /* Parent context */
54696 i64 *pnParentMinKey,
54697 i64 *pnParentMaxKey
54699 MemPage *pPage;
54700 int i, rc, depth, d2, pgno, cnt;
54701 int hdr, cellStart;
54702 int nCell;
54703 u8 *data;
54704 BtShared *pBt;
54705 int usableSize;
54706 char zContext[100];
54707 char *hit = 0;
54708 i64 nMinKey = 0;
54709 i64 nMaxKey = 0;
54711 sqlite3_snprintf(sizeof(zContext), zContext, "Page %d: ", iPage);
54713 /* Check that the page exists
54715 pBt = pCheck->pBt;
54716 usableSize = pBt->usableSize;
54717 if( iPage==0 ) return 0;
54718 if( checkRef(pCheck, iPage, zParentContext) ) return 0;
54719 if( (rc = btreeGetPage(pBt, (Pgno)iPage, &pPage, 0))!=0 ){
54720 checkAppendMsg(pCheck, zContext,
54721 "unable to get the page. error code=%d", rc);
54722 return 0;
54725 /* Clear MemPage.isInit to make sure the corruption detection code in
54726 ** btreeInitPage() is executed. */
54727 pPage->isInit = 0;
54728 if( (rc = btreeInitPage(pPage))!=0 ){
54729 assert( rc==SQLITE_CORRUPT ); /* The only possible error from InitPage */
54730 checkAppendMsg(pCheck, zContext,
54731 "btreeInitPage() returns error code %d", rc);
54732 releasePage(pPage);
54733 return 0;
54736 /* Check out all the cells.
54738 depth = 0;
54739 for(i=0; i<pPage->nCell && pCheck->mxErr; i++){
54740 u8 *pCell;
54741 u32 sz;
54742 CellInfo info;
54744 /* Check payload overflow pages
54746 sqlite3_snprintf(sizeof(zContext), zContext,
54747 "On tree page %d cell %d: ", iPage, i);
54748 pCell = findCell(pPage,i);
54749 btreeParseCellPtr(pPage, pCell, &info);
54750 sz = info.nData;
54751 if( !pPage->intKey ) sz += (int)info.nKey;
54752 /* For intKey pages, check that the keys are in order.
54754 else if( i==0 ) nMinKey = nMaxKey = info.nKey;
54755 else{
54756 if( info.nKey <= nMaxKey ){
54757 checkAppendMsg(pCheck, zContext,
54758 "Rowid %lld out of order (previous was %lld)", info.nKey, nMaxKey);
54760 nMaxKey = info.nKey;
54762 assert( sz==info.nPayload );
54763 if( (sz>info.nLocal)
54764 && (&pCell[info.iOverflow]<=&pPage->aData[pBt->usableSize])
54766 int nPage = (sz - info.nLocal + usableSize - 5)/(usableSize - 4);
54767 Pgno pgnoOvfl = get4byte(&pCell[info.iOverflow]);
54768 #ifndef SQLITE_OMIT_AUTOVACUUM
54769 if( pBt->autoVacuum ){
54770 checkPtrmap(pCheck, pgnoOvfl, PTRMAP_OVERFLOW1, iPage, zContext);
54772 #endif
54773 checkList(pCheck, 0, pgnoOvfl, nPage, zContext);
54776 /* Check sanity of left child page.
54778 if( !pPage->leaf ){
54779 pgno = get4byte(pCell);
54780 #ifndef SQLITE_OMIT_AUTOVACUUM
54781 if( pBt->autoVacuum ){
54782 checkPtrmap(pCheck, pgno, PTRMAP_BTREE, iPage, zContext);
54784 #endif
54785 d2 = checkTreePage(pCheck, pgno, zContext, &nMinKey, i==0 ? NULL : &nMaxKey);
54786 if( i>0 && d2!=depth ){
54787 checkAppendMsg(pCheck, zContext, "Child page depth differs");
54789 depth = d2;
54793 if( !pPage->leaf ){
54794 pgno = get4byte(&pPage->aData[pPage->hdrOffset+8]);
54795 sqlite3_snprintf(sizeof(zContext), zContext,
54796 "On page %d at right child: ", iPage);
54797 #ifndef SQLITE_OMIT_AUTOVACUUM
54798 if( pBt->autoVacuum ){
54799 checkPtrmap(pCheck, pgno, PTRMAP_BTREE, iPage, zContext);
54801 #endif
54802 checkTreePage(pCheck, pgno, zContext, NULL, !pPage->nCell ? NULL : &nMaxKey);
54805 /* For intKey leaf pages, check that the min/max keys are in order
54806 ** with any left/parent/right pages.
54808 if( pPage->leaf && pPage->intKey ){
54809 /* if we are a left child page */
54810 if( pnParentMinKey ){
54811 /* if we are the left most child page */
54812 if( !pnParentMaxKey ){
54813 if( nMaxKey > *pnParentMinKey ){
54814 checkAppendMsg(pCheck, zContext,
54815 "Rowid %lld out of order (max larger than parent min of %lld)",
54816 nMaxKey, *pnParentMinKey);
54818 }else{
54819 if( nMinKey <= *pnParentMinKey ){
54820 checkAppendMsg(pCheck, zContext,
54821 "Rowid %lld out of order (min less than parent min of %lld)",
54822 nMinKey, *pnParentMinKey);
54824 if( nMaxKey > *pnParentMaxKey ){
54825 checkAppendMsg(pCheck, zContext,
54826 "Rowid %lld out of order (max larger than parent max of %lld)",
54827 nMaxKey, *pnParentMaxKey);
54829 *pnParentMinKey = nMaxKey;
54831 /* else if we're a right child page */
54832 } else if( pnParentMaxKey ){
54833 if( nMinKey <= *pnParentMaxKey ){
54834 checkAppendMsg(pCheck, zContext,
54835 "Rowid %lld out of order (min less than parent max of %lld)",
54836 nMinKey, *pnParentMaxKey);
54841 /* Check for complete coverage of the page
54843 data = pPage->aData;
54844 hdr = pPage->hdrOffset;
54845 hit = sqlite3PageMalloc( pBt->pageSize );
54846 if( hit==0 ){
54847 pCheck->mallocFailed = 1;
54848 }else{
54849 int contentOffset = get2byteNotZero(&data[hdr+5]);
54850 assert( contentOffset<=usableSize ); /* Enforced by btreeInitPage() */
54851 memset(hit+contentOffset, 0, usableSize-contentOffset);
54852 memset(hit, 1, contentOffset);
54853 nCell = get2byte(&data[hdr+3]);
54854 cellStart = hdr + 12 - 4*pPage->leaf;
54855 for(i=0; i<nCell; i++){
54856 int pc = get2byte(&data[cellStart+i*2]);
54857 u32 size = 65536;
54858 int j;
54859 if( pc<=usableSize-4 ){
54860 size = cellSizePtr(pPage, &data[pc]);
54862 if( (int)(pc+size-1)>=usableSize ){
54863 checkAppendMsg(pCheck, 0,
54864 "Corruption detected in cell %d on page %d",i,iPage);
54865 }else{
54866 for(j=pc+size-1; j>=pc; j--) hit[j]++;
54869 i = get2byte(&data[hdr+1]);
54870 while( i>0 ){
54871 int size, j;
54872 assert( i<=usableSize-4 ); /* Enforced by btreeInitPage() */
54873 size = get2byte(&data[i+2]);
54874 assert( i+size<=usableSize ); /* Enforced by btreeInitPage() */
54875 for(j=i+size-1; j>=i; j--) hit[j]++;
54876 j = get2byte(&data[i]);
54877 assert( j==0 || j>i+size ); /* Enforced by btreeInitPage() */
54878 assert( j<=usableSize-4 ); /* Enforced by btreeInitPage() */
54879 i = j;
54881 for(i=cnt=0; i<usableSize; i++){
54882 if( hit[i]==0 ){
54883 cnt++;
54884 }else if( hit[i]>1 ){
54885 checkAppendMsg(pCheck, 0,
54886 "Multiple uses for byte %d of page %d", i, iPage);
54887 break;
54890 if( cnt!=data[hdr+7] ){
54891 checkAppendMsg(pCheck, 0,
54892 "Fragmentation of %d bytes reported as %d on page %d",
54893 cnt, data[hdr+7], iPage);
54896 sqlite3PageFree(hit);
54897 releasePage(pPage);
54898 return depth+1;
54900 #endif /* SQLITE_OMIT_INTEGRITY_CHECK */
54902 #ifndef SQLITE_OMIT_INTEGRITY_CHECK
54904 ** This routine does a complete check of the given BTree file. aRoot[] is
54905 ** an array of pages numbers were each page number is the root page of
54906 ** a table. nRoot is the number of entries in aRoot.
54908 ** A read-only or read-write transaction must be opened before calling
54909 ** this function.
54911 ** Write the number of error seen in *pnErr. Except for some memory
54912 ** allocation errors, an error message held in memory obtained from
54913 ** malloc is returned if *pnErr is non-zero. If *pnErr==0 then NULL is
54914 ** returned. If a memory allocation error occurs, NULL is returned.
54916 SQLITE_PRIVATE char *sqlite3BtreeIntegrityCheck(
54917 Btree *p, /* The btree to be checked */
54918 int *aRoot, /* An array of root pages numbers for individual trees */
54919 int nRoot, /* Number of entries in aRoot[] */
54920 int mxErr, /* Stop reporting errors after this many */
54921 int *pnErr /* Write number of errors seen to this variable */
54923 Pgno i;
54924 int nRef;
54925 IntegrityCk sCheck;
54926 BtShared *pBt = p->pBt;
54927 char zErr[100];
54929 sqlite3BtreeEnter(p);
54930 assert( p->inTrans>TRANS_NONE && pBt->inTransaction>TRANS_NONE );
54931 nRef = sqlite3PagerRefcount(pBt->pPager);
54932 sCheck.pBt = pBt;
54933 sCheck.pPager = pBt->pPager;
54934 sCheck.nPage = btreePagecount(sCheck.pBt);
54935 sCheck.mxErr = mxErr;
54936 sCheck.nErr = 0;
54937 sCheck.mallocFailed = 0;
54938 *pnErr = 0;
54939 if( sCheck.nPage==0 ){
54940 sqlite3BtreeLeave(p);
54941 return 0;
54943 sCheck.anRef = sqlite3Malloc( (sCheck.nPage+1)*sizeof(sCheck.anRef[0]) );
54944 if( !sCheck.anRef ){
54945 *pnErr = 1;
54946 sqlite3BtreeLeave(p);
54947 return 0;
54949 for(i=0; i<=sCheck.nPage; i++){ sCheck.anRef[i] = 0; }
54950 i = PENDING_BYTE_PAGE(pBt);
54951 if( i<=sCheck.nPage ){
54952 sCheck.anRef[i] = 1;
54954 sqlite3StrAccumInit(&sCheck.errMsg, zErr, sizeof(zErr), 20000);
54955 sCheck.errMsg.useMalloc = 2;
54957 /* Check the integrity of the freelist
54959 checkList(&sCheck, 1, get4byte(&pBt->pPage1->aData[32]),
54960 get4byte(&pBt->pPage1->aData[36]), "Main freelist: ");
54962 /* Check all the tables.
54964 for(i=0; (int)i<nRoot && sCheck.mxErr; i++){
54965 if( aRoot[i]==0 ) continue;
54966 #ifndef SQLITE_OMIT_AUTOVACUUM
54967 if( pBt->autoVacuum && aRoot[i]>1 ){
54968 checkPtrmap(&sCheck, aRoot[i], PTRMAP_ROOTPAGE, 0, 0);
54970 #endif
54971 checkTreePage(&sCheck, aRoot[i], "List of tree roots: ", NULL, NULL);
54974 /* Make sure every page in the file is referenced
54976 for(i=1; i<=sCheck.nPage && sCheck.mxErr; i++){
54977 #ifdef SQLITE_OMIT_AUTOVACUUM
54978 if( sCheck.anRef[i]==0 ){
54979 checkAppendMsg(&sCheck, 0, "Page %d is never used", i);
54981 #else
54982 /* If the database supports auto-vacuum, make sure no tables contain
54983 ** references to pointer-map pages.
54985 if( sCheck.anRef[i]==0 &&
54986 (PTRMAP_PAGENO(pBt, i)!=i || !pBt->autoVacuum) ){
54987 checkAppendMsg(&sCheck, 0, "Page %d is never used", i);
54989 if( sCheck.anRef[i]!=0 &&
54990 (PTRMAP_PAGENO(pBt, i)==i && pBt->autoVacuum) ){
54991 checkAppendMsg(&sCheck, 0, "Pointer map page %d is referenced", i);
54993 #endif
54996 /* Make sure this analysis did not leave any unref() pages.
54997 ** This is an internal consistency check; an integrity check
54998 ** of the integrity check.
55000 if( NEVER(nRef != sqlite3PagerRefcount(pBt->pPager)) ){
55001 checkAppendMsg(&sCheck, 0,
55002 "Outstanding page count goes from %d to %d during this analysis",
55003 nRef, sqlite3PagerRefcount(pBt->pPager)
55007 /* Clean up and report errors.
55009 sqlite3BtreeLeave(p);
55010 sqlite3_free(sCheck.anRef);
55011 if( sCheck.mallocFailed ){
55012 sqlite3StrAccumReset(&sCheck.errMsg);
55013 *pnErr = sCheck.nErr+1;
55014 return 0;
55016 *pnErr = sCheck.nErr;
55017 if( sCheck.nErr==0 ) sqlite3StrAccumReset(&sCheck.errMsg);
55018 return sqlite3StrAccumFinish(&sCheck.errMsg);
55020 #endif /* SQLITE_OMIT_INTEGRITY_CHECK */
55023 ** Return the full pathname of the underlying database file.
55025 ** The pager filename is invariant as long as the pager is
55026 ** open so it is safe to access without the BtShared mutex.
55028 SQLITE_PRIVATE const char *sqlite3BtreeGetFilename(Btree *p){
55029 assert( p->pBt->pPager!=0 );
55030 return sqlite3PagerFilename(p->pBt->pPager);
55034 ** Return the pathname of the journal file for this database. The return
55035 ** value of this routine is the same regardless of whether the journal file
55036 ** has been created or not.
55038 ** The pager journal filename is invariant as long as the pager is
55039 ** open so it is safe to access without the BtShared mutex.
55041 SQLITE_PRIVATE const char *sqlite3BtreeGetJournalname(Btree *p){
55042 assert( p->pBt->pPager!=0 );
55043 return sqlite3PagerJournalname(p->pBt->pPager);
55047 ** Return non-zero if a transaction is active.
55049 SQLITE_PRIVATE int sqlite3BtreeIsInTrans(Btree *p){
55050 assert( p==0 || sqlite3_mutex_held(p->db->mutex) );
55051 return (p && (p->inTrans==TRANS_WRITE));
55054 #ifndef SQLITE_OMIT_WAL
55056 ** Run a checkpoint on the Btree passed as the first argument.
55058 ** Return SQLITE_LOCKED if this or any other connection has an open
55059 ** transaction on the shared-cache the argument Btree is connected to.
55061 ** Parameter eMode is one of SQLITE_CHECKPOINT_PASSIVE, FULL or RESTART.
55063 SQLITE_PRIVATE int sqlite3BtreeCheckpoint(Btree *p, int eMode, int *pnLog, int *pnCkpt){
55064 int rc = SQLITE_OK;
55065 if( p ){
55066 BtShared *pBt = p->pBt;
55067 sqlite3BtreeEnter(p);
55068 if( pBt->inTransaction!=TRANS_NONE ){
55069 rc = SQLITE_LOCKED;
55070 }else{
55071 rc = sqlite3PagerCheckpoint(pBt->pPager, eMode, pnLog, pnCkpt);
55073 sqlite3BtreeLeave(p);
55075 return rc;
55077 #endif
55080 ** Return non-zero if a read (or write) transaction is active.
55082 SQLITE_PRIVATE int sqlite3BtreeIsInReadTrans(Btree *p){
55083 assert( p );
55084 assert( sqlite3_mutex_held(p->db->mutex) );
55085 return p->inTrans!=TRANS_NONE;
55088 SQLITE_PRIVATE int sqlite3BtreeIsInBackup(Btree *p){
55089 assert( p );
55090 assert( sqlite3_mutex_held(p->db->mutex) );
55091 return p->nBackup!=0;
55095 ** This function returns a pointer to a blob of memory associated with
55096 ** a single shared-btree. The memory is used by client code for its own
55097 ** purposes (for example, to store a high-level schema associated with
55098 ** the shared-btree). The btree layer manages reference counting issues.
55100 ** The first time this is called on a shared-btree, nBytes bytes of memory
55101 ** are allocated, zeroed, and returned to the caller. For each subsequent
55102 ** call the nBytes parameter is ignored and a pointer to the same blob
55103 ** of memory returned.
55105 ** If the nBytes parameter is 0 and the blob of memory has not yet been
55106 ** allocated, a null pointer is returned. If the blob has already been
55107 ** allocated, it is returned as normal.
55109 ** Just before the shared-btree is closed, the function passed as the
55110 ** xFree argument when the memory allocation was made is invoked on the
55111 ** blob of allocated memory. The xFree function should not call sqlite3_free()
55112 ** on the memory, the btree layer does that.
55114 SQLITE_PRIVATE void *sqlite3BtreeSchema(Btree *p, int nBytes, void(*xFree)(void *)){
55115 BtShared *pBt = p->pBt;
55116 sqlite3BtreeEnter(p);
55117 if( !pBt->pSchema && nBytes ){
55118 pBt->pSchema = sqlite3DbMallocZero(0, nBytes);
55119 pBt->xFreeSchema = xFree;
55121 sqlite3BtreeLeave(p);
55122 return pBt->pSchema;
55126 ** Return SQLITE_LOCKED_SHAREDCACHE if another user of the same shared
55127 ** btree as the argument handle holds an exclusive lock on the
55128 ** sqlite_master table. Otherwise SQLITE_OK.
55130 SQLITE_PRIVATE int sqlite3BtreeSchemaLocked(Btree *p){
55131 int rc;
55132 assert( sqlite3_mutex_held(p->db->mutex) );
55133 sqlite3BtreeEnter(p);
55134 rc = querySharedCacheTableLock(p, MASTER_ROOT, READ_LOCK);
55135 assert( rc==SQLITE_OK || rc==SQLITE_LOCKED_SHAREDCACHE );
55136 sqlite3BtreeLeave(p);
55137 return rc;
55141 #ifndef SQLITE_OMIT_SHARED_CACHE
55143 ** Obtain a lock on the table whose root page is iTab. The
55144 ** lock is a write lock if isWritelock is true or a read lock
55145 ** if it is false.
55147 SQLITE_PRIVATE int sqlite3BtreeLockTable(Btree *p, int iTab, u8 isWriteLock){
55148 int rc = SQLITE_OK;
55149 assert( p->inTrans!=TRANS_NONE );
55150 if( p->sharable ){
55151 u8 lockType = READ_LOCK + isWriteLock;
55152 assert( READ_LOCK+1==WRITE_LOCK );
55153 assert( isWriteLock==0 || isWriteLock==1 );
55155 sqlite3BtreeEnter(p);
55156 rc = querySharedCacheTableLock(p, iTab, lockType);
55157 if( rc==SQLITE_OK ){
55158 rc = setSharedCacheTableLock(p, iTab, lockType);
55160 sqlite3BtreeLeave(p);
55162 return rc;
55164 #endif
55166 #ifndef SQLITE_OMIT_INCRBLOB
55168 ** Argument pCsr must be a cursor opened for writing on an
55169 ** INTKEY table currently pointing at a valid table entry.
55170 ** This function modifies the data stored as part of that entry.
55172 ** Only the data content may only be modified, it is not possible to
55173 ** change the length of the data stored. If this function is called with
55174 ** parameters that attempt to write past the end of the existing data,
55175 ** no modifications are made and SQLITE_CORRUPT is returned.
55177 SQLITE_PRIVATE int sqlite3BtreePutData(BtCursor *pCsr, u32 offset, u32 amt, void *z){
55178 int rc;
55179 assert( cursorHoldsMutex(pCsr) );
55180 assert( sqlite3_mutex_held(pCsr->pBtree->db->mutex) );
55181 assert( pCsr->isIncrblobHandle );
55183 rc = restoreCursorPosition(pCsr);
55184 if( rc!=SQLITE_OK ){
55185 return rc;
55187 assert( pCsr->eState!=CURSOR_REQUIRESEEK );
55188 if( pCsr->eState!=CURSOR_VALID ){
55189 return SQLITE_ABORT;
55192 /* Check some assumptions:
55193 ** (a) the cursor is open for writing,
55194 ** (b) there is a read/write transaction open,
55195 ** (c) the connection holds a write-lock on the table (if required),
55196 ** (d) there are no conflicting read-locks, and
55197 ** (e) the cursor points at a valid row of an intKey table.
55199 if( !pCsr->wrFlag ){
55200 return SQLITE_READONLY;
55202 assert( !pCsr->pBt->readOnly && pCsr->pBt->inTransaction==TRANS_WRITE );
55203 assert( hasSharedCacheTableLock(pCsr->pBtree, pCsr->pgnoRoot, 0, 2) );
55204 assert( !hasReadConflicts(pCsr->pBtree, pCsr->pgnoRoot) );
55205 assert( pCsr->apPage[pCsr->iPage]->intKey );
55207 return accessPayload(pCsr, offset, amt, (unsigned char *)z, 1);
55211 ** Set a flag on this cursor to cache the locations of pages from the
55212 ** overflow list for the current row. This is used by cursors opened
55213 ** for incremental blob IO only.
55215 ** This function sets a flag only. The actual page location cache
55216 ** (stored in BtCursor.aOverflow[]) is allocated and used by function
55217 ** accessPayload() (the worker function for sqlite3BtreeData() and
55218 ** sqlite3BtreePutData()).
55220 SQLITE_PRIVATE void sqlite3BtreeCacheOverflow(BtCursor *pCur){
55221 assert( cursorHoldsMutex(pCur) );
55222 assert( sqlite3_mutex_held(pCur->pBtree->db->mutex) );
55223 invalidateOverflowCache(pCur);
55224 pCur->isIncrblobHandle = 1;
55226 #endif
55229 ** Set both the "read version" (single byte at byte offset 18) and
55230 ** "write version" (single byte at byte offset 19) fields in the database
55231 ** header to iVersion.
55233 SQLITE_PRIVATE int sqlite3BtreeSetVersion(Btree *pBtree, int iVersion){
55234 BtShared *pBt = pBtree->pBt;
55235 int rc; /* Return code */
55237 assert( pBtree->inTrans==TRANS_NONE );
55238 assert( iVersion==1 || iVersion==2 );
55240 /* If setting the version fields to 1, do not automatically open the
55241 ** WAL connection, even if the version fields are currently set to 2.
55243 pBt->doNotUseWAL = (u8)(iVersion==1);
55245 rc = sqlite3BtreeBeginTrans(pBtree, 0);
55246 if( rc==SQLITE_OK ){
55247 u8 *aData = pBt->pPage1->aData;
55248 if( aData[18]!=(u8)iVersion || aData[19]!=(u8)iVersion ){
55249 rc = sqlite3BtreeBeginTrans(pBtree, 2);
55250 if( rc==SQLITE_OK ){
55251 rc = sqlite3PagerWrite(pBt->pPage1->pDbPage);
55252 if( rc==SQLITE_OK ){
55253 aData[18] = (u8)iVersion;
55254 aData[19] = (u8)iVersion;
55260 pBt->doNotUseWAL = 0;
55261 return rc;
55264 /************** End of btree.c ***********************************************/
55265 /************** Begin file backup.c ******************************************/
55267 ** 2009 January 28
55269 ** The author disclaims copyright to this source code. In place of
55270 ** a legal notice, here is a blessing:
55272 ** May you do good and not evil.
55273 ** May you find forgiveness for yourself and forgive others.
55274 ** May you share freely, never taking more than you give.
55276 *************************************************************************
55277 ** This file contains the implementation of the sqlite3_backup_XXX()
55278 ** API functions and the related features.
55281 /* Macro to find the minimum of two numeric values.
55283 #ifndef MIN
55284 # define MIN(x,y) ((x)<(y)?(x):(y))
55285 #endif
55288 ** Structure allocated for each backup operation.
55290 struct sqlite3_backup {
55291 sqlite3* pDestDb; /* Destination database handle */
55292 Btree *pDest; /* Destination b-tree file */
55293 u32 iDestSchema; /* Original schema cookie in destination */
55294 int bDestLocked; /* True once a write-transaction is open on pDest */
55296 Pgno iNext; /* Page number of the next source page to copy */
55297 sqlite3* pSrcDb; /* Source database handle */
55298 Btree *pSrc; /* Source b-tree file */
55300 int rc; /* Backup process error code */
55302 /* These two variables are set by every call to backup_step(). They are
55303 ** read by calls to backup_remaining() and backup_pagecount().
55305 Pgno nRemaining; /* Number of pages left to copy */
55306 Pgno nPagecount; /* Total number of pages to copy */
55308 int isAttached; /* True once backup has been registered with pager */
55309 sqlite3_backup *pNext; /* Next backup associated with source pager */
55313 ** THREAD SAFETY NOTES:
55315 ** Once it has been created using backup_init(), a single sqlite3_backup
55316 ** structure may be accessed via two groups of thread-safe entry points:
55318 ** * Via the sqlite3_backup_XXX() API function backup_step() and
55319 ** backup_finish(). Both these functions obtain the source database
55320 ** handle mutex and the mutex associated with the source BtShared
55321 ** structure, in that order.
55323 ** * Via the BackupUpdate() and BackupRestart() functions, which are
55324 ** invoked by the pager layer to report various state changes in
55325 ** the page cache associated with the source database. The mutex
55326 ** associated with the source database BtShared structure will always
55327 ** be held when either of these functions are invoked.
55329 ** The other sqlite3_backup_XXX() API functions, backup_remaining() and
55330 ** backup_pagecount() are not thread-safe functions. If they are called
55331 ** while some other thread is calling backup_step() or backup_finish(),
55332 ** the values returned may be invalid. There is no way for a call to
55333 ** BackupUpdate() or BackupRestart() to interfere with backup_remaining()
55334 ** or backup_pagecount().
55336 ** Depending on the SQLite configuration, the database handles and/or
55337 ** the Btree objects may have their own mutexes that require locking.
55338 ** Non-sharable Btrees (in-memory databases for example), do not have
55339 ** associated mutexes.
55343 ** Return a pointer corresponding to database zDb (i.e. "main", "temp")
55344 ** in connection handle pDb. If such a database cannot be found, return
55345 ** a NULL pointer and write an error message to pErrorDb.
55347 ** If the "temp" database is requested, it may need to be opened by this
55348 ** function. If an error occurs while doing so, return 0 and write an
55349 ** error message to pErrorDb.
55351 static Btree *findBtree(sqlite3 *pErrorDb, sqlite3 *pDb, const char *zDb){
55352 int i = sqlite3FindDbName(pDb, zDb);
55354 if( i==1 ){
55355 Parse *pParse;
55356 int rc = 0;
55357 pParse = sqlite3StackAllocZero(pErrorDb, sizeof(*pParse));
55358 if( pParse==0 ){
55359 sqlite3Error(pErrorDb, SQLITE_NOMEM, "out of memory");
55360 rc = SQLITE_NOMEM;
55361 }else{
55362 pParse->db = pDb;
55363 if( sqlite3OpenTempDatabase(pParse) ){
55364 sqlite3Error(pErrorDb, pParse->rc, "%s", pParse->zErrMsg);
55365 rc = SQLITE_ERROR;
55367 sqlite3DbFree(pErrorDb, pParse->zErrMsg);
55368 sqlite3StackFree(pErrorDb, pParse);
55370 if( rc ){
55371 return 0;
55375 if( i<0 ){
55376 sqlite3Error(pErrorDb, SQLITE_ERROR, "unknown database %s", zDb);
55377 return 0;
55380 return pDb->aDb[i].pBt;
55384 ** Attempt to set the page size of the destination to match the page size
55385 ** of the source.
55387 static int setDestPgsz(sqlite3_backup *p){
55388 int rc;
55389 rc = sqlite3BtreeSetPageSize(p->pDest,sqlite3BtreeGetPageSize(p->pSrc),-1,0);
55390 return rc;
55394 ** Create an sqlite3_backup process to copy the contents of zSrcDb from
55395 ** connection handle pSrcDb to zDestDb in pDestDb. If successful, return
55396 ** a pointer to the new sqlite3_backup object.
55398 ** If an error occurs, NULL is returned and an error code and error message
55399 ** stored in database handle pDestDb.
55401 SQLITE_API sqlite3_backup *sqlite3_backup_init(
55402 sqlite3* pDestDb, /* Database to write to */
55403 const char *zDestDb, /* Name of database within pDestDb */
55404 sqlite3* pSrcDb, /* Database connection to read from */
55405 const char *zSrcDb /* Name of database within pSrcDb */
55407 sqlite3_backup *p; /* Value to return */
55409 /* Lock the source database handle. The destination database
55410 ** handle is not locked in this routine, but it is locked in
55411 ** sqlite3_backup_step(). The user is required to ensure that no
55412 ** other thread accesses the destination handle for the duration
55413 ** of the backup operation. Any attempt to use the destination
55414 ** database connection while a backup is in progress may cause
55415 ** a malfunction or a deadlock.
55417 sqlite3_mutex_enter(pSrcDb->mutex);
55418 sqlite3_mutex_enter(pDestDb->mutex);
55420 if( pSrcDb==pDestDb ){
55421 sqlite3Error(
55422 pDestDb, SQLITE_ERROR, "source and destination must be distinct"
55424 p = 0;
55425 }else {
55426 /* Allocate space for a new sqlite3_backup object...
55427 ** EVIDENCE-OF: R-64852-21591 The sqlite3_backup object is created by a
55428 ** call to sqlite3_backup_init() and is destroyed by a call to
55429 ** sqlite3_backup_finish(). */
55430 p = (sqlite3_backup *)sqlite3_malloc(sizeof(sqlite3_backup));
55431 if( !p ){
55432 sqlite3Error(pDestDb, SQLITE_NOMEM, 0);
55436 /* If the allocation succeeded, populate the new object. */
55437 if( p ){
55438 memset(p, 0, sizeof(sqlite3_backup));
55439 p->pSrc = findBtree(pDestDb, pSrcDb, zSrcDb);
55440 p->pDest = findBtree(pDestDb, pDestDb, zDestDb);
55441 p->pDestDb = pDestDb;
55442 p->pSrcDb = pSrcDb;
55443 p->iNext = 1;
55444 p->isAttached = 0;
55446 if( 0==p->pSrc || 0==p->pDest || setDestPgsz(p)==SQLITE_NOMEM ){
55447 /* One (or both) of the named databases did not exist or an OOM
55448 ** error was hit. The error has already been written into the
55449 ** pDestDb handle. All that is left to do here is free the
55450 ** sqlite3_backup structure.
55452 sqlite3_free(p);
55453 p = 0;
55456 if( p ){
55457 p->pSrc->nBackup++;
55460 sqlite3_mutex_leave(pDestDb->mutex);
55461 sqlite3_mutex_leave(pSrcDb->mutex);
55462 return p;
55466 ** Argument rc is an SQLite error code. Return true if this error is
55467 ** considered fatal if encountered during a backup operation. All errors
55468 ** are considered fatal except for SQLITE_BUSY and SQLITE_LOCKED.
55470 static int isFatalError(int rc){
55471 return (rc!=SQLITE_OK && rc!=SQLITE_BUSY && ALWAYS(rc!=SQLITE_LOCKED));
55475 ** Parameter zSrcData points to a buffer containing the data for
55476 ** page iSrcPg from the source database. Copy this data into the
55477 ** destination database.
55479 static int backupOnePage(sqlite3_backup *p, Pgno iSrcPg, const u8 *zSrcData){
55480 Pager * const pDestPager = sqlite3BtreePager(p->pDest);
55481 const int nSrcPgsz = sqlite3BtreeGetPageSize(p->pSrc);
55482 int nDestPgsz = sqlite3BtreeGetPageSize(p->pDest);
55483 const int nCopy = MIN(nSrcPgsz, nDestPgsz);
55484 const i64 iEnd = (i64)iSrcPg*(i64)nSrcPgsz;
55485 #ifdef SQLITE_HAS_CODEC
55486 int nSrcReserve = sqlite3BtreeGetReserve(p->pSrc);
55487 int nDestReserve = sqlite3BtreeGetReserve(p->pDest);
55488 #endif
55490 int rc = SQLITE_OK;
55491 i64 iOff;
55493 assert( p->bDestLocked );
55494 assert( !isFatalError(p->rc) );
55495 assert( iSrcPg!=PENDING_BYTE_PAGE(p->pSrc->pBt) );
55496 assert( zSrcData );
55498 /* Catch the case where the destination is an in-memory database and the
55499 ** page sizes of the source and destination differ.
55501 if( nSrcPgsz!=nDestPgsz && sqlite3PagerIsMemdb(pDestPager) ){
55502 rc = SQLITE_READONLY;
55505 #ifdef SQLITE_HAS_CODEC
55506 /* Backup is not possible if the page size of the destination is changing
55507 ** and a codec is in use.
55509 if( nSrcPgsz!=nDestPgsz && sqlite3PagerGetCodec(pDestPager)!=0 ){
55510 rc = SQLITE_READONLY;
55513 /* Backup is not possible if the number of bytes of reserve space differ
55514 ** between source and destination. If there is a difference, try to
55515 ** fix the destination to agree with the source. If that is not possible,
55516 ** then the backup cannot proceed.
55518 if( nSrcReserve!=nDestReserve ){
55519 u32 newPgsz = nSrcPgsz;
55520 rc = sqlite3PagerSetPagesize(pDestPager, &newPgsz, nSrcReserve);
55521 if( rc==SQLITE_OK && newPgsz!=nSrcPgsz ) rc = SQLITE_READONLY;
55523 #endif
55525 /* This loop runs once for each destination page spanned by the source
55526 ** page. For each iteration, variable iOff is set to the byte offset
55527 ** of the destination page.
55529 for(iOff=iEnd-(i64)nSrcPgsz; rc==SQLITE_OK && iOff<iEnd; iOff+=nDestPgsz){
55530 DbPage *pDestPg = 0;
55531 Pgno iDest = (Pgno)(iOff/nDestPgsz)+1;
55532 if( iDest==PENDING_BYTE_PAGE(p->pDest->pBt) ) continue;
55533 if( SQLITE_OK==(rc = sqlite3PagerGet(pDestPager, iDest, &pDestPg))
55534 && SQLITE_OK==(rc = sqlite3PagerWrite(pDestPg))
55536 const u8 *zIn = &zSrcData[iOff%nSrcPgsz];
55537 u8 *zDestData = sqlite3PagerGetData(pDestPg);
55538 u8 *zOut = &zDestData[iOff%nDestPgsz];
55540 /* Copy the data from the source page into the destination page.
55541 ** Then clear the Btree layer MemPage.isInit flag. Both this module
55542 ** and the pager code use this trick (clearing the first byte
55543 ** of the page 'extra' space to invalidate the Btree layers
55544 ** cached parse of the page). MemPage.isInit is marked
55545 ** "MUST BE FIRST" for this purpose.
55547 memcpy(zOut, zIn, nCopy);
55548 ((u8 *)sqlite3PagerGetExtra(pDestPg))[0] = 0;
55550 sqlite3PagerUnref(pDestPg);
55553 return rc;
55557 ** If pFile is currently larger than iSize bytes, then truncate it to
55558 ** exactly iSize bytes. If pFile is not larger than iSize bytes, then
55559 ** this function is a no-op.
55561 ** Return SQLITE_OK if everything is successful, or an SQLite error
55562 ** code if an error occurs.
55564 static int backupTruncateFile(sqlite3_file *pFile, i64 iSize){
55565 i64 iCurrent;
55566 int rc = sqlite3OsFileSize(pFile, &iCurrent);
55567 if( rc==SQLITE_OK && iCurrent>iSize ){
55568 rc = sqlite3OsTruncate(pFile, iSize);
55570 return rc;
55574 ** Register this backup object with the associated source pager for
55575 ** callbacks when pages are changed or the cache invalidated.
55577 static void attachBackupObject(sqlite3_backup *p){
55578 sqlite3_backup **pp;
55579 assert( sqlite3BtreeHoldsMutex(p->pSrc) );
55580 pp = sqlite3PagerBackupPtr(sqlite3BtreePager(p->pSrc));
55581 p->pNext = *pp;
55582 *pp = p;
55583 p->isAttached = 1;
55587 ** Copy nPage pages from the source b-tree to the destination.
55589 SQLITE_API int sqlite3_backup_step(sqlite3_backup *p, int nPage){
55590 int rc;
55591 int destMode; /* Destination journal mode */
55592 int pgszSrc = 0; /* Source page size */
55593 int pgszDest = 0; /* Destination page size */
55595 sqlite3_mutex_enter(p->pSrcDb->mutex);
55596 sqlite3BtreeEnter(p->pSrc);
55597 if( p->pDestDb ){
55598 sqlite3_mutex_enter(p->pDestDb->mutex);
55601 rc = p->rc;
55602 if( !isFatalError(rc) ){
55603 Pager * const pSrcPager = sqlite3BtreePager(p->pSrc); /* Source pager */
55604 Pager * const pDestPager = sqlite3BtreePager(p->pDest); /* Dest pager */
55605 int ii; /* Iterator variable */
55606 int nSrcPage = -1; /* Size of source db in pages */
55607 int bCloseTrans = 0; /* True if src db requires unlocking */
55609 /* If the source pager is currently in a write-transaction, return
55610 ** SQLITE_BUSY immediately.
55612 if( p->pDestDb && p->pSrc->pBt->inTransaction==TRANS_WRITE ){
55613 rc = SQLITE_BUSY;
55614 }else{
55615 rc = SQLITE_OK;
55618 /* Lock the destination database, if it is not locked already. */
55619 if( SQLITE_OK==rc && p->bDestLocked==0
55620 && SQLITE_OK==(rc = sqlite3BtreeBeginTrans(p->pDest, 2))
55622 p->bDestLocked = 1;
55623 sqlite3BtreeGetMeta(p->pDest, BTREE_SCHEMA_VERSION, &p->iDestSchema);
55626 /* If there is no open read-transaction on the source database, open
55627 ** one now. If a transaction is opened here, then it will be closed
55628 ** before this function exits.
55630 if( rc==SQLITE_OK && 0==sqlite3BtreeIsInReadTrans(p->pSrc) ){
55631 rc = sqlite3BtreeBeginTrans(p->pSrc, 0);
55632 bCloseTrans = 1;
55635 /* Do not allow backup if the destination database is in WAL mode
55636 ** and the page sizes are different between source and destination */
55637 pgszSrc = sqlite3BtreeGetPageSize(p->pSrc);
55638 pgszDest = sqlite3BtreeGetPageSize(p->pDest);
55639 destMode = sqlite3PagerGetJournalMode(sqlite3BtreePager(p->pDest));
55640 if( SQLITE_OK==rc && destMode==PAGER_JOURNALMODE_WAL && pgszSrc!=pgszDest ){
55641 rc = SQLITE_READONLY;
55644 /* Now that there is a read-lock on the source database, query the
55645 ** source pager for the number of pages in the database.
55647 nSrcPage = (int)sqlite3BtreeLastPage(p->pSrc);
55648 assert( nSrcPage>=0 );
55649 for(ii=0; (nPage<0 || ii<nPage) && p->iNext<=(Pgno)nSrcPage && !rc; ii++){
55650 const Pgno iSrcPg = p->iNext; /* Source page number */
55651 if( iSrcPg!=PENDING_BYTE_PAGE(p->pSrc->pBt) ){
55652 DbPage *pSrcPg; /* Source page object */
55653 rc = sqlite3PagerGet(pSrcPager, iSrcPg, &pSrcPg);
55654 if( rc==SQLITE_OK ){
55655 rc = backupOnePage(p, iSrcPg, sqlite3PagerGetData(pSrcPg));
55656 sqlite3PagerUnref(pSrcPg);
55659 p->iNext++;
55661 if( rc==SQLITE_OK ){
55662 p->nPagecount = nSrcPage;
55663 p->nRemaining = nSrcPage+1-p->iNext;
55664 if( p->iNext>(Pgno)nSrcPage ){
55665 rc = SQLITE_DONE;
55666 }else if( !p->isAttached ){
55667 attachBackupObject(p);
55671 /* Update the schema version field in the destination database. This
55672 ** is to make sure that the schema-version really does change in
55673 ** the case where the source and destination databases have the
55674 ** same schema version.
55676 if( rc==SQLITE_DONE
55677 && (rc = sqlite3BtreeUpdateMeta(p->pDest,1,p->iDestSchema+1))==SQLITE_OK
55679 int nDestTruncate;
55681 if( p->pDestDb ){
55682 sqlite3ResetInternalSchema(p->pDestDb, -1);
55685 /* Set nDestTruncate to the final number of pages in the destination
55686 ** database. The complication here is that the destination page
55687 ** size may be different to the source page size.
55689 ** If the source page size is smaller than the destination page size,
55690 ** round up. In this case the call to sqlite3OsTruncate() below will
55691 ** fix the size of the file. However it is important to call
55692 ** sqlite3PagerTruncateImage() here so that any pages in the
55693 ** destination file that lie beyond the nDestTruncate page mark are
55694 ** journalled by PagerCommitPhaseOne() before they are destroyed
55695 ** by the file truncation.
55697 assert( pgszSrc==sqlite3BtreeGetPageSize(p->pSrc) );
55698 assert( pgszDest==sqlite3BtreeGetPageSize(p->pDest) );
55699 if( pgszSrc<pgszDest ){
55700 int ratio = pgszDest/pgszSrc;
55701 nDestTruncate = (nSrcPage+ratio-1)/ratio;
55702 if( nDestTruncate==(int)PENDING_BYTE_PAGE(p->pDest->pBt) ){
55703 nDestTruncate--;
55705 }else{
55706 nDestTruncate = nSrcPage * (pgszSrc/pgszDest);
55708 sqlite3PagerTruncateImage(pDestPager, nDestTruncate);
55710 if( pgszSrc<pgszDest ){
55711 /* If the source page-size is smaller than the destination page-size,
55712 ** two extra things may need to happen:
55714 ** * The destination may need to be truncated, and
55716 ** * Data stored on the pages immediately following the
55717 ** pending-byte page in the source database may need to be
55718 ** copied into the destination database.
55720 const i64 iSize = (i64)pgszSrc * (i64)nSrcPage;
55721 sqlite3_file * const pFile = sqlite3PagerFile(pDestPager);
55722 i64 iOff;
55723 i64 iEnd;
55725 assert( pFile );
55726 assert( (i64)nDestTruncate*(i64)pgszDest >= iSize || (
55727 nDestTruncate==(int)(PENDING_BYTE_PAGE(p->pDest->pBt)-1)
55728 && iSize>=PENDING_BYTE && iSize<=PENDING_BYTE+pgszDest
55731 /* This call ensures that all data required to recreate the original
55732 ** database has been stored in the journal for pDestPager and the
55733 ** journal synced to disk. So at this point we may safely modify
55734 ** the database file in any way, knowing that if a power failure
55735 ** occurs, the original database will be reconstructed from the
55736 ** journal file. */
55737 rc = sqlite3PagerCommitPhaseOne(pDestPager, 0, 1);
55739 /* Write the extra pages and truncate the database file as required. */
55740 iEnd = MIN(PENDING_BYTE + pgszDest, iSize);
55741 for(
55742 iOff=PENDING_BYTE+pgszSrc;
55743 rc==SQLITE_OK && iOff<iEnd;
55744 iOff+=pgszSrc
55746 PgHdr *pSrcPg = 0;
55747 const Pgno iSrcPg = (Pgno)((iOff/pgszSrc)+1);
55748 rc = sqlite3PagerGet(pSrcPager, iSrcPg, &pSrcPg);
55749 if( rc==SQLITE_OK ){
55750 u8 *zData = sqlite3PagerGetData(pSrcPg);
55751 rc = sqlite3OsWrite(pFile, zData, pgszSrc, iOff);
55753 sqlite3PagerUnref(pSrcPg);
55755 if( rc==SQLITE_OK ){
55756 rc = backupTruncateFile(pFile, iSize);
55759 /* Sync the database file to disk. */
55760 if( rc==SQLITE_OK ){
55761 rc = sqlite3PagerSync(pDestPager);
55763 }else{
55764 rc = sqlite3PagerCommitPhaseOne(pDestPager, 0, 0);
55767 /* Finish committing the transaction to the destination database. */
55768 if( SQLITE_OK==rc
55769 && SQLITE_OK==(rc = sqlite3BtreeCommitPhaseTwo(p->pDest, 0))
55771 rc = SQLITE_DONE;
55775 /* If bCloseTrans is true, then this function opened a read transaction
55776 ** on the source database. Close the read transaction here. There is
55777 ** no need to check the return values of the btree methods here, as
55778 ** "committing" a read-only transaction cannot fail.
55780 if( bCloseTrans ){
55781 TESTONLY( int rc2 );
55782 TESTONLY( rc2 = ) sqlite3BtreeCommitPhaseOne(p->pSrc, 0);
55783 TESTONLY( rc2 |= ) sqlite3BtreeCommitPhaseTwo(p->pSrc, 0);
55784 assert( rc2==SQLITE_OK );
55787 if( rc==SQLITE_IOERR_NOMEM ){
55788 rc = SQLITE_NOMEM;
55790 p->rc = rc;
55792 if( p->pDestDb ){
55793 sqlite3_mutex_leave(p->pDestDb->mutex);
55795 sqlite3BtreeLeave(p->pSrc);
55796 sqlite3_mutex_leave(p->pSrcDb->mutex);
55797 return rc;
55801 ** Release all resources associated with an sqlite3_backup* handle.
55803 SQLITE_API int sqlite3_backup_finish(sqlite3_backup *p){
55804 sqlite3_backup **pp; /* Ptr to head of pagers backup list */
55805 sqlite3_mutex *mutex; /* Mutex to protect source database */
55806 int rc; /* Value to return */
55808 /* Enter the mutexes */
55809 if( p==0 ) return SQLITE_OK;
55810 sqlite3_mutex_enter(p->pSrcDb->mutex);
55811 sqlite3BtreeEnter(p->pSrc);
55812 mutex = p->pSrcDb->mutex;
55813 if( p->pDestDb ){
55814 sqlite3_mutex_enter(p->pDestDb->mutex);
55817 /* Detach this backup from the source pager. */
55818 if( p->pDestDb ){
55819 p->pSrc->nBackup--;
55821 if( p->isAttached ){
55822 pp = sqlite3PagerBackupPtr(sqlite3BtreePager(p->pSrc));
55823 while( *pp!=p ){
55824 pp = &(*pp)->pNext;
55826 *pp = p->pNext;
55829 /* If a transaction is still open on the Btree, roll it back. */
55830 sqlite3BtreeRollback(p->pDest);
55832 /* Set the error code of the destination database handle. */
55833 rc = (p->rc==SQLITE_DONE) ? SQLITE_OK : p->rc;
55834 sqlite3Error(p->pDestDb, rc, 0);
55836 /* Exit the mutexes and free the backup context structure. */
55837 if( p->pDestDb ){
55838 sqlite3_mutex_leave(p->pDestDb->mutex);
55840 sqlite3BtreeLeave(p->pSrc);
55841 if( p->pDestDb ){
55842 /* EVIDENCE-OF: R-64852-21591 The sqlite3_backup object is created by a
55843 ** call to sqlite3_backup_init() and is destroyed by a call to
55844 ** sqlite3_backup_finish(). */
55845 sqlite3_free(p);
55847 sqlite3_mutex_leave(mutex);
55848 return rc;
55852 ** Return the number of pages still to be backed up as of the most recent
55853 ** call to sqlite3_backup_step().
55855 SQLITE_API int sqlite3_backup_remaining(sqlite3_backup *p){
55856 return p->nRemaining;
55860 ** Return the total number of pages in the source database as of the most
55861 ** recent call to sqlite3_backup_step().
55863 SQLITE_API int sqlite3_backup_pagecount(sqlite3_backup *p){
55864 return p->nPagecount;
55868 ** This function is called after the contents of page iPage of the
55869 ** source database have been modified. If page iPage has already been
55870 ** copied into the destination database, then the data written to the
55871 ** destination is now invalidated. The destination copy of iPage needs
55872 ** to be updated with the new data before the backup operation is
55873 ** complete.
55875 ** It is assumed that the mutex associated with the BtShared object
55876 ** corresponding to the source database is held when this function is
55877 ** called.
55879 SQLITE_PRIVATE void sqlite3BackupUpdate(sqlite3_backup *pBackup, Pgno iPage, const u8 *aData){
55880 sqlite3_backup *p; /* Iterator variable */
55881 for(p=pBackup; p; p=p->pNext){
55882 assert( sqlite3_mutex_held(p->pSrc->pBt->mutex) );
55883 if( !isFatalError(p->rc) && iPage<p->iNext ){
55884 /* The backup process p has already copied page iPage. But now it
55885 ** has been modified by a transaction on the source pager. Copy
55886 ** the new data into the backup.
55888 int rc;
55889 assert( p->pDestDb );
55890 sqlite3_mutex_enter(p->pDestDb->mutex);
55891 rc = backupOnePage(p, iPage, aData);
55892 sqlite3_mutex_leave(p->pDestDb->mutex);
55893 assert( rc!=SQLITE_BUSY && rc!=SQLITE_LOCKED );
55894 if( rc!=SQLITE_OK ){
55895 p->rc = rc;
55902 ** Restart the backup process. This is called when the pager layer
55903 ** detects that the database has been modified by an external database
55904 ** connection. In this case there is no way of knowing which of the
55905 ** pages that have been copied into the destination database are still
55906 ** valid and which are not, so the entire process needs to be restarted.
55908 ** It is assumed that the mutex associated with the BtShared object
55909 ** corresponding to the source database is held when this function is
55910 ** called.
55912 SQLITE_PRIVATE void sqlite3BackupRestart(sqlite3_backup *pBackup){
55913 sqlite3_backup *p; /* Iterator variable */
55914 for(p=pBackup; p; p=p->pNext){
55915 assert( sqlite3_mutex_held(p->pSrc->pBt->mutex) );
55916 p->iNext = 1;
55920 #ifndef SQLITE_OMIT_VACUUM
55922 ** Copy the complete content of pBtFrom into pBtTo. A transaction
55923 ** must be active for both files.
55925 ** The size of file pTo may be reduced by this operation. If anything
55926 ** goes wrong, the transaction on pTo is rolled back. If successful, the
55927 ** transaction is committed before returning.
55929 SQLITE_PRIVATE int sqlite3BtreeCopyFile(Btree *pTo, Btree *pFrom){
55930 int rc;
55931 sqlite3_backup b;
55932 sqlite3BtreeEnter(pTo);
55933 sqlite3BtreeEnter(pFrom);
55935 /* Set up an sqlite3_backup object. sqlite3_backup.pDestDb must be set
55936 ** to 0. This is used by the implementations of sqlite3_backup_step()
55937 ** and sqlite3_backup_finish() to detect that they are being called
55938 ** from this function, not directly by the user.
55940 memset(&b, 0, sizeof(b));
55941 b.pSrcDb = pFrom->db;
55942 b.pSrc = pFrom;
55943 b.pDest = pTo;
55944 b.iNext = 1;
55946 /* 0x7FFFFFFF is the hard limit for the number of pages in a database
55947 ** file. By passing this as the number of pages to copy to
55948 ** sqlite3_backup_step(), we can guarantee that the copy finishes
55949 ** within a single call (unless an error occurs). The assert() statement
55950 ** checks this assumption - (p->rc) should be set to either SQLITE_DONE
55951 ** or an error code.
55953 sqlite3_backup_step(&b, 0x7FFFFFFF);
55954 assert( b.rc!=SQLITE_OK );
55955 rc = sqlite3_backup_finish(&b);
55956 if( rc==SQLITE_OK ){
55957 pTo->pBt->pageSizeFixed = 0;
55960 sqlite3BtreeLeave(pFrom);
55961 sqlite3BtreeLeave(pTo);
55962 return rc;
55964 #endif /* SQLITE_OMIT_VACUUM */
55966 /************** End of backup.c **********************************************/
55967 /************** Begin file vdbemem.c *****************************************/
55969 ** 2004 May 26
55971 ** The author disclaims copyright to this source code. In place of
55972 ** a legal notice, here is a blessing:
55974 ** May you do good and not evil.
55975 ** May you find forgiveness for yourself and forgive others.
55976 ** May you share freely, never taking more than you give.
55978 *************************************************************************
55980 ** This file contains code use to manipulate "Mem" structure. A "Mem"
55981 ** stores a single value in the VDBE. Mem is an opaque structure visible
55982 ** only within the VDBE. Interface routines refer to a Mem using the
55983 ** name sqlite_value
55987 ** Call sqlite3VdbeMemExpandBlob() on the supplied value (type Mem*)
55988 ** P if required.
55990 #define expandBlob(P) (((P)->flags&MEM_Zero)?sqlite3VdbeMemExpandBlob(P):0)
55993 ** If pMem is an object with a valid string representation, this routine
55994 ** ensures the internal encoding for the string representation is
55995 ** 'desiredEnc', one of SQLITE_UTF8, SQLITE_UTF16LE or SQLITE_UTF16BE.
55997 ** If pMem is not a string object, or the encoding of the string
55998 ** representation is already stored using the requested encoding, then this
55999 ** routine is a no-op.
56001 ** SQLITE_OK is returned if the conversion is successful (or not required).
56002 ** SQLITE_NOMEM may be returned if a malloc() fails during conversion
56003 ** between formats.
56005 SQLITE_PRIVATE int sqlite3VdbeChangeEncoding(Mem *pMem, int desiredEnc){
56006 int rc;
56007 assert( (pMem->flags&MEM_RowSet)==0 );
56008 assert( desiredEnc==SQLITE_UTF8 || desiredEnc==SQLITE_UTF16LE
56009 || desiredEnc==SQLITE_UTF16BE );
56010 if( !(pMem->flags&MEM_Str) || pMem->enc==desiredEnc ){
56011 return SQLITE_OK;
56013 assert( pMem->db==0 || sqlite3_mutex_held(pMem->db->mutex) );
56014 #ifdef SQLITE_OMIT_UTF16
56015 return SQLITE_ERROR;
56016 #else
56018 /* MemTranslate() may return SQLITE_OK or SQLITE_NOMEM. If NOMEM is returned,
56019 ** then the encoding of the value may not have changed.
56021 rc = sqlite3VdbeMemTranslate(pMem, (u8)desiredEnc);
56022 assert(rc==SQLITE_OK || rc==SQLITE_NOMEM);
56023 assert(rc==SQLITE_OK || pMem->enc!=desiredEnc);
56024 assert(rc==SQLITE_NOMEM || pMem->enc==desiredEnc);
56025 return rc;
56026 #endif
56030 ** Make sure pMem->z points to a writable allocation of at least
56031 ** n bytes.
56033 ** If the memory cell currently contains string or blob data
56034 ** and the third argument passed to this function is true, the
56035 ** current content of the cell is preserved. Otherwise, it may
56036 ** be discarded.
56038 ** This function sets the MEM_Dyn flag and clears any xDel callback.
56039 ** It also clears MEM_Ephem and MEM_Static. If the preserve flag is
56040 ** not set, Mem.n is zeroed.
56042 SQLITE_PRIVATE int sqlite3VdbeMemGrow(Mem *pMem, int n, int preserve){
56043 assert( 1 >=
56044 ((pMem->zMalloc && pMem->zMalloc==pMem->z) ? 1 : 0) +
56045 (((pMem->flags&MEM_Dyn)&&pMem->xDel) ? 1 : 0) +
56046 ((pMem->flags&MEM_Ephem) ? 1 : 0) +
56047 ((pMem->flags&MEM_Static) ? 1 : 0)
56049 assert( (pMem->flags&MEM_RowSet)==0 );
56051 if( n<32 ) n = 32;
56052 if( sqlite3DbMallocSize(pMem->db, pMem->zMalloc)<n ){
56053 if( preserve && pMem->z==pMem->zMalloc ){
56054 pMem->z = pMem->zMalloc = sqlite3DbReallocOrFree(pMem->db, pMem->z, n);
56055 preserve = 0;
56056 }else{
56057 sqlite3DbFree(pMem->db, pMem->zMalloc);
56058 pMem->zMalloc = sqlite3DbMallocRaw(pMem->db, n);
56062 if( pMem->z && preserve && pMem->zMalloc && pMem->z!=pMem->zMalloc ){
56063 memcpy(pMem->zMalloc, pMem->z, pMem->n);
56065 if( pMem->flags&MEM_Dyn && pMem->xDel ){
56066 pMem->xDel((void *)(pMem->z));
56069 pMem->z = pMem->zMalloc;
56070 if( pMem->z==0 ){
56071 pMem->flags = MEM_Null;
56072 }else{
56073 pMem->flags &= ~(MEM_Ephem|MEM_Static);
56075 pMem->xDel = 0;
56076 return (pMem->z ? SQLITE_OK : SQLITE_NOMEM);
56080 ** Make the given Mem object MEM_Dyn. In other words, make it so
56081 ** that any TEXT or BLOB content is stored in memory obtained from
56082 ** malloc(). In this way, we know that the memory is safe to be
56083 ** overwritten or altered.
56085 ** Return SQLITE_OK on success or SQLITE_NOMEM if malloc fails.
56087 SQLITE_PRIVATE int sqlite3VdbeMemMakeWriteable(Mem *pMem){
56088 int f;
56089 assert( pMem->db==0 || sqlite3_mutex_held(pMem->db->mutex) );
56090 assert( (pMem->flags&MEM_RowSet)==0 );
56091 expandBlob(pMem);
56092 f = pMem->flags;
56093 if( (f&(MEM_Str|MEM_Blob)) && pMem->z!=pMem->zMalloc ){
56094 if( sqlite3VdbeMemGrow(pMem, pMem->n + 2, 1) ){
56095 return SQLITE_NOMEM;
56097 pMem->z[pMem->n] = 0;
56098 pMem->z[pMem->n+1] = 0;
56099 pMem->flags |= MEM_Term;
56100 #ifdef SQLITE_DEBUG
56101 pMem->pScopyFrom = 0;
56102 #endif
56105 return SQLITE_OK;
56109 ** If the given Mem* has a zero-filled tail, turn it into an ordinary
56110 ** blob stored in dynamically allocated space.
56112 #ifndef SQLITE_OMIT_INCRBLOB
56113 SQLITE_PRIVATE int sqlite3VdbeMemExpandBlob(Mem *pMem){
56114 if( pMem->flags & MEM_Zero ){
56115 int nByte;
56116 assert( pMem->flags&MEM_Blob );
56117 assert( (pMem->flags&MEM_RowSet)==0 );
56118 assert( pMem->db==0 || sqlite3_mutex_held(pMem->db->mutex) );
56120 /* Set nByte to the number of bytes required to store the expanded blob. */
56121 nByte = pMem->n + pMem->u.nZero;
56122 if( nByte<=0 ){
56123 nByte = 1;
56125 if( sqlite3VdbeMemGrow(pMem, nByte, 1) ){
56126 return SQLITE_NOMEM;
56129 memset(&pMem->z[pMem->n], 0, pMem->u.nZero);
56130 pMem->n += pMem->u.nZero;
56131 pMem->flags &= ~(MEM_Zero|MEM_Term);
56133 return SQLITE_OK;
56135 #endif
56139 ** Make sure the given Mem is \u0000 terminated.
56141 SQLITE_PRIVATE int sqlite3VdbeMemNulTerminate(Mem *pMem){
56142 assert( pMem->db==0 || sqlite3_mutex_held(pMem->db->mutex) );
56143 if( (pMem->flags & MEM_Term)!=0 || (pMem->flags & MEM_Str)==0 ){
56144 return SQLITE_OK; /* Nothing to do */
56146 if( sqlite3VdbeMemGrow(pMem, pMem->n+2, 1) ){
56147 return SQLITE_NOMEM;
56149 pMem->z[pMem->n] = 0;
56150 pMem->z[pMem->n+1] = 0;
56151 pMem->flags |= MEM_Term;
56152 return SQLITE_OK;
56156 ** Add MEM_Str to the set of representations for the given Mem. Numbers
56157 ** are converted using sqlite3_snprintf(). Converting a BLOB to a string
56158 ** is a no-op.
56160 ** Existing representations MEM_Int and MEM_Real are *not* invalidated.
56162 ** A MEM_Null value will never be passed to this function. This function is
56163 ** used for converting values to text for returning to the user (i.e. via
56164 ** sqlite3_value_text()), or for ensuring that values to be used as btree
56165 ** keys are strings. In the former case a NULL pointer is returned the
56166 ** user and the later is an internal programming error.
56168 SQLITE_PRIVATE int sqlite3VdbeMemStringify(Mem *pMem, int enc){
56169 int rc = SQLITE_OK;
56170 int fg = pMem->flags;
56171 const int nByte = 32;
56173 assert( pMem->db==0 || sqlite3_mutex_held(pMem->db->mutex) );
56174 assert( !(fg&MEM_Zero) );
56175 assert( !(fg&(MEM_Str|MEM_Blob)) );
56176 assert( fg&(MEM_Int|MEM_Real) );
56177 assert( (pMem->flags&MEM_RowSet)==0 );
56178 assert( EIGHT_BYTE_ALIGNMENT(pMem) );
56181 if( sqlite3VdbeMemGrow(pMem, nByte, 0) ){
56182 return SQLITE_NOMEM;
56185 /* For a Real or Integer, use sqlite3_mprintf() to produce the UTF-8
56186 ** string representation of the value. Then, if the required encoding
56187 ** is UTF-16le or UTF-16be do a translation.
56189 ** FIX ME: It would be better if sqlite3_snprintf() could do UTF-16.
56191 if( fg & MEM_Int ){
56192 sqlite3_snprintf(nByte, pMem->z, "%lld", pMem->u.i);
56193 }else{
56194 assert( fg & MEM_Real );
56195 sqlite3_snprintf(nByte, pMem->z, "%!.15g", pMem->r);
56197 pMem->n = sqlite3Strlen30(pMem->z);
56198 pMem->enc = SQLITE_UTF8;
56199 pMem->flags |= MEM_Str|MEM_Term;
56200 sqlite3VdbeChangeEncoding(pMem, enc);
56201 return rc;
56205 ** Memory cell pMem contains the context of an aggregate function.
56206 ** This routine calls the finalize method for that function. The
56207 ** result of the aggregate is stored back into pMem.
56209 ** Return SQLITE_ERROR if the finalizer reports an error. SQLITE_OK
56210 ** otherwise.
56212 SQLITE_PRIVATE int sqlite3VdbeMemFinalize(Mem *pMem, FuncDef *pFunc){
56213 int rc = SQLITE_OK;
56214 if( ALWAYS(pFunc && pFunc->xFinalize) ){
56215 sqlite3_context ctx;
56216 assert( (pMem->flags & MEM_Null)!=0 || pFunc==pMem->u.pDef );
56217 assert( pMem->db==0 || sqlite3_mutex_held(pMem->db->mutex) );
56218 memset(&ctx, 0, sizeof(ctx));
56219 ctx.s.flags = MEM_Null;
56220 ctx.s.db = pMem->db;
56221 ctx.pMem = pMem;
56222 ctx.pFunc = pFunc;
56223 pFunc->xFinalize(&ctx); /* IMP: R-24505-23230 */
56224 assert( 0==(pMem->flags&MEM_Dyn) && !pMem->xDel );
56225 sqlite3DbFree(pMem->db, pMem->zMalloc);
56226 memcpy(pMem, &ctx.s, sizeof(ctx.s));
56227 rc = ctx.isError;
56229 return rc;
56233 ** If the memory cell contains a string value that must be freed by
56234 ** invoking an external callback, free it now. Calling this function
56235 ** does not free any Mem.zMalloc buffer.
56237 SQLITE_PRIVATE void sqlite3VdbeMemReleaseExternal(Mem *p){
56238 assert( p->db==0 || sqlite3_mutex_held(p->db->mutex) );
56239 testcase( p->flags & MEM_Agg );
56240 testcase( p->flags & MEM_Dyn );
56241 testcase( p->flags & MEM_RowSet );
56242 testcase( p->flags & MEM_Frame );
56243 if( p->flags&(MEM_Agg|MEM_Dyn|MEM_RowSet|MEM_Frame) ){
56244 if( p->flags&MEM_Agg ){
56245 sqlite3VdbeMemFinalize(p, p->u.pDef);
56246 assert( (p->flags & MEM_Agg)==0 );
56247 sqlite3VdbeMemRelease(p);
56248 }else if( p->flags&MEM_Dyn && p->xDel ){
56249 assert( (p->flags&MEM_RowSet)==0 );
56250 p->xDel((void *)p->z);
56251 p->xDel = 0;
56252 }else if( p->flags&MEM_RowSet ){
56253 sqlite3RowSetClear(p->u.pRowSet);
56254 }else if( p->flags&MEM_Frame ){
56255 sqlite3VdbeMemSetNull(p);
56261 ** Release any memory held by the Mem. This may leave the Mem in an
56262 ** inconsistent state, for example with (Mem.z==0) and
56263 ** (Mem.type==SQLITE_TEXT).
56265 SQLITE_PRIVATE void sqlite3VdbeMemRelease(Mem *p){
56266 sqlite3VdbeMemReleaseExternal(p);
56267 sqlite3DbFree(p->db, p->zMalloc);
56268 p->z = 0;
56269 p->zMalloc = 0;
56270 p->xDel = 0;
56274 ** Convert a 64-bit IEEE double into a 64-bit signed integer.
56275 ** If the double is too large, return 0x8000000000000000.
56277 ** Most systems appear to do this simply by assigning
56278 ** variables and without the extra range tests. But
56279 ** there are reports that windows throws an expection
56280 ** if the floating point value is out of range. (See ticket #2880.)
56281 ** Because we do not completely understand the problem, we will
56282 ** take the conservative approach and always do range tests
56283 ** before attempting the conversion.
56285 static i64 doubleToInt64(double r){
56286 #ifdef SQLITE_OMIT_FLOATING_POINT
56287 /* When floating-point is omitted, double and int64 are the same thing */
56288 return r;
56289 #else
56291 ** Many compilers we encounter do not define constants for the
56292 ** minimum and maximum 64-bit integers, or they define them
56293 ** inconsistently. And many do not understand the "LL" notation.
56294 ** So we define our own static constants here using nothing
56295 ** larger than a 32-bit integer constant.
56297 static const i64 maxInt = LARGEST_INT64;
56298 static const i64 minInt = SMALLEST_INT64;
56300 if( r<(double)minInt ){
56301 return minInt;
56302 }else if( r>(double)maxInt ){
56303 /* minInt is correct here - not maxInt. It turns out that assigning
56304 ** a very large positive number to an integer results in a very large
56305 ** negative integer. This makes no sense, but it is what x86 hardware
56306 ** does so for compatibility we will do the same in software. */
56307 return minInt;
56308 }else{
56309 return (i64)r;
56311 #endif
56315 ** Return some kind of integer value which is the best we can do
56316 ** at representing the value that *pMem describes as an integer.
56317 ** If pMem is an integer, then the value is exact. If pMem is
56318 ** a floating-point then the value returned is the integer part.
56319 ** If pMem is a string or blob, then we make an attempt to convert
56320 ** it into a integer and return that. If pMem represents an
56321 ** an SQL-NULL value, return 0.
56323 ** If pMem represents a string value, its encoding might be changed.
56325 SQLITE_PRIVATE i64 sqlite3VdbeIntValue(Mem *pMem){
56326 int flags;
56327 assert( pMem->db==0 || sqlite3_mutex_held(pMem->db->mutex) );
56328 assert( EIGHT_BYTE_ALIGNMENT(pMem) );
56329 flags = pMem->flags;
56330 if( flags & MEM_Int ){
56331 return pMem->u.i;
56332 }else if( flags & MEM_Real ){
56333 return doubleToInt64(pMem->r);
56334 }else if( flags & (MEM_Str|MEM_Blob) ){
56335 i64 value = 0;
56336 assert( pMem->z || pMem->n==0 );
56337 testcase( pMem->z==0 );
56338 sqlite3Atoi64(pMem->z, &value, pMem->n, pMem->enc);
56339 return value;
56340 }else{
56341 return 0;
56346 ** Return the best representation of pMem that we can get into a
56347 ** double. If pMem is already a double or an integer, return its
56348 ** value. If it is a string or blob, try to convert it to a double.
56349 ** If it is a NULL, return 0.0.
56351 SQLITE_PRIVATE double sqlite3VdbeRealValue(Mem *pMem){
56352 assert( pMem->db==0 || sqlite3_mutex_held(pMem->db->mutex) );
56353 assert( EIGHT_BYTE_ALIGNMENT(pMem) );
56354 if( pMem->flags & MEM_Real ){
56355 return pMem->r;
56356 }else if( pMem->flags & MEM_Int ){
56357 return (double)pMem->u.i;
56358 }else if( pMem->flags & (MEM_Str|MEM_Blob) ){
56359 /* (double)0 In case of SQLITE_OMIT_FLOATING_POINT... */
56360 double val = (double)0;
56361 sqlite3AtoF(pMem->z, &val, pMem->n, pMem->enc);
56362 return val;
56363 }else{
56364 /* (double)0 In case of SQLITE_OMIT_FLOATING_POINT... */
56365 return (double)0;
56370 ** The MEM structure is already a MEM_Real. Try to also make it a
56371 ** MEM_Int if we can.
56373 SQLITE_PRIVATE void sqlite3VdbeIntegerAffinity(Mem *pMem){
56374 assert( pMem->flags & MEM_Real );
56375 assert( (pMem->flags & MEM_RowSet)==0 );
56376 assert( pMem->db==0 || sqlite3_mutex_held(pMem->db->mutex) );
56377 assert( EIGHT_BYTE_ALIGNMENT(pMem) );
56379 pMem->u.i = doubleToInt64(pMem->r);
56381 /* Only mark the value as an integer if
56383 ** (1) the round-trip conversion real->int->real is a no-op, and
56384 ** (2) The integer is neither the largest nor the smallest
56385 ** possible integer (ticket #3922)
56387 ** The second and third terms in the following conditional enforces
56388 ** the second condition under the assumption that addition overflow causes
56389 ** values to wrap around. On x86 hardware, the third term is always
56390 ** true and could be omitted. But we leave it in because other
56391 ** architectures might behave differently.
56393 if( pMem->r==(double)pMem->u.i && pMem->u.i>SMALLEST_INT64
56394 && ALWAYS(pMem->u.i<LARGEST_INT64) ){
56395 pMem->flags |= MEM_Int;
56400 ** Convert pMem to type integer. Invalidate any prior representations.
56402 SQLITE_PRIVATE int sqlite3VdbeMemIntegerify(Mem *pMem){
56403 assert( pMem->db==0 || sqlite3_mutex_held(pMem->db->mutex) );
56404 assert( (pMem->flags & MEM_RowSet)==0 );
56405 assert( EIGHT_BYTE_ALIGNMENT(pMem) );
56407 pMem->u.i = sqlite3VdbeIntValue(pMem);
56408 MemSetTypeFlag(pMem, MEM_Int);
56409 return SQLITE_OK;
56413 ** Convert pMem so that it is of type MEM_Real.
56414 ** Invalidate any prior representations.
56416 SQLITE_PRIVATE int sqlite3VdbeMemRealify(Mem *pMem){
56417 assert( pMem->db==0 || sqlite3_mutex_held(pMem->db->mutex) );
56418 assert( EIGHT_BYTE_ALIGNMENT(pMem) );
56420 pMem->r = sqlite3VdbeRealValue(pMem);
56421 MemSetTypeFlag(pMem, MEM_Real);
56422 return SQLITE_OK;
56426 ** Convert pMem so that it has types MEM_Real or MEM_Int or both.
56427 ** Invalidate any prior representations.
56429 ** Every effort is made to force the conversion, even if the input
56430 ** is a string that does not look completely like a number. Convert
56431 ** as much of the string as we can and ignore the rest.
56433 SQLITE_PRIVATE int sqlite3VdbeMemNumerify(Mem *pMem){
56434 if( (pMem->flags & (MEM_Int|MEM_Real|MEM_Null))==0 ){
56435 assert( (pMem->flags & (MEM_Blob|MEM_Str))!=0 );
56436 assert( pMem->db==0 || sqlite3_mutex_held(pMem->db->mutex) );
56437 if( 0==sqlite3Atoi64(pMem->z, &pMem->u.i, pMem->n, pMem->enc) ){
56438 MemSetTypeFlag(pMem, MEM_Int);
56439 }else{
56440 pMem->r = sqlite3VdbeRealValue(pMem);
56441 MemSetTypeFlag(pMem, MEM_Real);
56442 sqlite3VdbeIntegerAffinity(pMem);
56445 assert( (pMem->flags & (MEM_Int|MEM_Real|MEM_Null))!=0 );
56446 pMem->flags &= ~(MEM_Str|MEM_Blob);
56447 return SQLITE_OK;
56451 ** Delete any previous value and set the value stored in *pMem to NULL.
56453 SQLITE_PRIVATE void sqlite3VdbeMemSetNull(Mem *pMem){
56454 if( pMem->flags & MEM_Frame ){
56455 VdbeFrame *pFrame = pMem->u.pFrame;
56456 pFrame->pParent = pFrame->v->pDelFrame;
56457 pFrame->v->pDelFrame = pFrame;
56459 if( pMem->flags & MEM_RowSet ){
56460 sqlite3RowSetClear(pMem->u.pRowSet);
56462 MemSetTypeFlag(pMem, MEM_Null);
56463 pMem->type = SQLITE_NULL;
56467 ** Delete any previous value and set the value to be a BLOB of length
56468 ** n containing all zeros.
56470 SQLITE_PRIVATE void sqlite3VdbeMemSetZeroBlob(Mem *pMem, int n){
56471 sqlite3VdbeMemRelease(pMem);
56472 pMem->flags = MEM_Blob|MEM_Zero;
56473 pMem->type = SQLITE_BLOB;
56474 pMem->n = 0;
56475 if( n<0 ) n = 0;
56476 pMem->u.nZero = n;
56477 pMem->enc = SQLITE_UTF8;
56479 #ifdef SQLITE_OMIT_INCRBLOB
56480 sqlite3VdbeMemGrow(pMem, n, 0);
56481 if( pMem->z ){
56482 pMem->n = n;
56483 memset(pMem->z, 0, n);
56485 #endif
56489 ** Delete any previous value and set the value stored in *pMem to val,
56490 ** manifest type INTEGER.
56492 SQLITE_PRIVATE void sqlite3VdbeMemSetInt64(Mem *pMem, i64 val){
56493 sqlite3VdbeMemRelease(pMem);
56494 pMem->u.i = val;
56495 pMem->flags = MEM_Int;
56496 pMem->type = SQLITE_INTEGER;
56499 #ifndef SQLITE_OMIT_FLOATING_POINT
56501 ** Delete any previous value and set the value stored in *pMem to val,
56502 ** manifest type REAL.
56504 SQLITE_PRIVATE void sqlite3VdbeMemSetDouble(Mem *pMem, double val){
56505 if( sqlite3IsNaN(val) ){
56506 sqlite3VdbeMemSetNull(pMem);
56507 }else{
56508 sqlite3VdbeMemRelease(pMem);
56509 pMem->r = val;
56510 pMem->flags = MEM_Real;
56511 pMem->type = SQLITE_FLOAT;
56514 #endif
56517 ** Delete any previous value and set the value of pMem to be an
56518 ** empty boolean index.
56520 SQLITE_PRIVATE void sqlite3VdbeMemSetRowSet(Mem *pMem){
56521 sqlite3 *db = pMem->db;
56522 assert( db!=0 );
56523 assert( (pMem->flags & MEM_RowSet)==0 );
56524 sqlite3VdbeMemRelease(pMem);
56525 pMem->zMalloc = sqlite3DbMallocRaw(db, 64);
56526 if( db->mallocFailed ){
56527 pMem->flags = MEM_Null;
56528 }else{
56529 assert( pMem->zMalloc );
56530 pMem->u.pRowSet = sqlite3RowSetInit(db, pMem->zMalloc,
56531 sqlite3DbMallocSize(db, pMem->zMalloc));
56532 assert( pMem->u.pRowSet!=0 );
56533 pMem->flags = MEM_RowSet;
56538 ** Return true if the Mem object contains a TEXT or BLOB that is
56539 ** too large - whose size exceeds SQLITE_MAX_LENGTH.
56541 SQLITE_PRIVATE int sqlite3VdbeMemTooBig(Mem *p){
56542 assert( p->db!=0 );
56543 if( p->flags & (MEM_Str|MEM_Blob) ){
56544 int n = p->n;
56545 if( p->flags & MEM_Zero ){
56546 n += p->u.nZero;
56548 return n>p->db->aLimit[SQLITE_LIMIT_LENGTH];
56550 return 0;
56553 #ifdef SQLITE_DEBUG
56555 ** This routine prepares a memory cell for modication by breaking
56556 ** its link to a shallow copy and by marking any current shallow
56557 ** copies of this cell as invalid.
56559 ** This is used for testing and debugging only - to make sure shallow
56560 ** copies are not misused.
56562 SQLITE_PRIVATE void sqlite3VdbeMemPrepareToChange(Vdbe *pVdbe, Mem *pMem){
56563 int i;
56564 Mem *pX;
56565 for(i=1, pX=&pVdbe->aMem[1]; i<=pVdbe->nMem; i++, pX++){
56566 if( pX->pScopyFrom==pMem ){
56567 pX->flags |= MEM_Invalid;
56568 pX->pScopyFrom = 0;
56571 pMem->pScopyFrom = 0;
56573 #endif /* SQLITE_DEBUG */
56576 ** Size of struct Mem not including the Mem.zMalloc member.
56578 #define MEMCELLSIZE (size_t)(&(((Mem *)0)->zMalloc))
56581 ** Make an shallow copy of pFrom into pTo. Prior contents of
56582 ** pTo are freed. The pFrom->z field is not duplicated. If
56583 ** pFrom->z is used, then pTo->z points to the same thing as pFrom->z
56584 ** and flags gets srcType (either MEM_Ephem or MEM_Static).
56586 SQLITE_PRIVATE void sqlite3VdbeMemShallowCopy(Mem *pTo, const Mem *pFrom, int srcType){
56587 assert( (pFrom->flags & MEM_RowSet)==0 );
56588 sqlite3VdbeMemReleaseExternal(pTo);
56589 memcpy(pTo, pFrom, MEMCELLSIZE);
56590 pTo->xDel = 0;
56591 if( (pFrom->flags&MEM_Static)==0 ){
56592 pTo->flags &= ~(MEM_Dyn|MEM_Static|MEM_Ephem);
56593 assert( srcType==MEM_Ephem || srcType==MEM_Static );
56594 pTo->flags |= srcType;
56599 ** Make a full copy of pFrom into pTo. Prior contents of pTo are
56600 ** freed before the copy is made.
56602 SQLITE_PRIVATE int sqlite3VdbeMemCopy(Mem *pTo, const Mem *pFrom){
56603 int rc = SQLITE_OK;
56605 assert( (pFrom->flags & MEM_RowSet)==0 );
56606 sqlite3VdbeMemReleaseExternal(pTo);
56607 memcpy(pTo, pFrom, MEMCELLSIZE);
56608 pTo->flags &= ~MEM_Dyn;
56610 if( pTo->flags&(MEM_Str|MEM_Blob) ){
56611 if( 0==(pFrom->flags&MEM_Static) ){
56612 pTo->flags |= MEM_Ephem;
56613 rc = sqlite3VdbeMemMakeWriteable(pTo);
56617 return rc;
56621 ** Transfer the contents of pFrom to pTo. Any existing value in pTo is
56622 ** freed. If pFrom contains ephemeral data, a copy is made.
56624 ** pFrom contains an SQL NULL when this routine returns.
56626 SQLITE_PRIVATE void sqlite3VdbeMemMove(Mem *pTo, Mem *pFrom){
56627 assert( pFrom->db==0 || sqlite3_mutex_held(pFrom->db->mutex) );
56628 assert( pTo->db==0 || sqlite3_mutex_held(pTo->db->mutex) );
56629 assert( pFrom->db==0 || pTo->db==0 || pFrom->db==pTo->db );
56631 sqlite3VdbeMemRelease(pTo);
56632 memcpy(pTo, pFrom, sizeof(Mem));
56633 pFrom->flags = MEM_Null;
56634 pFrom->xDel = 0;
56635 pFrom->zMalloc = 0;
56639 ** Change the value of a Mem to be a string or a BLOB.
56641 ** The memory management strategy depends on the value of the xDel
56642 ** parameter. If the value passed is SQLITE_TRANSIENT, then the
56643 ** string is copied into a (possibly existing) buffer managed by the
56644 ** Mem structure. Otherwise, any existing buffer is freed and the
56645 ** pointer copied.
56647 ** If the string is too large (if it exceeds the SQLITE_LIMIT_LENGTH
56648 ** size limit) then no memory allocation occurs. If the string can be
56649 ** stored without allocating memory, then it is. If a memory allocation
56650 ** is required to store the string, then value of pMem is unchanged. In
56651 ** either case, SQLITE_TOOBIG is returned.
56653 SQLITE_PRIVATE int sqlite3VdbeMemSetStr(
56654 Mem *pMem, /* Memory cell to set to string value */
56655 const char *z, /* String pointer */
56656 int n, /* Bytes in string, or negative */
56657 u8 enc, /* Encoding of z. 0 for BLOBs */
56658 void (*xDel)(void*) /* Destructor function */
56660 int nByte = n; /* New value for pMem->n */
56661 int iLimit; /* Maximum allowed string or blob size */
56662 u16 flags = 0; /* New value for pMem->flags */
56664 assert( pMem->db==0 || sqlite3_mutex_held(pMem->db->mutex) );
56665 assert( (pMem->flags & MEM_RowSet)==0 );
56667 /* If z is a NULL pointer, set pMem to contain an SQL NULL. */
56668 if( !z ){
56669 sqlite3VdbeMemSetNull(pMem);
56670 return SQLITE_OK;
56673 if( pMem->db ){
56674 iLimit = pMem->db->aLimit[SQLITE_LIMIT_LENGTH];
56675 }else{
56676 iLimit = SQLITE_MAX_LENGTH;
56678 flags = (enc==0?MEM_Blob:MEM_Str);
56679 if( nByte<0 ){
56680 assert( enc!=0 );
56681 if( enc==SQLITE_UTF8 ){
56682 for(nByte=0; nByte<=iLimit && z[nByte]; nByte++){}
56683 }else{
56684 for(nByte=0; nByte<=iLimit && (z[nByte] | z[nByte+1]); nByte+=2){}
56686 flags |= MEM_Term;
56689 /* The following block sets the new values of Mem.z and Mem.xDel. It
56690 ** also sets a flag in local variable "flags" to indicate the memory
56691 ** management (one of MEM_Dyn or MEM_Static).
56693 if( xDel==SQLITE_TRANSIENT ){
56694 int nAlloc = nByte;
56695 if( flags&MEM_Term ){
56696 nAlloc += (enc==SQLITE_UTF8?1:2);
56698 if( nByte>iLimit ){
56699 return SQLITE_TOOBIG;
56701 if( sqlite3VdbeMemGrow(pMem, nAlloc, 0) ){
56702 return SQLITE_NOMEM;
56704 memcpy(pMem->z, z, nAlloc);
56705 }else if( xDel==SQLITE_DYNAMIC ){
56706 sqlite3VdbeMemRelease(pMem);
56707 pMem->zMalloc = pMem->z = (char *)z;
56708 pMem->xDel = 0;
56709 }else{
56710 sqlite3VdbeMemRelease(pMem);
56711 pMem->z = (char *)z;
56712 pMem->xDel = xDel;
56713 flags |= ((xDel==SQLITE_STATIC)?MEM_Static:MEM_Dyn);
56716 pMem->n = nByte;
56717 pMem->flags = flags;
56718 pMem->enc = (enc==0 ? SQLITE_UTF8 : enc);
56719 pMem->type = (enc==0 ? SQLITE_BLOB : SQLITE_TEXT);
56721 #ifndef SQLITE_OMIT_UTF16
56722 if( pMem->enc!=SQLITE_UTF8 && sqlite3VdbeMemHandleBom(pMem) ){
56723 return SQLITE_NOMEM;
56725 #endif
56727 if( nByte>iLimit ){
56728 return SQLITE_TOOBIG;
56731 return SQLITE_OK;
56735 ** Compare the values contained by the two memory cells, returning
56736 ** negative, zero or positive if pMem1 is less than, equal to, or greater
56737 ** than pMem2. Sorting order is NULL's first, followed by numbers (integers
56738 ** and reals) sorted numerically, followed by text ordered by the collating
56739 ** sequence pColl and finally blob's ordered by memcmp().
56741 ** Two NULL values are considered equal by this function.
56743 SQLITE_PRIVATE int sqlite3MemCompare(const Mem *pMem1, const Mem *pMem2, const CollSeq *pColl){
56744 int rc;
56745 int f1, f2;
56746 int combined_flags;
56748 f1 = pMem1->flags;
56749 f2 = pMem2->flags;
56750 combined_flags = f1|f2;
56751 assert( (combined_flags & MEM_RowSet)==0 );
56753 /* If one value is NULL, it is less than the other. If both values
56754 ** are NULL, return 0.
56756 if( combined_flags&MEM_Null ){
56757 return (f2&MEM_Null) - (f1&MEM_Null);
56760 /* If one value is a number and the other is not, the number is less.
56761 ** If both are numbers, compare as reals if one is a real, or as integers
56762 ** if both values are integers.
56764 if( combined_flags&(MEM_Int|MEM_Real) ){
56765 if( !(f1&(MEM_Int|MEM_Real)) ){
56766 return 1;
56768 if( !(f2&(MEM_Int|MEM_Real)) ){
56769 return -1;
56771 if( (f1 & f2 & MEM_Int)==0 ){
56772 double r1, r2;
56773 if( (f1&MEM_Real)==0 ){
56774 r1 = (double)pMem1->u.i;
56775 }else{
56776 r1 = pMem1->r;
56778 if( (f2&MEM_Real)==0 ){
56779 r2 = (double)pMem2->u.i;
56780 }else{
56781 r2 = pMem2->r;
56783 if( r1<r2 ) return -1;
56784 if( r1>r2 ) return 1;
56785 return 0;
56786 }else{
56787 assert( f1&MEM_Int );
56788 assert( f2&MEM_Int );
56789 if( pMem1->u.i < pMem2->u.i ) return -1;
56790 if( pMem1->u.i > pMem2->u.i ) return 1;
56791 return 0;
56795 /* If one value is a string and the other is a blob, the string is less.
56796 ** If both are strings, compare using the collating functions.
56798 if( combined_flags&MEM_Str ){
56799 if( (f1 & MEM_Str)==0 ){
56800 return 1;
56802 if( (f2 & MEM_Str)==0 ){
56803 return -1;
56806 assert( pMem1->enc==pMem2->enc );
56807 assert( pMem1->enc==SQLITE_UTF8 ||
56808 pMem1->enc==SQLITE_UTF16LE || pMem1->enc==SQLITE_UTF16BE );
56810 /* The collation sequence must be defined at this point, even if
56811 ** the user deletes the collation sequence after the vdbe program is
56812 ** compiled (this was not always the case).
56814 assert( !pColl || pColl->xCmp );
56816 if( pColl ){
56817 if( pMem1->enc==pColl->enc ){
56818 /* The strings are already in the correct encoding. Call the
56819 ** comparison function directly */
56820 return pColl->xCmp(pColl->pUser,pMem1->n,pMem1->z,pMem2->n,pMem2->z);
56821 }else{
56822 const void *v1, *v2;
56823 int n1, n2;
56824 Mem c1;
56825 Mem c2;
56826 memset(&c1, 0, sizeof(c1));
56827 memset(&c2, 0, sizeof(c2));
56828 sqlite3VdbeMemShallowCopy(&c1, pMem1, MEM_Ephem);
56829 sqlite3VdbeMemShallowCopy(&c2, pMem2, MEM_Ephem);
56830 v1 = sqlite3ValueText((sqlite3_value*)&c1, pColl->enc);
56831 n1 = v1==0 ? 0 : c1.n;
56832 v2 = sqlite3ValueText((sqlite3_value*)&c2, pColl->enc);
56833 n2 = v2==0 ? 0 : c2.n;
56834 rc = pColl->xCmp(pColl->pUser, n1, v1, n2, v2);
56835 sqlite3VdbeMemRelease(&c1);
56836 sqlite3VdbeMemRelease(&c2);
56837 return rc;
56840 /* If a NULL pointer was passed as the collate function, fall through
56841 ** to the blob case and use memcmp(). */
56844 /* Both values must be blobs. Compare using memcmp(). */
56845 rc = memcmp(pMem1->z, pMem2->z, (pMem1->n>pMem2->n)?pMem2->n:pMem1->n);
56846 if( rc==0 ){
56847 rc = pMem1->n - pMem2->n;
56849 return rc;
56853 ** Move data out of a btree key or data field and into a Mem structure.
56854 ** The data or key is taken from the entry that pCur is currently pointing
56855 ** to. offset and amt determine what portion of the data or key to retrieve.
56856 ** key is true to get the key or false to get data. The result is written
56857 ** into the pMem element.
56859 ** The pMem structure is assumed to be uninitialized. Any prior content
56860 ** is overwritten without being freed.
56862 ** If this routine fails for any reason (malloc returns NULL or unable
56863 ** to read from the disk) then the pMem is left in an inconsistent state.
56865 SQLITE_PRIVATE int sqlite3VdbeMemFromBtree(
56866 BtCursor *pCur, /* Cursor pointing at record to retrieve. */
56867 int offset, /* Offset from the start of data to return bytes from. */
56868 int amt, /* Number of bytes to return. */
56869 int key, /* If true, retrieve from the btree key, not data. */
56870 Mem *pMem /* OUT: Return data in this Mem structure. */
56872 char *zData; /* Data from the btree layer */
56873 int available = 0; /* Number of bytes available on the local btree page */
56874 int rc = SQLITE_OK; /* Return code */
56876 assert( sqlite3BtreeCursorIsValid(pCur) );
56878 /* Note: the calls to BtreeKeyFetch() and DataFetch() below assert()
56879 ** that both the BtShared and database handle mutexes are held. */
56880 assert( (pMem->flags & MEM_RowSet)==0 );
56881 if( key ){
56882 zData = (char *)sqlite3BtreeKeyFetch(pCur, &available);
56883 }else{
56884 zData = (char *)sqlite3BtreeDataFetch(pCur, &available);
56886 assert( zData!=0 );
56888 if( offset+amt<=available && (pMem->flags&MEM_Dyn)==0 ){
56889 sqlite3VdbeMemRelease(pMem);
56890 pMem->z = &zData[offset];
56891 pMem->flags = MEM_Blob|MEM_Ephem;
56892 }else if( SQLITE_OK==(rc = sqlite3VdbeMemGrow(pMem, amt+2, 0)) ){
56893 pMem->flags = MEM_Blob|MEM_Dyn|MEM_Term;
56894 pMem->enc = 0;
56895 pMem->type = SQLITE_BLOB;
56896 if( key ){
56897 rc = sqlite3BtreeKey(pCur, offset, amt, pMem->z);
56898 }else{
56899 rc = sqlite3BtreeData(pCur, offset, amt, pMem->z);
56901 pMem->z[amt] = 0;
56902 pMem->z[amt+1] = 0;
56903 if( rc!=SQLITE_OK ){
56904 sqlite3VdbeMemRelease(pMem);
56907 pMem->n = amt;
56909 return rc;
56912 /* This function is only available internally, it is not part of the
56913 ** external API. It works in a similar way to sqlite3_value_text(),
56914 ** except the data returned is in the encoding specified by the second
56915 ** parameter, which must be one of SQLITE_UTF16BE, SQLITE_UTF16LE or
56916 ** SQLITE_UTF8.
56918 ** (2006-02-16:) The enc value can be or-ed with SQLITE_UTF16_ALIGNED.
56919 ** If that is the case, then the result must be aligned on an even byte
56920 ** boundary.
56922 SQLITE_PRIVATE const void *sqlite3ValueText(sqlite3_value* pVal, u8 enc){
56923 if( !pVal ) return 0;
56925 assert( pVal->db==0 || sqlite3_mutex_held(pVal->db->mutex) );
56926 assert( (enc&3)==(enc&~SQLITE_UTF16_ALIGNED) );
56927 assert( (pVal->flags & MEM_RowSet)==0 );
56929 if( pVal->flags&MEM_Null ){
56930 return 0;
56932 assert( (MEM_Blob>>3) == MEM_Str );
56933 pVal->flags |= (pVal->flags & MEM_Blob)>>3;
56934 expandBlob(pVal);
56935 if( pVal->flags&MEM_Str ){
56936 sqlite3VdbeChangeEncoding(pVal, enc & ~SQLITE_UTF16_ALIGNED);
56937 if( (enc & SQLITE_UTF16_ALIGNED)!=0 && 1==(1&SQLITE_PTR_TO_INT(pVal->z)) ){
56938 assert( (pVal->flags & (MEM_Ephem|MEM_Static))!=0 );
56939 if( sqlite3VdbeMemMakeWriteable(pVal)!=SQLITE_OK ){
56940 return 0;
56943 sqlite3VdbeMemNulTerminate(pVal); /* IMP: R-59893-45467 */
56944 }else{
56945 assert( (pVal->flags&MEM_Blob)==0 );
56946 sqlite3VdbeMemStringify(pVal, enc);
56947 assert( 0==(1&SQLITE_PTR_TO_INT(pVal->z)) );
56949 assert(pVal->enc==(enc & ~SQLITE_UTF16_ALIGNED) || pVal->db==0
56950 || pVal->db->mallocFailed );
56951 if( pVal->enc==(enc & ~SQLITE_UTF16_ALIGNED) ){
56952 return pVal->z;
56953 }else{
56954 return 0;
56959 ** Create a new sqlite3_value object.
56961 SQLITE_PRIVATE sqlite3_value *sqlite3ValueNew(sqlite3 *db){
56962 Mem *p = sqlite3DbMallocZero(db, sizeof(*p));
56963 if( p ){
56964 p->flags = MEM_Null;
56965 p->type = SQLITE_NULL;
56966 p->db = db;
56968 return p;
56972 ** Create a new sqlite3_value object, containing the value of pExpr.
56974 ** This only works for very simple expressions that consist of one constant
56975 ** token (i.e. "5", "5.1", "'a string'"). If the expression can
56976 ** be converted directly into a value, then the value is allocated and
56977 ** a pointer written to *ppVal. The caller is responsible for deallocating
56978 ** the value by passing it to sqlite3ValueFree() later on. If the expression
56979 ** cannot be converted to a value, then *ppVal is set to NULL.
56981 SQLITE_PRIVATE int sqlite3ValueFromExpr(
56982 sqlite3 *db, /* The database connection */
56983 Expr *pExpr, /* The expression to evaluate */
56984 u8 enc, /* Encoding to use */
56985 u8 affinity, /* Affinity to use */
56986 sqlite3_value **ppVal /* Write the new value here */
56988 int op;
56989 char *zVal = 0;
56990 sqlite3_value *pVal = 0;
56991 int negInt = 1;
56992 const char *zNeg = "";
56994 if( !pExpr ){
56995 *ppVal = 0;
56996 return SQLITE_OK;
56998 op = pExpr->op;
57000 /* op can only be TK_REGISTER if we have compiled with SQLITE_ENABLE_STAT2.
57001 ** The ifdef here is to enable us to achieve 100% branch test coverage even
57002 ** when SQLITE_ENABLE_STAT2 is omitted.
57004 #ifdef SQLITE_ENABLE_STAT2
57005 if( op==TK_REGISTER ) op = pExpr->op2;
57006 #else
57007 if( NEVER(op==TK_REGISTER) ) op = pExpr->op2;
57008 #endif
57010 /* Handle negative integers in a single step. This is needed in the
57011 ** case when the value is -9223372036854775808.
57013 if( op==TK_UMINUS
57014 && (pExpr->pLeft->op==TK_INTEGER || pExpr->pLeft->op==TK_FLOAT) ){
57015 pExpr = pExpr->pLeft;
57016 op = pExpr->op;
57017 negInt = -1;
57018 zNeg = "-";
57021 if( op==TK_STRING || op==TK_FLOAT || op==TK_INTEGER ){
57022 pVal = sqlite3ValueNew(db);
57023 if( pVal==0 ) goto no_mem;
57024 if( ExprHasProperty(pExpr, EP_IntValue) ){
57025 sqlite3VdbeMemSetInt64(pVal, (i64)pExpr->u.iValue*negInt);
57026 }else{
57027 zVal = sqlite3MPrintf(db, "%s%s", zNeg, pExpr->u.zToken);
57028 if( zVal==0 ) goto no_mem;
57029 sqlite3ValueSetStr(pVal, -1, zVal, SQLITE_UTF8, SQLITE_DYNAMIC);
57030 if( op==TK_FLOAT ) pVal->type = SQLITE_FLOAT;
57032 if( (op==TK_INTEGER || op==TK_FLOAT ) && affinity==SQLITE_AFF_NONE ){
57033 sqlite3ValueApplyAffinity(pVal, SQLITE_AFF_NUMERIC, SQLITE_UTF8);
57034 }else{
57035 sqlite3ValueApplyAffinity(pVal, affinity, SQLITE_UTF8);
57037 if( pVal->flags & (MEM_Int|MEM_Real) ) pVal->flags &= ~MEM_Str;
57038 if( enc!=SQLITE_UTF8 ){
57039 sqlite3VdbeChangeEncoding(pVal, enc);
57041 }else if( op==TK_UMINUS ) {
57042 /* This branch happens for multiple negative signs. Ex: -(-5) */
57043 if( SQLITE_OK==sqlite3ValueFromExpr(db,pExpr->pLeft,enc,affinity,&pVal) ){
57044 sqlite3VdbeMemNumerify(pVal);
57045 if( pVal->u.i==SMALLEST_INT64 ){
57046 pVal->flags &= MEM_Int;
57047 pVal->flags |= MEM_Real;
57048 pVal->r = (double)LARGEST_INT64;
57049 }else{
57050 pVal->u.i = -pVal->u.i;
57052 pVal->r = -pVal->r;
57053 sqlite3ValueApplyAffinity(pVal, affinity, enc);
57055 }else if( op==TK_NULL ){
57056 pVal = sqlite3ValueNew(db);
57057 if( pVal==0 ) goto no_mem;
57059 #ifndef SQLITE_OMIT_BLOB_LITERAL
57060 else if( op==TK_BLOB ){
57061 int nVal;
57062 assert( pExpr->u.zToken[0]=='x' || pExpr->u.zToken[0]=='X' );
57063 assert( pExpr->u.zToken[1]=='\'' );
57064 pVal = sqlite3ValueNew(db);
57065 if( !pVal ) goto no_mem;
57066 zVal = &pExpr->u.zToken[2];
57067 nVal = sqlite3Strlen30(zVal)-1;
57068 assert( zVal[nVal]=='\'' );
57069 sqlite3VdbeMemSetStr(pVal, sqlite3HexToBlob(db, zVal, nVal), nVal/2,
57070 0, SQLITE_DYNAMIC);
57072 #endif
57074 if( pVal ){
57075 sqlite3VdbeMemStoreType(pVal);
57077 *ppVal = pVal;
57078 return SQLITE_OK;
57080 no_mem:
57081 db->mallocFailed = 1;
57082 sqlite3DbFree(db, zVal);
57083 sqlite3ValueFree(pVal);
57084 *ppVal = 0;
57085 return SQLITE_NOMEM;
57089 ** Change the string value of an sqlite3_value object
57091 SQLITE_PRIVATE void sqlite3ValueSetStr(
57092 sqlite3_value *v, /* Value to be set */
57093 int n, /* Length of string z */
57094 const void *z, /* Text of the new string */
57095 u8 enc, /* Encoding to use */
57096 void (*xDel)(void*) /* Destructor for the string */
57098 if( v ) sqlite3VdbeMemSetStr((Mem *)v, z, n, enc, xDel);
57102 ** Free an sqlite3_value object
57104 SQLITE_PRIVATE void sqlite3ValueFree(sqlite3_value *v){
57105 if( !v ) return;
57106 sqlite3VdbeMemRelease((Mem *)v);
57107 sqlite3DbFree(((Mem*)v)->db, v);
57111 ** Return the number of bytes in the sqlite3_value object assuming
57112 ** that it uses the encoding "enc"
57114 SQLITE_PRIVATE int sqlite3ValueBytes(sqlite3_value *pVal, u8 enc){
57115 Mem *p = (Mem*)pVal;
57116 if( (p->flags & MEM_Blob)!=0 || sqlite3ValueText(pVal, enc) ){
57117 if( p->flags & MEM_Zero ){
57118 return p->n + p->u.nZero;
57119 }else{
57120 return p->n;
57123 return 0;
57126 /************** End of vdbemem.c *********************************************/
57127 /************** Begin file vdbeaux.c *****************************************/
57129 ** 2003 September 6
57131 ** The author disclaims copyright to this source code. In place of
57132 ** a legal notice, here is a blessing:
57134 ** May you do good and not evil.
57135 ** May you find forgiveness for yourself and forgive others.
57136 ** May you share freely, never taking more than you give.
57138 *************************************************************************
57139 ** This file contains code used for creating, destroying, and populating
57140 ** a VDBE (or an "sqlite3_stmt" as it is known to the outside world.) Prior
57141 ** to version 2.8.7, all this code was combined into the vdbe.c source file.
57142 ** But that file was getting too big so this subroutines were split out.
57148 ** When debugging the code generator in a symbolic debugger, one can
57149 ** set the sqlite3VdbeAddopTrace to 1 and all opcodes will be printed
57150 ** as they are added to the instruction stream.
57152 #ifdef SQLITE_DEBUG
57153 SQLITE_PRIVATE int sqlite3VdbeAddopTrace = 0;
57154 #endif
57158 ** Create a new virtual database engine.
57160 SQLITE_PRIVATE Vdbe *sqlite3VdbeCreate(sqlite3 *db){
57161 Vdbe *p;
57162 p = sqlite3DbMallocZero(db, sizeof(Vdbe) );
57163 if( p==0 ) return 0;
57164 p->db = db;
57165 if( db->pVdbe ){
57166 db->pVdbe->pPrev = p;
57168 p->pNext = db->pVdbe;
57169 p->pPrev = 0;
57170 db->pVdbe = p;
57171 p->magic = VDBE_MAGIC_INIT;
57172 return p;
57176 ** Remember the SQL string for a prepared statement.
57178 SQLITE_PRIVATE void sqlite3VdbeSetSql(Vdbe *p, const char *z, int n, int isPrepareV2){
57179 assert( isPrepareV2==1 || isPrepareV2==0 );
57180 if( p==0 ) return;
57181 #ifdef SQLITE_OMIT_TRACE
57182 if( !isPrepareV2 ) return;
57183 #endif
57184 assert( p->zSql==0 );
57185 p->zSql = sqlite3DbStrNDup(p->db, z, n);
57186 p->isPrepareV2 = (u8)isPrepareV2;
57190 ** Return the SQL associated with a prepared statement
57192 SQLITE_API const char *sqlite3_sql(sqlite3_stmt *pStmt){
57193 Vdbe *p = (Vdbe *)pStmt;
57194 return (p && p->isPrepareV2) ? p->zSql : 0;
57198 ** Swap all content between two VDBE structures.
57200 SQLITE_PRIVATE void sqlite3VdbeSwap(Vdbe *pA, Vdbe *pB){
57201 Vdbe tmp, *pTmp;
57202 char *zTmp;
57203 tmp = *pA;
57204 *pA = *pB;
57205 *pB = tmp;
57206 pTmp = pA->pNext;
57207 pA->pNext = pB->pNext;
57208 pB->pNext = pTmp;
57209 pTmp = pA->pPrev;
57210 pA->pPrev = pB->pPrev;
57211 pB->pPrev = pTmp;
57212 zTmp = pA->zSql;
57213 pA->zSql = pB->zSql;
57214 pB->zSql = zTmp;
57215 pB->isPrepareV2 = pA->isPrepareV2;
57218 #ifdef SQLITE_DEBUG
57220 ** Turn tracing on or off
57222 SQLITE_PRIVATE void sqlite3VdbeTrace(Vdbe *p, FILE *trace){
57223 p->trace = trace;
57225 #endif
57228 ** Resize the Vdbe.aOp array so that it is at least one op larger than
57229 ** it was.
57231 ** If an out-of-memory error occurs while resizing the array, return
57232 ** SQLITE_NOMEM. In this case Vdbe.aOp and Vdbe.nOpAlloc remain
57233 ** unchanged (this is so that any opcodes already allocated can be
57234 ** correctly deallocated along with the rest of the Vdbe).
57236 static int growOpArray(Vdbe *p){
57237 VdbeOp *pNew;
57238 int nNew = (p->nOpAlloc ? p->nOpAlloc*2 : (int)(1024/sizeof(Op)));
57239 pNew = sqlite3DbRealloc(p->db, p->aOp, nNew*sizeof(Op));
57240 if( pNew ){
57241 p->nOpAlloc = sqlite3DbMallocSize(p->db, pNew)/sizeof(Op);
57242 p->aOp = pNew;
57244 return (pNew ? SQLITE_OK : SQLITE_NOMEM);
57248 ** Add a new instruction to the list of instructions current in the
57249 ** VDBE. Return the address of the new instruction.
57251 ** Parameters:
57253 ** p Pointer to the VDBE
57255 ** op The opcode for this instruction
57257 ** p1, p2, p3 Operands
57259 ** Use the sqlite3VdbeResolveLabel() function to fix an address and
57260 ** the sqlite3VdbeChangeP4() function to change the value of the P4
57261 ** operand.
57263 SQLITE_PRIVATE int sqlite3VdbeAddOp3(Vdbe *p, int op, int p1, int p2, int p3){
57264 int i;
57265 VdbeOp *pOp;
57267 i = p->nOp;
57268 assert( p->magic==VDBE_MAGIC_INIT );
57269 assert( op>0 && op<0xff );
57270 if( p->nOpAlloc<=i ){
57271 if( growOpArray(p) ){
57272 return 1;
57275 p->nOp++;
57276 pOp = &p->aOp[i];
57277 pOp->opcode = (u8)op;
57278 pOp->p5 = 0;
57279 pOp->p1 = p1;
57280 pOp->p2 = p2;
57281 pOp->p3 = p3;
57282 pOp->p4.p = 0;
57283 pOp->p4type = P4_NOTUSED;
57284 p->expired = 0;
57285 if( op==OP_ParseSchema ){
57286 /* Any program that uses the OP_ParseSchema opcode needs to lock
57287 ** all btrees. */
57288 int j;
57289 for(j=0; j<p->db->nDb; j++) sqlite3VdbeUsesBtree(p, j);
57291 #ifdef SQLITE_DEBUG
57292 pOp->zComment = 0;
57293 if( sqlite3VdbeAddopTrace ) sqlite3VdbePrintOp(0, i, &p->aOp[i]);
57294 #endif
57295 #ifdef VDBE_PROFILE
57296 pOp->cycles = 0;
57297 pOp->cnt = 0;
57298 #endif
57299 return i;
57301 SQLITE_PRIVATE int sqlite3VdbeAddOp0(Vdbe *p, int op){
57302 return sqlite3VdbeAddOp3(p, op, 0, 0, 0);
57304 SQLITE_PRIVATE int sqlite3VdbeAddOp1(Vdbe *p, int op, int p1){
57305 return sqlite3VdbeAddOp3(p, op, p1, 0, 0);
57307 SQLITE_PRIVATE int sqlite3VdbeAddOp2(Vdbe *p, int op, int p1, int p2){
57308 return sqlite3VdbeAddOp3(p, op, p1, p2, 0);
57313 ** Add an opcode that includes the p4 value as a pointer.
57315 SQLITE_PRIVATE int sqlite3VdbeAddOp4(
57316 Vdbe *p, /* Add the opcode to this VM */
57317 int op, /* The new opcode */
57318 int p1, /* The P1 operand */
57319 int p2, /* The P2 operand */
57320 int p3, /* The P3 operand */
57321 const char *zP4, /* The P4 operand */
57322 int p4type /* P4 operand type */
57324 int addr = sqlite3VdbeAddOp3(p, op, p1, p2, p3);
57325 sqlite3VdbeChangeP4(p, addr, zP4, p4type);
57326 return addr;
57330 ** Add an opcode that includes the p4 value as an integer.
57332 SQLITE_PRIVATE int sqlite3VdbeAddOp4Int(
57333 Vdbe *p, /* Add the opcode to this VM */
57334 int op, /* The new opcode */
57335 int p1, /* The P1 operand */
57336 int p2, /* The P2 operand */
57337 int p3, /* The P3 operand */
57338 int p4 /* The P4 operand as an integer */
57340 int addr = sqlite3VdbeAddOp3(p, op, p1, p2, p3);
57341 sqlite3VdbeChangeP4(p, addr, SQLITE_INT_TO_PTR(p4), P4_INT32);
57342 return addr;
57346 ** Create a new symbolic label for an instruction that has yet to be
57347 ** coded. The symbolic label is really just a negative number. The
57348 ** label can be used as the P2 value of an operation. Later, when
57349 ** the label is resolved to a specific address, the VDBE will scan
57350 ** through its operation list and change all values of P2 which match
57351 ** the label into the resolved address.
57353 ** The VDBE knows that a P2 value is a label because labels are
57354 ** always negative and P2 values are suppose to be non-negative.
57355 ** Hence, a negative P2 value is a label that has yet to be resolved.
57357 ** Zero is returned if a malloc() fails.
57359 SQLITE_PRIVATE int sqlite3VdbeMakeLabel(Vdbe *p){
57360 int i;
57361 i = p->nLabel++;
57362 assert( p->magic==VDBE_MAGIC_INIT );
57363 if( i>=p->nLabelAlloc ){
57364 int n = p->nLabelAlloc*2 + 5;
57365 p->aLabel = sqlite3DbReallocOrFree(p->db, p->aLabel,
57366 n*sizeof(p->aLabel[0]));
57367 p->nLabelAlloc = sqlite3DbMallocSize(p->db, p->aLabel)/sizeof(p->aLabel[0]);
57369 if( p->aLabel ){
57370 p->aLabel[i] = -1;
57372 return -1-i;
57376 ** Resolve label "x" to be the address of the next instruction to
57377 ** be inserted. The parameter "x" must have been obtained from
57378 ** a prior call to sqlite3VdbeMakeLabel().
57380 SQLITE_PRIVATE void sqlite3VdbeResolveLabel(Vdbe *p, int x){
57381 int j = -1-x;
57382 assert( p->magic==VDBE_MAGIC_INIT );
57383 assert( j>=0 && j<p->nLabel );
57384 if( p->aLabel ){
57385 p->aLabel[j] = p->nOp;
57390 ** Mark the VDBE as one that can only be run one time.
57392 SQLITE_PRIVATE void sqlite3VdbeRunOnlyOnce(Vdbe *p){
57393 p->runOnlyOnce = 1;
57396 #ifdef SQLITE_DEBUG /* sqlite3AssertMayAbort() logic */
57399 ** The following type and function are used to iterate through all opcodes
57400 ** in a Vdbe main program and each of the sub-programs (triggers) it may
57401 ** invoke directly or indirectly. It should be used as follows:
57403 ** Op *pOp;
57404 ** VdbeOpIter sIter;
57406 ** memset(&sIter, 0, sizeof(sIter));
57407 ** sIter.v = v; // v is of type Vdbe*
57408 ** while( (pOp = opIterNext(&sIter)) ){
57409 ** // Do something with pOp
57410 ** }
57411 ** sqlite3DbFree(v->db, sIter.apSub);
57414 typedef struct VdbeOpIter VdbeOpIter;
57415 struct VdbeOpIter {
57416 Vdbe *v; /* Vdbe to iterate through the opcodes of */
57417 SubProgram **apSub; /* Array of subprograms */
57418 int nSub; /* Number of entries in apSub */
57419 int iAddr; /* Address of next instruction to return */
57420 int iSub; /* 0 = main program, 1 = first sub-program etc. */
57422 static Op *opIterNext(VdbeOpIter *p){
57423 Vdbe *v = p->v;
57424 Op *pRet = 0;
57425 Op *aOp;
57426 int nOp;
57428 if( p->iSub<=p->nSub ){
57430 if( p->iSub==0 ){
57431 aOp = v->aOp;
57432 nOp = v->nOp;
57433 }else{
57434 aOp = p->apSub[p->iSub-1]->aOp;
57435 nOp = p->apSub[p->iSub-1]->nOp;
57437 assert( p->iAddr<nOp );
57439 pRet = &aOp[p->iAddr];
57440 p->iAddr++;
57441 if( p->iAddr==nOp ){
57442 p->iSub++;
57443 p->iAddr = 0;
57446 if( pRet->p4type==P4_SUBPROGRAM ){
57447 int nByte = (p->nSub+1)*sizeof(SubProgram*);
57448 int j;
57449 for(j=0; j<p->nSub; j++){
57450 if( p->apSub[j]==pRet->p4.pProgram ) break;
57452 if( j==p->nSub ){
57453 p->apSub = sqlite3DbReallocOrFree(v->db, p->apSub, nByte);
57454 if( !p->apSub ){
57455 pRet = 0;
57456 }else{
57457 p->apSub[p->nSub++] = pRet->p4.pProgram;
57463 return pRet;
57467 ** Check if the program stored in the VM associated with pParse may
57468 ** throw an ABORT exception (causing the statement, but not entire transaction
57469 ** to be rolled back). This condition is true if the main program or any
57470 ** sub-programs contains any of the following:
57472 ** * OP_Halt with P1=SQLITE_CONSTRAINT and P2=OE_Abort.
57473 ** * OP_HaltIfNull with P1=SQLITE_CONSTRAINT and P2=OE_Abort.
57474 ** * OP_Destroy
57475 ** * OP_VUpdate
57476 ** * OP_VRename
57477 ** * OP_FkCounter with P2==0 (immediate foreign key constraint)
57479 ** Then check that the value of Parse.mayAbort is true if an
57480 ** ABORT may be thrown, or false otherwise. Return true if it does
57481 ** match, or false otherwise. This function is intended to be used as
57482 ** part of an assert statement in the compiler. Similar to:
57484 ** assert( sqlite3VdbeAssertMayAbort(pParse->pVdbe, pParse->mayAbort) );
57486 SQLITE_PRIVATE int sqlite3VdbeAssertMayAbort(Vdbe *v, int mayAbort){
57487 int hasAbort = 0;
57488 Op *pOp;
57489 VdbeOpIter sIter;
57490 memset(&sIter, 0, sizeof(sIter));
57491 sIter.v = v;
57493 while( (pOp = opIterNext(&sIter))!=0 ){
57494 int opcode = pOp->opcode;
57495 if( opcode==OP_Destroy || opcode==OP_VUpdate || opcode==OP_VRename
57496 #ifndef SQLITE_OMIT_FOREIGN_KEY
57497 || (opcode==OP_FkCounter && pOp->p1==0 && pOp->p2==1)
57498 #endif
57499 || ((opcode==OP_Halt || opcode==OP_HaltIfNull)
57500 && (pOp->p1==SQLITE_CONSTRAINT && pOp->p2==OE_Abort))
57502 hasAbort = 1;
57503 break;
57506 sqlite3DbFree(v->db, sIter.apSub);
57508 /* Return true if hasAbort==mayAbort. Or if a malloc failure occured.
57509 ** If malloc failed, then the while() loop above may not have iterated
57510 ** through all opcodes and hasAbort may be set incorrectly. Return
57511 ** true for this case to prevent the assert() in the callers frame
57512 ** from failing. */
57513 return ( v->db->mallocFailed || hasAbort==mayAbort );
57515 #endif /* SQLITE_DEBUG - the sqlite3AssertMayAbort() function */
57518 ** Loop through the program looking for P2 values that are negative
57519 ** on jump instructions. Each such value is a label. Resolve the
57520 ** label by setting the P2 value to its correct non-zero value.
57522 ** This routine is called once after all opcodes have been inserted.
57524 ** Variable *pMaxFuncArgs is set to the maximum value of any P2 argument
57525 ** to an OP_Function, OP_AggStep or OP_VFilter opcode. This is used by
57526 ** sqlite3VdbeMakeReady() to size the Vdbe.apArg[] array.
57528 ** The Op.opflags field is set on all opcodes.
57530 static void resolveP2Values(Vdbe *p, int *pMaxFuncArgs){
57531 int i;
57532 int nMaxArgs = *pMaxFuncArgs;
57533 Op *pOp;
57534 int *aLabel = p->aLabel;
57535 p->readOnly = 1;
57536 for(pOp=p->aOp, i=p->nOp-1; i>=0; i--, pOp++){
57537 u8 opcode = pOp->opcode;
57539 pOp->opflags = sqlite3OpcodeProperty[opcode];
57540 if( opcode==OP_Function || opcode==OP_AggStep ){
57541 if( pOp->p5>nMaxArgs ) nMaxArgs = pOp->p5;
57542 }else if( (opcode==OP_Transaction && pOp->p2!=0) || opcode==OP_Vacuum ){
57543 p->readOnly = 0;
57544 #ifndef SQLITE_OMIT_VIRTUALTABLE
57545 }else if( opcode==OP_VUpdate ){
57546 if( pOp->p2>nMaxArgs ) nMaxArgs = pOp->p2;
57547 }else if( opcode==OP_VFilter ){
57548 int n;
57549 assert( p->nOp - i >= 3 );
57550 assert( pOp[-1].opcode==OP_Integer );
57551 n = pOp[-1].p1;
57552 if( n>nMaxArgs ) nMaxArgs = n;
57553 #endif
57556 if( (pOp->opflags & OPFLG_JUMP)!=0 && pOp->p2<0 ){
57557 assert( -1-pOp->p2<p->nLabel );
57558 pOp->p2 = aLabel[-1-pOp->p2];
57561 sqlite3DbFree(p->db, p->aLabel);
57562 p->aLabel = 0;
57564 *pMaxFuncArgs = nMaxArgs;
57568 ** Return the address of the next instruction to be inserted.
57570 SQLITE_PRIVATE int sqlite3VdbeCurrentAddr(Vdbe *p){
57571 assert( p->magic==VDBE_MAGIC_INIT );
57572 return p->nOp;
57576 ** This function returns a pointer to the array of opcodes associated with
57577 ** the Vdbe passed as the first argument. It is the callers responsibility
57578 ** to arrange for the returned array to be eventually freed using the
57579 ** vdbeFreeOpArray() function.
57581 ** Before returning, *pnOp is set to the number of entries in the returned
57582 ** array. Also, *pnMaxArg is set to the larger of its current value and
57583 ** the number of entries in the Vdbe.apArg[] array required to execute the
57584 ** returned program.
57586 SQLITE_PRIVATE VdbeOp *sqlite3VdbeTakeOpArray(Vdbe *p, int *pnOp, int *pnMaxArg){
57587 VdbeOp *aOp = p->aOp;
57588 assert( aOp && !p->db->mallocFailed );
57590 /* Check that sqlite3VdbeUsesBtree() was not called on this VM */
57591 assert( p->btreeMask==0 );
57593 resolveP2Values(p, pnMaxArg);
57594 *pnOp = p->nOp;
57595 p->aOp = 0;
57596 return aOp;
57600 ** Add a whole list of operations to the operation stack. Return the
57601 ** address of the first operation added.
57603 SQLITE_PRIVATE int sqlite3VdbeAddOpList(Vdbe *p, int nOp, VdbeOpList const *aOp){
57604 int addr;
57605 assert( p->magic==VDBE_MAGIC_INIT );
57606 if( p->nOp + nOp > p->nOpAlloc && growOpArray(p) ){
57607 return 0;
57609 addr = p->nOp;
57610 if( ALWAYS(nOp>0) ){
57611 int i;
57612 VdbeOpList const *pIn = aOp;
57613 for(i=0; i<nOp; i++, pIn++){
57614 int p2 = pIn->p2;
57615 VdbeOp *pOut = &p->aOp[i+addr];
57616 pOut->opcode = pIn->opcode;
57617 pOut->p1 = pIn->p1;
57618 if( p2<0 && (sqlite3OpcodeProperty[pOut->opcode] & OPFLG_JUMP)!=0 ){
57619 pOut->p2 = addr + ADDR(p2);
57620 }else{
57621 pOut->p2 = p2;
57623 pOut->p3 = pIn->p3;
57624 pOut->p4type = P4_NOTUSED;
57625 pOut->p4.p = 0;
57626 pOut->p5 = 0;
57627 #ifdef SQLITE_DEBUG
57628 pOut->zComment = 0;
57629 if( sqlite3VdbeAddopTrace ){
57630 sqlite3VdbePrintOp(0, i+addr, &p->aOp[i+addr]);
57632 #endif
57634 p->nOp += nOp;
57636 return addr;
57640 ** Change the value of the P1 operand for a specific instruction.
57641 ** This routine is useful when a large program is loaded from a
57642 ** static array using sqlite3VdbeAddOpList but we want to make a
57643 ** few minor changes to the program.
57645 SQLITE_PRIVATE void sqlite3VdbeChangeP1(Vdbe *p, int addr, int val){
57646 assert( p!=0 );
57647 assert( addr>=0 );
57648 if( p->nOp>addr ){
57649 p->aOp[addr].p1 = val;
57654 ** Change the value of the P2 operand for a specific instruction.
57655 ** This routine is useful for setting a jump destination.
57657 SQLITE_PRIVATE void sqlite3VdbeChangeP2(Vdbe *p, int addr, int val){
57658 assert( p!=0 );
57659 assert( addr>=0 );
57660 if( p->nOp>addr ){
57661 p->aOp[addr].p2 = val;
57666 ** Change the value of the P3 operand for a specific instruction.
57668 SQLITE_PRIVATE void sqlite3VdbeChangeP3(Vdbe *p, int addr, int val){
57669 assert( p!=0 );
57670 assert( addr>=0 );
57671 if( p->nOp>addr ){
57672 p->aOp[addr].p3 = val;
57677 ** Change the value of the P5 operand for the most recently
57678 ** added operation.
57680 SQLITE_PRIVATE void sqlite3VdbeChangeP5(Vdbe *p, u8 val){
57681 assert( p!=0 );
57682 if( p->aOp ){
57683 assert( p->nOp>0 );
57684 p->aOp[p->nOp-1].p5 = val;
57689 ** Change the P2 operand of instruction addr so that it points to
57690 ** the address of the next instruction to be coded.
57692 SQLITE_PRIVATE void sqlite3VdbeJumpHere(Vdbe *p, int addr){
57693 assert( addr>=0 );
57694 sqlite3VdbeChangeP2(p, addr, p->nOp);
57699 ** If the input FuncDef structure is ephemeral, then free it. If
57700 ** the FuncDef is not ephermal, then do nothing.
57702 static void freeEphemeralFunction(sqlite3 *db, FuncDef *pDef){
57703 if( ALWAYS(pDef) && (pDef->flags & SQLITE_FUNC_EPHEM)!=0 ){
57704 sqlite3DbFree(db, pDef);
57708 static void vdbeFreeOpArray(sqlite3 *, Op *, int);
57711 ** Delete a P4 value if necessary.
57713 static void freeP4(sqlite3 *db, int p4type, void *p4){
57714 if( p4 ){
57715 assert( db );
57716 switch( p4type ){
57717 case P4_REAL:
57718 case P4_INT64:
57719 case P4_DYNAMIC:
57720 case P4_KEYINFO:
57721 case P4_INTARRAY:
57722 case P4_KEYINFO_HANDOFF: {
57723 sqlite3DbFree(db, p4);
57724 break;
57726 case P4_MPRINTF: {
57727 if( db->pnBytesFreed==0 ) sqlite3_free(p4);
57728 break;
57730 case P4_VDBEFUNC: {
57731 VdbeFunc *pVdbeFunc = (VdbeFunc *)p4;
57732 freeEphemeralFunction(db, pVdbeFunc->pFunc);
57733 if( db->pnBytesFreed==0 ) sqlite3VdbeDeleteAuxData(pVdbeFunc, 0);
57734 sqlite3DbFree(db, pVdbeFunc);
57735 break;
57737 case P4_FUNCDEF: {
57738 freeEphemeralFunction(db, (FuncDef*)p4);
57739 break;
57741 case P4_MEM: {
57742 if( db->pnBytesFreed==0 ){
57743 sqlite3ValueFree((sqlite3_value*)p4);
57744 }else{
57745 Mem *p = (Mem*)p4;
57746 sqlite3DbFree(db, p->zMalloc);
57747 sqlite3DbFree(db, p);
57749 break;
57751 case P4_VTAB : {
57752 if( db->pnBytesFreed==0 ) sqlite3VtabUnlock((VTable *)p4);
57753 break;
57760 ** Free the space allocated for aOp and any p4 values allocated for the
57761 ** opcodes contained within. If aOp is not NULL it is assumed to contain
57762 ** nOp entries.
57764 static void vdbeFreeOpArray(sqlite3 *db, Op *aOp, int nOp){
57765 if( aOp ){
57766 Op *pOp;
57767 for(pOp=aOp; pOp<&aOp[nOp]; pOp++){
57768 freeP4(db, pOp->p4type, pOp->p4.p);
57769 #ifdef SQLITE_DEBUG
57770 sqlite3DbFree(db, pOp->zComment);
57771 #endif
57774 sqlite3DbFree(db, aOp);
57778 ** Link the SubProgram object passed as the second argument into the linked
57779 ** list at Vdbe.pSubProgram. This list is used to delete all sub-program
57780 ** objects when the VM is no longer required.
57782 SQLITE_PRIVATE void sqlite3VdbeLinkSubProgram(Vdbe *pVdbe, SubProgram *p){
57783 p->pNext = pVdbe->pProgram;
57784 pVdbe->pProgram = p;
57788 ** Change N opcodes starting at addr to No-ops.
57790 SQLITE_PRIVATE void sqlite3VdbeChangeToNoop(Vdbe *p, int addr, int N){
57791 if( p->aOp ){
57792 VdbeOp *pOp = &p->aOp[addr];
57793 sqlite3 *db = p->db;
57794 while( N-- ){
57795 freeP4(db, pOp->p4type, pOp->p4.p);
57796 memset(pOp, 0, sizeof(pOp[0]));
57797 pOp->opcode = OP_Noop;
57798 pOp++;
57804 ** Change the value of the P4 operand for a specific instruction.
57805 ** This routine is useful when a large program is loaded from a
57806 ** static array using sqlite3VdbeAddOpList but we want to make a
57807 ** few minor changes to the program.
57809 ** If n>=0 then the P4 operand is dynamic, meaning that a copy of
57810 ** the string is made into memory obtained from sqlite3_malloc().
57811 ** A value of n==0 means copy bytes of zP4 up to and including the
57812 ** first null byte. If n>0 then copy n+1 bytes of zP4.
57814 ** If n==P4_KEYINFO it means that zP4 is a pointer to a KeyInfo structure.
57815 ** A copy is made of the KeyInfo structure into memory obtained from
57816 ** sqlite3_malloc, to be freed when the Vdbe is finalized.
57817 ** n==P4_KEYINFO_HANDOFF indicates that zP4 points to a KeyInfo structure
57818 ** stored in memory that the caller has obtained from sqlite3_malloc. The
57819 ** caller should not free the allocation, it will be freed when the Vdbe is
57820 ** finalized.
57822 ** Other values of n (P4_STATIC, P4_COLLSEQ etc.) indicate that zP4 points
57823 ** to a string or structure that is guaranteed to exist for the lifetime of
57824 ** the Vdbe. In these cases we can just copy the pointer.
57826 ** If addr<0 then change P4 on the most recently inserted instruction.
57828 SQLITE_PRIVATE void sqlite3VdbeChangeP4(Vdbe *p, int addr, const char *zP4, int n){
57829 Op *pOp;
57830 sqlite3 *db;
57831 assert( p!=0 );
57832 db = p->db;
57833 assert( p->magic==VDBE_MAGIC_INIT );
57834 if( p->aOp==0 || db->mallocFailed ){
57835 if ( n!=P4_KEYINFO && n!=P4_VTAB ) {
57836 freeP4(db, n, (void*)*(char**)&zP4);
57838 return;
57840 assert( p->nOp>0 );
57841 assert( addr<p->nOp );
57842 if( addr<0 ){
57843 addr = p->nOp - 1;
57845 pOp = &p->aOp[addr];
57846 freeP4(db, pOp->p4type, pOp->p4.p);
57847 pOp->p4.p = 0;
57848 if( n==P4_INT32 ){
57849 /* Note: this cast is safe, because the origin data point was an int
57850 ** that was cast to a (const char *). */
57851 pOp->p4.i = SQLITE_PTR_TO_INT(zP4);
57852 pOp->p4type = P4_INT32;
57853 }else if( zP4==0 ){
57854 pOp->p4.p = 0;
57855 pOp->p4type = P4_NOTUSED;
57856 }else if( n==P4_KEYINFO ){
57857 KeyInfo *pKeyInfo;
57858 int nField, nByte;
57860 nField = ((KeyInfo*)zP4)->nField;
57861 nByte = sizeof(*pKeyInfo) + (nField-1)*sizeof(pKeyInfo->aColl[0]) + nField;
57862 pKeyInfo = sqlite3DbMallocRaw(0, nByte);
57863 pOp->p4.pKeyInfo = pKeyInfo;
57864 if( pKeyInfo ){
57865 u8 *aSortOrder;
57866 memcpy((char*)pKeyInfo, zP4, nByte - nField);
57867 aSortOrder = pKeyInfo->aSortOrder;
57868 if( aSortOrder ){
57869 pKeyInfo->aSortOrder = (unsigned char*)&pKeyInfo->aColl[nField];
57870 memcpy(pKeyInfo->aSortOrder, aSortOrder, nField);
57872 pOp->p4type = P4_KEYINFO;
57873 }else{
57874 p->db->mallocFailed = 1;
57875 pOp->p4type = P4_NOTUSED;
57877 }else if( n==P4_KEYINFO_HANDOFF ){
57878 pOp->p4.p = (void*)zP4;
57879 pOp->p4type = P4_KEYINFO;
57880 }else if( n==P4_VTAB ){
57881 pOp->p4.p = (void*)zP4;
57882 pOp->p4type = P4_VTAB;
57883 sqlite3VtabLock((VTable *)zP4);
57884 assert( ((VTable *)zP4)->db==p->db );
57885 }else if( n<0 ){
57886 pOp->p4.p = (void*)zP4;
57887 pOp->p4type = (signed char)n;
57888 }else{
57889 if( n==0 ) n = sqlite3Strlen30(zP4);
57890 pOp->p4.z = sqlite3DbStrNDup(p->db, zP4, n);
57891 pOp->p4type = P4_DYNAMIC;
57895 #ifndef NDEBUG
57897 ** Change the comment on the the most recently coded instruction. Or
57898 ** insert a No-op and add the comment to that new instruction. This
57899 ** makes the code easier to read during debugging. None of this happens
57900 ** in a production build.
57902 SQLITE_PRIVATE void sqlite3VdbeComment(Vdbe *p, const char *zFormat, ...){
57903 va_list ap;
57904 if( !p ) return;
57905 assert( p->nOp>0 || p->aOp==0 );
57906 assert( p->aOp==0 || p->aOp[p->nOp-1].zComment==0 || p->db->mallocFailed );
57907 if( p->nOp ){
57908 char **pz = &p->aOp[p->nOp-1].zComment;
57909 va_start(ap, zFormat);
57910 sqlite3DbFree(p->db, *pz);
57911 *pz = sqlite3VMPrintf(p->db, zFormat, ap);
57912 va_end(ap);
57915 SQLITE_PRIVATE void sqlite3VdbeNoopComment(Vdbe *p, const char *zFormat, ...){
57916 va_list ap;
57917 if( !p ) return;
57918 sqlite3VdbeAddOp0(p, OP_Noop);
57919 assert( p->nOp>0 || p->aOp==0 );
57920 assert( p->aOp==0 || p->aOp[p->nOp-1].zComment==0 || p->db->mallocFailed );
57921 if( p->nOp ){
57922 char **pz = &p->aOp[p->nOp-1].zComment;
57923 va_start(ap, zFormat);
57924 sqlite3DbFree(p->db, *pz);
57925 *pz = sqlite3VMPrintf(p->db, zFormat, ap);
57926 va_end(ap);
57929 #endif /* NDEBUG */
57932 ** Return the opcode for a given address. If the address is -1, then
57933 ** return the most recently inserted opcode.
57935 ** If a memory allocation error has occurred prior to the calling of this
57936 ** routine, then a pointer to a dummy VdbeOp will be returned. That opcode
57937 ** is readable but not writable, though it is cast to a writable value.
57938 ** The return of a dummy opcode allows the call to continue functioning
57939 ** after a OOM fault without having to check to see if the return from
57940 ** this routine is a valid pointer. But because the dummy.opcode is 0,
57941 ** dummy will never be written to. This is verified by code inspection and
57942 ** by running with Valgrind.
57944 ** About the #ifdef SQLITE_OMIT_TRACE: Normally, this routine is never called
57945 ** unless p->nOp>0. This is because in the absense of SQLITE_OMIT_TRACE,
57946 ** an OP_Trace instruction is always inserted by sqlite3VdbeGet() as soon as
57947 ** a new VDBE is created. So we are free to set addr to p->nOp-1 without
57948 ** having to double-check to make sure that the result is non-negative. But
57949 ** if SQLITE_OMIT_TRACE is defined, the OP_Trace is omitted and we do need to
57950 ** check the value of p->nOp-1 before continuing.
57952 SQLITE_PRIVATE VdbeOp *sqlite3VdbeGetOp(Vdbe *p, int addr){
57953 /* C89 specifies that the constant "dummy" will be initialized to all
57954 ** zeros, which is correct. MSVC generates a warning, nevertheless. */
57955 static const VdbeOp dummy; /* Ignore the MSVC warning about no initializer */
57956 assert( p->magic==VDBE_MAGIC_INIT );
57957 if( addr<0 ){
57958 #ifdef SQLITE_OMIT_TRACE
57959 if( p->nOp==0 ) return (VdbeOp*)&dummy;
57960 #endif
57961 addr = p->nOp - 1;
57963 assert( (addr>=0 && addr<p->nOp) || p->db->mallocFailed );
57964 if( p->db->mallocFailed ){
57965 return (VdbeOp*)&dummy;
57966 }else{
57967 return &p->aOp[addr];
57971 #if !defined(SQLITE_OMIT_EXPLAIN) || !defined(NDEBUG) \
57972 || defined(VDBE_PROFILE) || defined(SQLITE_DEBUG)
57974 ** Compute a string that describes the P4 parameter for an opcode.
57975 ** Use zTemp for any required temporary buffer space.
57977 static char *displayP4(Op *pOp, char *zTemp, int nTemp){
57978 char *zP4 = zTemp;
57979 assert( nTemp>=20 );
57980 switch( pOp->p4type ){
57981 case P4_KEYINFO_STATIC:
57982 case P4_KEYINFO: {
57983 int i, j;
57984 KeyInfo *pKeyInfo = pOp->p4.pKeyInfo;
57985 sqlite3_snprintf(nTemp, zTemp, "keyinfo(%d", pKeyInfo->nField);
57986 i = sqlite3Strlen30(zTemp);
57987 for(j=0; j<pKeyInfo->nField; j++){
57988 CollSeq *pColl = pKeyInfo->aColl[j];
57989 if( pColl ){
57990 int n = sqlite3Strlen30(pColl->zName);
57991 if( i+n>nTemp-6 ){
57992 memcpy(&zTemp[i],",...",4);
57993 break;
57995 zTemp[i++] = ',';
57996 if( pKeyInfo->aSortOrder && pKeyInfo->aSortOrder[j] ){
57997 zTemp[i++] = '-';
57999 memcpy(&zTemp[i], pColl->zName,n+1);
58000 i += n;
58001 }else if( i+4<nTemp-6 ){
58002 memcpy(&zTemp[i],",nil",4);
58003 i += 4;
58006 zTemp[i++] = ')';
58007 zTemp[i] = 0;
58008 assert( i<nTemp );
58009 break;
58011 case P4_COLLSEQ: {
58012 CollSeq *pColl = pOp->p4.pColl;
58013 sqlite3_snprintf(nTemp, zTemp, "collseq(%.20s)", pColl->zName);
58014 break;
58016 case P4_FUNCDEF: {
58017 FuncDef *pDef = pOp->p4.pFunc;
58018 sqlite3_snprintf(nTemp, zTemp, "%s(%d)", pDef->zName, pDef->nArg);
58019 break;
58021 case P4_INT64: {
58022 sqlite3_snprintf(nTemp, zTemp, "%lld", *pOp->p4.pI64);
58023 break;
58025 case P4_INT32: {
58026 sqlite3_snprintf(nTemp, zTemp, "%d", pOp->p4.i);
58027 break;
58029 case P4_REAL: {
58030 sqlite3_snprintf(nTemp, zTemp, "%.16g", *pOp->p4.pReal);
58031 break;
58033 case P4_MEM: {
58034 Mem *pMem = pOp->p4.pMem;
58035 assert( (pMem->flags & MEM_Null)==0 );
58036 if( pMem->flags & MEM_Str ){
58037 zP4 = pMem->z;
58038 }else if( pMem->flags & MEM_Int ){
58039 sqlite3_snprintf(nTemp, zTemp, "%lld", pMem->u.i);
58040 }else if( pMem->flags & MEM_Real ){
58041 sqlite3_snprintf(nTemp, zTemp, "%.16g", pMem->r);
58042 }else{
58043 assert( pMem->flags & MEM_Blob );
58044 zP4 = "(blob)";
58046 break;
58048 #ifndef SQLITE_OMIT_VIRTUALTABLE
58049 case P4_VTAB: {
58050 sqlite3_vtab *pVtab = pOp->p4.pVtab->pVtab;
58051 sqlite3_snprintf(nTemp, zTemp, "vtab:%p:%p", pVtab, pVtab->pModule);
58052 break;
58054 #endif
58055 case P4_INTARRAY: {
58056 sqlite3_snprintf(nTemp, zTemp, "intarray");
58057 break;
58059 case P4_SUBPROGRAM: {
58060 sqlite3_snprintf(nTemp, zTemp, "program");
58061 break;
58063 default: {
58064 zP4 = pOp->p4.z;
58065 if( zP4==0 ){
58066 zP4 = zTemp;
58067 zTemp[0] = 0;
58071 assert( zP4!=0 );
58072 return zP4;
58074 #endif
58077 ** Declare to the Vdbe that the BTree object at db->aDb[i] is used.
58079 ** The prepared statements need to know in advance the complete set of
58080 ** attached databases that they will be using. A mask of these databases
58081 ** is maintained in p->btreeMask and is used for locking and other purposes.
58083 SQLITE_PRIVATE void sqlite3VdbeUsesBtree(Vdbe *p, int i){
58084 assert( i>=0 && i<p->db->nDb && i<(int)sizeof(yDbMask)*8 );
58085 assert( i<(int)sizeof(p->btreeMask)*8 );
58086 p->btreeMask |= ((yDbMask)1)<<i;
58087 if( i!=1 && sqlite3BtreeSharable(p->db->aDb[i].pBt) ){
58088 p->lockMask |= ((yDbMask)1)<<i;
58092 #if !defined(SQLITE_OMIT_SHARED_CACHE) && SQLITE_THREADSAFE>0
58094 ** If SQLite is compiled to support shared-cache mode and to be threadsafe,
58095 ** this routine obtains the mutex associated with each BtShared structure
58096 ** that may be accessed by the VM passed as an argument. In doing so it also
58097 ** sets the BtShared.db member of each of the BtShared structures, ensuring
58098 ** that the correct busy-handler callback is invoked if required.
58100 ** If SQLite is not threadsafe but does support shared-cache mode, then
58101 ** sqlite3BtreeEnter() is invoked to set the BtShared.db variables
58102 ** of all of BtShared structures accessible via the database handle
58103 ** associated with the VM.
58105 ** If SQLite is not threadsafe and does not support shared-cache mode, this
58106 ** function is a no-op.
58108 ** The p->btreeMask field is a bitmask of all btrees that the prepared
58109 ** statement p will ever use. Let N be the number of bits in p->btreeMask
58110 ** corresponding to btrees that use shared cache. Then the runtime of
58111 ** this routine is N*N. But as N is rarely more than 1, this should not
58112 ** be a problem.
58114 SQLITE_PRIVATE void sqlite3VdbeEnter(Vdbe *p){
58115 int i;
58116 yDbMask mask;
58117 sqlite3 *db;
58118 Db *aDb;
58119 int nDb;
58120 if( p->lockMask==0 ) return; /* The common case */
58121 db = p->db;
58122 aDb = db->aDb;
58123 nDb = db->nDb;
58124 for(i=0, mask=1; i<nDb; i++, mask += mask){
58125 if( i!=1 && (mask & p->lockMask)!=0 && ALWAYS(aDb[i].pBt!=0) ){
58126 sqlite3BtreeEnter(aDb[i].pBt);
58130 #endif
58132 #if !defined(SQLITE_OMIT_SHARED_CACHE) && SQLITE_THREADSAFE>0
58134 ** Unlock all of the btrees previously locked by a call to sqlite3VdbeEnter().
58136 SQLITE_PRIVATE void sqlite3VdbeLeave(Vdbe *p){
58137 int i;
58138 yDbMask mask;
58139 sqlite3 *db;
58140 Db *aDb;
58141 int nDb;
58142 if( p->lockMask==0 ) return; /* The common case */
58143 db = p->db;
58144 aDb = db->aDb;
58145 nDb = db->nDb;
58146 for(i=0, mask=1; i<nDb; i++, mask += mask){
58147 if( i!=1 && (mask & p->lockMask)!=0 && ALWAYS(aDb[i].pBt!=0) ){
58148 sqlite3BtreeLeave(aDb[i].pBt);
58152 #endif
58154 #if defined(VDBE_PROFILE) || defined(SQLITE_DEBUG)
58156 ** Print a single opcode. This routine is used for debugging only.
58158 SQLITE_PRIVATE void sqlite3VdbePrintOp(FILE *pOut, int pc, Op *pOp){
58159 char *zP4;
58160 char zPtr[50];
58161 static const char *zFormat1 = "%4d %-13s %4d %4d %4d %-4s %.2X %s\n";
58162 if( pOut==0 ) pOut = stdout;
58163 zP4 = displayP4(pOp, zPtr, sizeof(zPtr));
58164 fprintf(pOut, zFormat1, pc,
58165 sqlite3OpcodeName(pOp->opcode), pOp->p1, pOp->p2, pOp->p3, zP4, pOp->p5,
58166 #ifdef SQLITE_DEBUG
58167 pOp->zComment ? pOp->zComment : ""
58168 #else
58170 #endif
58172 fflush(pOut);
58174 #endif
58177 ** Release an array of N Mem elements
58179 static void releaseMemArray(Mem *p, int N){
58180 if( p && N ){
58181 Mem *pEnd;
58182 sqlite3 *db = p->db;
58183 u8 malloc_failed = db->mallocFailed;
58184 if( db->pnBytesFreed ){
58185 for(pEnd=&p[N]; p<pEnd; p++){
58186 sqlite3DbFree(db, p->zMalloc);
58188 return;
58190 for(pEnd=&p[N]; p<pEnd; p++){
58191 assert( (&p[1])==pEnd || p[0].db==p[1].db );
58193 /* This block is really an inlined version of sqlite3VdbeMemRelease()
58194 ** that takes advantage of the fact that the memory cell value is
58195 ** being set to NULL after releasing any dynamic resources.
58197 ** The justification for duplicating code is that according to
58198 ** callgrind, this causes a certain test case to hit the CPU 4.7
58199 ** percent less (x86 linux, gcc version 4.1.2, -O6) than if
58200 ** sqlite3MemRelease() were called from here. With -O2, this jumps
58201 ** to 6.6 percent. The test case is inserting 1000 rows into a table
58202 ** with no indexes using a single prepared INSERT statement, bind()
58203 ** and reset(). Inserts are grouped into a transaction.
58205 if( p->flags&(MEM_Agg|MEM_Dyn|MEM_Frame|MEM_RowSet) ){
58206 sqlite3VdbeMemRelease(p);
58207 }else if( p->zMalloc ){
58208 sqlite3DbFree(db, p->zMalloc);
58209 p->zMalloc = 0;
58212 p->flags = MEM_Null;
58214 db->mallocFailed = malloc_failed;
58219 ** Delete a VdbeFrame object and its contents. VdbeFrame objects are
58220 ** allocated by the OP_Program opcode in sqlite3VdbeExec().
58222 SQLITE_PRIVATE void sqlite3VdbeFrameDelete(VdbeFrame *p){
58223 int i;
58224 Mem *aMem = VdbeFrameMem(p);
58225 VdbeCursor **apCsr = (VdbeCursor **)&aMem[p->nChildMem];
58226 for(i=0; i<p->nChildCsr; i++){
58227 sqlite3VdbeFreeCursor(p->v, apCsr[i]);
58229 releaseMemArray(aMem, p->nChildMem);
58230 sqlite3DbFree(p->v->db, p);
58233 #ifndef SQLITE_OMIT_EXPLAIN
58235 ** Give a listing of the program in the virtual machine.
58237 ** The interface is the same as sqlite3VdbeExec(). But instead of
58238 ** running the code, it invokes the callback once for each instruction.
58239 ** This feature is used to implement "EXPLAIN".
58241 ** When p->explain==1, each instruction is listed. When
58242 ** p->explain==2, only OP_Explain instructions are listed and these
58243 ** are shown in a different format. p->explain==2 is used to implement
58244 ** EXPLAIN QUERY PLAN.
58246 ** When p->explain==1, first the main program is listed, then each of
58247 ** the trigger subprograms are listed one by one.
58249 SQLITE_PRIVATE int sqlite3VdbeList(
58250 Vdbe *p /* The VDBE */
58252 int nRow; /* Stop when row count reaches this */
58253 int nSub = 0; /* Number of sub-vdbes seen so far */
58254 SubProgram **apSub = 0; /* Array of sub-vdbes */
58255 Mem *pSub = 0; /* Memory cell hold array of subprogs */
58256 sqlite3 *db = p->db; /* The database connection */
58257 int i; /* Loop counter */
58258 int rc = SQLITE_OK; /* Return code */
58259 Mem *pMem = p->pResultSet = &p->aMem[1]; /* First Mem of result set */
58261 assert( p->explain );
58262 assert( p->magic==VDBE_MAGIC_RUN );
58263 assert( p->rc==SQLITE_OK || p->rc==SQLITE_BUSY || p->rc==SQLITE_NOMEM );
58265 /* Even though this opcode does not use dynamic strings for
58266 ** the result, result columns may become dynamic if the user calls
58267 ** sqlite3_column_text16(), causing a translation to UTF-16 encoding.
58269 releaseMemArray(pMem, 8);
58271 if( p->rc==SQLITE_NOMEM ){
58272 /* This happens if a malloc() inside a call to sqlite3_column_text() or
58273 ** sqlite3_column_text16() failed. */
58274 db->mallocFailed = 1;
58275 return SQLITE_ERROR;
58278 /* When the number of output rows reaches nRow, that means the
58279 ** listing has finished and sqlite3_step() should return SQLITE_DONE.
58280 ** nRow is the sum of the number of rows in the main program, plus
58281 ** the sum of the number of rows in all trigger subprograms encountered
58282 ** so far. The nRow value will increase as new trigger subprograms are
58283 ** encountered, but p->pc will eventually catch up to nRow.
58285 nRow = p->nOp;
58286 if( p->explain==1 ){
58287 /* The first 8 memory cells are used for the result set. So we will
58288 ** commandeer the 9th cell to use as storage for an array of pointers
58289 ** to trigger subprograms. The VDBE is guaranteed to have at least 9
58290 ** cells. */
58291 assert( p->nMem>9 );
58292 pSub = &p->aMem[9];
58293 if( pSub->flags&MEM_Blob ){
58294 /* On the first call to sqlite3_step(), pSub will hold a NULL. It is
58295 ** initialized to a BLOB by the P4_SUBPROGRAM processing logic below */
58296 nSub = pSub->n/sizeof(Vdbe*);
58297 apSub = (SubProgram **)pSub->z;
58299 for(i=0; i<nSub; i++){
58300 nRow += apSub[i]->nOp;
58305 i = p->pc++;
58306 }while( i<nRow && p->explain==2 && p->aOp[i].opcode!=OP_Explain );
58307 if( i>=nRow ){
58308 p->rc = SQLITE_OK;
58309 rc = SQLITE_DONE;
58310 }else if( db->u1.isInterrupted ){
58311 p->rc = SQLITE_INTERRUPT;
58312 rc = SQLITE_ERROR;
58313 sqlite3SetString(&p->zErrMsg, db, "%s", sqlite3ErrStr(p->rc));
58314 }else{
58315 char *z;
58316 Op *pOp;
58317 if( i<p->nOp ){
58318 /* The output line number is small enough that we are still in the
58319 ** main program. */
58320 pOp = &p->aOp[i];
58321 }else{
58322 /* We are currently listing subprograms. Figure out which one and
58323 ** pick up the appropriate opcode. */
58324 int j;
58325 i -= p->nOp;
58326 for(j=0; i>=apSub[j]->nOp; j++){
58327 i -= apSub[j]->nOp;
58329 pOp = &apSub[j]->aOp[i];
58331 if( p->explain==1 ){
58332 pMem->flags = MEM_Int;
58333 pMem->type = SQLITE_INTEGER;
58334 pMem->u.i = i; /* Program counter */
58335 pMem++;
58337 pMem->flags = MEM_Static|MEM_Str|MEM_Term;
58338 pMem->z = (char*)sqlite3OpcodeName(pOp->opcode); /* Opcode */
58339 assert( pMem->z!=0 );
58340 pMem->n = sqlite3Strlen30(pMem->z);
58341 pMem->type = SQLITE_TEXT;
58342 pMem->enc = SQLITE_UTF8;
58343 pMem++;
58345 /* When an OP_Program opcode is encounter (the only opcode that has
58346 ** a P4_SUBPROGRAM argument), expand the size of the array of subprograms
58347 ** kept in p->aMem[9].z to hold the new program - assuming this subprogram
58348 ** has not already been seen.
58350 if( pOp->p4type==P4_SUBPROGRAM ){
58351 int nByte = (nSub+1)*sizeof(SubProgram*);
58352 int j;
58353 for(j=0; j<nSub; j++){
58354 if( apSub[j]==pOp->p4.pProgram ) break;
58356 if( j==nSub && SQLITE_OK==sqlite3VdbeMemGrow(pSub, nByte, 1) ){
58357 apSub = (SubProgram **)pSub->z;
58358 apSub[nSub++] = pOp->p4.pProgram;
58359 pSub->flags |= MEM_Blob;
58360 pSub->n = nSub*sizeof(SubProgram*);
58365 pMem->flags = MEM_Int;
58366 pMem->u.i = pOp->p1; /* P1 */
58367 pMem->type = SQLITE_INTEGER;
58368 pMem++;
58370 pMem->flags = MEM_Int;
58371 pMem->u.i = pOp->p2; /* P2 */
58372 pMem->type = SQLITE_INTEGER;
58373 pMem++;
58375 pMem->flags = MEM_Int;
58376 pMem->u.i = pOp->p3; /* P3 */
58377 pMem->type = SQLITE_INTEGER;
58378 pMem++;
58380 if( sqlite3VdbeMemGrow(pMem, 32, 0) ){ /* P4 */
58381 assert( p->db->mallocFailed );
58382 return SQLITE_ERROR;
58384 pMem->flags = MEM_Dyn|MEM_Str|MEM_Term;
58385 z = displayP4(pOp, pMem->z, 32);
58386 if( z!=pMem->z ){
58387 sqlite3VdbeMemSetStr(pMem, z, -1, SQLITE_UTF8, 0);
58388 }else{
58389 assert( pMem->z!=0 );
58390 pMem->n = sqlite3Strlen30(pMem->z);
58391 pMem->enc = SQLITE_UTF8;
58393 pMem->type = SQLITE_TEXT;
58394 pMem++;
58396 if( p->explain==1 ){
58397 if( sqlite3VdbeMemGrow(pMem, 4, 0) ){
58398 assert( p->db->mallocFailed );
58399 return SQLITE_ERROR;
58401 pMem->flags = MEM_Dyn|MEM_Str|MEM_Term;
58402 pMem->n = 2;
58403 sqlite3_snprintf(3, pMem->z, "%.2x", pOp->p5); /* P5 */
58404 pMem->type = SQLITE_TEXT;
58405 pMem->enc = SQLITE_UTF8;
58406 pMem++;
58408 #ifdef SQLITE_DEBUG
58409 if( pOp->zComment ){
58410 pMem->flags = MEM_Str|MEM_Term;
58411 pMem->z = pOp->zComment;
58412 pMem->n = sqlite3Strlen30(pMem->z);
58413 pMem->enc = SQLITE_UTF8;
58414 pMem->type = SQLITE_TEXT;
58415 }else
58416 #endif
58418 pMem->flags = MEM_Null; /* Comment */
58419 pMem->type = SQLITE_NULL;
58423 p->nResColumn = 8 - 4*(p->explain-1);
58424 p->rc = SQLITE_OK;
58425 rc = SQLITE_ROW;
58427 return rc;
58429 #endif /* SQLITE_OMIT_EXPLAIN */
58431 #ifdef SQLITE_DEBUG
58433 ** Print the SQL that was used to generate a VDBE program.
58435 SQLITE_PRIVATE void sqlite3VdbePrintSql(Vdbe *p){
58436 int nOp = p->nOp;
58437 VdbeOp *pOp;
58438 if( nOp<1 ) return;
58439 pOp = &p->aOp[0];
58440 if( pOp->opcode==OP_Trace && pOp->p4.z!=0 ){
58441 const char *z = pOp->p4.z;
58442 while( sqlite3Isspace(*z) ) z++;
58443 printf("SQL: [%s]\n", z);
58446 #endif
58448 #if !defined(SQLITE_OMIT_TRACE) && defined(SQLITE_ENABLE_IOTRACE)
58450 ** Print an IOTRACE message showing SQL content.
58452 SQLITE_PRIVATE void sqlite3VdbeIOTraceSql(Vdbe *p){
58453 int nOp = p->nOp;
58454 VdbeOp *pOp;
58455 if( sqlite3IoTrace==0 ) return;
58456 if( nOp<1 ) return;
58457 pOp = &p->aOp[0];
58458 if( pOp->opcode==OP_Trace && pOp->p4.z!=0 ){
58459 int i, j;
58460 char z[1000];
58461 sqlite3_snprintf(sizeof(z), z, "%s", pOp->p4.z);
58462 for(i=0; sqlite3Isspace(z[i]); i++){}
58463 for(j=0; z[i]; i++){
58464 if( sqlite3Isspace(z[i]) ){
58465 if( z[i-1]!=' ' ){
58466 z[j++] = ' ';
58468 }else{
58469 z[j++] = z[i];
58472 z[j] = 0;
58473 sqlite3IoTrace("SQL %s\n", z);
58476 #endif /* !SQLITE_OMIT_TRACE && SQLITE_ENABLE_IOTRACE */
58479 ** Allocate space from a fixed size buffer and return a pointer to
58480 ** that space. If insufficient space is available, return NULL.
58482 ** The pBuf parameter is the initial value of a pointer which will
58483 ** receive the new memory. pBuf is normally NULL. If pBuf is not
58484 ** NULL, it means that memory space has already been allocated and that
58485 ** this routine should not allocate any new memory. When pBuf is not
58486 ** NULL simply return pBuf. Only allocate new memory space when pBuf
58487 ** is NULL.
58489 ** nByte is the number of bytes of space needed.
58491 ** *ppFrom points to available space and pEnd points to the end of the
58492 ** available space. When space is allocated, *ppFrom is advanced past
58493 ** the end of the allocated space.
58495 ** *pnByte is a counter of the number of bytes of space that have failed
58496 ** to allocate. If there is insufficient space in *ppFrom to satisfy the
58497 ** request, then increment *pnByte by the amount of the request.
58499 static void *allocSpace(
58500 void *pBuf, /* Where return pointer will be stored */
58501 int nByte, /* Number of bytes to allocate */
58502 u8 **ppFrom, /* IN/OUT: Allocate from *ppFrom */
58503 u8 *pEnd, /* Pointer to 1 byte past the end of *ppFrom buffer */
58504 int *pnByte /* If allocation cannot be made, increment *pnByte */
58506 assert( EIGHT_BYTE_ALIGNMENT(*ppFrom) );
58507 if( pBuf ) return pBuf;
58508 nByte = ROUND8(nByte);
58509 if( &(*ppFrom)[nByte] <= pEnd ){
58510 pBuf = (void*)*ppFrom;
58511 *ppFrom += nByte;
58512 }else{
58513 *pnByte += nByte;
58515 return pBuf;
58519 ** Prepare a virtual machine for execution. This involves things such
58520 ** as allocating stack space and initializing the program counter.
58521 ** After the VDBE has be prepped, it can be executed by one or more
58522 ** calls to sqlite3VdbeExec().
58524 ** This is the only way to move a VDBE from VDBE_MAGIC_INIT to
58525 ** VDBE_MAGIC_RUN.
58527 ** This function may be called more than once on a single virtual machine.
58528 ** The first call is made while compiling the SQL statement. Subsequent
58529 ** calls are made as part of the process of resetting a statement to be
58530 ** re-executed (from a call to sqlite3_reset()). The nVar, nMem, nCursor
58531 ** and isExplain parameters are only passed correct values the first time
58532 ** the function is called. On subsequent calls, from sqlite3_reset(), nVar
58533 ** is passed -1 and nMem, nCursor and isExplain are all passed zero.
58535 SQLITE_PRIVATE void sqlite3VdbeMakeReady(
58536 Vdbe *p, /* The VDBE */
58537 int nVar, /* Number of '?' see in the SQL statement */
58538 int nMem, /* Number of memory cells to allocate */
58539 int nCursor, /* Number of cursors to allocate */
58540 int nArg, /* Maximum number of args in SubPrograms */
58541 int isExplain, /* True if the EXPLAIN keywords is present */
58542 int usesStmtJournal /* True to set Vdbe.usesStmtJournal */
58544 int n;
58545 sqlite3 *db = p->db;
58547 assert( p!=0 );
58548 assert( p->magic==VDBE_MAGIC_INIT );
58550 /* There should be at least one opcode.
58552 assert( p->nOp>0 );
58554 /* Set the magic to VDBE_MAGIC_RUN sooner rather than later. */
58555 p->magic = VDBE_MAGIC_RUN;
58557 /* For each cursor required, also allocate a memory cell. Memory
58558 ** cells (nMem+1-nCursor)..nMem, inclusive, will never be used by
58559 ** the vdbe program. Instead they are used to allocate space for
58560 ** VdbeCursor/BtCursor structures. The blob of memory associated with
58561 ** cursor 0 is stored in memory cell nMem. Memory cell (nMem-1)
58562 ** stores the blob of memory associated with cursor 1, etc.
58564 ** See also: allocateCursor().
58566 nMem += nCursor;
58568 /* Allocate space for memory registers, SQL variables, VDBE cursors and
58569 ** an array to marshal SQL function arguments in. This is only done the
58570 ** first time this function is called for a given VDBE, not when it is
58571 ** being called from sqlite3_reset() to reset the virtual machine.
58573 if( nVar>=0 && ALWAYS(db->mallocFailed==0) ){
58574 u8 *zCsr = (u8 *)&p->aOp[p->nOp]; /* Memory avaliable for alloation */
58575 u8 *zEnd = (u8 *)&p->aOp[p->nOpAlloc]; /* First byte past available mem */
58576 int nByte; /* How much extra memory needed */
58578 resolveP2Values(p, &nArg);
58579 p->usesStmtJournal = (u8)usesStmtJournal;
58580 if( isExplain && nMem<10 ){
58581 nMem = 10;
58583 memset(zCsr, 0, zEnd-zCsr);
58584 zCsr += (zCsr - (u8*)0)&7;
58585 assert( EIGHT_BYTE_ALIGNMENT(zCsr) );
58587 /* Memory for registers, parameters, cursor, etc, is allocated in two
58588 ** passes. On the first pass, we try to reuse unused space at the
58589 ** end of the opcode array. If we are unable to satisfy all memory
58590 ** requirements by reusing the opcode array tail, then the second
58591 ** pass will fill in the rest using a fresh allocation.
58593 ** This two-pass approach that reuses as much memory as possible from
58594 ** the leftover space at the end of the opcode array can significantly
58595 ** reduce the amount of memory held by a prepared statement.
58597 do {
58598 nByte = 0;
58599 p->aMem = allocSpace(p->aMem, nMem*sizeof(Mem), &zCsr, zEnd, &nByte);
58600 p->aVar = allocSpace(p->aVar, nVar*sizeof(Mem), &zCsr, zEnd, &nByte);
58601 p->apArg = allocSpace(p->apArg, nArg*sizeof(Mem*), &zCsr, zEnd, &nByte);
58602 p->azVar = allocSpace(p->azVar, nVar*sizeof(char*), &zCsr, zEnd, &nByte);
58603 p->apCsr = allocSpace(p->apCsr, nCursor*sizeof(VdbeCursor*),
58604 &zCsr, zEnd, &nByte);
58605 if( nByte ){
58606 p->pFree = sqlite3DbMallocZero(db, nByte);
58608 zCsr = p->pFree;
58609 zEnd = &zCsr[nByte];
58610 }while( nByte && !db->mallocFailed );
58612 p->nCursor = (u16)nCursor;
58613 if( p->aVar ){
58614 p->nVar = (ynVar)nVar;
58615 for(n=0; n<nVar; n++){
58616 p->aVar[n].flags = MEM_Null;
58617 p->aVar[n].db = db;
58620 if( p->aMem ){
58621 p->aMem--; /* aMem[] goes from 1..nMem */
58622 p->nMem = nMem; /* not from 0..nMem-1 */
58623 for(n=1; n<=nMem; n++){
58624 p->aMem[n].flags = MEM_Null;
58625 p->aMem[n].db = db;
58629 #ifdef SQLITE_DEBUG
58630 for(n=1; n<p->nMem; n++){
58631 assert( p->aMem[n].db==db );
58633 #endif
58635 p->pc = -1;
58636 p->rc = SQLITE_OK;
58637 p->errorAction = OE_Abort;
58638 p->explain |= isExplain;
58639 p->magic = VDBE_MAGIC_RUN;
58640 p->nChange = 0;
58641 p->cacheCtr = 1;
58642 p->minWriteFileFormat = 255;
58643 p->iStatement = 0;
58644 p->nFkConstraint = 0;
58645 #ifdef VDBE_PROFILE
58647 int i;
58648 for(i=0; i<p->nOp; i++){
58649 p->aOp[i].cnt = 0;
58650 p->aOp[i].cycles = 0;
58653 #endif
58657 ** Close a VDBE cursor and release all the resources that cursor
58658 ** happens to hold.
58660 SQLITE_PRIVATE void sqlite3VdbeFreeCursor(Vdbe *p, VdbeCursor *pCx){
58661 if( pCx==0 ){
58662 return;
58664 if( pCx->pBt ){
58665 sqlite3BtreeClose(pCx->pBt);
58666 /* The pCx->pCursor will be close automatically, if it exists, by
58667 ** the call above. */
58668 }else if( pCx->pCursor ){
58669 sqlite3BtreeCloseCursor(pCx->pCursor);
58671 #ifndef SQLITE_OMIT_VIRTUALTABLE
58672 if( pCx->pVtabCursor ){
58673 sqlite3_vtab_cursor *pVtabCursor = pCx->pVtabCursor;
58674 const sqlite3_module *pModule = pCx->pModule;
58675 p->inVtabMethod = 1;
58676 pModule->xClose(pVtabCursor);
58677 p->inVtabMethod = 0;
58679 #endif
58683 ** Copy the values stored in the VdbeFrame structure to its Vdbe. This
58684 ** is used, for example, when a trigger sub-program is halted to restore
58685 ** control to the main program.
58687 SQLITE_PRIVATE int sqlite3VdbeFrameRestore(VdbeFrame *pFrame){
58688 Vdbe *v = pFrame->v;
58689 v->aOp = pFrame->aOp;
58690 v->nOp = pFrame->nOp;
58691 v->aMem = pFrame->aMem;
58692 v->nMem = pFrame->nMem;
58693 v->apCsr = pFrame->apCsr;
58694 v->nCursor = pFrame->nCursor;
58695 v->db->lastRowid = pFrame->lastRowid;
58696 v->nChange = pFrame->nChange;
58697 return pFrame->pc;
58701 ** Close all cursors.
58703 ** Also release any dynamic memory held by the VM in the Vdbe.aMem memory
58704 ** cell array. This is necessary as the memory cell array may contain
58705 ** pointers to VdbeFrame objects, which may in turn contain pointers to
58706 ** open cursors.
58708 static void closeAllCursors(Vdbe *p){
58709 if( p->pFrame ){
58710 VdbeFrame *pFrame;
58711 for(pFrame=p->pFrame; pFrame->pParent; pFrame=pFrame->pParent);
58712 sqlite3VdbeFrameRestore(pFrame);
58714 p->pFrame = 0;
58715 p->nFrame = 0;
58717 if( p->apCsr ){
58718 int i;
58719 for(i=0; i<p->nCursor; i++){
58720 VdbeCursor *pC = p->apCsr[i];
58721 if( pC ){
58722 sqlite3VdbeFreeCursor(p, pC);
58723 p->apCsr[i] = 0;
58727 if( p->aMem ){
58728 releaseMemArray(&p->aMem[1], p->nMem);
58730 while( p->pDelFrame ){
58731 VdbeFrame *pDel = p->pDelFrame;
58732 p->pDelFrame = pDel->pParent;
58733 sqlite3VdbeFrameDelete(pDel);
58738 ** Clean up the VM after execution.
58740 ** This routine will automatically close any cursors, lists, and/or
58741 ** sorters that were left open. It also deletes the values of
58742 ** variables in the aVar[] array.
58744 static void Cleanup(Vdbe *p){
58745 sqlite3 *db = p->db;
58747 #ifdef SQLITE_DEBUG
58748 /* Execute assert() statements to ensure that the Vdbe.apCsr[] and
58749 ** Vdbe.aMem[] arrays have already been cleaned up. */
58750 int i;
58751 for(i=0; i<p->nCursor; i++) assert( p->apCsr==0 || p->apCsr[i]==0 );
58752 for(i=1; i<=p->nMem; i++) assert( p->aMem==0 || p->aMem[i].flags==MEM_Null );
58753 #endif
58755 sqlite3DbFree(db, p->zErrMsg);
58756 p->zErrMsg = 0;
58757 p->pResultSet = 0;
58761 ** Set the number of result columns that will be returned by this SQL
58762 ** statement. This is now set at compile time, rather than during
58763 ** execution of the vdbe program so that sqlite3_column_count() can
58764 ** be called on an SQL statement before sqlite3_step().
58766 SQLITE_PRIVATE void sqlite3VdbeSetNumCols(Vdbe *p, int nResColumn){
58767 Mem *pColName;
58768 int n;
58769 sqlite3 *db = p->db;
58771 releaseMemArray(p->aColName, p->nResColumn*COLNAME_N);
58772 sqlite3DbFree(db, p->aColName);
58773 n = nResColumn*COLNAME_N;
58774 p->nResColumn = (u16)nResColumn;
58775 p->aColName = pColName = (Mem*)sqlite3DbMallocZero(db, sizeof(Mem)*n );
58776 if( p->aColName==0 ) return;
58777 while( n-- > 0 ){
58778 pColName->flags = MEM_Null;
58779 pColName->db = p->db;
58780 pColName++;
58785 ** Set the name of the idx'th column to be returned by the SQL statement.
58786 ** zName must be a pointer to a nul terminated string.
58788 ** This call must be made after a call to sqlite3VdbeSetNumCols().
58790 ** The final parameter, xDel, must be one of SQLITE_DYNAMIC, SQLITE_STATIC
58791 ** or SQLITE_TRANSIENT. If it is SQLITE_DYNAMIC, then the buffer pointed
58792 ** to by zName will be freed by sqlite3DbFree() when the vdbe is destroyed.
58794 SQLITE_PRIVATE int sqlite3VdbeSetColName(
58795 Vdbe *p, /* Vdbe being configured */
58796 int idx, /* Index of column zName applies to */
58797 int var, /* One of the COLNAME_* constants */
58798 const char *zName, /* Pointer to buffer containing name */
58799 void (*xDel)(void*) /* Memory management strategy for zName */
58801 int rc;
58802 Mem *pColName;
58803 assert( idx<p->nResColumn );
58804 assert( var<COLNAME_N );
58805 if( p->db->mallocFailed ){
58806 assert( !zName || xDel!=SQLITE_DYNAMIC );
58807 return SQLITE_NOMEM;
58809 assert( p->aColName!=0 );
58810 pColName = &(p->aColName[idx+var*p->nResColumn]);
58811 rc = sqlite3VdbeMemSetStr(pColName, zName, -1, SQLITE_UTF8, xDel);
58812 assert( rc!=0 || !zName || (pColName->flags&MEM_Term)!=0 );
58813 return rc;
58817 ** A read or write transaction may or may not be active on database handle
58818 ** db. If a transaction is active, commit it. If there is a
58819 ** write-transaction spanning more than one database file, this routine
58820 ** takes care of the master journal trickery.
58822 static int vdbeCommit(sqlite3 *db, Vdbe *p){
58823 int i;
58824 int nTrans = 0; /* Number of databases with an active write-transaction */
58825 int rc = SQLITE_OK;
58826 int needXcommit = 0;
58828 #ifdef SQLITE_OMIT_VIRTUALTABLE
58829 /* With this option, sqlite3VtabSync() is defined to be simply
58830 ** SQLITE_OK so p is not used.
58832 UNUSED_PARAMETER(p);
58833 #endif
58835 /* Before doing anything else, call the xSync() callback for any
58836 ** virtual module tables written in this transaction. This has to
58837 ** be done before determining whether a master journal file is
58838 ** required, as an xSync() callback may add an attached database
58839 ** to the transaction.
58841 rc = sqlite3VtabSync(db, &p->zErrMsg);
58843 /* This loop determines (a) if the commit hook should be invoked and
58844 ** (b) how many database files have open write transactions, not
58845 ** including the temp database. (b) is important because if more than
58846 ** one database file has an open write transaction, a master journal
58847 ** file is required for an atomic commit.
58849 for(i=0; rc==SQLITE_OK && i<db->nDb; i++){
58850 Btree *pBt = db->aDb[i].pBt;
58851 if( sqlite3BtreeIsInTrans(pBt) ){
58852 needXcommit = 1;
58853 if( i!=1 ) nTrans++;
58854 rc = sqlite3PagerExclusiveLock(sqlite3BtreePager(pBt));
58857 if( rc!=SQLITE_OK ){
58858 return rc;
58861 /* If there are any write-transactions at all, invoke the commit hook */
58862 if( needXcommit && db->xCommitCallback ){
58863 rc = db->xCommitCallback(db->pCommitArg);
58864 if( rc ){
58865 return SQLITE_CONSTRAINT;
58869 /* The simple case - no more than one database file (not counting the
58870 ** TEMP database) has a transaction active. There is no need for the
58871 ** master-journal.
58873 ** If the return value of sqlite3BtreeGetFilename() is a zero length
58874 ** string, it means the main database is :memory: or a temp file. In
58875 ** that case we do not support atomic multi-file commits, so use the
58876 ** simple case then too.
58878 if( 0==sqlite3Strlen30(sqlite3BtreeGetFilename(db->aDb[0].pBt))
58879 || nTrans<=1
58881 for(i=0; rc==SQLITE_OK && i<db->nDb; i++){
58882 Btree *pBt = db->aDb[i].pBt;
58883 if( pBt ){
58884 rc = sqlite3BtreeCommitPhaseOne(pBt, 0);
58888 /* Do the commit only if all databases successfully complete phase 1.
58889 ** If one of the BtreeCommitPhaseOne() calls fails, this indicates an
58890 ** IO error while deleting or truncating a journal file. It is unlikely,
58891 ** but could happen. In this case abandon processing and return the error.
58893 for(i=0; rc==SQLITE_OK && i<db->nDb; i++){
58894 Btree *pBt = db->aDb[i].pBt;
58895 if( pBt ){
58896 rc = sqlite3BtreeCommitPhaseTwo(pBt, 0);
58899 if( rc==SQLITE_OK ){
58900 sqlite3VtabCommit(db);
58904 /* The complex case - There is a multi-file write-transaction active.
58905 ** This requires a master journal file to ensure the transaction is
58906 ** committed atomicly.
58908 #ifndef SQLITE_OMIT_DISKIO
58909 else{
58910 sqlite3_vfs *pVfs = db->pVfs;
58911 int needSync = 0;
58912 char *zMaster = 0; /* File-name for the master journal */
58913 char const *zMainFile = sqlite3BtreeGetFilename(db->aDb[0].pBt);
58914 sqlite3_file *pMaster = 0;
58915 i64 offset = 0;
58916 int res;
58918 /* Select a master journal file name */
58919 do {
58920 u32 iRandom;
58921 sqlite3DbFree(db, zMaster);
58922 sqlite3_randomness(sizeof(iRandom), &iRandom);
58923 zMaster = sqlite3MPrintf(db, "%s-mj%08X", zMainFile, iRandom&0x7fffffff);
58924 if( !zMaster ){
58925 return SQLITE_NOMEM;
58927 rc = sqlite3OsAccess(pVfs, zMaster, SQLITE_ACCESS_EXISTS, &res);
58928 }while( rc==SQLITE_OK && res );
58929 if( rc==SQLITE_OK ){
58930 /* Open the master journal. */
58931 rc = sqlite3OsOpenMalloc(pVfs, zMaster, &pMaster,
58932 SQLITE_OPEN_READWRITE|SQLITE_OPEN_CREATE|
58933 SQLITE_OPEN_EXCLUSIVE|SQLITE_OPEN_MASTER_JOURNAL, 0
58936 if( rc!=SQLITE_OK ){
58937 sqlite3DbFree(db, zMaster);
58938 return rc;
58941 /* Write the name of each database file in the transaction into the new
58942 ** master journal file. If an error occurs at this point close
58943 ** and delete the master journal file. All the individual journal files
58944 ** still have 'null' as the master journal pointer, so they will roll
58945 ** back independently if a failure occurs.
58947 for(i=0; i<db->nDb; i++){
58948 Btree *pBt = db->aDb[i].pBt;
58949 if( sqlite3BtreeIsInTrans(pBt) ){
58950 char const *zFile = sqlite3BtreeGetJournalname(pBt);
58951 if( zFile==0 ){
58952 continue; /* Ignore TEMP and :memory: databases */
58954 assert( zFile[0]!=0 );
58955 if( !needSync && !sqlite3BtreeSyncDisabled(pBt) ){
58956 needSync = 1;
58958 rc = sqlite3OsWrite(pMaster, zFile, sqlite3Strlen30(zFile)+1, offset);
58959 offset += sqlite3Strlen30(zFile)+1;
58960 if( rc!=SQLITE_OK ){
58961 sqlite3OsCloseFree(pMaster);
58962 sqlite3OsDelete(pVfs, zMaster, 0);
58963 sqlite3DbFree(db, zMaster);
58964 return rc;
58969 /* Sync the master journal file. If the IOCAP_SEQUENTIAL device
58970 ** flag is set this is not required.
58972 if( needSync
58973 && 0==(sqlite3OsDeviceCharacteristics(pMaster)&SQLITE_IOCAP_SEQUENTIAL)
58974 && SQLITE_OK!=(rc = sqlite3OsSync(pMaster, SQLITE_SYNC_NORMAL))
58976 sqlite3OsCloseFree(pMaster);
58977 sqlite3OsDelete(pVfs, zMaster, 0);
58978 sqlite3DbFree(db, zMaster);
58979 return rc;
58982 /* Sync all the db files involved in the transaction. The same call
58983 ** sets the master journal pointer in each individual journal. If
58984 ** an error occurs here, do not delete the master journal file.
58986 ** If the error occurs during the first call to
58987 ** sqlite3BtreeCommitPhaseOne(), then there is a chance that the
58988 ** master journal file will be orphaned. But we cannot delete it,
58989 ** in case the master journal file name was written into the journal
58990 ** file before the failure occurred.
58992 for(i=0; rc==SQLITE_OK && i<db->nDb; i++){
58993 Btree *pBt = db->aDb[i].pBt;
58994 if( pBt ){
58995 rc = sqlite3BtreeCommitPhaseOne(pBt, zMaster);
58998 sqlite3OsCloseFree(pMaster);
58999 assert( rc!=SQLITE_BUSY );
59000 if( rc!=SQLITE_OK ){
59001 sqlite3DbFree(db, zMaster);
59002 return rc;
59005 /* Delete the master journal file. This commits the transaction. After
59006 ** doing this the directory is synced again before any individual
59007 ** transaction files are deleted.
59009 rc = sqlite3OsDelete(pVfs, zMaster, 1);
59010 sqlite3DbFree(db, zMaster);
59011 zMaster = 0;
59012 if( rc ){
59013 return rc;
59016 /* All files and directories have already been synced, so the following
59017 ** calls to sqlite3BtreeCommitPhaseTwo() are only closing files and
59018 ** deleting or truncating journals. If something goes wrong while
59019 ** this is happening we don't really care. The integrity of the
59020 ** transaction is already guaranteed, but some stray 'cold' journals
59021 ** may be lying around. Returning an error code won't help matters.
59023 disable_simulated_io_errors();
59024 sqlite3BeginBenignMalloc();
59025 for(i=0; i<db->nDb; i++){
59026 Btree *pBt = db->aDb[i].pBt;
59027 if( pBt ){
59028 sqlite3BtreeCommitPhaseTwo(pBt, 1);
59031 sqlite3EndBenignMalloc();
59032 enable_simulated_io_errors();
59034 sqlite3VtabCommit(db);
59036 #endif
59038 return rc;
59042 ** This routine checks that the sqlite3.activeVdbeCnt count variable
59043 ** matches the number of vdbe's in the list sqlite3.pVdbe that are
59044 ** currently active. An assertion fails if the two counts do not match.
59045 ** This is an internal self-check only - it is not an essential processing
59046 ** step.
59048 ** This is a no-op if NDEBUG is defined.
59050 #ifndef NDEBUG
59051 static void checkActiveVdbeCnt(sqlite3 *db){
59052 Vdbe *p;
59053 int cnt = 0;
59054 int nWrite = 0;
59055 p = db->pVdbe;
59056 while( p ){
59057 if( p->magic==VDBE_MAGIC_RUN && p->pc>=0 ){
59058 cnt++;
59059 if( p->readOnly==0 ) nWrite++;
59061 p = p->pNext;
59063 assert( cnt==db->activeVdbeCnt );
59064 assert( nWrite==db->writeVdbeCnt );
59066 #else
59067 #define checkActiveVdbeCnt(x)
59068 #endif
59071 ** For every Btree that in database connection db which
59072 ** has been modified, "trip" or invalidate each cursor in
59073 ** that Btree might have been modified so that the cursor
59074 ** can never be used again. This happens when a rollback
59075 *** occurs. We have to trip all the other cursors, even
59076 ** cursor from other VMs in different database connections,
59077 ** so that none of them try to use the data at which they
59078 ** were pointing and which now may have been changed due
59079 ** to the rollback.
59081 ** Remember that a rollback can delete tables complete and
59082 ** reorder rootpages. So it is not sufficient just to save
59083 ** the state of the cursor. We have to invalidate the cursor
59084 ** so that it is never used again.
59086 static void invalidateCursorsOnModifiedBtrees(sqlite3 *db){
59087 int i;
59088 for(i=0; i<db->nDb; i++){
59089 Btree *p = db->aDb[i].pBt;
59090 if( p && sqlite3BtreeIsInTrans(p) ){
59091 sqlite3BtreeTripAllCursors(p, SQLITE_ABORT);
59097 ** If the Vdbe passed as the first argument opened a statement-transaction,
59098 ** close it now. Argument eOp must be either SAVEPOINT_ROLLBACK or
59099 ** SAVEPOINT_RELEASE. If it is SAVEPOINT_ROLLBACK, then the statement
59100 ** transaction is rolled back. If eOp is SAVEPOINT_RELEASE, then the
59101 ** statement transaction is commtted.
59103 ** If an IO error occurs, an SQLITE_IOERR_XXX error code is returned.
59104 ** Otherwise SQLITE_OK.
59106 SQLITE_PRIVATE int sqlite3VdbeCloseStatement(Vdbe *p, int eOp){
59107 sqlite3 *const db = p->db;
59108 int rc = SQLITE_OK;
59110 /* If p->iStatement is greater than zero, then this Vdbe opened a
59111 ** statement transaction that should be closed here. The only exception
59112 ** is that an IO error may have occured, causing an emergency rollback.
59113 ** In this case (db->nStatement==0), and there is nothing to do.
59115 if( db->nStatement && p->iStatement ){
59116 int i;
59117 const int iSavepoint = p->iStatement-1;
59119 assert( eOp==SAVEPOINT_ROLLBACK || eOp==SAVEPOINT_RELEASE);
59120 assert( db->nStatement>0 );
59121 assert( p->iStatement==(db->nStatement+db->nSavepoint) );
59123 for(i=0; i<db->nDb; i++){
59124 int rc2 = SQLITE_OK;
59125 Btree *pBt = db->aDb[i].pBt;
59126 if( pBt ){
59127 if( eOp==SAVEPOINT_ROLLBACK ){
59128 rc2 = sqlite3BtreeSavepoint(pBt, SAVEPOINT_ROLLBACK, iSavepoint);
59130 if( rc2==SQLITE_OK ){
59131 rc2 = sqlite3BtreeSavepoint(pBt, SAVEPOINT_RELEASE, iSavepoint);
59133 if( rc==SQLITE_OK ){
59134 rc = rc2;
59138 db->nStatement--;
59139 p->iStatement = 0;
59141 /* If the statement transaction is being rolled back, also restore the
59142 ** database handles deferred constraint counter to the value it had when
59143 ** the statement transaction was opened. */
59144 if( eOp==SAVEPOINT_ROLLBACK ){
59145 db->nDeferredCons = p->nStmtDefCons;
59148 return rc;
59152 ** This function is called when a transaction opened by the database
59153 ** handle associated with the VM passed as an argument is about to be
59154 ** committed. If there are outstanding deferred foreign key constraint
59155 ** violations, return SQLITE_ERROR. Otherwise, SQLITE_OK.
59157 ** If there are outstanding FK violations and this function returns
59158 ** SQLITE_ERROR, set the result of the VM to SQLITE_CONSTRAINT and write
59159 ** an error message to it. Then return SQLITE_ERROR.
59161 #ifndef SQLITE_OMIT_FOREIGN_KEY
59162 SQLITE_PRIVATE int sqlite3VdbeCheckFk(Vdbe *p, int deferred){
59163 sqlite3 *db = p->db;
59164 if( (deferred && db->nDeferredCons>0) || (!deferred && p->nFkConstraint>0) ){
59165 p->rc = SQLITE_CONSTRAINT;
59166 p->errorAction = OE_Abort;
59167 sqlite3SetString(&p->zErrMsg, db, "foreign key constraint failed");
59168 return SQLITE_ERROR;
59170 return SQLITE_OK;
59172 #endif
59175 ** This routine is called the when a VDBE tries to halt. If the VDBE
59176 ** has made changes and is in autocommit mode, then commit those
59177 ** changes. If a rollback is needed, then do the rollback.
59179 ** This routine is the only way to move the state of a VM from
59180 ** SQLITE_MAGIC_RUN to SQLITE_MAGIC_HALT. It is harmless to
59181 ** call this on a VM that is in the SQLITE_MAGIC_HALT state.
59183 ** Return an error code. If the commit could not complete because of
59184 ** lock contention, return SQLITE_BUSY. If SQLITE_BUSY is returned, it
59185 ** means the close did not happen and needs to be repeated.
59187 SQLITE_PRIVATE int sqlite3VdbeHalt(Vdbe *p){
59188 int rc; /* Used to store transient return codes */
59189 sqlite3 *db = p->db;
59191 /* This function contains the logic that determines if a statement or
59192 ** transaction will be committed or rolled back as a result of the
59193 ** execution of this virtual machine.
59195 ** If any of the following errors occur:
59197 ** SQLITE_NOMEM
59198 ** SQLITE_IOERR
59199 ** SQLITE_FULL
59200 ** SQLITE_INTERRUPT
59202 ** Then the internal cache might have been left in an inconsistent
59203 ** state. We need to rollback the statement transaction, if there is
59204 ** one, or the complete transaction if there is no statement transaction.
59207 if( p->db->mallocFailed ){
59208 p->rc = SQLITE_NOMEM;
59210 closeAllCursors(p);
59211 if( p->magic!=VDBE_MAGIC_RUN ){
59212 return SQLITE_OK;
59214 checkActiveVdbeCnt(db);
59216 /* No commit or rollback needed if the program never started */
59217 if( p->pc>=0 ){
59218 int mrc; /* Primary error code from p->rc */
59219 int eStatementOp = 0;
59220 int isSpecialError; /* Set to true if a 'special' error */
59222 /* Lock all btrees used by the statement */
59223 sqlite3VdbeEnter(p);
59225 /* Check for one of the special errors */
59226 mrc = p->rc & 0xff;
59227 assert( p->rc!=SQLITE_IOERR_BLOCKED ); /* This error no longer exists */
59228 isSpecialError = mrc==SQLITE_NOMEM || mrc==SQLITE_IOERR
59229 || mrc==SQLITE_INTERRUPT || mrc==SQLITE_FULL;
59230 if( isSpecialError ){
59231 /* If the query was read-only and the error code is SQLITE_INTERRUPT,
59232 ** no rollback is necessary. Otherwise, at least a savepoint
59233 ** transaction must be rolled back to restore the database to a
59234 ** consistent state.
59236 ** Even if the statement is read-only, it is important to perform
59237 ** a statement or transaction rollback operation. If the error
59238 ** occured while writing to the journal, sub-journal or database
59239 ** file as part of an effort to free up cache space (see function
59240 ** pagerStress() in pager.c), the rollback is required to restore
59241 ** the pager to a consistent state.
59243 if( !p->readOnly || mrc!=SQLITE_INTERRUPT ){
59244 if( (mrc==SQLITE_NOMEM || mrc==SQLITE_FULL) && p->usesStmtJournal ){
59245 eStatementOp = SAVEPOINT_ROLLBACK;
59246 }else{
59247 /* We are forced to roll back the active transaction. Before doing
59248 ** so, abort any other statements this handle currently has active.
59250 invalidateCursorsOnModifiedBtrees(db);
59251 sqlite3RollbackAll(db);
59252 sqlite3CloseSavepoints(db);
59253 db->autoCommit = 1;
59258 /* Check for immediate foreign key violations. */
59259 if( p->rc==SQLITE_OK ){
59260 sqlite3VdbeCheckFk(p, 0);
59263 /* If the auto-commit flag is set and this is the only active writer
59264 ** VM, then we do either a commit or rollback of the current transaction.
59266 ** Note: This block also runs if one of the special errors handled
59267 ** above has occurred.
59269 if( !sqlite3VtabInSync(db)
59270 && db->autoCommit
59271 && db->writeVdbeCnt==(p->readOnly==0)
59273 if( p->rc==SQLITE_OK || (p->errorAction==OE_Fail && !isSpecialError) ){
59274 rc = sqlite3VdbeCheckFk(p, 1);
59275 if( rc!=SQLITE_OK ){
59276 if( NEVER(p->readOnly) ){
59277 sqlite3VdbeLeave(p);
59278 return SQLITE_ERROR;
59280 rc = SQLITE_CONSTRAINT;
59281 }else{
59282 /* The auto-commit flag is true, the vdbe program was successful
59283 ** or hit an 'OR FAIL' constraint and there are no deferred foreign
59284 ** key constraints to hold up the transaction. This means a commit
59285 ** is required. */
59286 rc = vdbeCommit(db, p);
59288 if( rc==SQLITE_BUSY && p->readOnly ){
59289 sqlite3VdbeLeave(p);
59290 return SQLITE_BUSY;
59291 }else if( rc!=SQLITE_OK ){
59292 p->rc = rc;
59293 sqlite3RollbackAll(db);
59294 }else{
59295 db->nDeferredCons = 0;
59296 sqlite3CommitInternalChanges(db);
59298 }else{
59299 sqlite3RollbackAll(db);
59301 db->nStatement = 0;
59302 }else if( eStatementOp==0 ){
59303 if( p->rc==SQLITE_OK || p->errorAction==OE_Fail ){
59304 eStatementOp = SAVEPOINT_RELEASE;
59305 }else if( p->errorAction==OE_Abort ){
59306 eStatementOp = SAVEPOINT_ROLLBACK;
59307 }else{
59308 invalidateCursorsOnModifiedBtrees(db);
59309 sqlite3RollbackAll(db);
59310 sqlite3CloseSavepoints(db);
59311 db->autoCommit = 1;
59315 /* If eStatementOp is non-zero, then a statement transaction needs to
59316 ** be committed or rolled back. Call sqlite3VdbeCloseStatement() to
59317 ** do so. If this operation returns an error, and the current statement
59318 ** error code is SQLITE_OK or SQLITE_CONSTRAINT, then promote the
59319 ** current statement error code.
59321 ** Note that sqlite3VdbeCloseStatement() can only fail if eStatementOp
59322 ** is SAVEPOINT_ROLLBACK. But if p->rc==SQLITE_OK then eStatementOp
59323 ** must be SAVEPOINT_RELEASE. Hence the NEVER(p->rc==SQLITE_OK) in
59324 ** the following code.
59326 if( eStatementOp ){
59327 rc = sqlite3VdbeCloseStatement(p, eStatementOp);
59328 if( rc ){
59329 assert( eStatementOp==SAVEPOINT_ROLLBACK );
59330 if( NEVER(p->rc==SQLITE_OK) || p->rc==SQLITE_CONSTRAINT ){
59331 p->rc = rc;
59332 sqlite3DbFree(db, p->zErrMsg);
59333 p->zErrMsg = 0;
59335 invalidateCursorsOnModifiedBtrees(db);
59336 sqlite3RollbackAll(db);
59337 sqlite3CloseSavepoints(db);
59338 db->autoCommit = 1;
59342 /* If this was an INSERT, UPDATE or DELETE and no statement transaction
59343 ** has been rolled back, update the database connection change-counter.
59345 if( p->changeCntOn ){
59346 if( eStatementOp!=SAVEPOINT_ROLLBACK ){
59347 sqlite3VdbeSetChanges(db, p->nChange);
59348 }else{
59349 sqlite3VdbeSetChanges(db, 0);
59351 p->nChange = 0;
59354 /* Rollback or commit any schema changes that occurred. */
59355 if( p->rc!=SQLITE_OK && db->flags&SQLITE_InternChanges ){
59356 sqlite3ResetInternalSchema(db, -1);
59357 db->flags = (db->flags | SQLITE_InternChanges);
59360 /* Release the locks */
59361 sqlite3VdbeLeave(p);
59364 /* We have successfully halted and closed the VM. Record this fact. */
59365 if( p->pc>=0 ){
59366 db->activeVdbeCnt--;
59367 if( !p->readOnly ){
59368 db->writeVdbeCnt--;
59370 assert( db->activeVdbeCnt>=db->writeVdbeCnt );
59372 p->magic = VDBE_MAGIC_HALT;
59373 checkActiveVdbeCnt(db);
59374 if( p->db->mallocFailed ){
59375 p->rc = SQLITE_NOMEM;
59378 /* If the auto-commit flag is set to true, then any locks that were held
59379 ** by connection db have now been released. Call sqlite3ConnectionUnlocked()
59380 ** to invoke any required unlock-notify callbacks.
59382 if( db->autoCommit ){
59383 sqlite3ConnectionUnlocked(db);
59386 assert( db->activeVdbeCnt>0 || db->autoCommit==0 || db->nStatement==0 );
59387 return (p->rc==SQLITE_BUSY ? SQLITE_BUSY : SQLITE_OK);
59392 ** Each VDBE holds the result of the most recent sqlite3_step() call
59393 ** in p->rc. This routine sets that result back to SQLITE_OK.
59395 SQLITE_PRIVATE void sqlite3VdbeResetStepResult(Vdbe *p){
59396 p->rc = SQLITE_OK;
59400 ** Clean up a VDBE after execution but do not delete the VDBE just yet.
59401 ** Write any error messages into *pzErrMsg. Return the result code.
59403 ** After this routine is run, the VDBE should be ready to be executed
59404 ** again.
59406 ** To look at it another way, this routine resets the state of the
59407 ** virtual machine from VDBE_MAGIC_RUN or VDBE_MAGIC_HALT back to
59408 ** VDBE_MAGIC_INIT.
59410 SQLITE_PRIVATE int sqlite3VdbeReset(Vdbe *p){
59411 sqlite3 *db;
59412 db = p->db;
59414 /* If the VM did not run to completion or if it encountered an
59415 ** error, then it might not have been halted properly. So halt
59416 ** it now.
59418 sqlite3VdbeHalt(p);
59420 /* If the VDBE has be run even partially, then transfer the error code
59421 ** and error message from the VDBE into the main database structure. But
59422 ** if the VDBE has just been set to run but has not actually executed any
59423 ** instructions yet, leave the main database error information unchanged.
59425 if( p->pc>=0 ){
59426 if( p->zErrMsg ){
59427 sqlite3BeginBenignMalloc();
59428 sqlite3ValueSetStr(db->pErr,-1,p->zErrMsg,SQLITE_UTF8,SQLITE_TRANSIENT);
59429 sqlite3EndBenignMalloc();
59430 db->errCode = p->rc;
59431 sqlite3DbFree(db, p->zErrMsg);
59432 p->zErrMsg = 0;
59433 }else if( p->rc ){
59434 sqlite3Error(db, p->rc, 0);
59435 }else{
59436 sqlite3Error(db, SQLITE_OK, 0);
59438 if( p->runOnlyOnce ) p->expired = 1;
59439 }else if( p->rc && p->expired ){
59440 /* The expired flag was set on the VDBE before the first call
59441 ** to sqlite3_step(). For consistency (since sqlite3_step() was
59442 ** called), set the database error in this case as well.
59444 sqlite3Error(db, p->rc, 0);
59445 sqlite3ValueSetStr(db->pErr, -1, p->zErrMsg, SQLITE_UTF8, SQLITE_TRANSIENT);
59446 sqlite3DbFree(db, p->zErrMsg);
59447 p->zErrMsg = 0;
59450 /* Reclaim all memory used by the VDBE
59452 Cleanup(p);
59454 /* Save profiling information from this VDBE run.
59456 #ifdef VDBE_PROFILE
59458 FILE *out = fopen("vdbe_profile.out", "a");
59459 if( out ){
59460 int i;
59461 fprintf(out, "---- ");
59462 for(i=0; i<p->nOp; i++){
59463 fprintf(out, "%02x", p->aOp[i].opcode);
59465 fprintf(out, "\n");
59466 for(i=0; i<p->nOp; i++){
59467 fprintf(out, "%6d %10lld %8lld ",
59468 p->aOp[i].cnt,
59469 p->aOp[i].cycles,
59470 p->aOp[i].cnt>0 ? p->aOp[i].cycles/p->aOp[i].cnt : 0
59472 sqlite3VdbePrintOp(out, i, &p->aOp[i]);
59474 fclose(out);
59477 #endif
59478 p->magic = VDBE_MAGIC_INIT;
59479 return p->rc & db->errMask;
59483 ** Clean up and delete a VDBE after execution. Return an integer which is
59484 ** the result code. Write any error message text into *pzErrMsg.
59486 SQLITE_PRIVATE int sqlite3VdbeFinalize(Vdbe *p){
59487 int rc = SQLITE_OK;
59488 if( p->magic==VDBE_MAGIC_RUN || p->magic==VDBE_MAGIC_HALT ){
59489 rc = sqlite3VdbeReset(p);
59490 assert( (rc & p->db->errMask)==rc );
59492 sqlite3VdbeDelete(p);
59493 return rc;
59497 ** Call the destructor for each auxdata entry in pVdbeFunc for which
59498 ** the corresponding bit in mask is clear. Auxdata entries beyond 31
59499 ** are always destroyed. To destroy all auxdata entries, call this
59500 ** routine with mask==0.
59502 SQLITE_PRIVATE void sqlite3VdbeDeleteAuxData(VdbeFunc *pVdbeFunc, int mask){
59503 int i;
59504 for(i=0; i<pVdbeFunc->nAux; i++){
59505 struct AuxData *pAux = &pVdbeFunc->apAux[i];
59506 if( (i>31 || !(mask&(((u32)1)<<i))) && pAux->pAux ){
59507 if( pAux->xDelete ){
59508 pAux->xDelete(pAux->pAux);
59510 pAux->pAux = 0;
59516 ** Free all memory associated with the Vdbe passed as the second argument.
59517 ** The difference between this function and sqlite3VdbeDelete() is that
59518 ** VdbeDelete() also unlinks the Vdbe from the list of VMs associated with
59519 ** the database connection.
59521 SQLITE_PRIVATE void sqlite3VdbeDeleteObject(sqlite3 *db, Vdbe *p){
59522 SubProgram *pSub, *pNext;
59523 assert( p->db==0 || p->db==db );
59524 releaseMemArray(p->aVar, p->nVar);
59525 releaseMemArray(p->aColName, p->nResColumn*COLNAME_N);
59526 for(pSub=p->pProgram; pSub; pSub=pNext){
59527 pNext = pSub->pNext;
59528 vdbeFreeOpArray(db, pSub->aOp, pSub->nOp);
59529 sqlite3DbFree(db, pSub);
59531 vdbeFreeOpArray(db, p->aOp, p->nOp);
59532 sqlite3DbFree(db, p->aLabel);
59533 sqlite3DbFree(db, p->aColName);
59534 sqlite3DbFree(db, p->zSql);
59535 sqlite3DbFree(db, p->pFree);
59536 sqlite3DbFree(db, p);
59540 ** Delete an entire VDBE.
59542 SQLITE_PRIVATE void sqlite3VdbeDelete(Vdbe *p){
59543 sqlite3 *db;
59545 if( NEVER(p==0) ) return;
59546 db = p->db;
59547 if( p->pPrev ){
59548 p->pPrev->pNext = p->pNext;
59549 }else{
59550 assert( db->pVdbe==p );
59551 db->pVdbe = p->pNext;
59553 if( p->pNext ){
59554 p->pNext->pPrev = p->pPrev;
59556 p->magic = VDBE_MAGIC_DEAD;
59557 p->db = 0;
59558 sqlite3VdbeDeleteObject(db, p);
59562 ** Make sure the cursor p is ready to read or write the row to which it
59563 ** was last positioned. Return an error code if an OOM fault or I/O error
59564 ** prevents us from positioning the cursor to its correct position.
59566 ** If a MoveTo operation is pending on the given cursor, then do that
59567 ** MoveTo now. If no move is pending, check to see if the row has been
59568 ** deleted out from under the cursor and if it has, mark the row as
59569 ** a NULL row.
59571 ** If the cursor is already pointing to the correct row and that row has
59572 ** not been deleted out from under the cursor, then this routine is a no-op.
59574 SQLITE_PRIVATE int sqlite3VdbeCursorMoveto(VdbeCursor *p){
59575 if( p->deferredMoveto ){
59576 int res, rc;
59577 #ifdef SQLITE_TEST
59578 extern int sqlite3_search_count;
59579 #endif
59580 assert( p->isTable );
59581 rc = sqlite3BtreeMovetoUnpacked(p->pCursor, 0, p->movetoTarget, 0, &res);
59582 if( rc ) return rc;
59583 p->lastRowid = p->movetoTarget;
59584 if( res!=0 ) return SQLITE_CORRUPT_BKPT;
59585 p->rowidIsValid = 1;
59586 #ifdef SQLITE_TEST
59587 sqlite3_search_count++;
59588 #endif
59589 p->deferredMoveto = 0;
59590 p->cacheStatus = CACHE_STALE;
59591 }else if( ALWAYS(p->pCursor) ){
59592 int hasMoved;
59593 int rc = sqlite3BtreeCursorHasMoved(p->pCursor, &hasMoved);
59594 if( rc ) return rc;
59595 if( hasMoved ){
59596 p->cacheStatus = CACHE_STALE;
59597 p->nullRow = 1;
59600 return SQLITE_OK;
59604 ** The following functions:
59606 ** sqlite3VdbeSerialType()
59607 ** sqlite3VdbeSerialTypeLen()
59608 ** sqlite3VdbeSerialLen()
59609 ** sqlite3VdbeSerialPut()
59610 ** sqlite3VdbeSerialGet()
59612 ** encapsulate the code that serializes values for storage in SQLite
59613 ** data and index records. Each serialized value consists of a
59614 ** 'serial-type' and a blob of data. The serial type is an 8-byte unsigned
59615 ** integer, stored as a varint.
59617 ** In an SQLite index record, the serial type is stored directly before
59618 ** the blob of data that it corresponds to. In a table record, all serial
59619 ** types are stored at the start of the record, and the blobs of data at
59620 ** the end. Hence these functions allow the caller to handle the
59621 ** serial-type and data blob seperately.
59623 ** The following table describes the various storage classes for data:
59625 ** serial type bytes of data type
59626 ** -------------- --------------- ---------------
59627 ** 0 0 NULL
59628 ** 1 1 signed integer
59629 ** 2 2 signed integer
59630 ** 3 3 signed integer
59631 ** 4 4 signed integer
59632 ** 5 6 signed integer
59633 ** 6 8 signed integer
59634 ** 7 8 IEEE float
59635 ** 8 0 Integer constant 0
59636 ** 9 0 Integer constant 1
59637 ** 10,11 reserved for expansion
59638 ** N>=12 and even (N-12)/2 BLOB
59639 ** N>=13 and odd (N-13)/2 text
59641 ** The 8 and 9 types were added in 3.3.0, file format 4. Prior versions
59642 ** of SQLite will not understand those serial types.
59646 ** Return the serial-type for the value stored in pMem.
59648 SQLITE_PRIVATE u32 sqlite3VdbeSerialType(Mem *pMem, int file_format){
59649 int flags = pMem->flags;
59650 int n;
59652 if( flags&MEM_Null ){
59653 return 0;
59655 if( flags&MEM_Int ){
59656 /* Figure out whether to use 1, 2, 4, 6 or 8 bytes. */
59657 # define MAX_6BYTE ((((i64)0x00008000)<<32)-1)
59658 i64 i = pMem->u.i;
59659 u64 u;
59660 if( file_format>=4 && (i&1)==i ){
59661 return 8+(u32)i;
59663 if( i<0 ){
59664 if( i<(-MAX_6BYTE) ) return 6;
59665 /* Previous test prevents: u = -(-9223372036854775808) */
59666 u = -i;
59667 }else{
59668 u = i;
59670 if( u<=127 ) return 1;
59671 if( u<=32767 ) return 2;
59672 if( u<=8388607 ) return 3;
59673 if( u<=2147483647 ) return 4;
59674 if( u<=MAX_6BYTE ) return 5;
59675 return 6;
59677 if( flags&MEM_Real ){
59678 return 7;
59680 assert( pMem->db->mallocFailed || flags&(MEM_Str|MEM_Blob) );
59681 n = pMem->n;
59682 if( flags & MEM_Zero ){
59683 n += pMem->u.nZero;
59685 assert( n>=0 );
59686 return ((n*2) + 12 + ((flags&MEM_Str)!=0));
59690 ** Return the length of the data corresponding to the supplied serial-type.
59692 SQLITE_PRIVATE u32 sqlite3VdbeSerialTypeLen(u32 serial_type){
59693 if( serial_type>=12 ){
59694 return (serial_type-12)/2;
59695 }else{
59696 static const u8 aSize[] = { 0, 1, 2, 3, 4, 6, 8, 8, 0, 0, 0, 0 };
59697 return aSize[serial_type];
59702 ** If we are on an architecture with mixed-endian floating
59703 ** points (ex: ARM7) then swap the lower 4 bytes with the
59704 ** upper 4 bytes. Return the result.
59706 ** For most architectures, this is a no-op.
59708 ** (later): It is reported to me that the mixed-endian problem
59709 ** on ARM7 is an issue with GCC, not with the ARM7 chip. It seems
59710 ** that early versions of GCC stored the two words of a 64-bit
59711 ** float in the wrong order. And that error has been propagated
59712 ** ever since. The blame is not necessarily with GCC, though.
59713 ** GCC might have just copying the problem from a prior compiler.
59714 ** I am also told that newer versions of GCC that follow a different
59715 ** ABI get the byte order right.
59717 ** Developers using SQLite on an ARM7 should compile and run their
59718 ** application using -DSQLITE_DEBUG=1 at least once. With DEBUG
59719 ** enabled, some asserts below will ensure that the byte order of
59720 ** floating point values is correct.
59722 ** (2007-08-30) Frank van Vugt has studied this problem closely
59723 ** and has send his findings to the SQLite developers. Frank
59724 ** writes that some Linux kernels offer floating point hardware
59725 ** emulation that uses only 32-bit mantissas instead of a full
59726 ** 48-bits as required by the IEEE standard. (This is the
59727 ** CONFIG_FPE_FASTFPE option.) On such systems, floating point
59728 ** byte swapping becomes very complicated. To avoid problems,
59729 ** the necessary byte swapping is carried out using a 64-bit integer
59730 ** rather than a 64-bit float. Frank assures us that the code here
59731 ** works for him. We, the developers, have no way to independently
59732 ** verify this, but Frank seems to know what he is talking about
59733 ** so we trust him.
59735 #ifdef SQLITE_MIXED_ENDIAN_64BIT_FLOAT
59736 static u64 floatSwap(u64 in){
59737 union {
59738 u64 r;
59739 u32 i[2];
59740 } u;
59741 u32 t;
59743 u.r = in;
59744 t = u.i[0];
59745 u.i[0] = u.i[1];
59746 u.i[1] = t;
59747 return u.r;
59749 # define swapMixedEndianFloat(X) X = floatSwap(X)
59750 #else
59751 # define swapMixedEndianFloat(X)
59752 #endif
59755 ** Write the serialized data blob for the value stored in pMem into
59756 ** buf. It is assumed that the caller has allocated sufficient space.
59757 ** Return the number of bytes written.
59759 ** nBuf is the amount of space left in buf[]. nBuf must always be
59760 ** large enough to hold the entire field. Except, if the field is
59761 ** a blob with a zero-filled tail, then buf[] might be just the right
59762 ** size to hold everything except for the zero-filled tail. If buf[]
59763 ** is only big enough to hold the non-zero prefix, then only write that
59764 ** prefix into buf[]. But if buf[] is large enough to hold both the
59765 ** prefix and the tail then write the prefix and set the tail to all
59766 ** zeros.
59768 ** Return the number of bytes actually written into buf[]. The number
59769 ** of bytes in the zero-filled tail is included in the return value only
59770 ** if those bytes were zeroed in buf[].
59772 SQLITE_PRIVATE u32 sqlite3VdbeSerialPut(u8 *buf, int nBuf, Mem *pMem, int file_format){
59773 u32 serial_type = sqlite3VdbeSerialType(pMem, file_format);
59774 u32 len;
59776 /* Integer and Real */
59777 if( serial_type<=7 && serial_type>0 ){
59778 u64 v;
59779 u32 i;
59780 if( serial_type==7 ){
59781 assert( sizeof(v)==sizeof(pMem->r) );
59782 memcpy(&v, &pMem->r, sizeof(v));
59783 swapMixedEndianFloat(v);
59784 }else{
59785 v = pMem->u.i;
59787 len = i = sqlite3VdbeSerialTypeLen(serial_type);
59788 assert( len<=(u32)nBuf );
59789 while( i-- ){
59790 buf[i] = (u8)(v&0xFF);
59791 v >>= 8;
59793 return len;
59796 /* String or blob */
59797 if( serial_type>=12 ){
59798 assert( pMem->n + ((pMem->flags & MEM_Zero)?pMem->u.nZero:0)
59799 == (int)sqlite3VdbeSerialTypeLen(serial_type) );
59800 assert( pMem->n<=nBuf );
59801 len = pMem->n;
59802 memcpy(buf, pMem->z, len);
59803 if( pMem->flags & MEM_Zero ){
59804 len += pMem->u.nZero;
59805 assert( nBuf>=0 );
59806 if( len > (u32)nBuf ){
59807 len = (u32)nBuf;
59809 memset(&buf[pMem->n], 0, len-pMem->n);
59811 return len;
59814 /* NULL or constants 0 or 1 */
59815 return 0;
59819 ** Deserialize the data blob pointed to by buf as serial type serial_type
59820 ** and store the result in pMem. Return the number of bytes read.
59822 SQLITE_PRIVATE u32 sqlite3VdbeSerialGet(
59823 const unsigned char *buf, /* Buffer to deserialize from */
59824 u32 serial_type, /* Serial type to deserialize */
59825 Mem *pMem /* Memory cell to write value into */
59827 switch( serial_type ){
59828 case 10: /* Reserved for future use */
59829 case 11: /* Reserved for future use */
59830 case 0: { /* NULL */
59831 pMem->flags = MEM_Null;
59832 break;
59834 case 1: { /* 1-byte signed integer */
59835 pMem->u.i = (signed char)buf[0];
59836 pMem->flags = MEM_Int;
59837 return 1;
59839 case 2: { /* 2-byte signed integer */
59840 pMem->u.i = (((signed char)buf[0])<<8) | buf[1];
59841 pMem->flags = MEM_Int;
59842 return 2;
59844 case 3: { /* 3-byte signed integer */
59845 pMem->u.i = (((signed char)buf[0])<<16) | (buf[1]<<8) | buf[2];
59846 pMem->flags = MEM_Int;
59847 return 3;
59849 case 4: { /* 4-byte signed integer */
59850 pMem->u.i = (buf[0]<<24) | (buf[1]<<16) | (buf[2]<<8) | buf[3];
59851 pMem->flags = MEM_Int;
59852 return 4;
59854 case 5: { /* 6-byte signed integer */
59855 u64 x = (((signed char)buf[0])<<8) | buf[1];
59856 u32 y = (buf[2]<<24) | (buf[3]<<16) | (buf[4]<<8) | buf[5];
59857 x = (x<<32) | y;
59858 pMem->u.i = *(i64*)&x;
59859 pMem->flags = MEM_Int;
59860 return 6;
59862 case 6: /* 8-byte signed integer */
59863 case 7: { /* IEEE floating point */
59864 u64 x;
59865 u32 y;
59866 #if !defined(NDEBUG) && !defined(SQLITE_OMIT_FLOATING_POINT)
59867 /* Verify that integers and floating point values use the same
59868 ** byte order. Or, that if SQLITE_MIXED_ENDIAN_64BIT_FLOAT is
59869 ** defined that 64-bit floating point values really are mixed
59870 ** endian.
59872 static const u64 t1 = ((u64)0x3ff00000)<<32;
59873 static const double r1 = 1.0;
59874 u64 t2 = t1;
59875 swapMixedEndianFloat(t2);
59876 assert( sizeof(r1)==sizeof(t2) && memcmp(&r1, &t2, sizeof(r1))==0 );
59877 #endif
59879 x = (buf[0]<<24) | (buf[1]<<16) | (buf[2]<<8) | buf[3];
59880 y = (buf[4]<<24) | (buf[5]<<16) | (buf[6]<<8) | buf[7];
59881 x = (x<<32) | y;
59882 if( serial_type==6 ){
59883 pMem->u.i = *(i64*)&x;
59884 pMem->flags = MEM_Int;
59885 }else{
59886 assert( sizeof(x)==8 && sizeof(pMem->r)==8 );
59887 swapMixedEndianFloat(x);
59888 memcpy(&pMem->r, &x, sizeof(x));
59889 pMem->flags = sqlite3IsNaN(pMem->r) ? MEM_Null : MEM_Real;
59891 return 8;
59893 case 8: /* Integer 0 */
59894 case 9: { /* Integer 1 */
59895 pMem->u.i = serial_type-8;
59896 pMem->flags = MEM_Int;
59897 return 0;
59899 default: {
59900 u32 len = (serial_type-12)/2;
59901 pMem->z = (char *)buf;
59902 pMem->n = len;
59903 pMem->xDel = 0;
59904 if( serial_type&0x01 ){
59905 pMem->flags = MEM_Str | MEM_Ephem;
59906 }else{
59907 pMem->flags = MEM_Blob | MEM_Ephem;
59909 return len;
59912 return 0;
59917 ** Given the nKey-byte encoding of a record in pKey[], parse the
59918 ** record into a UnpackedRecord structure. Return a pointer to
59919 ** that structure.
59921 ** The calling function might provide szSpace bytes of memory
59922 ** space at pSpace. This space can be used to hold the returned
59923 ** VDbeParsedRecord structure if it is large enough. If it is
59924 ** not big enough, space is obtained from sqlite3_malloc().
59926 ** The returned structure should be closed by a call to
59927 ** sqlite3VdbeDeleteUnpackedRecord().
59929 SQLITE_PRIVATE UnpackedRecord *sqlite3VdbeRecordUnpack(
59930 KeyInfo *pKeyInfo, /* Information about the record format */
59931 int nKey, /* Size of the binary record */
59932 const void *pKey, /* The binary record */
59933 char *pSpace, /* Unaligned space available to hold the object */
59934 int szSpace /* Size of pSpace[] in bytes */
59936 const unsigned char *aKey = (const unsigned char *)pKey;
59937 UnpackedRecord *p; /* The unpacked record that we will return */
59938 int nByte; /* Memory space needed to hold p, in bytes */
59939 int d;
59940 u32 idx;
59941 u16 u; /* Unsigned loop counter */
59942 u32 szHdr;
59943 Mem *pMem;
59944 int nOff; /* Increase pSpace by this much to 8-byte align it */
59947 ** We want to shift the pointer pSpace up such that it is 8-byte aligned.
59948 ** Thus, we need to calculate a value, nOff, between 0 and 7, to shift
59949 ** it by. If pSpace is already 8-byte aligned, nOff should be zero.
59951 nOff = (8 - (SQLITE_PTR_TO_INT(pSpace) & 7)) & 7;
59952 pSpace += nOff;
59953 szSpace -= nOff;
59954 nByte = ROUND8(sizeof(UnpackedRecord)) + sizeof(Mem)*(pKeyInfo->nField+1);
59955 if( nByte>szSpace ){
59956 p = sqlite3DbMallocRaw(pKeyInfo->db, nByte);
59957 if( p==0 ) return 0;
59958 p->flags = UNPACKED_NEED_FREE | UNPACKED_NEED_DESTROY;
59959 }else{
59960 p = (UnpackedRecord*)pSpace;
59961 p->flags = UNPACKED_NEED_DESTROY;
59963 p->pKeyInfo = pKeyInfo;
59964 p->nField = pKeyInfo->nField + 1;
59965 p->aMem = pMem = (Mem*)&((char*)p)[ROUND8(sizeof(UnpackedRecord))];
59966 assert( EIGHT_BYTE_ALIGNMENT(pMem) );
59967 idx = getVarint32(aKey, szHdr);
59968 d = szHdr;
59969 u = 0;
59970 while( idx<szHdr && u<p->nField && d<=nKey ){
59971 u32 serial_type;
59973 idx += getVarint32(&aKey[idx], serial_type);
59974 pMem->enc = pKeyInfo->enc;
59975 pMem->db = pKeyInfo->db;
59976 pMem->flags = 0;
59977 pMem->zMalloc = 0;
59978 d += sqlite3VdbeSerialGet(&aKey[d], serial_type, pMem);
59979 pMem++;
59980 u++;
59982 assert( u<=pKeyInfo->nField + 1 );
59983 p->nField = u;
59984 return (void*)p;
59988 ** This routine destroys a UnpackedRecord object.
59990 SQLITE_PRIVATE void sqlite3VdbeDeleteUnpackedRecord(UnpackedRecord *p){
59991 int i;
59992 Mem *pMem;
59994 assert( p!=0 );
59995 assert( p->flags & UNPACKED_NEED_DESTROY );
59996 for(i=0, pMem=p->aMem; i<p->nField; i++, pMem++){
59997 /* The unpacked record is always constructed by the
59998 ** sqlite3VdbeUnpackRecord() function above, which makes all
59999 ** strings and blobs static. And none of the elements are
60000 ** ever transformed, so there is never anything to delete.
60002 if( NEVER(pMem->zMalloc) ) sqlite3VdbeMemRelease(pMem);
60004 if( p->flags & UNPACKED_NEED_FREE ){
60005 sqlite3DbFree(p->pKeyInfo->db, p);
60010 ** This function compares the two table rows or index records
60011 ** specified by {nKey1, pKey1} and pPKey2. It returns a negative, zero
60012 ** or positive integer if key1 is less than, equal to or
60013 ** greater than key2. The {nKey1, pKey1} key must be a blob
60014 ** created by th OP_MakeRecord opcode of the VDBE. The pPKey2
60015 ** key must be a parsed key such as obtained from
60016 ** sqlite3VdbeParseRecord.
60018 ** Key1 and Key2 do not have to contain the same number of fields.
60019 ** The key with fewer fields is usually compares less than the
60020 ** longer key. However if the UNPACKED_INCRKEY flags in pPKey2 is set
60021 ** and the common prefixes are equal, then key1 is less than key2.
60022 ** Or if the UNPACKED_MATCH_PREFIX flag is set and the prefixes are
60023 ** equal, then the keys are considered to be equal and
60024 ** the parts beyond the common prefix are ignored.
60026 ** If the UNPACKED_IGNORE_ROWID flag is set, then the last byte of
60027 ** the header of pKey1 is ignored. It is assumed that pKey1 is
60028 ** an index key, and thus ends with a rowid value. The last byte
60029 ** of the header will therefore be the serial type of the rowid:
60030 ** one of 1, 2, 3, 4, 5, 6, 8, or 9 - the integer serial types.
60031 ** The serial type of the final rowid will always be a single byte.
60032 ** By ignoring this last byte of the header, we force the comparison
60033 ** to ignore the rowid at the end of key1.
60035 SQLITE_PRIVATE int sqlite3VdbeRecordCompare(
60036 int nKey1, const void *pKey1, /* Left key */
60037 UnpackedRecord *pPKey2 /* Right key */
60039 int d1; /* Offset into aKey[] of next data element */
60040 u32 idx1; /* Offset into aKey[] of next header element */
60041 u32 szHdr1; /* Number of bytes in header */
60042 int i = 0;
60043 int nField;
60044 int rc = 0;
60045 const unsigned char *aKey1 = (const unsigned char *)pKey1;
60046 KeyInfo *pKeyInfo;
60047 Mem mem1;
60049 pKeyInfo = pPKey2->pKeyInfo;
60050 mem1.enc = pKeyInfo->enc;
60051 mem1.db = pKeyInfo->db;
60052 /* mem1.flags = 0; // Will be initialized by sqlite3VdbeSerialGet() */
60053 VVA_ONLY( mem1.zMalloc = 0; ) /* Only needed by assert() statements */
60055 /* Compilers may complain that mem1.u.i is potentially uninitialized.
60056 ** We could initialize it, as shown here, to silence those complaints.
60057 ** But in fact, mem1.u.i will never actually be used initialized, and doing
60058 ** the unnecessary initialization has a measurable negative performance
60059 ** impact, since this routine is a very high runner. And so, we choose
60060 ** to ignore the compiler warnings and leave this variable uninitialized.
60062 /* mem1.u.i = 0; // not needed, here to silence compiler warning */
60064 idx1 = getVarint32(aKey1, szHdr1);
60065 d1 = szHdr1;
60066 if( pPKey2->flags & UNPACKED_IGNORE_ROWID ){
60067 szHdr1--;
60069 nField = pKeyInfo->nField;
60070 while( idx1<szHdr1 && i<pPKey2->nField ){
60071 u32 serial_type1;
60073 /* Read the serial types for the next element in each key. */
60074 idx1 += getVarint32( aKey1+idx1, serial_type1 );
60075 if( d1>=nKey1 && sqlite3VdbeSerialTypeLen(serial_type1)>0 ) break;
60077 /* Extract the values to be compared.
60079 d1 += sqlite3VdbeSerialGet(&aKey1[d1], serial_type1, &mem1);
60081 /* Do the comparison
60083 rc = sqlite3MemCompare(&mem1, &pPKey2->aMem[i],
60084 i<nField ? pKeyInfo->aColl[i] : 0);
60085 if( rc!=0 ){
60086 assert( mem1.zMalloc==0 ); /* See comment below */
60088 /* Invert the result if we are using DESC sort order. */
60089 if( pKeyInfo->aSortOrder && i<nField && pKeyInfo->aSortOrder[i] ){
60090 rc = -rc;
60093 /* If the PREFIX_SEARCH flag is set and all fields except the final
60094 ** rowid field were equal, then clear the PREFIX_SEARCH flag and set
60095 ** pPKey2->rowid to the value of the rowid field in (pKey1, nKey1).
60096 ** This is used by the OP_IsUnique opcode.
60098 if( (pPKey2->flags & UNPACKED_PREFIX_SEARCH) && i==(pPKey2->nField-1) ){
60099 assert( idx1==szHdr1 && rc );
60100 assert( mem1.flags & MEM_Int );
60101 pPKey2->flags &= ~UNPACKED_PREFIX_SEARCH;
60102 pPKey2->rowid = mem1.u.i;
60105 return rc;
60107 i++;
60110 /* No memory allocation is ever used on mem1. Prove this using
60111 ** the following assert(). If the assert() fails, it indicates a
60112 ** memory leak and a need to call sqlite3VdbeMemRelease(&mem1).
60114 assert( mem1.zMalloc==0 );
60116 /* rc==0 here means that one of the keys ran out of fields and
60117 ** all the fields up to that point were equal. If the UNPACKED_INCRKEY
60118 ** flag is set, then break the tie by treating key2 as larger.
60119 ** If the UPACKED_PREFIX_MATCH flag is set, then keys with common prefixes
60120 ** are considered to be equal. Otherwise, the longer key is the
60121 ** larger. As it happens, the pPKey2 will always be the longer
60122 ** if there is a difference.
60124 assert( rc==0 );
60125 if( pPKey2->flags & UNPACKED_INCRKEY ){
60126 rc = -1;
60127 }else if( pPKey2->flags & UNPACKED_PREFIX_MATCH ){
60128 /* Leave rc==0 */
60129 }else if( idx1<szHdr1 ){
60130 rc = 1;
60132 return rc;
60137 ** pCur points at an index entry created using the OP_MakeRecord opcode.
60138 ** Read the rowid (the last field in the record) and store it in *rowid.
60139 ** Return SQLITE_OK if everything works, or an error code otherwise.
60141 ** pCur might be pointing to text obtained from a corrupt database file.
60142 ** So the content cannot be trusted. Do appropriate checks on the content.
60144 SQLITE_PRIVATE int sqlite3VdbeIdxRowid(sqlite3 *db, BtCursor *pCur, i64 *rowid){
60145 i64 nCellKey = 0;
60146 int rc;
60147 u32 szHdr; /* Size of the header */
60148 u32 typeRowid; /* Serial type of the rowid */
60149 u32 lenRowid; /* Size of the rowid */
60150 Mem m, v;
60152 UNUSED_PARAMETER(db);
60154 /* Get the size of the index entry. Only indices entries of less
60155 ** than 2GiB are support - anything large must be database corruption.
60156 ** Any corruption is detected in sqlite3BtreeParseCellPtr(), though, so
60157 ** this code can safely assume that nCellKey is 32-bits
60159 assert( sqlite3BtreeCursorIsValid(pCur) );
60160 rc = sqlite3BtreeKeySize(pCur, &nCellKey);
60161 assert( rc==SQLITE_OK ); /* pCur is always valid so KeySize cannot fail */
60162 assert( (nCellKey & SQLITE_MAX_U32)==(u64)nCellKey );
60164 /* Read in the complete content of the index entry */
60165 memset(&m, 0, sizeof(m));
60166 rc = sqlite3VdbeMemFromBtree(pCur, 0, (int)nCellKey, 1, &m);
60167 if( rc ){
60168 return rc;
60171 /* The index entry must begin with a header size */
60172 (void)getVarint32((u8*)m.z, szHdr);
60173 testcase( szHdr==3 );
60174 testcase( szHdr==m.n );
60175 if( unlikely(szHdr<3 || (int)szHdr>m.n) ){
60176 goto idx_rowid_corruption;
60179 /* The last field of the index should be an integer - the ROWID.
60180 ** Verify that the last entry really is an integer. */
60181 (void)getVarint32((u8*)&m.z[szHdr-1], typeRowid);
60182 testcase( typeRowid==1 );
60183 testcase( typeRowid==2 );
60184 testcase( typeRowid==3 );
60185 testcase( typeRowid==4 );
60186 testcase( typeRowid==5 );
60187 testcase( typeRowid==6 );
60188 testcase( typeRowid==8 );
60189 testcase( typeRowid==9 );
60190 if( unlikely(typeRowid<1 || typeRowid>9 || typeRowid==7) ){
60191 goto idx_rowid_corruption;
60193 lenRowid = sqlite3VdbeSerialTypeLen(typeRowid);
60194 testcase( (u32)m.n==szHdr+lenRowid );
60195 if( unlikely((u32)m.n<szHdr+lenRowid) ){
60196 goto idx_rowid_corruption;
60199 /* Fetch the integer off the end of the index record */
60200 sqlite3VdbeSerialGet((u8*)&m.z[m.n-lenRowid], typeRowid, &v);
60201 *rowid = v.u.i;
60202 sqlite3VdbeMemRelease(&m);
60203 return SQLITE_OK;
60205 /* Jump here if database corruption is detected after m has been
60206 ** allocated. Free the m object and return SQLITE_CORRUPT. */
60207 idx_rowid_corruption:
60208 testcase( m.zMalloc!=0 );
60209 sqlite3VdbeMemRelease(&m);
60210 return SQLITE_CORRUPT_BKPT;
60214 ** Compare the key of the index entry that cursor pC is pointing to against
60215 ** the key string in pUnpacked. Write into *pRes a number
60216 ** that is negative, zero, or positive if pC is less than, equal to,
60217 ** or greater than pUnpacked. Return SQLITE_OK on success.
60219 ** pUnpacked is either created without a rowid or is truncated so that it
60220 ** omits the rowid at the end. The rowid at the end of the index entry
60221 ** is ignored as well. Hence, this routine only compares the prefixes
60222 ** of the keys prior to the final rowid, not the entire key.
60224 SQLITE_PRIVATE int sqlite3VdbeIdxKeyCompare(
60225 VdbeCursor *pC, /* The cursor to compare against */
60226 UnpackedRecord *pUnpacked, /* Unpacked version of key to compare against */
60227 int *res /* Write the comparison result here */
60229 i64 nCellKey = 0;
60230 int rc;
60231 BtCursor *pCur = pC->pCursor;
60232 Mem m;
60234 assert( sqlite3BtreeCursorIsValid(pCur) );
60235 rc = sqlite3BtreeKeySize(pCur, &nCellKey);
60236 assert( rc==SQLITE_OK ); /* pCur is always valid so KeySize cannot fail */
60237 /* nCellKey will always be between 0 and 0xffffffff because of the say
60238 ** that btreeParseCellPtr() and sqlite3GetVarint32() are implemented */
60239 if( nCellKey<=0 || nCellKey>0x7fffffff ){
60240 *res = 0;
60241 return SQLITE_CORRUPT_BKPT;
60243 memset(&m, 0, sizeof(m));
60244 rc = sqlite3VdbeMemFromBtree(pC->pCursor, 0, (int)nCellKey, 1, &m);
60245 if( rc ){
60246 return rc;
60248 assert( pUnpacked->flags & UNPACKED_IGNORE_ROWID );
60249 *res = sqlite3VdbeRecordCompare(m.n, m.z, pUnpacked);
60250 sqlite3VdbeMemRelease(&m);
60251 return SQLITE_OK;
60255 ** This routine sets the value to be returned by subsequent calls to
60256 ** sqlite3_changes() on the database handle 'db'.
60258 SQLITE_PRIVATE void sqlite3VdbeSetChanges(sqlite3 *db, int nChange){
60259 assert( sqlite3_mutex_held(db->mutex) );
60260 db->nChange = nChange;
60261 db->nTotalChange += nChange;
60265 ** Set a flag in the vdbe to update the change counter when it is finalised
60266 ** or reset.
60268 SQLITE_PRIVATE void sqlite3VdbeCountChanges(Vdbe *v){
60269 v->changeCntOn = 1;
60273 ** Mark every prepared statement associated with a database connection
60274 ** as expired.
60276 ** An expired statement means that recompilation of the statement is
60277 ** recommend. Statements expire when things happen that make their
60278 ** programs obsolete. Removing user-defined functions or collating
60279 ** sequences, or changing an authorization function are the types of
60280 ** things that make prepared statements obsolete.
60282 SQLITE_PRIVATE void sqlite3ExpirePreparedStatements(sqlite3 *db){
60283 Vdbe *p;
60284 for(p = db->pVdbe; p; p=p->pNext){
60285 p->expired = 1;
60290 ** Return the database associated with the Vdbe.
60292 SQLITE_PRIVATE sqlite3 *sqlite3VdbeDb(Vdbe *v){
60293 return v->db;
60297 ** Return a pointer to an sqlite3_value structure containing the value bound
60298 ** parameter iVar of VM v. Except, if the value is an SQL NULL, return
60299 ** 0 instead. Unless it is NULL, apply affinity aff (one of the SQLITE_AFF_*
60300 ** constants) to the value before returning it.
60302 ** The returned value must be freed by the caller using sqlite3ValueFree().
60304 SQLITE_PRIVATE sqlite3_value *sqlite3VdbeGetValue(Vdbe *v, int iVar, u8 aff){
60305 assert( iVar>0 );
60306 if( v ){
60307 Mem *pMem = &v->aVar[iVar-1];
60308 if( 0==(pMem->flags & MEM_Null) ){
60309 sqlite3_value *pRet = sqlite3ValueNew(v->db);
60310 if( pRet ){
60311 sqlite3VdbeMemCopy((Mem *)pRet, pMem);
60312 sqlite3ValueApplyAffinity(pRet, aff, SQLITE_UTF8);
60313 sqlite3VdbeMemStoreType((Mem *)pRet);
60315 return pRet;
60318 return 0;
60322 ** Configure SQL variable iVar so that binding a new value to it signals
60323 ** to sqlite3_reoptimize() that re-preparing the statement may result
60324 ** in a better query plan.
60326 SQLITE_PRIVATE void sqlite3VdbeSetVarmask(Vdbe *v, int iVar){
60327 assert( iVar>0 );
60328 if( iVar>32 ){
60329 v->expmask = 0xffffffff;
60330 }else{
60331 v->expmask |= ((u32)1 << (iVar-1));
60335 /************** End of vdbeaux.c *********************************************/
60336 /************** Begin file vdbeapi.c *****************************************/
60338 ** 2004 May 26
60340 ** The author disclaims copyright to this source code. In place of
60341 ** a legal notice, here is a blessing:
60343 ** May you do good and not evil.
60344 ** May you find forgiveness for yourself and forgive others.
60345 ** May you share freely, never taking more than you give.
60347 *************************************************************************
60349 ** This file contains code use to implement APIs that are part of the
60350 ** VDBE.
60353 #ifndef SQLITE_OMIT_DEPRECATED
60355 ** Return TRUE (non-zero) of the statement supplied as an argument needs
60356 ** to be recompiled. A statement needs to be recompiled whenever the
60357 ** execution environment changes in a way that would alter the program
60358 ** that sqlite3_prepare() generates. For example, if new functions or
60359 ** collating sequences are registered or if an authorizer function is
60360 ** added or changed.
60362 SQLITE_API int sqlite3_expired(sqlite3_stmt *pStmt){
60363 Vdbe *p = (Vdbe*)pStmt;
60364 return p==0 || p->expired;
60366 #endif
60369 ** Check on a Vdbe to make sure it has not been finalized. Log
60370 ** an error and return true if it has been finalized (or is otherwise
60371 ** invalid). Return false if it is ok.
60373 static int vdbeSafety(Vdbe *p){
60374 if( p->db==0 ){
60375 sqlite3_log(SQLITE_MISUSE, "API called with finalized prepared statement");
60376 return 1;
60377 }else{
60378 return 0;
60381 static int vdbeSafetyNotNull(Vdbe *p){
60382 if( p==0 ){
60383 sqlite3_log(SQLITE_MISUSE, "API called with NULL prepared statement");
60384 return 1;
60385 }else{
60386 return vdbeSafety(p);
60391 ** The following routine destroys a virtual machine that is created by
60392 ** the sqlite3_compile() routine. The integer returned is an SQLITE_
60393 ** success/failure code that describes the result of executing the virtual
60394 ** machine.
60396 ** This routine sets the error code and string returned by
60397 ** sqlite3_errcode(), sqlite3_errmsg() and sqlite3_errmsg16().
60399 SQLITE_API int sqlite3_finalize(sqlite3_stmt *pStmt){
60400 int rc;
60401 if( pStmt==0 ){
60402 /* IMPLEMENTATION-OF: R-57228-12904 Invoking sqlite3_finalize() on a NULL
60403 ** pointer is a harmless no-op. */
60404 rc = SQLITE_OK;
60405 }else{
60406 Vdbe *v = (Vdbe*)pStmt;
60407 sqlite3 *db = v->db;
60408 #if SQLITE_THREADSAFE
60409 sqlite3_mutex *mutex;
60410 #endif
60411 if( vdbeSafety(v) ) return SQLITE_MISUSE_BKPT;
60412 #if SQLITE_THREADSAFE
60413 mutex = v->db->mutex;
60414 #endif
60415 sqlite3_mutex_enter(mutex);
60416 rc = sqlite3VdbeFinalize(v);
60417 rc = sqlite3ApiExit(db, rc);
60418 sqlite3_mutex_leave(mutex);
60420 return rc;
60424 ** Terminate the current execution of an SQL statement and reset it
60425 ** back to its starting state so that it can be reused. A success code from
60426 ** the prior execution is returned.
60428 ** This routine sets the error code and string returned by
60429 ** sqlite3_errcode(), sqlite3_errmsg() and sqlite3_errmsg16().
60431 SQLITE_API int sqlite3_reset(sqlite3_stmt *pStmt){
60432 int rc;
60433 if( pStmt==0 ){
60434 rc = SQLITE_OK;
60435 }else{
60436 Vdbe *v = (Vdbe*)pStmt;
60437 sqlite3_mutex_enter(v->db->mutex);
60438 rc = sqlite3VdbeReset(v);
60439 sqlite3VdbeMakeReady(v, -1, 0, 0, 0, 0, 0);
60440 assert( (rc & (v->db->errMask))==rc );
60441 rc = sqlite3ApiExit(v->db, rc);
60442 sqlite3_mutex_leave(v->db->mutex);
60444 return rc;
60448 ** Set all the parameters in the compiled SQL statement to NULL.
60450 SQLITE_API int sqlite3_clear_bindings(sqlite3_stmt *pStmt){
60451 int i;
60452 int rc = SQLITE_OK;
60453 Vdbe *p = (Vdbe*)pStmt;
60454 #if SQLITE_THREADSAFE
60455 sqlite3_mutex *mutex = ((Vdbe*)pStmt)->db->mutex;
60456 #endif
60457 sqlite3_mutex_enter(mutex);
60458 for(i=0; i<p->nVar; i++){
60459 sqlite3VdbeMemRelease(&p->aVar[i]);
60460 p->aVar[i].flags = MEM_Null;
60462 if( p->isPrepareV2 && p->expmask ){
60463 p->expired = 1;
60465 sqlite3_mutex_leave(mutex);
60466 return rc;
60470 /**************************** sqlite3_value_ *******************************
60471 ** The following routines extract information from a Mem or sqlite3_value
60472 ** structure.
60474 SQLITE_API const void *sqlite3_value_blob(sqlite3_value *pVal){
60475 Mem *p = (Mem*)pVal;
60476 if( p->flags & (MEM_Blob|MEM_Str) ){
60477 sqlite3VdbeMemExpandBlob(p);
60478 p->flags &= ~MEM_Str;
60479 p->flags |= MEM_Blob;
60480 return p->n ? p->z : 0;
60481 }else{
60482 return sqlite3_value_text(pVal);
60485 SQLITE_API int sqlite3_value_bytes(sqlite3_value *pVal){
60486 return sqlite3ValueBytes(pVal, SQLITE_UTF8);
60488 SQLITE_API int sqlite3_value_bytes16(sqlite3_value *pVal){
60489 return sqlite3ValueBytes(pVal, SQLITE_UTF16NATIVE);
60491 SQLITE_API double sqlite3_value_double(sqlite3_value *pVal){
60492 return sqlite3VdbeRealValue((Mem*)pVal);
60494 SQLITE_API int sqlite3_value_int(sqlite3_value *pVal){
60495 return (int)sqlite3VdbeIntValue((Mem*)pVal);
60497 SQLITE_API sqlite_int64 sqlite3_value_int64(sqlite3_value *pVal){
60498 return sqlite3VdbeIntValue((Mem*)pVal);
60500 SQLITE_API const unsigned char *sqlite3_value_text(sqlite3_value *pVal){
60501 return (const unsigned char *)sqlite3ValueText(pVal, SQLITE_UTF8);
60503 #ifndef SQLITE_OMIT_UTF16
60504 SQLITE_API const void *sqlite3_value_text16(sqlite3_value* pVal){
60505 return sqlite3ValueText(pVal, SQLITE_UTF16NATIVE);
60507 SQLITE_API const void *sqlite3_value_text16be(sqlite3_value *pVal){
60508 return sqlite3ValueText(pVal, SQLITE_UTF16BE);
60510 SQLITE_API const void *sqlite3_value_text16le(sqlite3_value *pVal){
60511 return sqlite3ValueText(pVal, SQLITE_UTF16LE);
60513 #endif /* SQLITE_OMIT_UTF16 */
60514 SQLITE_API int sqlite3_value_type(sqlite3_value* pVal){
60515 return pVal->type;
60518 /**************************** sqlite3_result_ *******************************
60519 ** The following routines are used by user-defined functions to specify
60520 ** the function result.
60522 ** The setStrOrError() funtion calls sqlite3VdbeMemSetStr() to store the
60523 ** result as a string or blob but if the string or blob is too large, it
60524 ** then sets the error code to SQLITE_TOOBIG
60526 static void setResultStrOrError(
60527 sqlite3_context *pCtx, /* Function context */
60528 const char *z, /* String pointer */
60529 int n, /* Bytes in string, or negative */
60530 u8 enc, /* Encoding of z. 0 for BLOBs */
60531 void (*xDel)(void*) /* Destructor function */
60533 if( sqlite3VdbeMemSetStr(&pCtx->s, z, n, enc, xDel)==SQLITE_TOOBIG ){
60534 sqlite3_result_error_toobig(pCtx);
60537 SQLITE_API void sqlite3_result_blob(
60538 sqlite3_context *pCtx,
60539 const void *z,
60540 int n,
60541 void (*xDel)(void *)
60543 assert( n>=0 );
60544 assert( sqlite3_mutex_held(pCtx->s.db->mutex) );
60545 setResultStrOrError(pCtx, z, n, 0, xDel);
60547 SQLITE_API void sqlite3_result_double(sqlite3_context *pCtx, double rVal){
60548 assert( sqlite3_mutex_held(pCtx->s.db->mutex) );
60549 sqlite3VdbeMemSetDouble(&pCtx->s, rVal);
60551 SQLITE_API void sqlite3_result_error(sqlite3_context *pCtx, const char *z, int n){
60552 assert( sqlite3_mutex_held(pCtx->s.db->mutex) );
60553 pCtx->isError = SQLITE_ERROR;
60554 sqlite3VdbeMemSetStr(&pCtx->s, z, n, SQLITE_UTF8, SQLITE_TRANSIENT);
60556 #ifndef SQLITE_OMIT_UTF16
60557 SQLITE_API void sqlite3_result_error16(sqlite3_context *pCtx, const void *z, int n){
60558 assert( sqlite3_mutex_held(pCtx->s.db->mutex) );
60559 pCtx->isError = SQLITE_ERROR;
60560 sqlite3VdbeMemSetStr(&pCtx->s, z, n, SQLITE_UTF16NATIVE, SQLITE_TRANSIENT);
60562 #endif
60563 SQLITE_API void sqlite3_result_int(sqlite3_context *pCtx, int iVal){
60564 assert( sqlite3_mutex_held(pCtx->s.db->mutex) );
60565 sqlite3VdbeMemSetInt64(&pCtx->s, (i64)iVal);
60567 SQLITE_API void sqlite3_result_int64(sqlite3_context *pCtx, i64 iVal){
60568 assert( sqlite3_mutex_held(pCtx->s.db->mutex) );
60569 sqlite3VdbeMemSetInt64(&pCtx->s, iVal);
60571 SQLITE_API void sqlite3_result_null(sqlite3_context *pCtx){
60572 assert( sqlite3_mutex_held(pCtx->s.db->mutex) );
60573 sqlite3VdbeMemSetNull(&pCtx->s);
60575 SQLITE_API void sqlite3_result_text(
60576 sqlite3_context *pCtx,
60577 const char *z,
60578 int n,
60579 void (*xDel)(void *)
60581 assert( sqlite3_mutex_held(pCtx->s.db->mutex) );
60582 setResultStrOrError(pCtx, z, n, SQLITE_UTF8, xDel);
60584 #ifndef SQLITE_OMIT_UTF16
60585 SQLITE_API void sqlite3_result_text16(
60586 sqlite3_context *pCtx,
60587 const void *z,
60588 int n,
60589 void (*xDel)(void *)
60591 assert( sqlite3_mutex_held(pCtx->s.db->mutex) );
60592 setResultStrOrError(pCtx, z, n, SQLITE_UTF16NATIVE, xDel);
60594 SQLITE_API void sqlite3_result_text16be(
60595 sqlite3_context *pCtx,
60596 const void *z,
60597 int n,
60598 void (*xDel)(void *)
60600 assert( sqlite3_mutex_held(pCtx->s.db->mutex) );
60601 setResultStrOrError(pCtx, z, n, SQLITE_UTF16BE, xDel);
60603 SQLITE_API void sqlite3_result_text16le(
60604 sqlite3_context *pCtx,
60605 const void *z,
60606 int n,
60607 void (*xDel)(void *)
60609 assert( sqlite3_mutex_held(pCtx->s.db->mutex) );
60610 setResultStrOrError(pCtx, z, n, SQLITE_UTF16LE, xDel);
60612 #endif /* SQLITE_OMIT_UTF16 */
60613 SQLITE_API void sqlite3_result_value(sqlite3_context *pCtx, sqlite3_value *pValue){
60614 assert( sqlite3_mutex_held(pCtx->s.db->mutex) );
60615 sqlite3VdbeMemCopy(&pCtx->s, pValue);
60617 SQLITE_API void sqlite3_result_zeroblob(sqlite3_context *pCtx, int n){
60618 assert( sqlite3_mutex_held(pCtx->s.db->mutex) );
60619 sqlite3VdbeMemSetZeroBlob(&pCtx->s, n);
60621 SQLITE_API void sqlite3_result_error_code(sqlite3_context *pCtx, int errCode){
60622 pCtx->isError = errCode;
60623 if( pCtx->s.flags & MEM_Null ){
60624 sqlite3VdbeMemSetStr(&pCtx->s, sqlite3ErrStr(errCode), -1,
60625 SQLITE_UTF8, SQLITE_STATIC);
60629 /* Force an SQLITE_TOOBIG error. */
60630 SQLITE_API void sqlite3_result_error_toobig(sqlite3_context *pCtx){
60631 assert( sqlite3_mutex_held(pCtx->s.db->mutex) );
60632 pCtx->isError = SQLITE_TOOBIG;
60633 sqlite3VdbeMemSetStr(&pCtx->s, "string or blob too big", -1,
60634 SQLITE_UTF8, SQLITE_STATIC);
60637 /* An SQLITE_NOMEM error. */
60638 SQLITE_API void sqlite3_result_error_nomem(sqlite3_context *pCtx){
60639 assert( sqlite3_mutex_held(pCtx->s.db->mutex) );
60640 sqlite3VdbeMemSetNull(&pCtx->s);
60641 pCtx->isError = SQLITE_NOMEM;
60642 pCtx->s.db->mallocFailed = 1;
60646 ** This function is called after a transaction has been committed. It
60647 ** invokes callbacks registered with sqlite3_wal_hook() as required.
60649 static int doWalCallbacks(sqlite3 *db){
60650 int rc = SQLITE_OK;
60651 #ifndef SQLITE_OMIT_WAL
60652 int i;
60653 for(i=0; i<db->nDb; i++){
60654 Btree *pBt = db->aDb[i].pBt;
60655 if( pBt ){
60656 int nEntry = sqlite3PagerWalCallback(sqlite3BtreePager(pBt));
60657 if( db->xWalCallback && nEntry>0 && rc==SQLITE_OK ){
60658 rc = db->xWalCallback(db->pWalArg, db, db->aDb[i].zName, nEntry);
60662 #endif
60663 return rc;
60667 ** Execute the statement pStmt, either until a row of data is ready, the
60668 ** statement is completely executed or an error occurs.
60670 ** This routine implements the bulk of the logic behind the sqlite_step()
60671 ** API. The only thing omitted is the automatic recompile if a
60672 ** schema change has occurred. That detail is handled by the
60673 ** outer sqlite3_step() wrapper procedure.
60675 static int sqlite3Step(Vdbe *p){
60676 sqlite3 *db;
60677 int rc;
60679 assert(p);
60680 if( p->magic!=VDBE_MAGIC_RUN ){
60681 /* We used to require that sqlite3_reset() be called before retrying
60682 ** sqlite3_step() after any error or after SQLITE_DONE. But beginning
60683 ** with version 3.7.0, we changed this so that sqlite3_reset() would
60684 ** be called automatically instead of throwing the SQLITE_MISUSE error.
60685 ** This "automatic-reset" change is not technically an incompatibility,
60686 ** since any application that receives an SQLITE_MISUSE is broken by
60687 ** definition.
60689 ** Nevertheless, some published applications that were originally written
60690 ** for version 3.6.23 or earlier do in fact depend on SQLITE_MISUSE
60691 ** returns, and the so were broken by the automatic-reset change. As a
60692 ** a work-around, the SQLITE_OMIT_AUTORESET compile-time restores the
60693 ** legacy behavior of returning SQLITE_MISUSE for cases where the
60694 ** previous sqlite3_step() returned something other than a SQLITE_LOCKED
60695 ** or SQLITE_BUSY error.
60697 #ifdef SQLITE_OMIT_AUTORESET
60698 if( p->rc==SQLITE_BUSY || p->rc==SQLITE_LOCKED ){
60699 sqlite3_reset((sqlite3_stmt*)p);
60700 }else{
60701 return SQLITE_MISUSE_BKPT;
60703 #else
60704 sqlite3_reset((sqlite3_stmt*)p);
60705 #endif
60708 /* Check that malloc() has not failed. If it has, return early. */
60709 db = p->db;
60710 if( db->mallocFailed ){
60711 p->rc = SQLITE_NOMEM;
60712 return SQLITE_NOMEM;
60715 if( p->pc<=0 && p->expired ){
60716 p->rc = SQLITE_SCHEMA;
60717 rc = SQLITE_ERROR;
60718 goto end_of_step;
60720 if( p->pc<0 ){
60721 /* If there are no other statements currently running, then
60722 ** reset the interrupt flag. This prevents a call to sqlite3_interrupt
60723 ** from interrupting a statement that has not yet started.
60725 if( db->activeVdbeCnt==0 ){
60726 db->u1.isInterrupted = 0;
60729 assert( db->writeVdbeCnt>0 || db->autoCommit==0 || db->nDeferredCons==0 );
60731 #ifndef SQLITE_OMIT_TRACE
60732 if( db->xProfile && !db->init.busy ){
60733 sqlite3OsCurrentTimeInt64(db->pVfs, &p->startTime);
60735 #endif
60737 db->activeVdbeCnt++;
60738 if( p->readOnly==0 ) db->writeVdbeCnt++;
60739 p->pc = 0;
60741 #ifndef SQLITE_OMIT_EXPLAIN
60742 if( p->explain ){
60743 rc = sqlite3VdbeList(p);
60744 }else
60745 #endif /* SQLITE_OMIT_EXPLAIN */
60747 db->vdbeExecCnt++;
60748 rc = sqlite3VdbeExec(p);
60749 db->vdbeExecCnt--;
60752 #ifndef SQLITE_OMIT_TRACE
60753 /* Invoke the profile callback if there is one
60755 if( rc!=SQLITE_ROW && db->xProfile && !db->init.busy && p->zSql ){
60756 sqlite3_int64 iNow;
60757 sqlite3OsCurrentTimeInt64(db->pVfs, &iNow);
60758 db->xProfile(db->pProfileArg, p->zSql, (iNow - p->startTime)*1000000);
60760 #endif
60762 if( rc==SQLITE_DONE ){
60763 assert( p->rc==SQLITE_OK );
60764 p->rc = doWalCallbacks(db);
60765 if( p->rc!=SQLITE_OK ){
60766 rc = SQLITE_ERROR;
60770 db->errCode = rc;
60771 if( SQLITE_NOMEM==sqlite3ApiExit(p->db, p->rc) ){
60772 p->rc = SQLITE_NOMEM;
60774 end_of_step:
60775 /* At this point local variable rc holds the value that should be
60776 ** returned if this statement was compiled using the legacy
60777 ** sqlite3_prepare() interface. According to the docs, this can only
60778 ** be one of the values in the first assert() below. Variable p->rc
60779 ** contains the value that would be returned if sqlite3_finalize()
60780 ** were called on statement p.
60782 assert( rc==SQLITE_ROW || rc==SQLITE_DONE || rc==SQLITE_ERROR
60783 || rc==SQLITE_BUSY || rc==SQLITE_MISUSE
60785 assert( p->rc!=SQLITE_ROW && p->rc!=SQLITE_DONE );
60786 if( p->isPrepareV2 && rc!=SQLITE_ROW && rc!=SQLITE_DONE ){
60787 /* If this statement was prepared using sqlite3_prepare_v2(), and an
60788 ** error has occured, then return the error code in p->rc to the
60789 ** caller. Set the error code in the database handle to the same value.
60791 rc = db->errCode = p->rc;
60793 return (rc&db->errMask);
60797 ** This is the top-level implementation of sqlite3_step(). Call
60798 ** sqlite3Step() to do most of the work. If a schema error occurs,
60799 ** call sqlite3Reprepare() and try again.
60801 SQLITE_API int sqlite3_step(sqlite3_stmt *pStmt){
60802 int rc = SQLITE_OK; /* Result from sqlite3Step() */
60803 int rc2 = SQLITE_OK; /* Result from sqlite3Reprepare() */
60804 Vdbe *v = (Vdbe*)pStmt; /* the prepared statement */
60805 int cnt = 0; /* Counter to prevent infinite loop of reprepares */
60806 sqlite3 *db; /* The database connection */
60808 if( vdbeSafetyNotNull(v) ){
60809 return SQLITE_MISUSE_BKPT;
60811 db = v->db;
60812 sqlite3_mutex_enter(db->mutex);
60813 while( (rc = sqlite3Step(v))==SQLITE_SCHEMA
60814 && cnt++ < 5
60815 && (rc2 = rc = sqlite3Reprepare(v))==SQLITE_OK ){
60816 sqlite3_reset(pStmt);
60817 v->expired = 0;
60819 if( rc2!=SQLITE_OK && ALWAYS(v->isPrepareV2) && ALWAYS(db->pErr) ){
60820 /* This case occurs after failing to recompile an sql statement.
60821 ** The error message from the SQL compiler has already been loaded
60822 ** into the database handle. This block copies the error message
60823 ** from the database handle into the statement and sets the statement
60824 ** program counter to 0 to ensure that when the statement is
60825 ** finalized or reset the parser error message is available via
60826 ** sqlite3_errmsg() and sqlite3_errcode().
60828 const char *zErr = (const char *)sqlite3_value_text(db->pErr);
60829 sqlite3DbFree(db, v->zErrMsg);
60830 if( !db->mallocFailed ){
60831 v->zErrMsg = sqlite3DbStrDup(db, zErr);
60832 v->rc = rc2;
60833 } else {
60834 v->zErrMsg = 0;
60835 v->rc = rc = SQLITE_NOMEM;
60838 rc = sqlite3ApiExit(db, rc);
60839 sqlite3_mutex_leave(db->mutex);
60840 return rc;
60844 ** Extract the user data from a sqlite3_context structure and return a
60845 ** pointer to it.
60847 SQLITE_API void *sqlite3_user_data(sqlite3_context *p){
60848 assert( p && p->pFunc );
60849 return p->pFunc->pUserData;
60853 ** Extract the user data from a sqlite3_context structure and return a
60854 ** pointer to it.
60856 ** IMPLEMENTATION-OF: R-46798-50301 The sqlite3_context_db_handle() interface
60857 ** returns a copy of the pointer to the database connection (the 1st
60858 ** parameter) of the sqlite3_create_function() and
60859 ** sqlite3_create_function16() routines that originally registered the
60860 ** application defined function.
60862 SQLITE_API sqlite3 *sqlite3_context_db_handle(sqlite3_context *p){
60863 assert( p && p->pFunc );
60864 return p->s.db;
60868 ** The following is the implementation of an SQL function that always
60869 ** fails with an error message stating that the function is used in the
60870 ** wrong context. The sqlite3_overload_function() API might construct
60871 ** SQL function that use this routine so that the functions will exist
60872 ** for name resolution but are actually overloaded by the xFindFunction
60873 ** method of virtual tables.
60875 SQLITE_PRIVATE void sqlite3InvalidFunction(
60876 sqlite3_context *context, /* The function calling context */
60877 int NotUsed, /* Number of arguments to the function */
60878 sqlite3_value **NotUsed2 /* Value of each argument */
60880 const char *zName = context->pFunc->zName;
60881 char *zErr;
60882 UNUSED_PARAMETER2(NotUsed, NotUsed2);
60883 zErr = sqlite3_mprintf(
60884 "unable to use function %s in the requested context", zName);
60885 sqlite3_result_error(context, zErr, -1);
60886 sqlite3_free(zErr);
60890 ** Allocate or return the aggregate context for a user function. A new
60891 ** context is allocated on the first call. Subsequent calls return the
60892 ** same context that was returned on prior calls.
60894 SQLITE_API void *sqlite3_aggregate_context(sqlite3_context *p, int nByte){
60895 Mem *pMem;
60896 assert( p && p->pFunc && p->pFunc->xStep );
60897 assert( sqlite3_mutex_held(p->s.db->mutex) );
60898 pMem = p->pMem;
60899 testcase( nByte<0 );
60900 if( (pMem->flags & MEM_Agg)==0 ){
60901 if( nByte<=0 ){
60902 sqlite3VdbeMemReleaseExternal(pMem);
60903 pMem->flags = MEM_Null;
60904 pMem->z = 0;
60905 }else{
60906 sqlite3VdbeMemGrow(pMem, nByte, 0);
60907 pMem->flags = MEM_Agg;
60908 pMem->u.pDef = p->pFunc;
60909 if( pMem->z ){
60910 memset(pMem->z, 0, nByte);
60914 return (void*)pMem->z;
60918 ** Return the auxilary data pointer, if any, for the iArg'th argument to
60919 ** the user-function defined by pCtx.
60921 SQLITE_API void *sqlite3_get_auxdata(sqlite3_context *pCtx, int iArg){
60922 VdbeFunc *pVdbeFunc;
60924 assert( sqlite3_mutex_held(pCtx->s.db->mutex) );
60925 pVdbeFunc = pCtx->pVdbeFunc;
60926 if( !pVdbeFunc || iArg>=pVdbeFunc->nAux || iArg<0 ){
60927 return 0;
60929 return pVdbeFunc->apAux[iArg].pAux;
60933 ** Set the auxilary data pointer and delete function, for the iArg'th
60934 ** argument to the user-function defined by pCtx. Any previous value is
60935 ** deleted by calling the delete function specified when it was set.
60937 SQLITE_API void sqlite3_set_auxdata(
60938 sqlite3_context *pCtx,
60939 int iArg,
60940 void *pAux,
60941 void (*xDelete)(void*)
60943 struct AuxData *pAuxData;
60944 VdbeFunc *pVdbeFunc;
60945 if( iArg<0 ) goto failed;
60947 assert( sqlite3_mutex_held(pCtx->s.db->mutex) );
60948 pVdbeFunc = pCtx->pVdbeFunc;
60949 if( !pVdbeFunc || pVdbeFunc->nAux<=iArg ){
60950 int nAux = (pVdbeFunc ? pVdbeFunc->nAux : 0);
60951 int nMalloc = sizeof(VdbeFunc) + sizeof(struct AuxData)*iArg;
60952 pVdbeFunc = sqlite3DbRealloc(pCtx->s.db, pVdbeFunc, nMalloc);
60953 if( !pVdbeFunc ){
60954 goto failed;
60956 pCtx->pVdbeFunc = pVdbeFunc;
60957 memset(&pVdbeFunc->apAux[nAux], 0, sizeof(struct AuxData)*(iArg+1-nAux));
60958 pVdbeFunc->nAux = iArg+1;
60959 pVdbeFunc->pFunc = pCtx->pFunc;
60962 pAuxData = &pVdbeFunc->apAux[iArg];
60963 if( pAuxData->pAux && pAuxData->xDelete ){
60964 pAuxData->xDelete(pAuxData->pAux);
60966 pAuxData->pAux = pAux;
60967 pAuxData->xDelete = xDelete;
60968 return;
60970 failed:
60971 if( xDelete ){
60972 xDelete(pAux);
60976 #ifndef SQLITE_OMIT_DEPRECATED
60978 ** Return the number of times the Step function of a aggregate has been
60979 ** called.
60981 ** This function is deprecated. Do not use it for new code. It is
60982 ** provide only to avoid breaking legacy code. New aggregate function
60983 ** implementations should keep their own counts within their aggregate
60984 ** context.
60986 SQLITE_API int sqlite3_aggregate_count(sqlite3_context *p){
60987 assert( p && p->pMem && p->pFunc && p->pFunc->xStep );
60988 return p->pMem->n;
60990 #endif
60993 ** Return the number of columns in the result set for the statement pStmt.
60995 SQLITE_API int sqlite3_column_count(sqlite3_stmt *pStmt){
60996 Vdbe *pVm = (Vdbe *)pStmt;
60997 return pVm ? pVm->nResColumn : 0;
61001 ** Return the number of values available from the current row of the
61002 ** currently executing statement pStmt.
61004 SQLITE_API int sqlite3_data_count(sqlite3_stmt *pStmt){
61005 Vdbe *pVm = (Vdbe *)pStmt;
61006 if( pVm==0 || pVm->pResultSet==0 ) return 0;
61007 return pVm->nResColumn;
61012 ** Check to see if column iCol of the given statement is valid. If
61013 ** it is, return a pointer to the Mem for the value of that column.
61014 ** If iCol is not valid, return a pointer to a Mem which has a value
61015 ** of NULL.
61017 static Mem *columnMem(sqlite3_stmt *pStmt, int i){
61018 Vdbe *pVm;
61019 Mem *pOut;
61021 pVm = (Vdbe *)pStmt;
61022 if( pVm && pVm->pResultSet!=0 && i<pVm->nResColumn && i>=0 ){
61023 sqlite3_mutex_enter(pVm->db->mutex);
61024 pOut = &pVm->pResultSet[i];
61025 }else{
61026 /* If the value passed as the second argument is out of range, return
61027 ** a pointer to the following static Mem object which contains the
61028 ** value SQL NULL. Even though the Mem structure contains an element
61029 ** of type i64, on certain architecture (x86) with certain compiler
61030 ** switches (-Os), gcc may align this Mem object on a 4-byte boundary
61031 ** instead of an 8-byte one. This all works fine, except that when
61032 ** running with SQLITE_DEBUG defined the SQLite code sometimes assert()s
61033 ** that a Mem structure is located on an 8-byte boundary. To prevent
61034 ** this assert() from failing, when building with SQLITE_DEBUG defined
61035 ** using gcc, force nullMem to be 8-byte aligned using the magical
61036 ** __attribute__((aligned(8))) macro. */
61037 static const Mem nullMem
61038 #if defined(SQLITE_DEBUG) && defined(__GNUC__)
61039 __attribute__((aligned(8)))
61040 #endif
61041 = {0, "", (double)0, {0}, 0, MEM_Null, SQLITE_NULL, 0,
61042 #ifdef SQLITE_DEBUG
61043 0, 0, /* pScopyFrom, pFiller */
61044 #endif
61045 0, 0 };
61047 if( pVm && ALWAYS(pVm->db) ){
61048 sqlite3_mutex_enter(pVm->db->mutex);
61049 sqlite3Error(pVm->db, SQLITE_RANGE, 0);
61051 pOut = (Mem*)&nullMem;
61053 return pOut;
61057 ** This function is called after invoking an sqlite3_value_XXX function on a
61058 ** column value (i.e. a value returned by evaluating an SQL expression in the
61059 ** select list of a SELECT statement) that may cause a malloc() failure. If
61060 ** malloc() has failed, the threads mallocFailed flag is cleared and the result
61061 ** code of statement pStmt set to SQLITE_NOMEM.
61063 ** Specifically, this is called from within:
61065 ** sqlite3_column_int()
61066 ** sqlite3_column_int64()
61067 ** sqlite3_column_text()
61068 ** sqlite3_column_text16()
61069 ** sqlite3_column_real()
61070 ** sqlite3_column_bytes()
61071 ** sqlite3_column_bytes16()
61072 ** sqiite3_column_blob()
61074 static void columnMallocFailure(sqlite3_stmt *pStmt)
61076 /* If malloc() failed during an encoding conversion within an
61077 ** sqlite3_column_XXX API, then set the return code of the statement to
61078 ** SQLITE_NOMEM. The next call to _step() (if any) will return SQLITE_ERROR
61079 ** and _finalize() will return NOMEM.
61081 Vdbe *p = (Vdbe *)pStmt;
61082 if( p ){
61083 p->rc = sqlite3ApiExit(p->db, p->rc);
61084 sqlite3_mutex_leave(p->db->mutex);
61088 /**************************** sqlite3_column_ *******************************
61089 ** The following routines are used to access elements of the current row
61090 ** in the result set.
61092 SQLITE_API const void *sqlite3_column_blob(sqlite3_stmt *pStmt, int i){
61093 const void *val;
61094 val = sqlite3_value_blob( columnMem(pStmt,i) );
61095 /* Even though there is no encoding conversion, value_blob() might
61096 ** need to call malloc() to expand the result of a zeroblob()
61097 ** expression.
61099 columnMallocFailure(pStmt);
61100 return val;
61102 SQLITE_API int sqlite3_column_bytes(sqlite3_stmt *pStmt, int i){
61103 int val = sqlite3_value_bytes( columnMem(pStmt,i) );
61104 columnMallocFailure(pStmt);
61105 return val;
61107 SQLITE_API int sqlite3_column_bytes16(sqlite3_stmt *pStmt, int i){
61108 int val = sqlite3_value_bytes16( columnMem(pStmt,i) );
61109 columnMallocFailure(pStmt);
61110 return val;
61112 SQLITE_API double sqlite3_column_double(sqlite3_stmt *pStmt, int i){
61113 double val = sqlite3_value_double( columnMem(pStmt,i) );
61114 columnMallocFailure(pStmt);
61115 return val;
61117 SQLITE_API int sqlite3_column_int(sqlite3_stmt *pStmt, int i){
61118 int val = sqlite3_value_int( columnMem(pStmt,i) );
61119 columnMallocFailure(pStmt);
61120 return val;
61122 SQLITE_API sqlite_int64 sqlite3_column_int64(sqlite3_stmt *pStmt, int i){
61123 sqlite_int64 val = sqlite3_value_int64( columnMem(pStmt,i) );
61124 columnMallocFailure(pStmt);
61125 return val;
61127 SQLITE_API const unsigned char *sqlite3_column_text(sqlite3_stmt *pStmt, int i){
61128 const unsigned char *val = sqlite3_value_text( columnMem(pStmt,i) );
61129 columnMallocFailure(pStmt);
61130 return val;
61132 SQLITE_API sqlite3_value *sqlite3_column_value(sqlite3_stmt *pStmt, int i){
61133 Mem *pOut = columnMem(pStmt, i);
61134 if( pOut->flags&MEM_Static ){
61135 pOut->flags &= ~MEM_Static;
61136 pOut->flags |= MEM_Ephem;
61138 columnMallocFailure(pStmt);
61139 return (sqlite3_value *)pOut;
61141 #ifndef SQLITE_OMIT_UTF16
61142 SQLITE_API const void *sqlite3_column_text16(sqlite3_stmt *pStmt, int i){
61143 const void *val = sqlite3_value_text16( columnMem(pStmt,i) );
61144 columnMallocFailure(pStmt);
61145 return val;
61147 #endif /* SQLITE_OMIT_UTF16 */
61148 SQLITE_API int sqlite3_column_type(sqlite3_stmt *pStmt, int i){
61149 int iType = sqlite3_value_type( columnMem(pStmt,i) );
61150 columnMallocFailure(pStmt);
61151 return iType;
61154 /* The following function is experimental and subject to change or
61155 ** removal */
61156 /*int sqlite3_column_numeric_type(sqlite3_stmt *pStmt, int i){
61157 ** return sqlite3_value_numeric_type( columnMem(pStmt,i) );
61162 ** Convert the N-th element of pStmt->pColName[] into a string using
61163 ** xFunc() then return that string. If N is out of range, return 0.
61165 ** There are up to 5 names for each column. useType determines which
61166 ** name is returned. Here are the names:
61168 ** 0 The column name as it should be displayed for output
61169 ** 1 The datatype name for the column
61170 ** 2 The name of the database that the column derives from
61171 ** 3 The name of the table that the column derives from
61172 ** 4 The name of the table column that the result column derives from
61174 ** If the result is not a simple column reference (if it is an expression
61175 ** or a constant) then useTypes 2, 3, and 4 return NULL.
61177 static const void *columnName(
61178 sqlite3_stmt *pStmt,
61179 int N,
61180 const void *(*xFunc)(Mem*),
61181 int useType
61183 const void *ret = 0;
61184 Vdbe *p = (Vdbe *)pStmt;
61185 int n;
61186 sqlite3 *db = p->db;
61188 assert( db!=0 );
61189 n = sqlite3_column_count(pStmt);
61190 if( N<n && N>=0 ){
61191 N += useType*n;
61192 sqlite3_mutex_enter(db->mutex);
61193 assert( db->mallocFailed==0 );
61194 ret = xFunc(&p->aColName[N]);
61195 /* A malloc may have failed inside of the xFunc() call. If this
61196 ** is the case, clear the mallocFailed flag and return NULL.
61198 if( db->mallocFailed ){
61199 db->mallocFailed = 0;
61200 ret = 0;
61202 sqlite3_mutex_leave(db->mutex);
61204 return ret;
61208 ** Return the name of the Nth column of the result set returned by SQL
61209 ** statement pStmt.
61211 SQLITE_API const char *sqlite3_column_name(sqlite3_stmt *pStmt, int N){
61212 return columnName(
61213 pStmt, N, (const void*(*)(Mem*))sqlite3_value_text, COLNAME_NAME);
61215 #ifndef SQLITE_OMIT_UTF16
61216 SQLITE_API const void *sqlite3_column_name16(sqlite3_stmt *pStmt, int N){
61217 return columnName(
61218 pStmt, N, (const void*(*)(Mem*))sqlite3_value_text16, COLNAME_NAME);
61220 #endif
61223 ** Constraint: If you have ENABLE_COLUMN_METADATA then you must
61224 ** not define OMIT_DECLTYPE.
61226 #if defined(SQLITE_OMIT_DECLTYPE) && defined(SQLITE_ENABLE_COLUMN_METADATA)
61227 # error "Must not define both SQLITE_OMIT_DECLTYPE \
61228 and SQLITE_ENABLE_COLUMN_METADATA"
61229 #endif
61231 #ifndef SQLITE_OMIT_DECLTYPE
61233 ** Return the column declaration type (if applicable) of the 'i'th column
61234 ** of the result set of SQL statement pStmt.
61236 SQLITE_API const char *sqlite3_column_decltype(sqlite3_stmt *pStmt, int N){
61237 return columnName(
61238 pStmt, N, (const void*(*)(Mem*))sqlite3_value_text, COLNAME_DECLTYPE);
61240 #ifndef SQLITE_OMIT_UTF16
61241 SQLITE_API const void *sqlite3_column_decltype16(sqlite3_stmt *pStmt, int N){
61242 return columnName(
61243 pStmt, N, (const void*(*)(Mem*))sqlite3_value_text16, COLNAME_DECLTYPE);
61245 #endif /* SQLITE_OMIT_UTF16 */
61246 #endif /* SQLITE_OMIT_DECLTYPE */
61248 #ifdef SQLITE_ENABLE_COLUMN_METADATA
61250 ** Return the name of the database from which a result column derives.
61251 ** NULL is returned if the result column is an expression or constant or
61252 ** anything else which is not an unabiguous reference to a database column.
61254 SQLITE_API const char *sqlite3_column_database_name(sqlite3_stmt *pStmt, int N){
61255 return columnName(
61256 pStmt, N, (const void*(*)(Mem*))sqlite3_value_text, COLNAME_DATABASE);
61258 #ifndef SQLITE_OMIT_UTF16
61259 SQLITE_API const void *sqlite3_column_database_name16(sqlite3_stmt *pStmt, int N){
61260 return columnName(
61261 pStmt, N, (const void*(*)(Mem*))sqlite3_value_text16, COLNAME_DATABASE);
61263 #endif /* SQLITE_OMIT_UTF16 */
61266 ** Return the name of the table from which a result column derives.
61267 ** NULL is returned if the result column is an expression or constant or
61268 ** anything else which is not an unabiguous reference to a database column.
61270 SQLITE_API const char *sqlite3_column_table_name(sqlite3_stmt *pStmt, int N){
61271 return columnName(
61272 pStmt, N, (const void*(*)(Mem*))sqlite3_value_text, COLNAME_TABLE);
61274 #ifndef SQLITE_OMIT_UTF16
61275 SQLITE_API const void *sqlite3_column_table_name16(sqlite3_stmt *pStmt, int N){
61276 return columnName(
61277 pStmt, N, (const void*(*)(Mem*))sqlite3_value_text16, COLNAME_TABLE);
61279 #endif /* SQLITE_OMIT_UTF16 */
61282 ** Return the name of the table column from which a result column derives.
61283 ** NULL is returned if the result column is an expression or constant or
61284 ** anything else which is not an unabiguous reference to a database column.
61286 SQLITE_API const char *sqlite3_column_origin_name(sqlite3_stmt *pStmt, int N){
61287 return columnName(
61288 pStmt, N, (const void*(*)(Mem*))sqlite3_value_text, COLNAME_COLUMN);
61290 #ifndef SQLITE_OMIT_UTF16
61291 SQLITE_API const void *sqlite3_column_origin_name16(sqlite3_stmt *pStmt, int N){
61292 return columnName(
61293 pStmt, N, (const void*(*)(Mem*))sqlite3_value_text16, COLNAME_COLUMN);
61295 #endif /* SQLITE_OMIT_UTF16 */
61296 #endif /* SQLITE_ENABLE_COLUMN_METADATA */
61299 /******************************* sqlite3_bind_ ***************************
61301 ** Routines used to attach values to wildcards in a compiled SQL statement.
61304 ** Unbind the value bound to variable i in virtual machine p. This is the
61305 ** the same as binding a NULL value to the column. If the "i" parameter is
61306 ** out of range, then SQLITE_RANGE is returned. Othewise SQLITE_OK.
61308 ** A successful evaluation of this routine acquires the mutex on p.
61309 ** the mutex is released if any kind of error occurs.
61311 ** The error code stored in database p->db is overwritten with the return
61312 ** value in any case.
61314 static int vdbeUnbind(Vdbe *p, int i){
61315 Mem *pVar;
61316 if( vdbeSafetyNotNull(p) ){
61317 return SQLITE_MISUSE_BKPT;
61319 sqlite3_mutex_enter(p->db->mutex);
61320 if( p->magic!=VDBE_MAGIC_RUN || p->pc>=0 ){
61321 sqlite3Error(p->db, SQLITE_MISUSE, 0);
61322 sqlite3_mutex_leave(p->db->mutex);
61323 sqlite3_log(SQLITE_MISUSE,
61324 "bind on a busy prepared statement: [%s]", p->zSql);
61325 return SQLITE_MISUSE_BKPT;
61327 if( i<1 || i>p->nVar ){
61328 sqlite3Error(p->db, SQLITE_RANGE, 0);
61329 sqlite3_mutex_leave(p->db->mutex);
61330 return SQLITE_RANGE;
61332 i--;
61333 pVar = &p->aVar[i];
61334 sqlite3VdbeMemRelease(pVar);
61335 pVar->flags = MEM_Null;
61336 sqlite3Error(p->db, SQLITE_OK, 0);
61338 /* If the bit corresponding to this variable in Vdbe.expmask is set, then
61339 ** binding a new value to this variable invalidates the current query plan.
61341 ** IMPLEMENTATION-OF: R-48440-37595 If the specific value bound to host
61342 ** parameter in the WHERE clause might influence the choice of query plan
61343 ** for a statement, then the statement will be automatically recompiled,
61344 ** as if there had been a schema change, on the first sqlite3_step() call
61345 ** following any change to the bindings of that parameter.
61347 if( p->isPrepareV2 &&
61348 ((i<32 && p->expmask & ((u32)1 << i)) || p->expmask==0xffffffff)
61350 p->expired = 1;
61352 return SQLITE_OK;
61356 ** Bind a text or BLOB value.
61358 static int bindText(
61359 sqlite3_stmt *pStmt, /* The statement to bind against */
61360 int i, /* Index of the parameter to bind */
61361 const void *zData, /* Pointer to the data to be bound */
61362 int nData, /* Number of bytes of data to be bound */
61363 void (*xDel)(void*), /* Destructor for the data */
61364 u8 encoding /* Encoding for the data */
61366 Vdbe *p = (Vdbe *)pStmt;
61367 Mem *pVar;
61368 int rc;
61370 rc = vdbeUnbind(p, i);
61371 if( rc==SQLITE_OK ){
61372 if( zData!=0 ){
61373 pVar = &p->aVar[i-1];
61374 rc = sqlite3VdbeMemSetStr(pVar, zData, nData, encoding, xDel);
61375 if( rc==SQLITE_OK && encoding!=0 ){
61376 rc = sqlite3VdbeChangeEncoding(pVar, ENC(p->db));
61378 sqlite3Error(p->db, rc, 0);
61379 rc = sqlite3ApiExit(p->db, rc);
61381 sqlite3_mutex_leave(p->db->mutex);
61382 }else if( xDel!=SQLITE_STATIC && xDel!=SQLITE_TRANSIENT ){
61383 xDel((void*)zData);
61385 return rc;
61390 ** Bind a blob value to an SQL statement variable.
61392 SQLITE_API int sqlite3_bind_blob(
61393 sqlite3_stmt *pStmt,
61394 int i,
61395 const void *zData,
61396 int nData,
61397 void (*xDel)(void*)
61399 return bindText(pStmt, i, zData, nData, xDel, 0);
61401 SQLITE_API int sqlite3_bind_double(sqlite3_stmt *pStmt, int i, double rValue){
61402 int rc;
61403 Vdbe *p = (Vdbe *)pStmt;
61404 rc = vdbeUnbind(p, i);
61405 if( rc==SQLITE_OK ){
61406 sqlite3VdbeMemSetDouble(&p->aVar[i-1], rValue);
61407 sqlite3_mutex_leave(p->db->mutex);
61409 return rc;
61411 SQLITE_API int sqlite3_bind_int(sqlite3_stmt *p, int i, int iValue){
61412 return sqlite3_bind_int64(p, i, (i64)iValue);
61414 SQLITE_API int sqlite3_bind_int64(sqlite3_stmt *pStmt, int i, sqlite_int64 iValue){
61415 int rc;
61416 Vdbe *p = (Vdbe *)pStmt;
61417 rc = vdbeUnbind(p, i);
61418 if( rc==SQLITE_OK ){
61419 sqlite3VdbeMemSetInt64(&p->aVar[i-1], iValue);
61420 sqlite3_mutex_leave(p->db->mutex);
61422 return rc;
61424 SQLITE_API int sqlite3_bind_null(sqlite3_stmt *pStmt, int i){
61425 int rc;
61426 Vdbe *p = (Vdbe*)pStmt;
61427 rc = vdbeUnbind(p, i);
61428 if( rc==SQLITE_OK ){
61429 sqlite3_mutex_leave(p->db->mutex);
61431 return rc;
61433 SQLITE_API int sqlite3_bind_text(
61434 sqlite3_stmt *pStmt,
61435 int i,
61436 const char *zData,
61437 int nData,
61438 void (*xDel)(void*)
61440 return bindText(pStmt, i, zData, nData, xDel, SQLITE_UTF8);
61442 #ifndef SQLITE_OMIT_UTF16
61443 SQLITE_API int sqlite3_bind_text16(
61444 sqlite3_stmt *pStmt,
61445 int i,
61446 const void *zData,
61447 int nData,
61448 void (*xDel)(void*)
61450 return bindText(pStmt, i, zData, nData, xDel, SQLITE_UTF16NATIVE);
61452 #endif /* SQLITE_OMIT_UTF16 */
61453 SQLITE_API int sqlite3_bind_value(sqlite3_stmt *pStmt, int i, const sqlite3_value *pValue){
61454 int rc;
61455 switch( pValue->type ){
61456 case SQLITE_INTEGER: {
61457 rc = sqlite3_bind_int64(pStmt, i, pValue->u.i);
61458 break;
61460 case SQLITE_FLOAT: {
61461 rc = sqlite3_bind_double(pStmt, i, pValue->r);
61462 break;
61464 case SQLITE_BLOB: {
61465 if( pValue->flags & MEM_Zero ){
61466 rc = sqlite3_bind_zeroblob(pStmt, i, pValue->u.nZero);
61467 }else{
61468 rc = sqlite3_bind_blob(pStmt, i, pValue->z, pValue->n,SQLITE_TRANSIENT);
61470 break;
61472 case SQLITE_TEXT: {
61473 rc = bindText(pStmt,i, pValue->z, pValue->n, SQLITE_TRANSIENT,
61474 pValue->enc);
61475 break;
61477 default: {
61478 rc = sqlite3_bind_null(pStmt, i);
61479 break;
61482 return rc;
61484 SQLITE_API int sqlite3_bind_zeroblob(sqlite3_stmt *pStmt, int i, int n){
61485 int rc;
61486 Vdbe *p = (Vdbe *)pStmt;
61487 rc = vdbeUnbind(p, i);
61488 if( rc==SQLITE_OK ){
61489 sqlite3VdbeMemSetZeroBlob(&p->aVar[i-1], n);
61490 sqlite3_mutex_leave(p->db->mutex);
61492 return rc;
61496 ** Return the number of wildcards that can be potentially bound to.
61497 ** This routine is added to support DBD::SQLite.
61499 SQLITE_API int sqlite3_bind_parameter_count(sqlite3_stmt *pStmt){
61500 Vdbe *p = (Vdbe*)pStmt;
61501 return p ? p->nVar : 0;
61505 ** Create a mapping from variable numbers to variable names
61506 ** in the Vdbe.azVar[] array, if such a mapping does not already
61507 ** exist.
61509 static void createVarMap(Vdbe *p){
61510 if( !p->okVar ){
61511 int j;
61512 Op *pOp;
61513 sqlite3_mutex_enter(p->db->mutex);
61514 /* The race condition here is harmless. If two threads call this
61515 ** routine on the same Vdbe at the same time, they both might end
61516 ** up initializing the Vdbe.azVar[] array. That is a little extra
61517 ** work but it results in the same answer.
61519 for(j=0, pOp=p->aOp; j<p->nOp; j++, pOp++){
61520 if( pOp->opcode==OP_Variable ){
61521 assert( pOp->p1>0 && pOp->p1<=p->nVar );
61522 p->azVar[pOp->p1-1] = pOp->p4.z;
61525 p->okVar = 1;
61526 sqlite3_mutex_leave(p->db->mutex);
61531 ** Return the name of a wildcard parameter. Return NULL if the index
61532 ** is out of range or if the wildcard is unnamed.
61534 ** The result is always UTF-8.
61536 SQLITE_API const char *sqlite3_bind_parameter_name(sqlite3_stmt *pStmt, int i){
61537 Vdbe *p = (Vdbe*)pStmt;
61538 if( p==0 || i<1 || i>p->nVar ){
61539 return 0;
61541 createVarMap(p);
61542 return p->azVar[i-1];
61546 ** Given a wildcard parameter name, return the index of the variable
61547 ** with that name. If there is no variable with the given name,
61548 ** return 0.
61550 SQLITE_PRIVATE int sqlite3VdbeParameterIndex(Vdbe *p, const char *zName, int nName){
61551 int i;
61552 if( p==0 ){
61553 return 0;
61555 createVarMap(p);
61556 if( zName ){
61557 for(i=0; i<p->nVar; i++){
61558 const char *z = p->azVar[i];
61559 if( z && strncmp(z,zName,nName)==0 && z[nName]==0 ){
61560 return i+1;
61564 return 0;
61566 SQLITE_API int sqlite3_bind_parameter_index(sqlite3_stmt *pStmt, const char *zName){
61567 return sqlite3VdbeParameterIndex((Vdbe*)pStmt, zName, sqlite3Strlen30(zName));
61571 ** Transfer all bindings from the first statement over to the second.
61573 SQLITE_PRIVATE int sqlite3TransferBindings(sqlite3_stmt *pFromStmt, sqlite3_stmt *pToStmt){
61574 Vdbe *pFrom = (Vdbe*)pFromStmt;
61575 Vdbe *pTo = (Vdbe*)pToStmt;
61576 int i;
61577 assert( pTo->db==pFrom->db );
61578 assert( pTo->nVar==pFrom->nVar );
61579 sqlite3_mutex_enter(pTo->db->mutex);
61580 for(i=0; i<pFrom->nVar; i++){
61581 sqlite3VdbeMemMove(&pTo->aVar[i], &pFrom->aVar[i]);
61583 sqlite3_mutex_leave(pTo->db->mutex);
61584 return SQLITE_OK;
61587 #ifndef SQLITE_OMIT_DEPRECATED
61589 ** Deprecated external interface. Internal/core SQLite code
61590 ** should call sqlite3TransferBindings.
61592 ** Is is misuse to call this routine with statements from different
61593 ** database connections. But as this is a deprecated interface, we
61594 ** will not bother to check for that condition.
61596 ** If the two statements contain a different number of bindings, then
61597 ** an SQLITE_ERROR is returned. Nothing else can go wrong, so otherwise
61598 ** SQLITE_OK is returned.
61600 SQLITE_API int sqlite3_transfer_bindings(sqlite3_stmt *pFromStmt, sqlite3_stmt *pToStmt){
61601 Vdbe *pFrom = (Vdbe*)pFromStmt;
61602 Vdbe *pTo = (Vdbe*)pToStmt;
61603 if( pFrom->nVar!=pTo->nVar ){
61604 return SQLITE_ERROR;
61606 if( pTo->isPrepareV2 && pTo->expmask ){
61607 pTo->expired = 1;
61609 if( pFrom->isPrepareV2 && pFrom->expmask ){
61610 pFrom->expired = 1;
61612 return sqlite3TransferBindings(pFromStmt, pToStmt);
61614 #endif
61617 ** Return the sqlite3* database handle to which the prepared statement given
61618 ** in the argument belongs. This is the same database handle that was
61619 ** the first argument to the sqlite3_prepare() that was used to create
61620 ** the statement in the first place.
61622 SQLITE_API sqlite3 *sqlite3_db_handle(sqlite3_stmt *pStmt){
61623 return pStmt ? ((Vdbe*)pStmt)->db : 0;
61627 ** Return true if the prepared statement is guaranteed to not modify the
61628 ** database.
61630 SQLITE_API int sqlite3_stmt_readonly(sqlite3_stmt *pStmt){
61631 return pStmt ? ((Vdbe*)pStmt)->readOnly : 1;
61635 ** Return a pointer to the next prepared statement after pStmt associated
61636 ** with database connection pDb. If pStmt is NULL, return the first
61637 ** prepared statement for the database connection. Return NULL if there
61638 ** are no more.
61640 SQLITE_API sqlite3_stmt *sqlite3_next_stmt(sqlite3 *pDb, sqlite3_stmt *pStmt){
61641 sqlite3_stmt *pNext;
61642 sqlite3_mutex_enter(pDb->mutex);
61643 if( pStmt==0 ){
61644 pNext = (sqlite3_stmt*)pDb->pVdbe;
61645 }else{
61646 pNext = (sqlite3_stmt*)((Vdbe*)pStmt)->pNext;
61648 sqlite3_mutex_leave(pDb->mutex);
61649 return pNext;
61653 ** Return the value of a status counter for a prepared statement
61655 SQLITE_API int sqlite3_stmt_status(sqlite3_stmt *pStmt, int op, int resetFlag){
61656 Vdbe *pVdbe = (Vdbe*)pStmt;
61657 int v = pVdbe->aCounter[op-1];
61658 if( resetFlag ) pVdbe->aCounter[op-1] = 0;
61659 return v;
61662 /************** End of vdbeapi.c *********************************************/
61663 /************** Begin file vdbetrace.c ***************************************/
61665 ** 2009 November 25
61667 ** The author disclaims copyright to this source code. In place of
61668 ** a legal notice, here is a blessing:
61670 ** May you do good and not evil.
61671 ** May you find forgiveness for yourself and forgive others.
61672 ** May you share freely, never taking more than you give.
61674 *************************************************************************
61676 ** This file contains code used to insert the values of host parameters
61677 ** (aka "wildcards") into the SQL text output by sqlite3_trace().
61680 #ifndef SQLITE_OMIT_TRACE
61683 ** zSql is a zero-terminated string of UTF-8 SQL text. Return the number of
61684 ** bytes in this text up to but excluding the first character in
61685 ** a host parameter. If the text contains no host parameters, return
61686 ** the total number of bytes in the text.
61688 static int findNextHostParameter(const char *zSql, int *pnToken){
61689 int tokenType;
61690 int nTotal = 0;
61691 int n;
61693 *pnToken = 0;
61694 while( zSql[0] ){
61695 n = sqlite3GetToken((u8*)zSql, &tokenType);
61696 assert( n>0 && tokenType!=TK_ILLEGAL );
61697 if( tokenType==TK_VARIABLE ){
61698 *pnToken = n;
61699 break;
61701 nTotal += n;
61702 zSql += n;
61704 return nTotal;
61708 ** This function returns a pointer to a nul-terminated string in memory
61709 ** obtained from sqlite3DbMalloc(). If sqlite3.vdbeExecCnt is 1, then the
61710 ** string contains a copy of zRawSql but with host parameters expanded to
61711 ** their current bindings. Or, if sqlite3.vdbeExecCnt is greater than 1,
61712 ** then the returned string holds a copy of zRawSql with "-- " prepended
61713 ** to each line of text.
61715 ** The calling function is responsible for making sure the memory returned
61716 ** is eventually freed.
61718 ** ALGORITHM: Scan the input string looking for host parameters in any of
61719 ** these forms: ?, ?N, $A, @A, :A. Take care to avoid text within
61720 ** string literals, quoted identifier names, and comments. For text forms,
61721 ** the host parameter index is found by scanning the perpared
61722 ** statement for the corresponding OP_Variable opcode. Once the host
61723 ** parameter index is known, locate the value in p->aVar[]. Then render
61724 ** the value as a literal in place of the host parameter name.
61726 SQLITE_PRIVATE char *sqlite3VdbeExpandSql(
61727 Vdbe *p, /* The prepared statement being evaluated */
61728 const char *zRawSql /* Raw text of the SQL statement */
61730 sqlite3 *db; /* The database connection */
61731 int idx = 0; /* Index of a host parameter */
61732 int nextIndex = 1; /* Index of next ? host parameter */
61733 int n; /* Length of a token prefix */
61734 int nToken; /* Length of the parameter token */
61735 int i; /* Loop counter */
61736 Mem *pVar; /* Value of a host parameter */
61737 StrAccum out; /* Accumulate the output here */
61738 char zBase[100]; /* Initial working space */
61740 db = p->db;
61741 sqlite3StrAccumInit(&out, zBase, sizeof(zBase),
61742 db->aLimit[SQLITE_LIMIT_LENGTH]);
61743 out.db = db;
61744 if( db->vdbeExecCnt>1 ){
61745 while( *zRawSql ){
61746 const char *zStart = zRawSql;
61747 while( *(zRawSql++)!='\n' && *zRawSql );
61748 sqlite3StrAccumAppend(&out, "-- ", 3);
61749 sqlite3StrAccumAppend(&out, zStart, (int)(zRawSql-zStart));
61751 }else{
61752 while( zRawSql[0] ){
61753 n = findNextHostParameter(zRawSql, &nToken);
61754 assert( n>0 );
61755 sqlite3StrAccumAppend(&out, zRawSql, n);
61756 zRawSql += n;
61757 assert( zRawSql[0] || nToken==0 );
61758 if( nToken==0 ) break;
61759 if( zRawSql[0]=='?' ){
61760 if( nToken>1 ){
61761 assert( sqlite3Isdigit(zRawSql[1]) );
61762 sqlite3GetInt32(&zRawSql[1], &idx);
61763 }else{
61764 idx = nextIndex;
61766 }else{
61767 assert( zRawSql[0]==':' || zRawSql[0]=='$' || zRawSql[0]=='@' );
61768 testcase( zRawSql[0]==':' );
61769 testcase( zRawSql[0]=='$' );
61770 testcase( zRawSql[0]=='@' );
61771 idx = sqlite3VdbeParameterIndex(p, zRawSql, nToken);
61772 assert( idx>0 );
61774 zRawSql += nToken;
61775 nextIndex = idx + 1;
61776 assert( idx>0 && idx<=p->nVar );
61777 pVar = &p->aVar[idx-1];
61778 if( pVar->flags & MEM_Null ){
61779 sqlite3StrAccumAppend(&out, "NULL", 4);
61780 }else if( pVar->flags & MEM_Int ){
61781 sqlite3XPrintf(&out, "%lld", pVar->u.i);
61782 }else if( pVar->flags & MEM_Real ){
61783 sqlite3XPrintf(&out, "%!.15g", pVar->r);
61784 }else if( pVar->flags & MEM_Str ){
61785 #ifndef SQLITE_OMIT_UTF16
61786 u8 enc = ENC(db);
61787 if( enc!=SQLITE_UTF8 ){
61788 Mem utf8;
61789 memset(&utf8, 0, sizeof(utf8));
61790 utf8.db = db;
61791 sqlite3VdbeMemSetStr(&utf8, pVar->z, pVar->n, enc, SQLITE_STATIC);
61792 sqlite3VdbeChangeEncoding(&utf8, SQLITE_UTF8);
61793 sqlite3XPrintf(&out, "'%.*q'", utf8.n, utf8.z);
61794 sqlite3VdbeMemRelease(&utf8);
61795 }else
61796 #endif
61798 sqlite3XPrintf(&out, "'%.*q'", pVar->n, pVar->z);
61800 }else if( pVar->flags & MEM_Zero ){
61801 sqlite3XPrintf(&out, "zeroblob(%d)", pVar->u.nZero);
61802 }else{
61803 assert( pVar->flags & MEM_Blob );
61804 sqlite3StrAccumAppend(&out, "x'", 2);
61805 for(i=0; i<pVar->n; i++){
61806 sqlite3XPrintf(&out, "%02x", pVar->z[i]&0xff);
61808 sqlite3StrAccumAppend(&out, "'", 1);
61812 return sqlite3StrAccumFinish(&out);
61815 #endif /* #ifndef SQLITE_OMIT_TRACE */
61817 /************** End of vdbetrace.c *******************************************/
61818 /************** Begin file vdbe.c ********************************************/
61820 ** 2001 September 15
61822 ** The author disclaims copyright to this source code. In place of
61823 ** a legal notice, here is a blessing:
61825 ** May you do good and not evil.
61826 ** May you find forgiveness for yourself and forgive others.
61827 ** May you share freely, never taking more than you give.
61829 *************************************************************************
61830 ** The code in this file implements execution method of the
61831 ** Virtual Database Engine (VDBE). A separate file ("vdbeaux.c")
61832 ** handles housekeeping details such as creating and deleting
61833 ** VDBE instances. This file is solely interested in executing
61834 ** the VDBE program.
61836 ** In the external interface, an "sqlite3_stmt*" is an opaque pointer
61837 ** to a VDBE.
61839 ** The SQL parser generates a program which is then executed by
61840 ** the VDBE to do the work of the SQL statement. VDBE programs are
61841 ** similar in form to assembly language. The program consists of
61842 ** a linear sequence of operations. Each operation has an opcode
61843 ** and 5 operands. Operands P1, P2, and P3 are integers. Operand P4
61844 ** is a null-terminated string. Operand P5 is an unsigned character.
61845 ** Few opcodes use all 5 operands.
61847 ** Computation results are stored on a set of registers numbered beginning
61848 ** with 1 and going up to Vdbe.nMem. Each register can store
61849 ** either an integer, a null-terminated string, a floating point
61850 ** number, or the SQL "NULL" value. An implicit conversion from one
61851 ** type to the other occurs as necessary.
61853 ** Most of the code in this file is taken up by the sqlite3VdbeExec()
61854 ** function which does the work of interpreting a VDBE program.
61855 ** But other routines are also provided to help in building up
61856 ** a program instruction by instruction.
61858 ** Various scripts scan this source file in order to generate HTML
61859 ** documentation, headers files, or other derived files. The formatting
61860 ** of the code in this file is, therefore, important. See other comments
61861 ** in this file for details. If in doubt, do not deviate from existing
61862 ** commenting and indentation practices when changing or adding code.
61866 ** Invoke this macro on memory cells just prior to changing the
61867 ** value of the cell. This macro verifies that shallow copies are
61868 ** not misused.
61870 #ifdef SQLITE_DEBUG
61871 # define memAboutToChange(P,M) sqlite3VdbeMemPrepareToChange(P,M)
61872 #else
61873 # define memAboutToChange(P,M)
61874 #endif
61877 ** The following global variable is incremented every time a cursor
61878 ** moves, either by the OP_SeekXX, OP_Next, or OP_Prev opcodes. The test
61879 ** procedures use this information to make sure that indices are
61880 ** working correctly. This variable has no function other than to
61881 ** help verify the correct operation of the library.
61883 #ifdef SQLITE_TEST
61884 SQLITE_API int sqlite3_search_count = 0;
61885 #endif
61888 ** When this global variable is positive, it gets decremented once before
61889 ** each instruction in the VDBE. When reaches zero, the u1.isInterrupted
61890 ** field of the sqlite3 structure is set in order to simulate and interrupt.
61892 ** This facility is used for testing purposes only. It does not function
61893 ** in an ordinary build.
61895 #ifdef SQLITE_TEST
61896 SQLITE_API int sqlite3_interrupt_count = 0;
61897 #endif
61900 ** The next global variable is incremented each type the OP_Sort opcode
61901 ** is executed. The test procedures use this information to make sure that
61902 ** sorting is occurring or not occurring at appropriate times. This variable
61903 ** has no function other than to help verify the correct operation of the
61904 ** library.
61906 #ifdef SQLITE_TEST
61907 SQLITE_API int sqlite3_sort_count = 0;
61908 #endif
61911 ** The next global variable records the size of the largest MEM_Blob
61912 ** or MEM_Str that has been used by a VDBE opcode. The test procedures
61913 ** use this information to make sure that the zero-blob functionality
61914 ** is working correctly. This variable has no function other than to
61915 ** help verify the correct operation of the library.
61917 #ifdef SQLITE_TEST
61918 SQLITE_API int sqlite3_max_blobsize = 0;
61919 static void updateMaxBlobsize(Mem *p){
61920 if( (p->flags & (MEM_Str|MEM_Blob))!=0 && p->n>sqlite3_max_blobsize ){
61921 sqlite3_max_blobsize = p->n;
61924 #endif
61927 ** The next global variable is incremented each type the OP_Found opcode
61928 ** is executed. This is used to test whether or not the foreign key
61929 ** operation implemented using OP_FkIsZero is working. This variable
61930 ** has no function other than to help verify the correct operation of the
61931 ** library.
61933 #ifdef SQLITE_TEST
61934 SQLITE_API int sqlite3_found_count = 0;
61935 #endif
61938 ** Test a register to see if it exceeds the current maximum blob size.
61939 ** If it does, record the new maximum blob size.
61941 #if defined(SQLITE_TEST) && !defined(SQLITE_OMIT_BUILTIN_TEST)
61942 # define UPDATE_MAX_BLOBSIZE(P) updateMaxBlobsize(P)
61943 #else
61944 # define UPDATE_MAX_BLOBSIZE(P)
61945 #endif
61948 ** Convert the given register into a string if it isn't one
61949 ** already. Return non-zero if a malloc() fails.
61951 #define Stringify(P, enc) \
61952 if(((P)->flags&(MEM_Str|MEM_Blob))==0 && sqlite3VdbeMemStringify(P,enc)) \
61953 { goto no_mem; }
61956 ** An ephemeral string value (signified by the MEM_Ephem flag) contains
61957 ** a pointer to a dynamically allocated string where some other entity
61958 ** is responsible for deallocating that string. Because the register
61959 ** does not control the string, it might be deleted without the register
61960 ** knowing it.
61962 ** This routine converts an ephemeral string into a dynamically allocated
61963 ** string that the register itself controls. In other words, it
61964 ** converts an MEM_Ephem string into an MEM_Dyn string.
61966 #define Deephemeralize(P) \
61967 if( ((P)->flags&MEM_Ephem)!=0 \
61968 && sqlite3VdbeMemMakeWriteable(P) ){ goto no_mem;}
61971 ** Call sqlite3VdbeMemExpandBlob() on the supplied value (type Mem*)
61972 ** P if required.
61974 #define ExpandBlob(P) (((P)->flags&MEM_Zero)?sqlite3VdbeMemExpandBlob(P):0)
61977 ** Argument pMem points at a register that will be passed to a
61978 ** user-defined function or returned to the user as the result of a query.
61979 ** This routine sets the pMem->type variable used by the sqlite3_value_*()
61980 ** routines.
61982 SQLITE_PRIVATE void sqlite3VdbeMemStoreType(Mem *pMem){
61983 int flags = pMem->flags;
61984 if( flags & MEM_Null ){
61985 pMem->type = SQLITE_NULL;
61987 else if( flags & MEM_Int ){
61988 pMem->type = SQLITE_INTEGER;
61990 else if( flags & MEM_Real ){
61991 pMem->type = SQLITE_FLOAT;
61993 else if( flags & MEM_Str ){
61994 pMem->type = SQLITE_TEXT;
61995 }else{
61996 pMem->type = SQLITE_BLOB;
62001 ** Allocate VdbeCursor number iCur. Return a pointer to it. Return NULL
62002 ** if we run out of memory.
62004 static VdbeCursor *allocateCursor(
62005 Vdbe *p, /* The virtual machine */
62006 int iCur, /* Index of the new VdbeCursor */
62007 int nField, /* Number of fields in the table or index */
62008 int iDb, /* When database the cursor belongs to, or -1 */
62009 int isBtreeCursor /* True for B-Tree. False for pseudo-table or vtab */
62011 /* Find the memory cell that will be used to store the blob of memory
62012 ** required for this VdbeCursor structure. It is convenient to use a
62013 ** vdbe memory cell to manage the memory allocation required for a
62014 ** VdbeCursor structure for the following reasons:
62016 ** * Sometimes cursor numbers are used for a couple of different
62017 ** purposes in a vdbe program. The different uses might require
62018 ** different sized allocations. Memory cells provide growable
62019 ** allocations.
62021 ** * When using ENABLE_MEMORY_MANAGEMENT, memory cell buffers can
62022 ** be freed lazily via the sqlite3_release_memory() API. This
62023 ** minimizes the number of malloc calls made by the system.
62025 ** Memory cells for cursors are allocated at the top of the address
62026 ** space. Memory cell (p->nMem) corresponds to cursor 0. Space for
62027 ** cursor 1 is managed by memory cell (p->nMem-1), etc.
62029 Mem *pMem = &p->aMem[p->nMem-iCur];
62031 int nByte;
62032 VdbeCursor *pCx = 0;
62033 nByte =
62034 ROUND8(sizeof(VdbeCursor)) +
62035 (isBtreeCursor?sqlite3BtreeCursorSize():0) +
62036 2*nField*sizeof(u32);
62038 assert( iCur<p->nCursor );
62039 if( p->apCsr[iCur] ){
62040 sqlite3VdbeFreeCursor(p, p->apCsr[iCur]);
62041 p->apCsr[iCur] = 0;
62043 if( SQLITE_OK==sqlite3VdbeMemGrow(pMem, nByte, 0) ){
62044 p->apCsr[iCur] = pCx = (VdbeCursor*)pMem->z;
62045 memset(pCx, 0, sizeof(VdbeCursor));
62046 pCx->iDb = iDb;
62047 pCx->nField = nField;
62048 if( nField ){
62049 pCx->aType = (u32 *)&pMem->z[ROUND8(sizeof(VdbeCursor))];
62051 if( isBtreeCursor ){
62052 pCx->pCursor = (BtCursor*)
62053 &pMem->z[ROUND8(sizeof(VdbeCursor))+2*nField*sizeof(u32)];
62054 sqlite3BtreeCursorZero(pCx->pCursor);
62057 return pCx;
62061 ** Try to convert a value into a numeric representation if we can
62062 ** do so without loss of information. In other words, if the string
62063 ** looks like a number, convert it into a number. If it does not
62064 ** look like a number, leave it alone.
62066 static void applyNumericAffinity(Mem *pRec){
62067 if( (pRec->flags & (MEM_Real|MEM_Int))==0 ){
62068 double rValue;
62069 i64 iValue;
62070 u8 enc = pRec->enc;
62071 if( (pRec->flags&MEM_Str)==0 ) return;
62072 if( sqlite3AtoF(pRec->z, &rValue, pRec->n, enc)==0 ) return;
62073 if( 0==sqlite3Atoi64(pRec->z, &iValue, pRec->n, enc) ){
62074 pRec->u.i = iValue;
62075 pRec->flags |= MEM_Int;
62076 }else{
62077 pRec->r = rValue;
62078 pRec->flags |= MEM_Real;
62084 ** Processing is determine by the affinity parameter:
62086 ** SQLITE_AFF_INTEGER:
62087 ** SQLITE_AFF_REAL:
62088 ** SQLITE_AFF_NUMERIC:
62089 ** Try to convert pRec to an integer representation or a
62090 ** floating-point representation if an integer representation
62091 ** is not possible. Note that the integer representation is
62092 ** always preferred, even if the affinity is REAL, because
62093 ** an integer representation is more space efficient on disk.
62095 ** SQLITE_AFF_TEXT:
62096 ** Convert pRec to a text representation.
62098 ** SQLITE_AFF_NONE:
62099 ** No-op. pRec is unchanged.
62101 static void applyAffinity(
62102 Mem *pRec, /* The value to apply affinity to */
62103 char affinity, /* The affinity to be applied */
62104 u8 enc /* Use this text encoding */
62106 if( affinity==SQLITE_AFF_TEXT ){
62107 /* Only attempt the conversion to TEXT if there is an integer or real
62108 ** representation (blob and NULL do not get converted) but no string
62109 ** representation.
62111 if( 0==(pRec->flags&MEM_Str) && (pRec->flags&(MEM_Real|MEM_Int)) ){
62112 sqlite3VdbeMemStringify(pRec, enc);
62114 pRec->flags &= ~(MEM_Real|MEM_Int);
62115 }else if( affinity!=SQLITE_AFF_NONE ){
62116 assert( affinity==SQLITE_AFF_INTEGER || affinity==SQLITE_AFF_REAL
62117 || affinity==SQLITE_AFF_NUMERIC );
62118 applyNumericAffinity(pRec);
62119 if( pRec->flags & MEM_Real ){
62120 sqlite3VdbeIntegerAffinity(pRec);
62126 ** Try to convert the type of a function argument or a result column
62127 ** into a numeric representation. Use either INTEGER or REAL whichever
62128 ** is appropriate. But only do the conversion if it is possible without
62129 ** loss of information and return the revised type of the argument.
62131 SQLITE_API int sqlite3_value_numeric_type(sqlite3_value *pVal){
62132 Mem *pMem = (Mem*)pVal;
62133 if( pMem->type==SQLITE_TEXT ){
62134 applyNumericAffinity(pMem);
62135 sqlite3VdbeMemStoreType(pMem);
62137 return pMem->type;
62141 ** Exported version of applyAffinity(). This one works on sqlite3_value*,
62142 ** not the internal Mem* type.
62144 SQLITE_PRIVATE void sqlite3ValueApplyAffinity(
62145 sqlite3_value *pVal,
62146 u8 affinity,
62147 u8 enc
62149 applyAffinity((Mem *)pVal, affinity, enc);
62152 #ifdef SQLITE_DEBUG
62154 ** Write a nice string representation of the contents of cell pMem
62155 ** into buffer zBuf, length nBuf.
62157 SQLITE_PRIVATE void sqlite3VdbeMemPrettyPrint(Mem *pMem, char *zBuf){
62158 char *zCsr = zBuf;
62159 int f = pMem->flags;
62161 static const char *const encnames[] = {"(X)", "(8)", "(16LE)", "(16BE)"};
62163 if( f&MEM_Blob ){
62164 int i;
62165 char c;
62166 if( f & MEM_Dyn ){
62167 c = 'z';
62168 assert( (f & (MEM_Static|MEM_Ephem))==0 );
62169 }else if( f & MEM_Static ){
62170 c = 't';
62171 assert( (f & (MEM_Dyn|MEM_Ephem))==0 );
62172 }else if( f & MEM_Ephem ){
62173 c = 'e';
62174 assert( (f & (MEM_Static|MEM_Dyn))==0 );
62175 }else{
62176 c = 's';
62179 sqlite3_snprintf(100, zCsr, "%c", c);
62180 zCsr += sqlite3Strlen30(zCsr);
62181 sqlite3_snprintf(100, zCsr, "%d[", pMem->n);
62182 zCsr += sqlite3Strlen30(zCsr);
62183 for(i=0; i<16 && i<pMem->n; i++){
62184 sqlite3_snprintf(100, zCsr, "%02X", ((int)pMem->z[i] & 0xFF));
62185 zCsr += sqlite3Strlen30(zCsr);
62187 for(i=0; i<16 && i<pMem->n; i++){
62188 char z = pMem->z[i];
62189 if( z<32 || z>126 ) *zCsr++ = '.';
62190 else *zCsr++ = z;
62193 sqlite3_snprintf(100, zCsr, "]%s", encnames[pMem->enc]);
62194 zCsr += sqlite3Strlen30(zCsr);
62195 if( f & MEM_Zero ){
62196 sqlite3_snprintf(100, zCsr,"+%dz",pMem->u.nZero);
62197 zCsr += sqlite3Strlen30(zCsr);
62199 *zCsr = '\0';
62200 }else if( f & MEM_Str ){
62201 int j, k;
62202 zBuf[0] = ' ';
62203 if( f & MEM_Dyn ){
62204 zBuf[1] = 'z';
62205 assert( (f & (MEM_Static|MEM_Ephem))==0 );
62206 }else if( f & MEM_Static ){
62207 zBuf[1] = 't';
62208 assert( (f & (MEM_Dyn|MEM_Ephem))==0 );
62209 }else if( f & MEM_Ephem ){
62210 zBuf[1] = 'e';
62211 assert( (f & (MEM_Static|MEM_Dyn))==0 );
62212 }else{
62213 zBuf[1] = 's';
62215 k = 2;
62216 sqlite3_snprintf(100, &zBuf[k], "%d", pMem->n);
62217 k += sqlite3Strlen30(&zBuf[k]);
62218 zBuf[k++] = '[';
62219 for(j=0; j<15 && j<pMem->n; j++){
62220 u8 c = pMem->z[j];
62221 if( c>=0x20 && c<0x7f ){
62222 zBuf[k++] = c;
62223 }else{
62224 zBuf[k++] = '.';
62227 zBuf[k++] = ']';
62228 sqlite3_snprintf(100,&zBuf[k], encnames[pMem->enc]);
62229 k += sqlite3Strlen30(&zBuf[k]);
62230 zBuf[k++] = 0;
62233 #endif
62235 #ifdef SQLITE_DEBUG
62237 ** Print the value of a register for tracing purposes:
62239 static void memTracePrint(FILE *out, Mem *p){
62240 if( p->flags & MEM_Null ){
62241 fprintf(out, " NULL");
62242 }else if( (p->flags & (MEM_Int|MEM_Str))==(MEM_Int|MEM_Str) ){
62243 fprintf(out, " si:%lld", p->u.i);
62244 }else if( p->flags & MEM_Int ){
62245 fprintf(out, " i:%lld", p->u.i);
62246 #ifndef SQLITE_OMIT_FLOATING_POINT
62247 }else if( p->flags & MEM_Real ){
62248 fprintf(out, " r:%g", p->r);
62249 #endif
62250 }else if( p->flags & MEM_RowSet ){
62251 fprintf(out, " (rowset)");
62252 }else{
62253 char zBuf[200];
62254 sqlite3VdbeMemPrettyPrint(p, zBuf);
62255 fprintf(out, " ");
62256 fprintf(out, "%s", zBuf);
62259 static void registerTrace(FILE *out, int iReg, Mem *p){
62260 fprintf(out, "REG[%d] = ", iReg);
62261 memTracePrint(out, p);
62262 fprintf(out, "\n");
62264 #endif
62266 #ifdef SQLITE_DEBUG
62267 # define REGISTER_TRACE(R,M) if(p->trace)registerTrace(p->trace,R,M)
62268 #else
62269 # define REGISTER_TRACE(R,M)
62270 #endif
62273 #ifdef VDBE_PROFILE
62276 ** hwtime.h contains inline assembler code for implementing
62277 ** high-performance timing routines.
62279 /************** Include hwtime.h in the middle of vdbe.c *********************/
62280 /************** Begin file hwtime.h ******************************************/
62282 ** 2008 May 27
62284 ** The author disclaims copyright to this source code. In place of
62285 ** a legal notice, here is a blessing:
62287 ** May you do good and not evil.
62288 ** May you find forgiveness for yourself and forgive others.
62289 ** May you share freely, never taking more than you give.
62291 ******************************************************************************
62293 ** This file contains inline asm code for retrieving "high-performance"
62294 ** counters for x86 class CPUs.
62296 #ifndef _HWTIME_H_
62297 #define _HWTIME_H_
62300 ** The following routine only works on pentium-class (or newer) processors.
62301 ** It uses the RDTSC opcode to read the cycle count value out of the
62302 ** processor and returns that value. This can be used for high-res
62303 ** profiling.
62305 #if (defined(__GNUC__) || defined(_MSC_VER)) && \
62306 (defined(i386) || defined(__i386__) || defined(_M_IX86))
62308 #if defined(__GNUC__)
62310 __inline__ sqlite_uint64 sqlite3Hwtime(void){
62311 unsigned int lo, hi;
62312 __asm__ __volatile__ ("rdtsc" : "=a" (lo), "=d" (hi));
62313 return (sqlite_uint64)hi << 32 | lo;
62316 #elif defined(_MSC_VER)
62318 __declspec(naked) __inline sqlite_uint64 __cdecl sqlite3Hwtime(void){
62319 __asm {
62320 rdtsc
62321 ret ; return value at EDX:EAX
62325 #endif
62327 #elif (defined(__GNUC__) && defined(__x86_64__))
62329 __inline__ sqlite_uint64 sqlite3Hwtime(void){
62330 unsigned long val;
62331 __asm__ __volatile__ ("rdtsc" : "=A" (val));
62332 return val;
62335 #elif (defined(__GNUC__) && defined(__ppc__))
62337 __inline__ sqlite_uint64 sqlite3Hwtime(void){
62338 unsigned long long retval;
62339 unsigned long junk;
62340 __asm__ __volatile__ ("\n\
62341 1: mftbu %1\n\
62342 mftb %L0\n\
62343 mftbu %0\n\
62344 cmpw %0,%1\n\
62345 bne 1b"
62346 : "=r" (retval), "=r" (junk));
62347 return retval;
62350 #else
62352 #error Need implementation of sqlite3Hwtime() for your platform.
62355 ** To compile without implementing sqlite3Hwtime() for your platform,
62356 ** you can remove the above #error and use the following
62357 ** stub function. You will lose timing support for many
62358 ** of the debugging and testing utilities, but it should at
62359 ** least compile and run.
62361 SQLITE_PRIVATE sqlite_uint64 sqlite3Hwtime(void){ return ((sqlite_uint64)0); }
62363 #endif
62365 #endif /* !defined(_HWTIME_H_) */
62367 /************** End of hwtime.h **********************************************/
62368 /************** Continuing where we left off in vdbe.c ***********************/
62370 #endif
62373 ** The CHECK_FOR_INTERRUPT macro defined here looks to see if the
62374 ** sqlite3_interrupt() routine has been called. If it has been, then
62375 ** processing of the VDBE program is interrupted.
62377 ** This macro added to every instruction that does a jump in order to
62378 ** implement a loop. This test used to be on every single instruction,
62379 ** but that meant we more testing that we needed. By only testing the
62380 ** flag on jump instructions, we get a (small) speed improvement.
62382 #define CHECK_FOR_INTERRUPT \
62383 if( db->u1.isInterrupted ) goto abort_due_to_interrupt;
62386 #ifndef NDEBUG
62388 ** This function is only called from within an assert() expression. It
62389 ** checks that the sqlite3.nTransaction variable is correctly set to
62390 ** the number of non-transaction savepoints currently in the
62391 ** linked list starting at sqlite3.pSavepoint.
62393 ** Usage:
62395 ** assert( checkSavepointCount(db) );
62397 static int checkSavepointCount(sqlite3 *db){
62398 int n = 0;
62399 Savepoint *p;
62400 for(p=db->pSavepoint; p; p=p->pNext) n++;
62401 assert( n==(db->nSavepoint + db->isTransactionSavepoint) );
62402 return 1;
62404 #endif
62407 ** Transfer error message text from an sqlite3_vtab.zErrMsg (text stored
62408 ** in memory obtained from sqlite3_malloc) into a Vdbe.zErrMsg (text stored
62409 ** in memory obtained from sqlite3DbMalloc).
62411 static void importVtabErrMsg(Vdbe *p, sqlite3_vtab *pVtab){
62412 sqlite3 *db = p->db;
62413 sqlite3DbFree(db, p->zErrMsg);
62414 p->zErrMsg = sqlite3DbStrDup(db, pVtab->zErrMsg);
62415 sqlite3_free(pVtab->zErrMsg);
62416 pVtab->zErrMsg = 0;
62421 ** Execute as much of a VDBE program as we can then return.
62423 ** sqlite3VdbeMakeReady() must be called before this routine in order to
62424 ** close the program with a final OP_Halt and to set up the callbacks
62425 ** and the error message pointer.
62427 ** Whenever a row or result data is available, this routine will either
62428 ** invoke the result callback (if there is one) or return with
62429 ** SQLITE_ROW.
62431 ** If an attempt is made to open a locked database, then this routine
62432 ** will either invoke the busy callback (if there is one) or it will
62433 ** return SQLITE_BUSY.
62435 ** If an error occurs, an error message is written to memory obtained
62436 ** from sqlite3_malloc() and p->zErrMsg is made to point to that memory.
62437 ** The error code is stored in p->rc and this routine returns SQLITE_ERROR.
62439 ** If the callback ever returns non-zero, then the program exits
62440 ** immediately. There will be no error message but the p->rc field is
62441 ** set to SQLITE_ABORT and this routine will return SQLITE_ERROR.
62443 ** A memory allocation error causes p->rc to be set to SQLITE_NOMEM and this
62444 ** routine to return SQLITE_ERROR.
62446 ** Other fatal errors return SQLITE_ERROR.
62448 ** After this routine has finished, sqlite3VdbeFinalize() should be
62449 ** used to clean up the mess that was left behind.
62451 SQLITE_PRIVATE int sqlite3VdbeExec(
62452 Vdbe *p /* The VDBE */
62454 int pc=0; /* The program counter */
62455 Op *aOp = p->aOp; /* Copy of p->aOp */
62456 Op *pOp; /* Current operation */
62457 int rc = SQLITE_OK; /* Value to return */
62458 sqlite3 *db = p->db; /* The database */
62459 u8 resetSchemaOnFault = 0; /* Reset schema after an error if positive */
62460 u8 encoding = ENC(db); /* The database encoding */
62461 #ifndef SQLITE_OMIT_PROGRESS_CALLBACK
62462 int checkProgress; /* True if progress callbacks are enabled */
62463 int nProgressOps = 0; /* Opcodes executed since progress callback. */
62464 #endif
62465 Mem *aMem = p->aMem; /* Copy of p->aMem */
62466 Mem *pIn1 = 0; /* 1st input operand */
62467 Mem *pIn2 = 0; /* 2nd input operand */
62468 Mem *pIn3 = 0; /* 3rd input operand */
62469 Mem *pOut = 0; /* Output operand */
62470 int iCompare = 0; /* Result of last OP_Compare operation */
62471 int *aPermute = 0; /* Permutation of columns for OP_Compare */
62472 #ifdef VDBE_PROFILE
62473 u64 start; /* CPU clock count at start of opcode */
62474 int origPc; /* Program counter at start of opcode */
62475 #endif
62476 /********************************************************************
62477 ** Automatically generated code
62479 ** The following union is automatically generated by the
62480 ** vdbe-compress.tcl script. The purpose of this union is to
62481 ** reduce the amount of stack space required by this function.
62482 ** See comments in the vdbe-compress.tcl script for details.
62484 union vdbeExecUnion {
62485 struct OP_Yield_stack_vars {
62486 int pcDest;
62487 } aa;
62488 struct OP_Variable_stack_vars {
62489 Mem *pVar; /* Value being transferred */
62490 } ab;
62491 struct OP_Move_stack_vars {
62492 char *zMalloc; /* Holding variable for allocated memory */
62493 int n; /* Number of registers left to copy */
62494 int p1; /* Register to copy from */
62495 int p2; /* Register to copy to */
62496 } ac;
62497 struct OP_ResultRow_stack_vars {
62498 Mem *pMem;
62499 int i;
62500 } ad;
62501 struct OP_Concat_stack_vars {
62502 i64 nByte;
62503 } ae;
62504 struct OP_Remainder_stack_vars {
62505 int flags; /* Combined MEM_* flags from both inputs */
62506 i64 iA; /* Integer value of left operand */
62507 i64 iB; /* Integer value of right operand */
62508 double rA; /* Real value of left operand */
62509 double rB; /* Real value of right operand */
62510 } af;
62511 struct OP_Function_stack_vars {
62512 int i;
62513 Mem *pArg;
62514 sqlite3_context ctx;
62515 sqlite3_value **apVal;
62516 int n;
62517 } ag;
62518 struct OP_ShiftRight_stack_vars {
62519 i64 iA;
62520 u64 uA;
62521 i64 iB;
62522 u8 op;
62523 } ah;
62524 struct OP_Ge_stack_vars {
62525 int res; /* Result of the comparison of pIn1 against pIn3 */
62526 char affinity; /* Affinity to use for comparison */
62527 u16 flags1; /* Copy of initial value of pIn1->flags */
62528 u16 flags3; /* Copy of initial value of pIn3->flags */
62529 } ai;
62530 struct OP_Compare_stack_vars {
62531 int n;
62532 int i;
62533 int p1;
62534 int p2;
62535 const KeyInfo *pKeyInfo;
62536 int idx;
62537 CollSeq *pColl; /* Collating sequence to use on this term */
62538 int bRev; /* True for DESCENDING sort order */
62539 } aj;
62540 struct OP_Or_stack_vars {
62541 int v1; /* Left operand: 0==FALSE, 1==TRUE, 2==UNKNOWN or NULL */
62542 int v2; /* Right operand: 0==FALSE, 1==TRUE, 2==UNKNOWN or NULL */
62543 } ak;
62544 struct OP_IfNot_stack_vars {
62545 int c;
62546 } al;
62547 struct OP_Column_stack_vars {
62548 u32 payloadSize; /* Number of bytes in the record */
62549 i64 payloadSize64; /* Number of bytes in the record */
62550 int p1; /* P1 value of the opcode */
62551 int p2; /* column number to retrieve */
62552 VdbeCursor *pC; /* The VDBE cursor */
62553 char *zRec; /* Pointer to complete record-data */
62554 BtCursor *pCrsr; /* The BTree cursor */
62555 u32 *aType; /* aType[i] holds the numeric type of the i-th column */
62556 u32 *aOffset; /* aOffset[i] is offset to start of data for i-th column */
62557 int nField; /* number of fields in the record */
62558 int len; /* The length of the serialized data for the column */
62559 int i; /* Loop counter */
62560 char *zData; /* Part of the record being decoded */
62561 Mem *pDest; /* Where to write the extracted value */
62562 Mem sMem; /* For storing the record being decoded */
62563 u8 *zIdx; /* Index into header */
62564 u8 *zEndHdr; /* Pointer to first byte after the header */
62565 u32 offset; /* Offset into the data */
62566 u32 szField; /* Number of bytes in the content of a field */
62567 int szHdr; /* Size of the header size field at start of record */
62568 int avail; /* Number of bytes of available data */
62569 Mem *pReg; /* PseudoTable input register */
62570 } am;
62571 struct OP_Affinity_stack_vars {
62572 const char *zAffinity; /* The affinity to be applied */
62573 char cAff; /* A single character of affinity */
62574 } an;
62575 struct OP_MakeRecord_stack_vars {
62576 u8 *zNewRecord; /* A buffer to hold the data for the new record */
62577 Mem *pRec; /* The new record */
62578 u64 nData; /* Number of bytes of data space */
62579 int nHdr; /* Number of bytes of header space */
62580 i64 nByte; /* Data space required for this record */
62581 int nZero; /* Number of zero bytes at the end of the record */
62582 int nVarint; /* Number of bytes in a varint */
62583 u32 serial_type; /* Type field */
62584 Mem *pData0; /* First field to be combined into the record */
62585 Mem *pLast; /* Last field of the record */
62586 int nField; /* Number of fields in the record */
62587 char *zAffinity; /* The affinity string for the record */
62588 int file_format; /* File format to use for encoding */
62589 int i; /* Space used in zNewRecord[] */
62590 int len; /* Length of a field */
62591 } ao;
62592 struct OP_Count_stack_vars {
62593 i64 nEntry;
62594 BtCursor *pCrsr;
62595 } ap;
62596 struct OP_Savepoint_stack_vars {
62597 int p1; /* Value of P1 operand */
62598 char *zName; /* Name of savepoint */
62599 int nName;
62600 Savepoint *pNew;
62601 Savepoint *pSavepoint;
62602 Savepoint *pTmp;
62603 int iSavepoint;
62604 int ii;
62605 } aq;
62606 struct OP_AutoCommit_stack_vars {
62607 int desiredAutoCommit;
62608 int iRollback;
62609 int turnOnAC;
62610 } ar;
62611 struct OP_Transaction_stack_vars {
62612 Btree *pBt;
62613 } as;
62614 struct OP_ReadCookie_stack_vars {
62615 int iMeta;
62616 int iDb;
62617 int iCookie;
62618 } at;
62619 struct OP_SetCookie_stack_vars {
62620 Db *pDb;
62621 } au;
62622 struct OP_VerifyCookie_stack_vars {
62623 int iMeta;
62624 int iGen;
62625 Btree *pBt;
62626 } av;
62627 struct OP_OpenWrite_stack_vars {
62628 int nField;
62629 KeyInfo *pKeyInfo;
62630 int p2;
62631 int iDb;
62632 int wrFlag;
62633 Btree *pX;
62634 VdbeCursor *pCur;
62635 Db *pDb;
62636 } aw;
62637 struct OP_OpenEphemeral_stack_vars {
62638 VdbeCursor *pCx;
62639 } ax;
62640 struct OP_OpenPseudo_stack_vars {
62641 VdbeCursor *pCx;
62642 } ay;
62643 struct OP_SeekGt_stack_vars {
62644 int res;
62645 int oc;
62646 VdbeCursor *pC;
62647 UnpackedRecord r;
62648 int nField;
62649 i64 iKey; /* The rowid we are to seek to */
62650 } az;
62651 struct OP_Seek_stack_vars {
62652 VdbeCursor *pC;
62653 } ba;
62654 struct OP_Found_stack_vars {
62655 int alreadyExists;
62656 VdbeCursor *pC;
62657 int res;
62658 UnpackedRecord *pIdxKey;
62659 UnpackedRecord r;
62660 char aTempRec[ROUND8(sizeof(UnpackedRecord)) + sizeof(Mem)*3 + 7];
62661 } bb;
62662 struct OP_IsUnique_stack_vars {
62663 u16 ii;
62664 VdbeCursor *pCx;
62665 BtCursor *pCrsr;
62666 u16 nField;
62667 Mem *aMx;
62668 UnpackedRecord r; /* B-Tree index search key */
62669 i64 R; /* Rowid stored in register P3 */
62670 } bc;
62671 struct OP_NotExists_stack_vars {
62672 VdbeCursor *pC;
62673 BtCursor *pCrsr;
62674 int res;
62675 u64 iKey;
62676 } bd;
62677 struct OP_NewRowid_stack_vars {
62678 i64 v; /* The new rowid */
62679 VdbeCursor *pC; /* Cursor of table to get the new rowid */
62680 int res; /* Result of an sqlite3BtreeLast() */
62681 int cnt; /* Counter to limit the number of searches */
62682 Mem *pMem; /* Register holding largest rowid for AUTOINCREMENT */
62683 VdbeFrame *pFrame; /* Root frame of VDBE */
62684 } be;
62685 struct OP_InsertInt_stack_vars {
62686 Mem *pData; /* MEM cell holding data for the record to be inserted */
62687 Mem *pKey; /* MEM cell holding key for the record */
62688 i64 iKey; /* The integer ROWID or key for the record to be inserted */
62689 VdbeCursor *pC; /* Cursor to table into which insert is written */
62690 int nZero; /* Number of zero-bytes to append */
62691 int seekResult; /* Result of prior seek or 0 if no USESEEKRESULT flag */
62692 const char *zDb; /* database name - used by the update hook */
62693 const char *zTbl; /* Table name - used by the opdate hook */
62694 int op; /* Opcode for update hook: SQLITE_UPDATE or SQLITE_INSERT */
62695 } bf;
62696 struct OP_Delete_stack_vars {
62697 i64 iKey;
62698 VdbeCursor *pC;
62699 } bg;
62700 struct OP_RowData_stack_vars {
62701 VdbeCursor *pC;
62702 BtCursor *pCrsr;
62703 u32 n;
62704 i64 n64;
62705 } bh;
62706 struct OP_Rowid_stack_vars {
62707 VdbeCursor *pC;
62708 i64 v;
62709 sqlite3_vtab *pVtab;
62710 const sqlite3_module *pModule;
62711 } bi;
62712 struct OP_NullRow_stack_vars {
62713 VdbeCursor *pC;
62714 } bj;
62715 struct OP_Last_stack_vars {
62716 VdbeCursor *pC;
62717 BtCursor *pCrsr;
62718 int res;
62719 } bk;
62720 struct OP_Rewind_stack_vars {
62721 VdbeCursor *pC;
62722 BtCursor *pCrsr;
62723 int res;
62724 } bl;
62725 struct OP_Next_stack_vars {
62726 VdbeCursor *pC;
62727 BtCursor *pCrsr;
62728 int res;
62729 } bm;
62730 struct OP_IdxInsert_stack_vars {
62731 VdbeCursor *pC;
62732 BtCursor *pCrsr;
62733 int nKey;
62734 const char *zKey;
62735 } bn;
62736 struct OP_IdxDelete_stack_vars {
62737 VdbeCursor *pC;
62738 BtCursor *pCrsr;
62739 int res;
62740 UnpackedRecord r;
62741 } bo;
62742 struct OP_IdxRowid_stack_vars {
62743 BtCursor *pCrsr;
62744 VdbeCursor *pC;
62745 i64 rowid;
62746 } bp;
62747 struct OP_IdxGE_stack_vars {
62748 VdbeCursor *pC;
62749 int res;
62750 UnpackedRecord r;
62751 } bq;
62752 struct OP_Destroy_stack_vars {
62753 int iMoved;
62754 int iCnt;
62755 Vdbe *pVdbe;
62756 int iDb;
62757 } br;
62758 struct OP_Clear_stack_vars {
62759 int nChange;
62760 } bs;
62761 struct OP_CreateTable_stack_vars {
62762 int pgno;
62763 int flags;
62764 Db *pDb;
62765 } bt;
62766 struct OP_ParseSchema_stack_vars {
62767 int iDb;
62768 const char *zMaster;
62769 char *zSql;
62770 InitData initData;
62771 } bu;
62772 struct OP_IntegrityCk_stack_vars {
62773 int nRoot; /* Number of tables to check. (Number of root pages.) */
62774 int *aRoot; /* Array of rootpage numbers for tables to be checked */
62775 int j; /* Loop counter */
62776 int nErr; /* Number of errors reported */
62777 char *z; /* Text of the error report */
62778 Mem *pnErr; /* Register keeping track of errors remaining */
62779 } bv;
62780 struct OP_RowSetRead_stack_vars {
62781 i64 val;
62782 } bw;
62783 struct OP_RowSetTest_stack_vars {
62784 int iSet;
62785 int exists;
62786 } bx;
62787 struct OP_Program_stack_vars {
62788 int nMem; /* Number of memory registers for sub-program */
62789 int nByte; /* Bytes of runtime space required for sub-program */
62790 Mem *pRt; /* Register to allocate runtime space */
62791 Mem *pMem; /* Used to iterate through memory cells */
62792 Mem *pEnd; /* Last memory cell in new array */
62793 VdbeFrame *pFrame; /* New vdbe frame to execute in */
62794 SubProgram *pProgram; /* Sub-program to execute */
62795 void *t; /* Token identifying trigger */
62796 } by;
62797 struct OP_Param_stack_vars {
62798 VdbeFrame *pFrame;
62799 Mem *pIn;
62800 } bz;
62801 struct OP_MemMax_stack_vars {
62802 Mem *pIn1;
62803 VdbeFrame *pFrame;
62804 } ca;
62805 struct OP_AggStep_stack_vars {
62806 int n;
62807 int i;
62808 Mem *pMem;
62809 Mem *pRec;
62810 sqlite3_context ctx;
62811 sqlite3_value **apVal;
62812 } cb;
62813 struct OP_AggFinal_stack_vars {
62814 Mem *pMem;
62815 } cc;
62816 struct OP_Checkpoint_stack_vars {
62817 int i; /* Loop counter */
62818 int aRes[3]; /* Results */
62819 Mem *pMem; /* Write results here */
62820 } cd;
62821 struct OP_JournalMode_stack_vars {
62822 Btree *pBt; /* Btree to change journal mode of */
62823 Pager *pPager; /* Pager associated with pBt */
62824 int eNew; /* New journal mode */
62825 int eOld; /* The old journal mode */
62826 const char *zFilename; /* Name of database file for pPager */
62827 } ce;
62828 struct OP_IncrVacuum_stack_vars {
62829 Btree *pBt;
62830 } cf;
62831 struct OP_VBegin_stack_vars {
62832 VTable *pVTab;
62833 } cg;
62834 struct OP_VOpen_stack_vars {
62835 VdbeCursor *pCur;
62836 sqlite3_vtab_cursor *pVtabCursor;
62837 sqlite3_vtab *pVtab;
62838 sqlite3_module *pModule;
62839 } ch;
62840 struct OP_VFilter_stack_vars {
62841 int nArg;
62842 int iQuery;
62843 const sqlite3_module *pModule;
62844 Mem *pQuery;
62845 Mem *pArgc;
62846 sqlite3_vtab_cursor *pVtabCursor;
62847 sqlite3_vtab *pVtab;
62848 VdbeCursor *pCur;
62849 int res;
62850 int i;
62851 Mem **apArg;
62852 } ci;
62853 struct OP_VColumn_stack_vars {
62854 sqlite3_vtab *pVtab;
62855 const sqlite3_module *pModule;
62856 Mem *pDest;
62857 sqlite3_context sContext;
62858 } cj;
62859 struct OP_VNext_stack_vars {
62860 sqlite3_vtab *pVtab;
62861 const sqlite3_module *pModule;
62862 int res;
62863 VdbeCursor *pCur;
62864 } ck;
62865 struct OP_VRename_stack_vars {
62866 sqlite3_vtab *pVtab;
62867 Mem *pName;
62868 } cl;
62869 struct OP_VUpdate_stack_vars {
62870 sqlite3_vtab *pVtab;
62871 sqlite3_module *pModule;
62872 int nArg;
62873 int i;
62874 sqlite_int64 rowid;
62875 Mem **apArg;
62876 Mem *pX;
62877 } cm;
62878 struct OP_Trace_stack_vars {
62879 char *zTrace;
62880 } cn;
62881 } u;
62882 /* End automatically generated code
62883 ********************************************************************/
62885 assert( p->magic==VDBE_MAGIC_RUN ); /* sqlite3_step() verifies this */
62886 sqlite3VdbeEnter(p);
62887 if( p->rc==SQLITE_NOMEM ){
62888 /* This happens if a malloc() inside a call to sqlite3_column_text() or
62889 ** sqlite3_column_text16() failed. */
62890 goto no_mem;
62892 assert( p->rc==SQLITE_OK || p->rc==SQLITE_BUSY );
62893 p->rc = SQLITE_OK;
62894 assert( p->explain==0 );
62895 p->pResultSet = 0;
62896 db->busyHandler.nBusy = 0;
62897 CHECK_FOR_INTERRUPT;
62898 sqlite3VdbeIOTraceSql(p);
62899 #ifndef SQLITE_OMIT_PROGRESS_CALLBACK
62900 checkProgress = db->xProgress!=0;
62901 #endif
62902 #ifdef SQLITE_DEBUG
62903 sqlite3BeginBenignMalloc();
62904 if( p->pc==0 && (p->db->flags & SQLITE_VdbeListing)!=0 ){
62905 int i;
62906 printf("VDBE Program Listing:\n");
62907 sqlite3VdbePrintSql(p);
62908 for(i=0; i<p->nOp; i++){
62909 sqlite3VdbePrintOp(stdout, i, &aOp[i]);
62912 sqlite3EndBenignMalloc();
62913 #endif
62914 for(pc=p->pc; rc==SQLITE_OK; pc++){
62915 assert( pc>=0 && pc<p->nOp );
62916 if( db->mallocFailed ) goto no_mem;
62917 #ifdef VDBE_PROFILE
62918 origPc = pc;
62919 start = sqlite3Hwtime();
62920 #endif
62921 pOp = &aOp[pc];
62923 /* Only allow tracing if SQLITE_DEBUG is defined.
62925 #ifdef SQLITE_DEBUG
62926 if( p->trace ){
62927 if( pc==0 ){
62928 printf("VDBE Execution Trace:\n");
62929 sqlite3VdbePrintSql(p);
62931 sqlite3VdbePrintOp(p->trace, pc, pOp);
62933 #endif
62936 /* Check to see if we need to simulate an interrupt. This only happens
62937 ** if we have a special test build.
62939 #ifdef SQLITE_TEST
62940 if( sqlite3_interrupt_count>0 ){
62941 sqlite3_interrupt_count--;
62942 if( sqlite3_interrupt_count==0 ){
62943 sqlite3_interrupt(db);
62946 #endif
62948 #ifndef SQLITE_OMIT_PROGRESS_CALLBACK
62949 /* Call the progress callback if it is configured and the required number
62950 ** of VDBE ops have been executed (either since this invocation of
62951 ** sqlite3VdbeExec() or since last time the progress callback was called).
62952 ** If the progress callback returns non-zero, exit the virtual machine with
62953 ** a return code SQLITE_ABORT.
62955 if( checkProgress ){
62956 if( db->nProgressOps==nProgressOps ){
62957 int prc;
62958 prc = db->xProgress(db->pProgressArg);
62959 if( prc!=0 ){
62960 rc = SQLITE_INTERRUPT;
62961 goto vdbe_error_halt;
62963 nProgressOps = 0;
62965 nProgressOps++;
62967 #endif
62969 /* On any opcode with the "out2-prerelase" tag, free any
62970 ** external allocations out of mem[p2] and set mem[p2] to be
62971 ** an undefined integer. Opcodes will either fill in the integer
62972 ** value or convert mem[p2] to a different type.
62974 assert( pOp->opflags==sqlite3OpcodeProperty[pOp->opcode] );
62975 if( pOp->opflags & OPFLG_OUT2_PRERELEASE ){
62976 assert( pOp->p2>0 );
62977 assert( pOp->p2<=p->nMem );
62978 pOut = &aMem[pOp->p2];
62979 memAboutToChange(p, pOut);
62980 sqlite3VdbeMemReleaseExternal(pOut);
62981 pOut->flags = MEM_Int;
62984 /* Sanity checking on other operands */
62985 #ifdef SQLITE_DEBUG
62986 if( (pOp->opflags & OPFLG_IN1)!=0 ){
62987 assert( pOp->p1>0 );
62988 assert( pOp->p1<=p->nMem );
62989 assert( memIsValid(&aMem[pOp->p1]) );
62990 REGISTER_TRACE(pOp->p1, &aMem[pOp->p1]);
62992 if( (pOp->opflags & OPFLG_IN2)!=0 ){
62993 assert( pOp->p2>0 );
62994 assert( pOp->p2<=p->nMem );
62995 assert( memIsValid(&aMem[pOp->p2]) );
62996 REGISTER_TRACE(pOp->p2, &aMem[pOp->p2]);
62998 if( (pOp->opflags & OPFLG_IN3)!=0 ){
62999 assert( pOp->p3>0 );
63000 assert( pOp->p3<=p->nMem );
63001 assert( memIsValid(&aMem[pOp->p3]) );
63002 REGISTER_TRACE(pOp->p3, &aMem[pOp->p3]);
63004 if( (pOp->opflags & OPFLG_OUT2)!=0 ){
63005 assert( pOp->p2>0 );
63006 assert( pOp->p2<=p->nMem );
63007 memAboutToChange(p, &aMem[pOp->p2]);
63009 if( (pOp->opflags & OPFLG_OUT3)!=0 ){
63010 assert( pOp->p3>0 );
63011 assert( pOp->p3<=p->nMem );
63012 memAboutToChange(p, &aMem[pOp->p3]);
63014 #endif
63016 switch( pOp->opcode ){
63018 /*****************************************************************************
63019 ** What follows is a massive switch statement where each case implements a
63020 ** separate instruction in the virtual machine. If we follow the usual
63021 ** indentation conventions, each case should be indented by 6 spaces. But
63022 ** that is a lot of wasted space on the left margin. So the code within
63023 ** the switch statement will break with convention and be flush-left. Another
63024 ** big comment (similar to this one) will mark the point in the code where
63025 ** we transition back to normal indentation.
63027 ** The formatting of each case is important. The makefile for SQLite
63028 ** generates two C files "opcodes.h" and "opcodes.c" by scanning this
63029 ** file looking for lines that begin with "case OP_". The opcodes.h files
63030 ** will be filled with #defines that give unique integer values to each
63031 ** opcode and the opcodes.c file is filled with an array of strings where
63032 ** each string is the symbolic name for the corresponding opcode. If the
63033 ** case statement is followed by a comment of the form "/# same as ... #/"
63034 ** that comment is used to determine the particular value of the opcode.
63036 ** Other keywords in the comment that follows each case are used to
63037 ** construct the OPFLG_INITIALIZER value that initializes opcodeProperty[].
63038 ** Keywords include: in1, in2, in3, out2_prerelease, out2, out3. See
63039 ** the mkopcodeh.awk script for additional information.
63041 ** Documentation about VDBE opcodes is generated by scanning this file
63042 ** for lines of that contain "Opcode:". That line and all subsequent
63043 ** comment lines are used in the generation of the opcode.html documentation
63044 ** file.
63046 ** SUMMARY:
63048 ** Formatting is important to scripts that scan this file.
63049 ** Do not deviate from the formatting style currently in use.
63051 *****************************************************************************/
63053 /* Opcode: Goto * P2 * * *
63055 ** An unconditional jump to address P2.
63056 ** The next instruction executed will be
63057 ** the one at index P2 from the beginning of
63058 ** the program.
63060 case OP_Goto: { /* jump */
63061 CHECK_FOR_INTERRUPT;
63062 pc = pOp->p2 - 1;
63063 break;
63066 /* Opcode: Gosub P1 P2 * * *
63068 ** Write the current address onto register P1
63069 ** and then jump to address P2.
63071 case OP_Gosub: { /* jump, in1 */
63072 pIn1 = &aMem[pOp->p1];
63073 assert( (pIn1->flags & MEM_Dyn)==0 );
63074 memAboutToChange(p, pIn1);
63075 pIn1->flags = MEM_Int;
63076 pIn1->u.i = pc;
63077 REGISTER_TRACE(pOp->p1, pIn1);
63078 pc = pOp->p2 - 1;
63079 break;
63082 /* Opcode: Return P1 * * * *
63084 ** Jump to the next instruction after the address in register P1.
63086 case OP_Return: { /* in1 */
63087 pIn1 = &aMem[pOp->p1];
63088 assert( pIn1->flags & MEM_Int );
63089 pc = (int)pIn1->u.i;
63090 break;
63093 /* Opcode: Yield P1 * * * *
63095 ** Swap the program counter with the value in register P1.
63097 case OP_Yield: { /* in1 */
63098 #if 0 /* local variables moved into u.aa */
63099 int pcDest;
63100 #endif /* local variables moved into u.aa */
63101 pIn1 = &aMem[pOp->p1];
63102 assert( (pIn1->flags & MEM_Dyn)==0 );
63103 pIn1->flags = MEM_Int;
63104 u.aa.pcDest = (int)pIn1->u.i;
63105 pIn1->u.i = pc;
63106 REGISTER_TRACE(pOp->p1, pIn1);
63107 pc = u.aa.pcDest;
63108 break;
63111 /* Opcode: HaltIfNull P1 P2 P3 P4 *
63113 ** Check the value in register P3. If is is NULL then Halt using
63114 ** parameter P1, P2, and P4 as if this were a Halt instruction. If the
63115 ** value in register P3 is not NULL, then this routine is a no-op.
63117 case OP_HaltIfNull: { /* in3 */
63118 pIn3 = &aMem[pOp->p3];
63119 if( (pIn3->flags & MEM_Null)==0 ) break;
63120 /* Fall through into OP_Halt */
63123 /* Opcode: Halt P1 P2 * P4 *
63125 ** Exit immediately. All open cursors, etc are closed
63126 ** automatically.
63128 ** P1 is the result code returned by sqlite3_exec(), sqlite3_reset(),
63129 ** or sqlite3_finalize(). For a normal halt, this should be SQLITE_OK (0).
63130 ** For errors, it can be some other value. If P1!=0 then P2 will determine
63131 ** whether or not to rollback the current transaction. Do not rollback
63132 ** if P2==OE_Fail. Do the rollback if P2==OE_Rollback. If P2==OE_Abort,
63133 ** then back out all changes that have occurred during this execution of the
63134 ** VDBE, but do not rollback the transaction.
63136 ** If P4 is not null then it is an error message string.
63138 ** There is an implied "Halt 0 0 0" instruction inserted at the very end of
63139 ** every program. So a jump past the last instruction of the program
63140 ** is the same as executing Halt.
63142 case OP_Halt: {
63143 if( pOp->p1==SQLITE_OK && p->pFrame ){
63144 /* Halt the sub-program. Return control to the parent frame. */
63145 VdbeFrame *pFrame = p->pFrame;
63146 p->pFrame = pFrame->pParent;
63147 p->nFrame--;
63148 sqlite3VdbeSetChanges(db, p->nChange);
63149 pc = sqlite3VdbeFrameRestore(pFrame);
63150 if( pOp->p2==OE_Ignore ){
63151 /* Instruction pc is the OP_Program that invoked the sub-program
63152 ** currently being halted. If the p2 instruction of this OP_Halt
63153 ** instruction is set to OE_Ignore, then the sub-program is throwing
63154 ** an IGNORE exception. In this case jump to the address specified
63155 ** as the p2 of the calling OP_Program. */
63156 pc = p->aOp[pc].p2-1;
63158 aOp = p->aOp;
63159 aMem = p->aMem;
63160 break;
63163 p->rc = pOp->p1;
63164 p->errorAction = (u8)pOp->p2;
63165 p->pc = pc;
63166 if( pOp->p4.z ){
63167 assert( p->rc!=SQLITE_OK );
63168 sqlite3SetString(&p->zErrMsg, db, "%s", pOp->p4.z);
63169 testcase( sqlite3GlobalConfig.xLog!=0 );
63170 sqlite3_log(pOp->p1, "abort at %d in [%s]: %s", pc, p->zSql, pOp->p4.z);
63171 }else if( p->rc ){
63172 testcase( sqlite3GlobalConfig.xLog!=0 );
63173 sqlite3_log(pOp->p1, "constraint failed at %d in [%s]", pc, p->zSql);
63175 rc = sqlite3VdbeHalt(p);
63176 assert( rc==SQLITE_BUSY || rc==SQLITE_OK || rc==SQLITE_ERROR );
63177 if( rc==SQLITE_BUSY ){
63178 p->rc = rc = SQLITE_BUSY;
63179 }else{
63180 assert( rc==SQLITE_OK || p->rc==SQLITE_CONSTRAINT );
63181 assert( rc==SQLITE_OK || db->nDeferredCons>0 );
63182 rc = p->rc ? SQLITE_ERROR : SQLITE_DONE;
63184 goto vdbe_return;
63187 /* Opcode: Integer P1 P2 * * *
63189 ** The 32-bit integer value P1 is written into register P2.
63191 case OP_Integer: { /* out2-prerelease */
63192 pOut->u.i = pOp->p1;
63193 break;
63196 /* Opcode: Int64 * P2 * P4 *
63198 ** P4 is a pointer to a 64-bit integer value.
63199 ** Write that value into register P2.
63201 case OP_Int64: { /* out2-prerelease */
63202 assert( pOp->p4.pI64!=0 );
63203 pOut->u.i = *pOp->p4.pI64;
63204 break;
63207 #ifndef SQLITE_OMIT_FLOATING_POINT
63208 /* Opcode: Real * P2 * P4 *
63210 ** P4 is a pointer to a 64-bit floating point value.
63211 ** Write that value into register P2.
63213 case OP_Real: { /* same as TK_FLOAT, out2-prerelease */
63214 pOut->flags = MEM_Real;
63215 assert( !sqlite3IsNaN(*pOp->p4.pReal) );
63216 pOut->r = *pOp->p4.pReal;
63217 break;
63219 #endif
63221 /* Opcode: String8 * P2 * P4 *
63223 ** P4 points to a nul terminated UTF-8 string. This opcode is transformed
63224 ** into an OP_String before it is executed for the first time.
63226 case OP_String8: { /* same as TK_STRING, out2-prerelease */
63227 assert( pOp->p4.z!=0 );
63228 pOp->opcode = OP_String;
63229 pOp->p1 = sqlite3Strlen30(pOp->p4.z);
63231 #ifndef SQLITE_OMIT_UTF16
63232 if( encoding!=SQLITE_UTF8 ){
63233 rc = sqlite3VdbeMemSetStr(pOut, pOp->p4.z, -1, SQLITE_UTF8, SQLITE_STATIC);
63234 if( rc==SQLITE_TOOBIG ) goto too_big;
63235 if( SQLITE_OK!=sqlite3VdbeChangeEncoding(pOut, encoding) ) goto no_mem;
63236 assert( pOut->zMalloc==pOut->z );
63237 assert( pOut->flags & MEM_Dyn );
63238 pOut->zMalloc = 0;
63239 pOut->flags |= MEM_Static;
63240 pOut->flags &= ~MEM_Dyn;
63241 if( pOp->p4type==P4_DYNAMIC ){
63242 sqlite3DbFree(db, pOp->p4.z);
63244 pOp->p4type = P4_DYNAMIC;
63245 pOp->p4.z = pOut->z;
63246 pOp->p1 = pOut->n;
63248 #endif
63249 if( pOp->p1>db->aLimit[SQLITE_LIMIT_LENGTH] ){
63250 goto too_big;
63252 /* Fall through to the next case, OP_String */
63255 /* Opcode: String P1 P2 * P4 *
63257 ** The string value P4 of length P1 (bytes) is stored in register P2.
63259 case OP_String: { /* out2-prerelease */
63260 assert( pOp->p4.z!=0 );
63261 pOut->flags = MEM_Str|MEM_Static|MEM_Term;
63262 pOut->z = pOp->p4.z;
63263 pOut->n = pOp->p1;
63264 pOut->enc = encoding;
63265 UPDATE_MAX_BLOBSIZE(pOut);
63266 break;
63269 /* Opcode: Null * P2 * * *
63271 ** Write a NULL into register P2.
63273 case OP_Null: { /* out2-prerelease */
63274 pOut->flags = MEM_Null;
63275 break;
63279 /* Opcode: Blob P1 P2 * P4
63281 ** P4 points to a blob of data P1 bytes long. Store this
63282 ** blob in register P2.
63284 case OP_Blob: { /* out2-prerelease */
63285 assert( pOp->p1 <= SQLITE_MAX_LENGTH );
63286 sqlite3VdbeMemSetStr(pOut, pOp->p4.z, pOp->p1, 0, 0);
63287 pOut->enc = encoding;
63288 UPDATE_MAX_BLOBSIZE(pOut);
63289 break;
63292 /* Opcode: Variable P1 P2 * P4 *
63294 ** Transfer the values of bound parameter P1 into register P2
63296 ** If the parameter is named, then its name appears in P4 and P3==1.
63297 ** The P4 value is used by sqlite3_bind_parameter_name().
63299 case OP_Variable: { /* out2-prerelease */
63300 #if 0 /* local variables moved into u.ab */
63301 Mem *pVar; /* Value being transferred */
63302 #endif /* local variables moved into u.ab */
63304 assert( pOp->p1>0 && pOp->p1<=p->nVar );
63305 u.ab.pVar = &p->aVar[pOp->p1 - 1];
63306 if( sqlite3VdbeMemTooBig(u.ab.pVar) ){
63307 goto too_big;
63309 sqlite3VdbeMemShallowCopy(pOut, u.ab.pVar, MEM_Static);
63310 UPDATE_MAX_BLOBSIZE(pOut);
63311 break;
63314 /* Opcode: Move P1 P2 P3 * *
63316 ** Move the values in register P1..P1+P3-1 over into
63317 ** registers P2..P2+P3-1. Registers P1..P1+P1-1 are
63318 ** left holding a NULL. It is an error for register ranges
63319 ** P1..P1+P3-1 and P2..P2+P3-1 to overlap.
63321 case OP_Move: {
63322 #if 0 /* local variables moved into u.ac */
63323 char *zMalloc; /* Holding variable for allocated memory */
63324 int n; /* Number of registers left to copy */
63325 int p1; /* Register to copy from */
63326 int p2; /* Register to copy to */
63327 #endif /* local variables moved into u.ac */
63329 u.ac.n = pOp->p3;
63330 u.ac.p1 = pOp->p1;
63331 u.ac.p2 = pOp->p2;
63332 assert( u.ac.n>0 && u.ac.p1>0 && u.ac.p2>0 );
63333 assert( u.ac.p1+u.ac.n<=u.ac.p2 || u.ac.p2+u.ac.n<=u.ac.p1 );
63335 pIn1 = &aMem[u.ac.p1];
63336 pOut = &aMem[u.ac.p2];
63337 while( u.ac.n-- ){
63338 assert( pOut<=&aMem[p->nMem] );
63339 assert( pIn1<=&aMem[p->nMem] );
63340 assert( memIsValid(pIn1) );
63341 memAboutToChange(p, pOut);
63342 u.ac.zMalloc = pOut->zMalloc;
63343 pOut->zMalloc = 0;
63344 sqlite3VdbeMemMove(pOut, pIn1);
63345 pIn1->zMalloc = u.ac.zMalloc;
63346 REGISTER_TRACE(u.ac.p2++, pOut);
63347 pIn1++;
63348 pOut++;
63350 break;
63353 /* Opcode: Copy P1 P2 * * *
63355 ** Make a copy of register P1 into register P2.
63357 ** This instruction makes a deep copy of the value. A duplicate
63358 ** is made of any string or blob constant. See also OP_SCopy.
63360 case OP_Copy: { /* in1, out2 */
63361 pIn1 = &aMem[pOp->p1];
63362 pOut = &aMem[pOp->p2];
63363 assert( pOut!=pIn1 );
63364 sqlite3VdbeMemShallowCopy(pOut, pIn1, MEM_Ephem);
63365 Deephemeralize(pOut);
63366 REGISTER_TRACE(pOp->p2, pOut);
63367 break;
63370 /* Opcode: SCopy P1 P2 * * *
63372 ** Make a shallow copy of register P1 into register P2.
63374 ** This instruction makes a shallow copy of the value. If the value
63375 ** is a string or blob, then the copy is only a pointer to the
63376 ** original and hence if the original changes so will the copy.
63377 ** Worse, if the original is deallocated, the copy becomes invalid.
63378 ** Thus the program must guarantee that the original will not change
63379 ** during the lifetime of the copy. Use OP_Copy to make a complete
63380 ** copy.
63382 case OP_SCopy: { /* in1, out2 */
63383 pIn1 = &aMem[pOp->p1];
63384 pOut = &aMem[pOp->p2];
63385 assert( pOut!=pIn1 );
63386 sqlite3VdbeMemShallowCopy(pOut, pIn1, MEM_Ephem);
63387 #ifdef SQLITE_DEBUG
63388 if( pOut->pScopyFrom==0 ) pOut->pScopyFrom = pIn1;
63389 #endif
63390 REGISTER_TRACE(pOp->p2, pOut);
63391 break;
63394 /* Opcode: ResultRow P1 P2 * * *
63396 ** The registers P1 through P1+P2-1 contain a single row of
63397 ** results. This opcode causes the sqlite3_step() call to terminate
63398 ** with an SQLITE_ROW return code and it sets up the sqlite3_stmt
63399 ** structure to provide access to the top P1 values as the result
63400 ** row.
63402 case OP_ResultRow: {
63403 #if 0 /* local variables moved into u.ad */
63404 Mem *pMem;
63405 int i;
63406 #endif /* local variables moved into u.ad */
63407 assert( p->nResColumn==pOp->p2 );
63408 assert( pOp->p1>0 );
63409 assert( pOp->p1+pOp->p2<=p->nMem+1 );
63411 /* If this statement has violated immediate foreign key constraints, do
63412 ** not return the number of rows modified. And do not RELEASE the statement
63413 ** transaction. It needs to be rolled back. */
63414 if( SQLITE_OK!=(rc = sqlite3VdbeCheckFk(p, 0)) ){
63415 assert( db->flags&SQLITE_CountRows );
63416 assert( p->usesStmtJournal );
63417 break;
63420 /* If the SQLITE_CountRows flag is set in sqlite3.flags mask, then
63421 ** DML statements invoke this opcode to return the number of rows
63422 ** modified to the user. This is the only way that a VM that
63423 ** opens a statement transaction may invoke this opcode.
63425 ** In case this is such a statement, close any statement transaction
63426 ** opened by this VM before returning control to the user. This is to
63427 ** ensure that statement-transactions are always nested, not overlapping.
63428 ** If the open statement-transaction is not closed here, then the user
63429 ** may step another VM that opens its own statement transaction. This
63430 ** may lead to overlapping statement transactions.
63432 ** The statement transaction is never a top-level transaction. Hence
63433 ** the RELEASE call below can never fail.
63435 assert( p->iStatement==0 || db->flags&SQLITE_CountRows );
63436 rc = sqlite3VdbeCloseStatement(p, SAVEPOINT_RELEASE);
63437 if( NEVER(rc!=SQLITE_OK) ){
63438 break;
63441 /* Invalidate all ephemeral cursor row caches */
63442 p->cacheCtr = (p->cacheCtr + 2)|1;
63444 /* Make sure the results of the current row are \000 terminated
63445 ** and have an assigned type. The results are de-ephemeralized as
63446 ** as side effect.
63448 u.ad.pMem = p->pResultSet = &aMem[pOp->p1];
63449 for(u.ad.i=0; u.ad.i<pOp->p2; u.ad.i++){
63450 assert( memIsValid(&u.ad.pMem[u.ad.i]) );
63451 Deephemeralize(&u.ad.pMem[u.ad.i]);
63452 assert( (u.ad.pMem[u.ad.i].flags & MEM_Ephem)==0
63453 || (u.ad.pMem[u.ad.i].flags & (MEM_Str|MEM_Blob))==0 );
63454 sqlite3VdbeMemNulTerminate(&u.ad.pMem[u.ad.i]);
63455 sqlite3VdbeMemStoreType(&u.ad.pMem[u.ad.i]);
63456 REGISTER_TRACE(pOp->p1+u.ad.i, &u.ad.pMem[u.ad.i]);
63458 if( db->mallocFailed ) goto no_mem;
63460 /* Return SQLITE_ROW
63462 p->pc = pc + 1;
63463 rc = SQLITE_ROW;
63464 goto vdbe_return;
63467 /* Opcode: Concat P1 P2 P3 * *
63469 ** Add the text in register P1 onto the end of the text in
63470 ** register P2 and store the result in register P3.
63471 ** If either the P1 or P2 text are NULL then store NULL in P3.
63473 ** P3 = P2 || P1
63475 ** It is illegal for P1 and P3 to be the same register. Sometimes,
63476 ** if P3 is the same register as P2, the implementation is able
63477 ** to avoid a memcpy().
63479 case OP_Concat: { /* same as TK_CONCAT, in1, in2, out3 */
63480 #if 0 /* local variables moved into u.ae */
63481 i64 nByte;
63482 #endif /* local variables moved into u.ae */
63484 pIn1 = &aMem[pOp->p1];
63485 pIn2 = &aMem[pOp->p2];
63486 pOut = &aMem[pOp->p3];
63487 assert( pIn1!=pOut );
63488 if( (pIn1->flags | pIn2->flags) & MEM_Null ){
63489 sqlite3VdbeMemSetNull(pOut);
63490 break;
63492 if( ExpandBlob(pIn1) || ExpandBlob(pIn2) ) goto no_mem;
63493 Stringify(pIn1, encoding);
63494 Stringify(pIn2, encoding);
63495 u.ae.nByte = pIn1->n + pIn2->n;
63496 if( u.ae.nByte>db->aLimit[SQLITE_LIMIT_LENGTH] ){
63497 goto too_big;
63499 MemSetTypeFlag(pOut, MEM_Str);
63500 if( sqlite3VdbeMemGrow(pOut, (int)u.ae.nByte+2, pOut==pIn2) ){
63501 goto no_mem;
63503 if( pOut!=pIn2 ){
63504 memcpy(pOut->z, pIn2->z, pIn2->n);
63506 memcpy(&pOut->z[pIn2->n], pIn1->z, pIn1->n);
63507 pOut->z[u.ae.nByte] = 0;
63508 pOut->z[u.ae.nByte+1] = 0;
63509 pOut->flags |= MEM_Term;
63510 pOut->n = (int)u.ae.nByte;
63511 pOut->enc = encoding;
63512 UPDATE_MAX_BLOBSIZE(pOut);
63513 break;
63516 /* Opcode: Add P1 P2 P3 * *
63518 ** Add the value in register P1 to the value in register P2
63519 ** and store the result in register P3.
63520 ** If either input is NULL, the result is NULL.
63522 /* Opcode: Multiply P1 P2 P3 * *
63525 ** Multiply the value in register P1 by the value in register P2
63526 ** and store the result in register P3.
63527 ** If either input is NULL, the result is NULL.
63529 /* Opcode: Subtract P1 P2 P3 * *
63531 ** Subtract the value in register P1 from the value in register P2
63532 ** and store the result in register P3.
63533 ** If either input is NULL, the result is NULL.
63535 /* Opcode: Divide P1 P2 P3 * *
63537 ** Divide the value in register P1 by the value in register P2
63538 ** and store the result in register P3 (P3=P2/P1). If the value in
63539 ** register P1 is zero, then the result is NULL. If either input is
63540 ** NULL, the result is NULL.
63542 /* Opcode: Remainder P1 P2 P3 * *
63544 ** Compute the remainder after integer division of the value in
63545 ** register P1 by the value in register P2 and store the result in P3.
63546 ** If the value in register P2 is zero the result is NULL.
63547 ** If either operand is NULL, the result is NULL.
63549 case OP_Add: /* same as TK_PLUS, in1, in2, out3 */
63550 case OP_Subtract: /* same as TK_MINUS, in1, in2, out3 */
63551 case OP_Multiply: /* same as TK_STAR, in1, in2, out3 */
63552 case OP_Divide: /* same as TK_SLASH, in1, in2, out3 */
63553 case OP_Remainder: { /* same as TK_REM, in1, in2, out3 */
63554 #if 0 /* local variables moved into u.af */
63555 int flags; /* Combined MEM_* flags from both inputs */
63556 i64 iA; /* Integer value of left operand */
63557 i64 iB; /* Integer value of right operand */
63558 double rA; /* Real value of left operand */
63559 double rB; /* Real value of right operand */
63560 #endif /* local variables moved into u.af */
63562 pIn1 = &aMem[pOp->p1];
63563 applyNumericAffinity(pIn1);
63564 pIn2 = &aMem[pOp->p2];
63565 applyNumericAffinity(pIn2);
63566 pOut = &aMem[pOp->p3];
63567 u.af.flags = pIn1->flags | pIn2->flags;
63568 if( (u.af.flags & MEM_Null)!=0 ) goto arithmetic_result_is_null;
63569 if( (pIn1->flags & pIn2->flags & MEM_Int)==MEM_Int ){
63570 u.af.iA = pIn1->u.i;
63571 u.af.iB = pIn2->u.i;
63572 switch( pOp->opcode ){
63573 case OP_Add: if( sqlite3AddInt64(&u.af.iB,u.af.iA) ) goto fp_math; break;
63574 case OP_Subtract: if( sqlite3SubInt64(&u.af.iB,u.af.iA) ) goto fp_math; break;
63575 case OP_Multiply: if( sqlite3MulInt64(&u.af.iB,u.af.iA) ) goto fp_math; break;
63576 case OP_Divide: {
63577 if( u.af.iA==0 ) goto arithmetic_result_is_null;
63578 if( u.af.iA==-1 && u.af.iB==SMALLEST_INT64 ) goto fp_math;
63579 u.af.iB /= u.af.iA;
63580 break;
63582 default: {
63583 if( u.af.iA==0 ) goto arithmetic_result_is_null;
63584 if( u.af.iA==-1 ) u.af.iA = 1;
63585 u.af.iB %= u.af.iA;
63586 break;
63589 pOut->u.i = u.af.iB;
63590 MemSetTypeFlag(pOut, MEM_Int);
63591 }else{
63592 fp_math:
63593 u.af.rA = sqlite3VdbeRealValue(pIn1);
63594 u.af.rB = sqlite3VdbeRealValue(pIn2);
63595 switch( pOp->opcode ){
63596 case OP_Add: u.af.rB += u.af.rA; break;
63597 case OP_Subtract: u.af.rB -= u.af.rA; break;
63598 case OP_Multiply: u.af.rB *= u.af.rA; break;
63599 case OP_Divide: {
63600 /* (double)0 In case of SQLITE_OMIT_FLOATING_POINT... */
63601 if( u.af.rA==(double)0 ) goto arithmetic_result_is_null;
63602 u.af.rB /= u.af.rA;
63603 break;
63605 default: {
63606 u.af.iA = (i64)u.af.rA;
63607 u.af.iB = (i64)u.af.rB;
63608 if( u.af.iA==0 ) goto arithmetic_result_is_null;
63609 if( u.af.iA==-1 ) u.af.iA = 1;
63610 u.af.rB = (double)(u.af.iB % u.af.iA);
63611 break;
63614 #ifdef SQLITE_OMIT_FLOATING_POINT
63615 pOut->u.i = u.af.rB;
63616 MemSetTypeFlag(pOut, MEM_Int);
63617 #else
63618 if( sqlite3IsNaN(u.af.rB) ){
63619 goto arithmetic_result_is_null;
63621 pOut->r = u.af.rB;
63622 MemSetTypeFlag(pOut, MEM_Real);
63623 if( (u.af.flags & MEM_Real)==0 ){
63624 sqlite3VdbeIntegerAffinity(pOut);
63626 #endif
63628 break;
63630 arithmetic_result_is_null:
63631 sqlite3VdbeMemSetNull(pOut);
63632 break;
63635 /* Opcode: CollSeq * * P4
63637 ** P4 is a pointer to a CollSeq struct. If the next call to a user function
63638 ** or aggregate calls sqlite3GetFuncCollSeq(), this collation sequence will
63639 ** be returned. This is used by the built-in min(), max() and nullif()
63640 ** functions.
63642 ** The interface used by the implementation of the aforementioned functions
63643 ** to retrieve the collation sequence set by this opcode is not available
63644 ** publicly, only to user functions defined in func.c.
63646 case OP_CollSeq: {
63647 assert( pOp->p4type==P4_COLLSEQ );
63648 break;
63651 /* Opcode: Function P1 P2 P3 P4 P5
63653 ** Invoke a user function (P4 is a pointer to a Function structure that
63654 ** defines the function) with P5 arguments taken from register P2 and
63655 ** successors. The result of the function is stored in register P3.
63656 ** Register P3 must not be one of the function inputs.
63658 ** P1 is a 32-bit bitmask indicating whether or not each argument to the
63659 ** function was determined to be constant at compile time. If the first
63660 ** argument was constant then bit 0 of P1 is set. This is used to determine
63661 ** whether meta data associated with a user function argument using the
63662 ** sqlite3_set_auxdata() API may be safely retained until the next
63663 ** invocation of this opcode.
63665 ** See also: AggStep and AggFinal
63667 case OP_Function: {
63668 #if 0 /* local variables moved into u.ag */
63669 int i;
63670 Mem *pArg;
63671 sqlite3_context ctx;
63672 sqlite3_value **apVal;
63673 int n;
63674 #endif /* local variables moved into u.ag */
63676 u.ag.n = pOp->p5;
63677 u.ag.apVal = p->apArg;
63678 assert( u.ag.apVal || u.ag.n==0 );
63679 assert( pOp->p3>0 && pOp->p3<=p->nMem );
63680 pOut = &aMem[pOp->p3];
63681 memAboutToChange(p, pOut);
63683 assert( u.ag.n==0 || (pOp->p2>0 && pOp->p2+u.ag.n<=p->nMem+1) );
63684 assert( pOp->p3<pOp->p2 || pOp->p3>=pOp->p2+u.ag.n );
63685 u.ag.pArg = &aMem[pOp->p2];
63686 for(u.ag.i=0; u.ag.i<u.ag.n; u.ag.i++, u.ag.pArg++){
63687 assert( memIsValid(u.ag.pArg) );
63688 u.ag.apVal[u.ag.i] = u.ag.pArg;
63689 Deephemeralize(u.ag.pArg);
63690 sqlite3VdbeMemStoreType(u.ag.pArg);
63691 REGISTER_TRACE(pOp->p2+u.ag.i, u.ag.pArg);
63694 assert( pOp->p4type==P4_FUNCDEF || pOp->p4type==P4_VDBEFUNC );
63695 if( pOp->p4type==P4_FUNCDEF ){
63696 u.ag.ctx.pFunc = pOp->p4.pFunc;
63697 u.ag.ctx.pVdbeFunc = 0;
63698 }else{
63699 u.ag.ctx.pVdbeFunc = (VdbeFunc*)pOp->p4.pVdbeFunc;
63700 u.ag.ctx.pFunc = u.ag.ctx.pVdbeFunc->pFunc;
63703 u.ag.ctx.s.flags = MEM_Null;
63704 u.ag.ctx.s.db = db;
63705 u.ag.ctx.s.xDel = 0;
63706 u.ag.ctx.s.zMalloc = 0;
63708 /* The output cell may already have a buffer allocated. Move
63709 ** the pointer to u.ag.ctx.s so in case the user-function can use
63710 ** the already allocated buffer instead of allocating a new one.
63712 sqlite3VdbeMemMove(&u.ag.ctx.s, pOut);
63713 MemSetTypeFlag(&u.ag.ctx.s, MEM_Null);
63715 u.ag.ctx.isError = 0;
63716 if( u.ag.ctx.pFunc->flags & SQLITE_FUNC_NEEDCOLL ){
63717 assert( pOp>aOp );
63718 assert( pOp[-1].p4type==P4_COLLSEQ );
63719 assert( pOp[-1].opcode==OP_CollSeq );
63720 u.ag.ctx.pColl = pOp[-1].p4.pColl;
63722 (*u.ag.ctx.pFunc->xFunc)(&u.ag.ctx, u.ag.n, u.ag.apVal); /* IMP: R-24505-23230 */
63723 if( db->mallocFailed ){
63724 /* Even though a malloc() has failed, the implementation of the
63725 ** user function may have called an sqlite3_result_XXX() function
63726 ** to return a value. The following call releases any resources
63727 ** associated with such a value.
63729 sqlite3VdbeMemRelease(&u.ag.ctx.s);
63730 goto no_mem;
63733 /* If any auxiliary data functions have been called by this user function,
63734 ** immediately call the destructor for any non-static values.
63736 if( u.ag.ctx.pVdbeFunc ){
63737 sqlite3VdbeDeleteAuxData(u.ag.ctx.pVdbeFunc, pOp->p1);
63738 pOp->p4.pVdbeFunc = u.ag.ctx.pVdbeFunc;
63739 pOp->p4type = P4_VDBEFUNC;
63742 /* If the function returned an error, throw an exception */
63743 if( u.ag.ctx.isError ){
63744 sqlite3SetString(&p->zErrMsg, db, "%s", sqlite3_value_text(&u.ag.ctx.s));
63745 rc = u.ag.ctx.isError;
63748 /* Copy the result of the function into register P3 */
63749 sqlite3VdbeChangeEncoding(&u.ag.ctx.s, encoding);
63750 sqlite3VdbeMemMove(pOut, &u.ag.ctx.s);
63751 if( sqlite3VdbeMemTooBig(pOut) ){
63752 goto too_big;
63755 #if 0
63756 /* The app-defined function has done something that as caused this
63757 ** statement to expire. (Perhaps the function called sqlite3_exec()
63758 ** with a CREATE TABLE statement.)
63760 if( p->expired ) rc = SQLITE_ABORT;
63761 #endif
63763 REGISTER_TRACE(pOp->p3, pOut);
63764 UPDATE_MAX_BLOBSIZE(pOut);
63765 break;
63768 /* Opcode: BitAnd P1 P2 P3 * *
63770 ** Take the bit-wise AND of the values in register P1 and P2 and
63771 ** store the result in register P3.
63772 ** If either input is NULL, the result is NULL.
63774 /* Opcode: BitOr P1 P2 P3 * *
63776 ** Take the bit-wise OR of the values in register P1 and P2 and
63777 ** store the result in register P3.
63778 ** If either input is NULL, the result is NULL.
63780 /* Opcode: ShiftLeft P1 P2 P3 * *
63782 ** Shift the integer value in register P2 to the left by the
63783 ** number of bits specified by the integer in register P1.
63784 ** Store the result in register P3.
63785 ** If either input is NULL, the result is NULL.
63787 /* Opcode: ShiftRight P1 P2 P3 * *
63789 ** Shift the integer value in register P2 to the right by the
63790 ** number of bits specified by the integer in register P1.
63791 ** Store the result in register P3.
63792 ** If either input is NULL, the result is NULL.
63794 case OP_BitAnd: /* same as TK_BITAND, in1, in2, out3 */
63795 case OP_BitOr: /* same as TK_BITOR, in1, in2, out3 */
63796 case OP_ShiftLeft: /* same as TK_LSHIFT, in1, in2, out3 */
63797 case OP_ShiftRight: { /* same as TK_RSHIFT, in1, in2, out3 */
63798 #if 0 /* local variables moved into u.ah */
63799 i64 iA;
63800 u64 uA;
63801 i64 iB;
63802 u8 op;
63803 #endif /* local variables moved into u.ah */
63805 pIn1 = &aMem[pOp->p1];
63806 pIn2 = &aMem[pOp->p2];
63807 pOut = &aMem[pOp->p3];
63808 if( (pIn1->flags | pIn2->flags) & MEM_Null ){
63809 sqlite3VdbeMemSetNull(pOut);
63810 break;
63812 u.ah.iA = sqlite3VdbeIntValue(pIn2);
63813 u.ah.iB = sqlite3VdbeIntValue(pIn1);
63814 u.ah.op = pOp->opcode;
63815 if( u.ah.op==OP_BitAnd ){
63816 u.ah.iA &= u.ah.iB;
63817 }else if( u.ah.op==OP_BitOr ){
63818 u.ah.iA |= u.ah.iB;
63819 }else if( u.ah.iB!=0 ){
63820 assert( u.ah.op==OP_ShiftRight || u.ah.op==OP_ShiftLeft );
63822 /* If shifting by a negative amount, shift in the other direction */
63823 if( u.ah.iB<0 ){
63824 assert( OP_ShiftRight==OP_ShiftLeft+1 );
63825 u.ah.op = 2*OP_ShiftLeft + 1 - u.ah.op;
63826 u.ah.iB = u.ah.iB>(-64) ? -u.ah.iB : 64;
63829 if( u.ah.iB>=64 ){
63830 u.ah.iA = (u.ah.iA>=0 || u.ah.op==OP_ShiftLeft) ? 0 : -1;
63831 }else{
63832 memcpy(&u.ah.uA, &u.ah.iA, sizeof(u.ah.uA));
63833 if( u.ah.op==OP_ShiftLeft ){
63834 u.ah.uA <<= u.ah.iB;
63835 }else{
63836 u.ah.uA >>= u.ah.iB;
63837 /* Sign-extend on a right shift of a negative number */
63838 if( u.ah.iA<0 ) u.ah.uA |= ((((u64)0xffffffff)<<32)|0xffffffff) << (64-u.ah.iB);
63840 memcpy(&u.ah.iA, &u.ah.uA, sizeof(u.ah.iA));
63843 pOut->u.i = u.ah.iA;
63844 MemSetTypeFlag(pOut, MEM_Int);
63845 break;
63848 /* Opcode: AddImm P1 P2 * * *
63850 ** Add the constant P2 to the value in register P1.
63851 ** The result is always an integer.
63853 ** To force any register to be an integer, just add 0.
63855 case OP_AddImm: { /* in1 */
63856 pIn1 = &aMem[pOp->p1];
63857 memAboutToChange(p, pIn1);
63858 sqlite3VdbeMemIntegerify(pIn1);
63859 pIn1->u.i += pOp->p2;
63860 break;
63863 /* Opcode: MustBeInt P1 P2 * * *
63865 ** Force the value in register P1 to be an integer. If the value
63866 ** in P1 is not an integer and cannot be converted into an integer
63867 ** without data loss, then jump immediately to P2, or if P2==0
63868 ** raise an SQLITE_MISMATCH exception.
63870 case OP_MustBeInt: { /* jump, in1 */
63871 pIn1 = &aMem[pOp->p1];
63872 applyAffinity(pIn1, SQLITE_AFF_NUMERIC, encoding);
63873 if( (pIn1->flags & MEM_Int)==0 ){
63874 if( pOp->p2==0 ){
63875 rc = SQLITE_MISMATCH;
63876 goto abort_due_to_error;
63877 }else{
63878 pc = pOp->p2 - 1;
63880 }else{
63881 MemSetTypeFlag(pIn1, MEM_Int);
63883 break;
63886 #ifndef SQLITE_OMIT_FLOATING_POINT
63887 /* Opcode: RealAffinity P1 * * * *
63889 ** If register P1 holds an integer convert it to a real value.
63891 ** This opcode is used when extracting information from a column that
63892 ** has REAL affinity. Such column values may still be stored as
63893 ** integers, for space efficiency, but after extraction we want them
63894 ** to have only a real value.
63896 case OP_RealAffinity: { /* in1 */
63897 pIn1 = &aMem[pOp->p1];
63898 if( pIn1->flags & MEM_Int ){
63899 sqlite3VdbeMemRealify(pIn1);
63901 break;
63903 #endif
63905 #ifndef SQLITE_OMIT_CAST
63906 /* Opcode: ToText P1 * * * *
63908 ** Force the value in register P1 to be text.
63909 ** If the value is numeric, convert it to a string using the
63910 ** equivalent of printf(). Blob values are unchanged and
63911 ** are afterwards simply interpreted as text.
63913 ** A NULL value is not changed by this routine. It remains NULL.
63915 case OP_ToText: { /* same as TK_TO_TEXT, in1 */
63916 pIn1 = &aMem[pOp->p1];
63917 memAboutToChange(p, pIn1);
63918 if( pIn1->flags & MEM_Null ) break;
63919 assert( MEM_Str==(MEM_Blob>>3) );
63920 pIn1->flags |= (pIn1->flags&MEM_Blob)>>3;
63921 applyAffinity(pIn1, SQLITE_AFF_TEXT, encoding);
63922 rc = ExpandBlob(pIn1);
63923 assert( pIn1->flags & MEM_Str || db->mallocFailed );
63924 pIn1->flags &= ~(MEM_Int|MEM_Real|MEM_Blob|MEM_Zero);
63925 UPDATE_MAX_BLOBSIZE(pIn1);
63926 break;
63929 /* Opcode: ToBlob P1 * * * *
63931 ** Force the value in register P1 to be a BLOB.
63932 ** If the value is numeric, convert it to a string first.
63933 ** Strings are simply reinterpreted as blobs with no change
63934 ** to the underlying data.
63936 ** A NULL value is not changed by this routine. It remains NULL.
63938 case OP_ToBlob: { /* same as TK_TO_BLOB, in1 */
63939 pIn1 = &aMem[pOp->p1];
63940 if( pIn1->flags & MEM_Null ) break;
63941 if( (pIn1->flags & MEM_Blob)==0 ){
63942 applyAffinity(pIn1, SQLITE_AFF_TEXT, encoding);
63943 assert( pIn1->flags & MEM_Str || db->mallocFailed );
63944 MemSetTypeFlag(pIn1, MEM_Blob);
63945 }else{
63946 pIn1->flags &= ~(MEM_TypeMask&~MEM_Blob);
63948 UPDATE_MAX_BLOBSIZE(pIn1);
63949 break;
63952 /* Opcode: ToNumeric P1 * * * *
63954 ** Force the value in register P1 to be numeric (either an
63955 ** integer or a floating-point number.)
63956 ** If the value is text or blob, try to convert it to an using the
63957 ** equivalent of atoi() or atof() and store 0 if no such conversion
63958 ** is possible.
63960 ** A NULL value is not changed by this routine. It remains NULL.
63962 case OP_ToNumeric: { /* same as TK_TO_NUMERIC, in1 */
63963 pIn1 = &aMem[pOp->p1];
63964 sqlite3VdbeMemNumerify(pIn1);
63965 break;
63967 #endif /* SQLITE_OMIT_CAST */
63969 /* Opcode: ToInt P1 * * * *
63971 ** Force the value in register P1 to be an integer. If
63972 ** The value is currently a real number, drop its fractional part.
63973 ** If the value is text or blob, try to convert it to an integer using the
63974 ** equivalent of atoi() and store 0 if no such conversion is possible.
63976 ** A NULL value is not changed by this routine. It remains NULL.
63978 case OP_ToInt: { /* same as TK_TO_INT, in1 */
63979 pIn1 = &aMem[pOp->p1];
63980 if( (pIn1->flags & MEM_Null)==0 ){
63981 sqlite3VdbeMemIntegerify(pIn1);
63983 break;
63986 #if !defined(SQLITE_OMIT_CAST) && !defined(SQLITE_OMIT_FLOATING_POINT)
63987 /* Opcode: ToReal P1 * * * *
63989 ** Force the value in register P1 to be a floating point number.
63990 ** If The value is currently an integer, convert it.
63991 ** If the value is text or blob, try to convert it to an integer using the
63992 ** equivalent of atoi() and store 0.0 if no such conversion is possible.
63994 ** A NULL value is not changed by this routine. It remains NULL.
63996 case OP_ToReal: { /* same as TK_TO_REAL, in1 */
63997 pIn1 = &aMem[pOp->p1];
63998 memAboutToChange(p, pIn1);
63999 if( (pIn1->flags & MEM_Null)==0 ){
64000 sqlite3VdbeMemRealify(pIn1);
64002 break;
64004 #endif /* !defined(SQLITE_OMIT_CAST) && !defined(SQLITE_OMIT_FLOATING_POINT) */
64006 /* Opcode: Lt P1 P2 P3 P4 P5
64008 ** Compare the values in register P1 and P3. If reg(P3)<reg(P1) then
64009 ** jump to address P2.
64011 ** If the SQLITE_JUMPIFNULL bit of P5 is set and either reg(P1) or
64012 ** reg(P3) is NULL then take the jump. If the SQLITE_JUMPIFNULL
64013 ** bit is clear then fall through if either operand is NULL.
64015 ** The SQLITE_AFF_MASK portion of P5 must be an affinity character -
64016 ** SQLITE_AFF_TEXT, SQLITE_AFF_INTEGER, and so forth. An attempt is made
64017 ** to coerce both inputs according to this affinity before the
64018 ** comparison is made. If the SQLITE_AFF_MASK is 0x00, then numeric
64019 ** affinity is used. Note that the affinity conversions are stored
64020 ** back into the input registers P1 and P3. So this opcode can cause
64021 ** persistent changes to registers P1 and P3.
64023 ** Once any conversions have taken place, and neither value is NULL,
64024 ** the values are compared. If both values are blobs then memcmp() is
64025 ** used to determine the results of the comparison. If both values
64026 ** are text, then the appropriate collating function specified in
64027 ** P4 is used to do the comparison. If P4 is not specified then
64028 ** memcmp() is used to compare text string. If both values are
64029 ** numeric, then a numeric comparison is used. If the two values
64030 ** are of different types, then numbers are considered less than
64031 ** strings and strings are considered less than blobs.
64033 ** If the SQLITE_STOREP2 bit of P5 is set, then do not jump. Instead,
64034 ** store a boolean result (either 0, or 1, or NULL) in register P2.
64036 /* Opcode: Ne P1 P2 P3 P4 P5
64038 ** This works just like the Lt opcode except that the jump is taken if
64039 ** the operands in registers P1 and P3 are not equal. See the Lt opcode for
64040 ** additional information.
64042 ** If SQLITE_NULLEQ is set in P5 then the result of comparison is always either
64043 ** true or false and is never NULL. If both operands are NULL then the result
64044 ** of comparison is false. If either operand is NULL then the result is true.
64045 ** If neither operand is NULL the the result is the same as it would be if
64046 ** the SQLITE_NULLEQ flag were omitted from P5.
64048 /* Opcode: Eq P1 P2 P3 P4 P5
64050 ** This works just like the Lt opcode except that the jump is taken if
64051 ** the operands in registers P1 and P3 are equal.
64052 ** See the Lt opcode for additional information.
64054 ** If SQLITE_NULLEQ is set in P5 then the result of comparison is always either
64055 ** true or false and is never NULL. If both operands are NULL then the result
64056 ** of comparison is true. If either operand is NULL then the result is false.
64057 ** If neither operand is NULL the the result is the same as it would be if
64058 ** the SQLITE_NULLEQ flag were omitted from P5.
64060 /* Opcode: Le P1 P2 P3 P4 P5
64062 ** This works just like the Lt opcode except that the jump is taken if
64063 ** the content of register P3 is less than or equal to the content of
64064 ** register P1. See the Lt opcode for additional information.
64066 /* Opcode: Gt P1 P2 P3 P4 P5
64068 ** This works just like the Lt opcode except that the jump is taken if
64069 ** the content of register P3 is greater than the content of
64070 ** register P1. See the Lt opcode for additional information.
64072 /* Opcode: Ge P1 P2 P3 P4 P5
64074 ** This works just like the Lt opcode except that the jump is taken if
64075 ** the content of register P3 is greater than or equal to the content of
64076 ** register P1. See the Lt opcode for additional information.
64078 case OP_Eq: /* same as TK_EQ, jump, in1, in3 */
64079 case OP_Ne: /* same as TK_NE, jump, in1, in3 */
64080 case OP_Lt: /* same as TK_LT, jump, in1, in3 */
64081 case OP_Le: /* same as TK_LE, jump, in1, in3 */
64082 case OP_Gt: /* same as TK_GT, jump, in1, in3 */
64083 case OP_Ge: { /* same as TK_GE, jump, in1, in3 */
64084 #if 0 /* local variables moved into u.ai */
64085 int res; /* Result of the comparison of pIn1 against pIn3 */
64086 char affinity; /* Affinity to use for comparison */
64087 u16 flags1; /* Copy of initial value of pIn1->flags */
64088 u16 flags3; /* Copy of initial value of pIn3->flags */
64089 #endif /* local variables moved into u.ai */
64091 pIn1 = &aMem[pOp->p1];
64092 pIn3 = &aMem[pOp->p3];
64093 u.ai.flags1 = pIn1->flags;
64094 u.ai.flags3 = pIn3->flags;
64095 if( (pIn1->flags | pIn3->flags)&MEM_Null ){
64096 /* One or both operands are NULL */
64097 if( pOp->p5 & SQLITE_NULLEQ ){
64098 /* If SQLITE_NULLEQ is set (which will only happen if the operator is
64099 ** OP_Eq or OP_Ne) then take the jump or not depending on whether
64100 ** or not both operands are null.
64102 assert( pOp->opcode==OP_Eq || pOp->opcode==OP_Ne );
64103 u.ai.res = (pIn1->flags & pIn3->flags & MEM_Null)==0;
64104 }else{
64105 /* SQLITE_NULLEQ is clear and at least one operand is NULL,
64106 ** then the result is always NULL.
64107 ** The jump is taken if the SQLITE_JUMPIFNULL bit is set.
64109 if( pOp->p5 & SQLITE_STOREP2 ){
64110 pOut = &aMem[pOp->p2];
64111 MemSetTypeFlag(pOut, MEM_Null);
64112 REGISTER_TRACE(pOp->p2, pOut);
64113 }else if( pOp->p5 & SQLITE_JUMPIFNULL ){
64114 pc = pOp->p2-1;
64116 break;
64118 }else{
64119 /* Neither operand is NULL. Do a comparison. */
64120 u.ai.affinity = pOp->p5 & SQLITE_AFF_MASK;
64121 if( u.ai.affinity ){
64122 applyAffinity(pIn1, u.ai.affinity, encoding);
64123 applyAffinity(pIn3, u.ai.affinity, encoding);
64124 if( db->mallocFailed ) goto no_mem;
64127 assert( pOp->p4type==P4_COLLSEQ || pOp->p4.pColl==0 );
64128 ExpandBlob(pIn1);
64129 ExpandBlob(pIn3);
64130 u.ai.res = sqlite3MemCompare(pIn3, pIn1, pOp->p4.pColl);
64132 switch( pOp->opcode ){
64133 case OP_Eq: u.ai.res = u.ai.res==0; break;
64134 case OP_Ne: u.ai.res = u.ai.res!=0; break;
64135 case OP_Lt: u.ai.res = u.ai.res<0; break;
64136 case OP_Le: u.ai.res = u.ai.res<=0; break;
64137 case OP_Gt: u.ai.res = u.ai.res>0; break;
64138 default: u.ai.res = u.ai.res>=0; break;
64141 if( pOp->p5 & SQLITE_STOREP2 ){
64142 pOut = &aMem[pOp->p2];
64143 memAboutToChange(p, pOut);
64144 MemSetTypeFlag(pOut, MEM_Int);
64145 pOut->u.i = u.ai.res;
64146 REGISTER_TRACE(pOp->p2, pOut);
64147 }else if( u.ai.res ){
64148 pc = pOp->p2-1;
64151 /* Undo any changes made by applyAffinity() to the input registers. */
64152 pIn1->flags = (pIn1->flags&~MEM_TypeMask) | (u.ai.flags1&MEM_TypeMask);
64153 pIn3->flags = (pIn3->flags&~MEM_TypeMask) | (u.ai.flags3&MEM_TypeMask);
64154 break;
64157 /* Opcode: Permutation * * * P4 *
64159 ** Set the permutation used by the OP_Compare operator to be the array
64160 ** of integers in P4.
64162 ** The permutation is only valid until the next OP_Permutation, OP_Compare,
64163 ** OP_Halt, or OP_ResultRow. Typically the OP_Permutation should occur
64164 ** immediately prior to the OP_Compare.
64166 case OP_Permutation: {
64167 assert( pOp->p4type==P4_INTARRAY );
64168 assert( pOp->p4.ai );
64169 aPermute = pOp->p4.ai;
64170 break;
64173 /* Opcode: Compare P1 P2 P3 P4 *
64175 ** Compare two vectors of registers in reg(P1)..reg(P1+P3-1) (call this
64176 ** vector "A") and in reg(P2)..reg(P2+P3-1) ("B"). Save the result of
64177 ** the comparison for use by the next OP_Jump instruct.
64179 ** P4 is a KeyInfo structure that defines collating sequences and sort
64180 ** orders for the comparison. The permutation applies to registers
64181 ** only. The KeyInfo elements are used sequentially.
64183 ** The comparison is a sort comparison, so NULLs compare equal,
64184 ** NULLs are less than numbers, numbers are less than strings,
64185 ** and strings are less than blobs.
64187 case OP_Compare: {
64188 #if 0 /* local variables moved into u.aj */
64189 int n;
64190 int i;
64191 int p1;
64192 int p2;
64193 const KeyInfo *pKeyInfo;
64194 int idx;
64195 CollSeq *pColl; /* Collating sequence to use on this term */
64196 int bRev; /* True for DESCENDING sort order */
64197 #endif /* local variables moved into u.aj */
64199 u.aj.n = pOp->p3;
64200 u.aj.pKeyInfo = pOp->p4.pKeyInfo;
64201 assert( u.aj.n>0 );
64202 assert( u.aj.pKeyInfo!=0 );
64203 u.aj.p1 = pOp->p1;
64204 u.aj.p2 = pOp->p2;
64205 #if SQLITE_DEBUG
64206 if( aPermute ){
64207 int k, mx = 0;
64208 for(k=0; k<u.aj.n; k++) if( aPermute[k]>mx ) mx = aPermute[k];
64209 assert( u.aj.p1>0 && u.aj.p1+mx<=p->nMem+1 );
64210 assert( u.aj.p2>0 && u.aj.p2+mx<=p->nMem+1 );
64211 }else{
64212 assert( u.aj.p1>0 && u.aj.p1+u.aj.n<=p->nMem+1 );
64213 assert( u.aj.p2>0 && u.aj.p2+u.aj.n<=p->nMem+1 );
64215 #endif /* SQLITE_DEBUG */
64216 for(u.aj.i=0; u.aj.i<u.aj.n; u.aj.i++){
64217 u.aj.idx = aPermute ? aPermute[u.aj.i] : u.aj.i;
64218 assert( memIsValid(&aMem[u.aj.p1+u.aj.idx]) );
64219 assert( memIsValid(&aMem[u.aj.p2+u.aj.idx]) );
64220 REGISTER_TRACE(u.aj.p1+u.aj.idx, &aMem[u.aj.p1+u.aj.idx]);
64221 REGISTER_TRACE(u.aj.p2+u.aj.idx, &aMem[u.aj.p2+u.aj.idx]);
64222 assert( u.aj.i<u.aj.pKeyInfo->nField );
64223 u.aj.pColl = u.aj.pKeyInfo->aColl[u.aj.i];
64224 u.aj.bRev = u.aj.pKeyInfo->aSortOrder[u.aj.i];
64225 iCompare = sqlite3MemCompare(&aMem[u.aj.p1+u.aj.idx], &aMem[u.aj.p2+u.aj.idx], u.aj.pColl);
64226 if( iCompare ){
64227 if( u.aj.bRev ) iCompare = -iCompare;
64228 break;
64231 aPermute = 0;
64232 break;
64235 /* Opcode: Jump P1 P2 P3 * *
64237 ** Jump to the instruction at address P1, P2, or P3 depending on whether
64238 ** in the most recent OP_Compare instruction the P1 vector was less than
64239 ** equal to, or greater than the P2 vector, respectively.
64241 case OP_Jump: { /* jump */
64242 if( iCompare<0 ){
64243 pc = pOp->p1 - 1;
64244 }else if( iCompare==0 ){
64245 pc = pOp->p2 - 1;
64246 }else{
64247 pc = pOp->p3 - 1;
64249 break;
64252 /* Opcode: And P1 P2 P3 * *
64254 ** Take the logical AND of the values in registers P1 and P2 and
64255 ** write the result into register P3.
64257 ** If either P1 or P2 is 0 (false) then the result is 0 even if
64258 ** the other input is NULL. A NULL and true or two NULLs give
64259 ** a NULL output.
64261 /* Opcode: Or P1 P2 P3 * *
64263 ** Take the logical OR of the values in register P1 and P2 and
64264 ** store the answer in register P3.
64266 ** If either P1 or P2 is nonzero (true) then the result is 1 (true)
64267 ** even if the other input is NULL. A NULL and false or two NULLs
64268 ** give a NULL output.
64270 case OP_And: /* same as TK_AND, in1, in2, out3 */
64271 case OP_Or: { /* same as TK_OR, in1, in2, out3 */
64272 #if 0 /* local variables moved into u.ak */
64273 int v1; /* Left operand: 0==FALSE, 1==TRUE, 2==UNKNOWN or NULL */
64274 int v2; /* Right operand: 0==FALSE, 1==TRUE, 2==UNKNOWN or NULL */
64275 #endif /* local variables moved into u.ak */
64277 pIn1 = &aMem[pOp->p1];
64278 if( pIn1->flags & MEM_Null ){
64279 u.ak.v1 = 2;
64280 }else{
64281 u.ak.v1 = sqlite3VdbeIntValue(pIn1)!=0;
64283 pIn2 = &aMem[pOp->p2];
64284 if( pIn2->flags & MEM_Null ){
64285 u.ak.v2 = 2;
64286 }else{
64287 u.ak.v2 = sqlite3VdbeIntValue(pIn2)!=0;
64289 if( pOp->opcode==OP_And ){
64290 static const unsigned char and_logic[] = { 0, 0, 0, 0, 1, 2, 0, 2, 2 };
64291 u.ak.v1 = and_logic[u.ak.v1*3+u.ak.v2];
64292 }else{
64293 static const unsigned char or_logic[] = { 0, 1, 2, 1, 1, 1, 2, 1, 2 };
64294 u.ak.v1 = or_logic[u.ak.v1*3+u.ak.v2];
64296 pOut = &aMem[pOp->p3];
64297 if( u.ak.v1==2 ){
64298 MemSetTypeFlag(pOut, MEM_Null);
64299 }else{
64300 pOut->u.i = u.ak.v1;
64301 MemSetTypeFlag(pOut, MEM_Int);
64303 break;
64306 /* Opcode: Not P1 P2 * * *
64308 ** Interpret the value in register P1 as a boolean value. Store the
64309 ** boolean complement in register P2. If the value in register P1 is
64310 ** NULL, then a NULL is stored in P2.
64312 case OP_Not: { /* same as TK_NOT, in1, out2 */
64313 pIn1 = &aMem[pOp->p1];
64314 pOut = &aMem[pOp->p2];
64315 if( pIn1->flags & MEM_Null ){
64316 sqlite3VdbeMemSetNull(pOut);
64317 }else{
64318 sqlite3VdbeMemSetInt64(pOut, !sqlite3VdbeIntValue(pIn1));
64320 break;
64323 /* Opcode: BitNot P1 P2 * * *
64325 ** Interpret the content of register P1 as an integer. Store the
64326 ** ones-complement of the P1 value into register P2. If P1 holds
64327 ** a NULL then store a NULL in P2.
64329 case OP_BitNot: { /* same as TK_BITNOT, in1, out2 */
64330 pIn1 = &aMem[pOp->p1];
64331 pOut = &aMem[pOp->p2];
64332 if( pIn1->flags & MEM_Null ){
64333 sqlite3VdbeMemSetNull(pOut);
64334 }else{
64335 sqlite3VdbeMemSetInt64(pOut, ~sqlite3VdbeIntValue(pIn1));
64337 break;
64340 /* Opcode: If P1 P2 P3 * *
64342 ** Jump to P2 if the value in register P1 is true. The value is
64343 ** is considered true if it is numeric and non-zero. If the value
64344 ** in P1 is NULL then take the jump if P3 is true.
64346 /* Opcode: IfNot P1 P2 P3 * *
64348 ** Jump to P2 if the value in register P1 is False. The value is
64349 ** is considered true if it has a numeric value of zero. If the value
64350 ** in P1 is NULL then take the jump if P3 is true.
64352 case OP_If: /* jump, in1 */
64353 case OP_IfNot: { /* jump, in1 */
64354 #if 0 /* local variables moved into u.al */
64355 int c;
64356 #endif /* local variables moved into u.al */
64357 pIn1 = &aMem[pOp->p1];
64358 if( pIn1->flags & MEM_Null ){
64359 u.al.c = pOp->p3;
64360 }else{
64361 #ifdef SQLITE_OMIT_FLOATING_POINT
64362 u.al.c = sqlite3VdbeIntValue(pIn1)!=0;
64363 #else
64364 u.al.c = sqlite3VdbeRealValue(pIn1)!=0.0;
64365 #endif
64366 if( pOp->opcode==OP_IfNot ) u.al.c = !u.al.c;
64368 if( u.al.c ){
64369 pc = pOp->p2-1;
64371 break;
64374 /* Opcode: IsNull P1 P2 * * *
64376 ** Jump to P2 if the value in register P1 is NULL.
64378 case OP_IsNull: { /* same as TK_ISNULL, jump, in1 */
64379 pIn1 = &aMem[pOp->p1];
64380 if( (pIn1->flags & MEM_Null)!=0 ){
64381 pc = pOp->p2 - 1;
64383 break;
64386 /* Opcode: NotNull P1 P2 * * *
64388 ** Jump to P2 if the value in register P1 is not NULL.
64390 case OP_NotNull: { /* same as TK_NOTNULL, jump, in1 */
64391 pIn1 = &aMem[pOp->p1];
64392 if( (pIn1->flags & MEM_Null)==0 ){
64393 pc = pOp->p2 - 1;
64395 break;
64398 /* Opcode: Column P1 P2 P3 P4 P5
64400 ** Interpret the data that cursor P1 points to as a structure built using
64401 ** the MakeRecord instruction. (See the MakeRecord opcode for additional
64402 ** information about the format of the data.) Extract the P2-th column
64403 ** from this record. If there are less that (P2+1)
64404 ** values in the record, extract a NULL.
64406 ** The value extracted is stored in register P3.
64408 ** If the column contains fewer than P2 fields, then extract a NULL. Or,
64409 ** if the P4 argument is a P4_MEM use the value of the P4 argument as
64410 ** the result.
64412 ** If the OPFLAG_CLEARCACHE bit is set on P5 and P1 is a pseudo-table cursor,
64413 ** then the cache of the cursor is reset prior to extracting the column.
64414 ** The first OP_Column against a pseudo-table after the value of the content
64415 ** register has changed should have this bit set.
64417 case OP_Column: {
64418 #if 0 /* local variables moved into u.am */
64419 u32 payloadSize; /* Number of bytes in the record */
64420 i64 payloadSize64; /* Number of bytes in the record */
64421 int p1; /* P1 value of the opcode */
64422 int p2; /* column number to retrieve */
64423 VdbeCursor *pC; /* The VDBE cursor */
64424 char *zRec; /* Pointer to complete record-data */
64425 BtCursor *pCrsr; /* The BTree cursor */
64426 u32 *aType; /* aType[i] holds the numeric type of the i-th column */
64427 u32 *aOffset; /* aOffset[i] is offset to start of data for i-th column */
64428 int nField; /* number of fields in the record */
64429 int len; /* The length of the serialized data for the column */
64430 int i; /* Loop counter */
64431 char *zData; /* Part of the record being decoded */
64432 Mem *pDest; /* Where to write the extracted value */
64433 Mem sMem; /* For storing the record being decoded */
64434 u8 *zIdx; /* Index into header */
64435 u8 *zEndHdr; /* Pointer to first byte after the header */
64436 u32 offset; /* Offset into the data */
64437 u32 szField; /* Number of bytes in the content of a field */
64438 int szHdr; /* Size of the header size field at start of record */
64439 int avail; /* Number of bytes of available data */
64440 Mem *pReg; /* PseudoTable input register */
64441 #endif /* local variables moved into u.am */
64444 u.am.p1 = pOp->p1;
64445 u.am.p2 = pOp->p2;
64446 u.am.pC = 0;
64447 memset(&u.am.sMem, 0, sizeof(u.am.sMem));
64448 assert( u.am.p1<p->nCursor );
64449 assert( pOp->p3>0 && pOp->p3<=p->nMem );
64450 u.am.pDest = &aMem[pOp->p3];
64451 memAboutToChange(p, u.am.pDest);
64452 MemSetTypeFlag(u.am.pDest, MEM_Null);
64453 u.am.zRec = 0;
64455 /* This block sets the variable u.am.payloadSize to be the total number of
64456 ** bytes in the record.
64458 ** u.am.zRec is set to be the complete text of the record if it is available.
64459 ** The complete record text is always available for pseudo-tables
64460 ** If the record is stored in a cursor, the complete record text
64461 ** might be available in the u.am.pC->aRow cache. Or it might not be.
64462 ** If the data is unavailable, u.am.zRec is set to NULL.
64464 ** We also compute the number of columns in the record. For cursors,
64465 ** the number of columns is stored in the VdbeCursor.nField element.
64467 u.am.pC = p->apCsr[u.am.p1];
64468 assert( u.am.pC!=0 );
64469 #ifndef SQLITE_OMIT_VIRTUALTABLE
64470 assert( u.am.pC->pVtabCursor==0 );
64471 #endif
64472 u.am.pCrsr = u.am.pC->pCursor;
64473 if( u.am.pCrsr!=0 ){
64474 /* The record is stored in a B-Tree */
64475 rc = sqlite3VdbeCursorMoveto(u.am.pC);
64476 if( rc ) goto abort_due_to_error;
64477 if( u.am.pC->nullRow ){
64478 u.am.payloadSize = 0;
64479 }else if( u.am.pC->cacheStatus==p->cacheCtr ){
64480 u.am.payloadSize = u.am.pC->payloadSize;
64481 u.am.zRec = (char*)u.am.pC->aRow;
64482 }else if( u.am.pC->isIndex ){
64483 assert( sqlite3BtreeCursorIsValid(u.am.pCrsr) );
64484 rc = sqlite3BtreeKeySize(u.am.pCrsr, &u.am.payloadSize64);
64485 assert( rc==SQLITE_OK ); /* True because of CursorMoveto() call above */
64486 /* sqlite3BtreeParseCellPtr() uses getVarint32() to extract the
64487 ** payload size, so it is impossible for u.am.payloadSize64 to be
64488 ** larger than 32 bits. */
64489 assert( (u.am.payloadSize64 & SQLITE_MAX_U32)==(u64)u.am.payloadSize64 );
64490 u.am.payloadSize = (u32)u.am.payloadSize64;
64491 }else{
64492 assert( sqlite3BtreeCursorIsValid(u.am.pCrsr) );
64493 rc = sqlite3BtreeDataSize(u.am.pCrsr, &u.am.payloadSize);
64494 assert( rc==SQLITE_OK ); /* DataSize() cannot fail */
64496 }else if( u.am.pC->pseudoTableReg>0 ){
64497 u.am.pReg = &aMem[u.am.pC->pseudoTableReg];
64498 assert( u.am.pReg->flags & MEM_Blob );
64499 assert( memIsValid(u.am.pReg) );
64500 u.am.payloadSize = u.am.pReg->n;
64501 u.am.zRec = u.am.pReg->z;
64502 u.am.pC->cacheStatus = (pOp->p5&OPFLAG_CLEARCACHE) ? CACHE_STALE : p->cacheCtr;
64503 assert( u.am.payloadSize==0 || u.am.zRec!=0 );
64504 }else{
64505 /* Consider the row to be NULL */
64506 u.am.payloadSize = 0;
64509 /* If u.am.payloadSize is 0, then just store a NULL */
64510 if( u.am.payloadSize==0 ){
64511 assert( u.am.pDest->flags&MEM_Null );
64512 goto op_column_out;
64514 assert( db->aLimit[SQLITE_LIMIT_LENGTH]>=0 );
64515 if( u.am.payloadSize > (u32)db->aLimit[SQLITE_LIMIT_LENGTH] ){
64516 goto too_big;
64519 u.am.nField = u.am.pC->nField;
64520 assert( u.am.p2<u.am.nField );
64522 /* Read and parse the table header. Store the results of the parse
64523 ** into the record header cache fields of the cursor.
64525 u.am.aType = u.am.pC->aType;
64526 if( u.am.pC->cacheStatus==p->cacheCtr ){
64527 u.am.aOffset = u.am.pC->aOffset;
64528 }else{
64529 assert(u.am.aType);
64530 u.am.avail = 0;
64531 u.am.pC->aOffset = u.am.aOffset = &u.am.aType[u.am.nField];
64532 u.am.pC->payloadSize = u.am.payloadSize;
64533 u.am.pC->cacheStatus = p->cacheCtr;
64535 /* Figure out how many bytes are in the header */
64536 if( u.am.zRec ){
64537 u.am.zData = u.am.zRec;
64538 }else{
64539 if( u.am.pC->isIndex ){
64540 u.am.zData = (char*)sqlite3BtreeKeyFetch(u.am.pCrsr, &u.am.avail);
64541 }else{
64542 u.am.zData = (char*)sqlite3BtreeDataFetch(u.am.pCrsr, &u.am.avail);
64544 /* If KeyFetch()/DataFetch() managed to get the entire payload,
64545 ** save the payload in the u.am.pC->aRow cache. That will save us from
64546 ** having to make additional calls to fetch the content portion of
64547 ** the record.
64549 assert( u.am.avail>=0 );
64550 if( u.am.payloadSize <= (u32)u.am.avail ){
64551 u.am.zRec = u.am.zData;
64552 u.am.pC->aRow = (u8*)u.am.zData;
64553 }else{
64554 u.am.pC->aRow = 0;
64557 /* The following assert is true in all cases accept when
64558 ** the database file has been corrupted externally.
64559 ** assert( u.am.zRec!=0 || u.am.avail>=u.am.payloadSize || u.am.avail>=9 ); */
64560 u.am.szHdr = getVarint32((u8*)u.am.zData, u.am.offset);
64562 /* Make sure a corrupt database has not given us an oversize header.
64563 ** Do this now to avoid an oversize memory allocation.
64565 ** Type entries can be between 1 and 5 bytes each. But 4 and 5 byte
64566 ** types use so much data space that there can only be 4096 and 32 of
64567 ** them, respectively. So the maximum header length results from a
64568 ** 3-byte type for each of the maximum of 32768 columns plus three
64569 ** extra bytes for the header length itself. 32768*3 + 3 = 98307.
64571 if( u.am.offset > 98307 ){
64572 rc = SQLITE_CORRUPT_BKPT;
64573 goto op_column_out;
64576 /* Compute in u.am.len the number of bytes of data we need to read in order
64577 ** to get u.am.nField type values. u.am.offset is an upper bound on this. But
64578 ** u.am.nField might be significantly less than the true number of columns
64579 ** in the table, and in that case, 5*u.am.nField+3 might be smaller than u.am.offset.
64580 ** We want to minimize u.am.len in order to limit the size of the memory
64581 ** allocation, especially if a corrupt database file has caused u.am.offset
64582 ** to be oversized. Offset is limited to 98307 above. But 98307 might
64583 ** still exceed Robson memory allocation limits on some configurations.
64584 ** On systems that cannot tolerate large memory allocations, u.am.nField*5+3
64585 ** will likely be much smaller since u.am.nField will likely be less than
64586 ** 20 or so. This insures that Robson memory allocation limits are
64587 ** not exceeded even for corrupt database files.
64589 u.am.len = u.am.nField*5 + 3;
64590 if( u.am.len > (int)u.am.offset ) u.am.len = (int)u.am.offset;
64592 /* The KeyFetch() or DataFetch() above are fast and will get the entire
64593 ** record header in most cases. But they will fail to get the complete
64594 ** record header if the record header does not fit on a single page
64595 ** in the B-Tree. When that happens, use sqlite3VdbeMemFromBtree() to
64596 ** acquire the complete header text.
64598 if( !u.am.zRec && u.am.avail<u.am.len ){
64599 u.am.sMem.flags = 0;
64600 u.am.sMem.db = 0;
64601 rc = sqlite3VdbeMemFromBtree(u.am.pCrsr, 0, u.am.len, u.am.pC->isIndex, &u.am.sMem);
64602 if( rc!=SQLITE_OK ){
64603 goto op_column_out;
64605 u.am.zData = u.am.sMem.z;
64607 u.am.zEndHdr = (u8 *)&u.am.zData[u.am.len];
64608 u.am.zIdx = (u8 *)&u.am.zData[u.am.szHdr];
64610 /* Scan the header and use it to fill in the u.am.aType[] and u.am.aOffset[]
64611 ** arrays. u.am.aType[u.am.i] will contain the type integer for the u.am.i-th
64612 ** column and u.am.aOffset[u.am.i] will contain the u.am.offset from the beginning
64613 ** of the record to the start of the data for the u.am.i-th column
64615 for(u.am.i=0; u.am.i<u.am.nField; u.am.i++){
64616 if( u.am.zIdx<u.am.zEndHdr ){
64617 u.am.aOffset[u.am.i] = u.am.offset;
64618 u.am.zIdx += getVarint32(u.am.zIdx, u.am.aType[u.am.i]);
64619 u.am.szField = sqlite3VdbeSerialTypeLen(u.am.aType[u.am.i]);
64620 u.am.offset += u.am.szField;
64621 if( u.am.offset<u.am.szField ){ /* True if u.am.offset overflows */
64622 u.am.zIdx = &u.am.zEndHdr[1]; /* Forces SQLITE_CORRUPT return below */
64623 break;
64625 }else{
64626 /* If u.am.i is less that u.am.nField, then there are less fields in this
64627 ** record than SetNumColumns indicated there are columns in the
64628 ** table. Set the u.am.offset for any extra columns not present in
64629 ** the record to 0. This tells code below to store a NULL
64630 ** instead of deserializing a value from the record.
64632 u.am.aOffset[u.am.i] = 0;
64635 sqlite3VdbeMemRelease(&u.am.sMem);
64636 u.am.sMem.flags = MEM_Null;
64638 /* If we have read more header data than was contained in the header,
64639 ** or if the end of the last field appears to be past the end of the
64640 ** record, or if the end of the last field appears to be before the end
64641 ** of the record (when all fields present), then we must be dealing
64642 ** with a corrupt database.
64644 if( (u.am.zIdx > u.am.zEndHdr) || (u.am.offset > u.am.payloadSize)
64645 || (u.am.zIdx==u.am.zEndHdr && u.am.offset!=u.am.payloadSize) ){
64646 rc = SQLITE_CORRUPT_BKPT;
64647 goto op_column_out;
64651 /* Get the column information. If u.am.aOffset[u.am.p2] is non-zero, then
64652 ** deserialize the value from the record. If u.am.aOffset[u.am.p2] is zero,
64653 ** then there are not enough fields in the record to satisfy the
64654 ** request. In this case, set the value NULL or to P4 if P4 is
64655 ** a pointer to a Mem object.
64657 if( u.am.aOffset[u.am.p2] ){
64658 assert( rc==SQLITE_OK );
64659 if( u.am.zRec ){
64660 sqlite3VdbeMemReleaseExternal(u.am.pDest);
64661 sqlite3VdbeSerialGet((u8 *)&u.am.zRec[u.am.aOffset[u.am.p2]], u.am.aType[u.am.p2], u.am.pDest);
64662 }else{
64663 u.am.len = sqlite3VdbeSerialTypeLen(u.am.aType[u.am.p2]);
64664 sqlite3VdbeMemMove(&u.am.sMem, u.am.pDest);
64665 rc = sqlite3VdbeMemFromBtree(u.am.pCrsr, u.am.aOffset[u.am.p2], u.am.len, u.am.pC->isIndex, &u.am.sMem);
64666 if( rc!=SQLITE_OK ){
64667 goto op_column_out;
64669 u.am.zData = u.am.sMem.z;
64670 sqlite3VdbeSerialGet((u8*)u.am.zData, u.am.aType[u.am.p2], u.am.pDest);
64672 u.am.pDest->enc = encoding;
64673 }else{
64674 if( pOp->p4type==P4_MEM ){
64675 sqlite3VdbeMemShallowCopy(u.am.pDest, pOp->p4.pMem, MEM_Static);
64676 }else{
64677 assert( u.am.pDest->flags&MEM_Null );
64681 /* If we dynamically allocated space to hold the data (in the
64682 ** sqlite3VdbeMemFromBtree() call above) then transfer control of that
64683 ** dynamically allocated space over to the u.am.pDest structure.
64684 ** This prevents a memory copy.
64686 if( u.am.sMem.zMalloc ){
64687 assert( u.am.sMem.z==u.am.sMem.zMalloc );
64688 assert( !(u.am.pDest->flags & MEM_Dyn) );
64689 assert( !(u.am.pDest->flags & (MEM_Blob|MEM_Str)) || u.am.pDest->z==u.am.sMem.z );
64690 u.am.pDest->flags &= ~(MEM_Ephem|MEM_Static);
64691 u.am.pDest->flags |= MEM_Term;
64692 u.am.pDest->z = u.am.sMem.z;
64693 u.am.pDest->zMalloc = u.am.sMem.zMalloc;
64696 rc = sqlite3VdbeMemMakeWriteable(u.am.pDest);
64698 op_column_out:
64699 UPDATE_MAX_BLOBSIZE(u.am.pDest);
64700 REGISTER_TRACE(pOp->p3, u.am.pDest);
64701 break;
64704 /* Opcode: Affinity P1 P2 * P4 *
64706 ** Apply affinities to a range of P2 registers starting with P1.
64708 ** P4 is a string that is P2 characters long. The nth character of the
64709 ** string indicates the column affinity that should be used for the nth
64710 ** memory cell in the range.
64712 case OP_Affinity: {
64713 #if 0 /* local variables moved into u.an */
64714 const char *zAffinity; /* The affinity to be applied */
64715 char cAff; /* A single character of affinity */
64716 #endif /* local variables moved into u.an */
64718 u.an.zAffinity = pOp->p4.z;
64719 assert( u.an.zAffinity!=0 );
64720 assert( u.an.zAffinity[pOp->p2]==0 );
64721 pIn1 = &aMem[pOp->p1];
64722 while( (u.an.cAff = *(u.an.zAffinity++))!=0 ){
64723 assert( pIn1 <= &p->aMem[p->nMem] );
64724 assert( memIsValid(pIn1) );
64725 ExpandBlob(pIn1);
64726 applyAffinity(pIn1, u.an.cAff, encoding);
64727 pIn1++;
64729 break;
64732 /* Opcode: MakeRecord P1 P2 P3 P4 *
64734 ** Convert P2 registers beginning with P1 into the [record format]
64735 ** use as a data record in a database table or as a key
64736 ** in an index. The OP_Column opcode can decode the record later.
64738 ** P4 may be a string that is P2 characters long. The nth character of the
64739 ** string indicates the column affinity that should be used for the nth
64740 ** field of the index key.
64742 ** The mapping from character to affinity is given by the SQLITE_AFF_
64743 ** macros defined in sqliteInt.h.
64745 ** If P4 is NULL then all index fields have the affinity NONE.
64747 case OP_MakeRecord: {
64748 #if 0 /* local variables moved into u.ao */
64749 u8 *zNewRecord; /* A buffer to hold the data for the new record */
64750 Mem *pRec; /* The new record */
64751 u64 nData; /* Number of bytes of data space */
64752 int nHdr; /* Number of bytes of header space */
64753 i64 nByte; /* Data space required for this record */
64754 int nZero; /* Number of zero bytes at the end of the record */
64755 int nVarint; /* Number of bytes in a varint */
64756 u32 serial_type; /* Type field */
64757 Mem *pData0; /* First field to be combined into the record */
64758 Mem *pLast; /* Last field of the record */
64759 int nField; /* Number of fields in the record */
64760 char *zAffinity; /* The affinity string for the record */
64761 int file_format; /* File format to use for encoding */
64762 int i; /* Space used in zNewRecord[] */
64763 int len; /* Length of a field */
64764 #endif /* local variables moved into u.ao */
64766 /* Assuming the record contains N fields, the record format looks
64767 ** like this:
64769 ** ------------------------------------------------------------------------
64770 ** | hdr-size | type 0 | type 1 | ... | type N-1 | data0 | ... | data N-1 |
64771 ** ------------------------------------------------------------------------
64773 ** Data(0) is taken from register P1. Data(1) comes from register P1+1
64774 ** and so froth.
64776 ** Each type field is a varint representing the serial type of the
64777 ** corresponding data element (see sqlite3VdbeSerialType()). The
64778 ** hdr-size field is also a varint which is the offset from the beginning
64779 ** of the record to data0.
64781 u.ao.nData = 0; /* Number of bytes of data space */
64782 u.ao.nHdr = 0; /* Number of bytes of header space */
64783 u.ao.nZero = 0; /* Number of zero bytes at the end of the record */
64784 u.ao.nField = pOp->p1;
64785 u.ao.zAffinity = pOp->p4.z;
64786 assert( u.ao.nField>0 && pOp->p2>0 && pOp->p2+u.ao.nField<=p->nMem+1 );
64787 u.ao.pData0 = &aMem[u.ao.nField];
64788 u.ao.nField = pOp->p2;
64789 u.ao.pLast = &u.ao.pData0[u.ao.nField-1];
64790 u.ao.file_format = p->minWriteFileFormat;
64792 /* Identify the output register */
64793 assert( pOp->p3<pOp->p1 || pOp->p3>=pOp->p1+pOp->p2 );
64794 pOut = &aMem[pOp->p3];
64795 memAboutToChange(p, pOut);
64797 /* Loop through the elements that will make up the record to figure
64798 ** out how much space is required for the new record.
64800 for(u.ao.pRec=u.ao.pData0; u.ao.pRec<=u.ao.pLast; u.ao.pRec++){
64801 assert( memIsValid(u.ao.pRec) );
64802 if( u.ao.zAffinity ){
64803 applyAffinity(u.ao.pRec, u.ao.zAffinity[u.ao.pRec-u.ao.pData0], encoding);
64805 if( u.ao.pRec->flags&MEM_Zero && u.ao.pRec->n>0 ){
64806 sqlite3VdbeMemExpandBlob(u.ao.pRec);
64808 u.ao.serial_type = sqlite3VdbeSerialType(u.ao.pRec, u.ao.file_format);
64809 u.ao.len = sqlite3VdbeSerialTypeLen(u.ao.serial_type);
64810 u.ao.nData += u.ao.len;
64811 u.ao.nHdr += sqlite3VarintLen(u.ao.serial_type);
64812 if( u.ao.pRec->flags & MEM_Zero ){
64813 /* Only pure zero-filled BLOBs can be input to this Opcode.
64814 ** We do not allow blobs with a prefix and a zero-filled tail. */
64815 u.ao.nZero += u.ao.pRec->u.nZero;
64816 }else if( u.ao.len ){
64817 u.ao.nZero = 0;
64821 /* Add the initial header varint and total the size */
64822 u.ao.nHdr += u.ao.nVarint = sqlite3VarintLen(u.ao.nHdr);
64823 if( u.ao.nVarint<sqlite3VarintLen(u.ao.nHdr) ){
64824 u.ao.nHdr++;
64826 u.ao.nByte = u.ao.nHdr+u.ao.nData-u.ao.nZero;
64827 if( u.ao.nByte>db->aLimit[SQLITE_LIMIT_LENGTH] ){
64828 goto too_big;
64831 /* Make sure the output register has a buffer large enough to store
64832 ** the new record. The output register (pOp->p3) is not allowed to
64833 ** be one of the input registers (because the following call to
64834 ** sqlite3VdbeMemGrow() could clobber the value before it is used).
64836 if( sqlite3VdbeMemGrow(pOut, (int)u.ao.nByte, 0) ){
64837 goto no_mem;
64839 u.ao.zNewRecord = (u8 *)pOut->z;
64841 /* Write the record */
64842 u.ao.i = putVarint32(u.ao.zNewRecord, u.ao.nHdr);
64843 for(u.ao.pRec=u.ao.pData0; u.ao.pRec<=u.ao.pLast; u.ao.pRec++){
64844 u.ao.serial_type = sqlite3VdbeSerialType(u.ao.pRec, u.ao.file_format);
64845 u.ao.i += putVarint32(&u.ao.zNewRecord[u.ao.i], u.ao.serial_type); /* serial type */
64847 for(u.ao.pRec=u.ao.pData0; u.ao.pRec<=u.ao.pLast; u.ao.pRec++){ /* serial data */
64848 u.ao.i += sqlite3VdbeSerialPut(&u.ao.zNewRecord[u.ao.i], (int)(u.ao.nByte-u.ao.i), u.ao.pRec,u.ao.file_format);
64850 assert( u.ao.i==u.ao.nByte );
64852 assert( pOp->p3>0 && pOp->p3<=p->nMem );
64853 pOut->n = (int)u.ao.nByte;
64854 pOut->flags = MEM_Blob | MEM_Dyn;
64855 pOut->xDel = 0;
64856 if( u.ao.nZero ){
64857 pOut->u.nZero = u.ao.nZero;
64858 pOut->flags |= MEM_Zero;
64860 pOut->enc = SQLITE_UTF8; /* In case the blob is ever converted to text */
64861 REGISTER_TRACE(pOp->p3, pOut);
64862 UPDATE_MAX_BLOBSIZE(pOut);
64863 break;
64866 /* Opcode: Count P1 P2 * * *
64868 ** Store the number of entries (an integer value) in the table or index
64869 ** opened by cursor P1 in register P2
64871 #ifndef SQLITE_OMIT_BTREECOUNT
64872 case OP_Count: { /* out2-prerelease */
64873 #if 0 /* local variables moved into u.ap */
64874 i64 nEntry;
64875 BtCursor *pCrsr;
64876 #endif /* local variables moved into u.ap */
64878 u.ap.pCrsr = p->apCsr[pOp->p1]->pCursor;
64879 if( u.ap.pCrsr ){
64880 rc = sqlite3BtreeCount(u.ap.pCrsr, &u.ap.nEntry);
64881 }else{
64882 u.ap.nEntry = 0;
64884 pOut->u.i = u.ap.nEntry;
64885 break;
64887 #endif
64889 /* Opcode: Savepoint P1 * * P4 *
64891 ** Open, release or rollback the savepoint named by parameter P4, depending
64892 ** on the value of P1. To open a new savepoint, P1==0. To release (commit) an
64893 ** existing savepoint, P1==1, or to rollback an existing savepoint P1==2.
64895 case OP_Savepoint: {
64896 #if 0 /* local variables moved into u.aq */
64897 int p1; /* Value of P1 operand */
64898 char *zName; /* Name of savepoint */
64899 int nName;
64900 Savepoint *pNew;
64901 Savepoint *pSavepoint;
64902 Savepoint *pTmp;
64903 int iSavepoint;
64904 int ii;
64905 #endif /* local variables moved into u.aq */
64907 u.aq.p1 = pOp->p1;
64908 u.aq.zName = pOp->p4.z;
64910 /* Assert that the u.aq.p1 parameter is valid. Also that if there is no open
64911 ** transaction, then there cannot be any savepoints.
64913 assert( db->pSavepoint==0 || db->autoCommit==0 );
64914 assert( u.aq.p1==SAVEPOINT_BEGIN||u.aq.p1==SAVEPOINT_RELEASE||u.aq.p1==SAVEPOINT_ROLLBACK );
64915 assert( db->pSavepoint || db->isTransactionSavepoint==0 );
64916 assert( checkSavepointCount(db) );
64918 if( u.aq.p1==SAVEPOINT_BEGIN ){
64919 if( db->writeVdbeCnt>0 ){
64920 /* A new savepoint cannot be created if there are active write
64921 ** statements (i.e. open read/write incremental blob handles).
64923 sqlite3SetString(&p->zErrMsg, db, "cannot open savepoint - "
64924 "SQL statements in progress");
64925 rc = SQLITE_BUSY;
64926 }else{
64927 u.aq.nName = sqlite3Strlen30(u.aq.zName);
64929 /* Create a new savepoint structure. */
64930 u.aq.pNew = sqlite3DbMallocRaw(db, sizeof(Savepoint)+u.aq.nName+1);
64931 if( u.aq.pNew ){
64932 u.aq.pNew->zName = (char *)&u.aq.pNew[1];
64933 memcpy(u.aq.pNew->zName, u.aq.zName, u.aq.nName+1);
64935 /* If there is no open transaction, then mark this as a special
64936 ** "transaction savepoint". */
64937 if( db->autoCommit ){
64938 db->autoCommit = 0;
64939 db->isTransactionSavepoint = 1;
64940 }else{
64941 db->nSavepoint++;
64944 /* Link the new savepoint into the database handle's list. */
64945 u.aq.pNew->pNext = db->pSavepoint;
64946 db->pSavepoint = u.aq.pNew;
64947 u.aq.pNew->nDeferredCons = db->nDeferredCons;
64950 }else{
64951 u.aq.iSavepoint = 0;
64953 /* Find the named savepoint. If there is no such savepoint, then an
64954 ** an error is returned to the user. */
64955 for(
64956 u.aq.pSavepoint = db->pSavepoint;
64957 u.aq.pSavepoint && sqlite3StrICmp(u.aq.pSavepoint->zName, u.aq.zName);
64958 u.aq.pSavepoint = u.aq.pSavepoint->pNext
64960 u.aq.iSavepoint++;
64962 if( !u.aq.pSavepoint ){
64963 sqlite3SetString(&p->zErrMsg, db, "no such savepoint: %s", u.aq.zName);
64964 rc = SQLITE_ERROR;
64965 }else if(
64966 db->writeVdbeCnt>0 || (u.aq.p1==SAVEPOINT_ROLLBACK && db->activeVdbeCnt>1)
64968 /* It is not possible to release (commit) a savepoint if there are
64969 ** active write statements. It is not possible to rollback a savepoint
64970 ** if there are any active statements at all.
64972 sqlite3SetString(&p->zErrMsg, db,
64973 "cannot %s savepoint - SQL statements in progress",
64974 (u.aq.p1==SAVEPOINT_ROLLBACK ? "rollback": "release")
64976 rc = SQLITE_BUSY;
64977 }else{
64979 /* Determine whether or not this is a transaction savepoint. If so,
64980 ** and this is a RELEASE command, then the current transaction
64981 ** is committed.
64983 int isTransaction = u.aq.pSavepoint->pNext==0 && db->isTransactionSavepoint;
64984 if( isTransaction && u.aq.p1==SAVEPOINT_RELEASE ){
64985 if( (rc = sqlite3VdbeCheckFk(p, 1))!=SQLITE_OK ){
64986 goto vdbe_return;
64988 db->autoCommit = 1;
64989 if( sqlite3VdbeHalt(p)==SQLITE_BUSY ){
64990 p->pc = pc;
64991 db->autoCommit = 0;
64992 p->rc = rc = SQLITE_BUSY;
64993 goto vdbe_return;
64995 db->isTransactionSavepoint = 0;
64996 rc = p->rc;
64997 }else{
64998 u.aq.iSavepoint = db->nSavepoint - u.aq.iSavepoint - 1;
64999 for(u.aq.ii=0; u.aq.ii<db->nDb; u.aq.ii++){
65000 rc = sqlite3BtreeSavepoint(db->aDb[u.aq.ii].pBt, u.aq.p1, u.aq.iSavepoint);
65001 if( rc!=SQLITE_OK ){
65002 goto abort_due_to_error;
65005 if( u.aq.p1==SAVEPOINT_ROLLBACK && (db->flags&SQLITE_InternChanges)!=0 ){
65006 sqlite3ExpirePreparedStatements(db);
65007 sqlite3ResetInternalSchema(db, -1);
65008 db->flags = (db->flags | SQLITE_InternChanges);
65012 /* Regardless of whether this is a RELEASE or ROLLBACK, destroy all
65013 ** savepoints nested inside of the savepoint being operated on. */
65014 while( db->pSavepoint!=u.aq.pSavepoint ){
65015 u.aq.pTmp = db->pSavepoint;
65016 db->pSavepoint = u.aq.pTmp->pNext;
65017 sqlite3DbFree(db, u.aq.pTmp);
65018 db->nSavepoint--;
65021 /* If it is a RELEASE, then destroy the savepoint being operated on
65022 ** too. If it is a ROLLBACK TO, then set the number of deferred
65023 ** constraint violations present in the database to the value stored
65024 ** when the savepoint was created. */
65025 if( u.aq.p1==SAVEPOINT_RELEASE ){
65026 assert( u.aq.pSavepoint==db->pSavepoint );
65027 db->pSavepoint = u.aq.pSavepoint->pNext;
65028 sqlite3DbFree(db, u.aq.pSavepoint);
65029 if( !isTransaction ){
65030 db->nSavepoint--;
65032 }else{
65033 db->nDeferredCons = u.aq.pSavepoint->nDeferredCons;
65038 break;
65041 /* Opcode: AutoCommit P1 P2 * * *
65043 ** Set the database auto-commit flag to P1 (1 or 0). If P2 is true, roll
65044 ** back any currently active btree transactions. If there are any active
65045 ** VMs (apart from this one), then a ROLLBACK fails. A COMMIT fails if
65046 ** there are active writing VMs or active VMs that use shared cache.
65048 ** This instruction causes the VM to halt.
65050 case OP_AutoCommit: {
65051 #if 0 /* local variables moved into u.ar */
65052 int desiredAutoCommit;
65053 int iRollback;
65054 int turnOnAC;
65055 #endif /* local variables moved into u.ar */
65057 u.ar.desiredAutoCommit = pOp->p1;
65058 u.ar.iRollback = pOp->p2;
65059 u.ar.turnOnAC = u.ar.desiredAutoCommit && !db->autoCommit;
65060 assert( u.ar.desiredAutoCommit==1 || u.ar.desiredAutoCommit==0 );
65061 assert( u.ar.desiredAutoCommit==1 || u.ar.iRollback==0 );
65062 assert( db->activeVdbeCnt>0 ); /* At least this one VM is active */
65064 if( u.ar.turnOnAC && u.ar.iRollback && db->activeVdbeCnt>1 ){
65065 /* If this instruction implements a ROLLBACK and other VMs are
65066 ** still running, and a transaction is active, return an error indicating
65067 ** that the other VMs must complete first.
65069 sqlite3SetString(&p->zErrMsg, db, "cannot rollback transaction - "
65070 "SQL statements in progress");
65071 rc = SQLITE_BUSY;
65072 }else if( u.ar.turnOnAC && !u.ar.iRollback && db->writeVdbeCnt>0 ){
65073 /* If this instruction implements a COMMIT and other VMs are writing
65074 ** return an error indicating that the other VMs must complete first.
65076 sqlite3SetString(&p->zErrMsg, db, "cannot commit transaction - "
65077 "SQL statements in progress");
65078 rc = SQLITE_BUSY;
65079 }else if( u.ar.desiredAutoCommit!=db->autoCommit ){
65080 if( u.ar.iRollback ){
65081 assert( u.ar.desiredAutoCommit==1 );
65082 sqlite3RollbackAll(db);
65083 db->autoCommit = 1;
65084 }else if( (rc = sqlite3VdbeCheckFk(p, 1))!=SQLITE_OK ){
65085 goto vdbe_return;
65086 }else{
65087 db->autoCommit = (u8)u.ar.desiredAutoCommit;
65088 if( sqlite3VdbeHalt(p)==SQLITE_BUSY ){
65089 p->pc = pc;
65090 db->autoCommit = (u8)(1-u.ar.desiredAutoCommit);
65091 p->rc = rc = SQLITE_BUSY;
65092 goto vdbe_return;
65095 assert( db->nStatement==0 );
65096 sqlite3CloseSavepoints(db);
65097 if( p->rc==SQLITE_OK ){
65098 rc = SQLITE_DONE;
65099 }else{
65100 rc = SQLITE_ERROR;
65102 goto vdbe_return;
65103 }else{
65104 sqlite3SetString(&p->zErrMsg, db,
65105 (!u.ar.desiredAutoCommit)?"cannot start a transaction within a transaction":(
65106 (u.ar.iRollback)?"cannot rollback - no transaction is active":
65107 "cannot commit - no transaction is active"));
65109 rc = SQLITE_ERROR;
65111 break;
65114 /* Opcode: Transaction P1 P2 * * *
65116 ** Begin a transaction. The transaction ends when a Commit or Rollback
65117 ** opcode is encountered. Depending on the ON CONFLICT setting, the
65118 ** transaction might also be rolled back if an error is encountered.
65120 ** P1 is the index of the database file on which the transaction is
65121 ** started. Index 0 is the main database file and index 1 is the
65122 ** file used for temporary tables. Indices of 2 or more are used for
65123 ** attached databases.
65125 ** If P2 is non-zero, then a write-transaction is started. A RESERVED lock is
65126 ** obtained on the database file when a write-transaction is started. No
65127 ** other process can start another write transaction while this transaction is
65128 ** underway. Starting a write transaction also creates a rollback journal. A
65129 ** write transaction must be started before any changes can be made to the
65130 ** database. If P2 is 2 or greater then an EXCLUSIVE lock is also obtained
65131 ** on the file.
65133 ** If a write-transaction is started and the Vdbe.usesStmtJournal flag is
65134 ** true (this flag is set if the Vdbe may modify more than one row and may
65135 ** throw an ABORT exception), a statement transaction may also be opened.
65136 ** More specifically, a statement transaction is opened iff the database
65137 ** connection is currently not in autocommit mode, or if there are other
65138 ** active statements. A statement transaction allows the affects of this
65139 ** VDBE to be rolled back after an error without having to roll back the
65140 ** entire transaction. If no error is encountered, the statement transaction
65141 ** will automatically commit when the VDBE halts.
65143 ** If P2 is zero, then a read-lock is obtained on the database file.
65145 case OP_Transaction: {
65146 #if 0 /* local variables moved into u.as */
65147 Btree *pBt;
65148 #endif /* local variables moved into u.as */
65150 assert( pOp->p1>=0 && pOp->p1<db->nDb );
65151 assert( (p->btreeMask & (((yDbMask)1)<<pOp->p1))!=0 );
65152 u.as.pBt = db->aDb[pOp->p1].pBt;
65154 if( u.as.pBt ){
65155 rc = sqlite3BtreeBeginTrans(u.as.pBt, pOp->p2);
65156 if( rc==SQLITE_BUSY ){
65157 p->pc = pc;
65158 p->rc = rc = SQLITE_BUSY;
65159 goto vdbe_return;
65161 if( rc!=SQLITE_OK ){
65162 goto abort_due_to_error;
65165 if( pOp->p2 && p->usesStmtJournal
65166 && (db->autoCommit==0 || db->activeVdbeCnt>1)
65168 assert( sqlite3BtreeIsInTrans(u.as.pBt) );
65169 if( p->iStatement==0 ){
65170 assert( db->nStatement>=0 && db->nSavepoint>=0 );
65171 db->nStatement++;
65172 p->iStatement = db->nSavepoint + db->nStatement;
65174 rc = sqlite3BtreeBeginStmt(u.as.pBt, p->iStatement);
65176 /* Store the current value of the database handles deferred constraint
65177 ** counter. If the statement transaction needs to be rolled back,
65178 ** the value of this counter needs to be restored too. */
65179 p->nStmtDefCons = db->nDeferredCons;
65182 break;
65185 /* Opcode: ReadCookie P1 P2 P3 * *
65187 ** Read cookie number P3 from database P1 and write it into register P2.
65188 ** P3==1 is the schema version. P3==2 is the database format.
65189 ** P3==3 is the recommended pager cache size, and so forth. P1==0 is
65190 ** the main database file and P1==1 is the database file used to store
65191 ** temporary tables.
65193 ** There must be a read-lock on the database (either a transaction
65194 ** must be started or there must be an open cursor) before
65195 ** executing this instruction.
65197 case OP_ReadCookie: { /* out2-prerelease */
65198 #if 0 /* local variables moved into u.at */
65199 int iMeta;
65200 int iDb;
65201 int iCookie;
65202 #endif /* local variables moved into u.at */
65204 u.at.iDb = pOp->p1;
65205 u.at.iCookie = pOp->p3;
65206 assert( pOp->p3<SQLITE_N_BTREE_META );
65207 assert( u.at.iDb>=0 && u.at.iDb<db->nDb );
65208 assert( db->aDb[u.at.iDb].pBt!=0 );
65209 assert( (p->btreeMask & (((yDbMask)1)<<u.at.iDb))!=0 );
65211 sqlite3BtreeGetMeta(db->aDb[u.at.iDb].pBt, u.at.iCookie, (u32 *)&u.at.iMeta);
65212 pOut->u.i = u.at.iMeta;
65213 break;
65216 /* Opcode: SetCookie P1 P2 P3 * *
65218 ** Write the content of register P3 (interpreted as an integer)
65219 ** into cookie number P2 of database P1. P2==1 is the schema version.
65220 ** P2==2 is the database format. P2==3 is the recommended pager cache
65221 ** size, and so forth. P1==0 is the main database file and P1==1 is the
65222 ** database file used to store temporary tables.
65224 ** A transaction must be started before executing this opcode.
65226 case OP_SetCookie: { /* in3 */
65227 #if 0 /* local variables moved into u.au */
65228 Db *pDb;
65229 #endif /* local variables moved into u.au */
65230 assert( pOp->p2<SQLITE_N_BTREE_META );
65231 assert( pOp->p1>=0 && pOp->p1<db->nDb );
65232 assert( (p->btreeMask & (((yDbMask)1)<<pOp->p1))!=0 );
65233 u.au.pDb = &db->aDb[pOp->p1];
65234 assert( u.au.pDb->pBt!=0 );
65235 assert( sqlite3SchemaMutexHeld(db, pOp->p1, 0) );
65236 pIn3 = &aMem[pOp->p3];
65237 sqlite3VdbeMemIntegerify(pIn3);
65238 /* See note about index shifting on OP_ReadCookie */
65239 rc = sqlite3BtreeUpdateMeta(u.au.pDb->pBt, pOp->p2, (int)pIn3->u.i);
65240 if( pOp->p2==BTREE_SCHEMA_VERSION ){
65241 /* When the schema cookie changes, record the new cookie internally */
65242 u.au.pDb->pSchema->schema_cookie = (int)pIn3->u.i;
65243 db->flags |= SQLITE_InternChanges;
65244 }else if( pOp->p2==BTREE_FILE_FORMAT ){
65245 /* Record changes in the file format */
65246 u.au.pDb->pSchema->file_format = (u8)pIn3->u.i;
65248 if( pOp->p1==1 ){
65249 /* Invalidate all prepared statements whenever the TEMP database
65250 ** schema is changed. Ticket #1644 */
65251 sqlite3ExpirePreparedStatements(db);
65252 p->expired = 0;
65254 break;
65257 /* Opcode: VerifyCookie P1 P2 P3 * *
65259 ** Check the value of global database parameter number 0 (the
65260 ** schema version) and make sure it is equal to P2 and that the
65261 ** generation counter on the local schema parse equals P3.
65263 ** P1 is the database number which is 0 for the main database file
65264 ** and 1 for the file holding temporary tables and some higher number
65265 ** for auxiliary databases.
65267 ** The cookie changes its value whenever the database schema changes.
65268 ** This operation is used to detect when that the cookie has changed
65269 ** and that the current process needs to reread the schema.
65271 ** Either a transaction needs to have been started or an OP_Open needs
65272 ** to be executed (to establish a read lock) before this opcode is
65273 ** invoked.
65275 case OP_VerifyCookie: {
65276 #if 0 /* local variables moved into u.av */
65277 int iMeta;
65278 int iGen;
65279 Btree *pBt;
65280 #endif /* local variables moved into u.av */
65282 assert( pOp->p1>=0 && pOp->p1<db->nDb );
65283 assert( (p->btreeMask & (((yDbMask)1)<<pOp->p1))!=0 );
65284 assert( sqlite3SchemaMutexHeld(db, pOp->p1, 0) );
65285 u.av.pBt = db->aDb[pOp->p1].pBt;
65286 if( u.av.pBt ){
65287 sqlite3BtreeGetMeta(u.av.pBt, BTREE_SCHEMA_VERSION, (u32 *)&u.av.iMeta);
65288 u.av.iGen = db->aDb[pOp->p1].pSchema->iGeneration;
65289 }else{
65290 u.av.iGen = u.av.iMeta = 0;
65292 if( u.av.iMeta!=pOp->p2 || u.av.iGen!=pOp->p3 ){
65293 sqlite3DbFree(db, p->zErrMsg);
65294 p->zErrMsg = sqlite3DbStrDup(db, "database schema has changed");
65295 /* If the schema-cookie from the database file matches the cookie
65296 ** stored with the in-memory representation of the schema, do
65297 ** not reload the schema from the database file.
65299 ** If virtual-tables are in use, this is not just an optimization.
65300 ** Often, v-tables store their data in other SQLite tables, which
65301 ** are queried from within xNext() and other v-table methods using
65302 ** prepared queries. If such a query is out-of-date, we do not want to
65303 ** discard the database schema, as the user code implementing the
65304 ** v-table would have to be ready for the sqlite3_vtab structure itself
65305 ** to be invalidated whenever sqlite3_step() is called from within
65306 ** a v-table method.
65308 if( db->aDb[pOp->p1].pSchema->schema_cookie!=u.av.iMeta ){
65309 sqlite3ResetInternalSchema(db, pOp->p1);
65312 p->expired = 1;
65313 rc = SQLITE_SCHEMA;
65315 break;
65318 /* Opcode: OpenRead P1 P2 P3 P4 P5
65320 ** Open a read-only cursor for the database table whose root page is
65321 ** P2 in a database file. The database file is determined by P3.
65322 ** P3==0 means the main database, P3==1 means the database used for
65323 ** temporary tables, and P3>1 means used the corresponding attached
65324 ** database. Give the new cursor an identifier of P1. The P1
65325 ** values need not be contiguous but all P1 values should be small integers.
65326 ** It is an error for P1 to be negative.
65328 ** If P5!=0 then use the content of register P2 as the root page, not
65329 ** the value of P2 itself.
65331 ** There will be a read lock on the database whenever there is an
65332 ** open cursor. If the database was unlocked prior to this instruction
65333 ** then a read lock is acquired as part of this instruction. A read
65334 ** lock allows other processes to read the database but prohibits
65335 ** any other process from modifying the database. The read lock is
65336 ** released when all cursors are closed. If this instruction attempts
65337 ** to get a read lock but fails, the script terminates with an
65338 ** SQLITE_BUSY error code.
65340 ** The P4 value may be either an integer (P4_INT32) or a pointer to
65341 ** a KeyInfo structure (P4_KEYINFO). If it is a pointer to a KeyInfo
65342 ** structure, then said structure defines the content and collating
65343 ** sequence of the index being opened. Otherwise, if P4 is an integer
65344 ** value, it is set to the number of columns in the table.
65346 ** See also OpenWrite.
65348 /* Opcode: OpenWrite P1 P2 P3 P4 P5
65350 ** Open a read/write cursor named P1 on the table or index whose root
65351 ** page is P2. Or if P5!=0 use the content of register P2 to find the
65352 ** root page.
65354 ** The P4 value may be either an integer (P4_INT32) or a pointer to
65355 ** a KeyInfo structure (P4_KEYINFO). If it is a pointer to a KeyInfo
65356 ** structure, then said structure defines the content and collating
65357 ** sequence of the index being opened. Otherwise, if P4 is an integer
65358 ** value, it is set to the number of columns in the table, or to the
65359 ** largest index of any column of the table that is actually used.
65361 ** This instruction works just like OpenRead except that it opens the cursor
65362 ** in read/write mode. For a given table, there can be one or more read-only
65363 ** cursors or a single read/write cursor but not both.
65365 ** See also OpenRead.
65367 case OP_OpenRead:
65368 case OP_OpenWrite: {
65369 #if 0 /* local variables moved into u.aw */
65370 int nField;
65371 KeyInfo *pKeyInfo;
65372 int p2;
65373 int iDb;
65374 int wrFlag;
65375 Btree *pX;
65376 VdbeCursor *pCur;
65377 Db *pDb;
65378 #endif /* local variables moved into u.aw */
65380 if( p->expired ){
65381 rc = SQLITE_ABORT;
65382 break;
65385 u.aw.nField = 0;
65386 u.aw.pKeyInfo = 0;
65387 u.aw.p2 = pOp->p2;
65388 u.aw.iDb = pOp->p3;
65389 assert( u.aw.iDb>=0 && u.aw.iDb<db->nDb );
65390 assert( (p->btreeMask & (((yDbMask)1)<<u.aw.iDb))!=0 );
65391 u.aw.pDb = &db->aDb[u.aw.iDb];
65392 u.aw.pX = u.aw.pDb->pBt;
65393 assert( u.aw.pX!=0 );
65394 if( pOp->opcode==OP_OpenWrite ){
65395 u.aw.wrFlag = 1;
65396 assert( sqlite3SchemaMutexHeld(db, u.aw.iDb, 0) );
65397 if( u.aw.pDb->pSchema->file_format < p->minWriteFileFormat ){
65398 p->minWriteFileFormat = u.aw.pDb->pSchema->file_format;
65400 }else{
65401 u.aw.wrFlag = 0;
65403 if( pOp->p5 ){
65404 assert( u.aw.p2>0 );
65405 assert( u.aw.p2<=p->nMem );
65406 pIn2 = &aMem[u.aw.p2];
65407 assert( memIsValid(pIn2) );
65408 assert( (pIn2->flags & MEM_Int)!=0 );
65409 sqlite3VdbeMemIntegerify(pIn2);
65410 u.aw.p2 = (int)pIn2->u.i;
65411 /* The u.aw.p2 value always comes from a prior OP_CreateTable opcode and
65412 ** that opcode will always set the u.aw.p2 value to 2 or more or else fail.
65413 ** If there were a failure, the prepared statement would have halted
65414 ** before reaching this instruction. */
65415 if( NEVER(u.aw.p2<2) ) {
65416 rc = SQLITE_CORRUPT_BKPT;
65417 goto abort_due_to_error;
65420 if( pOp->p4type==P4_KEYINFO ){
65421 u.aw.pKeyInfo = pOp->p4.pKeyInfo;
65422 u.aw.pKeyInfo->enc = ENC(p->db);
65423 u.aw.nField = u.aw.pKeyInfo->nField+1;
65424 }else if( pOp->p4type==P4_INT32 ){
65425 u.aw.nField = pOp->p4.i;
65427 assert( pOp->p1>=0 );
65428 u.aw.pCur = allocateCursor(p, pOp->p1, u.aw.nField, u.aw.iDb, 1);
65429 if( u.aw.pCur==0 ) goto no_mem;
65430 u.aw.pCur->nullRow = 1;
65431 u.aw.pCur->isOrdered = 1;
65432 rc = sqlite3BtreeCursor(u.aw.pX, u.aw.p2, u.aw.wrFlag, u.aw.pKeyInfo, u.aw.pCur->pCursor);
65433 u.aw.pCur->pKeyInfo = u.aw.pKeyInfo;
65435 /* Since it performs no memory allocation or IO, the only values that
65436 ** sqlite3BtreeCursor() may return are SQLITE_EMPTY and SQLITE_OK.
65437 ** SQLITE_EMPTY is only returned when attempting to open the table
65438 ** rooted at page 1 of a zero-byte database. */
65439 assert( rc==SQLITE_EMPTY || rc==SQLITE_OK );
65440 if( rc==SQLITE_EMPTY ){
65441 u.aw.pCur->pCursor = 0;
65442 rc = SQLITE_OK;
65445 /* Set the VdbeCursor.isTable and isIndex variables. Previous versions of
65446 ** SQLite used to check if the root-page flags were sane at this point
65447 ** and report database corruption if they were not, but this check has
65448 ** since moved into the btree layer. */
65449 u.aw.pCur->isTable = pOp->p4type!=P4_KEYINFO;
65450 u.aw.pCur->isIndex = !u.aw.pCur->isTable;
65451 break;
65454 /* Opcode: OpenEphemeral P1 P2 * P4 *
65456 ** Open a new cursor P1 to a transient table.
65457 ** The cursor is always opened read/write even if
65458 ** the main database is read-only. The ephemeral
65459 ** table is deleted automatically when the cursor is closed.
65461 ** P2 is the number of columns in the ephemeral table.
65462 ** The cursor points to a BTree table if P4==0 and to a BTree index
65463 ** if P4 is not 0. If P4 is not NULL, it points to a KeyInfo structure
65464 ** that defines the format of keys in the index.
65466 ** This opcode was once called OpenTemp. But that created
65467 ** confusion because the term "temp table", might refer either
65468 ** to a TEMP table at the SQL level, or to a table opened by
65469 ** this opcode. Then this opcode was call OpenVirtual. But
65470 ** that created confusion with the whole virtual-table idea.
65472 /* Opcode: OpenAutoindex P1 P2 * P4 *
65474 ** This opcode works the same as OP_OpenEphemeral. It has a
65475 ** different name to distinguish its use. Tables created using
65476 ** by this opcode will be used for automatically created transient
65477 ** indices in joins.
65479 case OP_OpenAutoindex:
65480 case OP_OpenEphemeral: {
65481 #if 0 /* local variables moved into u.ax */
65482 VdbeCursor *pCx;
65483 #endif /* local variables moved into u.ax */
65484 static const int vfsFlags =
65485 SQLITE_OPEN_READWRITE |
65486 SQLITE_OPEN_CREATE |
65487 SQLITE_OPEN_EXCLUSIVE |
65488 SQLITE_OPEN_DELETEONCLOSE |
65489 SQLITE_OPEN_TRANSIENT_DB;
65491 assert( pOp->p1>=0 );
65492 u.ax.pCx = allocateCursor(p, pOp->p1, pOp->p2, -1, 1);
65493 if( u.ax.pCx==0 ) goto no_mem;
65494 u.ax.pCx->nullRow = 1;
65495 rc = sqlite3BtreeOpen(0, db, &u.ax.pCx->pBt,
65496 BTREE_OMIT_JOURNAL | BTREE_SINGLE | pOp->p5, vfsFlags);
65497 if( rc==SQLITE_OK ){
65498 rc = sqlite3BtreeBeginTrans(u.ax.pCx->pBt, 1);
65500 if( rc==SQLITE_OK ){
65501 /* If a transient index is required, create it by calling
65502 ** sqlite3BtreeCreateTable() with the BTREE_BLOBKEY flag before
65503 ** opening it. If a transient table is required, just use the
65504 ** automatically created table with root-page 1 (an BLOB_INTKEY table).
65506 if( pOp->p4.pKeyInfo ){
65507 int pgno;
65508 assert( pOp->p4type==P4_KEYINFO );
65509 rc = sqlite3BtreeCreateTable(u.ax.pCx->pBt, &pgno, BTREE_BLOBKEY);
65510 if( rc==SQLITE_OK ){
65511 assert( pgno==MASTER_ROOT+1 );
65512 rc = sqlite3BtreeCursor(u.ax.pCx->pBt, pgno, 1,
65513 (KeyInfo*)pOp->p4.z, u.ax.pCx->pCursor);
65514 u.ax.pCx->pKeyInfo = pOp->p4.pKeyInfo;
65515 u.ax.pCx->pKeyInfo->enc = ENC(p->db);
65517 u.ax.pCx->isTable = 0;
65518 }else{
65519 rc = sqlite3BtreeCursor(u.ax.pCx->pBt, MASTER_ROOT, 1, 0, u.ax.pCx->pCursor);
65520 u.ax.pCx->isTable = 1;
65523 u.ax.pCx->isOrdered = (pOp->p5!=BTREE_UNORDERED);
65524 u.ax.pCx->isIndex = !u.ax.pCx->isTable;
65525 break;
65528 /* Opcode: OpenPseudo P1 P2 P3 * *
65530 ** Open a new cursor that points to a fake table that contains a single
65531 ** row of data. The content of that one row in the content of memory
65532 ** register P2. In other words, cursor P1 becomes an alias for the
65533 ** MEM_Blob content contained in register P2.
65535 ** A pseudo-table created by this opcode is used to hold a single
65536 ** row output from the sorter so that the row can be decomposed into
65537 ** individual columns using the OP_Column opcode. The OP_Column opcode
65538 ** is the only cursor opcode that works with a pseudo-table.
65540 ** P3 is the number of fields in the records that will be stored by
65541 ** the pseudo-table.
65543 case OP_OpenPseudo: {
65544 #if 0 /* local variables moved into u.ay */
65545 VdbeCursor *pCx;
65546 #endif /* local variables moved into u.ay */
65548 assert( pOp->p1>=0 );
65549 u.ay.pCx = allocateCursor(p, pOp->p1, pOp->p3, -1, 0);
65550 if( u.ay.pCx==0 ) goto no_mem;
65551 u.ay.pCx->nullRow = 1;
65552 u.ay.pCx->pseudoTableReg = pOp->p2;
65553 u.ay.pCx->isTable = 1;
65554 u.ay.pCx->isIndex = 0;
65555 break;
65558 /* Opcode: Close P1 * * * *
65560 ** Close a cursor previously opened as P1. If P1 is not
65561 ** currently open, this instruction is a no-op.
65563 case OP_Close: {
65564 assert( pOp->p1>=0 && pOp->p1<p->nCursor );
65565 sqlite3VdbeFreeCursor(p, p->apCsr[pOp->p1]);
65566 p->apCsr[pOp->p1] = 0;
65567 break;
65570 /* Opcode: SeekGe P1 P2 P3 P4 *
65572 ** If cursor P1 refers to an SQL table (B-Tree that uses integer keys),
65573 ** use the value in register P3 as the key. If cursor P1 refers
65574 ** to an SQL index, then P3 is the first in an array of P4 registers
65575 ** that are used as an unpacked index key.
65577 ** Reposition cursor P1 so that it points to the smallest entry that
65578 ** is greater than or equal to the key value. If there are no records
65579 ** greater than or equal to the key and P2 is not zero, then jump to P2.
65581 ** See also: Found, NotFound, Distinct, SeekLt, SeekGt, SeekLe
65583 /* Opcode: SeekGt P1 P2 P3 P4 *
65585 ** If cursor P1 refers to an SQL table (B-Tree that uses integer keys),
65586 ** use the value in register P3 as a key. If cursor P1 refers
65587 ** to an SQL index, then P3 is the first in an array of P4 registers
65588 ** that are used as an unpacked index key.
65590 ** Reposition cursor P1 so that it points to the smallest entry that
65591 ** is greater than the key value. If there are no records greater than
65592 ** the key and P2 is not zero, then jump to P2.
65594 ** See also: Found, NotFound, Distinct, SeekLt, SeekGe, SeekLe
65596 /* Opcode: SeekLt P1 P2 P3 P4 *
65598 ** If cursor P1 refers to an SQL table (B-Tree that uses integer keys),
65599 ** use the value in register P3 as a key. If cursor P1 refers
65600 ** to an SQL index, then P3 is the first in an array of P4 registers
65601 ** that are used as an unpacked index key.
65603 ** Reposition cursor P1 so that it points to the largest entry that
65604 ** is less than the key value. If there are no records less than
65605 ** the key and P2 is not zero, then jump to P2.
65607 ** See also: Found, NotFound, Distinct, SeekGt, SeekGe, SeekLe
65609 /* Opcode: SeekLe P1 P2 P3 P4 *
65611 ** If cursor P1 refers to an SQL table (B-Tree that uses integer keys),
65612 ** use the value in register P3 as a key. If cursor P1 refers
65613 ** to an SQL index, then P3 is the first in an array of P4 registers
65614 ** that are used as an unpacked index key.
65616 ** Reposition cursor P1 so that it points to the largest entry that
65617 ** is less than or equal to the key value. If there are no records
65618 ** less than or equal to the key and P2 is not zero, then jump to P2.
65620 ** See also: Found, NotFound, Distinct, SeekGt, SeekGe, SeekLt
65622 case OP_SeekLt: /* jump, in3 */
65623 case OP_SeekLe: /* jump, in3 */
65624 case OP_SeekGe: /* jump, in3 */
65625 case OP_SeekGt: { /* jump, in3 */
65626 #if 0 /* local variables moved into u.az */
65627 int res;
65628 int oc;
65629 VdbeCursor *pC;
65630 UnpackedRecord r;
65631 int nField;
65632 i64 iKey; /* The rowid we are to seek to */
65633 #endif /* local variables moved into u.az */
65635 assert( pOp->p1>=0 && pOp->p1<p->nCursor );
65636 assert( pOp->p2!=0 );
65637 u.az.pC = p->apCsr[pOp->p1];
65638 assert( u.az.pC!=0 );
65639 assert( u.az.pC->pseudoTableReg==0 );
65640 assert( OP_SeekLe == OP_SeekLt+1 );
65641 assert( OP_SeekGe == OP_SeekLt+2 );
65642 assert( OP_SeekGt == OP_SeekLt+3 );
65643 assert( u.az.pC->isOrdered );
65644 if( u.az.pC->pCursor!=0 ){
65645 u.az.oc = pOp->opcode;
65646 u.az.pC->nullRow = 0;
65647 if( u.az.pC->isTable ){
65648 /* The input value in P3 might be of any type: integer, real, string,
65649 ** blob, or NULL. But it needs to be an integer before we can do
65650 ** the seek, so covert it. */
65651 pIn3 = &aMem[pOp->p3];
65652 applyNumericAffinity(pIn3);
65653 u.az.iKey = sqlite3VdbeIntValue(pIn3);
65654 u.az.pC->rowidIsValid = 0;
65656 /* If the P3 value could not be converted into an integer without
65657 ** loss of information, then special processing is required... */
65658 if( (pIn3->flags & MEM_Int)==0 ){
65659 if( (pIn3->flags & MEM_Real)==0 ){
65660 /* If the P3 value cannot be converted into any kind of a number,
65661 ** then the seek is not possible, so jump to P2 */
65662 pc = pOp->p2 - 1;
65663 break;
65665 /* If we reach this point, then the P3 value must be a floating
65666 ** point number. */
65667 assert( (pIn3->flags & MEM_Real)!=0 );
65669 if( u.az.iKey==SMALLEST_INT64 && (pIn3->r<(double)u.az.iKey || pIn3->r>0) ){
65670 /* The P3 value is too large in magnitude to be expressed as an
65671 ** integer. */
65672 u.az.res = 1;
65673 if( pIn3->r<0 ){
65674 if( u.az.oc>=OP_SeekGe ){ assert( u.az.oc==OP_SeekGe || u.az.oc==OP_SeekGt );
65675 rc = sqlite3BtreeFirst(u.az.pC->pCursor, &u.az.res);
65676 if( rc!=SQLITE_OK ) goto abort_due_to_error;
65678 }else{
65679 if( u.az.oc<=OP_SeekLe ){ assert( u.az.oc==OP_SeekLt || u.az.oc==OP_SeekLe );
65680 rc = sqlite3BtreeLast(u.az.pC->pCursor, &u.az.res);
65681 if( rc!=SQLITE_OK ) goto abort_due_to_error;
65684 if( u.az.res ){
65685 pc = pOp->p2 - 1;
65687 break;
65688 }else if( u.az.oc==OP_SeekLt || u.az.oc==OP_SeekGe ){
65689 /* Use the ceiling() function to convert real->int */
65690 if( pIn3->r > (double)u.az.iKey ) u.az.iKey++;
65691 }else{
65692 /* Use the floor() function to convert real->int */
65693 assert( u.az.oc==OP_SeekLe || u.az.oc==OP_SeekGt );
65694 if( pIn3->r < (double)u.az.iKey ) u.az.iKey--;
65697 rc = sqlite3BtreeMovetoUnpacked(u.az.pC->pCursor, 0, (u64)u.az.iKey, 0, &u.az.res);
65698 if( rc!=SQLITE_OK ){
65699 goto abort_due_to_error;
65701 if( u.az.res==0 ){
65702 u.az.pC->rowidIsValid = 1;
65703 u.az.pC->lastRowid = u.az.iKey;
65705 }else{
65706 u.az.nField = pOp->p4.i;
65707 assert( pOp->p4type==P4_INT32 );
65708 assert( u.az.nField>0 );
65709 u.az.r.pKeyInfo = u.az.pC->pKeyInfo;
65710 u.az.r.nField = (u16)u.az.nField;
65712 /* The next line of code computes as follows, only faster:
65713 ** if( u.az.oc==OP_SeekGt || u.az.oc==OP_SeekLe ){
65714 ** u.az.r.flags = UNPACKED_INCRKEY;
65715 ** }else{
65716 ** u.az.r.flags = 0;
65717 ** }
65719 u.az.r.flags = (u16)(UNPACKED_INCRKEY * (1 & (u.az.oc - OP_SeekLt)));
65720 assert( u.az.oc!=OP_SeekGt || u.az.r.flags==UNPACKED_INCRKEY );
65721 assert( u.az.oc!=OP_SeekLe || u.az.r.flags==UNPACKED_INCRKEY );
65722 assert( u.az.oc!=OP_SeekGe || u.az.r.flags==0 );
65723 assert( u.az.oc!=OP_SeekLt || u.az.r.flags==0 );
65725 u.az.r.aMem = &aMem[pOp->p3];
65726 #ifdef SQLITE_DEBUG
65727 { int i; for(i=0; i<u.az.r.nField; i++) assert( memIsValid(&u.az.r.aMem[i]) ); }
65728 #endif
65729 ExpandBlob(u.az.r.aMem);
65730 rc = sqlite3BtreeMovetoUnpacked(u.az.pC->pCursor, &u.az.r, 0, 0, &u.az.res);
65731 if( rc!=SQLITE_OK ){
65732 goto abort_due_to_error;
65734 u.az.pC->rowidIsValid = 0;
65736 u.az.pC->deferredMoveto = 0;
65737 u.az.pC->cacheStatus = CACHE_STALE;
65738 #ifdef SQLITE_TEST
65739 sqlite3_search_count++;
65740 #endif
65741 if( u.az.oc>=OP_SeekGe ){ assert( u.az.oc==OP_SeekGe || u.az.oc==OP_SeekGt );
65742 if( u.az.res<0 || (u.az.res==0 && u.az.oc==OP_SeekGt) ){
65743 rc = sqlite3BtreeNext(u.az.pC->pCursor, &u.az.res);
65744 if( rc!=SQLITE_OK ) goto abort_due_to_error;
65745 u.az.pC->rowidIsValid = 0;
65746 }else{
65747 u.az.res = 0;
65749 }else{
65750 assert( u.az.oc==OP_SeekLt || u.az.oc==OP_SeekLe );
65751 if( u.az.res>0 || (u.az.res==0 && u.az.oc==OP_SeekLt) ){
65752 rc = sqlite3BtreePrevious(u.az.pC->pCursor, &u.az.res);
65753 if( rc!=SQLITE_OK ) goto abort_due_to_error;
65754 u.az.pC->rowidIsValid = 0;
65755 }else{
65756 /* u.az.res might be negative because the table is empty. Check to
65757 ** see if this is the case.
65759 u.az.res = sqlite3BtreeEof(u.az.pC->pCursor);
65762 assert( pOp->p2>0 );
65763 if( u.az.res ){
65764 pc = pOp->p2 - 1;
65766 }else{
65767 /* This happens when attempting to open the sqlite3_master table
65768 ** for read access returns SQLITE_EMPTY. In this case always
65769 ** take the jump (since there are no records in the table).
65771 pc = pOp->p2 - 1;
65773 break;
65776 /* Opcode: Seek P1 P2 * * *
65778 ** P1 is an open table cursor and P2 is a rowid integer. Arrange
65779 ** for P1 to move so that it points to the rowid given by P2.
65781 ** This is actually a deferred seek. Nothing actually happens until
65782 ** the cursor is used to read a record. That way, if no reads
65783 ** occur, no unnecessary I/O happens.
65785 case OP_Seek: { /* in2 */
65786 #if 0 /* local variables moved into u.ba */
65787 VdbeCursor *pC;
65788 #endif /* local variables moved into u.ba */
65790 assert( pOp->p1>=0 && pOp->p1<p->nCursor );
65791 u.ba.pC = p->apCsr[pOp->p1];
65792 assert( u.ba.pC!=0 );
65793 if( ALWAYS(u.ba.pC->pCursor!=0) ){
65794 assert( u.ba.pC->isTable );
65795 u.ba.pC->nullRow = 0;
65796 pIn2 = &aMem[pOp->p2];
65797 u.ba.pC->movetoTarget = sqlite3VdbeIntValue(pIn2);
65798 u.ba.pC->rowidIsValid = 0;
65799 u.ba.pC->deferredMoveto = 1;
65801 break;
65805 /* Opcode: Found P1 P2 P3 P4 *
65807 ** If P4==0 then register P3 holds a blob constructed by MakeRecord. If
65808 ** P4>0 then register P3 is the first of P4 registers that form an unpacked
65809 ** record.
65811 ** Cursor P1 is on an index btree. If the record identified by P3 and P4
65812 ** is a prefix of any entry in P1 then a jump is made to P2 and
65813 ** P1 is left pointing at the matching entry.
65815 /* Opcode: NotFound P1 P2 P3 P4 *
65817 ** If P4==0 then register P3 holds a blob constructed by MakeRecord. If
65818 ** P4>0 then register P3 is the first of P4 registers that form an unpacked
65819 ** record.
65821 ** Cursor P1 is on an index btree. If the record identified by P3 and P4
65822 ** is not the prefix of any entry in P1 then a jump is made to P2. If P1
65823 ** does contain an entry whose prefix matches the P3/P4 record then control
65824 ** falls through to the next instruction and P1 is left pointing at the
65825 ** matching entry.
65827 ** See also: Found, NotExists, IsUnique
65829 case OP_NotFound: /* jump, in3 */
65830 case OP_Found: { /* jump, in3 */
65831 #if 0 /* local variables moved into u.bb */
65832 int alreadyExists;
65833 VdbeCursor *pC;
65834 int res;
65835 UnpackedRecord *pIdxKey;
65836 UnpackedRecord r;
65837 char aTempRec[ROUND8(sizeof(UnpackedRecord)) + sizeof(Mem)*3 + 7];
65838 #endif /* local variables moved into u.bb */
65840 #ifdef SQLITE_TEST
65841 sqlite3_found_count++;
65842 #endif
65844 u.bb.alreadyExists = 0;
65845 assert( pOp->p1>=0 && pOp->p1<p->nCursor );
65846 assert( pOp->p4type==P4_INT32 );
65847 u.bb.pC = p->apCsr[pOp->p1];
65848 assert( u.bb.pC!=0 );
65849 pIn3 = &aMem[pOp->p3];
65850 if( ALWAYS(u.bb.pC->pCursor!=0) ){
65852 assert( u.bb.pC->isTable==0 );
65853 if( pOp->p4.i>0 ){
65854 u.bb.r.pKeyInfo = u.bb.pC->pKeyInfo;
65855 u.bb.r.nField = (u16)pOp->p4.i;
65856 u.bb.r.aMem = pIn3;
65857 #ifdef SQLITE_DEBUG
65858 { int i; for(i=0; i<u.bb.r.nField; i++) assert( memIsValid(&u.bb.r.aMem[i]) ); }
65859 #endif
65860 u.bb.r.flags = UNPACKED_PREFIX_MATCH;
65861 u.bb.pIdxKey = &u.bb.r;
65862 }else{
65863 assert( pIn3->flags & MEM_Blob );
65864 assert( (pIn3->flags & MEM_Zero)==0 ); /* zeroblobs already expanded */
65865 u.bb.pIdxKey = sqlite3VdbeRecordUnpack(u.bb.pC->pKeyInfo, pIn3->n, pIn3->z,
65866 u.bb.aTempRec, sizeof(u.bb.aTempRec));
65867 if( u.bb.pIdxKey==0 ){
65868 goto no_mem;
65870 u.bb.pIdxKey->flags |= UNPACKED_PREFIX_MATCH;
65872 rc = sqlite3BtreeMovetoUnpacked(u.bb.pC->pCursor, u.bb.pIdxKey, 0, 0, &u.bb.res);
65873 if( pOp->p4.i==0 ){
65874 sqlite3VdbeDeleteUnpackedRecord(u.bb.pIdxKey);
65876 if( rc!=SQLITE_OK ){
65877 break;
65879 u.bb.alreadyExists = (u.bb.res==0);
65880 u.bb.pC->deferredMoveto = 0;
65881 u.bb.pC->cacheStatus = CACHE_STALE;
65883 if( pOp->opcode==OP_Found ){
65884 if( u.bb.alreadyExists ) pc = pOp->p2 - 1;
65885 }else{
65886 if( !u.bb.alreadyExists ) pc = pOp->p2 - 1;
65888 break;
65891 /* Opcode: IsUnique P1 P2 P3 P4 *
65893 ** Cursor P1 is open on an index b-tree - that is to say, a btree which
65894 ** no data and where the key are records generated by OP_MakeRecord with
65895 ** the list field being the integer ROWID of the entry that the index
65896 ** entry refers to.
65898 ** The P3 register contains an integer record number. Call this record
65899 ** number R. Register P4 is the first in a set of N contiguous registers
65900 ** that make up an unpacked index key that can be used with cursor P1.
65901 ** The value of N can be inferred from the cursor. N includes the rowid
65902 ** value appended to the end of the index record. This rowid value may
65903 ** or may not be the same as R.
65905 ** If any of the N registers beginning with register P4 contains a NULL
65906 ** value, jump immediately to P2.
65908 ** Otherwise, this instruction checks if cursor P1 contains an entry
65909 ** where the first (N-1) fields match but the rowid value at the end
65910 ** of the index entry is not R. If there is no such entry, control jumps
65911 ** to instruction P2. Otherwise, the rowid of the conflicting index
65912 ** entry is copied to register P3 and control falls through to the next
65913 ** instruction.
65915 ** See also: NotFound, NotExists, Found
65917 case OP_IsUnique: { /* jump, in3 */
65918 #if 0 /* local variables moved into u.bc */
65919 u16 ii;
65920 VdbeCursor *pCx;
65921 BtCursor *pCrsr;
65922 u16 nField;
65923 Mem *aMx;
65924 UnpackedRecord r; /* B-Tree index search key */
65925 i64 R; /* Rowid stored in register P3 */
65926 #endif /* local variables moved into u.bc */
65928 pIn3 = &aMem[pOp->p3];
65929 u.bc.aMx = &aMem[pOp->p4.i];
65930 /* Assert that the values of parameters P1 and P4 are in range. */
65931 assert( pOp->p4type==P4_INT32 );
65932 assert( pOp->p4.i>0 && pOp->p4.i<=p->nMem );
65933 assert( pOp->p1>=0 && pOp->p1<p->nCursor );
65935 /* Find the index cursor. */
65936 u.bc.pCx = p->apCsr[pOp->p1];
65937 assert( u.bc.pCx->deferredMoveto==0 );
65938 u.bc.pCx->seekResult = 0;
65939 u.bc.pCx->cacheStatus = CACHE_STALE;
65940 u.bc.pCrsr = u.bc.pCx->pCursor;
65942 /* If any of the values are NULL, take the jump. */
65943 u.bc.nField = u.bc.pCx->pKeyInfo->nField;
65944 for(u.bc.ii=0; u.bc.ii<u.bc.nField; u.bc.ii++){
65945 if( u.bc.aMx[u.bc.ii].flags & MEM_Null ){
65946 pc = pOp->p2 - 1;
65947 u.bc.pCrsr = 0;
65948 break;
65951 assert( (u.bc.aMx[u.bc.nField].flags & MEM_Null)==0 );
65953 if( u.bc.pCrsr!=0 ){
65954 /* Populate the index search key. */
65955 u.bc.r.pKeyInfo = u.bc.pCx->pKeyInfo;
65956 u.bc.r.nField = u.bc.nField + 1;
65957 u.bc.r.flags = UNPACKED_PREFIX_SEARCH;
65958 u.bc.r.aMem = u.bc.aMx;
65959 #ifdef SQLITE_DEBUG
65960 { int i; for(i=0; i<u.bc.r.nField; i++) assert( memIsValid(&u.bc.r.aMem[i]) ); }
65961 #endif
65963 /* Extract the value of u.bc.R from register P3. */
65964 sqlite3VdbeMemIntegerify(pIn3);
65965 u.bc.R = pIn3->u.i;
65967 /* Search the B-Tree index. If no conflicting record is found, jump
65968 ** to P2. Otherwise, copy the rowid of the conflicting record to
65969 ** register P3 and fall through to the next instruction. */
65970 rc = sqlite3BtreeMovetoUnpacked(u.bc.pCrsr, &u.bc.r, 0, 0, &u.bc.pCx->seekResult);
65971 if( (u.bc.r.flags & UNPACKED_PREFIX_SEARCH) || u.bc.r.rowid==u.bc.R ){
65972 pc = pOp->p2 - 1;
65973 }else{
65974 pIn3->u.i = u.bc.r.rowid;
65977 break;
65980 /* Opcode: NotExists P1 P2 P3 * *
65982 ** Use the content of register P3 as a integer key. If a record
65983 ** with that key does not exist in table of P1, then jump to P2.
65984 ** If the record does exist, then fall through. The cursor is left
65985 ** pointing to the record if it exists.
65987 ** The difference between this operation and NotFound is that this
65988 ** operation assumes the key is an integer and that P1 is a table whereas
65989 ** NotFound assumes key is a blob constructed from MakeRecord and
65990 ** P1 is an index.
65992 ** See also: Found, NotFound, IsUnique
65994 case OP_NotExists: { /* jump, in3 */
65995 #if 0 /* local variables moved into u.bd */
65996 VdbeCursor *pC;
65997 BtCursor *pCrsr;
65998 int res;
65999 u64 iKey;
66000 #endif /* local variables moved into u.bd */
66002 pIn3 = &aMem[pOp->p3];
66003 assert( pIn3->flags & MEM_Int );
66004 assert( pOp->p1>=0 && pOp->p1<p->nCursor );
66005 u.bd.pC = p->apCsr[pOp->p1];
66006 assert( u.bd.pC!=0 );
66007 assert( u.bd.pC->isTable );
66008 assert( u.bd.pC->pseudoTableReg==0 );
66009 u.bd.pCrsr = u.bd.pC->pCursor;
66010 if( u.bd.pCrsr!=0 ){
66011 u.bd.res = 0;
66012 u.bd.iKey = pIn3->u.i;
66013 rc = sqlite3BtreeMovetoUnpacked(u.bd.pCrsr, 0, u.bd.iKey, 0, &u.bd.res);
66014 u.bd.pC->lastRowid = pIn3->u.i;
66015 u.bd.pC->rowidIsValid = u.bd.res==0 ?1:0;
66016 u.bd.pC->nullRow = 0;
66017 u.bd.pC->cacheStatus = CACHE_STALE;
66018 u.bd.pC->deferredMoveto = 0;
66019 if( u.bd.res!=0 ){
66020 pc = pOp->p2 - 1;
66021 assert( u.bd.pC->rowidIsValid==0 );
66023 u.bd.pC->seekResult = u.bd.res;
66024 }else{
66025 /* This happens when an attempt to open a read cursor on the
66026 ** sqlite_master table returns SQLITE_EMPTY.
66028 pc = pOp->p2 - 1;
66029 assert( u.bd.pC->rowidIsValid==0 );
66030 u.bd.pC->seekResult = 0;
66032 break;
66035 /* Opcode: Sequence P1 P2 * * *
66037 ** Find the next available sequence number for cursor P1.
66038 ** Write the sequence number into register P2.
66039 ** The sequence number on the cursor is incremented after this
66040 ** instruction.
66042 case OP_Sequence: { /* out2-prerelease */
66043 assert( pOp->p1>=0 && pOp->p1<p->nCursor );
66044 assert( p->apCsr[pOp->p1]!=0 );
66045 pOut->u.i = p->apCsr[pOp->p1]->seqCount++;
66046 break;
66050 /* Opcode: NewRowid P1 P2 P3 * *
66052 ** Get a new integer record number (a.k.a "rowid") used as the key to a table.
66053 ** The record number is not previously used as a key in the database
66054 ** table that cursor P1 points to. The new record number is written
66055 ** written to register P2.
66057 ** If P3>0 then P3 is a register in the root frame of this VDBE that holds
66058 ** the largest previously generated record number. No new record numbers are
66059 ** allowed to be less than this value. When this value reaches its maximum,
66060 ** a SQLITE_FULL error is generated. The P3 register is updated with the '
66061 ** generated record number. This P3 mechanism is used to help implement the
66062 ** AUTOINCREMENT feature.
66064 case OP_NewRowid: { /* out2-prerelease */
66065 #if 0 /* local variables moved into u.be */
66066 i64 v; /* The new rowid */
66067 VdbeCursor *pC; /* Cursor of table to get the new rowid */
66068 int res; /* Result of an sqlite3BtreeLast() */
66069 int cnt; /* Counter to limit the number of searches */
66070 Mem *pMem; /* Register holding largest rowid for AUTOINCREMENT */
66071 VdbeFrame *pFrame; /* Root frame of VDBE */
66072 #endif /* local variables moved into u.be */
66074 u.be.v = 0;
66075 u.be.res = 0;
66076 assert( pOp->p1>=0 && pOp->p1<p->nCursor );
66077 u.be.pC = p->apCsr[pOp->p1];
66078 assert( u.be.pC!=0 );
66079 if( NEVER(u.be.pC->pCursor==0) ){
66080 /* The zero initialization above is all that is needed */
66081 }else{
66082 /* The next rowid or record number (different terms for the same
66083 ** thing) is obtained in a two-step algorithm.
66085 ** First we attempt to find the largest existing rowid and add one
66086 ** to that. But if the largest existing rowid is already the maximum
66087 ** positive integer, we have to fall through to the second
66088 ** probabilistic algorithm
66090 ** The second algorithm is to select a rowid at random and see if
66091 ** it already exists in the table. If it does not exist, we have
66092 ** succeeded. If the random rowid does exist, we select a new one
66093 ** and try again, up to 100 times.
66095 assert( u.be.pC->isTable );
66097 #ifdef SQLITE_32BIT_ROWID
66098 # define MAX_ROWID 0x7fffffff
66099 #else
66100 /* Some compilers complain about constants of the form 0x7fffffffffffffff.
66101 ** Others complain about 0x7ffffffffffffffffLL. The following macro seems
66102 ** to provide the constant while making all compilers happy.
66104 # define MAX_ROWID (i64)( (((u64)0x7fffffff)<<32) | (u64)0xffffffff )
66105 #endif
66107 if( !u.be.pC->useRandomRowid ){
66108 u.be.v = sqlite3BtreeGetCachedRowid(u.be.pC->pCursor);
66109 if( u.be.v==0 ){
66110 rc = sqlite3BtreeLast(u.be.pC->pCursor, &u.be.res);
66111 if( rc!=SQLITE_OK ){
66112 goto abort_due_to_error;
66114 if( u.be.res ){
66115 u.be.v = 1; /* IMP: R-61914-48074 */
66116 }else{
66117 assert( sqlite3BtreeCursorIsValid(u.be.pC->pCursor) );
66118 rc = sqlite3BtreeKeySize(u.be.pC->pCursor, &u.be.v);
66119 assert( rc==SQLITE_OK ); /* Cannot fail following BtreeLast() */
66120 if( u.be.v==MAX_ROWID ){
66121 u.be.pC->useRandomRowid = 1;
66122 }else{
66123 u.be.v++; /* IMP: R-29538-34987 */
66128 #ifndef SQLITE_OMIT_AUTOINCREMENT
66129 if( pOp->p3 ){
66130 /* Assert that P3 is a valid memory cell. */
66131 assert( pOp->p3>0 );
66132 if( p->pFrame ){
66133 for(u.be.pFrame=p->pFrame; u.be.pFrame->pParent; u.be.pFrame=u.be.pFrame->pParent);
66134 /* Assert that P3 is a valid memory cell. */
66135 assert( pOp->p3<=u.be.pFrame->nMem );
66136 u.be.pMem = &u.be.pFrame->aMem[pOp->p3];
66137 }else{
66138 /* Assert that P3 is a valid memory cell. */
66139 assert( pOp->p3<=p->nMem );
66140 u.be.pMem = &aMem[pOp->p3];
66141 memAboutToChange(p, u.be.pMem);
66143 assert( memIsValid(u.be.pMem) );
66145 REGISTER_TRACE(pOp->p3, u.be.pMem);
66146 sqlite3VdbeMemIntegerify(u.be.pMem);
66147 assert( (u.be.pMem->flags & MEM_Int)!=0 ); /* mem(P3) holds an integer */
66148 if( u.be.pMem->u.i==MAX_ROWID || u.be.pC->useRandomRowid ){
66149 rc = SQLITE_FULL; /* IMP: R-12275-61338 */
66150 goto abort_due_to_error;
66152 if( u.be.v<u.be.pMem->u.i+1 ){
66153 u.be.v = u.be.pMem->u.i + 1;
66155 u.be.pMem->u.i = u.be.v;
66157 #endif
66159 sqlite3BtreeSetCachedRowid(u.be.pC->pCursor, u.be.v<MAX_ROWID ? u.be.v+1 : 0);
66161 if( u.be.pC->useRandomRowid ){
66162 /* IMPLEMENTATION-OF: R-07677-41881 If the largest ROWID is equal to the
66163 ** largest possible integer (9223372036854775807) then the database
66164 ** engine starts picking positive candidate ROWIDs at random until
66165 ** it finds one that is not previously used. */
66166 assert( pOp->p3==0 ); /* We cannot be in random rowid mode if this is
66167 ** an AUTOINCREMENT table. */
66168 /* on the first attempt, simply do one more than previous */
66169 u.be.v = db->lastRowid;
66170 u.be.v &= (MAX_ROWID>>1); /* ensure doesn't go negative */
66171 u.be.v++; /* ensure non-zero */
66172 u.be.cnt = 0;
66173 while( ((rc = sqlite3BtreeMovetoUnpacked(u.be.pC->pCursor, 0, (u64)u.be.v,
66174 0, &u.be.res))==SQLITE_OK)
66175 && (u.be.res==0)
66176 && (++u.be.cnt<100)){
66177 /* collision - try another random rowid */
66178 sqlite3_randomness(sizeof(u.be.v), &u.be.v);
66179 if( u.be.cnt<5 ){
66180 /* try "small" random rowids for the initial attempts */
66181 u.be.v &= 0xffffff;
66182 }else{
66183 u.be.v &= (MAX_ROWID>>1); /* ensure doesn't go negative */
66185 u.be.v++; /* ensure non-zero */
66187 if( rc==SQLITE_OK && u.be.res==0 ){
66188 rc = SQLITE_FULL; /* IMP: R-38219-53002 */
66189 goto abort_due_to_error;
66191 assert( u.be.v>0 ); /* EV: R-40812-03570 */
66193 u.be.pC->rowidIsValid = 0;
66194 u.be.pC->deferredMoveto = 0;
66195 u.be.pC->cacheStatus = CACHE_STALE;
66197 pOut->u.i = u.be.v;
66198 break;
66201 /* Opcode: Insert P1 P2 P3 P4 P5
66203 ** Write an entry into the table of cursor P1. A new entry is
66204 ** created if it doesn't already exist or the data for an existing
66205 ** entry is overwritten. The data is the value MEM_Blob stored in register
66206 ** number P2. The key is stored in register P3. The key must
66207 ** be a MEM_Int.
66209 ** If the OPFLAG_NCHANGE flag of P5 is set, then the row change count is
66210 ** incremented (otherwise not). If the OPFLAG_LASTROWID flag of P5 is set,
66211 ** then rowid is stored for subsequent return by the
66212 ** sqlite3_last_insert_rowid() function (otherwise it is unmodified).
66214 ** If the OPFLAG_USESEEKRESULT flag of P5 is set and if the result of
66215 ** the last seek operation (OP_NotExists) was a success, then this
66216 ** operation will not attempt to find the appropriate row before doing
66217 ** the insert but will instead overwrite the row that the cursor is
66218 ** currently pointing to. Presumably, the prior OP_NotExists opcode
66219 ** has already positioned the cursor correctly. This is an optimization
66220 ** that boosts performance by avoiding redundant seeks.
66222 ** If the OPFLAG_ISUPDATE flag is set, then this opcode is part of an
66223 ** UPDATE operation. Otherwise (if the flag is clear) then this opcode
66224 ** is part of an INSERT operation. The difference is only important to
66225 ** the update hook.
66227 ** Parameter P4 may point to a string containing the table-name, or
66228 ** may be NULL. If it is not NULL, then the update-hook
66229 ** (sqlite3.xUpdateCallback) is invoked following a successful insert.
66231 ** (WARNING/TODO: If P1 is a pseudo-cursor and P2 is dynamically
66232 ** allocated, then ownership of P2 is transferred to the pseudo-cursor
66233 ** and register P2 becomes ephemeral. If the cursor is changed, the
66234 ** value of register P2 will then change. Make sure this does not
66235 ** cause any problems.)
66237 ** This instruction only works on tables. The equivalent instruction
66238 ** for indices is OP_IdxInsert.
66240 /* Opcode: InsertInt P1 P2 P3 P4 P5
66242 ** This works exactly like OP_Insert except that the key is the
66243 ** integer value P3, not the value of the integer stored in register P3.
66245 case OP_Insert:
66246 case OP_InsertInt: {
66247 #if 0 /* local variables moved into u.bf */
66248 Mem *pData; /* MEM cell holding data for the record to be inserted */
66249 Mem *pKey; /* MEM cell holding key for the record */
66250 i64 iKey; /* The integer ROWID or key for the record to be inserted */
66251 VdbeCursor *pC; /* Cursor to table into which insert is written */
66252 int nZero; /* Number of zero-bytes to append */
66253 int seekResult; /* Result of prior seek or 0 if no USESEEKRESULT flag */
66254 const char *zDb; /* database name - used by the update hook */
66255 const char *zTbl; /* Table name - used by the opdate hook */
66256 int op; /* Opcode for update hook: SQLITE_UPDATE or SQLITE_INSERT */
66257 #endif /* local variables moved into u.bf */
66259 u.bf.pData = &aMem[pOp->p2];
66260 assert( pOp->p1>=0 && pOp->p1<p->nCursor );
66261 assert( memIsValid(u.bf.pData) );
66262 u.bf.pC = p->apCsr[pOp->p1];
66263 assert( u.bf.pC!=0 );
66264 assert( u.bf.pC->pCursor!=0 );
66265 assert( u.bf.pC->pseudoTableReg==0 );
66266 assert( u.bf.pC->isTable );
66267 REGISTER_TRACE(pOp->p2, u.bf.pData);
66269 if( pOp->opcode==OP_Insert ){
66270 u.bf.pKey = &aMem[pOp->p3];
66271 assert( u.bf.pKey->flags & MEM_Int );
66272 assert( memIsValid(u.bf.pKey) );
66273 REGISTER_TRACE(pOp->p3, u.bf.pKey);
66274 u.bf.iKey = u.bf.pKey->u.i;
66275 }else{
66276 assert( pOp->opcode==OP_InsertInt );
66277 u.bf.iKey = pOp->p3;
66280 if( pOp->p5 & OPFLAG_NCHANGE ) p->nChange++;
66281 if( pOp->p5 & OPFLAG_LASTROWID ) db->lastRowid = u.bf.iKey;
66282 if( u.bf.pData->flags & MEM_Null ){
66283 u.bf.pData->z = 0;
66284 u.bf.pData->n = 0;
66285 }else{
66286 assert( u.bf.pData->flags & (MEM_Blob|MEM_Str) );
66288 u.bf.seekResult = ((pOp->p5 & OPFLAG_USESEEKRESULT) ? u.bf.pC->seekResult : 0);
66289 if( u.bf.pData->flags & MEM_Zero ){
66290 u.bf.nZero = u.bf.pData->u.nZero;
66291 }else{
66292 u.bf.nZero = 0;
66294 sqlite3BtreeSetCachedRowid(u.bf.pC->pCursor, 0);
66295 rc = sqlite3BtreeInsert(u.bf.pC->pCursor, 0, u.bf.iKey,
66296 u.bf.pData->z, u.bf.pData->n, u.bf.nZero,
66297 pOp->p5 & OPFLAG_APPEND, u.bf.seekResult
66299 u.bf.pC->rowidIsValid = 0;
66300 u.bf.pC->deferredMoveto = 0;
66301 u.bf.pC->cacheStatus = CACHE_STALE;
66303 /* Invoke the update-hook if required. */
66304 if( rc==SQLITE_OK && db->xUpdateCallback && pOp->p4.z ){
66305 u.bf.zDb = db->aDb[u.bf.pC->iDb].zName;
66306 u.bf.zTbl = pOp->p4.z;
66307 u.bf.op = ((pOp->p5 & OPFLAG_ISUPDATE) ? SQLITE_UPDATE : SQLITE_INSERT);
66308 assert( u.bf.pC->isTable );
66309 db->xUpdateCallback(db->pUpdateArg, u.bf.op, u.bf.zDb, u.bf.zTbl, u.bf.iKey);
66310 assert( u.bf.pC->iDb>=0 );
66312 break;
66315 /* Opcode: Delete P1 P2 * P4 *
66317 ** Delete the record at which the P1 cursor is currently pointing.
66319 ** The cursor will be left pointing at either the next or the previous
66320 ** record in the table. If it is left pointing at the next record, then
66321 ** the next Next instruction will be a no-op. Hence it is OK to delete
66322 ** a record from within an Next loop.
66324 ** If the OPFLAG_NCHANGE flag of P2 is set, then the row change count is
66325 ** incremented (otherwise not).
66327 ** P1 must not be pseudo-table. It has to be a real table with
66328 ** multiple rows.
66330 ** If P4 is not NULL, then it is the name of the table that P1 is
66331 ** pointing to. The update hook will be invoked, if it exists.
66332 ** If P4 is not NULL then the P1 cursor must have been positioned
66333 ** using OP_NotFound prior to invoking this opcode.
66335 case OP_Delete: {
66336 #if 0 /* local variables moved into u.bg */
66337 i64 iKey;
66338 VdbeCursor *pC;
66339 #endif /* local variables moved into u.bg */
66341 u.bg.iKey = 0;
66342 assert( pOp->p1>=0 && pOp->p1<p->nCursor );
66343 u.bg.pC = p->apCsr[pOp->p1];
66344 assert( u.bg.pC!=0 );
66345 assert( u.bg.pC->pCursor!=0 ); /* Only valid for real tables, no pseudotables */
66347 /* If the update-hook will be invoked, set u.bg.iKey to the rowid of the
66348 ** row being deleted.
66350 if( db->xUpdateCallback && pOp->p4.z ){
66351 assert( u.bg.pC->isTable );
66352 assert( u.bg.pC->rowidIsValid ); /* lastRowid set by previous OP_NotFound */
66353 u.bg.iKey = u.bg.pC->lastRowid;
66356 /* The OP_Delete opcode always follows an OP_NotExists or OP_Last or
66357 ** OP_Column on the same table without any intervening operations that
66358 ** might move or invalidate the cursor. Hence cursor u.bg.pC is always pointing
66359 ** to the row to be deleted and the sqlite3VdbeCursorMoveto() operation
66360 ** below is always a no-op and cannot fail. We will run it anyhow, though,
66361 ** to guard against future changes to the code generator.
66363 assert( u.bg.pC->deferredMoveto==0 );
66364 rc = sqlite3VdbeCursorMoveto(u.bg.pC);
66365 if( NEVER(rc!=SQLITE_OK) ) goto abort_due_to_error;
66367 sqlite3BtreeSetCachedRowid(u.bg.pC->pCursor, 0);
66368 rc = sqlite3BtreeDelete(u.bg.pC->pCursor);
66369 u.bg.pC->cacheStatus = CACHE_STALE;
66371 /* Invoke the update-hook if required. */
66372 if( rc==SQLITE_OK && db->xUpdateCallback && pOp->p4.z ){
66373 const char *zDb = db->aDb[u.bg.pC->iDb].zName;
66374 const char *zTbl = pOp->p4.z;
66375 db->xUpdateCallback(db->pUpdateArg, SQLITE_DELETE, zDb, zTbl, u.bg.iKey);
66376 assert( u.bg.pC->iDb>=0 );
66378 if( pOp->p2 & OPFLAG_NCHANGE ) p->nChange++;
66379 break;
66381 /* Opcode: ResetCount * * * * *
66383 ** The value of the change counter is copied to the database handle
66384 ** change counter (returned by subsequent calls to sqlite3_changes()).
66385 ** Then the VMs internal change counter resets to 0.
66386 ** This is used by trigger programs.
66388 case OP_ResetCount: {
66389 sqlite3VdbeSetChanges(db, p->nChange);
66390 p->nChange = 0;
66391 break;
66394 /* Opcode: RowData P1 P2 * * *
66396 ** Write into register P2 the complete row data for cursor P1.
66397 ** There is no interpretation of the data.
66398 ** It is just copied onto the P2 register exactly as
66399 ** it is found in the database file.
66401 ** If the P1 cursor must be pointing to a valid row (not a NULL row)
66402 ** of a real table, not a pseudo-table.
66404 /* Opcode: RowKey P1 P2 * * *
66406 ** Write into register P2 the complete row key for cursor P1.
66407 ** There is no interpretation of the data.
66408 ** The key is copied onto the P3 register exactly as
66409 ** it is found in the database file.
66411 ** If the P1 cursor must be pointing to a valid row (not a NULL row)
66412 ** of a real table, not a pseudo-table.
66414 case OP_RowKey:
66415 case OP_RowData: {
66416 #if 0 /* local variables moved into u.bh */
66417 VdbeCursor *pC;
66418 BtCursor *pCrsr;
66419 u32 n;
66420 i64 n64;
66421 #endif /* local variables moved into u.bh */
66423 pOut = &aMem[pOp->p2];
66424 memAboutToChange(p, pOut);
66426 /* Note that RowKey and RowData are really exactly the same instruction */
66427 assert( pOp->p1>=0 && pOp->p1<p->nCursor );
66428 u.bh.pC = p->apCsr[pOp->p1];
66429 assert( u.bh.pC->isTable || pOp->opcode==OP_RowKey );
66430 assert( u.bh.pC->isIndex || pOp->opcode==OP_RowData );
66431 assert( u.bh.pC!=0 );
66432 assert( u.bh.pC->nullRow==0 );
66433 assert( u.bh.pC->pseudoTableReg==0 );
66434 assert( u.bh.pC->pCursor!=0 );
66435 u.bh.pCrsr = u.bh.pC->pCursor;
66436 assert( sqlite3BtreeCursorIsValid(u.bh.pCrsr) );
66438 /* The OP_RowKey and OP_RowData opcodes always follow OP_NotExists or
66439 ** OP_Rewind/Op_Next with no intervening instructions that might invalidate
66440 ** the cursor. Hence the following sqlite3VdbeCursorMoveto() call is always
66441 ** a no-op and can never fail. But we leave it in place as a safety.
66443 assert( u.bh.pC->deferredMoveto==0 );
66444 rc = sqlite3VdbeCursorMoveto(u.bh.pC);
66445 if( NEVER(rc!=SQLITE_OK) ) goto abort_due_to_error;
66447 if( u.bh.pC->isIndex ){
66448 assert( !u.bh.pC->isTable );
66449 rc = sqlite3BtreeKeySize(u.bh.pCrsr, &u.bh.n64);
66450 assert( rc==SQLITE_OK ); /* True because of CursorMoveto() call above */
66451 if( u.bh.n64>db->aLimit[SQLITE_LIMIT_LENGTH] ){
66452 goto too_big;
66454 u.bh.n = (u32)u.bh.n64;
66455 }else{
66456 rc = sqlite3BtreeDataSize(u.bh.pCrsr, &u.bh.n);
66457 assert( rc==SQLITE_OK ); /* DataSize() cannot fail */
66458 if( u.bh.n>(u32)db->aLimit[SQLITE_LIMIT_LENGTH] ){
66459 goto too_big;
66462 if( sqlite3VdbeMemGrow(pOut, u.bh.n, 0) ){
66463 goto no_mem;
66465 pOut->n = u.bh.n;
66466 MemSetTypeFlag(pOut, MEM_Blob);
66467 if( u.bh.pC->isIndex ){
66468 rc = sqlite3BtreeKey(u.bh.pCrsr, 0, u.bh.n, pOut->z);
66469 }else{
66470 rc = sqlite3BtreeData(u.bh.pCrsr, 0, u.bh.n, pOut->z);
66472 pOut->enc = SQLITE_UTF8; /* In case the blob is ever cast to text */
66473 UPDATE_MAX_BLOBSIZE(pOut);
66474 break;
66477 /* Opcode: Rowid P1 P2 * * *
66479 ** Store in register P2 an integer which is the key of the table entry that
66480 ** P1 is currently point to.
66482 ** P1 can be either an ordinary table or a virtual table. There used to
66483 ** be a separate OP_VRowid opcode for use with virtual tables, but this
66484 ** one opcode now works for both table types.
66486 case OP_Rowid: { /* out2-prerelease */
66487 #if 0 /* local variables moved into u.bi */
66488 VdbeCursor *pC;
66489 i64 v;
66490 sqlite3_vtab *pVtab;
66491 const sqlite3_module *pModule;
66492 #endif /* local variables moved into u.bi */
66494 assert( pOp->p1>=0 && pOp->p1<p->nCursor );
66495 u.bi.pC = p->apCsr[pOp->p1];
66496 assert( u.bi.pC!=0 );
66497 assert( u.bi.pC->pseudoTableReg==0 );
66498 if( u.bi.pC->nullRow ){
66499 pOut->flags = MEM_Null;
66500 break;
66501 }else if( u.bi.pC->deferredMoveto ){
66502 u.bi.v = u.bi.pC->movetoTarget;
66503 #ifndef SQLITE_OMIT_VIRTUALTABLE
66504 }else if( u.bi.pC->pVtabCursor ){
66505 u.bi.pVtab = u.bi.pC->pVtabCursor->pVtab;
66506 u.bi.pModule = u.bi.pVtab->pModule;
66507 assert( u.bi.pModule->xRowid );
66508 rc = u.bi.pModule->xRowid(u.bi.pC->pVtabCursor, &u.bi.v);
66509 importVtabErrMsg(p, u.bi.pVtab);
66510 #endif /* SQLITE_OMIT_VIRTUALTABLE */
66511 }else{
66512 assert( u.bi.pC->pCursor!=0 );
66513 rc = sqlite3VdbeCursorMoveto(u.bi.pC);
66514 if( rc ) goto abort_due_to_error;
66515 if( u.bi.pC->rowidIsValid ){
66516 u.bi.v = u.bi.pC->lastRowid;
66517 }else{
66518 rc = sqlite3BtreeKeySize(u.bi.pC->pCursor, &u.bi.v);
66519 assert( rc==SQLITE_OK ); /* Always so because of CursorMoveto() above */
66522 pOut->u.i = u.bi.v;
66523 break;
66526 /* Opcode: NullRow P1 * * * *
66528 ** Move the cursor P1 to a null row. Any OP_Column operations
66529 ** that occur while the cursor is on the null row will always
66530 ** write a NULL.
66532 case OP_NullRow: {
66533 #if 0 /* local variables moved into u.bj */
66534 VdbeCursor *pC;
66535 #endif /* local variables moved into u.bj */
66537 assert( pOp->p1>=0 && pOp->p1<p->nCursor );
66538 u.bj.pC = p->apCsr[pOp->p1];
66539 assert( u.bj.pC!=0 );
66540 u.bj.pC->nullRow = 1;
66541 u.bj.pC->rowidIsValid = 0;
66542 if( u.bj.pC->pCursor ){
66543 sqlite3BtreeClearCursor(u.bj.pC->pCursor);
66545 break;
66548 /* Opcode: Last P1 P2 * * *
66550 ** The next use of the Rowid or Column or Next instruction for P1
66551 ** will refer to the last entry in the database table or index.
66552 ** If the table or index is empty and P2>0, then jump immediately to P2.
66553 ** If P2 is 0 or if the table or index is not empty, fall through
66554 ** to the following instruction.
66556 case OP_Last: { /* jump */
66557 #if 0 /* local variables moved into u.bk */
66558 VdbeCursor *pC;
66559 BtCursor *pCrsr;
66560 int res;
66561 #endif /* local variables moved into u.bk */
66563 assert( pOp->p1>=0 && pOp->p1<p->nCursor );
66564 u.bk.pC = p->apCsr[pOp->p1];
66565 assert( u.bk.pC!=0 );
66566 u.bk.pCrsr = u.bk.pC->pCursor;
66567 if( u.bk.pCrsr==0 ){
66568 u.bk.res = 1;
66569 }else{
66570 rc = sqlite3BtreeLast(u.bk.pCrsr, &u.bk.res);
66572 u.bk.pC->nullRow = (u8)u.bk.res;
66573 u.bk.pC->deferredMoveto = 0;
66574 u.bk.pC->rowidIsValid = 0;
66575 u.bk.pC->cacheStatus = CACHE_STALE;
66576 if( pOp->p2>0 && u.bk.res ){
66577 pc = pOp->p2 - 1;
66579 break;
66583 /* Opcode: Sort P1 P2 * * *
66585 ** This opcode does exactly the same thing as OP_Rewind except that
66586 ** it increments an undocumented global variable used for testing.
66588 ** Sorting is accomplished by writing records into a sorting index,
66589 ** then rewinding that index and playing it back from beginning to
66590 ** end. We use the OP_Sort opcode instead of OP_Rewind to do the
66591 ** rewinding so that the global variable will be incremented and
66592 ** regression tests can determine whether or not the optimizer is
66593 ** correctly optimizing out sorts.
66595 case OP_Sort: { /* jump */
66596 #ifdef SQLITE_TEST
66597 sqlite3_sort_count++;
66598 sqlite3_search_count--;
66599 #endif
66600 p->aCounter[SQLITE_STMTSTATUS_SORT-1]++;
66601 /* Fall through into OP_Rewind */
66603 /* Opcode: Rewind P1 P2 * * *
66605 ** The next use of the Rowid or Column or Next instruction for P1
66606 ** will refer to the first entry in the database table or index.
66607 ** If the table or index is empty and P2>0, then jump immediately to P2.
66608 ** If P2 is 0 or if the table or index is not empty, fall through
66609 ** to the following instruction.
66611 case OP_Rewind: { /* jump */
66612 #if 0 /* local variables moved into u.bl */
66613 VdbeCursor *pC;
66614 BtCursor *pCrsr;
66615 int res;
66616 #endif /* local variables moved into u.bl */
66618 assert( pOp->p1>=0 && pOp->p1<p->nCursor );
66619 u.bl.pC = p->apCsr[pOp->p1];
66620 assert( u.bl.pC!=0 );
66621 u.bl.res = 1;
66622 if( (u.bl.pCrsr = u.bl.pC->pCursor)!=0 ){
66623 rc = sqlite3BtreeFirst(u.bl.pCrsr, &u.bl.res);
66624 u.bl.pC->atFirst = u.bl.res==0 ?1:0;
66625 u.bl.pC->deferredMoveto = 0;
66626 u.bl.pC->cacheStatus = CACHE_STALE;
66627 u.bl.pC->rowidIsValid = 0;
66629 u.bl.pC->nullRow = (u8)u.bl.res;
66630 assert( pOp->p2>0 && pOp->p2<p->nOp );
66631 if( u.bl.res ){
66632 pc = pOp->p2 - 1;
66634 break;
66637 /* Opcode: Next P1 P2 * * P5
66639 ** Advance cursor P1 so that it points to the next key/data pair in its
66640 ** table or index. If there are no more key/value pairs then fall through
66641 ** to the following instruction. But if the cursor advance was successful,
66642 ** jump immediately to P2.
66644 ** The P1 cursor must be for a real table, not a pseudo-table.
66646 ** If P5 is positive and the jump is taken, then event counter
66647 ** number P5-1 in the prepared statement is incremented.
66649 ** See also: Prev
66651 /* Opcode: Prev P1 P2 * * P5
66653 ** Back up cursor P1 so that it points to the previous key/data pair in its
66654 ** table or index. If there is no previous key/value pairs then fall through
66655 ** to the following instruction. But if the cursor backup was successful,
66656 ** jump immediately to P2.
66658 ** The P1 cursor must be for a real table, not a pseudo-table.
66660 ** If P5 is positive and the jump is taken, then event counter
66661 ** number P5-1 in the prepared statement is incremented.
66663 case OP_Prev: /* jump */
66664 case OP_Next: { /* jump */
66665 #if 0 /* local variables moved into u.bm */
66666 VdbeCursor *pC;
66667 BtCursor *pCrsr;
66668 int res;
66669 #endif /* local variables moved into u.bm */
66671 CHECK_FOR_INTERRUPT;
66672 assert( pOp->p1>=0 && pOp->p1<p->nCursor );
66673 assert( pOp->p5<=ArraySize(p->aCounter) );
66674 u.bm.pC = p->apCsr[pOp->p1];
66675 if( u.bm.pC==0 ){
66676 break; /* See ticket #2273 */
66678 u.bm.pCrsr = u.bm.pC->pCursor;
66679 if( u.bm.pCrsr==0 ){
66680 u.bm.pC->nullRow = 1;
66681 break;
66683 u.bm.res = 1;
66684 assert( u.bm.pC->deferredMoveto==0 );
66685 rc = pOp->opcode==OP_Next ? sqlite3BtreeNext(u.bm.pCrsr, &u.bm.res) :
66686 sqlite3BtreePrevious(u.bm.pCrsr, &u.bm.res);
66687 u.bm.pC->nullRow = (u8)u.bm.res;
66688 u.bm.pC->cacheStatus = CACHE_STALE;
66689 if( u.bm.res==0 ){
66690 pc = pOp->p2 - 1;
66691 if( pOp->p5 ) p->aCounter[pOp->p5-1]++;
66692 #ifdef SQLITE_TEST
66693 sqlite3_search_count++;
66694 #endif
66696 u.bm.pC->rowidIsValid = 0;
66697 break;
66700 /* Opcode: IdxInsert P1 P2 P3 * P5
66702 ** Register P2 holds a SQL index key made using the
66703 ** MakeRecord instructions. This opcode writes that key
66704 ** into the index P1. Data for the entry is nil.
66706 ** P3 is a flag that provides a hint to the b-tree layer that this
66707 ** insert is likely to be an append.
66709 ** This instruction only works for indices. The equivalent instruction
66710 ** for tables is OP_Insert.
66712 case OP_IdxInsert: { /* in2 */
66713 #if 0 /* local variables moved into u.bn */
66714 VdbeCursor *pC;
66715 BtCursor *pCrsr;
66716 int nKey;
66717 const char *zKey;
66718 #endif /* local variables moved into u.bn */
66720 assert( pOp->p1>=0 && pOp->p1<p->nCursor );
66721 u.bn.pC = p->apCsr[pOp->p1];
66722 assert( u.bn.pC!=0 );
66723 pIn2 = &aMem[pOp->p2];
66724 assert( pIn2->flags & MEM_Blob );
66725 u.bn.pCrsr = u.bn.pC->pCursor;
66726 if( ALWAYS(u.bn.pCrsr!=0) ){
66727 assert( u.bn.pC->isTable==0 );
66728 rc = ExpandBlob(pIn2);
66729 if( rc==SQLITE_OK ){
66730 u.bn.nKey = pIn2->n;
66731 u.bn.zKey = pIn2->z;
66732 rc = sqlite3BtreeInsert(u.bn.pCrsr, u.bn.zKey, u.bn.nKey, "", 0, 0, pOp->p3,
66733 ((pOp->p5 & OPFLAG_USESEEKRESULT) ? u.bn.pC->seekResult : 0)
66735 assert( u.bn.pC->deferredMoveto==0 );
66736 u.bn.pC->cacheStatus = CACHE_STALE;
66739 break;
66742 /* Opcode: IdxDelete P1 P2 P3 * *
66744 ** The content of P3 registers starting at register P2 form
66745 ** an unpacked index key. This opcode removes that entry from the
66746 ** index opened by cursor P1.
66748 case OP_IdxDelete: {
66749 #if 0 /* local variables moved into u.bo */
66750 VdbeCursor *pC;
66751 BtCursor *pCrsr;
66752 int res;
66753 UnpackedRecord r;
66754 #endif /* local variables moved into u.bo */
66756 assert( pOp->p3>0 );
66757 assert( pOp->p2>0 && pOp->p2+pOp->p3<=p->nMem+1 );
66758 assert( pOp->p1>=0 && pOp->p1<p->nCursor );
66759 u.bo.pC = p->apCsr[pOp->p1];
66760 assert( u.bo.pC!=0 );
66761 u.bo.pCrsr = u.bo.pC->pCursor;
66762 if( ALWAYS(u.bo.pCrsr!=0) ){
66763 u.bo.r.pKeyInfo = u.bo.pC->pKeyInfo;
66764 u.bo.r.nField = (u16)pOp->p3;
66765 u.bo.r.flags = 0;
66766 u.bo.r.aMem = &aMem[pOp->p2];
66767 #ifdef SQLITE_DEBUG
66768 { int i; for(i=0; i<u.bo.r.nField; i++) assert( memIsValid(&u.bo.r.aMem[i]) ); }
66769 #endif
66770 rc = sqlite3BtreeMovetoUnpacked(u.bo.pCrsr, &u.bo.r, 0, 0, &u.bo.res);
66771 if( rc==SQLITE_OK && u.bo.res==0 ){
66772 rc = sqlite3BtreeDelete(u.bo.pCrsr);
66774 assert( u.bo.pC->deferredMoveto==0 );
66775 u.bo.pC->cacheStatus = CACHE_STALE;
66777 break;
66780 /* Opcode: IdxRowid P1 P2 * * *
66782 ** Write into register P2 an integer which is the last entry in the record at
66783 ** the end of the index key pointed to by cursor P1. This integer should be
66784 ** the rowid of the table entry to which this index entry points.
66786 ** See also: Rowid, MakeRecord.
66788 case OP_IdxRowid: { /* out2-prerelease */
66789 #if 0 /* local variables moved into u.bp */
66790 BtCursor *pCrsr;
66791 VdbeCursor *pC;
66792 i64 rowid;
66793 #endif /* local variables moved into u.bp */
66795 assert( pOp->p1>=0 && pOp->p1<p->nCursor );
66796 u.bp.pC = p->apCsr[pOp->p1];
66797 assert( u.bp.pC!=0 );
66798 u.bp.pCrsr = u.bp.pC->pCursor;
66799 pOut->flags = MEM_Null;
66800 if( ALWAYS(u.bp.pCrsr!=0) ){
66801 rc = sqlite3VdbeCursorMoveto(u.bp.pC);
66802 if( NEVER(rc) ) goto abort_due_to_error;
66803 assert( u.bp.pC->deferredMoveto==0 );
66804 assert( u.bp.pC->isTable==0 );
66805 if( !u.bp.pC->nullRow ){
66806 rc = sqlite3VdbeIdxRowid(db, u.bp.pCrsr, &u.bp.rowid);
66807 if( rc!=SQLITE_OK ){
66808 goto abort_due_to_error;
66810 pOut->u.i = u.bp.rowid;
66811 pOut->flags = MEM_Int;
66814 break;
66817 /* Opcode: IdxGE P1 P2 P3 P4 P5
66819 ** The P4 register values beginning with P3 form an unpacked index
66820 ** key that omits the ROWID. Compare this key value against the index
66821 ** that P1 is currently pointing to, ignoring the ROWID on the P1 index.
66823 ** If the P1 index entry is greater than or equal to the key value
66824 ** then jump to P2. Otherwise fall through to the next instruction.
66826 ** If P5 is non-zero then the key value is increased by an epsilon
66827 ** prior to the comparison. This make the opcode work like IdxGT except
66828 ** that if the key from register P3 is a prefix of the key in the cursor,
66829 ** the result is false whereas it would be true with IdxGT.
66831 /* Opcode: IdxLT P1 P2 P3 P4 P5
66833 ** The P4 register values beginning with P3 form an unpacked index
66834 ** key that omits the ROWID. Compare this key value against the index
66835 ** that P1 is currently pointing to, ignoring the ROWID on the P1 index.
66837 ** If the P1 index entry is less than the key value then jump to P2.
66838 ** Otherwise fall through to the next instruction.
66840 ** If P5 is non-zero then the key value is increased by an epsilon prior
66841 ** to the comparison. This makes the opcode work like IdxLE.
66843 case OP_IdxLT: /* jump */
66844 case OP_IdxGE: { /* jump */
66845 #if 0 /* local variables moved into u.bq */
66846 VdbeCursor *pC;
66847 int res;
66848 UnpackedRecord r;
66849 #endif /* local variables moved into u.bq */
66851 assert( pOp->p1>=0 && pOp->p1<p->nCursor );
66852 u.bq.pC = p->apCsr[pOp->p1];
66853 assert( u.bq.pC!=0 );
66854 assert( u.bq.pC->isOrdered );
66855 if( ALWAYS(u.bq.pC->pCursor!=0) ){
66856 assert( u.bq.pC->deferredMoveto==0 );
66857 assert( pOp->p5==0 || pOp->p5==1 );
66858 assert( pOp->p4type==P4_INT32 );
66859 u.bq.r.pKeyInfo = u.bq.pC->pKeyInfo;
66860 u.bq.r.nField = (u16)pOp->p4.i;
66861 if( pOp->p5 ){
66862 u.bq.r.flags = UNPACKED_INCRKEY | UNPACKED_IGNORE_ROWID;
66863 }else{
66864 u.bq.r.flags = UNPACKED_IGNORE_ROWID;
66866 u.bq.r.aMem = &aMem[pOp->p3];
66867 #ifdef SQLITE_DEBUG
66868 { int i; for(i=0; i<u.bq.r.nField; i++) assert( memIsValid(&u.bq.r.aMem[i]) ); }
66869 #endif
66870 rc = sqlite3VdbeIdxKeyCompare(u.bq.pC, &u.bq.r, &u.bq.res);
66871 if( pOp->opcode==OP_IdxLT ){
66872 u.bq.res = -u.bq.res;
66873 }else{
66874 assert( pOp->opcode==OP_IdxGE );
66875 u.bq.res++;
66877 if( u.bq.res>0 ){
66878 pc = pOp->p2 - 1 ;
66881 break;
66884 /* Opcode: Destroy P1 P2 P3 * *
66886 ** Delete an entire database table or index whose root page in the database
66887 ** file is given by P1.
66889 ** The table being destroyed is in the main database file if P3==0. If
66890 ** P3==1 then the table to be clear is in the auxiliary database file
66891 ** that is used to store tables create using CREATE TEMPORARY TABLE.
66893 ** If AUTOVACUUM is enabled then it is possible that another root page
66894 ** might be moved into the newly deleted root page in order to keep all
66895 ** root pages contiguous at the beginning of the database. The former
66896 ** value of the root page that moved - its value before the move occurred -
66897 ** is stored in register P2. If no page
66898 ** movement was required (because the table being dropped was already
66899 ** the last one in the database) then a zero is stored in register P2.
66900 ** If AUTOVACUUM is disabled then a zero is stored in register P2.
66902 ** See also: Clear
66904 case OP_Destroy: { /* out2-prerelease */
66905 #if 0 /* local variables moved into u.br */
66906 int iMoved;
66907 int iCnt;
66908 Vdbe *pVdbe;
66909 int iDb;
66910 #endif /* local variables moved into u.br */
66911 #ifndef SQLITE_OMIT_VIRTUALTABLE
66912 u.br.iCnt = 0;
66913 for(u.br.pVdbe=db->pVdbe; u.br.pVdbe; u.br.pVdbe = u.br.pVdbe->pNext){
66914 if( u.br.pVdbe->magic==VDBE_MAGIC_RUN && u.br.pVdbe->inVtabMethod<2 && u.br.pVdbe->pc>=0 ){
66915 u.br.iCnt++;
66918 #else
66919 u.br.iCnt = db->activeVdbeCnt;
66920 #endif
66921 pOut->flags = MEM_Null;
66922 if( u.br.iCnt>1 ){
66923 rc = SQLITE_LOCKED;
66924 p->errorAction = OE_Abort;
66925 }else{
66926 u.br.iDb = pOp->p3;
66927 assert( u.br.iCnt==1 );
66928 assert( (p->btreeMask & (((yDbMask)1)<<u.br.iDb))!=0 );
66929 rc = sqlite3BtreeDropTable(db->aDb[u.br.iDb].pBt, pOp->p1, &u.br.iMoved);
66930 pOut->flags = MEM_Int;
66931 pOut->u.i = u.br.iMoved;
66932 #ifndef SQLITE_OMIT_AUTOVACUUM
66933 if( rc==SQLITE_OK && u.br.iMoved!=0 ){
66934 sqlite3RootPageMoved(db, u.br.iDb, u.br.iMoved, pOp->p1);
66935 /* All OP_Destroy operations occur on the same btree */
66936 assert( resetSchemaOnFault==0 || resetSchemaOnFault==u.br.iDb+1 );
66937 resetSchemaOnFault = u.br.iDb+1;
66939 #endif
66941 break;
66944 /* Opcode: Clear P1 P2 P3
66946 ** Delete all contents of the database table or index whose root page
66947 ** in the database file is given by P1. But, unlike Destroy, do not
66948 ** remove the table or index from the database file.
66950 ** The table being clear is in the main database file if P2==0. If
66951 ** P2==1 then the table to be clear is in the auxiliary database file
66952 ** that is used to store tables create using CREATE TEMPORARY TABLE.
66954 ** If the P3 value is non-zero, then the table referred to must be an
66955 ** intkey table (an SQL table, not an index). In this case the row change
66956 ** count is incremented by the number of rows in the table being cleared.
66957 ** If P3 is greater than zero, then the value stored in register P3 is
66958 ** also incremented by the number of rows in the table being cleared.
66960 ** See also: Destroy
66962 case OP_Clear: {
66963 #if 0 /* local variables moved into u.bs */
66964 int nChange;
66965 #endif /* local variables moved into u.bs */
66967 u.bs.nChange = 0;
66968 assert( (p->btreeMask & (((yDbMask)1)<<pOp->p2))!=0 );
66969 rc = sqlite3BtreeClearTable(
66970 db->aDb[pOp->p2].pBt, pOp->p1, (pOp->p3 ? &u.bs.nChange : 0)
66972 if( pOp->p3 ){
66973 p->nChange += u.bs.nChange;
66974 if( pOp->p3>0 ){
66975 assert( memIsValid(&aMem[pOp->p3]) );
66976 memAboutToChange(p, &aMem[pOp->p3]);
66977 aMem[pOp->p3].u.i += u.bs.nChange;
66980 break;
66983 /* Opcode: CreateTable P1 P2 * * *
66985 ** Allocate a new table in the main database file if P1==0 or in the
66986 ** auxiliary database file if P1==1 or in an attached database if
66987 ** P1>1. Write the root page number of the new table into
66988 ** register P2
66990 ** The difference between a table and an index is this: A table must
66991 ** have a 4-byte integer key and can have arbitrary data. An index
66992 ** has an arbitrary key but no data.
66994 ** See also: CreateIndex
66996 /* Opcode: CreateIndex P1 P2 * * *
66998 ** Allocate a new index in the main database file if P1==0 or in the
66999 ** auxiliary database file if P1==1 or in an attached database if
67000 ** P1>1. Write the root page number of the new table into
67001 ** register P2.
67003 ** See documentation on OP_CreateTable for additional information.
67005 case OP_CreateIndex: /* out2-prerelease */
67006 case OP_CreateTable: { /* out2-prerelease */
67007 #if 0 /* local variables moved into u.bt */
67008 int pgno;
67009 int flags;
67010 Db *pDb;
67011 #endif /* local variables moved into u.bt */
67013 u.bt.pgno = 0;
67014 assert( pOp->p1>=0 && pOp->p1<db->nDb );
67015 assert( (p->btreeMask & (((yDbMask)1)<<pOp->p1))!=0 );
67016 u.bt.pDb = &db->aDb[pOp->p1];
67017 assert( u.bt.pDb->pBt!=0 );
67018 if( pOp->opcode==OP_CreateTable ){
67019 /* u.bt.flags = BTREE_INTKEY; */
67020 u.bt.flags = BTREE_INTKEY;
67021 }else{
67022 u.bt.flags = BTREE_BLOBKEY;
67024 rc = sqlite3BtreeCreateTable(u.bt.pDb->pBt, &u.bt.pgno, u.bt.flags);
67025 pOut->u.i = u.bt.pgno;
67026 break;
67029 /* Opcode: ParseSchema P1 * * P4 *
67031 ** Read and parse all entries from the SQLITE_MASTER table of database P1
67032 ** that match the WHERE clause P4.
67034 ** This opcode invokes the parser to create a new virtual machine,
67035 ** then runs the new virtual machine. It is thus a re-entrant opcode.
67037 case OP_ParseSchema: {
67038 #if 0 /* local variables moved into u.bu */
67039 int iDb;
67040 const char *zMaster;
67041 char *zSql;
67042 InitData initData;
67043 #endif /* local variables moved into u.bu */
67045 /* Any prepared statement that invokes this opcode will hold mutexes
67046 ** on every btree. This is a prerequisite for invoking
67047 ** sqlite3InitCallback().
67049 #ifdef SQLITE_DEBUG
67050 for(u.bu.iDb=0; u.bu.iDb<db->nDb; u.bu.iDb++){
67051 assert( u.bu.iDb==1 || sqlite3BtreeHoldsMutex(db->aDb[u.bu.iDb].pBt) );
67053 #endif
67055 u.bu.iDb = pOp->p1;
67056 assert( u.bu.iDb>=0 && u.bu.iDb<db->nDb );
67057 assert( DbHasProperty(db, u.bu.iDb, DB_SchemaLoaded) );
67058 /* Used to be a conditional */ {
67059 u.bu.zMaster = SCHEMA_TABLE(u.bu.iDb);
67060 u.bu.initData.db = db;
67061 u.bu.initData.iDb = pOp->p1;
67062 u.bu.initData.pzErrMsg = &p->zErrMsg;
67063 u.bu.zSql = sqlite3MPrintf(db,
67064 "SELECT name, rootpage, sql FROM '%q'.%s WHERE %s ORDER BY rowid",
67065 db->aDb[u.bu.iDb].zName, u.bu.zMaster, pOp->p4.z);
67066 if( u.bu.zSql==0 ){
67067 rc = SQLITE_NOMEM;
67068 }else{
67069 assert( db->init.busy==0 );
67070 db->init.busy = 1;
67071 u.bu.initData.rc = SQLITE_OK;
67072 assert( !db->mallocFailed );
67073 rc = sqlite3_exec(db, u.bu.zSql, sqlite3InitCallback, &u.bu.initData, 0);
67074 if( rc==SQLITE_OK ) rc = u.bu.initData.rc;
67075 sqlite3DbFree(db, u.bu.zSql);
67076 db->init.busy = 0;
67079 if( rc==SQLITE_NOMEM ){
67080 goto no_mem;
67082 break;
67085 #if !defined(SQLITE_OMIT_ANALYZE)
67086 /* Opcode: LoadAnalysis P1 * * * *
67088 ** Read the sqlite_stat1 table for database P1 and load the content
67089 ** of that table into the internal index hash table. This will cause
67090 ** the analysis to be used when preparing all subsequent queries.
67092 case OP_LoadAnalysis: {
67093 assert( pOp->p1>=0 && pOp->p1<db->nDb );
67094 rc = sqlite3AnalysisLoad(db, pOp->p1);
67095 break;
67097 #endif /* !defined(SQLITE_OMIT_ANALYZE) */
67099 /* Opcode: DropTable P1 * * P4 *
67101 ** Remove the internal (in-memory) data structures that describe
67102 ** the table named P4 in database P1. This is called after a table
67103 ** is dropped in order to keep the internal representation of the
67104 ** schema consistent with what is on disk.
67106 case OP_DropTable: {
67107 sqlite3UnlinkAndDeleteTable(db, pOp->p1, pOp->p4.z);
67108 break;
67111 /* Opcode: DropIndex P1 * * P4 *
67113 ** Remove the internal (in-memory) data structures that describe
67114 ** the index named P4 in database P1. This is called after an index
67115 ** is dropped in order to keep the internal representation of the
67116 ** schema consistent with what is on disk.
67118 case OP_DropIndex: {
67119 sqlite3UnlinkAndDeleteIndex(db, pOp->p1, pOp->p4.z);
67120 break;
67123 /* Opcode: DropTrigger P1 * * P4 *
67125 ** Remove the internal (in-memory) data structures that describe
67126 ** the trigger named P4 in database P1. This is called after a trigger
67127 ** is dropped in order to keep the internal representation of the
67128 ** schema consistent with what is on disk.
67130 case OP_DropTrigger: {
67131 sqlite3UnlinkAndDeleteTrigger(db, pOp->p1, pOp->p4.z);
67132 break;
67136 #ifndef SQLITE_OMIT_INTEGRITY_CHECK
67137 /* Opcode: IntegrityCk P1 P2 P3 * P5
67139 ** Do an analysis of the currently open database. Store in
67140 ** register P1 the text of an error message describing any problems.
67141 ** If no problems are found, store a NULL in register P1.
67143 ** The register P3 contains the maximum number of allowed errors.
67144 ** At most reg(P3) errors will be reported.
67145 ** In other words, the analysis stops as soon as reg(P1) errors are
67146 ** seen. Reg(P1) is updated with the number of errors remaining.
67148 ** The root page numbers of all tables in the database are integer
67149 ** stored in reg(P1), reg(P1+1), reg(P1+2), .... There are P2 tables
67150 ** total.
67152 ** If P5 is not zero, the check is done on the auxiliary database
67153 ** file, not the main database file.
67155 ** This opcode is used to implement the integrity_check pragma.
67157 case OP_IntegrityCk: {
67158 #if 0 /* local variables moved into u.bv */
67159 int nRoot; /* Number of tables to check. (Number of root pages.) */
67160 int *aRoot; /* Array of rootpage numbers for tables to be checked */
67161 int j; /* Loop counter */
67162 int nErr; /* Number of errors reported */
67163 char *z; /* Text of the error report */
67164 Mem *pnErr; /* Register keeping track of errors remaining */
67165 #endif /* local variables moved into u.bv */
67167 u.bv.nRoot = pOp->p2;
67168 assert( u.bv.nRoot>0 );
67169 u.bv.aRoot = sqlite3DbMallocRaw(db, sizeof(int)*(u.bv.nRoot+1) );
67170 if( u.bv.aRoot==0 ) goto no_mem;
67171 assert( pOp->p3>0 && pOp->p3<=p->nMem );
67172 u.bv.pnErr = &aMem[pOp->p3];
67173 assert( (u.bv.pnErr->flags & MEM_Int)!=0 );
67174 assert( (u.bv.pnErr->flags & (MEM_Str|MEM_Blob))==0 );
67175 pIn1 = &aMem[pOp->p1];
67176 for(u.bv.j=0; u.bv.j<u.bv.nRoot; u.bv.j++){
67177 u.bv.aRoot[u.bv.j] = (int)sqlite3VdbeIntValue(&pIn1[u.bv.j]);
67179 u.bv.aRoot[u.bv.j] = 0;
67180 assert( pOp->p5<db->nDb );
67181 assert( (p->btreeMask & (((yDbMask)1)<<pOp->p5))!=0 );
67182 u.bv.z = sqlite3BtreeIntegrityCheck(db->aDb[pOp->p5].pBt, u.bv.aRoot, u.bv.nRoot,
67183 (int)u.bv.pnErr->u.i, &u.bv.nErr);
67184 sqlite3DbFree(db, u.bv.aRoot);
67185 u.bv.pnErr->u.i -= u.bv.nErr;
67186 sqlite3VdbeMemSetNull(pIn1);
67187 if( u.bv.nErr==0 ){
67188 assert( u.bv.z==0 );
67189 }else if( u.bv.z==0 ){
67190 goto no_mem;
67191 }else{
67192 sqlite3VdbeMemSetStr(pIn1, u.bv.z, -1, SQLITE_UTF8, sqlite3_free);
67194 UPDATE_MAX_BLOBSIZE(pIn1);
67195 sqlite3VdbeChangeEncoding(pIn1, encoding);
67196 break;
67198 #endif /* SQLITE_OMIT_INTEGRITY_CHECK */
67200 /* Opcode: RowSetAdd P1 P2 * * *
67202 ** Insert the integer value held by register P2 into a boolean index
67203 ** held in register P1.
67205 ** An assertion fails if P2 is not an integer.
67207 case OP_RowSetAdd: { /* in1, in2 */
67208 pIn1 = &aMem[pOp->p1];
67209 pIn2 = &aMem[pOp->p2];
67210 assert( (pIn2->flags & MEM_Int)!=0 );
67211 if( (pIn1->flags & MEM_RowSet)==0 ){
67212 sqlite3VdbeMemSetRowSet(pIn1);
67213 if( (pIn1->flags & MEM_RowSet)==0 ) goto no_mem;
67215 sqlite3RowSetInsert(pIn1->u.pRowSet, pIn2->u.i);
67216 break;
67219 /* Opcode: RowSetRead P1 P2 P3 * *
67221 ** Extract the smallest value from boolean index P1 and put that value into
67222 ** register P3. Or, if boolean index P1 is initially empty, leave P3
67223 ** unchanged and jump to instruction P2.
67225 case OP_RowSetRead: { /* jump, in1, out3 */
67226 #if 0 /* local variables moved into u.bw */
67227 i64 val;
67228 #endif /* local variables moved into u.bw */
67229 CHECK_FOR_INTERRUPT;
67230 pIn1 = &aMem[pOp->p1];
67231 if( (pIn1->flags & MEM_RowSet)==0
67232 || sqlite3RowSetNext(pIn1->u.pRowSet, &u.bw.val)==0
67234 /* The boolean index is empty */
67235 sqlite3VdbeMemSetNull(pIn1);
67236 pc = pOp->p2 - 1;
67237 }else{
67238 /* A value was pulled from the index */
67239 sqlite3VdbeMemSetInt64(&aMem[pOp->p3], u.bw.val);
67241 break;
67244 /* Opcode: RowSetTest P1 P2 P3 P4
67246 ** Register P3 is assumed to hold a 64-bit integer value. If register P1
67247 ** contains a RowSet object and that RowSet object contains
67248 ** the value held in P3, jump to register P2. Otherwise, insert the
67249 ** integer in P3 into the RowSet and continue on to the
67250 ** next opcode.
67252 ** The RowSet object is optimized for the case where successive sets
67253 ** of integers, where each set contains no duplicates. Each set
67254 ** of values is identified by a unique P4 value. The first set
67255 ** must have P4==0, the final set P4=-1. P4 must be either -1 or
67256 ** non-negative. For non-negative values of P4 only the lower 4
67257 ** bits are significant.
67259 ** This allows optimizations: (a) when P4==0 there is no need to test
67260 ** the rowset object for P3, as it is guaranteed not to contain it,
67261 ** (b) when P4==-1 there is no need to insert the value, as it will
67262 ** never be tested for, and (c) when a value that is part of set X is
67263 ** inserted, there is no need to search to see if the same value was
67264 ** previously inserted as part of set X (only if it was previously
67265 ** inserted as part of some other set).
67267 case OP_RowSetTest: { /* jump, in1, in3 */
67268 #if 0 /* local variables moved into u.bx */
67269 int iSet;
67270 int exists;
67271 #endif /* local variables moved into u.bx */
67273 pIn1 = &aMem[pOp->p1];
67274 pIn3 = &aMem[pOp->p3];
67275 u.bx.iSet = pOp->p4.i;
67276 assert( pIn3->flags&MEM_Int );
67278 /* If there is anything other than a rowset object in memory cell P1,
67279 ** delete it now and initialize P1 with an empty rowset
67281 if( (pIn1->flags & MEM_RowSet)==0 ){
67282 sqlite3VdbeMemSetRowSet(pIn1);
67283 if( (pIn1->flags & MEM_RowSet)==0 ) goto no_mem;
67286 assert( pOp->p4type==P4_INT32 );
67287 assert( u.bx.iSet==-1 || u.bx.iSet>=0 );
67288 if( u.bx.iSet ){
67289 u.bx.exists = sqlite3RowSetTest(pIn1->u.pRowSet,
67290 (u8)(u.bx.iSet>=0 ? u.bx.iSet & 0xf : 0xff),
67291 pIn3->u.i);
67292 if( u.bx.exists ){
67293 pc = pOp->p2 - 1;
67294 break;
67297 if( u.bx.iSet>=0 ){
67298 sqlite3RowSetInsert(pIn1->u.pRowSet, pIn3->u.i);
67300 break;
67304 #ifndef SQLITE_OMIT_TRIGGER
67306 /* Opcode: Program P1 P2 P3 P4 *
67308 ** Execute the trigger program passed as P4 (type P4_SUBPROGRAM).
67310 ** P1 contains the address of the memory cell that contains the first memory
67311 ** cell in an array of values used as arguments to the sub-program. P2
67312 ** contains the address to jump to if the sub-program throws an IGNORE
67313 ** exception using the RAISE() function. Register P3 contains the address
67314 ** of a memory cell in this (the parent) VM that is used to allocate the
67315 ** memory required by the sub-vdbe at runtime.
67317 ** P4 is a pointer to the VM containing the trigger program.
67319 case OP_Program: { /* jump */
67320 #if 0 /* local variables moved into u.by */
67321 int nMem; /* Number of memory registers for sub-program */
67322 int nByte; /* Bytes of runtime space required for sub-program */
67323 Mem *pRt; /* Register to allocate runtime space */
67324 Mem *pMem; /* Used to iterate through memory cells */
67325 Mem *pEnd; /* Last memory cell in new array */
67326 VdbeFrame *pFrame; /* New vdbe frame to execute in */
67327 SubProgram *pProgram; /* Sub-program to execute */
67328 void *t; /* Token identifying trigger */
67329 #endif /* local variables moved into u.by */
67331 u.by.pProgram = pOp->p4.pProgram;
67332 u.by.pRt = &aMem[pOp->p3];
67333 assert( memIsValid(u.by.pRt) );
67334 assert( u.by.pProgram->nOp>0 );
67336 /* If the p5 flag is clear, then recursive invocation of triggers is
67337 ** disabled for backwards compatibility (p5 is set if this sub-program
67338 ** is really a trigger, not a foreign key action, and the flag set
67339 ** and cleared by the "PRAGMA recursive_triggers" command is clear).
67341 ** It is recursive invocation of triggers, at the SQL level, that is
67342 ** disabled. In some cases a single trigger may generate more than one
67343 ** SubProgram (if the trigger may be executed with more than one different
67344 ** ON CONFLICT algorithm). SubProgram structures associated with a
67345 ** single trigger all have the same value for the SubProgram.token
67346 ** variable. */
67347 if( pOp->p5 ){
67348 u.by.t = u.by.pProgram->token;
67349 for(u.by.pFrame=p->pFrame; u.by.pFrame && u.by.pFrame->token!=u.by.t; u.by.pFrame=u.by.pFrame->pParent);
67350 if( u.by.pFrame ) break;
67353 if( p->nFrame>=db->aLimit[SQLITE_LIMIT_TRIGGER_DEPTH] ){
67354 rc = SQLITE_ERROR;
67355 sqlite3SetString(&p->zErrMsg, db, "too many levels of trigger recursion");
67356 break;
67359 /* Register u.by.pRt is used to store the memory required to save the state
67360 ** of the current program, and the memory required at runtime to execute
67361 ** the trigger program. If this trigger has been fired before, then u.by.pRt
67362 ** is already allocated. Otherwise, it must be initialized. */
67363 if( (u.by.pRt->flags&MEM_Frame)==0 ){
67364 /* SubProgram.nMem is set to the number of memory cells used by the
67365 ** program stored in SubProgram.aOp. As well as these, one memory
67366 ** cell is required for each cursor used by the program. Set local
67367 ** variable u.by.nMem (and later, VdbeFrame.nChildMem) to this value.
67369 u.by.nMem = u.by.pProgram->nMem + u.by.pProgram->nCsr;
67370 u.by.nByte = ROUND8(sizeof(VdbeFrame))
67371 + u.by.nMem * sizeof(Mem)
67372 + u.by.pProgram->nCsr * sizeof(VdbeCursor *);
67373 u.by.pFrame = sqlite3DbMallocZero(db, u.by.nByte);
67374 if( !u.by.pFrame ){
67375 goto no_mem;
67377 sqlite3VdbeMemRelease(u.by.pRt);
67378 u.by.pRt->flags = MEM_Frame;
67379 u.by.pRt->u.pFrame = u.by.pFrame;
67381 u.by.pFrame->v = p;
67382 u.by.pFrame->nChildMem = u.by.nMem;
67383 u.by.pFrame->nChildCsr = u.by.pProgram->nCsr;
67384 u.by.pFrame->pc = pc;
67385 u.by.pFrame->aMem = p->aMem;
67386 u.by.pFrame->nMem = p->nMem;
67387 u.by.pFrame->apCsr = p->apCsr;
67388 u.by.pFrame->nCursor = p->nCursor;
67389 u.by.pFrame->aOp = p->aOp;
67390 u.by.pFrame->nOp = p->nOp;
67391 u.by.pFrame->token = u.by.pProgram->token;
67393 u.by.pEnd = &VdbeFrameMem(u.by.pFrame)[u.by.pFrame->nChildMem];
67394 for(u.by.pMem=VdbeFrameMem(u.by.pFrame); u.by.pMem!=u.by.pEnd; u.by.pMem++){
67395 u.by.pMem->flags = MEM_Null;
67396 u.by.pMem->db = db;
67398 }else{
67399 u.by.pFrame = u.by.pRt->u.pFrame;
67400 assert( u.by.pProgram->nMem+u.by.pProgram->nCsr==u.by.pFrame->nChildMem );
67401 assert( u.by.pProgram->nCsr==u.by.pFrame->nChildCsr );
67402 assert( pc==u.by.pFrame->pc );
67405 p->nFrame++;
67406 u.by.pFrame->pParent = p->pFrame;
67407 u.by.pFrame->lastRowid = db->lastRowid;
67408 u.by.pFrame->nChange = p->nChange;
67409 p->nChange = 0;
67410 p->pFrame = u.by.pFrame;
67411 p->aMem = aMem = &VdbeFrameMem(u.by.pFrame)[-1];
67412 p->nMem = u.by.pFrame->nChildMem;
67413 p->nCursor = (u16)u.by.pFrame->nChildCsr;
67414 p->apCsr = (VdbeCursor **)&aMem[p->nMem+1];
67415 p->aOp = aOp = u.by.pProgram->aOp;
67416 p->nOp = u.by.pProgram->nOp;
67417 pc = -1;
67419 break;
67422 /* Opcode: Param P1 P2 * * *
67424 ** This opcode is only ever present in sub-programs called via the
67425 ** OP_Program instruction. Copy a value currently stored in a memory
67426 ** cell of the calling (parent) frame to cell P2 in the current frames
67427 ** address space. This is used by trigger programs to access the new.*
67428 ** and old.* values.
67430 ** The address of the cell in the parent frame is determined by adding
67431 ** the value of the P1 argument to the value of the P1 argument to the
67432 ** calling OP_Program instruction.
67434 case OP_Param: { /* out2-prerelease */
67435 #if 0 /* local variables moved into u.bz */
67436 VdbeFrame *pFrame;
67437 Mem *pIn;
67438 #endif /* local variables moved into u.bz */
67439 u.bz.pFrame = p->pFrame;
67440 u.bz.pIn = &u.bz.pFrame->aMem[pOp->p1 + u.bz.pFrame->aOp[u.bz.pFrame->pc].p1];
67441 sqlite3VdbeMemShallowCopy(pOut, u.bz.pIn, MEM_Ephem);
67442 break;
67445 #endif /* #ifndef SQLITE_OMIT_TRIGGER */
67447 #ifndef SQLITE_OMIT_FOREIGN_KEY
67448 /* Opcode: FkCounter P1 P2 * * *
67450 ** Increment a "constraint counter" by P2 (P2 may be negative or positive).
67451 ** If P1 is non-zero, the database constraint counter is incremented
67452 ** (deferred foreign key constraints). Otherwise, if P1 is zero, the
67453 ** statement counter is incremented (immediate foreign key constraints).
67455 case OP_FkCounter: {
67456 if( pOp->p1 ){
67457 db->nDeferredCons += pOp->p2;
67458 }else{
67459 p->nFkConstraint += pOp->p2;
67461 break;
67464 /* Opcode: FkIfZero P1 P2 * * *
67466 ** This opcode tests if a foreign key constraint-counter is currently zero.
67467 ** If so, jump to instruction P2. Otherwise, fall through to the next
67468 ** instruction.
67470 ** If P1 is non-zero, then the jump is taken if the database constraint-counter
67471 ** is zero (the one that counts deferred constraint violations). If P1 is
67472 ** zero, the jump is taken if the statement constraint-counter is zero
67473 ** (immediate foreign key constraint violations).
67475 case OP_FkIfZero: { /* jump */
67476 if( pOp->p1 ){
67477 if( db->nDeferredCons==0 ) pc = pOp->p2-1;
67478 }else{
67479 if( p->nFkConstraint==0 ) pc = pOp->p2-1;
67481 break;
67483 #endif /* #ifndef SQLITE_OMIT_FOREIGN_KEY */
67485 #ifndef SQLITE_OMIT_AUTOINCREMENT
67486 /* Opcode: MemMax P1 P2 * * *
67488 ** P1 is a register in the root frame of this VM (the root frame is
67489 ** different from the current frame if this instruction is being executed
67490 ** within a sub-program). Set the value of register P1 to the maximum of
67491 ** its current value and the value in register P2.
67493 ** This instruction throws an error if the memory cell is not initially
67494 ** an integer.
67496 case OP_MemMax: { /* in2 */
67497 #if 0 /* local variables moved into u.ca */
67498 Mem *pIn1;
67499 VdbeFrame *pFrame;
67500 #endif /* local variables moved into u.ca */
67501 if( p->pFrame ){
67502 for(u.ca.pFrame=p->pFrame; u.ca.pFrame->pParent; u.ca.pFrame=u.ca.pFrame->pParent);
67503 u.ca.pIn1 = &u.ca.pFrame->aMem[pOp->p1];
67504 }else{
67505 u.ca.pIn1 = &aMem[pOp->p1];
67507 assert( memIsValid(u.ca.pIn1) );
67508 sqlite3VdbeMemIntegerify(u.ca.pIn1);
67509 pIn2 = &aMem[pOp->p2];
67510 sqlite3VdbeMemIntegerify(pIn2);
67511 if( u.ca.pIn1->u.i<pIn2->u.i){
67512 u.ca.pIn1->u.i = pIn2->u.i;
67514 break;
67516 #endif /* SQLITE_OMIT_AUTOINCREMENT */
67518 /* Opcode: IfPos P1 P2 * * *
67520 ** If the value of register P1 is 1 or greater, jump to P2.
67522 ** It is illegal to use this instruction on a register that does
67523 ** not contain an integer. An assertion fault will result if you try.
67525 case OP_IfPos: { /* jump, in1 */
67526 pIn1 = &aMem[pOp->p1];
67527 assert( pIn1->flags&MEM_Int );
67528 if( pIn1->u.i>0 ){
67529 pc = pOp->p2 - 1;
67531 break;
67534 /* Opcode: IfNeg P1 P2 * * *
67536 ** If the value of register P1 is less than zero, jump to P2.
67538 ** It is illegal to use this instruction on a register that does
67539 ** not contain an integer. An assertion fault will result if you try.
67541 case OP_IfNeg: { /* jump, in1 */
67542 pIn1 = &aMem[pOp->p1];
67543 assert( pIn1->flags&MEM_Int );
67544 if( pIn1->u.i<0 ){
67545 pc = pOp->p2 - 1;
67547 break;
67550 /* Opcode: IfZero P1 P2 P3 * *
67552 ** The register P1 must contain an integer. Add literal P3 to the
67553 ** value in register P1. If the result is exactly 0, jump to P2.
67555 ** It is illegal to use this instruction on a register that does
67556 ** not contain an integer. An assertion fault will result if you try.
67558 case OP_IfZero: { /* jump, in1 */
67559 pIn1 = &aMem[pOp->p1];
67560 assert( pIn1->flags&MEM_Int );
67561 pIn1->u.i += pOp->p3;
67562 if( pIn1->u.i==0 ){
67563 pc = pOp->p2 - 1;
67565 break;
67568 /* Opcode: AggStep * P2 P3 P4 P5
67570 ** Execute the step function for an aggregate. The
67571 ** function has P5 arguments. P4 is a pointer to the FuncDef
67572 ** structure that specifies the function. Use register
67573 ** P3 as the accumulator.
67575 ** The P5 arguments are taken from register P2 and its
67576 ** successors.
67578 case OP_AggStep: {
67579 #if 0 /* local variables moved into u.cb */
67580 int n;
67581 int i;
67582 Mem *pMem;
67583 Mem *pRec;
67584 sqlite3_context ctx;
67585 sqlite3_value **apVal;
67586 #endif /* local variables moved into u.cb */
67588 u.cb.n = pOp->p5;
67589 assert( u.cb.n>=0 );
67590 u.cb.pRec = &aMem[pOp->p2];
67591 u.cb.apVal = p->apArg;
67592 assert( u.cb.apVal || u.cb.n==0 );
67593 for(u.cb.i=0; u.cb.i<u.cb.n; u.cb.i++, u.cb.pRec++){
67594 assert( memIsValid(u.cb.pRec) );
67595 u.cb.apVal[u.cb.i] = u.cb.pRec;
67596 memAboutToChange(p, u.cb.pRec);
67597 sqlite3VdbeMemStoreType(u.cb.pRec);
67599 u.cb.ctx.pFunc = pOp->p4.pFunc;
67600 assert( pOp->p3>0 && pOp->p3<=p->nMem );
67601 u.cb.ctx.pMem = u.cb.pMem = &aMem[pOp->p3];
67602 u.cb.pMem->n++;
67603 u.cb.ctx.s.flags = MEM_Null;
67604 u.cb.ctx.s.z = 0;
67605 u.cb.ctx.s.zMalloc = 0;
67606 u.cb.ctx.s.xDel = 0;
67607 u.cb.ctx.s.db = db;
67608 u.cb.ctx.isError = 0;
67609 u.cb.ctx.pColl = 0;
67610 if( u.cb.ctx.pFunc->flags & SQLITE_FUNC_NEEDCOLL ){
67611 assert( pOp>p->aOp );
67612 assert( pOp[-1].p4type==P4_COLLSEQ );
67613 assert( pOp[-1].opcode==OP_CollSeq );
67614 u.cb.ctx.pColl = pOp[-1].p4.pColl;
67616 (u.cb.ctx.pFunc->xStep)(&u.cb.ctx, u.cb.n, u.cb.apVal); /* IMP: R-24505-23230 */
67617 if( u.cb.ctx.isError ){
67618 sqlite3SetString(&p->zErrMsg, db, "%s", sqlite3_value_text(&u.cb.ctx.s));
67619 rc = u.cb.ctx.isError;
67622 sqlite3VdbeMemRelease(&u.cb.ctx.s);
67624 break;
67627 /* Opcode: AggFinal P1 P2 * P4 *
67629 ** Execute the finalizer function for an aggregate. P1 is
67630 ** the memory location that is the accumulator for the aggregate.
67632 ** P2 is the number of arguments that the step function takes and
67633 ** P4 is a pointer to the FuncDef for this function. The P2
67634 ** argument is not used by this opcode. It is only there to disambiguate
67635 ** functions that can take varying numbers of arguments. The
67636 ** P4 argument is only needed for the degenerate case where
67637 ** the step function was not previously called.
67639 case OP_AggFinal: {
67640 #if 0 /* local variables moved into u.cc */
67641 Mem *pMem;
67642 #endif /* local variables moved into u.cc */
67643 assert( pOp->p1>0 && pOp->p1<=p->nMem );
67644 u.cc.pMem = &aMem[pOp->p1];
67645 assert( (u.cc.pMem->flags & ~(MEM_Null|MEM_Agg))==0 );
67646 rc = sqlite3VdbeMemFinalize(u.cc.pMem, pOp->p4.pFunc);
67647 if( rc ){
67648 sqlite3SetString(&p->zErrMsg, db, "%s", sqlite3_value_text(u.cc.pMem));
67650 sqlite3VdbeChangeEncoding(u.cc.pMem, encoding);
67651 UPDATE_MAX_BLOBSIZE(u.cc.pMem);
67652 if( sqlite3VdbeMemTooBig(u.cc.pMem) ){
67653 goto too_big;
67655 break;
67658 #ifndef SQLITE_OMIT_WAL
67659 /* Opcode: Checkpoint P1 P2 P3 * *
67661 ** Checkpoint database P1. This is a no-op if P1 is not currently in
67662 ** WAL mode. Parameter P2 is one of SQLITE_CHECKPOINT_PASSIVE, FULL
67663 ** or RESTART. Write 1 or 0 into mem[P3] if the checkpoint returns
67664 ** SQLITE_BUSY or not, respectively. Write the number of pages in the
67665 ** WAL after the checkpoint into mem[P3+1] and the number of pages
67666 ** in the WAL that have been checkpointed after the checkpoint
67667 ** completes into mem[P3+2]. However on an error, mem[P3+1] and
67668 ** mem[P3+2] are initialized to -1.
67670 case OP_Checkpoint: {
67671 #if 0 /* local variables moved into u.cd */
67672 int i; /* Loop counter */
67673 int aRes[3]; /* Results */
67674 Mem *pMem; /* Write results here */
67675 #endif /* local variables moved into u.cd */
67677 u.cd.aRes[0] = 0;
67678 u.cd.aRes[1] = u.cd.aRes[2] = -1;
67679 assert( pOp->p2==SQLITE_CHECKPOINT_PASSIVE
67680 || pOp->p2==SQLITE_CHECKPOINT_FULL
67681 || pOp->p2==SQLITE_CHECKPOINT_RESTART
67683 rc = sqlite3Checkpoint(db, pOp->p1, pOp->p2, &u.cd.aRes[1], &u.cd.aRes[2]);
67684 if( rc==SQLITE_BUSY ){
67685 rc = SQLITE_OK;
67686 u.cd.aRes[0] = 1;
67688 for(u.cd.i=0, u.cd.pMem = &aMem[pOp->p3]; u.cd.i<3; u.cd.i++, u.cd.pMem++){
67689 sqlite3VdbeMemSetInt64(u.cd.pMem, (i64)u.cd.aRes[u.cd.i]);
67691 break;
67693 #endif
67695 #ifndef SQLITE_OMIT_PRAGMA
67696 /* Opcode: JournalMode P1 P2 P3 * P5
67698 ** Change the journal mode of database P1 to P3. P3 must be one of the
67699 ** PAGER_JOURNALMODE_XXX values. If changing between the various rollback
67700 ** modes (delete, truncate, persist, off and memory), this is a simple
67701 ** operation. No IO is required.
67703 ** If changing into or out of WAL mode the procedure is more complicated.
67705 ** Write a string containing the final journal-mode to register P2.
67707 case OP_JournalMode: { /* out2-prerelease */
67708 #if 0 /* local variables moved into u.ce */
67709 Btree *pBt; /* Btree to change journal mode of */
67710 Pager *pPager; /* Pager associated with pBt */
67711 int eNew; /* New journal mode */
67712 int eOld; /* The old journal mode */
67713 const char *zFilename; /* Name of database file for pPager */
67714 #endif /* local variables moved into u.ce */
67716 u.ce.eNew = pOp->p3;
67717 assert( u.ce.eNew==PAGER_JOURNALMODE_DELETE
67718 || u.ce.eNew==PAGER_JOURNALMODE_TRUNCATE
67719 || u.ce.eNew==PAGER_JOURNALMODE_PERSIST
67720 || u.ce.eNew==PAGER_JOURNALMODE_OFF
67721 || u.ce.eNew==PAGER_JOURNALMODE_MEMORY
67722 || u.ce.eNew==PAGER_JOURNALMODE_WAL
67723 || u.ce.eNew==PAGER_JOURNALMODE_QUERY
67725 assert( pOp->p1>=0 && pOp->p1<db->nDb );
67727 u.ce.pBt = db->aDb[pOp->p1].pBt;
67728 u.ce.pPager = sqlite3BtreePager(u.ce.pBt);
67729 u.ce.eOld = sqlite3PagerGetJournalMode(u.ce.pPager);
67730 if( u.ce.eNew==PAGER_JOURNALMODE_QUERY ) u.ce.eNew = u.ce.eOld;
67731 if( !sqlite3PagerOkToChangeJournalMode(u.ce.pPager) ) u.ce.eNew = u.ce.eOld;
67733 #ifndef SQLITE_OMIT_WAL
67734 u.ce.zFilename = sqlite3PagerFilename(u.ce.pPager);
67736 /* Do not allow a transition to journal_mode=WAL for a database
67737 ** in temporary storage or if the VFS does not support shared memory
67739 if( u.ce.eNew==PAGER_JOURNALMODE_WAL
67740 && (u.ce.zFilename[0]==0 /* Temp file */
67741 || !sqlite3PagerWalSupported(u.ce.pPager)) /* No shared-memory support */
67743 u.ce.eNew = u.ce.eOld;
67746 if( (u.ce.eNew!=u.ce.eOld)
67747 && (u.ce.eOld==PAGER_JOURNALMODE_WAL || u.ce.eNew==PAGER_JOURNALMODE_WAL)
67749 if( !db->autoCommit || db->activeVdbeCnt>1 ){
67750 rc = SQLITE_ERROR;
67751 sqlite3SetString(&p->zErrMsg, db,
67752 "cannot change %s wal mode from within a transaction",
67753 (u.ce.eNew==PAGER_JOURNALMODE_WAL ? "into" : "out of")
67755 break;
67756 }else{
67758 if( u.ce.eOld==PAGER_JOURNALMODE_WAL ){
67759 /* If leaving WAL mode, close the log file. If successful, the call
67760 ** to PagerCloseWal() checkpoints and deletes the write-ahead-log
67761 ** file. An EXCLUSIVE lock may still be held on the database file
67762 ** after a successful return.
67764 rc = sqlite3PagerCloseWal(u.ce.pPager);
67765 if( rc==SQLITE_OK ){
67766 sqlite3PagerSetJournalMode(u.ce.pPager, u.ce.eNew);
67768 }else if( u.ce.eOld==PAGER_JOURNALMODE_MEMORY ){
67769 /* Cannot transition directly from MEMORY to WAL. Use mode OFF
67770 ** as an intermediate */
67771 sqlite3PagerSetJournalMode(u.ce.pPager, PAGER_JOURNALMODE_OFF);
67774 /* Open a transaction on the database file. Regardless of the journal
67775 ** mode, this transaction always uses a rollback journal.
67777 assert( sqlite3BtreeIsInTrans(u.ce.pBt)==0 );
67778 if( rc==SQLITE_OK ){
67779 rc = sqlite3BtreeSetVersion(u.ce.pBt, (u.ce.eNew==PAGER_JOURNALMODE_WAL ? 2 : 1));
67783 #endif /* ifndef SQLITE_OMIT_WAL */
67785 if( rc ){
67786 u.ce.eNew = u.ce.eOld;
67788 u.ce.eNew = sqlite3PagerSetJournalMode(u.ce.pPager, u.ce.eNew);
67790 pOut = &aMem[pOp->p2];
67791 pOut->flags = MEM_Str|MEM_Static|MEM_Term;
67792 pOut->z = (char *)sqlite3JournalModename(u.ce.eNew);
67793 pOut->n = sqlite3Strlen30(pOut->z);
67794 pOut->enc = SQLITE_UTF8;
67795 sqlite3VdbeChangeEncoding(pOut, encoding);
67796 break;
67798 #endif /* SQLITE_OMIT_PRAGMA */
67800 #if !defined(SQLITE_OMIT_VACUUM) && !defined(SQLITE_OMIT_ATTACH)
67801 /* Opcode: Vacuum * * * * *
67803 ** Vacuum the entire database. This opcode will cause other virtual
67804 ** machines to be created and run. It may not be called from within
67805 ** a transaction.
67807 case OP_Vacuum: {
67808 rc = sqlite3RunVacuum(&p->zErrMsg, db);
67809 break;
67811 #endif
67813 #if !defined(SQLITE_OMIT_AUTOVACUUM)
67814 /* Opcode: IncrVacuum P1 P2 * * *
67816 ** Perform a single step of the incremental vacuum procedure on
67817 ** the P1 database. If the vacuum has finished, jump to instruction
67818 ** P2. Otherwise, fall through to the next instruction.
67820 case OP_IncrVacuum: { /* jump */
67821 #if 0 /* local variables moved into u.cf */
67822 Btree *pBt;
67823 #endif /* local variables moved into u.cf */
67825 assert( pOp->p1>=0 && pOp->p1<db->nDb );
67826 assert( (p->btreeMask & (((yDbMask)1)<<pOp->p1))!=0 );
67827 u.cf.pBt = db->aDb[pOp->p1].pBt;
67828 rc = sqlite3BtreeIncrVacuum(u.cf.pBt);
67829 if( rc==SQLITE_DONE ){
67830 pc = pOp->p2 - 1;
67831 rc = SQLITE_OK;
67833 break;
67835 #endif
67837 /* Opcode: Expire P1 * * * *
67839 ** Cause precompiled statements to become expired. An expired statement
67840 ** fails with an error code of SQLITE_SCHEMA if it is ever executed
67841 ** (via sqlite3_step()).
67843 ** If P1 is 0, then all SQL statements become expired. If P1 is non-zero,
67844 ** then only the currently executing statement is affected.
67846 case OP_Expire: {
67847 if( !pOp->p1 ){
67848 sqlite3ExpirePreparedStatements(db);
67849 }else{
67850 p->expired = 1;
67852 break;
67855 #ifndef SQLITE_OMIT_SHARED_CACHE
67856 /* Opcode: TableLock P1 P2 P3 P4 *
67858 ** Obtain a lock on a particular table. This instruction is only used when
67859 ** the shared-cache feature is enabled.
67861 ** P1 is the index of the database in sqlite3.aDb[] of the database
67862 ** on which the lock is acquired. A readlock is obtained if P3==0 or
67863 ** a write lock if P3==1.
67865 ** P2 contains the root-page of the table to lock.
67867 ** P4 contains a pointer to the name of the table being locked. This is only
67868 ** used to generate an error message if the lock cannot be obtained.
67870 case OP_TableLock: {
67871 u8 isWriteLock = (u8)pOp->p3;
67872 if( isWriteLock || 0==(db->flags&SQLITE_ReadUncommitted) ){
67873 int p1 = pOp->p1;
67874 assert( p1>=0 && p1<db->nDb );
67875 assert( (p->btreeMask & (((yDbMask)1)<<p1))!=0 );
67876 assert( isWriteLock==0 || isWriteLock==1 );
67877 rc = sqlite3BtreeLockTable(db->aDb[p1].pBt, pOp->p2, isWriteLock);
67878 if( (rc&0xFF)==SQLITE_LOCKED ){
67879 const char *z = pOp->p4.z;
67880 sqlite3SetString(&p->zErrMsg, db, "database table is locked: %s", z);
67883 break;
67885 #endif /* SQLITE_OMIT_SHARED_CACHE */
67887 #ifndef SQLITE_OMIT_VIRTUALTABLE
67888 /* Opcode: VBegin * * * P4 *
67890 ** P4 may be a pointer to an sqlite3_vtab structure. If so, call the
67891 ** xBegin method for that table.
67893 ** Also, whether or not P4 is set, check that this is not being called from
67894 ** within a callback to a virtual table xSync() method. If it is, the error
67895 ** code will be set to SQLITE_LOCKED.
67897 case OP_VBegin: {
67898 #if 0 /* local variables moved into u.cg */
67899 VTable *pVTab;
67900 #endif /* local variables moved into u.cg */
67901 u.cg.pVTab = pOp->p4.pVtab;
67902 rc = sqlite3VtabBegin(db, u.cg.pVTab);
67903 if( u.cg.pVTab ) importVtabErrMsg(p, u.cg.pVTab->pVtab);
67904 break;
67906 #endif /* SQLITE_OMIT_VIRTUALTABLE */
67908 #ifndef SQLITE_OMIT_VIRTUALTABLE
67909 /* Opcode: VCreate P1 * * P4 *
67911 ** P4 is the name of a virtual table in database P1. Call the xCreate method
67912 ** for that table.
67914 case OP_VCreate: {
67915 rc = sqlite3VtabCallCreate(db, pOp->p1, pOp->p4.z, &p->zErrMsg);
67916 break;
67918 #endif /* SQLITE_OMIT_VIRTUALTABLE */
67920 #ifndef SQLITE_OMIT_VIRTUALTABLE
67921 /* Opcode: VDestroy P1 * * P4 *
67923 ** P4 is the name of a virtual table in database P1. Call the xDestroy method
67924 ** of that table.
67926 case OP_VDestroy: {
67927 p->inVtabMethod = 2;
67928 rc = sqlite3VtabCallDestroy(db, pOp->p1, pOp->p4.z);
67929 p->inVtabMethod = 0;
67930 break;
67932 #endif /* SQLITE_OMIT_VIRTUALTABLE */
67934 #ifndef SQLITE_OMIT_VIRTUALTABLE
67935 /* Opcode: VOpen P1 * * P4 *
67937 ** P4 is a pointer to a virtual table object, an sqlite3_vtab structure.
67938 ** P1 is a cursor number. This opcode opens a cursor to the virtual
67939 ** table and stores that cursor in P1.
67941 case OP_VOpen: {
67942 #if 0 /* local variables moved into u.ch */
67943 VdbeCursor *pCur;
67944 sqlite3_vtab_cursor *pVtabCursor;
67945 sqlite3_vtab *pVtab;
67946 sqlite3_module *pModule;
67947 #endif /* local variables moved into u.ch */
67949 u.ch.pCur = 0;
67950 u.ch.pVtabCursor = 0;
67951 u.ch.pVtab = pOp->p4.pVtab->pVtab;
67952 u.ch.pModule = (sqlite3_module *)u.ch.pVtab->pModule;
67953 assert(u.ch.pVtab && u.ch.pModule);
67954 rc = u.ch.pModule->xOpen(u.ch.pVtab, &u.ch.pVtabCursor);
67955 importVtabErrMsg(p, u.ch.pVtab);
67956 if( SQLITE_OK==rc ){
67957 /* Initialize sqlite3_vtab_cursor base class */
67958 u.ch.pVtabCursor->pVtab = u.ch.pVtab;
67960 /* Initialise vdbe cursor object */
67961 u.ch.pCur = allocateCursor(p, pOp->p1, 0, -1, 0);
67962 if( u.ch.pCur ){
67963 u.ch.pCur->pVtabCursor = u.ch.pVtabCursor;
67964 u.ch.pCur->pModule = u.ch.pVtabCursor->pVtab->pModule;
67965 }else{
67966 db->mallocFailed = 1;
67967 u.ch.pModule->xClose(u.ch.pVtabCursor);
67970 break;
67972 #endif /* SQLITE_OMIT_VIRTUALTABLE */
67974 #ifndef SQLITE_OMIT_VIRTUALTABLE
67975 /* Opcode: VFilter P1 P2 P3 P4 *
67977 ** P1 is a cursor opened using VOpen. P2 is an address to jump to if
67978 ** the filtered result set is empty.
67980 ** P4 is either NULL or a string that was generated by the xBestIndex
67981 ** method of the module. The interpretation of the P4 string is left
67982 ** to the module implementation.
67984 ** This opcode invokes the xFilter method on the virtual table specified
67985 ** by P1. The integer query plan parameter to xFilter is stored in register
67986 ** P3. Register P3+1 stores the argc parameter to be passed to the
67987 ** xFilter method. Registers P3+2..P3+1+argc are the argc
67988 ** additional parameters which are passed to
67989 ** xFilter as argv. Register P3+2 becomes argv[0] when passed to xFilter.
67991 ** A jump is made to P2 if the result set after filtering would be empty.
67993 case OP_VFilter: { /* jump */
67994 #if 0 /* local variables moved into u.ci */
67995 int nArg;
67996 int iQuery;
67997 const sqlite3_module *pModule;
67998 Mem *pQuery;
67999 Mem *pArgc;
68000 sqlite3_vtab_cursor *pVtabCursor;
68001 sqlite3_vtab *pVtab;
68002 VdbeCursor *pCur;
68003 int res;
68004 int i;
68005 Mem **apArg;
68006 #endif /* local variables moved into u.ci */
68008 u.ci.pQuery = &aMem[pOp->p3];
68009 u.ci.pArgc = &u.ci.pQuery[1];
68010 u.ci.pCur = p->apCsr[pOp->p1];
68011 assert( memIsValid(u.ci.pQuery) );
68012 REGISTER_TRACE(pOp->p3, u.ci.pQuery);
68013 assert( u.ci.pCur->pVtabCursor );
68014 u.ci.pVtabCursor = u.ci.pCur->pVtabCursor;
68015 u.ci.pVtab = u.ci.pVtabCursor->pVtab;
68016 u.ci.pModule = u.ci.pVtab->pModule;
68018 /* Grab the index number and argc parameters */
68019 assert( (u.ci.pQuery->flags&MEM_Int)!=0 && u.ci.pArgc->flags==MEM_Int );
68020 u.ci.nArg = (int)u.ci.pArgc->u.i;
68021 u.ci.iQuery = (int)u.ci.pQuery->u.i;
68023 /* Invoke the xFilter method */
68025 u.ci.res = 0;
68026 u.ci.apArg = p->apArg;
68027 for(u.ci.i = 0; u.ci.i<u.ci.nArg; u.ci.i++){
68028 u.ci.apArg[u.ci.i] = &u.ci.pArgc[u.ci.i+1];
68029 sqlite3VdbeMemStoreType(u.ci.apArg[u.ci.i]);
68032 p->inVtabMethod = 1;
68033 rc = u.ci.pModule->xFilter(u.ci.pVtabCursor, u.ci.iQuery, pOp->p4.z, u.ci.nArg, u.ci.apArg);
68034 p->inVtabMethod = 0;
68035 importVtabErrMsg(p, u.ci.pVtab);
68036 if( rc==SQLITE_OK ){
68037 u.ci.res = u.ci.pModule->xEof(u.ci.pVtabCursor);
68040 if( u.ci.res ){
68041 pc = pOp->p2 - 1;
68044 u.ci.pCur->nullRow = 0;
68046 break;
68048 #endif /* SQLITE_OMIT_VIRTUALTABLE */
68050 #ifndef SQLITE_OMIT_VIRTUALTABLE
68051 /* Opcode: VColumn P1 P2 P3 * *
68053 ** Store the value of the P2-th column of
68054 ** the row of the virtual-table that the
68055 ** P1 cursor is pointing to into register P3.
68057 case OP_VColumn: {
68058 #if 0 /* local variables moved into u.cj */
68059 sqlite3_vtab *pVtab;
68060 const sqlite3_module *pModule;
68061 Mem *pDest;
68062 sqlite3_context sContext;
68063 #endif /* local variables moved into u.cj */
68065 VdbeCursor *pCur = p->apCsr[pOp->p1];
68066 assert( pCur->pVtabCursor );
68067 assert( pOp->p3>0 && pOp->p3<=p->nMem );
68068 u.cj.pDest = &aMem[pOp->p3];
68069 memAboutToChange(p, u.cj.pDest);
68070 if( pCur->nullRow ){
68071 sqlite3VdbeMemSetNull(u.cj.pDest);
68072 break;
68074 u.cj.pVtab = pCur->pVtabCursor->pVtab;
68075 u.cj.pModule = u.cj.pVtab->pModule;
68076 assert( u.cj.pModule->xColumn );
68077 memset(&u.cj.sContext, 0, sizeof(u.cj.sContext));
68079 /* The output cell may already have a buffer allocated. Move
68080 ** the current contents to u.cj.sContext.s so in case the user-function
68081 ** can use the already allocated buffer instead of allocating a
68082 ** new one.
68084 sqlite3VdbeMemMove(&u.cj.sContext.s, u.cj.pDest);
68085 MemSetTypeFlag(&u.cj.sContext.s, MEM_Null);
68087 rc = u.cj.pModule->xColumn(pCur->pVtabCursor, &u.cj.sContext, pOp->p2);
68088 importVtabErrMsg(p, u.cj.pVtab);
68089 if( u.cj.sContext.isError ){
68090 rc = u.cj.sContext.isError;
68093 /* Copy the result of the function to the P3 register. We
68094 ** do this regardless of whether or not an error occurred to ensure any
68095 ** dynamic allocation in u.cj.sContext.s (a Mem struct) is released.
68097 sqlite3VdbeChangeEncoding(&u.cj.sContext.s, encoding);
68098 sqlite3VdbeMemMove(u.cj.pDest, &u.cj.sContext.s);
68099 REGISTER_TRACE(pOp->p3, u.cj.pDest);
68100 UPDATE_MAX_BLOBSIZE(u.cj.pDest);
68102 if( sqlite3VdbeMemTooBig(u.cj.pDest) ){
68103 goto too_big;
68105 break;
68107 #endif /* SQLITE_OMIT_VIRTUALTABLE */
68109 #ifndef SQLITE_OMIT_VIRTUALTABLE
68110 /* Opcode: VNext P1 P2 * * *
68112 ** Advance virtual table P1 to the next row in its result set and
68113 ** jump to instruction P2. Or, if the virtual table has reached
68114 ** the end of its result set, then fall through to the next instruction.
68116 case OP_VNext: { /* jump */
68117 #if 0 /* local variables moved into u.ck */
68118 sqlite3_vtab *pVtab;
68119 const sqlite3_module *pModule;
68120 int res;
68121 VdbeCursor *pCur;
68122 #endif /* local variables moved into u.ck */
68124 u.ck.res = 0;
68125 u.ck.pCur = p->apCsr[pOp->p1];
68126 assert( u.ck.pCur->pVtabCursor );
68127 if( u.ck.pCur->nullRow ){
68128 break;
68130 u.ck.pVtab = u.ck.pCur->pVtabCursor->pVtab;
68131 u.ck.pModule = u.ck.pVtab->pModule;
68132 assert( u.ck.pModule->xNext );
68134 /* Invoke the xNext() method of the module. There is no way for the
68135 ** underlying implementation to return an error if one occurs during
68136 ** xNext(). Instead, if an error occurs, true is returned (indicating that
68137 ** data is available) and the error code returned when xColumn or
68138 ** some other method is next invoked on the save virtual table cursor.
68140 p->inVtabMethod = 1;
68141 rc = u.ck.pModule->xNext(u.ck.pCur->pVtabCursor);
68142 p->inVtabMethod = 0;
68143 importVtabErrMsg(p, u.ck.pVtab);
68144 if( rc==SQLITE_OK ){
68145 u.ck.res = u.ck.pModule->xEof(u.ck.pCur->pVtabCursor);
68148 if( !u.ck.res ){
68149 /* If there is data, jump to P2 */
68150 pc = pOp->p2 - 1;
68152 break;
68154 #endif /* SQLITE_OMIT_VIRTUALTABLE */
68156 #ifndef SQLITE_OMIT_VIRTUALTABLE
68157 /* Opcode: VRename P1 * * P4 *
68159 ** P4 is a pointer to a virtual table object, an sqlite3_vtab structure.
68160 ** This opcode invokes the corresponding xRename method. The value
68161 ** in register P1 is passed as the zName argument to the xRename method.
68163 case OP_VRename: {
68164 #if 0 /* local variables moved into u.cl */
68165 sqlite3_vtab *pVtab;
68166 Mem *pName;
68167 #endif /* local variables moved into u.cl */
68169 u.cl.pVtab = pOp->p4.pVtab->pVtab;
68170 u.cl.pName = &aMem[pOp->p1];
68171 assert( u.cl.pVtab->pModule->xRename );
68172 assert( memIsValid(u.cl.pName) );
68173 REGISTER_TRACE(pOp->p1, u.cl.pName);
68174 assert( u.cl.pName->flags & MEM_Str );
68175 rc = u.cl.pVtab->pModule->xRename(u.cl.pVtab, u.cl.pName->z);
68176 importVtabErrMsg(p, u.cl.pVtab);
68177 p->expired = 0;
68179 break;
68181 #endif
68183 #ifndef SQLITE_OMIT_VIRTUALTABLE
68184 /* Opcode: VUpdate P1 P2 P3 P4 *
68186 ** P4 is a pointer to a virtual table object, an sqlite3_vtab structure.
68187 ** This opcode invokes the corresponding xUpdate method. P2 values
68188 ** are contiguous memory cells starting at P3 to pass to the xUpdate
68189 ** invocation. The value in register (P3+P2-1) corresponds to the
68190 ** p2th element of the argv array passed to xUpdate.
68192 ** The xUpdate method will do a DELETE or an INSERT or both.
68193 ** The argv[0] element (which corresponds to memory cell P3)
68194 ** is the rowid of a row to delete. If argv[0] is NULL then no
68195 ** deletion occurs. The argv[1] element is the rowid of the new
68196 ** row. This can be NULL to have the virtual table select the new
68197 ** rowid for itself. The subsequent elements in the array are
68198 ** the values of columns in the new row.
68200 ** If P2==1 then no insert is performed. argv[0] is the rowid of
68201 ** a row to delete.
68203 ** P1 is a boolean flag. If it is set to true and the xUpdate call
68204 ** is successful, then the value returned by sqlite3_last_insert_rowid()
68205 ** is set to the value of the rowid for the row just inserted.
68207 case OP_VUpdate: {
68208 #if 0 /* local variables moved into u.cm */
68209 sqlite3_vtab *pVtab;
68210 sqlite3_module *pModule;
68211 int nArg;
68212 int i;
68213 sqlite_int64 rowid;
68214 Mem **apArg;
68215 Mem *pX;
68216 #endif /* local variables moved into u.cm */
68218 u.cm.pVtab = pOp->p4.pVtab->pVtab;
68219 u.cm.pModule = (sqlite3_module *)u.cm.pVtab->pModule;
68220 u.cm.nArg = pOp->p2;
68221 assert( pOp->p4type==P4_VTAB );
68222 if( ALWAYS(u.cm.pModule->xUpdate) ){
68223 u.cm.apArg = p->apArg;
68224 u.cm.pX = &aMem[pOp->p3];
68225 for(u.cm.i=0; u.cm.i<u.cm.nArg; u.cm.i++){
68226 assert( memIsValid(u.cm.pX) );
68227 memAboutToChange(p, u.cm.pX);
68228 sqlite3VdbeMemStoreType(u.cm.pX);
68229 u.cm.apArg[u.cm.i] = u.cm.pX;
68230 u.cm.pX++;
68232 rc = u.cm.pModule->xUpdate(u.cm.pVtab, u.cm.nArg, u.cm.apArg, &u.cm.rowid);
68233 importVtabErrMsg(p, u.cm.pVtab);
68234 if( rc==SQLITE_OK && pOp->p1 ){
68235 assert( u.cm.nArg>1 && u.cm.apArg[0] && (u.cm.apArg[0]->flags&MEM_Null) );
68236 db->lastRowid = u.cm.rowid;
68238 p->nChange++;
68240 break;
68242 #endif /* SQLITE_OMIT_VIRTUALTABLE */
68244 #ifndef SQLITE_OMIT_PAGER_PRAGMAS
68245 /* Opcode: Pagecount P1 P2 * * *
68247 ** Write the current number of pages in database P1 to memory cell P2.
68249 case OP_Pagecount: { /* out2-prerelease */
68250 pOut->u.i = sqlite3BtreeLastPage(db->aDb[pOp->p1].pBt);
68251 break;
68253 #endif
68256 #ifndef SQLITE_OMIT_PAGER_PRAGMAS
68257 /* Opcode: MaxPgcnt P1 P2 P3 * *
68259 ** Try to set the maximum page count for database P1 to the value in P3.
68260 ** Do not let the maximum page count fall below the current page count and
68261 ** do not change the maximum page count value if P3==0.
68263 ** Store the maximum page count after the change in register P2.
68265 case OP_MaxPgcnt: { /* out2-prerelease */
68266 unsigned int newMax;
68267 Btree *pBt;
68269 pBt = db->aDb[pOp->p1].pBt;
68270 newMax = 0;
68271 if( pOp->p3 ){
68272 newMax = sqlite3BtreeLastPage(pBt);
68273 if( newMax < (unsigned)pOp->p3 ) newMax = (unsigned)pOp->p3;
68275 pOut->u.i = sqlite3BtreeMaxPageCount(pBt, newMax);
68276 break;
68278 #endif
68281 #ifndef SQLITE_OMIT_TRACE
68282 /* Opcode: Trace * * * P4 *
68284 ** If tracing is enabled (by the sqlite3_trace()) interface, then
68285 ** the UTF-8 string contained in P4 is emitted on the trace callback.
68287 case OP_Trace: {
68288 #if 0 /* local variables moved into u.cn */
68289 char *zTrace;
68290 #endif /* local variables moved into u.cn */
68292 u.cn.zTrace = (pOp->p4.z ? pOp->p4.z : p->zSql);
68293 if( u.cn.zTrace ){
68294 if( db->xTrace ){
68295 char *z = sqlite3VdbeExpandSql(p, u.cn.zTrace);
68296 db->xTrace(db->pTraceArg, z);
68297 sqlite3DbFree(db, z);
68299 #ifdef SQLITE_DEBUG
68300 if( (db->flags & SQLITE_SqlTrace)!=0 ){
68301 sqlite3DebugPrintf("SQL-trace: %s\n", u.cn.zTrace);
68303 #endif /* SQLITE_DEBUG */
68305 break;
68307 #endif
68310 /* Opcode: Noop * * * * *
68312 ** Do nothing. This instruction is often useful as a jump
68313 ** destination.
68316 ** The magic Explain opcode are only inserted when explain==2 (which
68317 ** is to say when the EXPLAIN QUERY PLAN syntax is used.)
68318 ** This opcode records information from the optimizer. It is the
68319 ** the same as a no-op. This opcodesnever appears in a real VM program.
68321 default: { /* This is really OP_Noop and OP_Explain */
68322 assert( pOp->opcode==OP_Noop || pOp->opcode==OP_Explain );
68323 break;
68326 /*****************************************************************************
68327 ** The cases of the switch statement above this line should all be indented
68328 ** by 6 spaces. But the left-most 6 spaces have been removed to improve the
68329 ** readability. From this point on down, the normal indentation rules are
68330 ** restored.
68331 *****************************************************************************/
68334 #ifdef VDBE_PROFILE
68336 u64 elapsed = sqlite3Hwtime() - start;
68337 pOp->cycles += elapsed;
68338 pOp->cnt++;
68339 #if 0
68340 fprintf(stdout, "%10llu ", elapsed);
68341 sqlite3VdbePrintOp(stdout, origPc, &aOp[origPc]);
68342 #endif
68344 #endif
68346 /* The following code adds nothing to the actual functionality
68347 ** of the program. It is only here for testing and debugging.
68348 ** On the other hand, it does burn CPU cycles every time through
68349 ** the evaluator loop. So we can leave it out when NDEBUG is defined.
68351 #ifndef NDEBUG
68352 assert( pc>=-1 && pc<p->nOp );
68354 #ifdef SQLITE_DEBUG
68355 if( p->trace ){
68356 if( rc!=0 ) fprintf(p->trace,"rc=%d\n",rc);
68357 if( pOp->opflags & (OPFLG_OUT2_PRERELEASE|OPFLG_OUT2) ){
68358 registerTrace(p->trace, pOp->p2, &aMem[pOp->p2]);
68360 if( pOp->opflags & OPFLG_OUT3 ){
68361 registerTrace(p->trace, pOp->p3, &aMem[pOp->p3]);
68364 #endif /* SQLITE_DEBUG */
68365 #endif /* NDEBUG */
68366 } /* The end of the for(;;) loop the loops through opcodes */
68368 /* If we reach this point, it means that execution is finished with
68369 ** an error of some kind.
68371 vdbe_error_halt:
68372 assert( rc );
68373 p->rc = rc;
68374 testcase( sqlite3GlobalConfig.xLog!=0 );
68375 sqlite3_log(rc, "statement aborts at %d: [%s] %s",
68376 pc, p->zSql, p->zErrMsg);
68377 sqlite3VdbeHalt(p);
68378 if( rc==SQLITE_IOERR_NOMEM ) db->mallocFailed = 1;
68379 rc = SQLITE_ERROR;
68380 if( resetSchemaOnFault>0 ){
68381 sqlite3ResetInternalSchema(db, resetSchemaOnFault-1);
68384 /* This is the only way out of this procedure. We have to
68385 ** release the mutexes on btrees that were acquired at the
68386 ** top. */
68387 vdbe_return:
68388 sqlite3VdbeLeave(p);
68389 return rc;
68391 /* Jump to here if a string or blob larger than SQLITE_MAX_LENGTH
68392 ** is encountered.
68394 too_big:
68395 sqlite3SetString(&p->zErrMsg, db, "string or blob too big");
68396 rc = SQLITE_TOOBIG;
68397 goto vdbe_error_halt;
68399 /* Jump to here if a malloc() fails.
68401 no_mem:
68402 db->mallocFailed = 1;
68403 sqlite3SetString(&p->zErrMsg, db, "out of memory");
68404 rc = SQLITE_NOMEM;
68405 goto vdbe_error_halt;
68407 /* Jump to here for any other kind of fatal error. The "rc" variable
68408 ** should hold the error number.
68410 abort_due_to_error:
68411 assert( p->zErrMsg==0 );
68412 if( db->mallocFailed ) rc = SQLITE_NOMEM;
68413 if( rc!=SQLITE_IOERR_NOMEM ){
68414 sqlite3SetString(&p->zErrMsg, db, "%s", sqlite3ErrStr(rc));
68416 goto vdbe_error_halt;
68418 /* Jump to here if the sqlite3_interrupt() API sets the interrupt
68419 ** flag.
68421 abort_due_to_interrupt:
68422 assert( db->u1.isInterrupted );
68423 rc = SQLITE_INTERRUPT;
68424 p->rc = rc;
68425 sqlite3SetString(&p->zErrMsg, db, "%s", sqlite3ErrStr(rc));
68426 goto vdbe_error_halt;
68429 /************** End of vdbe.c ************************************************/
68430 /************** Begin file vdbeblob.c ****************************************/
68432 ** 2007 May 1
68434 ** The author disclaims copyright to this source code. In place of
68435 ** a legal notice, here is a blessing:
68437 ** May you do good and not evil.
68438 ** May you find forgiveness for yourself and forgive others.
68439 ** May you share freely, never taking more than you give.
68441 *************************************************************************
68443 ** This file contains code used to implement incremental BLOB I/O.
68447 #ifndef SQLITE_OMIT_INCRBLOB
68450 ** Valid sqlite3_blob* handles point to Incrblob structures.
68452 typedef struct Incrblob Incrblob;
68453 struct Incrblob {
68454 int flags; /* Copy of "flags" passed to sqlite3_blob_open() */
68455 int nByte; /* Size of open blob, in bytes */
68456 int iOffset; /* Byte offset of blob in cursor data */
68457 int iCol; /* Table column this handle is open on */
68458 BtCursor *pCsr; /* Cursor pointing at blob row */
68459 sqlite3_stmt *pStmt; /* Statement holding cursor open */
68460 sqlite3 *db; /* The associated database */
68465 ** This function is used by both blob_open() and blob_reopen(). It seeks
68466 ** the b-tree cursor associated with blob handle p to point to row iRow.
68467 ** If successful, SQLITE_OK is returned and subsequent calls to
68468 ** sqlite3_blob_read() or sqlite3_blob_write() access the specified row.
68470 ** If an error occurs, or if the specified row does not exist or does not
68471 ** contain a value of type TEXT or BLOB in the column nominated when the
68472 ** blob handle was opened, then an error code is returned and *pzErr may
68473 ** be set to point to a buffer containing an error message. It is the
68474 ** responsibility of the caller to free the error message buffer using
68475 ** sqlite3DbFree().
68477 ** If an error does occur, then the b-tree cursor is closed. All subsequent
68478 ** calls to sqlite3_blob_read(), blob_write() or blob_reopen() will
68479 ** immediately return SQLITE_ABORT.
68481 static int blobSeekToRow(Incrblob *p, sqlite3_int64 iRow, char **pzErr){
68482 int rc; /* Error code */
68483 char *zErr = 0; /* Error message */
68484 Vdbe *v = (Vdbe *)p->pStmt;
68486 /* Set the value of the SQL statements only variable to integer iRow.
68487 ** This is done directly instead of using sqlite3_bind_int64() to avoid
68488 ** triggering asserts related to mutexes.
68490 assert( v->aVar[0].flags&MEM_Int );
68491 v->aVar[0].u.i = iRow;
68493 rc = sqlite3_step(p->pStmt);
68494 if( rc==SQLITE_ROW ){
68495 u32 type = v->apCsr[0]->aType[p->iCol];
68496 if( type<12 ){
68497 zErr = sqlite3MPrintf(p->db, "cannot open value of type %s",
68498 type==0?"null": type==7?"real": "integer"
68500 rc = SQLITE_ERROR;
68501 sqlite3_finalize(p->pStmt);
68502 p->pStmt = 0;
68503 }else{
68504 p->iOffset = v->apCsr[0]->aOffset[p->iCol];
68505 p->nByte = sqlite3VdbeSerialTypeLen(type);
68506 p->pCsr = v->apCsr[0]->pCursor;
68507 sqlite3BtreeEnterCursor(p->pCsr);
68508 sqlite3BtreeCacheOverflow(p->pCsr);
68509 sqlite3BtreeLeaveCursor(p->pCsr);
68513 if( rc==SQLITE_ROW ){
68514 rc = SQLITE_OK;
68515 }else if( p->pStmt ){
68516 rc = sqlite3_finalize(p->pStmt);
68517 p->pStmt = 0;
68518 if( rc==SQLITE_OK ){
68519 zErr = sqlite3MPrintf(p->db, "no such rowid: %lld", iRow);
68520 rc = SQLITE_ERROR;
68521 }else{
68522 zErr = sqlite3MPrintf(p->db, "%s", sqlite3_errmsg(p->db));
68526 assert( rc!=SQLITE_OK || zErr==0 );
68527 assert( rc!=SQLITE_ROW && rc!=SQLITE_DONE );
68529 *pzErr = zErr;
68530 return rc;
68534 ** Open a blob handle.
68536 SQLITE_API int sqlite3_blob_open(
68537 sqlite3* db, /* The database connection */
68538 const char *zDb, /* The attached database containing the blob */
68539 const char *zTable, /* The table containing the blob */
68540 const char *zColumn, /* The column containing the blob */
68541 sqlite_int64 iRow, /* The row containing the glob */
68542 int flags, /* True -> read/write access, false -> read-only */
68543 sqlite3_blob **ppBlob /* Handle for accessing the blob returned here */
68545 int nAttempt = 0;
68546 int iCol; /* Index of zColumn in row-record */
68548 /* This VDBE program seeks a btree cursor to the identified
68549 ** db/table/row entry. The reason for using a vdbe program instead
68550 ** of writing code to use the b-tree layer directly is that the
68551 ** vdbe program will take advantage of the various transaction,
68552 ** locking and error handling infrastructure built into the vdbe.
68554 ** After seeking the cursor, the vdbe executes an OP_ResultRow.
68555 ** Code external to the Vdbe then "borrows" the b-tree cursor and
68556 ** uses it to implement the blob_read(), blob_write() and
68557 ** blob_bytes() functions.
68559 ** The sqlite3_blob_close() function finalizes the vdbe program,
68560 ** which closes the b-tree cursor and (possibly) commits the
68561 ** transaction.
68563 static const VdbeOpList openBlob[] = {
68564 {OP_Transaction, 0, 0, 0}, /* 0: Start a transaction */
68565 {OP_VerifyCookie, 0, 0, 0}, /* 1: Check the schema cookie */
68566 {OP_TableLock, 0, 0, 0}, /* 2: Acquire a read or write lock */
68568 /* One of the following two instructions is replaced by an OP_Noop. */
68569 {OP_OpenRead, 0, 0, 0}, /* 3: Open cursor 0 for reading */
68570 {OP_OpenWrite, 0, 0, 0}, /* 4: Open cursor 0 for read/write */
68572 {OP_Variable, 1, 1, 1}, /* 5: Push the rowid to the stack */
68573 {OP_NotExists, 0, 10, 1}, /* 6: Seek the cursor */
68574 {OP_Column, 0, 0, 1}, /* 7 */
68575 {OP_ResultRow, 1, 0, 0}, /* 8 */
68576 {OP_Goto, 0, 5, 0}, /* 9 */
68577 {OP_Close, 0, 0, 0}, /* 10 */
68578 {OP_Halt, 0, 0, 0}, /* 11 */
68581 int rc = SQLITE_OK;
68582 char *zErr = 0;
68583 Table *pTab;
68584 Parse *pParse = 0;
68585 Incrblob *pBlob = 0;
68587 flags = !!flags; /* flags = (flags ? 1 : 0); */
68588 *ppBlob = 0;
68590 sqlite3_mutex_enter(db->mutex);
68592 pBlob = (Incrblob *)sqlite3DbMallocZero(db, sizeof(Incrblob));
68593 if( !pBlob ) goto blob_open_out;
68594 pParse = sqlite3StackAllocRaw(db, sizeof(*pParse));
68595 if( !pParse ) goto blob_open_out;
68597 do {
68598 memset(pParse, 0, sizeof(Parse));
68599 pParse->db = db;
68600 sqlite3DbFree(db, zErr);
68601 zErr = 0;
68603 sqlite3BtreeEnterAll(db);
68604 pTab = sqlite3LocateTable(pParse, 0, zTable, zDb);
68605 if( pTab && IsVirtual(pTab) ){
68606 pTab = 0;
68607 sqlite3ErrorMsg(pParse, "cannot open virtual table: %s", zTable);
68609 #ifndef SQLITE_OMIT_VIEW
68610 if( pTab && pTab->pSelect ){
68611 pTab = 0;
68612 sqlite3ErrorMsg(pParse, "cannot open view: %s", zTable);
68614 #endif
68615 if( !pTab ){
68616 if( pParse->zErrMsg ){
68617 sqlite3DbFree(db, zErr);
68618 zErr = pParse->zErrMsg;
68619 pParse->zErrMsg = 0;
68621 rc = SQLITE_ERROR;
68622 sqlite3BtreeLeaveAll(db);
68623 goto blob_open_out;
68626 /* Now search pTab for the exact column. */
68627 for(iCol=0; iCol<pTab->nCol; iCol++) {
68628 if( sqlite3StrICmp(pTab->aCol[iCol].zName, zColumn)==0 ){
68629 break;
68632 if( iCol==pTab->nCol ){
68633 sqlite3DbFree(db, zErr);
68634 zErr = sqlite3MPrintf(db, "no such column: \"%s\"", zColumn);
68635 rc = SQLITE_ERROR;
68636 sqlite3BtreeLeaveAll(db);
68637 goto blob_open_out;
68640 /* If the value is being opened for writing, check that the
68641 ** column is not indexed, and that it is not part of a foreign key.
68642 ** It is against the rules to open a column to which either of these
68643 ** descriptions applies for writing. */
68644 if( flags ){
68645 const char *zFault = 0;
68646 Index *pIdx;
68647 #ifndef SQLITE_OMIT_FOREIGN_KEY
68648 if( db->flags&SQLITE_ForeignKeys ){
68649 /* Check that the column is not part of an FK child key definition. It
68650 ** is not necessary to check if it is part of a parent key, as parent
68651 ** key columns must be indexed. The check below will pick up this
68652 ** case. */
68653 FKey *pFKey;
68654 for(pFKey=pTab->pFKey; pFKey; pFKey=pFKey->pNextFrom){
68655 int j;
68656 for(j=0; j<pFKey->nCol; j++){
68657 if( pFKey->aCol[j].iFrom==iCol ){
68658 zFault = "foreign key";
68663 #endif
68664 for(pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext){
68665 int j;
68666 for(j=0; j<pIdx->nColumn; j++){
68667 if( pIdx->aiColumn[j]==iCol ){
68668 zFault = "indexed";
68672 if( zFault ){
68673 sqlite3DbFree(db, zErr);
68674 zErr = sqlite3MPrintf(db, "cannot open %s column for writing", zFault);
68675 rc = SQLITE_ERROR;
68676 sqlite3BtreeLeaveAll(db);
68677 goto blob_open_out;
68681 pBlob->pStmt = (sqlite3_stmt *)sqlite3VdbeCreate(db);
68682 assert( pBlob->pStmt || db->mallocFailed );
68683 if( pBlob->pStmt ){
68684 Vdbe *v = (Vdbe *)pBlob->pStmt;
68685 int iDb = sqlite3SchemaToIndex(db, pTab->pSchema);
68687 sqlite3VdbeAddOpList(v, sizeof(openBlob)/sizeof(VdbeOpList), openBlob);
68690 /* Configure the OP_Transaction */
68691 sqlite3VdbeChangeP1(v, 0, iDb);
68692 sqlite3VdbeChangeP2(v, 0, flags);
68694 /* Configure the OP_VerifyCookie */
68695 sqlite3VdbeChangeP1(v, 1, iDb);
68696 sqlite3VdbeChangeP2(v, 1, pTab->pSchema->schema_cookie);
68697 sqlite3VdbeChangeP3(v, 1, pTab->pSchema->iGeneration);
68699 /* Make sure a mutex is held on the table to be accessed */
68700 sqlite3VdbeUsesBtree(v, iDb);
68702 /* Configure the OP_TableLock instruction */
68703 #ifdef SQLITE_OMIT_SHARED_CACHE
68704 sqlite3VdbeChangeToNoop(v, 2, 1);
68705 #else
68706 sqlite3VdbeChangeP1(v, 2, iDb);
68707 sqlite3VdbeChangeP2(v, 2, pTab->tnum);
68708 sqlite3VdbeChangeP3(v, 2, flags);
68709 sqlite3VdbeChangeP4(v, 2, pTab->zName, P4_TRANSIENT);
68710 #endif
68712 /* Remove either the OP_OpenWrite or OpenRead. Set the P2
68713 ** parameter of the other to pTab->tnum. */
68714 sqlite3VdbeChangeToNoop(v, 4 - flags, 1);
68715 sqlite3VdbeChangeP2(v, 3 + flags, pTab->tnum);
68716 sqlite3VdbeChangeP3(v, 3 + flags, iDb);
68718 /* Configure the number of columns. Configure the cursor to
68719 ** think that the table has one more column than it really
68720 ** does. An OP_Column to retrieve this imaginary column will
68721 ** always return an SQL NULL. This is useful because it means
68722 ** we can invoke OP_Column to fill in the vdbe cursors type
68723 ** and offset cache without causing any IO.
68725 sqlite3VdbeChangeP4(v, 3+flags, SQLITE_INT_TO_PTR(pTab->nCol+1),P4_INT32);
68726 sqlite3VdbeChangeP2(v, 7, pTab->nCol);
68727 if( !db->mallocFailed ){
68728 sqlite3VdbeMakeReady(v, 1, 1, 1, 0, 0, 0);
68732 pBlob->flags = flags;
68733 pBlob->iCol = iCol;
68734 pBlob->db = db;
68735 sqlite3BtreeLeaveAll(db);
68736 if( db->mallocFailed ){
68737 goto blob_open_out;
68739 sqlite3_bind_int64(pBlob->pStmt, 1, iRow);
68740 rc = blobSeekToRow(pBlob, iRow, &zErr);
68741 } while( (++nAttempt)<5 && rc==SQLITE_SCHEMA );
68743 blob_open_out:
68744 if( rc==SQLITE_OK && db->mallocFailed==0 ){
68745 *ppBlob = (sqlite3_blob *)pBlob;
68746 }else{
68747 if( pBlob && pBlob->pStmt ) sqlite3VdbeFinalize((Vdbe *)pBlob->pStmt);
68748 sqlite3DbFree(db, pBlob);
68750 sqlite3Error(db, rc, (zErr ? "%s" : 0), zErr);
68751 sqlite3DbFree(db, zErr);
68752 sqlite3StackFree(db, pParse);
68753 rc = sqlite3ApiExit(db, rc);
68754 sqlite3_mutex_leave(db->mutex);
68755 return rc;
68759 ** Close a blob handle that was previously created using
68760 ** sqlite3_blob_open().
68762 SQLITE_API int sqlite3_blob_close(sqlite3_blob *pBlob){
68763 Incrblob *p = (Incrblob *)pBlob;
68764 int rc;
68765 sqlite3 *db;
68767 if( p ){
68768 db = p->db;
68769 sqlite3_mutex_enter(db->mutex);
68770 rc = sqlite3_finalize(p->pStmt);
68771 sqlite3DbFree(db, p);
68772 sqlite3_mutex_leave(db->mutex);
68773 }else{
68774 rc = SQLITE_OK;
68776 return rc;
68780 ** Perform a read or write operation on a blob
68782 static int blobReadWrite(
68783 sqlite3_blob *pBlob,
68784 void *z,
68785 int n,
68786 int iOffset,
68787 int (*xCall)(BtCursor*, u32, u32, void*)
68789 int rc;
68790 Incrblob *p = (Incrblob *)pBlob;
68791 Vdbe *v;
68792 sqlite3 *db;
68794 if( p==0 ) return SQLITE_MISUSE_BKPT;
68795 db = p->db;
68796 sqlite3_mutex_enter(db->mutex);
68797 v = (Vdbe*)p->pStmt;
68799 if( n<0 || iOffset<0 || (iOffset+n)>p->nByte ){
68800 /* Request is out of range. Return a transient error. */
68801 rc = SQLITE_ERROR;
68802 sqlite3Error(db, SQLITE_ERROR, 0);
68803 }else if( v==0 ){
68804 /* If there is no statement handle, then the blob-handle has
68805 ** already been invalidated. Return SQLITE_ABORT in this case.
68807 rc = SQLITE_ABORT;
68808 }else{
68809 /* Call either BtreeData() or BtreePutData(). If SQLITE_ABORT is
68810 ** returned, clean-up the statement handle.
68812 assert( db == v->db );
68813 sqlite3BtreeEnterCursor(p->pCsr);
68814 rc = xCall(p->pCsr, iOffset+p->iOffset, n, z);
68815 sqlite3BtreeLeaveCursor(p->pCsr);
68816 if( rc==SQLITE_ABORT ){
68817 sqlite3VdbeFinalize(v);
68818 p->pStmt = 0;
68819 }else{
68820 db->errCode = rc;
68821 v->rc = rc;
68824 rc = sqlite3ApiExit(db, rc);
68825 sqlite3_mutex_leave(db->mutex);
68826 return rc;
68830 ** Read data from a blob handle.
68832 SQLITE_API int sqlite3_blob_read(sqlite3_blob *pBlob, void *z, int n, int iOffset){
68833 return blobReadWrite(pBlob, z, n, iOffset, sqlite3BtreeData);
68837 ** Write data to a blob handle.
68839 SQLITE_API int sqlite3_blob_write(sqlite3_blob *pBlob, const void *z, int n, int iOffset){
68840 return blobReadWrite(pBlob, (void *)z, n, iOffset, sqlite3BtreePutData);
68844 ** Query a blob handle for the size of the data.
68846 ** The Incrblob.nByte field is fixed for the lifetime of the Incrblob
68847 ** so no mutex is required for access.
68849 SQLITE_API int sqlite3_blob_bytes(sqlite3_blob *pBlob){
68850 Incrblob *p = (Incrblob *)pBlob;
68851 return (p && p->pStmt) ? p->nByte : 0;
68855 ** Move an existing blob handle to point to a different row of the same
68856 ** database table.
68858 ** If an error occurs, or if the specified row does not exist or does not
68859 ** contain a blob or text value, then an error code is returned and the
68860 ** database handle error code and message set. If this happens, then all
68861 ** subsequent calls to sqlite3_blob_xxx() functions (except blob_close())
68862 ** immediately return SQLITE_ABORT.
68864 SQLITE_API int sqlite3_blob_reopen(sqlite3_blob *pBlob, sqlite3_int64 iRow){
68865 int rc;
68866 Incrblob *p = (Incrblob *)pBlob;
68867 sqlite3 *db;
68869 if( p==0 ) return SQLITE_MISUSE_BKPT;
68870 db = p->db;
68871 sqlite3_mutex_enter(db->mutex);
68873 if( p->pStmt==0 ){
68874 /* If there is no statement handle, then the blob-handle has
68875 ** already been invalidated. Return SQLITE_ABORT in this case.
68877 rc = SQLITE_ABORT;
68878 }else{
68879 char *zErr;
68880 rc = blobSeekToRow(p, iRow, &zErr);
68881 if( rc!=SQLITE_OK ){
68882 sqlite3Error(db, rc, (zErr ? "%s" : 0), zErr);
68883 sqlite3DbFree(db, zErr);
68885 assert( rc!=SQLITE_SCHEMA );
68888 rc = sqlite3ApiExit(db, rc);
68889 assert( rc==SQLITE_OK || p->pStmt==0 );
68890 sqlite3_mutex_leave(db->mutex);
68891 return rc;
68894 #endif /* #ifndef SQLITE_OMIT_INCRBLOB */
68896 /************** End of vdbeblob.c ********************************************/
68897 /************** Begin file journal.c *****************************************/
68899 ** 2007 August 22
68901 ** The author disclaims copyright to this source code. In place of
68902 ** a legal notice, here is a blessing:
68904 ** May you do good and not evil.
68905 ** May you find forgiveness for yourself and forgive others.
68906 ** May you share freely, never taking more than you give.
68908 *************************************************************************
68910 ** This file implements a special kind of sqlite3_file object used
68911 ** by SQLite to create journal files if the atomic-write optimization
68912 ** is enabled.
68914 ** The distinctive characteristic of this sqlite3_file is that the
68915 ** actual on disk file is created lazily. When the file is created,
68916 ** the caller specifies a buffer size for an in-memory buffer to
68917 ** be used to service read() and write() requests. The actual file
68918 ** on disk is not created or populated until either:
68920 ** 1) The in-memory representation grows too large for the allocated
68921 ** buffer, or
68922 ** 2) The sqlite3JournalCreate() function is called.
68924 #ifdef SQLITE_ENABLE_ATOMIC_WRITE
68928 ** A JournalFile object is a subclass of sqlite3_file used by
68929 ** as an open file handle for journal files.
68931 struct JournalFile {
68932 sqlite3_io_methods *pMethod; /* I/O methods on journal files */
68933 int nBuf; /* Size of zBuf[] in bytes */
68934 char *zBuf; /* Space to buffer journal writes */
68935 int iSize; /* Amount of zBuf[] currently used */
68936 int flags; /* xOpen flags */
68937 sqlite3_vfs *pVfs; /* The "real" underlying VFS */
68938 sqlite3_file *pReal; /* The "real" underlying file descriptor */
68939 const char *zJournal; /* Name of the journal file */
68941 typedef struct JournalFile JournalFile;
68944 ** If it does not already exists, create and populate the on-disk file
68945 ** for JournalFile p.
68947 static int createFile(JournalFile *p){
68948 int rc = SQLITE_OK;
68949 if( !p->pReal ){
68950 sqlite3_file *pReal = (sqlite3_file *)&p[1];
68951 rc = sqlite3OsOpen(p->pVfs, p->zJournal, pReal, p->flags, 0);
68952 if( rc==SQLITE_OK ){
68953 p->pReal = pReal;
68954 if( p->iSize>0 ){
68955 assert(p->iSize<=p->nBuf);
68956 rc = sqlite3OsWrite(p->pReal, p->zBuf, p->iSize, 0);
68960 return rc;
68964 ** Close the file.
68966 static int jrnlClose(sqlite3_file *pJfd){
68967 JournalFile *p = (JournalFile *)pJfd;
68968 if( p->pReal ){
68969 sqlite3OsClose(p->pReal);
68971 sqlite3_free(p->zBuf);
68972 return SQLITE_OK;
68976 ** Read data from the file.
68978 static int jrnlRead(
68979 sqlite3_file *pJfd, /* The journal file from which to read */
68980 void *zBuf, /* Put the results here */
68981 int iAmt, /* Number of bytes to read */
68982 sqlite_int64 iOfst /* Begin reading at this offset */
68984 int rc = SQLITE_OK;
68985 JournalFile *p = (JournalFile *)pJfd;
68986 if( p->pReal ){
68987 rc = sqlite3OsRead(p->pReal, zBuf, iAmt, iOfst);
68988 }else if( (iAmt+iOfst)>p->iSize ){
68989 rc = SQLITE_IOERR_SHORT_READ;
68990 }else{
68991 memcpy(zBuf, &p->zBuf[iOfst], iAmt);
68993 return rc;
68997 ** Write data to the file.
68999 static int jrnlWrite(
69000 sqlite3_file *pJfd, /* The journal file into which to write */
69001 const void *zBuf, /* Take data to be written from here */
69002 int iAmt, /* Number of bytes to write */
69003 sqlite_int64 iOfst /* Begin writing at this offset into the file */
69005 int rc = SQLITE_OK;
69006 JournalFile *p = (JournalFile *)pJfd;
69007 if( !p->pReal && (iOfst+iAmt)>p->nBuf ){
69008 rc = createFile(p);
69010 if( rc==SQLITE_OK ){
69011 if( p->pReal ){
69012 rc = sqlite3OsWrite(p->pReal, zBuf, iAmt, iOfst);
69013 }else{
69014 memcpy(&p->zBuf[iOfst], zBuf, iAmt);
69015 if( p->iSize<(iOfst+iAmt) ){
69016 p->iSize = (iOfst+iAmt);
69020 return rc;
69024 ** Truncate the file.
69026 static int jrnlTruncate(sqlite3_file *pJfd, sqlite_int64 size){
69027 int rc = SQLITE_OK;
69028 JournalFile *p = (JournalFile *)pJfd;
69029 if( p->pReal ){
69030 rc = sqlite3OsTruncate(p->pReal, size);
69031 }else if( size<p->iSize ){
69032 p->iSize = size;
69034 return rc;
69038 ** Sync the file.
69040 static int jrnlSync(sqlite3_file *pJfd, int flags){
69041 int rc;
69042 JournalFile *p = (JournalFile *)pJfd;
69043 if( p->pReal ){
69044 rc = sqlite3OsSync(p->pReal, flags);
69045 }else{
69046 rc = SQLITE_OK;
69048 return rc;
69052 ** Query the size of the file in bytes.
69054 static int jrnlFileSize(sqlite3_file *pJfd, sqlite_int64 *pSize){
69055 int rc = SQLITE_OK;
69056 JournalFile *p = (JournalFile *)pJfd;
69057 if( p->pReal ){
69058 rc = sqlite3OsFileSize(p->pReal, pSize);
69059 }else{
69060 *pSize = (sqlite_int64) p->iSize;
69062 return rc;
69066 ** Table of methods for JournalFile sqlite3_file object.
69068 static struct sqlite3_io_methods JournalFileMethods = {
69069 1, /* iVersion */
69070 jrnlClose, /* xClose */
69071 jrnlRead, /* xRead */
69072 jrnlWrite, /* xWrite */
69073 jrnlTruncate, /* xTruncate */
69074 jrnlSync, /* xSync */
69075 jrnlFileSize, /* xFileSize */
69076 0, /* xLock */
69077 0, /* xUnlock */
69078 0, /* xCheckReservedLock */
69079 0, /* xFileControl */
69080 0, /* xSectorSize */
69081 0, /* xDeviceCharacteristics */
69082 0, /* xShmMap */
69083 0, /* xShmLock */
69084 0, /* xShmBarrier */
69085 0 /* xShmUnmap */
69089 ** Open a journal file.
69091 SQLITE_PRIVATE int sqlite3JournalOpen(
69092 sqlite3_vfs *pVfs, /* The VFS to use for actual file I/O */
69093 const char *zName, /* Name of the journal file */
69094 sqlite3_file *pJfd, /* Preallocated, blank file handle */
69095 int flags, /* Opening flags */
69096 int nBuf /* Bytes buffered before opening the file */
69098 JournalFile *p = (JournalFile *)pJfd;
69099 memset(p, 0, sqlite3JournalSize(pVfs));
69100 if( nBuf>0 ){
69101 p->zBuf = sqlite3MallocZero(nBuf);
69102 if( !p->zBuf ){
69103 return SQLITE_NOMEM;
69105 }else{
69106 return sqlite3OsOpen(pVfs, zName, pJfd, flags, 0);
69108 p->pMethod = &JournalFileMethods;
69109 p->nBuf = nBuf;
69110 p->flags = flags;
69111 p->zJournal = zName;
69112 p->pVfs = pVfs;
69113 return SQLITE_OK;
69117 ** If the argument p points to a JournalFile structure, and the underlying
69118 ** file has not yet been created, create it now.
69120 SQLITE_PRIVATE int sqlite3JournalCreate(sqlite3_file *p){
69121 if( p->pMethods!=&JournalFileMethods ){
69122 return SQLITE_OK;
69124 return createFile((JournalFile *)p);
69128 ** Return the number of bytes required to store a JournalFile that uses vfs
69129 ** pVfs to create the underlying on-disk files.
69131 SQLITE_PRIVATE int sqlite3JournalSize(sqlite3_vfs *pVfs){
69132 return (pVfs->szOsFile+sizeof(JournalFile));
69134 #endif
69136 /************** End of journal.c *********************************************/
69137 /************** Begin file memjournal.c **************************************/
69139 ** 2008 October 7
69141 ** The author disclaims copyright to this source code. In place of
69142 ** a legal notice, here is a blessing:
69144 ** May you do good and not evil.
69145 ** May you find forgiveness for yourself and forgive others.
69146 ** May you share freely, never taking more than you give.
69148 *************************************************************************
69150 ** This file contains code use to implement an in-memory rollback journal.
69151 ** The in-memory rollback journal is used to journal transactions for
69152 ** ":memory:" databases and when the journal_mode=MEMORY pragma is used.
69155 /* Forward references to internal structures */
69156 typedef struct MemJournal MemJournal;
69157 typedef struct FilePoint FilePoint;
69158 typedef struct FileChunk FileChunk;
69160 /* Space to hold the rollback journal is allocated in increments of
69161 ** this many bytes.
69163 ** The size chosen is a little less than a power of two. That way,
69164 ** the FileChunk object will have a size that almost exactly fills
69165 ** a power-of-two allocation. This mimimizes wasted space in power-of-two
69166 ** memory allocators.
69168 #define JOURNAL_CHUNKSIZE ((int)(1024-sizeof(FileChunk*)))
69170 /* Macro to find the minimum of two numeric values.
69172 #ifndef MIN
69173 # define MIN(x,y) ((x)<(y)?(x):(y))
69174 #endif
69177 ** The rollback journal is composed of a linked list of these structures.
69179 struct FileChunk {
69180 FileChunk *pNext; /* Next chunk in the journal */
69181 u8 zChunk[JOURNAL_CHUNKSIZE]; /* Content of this chunk */
69185 ** An instance of this object serves as a cursor into the rollback journal.
69186 ** The cursor can be either for reading or writing.
69188 struct FilePoint {
69189 sqlite3_int64 iOffset; /* Offset from the beginning of the file */
69190 FileChunk *pChunk; /* Specific chunk into which cursor points */
69194 ** This subclass is a subclass of sqlite3_file. Each open memory-journal
69195 ** is an instance of this class.
69197 struct MemJournal {
69198 sqlite3_io_methods *pMethod; /* Parent class. MUST BE FIRST */
69199 FileChunk *pFirst; /* Head of in-memory chunk-list */
69200 FilePoint endpoint; /* Pointer to the end of the file */
69201 FilePoint readpoint; /* Pointer to the end of the last xRead() */
69205 ** Read data from the in-memory journal file. This is the implementation
69206 ** of the sqlite3_vfs.xRead method.
69208 static int memjrnlRead(
69209 sqlite3_file *pJfd, /* The journal file from which to read */
69210 void *zBuf, /* Put the results here */
69211 int iAmt, /* Number of bytes to read */
69212 sqlite_int64 iOfst /* Begin reading at this offset */
69214 MemJournal *p = (MemJournal *)pJfd;
69215 u8 *zOut = zBuf;
69216 int nRead = iAmt;
69217 int iChunkOffset;
69218 FileChunk *pChunk;
69220 /* SQLite never tries to read past the end of a rollback journal file */
69221 assert( iOfst+iAmt<=p->endpoint.iOffset );
69223 if( p->readpoint.iOffset!=iOfst || iOfst==0 ){
69224 sqlite3_int64 iOff = 0;
69225 for(pChunk=p->pFirst;
69226 ALWAYS(pChunk) && (iOff+JOURNAL_CHUNKSIZE)<=iOfst;
69227 pChunk=pChunk->pNext
69229 iOff += JOURNAL_CHUNKSIZE;
69231 }else{
69232 pChunk = p->readpoint.pChunk;
69235 iChunkOffset = (int)(iOfst%JOURNAL_CHUNKSIZE);
69236 do {
69237 int iSpace = JOURNAL_CHUNKSIZE - iChunkOffset;
69238 int nCopy = MIN(nRead, (JOURNAL_CHUNKSIZE - iChunkOffset));
69239 memcpy(zOut, &pChunk->zChunk[iChunkOffset], nCopy);
69240 zOut += nCopy;
69241 nRead -= iSpace;
69242 iChunkOffset = 0;
69243 } while( nRead>=0 && (pChunk=pChunk->pNext)!=0 && nRead>0 );
69244 p->readpoint.iOffset = iOfst+iAmt;
69245 p->readpoint.pChunk = pChunk;
69247 return SQLITE_OK;
69251 ** Write data to the file.
69253 static int memjrnlWrite(
69254 sqlite3_file *pJfd, /* The journal file into which to write */
69255 const void *zBuf, /* Take data to be written from here */
69256 int iAmt, /* Number of bytes to write */
69257 sqlite_int64 iOfst /* Begin writing at this offset into the file */
69259 MemJournal *p = (MemJournal *)pJfd;
69260 int nWrite = iAmt;
69261 u8 *zWrite = (u8 *)zBuf;
69263 /* An in-memory journal file should only ever be appended to. Random
69264 ** access writes are not required by sqlite.
69266 assert( iOfst==p->endpoint.iOffset );
69267 UNUSED_PARAMETER(iOfst);
69269 while( nWrite>0 ){
69270 FileChunk *pChunk = p->endpoint.pChunk;
69271 int iChunkOffset = (int)(p->endpoint.iOffset%JOURNAL_CHUNKSIZE);
69272 int iSpace = MIN(nWrite, JOURNAL_CHUNKSIZE - iChunkOffset);
69274 if( iChunkOffset==0 ){
69275 /* New chunk is required to extend the file. */
69276 FileChunk *pNew = sqlite3_malloc(sizeof(FileChunk));
69277 if( !pNew ){
69278 return SQLITE_IOERR_NOMEM;
69280 pNew->pNext = 0;
69281 if( pChunk ){
69282 assert( p->pFirst );
69283 pChunk->pNext = pNew;
69284 }else{
69285 assert( !p->pFirst );
69286 p->pFirst = pNew;
69288 p->endpoint.pChunk = pNew;
69291 memcpy(&p->endpoint.pChunk->zChunk[iChunkOffset], zWrite, iSpace);
69292 zWrite += iSpace;
69293 nWrite -= iSpace;
69294 p->endpoint.iOffset += iSpace;
69297 return SQLITE_OK;
69301 ** Truncate the file.
69303 static int memjrnlTruncate(sqlite3_file *pJfd, sqlite_int64 size){
69304 MemJournal *p = (MemJournal *)pJfd;
69305 FileChunk *pChunk;
69306 assert(size==0);
69307 UNUSED_PARAMETER(size);
69308 pChunk = p->pFirst;
69309 while( pChunk ){
69310 FileChunk *pTmp = pChunk;
69311 pChunk = pChunk->pNext;
69312 sqlite3_free(pTmp);
69314 sqlite3MemJournalOpen(pJfd);
69315 return SQLITE_OK;
69319 ** Close the file.
69321 static int memjrnlClose(sqlite3_file *pJfd){
69322 memjrnlTruncate(pJfd, 0);
69323 return SQLITE_OK;
69328 ** Sync the file.
69330 ** Syncing an in-memory journal is a no-op. And, in fact, this routine
69331 ** is never called in a working implementation. This implementation
69332 ** exists purely as a contingency, in case some malfunction in some other
69333 ** part of SQLite causes Sync to be called by mistake.
69335 static int memjrnlSync(sqlite3_file *NotUsed, int NotUsed2){
69336 UNUSED_PARAMETER2(NotUsed, NotUsed2);
69337 return SQLITE_OK;
69341 ** Query the size of the file in bytes.
69343 static int memjrnlFileSize(sqlite3_file *pJfd, sqlite_int64 *pSize){
69344 MemJournal *p = (MemJournal *)pJfd;
69345 *pSize = (sqlite_int64) p->endpoint.iOffset;
69346 return SQLITE_OK;
69350 ** Table of methods for MemJournal sqlite3_file object.
69352 static const struct sqlite3_io_methods MemJournalMethods = {
69353 1, /* iVersion */
69354 memjrnlClose, /* xClose */
69355 memjrnlRead, /* xRead */
69356 memjrnlWrite, /* xWrite */
69357 memjrnlTruncate, /* xTruncate */
69358 memjrnlSync, /* xSync */
69359 memjrnlFileSize, /* xFileSize */
69360 0, /* xLock */
69361 0, /* xUnlock */
69362 0, /* xCheckReservedLock */
69363 0, /* xFileControl */
69364 0, /* xSectorSize */
69365 0, /* xDeviceCharacteristics */
69366 0, /* xShmMap */
69367 0, /* xShmLock */
69368 0, /* xShmBarrier */
69369 0 /* xShmUnlock */
69373 ** Open a journal file.
69375 SQLITE_PRIVATE void sqlite3MemJournalOpen(sqlite3_file *pJfd){
69376 MemJournal *p = (MemJournal *)pJfd;
69377 assert( EIGHT_BYTE_ALIGNMENT(p) );
69378 memset(p, 0, sqlite3MemJournalSize());
69379 p->pMethod = (sqlite3_io_methods*)&MemJournalMethods;
69383 ** Return true if the file-handle passed as an argument is
69384 ** an in-memory journal
69386 SQLITE_PRIVATE int sqlite3IsMemJournal(sqlite3_file *pJfd){
69387 return pJfd->pMethods==&MemJournalMethods;
69391 ** Return the number of bytes required to store a MemJournal file descriptor.
69393 SQLITE_PRIVATE int sqlite3MemJournalSize(void){
69394 return sizeof(MemJournal);
69397 /************** End of memjournal.c ******************************************/
69398 /************** Begin file walker.c ******************************************/
69400 ** 2008 August 16
69402 ** The author disclaims copyright to this source code. In place of
69403 ** a legal notice, here is a blessing:
69405 ** May you do good and not evil.
69406 ** May you find forgiveness for yourself and forgive others.
69407 ** May you share freely, never taking more than you give.
69409 *************************************************************************
69410 ** This file contains routines used for walking the parser tree for
69411 ** an SQL statement.
69416 ** Walk an expression tree. Invoke the callback once for each node
69417 ** of the expression, while decending. (In other words, the callback
69418 ** is invoked before visiting children.)
69420 ** The return value from the callback should be one of the WRC_*
69421 ** constants to specify how to proceed with the walk.
69423 ** WRC_Continue Continue descending down the tree.
69425 ** WRC_Prune Do not descend into child nodes. But allow
69426 ** the walk to continue with sibling nodes.
69428 ** WRC_Abort Do no more callbacks. Unwind the stack and
69429 ** return the top-level walk call.
69431 ** The return value from this routine is WRC_Abort to abandon the tree walk
69432 ** and WRC_Continue to continue.
69434 SQLITE_PRIVATE int sqlite3WalkExpr(Walker *pWalker, Expr *pExpr){
69435 int rc;
69436 if( pExpr==0 ) return WRC_Continue;
69437 testcase( ExprHasProperty(pExpr, EP_TokenOnly) );
69438 testcase( ExprHasProperty(pExpr, EP_Reduced) );
69439 rc = pWalker->xExprCallback(pWalker, pExpr);
69440 if( rc==WRC_Continue
69441 && !ExprHasAnyProperty(pExpr,EP_TokenOnly) ){
69442 if( sqlite3WalkExpr(pWalker, pExpr->pLeft) ) return WRC_Abort;
69443 if( sqlite3WalkExpr(pWalker, pExpr->pRight) ) return WRC_Abort;
69444 if( ExprHasProperty(pExpr, EP_xIsSelect) ){
69445 if( sqlite3WalkSelect(pWalker, pExpr->x.pSelect) ) return WRC_Abort;
69446 }else{
69447 if( sqlite3WalkExprList(pWalker, pExpr->x.pList) ) return WRC_Abort;
69450 return rc & WRC_Abort;
69454 ** Call sqlite3WalkExpr() for every expression in list p or until
69455 ** an abort request is seen.
69457 SQLITE_PRIVATE int sqlite3WalkExprList(Walker *pWalker, ExprList *p){
69458 int i;
69459 struct ExprList_item *pItem;
69460 if( p ){
69461 for(i=p->nExpr, pItem=p->a; i>0; i--, pItem++){
69462 if( sqlite3WalkExpr(pWalker, pItem->pExpr) ) return WRC_Abort;
69465 return WRC_Continue;
69469 ** Walk all expressions associated with SELECT statement p. Do
69470 ** not invoke the SELECT callback on p, but do (of course) invoke
69471 ** any expr callbacks and SELECT callbacks that come from subqueries.
69472 ** Return WRC_Abort or WRC_Continue.
69474 SQLITE_PRIVATE int sqlite3WalkSelectExpr(Walker *pWalker, Select *p){
69475 if( sqlite3WalkExprList(pWalker, p->pEList) ) return WRC_Abort;
69476 if( sqlite3WalkExpr(pWalker, p->pWhere) ) return WRC_Abort;
69477 if( sqlite3WalkExprList(pWalker, p->pGroupBy) ) return WRC_Abort;
69478 if( sqlite3WalkExpr(pWalker, p->pHaving) ) return WRC_Abort;
69479 if( sqlite3WalkExprList(pWalker, p->pOrderBy) ) return WRC_Abort;
69480 if( sqlite3WalkExpr(pWalker, p->pLimit) ) return WRC_Abort;
69481 if( sqlite3WalkExpr(pWalker, p->pOffset) ) return WRC_Abort;
69482 return WRC_Continue;
69486 ** Walk the parse trees associated with all subqueries in the
69487 ** FROM clause of SELECT statement p. Do not invoke the select
69488 ** callback on p, but do invoke it on each FROM clause subquery
69489 ** and on any subqueries further down in the tree. Return
69490 ** WRC_Abort or WRC_Continue;
69492 SQLITE_PRIVATE int sqlite3WalkSelectFrom(Walker *pWalker, Select *p){
69493 SrcList *pSrc;
69494 int i;
69495 struct SrcList_item *pItem;
69497 pSrc = p->pSrc;
69498 if( ALWAYS(pSrc) ){
69499 for(i=pSrc->nSrc, pItem=pSrc->a; i>0; i--, pItem++){
69500 if( sqlite3WalkSelect(pWalker, pItem->pSelect) ){
69501 return WRC_Abort;
69505 return WRC_Continue;
69509 ** Call sqlite3WalkExpr() for every expression in Select statement p.
69510 ** Invoke sqlite3WalkSelect() for subqueries in the FROM clause and
69511 ** on the compound select chain, p->pPrior.
69513 ** Return WRC_Continue under normal conditions. Return WRC_Abort if
69514 ** there is an abort request.
69516 ** If the Walker does not have an xSelectCallback() then this routine
69517 ** is a no-op returning WRC_Continue.
69519 SQLITE_PRIVATE int sqlite3WalkSelect(Walker *pWalker, Select *p){
69520 int rc;
69521 if( p==0 || pWalker->xSelectCallback==0 ) return WRC_Continue;
69522 rc = WRC_Continue;
69523 while( p ){
69524 rc = pWalker->xSelectCallback(pWalker, p);
69525 if( rc ) break;
69526 if( sqlite3WalkSelectExpr(pWalker, p) ) return WRC_Abort;
69527 if( sqlite3WalkSelectFrom(pWalker, p) ) return WRC_Abort;
69528 p = p->pPrior;
69530 return rc & WRC_Abort;
69533 /************** End of walker.c **********************************************/
69534 /************** Begin file resolve.c *****************************************/
69536 ** 2008 August 18
69538 ** The author disclaims copyright to this source code. In place of
69539 ** a legal notice, here is a blessing:
69541 ** May you do good and not evil.
69542 ** May you find forgiveness for yourself and forgive others.
69543 ** May you share freely, never taking more than you give.
69545 *************************************************************************
69547 ** This file contains routines used for walking the parser tree and
69548 ** resolve all identifiers by associating them with a particular
69549 ** table and column.
69553 ** Turn the pExpr expression into an alias for the iCol-th column of the
69554 ** result set in pEList.
69556 ** If the result set column is a simple column reference, then this routine
69557 ** makes an exact copy. But for any other kind of expression, this
69558 ** routine make a copy of the result set column as the argument to the
69559 ** TK_AS operator. The TK_AS operator causes the expression to be
69560 ** evaluated just once and then reused for each alias.
69562 ** The reason for suppressing the TK_AS term when the expression is a simple
69563 ** column reference is so that the column reference will be recognized as
69564 ** usable by indices within the WHERE clause processing logic.
69566 ** Hack: The TK_AS operator is inhibited if zType[0]=='G'. This means
69567 ** that in a GROUP BY clause, the expression is evaluated twice. Hence:
69569 ** SELECT random()%5 AS x, count(*) FROM tab GROUP BY x
69571 ** Is equivalent to:
69573 ** SELECT random()%5 AS x, count(*) FROM tab GROUP BY random()%5
69575 ** The result of random()%5 in the GROUP BY clause is probably different
69576 ** from the result in the result-set. We might fix this someday. Or
69577 ** then again, we might not...
69579 static void resolveAlias(
69580 Parse *pParse, /* Parsing context */
69581 ExprList *pEList, /* A result set */
69582 int iCol, /* A column in the result set. 0..pEList->nExpr-1 */
69583 Expr *pExpr, /* Transform this into an alias to the result set */
69584 const char *zType /* "GROUP" or "ORDER" or "" */
69586 Expr *pOrig; /* The iCol-th column of the result set */
69587 Expr *pDup; /* Copy of pOrig */
69588 sqlite3 *db; /* The database connection */
69590 assert( iCol>=0 && iCol<pEList->nExpr );
69591 pOrig = pEList->a[iCol].pExpr;
69592 assert( pOrig!=0 );
69593 assert( pOrig->flags & EP_Resolved );
69594 db = pParse->db;
69595 if( pOrig->op!=TK_COLUMN && zType[0]!='G' ){
69596 pDup = sqlite3ExprDup(db, pOrig, 0);
69597 pDup = sqlite3PExpr(pParse, TK_AS, pDup, 0, 0);
69598 if( pDup==0 ) return;
69599 if( pEList->a[iCol].iAlias==0 ){
69600 pEList->a[iCol].iAlias = (u16)(++pParse->nAlias);
69602 pDup->iTable = pEList->a[iCol].iAlias;
69603 }else if( ExprHasProperty(pOrig, EP_IntValue) || pOrig->u.zToken==0 ){
69604 pDup = sqlite3ExprDup(db, pOrig, 0);
69605 if( pDup==0 ) return;
69606 }else{
69607 char *zToken = pOrig->u.zToken;
69608 assert( zToken!=0 );
69609 pOrig->u.zToken = 0;
69610 pDup = sqlite3ExprDup(db, pOrig, 0);
69611 pOrig->u.zToken = zToken;
69612 if( pDup==0 ) return;
69613 assert( (pDup->flags & (EP_Reduced|EP_TokenOnly))==0 );
69614 pDup->flags2 |= EP2_MallocedToken;
69615 pDup->u.zToken = sqlite3DbStrDup(db, zToken);
69617 if( pExpr->flags & EP_ExpCollate ){
69618 pDup->pColl = pExpr->pColl;
69619 pDup->flags |= EP_ExpCollate;
69622 /* Before calling sqlite3ExprDelete(), set the EP_Static flag. This
69623 ** prevents ExprDelete() from deleting the Expr structure itself,
69624 ** allowing it to be repopulated by the memcpy() on the following line.
69626 ExprSetProperty(pExpr, EP_Static);
69627 sqlite3ExprDelete(db, pExpr);
69628 memcpy(pExpr, pDup, sizeof(*pExpr));
69629 sqlite3DbFree(db, pDup);
69633 ** Given the name of a column of the form X.Y.Z or Y.Z or just Z, look up
69634 ** that name in the set of source tables in pSrcList and make the pExpr
69635 ** expression node refer back to that source column. The following changes
69636 ** are made to pExpr:
69638 ** pExpr->iDb Set the index in db->aDb[] of the database X
69639 ** (even if X is implied).
69640 ** pExpr->iTable Set to the cursor number for the table obtained
69641 ** from pSrcList.
69642 ** pExpr->pTab Points to the Table structure of X.Y (even if
69643 ** X and/or Y are implied.)
69644 ** pExpr->iColumn Set to the column number within the table.
69645 ** pExpr->op Set to TK_COLUMN.
69646 ** pExpr->pLeft Any expression this points to is deleted
69647 ** pExpr->pRight Any expression this points to is deleted.
69649 ** The zDb variable is the name of the database (the "X"). This value may be
69650 ** NULL meaning that name is of the form Y.Z or Z. Any available database
69651 ** can be used. The zTable variable is the name of the table (the "Y"). This
69652 ** value can be NULL if zDb is also NULL. If zTable is NULL it
69653 ** means that the form of the name is Z and that columns from any table
69654 ** can be used.
69656 ** If the name cannot be resolved unambiguously, leave an error message
69657 ** in pParse and return WRC_Abort. Return WRC_Prune on success.
69659 static int lookupName(
69660 Parse *pParse, /* The parsing context */
69661 const char *zDb, /* Name of the database containing table, or NULL */
69662 const char *zTab, /* Name of table containing column, or NULL */
69663 const char *zCol, /* Name of the column. */
69664 NameContext *pNC, /* The name context used to resolve the name */
69665 Expr *pExpr /* Make this EXPR node point to the selected column */
69667 int i, j; /* Loop counters */
69668 int cnt = 0; /* Number of matching column names */
69669 int cntTab = 0; /* Number of matching table names */
69670 sqlite3 *db = pParse->db; /* The database connection */
69671 struct SrcList_item *pItem; /* Use for looping over pSrcList items */
69672 struct SrcList_item *pMatch = 0; /* The matching pSrcList item */
69673 NameContext *pTopNC = pNC; /* First namecontext in the list */
69674 Schema *pSchema = 0; /* Schema of the expression */
69675 int isTrigger = 0;
69677 assert( pNC ); /* the name context cannot be NULL. */
69678 assert( zCol ); /* The Z in X.Y.Z cannot be NULL */
69679 assert( ~ExprHasAnyProperty(pExpr, EP_TokenOnly|EP_Reduced) );
69681 /* Initialize the node to no-match */
69682 pExpr->iTable = -1;
69683 pExpr->pTab = 0;
69684 ExprSetIrreducible(pExpr);
69686 /* Start at the inner-most context and move outward until a match is found */
69687 while( pNC && cnt==0 ){
69688 ExprList *pEList;
69689 SrcList *pSrcList = pNC->pSrcList;
69691 if( pSrcList ){
69692 for(i=0, pItem=pSrcList->a; i<pSrcList->nSrc; i++, pItem++){
69693 Table *pTab;
69694 int iDb;
69695 Column *pCol;
69697 pTab = pItem->pTab;
69698 assert( pTab!=0 && pTab->zName!=0 );
69699 iDb = sqlite3SchemaToIndex(db, pTab->pSchema);
69700 assert( pTab->nCol>0 );
69701 if( zTab ){
69702 if( pItem->zAlias ){
69703 char *zTabName = pItem->zAlias;
69704 if( sqlite3StrICmp(zTabName, zTab)!=0 ) continue;
69705 }else{
69706 char *zTabName = pTab->zName;
69707 if( NEVER(zTabName==0) || sqlite3StrICmp(zTabName, zTab)!=0 ){
69708 continue;
69710 if( zDb!=0 && sqlite3StrICmp(db->aDb[iDb].zName, zDb)!=0 ){
69711 continue;
69715 if( 0==(cntTab++) ){
69716 pExpr->iTable = pItem->iCursor;
69717 pExpr->pTab = pTab;
69718 pSchema = pTab->pSchema;
69719 pMatch = pItem;
69721 for(j=0, pCol=pTab->aCol; j<pTab->nCol; j++, pCol++){
69722 if( sqlite3StrICmp(pCol->zName, zCol)==0 ){
69723 IdList *pUsing;
69724 cnt++;
69725 pExpr->iTable = pItem->iCursor;
69726 pExpr->pTab = pTab;
69727 pMatch = pItem;
69728 pSchema = pTab->pSchema;
69729 /* Substitute the rowid (column -1) for the INTEGER PRIMARY KEY */
69730 pExpr->iColumn = j==pTab->iPKey ? -1 : (i16)j;
69731 if( i<pSrcList->nSrc-1 ){
69732 if( pItem[1].jointype & JT_NATURAL ){
69733 /* If this match occurred in the left table of a natural join,
69734 ** then skip the right table to avoid a duplicate match */
69735 pItem++;
69736 i++;
69737 }else if( (pUsing = pItem[1].pUsing)!=0 ){
69738 /* If this match occurs on a column that is in the USING clause
69739 ** of a join, skip the search of the right table of the join
69740 ** to avoid a duplicate match there. */
69741 int k;
69742 for(k=0; k<pUsing->nId; k++){
69743 if( sqlite3StrICmp(pUsing->a[k].zName, zCol)==0 ){
69744 pItem++;
69745 i++;
69746 break;
69751 break;
69757 #ifndef SQLITE_OMIT_TRIGGER
69758 /* If we have not already resolved the name, then maybe
69759 ** it is a new.* or old.* trigger argument reference
69761 if( zDb==0 && zTab!=0 && cnt==0 && pParse->pTriggerTab!=0 ){
69762 int op = pParse->eTriggerOp;
69763 Table *pTab = 0;
69764 assert( op==TK_DELETE || op==TK_UPDATE || op==TK_INSERT );
69765 if( op!=TK_DELETE && sqlite3StrICmp("new",zTab) == 0 ){
69766 pExpr->iTable = 1;
69767 pTab = pParse->pTriggerTab;
69768 }else if( op!=TK_INSERT && sqlite3StrICmp("old",zTab)==0 ){
69769 pExpr->iTable = 0;
69770 pTab = pParse->pTriggerTab;
69773 if( pTab ){
69774 int iCol;
69775 pSchema = pTab->pSchema;
69776 cntTab++;
69777 for(iCol=0; iCol<pTab->nCol; iCol++){
69778 Column *pCol = &pTab->aCol[iCol];
69779 if( sqlite3StrICmp(pCol->zName, zCol)==0 ){
69780 if( iCol==pTab->iPKey ){
69781 iCol = -1;
69783 break;
69786 if( iCol>=pTab->nCol && sqlite3IsRowid(zCol) ){
69787 iCol = -1; /* IMP: R-44911-55124 */
69789 if( iCol<pTab->nCol ){
69790 cnt++;
69791 if( iCol<0 ){
69792 pExpr->affinity = SQLITE_AFF_INTEGER;
69793 }else if( pExpr->iTable==0 ){
69794 testcase( iCol==31 );
69795 testcase( iCol==32 );
69796 pParse->oldmask |= (iCol>=32 ? 0xffffffff : (((u32)1)<<iCol));
69797 }else{
69798 testcase( iCol==31 );
69799 testcase( iCol==32 );
69800 pParse->newmask |= (iCol>=32 ? 0xffffffff : (((u32)1)<<iCol));
69802 pExpr->iColumn = (i16)iCol;
69803 pExpr->pTab = pTab;
69804 isTrigger = 1;
69808 #endif /* !defined(SQLITE_OMIT_TRIGGER) */
69811 ** Perhaps the name is a reference to the ROWID
69813 if( cnt==0 && cntTab==1 && sqlite3IsRowid(zCol) ){
69814 cnt = 1;
69815 pExpr->iColumn = -1; /* IMP: R-44911-55124 */
69816 pExpr->affinity = SQLITE_AFF_INTEGER;
69820 ** If the input is of the form Z (not Y.Z or X.Y.Z) then the name Z
69821 ** might refer to an result-set alias. This happens, for example, when
69822 ** we are resolving names in the WHERE clause of the following command:
69824 ** SELECT a+b AS x FROM table WHERE x<10;
69826 ** In cases like this, replace pExpr with a copy of the expression that
69827 ** forms the result set entry ("a+b" in the example) and return immediately.
69828 ** Note that the expression in the result set should have already been
69829 ** resolved by the time the WHERE clause is resolved.
69831 if( cnt==0 && (pEList = pNC->pEList)!=0 && zTab==0 ){
69832 for(j=0; j<pEList->nExpr; j++){
69833 char *zAs = pEList->a[j].zName;
69834 if( zAs!=0 && sqlite3StrICmp(zAs, zCol)==0 ){
69835 Expr *pOrig;
69836 assert( pExpr->pLeft==0 && pExpr->pRight==0 );
69837 assert( pExpr->x.pList==0 );
69838 assert( pExpr->x.pSelect==0 );
69839 pOrig = pEList->a[j].pExpr;
69840 if( !pNC->allowAgg && ExprHasProperty(pOrig, EP_Agg) ){
69841 sqlite3ErrorMsg(pParse, "misuse of aliased aggregate %s", zAs);
69842 return WRC_Abort;
69844 resolveAlias(pParse, pEList, j, pExpr, "");
69845 cnt = 1;
69846 pMatch = 0;
69847 assert( zTab==0 && zDb==0 );
69848 goto lookupname_end;
69853 /* Advance to the next name context. The loop will exit when either
69854 ** we have a match (cnt>0) or when we run out of name contexts.
69856 if( cnt==0 ){
69857 pNC = pNC->pNext;
69862 ** If X and Y are NULL (in other words if only the column name Z is
69863 ** supplied) and the value of Z is enclosed in double-quotes, then
69864 ** Z is a string literal if it doesn't match any column names. In that
69865 ** case, we need to return right away and not make any changes to
69866 ** pExpr.
69868 ** Because no reference was made to outer contexts, the pNC->nRef
69869 ** fields are not changed in any context.
69871 if( cnt==0 && zTab==0 && ExprHasProperty(pExpr,EP_DblQuoted) ){
69872 pExpr->op = TK_STRING;
69873 pExpr->pTab = 0;
69874 return WRC_Prune;
69878 ** cnt==0 means there was not match. cnt>1 means there were two or
69879 ** more matches. Either way, we have an error.
69881 if( cnt!=1 ){
69882 const char *zErr;
69883 zErr = cnt==0 ? "no such column" : "ambiguous column name";
69884 if( zDb ){
69885 sqlite3ErrorMsg(pParse, "%s: %s.%s.%s", zErr, zDb, zTab, zCol);
69886 }else if( zTab ){
69887 sqlite3ErrorMsg(pParse, "%s: %s.%s", zErr, zTab, zCol);
69888 }else{
69889 sqlite3ErrorMsg(pParse, "%s: %s", zErr, zCol);
69891 pParse->checkSchema = 1;
69892 pTopNC->nErr++;
69895 /* If a column from a table in pSrcList is referenced, then record
69896 ** this fact in the pSrcList.a[].colUsed bitmask. Column 0 causes
69897 ** bit 0 to be set. Column 1 sets bit 1. And so forth. If the
69898 ** column number is greater than the number of bits in the bitmask
69899 ** then set the high-order bit of the bitmask.
69901 if( pExpr->iColumn>=0 && pMatch!=0 ){
69902 int n = pExpr->iColumn;
69903 testcase( n==BMS-1 );
69904 if( n>=BMS ){
69905 n = BMS-1;
69907 assert( pMatch->iCursor==pExpr->iTable );
69908 pMatch->colUsed |= ((Bitmask)1)<<n;
69911 /* Clean up and return
69913 sqlite3ExprDelete(db, pExpr->pLeft);
69914 pExpr->pLeft = 0;
69915 sqlite3ExprDelete(db, pExpr->pRight);
69916 pExpr->pRight = 0;
69917 pExpr->op = (isTrigger ? TK_TRIGGER : TK_COLUMN);
69918 lookupname_end:
69919 if( cnt==1 ){
69920 assert( pNC!=0 );
69921 sqlite3AuthRead(pParse, pExpr, pSchema, pNC->pSrcList);
69922 /* Increment the nRef value on all name contexts from TopNC up to
69923 ** the point where the name matched. */
69924 for(;;){
69925 assert( pTopNC!=0 );
69926 pTopNC->nRef++;
69927 if( pTopNC==pNC ) break;
69928 pTopNC = pTopNC->pNext;
69930 return WRC_Prune;
69931 } else {
69932 return WRC_Abort;
69937 ** Allocate and return a pointer to an expression to load the column iCol
69938 ** from datasource iSrc in SrcList pSrc.
69940 SQLITE_PRIVATE Expr *sqlite3CreateColumnExpr(sqlite3 *db, SrcList *pSrc, int iSrc, int iCol){
69941 Expr *p = sqlite3ExprAlloc(db, TK_COLUMN, 0, 0);
69942 if( p ){
69943 struct SrcList_item *pItem = &pSrc->a[iSrc];
69944 p->pTab = pItem->pTab;
69945 p->iTable = pItem->iCursor;
69946 if( p->pTab->iPKey==iCol ){
69947 p->iColumn = -1;
69948 }else{
69949 p->iColumn = (ynVar)iCol;
69950 testcase( iCol==BMS );
69951 testcase( iCol==BMS-1 );
69952 pItem->colUsed |= ((Bitmask)1)<<(iCol>=BMS ? BMS-1 : iCol);
69954 ExprSetProperty(p, EP_Resolved);
69956 return p;
69960 ** This routine is callback for sqlite3WalkExpr().
69962 ** Resolve symbolic names into TK_COLUMN operators for the current
69963 ** node in the expression tree. Return 0 to continue the search down
69964 ** the tree or 2 to abort the tree walk.
69966 ** This routine also does error checking and name resolution for
69967 ** function names. The operator for aggregate functions is changed
69968 ** to TK_AGG_FUNCTION.
69970 static int resolveExprStep(Walker *pWalker, Expr *pExpr){
69971 NameContext *pNC;
69972 Parse *pParse;
69974 pNC = pWalker->u.pNC;
69975 assert( pNC!=0 );
69976 pParse = pNC->pParse;
69977 assert( pParse==pWalker->pParse );
69979 if( ExprHasAnyProperty(pExpr, EP_Resolved) ) return WRC_Prune;
69980 ExprSetProperty(pExpr, EP_Resolved);
69981 #ifndef NDEBUG
69982 if( pNC->pSrcList && pNC->pSrcList->nAlloc>0 ){
69983 SrcList *pSrcList = pNC->pSrcList;
69984 int i;
69985 for(i=0; i<pNC->pSrcList->nSrc; i++){
69986 assert( pSrcList->a[i].iCursor>=0 && pSrcList->a[i].iCursor<pParse->nTab);
69989 #endif
69990 switch( pExpr->op ){
69992 #if defined(SQLITE_ENABLE_UPDATE_DELETE_LIMIT) && !defined(SQLITE_OMIT_SUBQUERY)
69993 /* The special operator TK_ROW means use the rowid for the first
69994 ** column in the FROM clause. This is used by the LIMIT and ORDER BY
69995 ** clause processing on UPDATE and DELETE statements.
69997 case TK_ROW: {
69998 SrcList *pSrcList = pNC->pSrcList;
69999 struct SrcList_item *pItem;
70000 assert( pSrcList && pSrcList->nSrc==1 );
70001 pItem = pSrcList->a;
70002 pExpr->op = TK_COLUMN;
70003 pExpr->pTab = pItem->pTab;
70004 pExpr->iTable = pItem->iCursor;
70005 pExpr->iColumn = -1;
70006 pExpr->affinity = SQLITE_AFF_INTEGER;
70007 break;
70009 #endif /* defined(SQLITE_ENABLE_UPDATE_DELETE_LIMIT) && !defined(SQLITE_OMIT_SUBQUERY) */
70011 /* A lone identifier is the name of a column.
70013 case TK_ID: {
70014 return lookupName(pParse, 0, 0, pExpr->u.zToken, pNC, pExpr);
70017 /* A table name and column name: ID.ID
70018 ** Or a database, table and column: ID.ID.ID
70020 case TK_DOT: {
70021 const char *zColumn;
70022 const char *zTable;
70023 const char *zDb;
70024 Expr *pRight;
70026 /* if( pSrcList==0 ) break; */
70027 pRight = pExpr->pRight;
70028 if( pRight->op==TK_ID ){
70029 zDb = 0;
70030 zTable = pExpr->pLeft->u.zToken;
70031 zColumn = pRight->u.zToken;
70032 }else{
70033 assert( pRight->op==TK_DOT );
70034 zDb = pExpr->pLeft->u.zToken;
70035 zTable = pRight->pLeft->u.zToken;
70036 zColumn = pRight->pRight->u.zToken;
70038 return lookupName(pParse, zDb, zTable, zColumn, pNC, pExpr);
70041 /* Resolve function names
70043 case TK_CONST_FUNC:
70044 case TK_FUNCTION: {
70045 ExprList *pList = pExpr->x.pList; /* The argument list */
70046 int n = pList ? pList->nExpr : 0; /* Number of arguments */
70047 int no_such_func = 0; /* True if no such function exists */
70048 int wrong_num_args = 0; /* True if wrong number of arguments */
70049 int is_agg = 0; /* True if is an aggregate function */
70050 int auth; /* Authorization to use the function */
70051 int nId; /* Number of characters in function name */
70052 const char *zId; /* The function name. */
70053 FuncDef *pDef; /* Information about the function */
70054 u8 enc = ENC(pParse->db); /* The database encoding */
70056 testcase( pExpr->op==TK_CONST_FUNC );
70057 assert( !ExprHasProperty(pExpr, EP_xIsSelect) );
70058 zId = pExpr->u.zToken;
70059 nId = sqlite3Strlen30(zId);
70060 pDef = sqlite3FindFunction(pParse->db, zId, nId, n, enc, 0);
70061 if( pDef==0 ){
70062 pDef = sqlite3FindFunction(pParse->db, zId, nId, -1, enc, 0);
70063 if( pDef==0 ){
70064 no_such_func = 1;
70065 }else{
70066 wrong_num_args = 1;
70068 }else{
70069 is_agg = pDef->xFunc==0;
70071 #ifndef SQLITE_OMIT_AUTHORIZATION
70072 if( pDef ){
70073 auth = sqlite3AuthCheck(pParse, SQLITE_FUNCTION, 0, pDef->zName, 0);
70074 if( auth!=SQLITE_OK ){
70075 if( auth==SQLITE_DENY ){
70076 sqlite3ErrorMsg(pParse, "not authorized to use function: %s",
70077 pDef->zName);
70078 pNC->nErr++;
70080 pExpr->op = TK_NULL;
70081 return WRC_Prune;
70084 #endif
70085 if( is_agg && !pNC->allowAgg ){
70086 sqlite3ErrorMsg(pParse, "misuse of aggregate function %.*s()", nId,zId);
70087 pNC->nErr++;
70088 is_agg = 0;
70089 }else if( no_such_func ){
70090 sqlite3ErrorMsg(pParse, "no such function: %.*s", nId, zId);
70091 pNC->nErr++;
70092 }else if( wrong_num_args ){
70093 sqlite3ErrorMsg(pParse,"wrong number of arguments to function %.*s()",
70094 nId, zId);
70095 pNC->nErr++;
70097 if( is_agg ){
70098 pExpr->op = TK_AGG_FUNCTION;
70099 pNC->hasAgg = 1;
70101 if( is_agg ) pNC->allowAgg = 0;
70102 sqlite3WalkExprList(pWalker, pList);
70103 if( is_agg ) pNC->allowAgg = 1;
70104 /* FIX ME: Compute pExpr->affinity based on the expected return
70105 ** type of the function
70107 return WRC_Prune;
70109 #ifndef SQLITE_OMIT_SUBQUERY
70110 case TK_SELECT:
70111 case TK_EXISTS: testcase( pExpr->op==TK_EXISTS );
70112 #endif
70113 case TK_IN: {
70114 testcase( pExpr->op==TK_IN );
70115 if( ExprHasProperty(pExpr, EP_xIsSelect) ){
70116 int nRef = pNC->nRef;
70117 #ifndef SQLITE_OMIT_CHECK
70118 if( pNC->isCheck ){
70119 sqlite3ErrorMsg(pParse,"subqueries prohibited in CHECK constraints");
70121 #endif
70122 sqlite3WalkSelect(pWalker, pExpr->x.pSelect);
70123 assert( pNC->nRef>=nRef );
70124 if( nRef!=pNC->nRef ){
70125 ExprSetProperty(pExpr, EP_VarSelect);
70128 break;
70130 #ifndef SQLITE_OMIT_CHECK
70131 case TK_VARIABLE: {
70132 if( pNC->isCheck ){
70133 sqlite3ErrorMsg(pParse,"parameters prohibited in CHECK constraints");
70135 break;
70137 #endif
70139 return (pParse->nErr || pParse->db->mallocFailed) ? WRC_Abort : WRC_Continue;
70143 ** pEList is a list of expressions which are really the result set of the
70144 ** a SELECT statement. pE is a term in an ORDER BY or GROUP BY clause.
70145 ** This routine checks to see if pE is a simple identifier which corresponds
70146 ** to the AS-name of one of the terms of the expression list. If it is,
70147 ** this routine return an integer between 1 and N where N is the number of
70148 ** elements in pEList, corresponding to the matching entry. If there is
70149 ** no match, or if pE is not a simple identifier, then this routine
70150 ** return 0.
70152 ** pEList has been resolved. pE has not.
70154 static int resolveAsName(
70155 Parse *pParse, /* Parsing context for error messages */
70156 ExprList *pEList, /* List of expressions to scan */
70157 Expr *pE /* Expression we are trying to match */
70159 int i; /* Loop counter */
70161 UNUSED_PARAMETER(pParse);
70163 if( pE->op==TK_ID ){
70164 char *zCol = pE->u.zToken;
70165 for(i=0; i<pEList->nExpr; i++){
70166 char *zAs = pEList->a[i].zName;
70167 if( zAs!=0 && sqlite3StrICmp(zAs, zCol)==0 ){
70168 return i+1;
70172 return 0;
70176 ** pE is a pointer to an expression which is a single term in the
70177 ** ORDER BY of a compound SELECT. The expression has not been
70178 ** name resolved.
70180 ** At the point this routine is called, we already know that the
70181 ** ORDER BY term is not an integer index into the result set. That
70182 ** case is handled by the calling routine.
70184 ** Attempt to match pE against result set columns in the left-most
70185 ** SELECT statement. Return the index i of the matching column,
70186 ** as an indication to the caller that it should sort by the i-th column.
70187 ** The left-most column is 1. In other words, the value returned is the
70188 ** same integer value that would be used in the SQL statement to indicate
70189 ** the column.
70191 ** If there is no match, return 0. Return -1 if an error occurs.
70193 static int resolveOrderByTermToExprList(
70194 Parse *pParse, /* Parsing context for error messages */
70195 Select *pSelect, /* The SELECT statement with the ORDER BY clause */
70196 Expr *pE /* The specific ORDER BY term */
70198 int i; /* Loop counter */
70199 ExprList *pEList; /* The columns of the result set */
70200 NameContext nc; /* Name context for resolving pE */
70201 sqlite3 *db; /* Database connection */
70202 int rc; /* Return code from subprocedures */
70203 u8 savedSuppErr; /* Saved value of db->suppressErr */
70205 assert( sqlite3ExprIsInteger(pE, &i)==0 );
70206 pEList = pSelect->pEList;
70208 /* Resolve all names in the ORDER BY term expression
70210 memset(&nc, 0, sizeof(nc));
70211 nc.pParse = pParse;
70212 nc.pSrcList = pSelect->pSrc;
70213 nc.pEList = pEList;
70214 nc.allowAgg = 1;
70215 nc.nErr = 0;
70216 db = pParse->db;
70217 savedSuppErr = db->suppressErr;
70218 db->suppressErr = 1;
70219 rc = sqlite3ResolveExprNames(&nc, pE);
70220 db->suppressErr = savedSuppErr;
70221 if( rc ) return 0;
70223 /* Try to match the ORDER BY expression against an expression
70224 ** in the result set. Return an 1-based index of the matching
70225 ** result-set entry.
70227 for(i=0; i<pEList->nExpr; i++){
70228 if( sqlite3ExprCompare(pEList->a[i].pExpr, pE)<2 ){
70229 return i+1;
70233 /* If no match, return 0. */
70234 return 0;
70238 ** Generate an ORDER BY or GROUP BY term out-of-range error.
70240 static void resolveOutOfRangeError(
70241 Parse *pParse, /* The error context into which to write the error */
70242 const char *zType, /* "ORDER" or "GROUP" */
70243 int i, /* The index (1-based) of the term out of range */
70244 int mx /* Largest permissible value of i */
70246 sqlite3ErrorMsg(pParse,
70247 "%r %s BY term out of range - should be "
70248 "between 1 and %d", i, zType, mx);
70252 ** Analyze the ORDER BY clause in a compound SELECT statement. Modify
70253 ** each term of the ORDER BY clause is a constant integer between 1
70254 ** and N where N is the number of columns in the compound SELECT.
70256 ** ORDER BY terms that are already an integer between 1 and N are
70257 ** unmodified. ORDER BY terms that are integers outside the range of
70258 ** 1 through N generate an error. ORDER BY terms that are expressions
70259 ** are matched against result set expressions of compound SELECT
70260 ** beginning with the left-most SELECT and working toward the right.
70261 ** At the first match, the ORDER BY expression is transformed into
70262 ** the integer column number.
70264 ** Return the number of errors seen.
70266 static int resolveCompoundOrderBy(
70267 Parse *pParse, /* Parsing context. Leave error messages here */
70268 Select *pSelect /* The SELECT statement containing the ORDER BY */
70270 int i;
70271 ExprList *pOrderBy;
70272 ExprList *pEList;
70273 sqlite3 *db;
70274 int moreToDo = 1;
70276 pOrderBy = pSelect->pOrderBy;
70277 if( pOrderBy==0 ) return 0;
70278 db = pParse->db;
70279 #if SQLITE_MAX_COLUMN
70280 if( pOrderBy->nExpr>db->aLimit[SQLITE_LIMIT_COLUMN] ){
70281 sqlite3ErrorMsg(pParse, "too many terms in ORDER BY clause");
70282 return 1;
70284 #endif
70285 for(i=0; i<pOrderBy->nExpr; i++){
70286 pOrderBy->a[i].done = 0;
70288 pSelect->pNext = 0;
70289 while( pSelect->pPrior ){
70290 pSelect->pPrior->pNext = pSelect;
70291 pSelect = pSelect->pPrior;
70293 while( pSelect && moreToDo ){
70294 struct ExprList_item *pItem;
70295 moreToDo = 0;
70296 pEList = pSelect->pEList;
70297 assert( pEList!=0 );
70298 for(i=0, pItem=pOrderBy->a; i<pOrderBy->nExpr; i++, pItem++){
70299 int iCol = -1;
70300 Expr *pE, *pDup;
70301 if( pItem->done ) continue;
70302 pE = pItem->pExpr;
70303 if( sqlite3ExprIsInteger(pE, &iCol) ){
70304 if( iCol<=0 || iCol>pEList->nExpr ){
70305 resolveOutOfRangeError(pParse, "ORDER", i+1, pEList->nExpr);
70306 return 1;
70308 }else{
70309 iCol = resolveAsName(pParse, pEList, pE);
70310 if( iCol==0 ){
70311 pDup = sqlite3ExprDup(db, pE, 0);
70312 if( !db->mallocFailed ){
70313 assert(pDup);
70314 iCol = resolveOrderByTermToExprList(pParse, pSelect, pDup);
70316 sqlite3ExprDelete(db, pDup);
70319 if( iCol>0 ){
70320 CollSeq *pColl = pE->pColl;
70321 int flags = pE->flags & EP_ExpCollate;
70322 sqlite3ExprDelete(db, pE);
70323 pItem->pExpr = pE = sqlite3Expr(db, TK_INTEGER, 0);
70324 if( pE==0 ) return 1;
70325 pE->pColl = pColl;
70326 pE->flags |= EP_IntValue | flags;
70327 pE->u.iValue = iCol;
70328 pItem->iCol = (u16)iCol;
70329 pItem->done = 1;
70330 }else{
70331 moreToDo = 1;
70334 pSelect = pSelect->pNext;
70336 for(i=0; i<pOrderBy->nExpr; i++){
70337 if( pOrderBy->a[i].done==0 ){
70338 sqlite3ErrorMsg(pParse, "%r ORDER BY term does not match any "
70339 "column in the result set", i+1);
70340 return 1;
70343 return 0;
70347 ** Check every term in the ORDER BY or GROUP BY clause pOrderBy of
70348 ** the SELECT statement pSelect. If any term is reference to a
70349 ** result set expression (as determined by the ExprList.a.iCol field)
70350 ** then convert that term into a copy of the corresponding result set
70351 ** column.
70353 ** If any errors are detected, add an error message to pParse and
70354 ** return non-zero. Return zero if no errors are seen.
70356 SQLITE_PRIVATE int sqlite3ResolveOrderGroupBy(
70357 Parse *pParse, /* Parsing context. Leave error messages here */
70358 Select *pSelect, /* The SELECT statement containing the clause */
70359 ExprList *pOrderBy, /* The ORDER BY or GROUP BY clause to be processed */
70360 const char *zType /* "ORDER" or "GROUP" */
70362 int i;
70363 sqlite3 *db = pParse->db;
70364 ExprList *pEList;
70365 struct ExprList_item *pItem;
70367 if( pOrderBy==0 || pParse->db->mallocFailed ) return 0;
70368 #if SQLITE_MAX_COLUMN
70369 if( pOrderBy->nExpr>db->aLimit[SQLITE_LIMIT_COLUMN] ){
70370 sqlite3ErrorMsg(pParse, "too many terms in %s BY clause", zType);
70371 return 1;
70373 #endif
70374 pEList = pSelect->pEList;
70375 assert( pEList!=0 ); /* sqlite3SelectNew() guarantees this */
70376 for(i=0, pItem=pOrderBy->a; i<pOrderBy->nExpr; i++, pItem++){
70377 if( pItem->iCol ){
70378 if( pItem->iCol>pEList->nExpr ){
70379 resolveOutOfRangeError(pParse, zType, i+1, pEList->nExpr);
70380 return 1;
70382 resolveAlias(pParse, pEList, pItem->iCol-1, pItem->pExpr, zType);
70385 return 0;
70389 ** pOrderBy is an ORDER BY or GROUP BY clause in SELECT statement pSelect.
70390 ** The Name context of the SELECT statement is pNC. zType is either
70391 ** "ORDER" or "GROUP" depending on which type of clause pOrderBy is.
70393 ** This routine resolves each term of the clause into an expression.
70394 ** If the order-by term is an integer I between 1 and N (where N is the
70395 ** number of columns in the result set of the SELECT) then the expression
70396 ** in the resolution is a copy of the I-th result-set expression. If
70397 ** the order-by term is an identify that corresponds to the AS-name of
70398 ** a result-set expression, then the term resolves to a copy of the
70399 ** result-set expression. Otherwise, the expression is resolved in
70400 ** the usual way - using sqlite3ResolveExprNames().
70402 ** This routine returns the number of errors. If errors occur, then
70403 ** an appropriate error message might be left in pParse. (OOM errors
70404 ** excepted.)
70406 static int resolveOrderGroupBy(
70407 NameContext *pNC, /* The name context of the SELECT statement */
70408 Select *pSelect, /* The SELECT statement holding pOrderBy */
70409 ExprList *pOrderBy, /* An ORDER BY or GROUP BY clause to resolve */
70410 const char *zType /* Either "ORDER" or "GROUP", as appropriate */
70412 int i; /* Loop counter */
70413 int iCol; /* Column number */
70414 struct ExprList_item *pItem; /* A term of the ORDER BY clause */
70415 Parse *pParse; /* Parsing context */
70416 int nResult; /* Number of terms in the result set */
70418 if( pOrderBy==0 ) return 0;
70419 nResult = pSelect->pEList->nExpr;
70420 pParse = pNC->pParse;
70421 for(i=0, pItem=pOrderBy->a; i<pOrderBy->nExpr; i++, pItem++){
70422 Expr *pE = pItem->pExpr;
70423 iCol = resolveAsName(pParse, pSelect->pEList, pE);
70424 if( iCol>0 ){
70425 /* If an AS-name match is found, mark this ORDER BY column as being
70426 ** a copy of the iCol-th result-set column. The subsequent call to
70427 ** sqlite3ResolveOrderGroupBy() will convert the expression to a
70428 ** copy of the iCol-th result-set expression. */
70429 pItem->iCol = (u16)iCol;
70430 continue;
70432 if( sqlite3ExprIsInteger(pE, &iCol) ){
70433 /* The ORDER BY term is an integer constant. Again, set the column
70434 ** number so that sqlite3ResolveOrderGroupBy() will convert the
70435 ** order-by term to a copy of the result-set expression */
70436 if( iCol<1 ){
70437 resolveOutOfRangeError(pParse, zType, i+1, nResult);
70438 return 1;
70440 pItem->iCol = (u16)iCol;
70441 continue;
70444 /* Otherwise, treat the ORDER BY term as an ordinary expression */
70445 pItem->iCol = 0;
70446 if( sqlite3ResolveExprNames(pNC, pE) ){
70447 return 1;
70450 return sqlite3ResolveOrderGroupBy(pParse, pSelect, pOrderBy, zType);
70454 ** Resolve names in the SELECT statement p and all of its descendents.
70456 static int resolveSelectStep(Walker *pWalker, Select *p){
70457 NameContext *pOuterNC; /* Context that contains this SELECT */
70458 NameContext sNC; /* Name context of this SELECT */
70459 int isCompound; /* True if p is a compound select */
70460 int nCompound; /* Number of compound terms processed so far */
70461 Parse *pParse; /* Parsing context */
70462 ExprList *pEList; /* Result set expression list */
70463 int i; /* Loop counter */
70464 ExprList *pGroupBy; /* The GROUP BY clause */
70465 Select *pLeftmost; /* Left-most of SELECT of a compound */
70466 sqlite3 *db; /* Database connection */
70469 assert( p!=0 );
70470 if( p->selFlags & SF_Resolved ){
70471 return WRC_Prune;
70473 pOuterNC = pWalker->u.pNC;
70474 pParse = pWalker->pParse;
70475 db = pParse->db;
70477 /* Normally sqlite3SelectExpand() will be called first and will have
70478 ** already expanded this SELECT. However, if this is a subquery within
70479 ** an expression, sqlite3ResolveExprNames() will be called without a
70480 ** prior call to sqlite3SelectExpand(). When that happens, let
70481 ** sqlite3SelectPrep() do all of the processing for this SELECT.
70482 ** sqlite3SelectPrep() will invoke both sqlite3SelectExpand() and
70483 ** this routine in the correct order.
70485 if( (p->selFlags & SF_Expanded)==0 ){
70486 sqlite3SelectPrep(pParse, p, pOuterNC);
70487 return (pParse->nErr || db->mallocFailed) ? WRC_Abort : WRC_Prune;
70490 isCompound = p->pPrior!=0;
70491 nCompound = 0;
70492 pLeftmost = p;
70493 while( p ){
70494 assert( (p->selFlags & SF_Expanded)!=0 );
70495 assert( (p->selFlags & SF_Resolved)==0 );
70496 p->selFlags |= SF_Resolved;
70498 /* Resolve the expressions in the LIMIT and OFFSET clauses. These
70499 ** are not allowed to refer to any names, so pass an empty NameContext.
70501 memset(&sNC, 0, sizeof(sNC));
70502 sNC.pParse = pParse;
70503 if( sqlite3ResolveExprNames(&sNC, p->pLimit) ||
70504 sqlite3ResolveExprNames(&sNC, p->pOffset) ){
70505 return WRC_Abort;
70508 /* Set up the local name-context to pass to sqlite3ResolveExprNames() to
70509 ** resolve the result-set expression list.
70511 sNC.allowAgg = 1;
70512 sNC.pSrcList = p->pSrc;
70513 sNC.pNext = pOuterNC;
70515 /* Resolve names in the result set. */
70516 pEList = p->pEList;
70517 assert( pEList!=0 );
70518 for(i=0; i<pEList->nExpr; i++){
70519 Expr *pX = pEList->a[i].pExpr;
70520 if( sqlite3ResolveExprNames(&sNC, pX) ){
70521 return WRC_Abort;
70525 /* Recursively resolve names in all subqueries
70527 for(i=0; i<p->pSrc->nSrc; i++){
70528 struct SrcList_item *pItem = &p->pSrc->a[i];
70529 if( pItem->pSelect ){
70530 const char *zSavedContext = pParse->zAuthContext;
70531 if( pItem->zName ) pParse->zAuthContext = pItem->zName;
70532 sqlite3ResolveSelectNames(pParse, pItem->pSelect, pOuterNC);
70533 pParse->zAuthContext = zSavedContext;
70534 if( pParse->nErr || db->mallocFailed ) return WRC_Abort;
70538 /* If there are no aggregate functions in the result-set, and no GROUP BY
70539 ** expression, do not allow aggregates in any of the other expressions.
70541 assert( (p->selFlags & SF_Aggregate)==0 );
70542 pGroupBy = p->pGroupBy;
70543 if( pGroupBy || sNC.hasAgg ){
70544 p->selFlags |= SF_Aggregate;
70545 }else{
70546 sNC.allowAgg = 0;
70549 /* If a HAVING clause is present, then there must be a GROUP BY clause.
70551 if( p->pHaving && !pGroupBy ){
70552 sqlite3ErrorMsg(pParse, "a GROUP BY clause is required before HAVING");
70553 return WRC_Abort;
70556 /* Add the expression list to the name-context before parsing the
70557 ** other expressions in the SELECT statement. This is so that
70558 ** expressions in the WHERE clause (etc.) can refer to expressions by
70559 ** aliases in the result set.
70561 ** Minor point: If this is the case, then the expression will be
70562 ** re-evaluated for each reference to it.
70564 sNC.pEList = p->pEList;
70565 if( sqlite3ResolveExprNames(&sNC, p->pWhere) ||
70566 sqlite3ResolveExprNames(&sNC, p->pHaving)
70568 return WRC_Abort;
70571 /* The ORDER BY and GROUP BY clauses may not refer to terms in
70572 ** outer queries
70574 sNC.pNext = 0;
70575 sNC.allowAgg = 1;
70577 /* Process the ORDER BY clause for singleton SELECT statements.
70578 ** The ORDER BY clause for compounds SELECT statements is handled
70579 ** below, after all of the result-sets for all of the elements of
70580 ** the compound have been resolved.
70582 if( !isCompound && resolveOrderGroupBy(&sNC, p, p->pOrderBy, "ORDER") ){
70583 return WRC_Abort;
70585 if( db->mallocFailed ){
70586 return WRC_Abort;
70589 /* Resolve the GROUP BY clause. At the same time, make sure
70590 ** the GROUP BY clause does not contain aggregate functions.
70592 if( pGroupBy ){
70593 struct ExprList_item *pItem;
70595 if( resolveOrderGroupBy(&sNC, p, pGroupBy, "GROUP") || db->mallocFailed ){
70596 return WRC_Abort;
70598 for(i=0, pItem=pGroupBy->a; i<pGroupBy->nExpr; i++, pItem++){
70599 if( ExprHasProperty(pItem->pExpr, EP_Agg) ){
70600 sqlite3ErrorMsg(pParse, "aggregate functions are not allowed in "
70601 "the GROUP BY clause");
70602 return WRC_Abort;
70607 /* Advance to the next term of the compound
70609 p = p->pPrior;
70610 nCompound++;
70613 /* Resolve the ORDER BY on a compound SELECT after all terms of
70614 ** the compound have been resolved.
70616 if( isCompound && resolveCompoundOrderBy(pParse, pLeftmost) ){
70617 return WRC_Abort;
70620 return WRC_Prune;
70624 ** This routine walks an expression tree and resolves references to
70625 ** table columns and result-set columns. At the same time, do error
70626 ** checking on function usage and set a flag if any aggregate functions
70627 ** are seen.
70629 ** To resolve table columns references we look for nodes (or subtrees) of the
70630 ** form X.Y.Z or Y.Z or just Z where
70632 ** X: The name of a database. Ex: "main" or "temp" or
70633 ** the symbolic name assigned to an ATTACH-ed database.
70635 ** Y: The name of a table in a FROM clause. Or in a trigger
70636 ** one of the special names "old" or "new".
70638 ** Z: The name of a column in table Y.
70640 ** The node at the root of the subtree is modified as follows:
70642 ** Expr.op Changed to TK_COLUMN
70643 ** Expr.pTab Points to the Table object for X.Y
70644 ** Expr.iColumn The column index in X.Y. -1 for the rowid.
70645 ** Expr.iTable The VDBE cursor number for X.Y
70648 ** To resolve result-set references, look for expression nodes of the
70649 ** form Z (with no X and Y prefix) where the Z matches the right-hand
70650 ** size of an AS clause in the result-set of a SELECT. The Z expression
70651 ** is replaced by a copy of the left-hand side of the result-set expression.
70652 ** Table-name and function resolution occurs on the substituted expression
70653 ** tree. For example, in:
70655 ** SELECT a+b AS x, c+d AS y FROM t1 ORDER BY x;
70657 ** The "x" term of the order by is replaced by "a+b" to render:
70659 ** SELECT a+b AS x, c+d AS y FROM t1 ORDER BY a+b;
70661 ** Function calls are checked to make sure that the function is
70662 ** defined and that the correct number of arguments are specified.
70663 ** If the function is an aggregate function, then the pNC->hasAgg is
70664 ** set and the opcode is changed from TK_FUNCTION to TK_AGG_FUNCTION.
70665 ** If an expression contains aggregate functions then the EP_Agg
70666 ** property on the expression is set.
70668 ** An error message is left in pParse if anything is amiss. The number
70669 ** if errors is returned.
70671 SQLITE_PRIVATE int sqlite3ResolveExprNames(
70672 NameContext *pNC, /* Namespace to resolve expressions in. */
70673 Expr *pExpr /* The expression to be analyzed. */
70675 int savedHasAgg;
70676 Walker w;
70678 if( pExpr==0 ) return 0;
70679 #if SQLITE_MAX_EXPR_DEPTH>0
70681 Parse *pParse = pNC->pParse;
70682 if( sqlite3ExprCheckHeight(pParse, pExpr->nHeight+pNC->pParse->nHeight) ){
70683 return 1;
70685 pParse->nHeight += pExpr->nHeight;
70687 #endif
70688 savedHasAgg = pNC->hasAgg;
70689 pNC->hasAgg = 0;
70690 w.xExprCallback = resolveExprStep;
70691 w.xSelectCallback = resolveSelectStep;
70692 w.pParse = pNC->pParse;
70693 w.u.pNC = pNC;
70694 sqlite3WalkExpr(&w, pExpr);
70695 #if SQLITE_MAX_EXPR_DEPTH>0
70696 pNC->pParse->nHeight -= pExpr->nHeight;
70697 #endif
70698 if( pNC->nErr>0 || w.pParse->nErr>0 ){
70699 ExprSetProperty(pExpr, EP_Error);
70701 if( pNC->hasAgg ){
70702 ExprSetProperty(pExpr, EP_Agg);
70703 }else if( savedHasAgg ){
70704 pNC->hasAgg = 1;
70706 return ExprHasProperty(pExpr, EP_Error);
70711 ** Resolve all names in all expressions of a SELECT and in all
70712 ** decendents of the SELECT, including compounds off of p->pPrior,
70713 ** subqueries in expressions, and subqueries used as FROM clause
70714 ** terms.
70716 ** See sqlite3ResolveExprNames() for a description of the kinds of
70717 ** transformations that occur.
70719 ** All SELECT statements should have been expanded using
70720 ** sqlite3SelectExpand() prior to invoking this routine.
70722 SQLITE_PRIVATE void sqlite3ResolveSelectNames(
70723 Parse *pParse, /* The parser context */
70724 Select *p, /* The SELECT statement being coded. */
70725 NameContext *pOuterNC /* Name context for parent SELECT statement */
70727 Walker w;
70729 assert( p!=0 );
70730 w.xExprCallback = resolveExprStep;
70731 w.xSelectCallback = resolveSelectStep;
70732 w.pParse = pParse;
70733 w.u.pNC = pOuterNC;
70734 sqlite3WalkSelect(&w, p);
70737 /************** End of resolve.c *********************************************/
70738 /************** Begin file expr.c ********************************************/
70740 ** 2001 September 15
70742 ** The author disclaims copyright to this source code. In place of
70743 ** a legal notice, here is a blessing:
70745 ** May you do good and not evil.
70746 ** May you find forgiveness for yourself and forgive others.
70747 ** May you share freely, never taking more than you give.
70749 *************************************************************************
70750 ** This file contains routines used for analyzing expressions and
70751 ** for generating VDBE code that evaluates expressions in SQLite.
70755 ** Return the 'affinity' of the expression pExpr if any.
70757 ** If pExpr is a column, a reference to a column via an 'AS' alias,
70758 ** or a sub-select with a column as the return value, then the
70759 ** affinity of that column is returned. Otherwise, 0x00 is returned,
70760 ** indicating no affinity for the expression.
70762 ** i.e. the WHERE clause expresssions in the following statements all
70763 ** have an affinity:
70765 ** CREATE TABLE t1(a);
70766 ** SELECT * FROM t1 WHERE a;
70767 ** SELECT a AS b FROM t1 WHERE b;
70768 ** SELECT * FROM t1 WHERE (select a from t1);
70770 SQLITE_PRIVATE char sqlite3ExprAffinity(Expr *pExpr){
70771 int op = pExpr->op;
70772 if( op==TK_SELECT ){
70773 assert( pExpr->flags&EP_xIsSelect );
70774 return sqlite3ExprAffinity(pExpr->x.pSelect->pEList->a[0].pExpr);
70776 #ifndef SQLITE_OMIT_CAST
70777 if( op==TK_CAST ){
70778 assert( !ExprHasProperty(pExpr, EP_IntValue) );
70779 return sqlite3AffinityType(pExpr->u.zToken);
70781 #endif
70782 if( (op==TK_AGG_COLUMN || op==TK_COLUMN || op==TK_REGISTER)
70783 && pExpr->pTab!=0
70785 /* op==TK_REGISTER && pExpr->pTab!=0 happens when pExpr was originally
70786 ** a TK_COLUMN but was previously evaluated and cached in a register */
70787 int j = pExpr->iColumn;
70788 if( j<0 ) return SQLITE_AFF_INTEGER;
70789 assert( pExpr->pTab && j<pExpr->pTab->nCol );
70790 return pExpr->pTab->aCol[j].affinity;
70792 return pExpr->affinity;
70796 ** Set the explicit collating sequence for an expression to the
70797 ** collating sequence supplied in the second argument.
70799 SQLITE_PRIVATE Expr *sqlite3ExprSetColl(Expr *pExpr, CollSeq *pColl){
70800 if( pExpr && pColl ){
70801 pExpr->pColl = pColl;
70802 pExpr->flags |= EP_ExpCollate;
70804 return pExpr;
70808 ** Set the collating sequence for expression pExpr to be the collating
70809 ** sequence named by pToken. Return a pointer to the revised expression.
70810 ** The collating sequence is marked as "explicit" using the EP_ExpCollate
70811 ** flag. An explicit collating sequence will override implicit
70812 ** collating sequences.
70814 SQLITE_PRIVATE Expr *sqlite3ExprSetCollByToken(Parse *pParse, Expr *pExpr, Token *pCollName){
70815 char *zColl = 0; /* Dequoted name of collation sequence */
70816 CollSeq *pColl;
70817 sqlite3 *db = pParse->db;
70818 zColl = sqlite3NameFromToken(db, pCollName);
70819 pColl = sqlite3LocateCollSeq(pParse, zColl);
70820 sqlite3ExprSetColl(pExpr, pColl);
70821 sqlite3DbFree(db, zColl);
70822 return pExpr;
70826 ** Return the default collation sequence for the expression pExpr. If
70827 ** there is no default collation type, return 0.
70829 SQLITE_PRIVATE CollSeq *sqlite3ExprCollSeq(Parse *pParse, Expr *pExpr){
70830 CollSeq *pColl = 0;
70831 Expr *p = pExpr;
70832 while( p ){
70833 int op;
70834 pColl = p->pColl;
70835 if( pColl ) break;
70836 op = p->op;
70837 if( p->pTab!=0 && (
70838 op==TK_AGG_COLUMN || op==TK_COLUMN || op==TK_REGISTER || op==TK_TRIGGER
70840 /* op==TK_REGISTER && p->pTab!=0 happens when pExpr was originally
70841 ** a TK_COLUMN but was previously evaluated and cached in a register */
70842 const char *zColl;
70843 int j = p->iColumn;
70844 if( j>=0 ){
70845 sqlite3 *db = pParse->db;
70846 zColl = p->pTab->aCol[j].zColl;
70847 pColl = sqlite3FindCollSeq(db, ENC(db), zColl, 0);
70848 pExpr->pColl = pColl;
70850 break;
70852 if( op!=TK_CAST && op!=TK_UPLUS ){
70853 break;
70855 p = p->pLeft;
70857 if( sqlite3CheckCollSeq(pParse, pColl) ){
70858 pColl = 0;
70860 return pColl;
70864 ** pExpr is an operand of a comparison operator. aff2 is the
70865 ** type affinity of the other operand. This routine returns the
70866 ** type affinity that should be used for the comparison operator.
70868 SQLITE_PRIVATE char sqlite3CompareAffinity(Expr *pExpr, char aff2){
70869 char aff1 = sqlite3ExprAffinity(pExpr);
70870 if( aff1 && aff2 ){
70871 /* Both sides of the comparison are columns. If one has numeric
70872 ** affinity, use that. Otherwise use no affinity.
70874 if( sqlite3IsNumericAffinity(aff1) || sqlite3IsNumericAffinity(aff2) ){
70875 return SQLITE_AFF_NUMERIC;
70876 }else{
70877 return SQLITE_AFF_NONE;
70879 }else if( !aff1 && !aff2 ){
70880 /* Neither side of the comparison is a column. Compare the
70881 ** results directly.
70883 return SQLITE_AFF_NONE;
70884 }else{
70885 /* One side is a column, the other is not. Use the columns affinity. */
70886 assert( aff1==0 || aff2==0 );
70887 return (aff1 + aff2);
70892 ** pExpr is a comparison operator. Return the type affinity that should
70893 ** be applied to both operands prior to doing the comparison.
70895 static char comparisonAffinity(Expr *pExpr){
70896 char aff;
70897 assert( pExpr->op==TK_EQ || pExpr->op==TK_IN || pExpr->op==TK_LT ||
70898 pExpr->op==TK_GT || pExpr->op==TK_GE || pExpr->op==TK_LE ||
70899 pExpr->op==TK_NE || pExpr->op==TK_IS || pExpr->op==TK_ISNOT );
70900 assert( pExpr->pLeft );
70901 aff = sqlite3ExprAffinity(pExpr->pLeft);
70902 if( pExpr->pRight ){
70903 aff = sqlite3CompareAffinity(pExpr->pRight, aff);
70904 }else if( ExprHasProperty(pExpr, EP_xIsSelect) ){
70905 aff = sqlite3CompareAffinity(pExpr->x.pSelect->pEList->a[0].pExpr, aff);
70906 }else if( !aff ){
70907 aff = SQLITE_AFF_NONE;
70909 return aff;
70913 ** pExpr is a comparison expression, eg. '=', '<', IN(...) etc.
70914 ** idx_affinity is the affinity of an indexed column. Return true
70915 ** if the index with affinity idx_affinity may be used to implement
70916 ** the comparison in pExpr.
70918 SQLITE_PRIVATE int sqlite3IndexAffinityOk(Expr *pExpr, char idx_affinity){
70919 char aff = comparisonAffinity(pExpr);
70920 switch( aff ){
70921 case SQLITE_AFF_NONE:
70922 return 1;
70923 case SQLITE_AFF_TEXT:
70924 return idx_affinity==SQLITE_AFF_TEXT;
70925 default:
70926 return sqlite3IsNumericAffinity(idx_affinity);
70931 ** Return the P5 value that should be used for a binary comparison
70932 ** opcode (OP_Eq, OP_Ge etc.) used to compare pExpr1 and pExpr2.
70934 static u8 binaryCompareP5(Expr *pExpr1, Expr *pExpr2, int jumpIfNull){
70935 u8 aff = (char)sqlite3ExprAffinity(pExpr2);
70936 aff = (u8)sqlite3CompareAffinity(pExpr1, aff) | (u8)jumpIfNull;
70937 return aff;
70941 ** Return a pointer to the collation sequence that should be used by
70942 ** a binary comparison operator comparing pLeft and pRight.
70944 ** If the left hand expression has a collating sequence type, then it is
70945 ** used. Otherwise the collation sequence for the right hand expression
70946 ** is used, or the default (BINARY) if neither expression has a collating
70947 ** type.
70949 ** Argument pRight (but not pLeft) may be a null pointer. In this case,
70950 ** it is not considered.
70952 SQLITE_PRIVATE CollSeq *sqlite3BinaryCompareCollSeq(
70953 Parse *pParse,
70954 Expr *pLeft,
70955 Expr *pRight
70957 CollSeq *pColl;
70958 assert( pLeft );
70959 if( pLeft->flags & EP_ExpCollate ){
70960 assert( pLeft->pColl );
70961 pColl = pLeft->pColl;
70962 }else if( pRight && pRight->flags & EP_ExpCollate ){
70963 assert( pRight->pColl );
70964 pColl = pRight->pColl;
70965 }else{
70966 pColl = sqlite3ExprCollSeq(pParse, pLeft);
70967 if( !pColl ){
70968 pColl = sqlite3ExprCollSeq(pParse, pRight);
70971 return pColl;
70975 ** Generate code for a comparison operator.
70977 static int codeCompare(
70978 Parse *pParse, /* The parsing (and code generating) context */
70979 Expr *pLeft, /* The left operand */
70980 Expr *pRight, /* The right operand */
70981 int opcode, /* The comparison opcode */
70982 int in1, int in2, /* Register holding operands */
70983 int dest, /* Jump here if true. */
70984 int jumpIfNull /* If true, jump if either operand is NULL */
70986 int p5;
70987 int addr;
70988 CollSeq *p4;
70990 p4 = sqlite3BinaryCompareCollSeq(pParse, pLeft, pRight);
70991 p5 = binaryCompareP5(pLeft, pRight, jumpIfNull);
70992 addr = sqlite3VdbeAddOp4(pParse->pVdbe, opcode, in2, dest, in1,
70993 (void*)p4, P4_COLLSEQ);
70994 sqlite3VdbeChangeP5(pParse->pVdbe, (u8)p5);
70995 return addr;
70998 #if SQLITE_MAX_EXPR_DEPTH>0
71000 ** Check that argument nHeight is less than or equal to the maximum
71001 ** expression depth allowed. If it is not, leave an error message in
71002 ** pParse.
71004 SQLITE_PRIVATE int sqlite3ExprCheckHeight(Parse *pParse, int nHeight){
71005 int rc = SQLITE_OK;
71006 int mxHeight = pParse->db->aLimit[SQLITE_LIMIT_EXPR_DEPTH];
71007 if( nHeight>mxHeight ){
71008 sqlite3ErrorMsg(pParse,
71009 "Expression tree is too large (maximum depth %d)", mxHeight
71011 rc = SQLITE_ERROR;
71013 return rc;
71016 /* The following three functions, heightOfExpr(), heightOfExprList()
71017 ** and heightOfSelect(), are used to determine the maximum height
71018 ** of any expression tree referenced by the structure passed as the
71019 ** first argument.
71021 ** If this maximum height is greater than the current value pointed
71022 ** to by pnHeight, the second parameter, then set *pnHeight to that
71023 ** value.
71025 static void heightOfExpr(Expr *p, int *pnHeight){
71026 if( p ){
71027 if( p->nHeight>*pnHeight ){
71028 *pnHeight = p->nHeight;
71032 static void heightOfExprList(ExprList *p, int *pnHeight){
71033 if( p ){
71034 int i;
71035 for(i=0; i<p->nExpr; i++){
71036 heightOfExpr(p->a[i].pExpr, pnHeight);
71040 static void heightOfSelect(Select *p, int *pnHeight){
71041 if( p ){
71042 heightOfExpr(p->pWhere, pnHeight);
71043 heightOfExpr(p->pHaving, pnHeight);
71044 heightOfExpr(p->pLimit, pnHeight);
71045 heightOfExpr(p->pOffset, pnHeight);
71046 heightOfExprList(p->pEList, pnHeight);
71047 heightOfExprList(p->pGroupBy, pnHeight);
71048 heightOfExprList(p->pOrderBy, pnHeight);
71049 heightOfSelect(p->pPrior, pnHeight);
71054 ** Set the Expr.nHeight variable in the structure passed as an
71055 ** argument. An expression with no children, Expr.pList or
71056 ** Expr.pSelect member has a height of 1. Any other expression
71057 ** has a height equal to the maximum height of any other
71058 ** referenced Expr plus one.
71060 static void exprSetHeight(Expr *p){
71061 int nHeight = 0;
71062 heightOfExpr(p->pLeft, &nHeight);
71063 heightOfExpr(p->pRight, &nHeight);
71064 if( ExprHasProperty(p, EP_xIsSelect) ){
71065 heightOfSelect(p->x.pSelect, &nHeight);
71066 }else{
71067 heightOfExprList(p->x.pList, &nHeight);
71069 p->nHeight = nHeight + 1;
71073 ** Set the Expr.nHeight variable using the exprSetHeight() function. If
71074 ** the height is greater than the maximum allowed expression depth,
71075 ** leave an error in pParse.
71077 SQLITE_PRIVATE void sqlite3ExprSetHeight(Parse *pParse, Expr *p){
71078 exprSetHeight(p);
71079 sqlite3ExprCheckHeight(pParse, p->nHeight);
71083 ** Return the maximum height of any expression tree referenced
71084 ** by the select statement passed as an argument.
71086 SQLITE_PRIVATE int sqlite3SelectExprHeight(Select *p){
71087 int nHeight = 0;
71088 heightOfSelect(p, &nHeight);
71089 return nHeight;
71091 #else
71092 #define exprSetHeight(y)
71093 #endif /* SQLITE_MAX_EXPR_DEPTH>0 */
71096 ** This routine is the core allocator for Expr nodes.
71098 ** Construct a new expression node and return a pointer to it. Memory
71099 ** for this node and for the pToken argument is a single allocation
71100 ** obtained from sqlite3DbMalloc(). The calling function
71101 ** is responsible for making sure the node eventually gets freed.
71103 ** If dequote is true, then the token (if it exists) is dequoted.
71104 ** If dequote is false, no dequoting is performance. The deQuote
71105 ** parameter is ignored if pToken is NULL or if the token does not
71106 ** appear to be quoted. If the quotes were of the form "..." (double-quotes)
71107 ** then the EP_DblQuoted flag is set on the expression node.
71109 ** Special case: If op==TK_INTEGER and pToken points to a string that
71110 ** can be translated into a 32-bit integer, then the token is not
71111 ** stored in u.zToken. Instead, the integer values is written
71112 ** into u.iValue and the EP_IntValue flag is set. No extra storage
71113 ** is allocated to hold the integer text and the dequote flag is ignored.
71115 SQLITE_PRIVATE Expr *sqlite3ExprAlloc(
71116 sqlite3 *db, /* Handle for sqlite3DbMallocZero() (may be null) */
71117 int op, /* Expression opcode */
71118 const Token *pToken, /* Token argument. Might be NULL */
71119 int dequote /* True to dequote */
71121 Expr *pNew;
71122 int nExtra = 0;
71123 int iValue = 0;
71125 if( pToken ){
71126 if( op!=TK_INTEGER || pToken->z==0
71127 || sqlite3GetInt32(pToken->z, &iValue)==0 ){
71128 nExtra = pToken->n+1;
71129 assert( iValue>=0 );
71132 pNew = sqlite3DbMallocZero(db, sizeof(Expr)+nExtra);
71133 if( pNew ){
71134 pNew->op = (u8)op;
71135 pNew->iAgg = -1;
71136 if( pToken ){
71137 if( nExtra==0 ){
71138 pNew->flags |= EP_IntValue;
71139 pNew->u.iValue = iValue;
71140 }else{
71141 int c;
71142 pNew->u.zToken = (char*)&pNew[1];
71143 memcpy(pNew->u.zToken, pToken->z, pToken->n);
71144 pNew->u.zToken[pToken->n] = 0;
71145 if( dequote && nExtra>=3
71146 && ((c = pToken->z[0])=='\'' || c=='"' || c=='[' || c=='`') ){
71147 sqlite3Dequote(pNew->u.zToken);
71148 if( c=='"' ) pNew->flags |= EP_DblQuoted;
71152 #if SQLITE_MAX_EXPR_DEPTH>0
71153 pNew->nHeight = 1;
71154 #endif
71156 return pNew;
71160 ** Allocate a new expression node from a zero-terminated token that has
71161 ** already been dequoted.
71163 SQLITE_PRIVATE Expr *sqlite3Expr(
71164 sqlite3 *db, /* Handle for sqlite3DbMallocZero() (may be null) */
71165 int op, /* Expression opcode */
71166 const char *zToken /* Token argument. Might be NULL */
71168 Token x;
71169 x.z = zToken;
71170 x.n = zToken ? sqlite3Strlen30(zToken) : 0;
71171 return sqlite3ExprAlloc(db, op, &x, 0);
71175 ** Attach subtrees pLeft and pRight to the Expr node pRoot.
71177 ** If pRoot==NULL that means that a memory allocation error has occurred.
71178 ** In that case, delete the subtrees pLeft and pRight.
71180 SQLITE_PRIVATE void sqlite3ExprAttachSubtrees(
71181 sqlite3 *db,
71182 Expr *pRoot,
71183 Expr *pLeft,
71184 Expr *pRight
71186 if( pRoot==0 ){
71187 assert( db->mallocFailed );
71188 sqlite3ExprDelete(db, pLeft);
71189 sqlite3ExprDelete(db, pRight);
71190 }else{
71191 if( pRight ){
71192 pRoot->pRight = pRight;
71193 if( pRight->flags & EP_ExpCollate ){
71194 pRoot->flags |= EP_ExpCollate;
71195 pRoot->pColl = pRight->pColl;
71198 if( pLeft ){
71199 pRoot->pLeft = pLeft;
71200 if( pLeft->flags & EP_ExpCollate ){
71201 pRoot->flags |= EP_ExpCollate;
71202 pRoot->pColl = pLeft->pColl;
71205 exprSetHeight(pRoot);
71210 ** Allocate a Expr node which joins as many as two subtrees.
71212 ** One or both of the subtrees can be NULL. Return a pointer to the new
71213 ** Expr node. Or, if an OOM error occurs, set pParse->db->mallocFailed,
71214 ** free the subtrees and return NULL.
71216 SQLITE_PRIVATE Expr *sqlite3PExpr(
71217 Parse *pParse, /* Parsing context */
71218 int op, /* Expression opcode */
71219 Expr *pLeft, /* Left operand */
71220 Expr *pRight, /* Right operand */
71221 const Token *pToken /* Argument token */
71223 Expr *p = sqlite3ExprAlloc(pParse->db, op, pToken, 1);
71224 sqlite3ExprAttachSubtrees(pParse->db, p, pLeft, pRight);
71225 if( p ) {
71226 sqlite3ExprCheckHeight(pParse, p->nHeight);
71228 return p;
71232 ** Join two expressions using an AND operator. If either expression is
71233 ** NULL, then just return the other expression.
71235 SQLITE_PRIVATE Expr *sqlite3ExprAnd(sqlite3 *db, Expr *pLeft, Expr *pRight){
71236 if( pLeft==0 ){
71237 return pRight;
71238 }else if( pRight==0 ){
71239 return pLeft;
71240 }else{
71241 Expr *pNew = sqlite3ExprAlloc(db, TK_AND, 0, 0);
71242 sqlite3ExprAttachSubtrees(db, pNew, pLeft, pRight);
71243 return pNew;
71248 ** Construct a new expression node for a function with multiple
71249 ** arguments.
71251 SQLITE_PRIVATE Expr *sqlite3ExprFunction(Parse *pParse, ExprList *pList, Token *pToken){
71252 Expr *pNew;
71253 sqlite3 *db = pParse->db;
71254 assert( pToken );
71255 pNew = sqlite3ExprAlloc(db, TK_FUNCTION, pToken, 1);
71256 if( pNew==0 ){
71257 sqlite3ExprListDelete(db, pList); /* Avoid memory leak when malloc fails */
71258 return 0;
71260 pNew->x.pList = pList;
71261 assert( !ExprHasProperty(pNew, EP_xIsSelect) );
71262 sqlite3ExprSetHeight(pParse, pNew);
71263 return pNew;
71267 ** Assign a variable number to an expression that encodes a wildcard
71268 ** in the original SQL statement.
71270 ** Wildcards consisting of a single "?" are assigned the next sequential
71271 ** variable number.
71273 ** Wildcards of the form "?nnn" are assigned the number "nnn". We make
71274 ** sure "nnn" is not too be to avoid a denial of service attack when
71275 ** the SQL statement comes from an external source.
71277 ** Wildcards of the form ":aaa", "@aaa", or "$aaa" are assigned the same number
71278 ** as the previous instance of the same wildcard. Or if this is the first
71279 ** instance of the wildcard, the next sequenial variable number is
71280 ** assigned.
71282 SQLITE_PRIVATE void sqlite3ExprAssignVarNumber(Parse *pParse, Expr *pExpr){
71283 sqlite3 *db = pParse->db;
71284 const char *z;
71286 if( pExpr==0 ) return;
71287 assert( !ExprHasAnyProperty(pExpr, EP_IntValue|EP_Reduced|EP_TokenOnly) );
71288 z = pExpr->u.zToken;
71289 assert( z!=0 );
71290 assert( z[0]!=0 );
71291 if( z[1]==0 ){
71292 /* Wildcard of the form "?". Assign the next variable number */
71293 assert( z[0]=='?' );
71294 pExpr->iColumn = (ynVar)(++pParse->nVar);
71295 }else if( z[0]=='?' ){
71296 /* Wildcard of the form "?nnn". Convert "nnn" to an integer and
71297 ** use it as the variable number */
71298 i64 i;
71299 int bOk = 0==sqlite3Atoi64(&z[1], &i, sqlite3Strlen30(&z[1]), SQLITE_UTF8);
71300 pExpr->iColumn = (ynVar)i;
71301 testcase( i==0 );
71302 testcase( i==1 );
71303 testcase( i==db->aLimit[SQLITE_LIMIT_VARIABLE_NUMBER]-1 );
71304 testcase( i==db->aLimit[SQLITE_LIMIT_VARIABLE_NUMBER] );
71305 if( bOk==0 || i<1 || i>db->aLimit[SQLITE_LIMIT_VARIABLE_NUMBER] ){
71306 sqlite3ErrorMsg(pParse, "variable number must be between ?1 and ?%d",
71307 db->aLimit[SQLITE_LIMIT_VARIABLE_NUMBER]);
71309 if( i>pParse->nVar ){
71310 pParse->nVar = (int)i;
71312 }else{
71313 /* Wildcards like ":aaa", "$aaa" or "@aaa". Reuse the same variable
71314 ** number as the prior appearance of the same name, or if the name
71315 ** has never appeared before, reuse the same variable number
71317 int i;
71318 for(i=0; i<pParse->nVarExpr; i++){
71319 Expr *pE = pParse->apVarExpr[i];
71320 assert( pE!=0 );
71321 if( strcmp(pE->u.zToken, z)==0 ){
71322 pExpr->iColumn = pE->iColumn;
71323 break;
71326 if( i>=pParse->nVarExpr ){
71327 pExpr->iColumn = (ynVar)(++pParse->nVar);
71328 if( pParse->nVarExpr>=pParse->nVarExprAlloc-1 ){
71329 pParse->nVarExprAlloc += pParse->nVarExprAlloc + 10;
71330 pParse->apVarExpr =
71331 sqlite3DbReallocOrFree(
71333 pParse->apVarExpr,
71334 pParse->nVarExprAlloc*sizeof(pParse->apVarExpr[0])
71337 if( !db->mallocFailed ){
71338 assert( pParse->apVarExpr!=0 );
71339 pParse->apVarExpr[pParse->nVarExpr++] = pExpr;
71343 if( !pParse->nErr && pParse->nVar>db->aLimit[SQLITE_LIMIT_VARIABLE_NUMBER] ){
71344 sqlite3ErrorMsg(pParse, "too many SQL variables");
71349 ** Recursively delete an expression tree.
71351 SQLITE_PRIVATE void sqlite3ExprDelete(sqlite3 *db, Expr *p){
71352 if( p==0 ) return;
71353 /* Sanity check: Assert that the IntValue is non-negative if it exists */
71354 assert( !ExprHasProperty(p, EP_IntValue) || p->u.iValue>=0 );
71355 if( !ExprHasAnyProperty(p, EP_TokenOnly) ){
71356 sqlite3ExprDelete(db, p->pLeft);
71357 sqlite3ExprDelete(db, p->pRight);
71358 if( !ExprHasProperty(p, EP_Reduced) && (p->flags2 & EP2_MallocedToken)!=0 ){
71359 sqlite3DbFree(db, p->u.zToken);
71361 if( ExprHasProperty(p, EP_xIsSelect) ){
71362 sqlite3SelectDelete(db, p->x.pSelect);
71363 }else{
71364 sqlite3ExprListDelete(db, p->x.pList);
71367 if( !ExprHasProperty(p, EP_Static) ){
71368 sqlite3DbFree(db, p);
71373 ** Return the number of bytes allocated for the expression structure
71374 ** passed as the first argument. This is always one of EXPR_FULLSIZE,
71375 ** EXPR_REDUCEDSIZE or EXPR_TOKENONLYSIZE.
71377 static int exprStructSize(Expr *p){
71378 if( ExprHasProperty(p, EP_TokenOnly) ) return EXPR_TOKENONLYSIZE;
71379 if( ExprHasProperty(p, EP_Reduced) ) return EXPR_REDUCEDSIZE;
71380 return EXPR_FULLSIZE;
71384 ** The dupedExpr*Size() routines each return the number of bytes required
71385 ** to store a copy of an expression or expression tree. They differ in
71386 ** how much of the tree is measured.
71388 ** dupedExprStructSize() Size of only the Expr structure
71389 ** dupedExprNodeSize() Size of Expr + space for token
71390 ** dupedExprSize() Expr + token + subtree components
71392 ***************************************************************************
71394 ** The dupedExprStructSize() function returns two values OR-ed together:
71395 ** (1) the space required for a copy of the Expr structure only and
71396 ** (2) the EP_xxx flags that indicate what the structure size should be.
71397 ** The return values is always one of:
71399 ** EXPR_FULLSIZE
71400 ** EXPR_REDUCEDSIZE | EP_Reduced
71401 ** EXPR_TOKENONLYSIZE | EP_TokenOnly
71403 ** The size of the structure can be found by masking the return value
71404 ** of this routine with 0xfff. The flags can be found by masking the
71405 ** return value with EP_Reduced|EP_TokenOnly.
71407 ** Note that with flags==EXPRDUP_REDUCE, this routines works on full-size
71408 ** (unreduced) Expr objects as they or originally constructed by the parser.
71409 ** During expression analysis, extra information is computed and moved into
71410 ** later parts of teh Expr object and that extra information might get chopped
71411 ** off if the expression is reduced. Note also that it does not work to
71412 ** make a EXPRDUP_REDUCE copy of a reduced expression. It is only legal
71413 ** to reduce a pristine expression tree from the parser. The implementation
71414 ** of dupedExprStructSize() contain multiple assert() statements that attempt
71415 ** to enforce this constraint.
71417 static int dupedExprStructSize(Expr *p, int flags){
71418 int nSize;
71419 assert( flags==EXPRDUP_REDUCE || flags==0 ); /* Only one flag value allowed */
71420 if( 0==(flags&EXPRDUP_REDUCE) ){
71421 nSize = EXPR_FULLSIZE;
71422 }else{
71423 assert( !ExprHasAnyProperty(p, EP_TokenOnly|EP_Reduced) );
71424 assert( !ExprHasProperty(p, EP_FromJoin) );
71425 assert( (p->flags2 & EP2_MallocedToken)==0 );
71426 assert( (p->flags2 & EP2_Irreducible)==0 );
71427 if( p->pLeft || p->pRight || p->pColl || p->x.pList ){
71428 nSize = EXPR_REDUCEDSIZE | EP_Reduced;
71429 }else{
71430 nSize = EXPR_TOKENONLYSIZE | EP_TokenOnly;
71433 return nSize;
71437 ** This function returns the space in bytes required to store the copy
71438 ** of the Expr structure and a copy of the Expr.u.zToken string (if that
71439 ** string is defined.)
71441 static int dupedExprNodeSize(Expr *p, int flags){
71442 int nByte = dupedExprStructSize(p, flags) & 0xfff;
71443 if( !ExprHasProperty(p, EP_IntValue) && p->u.zToken ){
71444 nByte += sqlite3Strlen30(p->u.zToken)+1;
71446 return ROUND8(nByte);
71450 ** Return the number of bytes required to create a duplicate of the
71451 ** expression passed as the first argument. The second argument is a
71452 ** mask containing EXPRDUP_XXX flags.
71454 ** The value returned includes space to create a copy of the Expr struct
71455 ** itself and the buffer referred to by Expr.u.zToken, if any.
71457 ** If the EXPRDUP_REDUCE flag is set, then the return value includes
71458 ** space to duplicate all Expr nodes in the tree formed by Expr.pLeft
71459 ** and Expr.pRight variables (but not for any structures pointed to or
71460 ** descended from the Expr.x.pList or Expr.x.pSelect variables).
71462 static int dupedExprSize(Expr *p, int flags){
71463 int nByte = 0;
71464 if( p ){
71465 nByte = dupedExprNodeSize(p, flags);
71466 if( flags&EXPRDUP_REDUCE ){
71467 nByte += dupedExprSize(p->pLeft, flags) + dupedExprSize(p->pRight, flags);
71470 return nByte;
71474 ** This function is similar to sqlite3ExprDup(), except that if pzBuffer
71475 ** is not NULL then *pzBuffer is assumed to point to a buffer large enough
71476 ** to store the copy of expression p, the copies of p->u.zToken
71477 ** (if applicable), and the copies of the p->pLeft and p->pRight expressions,
71478 ** if any. Before returning, *pzBuffer is set to the first byte passed the
71479 ** portion of the buffer copied into by this function.
71481 static Expr *exprDup(sqlite3 *db, Expr *p, int flags, u8 **pzBuffer){
71482 Expr *pNew = 0; /* Value to return */
71483 if( p ){
71484 const int isReduced = (flags&EXPRDUP_REDUCE);
71485 u8 *zAlloc;
71486 u32 staticFlag = 0;
71488 assert( pzBuffer==0 || isReduced );
71490 /* Figure out where to write the new Expr structure. */
71491 if( pzBuffer ){
71492 zAlloc = *pzBuffer;
71493 staticFlag = EP_Static;
71494 }else{
71495 zAlloc = sqlite3DbMallocRaw(db, dupedExprSize(p, flags));
71497 pNew = (Expr *)zAlloc;
71499 if( pNew ){
71500 /* Set nNewSize to the size allocated for the structure pointed to
71501 ** by pNew. This is either EXPR_FULLSIZE, EXPR_REDUCEDSIZE or
71502 ** EXPR_TOKENONLYSIZE. nToken is set to the number of bytes consumed
71503 ** by the copy of the p->u.zToken string (if any).
71505 const unsigned nStructSize = dupedExprStructSize(p, flags);
71506 const int nNewSize = nStructSize & 0xfff;
71507 int nToken;
71508 if( !ExprHasProperty(p, EP_IntValue) && p->u.zToken ){
71509 nToken = sqlite3Strlen30(p->u.zToken) + 1;
71510 }else{
71511 nToken = 0;
71513 if( isReduced ){
71514 assert( ExprHasProperty(p, EP_Reduced)==0 );
71515 memcpy(zAlloc, p, nNewSize);
71516 }else{
71517 int nSize = exprStructSize(p);
71518 memcpy(zAlloc, p, nSize);
71519 if( EXPR_FULLSIZE>nSize ){
71520 memset(&zAlloc[nSize], 0, EXPR_FULLSIZE-nSize);
71524 /* Set the EP_Reduced, EP_TokenOnly, and EP_Static flags appropriately. */
71525 pNew->flags &= ~(EP_Reduced|EP_TokenOnly|EP_Static);
71526 pNew->flags |= nStructSize & (EP_Reduced|EP_TokenOnly);
71527 pNew->flags |= staticFlag;
71529 /* Copy the p->u.zToken string, if any. */
71530 if( nToken ){
71531 char *zToken = pNew->u.zToken = (char*)&zAlloc[nNewSize];
71532 memcpy(zToken, p->u.zToken, nToken);
71535 if( 0==((p->flags|pNew->flags) & EP_TokenOnly) ){
71536 /* Fill in the pNew->x.pSelect or pNew->x.pList member. */
71537 if( ExprHasProperty(p, EP_xIsSelect) ){
71538 pNew->x.pSelect = sqlite3SelectDup(db, p->x.pSelect, isReduced);
71539 }else{
71540 pNew->x.pList = sqlite3ExprListDup(db, p->x.pList, isReduced);
71544 /* Fill in pNew->pLeft and pNew->pRight. */
71545 if( ExprHasAnyProperty(pNew, EP_Reduced|EP_TokenOnly) ){
71546 zAlloc += dupedExprNodeSize(p, flags);
71547 if( ExprHasProperty(pNew, EP_Reduced) ){
71548 pNew->pLeft = exprDup(db, p->pLeft, EXPRDUP_REDUCE, &zAlloc);
71549 pNew->pRight = exprDup(db, p->pRight, EXPRDUP_REDUCE, &zAlloc);
71551 if( pzBuffer ){
71552 *pzBuffer = zAlloc;
71554 }else{
71555 pNew->flags2 = 0;
71556 if( !ExprHasAnyProperty(p, EP_TokenOnly) ){
71557 pNew->pLeft = sqlite3ExprDup(db, p->pLeft, 0);
71558 pNew->pRight = sqlite3ExprDup(db, p->pRight, 0);
71564 return pNew;
71568 ** The following group of routines make deep copies of expressions,
71569 ** expression lists, ID lists, and select statements. The copies can
71570 ** be deleted (by being passed to their respective ...Delete() routines)
71571 ** without effecting the originals.
71573 ** The expression list, ID, and source lists return by sqlite3ExprListDup(),
71574 ** sqlite3IdListDup(), and sqlite3SrcListDup() can not be further expanded
71575 ** by subsequent calls to sqlite*ListAppend() routines.
71577 ** Any tables that the SrcList might point to are not duplicated.
71579 ** The flags parameter contains a combination of the EXPRDUP_XXX flags.
71580 ** If the EXPRDUP_REDUCE flag is set, then the structure returned is a
71581 ** truncated version of the usual Expr structure that will be stored as
71582 ** part of the in-memory representation of the database schema.
71584 SQLITE_PRIVATE Expr *sqlite3ExprDup(sqlite3 *db, Expr *p, int flags){
71585 return exprDup(db, p, flags, 0);
71587 SQLITE_PRIVATE ExprList *sqlite3ExprListDup(sqlite3 *db, ExprList *p, int flags){
71588 ExprList *pNew;
71589 struct ExprList_item *pItem, *pOldItem;
71590 int i;
71591 if( p==0 ) return 0;
71592 pNew = sqlite3DbMallocRaw(db, sizeof(*pNew) );
71593 if( pNew==0 ) return 0;
71594 pNew->iECursor = 0;
71595 pNew->nExpr = pNew->nAlloc = p->nExpr;
71596 pNew->a = pItem = sqlite3DbMallocRaw(db, p->nExpr*sizeof(p->a[0]) );
71597 if( pItem==0 ){
71598 sqlite3DbFree(db, pNew);
71599 return 0;
71601 pOldItem = p->a;
71602 for(i=0; i<p->nExpr; i++, pItem++, pOldItem++){
71603 Expr *pOldExpr = pOldItem->pExpr;
71604 pItem->pExpr = sqlite3ExprDup(db, pOldExpr, flags);
71605 pItem->zName = sqlite3DbStrDup(db, pOldItem->zName);
71606 pItem->zSpan = sqlite3DbStrDup(db, pOldItem->zSpan);
71607 pItem->sortOrder = pOldItem->sortOrder;
71608 pItem->done = 0;
71609 pItem->iCol = pOldItem->iCol;
71610 pItem->iAlias = pOldItem->iAlias;
71612 return pNew;
71616 ** If cursors, triggers, views and subqueries are all omitted from
71617 ** the build, then none of the following routines, except for
71618 ** sqlite3SelectDup(), can be called. sqlite3SelectDup() is sometimes
71619 ** called with a NULL argument.
71621 #if !defined(SQLITE_OMIT_VIEW) || !defined(SQLITE_OMIT_TRIGGER) \
71622 || !defined(SQLITE_OMIT_SUBQUERY)
71623 SQLITE_PRIVATE SrcList *sqlite3SrcListDup(sqlite3 *db, SrcList *p, int flags){
71624 SrcList *pNew;
71625 int i;
71626 int nByte;
71627 if( p==0 ) return 0;
71628 nByte = sizeof(*p) + (p->nSrc>0 ? sizeof(p->a[0]) * (p->nSrc-1) : 0);
71629 pNew = sqlite3DbMallocRaw(db, nByte );
71630 if( pNew==0 ) return 0;
71631 pNew->nSrc = pNew->nAlloc = p->nSrc;
71632 for(i=0; i<p->nSrc; i++){
71633 struct SrcList_item *pNewItem = &pNew->a[i];
71634 struct SrcList_item *pOldItem = &p->a[i];
71635 Table *pTab;
71636 pNewItem->zDatabase = sqlite3DbStrDup(db, pOldItem->zDatabase);
71637 pNewItem->zName = sqlite3DbStrDup(db, pOldItem->zName);
71638 pNewItem->zAlias = sqlite3DbStrDup(db, pOldItem->zAlias);
71639 pNewItem->jointype = pOldItem->jointype;
71640 pNewItem->iCursor = pOldItem->iCursor;
71641 pNewItem->isPopulated = pOldItem->isPopulated;
71642 pNewItem->zIndex = sqlite3DbStrDup(db, pOldItem->zIndex);
71643 pNewItem->notIndexed = pOldItem->notIndexed;
71644 pNewItem->pIndex = pOldItem->pIndex;
71645 pTab = pNewItem->pTab = pOldItem->pTab;
71646 if( pTab ){
71647 pTab->nRef++;
71649 pNewItem->pSelect = sqlite3SelectDup(db, pOldItem->pSelect, flags);
71650 pNewItem->pOn = sqlite3ExprDup(db, pOldItem->pOn, flags);
71651 pNewItem->pUsing = sqlite3IdListDup(db, pOldItem->pUsing);
71652 pNewItem->colUsed = pOldItem->colUsed;
71654 return pNew;
71656 SQLITE_PRIVATE IdList *sqlite3IdListDup(sqlite3 *db, IdList *p){
71657 IdList *pNew;
71658 int i;
71659 if( p==0 ) return 0;
71660 pNew = sqlite3DbMallocRaw(db, sizeof(*pNew) );
71661 if( pNew==0 ) return 0;
71662 pNew->nId = pNew->nAlloc = p->nId;
71663 pNew->a = sqlite3DbMallocRaw(db, p->nId*sizeof(p->a[0]) );
71664 if( pNew->a==0 ){
71665 sqlite3DbFree(db, pNew);
71666 return 0;
71668 for(i=0; i<p->nId; i++){
71669 struct IdList_item *pNewItem = &pNew->a[i];
71670 struct IdList_item *pOldItem = &p->a[i];
71671 pNewItem->zName = sqlite3DbStrDup(db, pOldItem->zName);
71672 pNewItem->idx = pOldItem->idx;
71674 return pNew;
71676 SQLITE_PRIVATE Select *sqlite3SelectDup(sqlite3 *db, Select *p, int flags){
71677 Select *pNew;
71678 if( p==0 ) return 0;
71679 pNew = sqlite3DbMallocRaw(db, sizeof(*p) );
71680 if( pNew==0 ) return 0;
71681 pNew->pEList = sqlite3ExprListDup(db, p->pEList, flags);
71682 pNew->pSrc = sqlite3SrcListDup(db, p->pSrc, flags);
71683 pNew->pWhere = sqlite3ExprDup(db, p->pWhere, flags);
71684 pNew->pGroupBy = sqlite3ExprListDup(db, p->pGroupBy, flags);
71685 pNew->pHaving = sqlite3ExprDup(db, p->pHaving, flags);
71686 pNew->pOrderBy = sqlite3ExprListDup(db, p->pOrderBy, flags);
71687 pNew->op = p->op;
71688 pNew->pPrior = sqlite3SelectDup(db, p->pPrior, flags);
71689 pNew->pLimit = sqlite3ExprDup(db, p->pLimit, flags);
71690 pNew->pOffset = sqlite3ExprDup(db, p->pOffset, flags);
71691 pNew->iLimit = 0;
71692 pNew->iOffset = 0;
71693 pNew->selFlags = p->selFlags & ~SF_UsesEphemeral;
71694 pNew->pRightmost = 0;
71695 pNew->addrOpenEphm[0] = -1;
71696 pNew->addrOpenEphm[1] = -1;
71697 pNew->addrOpenEphm[2] = -1;
71698 return pNew;
71700 #else
71701 SQLITE_PRIVATE Select *sqlite3SelectDup(sqlite3 *db, Select *p, int flags){
71702 assert( p==0 );
71703 return 0;
71705 #endif
71709 ** Add a new element to the end of an expression list. If pList is
71710 ** initially NULL, then create a new expression list.
71712 ** If a memory allocation error occurs, the entire list is freed and
71713 ** NULL is returned. If non-NULL is returned, then it is guaranteed
71714 ** that the new entry was successfully appended.
71716 SQLITE_PRIVATE ExprList *sqlite3ExprListAppend(
71717 Parse *pParse, /* Parsing context */
71718 ExprList *pList, /* List to which to append. Might be NULL */
71719 Expr *pExpr /* Expression to be appended. Might be NULL */
71721 sqlite3 *db = pParse->db;
71722 if( pList==0 ){
71723 pList = sqlite3DbMallocZero(db, sizeof(ExprList) );
71724 if( pList==0 ){
71725 goto no_mem;
71727 assert( pList->nAlloc==0 );
71729 if( pList->nAlloc<=pList->nExpr ){
71730 struct ExprList_item *a;
71731 int n = pList->nAlloc*2 + 4;
71732 a = sqlite3DbRealloc(db, pList->a, n*sizeof(pList->a[0]));
71733 if( a==0 ){
71734 goto no_mem;
71736 pList->a = a;
71737 pList->nAlloc = sqlite3DbMallocSize(db, a)/sizeof(a[0]);
71739 assert( pList->a!=0 );
71740 if( 1 ){
71741 struct ExprList_item *pItem = &pList->a[pList->nExpr++];
71742 memset(pItem, 0, sizeof(*pItem));
71743 pItem->pExpr = pExpr;
71745 return pList;
71747 no_mem:
71748 /* Avoid leaking memory if malloc has failed. */
71749 sqlite3ExprDelete(db, pExpr);
71750 sqlite3ExprListDelete(db, pList);
71751 return 0;
71755 ** Set the ExprList.a[].zName element of the most recently added item
71756 ** on the expression list.
71758 ** pList might be NULL following an OOM error. But pName should never be
71759 ** NULL. If a memory allocation fails, the pParse->db->mallocFailed flag
71760 ** is set.
71762 SQLITE_PRIVATE void sqlite3ExprListSetName(
71763 Parse *pParse, /* Parsing context */
71764 ExprList *pList, /* List to which to add the span. */
71765 Token *pName, /* Name to be added */
71766 int dequote /* True to cause the name to be dequoted */
71768 assert( pList!=0 || pParse->db->mallocFailed!=0 );
71769 if( pList ){
71770 struct ExprList_item *pItem;
71771 assert( pList->nExpr>0 );
71772 pItem = &pList->a[pList->nExpr-1];
71773 assert( pItem->zName==0 );
71774 pItem->zName = sqlite3DbStrNDup(pParse->db, pName->z, pName->n);
71775 if( dequote && pItem->zName ) sqlite3Dequote(pItem->zName);
71780 ** Set the ExprList.a[].zSpan element of the most recently added item
71781 ** on the expression list.
71783 ** pList might be NULL following an OOM error. But pSpan should never be
71784 ** NULL. If a memory allocation fails, the pParse->db->mallocFailed flag
71785 ** is set.
71787 SQLITE_PRIVATE void sqlite3ExprListSetSpan(
71788 Parse *pParse, /* Parsing context */
71789 ExprList *pList, /* List to which to add the span. */
71790 ExprSpan *pSpan /* The span to be added */
71792 sqlite3 *db = pParse->db;
71793 assert( pList!=0 || db->mallocFailed!=0 );
71794 if( pList ){
71795 struct ExprList_item *pItem = &pList->a[pList->nExpr-1];
71796 assert( pList->nExpr>0 );
71797 assert( db->mallocFailed || pItem->pExpr==pSpan->pExpr );
71798 sqlite3DbFree(db, pItem->zSpan);
71799 pItem->zSpan = sqlite3DbStrNDup(db, (char*)pSpan->zStart,
71800 (int)(pSpan->zEnd - pSpan->zStart));
71805 ** If the expression list pEList contains more than iLimit elements,
71806 ** leave an error message in pParse.
71808 SQLITE_PRIVATE void sqlite3ExprListCheckLength(
71809 Parse *pParse,
71810 ExprList *pEList,
71811 const char *zObject
71813 int mx = pParse->db->aLimit[SQLITE_LIMIT_COLUMN];
71814 testcase( pEList && pEList->nExpr==mx );
71815 testcase( pEList && pEList->nExpr==mx+1 );
71816 if( pEList && pEList->nExpr>mx ){
71817 sqlite3ErrorMsg(pParse, "too many columns in %s", zObject);
71822 ** Delete an entire expression list.
71824 SQLITE_PRIVATE void sqlite3ExprListDelete(sqlite3 *db, ExprList *pList){
71825 int i;
71826 struct ExprList_item *pItem;
71827 if( pList==0 ) return;
71828 assert( pList->a!=0 || (pList->nExpr==0 && pList->nAlloc==0) );
71829 assert( pList->nExpr<=pList->nAlloc );
71830 for(pItem=pList->a, i=0; i<pList->nExpr; i++, pItem++){
71831 sqlite3ExprDelete(db, pItem->pExpr);
71832 sqlite3DbFree(db, pItem->zName);
71833 sqlite3DbFree(db, pItem->zSpan);
71835 sqlite3DbFree(db, pList->a);
71836 sqlite3DbFree(db, pList);
71840 ** These routines are Walker callbacks. Walker.u.pi is a pointer
71841 ** to an integer. These routines are checking an expression to see
71842 ** if it is a constant. Set *Walker.u.pi to 0 if the expression is
71843 ** not constant.
71845 ** These callback routines are used to implement the following:
71847 ** sqlite3ExprIsConstant()
71848 ** sqlite3ExprIsConstantNotJoin()
71849 ** sqlite3ExprIsConstantOrFunction()
71852 static int exprNodeIsConstant(Walker *pWalker, Expr *pExpr){
71854 /* If pWalker->u.i is 3 then any term of the expression that comes from
71855 ** the ON or USING clauses of a join disqualifies the expression
71856 ** from being considered constant. */
71857 if( pWalker->u.i==3 && ExprHasAnyProperty(pExpr, EP_FromJoin) ){
71858 pWalker->u.i = 0;
71859 return WRC_Abort;
71862 switch( pExpr->op ){
71863 /* Consider functions to be constant if all their arguments are constant
71864 ** and pWalker->u.i==2 */
71865 case TK_FUNCTION:
71866 if( pWalker->u.i==2 ) return 0;
71867 /* Fall through */
71868 case TK_ID:
71869 case TK_COLUMN:
71870 case TK_AGG_FUNCTION:
71871 case TK_AGG_COLUMN:
71872 testcase( pExpr->op==TK_ID );
71873 testcase( pExpr->op==TK_COLUMN );
71874 testcase( pExpr->op==TK_AGG_FUNCTION );
71875 testcase( pExpr->op==TK_AGG_COLUMN );
71876 pWalker->u.i = 0;
71877 return WRC_Abort;
71878 default:
71879 testcase( pExpr->op==TK_SELECT ); /* selectNodeIsConstant will disallow */
71880 testcase( pExpr->op==TK_EXISTS ); /* selectNodeIsConstant will disallow */
71881 return WRC_Continue;
71884 static int selectNodeIsConstant(Walker *pWalker, Select *NotUsed){
71885 UNUSED_PARAMETER(NotUsed);
71886 pWalker->u.i = 0;
71887 return WRC_Abort;
71889 static int exprIsConst(Expr *p, int initFlag){
71890 Walker w;
71891 w.u.i = initFlag;
71892 w.xExprCallback = exprNodeIsConstant;
71893 w.xSelectCallback = selectNodeIsConstant;
71894 sqlite3WalkExpr(&w, p);
71895 return w.u.i;
71899 ** Walk an expression tree. Return 1 if the expression is constant
71900 ** and 0 if it involves variables or function calls.
71902 ** For the purposes of this function, a double-quoted string (ex: "abc")
71903 ** is considered a variable but a single-quoted string (ex: 'abc') is
71904 ** a constant.
71906 SQLITE_PRIVATE int sqlite3ExprIsConstant(Expr *p){
71907 return exprIsConst(p, 1);
71911 ** Walk an expression tree. Return 1 if the expression is constant
71912 ** that does no originate from the ON or USING clauses of a join.
71913 ** Return 0 if it involves variables or function calls or terms from
71914 ** an ON or USING clause.
71916 SQLITE_PRIVATE int sqlite3ExprIsConstantNotJoin(Expr *p){
71917 return exprIsConst(p, 3);
71921 ** Walk an expression tree. Return 1 if the expression is constant
71922 ** or a function call with constant arguments. Return and 0 if there
71923 ** are any variables.
71925 ** For the purposes of this function, a double-quoted string (ex: "abc")
71926 ** is considered a variable but a single-quoted string (ex: 'abc') is
71927 ** a constant.
71929 SQLITE_PRIVATE int sqlite3ExprIsConstantOrFunction(Expr *p){
71930 return exprIsConst(p, 2);
71934 ** If the expression p codes a constant integer that is small enough
71935 ** to fit in a 32-bit integer, return 1 and put the value of the integer
71936 ** in *pValue. If the expression is not an integer or if it is too big
71937 ** to fit in a signed 32-bit integer, return 0 and leave *pValue unchanged.
71939 SQLITE_PRIVATE int sqlite3ExprIsInteger(Expr *p, int *pValue){
71940 int rc = 0;
71942 /* If an expression is an integer literal that fits in a signed 32-bit
71943 ** integer, then the EP_IntValue flag will have already been set */
71944 assert( p->op!=TK_INTEGER || (p->flags & EP_IntValue)!=0
71945 || sqlite3GetInt32(p->u.zToken, &rc)==0 );
71947 if( p->flags & EP_IntValue ){
71948 *pValue = p->u.iValue;
71949 return 1;
71951 switch( p->op ){
71952 case TK_UPLUS: {
71953 rc = sqlite3ExprIsInteger(p->pLeft, pValue);
71954 break;
71956 case TK_UMINUS: {
71957 int v;
71958 if( sqlite3ExprIsInteger(p->pLeft, &v) ){
71959 *pValue = -v;
71960 rc = 1;
71962 break;
71964 default: break;
71966 return rc;
71970 ** Return FALSE if there is no chance that the expression can be NULL.
71972 ** If the expression might be NULL or if the expression is too complex
71973 ** to tell return TRUE.
71975 ** This routine is used as an optimization, to skip OP_IsNull opcodes
71976 ** when we know that a value cannot be NULL. Hence, a false positive
71977 ** (returning TRUE when in fact the expression can never be NULL) might
71978 ** be a small performance hit but is otherwise harmless. On the other
71979 ** hand, a false negative (returning FALSE when the result could be NULL)
71980 ** will likely result in an incorrect answer. So when in doubt, return
71981 ** TRUE.
71983 SQLITE_PRIVATE int sqlite3ExprCanBeNull(const Expr *p){
71984 u8 op;
71985 while( p->op==TK_UPLUS || p->op==TK_UMINUS ){ p = p->pLeft; }
71986 op = p->op;
71987 if( op==TK_REGISTER ) op = p->op2;
71988 switch( op ){
71989 case TK_INTEGER:
71990 case TK_STRING:
71991 case TK_FLOAT:
71992 case TK_BLOB:
71993 return 0;
71994 default:
71995 return 1;
72000 ** Generate an OP_IsNull instruction that tests register iReg and jumps
72001 ** to location iDest if the value in iReg is NULL. The value in iReg
72002 ** was computed by pExpr. If we can look at pExpr at compile-time and
72003 ** determine that it can never generate a NULL, then the OP_IsNull operation
72004 ** can be omitted.
72006 SQLITE_PRIVATE void sqlite3ExprCodeIsNullJump(
72007 Vdbe *v, /* The VDBE under construction */
72008 const Expr *pExpr, /* Only generate OP_IsNull if this expr can be NULL */
72009 int iReg, /* Test the value in this register for NULL */
72010 int iDest /* Jump here if the value is null */
72012 if( sqlite3ExprCanBeNull(pExpr) ){
72013 sqlite3VdbeAddOp2(v, OP_IsNull, iReg, iDest);
72018 ** Return TRUE if the given expression is a constant which would be
72019 ** unchanged by OP_Affinity with the affinity given in the second
72020 ** argument.
72022 ** This routine is used to determine if the OP_Affinity operation
72023 ** can be omitted. When in doubt return FALSE. A false negative
72024 ** is harmless. A false positive, however, can result in the wrong
72025 ** answer.
72027 SQLITE_PRIVATE int sqlite3ExprNeedsNoAffinityChange(const Expr *p, char aff){
72028 u8 op;
72029 if( aff==SQLITE_AFF_NONE ) return 1;
72030 while( p->op==TK_UPLUS || p->op==TK_UMINUS ){ p = p->pLeft; }
72031 op = p->op;
72032 if( op==TK_REGISTER ) op = p->op2;
72033 switch( op ){
72034 case TK_INTEGER: {
72035 return aff==SQLITE_AFF_INTEGER || aff==SQLITE_AFF_NUMERIC;
72037 case TK_FLOAT: {
72038 return aff==SQLITE_AFF_REAL || aff==SQLITE_AFF_NUMERIC;
72040 case TK_STRING: {
72041 return aff==SQLITE_AFF_TEXT;
72043 case TK_BLOB: {
72044 return 1;
72046 case TK_COLUMN: {
72047 assert( p->iTable>=0 ); /* p cannot be part of a CHECK constraint */
72048 return p->iColumn<0
72049 && (aff==SQLITE_AFF_INTEGER || aff==SQLITE_AFF_NUMERIC);
72051 default: {
72052 return 0;
72058 ** Return TRUE if the given string is a row-id column name.
72060 SQLITE_PRIVATE int sqlite3IsRowid(const char *z){
72061 if( sqlite3StrICmp(z, "_ROWID_")==0 ) return 1;
72062 if( sqlite3StrICmp(z, "ROWID")==0 ) return 1;
72063 if( sqlite3StrICmp(z, "OID")==0 ) return 1;
72064 return 0;
72068 ** Return true if we are able to the IN operator optimization on a
72069 ** query of the form
72071 ** x IN (SELECT ...)
72073 ** Where the SELECT... clause is as specified by the parameter to this
72074 ** routine.
72076 ** The Select object passed in has already been preprocessed and no
72077 ** errors have been found.
72079 #ifndef SQLITE_OMIT_SUBQUERY
72080 static int isCandidateForInOpt(Select *p){
72081 SrcList *pSrc;
72082 ExprList *pEList;
72083 Table *pTab;
72084 if( p==0 ) return 0; /* right-hand side of IN is SELECT */
72085 if( p->pPrior ) return 0; /* Not a compound SELECT */
72086 if( p->selFlags & (SF_Distinct|SF_Aggregate) ){
72087 testcase( (p->selFlags & (SF_Distinct|SF_Aggregate))==SF_Distinct );
72088 testcase( (p->selFlags & (SF_Distinct|SF_Aggregate))==SF_Aggregate );
72089 return 0; /* No DISTINCT keyword and no aggregate functions */
72091 assert( p->pGroupBy==0 ); /* Has no GROUP BY clause */
72092 if( p->pLimit ) return 0; /* Has no LIMIT clause */
72093 assert( p->pOffset==0 ); /* No LIMIT means no OFFSET */
72094 if( p->pWhere ) return 0; /* Has no WHERE clause */
72095 pSrc = p->pSrc;
72096 assert( pSrc!=0 );
72097 if( pSrc->nSrc!=1 ) return 0; /* Single term in FROM clause */
72098 if( pSrc->a[0].pSelect ) return 0; /* FROM is not a subquery or view */
72099 pTab = pSrc->a[0].pTab;
72100 if( NEVER(pTab==0) ) return 0;
72101 assert( pTab->pSelect==0 ); /* FROM clause is not a view */
72102 if( IsVirtual(pTab) ) return 0; /* FROM clause not a virtual table */
72103 pEList = p->pEList;
72104 if( pEList->nExpr!=1 ) return 0; /* One column in the result set */
72105 if( pEList->a[0].pExpr->op!=TK_COLUMN ) return 0; /* Result is a column */
72106 return 1;
72108 #endif /* SQLITE_OMIT_SUBQUERY */
72111 ** This function is used by the implementation of the IN (...) operator.
72112 ** It's job is to find or create a b-tree structure that may be used
72113 ** either to test for membership of the (...) set or to iterate through
72114 ** its members, skipping duplicates.
72116 ** The index of the cursor opened on the b-tree (database table, database index
72117 ** or ephermal table) is stored in pX->iTable before this function returns.
72118 ** The returned value of this function indicates the b-tree type, as follows:
72120 ** IN_INDEX_ROWID - The cursor was opened on a database table.
72121 ** IN_INDEX_INDEX - The cursor was opened on a database index.
72122 ** IN_INDEX_EPH - The cursor was opened on a specially created and
72123 ** populated epheremal table.
72125 ** An existing b-tree may only be used if the SELECT is of the simple
72126 ** form:
72128 ** SELECT <column> FROM <table>
72130 ** If the prNotFound parameter is 0, then the b-tree will be used to iterate
72131 ** through the set members, skipping any duplicates. In this case an
72132 ** epheremal table must be used unless the selected <column> is guaranteed
72133 ** to be unique - either because it is an INTEGER PRIMARY KEY or it
72134 ** has a UNIQUE constraint or UNIQUE index.
72136 ** If the prNotFound parameter is not 0, then the b-tree will be used
72137 ** for fast set membership tests. In this case an epheremal table must
72138 ** be used unless <column> is an INTEGER PRIMARY KEY or an index can
72139 ** be found with <column> as its left-most column.
72141 ** When the b-tree is being used for membership tests, the calling function
72142 ** needs to know whether or not the structure contains an SQL NULL
72143 ** value in order to correctly evaluate expressions like "X IN (Y, Z)".
72144 ** If there is any chance that the (...) might contain a NULL value at
72145 ** runtime, then a register is allocated and the register number written
72146 ** to *prNotFound. If there is no chance that the (...) contains a
72147 ** NULL value, then *prNotFound is left unchanged.
72149 ** If a register is allocated and its location stored in *prNotFound, then
72150 ** its initial value is NULL. If the (...) does not remain constant
72151 ** for the duration of the query (i.e. the SELECT within the (...)
72152 ** is a correlated subquery) then the value of the allocated register is
72153 ** reset to NULL each time the subquery is rerun. This allows the
72154 ** caller to use vdbe code equivalent to the following:
72156 ** if( register==NULL ){
72157 ** has_null = <test if data structure contains null>
72158 ** register = 1
72159 ** }
72161 ** in order to avoid running the <test if data structure contains null>
72162 ** test more often than is necessary.
72164 #ifndef SQLITE_OMIT_SUBQUERY
72165 SQLITE_PRIVATE int sqlite3FindInIndex(Parse *pParse, Expr *pX, int *prNotFound){
72166 Select *p; /* SELECT to the right of IN operator */
72167 int eType = 0; /* Type of RHS table. IN_INDEX_* */
72168 int iTab = pParse->nTab++; /* Cursor of the RHS table */
72169 int mustBeUnique = (prNotFound==0); /* True if RHS must be unique */
72171 assert( pX->op==TK_IN );
72173 /* Check to see if an existing table or index can be used to
72174 ** satisfy the query. This is preferable to generating a new
72175 ** ephemeral table.
72177 p = (ExprHasProperty(pX, EP_xIsSelect) ? pX->x.pSelect : 0);
72178 if( ALWAYS(pParse->nErr==0) && isCandidateForInOpt(p) ){
72179 sqlite3 *db = pParse->db; /* Database connection */
72180 Expr *pExpr = p->pEList->a[0].pExpr; /* Expression <column> */
72181 int iCol = pExpr->iColumn; /* Index of column <column> */
72182 Vdbe *v = sqlite3GetVdbe(pParse); /* Virtual machine being coded */
72183 Table *pTab = p->pSrc->a[0].pTab; /* Table <table>. */
72184 int iDb; /* Database idx for pTab */
72186 /* Code an OP_VerifyCookie and OP_TableLock for <table>. */
72187 iDb = sqlite3SchemaToIndex(db, pTab->pSchema);
72188 sqlite3CodeVerifySchema(pParse, iDb);
72189 sqlite3TableLock(pParse, iDb, pTab->tnum, 0, pTab->zName);
72191 /* This function is only called from two places. In both cases the vdbe
72192 ** has already been allocated. So assume sqlite3GetVdbe() is always
72193 ** successful here.
72195 assert(v);
72196 if( iCol<0 ){
72197 int iMem = ++pParse->nMem;
72198 int iAddr;
72200 iAddr = sqlite3VdbeAddOp1(v, OP_If, iMem);
72201 sqlite3VdbeAddOp2(v, OP_Integer, 1, iMem);
72203 sqlite3OpenTable(pParse, iTab, iDb, pTab, OP_OpenRead);
72204 eType = IN_INDEX_ROWID;
72206 sqlite3VdbeJumpHere(v, iAddr);
72207 }else{
72208 Index *pIdx; /* Iterator variable */
72210 /* The collation sequence used by the comparison. If an index is to
72211 ** be used in place of a temp-table, it must be ordered according
72212 ** to this collation sequence. */
72213 CollSeq *pReq = sqlite3BinaryCompareCollSeq(pParse, pX->pLeft, pExpr);
72215 /* Check that the affinity that will be used to perform the
72216 ** comparison is the same as the affinity of the column. If
72217 ** it is not, it is not possible to use any index.
72219 char aff = comparisonAffinity(pX);
72220 int affinity_ok = (pTab->aCol[iCol].affinity==aff||aff==SQLITE_AFF_NONE);
72222 for(pIdx=pTab->pIndex; pIdx && eType==0 && affinity_ok; pIdx=pIdx->pNext){
72223 if( (pIdx->aiColumn[0]==iCol)
72224 && sqlite3FindCollSeq(db, ENC(db), pIdx->azColl[0], 0)==pReq
72225 && (!mustBeUnique || (pIdx->nColumn==1 && pIdx->onError!=OE_None))
72227 int iMem = ++pParse->nMem;
72228 int iAddr;
72229 char *pKey;
72231 pKey = (char *)sqlite3IndexKeyinfo(pParse, pIdx);
72232 iAddr = sqlite3VdbeAddOp1(v, OP_If, iMem);
72233 sqlite3VdbeAddOp2(v, OP_Integer, 1, iMem);
72235 sqlite3VdbeAddOp4(v, OP_OpenRead, iTab, pIdx->tnum, iDb,
72236 pKey,P4_KEYINFO_HANDOFF);
72237 VdbeComment((v, "%s", pIdx->zName));
72238 eType = IN_INDEX_INDEX;
72240 sqlite3VdbeJumpHere(v, iAddr);
72241 if( prNotFound && !pTab->aCol[iCol].notNull ){
72242 *prNotFound = ++pParse->nMem;
72249 if( eType==0 ){
72250 /* Could not found an existing table or index to use as the RHS b-tree.
72251 ** We will have to generate an ephemeral table to do the job.
72253 double savedNQueryLoop = pParse->nQueryLoop;
72254 int rMayHaveNull = 0;
72255 eType = IN_INDEX_EPH;
72256 if( prNotFound ){
72257 *prNotFound = rMayHaveNull = ++pParse->nMem;
72258 }else{
72259 testcase( pParse->nQueryLoop>(double)1 );
72260 pParse->nQueryLoop = (double)1;
72261 if( pX->pLeft->iColumn<0 && !ExprHasAnyProperty(pX, EP_xIsSelect) ){
72262 eType = IN_INDEX_ROWID;
72265 sqlite3CodeSubselect(pParse, pX, rMayHaveNull, eType==IN_INDEX_ROWID);
72266 pParse->nQueryLoop = savedNQueryLoop;
72267 }else{
72268 pX->iTable = iTab;
72270 return eType;
72272 #endif
72275 ** Generate code for scalar subqueries used as a subquery expression, EXISTS,
72276 ** or IN operators. Examples:
72278 ** (SELECT a FROM b) -- subquery
72279 ** EXISTS (SELECT a FROM b) -- EXISTS subquery
72280 ** x IN (4,5,11) -- IN operator with list on right-hand side
72281 ** x IN (SELECT a FROM b) -- IN operator with subquery on the right
72283 ** The pExpr parameter describes the expression that contains the IN
72284 ** operator or subquery.
72286 ** If parameter isRowid is non-zero, then expression pExpr is guaranteed
72287 ** to be of the form "<rowid> IN (?, ?, ?)", where <rowid> is a reference
72288 ** to some integer key column of a table B-Tree. In this case, use an
72289 ** intkey B-Tree to store the set of IN(...) values instead of the usual
72290 ** (slower) variable length keys B-Tree.
72292 ** If rMayHaveNull is non-zero, that means that the operation is an IN
72293 ** (not a SELECT or EXISTS) and that the RHS might contains NULLs.
72294 ** Furthermore, the IN is in a WHERE clause and that we really want
72295 ** to iterate over the RHS of the IN operator in order to quickly locate
72296 ** all corresponding LHS elements. All this routine does is initialize
72297 ** the register given by rMayHaveNull to NULL. Calling routines will take
72298 ** care of changing this register value to non-NULL if the RHS is NULL-free.
72300 ** If rMayHaveNull is zero, that means that the subquery is being used
72301 ** for membership testing only. There is no need to initialize any
72302 ** registers to indicate the presense or absence of NULLs on the RHS.
72304 ** For a SELECT or EXISTS operator, return the register that holds the
72305 ** result. For IN operators or if an error occurs, the return value is 0.
72307 #ifndef SQLITE_OMIT_SUBQUERY
72308 SQLITE_PRIVATE int sqlite3CodeSubselect(
72309 Parse *pParse, /* Parsing context */
72310 Expr *pExpr, /* The IN, SELECT, or EXISTS operator */
72311 int rMayHaveNull, /* Register that records whether NULLs exist in RHS */
72312 int isRowid /* If true, LHS of IN operator is a rowid */
72314 int testAddr = 0; /* One-time test address */
72315 int rReg = 0; /* Register storing resulting */
72316 Vdbe *v = sqlite3GetVdbe(pParse);
72317 if( NEVER(v==0) ) return 0;
72318 sqlite3ExprCachePush(pParse);
72320 /* This code must be run in its entirety every time it is encountered
72321 ** if any of the following is true:
72323 ** * The right-hand side is a correlated subquery
72324 ** * The right-hand side is an expression list containing variables
72325 ** * We are inside a trigger
72327 ** If all of the above are false, then we can run this code just once
72328 ** save the results, and reuse the same result on subsequent invocations.
72330 if( !ExprHasAnyProperty(pExpr, EP_VarSelect) && !pParse->pTriggerTab ){
72331 int mem = ++pParse->nMem;
72332 sqlite3VdbeAddOp1(v, OP_If, mem);
72333 testAddr = sqlite3VdbeAddOp2(v, OP_Integer, 1, mem);
72334 assert( testAddr>0 || pParse->db->mallocFailed );
72337 #ifndef SQLITE_OMIT_EXPLAIN
72338 if( pParse->explain==2 ){
72339 char *zMsg = sqlite3MPrintf(
72340 pParse->db, "EXECUTE %s%s SUBQUERY %d", testAddr?"":"CORRELATED ",
72341 pExpr->op==TK_IN?"LIST":"SCALAR", pParse->iNextSelectId
72343 sqlite3VdbeAddOp4(v, OP_Explain, pParse->iSelectId, 0, 0, zMsg, P4_DYNAMIC);
72345 #endif
72347 switch( pExpr->op ){
72348 case TK_IN: {
72349 char affinity; /* Affinity of the LHS of the IN */
72350 KeyInfo keyInfo; /* Keyinfo for the generated table */
72351 int addr; /* Address of OP_OpenEphemeral instruction */
72352 Expr *pLeft = pExpr->pLeft; /* the LHS of the IN operator */
72354 if( rMayHaveNull ){
72355 sqlite3VdbeAddOp2(v, OP_Null, 0, rMayHaveNull);
72358 affinity = sqlite3ExprAffinity(pLeft);
72360 /* Whether this is an 'x IN(SELECT...)' or an 'x IN(<exprlist>)'
72361 ** expression it is handled the same way. An ephemeral table is
72362 ** filled with single-field index keys representing the results
72363 ** from the SELECT or the <exprlist>.
72365 ** If the 'x' expression is a column value, or the SELECT...
72366 ** statement returns a column value, then the affinity of that
72367 ** column is used to build the index keys. If both 'x' and the
72368 ** SELECT... statement are columns, then numeric affinity is used
72369 ** if either column has NUMERIC or INTEGER affinity. If neither
72370 ** 'x' nor the SELECT... statement are columns, then numeric affinity
72371 ** is used.
72373 pExpr->iTable = pParse->nTab++;
72374 addr = sqlite3VdbeAddOp2(v, OP_OpenEphemeral, pExpr->iTable, !isRowid);
72375 if( rMayHaveNull==0 ) sqlite3VdbeChangeP5(v, BTREE_UNORDERED);
72376 memset(&keyInfo, 0, sizeof(keyInfo));
72377 keyInfo.nField = 1;
72379 if( ExprHasProperty(pExpr, EP_xIsSelect) ){
72380 /* Case 1: expr IN (SELECT ...)
72382 ** Generate code to write the results of the select into the temporary
72383 ** table allocated and opened above.
72385 SelectDest dest;
72386 ExprList *pEList;
72388 assert( !isRowid );
72389 sqlite3SelectDestInit(&dest, SRT_Set, pExpr->iTable);
72390 dest.affinity = (u8)affinity;
72391 assert( (pExpr->iTable&0x0000FFFF)==pExpr->iTable );
72392 pExpr->x.pSelect->iLimit = 0;
72393 if( sqlite3Select(pParse, pExpr->x.pSelect, &dest) ){
72394 return 0;
72396 pEList = pExpr->x.pSelect->pEList;
72397 if( ALWAYS(pEList!=0 && pEList->nExpr>0) ){
72398 keyInfo.aColl[0] = sqlite3BinaryCompareCollSeq(pParse, pExpr->pLeft,
72399 pEList->a[0].pExpr);
72401 }else if( ALWAYS(pExpr->x.pList!=0) ){
72402 /* Case 2: expr IN (exprlist)
72404 ** For each expression, build an index key from the evaluation and
72405 ** store it in the temporary table. If <expr> is a column, then use
72406 ** that columns affinity when building index keys. If <expr> is not
72407 ** a column, use numeric affinity.
72409 int i;
72410 ExprList *pList = pExpr->x.pList;
72411 struct ExprList_item *pItem;
72412 int r1, r2, r3;
72414 if( !affinity ){
72415 affinity = SQLITE_AFF_NONE;
72417 keyInfo.aColl[0] = sqlite3ExprCollSeq(pParse, pExpr->pLeft);
72419 /* Loop through each expression in <exprlist>. */
72420 r1 = sqlite3GetTempReg(pParse);
72421 r2 = sqlite3GetTempReg(pParse);
72422 sqlite3VdbeAddOp2(v, OP_Null, 0, r2);
72423 for(i=pList->nExpr, pItem=pList->a; i>0; i--, pItem++){
72424 Expr *pE2 = pItem->pExpr;
72425 int iValToIns;
72427 /* If the expression is not constant then we will need to
72428 ** disable the test that was generated above that makes sure
72429 ** this code only executes once. Because for a non-constant
72430 ** expression we need to rerun this code each time.
72432 if( testAddr && !sqlite3ExprIsConstant(pE2) ){
72433 sqlite3VdbeChangeToNoop(v, testAddr-1, 2);
72434 testAddr = 0;
72437 /* Evaluate the expression and insert it into the temp table */
72438 if( isRowid && sqlite3ExprIsInteger(pE2, &iValToIns) ){
72439 sqlite3VdbeAddOp3(v, OP_InsertInt, pExpr->iTable, r2, iValToIns);
72440 }else{
72441 r3 = sqlite3ExprCodeTarget(pParse, pE2, r1);
72442 if( isRowid ){
72443 sqlite3VdbeAddOp2(v, OP_MustBeInt, r3,
72444 sqlite3VdbeCurrentAddr(v)+2);
72445 sqlite3VdbeAddOp3(v, OP_Insert, pExpr->iTable, r2, r3);
72446 }else{
72447 sqlite3VdbeAddOp4(v, OP_MakeRecord, r3, 1, r2, &affinity, 1);
72448 sqlite3ExprCacheAffinityChange(pParse, r3, 1);
72449 sqlite3VdbeAddOp2(v, OP_IdxInsert, pExpr->iTable, r2);
72453 sqlite3ReleaseTempReg(pParse, r1);
72454 sqlite3ReleaseTempReg(pParse, r2);
72456 if( !isRowid ){
72457 sqlite3VdbeChangeP4(v, addr, (void *)&keyInfo, P4_KEYINFO);
72459 break;
72462 case TK_EXISTS:
72463 case TK_SELECT:
72464 default: {
72465 /* If this has to be a scalar SELECT. Generate code to put the
72466 ** value of this select in a memory cell and record the number
72467 ** of the memory cell in iColumn. If this is an EXISTS, write
72468 ** an integer 0 (not exists) or 1 (exists) into a memory cell
72469 ** and record that memory cell in iColumn.
72471 Select *pSel; /* SELECT statement to encode */
72472 SelectDest dest; /* How to deal with SELECt result */
72474 testcase( pExpr->op==TK_EXISTS );
72475 testcase( pExpr->op==TK_SELECT );
72476 assert( pExpr->op==TK_EXISTS || pExpr->op==TK_SELECT );
72478 assert( ExprHasProperty(pExpr, EP_xIsSelect) );
72479 pSel = pExpr->x.pSelect;
72480 sqlite3SelectDestInit(&dest, 0, ++pParse->nMem);
72481 if( pExpr->op==TK_SELECT ){
72482 dest.eDest = SRT_Mem;
72483 sqlite3VdbeAddOp2(v, OP_Null, 0, dest.iParm);
72484 VdbeComment((v, "Init subquery result"));
72485 }else{
72486 dest.eDest = SRT_Exists;
72487 sqlite3VdbeAddOp2(v, OP_Integer, 0, dest.iParm);
72488 VdbeComment((v, "Init EXISTS result"));
72490 sqlite3ExprDelete(pParse->db, pSel->pLimit);
72491 pSel->pLimit = sqlite3PExpr(pParse, TK_INTEGER, 0, 0,
72492 &sqlite3IntTokens[1]);
72493 pSel->iLimit = 0;
72494 if( sqlite3Select(pParse, pSel, &dest) ){
72495 return 0;
72497 rReg = dest.iParm;
72498 ExprSetIrreducible(pExpr);
72499 break;
72503 if( testAddr ){
72504 sqlite3VdbeJumpHere(v, testAddr-1);
72506 sqlite3ExprCachePop(pParse, 1);
72508 return rReg;
72510 #endif /* SQLITE_OMIT_SUBQUERY */
72512 #ifndef SQLITE_OMIT_SUBQUERY
72514 ** Generate code for an IN expression.
72516 ** x IN (SELECT ...)
72517 ** x IN (value, value, ...)
72519 ** The left-hand side (LHS) is a scalar expression. The right-hand side (RHS)
72520 ** is an array of zero or more values. The expression is true if the LHS is
72521 ** contained within the RHS. The value of the expression is unknown (NULL)
72522 ** if the LHS is NULL or if the LHS is not contained within the RHS and the
72523 ** RHS contains one or more NULL values.
72525 ** This routine generates code will jump to destIfFalse if the LHS is not
72526 ** contained within the RHS. If due to NULLs we cannot determine if the LHS
72527 ** is contained in the RHS then jump to destIfNull. If the LHS is contained
72528 ** within the RHS then fall through.
72530 static void sqlite3ExprCodeIN(
72531 Parse *pParse, /* Parsing and code generating context */
72532 Expr *pExpr, /* The IN expression */
72533 int destIfFalse, /* Jump here if LHS is not contained in the RHS */
72534 int destIfNull /* Jump here if the results are unknown due to NULLs */
72536 int rRhsHasNull = 0; /* Register that is true if RHS contains NULL values */
72537 char affinity; /* Comparison affinity to use */
72538 int eType; /* Type of the RHS */
72539 int r1; /* Temporary use register */
72540 Vdbe *v; /* Statement under construction */
72542 /* Compute the RHS. After this step, the table with cursor
72543 ** pExpr->iTable will contains the values that make up the RHS.
72545 v = pParse->pVdbe;
72546 assert( v!=0 ); /* OOM detected prior to this routine */
72547 VdbeNoopComment((v, "begin IN expr"));
72548 eType = sqlite3FindInIndex(pParse, pExpr, &rRhsHasNull);
72550 /* Figure out the affinity to use to create a key from the results
72551 ** of the expression. affinityStr stores a static string suitable for
72552 ** P4 of OP_MakeRecord.
72554 affinity = comparisonAffinity(pExpr);
72556 /* Code the LHS, the <expr> from "<expr> IN (...)".
72558 sqlite3ExprCachePush(pParse);
72559 r1 = sqlite3GetTempReg(pParse);
72560 sqlite3ExprCode(pParse, pExpr->pLeft, r1);
72562 /* If the LHS is NULL, then the result is either false or NULL depending
72563 ** on whether the RHS is empty or not, respectively.
72565 if( destIfNull==destIfFalse ){
72566 /* Shortcut for the common case where the false and NULL outcomes are
72567 ** the same. */
72568 sqlite3VdbeAddOp2(v, OP_IsNull, r1, destIfNull);
72569 }else{
72570 int addr1 = sqlite3VdbeAddOp1(v, OP_NotNull, r1);
72571 sqlite3VdbeAddOp2(v, OP_Rewind, pExpr->iTable, destIfFalse);
72572 sqlite3VdbeAddOp2(v, OP_Goto, 0, destIfNull);
72573 sqlite3VdbeJumpHere(v, addr1);
72576 if( eType==IN_INDEX_ROWID ){
72577 /* In this case, the RHS is the ROWID of table b-tree
72579 sqlite3VdbeAddOp2(v, OP_MustBeInt, r1, destIfFalse);
72580 sqlite3VdbeAddOp3(v, OP_NotExists, pExpr->iTable, destIfFalse, r1);
72581 }else{
72582 /* In this case, the RHS is an index b-tree.
72584 sqlite3VdbeAddOp4(v, OP_Affinity, r1, 1, 0, &affinity, 1);
72586 /* If the set membership test fails, then the result of the
72587 ** "x IN (...)" expression must be either 0 or NULL. If the set
72588 ** contains no NULL values, then the result is 0. If the set
72589 ** contains one or more NULL values, then the result of the
72590 ** expression is also NULL.
72592 if( rRhsHasNull==0 || destIfFalse==destIfNull ){
72593 /* This branch runs if it is known at compile time that the RHS
72594 ** cannot contain NULL values. This happens as the result
72595 ** of a "NOT NULL" constraint in the database schema.
72597 ** Also run this branch if NULL is equivalent to FALSE
72598 ** for this particular IN operator.
72600 sqlite3VdbeAddOp4Int(v, OP_NotFound, pExpr->iTable, destIfFalse, r1, 1);
72602 }else{
72603 /* In this branch, the RHS of the IN might contain a NULL and
72604 ** the presence of a NULL on the RHS makes a difference in the
72605 ** outcome.
72607 int j1, j2, j3;
72609 /* First check to see if the LHS is contained in the RHS. If so,
72610 ** then the presence of NULLs in the RHS does not matter, so jump
72611 ** over all of the code that follows.
72613 j1 = sqlite3VdbeAddOp4Int(v, OP_Found, pExpr->iTable, 0, r1, 1);
72615 /* Here we begin generating code that runs if the LHS is not
72616 ** contained within the RHS. Generate additional code that
72617 ** tests the RHS for NULLs. If the RHS contains a NULL then
72618 ** jump to destIfNull. If there are no NULLs in the RHS then
72619 ** jump to destIfFalse.
72621 j2 = sqlite3VdbeAddOp1(v, OP_NotNull, rRhsHasNull);
72622 j3 = sqlite3VdbeAddOp4Int(v, OP_Found, pExpr->iTable, 0, rRhsHasNull, 1);
72623 sqlite3VdbeAddOp2(v, OP_Integer, -1, rRhsHasNull);
72624 sqlite3VdbeJumpHere(v, j3);
72625 sqlite3VdbeAddOp2(v, OP_AddImm, rRhsHasNull, 1);
72626 sqlite3VdbeJumpHere(v, j2);
72628 /* Jump to the appropriate target depending on whether or not
72629 ** the RHS contains a NULL
72631 sqlite3VdbeAddOp2(v, OP_If, rRhsHasNull, destIfNull);
72632 sqlite3VdbeAddOp2(v, OP_Goto, 0, destIfFalse);
72634 /* The OP_Found at the top of this branch jumps here when true,
72635 ** causing the overall IN expression evaluation to fall through.
72637 sqlite3VdbeJumpHere(v, j1);
72640 sqlite3ReleaseTempReg(pParse, r1);
72641 sqlite3ExprCachePop(pParse, 1);
72642 VdbeComment((v, "end IN expr"));
72644 #endif /* SQLITE_OMIT_SUBQUERY */
72647 ** Duplicate an 8-byte value
72649 static char *dup8bytes(Vdbe *v, const char *in){
72650 char *out = sqlite3DbMallocRaw(sqlite3VdbeDb(v), 8);
72651 if( out ){
72652 memcpy(out, in, 8);
72654 return out;
72657 #ifndef SQLITE_OMIT_FLOATING_POINT
72659 ** Generate an instruction that will put the floating point
72660 ** value described by z[0..n-1] into register iMem.
72662 ** The z[] string will probably not be zero-terminated. But the
72663 ** z[n] character is guaranteed to be something that does not look
72664 ** like the continuation of the number.
72666 static void codeReal(Vdbe *v, const char *z, int negateFlag, int iMem){
72667 if( ALWAYS(z!=0) ){
72668 double value;
72669 char *zV;
72670 sqlite3AtoF(z, &value, sqlite3Strlen30(z), SQLITE_UTF8);
72671 assert( !sqlite3IsNaN(value) ); /* The new AtoF never returns NaN */
72672 if( negateFlag ) value = -value;
72673 zV = dup8bytes(v, (char*)&value);
72674 sqlite3VdbeAddOp4(v, OP_Real, 0, iMem, 0, zV, P4_REAL);
72677 #endif
72681 ** Generate an instruction that will put the integer describe by
72682 ** text z[0..n-1] into register iMem.
72684 ** Expr.u.zToken is always UTF8 and zero-terminated.
72686 static void codeInteger(Parse *pParse, Expr *pExpr, int negFlag, int iMem){
72687 Vdbe *v = pParse->pVdbe;
72688 if( pExpr->flags & EP_IntValue ){
72689 int i = pExpr->u.iValue;
72690 assert( i>=0 );
72691 if( negFlag ) i = -i;
72692 sqlite3VdbeAddOp2(v, OP_Integer, i, iMem);
72693 }else{
72694 int c;
72695 i64 value;
72696 const char *z = pExpr->u.zToken;
72697 assert( z!=0 );
72698 c = sqlite3Atoi64(z, &value, sqlite3Strlen30(z), SQLITE_UTF8);
72699 if( c==0 || (c==2 && negFlag) ){
72700 char *zV;
72701 if( negFlag ){ value = c==2 ? SMALLEST_INT64 : -value; }
72702 zV = dup8bytes(v, (char*)&value);
72703 sqlite3VdbeAddOp4(v, OP_Int64, 0, iMem, 0, zV, P4_INT64);
72704 }else{
72705 #ifdef SQLITE_OMIT_FLOATING_POINT
72706 sqlite3ErrorMsg(pParse, "oversized integer: %s%s", negFlag ? "-" : "", z);
72707 #else
72708 codeReal(v, z, negFlag, iMem);
72709 #endif
72715 ** Clear a cache entry.
72717 static void cacheEntryClear(Parse *pParse, struct yColCache *p){
72718 if( p->tempReg ){
72719 if( pParse->nTempReg<ArraySize(pParse->aTempReg) ){
72720 pParse->aTempReg[pParse->nTempReg++] = p->iReg;
72722 p->tempReg = 0;
72728 ** Record in the column cache that a particular column from a
72729 ** particular table is stored in a particular register.
72731 SQLITE_PRIVATE void sqlite3ExprCacheStore(Parse *pParse, int iTab, int iCol, int iReg){
72732 int i;
72733 int minLru;
72734 int idxLru;
72735 struct yColCache *p;
72737 assert( iReg>0 ); /* Register numbers are always positive */
72738 assert( iCol>=-1 && iCol<32768 ); /* Finite column numbers */
72740 /* The SQLITE_ColumnCache flag disables the column cache. This is used
72741 ** for testing only - to verify that SQLite always gets the same answer
72742 ** with and without the column cache.
72744 if( pParse->db->flags & SQLITE_ColumnCache ) return;
72746 /* First replace any existing entry.
72748 ** Actually, the way the column cache is currently used, we are guaranteed
72749 ** that the object will never already be in cache. Verify this guarantee.
72751 #ifndef NDEBUG
72752 for(i=0, p=pParse->aColCache; i<SQLITE_N_COLCACHE; i++, p++){
72753 #if 0 /* This code wold remove the entry from the cache if it existed */
72754 if( p->iReg && p->iTable==iTab && p->iColumn==iCol ){
72755 cacheEntryClear(pParse, p);
72756 p->iLevel = pParse->iCacheLevel;
72757 p->iReg = iReg;
72758 p->lru = pParse->iCacheCnt++;
72759 return;
72761 #endif
72762 assert( p->iReg==0 || p->iTable!=iTab || p->iColumn!=iCol );
72764 #endif
72766 /* Find an empty slot and replace it */
72767 for(i=0, p=pParse->aColCache; i<SQLITE_N_COLCACHE; i++, p++){
72768 if( p->iReg==0 ){
72769 p->iLevel = pParse->iCacheLevel;
72770 p->iTable = iTab;
72771 p->iColumn = iCol;
72772 p->iReg = iReg;
72773 p->tempReg = 0;
72774 p->lru = pParse->iCacheCnt++;
72775 return;
72779 /* Replace the last recently used */
72780 minLru = 0x7fffffff;
72781 idxLru = -1;
72782 for(i=0, p=pParse->aColCache; i<SQLITE_N_COLCACHE; i++, p++){
72783 if( p->lru<minLru ){
72784 idxLru = i;
72785 minLru = p->lru;
72788 if( ALWAYS(idxLru>=0) ){
72789 p = &pParse->aColCache[idxLru];
72790 p->iLevel = pParse->iCacheLevel;
72791 p->iTable = iTab;
72792 p->iColumn = iCol;
72793 p->iReg = iReg;
72794 p->tempReg = 0;
72795 p->lru = pParse->iCacheCnt++;
72796 return;
72801 ** Indicate that registers between iReg..iReg+nReg-1 are being overwritten.
72802 ** Purge the range of registers from the column cache.
72804 SQLITE_PRIVATE void sqlite3ExprCacheRemove(Parse *pParse, int iReg, int nReg){
72805 int i;
72806 int iLast = iReg + nReg - 1;
72807 struct yColCache *p;
72808 for(i=0, p=pParse->aColCache; i<SQLITE_N_COLCACHE; i++, p++){
72809 int r = p->iReg;
72810 if( r>=iReg && r<=iLast ){
72811 cacheEntryClear(pParse, p);
72812 p->iReg = 0;
72818 ** Remember the current column cache context. Any new entries added
72819 ** added to the column cache after this call are removed when the
72820 ** corresponding pop occurs.
72822 SQLITE_PRIVATE void sqlite3ExprCachePush(Parse *pParse){
72823 pParse->iCacheLevel++;
72827 ** Remove from the column cache any entries that were added since the
72828 ** the previous N Push operations. In other words, restore the cache
72829 ** to the state it was in N Pushes ago.
72831 SQLITE_PRIVATE void sqlite3ExprCachePop(Parse *pParse, int N){
72832 int i;
72833 struct yColCache *p;
72834 assert( N>0 );
72835 assert( pParse->iCacheLevel>=N );
72836 pParse->iCacheLevel -= N;
72837 for(i=0, p=pParse->aColCache; i<SQLITE_N_COLCACHE; i++, p++){
72838 if( p->iReg && p->iLevel>pParse->iCacheLevel ){
72839 cacheEntryClear(pParse, p);
72840 p->iReg = 0;
72846 ** When a cached column is reused, make sure that its register is
72847 ** no longer available as a temp register. ticket #3879: that same
72848 ** register might be in the cache in multiple places, so be sure to
72849 ** get them all.
72851 static void sqlite3ExprCachePinRegister(Parse *pParse, int iReg){
72852 int i;
72853 struct yColCache *p;
72854 for(i=0, p=pParse->aColCache; i<SQLITE_N_COLCACHE; i++, p++){
72855 if( p->iReg==iReg ){
72856 p->tempReg = 0;
72862 ** Generate code to extract the value of the iCol-th column of a table.
72864 SQLITE_PRIVATE void sqlite3ExprCodeGetColumnOfTable(
72865 Vdbe *v, /* The VDBE under construction */
72866 Table *pTab, /* The table containing the value */
72867 int iTabCur, /* The cursor for this table */
72868 int iCol, /* Index of the column to extract */
72869 int regOut /* Extract the valud into this register */
72871 if( iCol<0 || iCol==pTab->iPKey ){
72872 sqlite3VdbeAddOp2(v, OP_Rowid, iTabCur, regOut);
72873 }else{
72874 int op = IsVirtual(pTab) ? OP_VColumn : OP_Column;
72875 sqlite3VdbeAddOp3(v, op, iTabCur, iCol, regOut);
72877 if( iCol>=0 ){
72878 sqlite3ColumnDefault(v, pTab, iCol, regOut);
72883 ** Generate code that will extract the iColumn-th column from
72884 ** table pTab and store the column value in a register. An effort
72885 ** is made to store the column value in register iReg, but this is
72886 ** not guaranteed. The location of the column value is returned.
72888 ** There must be an open cursor to pTab in iTable when this routine
72889 ** is called. If iColumn<0 then code is generated that extracts the rowid.
72891 SQLITE_PRIVATE int sqlite3ExprCodeGetColumn(
72892 Parse *pParse, /* Parsing and code generating context */
72893 Table *pTab, /* Description of the table we are reading from */
72894 int iColumn, /* Index of the table column */
72895 int iTable, /* The cursor pointing to the table */
72896 int iReg /* Store results here */
72898 Vdbe *v = pParse->pVdbe;
72899 int i;
72900 struct yColCache *p;
72902 for(i=0, p=pParse->aColCache; i<SQLITE_N_COLCACHE; i++, p++){
72903 if( p->iReg>0 && p->iTable==iTable && p->iColumn==iColumn ){
72904 p->lru = pParse->iCacheCnt++;
72905 sqlite3ExprCachePinRegister(pParse, p->iReg);
72906 return p->iReg;
72909 assert( v!=0 );
72910 sqlite3ExprCodeGetColumnOfTable(v, pTab, iTable, iColumn, iReg);
72911 sqlite3ExprCacheStore(pParse, iTable, iColumn, iReg);
72912 return iReg;
72916 ** Clear all column cache entries.
72918 SQLITE_PRIVATE void sqlite3ExprCacheClear(Parse *pParse){
72919 int i;
72920 struct yColCache *p;
72922 for(i=0, p=pParse->aColCache; i<SQLITE_N_COLCACHE; i++, p++){
72923 if( p->iReg ){
72924 cacheEntryClear(pParse, p);
72925 p->iReg = 0;
72931 ** Record the fact that an affinity change has occurred on iCount
72932 ** registers starting with iStart.
72934 SQLITE_PRIVATE void sqlite3ExprCacheAffinityChange(Parse *pParse, int iStart, int iCount){
72935 sqlite3ExprCacheRemove(pParse, iStart, iCount);
72939 ** Generate code to move content from registers iFrom...iFrom+nReg-1
72940 ** over to iTo..iTo+nReg-1. Keep the column cache up-to-date.
72942 SQLITE_PRIVATE void sqlite3ExprCodeMove(Parse *pParse, int iFrom, int iTo, int nReg){
72943 int i;
72944 struct yColCache *p;
72945 if( NEVER(iFrom==iTo) ) return;
72946 sqlite3VdbeAddOp3(pParse->pVdbe, OP_Move, iFrom, iTo, nReg);
72947 for(i=0, p=pParse->aColCache; i<SQLITE_N_COLCACHE; i++, p++){
72948 int x = p->iReg;
72949 if( x>=iFrom && x<iFrom+nReg ){
72950 p->iReg += iTo-iFrom;
72956 ** Generate code to copy content from registers iFrom...iFrom+nReg-1
72957 ** over to iTo..iTo+nReg-1.
72959 SQLITE_PRIVATE void sqlite3ExprCodeCopy(Parse *pParse, int iFrom, int iTo, int nReg){
72960 int i;
72961 if( NEVER(iFrom==iTo) ) return;
72962 for(i=0; i<nReg; i++){
72963 sqlite3VdbeAddOp2(pParse->pVdbe, OP_Copy, iFrom+i, iTo+i);
72967 #if defined(SQLITE_DEBUG) || defined(SQLITE_COVERAGE_TEST)
72969 ** Return true if any register in the range iFrom..iTo (inclusive)
72970 ** is used as part of the column cache.
72972 ** This routine is used within assert() and testcase() macros only
72973 ** and does not appear in a normal build.
72975 static int usedAsColumnCache(Parse *pParse, int iFrom, int iTo){
72976 int i;
72977 struct yColCache *p;
72978 for(i=0, p=pParse->aColCache; i<SQLITE_N_COLCACHE; i++, p++){
72979 int r = p->iReg;
72980 if( r>=iFrom && r<=iTo ) return 1; /*NO_TEST*/
72982 return 0;
72984 #endif /* SQLITE_DEBUG || SQLITE_COVERAGE_TEST */
72987 ** Generate code into the current Vdbe to evaluate the given
72988 ** expression. Attempt to store the results in register "target".
72989 ** Return the register where results are stored.
72991 ** With this routine, there is no guarantee that results will
72992 ** be stored in target. The result might be stored in some other
72993 ** register if it is convenient to do so. The calling function
72994 ** must check the return code and move the results to the desired
72995 ** register.
72997 SQLITE_PRIVATE int sqlite3ExprCodeTarget(Parse *pParse, Expr *pExpr, int target){
72998 Vdbe *v = pParse->pVdbe; /* The VM under construction */
72999 int op; /* The opcode being coded */
73000 int inReg = target; /* Results stored in register inReg */
73001 int regFree1 = 0; /* If non-zero free this temporary register */
73002 int regFree2 = 0; /* If non-zero free this temporary register */
73003 int r1, r2, r3, r4; /* Various register numbers */
73004 sqlite3 *db = pParse->db; /* The database connection */
73006 assert( target>0 && target<=pParse->nMem );
73007 if( v==0 ){
73008 assert( pParse->db->mallocFailed );
73009 return 0;
73012 if( pExpr==0 ){
73013 op = TK_NULL;
73014 }else{
73015 op = pExpr->op;
73017 switch( op ){
73018 case TK_AGG_COLUMN: {
73019 AggInfo *pAggInfo = pExpr->pAggInfo;
73020 struct AggInfo_col *pCol = &pAggInfo->aCol[pExpr->iAgg];
73021 if( !pAggInfo->directMode ){
73022 assert( pCol->iMem>0 );
73023 inReg = pCol->iMem;
73024 break;
73025 }else if( pAggInfo->useSortingIdx ){
73026 sqlite3VdbeAddOp3(v, OP_Column, pAggInfo->sortingIdx,
73027 pCol->iSorterColumn, target);
73028 break;
73030 /* Otherwise, fall thru into the TK_COLUMN case */
73032 case TK_COLUMN: {
73033 if( pExpr->iTable<0 ){
73034 /* This only happens when coding check constraints */
73035 assert( pParse->ckBase>0 );
73036 inReg = pExpr->iColumn + pParse->ckBase;
73037 }else{
73038 inReg = sqlite3ExprCodeGetColumn(pParse, pExpr->pTab,
73039 pExpr->iColumn, pExpr->iTable, target);
73041 break;
73043 case TK_INTEGER: {
73044 codeInteger(pParse, pExpr, 0, target);
73045 break;
73047 #ifndef SQLITE_OMIT_FLOATING_POINT
73048 case TK_FLOAT: {
73049 assert( !ExprHasProperty(pExpr, EP_IntValue) );
73050 codeReal(v, pExpr->u.zToken, 0, target);
73051 break;
73053 #endif
73054 case TK_STRING: {
73055 assert( !ExprHasProperty(pExpr, EP_IntValue) );
73056 sqlite3VdbeAddOp4(v, OP_String8, 0, target, 0, pExpr->u.zToken, 0);
73057 break;
73059 case TK_NULL: {
73060 sqlite3VdbeAddOp2(v, OP_Null, 0, target);
73061 break;
73063 #ifndef SQLITE_OMIT_BLOB_LITERAL
73064 case TK_BLOB: {
73065 int n;
73066 const char *z;
73067 char *zBlob;
73068 assert( !ExprHasProperty(pExpr, EP_IntValue) );
73069 assert( pExpr->u.zToken[0]=='x' || pExpr->u.zToken[0]=='X' );
73070 assert( pExpr->u.zToken[1]=='\'' );
73071 z = &pExpr->u.zToken[2];
73072 n = sqlite3Strlen30(z) - 1;
73073 assert( z[n]=='\'' );
73074 zBlob = sqlite3HexToBlob(sqlite3VdbeDb(v), z, n);
73075 sqlite3VdbeAddOp4(v, OP_Blob, n/2, target, 0, zBlob, P4_DYNAMIC);
73076 break;
73078 #endif
73079 case TK_VARIABLE: {
73080 assert( !ExprHasProperty(pExpr, EP_IntValue) );
73081 assert( pExpr->u.zToken!=0 );
73082 assert( pExpr->u.zToken[0]!=0 );
73083 sqlite3VdbeAddOp2(v, OP_Variable, pExpr->iColumn, target);
73084 if( pExpr->u.zToken[1]!=0 ){
73085 sqlite3VdbeChangeP4(v, -1, pExpr->u.zToken, P4_TRANSIENT);
73087 break;
73089 case TK_REGISTER: {
73090 inReg = pExpr->iTable;
73091 break;
73093 case TK_AS: {
73094 inReg = sqlite3ExprCodeTarget(pParse, pExpr->pLeft, target);
73095 break;
73097 #ifndef SQLITE_OMIT_CAST
73098 case TK_CAST: {
73099 /* Expressions of the form: CAST(pLeft AS token) */
73100 int aff, to_op;
73101 inReg = sqlite3ExprCodeTarget(pParse, pExpr->pLeft, target);
73102 assert( !ExprHasProperty(pExpr, EP_IntValue) );
73103 aff = sqlite3AffinityType(pExpr->u.zToken);
73104 to_op = aff - SQLITE_AFF_TEXT + OP_ToText;
73105 assert( to_op==OP_ToText || aff!=SQLITE_AFF_TEXT );
73106 assert( to_op==OP_ToBlob || aff!=SQLITE_AFF_NONE );
73107 assert( to_op==OP_ToNumeric || aff!=SQLITE_AFF_NUMERIC );
73108 assert( to_op==OP_ToInt || aff!=SQLITE_AFF_INTEGER );
73109 assert( to_op==OP_ToReal || aff!=SQLITE_AFF_REAL );
73110 testcase( to_op==OP_ToText );
73111 testcase( to_op==OP_ToBlob );
73112 testcase( to_op==OP_ToNumeric );
73113 testcase( to_op==OP_ToInt );
73114 testcase( to_op==OP_ToReal );
73115 if( inReg!=target ){
73116 sqlite3VdbeAddOp2(v, OP_SCopy, inReg, target);
73117 inReg = target;
73119 sqlite3VdbeAddOp1(v, to_op, inReg);
73120 testcase( usedAsColumnCache(pParse, inReg, inReg) );
73121 sqlite3ExprCacheAffinityChange(pParse, inReg, 1);
73122 break;
73124 #endif /* SQLITE_OMIT_CAST */
73125 case TK_LT:
73126 case TK_LE:
73127 case TK_GT:
73128 case TK_GE:
73129 case TK_NE:
73130 case TK_EQ: {
73131 assert( TK_LT==OP_Lt );
73132 assert( TK_LE==OP_Le );
73133 assert( TK_GT==OP_Gt );
73134 assert( TK_GE==OP_Ge );
73135 assert( TK_EQ==OP_Eq );
73136 assert( TK_NE==OP_Ne );
73137 testcase( op==TK_LT );
73138 testcase( op==TK_LE );
73139 testcase( op==TK_GT );
73140 testcase( op==TK_GE );
73141 testcase( op==TK_EQ );
73142 testcase( op==TK_NE );
73143 r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, &regFree1);
73144 r2 = sqlite3ExprCodeTemp(pParse, pExpr->pRight, &regFree2);
73145 codeCompare(pParse, pExpr->pLeft, pExpr->pRight, op,
73146 r1, r2, inReg, SQLITE_STOREP2);
73147 testcase( regFree1==0 );
73148 testcase( regFree2==0 );
73149 break;
73151 case TK_IS:
73152 case TK_ISNOT: {
73153 testcase( op==TK_IS );
73154 testcase( op==TK_ISNOT );
73155 r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, &regFree1);
73156 r2 = sqlite3ExprCodeTemp(pParse, pExpr->pRight, &regFree2);
73157 op = (op==TK_IS) ? TK_EQ : TK_NE;
73158 codeCompare(pParse, pExpr->pLeft, pExpr->pRight, op,
73159 r1, r2, inReg, SQLITE_STOREP2 | SQLITE_NULLEQ);
73160 testcase( regFree1==0 );
73161 testcase( regFree2==0 );
73162 break;
73164 case TK_AND:
73165 case TK_OR:
73166 case TK_PLUS:
73167 case TK_STAR:
73168 case TK_MINUS:
73169 case TK_REM:
73170 case TK_BITAND:
73171 case TK_BITOR:
73172 case TK_SLASH:
73173 case TK_LSHIFT:
73174 case TK_RSHIFT:
73175 case TK_CONCAT: {
73176 assert( TK_AND==OP_And );
73177 assert( TK_OR==OP_Or );
73178 assert( TK_PLUS==OP_Add );
73179 assert( TK_MINUS==OP_Subtract );
73180 assert( TK_REM==OP_Remainder );
73181 assert( TK_BITAND==OP_BitAnd );
73182 assert( TK_BITOR==OP_BitOr );
73183 assert( TK_SLASH==OP_Divide );
73184 assert( TK_LSHIFT==OP_ShiftLeft );
73185 assert( TK_RSHIFT==OP_ShiftRight );
73186 assert( TK_CONCAT==OP_Concat );
73187 testcase( op==TK_AND );
73188 testcase( op==TK_OR );
73189 testcase( op==TK_PLUS );
73190 testcase( op==TK_MINUS );
73191 testcase( op==TK_REM );
73192 testcase( op==TK_BITAND );
73193 testcase( op==TK_BITOR );
73194 testcase( op==TK_SLASH );
73195 testcase( op==TK_LSHIFT );
73196 testcase( op==TK_RSHIFT );
73197 testcase( op==TK_CONCAT );
73198 r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, &regFree1);
73199 r2 = sqlite3ExprCodeTemp(pParse, pExpr->pRight, &regFree2);
73200 sqlite3VdbeAddOp3(v, op, r2, r1, target);
73201 testcase( regFree1==0 );
73202 testcase( regFree2==0 );
73203 break;
73205 case TK_UMINUS: {
73206 Expr *pLeft = pExpr->pLeft;
73207 assert( pLeft );
73208 if( pLeft->op==TK_INTEGER ){
73209 codeInteger(pParse, pLeft, 1, target);
73210 #ifndef SQLITE_OMIT_FLOATING_POINT
73211 }else if( pLeft->op==TK_FLOAT ){
73212 assert( !ExprHasProperty(pExpr, EP_IntValue) );
73213 codeReal(v, pLeft->u.zToken, 1, target);
73214 #endif
73215 }else{
73216 regFree1 = r1 = sqlite3GetTempReg(pParse);
73217 sqlite3VdbeAddOp2(v, OP_Integer, 0, r1);
73218 r2 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, &regFree2);
73219 sqlite3VdbeAddOp3(v, OP_Subtract, r2, r1, target);
73220 testcase( regFree2==0 );
73222 inReg = target;
73223 break;
73225 case TK_BITNOT:
73226 case TK_NOT: {
73227 assert( TK_BITNOT==OP_BitNot );
73228 assert( TK_NOT==OP_Not );
73229 testcase( op==TK_BITNOT );
73230 testcase( op==TK_NOT );
73231 r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, &regFree1);
73232 testcase( regFree1==0 );
73233 inReg = target;
73234 sqlite3VdbeAddOp2(v, op, r1, inReg);
73235 break;
73237 case TK_ISNULL:
73238 case TK_NOTNULL: {
73239 int addr;
73240 assert( TK_ISNULL==OP_IsNull );
73241 assert( TK_NOTNULL==OP_NotNull );
73242 testcase( op==TK_ISNULL );
73243 testcase( op==TK_NOTNULL );
73244 sqlite3VdbeAddOp2(v, OP_Integer, 1, target);
73245 r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, &regFree1);
73246 testcase( regFree1==0 );
73247 addr = sqlite3VdbeAddOp1(v, op, r1);
73248 sqlite3VdbeAddOp2(v, OP_AddImm, target, -1);
73249 sqlite3VdbeJumpHere(v, addr);
73250 break;
73252 case TK_AGG_FUNCTION: {
73253 AggInfo *pInfo = pExpr->pAggInfo;
73254 if( pInfo==0 ){
73255 assert( !ExprHasProperty(pExpr, EP_IntValue) );
73256 sqlite3ErrorMsg(pParse, "misuse of aggregate: %s()", pExpr->u.zToken);
73257 }else{
73258 inReg = pInfo->aFunc[pExpr->iAgg].iMem;
73260 break;
73262 case TK_CONST_FUNC:
73263 case TK_FUNCTION: {
73264 ExprList *pFarg; /* List of function arguments */
73265 int nFarg; /* Number of function arguments */
73266 FuncDef *pDef; /* The function definition object */
73267 int nId; /* Length of the function name in bytes */
73268 const char *zId; /* The function name */
73269 int constMask = 0; /* Mask of function arguments that are constant */
73270 int i; /* Loop counter */
73271 u8 enc = ENC(db); /* The text encoding used by this database */
73272 CollSeq *pColl = 0; /* A collating sequence */
73274 assert( !ExprHasProperty(pExpr, EP_xIsSelect) );
73275 testcase( op==TK_CONST_FUNC );
73276 testcase( op==TK_FUNCTION );
73277 if( ExprHasAnyProperty(pExpr, EP_TokenOnly) ){
73278 pFarg = 0;
73279 }else{
73280 pFarg = pExpr->x.pList;
73282 nFarg = pFarg ? pFarg->nExpr : 0;
73283 assert( !ExprHasProperty(pExpr, EP_IntValue) );
73284 zId = pExpr->u.zToken;
73285 nId = sqlite3Strlen30(zId);
73286 pDef = sqlite3FindFunction(db, zId, nId, nFarg, enc, 0);
73287 if( pDef==0 ){
73288 sqlite3ErrorMsg(pParse, "unknown function: %.*s()", nId, zId);
73289 break;
73292 /* Attempt a direct implementation of the built-in COALESCE() and
73293 ** IFNULL() functions. This avoids unnecessary evalation of
73294 ** arguments past the first non-NULL argument.
73296 if( pDef->flags & SQLITE_FUNC_COALESCE ){
73297 int endCoalesce = sqlite3VdbeMakeLabel(v);
73298 assert( nFarg>=2 );
73299 sqlite3ExprCode(pParse, pFarg->a[0].pExpr, target);
73300 for(i=1; i<nFarg; i++){
73301 sqlite3VdbeAddOp2(v, OP_NotNull, target, endCoalesce);
73302 sqlite3ExprCacheRemove(pParse, target, 1);
73303 sqlite3ExprCachePush(pParse);
73304 sqlite3ExprCode(pParse, pFarg->a[i].pExpr, target);
73305 sqlite3ExprCachePop(pParse, 1);
73307 sqlite3VdbeResolveLabel(v, endCoalesce);
73308 break;
73312 if( pFarg ){
73313 r1 = sqlite3GetTempRange(pParse, nFarg);
73314 sqlite3ExprCachePush(pParse); /* Ticket 2ea2425d34be */
73315 sqlite3ExprCodeExprList(pParse, pFarg, r1, 1);
73316 sqlite3ExprCachePop(pParse, 1); /* Ticket 2ea2425d34be */
73317 }else{
73318 r1 = 0;
73320 #ifndef SQLITE_OMIT_VIRTUALTABLE
73321 /* Possibly overload the function if the first argument is
73322 ** a virtual table column.
73324 ** For infix functions (LIKE, GLOB, REGEXP, and MATCH) use the
73325 ** second argument, not the first, as the argument to test to
73326 ** see if it is a column in a virtual table. This is done because
73327 ** the left operand of infix functions (the operand we want to
73328 ** control overloading) ends up as the second argument to the
73329 ** function. The expression "A glob B" is equivalent to
73330 ** "glob(B,A). We want to use the A in "A glob B" to test
73331 ** for function overloading. But we use the B term in "glob(B,A)".
73333 if( nFarg>=2 && (pExpr->flags & EP_InfixFunc) ){
73334 pDef = sqlite3VtabOverloadFunction(db, pDef, nFarg, pFarg->a[1].pExpr);
73335 }else if( nFarg>0 ){
73336 pDef = sqlite3VtabOverloadFunction(db, pDef, nFarg, pFarg->a[0].pExpr);
73338 #endif
73339 for(i=0; i<nFarg; i++){
73340 if( i<32 && sqlite3ExprIsConstant(pFarg->a[i].pExpr) ){
73341 constMask |= (1<<i);
73343 if( (pDef->flags & SQLITE_FUNC_NEEDCOLL)!=0 && !pColl ){
73344 pColl = sqlite3ExprCollSeq(pParse, pFarg->a[i].pExpr);
73347 if( pDef->flags & SQLITE_FUNC_NEEDCOLL ){
73348 if( !pColl ) pColl = db->pDfltColl;
73349 sqlite3VdbeAddOp4(v, OP_CollSeq, 0, 0, 0, (char *)pColl, P4_COLLSEQ);
73351 sqlite3VdbeAddOp4(v, OP_Function, constMask, r1, target,
73352 (char*)pDef, P4_FUNCDEF);
73353 sqlite3VdbeChangeP5(v, (u8)nFarg);
73354 if( nFarg ){
73355 sqlite3ReleaseTempRange(pParse, r1, nFarg);
73357 break;
73359 #ifndef SQLITE_OMIT_SUBQUERY
73360 case TK_EXISTS:
73361 case TK_SELECT: {
73362 testcase( op==TK_EXISTS );
73363 testcase( op==TK_SELECT );
73364 inReg = sqlite3CodeSubselect(pParse, pExpr, 0, 0);
73365 break;
73367 case TK_IN: {
73368 int destIfFalse = sqlite3VdbeMakeLabel(v);
73369 int destIfNull = sqlite3VdbeMakeLabel(v);
73370 sqlite3VdbeAddOp2(v, OP_Null, 0, target);
73371 sqlite3ExprCodeIN(pParse, pExpr, destIfFalse, destIfNull);
73372 sqlite3VdbeAddOp2(v, OP_Integer, 1, target);
73373 sqlite3VdbeResolveLabel(v, destIfFalse);
73374 sqlite3VdbeAddOp2(v, OP_AddImm, target, 0);
73375 sqlite3VdbeResolveLabel(v, destIfNull);
73376 break;
73378 #endif /* SQLITE_OMIT_SUBQUERY */
73382 ** x BETWEEN y AND z
73384 ** This is equivalent to
73386 ** x>=y AND x<=z
73388 ** X is stored in pExpr->pLeft.
73389 ** Y is stored in pExpr->pList->a[0].pExpr.
73390 ** Z is stored in pExpr->pList->a[1].pExpr.
73392 case TK_BETWEEN: {
73393 Expr *pLeft = pExpr->pLeft;
73394 struct ExprList_item *pLItem = pExpr->x.pList->a;
73395 Expr *pRight = pLItem->pExpr;
73397 r1 = sqlite3ExprCodeTemp(pParse, pLeft, &regFree1);
73398 r2 = sqlite3ExprCodeTemp(pParse, pRight, &regFree2);
73399 testcase( regFree1==0 );
73400 testcase( regFree2==0 );
73401 r3 = sqlite3GetTempReg(pParse);
73402 r4 = sqlite3GetTempReg(pParse);
73403 codeCompare(pParse, pLeft, pRight, OP_Ge,
73404 r1, r2, r3, SQLITE_STOREP2);
73405 pLItem++;
73406 pRight = pLItem->pExpr;
73407 sqlite3ReleaseTempReg(pParse, regFree2);
73408 r2 = sqlite3ExprCodeTemp(pParse, pRight, &regFree2);
73409 testcase( regFree2==0 );
73410 codeCompare(pParse, pLeft, pRight, OP_Le, r1, r2, r4, SQLITE_STOREP2);
73411 sqlite3VdbeAddOp3(v, OP_And, r3, r4, target);
73412 sqlite3ReleaseTempReg(pParse, r3);
73413 sqlite3ReleaseTempReg(pParse, r4);
73414 break;
73416 case TK_UPLUS: {
73417 inReg = sqlite3ExprCodeTarget(pParse, pExpr->pLeft, target);
73418 break;
73421 case TK_TRIGGER: {
73422 /* If the opcode is TK_TRIGGER, then the expression is a reference
73423 ** to a column in the new.* or old.* pseudo-tables available to
73424 ** trigger programs. In this case Expr.iTable is set to 1 for the
73425 ** new.* pseudo-table, or 0 for the old.* pseudo-table. Expr.iColumn
73426 ** is set to the column of the pseudo-table to read, or to -1 to
73427 ** read the rowid field.
73429 ** The expression is implemented using an OP_Param opcode. The p1
73430 ** parameter is set to 0 for an old.rowid reference, or to (i+1)
73431 ** to reference another column of the old.* pseudo-table, where
73432 ** i is the index of the column. For a new.rowid reference, p1 is
73433 ** set to (n+1), where n is the number of columns in each pseudo-table.
73434 ** For a reference to any other column in the new.* pseudo-table, p1
73435 ** is set to (n+2+i), where n and i are as defined previously. For
73436 ** example, if the table on which triggers are being fired is
73437 ** declared as:
73439 ** CREATE TABLE t1(a, b);
73441 ** Then p1 is interpreted as follows:
73443 ** p1==0 -> old.rowid p1==3 -> new.rowid
73444 ** p1==1 -> old.a p1==4 -> new.a
73445 ** p1==2 -> old.b p1==5 -> new.b
73447 Table *pTab = pExpr->pTab;
73448 int p1 = pExpr->iTable * (pTab->nCol+1) + 1 + pExpr->iColumn;
73450 assert( pExpr->iTable==0 || pExpr->iTable==1 );
73451 assert( pExpr->iColumn>=-1 && pExpr->iColumn<pTab->nCol );
73452 assert( pTab->iPKey<0 || pExpr->iColumn!=pTab->iPKey );
73453 assert( p1>=0 && p1<(pTab->nCol*2+2) );
73455 sqlite3VdbeAddOp2(v, OP_Param, p1, target);
73456 VdbeComment((v, "%s.%s -> $%d",
73457 (pExpr->iTable ? "new" : "old"),
73458 (pExpr->iColumn<0 ? "rowid" : pExpr->pTab->aCol[pExpr->iColumn].zName),
73459 target
73462 #ifndef SQLITE_OMIT_FLOATING_POINT
73463 /* If the column has REAL affinity, it may currently be stored as an
73464 ** integer. Use OP_RealAffinity to make sure it is really real. */
73465 if( pExpr->iColumn>=0
73466 && pTab->aCol[pExpr->iColumn].affinity==SQLITE_AFF_REAL
73468 sqlite3VdbeAddOp1(v, OP_RealAffinity, target);
73470 #endif
73471 break;
73476 ** Form A:
73477 ** CASE x WHEN e1 THEN r1 WHEN e2 THEN r2 ... WHEN eN THEN rN ELSE y END
73479 ** Form B:
73480 ** CASE WHEN e1 THEN r1 WHEN e2 THEN r2 ... WHEN eN THEN rN ELSE y END
73482 ** Form A is can be transformed into the equivalent form B as follows:
73483 ** CASE WHEN x=e1 THEN r1 WHEN x=e2 THEN r2 ...
73484 ** WHEN x=eN THEN rN ELSE y END
73486 ** X (if it exists) is in pExpr->pLeft.
73487 ** Y is in pExpr->pRight. The Y is also optional. If there is no
73488 ** ELSE clause and no other term matches, then the result of the
73489 ** exprssion is NULL.
73490 ** Ei is in pExpr->pList->a[i*2] and Ri is pExpr->pList->a[i*2+1].
73492 ** The result of the expression is the Ri for the first matching Ei,
73493 ** or if there is no matching Ei, the ELSE term Y, or if there is
73494 ** no ELSE term, NULL.
73496 default: assert( op==TK_CASE ); {
73497 int endLabel; /* GOTO label for end of CASE stmt */
73498 int nextCase; /* GOTO label for next WHEN clause */
73499 int nExpr; /* 2x number of WHEN terms */
73500 int i; /* Loop counter */
73501 ExprList *pEList; /* List of WHEN terms */
73502 struct ExprList_item *aListelem; /* Array of WHEN terms */
73503 Expr opCompare; /* The X==Ei expression */
73504 Expr cacheX; /* Cached expression X */
73505 Expr *pX; /* The X expression */
73506 Expr *pTest = 0; /* X==Ei (form A) or just Ei (form B) */
73507 VVA_ONLY( int iCacheLevel = pParse->iCacheLevel; )
73509 assert( !ExprHasProperty(pExpr, EP_xIsSelect) && pExpr->x.pList );
73510 assert((pExpr->x.pList->nExpr % 2) == 0);
73511 assert(pExpr->x.pList->nExpr > 0);
73512 pEList = pExpr->x.pList;
73513 aListelem = pEList->a;
73514 nExpr = pEList->nExpr;
73515 endLabel = sqlite3VdbeMakeLabel(v);
73516 if( (pX = pExpr->pLeft)!=0 ){
73517 cacheX = *pX;
73518 testcase( pX->op==TK_COLUMN );
73519 testcase( pX->op==TK_REGISTER );
73520 cacheX.iTable = sqlite3ExprCodeTemp(pParse, pX, &regFree1);
73521 testcase( regFree1==0 );
73522 cacheX.op = TK_REGISTER;
73523 opCompare.op = TK_EQ;
73524 opCompare.pLeft = &cacheX;
73525 pTest = &opCompare;
73526 /* Ticket b351d95f9cd5ef17e9d9dbae18f5ca8611190001:
73527 ** The value in regFree1 might get SCopy-ed into the file result.
73528 ** So make sure that the regFree1 register is not reused for other
73529 ** purposes and possibly overwritten. */
73530 regFree1 = 0;
73532 for(i=0; i<nExpr; i=i+2){
73533 sqlite3ExprCachePush(pParse);
73534 if( pX ){
73535 assert( pTest!=0 );
73536 opCompare.pRight = aListelem[i].pExpr;
73537 }else{
73538 pTest = aListelem[i].pExpr;
73540 nextCase = sqlite3VdbeMakeLabel(v);
73541 testcase( pTest->op==TK_COLUMN );
73542 sqlite3ExprIfFalse(pParse, pTest, nextCase, SQLITE_JUMPIFNULL);
73543 testcase( aListelem[i+1].pExpr->op==TK_COLUMN );
73544 testcase( aListelem[i+1].pExpr->op==TK_REGISTER );
73545 sqlite3ExprCode(pParse, aListelem[i+1].pExpr, target);
73546 sqlite3VdbeAddOp2(v, OP_Goto, 0, endLabel);
73547 sqlite3ExprCachePop(pParse, 1);
73548 sqlite3VdbeResolveLabel(v, nextCase);
73550 if( pExpr->pRight ){
73551 sqlite3ExprCachePush(pParse);
73552 sqlite3ExprCode(pParse, pExpr->pRight, target);
73553 sqlite3ExprCachePop(pParse, 1);
73554 }else{
73555 sqlite3VdbeAddOp2(v, OP_Null, 0, target);
73557 assert( db->mallocFailed || pParse->nErr>0
73558 || pParse->iCacheLevel==iCacheLevel );
73559 sqlite3VdbeResolveLabel(v, endLabel);
73560 break;
73562 #ifndef SQLITE_OMIT_TRIGGER
73563 case TK_RAISE: {
73564 assert( pExpr->affinity==OE_Rollback
73565 || pExpr->affinity==OE_Abort
73566 || pExpr->affinity==OE_Fail
73567 || pExpr->affinity==OE_Ignore
73569 if( !pParse->pTriggerTab ){
73570 sqlite3ErrorMsg(pParse,
73571 "RAISE() may only be used within a trigger-program");
73572 return 0;
73574 if( pExpr->affinity==OE_Abort ){
73575 sqlite3MayAbort(pParse);
73577 assert( !ExprHasProperty(pExpr, EP_IntValue) );
73578 if( pExpr->affinity==OE_Ignore ){
73579 sqlite3VdbeAddOp4(
73580 v, OP_Halt, SQLITE_OK, OE_Ignore, 0, pExpr->u.zToken,0);
73581 }else{
73582 sqlite3HaltConstraint(pParse, pExpr->affinity, pExpr->u.zToken, 0);
73585 break;
73587 #endif
73589 sqlite3ReleaseTempReg(pParse, regFree1);
73590 sqlite3ReleaseTempReg(pParse, regFree2);
73591 return inReg;
73595 ** Generate code to evaluate an expression and store the results
73596 ** into a register. Return the register number where the results
73597 ** are stored.
73599 ** If the register is a temporary register that can be deallocated,
73600 ** then write its number into *pReg. If the result register is not
73601 ** a temporary, then set *pReg to zero.
73603 SQLITE_PRIVATE int sqlite3ExprCodeTemp(Parse *pParse, Expr *pExpr, int *pReg){
73604 int r1 = sqlite3GetTempReg(pParse);
73605 int r2 = sqlite3ExprCodeTarget(pParse, pExpr, r1);
73606 if( r2==r1 ){
73607 *pReg = r1;
73608 }else{
73609 sqlite3ReleaseTempReg(pParse, r1);
73610 *pReg = 0;
73612 return r2;
73616 ** Generate code that will evaluate expression pExpr and store the
73617 ** results in register target. The results are guaranteed to appear
73618 ** in register target.
73620 SQLITE_PRIVATE int sqlite3ExprCode(Parse *pParse, Expr *pExpr, int target){
73621 int inReg;
73623 assert( target>0 && target<=pParse->nMem );
73624 if( pExpr && pExpr->op==TK_REGISTER ){
73625 sqlite3VdbeAddOp2(pParse->pVdbe, OP_Copy, pExpr->iTable, target);
73626 }else{
73627 inReg = sqlite3ExprCodeTarget(pParse, pExpr, target);
73628 assert( pParse->pVdbe || pParse->db->mallocFailed );
73629 if( inReg!=target && pParse->pVdbe ){
73630 sqlite3VdbeAddOp2(pParse->pVdbe, OP_SCopy, inReg, target);
73633 return target;
73637 ** Generate code that evalutes the given expression and puts the result
73638 ** in register target.
73640 ** Also make a copy of the expression results into another "cache" register
73641 ** and modify the expression so that the next time it is evaluated,
73642 ** the result is a copy of the cache register.
73644 ** This routine is used for expressions that are used multiple
73645 ** times. They are evaluated once and the results of the expression
73646 ** are reused.
73648 SQLITE_PRIVATE int sqlite3ExprCodeAndCache(Parse *pParse, Expr *pExpr, int target){
73649 Vdbe *v = pParse->pVdbe;
73650 int inReg;
73651 inReg = sqlite3ExprCode(pParse, pExpr, target);
73652 assert( target>0 );
73653 /* This routine is called for terms to INSERT or UPDATE. And the only
73654 ** other place where expressions can be converted into TK_REGISTER is
73655 ** in WHERE clause processing. So as currently implemented, there is
73656 ** no way for a TK_REGISTER to exist here. But it seems prudent to
73657 ** keep the ALWAYS() in case the conditions above change with future
73658 ** modifications or enhancements. */
73659 if( ALWAYS(pExpr->op!=TK_REGISTER) ){
73660 int iMem;
73661 iMem = ++pParse->nMem;
73662 sqlite3VdbeAddOp2(v, OP_Copy, inReg, iMem);
73663 pExpr->iTable = iMem;
73664 pExpr->op2 = pExpr->op;
73665 pExpr->op = TK_REGISTER;
73667 return inReg;
73671 ** Return TRUE if pExpr is an constant expression that is appropriate
73672 ** for factoring out of a loop. Appropriate expressions are:
73674 ** * Any expression that evaluates to two or more opcodes.
73676 ** * Any OP_Integer, OP_Real, OP_String, OP_Blob, OP_Null,
73677 ** or OP_Variable that does not need to be placed in a
73678 ** specific register.
73680 ** There is no point in factoring out single-instruction constant
73681 ** expressions that need to be placed in a particular register.
73682 ** We could factor them out, but then we would end up adding an
73683 ** OP_SCopy instruction to move the value into the correct register
73684 ** later. We might as well just use the original instruction and
73685 ** avoid the OP_SCopy.
73687 static int isAppropriateForFactoring(Expr *p){
73688 if( !sqlite3ExprIsConstantNotJoin(p) ){
73689 return 0; /* Only constant expressions are appropriate for factoring */
73691 if( (p->flags & EP_FixedDest)==0 ){
73692 return 1; /* Any constant without a fixed destination is appropriate */
73694 while( p->op==TK_UPLUS ) p = p->pLeft;
73695 switch( p->op ){
73696 #ifndef SQLITE_OMIT_BLOB_LITERAL
73697 case TK_BLOB:
73698 #endif
73699 case TK_VARIABLE:
73700 case TK_INTEGER:
73701 case TK_FLOAT:
73702 case TK_NULL:
73703 case TK_STRING: {
73704 testcase( p->op==TK_BLOB );
73705 testcase( p->op==TK_VARIABLE );
73706 testcase( p->op==TK_INTEGER );
73707 testcase( p->op==TK_FLOAT );
73708 testcase( p->op==TK_NULL );
73709 testcase( p->op==TK_STRING );
73710 /* Single-instruction constants with a fixed destination are
73711 ** better done in-line. If we factor them, they will just end
73712 ** up generating an OP_SCopy to move the value to the destination
73713 ** register. */
73714 return 0;
73716 case TK_UMINUS: {
73717 if( p->pLeft->op==TK_FLOAT || p->pLeft->op==TK_INTEGER ){
73718 return 0;
73720 break;
73722 default: {
73723 break;
73726 return 1;
73730 ** If pExpr is a constant expression that is appropriate for
73731 ** factoring out of a loop, then evaluate the expression
73732 ** into a register and convert the expression into a TK_REGISTER
73733 ** expression.
73735 static int evalConstExpr(Walker *pWalker, Expr *pExpr){
73736 Parse *pParse = pWalker->pParse;
73737 switch( pExpr->op ){
73738 case TK_IN:
73739 case TK_REGISTER: {
73740 return WRC_Prune;
73742 case TK_FUNCTION:
73743 case TK_AGG_FUNCTION:
73744 case TK_CONST_FUNC: {
73745 /* The arguments to a function have a fixed destination.
73746 ** Mark them this way to avoid generated unneeded OP_SCopy
73747 ** instructions.
73749 ExprList *pList = pExpr->x.pList;
73750 assert( !ExprHasProperty(pExpr, EP_xIsSelect) );
73751 if( pList ){
73752 int i = pList->nExpr;
73753 struct ExprList_item *pItem = pList->a;
73754 for(; i>0; i--, pItem++){
73755 if( ALWAYS(pItem->pExpr) ) pItem->pExpr->flags |= EP_FixedDest;
73758 break;
73761 if( isAppropriateForFactoring(pExpr) ){
73762 int r1 = ++pParse->nMem;
73763 int r2;
73764 r2 = sqlite3ExprCodeTarget(pParse, pExpr, r1);
73765 if( NEVER(r1!=r2) ) sqlite3ReleaseTempReg(pParse, r1);
73766 pExpr->op2 = pExpr->op;
73767 pExpr->op = TK_REGISTER;
73768 pExpr->iTable = r2;
73769 return WRC_Prune;
73771 return WRC_Continue;
73775 ** Preevaluate constant subexpressions within pExpr and store the
73776 ** results in registers. Modify pExpr so that the constant subexpresions
73777 ** are TK_REGISTER opcodes that refer to the precomputed values.
73779 ** This routine is a no-op if the jump to the cookie-check code has
73780 ** already occur. Since the cookie-check jump is generated prior to
73781 ** any other serious processing, this check ensures that there is no
73782 ** way to accidently bypass the constant initializations.
73784 ** This routine is also a no-op if the SQLITE_FactorOutConst optimization
73785 ** is disabled via the sqlite3_test_control(SQLITE_TESTCTRL_OPTIMIZATIONS)
73786 ** interface. This allows test logic to verify that the same answer is
73787 ** obtained for queries regardless of whether or not constants are
73788 ** precomputed into registers or if they are inserted in-line.
73790 SQLITE_PRIVATE void sqlite3ExprCodeConstants(Parse *pParse, Expr *pExpr){
73791 Walker w;
73792 if( pParse->cookieGoto ) return;
73793 if( (pParse->db->flags & SQLITE_FactorOutConst)!=0 ) return;
73794 w.xExprCallback = evalConstExpr;
73795 w.xSelectCallback = 0;
73796 w.pParse = pParse;
73797 sqlite3WalkExpr(&w, pExpr);
73802 ** Generate code that pushes the value of every element of the given
73803 ** expression list into a sequence of registers beginning at target.
73805 ** Return the number of elements evaluated.
73807 SQLITE_PRIVATE int sqlite3ExprCodeExprList(
73808 Parse *pParse, /* Parsing context */
73809 ExprList *pList, /* The expression list to be coded */
73810 int target, /* Where to write results */
73811 int doHardCopy /* Make a hard copy of every element */
73813 struct ExprList_item *pItem;
73814 int i, n;
73815 assert( pList!=0 );
73816 assert( target>0 );
73817 assert( pParse->pVdbe!=0 ); /* Never gets this far otherwise */
73818 n = pList->nExpr;
73819 for(pItem=pList->a, i=0; i<n; i++, pItem++){
73820 Expr *pExpr = pItem->pExpr;
73821 int inReg = sqlite3ExprCodeTarget(pParse, pExpr, target+i);
73822 if( inReg!=target+i ){
73823 sqlite3VdbeAddOp2(pParse->pVdbe, doHardCopy ? OP_Copy : OP_SCopy,
73824 inReg, target+i);
73827 return n;
73831 ** Generate code for a BETWEEN operator.
73833 ** x BETWEEN y AND z
73835 ** The above is equivalent to
73837 ** x>=y AND x<=z
73839 ** Code it as such, taking care to do the common subexpression
73840 ** elementation of x.
73842 static void exprCodeBetween(
73843 Parse *pParse, /* Parsing and code generating context */
73844 Expr *pExpr, /* The BETWEEN expression */
73845 int dest, /* Jump here if the jump is taken */
73846 int jumpIfTrue, /* Take the jump if the BETWEEN is true */
73847 int jumpIfNull /* Take the jump if the BETWEEN is NULL */
73849 Expr exprAnd; /* The AND operator in x>=y AND x<=z */
73850 Expr compLeft; /* The x>=y term */
73851 Expr compRight; /* The x<=z term */
73852 Expr exprX; /* The x subexpression */
73853 int regFree1 = 0; /* Temporary use register */
73855 assert( !ExprHasProperty(pExpr, EP_xIsSelect) );
73856 exprX = *pExpr->pLeft;
73857 exprAnd.op = TK_AND;
73858 exprAnd.pLeft = &compLeft;
73859 exprAnd.pRight = &compRight;
73860 compLeft.op = TK_GE;
73861 compLeft.pLeft = &exprX;
73862 compLeft.pRight = pExpr->x.pList->a[0].pExpr;
73863 compRight.op = TK_LE;
73864 compRight.pLeft = &exprX;
73865 compRight.pRight = pExpr->x.pList->a[1].pExpr;
73866 exprX.iTable = sqlite3ExprCodeTemp(pParse, &exprX, &regFree1);
73867 exprX.op = TK_REGISTER;
73868 if( jumpIfTrue ){
73869 sqlite3ExprIfTrue(pParse, &exprAnd, dest, jumpIfNull);
73870 }else{
73871 sqlite3ExprIfFalse(pParse, &exprAnd, dest, jumpIfNull);
73873 sqlite3ReleaseTempReg(pParse, regFree1);
73875 /* Ensure adequate test coverage */
73876 testcase( jumpIfTrue==0 && jumpIfNull==0 && regFree1==0 );
73877 testcase( jumpIfTrue==0 && jumpIfNull==0 && regFree1!=0 );
73878 testcase( jumpIfTrue==0 && jumpIfNull!=0 && regFree1==0 );
73879 testcase( jumpIfTrue==0 && jumpIfNull!=0 && regFree1!=0 );
73880 testcase( jumpIfTrue!=0 && jumpIfNull==0 && regFree1==0 );
73881 testcase( jumpIfTrue!=0 && jumpIfNull==0 && regFree1!=0 );
73882 testcase( jumpIfTrue!=0 && jumpIfNull!=0 && regFree1==0 );
73883 testcase( jumpIfTrue!=0 && jumpIfNull!=0 && regFree1!=0 );
73887 ** Generate code for a boolean expression such that a jump is made
73888 ** to the label "dest" if the expression is true but execution
73889 ** continues straight thru if the expression is false.
73891 ** If the expression evaluates to NULL (neither true nor false), then
73892 ** take the jump if the jumpIfNull flag is SQLITE_JUMPIFNULL.
73894 ** This code depends on the fact that certain token values (ex: TK_EQ)
73895 ** are the same as opcode values (ex: OP_Eq) that implement the corresponding
73896 ** operation. Special comments in vdbe.c and the mkopcodeh.awk script in
73897 ** the make process cause these values to align. Assert()s in the code
73898 ** below verify that the numbers are aligned correctly.
73900 SQLITE_PRIVATE void sqlite3ExprIfTrue(Parse *pParse, Expr *pExpr, int dest, int jumpIfNull){
73901 Vdbe *v = pParse->pVdbe;
73902 int op = 0;
73903 int regFree1 = 0;
73904 int regFree2 = 0;
73905 int r1, r2;
73907 assert( jumpIfNull==SQLITE_JUMPIFNULL || jumpIfNull==0 );
73908 if( NEVER(v==0) ) return; /* Existance of VDBE checked by caller */
73909 if( NEVER(pExpr==0) ) return; /* No way this can happen */
73910 op = pExpr->op;
73911 switch( op ){
73912 case TK_AND: {
73913 int d2 = sqlite3VdbeMakeLabel(v);
73914 testcase( jumpIfNull==0 );
73915 sqlite3ExprCachePush(pParse);
73916 sqlite3ExprIfFalse(pParse, pExpr->pLeft, d2,jumpIfNull^SQLITE_JUMPIFNULL);
73917 sqlite3ExprIfTrue(pParse, pExpr->pRight, dest, jumpIfNull);
73918 sqlite3VdbeResolveLabel(v, d2);
73919 sqlite3ExprCachePop(pParse, 1);
73920 break;
73922 case TK_OR: {
73923 testcase( jumpIfNull==0 );
73924 sqlite3ExprIfTrue(pParse, pExpr->pLeft, dest, jumpIfNull);
73925 sqlite3ExprIfTrue(pParse, pExpr->pRight, dest, jumpIfNull);
73926 break;
73928 case TK_NOT: {
73929 testcase( jumpIfNull==0 );
73930 sqlite3ExprIfFalse(pParse, pExpr->pLeft, dest, jumpIfNull);
73931 break;
73933 case TK_LT:
73934 case TK_LE:
73935 case TK_GT:
73936 case TK_GE:
73937 case TK_NE:
73938 case TK_EQ: {
73939 assert( TK_LT==OP_Lt );
73940 assert( TK_LE==OP_Le );
73941 assert( TK_GT==OP_Gt );
73942 assert( TK_GE==OP_Ge );
73943 assert( TK_EQ==OP_Eq );
73944 assert( TK_NE==OP_Ne );
73945 testcase( op==TK_LT );
73946 testcase( op==TK_LE );
73947 testcase( op==TK_GT );
73948 testcase( op==TK_GE );
73949 testcase( op==TK_EQ );
73950 testcase( op==TK_NE );
73951 testcase( jumpIfNull==0 );
73952 r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, &regFree1);
73953 r2 = sqlite3ExprCodeTemp(pParse, pExpr->pRight, &regFree2);
73954 codeCompare(pParse, pExpr->pLeft, pExpr->pRight, op,
73955 r1, r2, dest, jumpIfNull);
73956 testcase( regFree1==0 );
73957 testcase( regFree2==0 );
73958 break;
73960 case TK_IS:
73961 case TK_ISNOT: {
73962 testcase( op==TK_IS );
73963 testcase( op==TK_ISNOT );
73964 r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, &regFree1);
73965 r2 = sqlite3ExprCodeTemp(pParse, pExpr->pRight, &regFree2);
73966 op = (op==TK_IS) ? TK_EQ : TK_NE;
73967 codeCompare(pParse, pExpr->pLeft, pExpr->pRight, op,
73968 r1, r2, dest, SQLITE_NULLEQ);
73969 testcase( regFree1==0 );
73970 testcase( regFree2==0 );
73971 break;
73973 case TK_ISNULL:
73974 case TK_NOTNULL: {
73975 assert( TK_ISNULL==OP_IsNull );
73976 assert( TK_NOTNULL==OP_NotNull );
73977 testcase( op==TK_ISNULL );
73978 testcase( op==TK_NOTNULL );
73979 r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, &regFree1);
73980 sqlite3VdbeAddOp2(v, op, r1, dest);
73981 testcase( regFree1==0 );
73982 break;
73984 case TK_BETWEEN: {
73985 testcase( jumpIfNull==0 );
73986 exprCodeBetween(pParse, pExpr, dest, 1, jumpIfNull);
73987 break;
73989 #ifndef SQLITE_OMIT_SUBQUERY
73990 case TK_IN: {
73991 int destIfFalse = sqlite3VdbeMakeLabel(v);
73992 int destIfNull = jumpIfNull ? dest : destIfFalse;
73993 sqlite3ExprCodeIN(pParse, pExpr, destIfFalse, destIfNull);
73994 sqlite3VdbeAddOp2(v, OP_Goto, 0, dest);
73995 sqlite3VdbeResolveLabel(v, destIfFalse);
73996 break;
73998 #endif
73999 default: {
74000 r1 = sqlite3ExprCodeTemp(pParse, pExpr, &regFree1);
74001 sqlite3VdbeAddOp3(v, OP_If, r1, dest, jumpIfNull!=0);
74002 testcase( regFree1==0 );
74003 testcase( jumpIfNull==0 );
74004 break;
74007 sqlite3ReleaseTempReg(pParse, regFree1);
74008 sqlite3ReleaseTempReg(pParse, regFree2);
74012 ** Generate code for a boolean expression such that a jump is made
74013 ** to the label "dest" if the expression is false but execution
74014 ** continues straight thru if the expression is true.
74016 ** If the expression evaluates to NULL (neither true nor false) then
74017 ** jump if jumpIfNull is SQLITE_JUMPIFNULL or fall through if jumpIfNull
74018 ** is 0.
74020 SQLITE_PRIVATE void sqlite3ExprIfFalse(Parse *pParse, Expr *pExpr, int dest, int jumpIfNull){
74021 Vdbe *v = pParse->pVdbe;
74022 int op = 0;
74023 int regFree1 = 0;
74024 int regFree2 = 0;
74025 int r1, r2;
74027 assert( jumpIfNull==SQLITE_JUMPIFNULL || jumpIfNull==0 );
74028 if( NEVER(v==0) ) return; /* Existance of VDBE checked by caller */
74029 if( pExpr==0 ) return;
74031 /* The value of pExpr->op and op are related as follows:
74033 ** pExpr->op op
74034 ** --------- ----------
74035 ** TK_ISNULL OP_NotNull
74036 ** TK_NOTNULL OP_IsNull
74037 ** TK_NE OP_Eq
74038 ** TK_EQ OP_Ne
74039 ** TK_GT OP_Le
74040 ** TK_LE OP_Gt
74041 ** TK_GE OP_Lt
74042 ** TK_LT OP_Ge
74044 ** For other values of pExpr->op, op is undefined and unused.
74045 ** The value of TK_ and OP_ constants are arranged such that we
74046 ** can compute the mapping above using the following expression.
74047 ** Assert()s verify that the computation is correct.
74049 op = ((pExpr->op+(TK_ISNULL&1))^1)-(TK_ISNULL&1);
74051 /* Verify correct alignment of TK_ and OP_ constants
74053 assert( pExpr->op!=TK_ISNULL || op==OP_NotNull );
74054 assert( pExpr->op!=TK_NOTNULL || op==OP_IsNull );
74055 assert( pExpr->op!=TK_NE || op==OP_Eq );
74056 assert( pExpr->op!=TK_EQ || op==OP_Ne );
74057 assert( pExpr->op!=TK_LT || op==OP_Ge );
74058 assert( pExpr->op!=TK_LE || op==OP_Gt );
74059 assert( pExpr->op!=TK_GT || op==OP_Le );
74060 assert( pExpr->op!=TK_GE || op==OP_Lt );
74062 switch( pExpr->op ){
74063 case TK_AND: {
74064 testcase( jumpIfNull==0 );
74065 sqlite3ExprIfFalse(pParse, pExpr->pLeft, dest, jumpIfNull);
74066 sqlite3ExprIfFalse(pParse, pExpr->pRight, dest, jumpIfNull);
74067 break;
74069 case TK_OR: {
74070 int d2 = sqlite3VdbeMakeLabel(v);
74071 testcase( jumpIfNull==0 );
74072 sqlite3ExprCachePush(pParse);
74073 sqlite3ExprIfTrue(pParse, pExpr->pLeft, d2, jumpIfNull^SQLITE_JUMPIFNULL);
74074 sqlite3ExprIfFalse(pParse, pExpr->pRight, dest, jumpIfNull);
74075 sqlite3VdbeResolveLabel(v, d2);
74076 sqlite3ExprCachePop(pParse, 1);
74077 break;
74079 case TK_NOT: {
74080 testcase( jumpIfNull==0 );
74081 sqlite3ExprIfTrue(pParse, pExpr->pLeft, dest, jumpIfNull);
74082 break;
74084 case TK_LT:
74085 case TK_LE:
74086 case TK_GT:
74087 case TK_GE:
74088 case TK_NE:
74089 case TK_EQ: {
74090 testcase( op==TK_LT );
74091 testcase( op==TK_LE );
74092 testcase( op==TK_GT );
74093 testcase( op==TK_GE );
74094 testcase( op==TK_EQ );
74095 testcase( op==TK_NE );
74096 testcase( jumpIfNull==0 );
74097 r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, &regFree1);
74098 r2 = sqlite3ExprCodeTemp(pParse, pExpr->pRight, &regFree2);
74099 codeCompare(pParse, pExpr->pLeft, pExpr->pRight, op,
74100 r1, r2, dest, jumpIfNull);
74101 testcase( regFree1==0 );
74102 testcase( regFree2==0 );
74103 break;
74105 case TK_IS:
74106 case TK_ISNOT: {
74107 testcase( pExpr->op==TK_IS );
74108 testcase( pExpr->op==TK_ISNOT );
74109 r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, &regFree1);
74110 r2 = sqlite3ExprCodeTemp(pParse, pExpr->pRight, &regFree2);
74111 op = (pExpr->op==TK_IS) ? TK_NE : TK_EQ;
74112 codeCompare(pParse, pExpr->pLeft, pExpr->pRight, op,
74113 r1, r2, dest, SQLITE_NULLEQ);
74114 testcase( regFree1==0 );
74115 testcase( regFree2==0 );
74116 break;
74118 case TK_ISNULL:
74119 case TK_NOTNULL: {
74120 testcase( op==TK_ISNULL );
74121 testcase( op==TK_NOTNULL );
74122 r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, &regFree1);
74123 sqlite3VdbeAddOp2(v, op, r1, dest);
74124 testcase( regFree1==0 );
74125 break;
74127 case TK_BETWEEN: {
74128 testcase( jumpIfNull==0 );
74129 exprCodeBetween(pParse, pExpr, dest, 0, jumpIfNull);
74130 break;
74132 #ifndef SQLITE_OMIT_SUBQUERY
74133 case TK_IN: {
74134 if( jumpIfNull ){
74135 sqlite3ExprCodeIN(pParse, pExpr, dest, dest);
74136 }else{
74137 int destIfNull = sqlite3VdbeMakeLabel(v);
74138 sqlite3ExprCodeIN(pParse, pExpr, dest, destIfNull);
74139 sqlite3VdbeResolveLabel(v, destIfNull);
74141 break;
74143 #endif
74144 default: {
74145 r1 = sqlite3ExprCodeTemp(pParse, pExpr, &regFree1);
74146 sqlite3VdbeAddOp3(v, OP_IfNot, r1, dest, jumpIfNull!=0);
74147 testcase( regFree1==0 );
74148 testcase( jumpIfNull==0 );
74149 break;
74152 sqlite3ReleaseTempReg(pParse, regFree1);
74153 sqlite3ReleaseTempReg(pParse, regFree2);
74157 ** Do a deep comparison of two expression trees. Return 0 if the two
74158 ** expressions are completely identical. Return 1 if they differ only
74159 ** by a COLLATE operator at the top level. Return 2 if there are differences
74160 ** other than the top-level COLLATE operator.
74162 ** Sometimes this routine will return 2 even if the two expressions
74163 ** really are equivalent. If we cannot prove that the expressions are
74164 ** identical, we return 2 just to be safe. So if this routine
74165 ** returns 2, then you do not really know for certain if the two
74166 ** expressions are the same. But if you get a 0 or 1 return, then you
74167 ** can be sure the expressions are the same. In the places where
74168 ** this routine is used, it does not hurt to get an extra 2 - that
74169 ** just might result in some slightly slower code. But returning
74170 ** an incorrect 0 or 1 could lead to a malfunction.
74172 SQLITE_PRIVATE int sqlite3ExprCompare(Expr *pA, Expr *pB){
74173 if( pA==0||pB==0 ){
74174 return pB==pA ? 0 : 2;
74176 assert( !ExprHasAnyProperty(pA, EP_TokenOnly|EP_Reduced) );
74177 assert( !ExprHasAnyProperty(pB, EP_TokenOnly|EP_Reduced) );
74178 if( ExprHasProperty(pA, EP_xIsSelect) || ExprHasProperty(pB, EP_xIsSelect) ){
74179 return 2;
74181 if( (pA->flags & EP_Distinct)!=(pB->flags & EP_Distinct) ) return 2;
74182 if( pA->op!=pB->op ) return 2;
74183 if( sqlite3ExprCompare(pA->pLeft, pB->pLeft) ) return 2;
74184 if( sqlite3ExprCompare(pA->pRight, pB->pRight) ) return 2;
74185 if( sqlite3ExprListCompare(pA->x.pList, pB->x.pList) ) return 2;
74186 if( pA->iTable!=pB->iTable || pA->iColumn!=pB->iColumn ) return 2;
74187 if( ExprHasProperty(pA, EP_IntValue) ){
74188 if( !ExprHasProperty(pB, EP_IntValue) || pA->u.iValue!=pB->u.iValue ){
74189 return 2;
74191 }else if( pA->op!=TK_COLUMN && pA->u.zToken ){
74192 if( ExprHasProperty(pB, EP_IntValue) || NEVER(pB->u.zToken==0) ) return 2;
74193 if( sqlite3StrICmp(pA->u.zToken,pB->u.zToken)!=0 ){
74194 return 2;
74197 if( (pA->flags & EP_ExpCollate)!=(pB->flags & EP_ExpCollate) ) return 1;
74198 if( (pA->flags & EP_ExpCollate)!=0 && pA->pColl!=pB->pColl ) return 2;
74199 return 0;
74203 ** Compare two ExprList objects. Return 0 if they are identical and
74204 ** non-zero if they differ in any way.
74206 ** This routine might return non-zero for equivalent ExprLists. The
74207 ** only consequence will be disabled optimizations. But this routine
74208 ** must never return 0 if the two ExprList objects are different, or
74209 ** a malfunction will result.
74211 ** Two NULL pointers are considered to be the same. But a NULL pointer
74212 ** always differs from a non-NULL pointer.
74214 SQLITE_PRIVATE int sqlite3ExprListCompare(ExprList *pA, ExprList *pB){
74215 int i;
74216 if( pA==0 && pB==0 ) return 0;
74217 if( pA==0 || pB==0 ) return 1;
74218 if( pA->nExpr!=pB->nExpr ) return 1;
74219 for(i=0; i<pA->nExpr; i++){
74220 Expr *pExprA = pA->a[i].pExpr;
74221 Expr *pExprB = pB->a[i].pExpr;
74222 if( pA->a[i].sortOrder!=pB->a[i].sortOrder ) return 1;
74223 if( sqlite3ExprCompare(pExprA, pExprB) ) return 1;
74225 return 0;
74229 ** Add a new element to the pAggInfo->aCol[] array. Return the index of
74230 ** the new element. Return a negative number if malloc fails.
74232 static int addAggInfoColumn(sqlite3 *db, AggInfo *pInfo){
74233 int i;
74234 pInfo->aCol = sqlite3ArrayAllocate(
74236 pInfo->aCol,
74237 sizeof(pInfo->aCol[0]),
74239 &pInfo->nColumn,
74240 &pInfo->nColumnAlloc,
74243 return i;
74247 ** Add a new element to the pAggInfo->aFunc[] array. Return the index of
74248 ** the new element. Return a negative number if malloc fails.
74250 static int addAggInfoFunc(sqlite3 *db, AggInfo *pInfo){
74251 int i;
74252 pInfo->aFunc = sqlite3ArrayAllocate(
74253 db,
74254 pInfo->aFunc,
74255 sizeof(pInfo->aFunc[0]),
74257 &pInfo->nFunc,
74258 &pInfo->nFuncAlloc,
74261 return i;
74265 ** This is the xExprCallback for a tree walker. It is used to
74266 ** implement sqlite3ExprAnalyzeAggregates(). See sqlite3ExprAnalyzeAggregates
74267 ** for additional information.
74269 static int analyzeAggregate(Walker *pWalker, Expr *pExpr){
74270 int i;
74271 NameContext *pNC = pWalker->u.pNC;
74272 Parse *pParse = pNC->pParse;
74273 SrcList *pSrcList = pNC->pSrcList;
74274 AggInfo *pAggInfo = pNC->pAggInfo;
74276 switch( pExpr->op ){
74277 case TK_AGG_COLUMN:
74278 case TK_COLUMN: {
74279 testcase( pExpr->op==TK_AGG_COLUMN );
74280 testcase( pExpr->op==TK_COLUMN );
74281 /* Check to see if the column is in one of the tables in the FROM
74282 ** clause of the aggregate query */
74283 if( ALWAYS(pSrcList!=0) ){
74284 struct SrcList_item *pItem = pSrcList->a;
74285 for(i=0; i<pSrcList->nSrc; i++, pItem++){
74286 struct AggInfo_col *pCol;
74287 assert( !ExprHasAnyProperty(pExpr, EP_TokenOnly|EP_Reduced) );
74288 if( pExpr->iTable==pItem->iCursor ){
74289 /* If we reach this point, it means that pExpr refers to a table
74290 ** that is in the FROM clause of the aggregate query.
74292 ** Make an entry for the column in pAggInfo->aCol[] if there
74293 ** is not an entry there already.
74295 int k;
74296 pCol = pAggInfo->aCol;
74297 for(k=0; k<pAggInfo->nColumn; k++, pCol++){
74298 if( pCol->iTable==pExpr->iTable &&
74299 pCol->iColumn==pExpr->iColumn ){
74300 break;
74303 if( (k>=pAggInfo->nColumn)
74304 && (k = addAggInfoColumn(pParse->db, pAggInfo))>=0
74306 pCol = &pAggInfo->aCol[k];
74307 pCol->pTab = pExpr->pTab;
74308 pCol->iTable = pExpr->iTable;
74309 pCol->iColumn = pExpr->iColumn;
74310 pCol->iMem = ++pParse->nMem;
74311 pCol->iSorterColumn = -1;
74312 pCol->pExpr = pExpr;
74313 if( pAggInfo->pGroupBy ){
74314 int j, n;
74315 ExprList *pGB = pAggInfo->pGroupBy;
74316 struct ExprList_item *pTerm = pGB->a;
74317 n = pGB->nExpr;
74318 for(j=0; j<n; j++, pTerm++){
74319 Expr *pE = pTerm->pExpr;
74320 if( pE->op==TK_COLUMN && pE->iTable==pExpr->iTable &&
74321 pE->iColumn==pExpr->iColumn ){
74322 pCol->iSorterColumn = j;
74323 break;
74327 if( pCol->iSorterColumn<0 ){
74328 pCol->iSorterColumn = pAggInfo->nSortingColumn++;
74331 /* There is now an entry for pExpr in pAggInfo->aCol[] (either
74332 ** because it was there before or because we just created it).
74333 ** Convert the pExpr to be a TK_AGG_COLUMN referring to that
74334 ** pAggInfo->aCol[] entry.
74336 ExprSetIrreducible(pExpr);
74337 pExpr->pAggInfo = pAggInfo;
74338 pExpr->op = TK_AGG_COLUMN;
74339 pExpr->iAgg = (i16)k;
74340 break;
74341 } /* endif pExpr->iTable==pItem->iCursor */
74342 } /* end loop over pSrcList */
74344 return WRC_Prune;
74346 case TK_AGG_FUNCTION: {
74347 /* The pNC->nDepth==0 test causes aggregate functions in subqueries
74348 ** to be ignored */
74349 if( pNC->nDepth==0 ){
74350 /* Check to see if pExpr is a duplicate of another aggregate
74351 ** function that is already in the pAggInfo structure
74353 struct AggInfo_func *pItem = pAggInfo->aFunc;
74354 for(i=0; i<pAggInfo->nFunc; i++, pItem++){
74355 if( sqlite3ExprCompare(pItem->pExpr, pExpr)==0 ){
74356 break;
74359 if( i>=pAggInfo->nFunc ){
74360 /* pExpr is original. Make a new entry in pAggInfo->aFunc[]
74362 u8 enc = ENC(pParse->db);
74363 i = addAggInfoFunc(pParse->db, pAggInfo);
74364 if( i>=0 ){
74365 assert( !ExprHasProperty(pExpr, EP_xIsSelect) );
74366 pItem = &pAggInfo->aFunc[i];
74367 pItem->pExpr = pExpr;
74368 pItem->iMem = ++pParse->nMem;
74369 assert( !ExprHasProperty(pExpr, EP_IntValue) );
74370 pItem->pFunc = sqlite3FindFunction(pParse->db,
74371 pExpr->u.zToken, sqlite3Strlen30(pExpr->u.zToken),
74372 pExpr->x.pList ? pExpr->x.pList->nExpr : 0, enc, 0);
74373 if( pExpr->flags & EP_Distinct ){
74374 pItem->iDistinct = pParse->nTab++;
74375 }else{
74376 pItem->iDistinct = -1;
74380 /* Make pExpr point to the appropriate pAggInfo->aFunc[] entry
74382 assert( !ExprHasAnyProperty(pExpr, EP_TokenOnly|EP_Reduced) );
74383 ExprSetIrreducible(pExpr);
74384 pExpr->iAgg = (i16)i;
74385 pExpr->pAggInfo = pAggInfo;
74386 return WRC_Prune;
74390 return WRC_Continue;
74392 static int analyzeAggregatesInSelect(Walker *pWalker, Select *pSelect){
74393 NameContext *pNC = pWalker->u.pNC;
74394 if( pNC->nDepth==0 ){
74395 pNC->nDepth++;
74396 sqlite3WalkSelect(pWalker, pSelect);
74397 pNC->nDepth--;
74398 return WRC_Prune;
74399 }else{
74400 return WRC_Continue;
74405 ** Analyze the given expression looking for aggregate functions and
74406 ** for variables that need to be added to the pParse->aAgg[] array.
74407 ** Make additional entries to the pParse->aAgg[] array as necessary.
74409 ** This routine should only be called after the expression has been
74410 ** analyzed by sqlite3ResolveExprNames().
74412 SQLITE_PRIVATE void sqlite3ExprAnalyzeAggregates(NameContext *pNC, Expr *pExpr){
74413 Walker w;
74414 w.xExprCallback = analyzeAggregate;
74415 w.xSelectCallback = analyzeAggregatesInSelect;
74416 w.u.pNC = pNC;
74417 assert( pNC->pSrcList!=0 );
74418 sqlite3WalkExpr(&w, pExpr);
74422 ** Call sqlite3ExprAnalyzeAggregates() for every expression in an
74423 ** expression list. Return the number of errors.
74425 ** If an error is found, the analysis is cut short.
74427 SQLITE_PRIVATE void sqlite3ExprAnalyzeAggList(NameContext *pNC, ExprList *pList){
74428 struct ExprList_item *pItem;
74429 int i;
74430 if( pList ){
74431 for(pItem=pList->a, i=0; i<pList->nExpr; i++, pItem++){
74432 sqlite3ExprAnalyzeAggregates(pNC, pItem->pExpr);
74438 ** Allocate a single new register for use to hold some intermediate result.
74440 SQLITE_PRIVATE int sqlite3GetTempReg(Parse *pParse){
74441 if( pParse->nTempReg==0 ){
74442 return ++pParse->nMem;
74444 return pParse->aTempReg[--pParse->nTempReg];
74448 ** Deallocate a register, making available for reuse for some other
74449 ** purpose.
74451 ** If a register is currently being used by the column cache, then
74452 ** the dallocation is deferred until the column cache line that uses
74453 ** the register becomes stale.
74455 SQLITE_PRIVATE void sqlite3ReleaseTempReg(Parse *pParse, int iReg){
74456 if( iReg && pParse->nTempReg<ArraySize(pParse->aTempReg) ){
74457 int i;
74458 struct yColCache *p;
74459 for(i=0, p=pParse->aColCache; i<SQLITE_N_COLCACHE; i++, p++){
74460 if( p->iReg==iReg ){
74461 p->tempReg = 1;
74462 return;
74465 pParse->aTempReg[pParse->nTempReg++] = iReg;
74470 ** Allocate or deallocate a block of nReg consecutive registers
74472 SQLITE_PRIVATE int sqlite3GetTempRange(Parse *pParse, int nReg){
74473 int i, n;
74474 i = pParse->iRangeReg;
74475 n = pParse->nRangeReg;
74476 if( nReg<=n ){
74477 assert( !usedAsColumnCache(pParse, i, i+n-1) );
74478 pParse->iRangeReg += nReg;
74479 pParse->nRangeReg -= nReg;
74480 }else{
74481 i = pParse->nMem+1;
74482 pParse->nMem += nReg;
74484 return i;
74486 SQLITE_PRIVATE void sqlite3ReleaseTempRange(Parse *pParse, int iReg, int nReg){
74487 sqlite3ExprCacheRemove(pParse, iReg, nReg);
74488 if( nReg>pParse->nRangeReg ){
74489 pParse->nRangeReg = nReg;
74490 pParse->iRangeReg = iReg;
74494 /************** End of expr.c ************************************************/
74495 /************** Begin file alter.c *******************************************/
74497 ** 2005 February 15
74499 ** The author disclaims copyright to this source code. In place of
74500 ** a legal notice, here is a blessing:
74502 ** May you do good and not evil.
74503 ** May you find forgiveness for yourself and forgive others.
74504 ** May you share freely, never taking more than you give.
74506 *************************************************************************
74507 ** This file contains C code routines that used to generate VDBE code
74508 ** that implements the ALTER TABLE command.
74512 ** The code in this file only exists if we are not omitting the
74513 ** ALTER TABLE logic from the build.
74515 #ifndef SQLITE_OMIT_ALTERTABLE
74519 ** This function is used by SQL generated to implement the
74520 ** ALTER TABLE command. The first argument is the text of a CREATE TABLE or
74521 ** CREATE INDEX command. The second is a table name. The table name in
74522 ** the CREATE TABLE or CREATE INDEX statement is replaced with the third
74523 ** argument and the result returned. Examples:
74525 ** sqlite_rename_table('CREATE TABLE abc(a, b, c)', 'def')
74526 ** -> 'CREATE TABLE def(a, b, c)'
74528 ** sqlite_rename_table('CREATE INDEX i ON abc(a)', 'def')
74529 ** -> 'CREATE INDEX i ON def(a, b, c)'
74531 static void renameTableFunc(
74532 sqlite3_context *context,
74533 int NotUsed,
74534 sqlite3_value **argv
74536 unsigned char const *zSql = sqlite3_value_text(argv[0]);
74537 unsigned char const *zTableName = sqlite3_value_text(argv[1]);
74539 int token;
74540 Token tname;
74541 unsigned char const *zCsr = zSql;
74542 int len = 0;
74543 char *zRet;
74545 sqlite3 *db = sqlite3_context_db_handle(context);
74547 UNUSED_PARAMETER(NotUsed);
74549 /* The principle used to locate the table name in the CREATE TABLE
74550 ** statement is that the table name is the first non-space token that
74551 ** is immediately followed by a TK_LP or TK_USING token.
74553 if( zSql ){
74554 do {
74555 if( !*zCsr ){
74556 /* Ran out of input before finding an opening bracket. Return NULL. */
74557 return;
74560 /* Store the token that zCsr points to in tname. */
74561 tname.z = (char*)zCsr;
74562 tname.n = len;
74564 /* Advance zCsr to the next token. Store that token type in 'token',
74565 ** and its length in 'len' (to be used next iteration of this loop).
74567 do {
74568 zCsr += len;
74569 len = sqlite3GetToken(zCsr, &token);
74570 } while( token==TK_SPACE );
74571 assert( len>0 );
74572 } while( token!=TK_LP && token!=TK_USING );
74574 zRet = sqlite3MPrintf(db, "%.*s\"%w\"%s", ((u8*)tname.z) - zSql, zSql,
74575 zTableName, tname.z+tname.n);
74576 sqlite3_result_text(context, zRet, -1, SQLITE_DYNAMIC);
74581 ** This C function implements an SQL user function that is used by SQL code
74582 ** generated by the ALTER TABLE ... RENAME command to modify the definition
74583 ** of any foreign key constraints that use the table being renamed as the
74584 ** parent table. It is passed three arguments:
74586 ** 1) The complete text of the CREATE TABLE statement being modified,
74587 ** 2) The old name of the table being renamed, and
74588 ** 3) The new name of the table being renamed.
74590 ** It returns the new CREATE TABLE statement. For example:
74592 ** sqlite_rename_parent('CREATE TABLE t1(a REFERENCES t2)', 't2', 't3')
74593 ** -> 'CREATE TABLE t1(a REFERENCES t3)'
74595 #ifndef SQLITE_OMIT_FOREIGN_KEY
74596 static void renameParentFunc(
74597 sqlite3_context *context,
74598 int NotUsed,
74599 sqlite3_value **argv
74601 sqlite3 *db = sqlite3_context_db_handle(context);
74602 char *zOutput = 0;
74603 char *zResult;
74604 unsigned char const *zInput = sqlite3_value_text(argv[0]);
74605 unsigned char const *zOld = sqlite3_value_text(argv[1]);
74606 unsigned char const *zNew = sqlite3_value_text(argv[2]);
74608 unsigned const char *z; /* Pointer to token */
74609 int n; /* Length of token z */
74610 int token; /* Type of token */
74612 UNUSED_PARAMETER(NotUsed);
74613 for(z=zInput; *z; z=z+n){
74614 n = sqlite3GetToken(z, &token);
74615 if( token==TK_REFERENCES ){
74616 char *zParent;
74617 do {
74618 z += n;
74619 n = sqlite3GetToken(z, &token);
74620 }while( token==TK_SPACE );
74622 zParent = sqlite3DbStrNDup(db, (const char *)z, n);
74623 if( zParent==0 ) break;
74624 sqlite3Dequote(zParent);
74625 if( 0==sqlite3StrICmp((const char *)zOld, zParent) ){
74626 char *zOut = sqlite3MPrintf(db, "%s%.*s\"%w\"",
74627 (zOutput?zOutput:""), z-zInput, zInput, (const char *)zNew
74629 sqlite3DbFree(db, zOutput);
74630 zOutput = zOut;
74631 zInput = &z[n];
74633 sqlite3DbFree(db, zParent);
74637 zResult = sqlite3MPrintf(db, "%s%s", (zOutput?zOutput:""), zInput),
74638 sqlite3_result_text(context, zResult, -1, SQLITE_DYNAMIC);
74639 sqlite3DbFree(db, zOutput);
74641 #endif
74643 #ifndef SQLITE_OMIT_TRIGGER
74644 /* This function is used by SQL generated to implement the
74645 ** ALTER TABLE command. The first argument is the text of a CREATE TRIGGER
74646 ** statement. The second is a table name. The table name in the CREATE
74647 ** TRIGGER statement is replaced with the third argument and the result
74648 ** returned. This is analagous to renameTableFunc() above, except for CREATE
74649 ** TRIGGER, not CREATE INDEX and CREATE TABLE.
74651 static void renameTriggerFunc(
74652 sqlite3_context *context,
74653 int NotUsed,
74654 sqlite3_value **argv
74656 unsigned char const *zSql = sqlite3_value_text(argv[0]);
74657 unsigned char const *zTableName = sqlite3_value_text(argv[1]);
74659 int token;
74660 Token tname;
74661 int dist = 3;
74662 unsigned char const *zCsr = zSql;
74663 int len = 0;
74664 char *zRet;
74665 sqlite3 *db = sqlite3_context_db_handle(context);
74667 UNUSED_PARAMETER(NotUsed);
74669 /* The principle used to locate the table name in the CREATE TRIGGER
74670 ** statement is that the table name is the first token that is immediatedly
74671 ** preceded by either TK_ON or TK_DOT and immediatedly followed by one
74672 ** of TK_WHEN, TK_BEGIN or TK_FOR.
74674 if( zSql ){
74675 do {
74677 if( !*zCsr ){
74678 /* Ran out of input before finding the table name. Return NULL. */
74679 return;
74682 /* Store the token that zCsr points to in tname. */
74683 tname.z = (char*)zCsr;
74684 tname.n = len;
74686 /* Advance zCsr to the next token. Store that token type in 'token',
74687 ** and its length in 'len' (to be used next iteration of this loop).
74689 do {
74690 zCsr += len;
74691 len = sqlite3GetToken(zCsr, &token);
74692 }while( token==TK_SPACE );
74693 assert( len>0 );
74695 /* Variable 'dist' stores the number of tokens read since the most
74696 ** recent TK_DOT or TK_ON. This means that when a WHEN, FOR or BEGIN
74697 ** token is read and 'dist' equals 2, the condition stated above
74698 ** to be met.
74700 ** Note that ON cannot be a database, table or column name, so
74701 ** there is no need to worry about syntax like
74702 ** "CREATE TRIGGER ... ON ON.ON BEGIN ..." etc.
74704 dist++;
74705 if( token==TK_DOT || token==TK_ON ){
74706 dist = 0;
74708 } while( dist!=2 || (token!=TK_WHEN && token!=TK_FOR && token!=TK_BEGIN) );
74710 /* Variable tname now contains the token that is the old table-name
74711 ** in the CREATE TRIGGER statement.
74713 zRet = sqlite3MPrintf(db, "%.*s\"%w\"%s", ((u8*)tname.z) - zSql, zSql,
74714 zTableName, tname.z+tname.n);
74715 sqlite3_result_text(context, zRet, -1, SQLITE_DYNAMIC);
74718 #endif /* !SQLITE_OMIT_TRIGGER */
74721 ** Register built-in functions used to help implement ALTER TABLE
74723 SQLITE_PRIVATE void sqlite3AlterFunctions(void){
74724 static SQLITE_WSD FuncDef aAlterTableFuncs[] = {
74725 FUNCTION(sqlite_rename_table, 2, 0, 0, renameTableFunc),
74726 #ifndef SQLITE_OMIT_TRIGGER
74727 FUNCTION(sqlite_rename_trigger, 2, 0, 0, renameTriggerFunc),
74728 #endif
74729 #ifndef SQLITE_OMIT_FOREIGN_KEY
74730 FUNCTION(sqlite_rename_parent, 3, 0, 0, renameParentFunc),
74731 #endif
74733 int i;
74734 FuncDefHash *pHash = &GLOBAL(FuncDefHash, sqlite3GlobalFunctions);
74735 FuncDef *aFunc = (FuncDef*)&GLOBAL(FuncDef, aAlterTableFuncs);
74737 for(i=0; i<ArraySize(aAlterTableFuncs); i++){
74738 sqlite3FuncDefInsert(pHash, &aFunc[i]);
74743 ** This function is used to create the text of expressions of the form:
74745 ** name=<constant1> OR name=<constant2> OR ...
74747 ** If argument zWhere is NULL, then a pointer string containing the text
74748 ** "name=<constant>" is returned, where <constant> is the quoted version
74749 ** of the string passed as argument zConstant. The returned buffer is
74750 ** allocated using sqlite3DbMalloc(). It is the responsibility of the
74751 ** caller to ensure that it is eventually freed.
74753 ** If argument zWhere is not NULL, then the string returned is
74754 ** "<where> OR name=<constant>", where <where> is the contents of zWhere.
74755 ** In this case zWhere is passed to sqlite3DbFree() before returning.
74758 static char *whereOrName(sqlite3 *db, char *zWhere, char *zConstant){
74759 char *zNew;
74760 if( !zWhere ){
74761 zNew = sqlite3MPrintf(db, "name=%Q", zConstant);
74762 }else{
74763 zNew = sqlite3MPrintf(db, "%s OR name=%Q", zWhere, zConstant);
74764 sqlite3DbFree(db, zWhere);
74766 return zNew;
74769 #if !defined(SQLITE_OMIT_FOREIGN_KEY) && !defined(SQLITE_OMIT_TRIGGER)
74771 ** Generate the text of a WHERE expression which can be used to select all
74772 ** tables that have foreign key constraints that refer to table pTab (i.e.
74773 ** constraints for which pTab is the parent table) from the sqlite_master
74774 ** table.
74776 static char *whereForeignKeys(Parse *pParse, Table *pTab){
74777 FKey *p;
74778 char *zWhere = 0;
74779 for(p=sqlite3FkReferences(pTab); p; p=p->pNextTo){
74780 zWhere = whereOrName(pParse->db, zWhere, p->pFrom->zName);
74782 return zWhere;
74784 #endif
74787 ** Generate the text of a WHERE expression which can be used to select all
74788 ** temporary triggers on table pTab from the sqlite_temp_master table. If
74789 ** table pTab has no temporary triggers, or is itself stored in the
74790 ** temporary database, NULL is returned.
74792 static char *whereTempTriggers(Parse *pParse, Table *pTab){
74793 Trigger *pTrig;
74794 char *zWhere = 0;
74795 const Schema *pTempSchema = pParse->db->aDb[1].pSchema; /* Temp db schema */
74797 /* If the table is not located in the temp-db (in which case NULL is
74798 ** returned, loop through the tables list of triggers. For each trigger
74799 ** that is not part of the temp-db schema, add a clause to the WHERE
74800 ** expression being built up in zWhere.
74802 if( pTab->pSchema!=pTempSchema ){
74803 sqlite3 *db = pParse->db;
74804 for(pTrig=sqlite3TriggerList(pParse, pTab); pTrig; pTrig=pTrig->pNext){
74805 if( pTrig->pSchema==pTempSchema ){
74806 zWhere = whereOrName(db, zWhere, pTrig->zName);
74810 if( zWhere ){
74811 char *zNew = sqlite3MPrintf(pParse->db, "type='trigger' AND (%s)", zWhere);
74812 sqlite3DbFree(pParse->db, zWhere);
74813 zWhere = zNew;
74815 return zWhere;
74819 ** Generate code to drop and reload the internal representation of table
74820 ** pTab from the database, including triggers and temporary triggers.
74821 ** Argument zName is the name of the table in the database schema at
74822 ** the time the generated code is executed. This can be different from
74823 ** pTab->zName if this function is being called to code part of an
74824 ** "ALTER TABLE RENAME TO" statement.
74826 static void reloadTableSchema(Parse *pParse, Table *pTab, const char *zName){
74827 Vdbe *v;
74828 char *zWhere;
74829 int iDb; /* Index of database containing pTab */
74830 #ifndef SQLITE_OMIT_TRIGGER
74831 Trigger *pTrig;
74832 #endif
74834 v = sqlite3GetVdbe(pParse);
74835 if( NEVER(v==0) ) return;
74836 assert( sqlite3BtreeHoldsAllMutexes(pParse->db) );
74837 iDb = sqlite3SchemaToIndex(pParse->db, pTab->pSchema);
74838 assert( iDb>=0 );
74840 #ifndef SQLITE_OMIT_TRIGGER
74841 /* Drop any table triggers from the internal schema. */
74842 for(pTrig=sqlite3TriggerList(pParse, pTab); pTrig; pTrig=pTrig->pNext){
74843 int iTrigDb = sqlite3SchemaToIndex(pParse->db, pTrig->pSchema);
74844 assert( iTrigDb==iDb || iTrigDb==1 );
74845 sqlite3VdbeAddOp4(v, OP_DropTrigger, iTrigDb, 0, 0, pTrig->zName, 0);
74847 #endif
74849 /* Drop the table and index from the internal schema. */
74850 sqlite3VdbeAddOp4(v, OP_DropTable, iDb, 0, 0, pTab->zName, 0);
74852 /* Reload the table, index and permanent trigger schemas. */
74853 zWhere = sqlite3MPrintf(pParse->db, "tbl_name=%Q", zName);
74854 if( !zWhere ) return;
74855 sqlite3VdbeAddOp4(v, OP_ParseSchema, iDb, 0, 0, zWhere, P4_DYNAMIC);
74857 #ifndef SQLITE_OMIT_TRIGGER
74858 /* Now, if the table is not stored in the temp database, reload any temp
74859 ** triggers. Don't use IN(...) in case SQLITE_OMIT_SUBQUERY is defined.
74861 if( (zWhere=whereTempTriggers(pParse, pTab))!=0 ){
74862 sqlite3VdbeAddOp4(v, OP_ParseSchema, 1, 0, 0, zWhere, P4_DYNAMIC);
74864 #endif
74868 ** Parameter zName is the name of a table that is about to be altered
74869 ** (either with ALTER TABLE ... RENAME TO or ALTER TABLE ... ADD COLUMN).
74870 ** If the table is a system table, this function leaves an error message
74871 ** in pParse->zErr (system tables may not be altered) and returns non-zero.
74873 ** Or, if zName is not a system table, zero is returned.
74875 static int isSystemTable(Parse *pParse, const char *zName){
74876 if( sqlite3Strlen30(zName)>6 && 0==sqlite3StrNICmp(zName, "sqlite_", 7) ){
74877 sqlite3ErrorMsg(pParse, "table %s may not be altered", zName);
74878 return 1;
74880 return 0;
74884 ** Generate code to implement the "ALTER TABLE xxx RENAME TO yyy"
74885 ** command.
74887 SQLITE_PRIVATE void sqlite3AlterRenameTable(
74888 Parse *pParse, /* Parser context. */
74889 SrcList *pSrc, /* The table to rename. */
74890 Token *pName /* The new table name. */
74892 int iDb; /* Database that contains the table */
74893 char *zDb; /* Name of database iDb */
74894 Table *pTab; /* Table being renamed */
74895 char *zName = 0; /* NULL-terminated version of pName */
74896 sqlite3 *db = pParse->db; /* Database connection */
74897 int nTabName; /* Number of UTF-8 characters in zTabName */
74898 const char *zTabName; /* Original name of the table */
74899 Vdbe *v;
74900 #ifndef SQLITE_OMIT_TRIGGER
74901 char *zWhere = 0; /* Where clause to locate temp triggers */
74902 #endif
74903 VTable *pVTab = 0; /* Non-zero if this is a v-tab with an xRename() */
74904 int savedDbFlags; /* Saved value of db->flags */
74906 savedDbFlags = db->flags;
74907 if( NEVER(db->mallocFailed) ) goto exit_rename_table;
74908 assert( pSrc->nSrc==1 );
74909 assert( sqlite3BtreeHoldsAllMutexes(pParse->db) );
74911 pTab = sqlite3LocateTable(pParse, 0, pSrc->a[0].zName, pSrc->a[0].zDatabase);
74912 if( !pTab ) goto exit_rename_table;
74913 iDb = sqlite3SchemaToIndex(pParse->db, pTab->pSchema);
74914 zDb = db->aDb[iDb].zName;
74915 db->flags |= SQLITE_PreferBuiltin;
74917 /* Get a NULL terminated version of the new table name. */
74918 zName = sqlite3NameFromToken(db, pName);
74919 if( !zName ) goto exit_rename_table;
74921 /* Check that a table or index named 'zName' does not already exist
74922 ** in database iDb. If so, this is an error.
74924 if( sqlite3FindTable(db, zName, zDb) || sqlite3FindIndex(db, zName, zDb) ){
74925 sqlite3ErrorMsg(pParse,
74926 "there is already another table or index with this name: %s", zName);
74927 goto exit_rename_table;
74930 /* Make sure it is not a system table being altered, or a reserved name
74931 ** that the table is being renamed to.
74933 if( SQLITE_OK!=isSystemTable(pParse, pTab->zName) ){
74934 goto exit_rename_table;
74936 if( SQLITE_OK!=sqlite3CheckObjectName(pParse, zName) ){ goto
74937 exit_rename_table;
74940 #ifndef SQLITE_OMIT_VIEW
74941 if( pTab->pSelect ){
74942 sqlite3ErrorMsg(pParse, "view %s may not be altered", pTab->zName);
74943 goto exit_rename_table;
74945 #endif
74947 #ifndef SQLITE_OMIT_AUTHORIZATION
74948 /* Invoke the authorization callback. */
74949 if( sqlite3AuthCheck(pParse, SQLITE_ALTER_TABLE, zDb, pTab->zName, 0) ){
74950 goto exit_rename_table;
74952 #endif
74954 #ifndef SQLITE_OMIT_VIRTUALTABLE
74955 if( sqlite3ViewGetColumnNames(pParse, pTab) ){
74956 goto exit_rename_table;
74958 if( IsVirtual(pTab) ){
74959 pVTab = sqlite3GetVTable(db, pTab);
74960 if( pVTab->pVtab->pModule->xRename==0 ){
74961 pVTab = 0;
74964 #endif
74966 /* Begin a transaction and code the VerifyCookie for database iDb.
74967 ** Then modify the schema cookie (since the ALTER TABLE modifies the
74968 ** schema). Open a statement transaction if the table is a virtual
74969 ** table.
74971 v = sqlite3GetVdbe(pParse);
74972 if( v==0 ){
74973 goto exit_rename_table;
74975 sqlite3BeginWriteOperation(pParse, pVTab!=0, iDb);
74976 sqlite3ChangeCookie(pParse, iDb);
74978 /* If this is a virtual table, invoke the xRename() function if
74979 ** one is defined. The xRename() callback will modify the names
74980 ** of any resources used by the v-table implementation (including other
74981 ** SQLite tables) that are identified by the name of the virtual table.
74983 #ifndef SQLITE_OMIT_VIRTUALTABLE
74984 if( pVTab ){
74985 int i = ++pParse->nMem;
74986 sqlite3VdbeAddOp4(v, OP_String8, 0, i, 0, zName, 0);
74987 sqlite3VdbeAddOp4(v, OP_VRename, i, 0, 0,(const char*)pVTab, P4_VTAB);
74988 sqlite3MayAbort(pParse);
74990 #endif
74992 /* figure out how many UTF-8 characters are in zName */
74993 zTabName = pTab->zName;
74994 nTabName = sqlite3Utf8CharLen(zTabName, -1);
74996 #if !defined(SQLITE_OMIT_FOREIGN_KEY) && !defined(SQLITE_OMIT_TRIGGER)
74997 if( db->flags&SQLITE_ForeignKeys ){
74998 /* If foreign-key support is enabled, rewrite the CREATE TABLE
74999 ** statements corresponding to all child tables of foreign key constraints
75000 ** for which the renamed table is the parent table. */
75001 if( (zWhere=whereForeignKeys(pParse, pTab))!=0 ){
75002 sqlite3NestedParse(pParse,
75003 "UPDATE \"%w\".%s SET "
75004 "sql = sqlite_rename_parent(sql, %Q, %Q) "
75005 "WHERE %s;", zDb, SCHEMA_TABLE(iDb), zTabName, zName, zWhere);
75006 sqlite3DbFree(db, zWhere);
75009 #endif
75011 /* Modify the sqlite_master table to use the new table name. */
75012 sqlite3NestedParse(pParse,
75013 "UPDATE %Q.%s SET "
75014 #ifdef SQLITE_OMIT_TRIGGER
75015 "sql = sqlite_rename_table(sql, %Q), "
75016 #else
75017 "sql = CASE "
75018 "WHEN type = 'trigger' THEN sqlite_rename_trigger(sql, %Q)"
75019 "ELSE sqlite_rename_table(sql, %Q) END, "
75020 #endif
75021 "tbl_name = %Q, "
75022 "name = CASE "
75023 "WHEN type='table' THEN %Q "
75024 "WHEN name LIKE 'sqlite_autoindex%%' AND type='index' THEN "
75025 "'sqlite_autoindex_' || %Q || substr(name,%d+18) "
75026 "ELSE name END "
75027 "WHERE tbl_name=%Q AND "
75028 "(type='table' OR type='index' OR type='trigger');",
75029 zDb, SCHEMA_TABLE(iDb), zName, zName, zName,
75030 #ifndef SQLITE_OMIT_TRIGGER
75031 zName,
75032 #endif
75033 zName, nTabName, zTabName
75036 #ifndef SQLITE_OMIT_AUTOINCREMENT
75037 /* If the sqlite_sequence table exists in this database, then update
75038 ** it with the new table name.
75040 if( sqlite3FindTable(db, "sqlite_sequence", zDb) ){
75041 sqlite3NestedParse(pParse,
75042 "UPDATE \"%w\".sqlite_sequence set name = %Q WHERE name = %Q",
75043 zDb, zName, pTab->zName);
75045 #endif
75047 #ifndef SQLITE_OMIT_TRIGGER
75048 /* If there are TEMP triggers on this table, modify the sqlite_temp_master
75049 ** table. Don't do this if the table being ALTERed is itself located in
75050 ** the temp database.
75052 if( (zWhere=whereTempTriggers(pParse, pTab))!=0 ){
75053 sqlite3NestedParse(pParse,
75054 "UPDATE sqlite_temp_master SET "
75055 "sql = sqlite_rename_trigger(sql, %Q), "
75056 "tbl_name = %Q "
75057 "WHERE %s;", zName, zName, zWhere);
75058 sqlite3DbFree(db, zWhere);
75060 #endif
75062 #if !defined(SQLITE_OMIT_FOREIGN_KEY) && !defined(SQLITE_OMIT_TRIGGER)
75063 if( db->flags&SQLITE_ForeignKeys ){
75064 FKey *p;
75065 for(p=sqlite3FkReferences(pTab); p; p=p->pNextTo){
75066 Table *pFrom = p->pFrom;
75067 if( pFrom!=pTab ){
75068 reloadTableSchema(pParse, p->pFrom, pFrom->zName);
75072 #endif
75074 /* Drop and reload the internal table schema. */
75075 reloadTableSchema(pParse, pTab, zName);
75077 exit_rename_table:
75078 sqlite3SrcListDelete(db, pSrc);
75079 sqlite3DbFree(db, zName);
75080 db->flags = savedDbFlags;
75085 ** Generate code to make sure the file format number is at least minFormat.
75086 ** The generated code will increase the file format number if necessary.
75088 SQLITE_PRIVATE void sqlite3MinimumFileFormat(Parse *pParse, int iDb, int minFormat){
75089 Vdbe *v;
75090 v = sqlite3GetVdbe(pParse);
75091 /* The VDBE should have been allocated before this routine is called.
75092 ** If that allocation failed, we would have quit before reaching this
75093 ** point */
75094 if( ALWAYS(v) ){
75095 int r1 = sqlite3GetTempReg(pParse);
75096 int r2 = sqlite3GetTempReg(pParse);
75097 int j1;
75098 sqlite3VdbeAddOp3(v, OP_ReadCookie, iDb, r1, BTREE_FILE_FORMAT);
75099 sqlite3VdbeUsesBtree(v, iDb);
75100 sqlite3VdbeAddOp2(v, OP_Integer, minFormat, r2);
75101 j1 = sqlite3VdbeAddOp3(v, OP_Ge, r2, 0, r1);
75102 sqlite3VdbeAddOp3(v, OP_SetCookie, iDb, BTREE_FILE_FORMAT, r2);
75103 sqlite3VdbeJumpHere(v, j1);
75104 sqlite3ReleaseTempReg(pParse, r1);
75105 sqlite3ReleaseTempReg(pParse, r2);
75110 ** This function is called after an "ALTER TABLE ... ADD" statement
75111 ** has been parsed. Argument pColDef contains the text of the new
75112 ** column definition.
75114 ** The Table structure pParse->pNewTable was extended to include
75115 ** the new column during parsing.
75117 SQLITE_PRIVATE void sqlite3AlterFinishAddColumn(Parse *pParse, Token *pColDef){
75118 Table *pNew; /* Copy of pParse->pNewTable */
75119 Table *pTab; /* Table being altered */
75120 int iDb; /* Database number */
75121 const char *zDb; /* Database name */
75122 const char *zTab; /* Table name */
75123 char *zCol; /* Null-terminated column definition */
75124 Column *pCol; /* The new column */
75125 Expr *pDflt; /* Default value for the new column */
75126 sqlite3 *db; /* The database connection; */
75128 db = pParse->db;
75129 if( pParse->nErr || db->mallocFailed ) return;
75130 pNew = pParse->pNewTable;
75131 assert( pNew );
75133 assert( sqlite3BtreeHoldsAllMutexes(db) );
75134 iDb = sqlite3SchemaToIndex(db, pNew->pSchema);
75135 zDb = db->aDb[iDb].zName;
75136 zTab = &pNew->zName[16]; /* Skip the "sqlite_altertab_" prefix on the name */
75137 pCol = &pNew->aCol[pNew->nCol-1];
75138 pDflt = pCol->pDflt;
75139 pTab = sqlite3FindTable(db, zTab, zDb);
75140 assert( pTab );
75142 #ifndef SQLITE_OMIT_AUTHORIZATION
75143 /* Invoke the authorization callback. */
75144 if( sqlite3AuthCheck(pParse, SQLITE_ALTER_TABLE, zDb, pTab->zName, 0) ){
75145 return;
75147 #endif
75149 /* If the default value for the new column was specified with a
75150 ** literal NULL, then set pDflt to 0. This simplifies checking
75151 ** for an SQL NULL default below.
75153 if( pDflt && pDflt->op==TK_NULL ){
75154 pDflt = 0;
75157 /* Check that the new column is not specified as PRIMARY KEY or UNIQUE.
75158 ** If there is a NOT NULL constraint, then the default value for the
75159 ** column must not be NULL.
75161 if( pCol->isPrimKey ){
75162 sqlite3ErrorMsg(pParse, "Cannot add a PRIMARY KEY column");
75163 return;
75165 if( pNew->pIndex ){
75166 sqlite3ErrorMsg(pParse, "Cannot add a UNIQUE column");
75167 return;
75169 if( (db->flags&SQLITE_ForeignKeys) && pNew->pFKey && pDflt ){
75170 sqlite3ErrorMsg(pParse,
75171 "Cannot add a REFERENCES column with non-NULL default value");
75172 return;
75174 if( pCol->notNull && !pDflt ){
75175 sqlite3ErrorMsg(pParse,
75176 "Cannot add a NOT NULL column with default value NULL");
75177 return;
75180 /* Ensure the default expression is something that sqlite3ValueFromExpr()
75181 ** can handle (i.e. not CURRENT_TIME etc.)
75183 if( pDflt ){
75184 sqlite3_value *pVal;
75185 if( sqlite3ValueFromExpr(db, pDflt, SQLITE_UTF8, SQLITE_AFF_NONE, &pVal) ){
75186 db->mallocFailed = 1;
75187 return;
75189 if( !pVal ){
75190 sqlite3ErrorMsg(pParse, "Cannot add a column with non-constant default");
75191 return;
75193 sqlite3ValueFree(pVal);
75196 /* Modify the CREATE TABLE statement. */
75197 zCol = sqlite3DbStrNDup(db, (char*)pColDef->z, pColDef->n);
75198 if( zCol ){
75199 char *zEnd = &zCol[pColDef->n-1];
75200 int savedDbFlags = db->flags;
75201 while( zEnd>zCol && (*zEnd==';' || sqlite3Isspace(*zEnd)) ){
75202 *zEnd-- = '\0';
75204 db->flags |= SQLITE_PreferBuiltin;
75205 sqlite3NestedParse(pParse,
75206 "UPDATE \"%w\".%s SET "
75207 "sql = substr(sql,1,%d) || ', ' || %Q || substr(sql,%d) "
75208 "WHERE type = 'table' AND name = %Q",
75209 zDb, SCHEMA_TABLE(iDb), pNew->addColOffset, zCol, pNew->addColOffset+1,
75210 zTab
75212 sqlite3DbFree(db, zCol);
75213 db->flags = savedDbFlags;
75216 /* If the default value of the new column is NULL, then set the file
75217 ** format to 2. If the default value of the new column is not NULL,
75218 ** the file format becomes 3.
75220 sqlite3MinimumFileFormat(pParse, iDb, pDflt ? 3 : 2);
75222 /* Reload the schema of the modified table. */
75223 reloadTableSchema(pParse, pTab, pTab->zName);
75227 ** This function is called by the parser after the table-name in
75228 ** an "ALTER TABLE <table-name> ADD" statement is parsed. Argument
75229 ** pSrc is the full-name of the table being altered.
75231 ** This routine makes a (partial) copy of the Table structure
75232 ** for the table being altered and sets Parse.pNewTable to point
75233 ** to it. Routines called by the parser as the column definition
75234 ** is parsed (i.e. sqlite3AddColumn()) add the new Column data to
75235 ** the copy. The copy of the Table structure is deleted by tokenize.c
75236 ** after parsing is finished.
75238 ** Routine sqlite3AlterFinishAddColumn() will be called to complete
75239 ** coding the "ALTER TABLE ... ADD" statement.
75241 SQLITE_PRIVATE void sqlite3AlterBeginAddColumn(Parse *pParse, SrcList *pSrc){
75242 Table *pNew;
75243 Table *pTab;
75244 Vdbe *v;
75245 int iDb;
75246 int i;
75247 int nAlloc;
75248 sqlite3 *db = pParse->db;
75250 /* Look up the table being altered. */
75251 assert( pParse->pNewTable==0 );
75252 assert( sqlite3BtreeHoldsAllMutexes(db) );
75253 if( db->mallocFailed ) goto exit_begin_add_column;
75254 pTab = sqlite3LocateTable(pParse, 0, pSrc->a[0].zName, pSrc->a[0].zDatabase);
75255 if( !pTab ) goto exit_begin_add_column;
75257 #ifndef SQLITE_OMIT_VIRTUALTABLE
75258 if( IsVirtual(pTab) ){
75259 sqlite3ErrorMsg(pParse, "virtual tables may not be altered");
75260 goto exit_begin_add_column;
75262 #endif
75264 /* Make sure this is not an attempt to ALTER a view. */
75265 if( pTab->pSelect ){
75266 sqlite3ErrorMsg(pParse, "Cannot add a column to a view");
75267 goto exit_begin_add_column;
75269 if( SQLITE_OK!=isSystemTable(pParse, pTab->zName) ){
75270 goto exit_begin_add_column;
75273 assert( pTab->addColOffset>0 );
75274 iDb = sqlite3SchemaToIndex(db, pTab->pSchema);
75276 /* Put a copy of the Table struct in Parse.pNewTable for the
75277 ** sqlite3AddColumn() function and friends to modify. But modify
75278 ** the name by adding an "sqlite_altertab_" prefix. By adding this
75279 ** prefix, we insure that the name will not collide with an existing
75280 ** table because user table are not allowed to have the "sqlite_"
75281 ** prefix on their name.
75283 pNew = (Table*)sqlite3DbMallocZero(db, sizeof(Table));
75284 if( !pNew ) goto exit_begin_add_column;
75285 pParse->pNewTable = pNew;
75286 pNew->nRef = 1;
75287 pNew->nCol = pTab->nCol;
75288 assert( pNew->nCol>0 );
75289 nAlloc = (((pNew->nCol-1)/8)*8)+8;
75290 assert( nAlloc>=pNew->nCol && nAlloc%8==0 && nAlloc-pNew->nCol<8 );
75291 pNew->aCol = (Column*)sqlite3DbMallocZero(db, sizeof(Column)*nAlloc);
75292 pNew->zName = sqlite3MPrintf(db, "sqlite_altertab_%s", pTab->zName);
75293 if( !pNew->aCol || !pNew->zName ){
75294 db->mallocFailed = 1;
75295 goto exit_begin_add_column;
75297 memcpy(pNew->aCol, pTab->aCol, sizeof(Column)*pNew->nCol);
75298 for(i=0; i<pNew->nCol; i++){
75299 Column *pCol = &pNew->aCol[i];
75300 pCol->zName = sqlite3DbStrDup(db, pCol->zName);
75301 pCol->zColl = 0;
75302 pCol->zType = 0;
75303 pCol->pDflt = 0;
75304 pCol->zDflt = 0;
75306 pNew->pSchema = db->aDb[iDb].pSchema;
75307 pNew->addColOffset = pTab->addColOffset;
75308 pNew->nRef = 1;
75310 /* Begin a transaction and increment the schema cookie. */
75311 sqlite3BeginWriteOperation(pParse, 0, iDb);
75312 v = sqlite3GetVdbe(pParse);
75313 if( !v ) goto exit_begin_add_column;
75314 sqlite3ChangeCookie(pParse, iDb);
75316 exit_begin_add_column:
75317 sqlite3SrcListDelete(db, pSrc);
75318 return;
75320 #endif /* SQLITE_ALTER_TABLE */
75322 /************** End of alter.c ***********************************************/
75323 /************** Begin file analyze.c *****************************************/
75325 ** 2005 July 8
75327 ** The author disclaims copyright to this source code. In place of
75328 ** a legal notice, here is a blessing:
75330 ** May you do good and not evil.
75331 ** May you find forgiveness for yourself and forgive others.
75332 ** May you share freely, never taking more than you give.
75334 *************************************************************************
75335 ** This file contains code associated with the ANALYZE command.
75337 #ifndef SQLITE_OMIT_ANALYZE
75340 ** This routine generates code that opens the sqlite_stat1 table for
75341 ** writing with cursor iStatCur. If the library was built with the
75342 ** SQLITE_ENABLE_STAT2 macro defined, then the sqlite_stat2 table is
75343 ** opened for writing using cursor (iStatCur+1)
75345 ** If the sqlite_stat1 tables does not previously exist, it is created.
75346 ** Similarly, if the sqlite_stat2 table does not exist and the library
75347 ** is compiled with SQLITE_ENABLE_STAT2 defined, it is created.
75349 ** Argument zWhere may be a pointer to a buffer containing a table name,
75350 ** or it may be a NULL pointer. If it is not NULL, then all entries in
75351 ** the sqlite_stat1 and (if applicable) sqlite_stat2 tables associated
75352 ** with the named table are deleted. If zWhere==0, then code is generated
75353 ** to delete all stat table entries.
75355 static void openStatTable(
75356 Parse *pParse, /* Parsing context */
75357 int iDb, /* The database we are looking in */
75358 int iStatCur, /* Open the sqlite_stat1 table on this cursor */
75359 const char *zWhere, /* Delete entries for this table or index */
75360 const char *zWhereType /* Either "tbl" or "idx" */
75362 static const struct {
75363 const char *zName;
75364 const char *zCols;
75365 } aTable[] = {
75366 { "sqlite_stat1", "tbl,idx,stat" },
75367 #ifdef SQLITE_ENABLE_STAT2
75368 { "sqlite_stat2", "tbl,idx,sampleno,sample" },
75369 #endif
75372 int aRoot[] = {0, 0};
75373 u8 aCreateTbl[] = {0, 0};
75375 int i;
75376 sqlite3 *db = pParse->db;
75377 Db *pDb;
75378 Vdbe *v = sqlite3GetVdbe(pParse);
75379 if( v==0 ) return;
75380 assert( sqlite3BtreeHoldsAllMutexes(db) );
75381 assert( sqlite3VdbeDb(v)==db );
75382 pDb = &db->aDb[iDb];
75384 for(i=0; i<ArraySize(aTable); i++){
75385 const char *zTab = aTable[i].zName;
75386 Table *pStat;
75387 if( (pStat = sqlite3FindTable(db, zTab, pDb->zName))==0 ){
75388 /* The sqlite_stat[12] table does not exist. Create it. Note that a
75389 ** side-effect of the CREATE TABLE statement is to leave the rootpage
75390 ** of the new table in register pParse->regRoot. This is important
75391 ** because the OpenWrite opcode below will be needing it. */
75392 sqlite3NestedParse(pParse,
75393 "CREATE TABLE %Q.%s(%s)", pDb->zName, zTab, aTable[i].zCols
75395 aRoot[i] = pParse->regRoot;
75396 aCreateTbl[i] = 1;
75397 }else{
75398 /* The table already exists. If zWhere is not NULL, delete all entries
75399 ** associated with the table zWhere. If zWhere is NULL, delete the
75400 ** entire contents of the table. */
75401 aRoot[i] = pStat->tnum;
75402 sqlite3TableLock(pParse, iDb, aRoot[i], 1, zTab);
75403 if( zWhere ){
75404 sqlite3NestedParse(pParse,
75405 "DELETE FROM %Q.%s WHERE %s=%Q", pDb->zName, zTab, zWhereType, zWhere
75407 }else{
75408 /* The sqlite_stat[12] table already exists. Delete all rows. */
75409 sqlite3VdbeAddOp2(v, OP_Clear, aRoot[i], iDb);
75414 /* Open the sqlite_stat[12] tables for writing. */
75415 for(i=0; i<ArraySize(aTable); i++){
75416 sqlite3VdbeAddOp3(v, OP_OpenWrite, iStatCur+i, aRoot[i], iDb);
75417 sqlite3VdbeChangeP4(v, -1, (char *)3, P4_INT32);
75418 sqlite3VdbeChangeP5(v, aCreateTbl[i]);
75423 ** Generate code to do an analysis of all indices associated with
75424 ** a single table.
75426 static void analyzeOneTable(
75427 Parse *pParse, /* Parser context */
75428 Table *pTab, /* Table whose indices are to be analyzed */
75429 Index *pOnlyIdx, /* If not NULL, only analyze this one index */
75430 int iStatCur, /* Index of VdbeCursor that writes the sqlite_stat1 table */
75431 int iMem /* Available memory locations begin here */
75433 sqlite3 *db = pParse->db; /* Database handle */
75434 Index *pIdx; /* An index to being analyzed */
75435 int iIdxCur; /* Cursor open on index being analyzed */
75436 Vdbe *v; /* The virtual machine being built up */
75437 int i; /* Loop counter */
75438 int topOfLoop; /* The top of the loop */
75439 int endOfLoop; /* The end of the loop */
75440 int jZeroRows = -1; /* Jump from here if number of rows is zero */
75441 int iDb; /* Index of database containing pTab */
75442 int regTabname = iMem++; /* Register containing table name */
75443 int regIdxname = iMem++; /* Register containing index name */
75444 int regSampleno = iMem++; /* Register containing next sample number */
75445 int regCol = iMem++; /* Content of a column analyzed table */
75446 int regRec = iMem++; /* Register holding completed record */
75447 int regTemp = iMem++; /* Temporary use register */
75448 int regRowid = iMem++; /* Rowid for the inserted record */
75450 #ifdef SQLITE_ENABLE_STAT2
75451 int addr = 0; /* Instruction address */
75452 int regTemp2 = iMem++; /* Temporary use register */
75453 int regSamplerecno = iMem++; /* Index of next sample to record */
75454 int regRecno = iMem++; /* Current sample index */
75455 int regLast = iMem++; /* Index of last sample to record */
75456 int regFirst = iMem++; /* Index of first sample to record */
75457 #endif
75459 v = sqlite3GetVdbe(pParse);
75460 if( v==0 || NEVER(pTab==0) ){
75461 return;
75463 if( pTab->tnum==0 ){
75464 /* Do not gather statistics on views or virtual tables */
75465 return;
75467 if( sqlite3_strnicmp(pTab->zName, "sqlite_", 7)==0 ){
75468 /* Do not gather statistics on system tables */
75469 return;
75471 assert( sqlite3BtreeHoldsAllMutexes(db) );
75472 iDb = sqlite3SchemaToIndex(db, pTab->pSchema);
75473 assert( iDb>=0 );
75474 assert( sqlite3SchemaMutexHeld(db, iDb, 0) );
75475 #ifndef SQLITE_OMIT_AUTHORIZATION
75476 if( sqlite3AuthCheck(pParse, SQLITE_ANALYZE, pTab->zName, 0,
75477 db->aDb[iDb].zName ) ){
75478 return;
75480 #endif
75482 /* Establish a read-lock on the table at the shared-cache level. */
75483 sqlite3TableLock(pParse, iDb, pTab->tnum, 0, pTab->zName);
75485 iIdxCur = pParse->nTab++;
75486 sqlite3VdbeAddOp4(v, OP_String8, 0, regTabname, 0, pTab->zName, 0);
75487 for(pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext){
75488 int nCol;
75489 KeyInfo *pKey;
75491 if( pOnlyIdx && pOnlyIdx!=pIdx ) continue;
75492 nCol = pIdx->nColumn;
75493 pKey = sqlite3IndexKeyinfo(pParse, pIdx);
75494 if( iMem+1+(nCol*2)>pParse->nMem ){
75495 pParse->nMem = iMem+1+(nCol*2);
75498 /* Open a cursor to the index to be analyzed. */
75499 assert( iDb==sqlite3SchemaToIndex(db, pIdx->pSchema) );
75500 sqlite3VdbeAddOp4(v, OP_OpenRead, iIdxCur, pIdx->tnum, iDb,
75501 (char *)pKey, P4_KEYINFO_HANDOFF);
75502 VdbeComment((v, "%s", pIdx->zName));
75504 /* Populate the register containing the index name. */
75505 sqlite3VdbeAddOp4(v, OP_String8, 0, regIdxname, 0, pIdx->zName, 0);
75507 #ifdef SQLITE_ENABLE_STAT2
75509 /* If this iteration of the loop is generating code to analyze the
75510 ** first index in the pTab->pIndex list, then register regLast has
75511 ** not been populated. In this case populate it now. */
75512 if( pTab->pIndex==pIdx ){
75513 sqlite3VdbeAddOp2(v, OP_Integer, SQLITE_INDEX_SAMPLES, regSamplerecno);
75514 sqlite3VdbeAddOp2(v, OP_Integer, SQLITE_INDEX_SAMPLES*2-1, regTemp);
75515 sqlite3VdbeAddOp2(v, OP_Integer, SQLITE_INDEX_SAMPLES*2, regTemp2);
75517 sqlite3VdbeAddOp2(v, OP_Count, iIdxCur, regLast);
75518 sqlite3VdbeAddOp2(v, OP_Null, 0, regFirst);
75519 addr = sqlite3VdbeAddOp3(v, OP_Lt, regSamplerecno, 0, regLast);
75520 sqlite3VdbeAddOp3(v, OP_Divide, regTemp2, regLast, regFirst);
75521 sqlite3VdbeAddOp3(v, OP_Multiply, regLast, regTemp, regLast);
75522 sqlite3VdbeAddOp2(v, OP_AddImm, regLast, SQLITE_INDEX_SAMPLES*2-2);
75523 sqlite3VdbeAddOp3(v, OP_Divide, regTemp2, regLast, regLast);
75524 sqlite3VdbeJumpHere(v, addr);
75527 /* Zero the regSampleno and regRecno registers. */
75528 sqlite3VdbeAddOp2(v, OP_Integer, 0, regSampleno);
75529 sqlite3VdbeAddOp2(v, OP_Integer, 0, regRecno);
75530 sqlite3VdbeAddOp2(v, OP_Copy, regFirst, regSamplerecno);
75531 #endif
75533 /* The block of memory cells initialized here is used as follows.
75535 ** iMem:
75536 ** The total number of rows in the table.
75538 ** iMem+1 .. iMem+nCol:
75539 ** Number of distinct entries in index considering the
75540 ** left-most N columns only, where N is between 1 and nCol,
75541 ** inclusive.
75543 ** iMem+nCol+1 .. Mem+2*nCol:
75544 ** Previous value of indexed columns, from left to right.
75546 ** Cells iMem through iMem+nCol are initialized to 0. The others are
75547 ** initialized to contain an SQL NULL.
75549 for(i=0; i<=nCol; i++){
75550 sqlite3VdbeAddOp2(v, OP_Integer, 0, iMem+i);
75552 for(i=0; i<nCol; i++){
75553 sqlite3VdbeAddOp2(v, OP_Null, 0, iMem+nCol+i+1);
75556 /* Start the analysis loop. This loop runs through all the entries in
75557 ** the index b-tree. */
75558 endOfLoop = sqlite3VdbeMakeLabel(v);
75559 sqlite3VdbeAddOp2(v, OP_Rewind, iIdxCur, endOfLoop);
75560 topOfLoop = sqlite3VdbeCurrentAddr(v);
75561 sqlite3VdbeAddOp2(v, OP_AddImm, iMem, 1);
75563 for(i=0; i<nCol; i++){
75564 CollSeq *pColl;
75565 sqlite3VdbeAddOp3(v, OP_Column, iIdxCur, i, regCol);
75566 if( i==0 ){
75567 #ifdef SQLITE_ENABLE_STAT2
75568 /* Check if the record that cursor iIdxCur points to contains a
75569 ** value that should be stored in the sqlite_stat2 table. If so,
75570 ** store it. */
75571 int ne = sqlite3VdbeAddOp3(v, OP_Ne, regRecno, 0, regSamplerecno);
75572 assert( regTabname+1==regIdxname
75573 && regTabname+2==regSampleno
75574 && regTabname+3==regCol
75576 sqlite3VdbeChangeP5(v, SQLITE_JUMPIFNULL);
75577 sqlite3VdbeAddOp4(v, OP_MakeRecord, regTabname, 4, regRec, "aaab", 0);
75578 sqlite3VdbeAddOp2(v, OP_NewRowid, iStatCur+1, regRowid);
75579 sqlite3VdbeAddOp3(v, OP_Insert, iStatCur+1, regRec, regRowid);
75581 /* Calculate new values for regSamplerecno and regSampleno.
75583 ** sampleno = sampleno + 1
75584 ** samplerecno = samplerecno+(remaining records)/(remaining samples)
75586 sqlite3VdbeAddOp2(v, OP_AddImm, regSampleno, 1);
75587 sqlite3VdbeAddOp3(v, OP_Subtract, regRecno, regLast, regTemp);
75588 sqlite3VdbeAddOp2(v, OP_AddImm, regTemp, -1);
75589 sqlite3VdbeAddOp2(v, OP_Integer, SQLITE_INDEX_SAMPLES, regTemp2);
75590 sqlite3VdbeAddOp3(v, OP_Subtract, regSampleno, regTemp2, regTemp2);
75591 sqlite3VdbeAddOp3(v, OP_Divide, regTemp2, regTemp, regTemp);
75592 sqlite3VdbeAddOp3(v, OP_Add, regSamplerecno, regTemp, regSamplerecno);
75594 sqlite3VdbeJumpHere(v, ne);
75595 sqlite3VdbeAddOp2(v, OP_AddImm, regRecno, 1);
75596 #endif
75598 /* Always record the very first row */
75599 sqlite3VdbeAddOp1(v, OP_IfNot, iMem+1);
75601 assert( pIdx->azColl!=0 );
75602 assert( pIdx->azColl[i]!=0 );
75603 pColl = sqlite3LocateCollSeq(pParse, pIdx->azColl[i]);
75604 sqlite3VdbeAddOp4(v, OP_Ne, regCol, 0, iMem+nCol+i+1,
75605 (char*)pColl, P4_COLLSEQ);
75606 sqlite3VdbeChangeP5(v, SQLITE_NULLEQ);
75608 if( db->mallocFailed ){
75609 /* If a malloc failure has occurred, then the result of the expression
75610 ** passed as the second argument to the call to sqlite3VdbeJumpHere()
75611 ** below may be negative. Which causes an assert() to fail (or an
75612 ** out-of-bounds write if SQLITE_DEBUG is not defined). */
75613 return;
75615 sqlite3VdbeAddOp2(v, OP_Goto, 0, endOfLoop);
75616 for(i=0; i<nCol; i++){
75617 int addr2 = sqlite3VdbeCurrentAddr(v) - (nCol*2);
75618 if( i==0 ){
75619 sqlite3VdbeJumpHere(v, addr2-1); /* Set jump dest for the OP_IfNot */
75621 sqlite3VdbeJumpHere(v, addr2); /* Set jump dest for the OP_Ne */
75622 sqlite3VdbeAddOp2(v, OP_AddImm, iMem+i+1, 1);
75623 sqlite3VdbeAddOp3(v, OP_Column, iIdxCur, i, iMem+nCol+i+1);
75626 /* End of the analysis loop. */
75627 sqlite3VdbeResolveLabel(v, endOfLoop);
75628 sqlite3VdbeAddOp2(v, OP_Next, iIdxCur, topOfLoop);
75629 sqlite3VdbeAddOp1(v, OP_Close, iIdxCur);
75631 /* Store the results in sqlite_stat1.
75633 ** The result is a single row of the sqlite_stat1 table. The first
75634 ** two columns are the names of the table and index. The third column
75635 ** is a string composed of a list of integer statistics about the
75636 ** index. The first integer in the list is the total number of entries
75637 ** in the index. There is one additional integer in the list for each
75638 ** column of the table. This additional integer is a guess of how many
75639 ** rows of the table the index will select. If D is the count of distinct
75640 ** values and K is the total number of rows, then the integer is computed
75641 ** as:
75643 ** I = (K+D-1)/D
75645 ** If K==0 then no entry is made into the sqlite_stat1 table.
75646 ** If K>0 then it is always the case the D>0 so division by zero
75647 ** is never possible.
75649 sqlite3VdbeAddOp2(v, OP_SCopy, iMem, regSampleno);
75650 if( jZeroRows<0 ){
75651 jZeroRows = sqlite3VdbeAddOp1(v, OP_IfNot, iMem);
75653 for(i=0; i<nCol; i++){
75654 sqlite3VdbeAddOp4(v, OP_String8, 0, regTemp, 0, " ", 0);
75655 sqlite3VdbeAddOp3(v, OP_Concat, regTemp, regSampleno, regSampleno);
75656 sqlite3VdbeAddOp3(v, OP_Add, iMem, iMem+i+1, regTemp);
75657 sqlite3VdbeAddOp2(v, OP_AddImm, regTemp, -1);
75658 sqlite3VdbeAddOp3(v, OP_Divide, iMem+i+1, regTemp, regTemp);
75659 sqlite3VdbeAddOp1(v, OP_ToInt, regTemp);
75660 sqlite3VdbeAddOp3(v, OP_Concat, regTemp, regSampleno, regSampleno);
75662 sqlite3VdbeAddOp4(v, OP_MakeRecord, regTabname, 3, regRec, "aaa", 0);
75663 sqlite3VdbeAddOp2(v, OP_NewRowid, iStatCur, regRowid);
75664 sqlite3VdbeAddOp3(v, OP_Insert, iStatCur, regRec, regRowid);
75665 sqlite3VdbeChangeP5(v, OPFLAG_APPEND);
75668 /* If the table has no indices, create a single sqlite_stat1 entry
75669 ** containing NULL as the index name and the row count as the content.
75671 if( pTab->pIndex==0 ){
75672 sqlite3VdbeAddOp3(v, OP_OpenRead, iIdxCur, pTab->tnum, iDb);
75673 VdbeComment((v, "%s", pTab->zName));
75674 sqlite3VdbeAddOp2(v, OP_Count, iIdxCur, regSampleno);
75675 sqlite3VdbeAddOp1(v, OP_Close, iIdxCur);
75676 jZeroRows = sqlite3VdbeAddOp1(v, OP_IfNot, regSampleno);
75677 }else{
75678 sqlite3VdbeJumpHere(v, jZeroRows);
75679 jZeroRows = sqlite3VdbeAddOp0(v, OP_Goto);
75681 sqlite3VdbeAddOp2(v, OP_Null, 0, regIdxname);
75682 sqlite3VdbeAddOp4(v, OP_MakeRecord, regTabname, 3, regRec, "aaa", 0);
75683 sqlite3VdbeAddOp2(v, OP_NewRowid, iStatCur, regRowid);
75684 sqlite3VdbeAddOp3(v, OP_Insert, iStatCur, regRec, regRowid);
75685 sqlite3VdbeChangeP5(v, OPFLAG_APPEND);
75686 if( pParse->nMem<regRec ) pParse->nMem = regRec;
75687 sqlite3VdbeJumpHere(v, jZeroRows);
75691 ** Generate code that will cause the most recent index analysis to
75692 ** be loaded into internal hash tables where is can be used.
75694 static void loadAnalysis(Parse *pParse, int iDb){
75695 Vdbe *v = sqlite3GetVdbe(pParse);
75696 if( v ){
75697 sqlite3VdbeAddOp1(v, OP_LoadAnalysis, iDb);
75702 ** Generate code that will do an analysis of an entire database
75704 static void analyzeDatabase(Parse *pParse, int iDb){
75705 sqlite3 *db = pParse->db;
75706 Schema *pSchema = db->aDb[iDb].pSchema; /* Schema of database iDb */
75707 HashElem *k;
75708 int iStatCur;
75709 int iMem;
75711 sqlite3BeginWriteOperation(pParse, 0, iDb);
75712 iStatCur = pParse->nTab;
75713 pParse->nTab += 2;
75714 openStatTable(pParse, iDb, iStatCur, 0, 0);
75715 iMem = pParse->nMem+1;
75716 assert( sqlite3SchemaMutexHeld(db, iDb, 0) );
75717 for(k=sqliteHashFirst(&pSchema->tblHash); k; k=sqliteHashNext(k)){
75718 Table *pTab = (Table*)sqliteHashData(k);
75719 analyzeOneTable(pParse, pTab, 0, iStatCur, iMem);
75721 loadAnalysis(pParse, iDb);
75725 ** Generate code that will do an analysis of a single table in
75726 ** a database. If pOnlyIdx is not NULL then it is a single index
75727 ** in pTab that should be analyzed.
75729 static void analyzeTable(Parse *pParse, Table *pTab, Index *pOnlyIdx){
75730 int iDb;
75731 int iStatCur;
75733 assert( pTab!=0 );
75734 assert( sqlite3BtreeHoldsAllMutexes(pParse->db) );
75735 iDb = sqlite3SchemaToIndex(pParse->db, pTab->pSchema);
75736 sqlite3BeginWriteOperation(pParse, 0, iDb);
75737 iStatCur = pParse->nTab;
75738 pParse->nTab += 2;
75739 if( pOnlyIdx ){
75740 openStatTable(pParse, iDb, iStatCur, pOnlyIdx->zName, "idx");
75741 }else{
75742 openStatTable(pParse, iDb, iStatCur, pTab->zName, "tbl");
75744 analyzeOneTable(pParse, pTab, pOnlyIdx, iStatCur, pParse->nMem+1);
75745 loadAnalysis(pParse, iDb);
75749 ** Generate code for the ANALYZE command. The parser calls this routine
75750 ** when it recognizes an ANALYZE command.
75752 ** ANALYZE -- 1
75753 ** ANALYZE <database> -- 2
75754 ** ANALYZE ?<database>.?<tablename> -- 3
75756 ** Form 1 causes all indices in all attached databases to be analyzed.
75757 ** Form 2 analyzes all indices the single database named.
75758 ** Form 3 analyzes all indices associated with the named table.
75760 SQLITE_PRIVATE void sqlite3Analyze(Parse *pParse, Token *pName1, Token *pName2){
75761 sqlite3 *db = pParse->db;
75762 int iDb;
75763 int i;
75764 char *z, *zDb;
75765 Table *pTab;
75766 Index *pIdx;
75767 Token *pTableName;
75769 /* Read the database schema. If an error occurs, leave an error message
75770 ** and code in pParse and return NULL. */
75771 assert( sqlite3BtreeHoldsAllMutexes(pParse->db) );
75772 if( SQLITE_OK!=sqlite3ReadSchema(pParse) ){
75773 return;
75776 assert( pName2!=0 || pName1==0 );
75777 if( pName1==0 ){
75778 /* Form 1: Analyze everything */
75779 for(i=0; i<db->nDb; i++){
75780 if( i==1 ) continue; /* Do not analyze the TEMP database */
75781 analyzeDatabase(pParse, i);
75783 }else if( pName2->n==0 ){
75784 /* Form 2: Analyze the database or table named */
75785 iDb = sqlite3FindDb(db, pName1);
75786 if( iDb>=0 ){
75787 analyzeDatabase(pParse, iDb);
75788 }else{
75789 z = sqlite3NameFromToken(db, pName1);
75790 if( z ){
75791 if( (pIdx = sqlite3FindIndex(db, z, 0))!=0 ){
75792 analyzeTable(pParse, pIdx->pTable, pIdx);
75793 }else if( (pTab = sqlite3LocateTable(pParse, 0, z, 0))!=0 ){
75794 analyzeTable(pParse, pTab, 0);
75796 sqlite3DbFree(db, z);
75799 }else{
75800 /* Form 3: Analyze the fully qualified table name */
75801 iDb = sqlite3TwoPartName(pParse, pName1, pName2, &pTableName);
75802 if( iDb>=0 ){
75803 zDb = db->aDb[iDb].zName;
75804 z = sqlite3NameFromToken(db, pTableName);
75805 if( z ){
75806 if( (pIdx = sqlite3FindIndex(db, z, zDb))!=0 ){
75807 analyzeTable(pParse, pIdx->pTable, pIdx);
75808 }else if( (pTab = sqlite3LocateTable(pParse, 0, z, zDb))!=0 ){
75809 analyzeTable(pParse, pTab, 0);
75811 sqlite3DbFree(db, z);
75818 ** Used to pass information from the analyzer reader through to the
75819 ** callback routine.
75821 typedef struct analysisInfo analysisInfo;
75822 struct analysisInfo {
75823 sqlite3 *db;
75824 const char *zDatabase;
75828 ** This callback is invoked once for each index when reading the
75829 ** sqlite_stat1 table.
75831 ** argv[0] = name of the table
75832 ** argv[1] = name of the index (might be NULL)
75833 ** argv[2] = results of analysis - on integer for each column
75835 ** Entries for which argv[1]==NULL simply record the number of rows in
75836 ** the table.
75838 static int analysisLoader(void *pData, int argc, char **argv, char **NotUsed){
75839 analysisInfo *pInfo = (analysisInfo*)pData;
75840 Index *pIndex;
75841 Table *pTable;
75842 int i, c, n;
75843 unsigned int v;
75844 const char *z;
75846 assert( argc==3 );
75847 UNUSED_PARAMETER2(NotUsed, argc);
75849 if( argv==0 || argv[0]==0 || argv[2]==0 ){
75850 return 0;
75852 pTable = sqlite3FindTable(pInfo->db, argv[0], pInfo->zDatabase);
75853 if( pTable==0 ){
75854 return 0;
75856 if( argv[1] ){
75857 pIndex = sqlite3FindIndex(pInfo->db, argv[1], pInfo->zDatabase);
75858 }else{
75859 pIndex = 0;
75861 n = pIndex ? pIndex->nColumn : 0;
75862 z = argv[2];
75863 for(i=0; *z && i<=n; i++){
75864 v = 0;
75865 while( (c=z[0])>='0' && c<='9' ){
75866 v = v*10 + c - '0';
75867 z++;
75869 if( i==0 ) pTable->nRowEst = v;
75870 if( pIndex==0 ) break;
75871 pIndex->aiRowEst[i] = v;
75872 if( *z==' ' ) z++;
75873 if( strcmp(z, "unordered")==0 ){
75874 pIndex->bUnordered = 1;
75875 break;
75878 return 0;
75882 ** If the Index.aSample variable is not NULL, delete the aSample[] array
75883 ** and its contents.
75885 SQLITE_PRIVATE void sqlite3DeleteIndexSamples(sqlite3 *db, Index *pIdx){
75886 #ifdef SQLITE_ENABLE_STAT2
75887 if( pIdx->aSample ){
75888 int j;
75889 for(j=0; j<SQLITE_INDEX_SAMPLES; j++){
75890 IndexSample *p = &pIdx->aSample[j];
75891 if( p->eType==SQLITE_TEXT || p->eType==SQLITE_BLOB ){
75892 sqlite3DbFree(db, p->u.z);
75895 sqlite3DbFree(db, pIdx->aSample);
75897 #else
75898 UNUSED_PARAMETER(db);
75899 UNUSED_PARAMETER(pIdx);
75900 #endif
75904 ** Load the content of the sqlite_stat1 and sqlite_stat2 tables. The
75905 ** contents of sqlite_stat1 are used to populate the Index.aiRowEst[]
75906 ** arrays. The contents of sqlite_stat2 are used to populate the
75907 ** Index.aSample[] arrays.
75909 ** If the sqlite_stat1 table is not present in the database, SQLITE_ERROR
75910 ** is returned. In this case, even if SQLITE_ENABLE_STAT2 was defined
75911 ** during compilation and the sqlite_stat2 table is present, no data is
75912 ** read from it.
75914 ** If SQLITE_ENABLE_STAT2 was defined during compilation and the
75915 ** sqlite_stat2 table is not present in the database, SQLITE_ERROR is
75916 ** returned. However, in this case, data is read from the sqlite_stat1
75917 ** table (if it is present) before returning.
75919 ** If an OOM error occurs, this function always sets db->mallocFailed.
75920 ** This means if the caller does not care about other errors, the return
75921 ** code may be ignored.
75923 SQLITE_PRIVATE int sqlite3AnalysisLoad(sqlite3 *db, int iDb){
75924 analysisInfo sInfo;
75925 HashElem *i;
75926 char *zSql;
75927 int rc;
75929 assert( iDb>=0 && iDb<db->nDb );
75930 assert( db->aDb[iDb].pBt!=0 );
75932 /* Clear any prior statistics */
75933 assert( sqlite3SchemaMutexHeld(db, iDb, 0) );
75934 for(i=sqliteHashFirst(&db->aDb[iDb].pSchema->idxHash);i;i=sqliteHashNext(i)){
75935 Index *pIdx = sqliteHashData(i);
75936 sqlite3DefaultRowEst(pIdx);
75937 sqlite3DeleteIndexSamples(db, pIdx);
75938 pIdx->aSample = 0;
75941 /* Check to make sure the sqlite_stat1 table exists */
75942 sInfo.db = db;
75943 sInfo.zDatabase = db->aDb[iDb].zName;
75944 if( sqlite3FindTable(db, "sqlite_stat1", sInfo.zDatabase)==0 ){
75945 return SQLITE_ERROR;
75948 /* Load new statistics out of the sqlite_stat1 table */
75949 zSql = sqlite3MPrintf(db,
75950 "SELECT tbl, idx, stat FROM %Q.sqlite_stat1", sInfo.zDatabase);
75951 if( zSql==0 ){
75952 rc = SQLITE_NOMEM;
75953 }else{
75954 rc = sqlite3_exec(db, zSql, analysisLoader, &sInfo, 0);
75955 sqlite3DbFree(db, zSql);
75959 /* Load the statistics from the sqlite_stat2 table. */
75960 #ifdef SQLITE_ENABLE_STAT2
75961 if( rc==SQLITE_OK && !sqlite3FindTable(db, "sqlite_stat2", sInfo.zDatabase) ){
75962 rc = SQLITE_ERROR;
75964 if( rc==SQLITE_OK ){
75965 sqlite3_stmt *pStmt = 0;
75967 zSql = sqlite3MPrintf(db,
75968 "SELECT idx,sampleno,sample FROM %Q.sqlite_stat2", sInfo.zDatabase);
75969 if( !zSql ){
75970 rc = SQLITE_NOMEM;
75971 }else{
75972 rc = sqlite3_prepare(db, zSql, -1, &pStmt, 0);
75973 sqlite3DbFree(db, zSql);
75976 if( rc==SQLITE_OK ){
75977 while( sqlite3_step(pStmt)==SQLITE_ROW ){
75978 char *zIndex; /* Index name */
75979 Index *pIdx; /* Pointer to the index object */
75981 zIndex = (char *)sqlite3_column_text(pStmt, 0);
75982 pIdx = zIndex ? sqlite3FindIndex(db, zIndex, sInfo.zDatabase) : 0;
75983 if( pIdx ){
75984 int iSample = sqlite3_column_int(pStmt, 1);
75985 if( iSample<SQLITE_INDEX_SAMPLES && iSample>=0 ){
75986 int eType = sqlite3_column_type(pStmt, 2);
75988 if( pIdx->aSample==0 ){
75989 static const int sz = sizeof(IndexSample)*SQLITE_INDEX_SAMPLES;
75990 pIdx->aSample = (IndexSample *)sqlite3DbMallocRaw(0, sz);
75991 if( pIdx->aSample==0 ){
75992 db->mallocFailed = 1;
75993 break;
75995 memset(pIdx->aSample, 0, sz);
75998 assert( pIdx->aSample );
76000 IndexSample *pSample = &pIdx->aSample[iSample];
76001 pSample->eType = (u8)eType;
76002 if( eType==SQLITE_INTEGER || eType==SQLITE_FLOAT ){
76003 pSample->u.r = sqlite3_column_double(pStmt, 2);
76004 }else if( eType==SQLITE_TEXT || eType==SQLITE_BLOB ){
76005 const char *z = (const char *)(
76006 (eType==SQLITE_BLOB) ?
76007 sqlite3_column_blob(pStmt, 2):
76008 sqlite3_column_text(pStmt, 2)
76010 int n = sqlite3_column_bytes(pStmt, 2);
76011 if( n>24 ){
76012 n = 24;
76014 pSample->nByte = (u8)n;
76015 if( n < 1){
76016 pSample->u.z = 0;
76017 }else{
76018 pSample->u.z = sqlite3DbStrNDup(0, z, n);
76019 if( pSample->u.z==0 ){
76020 db->mallocFailed = 1;
76021 break;
76029 rc = sqlite3_finalize(pStmt);
76032 #endif
76034 if( rc==SQLITE_NOMEM ){
76035 db->mallocFailed = 1;
76037 return rc;
76041 #endif /* SQLITE_OMIT_ANALYZE */
76043 /************** End of analyze.c *********************************************/
76044 /************** Begin file attach.c ******************************************/
76046 ** 2003 April 6
76048 ** The author disclaims copyright to this source code. In place of
76049 ** a legal notice, here is a blessing:
76051 ** May you do good and not evil.
76052 ** May you find forgiveness for yourself and forgive others.
76053 ** May you share freely, never taking more than you give.
76055 *************************************************************************
76056 ** This file contains code used to implement the ATTACH and DETACH commands.
76059 #ifndef SQLITE_OMIT_ATTACH
76061 ** Resolve an expression that was part of an ATTACH or DETACH statement. This
76062 ** is slightly different from resolving a normal SQL expression, because simple
76063 ** identifiers are treated as strings, not possible column names or aliases.
76065 ** i.e. if the parser sees:
76067 ** ATTACH DATABASE abc AS def
76069 ** it treats the two expressions as literal strings 'abc' and 'def' instead of
76070 ** looking for columns of the same name.
76072 ** This only applies to the root node of pExpr, so the statement:
76074 ** ATTACH DATABASE abc||def AS 'db2'
76076 ** will fail because neither abc or def can be resolved.
76078 static int resolveAttachExpr(NameContext *pName, Expr *pExpr)
76080 int rc = SQLITE_OK;
76081 if( pExpr ){
76082 if( pExpr->op!=TK_ID ){
76083 rc = sqlite3ResolveExprNames(pName, pExpr);
76084 if( rc==SQLITE_OK && !sqlite3ExprIsConstant(pExpr) ){
76085 sqlite3ErrorMsg(pName->pParse, "invalid name: \"%s\"", pExpr->u.zToken);
76086 return SQLITE_ERROR;
76088 }else{
76089 pExpr->op = TK_STRING;
76092 return rc;
76096 ** An SQL user-function registered to do the work of an ATTACH statement. The
76097 ** three arguments to the function come directly from an attach statement:
76099 ** ATTACH DATABASE x AS y KEY z
76101 ** SELECT sqlite_attach(x, y, z)
76103 ** If the optional "KEY z" syntax is omitted, an SQL NULL is passed as the
76104 ** third argument.
76106 static void attachFunc(
76107 sqlite3_context *context,
76108 int NotUsed,
76109 sqlite3_value **argv
76111 int i;
76112 int rc = 0;
76113 sqlite3 *db = sqlite3_context_db_handle(context);
76114 const char *zName;
76115 const char *zFile;
76116 Db *aNew;
76117 char *zErrDyn = 0;
76119 UNUSED_PARAMETER(NotUsed);
76121 zFile = (const char *)sqlite3_value_text(argv[0]);
76122 zName = (const char *)sqlite3_value_text(argv[1]);
76123 if( zFile==0 ) zFile = "";
76124 if( zName==0 ) zName = "";
76126 /* Check for the following errors:
76128 ** * Too many attached databases,
76129 ** * Transaction currently open
76130 ** * Specified database name already being used.
76132 if( db->nDb>=db->aLimit[SQLITE_LIMIT_ATTACHED]+2 ){
76133 zErrDyn = sqlite3MPrintf(db, "too many attached databases - max %d",
76134 db->aLimit[SQLITE_LIMIT_ATTACHED]
76136 goto attach_error;
76138 if( !db->autoCommit ){
76139 zErrDyn = sqlite3MPrintf(db, "cannot ATTACH database within transaction");
76140 goto attach_error;
76142 for(i=0; i<db->nDb; i++){
76143 char *z = db->aDb[i].zName;
76144 assert( z && zName );
76145 if( sqlite3StrICmp(z, zName)==0 ){
76146 zErrDyn = sqlite3MPrintf(db, "database %s is already in use", zName);
76147 goto attach_error;
76151 /* Allocate the new entry in the db->aDb[] array and initialise the schema
76152 ** hash tables.
76154 if( db->aDb==db->aDbStatic ){
76155 aNew = sqlite3DbMallocRaw(db, sizeof(db->aDb[0])*3 );
76156 if( aNew==0 ) return;
76157 memcpy(aNew, db->aDb, sizeof(db->aDb[0])*2);
76158 }else{
76159 aNew = sqlite3DbRealloc(db, db->aDb, sizeof(db->aDb[0])*(db->nDb+1) );
76160 if( aNew==0 ) return;
76162 db->aDb = aNew;
76163 aNew = &db->aDb[db->nDb];
76164 memset(aNew, 0, sizeof(*aNew));
76166 /* Open the database file. If the btree is successfully opened, use
76167 ** it to obtain the database schema. At this point the schema may
76168 ** or may not be initialised.
76170 rc = sqlite3BtreeOpen(zFile, db, &aNew->pBt, 0,
76171 db->openFlags | SQLITE_OPEN_MAIN_DB);
76172 db->nDb++;
76173 if( rc==SQLITE_CONSTRAINT ){
76174 rc = SQLITE_ERROR;
76175 zErrDyn = sqlite3MPrintf(db, "database is already attached");
76176 }else if( rc==SQLITE_OK ){
76177 Pager *pPager;
76178 aNew->pSchema = sqlite3SchemaGet(db, aNew->pBt);
76179 if( !aNew->pSchema ){
76180 rc = SQLITE_NOMEM;
76181 }else if( aNew->pSchema->file_format && aNew->pSchema->enc!=ENC(db) ){
76182 zErrDyn = sqlite3MPrintf(db,
76183 "attached databases must use the same text encoding as main database");
76184 rc = SQLITE_ERROR;
76186 pPager = sqlite3BtreePager(aNew->pBt);
76187 sqlite3PagerLockingMode(pPager, db->dfltLockMode);
76188 sqlite3BtreeSecureDelete(aNew->pBt,
76189 sqlite3BtreeSecureDelete(db->aDb[0].pBt,-1) );
76191 aNew->safety_level = 3;
76192 aNew->zName = sqlite3DbStrDup(db, zName);
76193 if( rc==SQLITE_OK && aNew->zName==0 ){
76194 rc = SQLITE_NOMEM;
76198 #ifdef SQLITE_HAS_CODEC
76199 if( rc==SQLITE_OK ){
76200 extern int sqlite3CodecAttach(sqlite3*, int, const void*, int);
76201 extern void sqlite3CodecGetKey(sqlite3*, int, void**, int*);
76202 int nKey;
76203 char *zKey;
76204 int t = sqlite3_value_type(argv[2]);
76205 switch( t ){
76206 case SQLITE_INTEGER:
76207 case SQLITE_FLOAT:
76208 zErrDyn = sqlite3DbStrDup(db, "Invalid key value");
76209 rc = SQLITE_ERROR;
76210 break;
76212 case SQLITE_TEXT:
76213 case SQLITE_BLOB:
76214 nKey = sqlite3_value_bytes(argv[2]);
76215 zKey = (char *)sqlite3_value_blob(argv[2]);
76216 rc = sqlite3CodecAttach(db, db->nDb-1, zKey, nKey);
76217 break;
76219 case SQLITE_NULL:
76220 /* No key specified. Use the key from the main database */
76221 sqlite3CodecGetKey(db, 0, (void**)&zKey, &nKey);
76222 if( nKey>0 || sqlite3BtreeGetReserve(db->aDb[0].pBt)>0 ){
76223 rc = sqlite3CodecAttach(db, db->nDb-1, zKey, nKey);
76225 break;
76228 #endif
76230 /* If the file was opened successfully, read the schema for the new database.
76231 ** If this fails, or if opening the file failed, then close the file and
76232 ** remove the entry from the db->aDb[] array. i.e. put everything back the way
76233 ** we found it.
76235 if( rc==SQLITE_OK ){
76236 sqlite3BtreeEnterAll(db);
76237 rc = sqlite3Init(db, &zErrDyn);
76238 sqlite3BtreeLeaveAll(db);
76240 if( rc ){
76241 int iDb = db->nDb - 1;
76242 assert( iDb>=2 );
76243 if( db->aDb[iDb].pBt ){
76244 sqlite3BtreeClose(db->aDb[iDb].pBt);
76245 db->aDb[iDb].pBt = 0;
76246 db->aDb[iDb].pSchema = 0;
76248 sqlite3ResetInternalSchema(db, -1);
76249 db->nDb = iDb;
76250 if( rc==SQLITE_NOMEM || rc==SQLITE_IOERR_NOMEM ){
76251 db->mallocFailed = 1;
76252 sqlite3DbFree(db, zErrDyn);
76253 zErrDyn = sqlite3MPrintf(db, "out of memory");
76254 }else if( zErrDyn==0 ){
76255 zErrDyn = sqlite3MPrintf(db, "unable to open database: %s", zFile);
76257 goto attach_error;
76260 return;
76262 attach_error:
76263 /* Return an error if we get here */
76264 if( zErrDyn ){
76265 sqlite3_result_error(context, zErrDyn, -1);
76266 sqlite3DbFree(db, zErrDyn);
76268 if( rc ) sqlite3_result_error_code(context, rc);
76272 ** An SQL user-function registered to do the work of an DETACH statement. The
76273 ** three arguments to the function come directly from a detach statement:
76275 ** DETACH DATABASE x
76277 ** SELECT sqlite_detach(x)
76279 static void detachFunc(
76280 sqlite3_context *context,
76281 int NotUsed,
76282 sqlite3_value **argv
76284 const char *zName = (const char *)sqlite3_value_text(argv[0]);
76285 sqlite3 *db = sqlite3_context_db_handle(context);
76286 int i;
76287 Db *pDb = 0;
76288 char zErr[128];
76290 UNUSED_PARAMETER(NotUsed);
76292 if( zName==0 ) zName = "";
76293 for(i=0; i<db->nDb; i++){
76294 pDb = &db->aDb[i];
76295 if( pDb->pBt==0 ) continue;
76296 if( sqlite3StrICmp(pDb->zName, zName)==0 ) break;
76299 if( i>=db->nDb ){
76300 sqlite3_snprintf(sizeof(zErr),zErr, "no such database: %s", zName);
76301 goto detach_error;
76303 if( i<2 ){
76304 sqlite3_snprintf(sizeof(zErr),zErr, "cannot detach database %s", zName);
76305 goto detach_error;
76307 if( !db->autoCommit ){
76308 sqlite3_snprintf(sizeof(zErr), zErr,
76309 "cannot DETACH database within transaction");
76310 goto detach_error;
76312 if( sqlite3BtreeIsInReadTrans(pDb->pBt) || sqlite3BtreeIsInBackup(pDb->pBt) ){
76313 sqlite3_snprintf(sizeof(zErr),zErr, "database %s is locked", zName);
76314 goto detach_error;
76317 sqlite3BtreeClose(pDb->pBt);
76318 pDb->pBt = 0;
76319 pDb->pSchema = 0;
76320 sqlite3ResetInternalSchema(db, -1);
76321 return;
76323 detach_error:
76324 sqlite3_result_error(context, zErr, -1);
76328 ** This procedure generates VDBE code for a single invocation of either the
76329 ** sqlite_detach() or sqlite_attach() SQL user functions.
76331 static void codeAttach(
76332 Parse *pParse, /* The parser context */
76333 int type, /* Either SQLITE_ATTACH or SQLITE_DETACH */
76334 FuncDef const *pFunc,/* FuncDef wrapper for detachFunc() or attachFunc() */
76335 Expr *pAuthArg, /* Expression to pass to authorization callback */
76336 Expr *pFilename, /* Name of database file */
76337 Expr *pDbname, /* Name of the database to use internally */
76338 Expr *pKey /* Database key for encryption extension */
76340 int rc;
76341 NameContext sName;
76342 Vdbe *v;
76343 sqlite3* db = pParse->db;
76344 int regArgs;
76346 memset(&sName, 0, sizeof(NameContext));
76347 sName.pParse = pParse;
76349 if(
76350 SQLITE_OK!=(rc = resolveAttachExpr(&sName, pFilename)) ||
76351 SQLITE_OK!=(rc = resolveAttachExpr(&sName, pDbname)) ||
76352 SQLITE_OK!=(rc = resolveAttachExpr(&sName, pKey))
76354 pParse->nErr++;
76355 goto attach_end;
76358 #ifndef SQLITE_OMIT_AUTHORIZATION
76359 if( pAuthArg ){
76360 char *zAuthArg;
76361 if( pAuthArg->op==TK_STRING ){
76362 zAuthArg = pAuthArg->u.zToken;
76363 }else{
76364 zAuthArg = 0;
76366 rc = sqlite3AuthCheck(pParse, type, zAuthArg, 0, 0);
76367 if(rc!=SQLITE_OK ){
76368 goto attach_end;
76371 #endif /* SQLITE_OMIT_AUTHORIZATION */
76374 v = sqlite3GetVdbe(pParse);
76375 regArgs = sqlite3GetTempRange(pParse, 4);
76376 sqlite3ExprCode(pParse, pFilename, regArgs);
76377 sqlite3ExprCode(pParse, pDbname, regArgs+1);
76378 sqlite3ExprCode(pParse, pKey, regArgs+2);
76380 assert( v || db->mallocFailed );
76381 if( v ){
76382 sqlite3VdbeAddOp3(v, OP_Function, 0, regArgs+3-pFunc->nArg, regArgs+3);
76383 assert( pFunc->nArg==-1 || (pFunc->nArg&0xff)==pFunc->nArg );
76384 sqlite3VdbeChangeP5(v, (u8)(pFunc->nArg));
76385 sqlite3VdbeChangeP4(v, -1, (char *)pFunc, P4_FUNCDEF);
76387 /* Code an OP_Expire. For an ATTACH statement, set P1 to true (expire this
76388 ** statement only). For DETACH, set it to false (expire all existing
76389 ** statements).
76391 sqlite3VdbeAddOp1(v, OP_Expire, (type==SQLITE_ATTACH));
76394 attach_end:
76395 sqlite3ExprDelete(db, pFilename);
76396 sqlite3ExprDelete(db, pDbname);
76397 sqlite3ExprDelete(db, pKey);
76401 ** Called by the parser to compile a DETACH statement.
76403 ** DETACH pDbname
76405 SQLITE_PRIVATE void sqlite3Detach(Parse *pParse, Expr *pDbname){
76406 static const FuncDef detach_func = {
76407 1, /* nArg */
76408 SQLITE_UTF8, /* iPrefEnc */
76409 0, /* flags */
76410 0, /* pUserData */
76411 0, /* pNext */
76412 detachFunc, /* xFunc */
76413 0, /* xStep */
76414 0, /* xFinalize */
76415 "sqlite_detach", /* zName */
76416 0, /* pHash */
76417 0 /* pDestructor */
76419 codeAttach(pParse, SQLITE_DETACH, &detach_func, pDbname, 0, 0, pDbname);
76423 ** Called by the parser to compile an ATTACH statement.
76425 ** ATTACH p AS pDbname KEY pKey
76427 SQLITE_PRIVATE void sqlite3Attach(Parse *pParse, Expr *p, Expr *pDbname, Expr *pKey){
76428 static const FuncDef attach_func = {
76429 3, /* nArg */
76430 SQLITE_UTF8, /* iPrefEnc */
76431 0, /* flags */
76432 0, /* pUserData */
76433 0, /* pNext */
76434 attachFunc, /* xFunc */
76435 0, /* xStep */
76436 0, /* xFinalize */
76437 "sqlite_attach", /* zName */
76438 0, /* pHash */
76439 0 /* pDestructor */
76441 codeAttach(pParse, SQLITE_ATTACH, &attach_func, p, p, pDbname, pKey);
76443 #endif /* SQLITE_OMIT_ATTACH */
76446 ** Initialize a DbFixer structure. This routine must be called prior
76447 ** to passing the structure to one of the sqliteFixAAAA() routines below.
76449 ** The return value indicates whether or not fixation is required. TRUE
76450 ** means we do need to fix the database references, FALSE means we do not.
76452 SQLITE_PRIVATE int sqlite3FixInit(
76453 DbFixer *pFix, /* The fixer to be initialized */
76454 Parse *pParse, /* Error messages will be written here */
76455 int iDb, /* This is the database that must be used */
76456 const char *zType, /* "view", "trigger", or "index" */
76457 const Token *pName /* Name of the view, trigger, or index */
76459 sqlite3 *db;
76461 if( NEVER(iDb<0) || iDb==1 ) return 0;
76462 db = pParse->db;
76463 assert( db->nDb>iDb );
76464 pFix->pParse = pParse;
76465 pFix->zDb = db->aDb[iDb].zName;
76466 pFix->zType = zType;
76467 pFix->pName = pName;
76468 return 1;
76472 ** The following set of routines walk through the parse tree and assign
76473 ** a specific database to all table references where the database name
76474 ** was left unspecified in the original SQL statement. The pFix structure
76475 ** must have been initialized by a prior call to sqlite3FixInit().
76477 ** These routines are used to make sure that an index, trigger, or
76478 ** view in one database does not refer to objects in a different database.
76479 ** (Exception: indices, triggers, and views in the TEMP database are
76480 ** allowed to refer to anything.) If a reference is explicitly made
76481 ** to an object in a different database, an error message is added to
76482 ** pParse->zErrMsg and these routines return non-zero. If everything
76483 ** checks out, these routines return 0.
76485 SQLITE_PRIVATE int sqlite3FixSrcList(
76486 DbFixer *pFix, /* Context of the fixation */
76487 SrcList *pList /* The Source list to check and modify */
76489 int i;
76490 const char *zDb;
76491 struct SrcList_item *pItem;
76493 if( NEVER(pList==0) ) return 0;
76494 zDb = pFix->zDb;
76495 for(i=0, pItem=pList->a; i<pList->nSrc; i++, pItem++){
76496 if( pItem->zDatabase==0 ){
76497 pItem->zDatabase = sqlite3DbStrDup(pFix->pParse->db, zDb);
76498 }else if( sqlite3StrICmp(pItem->zDatabase,zDb)!=0 ){
76499 sqlite3ErrorMsg(pFix->pParse,
76500 "%s %T cannot reference objects in database %s",
76501 pFix->zType, pFix->pName, pItem->zDatabase);
76502 return 1;
76504 #if !defined(SQLITE_OMIT_VIEW) || !defined(SQLITE_OMIT_TRIGGER)
76505 if( sqlite3FixSelect(pFix, pItem->pSelect) ) return 1;
76506 if( sqlite3FixExpr(pFix, pItem->pOn) ) return 1;
76507 #endif
76509 return 0;
76511 #if !defined(SQLITE_OMIT_VIEW) || !defined(SQLITE_OMIT_TRIGGER)
76512 SQLITE_PRIVATE int sqlite3FixSelect(
76513 DbFixer *pFix, /* Context of the fixation */
76514 Select *pSelect /* The SELECT statement to be fixed to one database */
76516 while( pSelect ){
76517 if( sqlite3FixExprList(pFix, pSelect->pEList) ){
76518 return 1;
76520 if( sqlite3FixSrcList(pFix, pSelect->pSrc) ){
76521 return 1;
76523 if( sqlite3FixExpr(pFix, pSelect->pWhere) ){
76524 return 1;
76526 if( sqlite3FixExpr(pFix, pSelect->pHaving) ){
76527 return 1;
76529 pSelect = pSelect->pPrior;
76531 return 0;
76533 SQLITE_PRIVATE int sqlite3FixExpr(
76534 DbFixer *pFix, /* Context of the fixation */
76535 Expr *pExpr /* The expression to be fixed to one database */
76537 while( pExpr ){
76538 if( ExprHasAnyProperty(pExpr, EP_TokenOnly) ) break;
76539 if( ExprHasProperty(pExpr, EP_xIsSelect) ){
76540 if( sqlite3FixSelect(pFix, pExpr->x.pSelect) ) return 1;
76541 }else{
76542 if( sqlite3FixExprList(pFix, pExpr->x.pList) ) return 1;
76544 if( sqlite3FixExpr(pFix, pExpr->pRight) ){
76545 return 1;
76547 pExpr = pExpr->pLeft;
76549 return 0;
76551 SQLITE_PRIVATE int sqlite3FixExprList(
76552 DbFixer *pFix, /* Context of the fixation */
76553 ExprList *pList /* The expression to be fixed to one database */
76555 int i;
76556 struct ExprList_item *pItem;
76557 if( pList==0 ) return 0;
76558 for(i=0, pItem=pList->a; i<pList->nExpr; i++, pItem++){
76559 if( sqlite3FixExpr(pFix, pItem->pExpr) ){
76560 return 1;
76563 return 0;
76565 #endif
76567 #ifndef SQLITE_OMIT_TRIGGER
76568 SQLITE_PRIVATE int sqlite3FixTriggerStep(
76569 DbFixer *pFix, /* Context of the fixation */
76570 TriggerStep *pStep /* The trigger step be fixed to one database */
76572 while( pStep ){
76573 if( sqlite3FixSelect(pFix, pStep->pSelect) ){
76574 return 1;
76576 if( sqlite3FixExpr(pFix, pStep->pWhere) ){
76577 return 1;
76579 if( sqlite3FixExprList(pFix, pStep->pExprList) ){
76580 return 1;
76582 pStep = pStep->pNext;
76584 return 0;
76586 #endif
76588 /************** End of attach.c **********************************************/
76589 /************** Begin file auth.c ********************************************/
76591 ** 2003 January 11
76593 ** The author disclaims copyright to this source code. In place of
76594 ** a legal notice, here is a blessing:
76596 ** May you do good and not evil.
76597 ** May you find forgiveness for yourself and forgive others.
76598 ** May you share freely, never taking more than you give.
76600 *************************************************************************
76601 ** This file contains code used to implement the sqlite3_set_authorizer()
76602 ** API. This facility is an optional feature of the library. Embedded
76603 ** systems that do not need this facility may omit it by recompiling
76604 ** the library with -DSQLITE_OMIT_AUTHORIZATION=1
76608 ** All of the code in this file may be omitted by defining a single
76609 ** macro.
76611 #ifndef SQLITE_OMIT_AUTHORIZATION
76614 ** Set or clear the access authorization function.
76616 ** The access authorization function is be called during the compilation
76617 ** phase to verify that the user has read and/or write access permission on
76618 ** various fields of the database. The first argument to the auth function
76619 ** is a copy of the 3rd argument to this routine. The second argument
76620 ** to the auth function is one of these constants:
76622 ** SQLITE_CREATE_INDEX
76623 ** SQLITE_CREATE_TABLE
76624 ** SQLITE_CREATE_TEMP_INDEX
76625 ** SQLITE_CREATE_TEMP_TABLE
76626 ** SQLITE_CREATE_TEMP_TRIGGER
76627 ** SQLITE_CREATE_TEMP_VIEW
76628 ** SQLITE_CREATE_TRIGGER
76629 ** SQLITE_CREATE_VIEW
76630 ** SQLITE_DELETE
76631 ** SQLITE_DROP_INDEX
76632 ** SQLITE_DROP_TABLE
76633 ** SQLITE_DROP_TEMP_INDEX
76634 ** SQLITE_DROP_TEMP_TABLE
76635 ** SQLITE_DROP_TEMP_TRIGGER
76636 ** SQLITE_DROP_TEMP_VIEW
76637 ** SQLITE_DROP_TRIGGER
76638 ** SQLITE_DROP_VIEW
76639 ** SQLITE_INSERT
76640 ** SQLITE_PRAGMA
76641 ** SQLITE_READ
76642 ** SQLITE_SELECT
76643 ** SQLITE_TRANSACTION
76644 ** SQLITE_UPDATE
76646 ** The third and fourth arguments to the auth function are the name of
76647 ** the table and the column that are being accessed. The auth function
76648 ** should return either SQLITE_OK, SQLITE_DENY, or SQLITE_IGNORE. If
76649 ** SQLITE_OK is returned, it means that access is allowed. SQLITE_DENY
76650 ** means that the SQL statement will never-run - the sqlite3_exec() call
76651 ** will return with an error. SQLITE_IGNORE means that the SQL statement
76652 ** should run but attempts to read the specified column will return NULL
76653 ** and attempts to write the column will be ignored.
76655 ** Setting the auth function to NULL disables this hook. The default
76656 ** setting of the auth function is NULL.
76658 SQLITE_API int sqlite3_set_authorizer(
76659 sqlite3 *db,
76660 int (*xAuth)(void*,int,const char*,const char*,const char*,const char*),
76661 void *pArg
76663 sqlite3_mutex_enter(db->mutex);
76664 db->xAuth = xAuth;
76665 db->pAuthArg = pArg;
76666 sqlite3ExpirePreparedStatements(db);
76667 sqlite3_mutex_leave(db->mutex);
76668 return SQLITE_OK;
76672 ** Write an error message into pParse->zErrMsg that explains that the
76673 ** user-supplied authorization function returned an illegal value.
76675 static void sqliteAuthBadReturnCode(Parse *pParse){
76676 sqlite3ErrorMsg(pParse, "authorizer malfunction");
76677 pParse->rc = SQLITE_ERROR;
76681 ** Invoke the authorization callback for permission to read column zCol from
76682 ** table zTab in database zDb. This function assumes that an authorization
76683 ** callback has been registered (i.e. that sqlite3.xAuth is not NULL).
76685 ** If SQLITE_IGNORE is returned and pExpr is not NULL, then pExpr is changed
76686 ** to an SQL NULL expression. Otherwise, if pExpr is NULL, then SQLITE_IGNORE
76687 ** is treated as SQLITE_DENY. In this case an error is left in pParse.
76689 SQLITE_PRIVATE int sqlite3AuthReadCol(
76690 Parse *pParse, /* The parser context */
76691 const char *zTab, /* Table name */
76692 const char *zCol, /* Column name */
76693 int iDb /* Index of containing database. */
76695 sqlite3 *db = pParse->db; /* Database handle */
76696 char *zDb = db->aDb[iDb].zName; /* Name of attached database */
76697 int rc; /* Auth callback return code */
76699 rc = db->xAuth(db->pAuthArg, SQLITE_READ, zTab,zCol,zDb,pParse->zAuthContext);
76700 if( rc==SQLITE_DENY ){
76701 if( db->nDb>2 || iDb!=0 ){
76702 sqlite3ErrorMsg(pParse, "access to %s.%s.%s is prohibited",zDb,zTab,zCol);
76703 }else{
76704 sqlite3ErrorMsg(pParse, "access to %s.%s is prohibited", zTab, zCol);
76706 pParse->rc = SQLITE_AUTH;
76707 }else if( rc!=SQLITE_IGNORE && rc!=SQLITE_OK ){
76708 sqliteAuthBadReturnCode(pParse);
76710 return rc;
76714 ** The pExpr should be a TK_COLUMN expression. The table referred to
76715 ** is in pTabList or else it is the NEW or OLD table of a trigger.
76716 ** Check to see if it is OK to read this particular column.
76718 ** If the auth function returns SQLITE_IGNORE, change the TK_COLUMN
76719 ** instruction into a TK_NULL. If the auth function returns SQLITE_DENY,
76720 ** then generate an error.
76722 SQLITE_PRIVATE void sqlite3AuthRead(
76723 Parse *pParse, /* The parser context */
76724 Expr *pExpr, /* The expression to check authorization on */
76725 Schema *pSchema, /* The schema of the expression */
76726 SrcList *pTabList /* All table that pExpr might refer to */
76728 sqlite3 *db = pParse->db;
76729 Table *pTab = 0; /* The table being read */
76730 const char *zCol; /* Name of the column of the table */
76731 int iSrc; /* Index in pTabList->a[] of table being read */
76732 int iDb; /* The index of the database the expression refers to */
76733 int iCol; /* Index of column in table */
76735 if( db->xAuth==0 ) return;
76736 iDb = sqlite3SchemaToIndex(pParse->db, pSchema);
76737 if( iDb<0 ){
76738 /* An attempt to read a column out of a subquery or other
76739 ** temporary table. */
76740 return;
76743 assert( pExpr->op==TK_COLUMN || pExpr->op==TK_TRIGGER );
76744 if( pExpr->op==TK_TRIGGER ){
76745 pTab = pParse->pTriggerTab;
76746 }else{
76747 assert( pTabList );
76748 for(iSrc=0; ALWAYS(iSrc<pTabList->nSrc); iSrc++){
76749 if( pExpr->iTable==pTabList->a[iSrc].iCursor ){
76750 pTab = pTabList->a[iSrc].pTab;
76751 break;
76755 iCol = pExpr->iColumn;
76756 if( NEVER(pTab==0) ) return;
76758 if( iCol>=0 ){
76759 assert( iCol<pTab->nCol );
76760 zCol = pTab->aCol[iCol].zName;
76761 }else if( pTab->iPKey>=0 ){
76762 assert( pTab->iPKey<pTab->nCol );
76763 zCol = pTab->aCol[pTab->iPKey].zName;
76764 }else{
76765 zCol = "ROWID";
76767 assert( iDb>=0 && iDb<db->nDb );
76768 if( SQLITE_IGNORE==sqlite3AuthReadCol(pParse, pTab->zName, zCol, iDb) ){
76769 pExpr->op = TK_NULL;
76774 ** Do an authorization check using the code and arguments given. Return
76775 ** either SQLITE_OK (zero) or SQLITE_IGNORE or SQLITE_DENY. If SQLITE_DENY
76776 ** is returned, then the error count and error message in pParse are
76777 ** modified appropriately.
76779 SQLITE_PRIVATE int sqlite3AuthCheck(
76780 Parse *pParse,
76781 int code,
76782 const char *zArg1,
76783 const char *zArg2,
76784 const char *zArg3
76786 sqlite3 *db = pParse->db;
76787 int rc;
76789 /* Don't do any authorization checks if the database is initialising
76790 ** or if the parser is being invoked from within sqlite3_declare_vtab.
76792 if( db->init.busy || IN_DECLARE_VTAB ){
76793 return SQLITE_OK;
76796 if( db->xAuth==0 ){
76797 return SQLITE_OK;
76799 rc = db->xAuth(db->pAuthArg, code, zArg1, zArg2, zArg3, pParse->zAuthContext);
76800 if( rc==SQLITE_DENY ){
76801 sqlite3ErrorMsg(pParse, "not authorized");
76802 pParse->rc = SQLITE_AUTH;
76803 }else if( rc!=SQLITE_OK && rc!=SQLITE_IGNORE ){
76804 rc = SQLITE_DENY;
76805 sqliteAuthBadReturnCode(pParse);
76807 return rc;
76811 ** Push an authorization context. After this routine is called, the
76812 ** zArg3 argument to authorization callbacks will be zContext until
76813 ** popped. Or if pParse==0, this routine is a no-op.
76815 SQLITE_PRIVATE void sqlite3AuthContextPush(
76816 Parse *pParse,
76817 AuthContext *pContext,
76818 const char *zContext
76820 assert( pParse );
76821 pContext->pParse = pParse;
76822 pContext->zAuthContext = pParse->zAuthContext;
76823 pParse->zAuthContext = zContext;
76827 ** Pop an authorization context that was previously pushed
76828 ** by sqlite3AuthContextPush
76830 SQLITE_PRIVATE void sqlite3AuthContextPop(AuthContext *pContext){
76831 if( pContext->pParse ){
76832 pContext->pParse->zAuthContext = pContext->zAuthContext;
76833 pContext->pParse = 0;
76837 #endif /* SQLITE_OMIT_AUTHORIZATION */
76839 /************** End of auth.c ************************************************/
76840 /************** Begin file build.c *******************************************/
76842 ** 2001 September 15
76844 ** The author disclaims copyright to this source code. In place of
76845 ** a legal notice, here is a blessing:
76847 ** May you do good and not evil.
76848 ** May you find forgiveness for yourself and forgive others.
76849 ** May you share freely, never taking more than you give.
76851 *************************************************************************
76852 ** This file contains C code routines that are called by the SQLite parser
76853 ** when syntax rules are reduced. The routines in this file handle the
76854 ** following kinds of SQL syntax:
76856 ** CREATE TABLE
76857 ** DROP TABLE
76858 ** CREATE INDEX
76859 ** DROP INDEX
76860 ** creating ID lists
76861 ** BEGIN TRANSACTION
76862 ** COMMIT
76863 ** ROLLBACK
76867 ** This routine is called when a new SQL statement is beginning to
76868 ** be parsed. Initialize the pParse structure as needed.
76870 SQLITE_PRIVATE void sqlite3BeginParse(Parse *pParse, int explainFlag){
76871 pParse->explain = (u8)explainFlag;
76872 pParse->nVar = 0;
76875 #ifndef SQLITE_OMIT_SHARED_CACHE
76877 ** The TableLock structure is only used by the sqlite3TableLock() and
76878 ** codeTableLocks() functions.
76880 struct TableLock {
76881 int iDb; /* The database containing the table to be locked */
76882 int iTab; /* The root page of the table to be locked */
76883 u8 isWriteLock; /* True for write lock. False for a read lock */
76884 const char *zName; /* Name of the table */
76888 ** Record the fact that we want to lock a table at run-time.
76890 ** The table to be locked has root page iTab and is found in database iDb.
76891 ** A read or a write lock can be taken depending on isWritelock.
76893 ** This routine just records the fact that the lock is desired. The
76894 ** code to make the lock occur is generated by a later call to
76895 ** codeTableLocks() which occurs during sqlite3FinishCoding().
76897 SQLITE_PRIVATE void sqlite3TableLock(
76898 Parse *pParse, /* Parsing context */
76899 int iDb, /* Index of the database containing the table to lock */
76900 int iTab, /* Root page number of the table to be locked */
76901 u8 isWriteLock, /* True for a write lock */
76902 const char *zName /* Name of the table to be locked */
76904 Parse *pToplevel = sqlite3ParseToplevel(pParse);
76905 int i;
76906 int nBytes;
76907 TableLock *p;
76908 assert( iDb>=0 );
76910 for(i=0; i<pToplevel->nTableLock; i++){
76911 p = &pToplevel->aTableLock[i];
76912 if( p->iDb==iDb && p->iTab==iTab ){
76913 p->isWriteLock = (p->isWriteLock || isWriteLock);
76914 return;
76918 nBytes = sizeof(TableLock) * (pToplevel->nTableLock+1);
76919 pToplevel->aTableLock =
76920 sqlite3DbReallocOrFree(pToplevel->db, pToplevel->aTableLock, nBytes);
76921 if( pToplevel->aTableLock ){
76922 p = &pToplevel->aTableLock[pToplevel->nTableLock++];
76923 p->iDb = iDb;
76924 p->iTab = iTab;
76925 p->isWriteLock = isWriteLock;
76926 p->zName = zName;
76927 }else{
76928 pToplevel->nTableLock = 0;
76929 pToplevel->db->mallocFailed = 1;
76934 ** Code an OP_TableLock instruction for each table locked by the
76935 ** statement (configured by calls to sqlite3TableLock()).
76937 static void codeTableLocks(Parse *pParse){
76938 int i;
76939 Vdbe *pVdbe;
76941 pVdbe = sqlite3GetVdbe(pParse);
76942 assert( pVdbe!=0 ); /* sqlite3GetVdbe cannot fail: VDBE already allocated */
76944 for(i=0; i<pParse->nTableLock; i++){
76945 TableLock *p = &pParse->aTableLock[i];
76946 int p1 = p->iDb;
76947 sqlite3VdbeAddOp4(pVdbe, OP_TableLock, p1, p->iTab, p->isWriteLock,
76948 p->zName, P4_STATIC);
76951 #else
76952 #define codeTableLocks(x)
76953 #endif
76956 ** This routine is called after a single SQL statement has been
76957 ** parsed and a VDBE program to execute that statement has been
76958 ** prepared. This routine puts the finishing touches on the
76959 ** VDBE program and resets the pParse structure for the next
76960 ** parse.
76962 ** Note that if an error occurred, it might be the case that
76963 ** no VDBE code was generated.
76965 SQLITE_PRIVATE void sqlite3FinishCoding(Parse *pParse){
76966 sqlite3 *db;
76967 Vdbe *v;
76969 db = pParse->db;
76970 if( db->mallocFailed ) return;
76971 if( pParse->nested ) return;
76972 if( pParse->nErr ) return;
76974 /* Begin by generating some termination code at the end of the
76975 ** vdbe program
76977 v = sqlite3GetVdbe(pParse);
76978 assert( !pParse->isMultiWrite
76979 || sqlite3VdbeAssertMayAbort(v, pParse->mayAbort));
76980 if( v ){
76981 sqlite3VdbeAddOp0(v, OP_Halt);
76983 /* The cookie mask contains one bit for each database file open.
76984 ** (Bit 0 is for main, bit 1 is for temp, and so forth.) Bits are
76985 ** set for each database that is used. Generate code to start a
76986 ** transaction on each used database and to verify the schema cookie
76987 ** on each used database.
76989 if( pParse->cookieGoto>0 ){
76990 yDbMask mask;
76991 int iDb;
76992 sqlite3VdbeJumpHere(v, pParse->cookieGoto-1);
76993 for(iDb=0, mask=1; iDb<db->nDb; mask<<=1, iDb++){
76994 if( (mask & pParse->cookieMask)==0 ) continue;
76995 sqlite3VdbeUsesBtree(v, iDb);
76996 sqlite3VdbeAddOp2(v,OP_Transaction, iDb, (mask & pParse->writeMask)!=0);
76997 if( db->init.busy==0 ){
76998 assert( sqlite3SchemaMutexHeld(db, iDb, 0) );
76999 sqlite3VdbeAddOp3(v, OP_VerifyCookie,
77000 iDb, pParse->cookieValue[iDb],
77001 db->aDb[iDb].pSchema->iGeneration);
77004 #ifndef SQLITE_OMIT_VIRTUALTABLE
77006 int i;
77007 for(i=0; i<pParse->nVtabLock; i++){
77008 char *vtab = (char *)sqlite3GetVTable(db, pParse->apVtabLock[i]);
77009 sqlite3VdbeAddOp4(v, OP_VBegin, 0, 0, 0, vtab, P4_VTAB);
77011 pParse->nVtabLock = 0;
77013 #endif
77015 /* Once all the cookies have been verified and transactions opened,
77016 ** obtain the required table-locks. This is a no-op unless the
77017 ** shared-cache feature is enabled.
77019 codeTableLocks(pParse);
77021 /* Initialize any AUTOINCREMENT data structures required.
77023 sqlite3AutoincrementBegin(pParse);
77025 /* Finally, jump back to the beginning of the executable code. */
77026 sqlite3VdbeAddOp2(v, OP_Goto, 0, pParse->cookieGoto);
77031 /* Get the VDBE program ready for execution
77033 if( v && ALWAYS(pParse->nErr==0) && !db->mallocFailed ){
77034 #ifdef SQLITE_DEBUG
77035 FILE *trace = (db->flags & SQLITE_VdbeTrace)!=0 ? stdout : 0;
77036 sqlite3VdbeTrace(v, trace);
77037 #endif
77038 assert( pParse->iCacheLevel==0 ); /* Disables and re-enables match */
77039 /* A minimum of one cursor is required if autoincrement is used
77040 * See ticket [a696379c1f08866] */
77041 if( pParse->pAinc!=0 && pParse->nTab==0 ) pParse->nTab = 1;
77042 sqlite3VdbeMakeReady(v, pParse->nVar, pParse->nMem,
77043 pParse->nTab, pParse->nMaxArg, pParse->explain,
77044 pParse->isMultiWrite && pParse->mayAbort);
77045 pParse->rc = SQLITE_DONE;
77046 pParse->colNamesSet = 0;
77047 }else{
77048 pParse->rc = SQLITE_ERROR;
77050 pParse->nTab = 0;
77051 pParse->nMem = 0;
77052 pParse->nSet = 0;
77053 pParse->nVar = 0;
77054 pParse->cookieMask = 0;
77055 pParse->cookieGoto = 0;
77059 ** Run the parser and code generator recursively in order to generate
77060 ** code for the SQL statement given onto the end of the pParse context
77061 ** currently under construction. When the parser is run recursively
77062 ** this way, the final OP_Halt is not appended and other initialization
77063 ** and finalization steps are omitted because those are handling by the
77064 ** outermost parser.
77066 ** Not everything is nestable. This facility is designed to permit
77067 ** INSERT, UPDATE, and DELETE operations against SQLITE_MASTER. Use
77068 ** care if you decide to try to use this routine for some other purposes.
77070 SQLITE_PRIVATE void sqlite3NestedParse(Parse *pParse, const char *zFormat, ...){
77071 va_list ap;
77072 char *zSql;
77073 char *zErrMsg = 0;
77074 sqlite3 *db = pParse->db;
77075 # define SAVE_SZ (sizeof(Parse) - offsetof(Parse,nVar))
77076 char saveBuf[SAVE_SZ];
77078 if( pParse->nErr ) return;
77079 assert( pParse->nested<10 ); /* Nesting should only be of limited depth */
77080 va_start(ap, zFormat);
77081 zSql = sqlite3VMPrintf(db, zFormat, ap);
77082 va_end(ap);
77083 if( zSql==0 ){
77084 return; /* A malloc must have failed */
77086 pParse->nested++;
77087 memcpy(saveBuf, &pParse->nVar, SAVE_SZ);
77088 memset(&pParse->nVar, 0, SAVE_SZ);
77089 sqlite3RunParser(pParse, zSql, &zErrMsg);
77090 sqlite3DbFree(db, zErrMsg);
77091 sqlite3DbFree(db, zSql);
77092 memcpy(&pParse->nVar, saveBuf, SAVE_SZ);
77093 pParse->nested--;
77097 ** Locate the in-memory structure that describes a particular database
77098 ** table given the name of that table and (optionally) the name of the
77099 ** database containing the table. Return NULL if not found.
77101 ** If zDatabase is 0, all databases are searched for the table and the
77102 ** first matching table is returned. (No checking for duplicate table
77103 ** names is done.) The search order is TEMP first, then MAIN, then any
77104 ** auxiliary databases added using the ATTACH command.
77106 ** See also sqlite3LocateTable().
77108 SQLITE_PRIVATE Table *sqlite3FindTable(sqlite3 *db, const char *zName, const char *zDatabase){
77109 Table *p = 0;
77110 int i;
77111 int nName;
77112 assert( zName!=0 );
77113 nName = sqlite3Strlen30(zName);
77114 /* All mutexes are required for schema access. Make sure we hold them. */
77115 assert( zDatabase!=0 || sqlite3BtreeHoldsAllMutexes(db) );
77116 for(i=OMIT_TEMPDB; i<db->nDb; i++){
77117 int j = (i<2) ? i^1 : i; /* Search TEMP before MAIN */
77118 if( zDatabase!=0 && sqlite3StrICmp(zDatabase, db->aDb[j].zName) ) continue;
77119 assert( sqlite3SchemaMutexHeld(db, j, 0) );
77120 p = sqlite3HashFind(&db->aDb[j].pSchema->tblHash, zName, nName);
77121 if( p ) break;
77123 return p;
77127 ** Locate the in-memory structure that describes a particular database
77128 ** table given the name of that table and (optionally) the name of the
77129 ** database containing the table. Return NULL if not found. Also leave an
77130 ** error message in pParse->zErrMsg.
77132 ** The difference between this routine and sqlite3FindTable() is that this
77133 ** routine leaves an error message in pParse->zErrMsg where
77134 ** sqlite3FindTable() does not.
77136 SQLITE_PRIVATE Table *sqlite3LocateTable(
77137 Parse *pParse, /* context in which to report errors */
77138 int isView, /* True if looking for a VIEW rather than a TABLE */
77139 const char *zName, /* Name of the table we are looking for */
77140 const char *zDbase /* Name of the database. Might be NULL */
77142 Table *p;
77144 /* Read the database schema. If an error occurs, leave an error message
77145 ** and code in pParse and return NULL. */
77146 if( SQLITE_OK!=sqlite3ReadSchema(pParse) ){
77147 return 0;
77150 p = sqlite3FindTable(pParse->db, zName, zDbase);
77151 if( p==0 ){
77152 const char *zMsg = isView ? "no such view" : "no such table";
77153 if( zDbase ){
77154 sqlite3ErrorMsg(pParse, "%s: %s.%s", zMsg, zDbase, zName);
77155 }else{
77156 sqlite3ErrorMsg(pParse, "%s: %s", zMsg, zName);
77158 pParse->checkSchema = 1;
77160 return p;
77164 ** Locate the in-memory structure that describes
77165 ** a particular index given the name of that index
77166 ** and the name of the database that contains the index.
77167 ** Return NULL if not found.
77169 ** If zDatabase is 0, all databases are searched for the
77170 ** table and the first matching index is returned. (No checking
77171 ** for duplicate index names is done.) The search order is
77172 ** TEMP first, then MAIN, then any auxiliary databases added
77173 ** using the ATTACH command.
77175 SQLITE_PRIVATE Index *sqlite3FindIndex(sqlite3 *db, const char *zName, const char *zDb){
77176 Index *p = 0;
77177 int i;
77178 int nName = sqlite3Strlen30(zName);
77179 /* All mutexes are required for schema access. Make sure we hold them. */
77180 assert( zDb!=0 || sqlite3BtreeHoldsAllMutexes(db) );
77181 for(i=OMIT_TEMPDB; i<db->nDb; i++){
77182 int j = (i<2) ? i^1 : i; /* Search TEMP before MAIN */
77183 Schema *pSchema = db->aDb[j].pSchema;
77184 assert( pSchema );
77185 if( zDb && sqlite3StrICmp(zDb, db->aDb[j].zName) ) continue;
77186 assert( sqlite3SchemaMutexHeld(db, j, 0) );
77187 p = sqlite3HashFind(&pSchema->idxHash, zName, nName);
77188 if( p ) break;
77190 return p;
77194 ** Reclaim the memory used by an index
77196 static void freeIndex(sqlite3 *db, Index *p){
77197 #ifndef SQLITE_OMIT_ANALYZE
77198 sqlite3DeleteIndexSamples(db, p);
77199 #endif
77200 sqlite3DbFree(db, p->zColAff);
77201 sqlite3DbFree(db, p);
77205 ** For the index called zIdxName which is found in the database iDb,
77206 ** unlike that index from its Table then remove the index from
77207 ** the index hash table and free all memory structures associated
77208 ** with the index.
77210 SQLITE_PRIVATE void sqlite3UnlinkAndDeleteIndex(sqlite3 *db, int iDb, const char *zIdxName){
77211 Index *pIndex;
77212 int len;
77213 Hash *pHash;
77215 assert( sqlite3SchemaMutexHeld(db, iDb, 0) );
77216 pHash = &db->aDb[iDb].pSchema->idxHash;
77217 len = sqlite3Strlen30(zIdxName);
77218 pIndex = sqlite3HashInsert(pHash, zIdxName, len, 0);
77219 if( ALWAYS(pIndex) ){
77220 if( pIndex->pTable->pIndex==pIndex ){
77221 pIndex->pTable->pIndex = pIndex->pNext;
77222 }else{
77223 Index *p;
77224 /* Justification of ALWAYS(); The index must be on the list of
77225 ** indices. */
77226 p = pIndex->pTable->pIndex;
77227 while( ALWAYS(p) && p->pNext!=pIndex ){ p = p->pNext; }
77228 if( ALWAYS(p && p->pNext==pIndex) ){
77229 p->pNext = pIndex->pNext;
77232 freeIndex(db, pIndex);
77234 db->flags |= SQLITE_InternChanges;
77238 ** Erase all schema information from the in-memory hash tables of
77239 ** a single database. This routine is called to reclaim memory
77240 ** before the database closes. It is also called during a rollback
77241 ** if there were schema changes during the transaction or if a
77242 ** schema-cookie mismatch occurs.
77244 ** If iDb<0 then reset the internal schema tables for all database
77245 ** files. If iDb>=0 then reset the internal schema for only the
77246 ** single file indicated.
77248 SQLITE_PRIVATE void sqlite3ResetInternalSchema(sqlite3 *db, int iDb){
77249 int i, j;
77250 assert( iDb<db->nDb );
77252 if( iDb>=0 ){
77253 /* Case 1: Reset the single schema identified by iDb */
77254 Db *pDb = &db->aDb[iDb];
77255 assert( sqlite3SchemaMutexHeld(db, iDb, 0) );
77256 assert( pDb->pSchema!=0 );
77257 sqlite3SchemaClear(pDb->pSchema);
77259 /* If any database other than TEMP is reset, then also reset TEMP
77260 ** since TEMP might be holding triggers that reference tables in the
77261 ** other database.
77263 if( iDb!=1 ){
77264 pDb = &db->aDb[1];
77265 assert( pDb->pSchema!=0 );
77266 sqlite3SchemaClear(pDb->pSchema);
77268 return;
77270 /* Case 2 (from here to the end): Reset all schemas for all attached
77271 ** databases. */
77272 assert( iDb<0 );
77273 sqlite3BtreeEnterAll(db);
77274 for(i=0; i<db->nDb; i++){
77275 Db *pDb = &db->aDb[i];
77276 if( pDb->pSchema ){
77277 sqlite3SchemaClear(pDb->pSchema);
77280 db->flags &= ~SQLITE_InternChanges;
77281 sqlite3VtabUnlockList(db);
77282 sqlite3BtreeLeaveAll(db);
77284 /* If one or more of the auxiliary database files has been closed,
77285 ** then remove them from the auxiliary database list. We take the
77286 ** opportunity to do this here since we have just deleted all of the
77287 ** schema hash tables and therefore do not have to make any changes
77288 ** to any of those tables.
77290 for(i=j=2; i<db->nDb; i++){
77291 struct Db *pDb = &db->aDb[i];
77292 if( pDb->pBt==0 ){
77293 sqlite3DbFree(db, pDb->zName);
77294 pDb->zName = 0;
77295 continue;
77297 if( j<i ){
77298 db->aDb[j] = db->aDb[i];
77300 j++;
77302 memset(&db->aDb[j], 0, (db->nDb-j)*sizeof(db->aDb[j]));
77303 db->nDb = j;
77304 if( db->nDb<=2 && db->aDb!=db->aDbStatic ){
77305 memcpy(db->aDbStatic, db->aDb, 2*sizeof(db->aDb[0]));
77306 sqlite3DbFree(db, db->aDb);
77307 db->aDb = db->aDbStatic;
77312 ** This routine is called when a commit occurs.
77314 SQLITE_PRIVATE void sqlite3CommitInternalChanges(sqlite3 *db){
77315 db->flags &= ~SQLITE_InternChanges;
77319 ** Delete memory allocated for the column names of a table or view (the
77320 ** Table.aCol[] array).
77322 static void sqliteDeleteColumnNames(sqlite3 *db, Table *pTable){
77323 int i;
77324 Column *pCol;
77325 assert( pTable!=0 );
77326 if( (pCol = pTable->aCol)!=0 ){
77327 for(i=0; i<pTable->nCol; i++, pCol++){
77328 sqlite3DbFree(db, pCol->zName);
77329 sqlite3ExprDelete(db, pCol->pDflt);
77330 sqlite3DbFree(db, pCol->zDflt);
77331 sqlite3DbFree(db, pCol->zType);
77332 sqlite3DbFree(db, pCol->zColl);
77334 sqlite3DbFree(db, pTable->aCol);
77339 ** Remove the memory data structures associated with the given
77340 ** Table. No changes are made to disk by this routine.
77342 ** This routine just deletes the data structure. It does not unlink
77343 ** the table data structure from the hash table. But it does destroy
77344 ** memory structures of the indices and foreign keys associated with
77345 ** the table.
77347 SQLITE_PRIVATE void sqlite3DeleteTable(sqlite3 *db, Table *pTable){
77348 Index *pIndex, *pNext;
77350 assert( !pTable || pTable->nRef>0 );
77352 /* Do not delete the table until the reference count reaches zero. */
77353 if( !pTable ) return;
77354 if( ((!db || db->pnBytesFreed==0) && (--pTable->nRef)>0) ) return;
77356 /* Delete all indices associated with this table. */
77357 for(pIndex = pTable->pIndex; pIndex; pIndex=pNext){
77358 pNext = pIndex->pNext;
77359 assert( pIndex->pSchema==pTable->pSchema );
77360 if( !db || db->pnBytesFreed==0 ){
77361 char *zName = pIndex->zName;
77362 TESTONLY ( Index *pOld = ) sqlite3HashInsert(
77363 &pIndex->pSchema->idxHash, zName, sqlite3Strlen30(zName), 0
77365 assert( db==0 || sqlite3SchemaMutexHeld(db, 0, pIndex->pSchema) );
77366 assert( pOld==pIndex || pOld==0 );
77368 freeIndex(db, pIndex);
77371 /* Delete any foreign keys attached to this table. */
77372 sqlite3FkDelete(db, pTable);
77374 /* Delete the Table structure itself.
77376 sqliteDeleteColumnNames(db, pTable);
77377 sqlite3DbFree(db, pTable->zName);
77378 sqlite3DbFree(db, pTable->zColAff);
77379 sqlite3SelectDelete(db, pTable->pSelect);
77380 #ifndef SQLITE_OMIT_CHECK
77381 sqlite3ExprDelete(db, pTable->pCheck);
77382 #endif
77383 #ifndef SQLITE_OMIT_VIRTUALTABLE
77384 sqlite3VtabClear(db, pTable);
77385 #endif
77386 sqlite3DbFree(db, pTable);
77390 ** Unlink the given table from the hash tables and the delete the
77391 ** table structure with all its indices and foreign keys.
77393 SQLITE_PRIVATE void sqlite3UnlinkAndDeleteTable(sqlite3 *db, int iDb, const char *zTabName){
77394 Table *p;
77395 Db *pDb;
77397 assert( db!=0 );
77398 assert( iDb>=0 && iDb<db->nDb );
77399 assert( zTabName );
77400 assert( sqlite3SchemaMutexHeld(db, iDb, 0) );
77401 testcase( zTabName[0]==0 ); /* Zero-length table names are allowed */
77402 pDb = &db->aDb[iDb];
77403 p = sqlite3HashInsert(&pDb->pSchema->tblHash, zTabName,
77404 sqlite3Strlen30(zTabName),0);
77405 sqlite3DeleteTable(db, p);
77406 db->flags |= SQLITE_InternChanges;
77410 ** Given a token, return a string that consists of the text of that
77411 ** token. Space to hold the returned string
77412 ** is obtained from sqliteMalloc() and must be freed by the calling
77413 ** function.
77415 ** Any quotation marks (ex: "name", 'name', [name], or `name`) that
77416 ** surround the body of the token are removed.
77418 ** Tokens are often just pointers into the original SQL text and so
77419 ** are not \000 terminated and are not persistent. The returned string
77420 ** is \000 terminated and is persistent.
77422 SQLITE_PRIVATE char *sqlite3NameFromToken(sqlite3 *db, Token *pName){
77423 char *zName;
77424 if( pName ){
77425 zName = sqlite3DbStrNDup(db, (char*)pName->z, pName->n);
77426 sqlite3Dequote(zName);
77427 }else{
77428 zName = 0;
77430 return zName;
77434 ** Open the sqlite_master table stored in database number iDb for
77435 ** writing. The table is opened using cursor 0.
77437 SQLITE_PRIVATE void sqlite3OpenMasterTable(Parse *p, int iDb){
77438 Vdbe *v = sqlite3GetVdbe(p);
77439 sqlite3TableLock(p, iDb, MASTER_ROOT, 1, SCHEMA_TABLE(iDb));
77440 sqlite3VdbeAddOp3(v, OP_OpenWrite, 0, MASTER_ROOT, iDb);
77441 sqlite3VdbeChangeP4(v, -1, (char *)5, P4_INT32); /* 5 column table */
77442 if( p->nTab==0 ){
77443 p->nTab = 1;
77448 ** Parameter zName points to a nul-terminated buffer containing the name
77449 ** of a database ("main", "temp" or the name of an attached db). This
77450 ** function returns the index of the named database in db->aDb[], or
77451 ** -1 if the named db cannot be found.
77453 SQLITE_PRIVATE int sqlite3FindDbName(sqlite3 *db, const char *zName){
77454 int i = -1; /* Database number */
77455 if( zName ){
77456 Db *pDb;
77457 int n = sqlite3Strlen30(zName);
77458 for(i=(db->nDb-1), pDb=&db->aDb[i]; i>=0; i--, pDb--){
77459 if( (!OMIT_TEMPDB || i!=1 ) && n==sqlite3Strlen30(pDb->zName) &&
77460 0==sqlite3StrICmp(pDb->zName, zName) ){
77461 break;
77465 return i;
77469 ** The token *pName contains the name of a database (either "main" or
77470 ** "temp" or the name of an attached db). This routine returns the
77471 ** index of the named database in db->aDb[], or -1 if the named db
77472 ** does not exist.
77474 SQLITE_PRIVATE int sqlite3FindDb(sqlite3 *db, Token *pName){
77475 int i; /* Database number */
77476 char *zName; /* Name we are searching for */
77477 zName = sqlite3NameFromToken(db, pName);
77478 i = sqlite3FindDbName(db, zName);
77479 sqlite3DbFree(db, zName);
77480 return i;
77483 /* The table or view or trigger name is passed to this routine via tokens
77484 ** pName1 and pName2. If the table name was fully qualified, for example:
77486 ** CREATE TABLE xxx.yyy (...);
77488 ** Then pName1 is set to "xxx" and pName2 "yyy". On the other hand if
77489 ** the table name is not fully qualified, i.e.:
77491 ** CREATE TABLE yyy(...);
77493 ** Then pName1 is set to "yyy" and pName2 is "".
77495 ** This routine sets the *ppUnqual pointer to point at the token (pName1 or
77496 ** pName2) that stores the unqualified table name. The index of the
77497 ** database "xxx" is returned.
77499 SQLITE_PRIVATE int sqlite3TwoPartName(
77500 Parse *pParse, /* Parsing and code generating context */
77501 Token *pName1, /* The "xxx" in the name "xxx.yyy" or "xxx" */
77502 Token *pName2, /* The "yyy" in the name "xxx.yyy" */
77503 Token **pUnqual /* Write the unqualified object name here */
77505 int iDb; /* Database holding the object */
77506 sqlite3 *db = pParse->db;
77508 if( ALWAYS(pName2!=0) && pName2->n>0 ){
77509 if( db->init.busy ) {
77510 sqlite3ErrorMsg(pParse, "corrupt database");
77511 pParse->nErr++;
77512 return -1;
77514 *pUnqual = pName2;
77515 iDb = sqlite3FindDb(db, pName1);
77516 if( iDb<0 ){
77517 sqlite3ErrorMsg(pParse, "unknown database %T", pName1);
77518 pParse->nErr++;
77519 return -1;
77521 }else{
77522 assert( db->init.iDb==0 || db->init.busy );
77523 iDb = db->init.iDb;
77524 *pUnqual = pName1;
77526 return iDb;
77530 ** This routine is used to check if the UTF-8 string zName is a legal
77531 ** unqualified name for a new schema object (table, index, view or
77532 ** trigger). All names are legal except those that begin with the string
77533 ** "sqlite_" (in upper, lower or mixed case). This portion of the namespace
77534 ** is reserved for internal use.
77536 SQLITE_PRIVATE int sqlite3CheckObjectName(Parse *pParse, const char *zName){
77537 if( !pParse->db->init.busy && pParse->nested==0
77538 && (pParse->db->flags & SQLITE_WriteSchema)==0
77539 && 0==sqlite3StrNICmp(zName, "sqlite_", 7) ){
77540 sqlite3ErrorMsg(pParse, "object name reserved for internal use: %s", zName);
77541 return SQLITE_ERROR;
77543 return SQLITE_OK;
77547 ** Begin constructing a new table representation in memory. This is
77548 ** the first of several action routines that get called in response
77549 ** to a CREATE TABLE statement. In particular, this routine is called
77550 ** after seeing tokens "CREATE" and "TABLE" and the table name. The isTemp
77551 ** flag is true if the table should be stored in the auxiliary database
77552 ** file instead of in the main database file. This is normally the case
77553 ** when the "TEMP" or "TEMPORARY" keyword occurs in between
77554 ** CREATE and TABLE.
77556 ** The new table record is initialized and put in pParse->pNewTable.
77557 ** As more of the CREATE TABLE statement is parsed, additional action
77558 ** routines will be called to add more information to this record.
77559 ** At the end of the CREATE TABLE statement, the sqlite3EndTable() routine
77560 ** is called to complete the construction of the new table record.
77562 SQLITE_PRIVATE void sqlite3StartTable(
77563 Parse *pParse, /* Parser context */
77564 Token *pName1, /* First part of the name of the table or view */
77565 Token *pName2, /* Second part of the name of the table or view */
77566 int isTemp, /* True if this is a TEMP table */
77567 int isView, /* True if this is a VIEW */
77568 int isVirtual, /* True if this is a VIRTUAL table */
77569 int noErr /* Do nothing if table already exists */
77571 Table *pTable;
77572 char *zName = 0; /* The name of the new table */
77573 sqlite3 *db = pParse->db;
77574 Vdbe *v;
77575 int iDb; /* Database number to create the table in */
77576 Token *pName; /* Unqualified name of the table to create */
77578 /* The table or view name to create is passed to this routine via tokens
77579 ** pName1 and pName2. If the table name was fully qualified, for example:
77581 ** CREATE TABLE xxx.yyy (...);
77583 ** Then pName1 is set to "xxx" and pName2 "yyy". On the other hand if
77584 ** the table name is not fully qualified, i.e.:
77586 ** CREATE TABLE yyy(...);
77588 ** Then pName1 is set to "yyy" and pName2 is "".
77590 ** The call below sets the pName pointer to point at the token (pName1 or
77591 ** pName2) that stores the unqualified table name. The variable iDb is
77592 ** set to the index of the database that the table or view is to be
77593 ** created in.
77595 iDb = sqlite3TwoPartName(pParse, pName1, pName2, &pName);
77596 if( iDb<0 ) return;
77597 if( !OMIT_TEMPDB && isTemp && pName2->n>0 && iDb!=1 ){
77598 /* If creating a temp table, the name may not be qualified. Unless
77599 ** the database name is "temp" anyway. */
77600 sqlite3ErrorMsg(pParse, "temporary table name must be unqualified");
77601 return;
77603 if( !OMIT_TEMPDB && isTemp ) iDb = 1;
77605 pParse->sNameToken = *pName;
77606 zName = sqlite3NameFromToken(db, pName);
77607 if( zName==0 ) return;
77608 if( SQLITE_OK!=sqlite3CheckObjectName(pParse, zName) ){
77609 goto begin_table_error;
77611 if( db->init.iDb==1 ) isTemp = 1;
77612 #ifndef SQLITE_OMIT_AUTHORIZATION
77613 assert( (isTemp & 1)==isTemp );
77615 int code;
77616 char *zDb = db->aDb[iDb].zName;
77617 if( sqlite3AuthCheck(pParse, SQLITE_INSERT, SCHEMA_TABLE(isTemp), 0, zDb) ){
77618 goto begin_table_error;
77620 if( isView ){
77621 if( !OMIT_TEMPDB && isTemp ){
77622 code = SQLITE_CREATE_TEMP_VIEW;
77623 }else{
77624 code = SQLITE_CREATE_VIEW;
77626 }else{
77627 if( !OMIT_TEMPDB && isTemp ){
77628 code = SQLITE_CREATE_TEMP_TABLE;
77629 }else{
77630 code = SQLITE_CREATE_TABLE;
77633 if( !isVirtual && sqlite3AuthCheck(pParse, code, zName, 0, zDb) ){
77634 goto begin_table_error;
77637 #endif
77639 /* Make sure the new table name does not collide with an existing
77640 ** index or table name in the same database. Issue an error message if
77641 ** it does. The exception is if the statement being parsed was passed
77642 ** to an sqlite3_declare_vtab() call. In that case only the column names
77643 ** and types will be used, so there is no need to test for namespace
77644 ** collisions.
77646 if( !IN_DECLARE_VTAB ){
77647 char *zDb = db->aDb[iDb].zName;
77648 if( SQLITE_OK!=sqlite3ReadSchema(pParse) ){
77649 goto begin_table_error;
77651 pTable = sqlite3FindTable(db, zName, zDb);
77652 if( pTable ){
77653 if( !noErr ){
77654 sqlite3ErrorMsg(pParse, "table %T already exists", pName);
77655 }else{
77656 assert( !db->init.busy );
77657 sqlite3CodeVerifySchema(pParse, iDb);
77659 goto begin_table_error;
77661 if( sqlite3FindIndex(db, zName, zDb)!=0 ){
77662 sqlite3ErrorMsg(pParse, "there is already an index named %s", zName);
77663 goto begin_table_error;
77667 pTable = sqlite3DbMallocZero(db, sizeof(Table));
77668 if( pTable==0 ){
77669 db->mallocFailed = 1;
77670 pParse->rc = SQLITE_NOMEM;
77671 pParse->nErr++;
77672 goto begin_table_error;
77674 pTable->zName = zName;
77675 pTable->iPKey = -1;
77676 pTable->pSchema = db->aDb[iDb].pSchema;
77677 pTable->nRef = 1;
77678 pTable->nRowEst = 1000000;
77679 assert( pParse->pNewTable==0 );
77680 pParse->pNewTable = pTable;
77682 /* If this is the magic sqlite_sequence table used by autoincrement,
77683 ** then record a pointer to this table in the main database structure
77684 ** so that INSERT can find the table easily.
77686 #ifndef SQLITE_OMIT_AUTOINCREMENT
77687 if( !pParse->nested && strcmp(zName, "sqlite_sequence")==0 ){
77688 assert( sqlite3SchemaMutexHeld(db, iDb, 0) );
77689 pTable->pSchema->pSeqTab = pTable;
77691 #endif
77693 /* Begin generating the code that will insert the table record into
77694 ** the SQLITE_MASTER table. Note in particular that we must go ahead
77695 ** and allocate the record number for the table entry now. Before any
77696 ** PRIMARY KEY or UNIQUE keywords are parsed. Those keywords will cause
77697 ** indices to be created and the table record must come before the
77698 ** indices. Hence, the record number for the table must be allocated
77699 ** now.
77701 if( !db->init.busy && (v = sqlite3GetVdbe(pParse))!=0 ){
77702 int j1;
77703 int fileFormat;
77704 int reg1, reg2, reg3;
77705 sqlite3BeginWriteOperation(pParse, 0, iDb);
77707 #ifndef SQLITE_OMIT_VIRTUALTABLE
77708 if( isVirtual ){
77709 sqlite3VdbeAddOp0(v, OP_VBegin);
77711 #endif
77713 /* If the file format and encoding in the database have not been set,
77714 ** set them now.
77716 reg1 = pParse->regRowid = ++pParse->nMem;
77717 reg2 = pParse->regRoot = ++pParse->nMem;
77718 reg3 = ++pParse->nMem;
77719 sqlite3VdbeAddOp3(v, OP_ReadCookie, iDb, reg3, BTREE_FILE_FORMAT);
77720 sqlite3VdbeUsesBtree(v, iDb);
77721 j1 = sqlite3VdbeAddOp1(v, OP_If, reg3);
77722 fileFormat = (db->flags & SQLITE_LegacyFileFmt)!=0 ?
77723 1 : SQLITE_MAX_FILE_FORMAT;
77724 sqlite3VdbeAddOp2(v, OP_Integer, fileFormat, reg3);
77725 sqlite3VdbeAddOp3(v, OP_SetCookie, iDb, BTREE_FILE_FORMAT, reg3);
77726 sqlite3VdbeAddOp2(v, OP_Integer, ENC(db), reg3);
77727 sqlite3VdbeAddOp3(v, OP_SetCookie, iDb, BTREE_TEXT_ENCODING, reg3);
77728 sqlite3VdbeJumpHere(v, j1);
77730 /* This just creates a place-holder record in the sqlite_master table.
77731 ** The record created does not contain anything yet. It will be replaced
77732 ** by the real entry in code generated at sqlite3EndTable().
77734 ** The rowid for the new entry is left in register pParse->regRowid.
77735 ** The root page number of the new table is left in reg pParse->regRoot.
77736 ** The rowid and root page number values are needed by the code that
77737 ** sqlite3EndTable will generate.
77739 #if !defined(SQLITE_OMIT_VIEW) || !defined(SQLITE_OMIT_VIRTUALTABLE)
77740 if( isView || isVirtual ){
77741 sqlite3VdbeAddOp2(v, OP_Integer, 0, reg2);
77742 }else
77743 #endif
77745 sqlite3VdbeAddOp2(v, OP_CreateTable, iDb, reg2);
77747 sqlite3OpenMasterTable(pParse, iDb);
77748 sqlite3VdbeAddOp2(v, OP_NewRowid, 0, reg1);
77749 sqlite3VdbeAddOp2(v, OP_Null, 0, reg3);
77750 sqlite3VdbeAddOp3(v, OP_Insert, 0, reg3, reg1);
77751 sqlite3VdbeChangeP5(v, OPFLAG_APPEND);
77752 sqlite3VdbeAddOp0(v, OP_Close);
77755 /* Normal (non-error) return. */
77756 return;
77758 /* If an error occurs, we jump here */
77759 begin_table_error:
77760 sqlite3DbFree(db, zName);
77761 return;
77765 ** This macro is used to compare two strings in a case-insensitive manner.
77766 ** It is slightly faster than calling sqlite3StrICmp() directly, but
77767 ** produces larger code.
77769 ** WARNING: This macro is not compatible with the strcmp() family. It
77770 ** returns true if the two strings are equal, otherwise false.
77772 #define STRICMP(x, y) (\
77773 sqlite3UpperToLower[*(unsigned char *)(x)]== \
77774 sqlite3UpperToLower[*(unsigned char *)(y)] \
77775 && sqlite3StrICmp((x)+1,(y)+1)==0 )
77778 ** Add a new column to the table currently being constructed.
77780 ** The parser calls this routine once for each column declaration
77781 ** in a CREATE TABLE statement. sqlite3StartTable() gets called
77782 ** first to get things going. Then this routine is called for each
77783 ** column.
77785 SQLITE_PRIVATE void sqlite3AddColumn(Parse *pParse, Token *pName){
77786 Table *p;
77787 int i;
77788 char *z;
77789 Column *pCol;
77790 sqlite3 *db = pParse->db;
77791 if( (p = pParse->pNewTable)==0 ) return;
77792 #if SQLITE_MAX_COLUMN
77793 if( p->nCol+1>db->aLimit[SQLITE_LIMIT_COLUMN] ){
77794 sqlite3ErrorMsg(pParse, "too many columns on %s", p->zName);
77795 return;
77797 #endif
77798 z = sqlite3NameFromToken(db, pName);
77799 if( z==0 ) return;
77800 for(i=0; i<p->nCol; i++){
77801 if( STRICMP(z, p->aCol[i].zName) ){
77802 sqlite3ErrorMsg(pParse, "duplicate column name: %s", z);
77803 sqlite3DbFree(db, z);
77804 return;
77807 if( (p->nCol & 0x7)==0 ){
77808 Column *aNew;
77809 aNew = sqlite3DbRealloc(db,p->aCol,(p->nCol+8)*sizeof(p->aCol[0]));
77810 if( aNew==0 ){
77811 sqlite3DbFree(db, z);
77812 return;
77814 p->aCol = aNew;
77816 pCol = &p->aCol[p->nCol];
77817 memset(pCol, 0, sizeof(p->aCol[0]));
77818 pCol->zName = z;
77820 /* If there is no type specified, columns have the default affinity
77821 ** 'NONE'. If there is a type specified, then sqlite3AddColumnType() will
77822 ** be called next to set pCol->affinity correctly.
77824 pCol->affinity = SQLITE_AFF_NONE;
77825 p->nCol++;
77829 ** This routine is called by the parser while in the middle of
77830 ** parsing a CREATE TABLE statement. A "NOT NULL" constraint has
77831 ** been seen on a column. This routine sets the notNull flag on
77832 ** the column currently under construction.
77834 SQLITE_PRIVATE void sqlite3AddNotNull(Parse *pParse, int onError){
77835 Table *p;
77836 p = pParse->pNewTable;
77837 if( p==0 || NEVER(p->nCol<1) ) return;
77838 p->aCol[p->nCol-1].notNull = (u8)onError;
77842 ** Scan the column type name zType (length nType) and return the
77843 ** associated affinity type.
77845 ** This routine does a case-independent search of zType for the
77846 ** substrings in the following table. If one of the substrings is
77847 ** found, the corresponding affinity is returned. If zType contains
77848 ** more than one of the substrings, entries toward the top of
77849 ** the table take priority. For example, if zType is 'BLOBINT',
77850 ** SQLITE_AFF_INTEGER is returned.
77852 ** Substring | Affinity
77853 ** --------------------------------
77854 ** 'INT' | SQLITE_AFF_INTEGER
77855 ** 'CHAR' | SQLITE_AFF_TEXT
77856 ** 'CLOB' | SQLITE_AFF_TEXT
77857 ** 'TEXT' | SQLITE_AFF_TEXT
77858 ** 'BLOB' | SQLITE_AFF_NONE
77859 ** 'REAL' | SQLITE_AFF_REAL
77860 ** 'FLOA' | SQLITE_AFF_REAL
77861 ** 'DOUB' | SQLITE_AFF_REAL
77863 ** If none of the substrings in the above table are found,
77864 ** SQLITE_AFF_NUMERIC is returned.
77866 SQLITE_PRIVATE char sqlite3AffinityType(const char *zIn){
77867 u32 h = 0;
77868 char aff = SQLITE_AFF_NUMERIC;
77870 if( zIn ) while( zIn[0] ){
77871 h = (h<<8) + sqlite3UpperToLower[(*zIn)&0xff];
77872 zIn++;
77873 if( h==(('c'<<24)+('h'<<16)+('a'<<8)+'r') ){ /* CHAR */
77874 aff = SQLITE_AFF_TEXT;
77875 }else if( h==(('c'<<24)+('l'<<16)+('o'<<8)+'b') ){ /* CLOB */
77876 aff = SQLITE_AFF_TEXT;
77877 }else if( h==(('t'<<24)+('e'<<16)+('x'<<8)+'t') ){ /* TEXT */
77878 aff = SQLITE_AFF_TEXT;
77879 }else if( h==(('b'<<24)+('l'<<16)+('o'<<8)+'b') /* BLOB */
77880 && (aff==SQLITE_AFF_NUMERIC || aff==SQLITE_AFF_REAL) ){
77881 aff = SQLITE_AFF_NONE;
77882 #ifndef SQLITE_OMIT_FLOATING_POINT
77883 }else if( h==(('r'<<24)+('e'<<16)+('a'<<8)+'l') /* REAL */
77884 && aff==SQLITE_AFF_NUMERIC ){
77885 aff = SQLITE_AFF_REAL;
77886 }else if( h==(('f'<<24)+('l'<<16)+('o'<<8)+'a') /* FLOA */
77887 && aff==SQLITE_AFF_NUMERIC ){
77888 aff = SQLITE_AFF_REAL;
77889 }else if( h==(('d'<<24)+('o'<<16)+('u'<<8)+'b') /* DOUB */
77890 && aff==SQLITE_AFF_NUMERIC ){
77891 aff = SQLITE_AFF_REAL;
77892 #endif
77893 }else if( (h&0x00FFFFFF)==(('i'<<16)+('n'<<8)+'t') ){ /* INT */
77894 aff = SQLITE_AFF_INTEGER;
77895 break;
77899 return aff;
77903 ** This routine is called by the parser while in the middle of
77904 ** parsing a CREATE TABLE statement. The pFirst token is the first
77905 ** token in the sequence of tokens that describe the type of the
77906 ** column currently under construction. pLast is the last token
77907 ** in the sequence. Use this information to construct a string
77908 ** that contains the typename of the column and store that string
77909 ** in zType.
77911 SQLITE_PRIVATE void sqlite3AddColumnType(Parse *pParse, Token *pType){
77912 Table *p;
77913 Column *pCol;
77915 p = pParse->pNewTable;
77916 if( p==0 || NEVER(p->nCol<1) ) return;
77917 pCol = &p->aCol[p->nCol-1];
77918 assert( pCol->zType==0 );
77919 pCol->zType = sqlite3NameFromToken(pParse->db, pType);
77920 pCol->affinity = sqlite3AffinityType(pCol->zType);
77924 ** The expression is the default value for the most recently added column
77925 ** of the table currently under construction.
77927 ** Default value expressions must be constant. Raise an exception if this
77928 ** is not the case.
77930 ** This routine is called by the parser while in the middle of
77931 ** parsing a CREATE TABLE statement.
77933 SQLITE_PRIVATE void sqlite3AddDefaultValue(Parse *pParse, ExprSpan *pSpan){
77934 Table *p;
77935 Column *pCol;
77936 sqlite3 *db = pParse->db;
77937 p = pParse->pNewTable;
77938 if( p!=0 ){
77939 pCol = &(p->aCol[p->nCol-1]);
77940 if( !sqlite3ExprIsConstantOrFunction(pSpan->pExpr) ){
77941 sqlite3ErrorMsg(pParse, "default value of column [%s] is not constant",
77942 pCol->zName);
77943 }else{
77944 /* A copy of pExpr is used instead of the original, as pExpr contains
77945 ** tokens that point to volatile memory. The 'span' of the expression
77946 ** is required by pragma table_info.
77948 sqlite3ExprDelete(db, pCol->pDflt);
77949 pCol->pDflt = sqlite3ExprDup(db, pSpan->pExpr, EXPRDUP_REDUCE);
77950 sqlite3DbFree(db, pCol->zDflt);
77951 pCol->zDflt = sqlite3DbStrNDup(db, (char*)pSpan->zStart,
77952 (int)(pSpan->zEnd - pSpan->zStart));
77955 sqlite3ExprDelete(db, pSpan->pExpr);
77959 ** Designate the PRIMARY KEY for the table. pList is a list of names
77960 ** of columns that form the primary key. If pList is NULL, then the
77961 ** most recently added column of the table is the primary key.
77963 ** A table can have at most one primary key. If the table already has
77964 ** a primary key (and this is the second primary key) then create an
77965 ** error.
77967 ** If the PRIMARY KEY is on a single column whose datatype is INTEGER,
77968 ** then we will try to use that column as the rowid. Set the Table.iPKey
77969 ** field of the table under construction to be the index of the
77970 ** INTEGER PRIMARY KEY column. Table.iPKey is set to -1 if there is
77971 ** no INTEGER PRIMARY KEY.
77973 ** If the key is not an INTEGER PRIMARY KEY, then create a unique
77974 ** index for the key. No index is created for INTEGER PRIMARY KEYs.
77976 SQLITE_PRIVATE void sqlite3AddPrimaryKey(
77977 Parse *pParse, /* Parsing context */
77978 ExprList *pList, /* List of field names to be indexed */
77979 int onError, /* What to do with a uniqueness conflict */
77980 int autoInc, /* True if the AUTOINCREMENT keyword is present */
77981 int sortOrder /* SQLITE_SO_ASC or SQLITE_SO_DESC */
77983 Table *pTab = pParse->pNewTable;
77984 char *zType = 0;
77985 int iCol = -1, i;
77986 if( pTab==0 || IN_DECLARE_VTAB ) goto primary_key_exit;
77987 if( pTab->tabFlags & TF_HasPrimaryKey ){
77988 sqlite3ErrorMsg(pParse,
77989 "table \"%s\" has more than one primary key", pTab->zName);
77990 goto primary_key_exit;
77992 pTab->tabFlags |= TF_HasPrimaryKey;
77993 if( pList==0 ){
77994 iCol = pTab->nCol - 1;
77995 pTab->aCol[iCol].isPrimKey = 1;
77996 }else{
77997 for(i=0; i<pList->nExpr; i++){
77998 for(iCol=0; iCol<pTab->nCol; iCol++){
77999 if( sqlite3StrICmp(pList->a[i].zName, pTab->aCol[iCol].zName)==0 ){
78000 break;
78003 if( iCol<pTab->nCol ){
78004 pTab->aCol[iCol].isPrimKey = 1;
78007 if( pList->nExpr>1 ) iCol = -1;
78009 if( iCol>=0 && iCol<pTab->nCol ){
78010 zType = pTab->aCol[iCol].zType;
78012 if( zType && sqlite3StrICmp(zType, "INTEGER")==0
78013 && sortOrder==SQLITE_SO_ASC ){
78014 pTab->iPKey = iCol;
78015 pTab->keyConf = (u8)onError;
78016 assert( autoInc==0 || autoInc==1 );
78017 pTab->tabFlags |= autoInc*TF_Autoincrement;
78018 }else if( autoInc ){
78019 #ifndef SQLITE_OMIT_AUTOINCREMENT
78020 sqlite3ErrorMsg(pParse, "AUTOINCREMENT is only allowed on an "
78021 "INTEGER PRIMARY KEY");
78022 #endif
78023 }else{
78024 Index *p;
78025 p = sqlite3CreateIndex(pParse, 0, 0, 0, pList, onError, 0, 0, sortOrder, 0);
78026 if( p ){
78027 p->autoIndex = 2;
78029 pList = 0;
78032 primary_key_exit:
78033 sqlite3ExprListDelete(pParse->db, pList);
78034 return;
78038 ** Add a new CHECK constraint to the table currently under construction.
78040 SQLITE_PRIVATE void sqlite3AddCheckConstraint(
78041 Parse *pParse, /* Parsing context */
78042 Expr *pCheckExpr /* The check expression */
78044 sqlite3 *db = pParse->db;
78045 #ifndef SQLITE_OMIT_CHECK
78046 Table *pTab = pParse->pNewTable;
78047 if( pTab && !IN_DECLARE_VTAB ){
78048 pTab->pCheck = sqlite3ExprAnd(db, pTab->pCheck, pCheckExpr);
78049 }else
78050 #endif
78052 sqlite3ExprDelete(db, pCheckExpr);
78057 ** Set the collation function of the most recently parsed table column
78058 ** to the CollSeq given.
78060 SQLITE_PRIVATE void sqlite3AddCollateType(Parse *pParse, Token *pToken){
78061 Table *p;
78062 int i;
78063 char *zColl; /* Dequoted name of collation sequence */
78064 sqlite3 *db;
78066 if( (p = pParse->pNewTable)==0 ) return;
78067 i = p->nCol-1;
78068 db = pParse->db;
78069 zColl = sqlite3NameFromToken(db, pToken);
78070 if( !zColl ) return;
78072 if( sqlite3LocateCollSeq(pParse, zColl) ){
78073 Index *pIdx;
78074 p->aCol[i].zColl = zColl;
78076 /* If the column is declared as "<name> PRIMARY KEY COLLATE <type>",
78077 ** then an index may have been created on this column before the
78078 ** collation type was added. Correct this if it is the case.
78080 for(pIdx=p->pIndex; pIdx; pIdx=pIdx->pNext){
78081 assert( pIdx->nColumn==1 );
78082 if( pIdx->aiColumn[0]==i ){
78083 pIdx->azColl[0] = p->aCol[i].zColl;
78086 }else{
78087 sqlite3DbFree(db, zColl);
78092 ** This function returns the collation sequence for database native text
78093 ** encoding identified by the string zName, length nName.
78095 ** If the requested collation sequence is not available, or not available
78096 ** in the database native encoding, the collation factory is invoked to
78097 ** request it. If the collation factory does not supply such a sequence,
78098 ** and the sequence is available in another text encoding, then that is
78099 ** returned instead.
78101 ** If no versions of the requested collations sequence are available, or
78102 ** another error occurs, NULL is returned and an error message written into
78103 ** pParse.
78105 ** This routine is a wrapper around sqlite3FindCollSeq(). This routine
78106 ** invokes the collation factory if the named collation cannot be found
78107 ** and generates an error message.
78109 ** See also: sqlite3FindCollSeq(), sqlite3GetCollSeq()
78111 SQLITE_PRIVATE CollSeq *sqlite3LocateCollSeq(Parse *pParse, const char *zName){
78112 sqlite3 *db = pParse->db;
78113 u8 enc = ENC(db);
78114 u8 initbusy = db->init.busy;
78115 CollSeq *pColl;
78117 pColl = sqlite3FindCollSeq(db, enc, zName, initbusy);
78118 if( !initbusy && (!pColl || !pColl->xCmp) ){
78119 pColl = sqlite3GetCollSeq(db, enc, pColl, zName);
78120 if( !pColl ){
78121 sqlite3ErrorMsg(pParse, "no such collation sequence: %s", zName);
78125 return pColl;
78130 ** Generate code that will increment the schema cookie.
78132 ** The schema cookie is used to determine when the schema for the
78133 ** database changes. After each schema change, the cookie value
78134 ** changes. When a process first reads the schema it records the
78135 ** cookie. Thereafter, whenever it goes to access the database,
78136 ** it checks the cookie to make sure the schema has not changed
78137 ** since it was last read.
78139 ** This plan is not completely bullet-proof. It is possible for
78140 ** the schema to change multiple times and for the cookie to be
78141 ** set back to prior value. But schema changes are infrequent
78142 ** and the probability of hitting the same cookie value is only
78143 ** 1 chance in 2^32. So we're safe enough.
78145 SQLITE_PRIVATE void sqlite3ChangeCookie(Parse *pParse, int iDb){
78146 int r1 = sqlite3GetTempReg(pParse);
78147 sqlite3 *db = pParse->db;
78148 Vdbe *v = pParse->pVdbe;
78149 assert( sqlite3SchemaMutexHeld(db, iDb, 0) );
78150 sqlite3VdbeAddOp2(v, OP_Integer, db->aDb[iDb].pSchema->schema_cookie+1, r1);
78151 sqlite3VdbeAddOp3(v, OP_SetCookie, iDb, BTREE_SCHEMA_VERSION, r1);
78152 sqlite3ReleaseTempReg(pParse, r1);
78156 ** Measure the number of characters needed to output the given
78157 ** identifier. The number returned includes any quotes used
78158 ** but does not include the null terminator.
78160 ** The estimate is conservative. It might be larger that what is
78161 ** really needed.
78163 static int identLength(const char *z){
78164 int n;
78165 for(n=0; *z; n++, z++){
78166 if( *z=='"' ){ n++; }
78168 return n + 2;
78172 ** The first parameter is a pointer to an output buffer. The second
78173 ** parameter is a pointer to an integer that contains the offset at
78174 ** which to write into the output buffer. This function copies the
78175 ** nul-terminated string pointed to by the third parameter, zSignedIdent,
78176 ** to the specified offset in the buffer and updates *pIdx to refer
78177 ** to the first byte after the last byte written before returning.
78179 ** If the string zSignedIdent consists entirely of alpha-numeric
78180 ** characters, does not begin with a digit and is not an SQL keyword,
78181 ** then it is copied to the output buffer exactly as it is. Otherwise,
78182 ** it is quoted using double-quotes.
78184 static void identPut(char *z, int *pIdx, char *zSignedIdent){
78185 unsigned char *zIdent = (unsigned char*)zSignedIdent;
78186 int i, j, needQuote;
78187 i = *pIdx;
78189 for(j=0; zIdent[j]; j++){
78190 if( !sqlite3Isalnum(zIdent[j]) && zIdent[j]!='_' ) break;
78192 needQuote = sqlite3Isdigit(zIdent[0]) || sqlite3KeywordCode(zIdent, j)!=TK_ID;
78193 if( !needQuote ){
78194 needQuote = zIdent[j];
78197 if( needQuote ) z[i++] = '"';
78198 for(j=0; zIdent[j]; j++){
78199 z[i++] = zIdent[j];
78200 if( zIdent[j]=='"' ) z[i++] = '"';
78202 if( needQuote ) z[i++] = '"';
78203 z[i] = 0;
78204 *pIdx = i;
78208 ** Generate a CREATE TABLE statement appropriate for the given
78209 ** table. Memory to hold the text of the statement is obtained
78210 ** from sqliteMalloc() and must be freed by the calling function.
78212 static char *createTableStmt(sqlite3 *db, Table *p){
78213 int i, k, n;
78214 char *zStmt;
78215 char *zSep, *zSep2, *zEnd;
78216 Column *pCol;
78217 n = 0;
78218 for(pCol = p->aCol, i=0; i<p->nCol; i++, pCol++){
78219 n += identLength(pCol->zName) + 5;
78221 n += identLength(p->zName);
78222 if( n<50 ){
78223 zSep = "";
78224 zSep2 = ",";
78225 zEnd = ")";
78226 }else{
78227 zSep = "\n ";
78228 zSep2 = ",\n ";
78229 zEnd = "\n)";
78231 n += 35 + 6*p->nCol;
78232 zStmt = sqlite3DbMallocRaw(0, n);
78233 if( zStmt==0 ){
78234 db->mallocFailed = 1;
78235 return 0;
78237 sqlite3_snprintf(n, zStmt, "CREATE TABLE ");
78238 k = sqlite3Strlen30(zStmt);
78239 identPut(zStmt, &k, p->zName);
78240 zStmt[k++] = '(';
78241 for(pCol=p->aCol, i=0; i<p->nCol; i++, pCol++){
78242 static const char * const azType[] = {
78243 /* SQLITE_AFF_TEXT */ " TEXT",
78244 /* SQLITE_AFF_NONE */ "",
78245 /* SQLITE_AFF_NUMERIC */ " NUM",
78246 /* SQLITE_AFF_INTEGER */ " INT",
78247 /* SQLITE_AFF_REAL */ " REAL"
78249 int len;
78250 const char *zType;
78252 sqlite3_snprintf(n-k, &zStmt[k], zSep);
78253 k += sqlite3Strlen30(&zStmt[k]);
78254 zSep = zSep2;
78255 identPut(zStmt, &k, pCol->zName);
78256 assert( pCol->affinity-SQLITE_AFF_TEXT >= 0 );
78257 assert( pCol->affinity-SQLITE_AFF_TEXT < ArraySize(azType) );
78258 testcase( pCol->affinity==SQLITE_AFF_TEXT );
78259 testcase( pCol->affinity==SQLITE_AFF_NONE );
78260 testcase( pCol->affinity==SQLITE_AFF_NUMERIC );
78261 testcase( pCol->affinity==SQLITE_AFF_INTEGER );
78262 testcase( pCol->affinity==SQLITE_AFF_REAL );
78264 zType = azType[pCol->affinity - SQLITE_AFF_TEXT];
78265 len = sqlite3Strlen30(zType);
78266 assert( pCol->affinity==SQLITE_AFF_NONE
78267 || pCol->affinity==sqlite3AffinityType(zType) );
78268 memcpy(&zStmt[k], zType, len);
78269 k += len;
78270 assert( k<=n );
78272 sqlite3_snprintf(n-k, &zStmt[k], "%s", zEnd);
78273 return zStmt;
78277 ** This routine is called to report the final ")" that terminates
78278 ** a CREATE TABLE statement.
78280 ** The table structure that other action routines have been building
78281 ** is added to the internal hash tables, assuming no errors have
78282 ** occurred.
78284 ** An entry for the table is made in the master table on disk, unless
78285 ** this is a temporary table or db->init.busy==1. When db->init.busy==1
78286 ** it means we are reading the sqlite_master table because we just
78287 ** connected to the database or because the sqlite_master table has
78288 ** recently changed, so the entry for this table already exists in
78289 ** the sqlite_master table. We do not want to create it again.
78291 ** If the pSelect argument is not NULL, it means that this routine
78292 ** was called to create a table generated from a
78293 ** "CREATE TABLE ... AS SELECT ..." statement. The column names of
78294 ** the new table will match the result set of the SELECT.
78296 SQLITE_PRIVATE void sqlite3EndTable(
78297 Parse *pParse, /* Parse context */
78298 Token *pCons, /* The ',' token after the last column defn. */
78299 Token *pEnd, /* The final ')' token in the CREATE TABLE */
78300 Select *pSelect /* Select from a "CREATE ... AS SELECT" */
78302 Table *p;
78303 sqlite3 *db = pParse->db;
78304 int iDb;
78306 if( (pEnd==0 && pSelect==0) || db->mallocFailed ){
78307 return;
78309 p = pParse->pNewTable;
78310 if( p==0 ) return;
78312 assert( !db->init.busy || !pSelect );
78314 iDb = sqlite3SchemaToIndex(db, p->pSchema);
78316 #ifndef SQLITE_OMIT_CHECK
78317 /* Resolve names in all CHECK constraint expressions.
78319 if( p->pCheck ){
78320 SrcList sSrc; /* Fake SrcList for pParse->pNewTable */
78321 NameContext sNC; /* Name context for pParse->pNewTable */
78323 memset(&sNC, 0, sizeof(sNC));
78324 memset(&sSrc, 0, sizeof(sSrc));
78325 sSrc.nSrc = 1;
78326 sSrc.a[0].zName = p->zName;
78327 sSrc.a[0].pTab = p;
78328 sSrc.a[0].iCursor = -1;
78329 sNC.pParse = pParse;
78330 sNC.pSrcList = &sSrc;
78331 sNC.isCheck = 1;
78332 if( sqlite3ResolveExprNames(&sNC, p->pCheck) ){
78333 return;
78336 #endif /* !defined(SQLITE_OMIT_CHECK) */
78338 /* If the db->init.busy is 1 it means we are reading the SQL off the
78339 ** "sqlite_master" or "sqlite_temp_master" table on the disk.
78340 ** So do not write to the disk again. Extract the root page number
78341 ** for the table from the db->init.newTnum field. (The page number
78342 ** should have been put there by the sqliteOpenCb routine.)
78344 if( db->init.busy ){
78345 p->tnum = db->init.newTnum;
78348 /* If not initializing, then create a record for the new table
78349 ** in the SQLITE_MASTER table of the database.
78351 ** If this is a TEMPORARY table, write the entry into the auxiliary
78352 ** file instead of into the main database file.
78354 if( !db->init.busy ){
78355 int n;
78356 Vdbe *v;
78357 char *zType; /* "view" or "table" */
78358 char *zType2; /* "VIEW" or "TABLE" */
78359 char *zStmt; /* Text of the CREATE TABLE or CREATE VIEW statement */
78361 v = sqlite3GetVdbe(pParse);
78362 if( NEVER(v==0) ) return;
78364 sqlite3VdbeAddOp1(v, OP_Close, 0);
78367 ** Initialize zType for the new view or table.
78369 if( p->pSelect==0 ){
78370 /* A regular table */
78371 zType = "table";
78372 zType2 = "TABLE";
78373 #ifndef SQLITE_OMIT_VIEW
78374 }else{
78375 /* A view */
78376 zType = "view";
78377 zType2 = "VIEW";
78378 #endif
78381 /* If this is a CREATE TABLE xx AS SELECT ..., execute the SELECT
78382 ** statement to populate the new table. The root-page number for the
78383 ** new table is in register pParse->regRoot.
78385 ** Once the SELECT has been coded by sqlite3Select(), it is in a
78386 ** suitable state to query for the column names and types to be used
78387 ** by the new table.
78389 ** A shared-cache write-lock is not required to write to the new table,
78390 ** as a schema-lock must have already been obtained to create it. Since
78391 ** a schema-lock excludes all other database users, the write-lock would
78392 ** be redundant.
78394 if( pSelect ){
78395 SelectDest dest;
78396 Table *pSelTab;
78398 assert(pParse->nTab==1);
78399 sqlite3VdbeAddOp3(v, OP_OpenWrite, 1, pParse->regRoot, iDb);
78400 sqlite3VdbeChangeP5(v, 1);
78401 pParse->nTab = 2;
78402 sqlite3SelectDestInit(&dest, SRT_Table, 1);
78403 sqlite3Select(pParse, pSelect, &dest);
78404 sqlite3VdbeAddOp1(v, OP_Close, 1);
78405 if( pParse->nErr==0 ){
78406 pSelTab = sqlite3ResultSetOfSelect(pParse, pSelect);
78407 if( pSelTab==0 ) return;
78408 assert( p->aCol==0 );
78409 p->nCol = pSelTab->nCol;
78410 p->aCol = pSelTab->aCol;
78411 pSelTab->nCol = 0;
78412 pSelTab->aCol = 0;
78413 sqlite3DeleteTable(db, pSelTab);
78417 /* Compute the complete text of the CREATE statement */
78418 if( pSelect ){
78419 zStmt = createTableStmt(db, p);
78420 }else{
78421 n = (int)(pEnd->z - pParse->sNameToken.z) + 1;
78422 zStmt = sqlite3MPrintf(db,
78423 "CREATE %s %.*s", zType2, n, pParse->sNameToken.z
78427 /* A slot for the record has already been allocated in the
78428 ** SQLITE_MASTER table. We just need to update that slot with all
78429 ** the information we've collected.
78431 sqlite3NestedParse(pParse,
78432 "UPDATE %Q.%s "
78433 "SET type='%s', name=%Q, tbl_name=%Q, rootpage=#%d, sql=%Q "
78434 "WHERE rowid=#%d",
78435 db->aDb[iDb].zName, SCHEMA_TABLE(iDb),
78436 zType,
78437 p->zName,
78438 p->zName,
78439 pParse->regRoot,
78440 zStmt,
78441 pParse->regRowid
78443 sqlite3DbFree(db, zStmt);
78444 sqlite3ChangeCookie(pParse, iDb);
78446 #ifndef SQLITE_OMIT_AUTOINCREMENT
78447 /* Check to see if we need to create an sqlite_sequence table for
78448 ** keeping track of autoincrement keys.
78450 if( p->tabFlags & TF_Autoincrement ){
78451 Db *pDb = &db->aDb[iDb];
78452 assert( sqlite3SchemaMutexHeld(db, iDb, 0) );
78453 if( pDb->pSchema->pSeqTab==0 ){
78454 sqlite3NestedParse(pParse,
78455 "CREATE TABLE %Q.sqlite_sequence(name,seq)",
78456 pDb->zName
78460 #endif
78462 /* Reparse everything to update our internal data structures */
78463 sqlite3VdbeAddOp4(v, OP_ParseSchema, iDb, 0, 0,
78464 sqlite3MPrintf(db, "tbl_name='%q'",p->zName), P4_DYNAMIC);
78468 /* Add the table to the in-memory representation of the database.
78470 if( db->init.busy ){
78471 Table *pOld;
78472 Schema *pSchema = p->pSchema;
78473 assert( sqlite3SchemaMutexHeld(db, iDb, 0) );
78474 pOld = sqlite3HashInsert(&pSchema->tblHash, p->zName,
78475 sqlite3Strlen30(p->zName),p);
78476 if( pOld ){
78477 assert( p==pOld ); /* Malloc must have failed inside HashInsert() */
78478 db->mallocFailed = 1;
78479 return;
78481 pParse->pNewTable = 0;
78482 db->nTable++;
78483 db->flags |= SQLITE_InternChanges;
78485 #ifndef SQLITE_OMIT_ALTERTABLE
78486 if( !p->pSelect ){
78487 const char *zName = (const char *)pParse->sNameToken.z;
78488 int nName;
78489 assert( !pSelect && pCons && pEnd );
78490 if( pCons->z==0 ){
78491 pCons = pEnd;
78493 nName = (int)((const char *)pCons->z - zName);
78494 p->addColOffset = 13 + sqlite3Utf8CharLen(zName, nName);
78496 #endif
78500 #ifndef SQLITE_OMIT_VIEW
78502 ** The parser calls this routine in order to create a new VIEW
78504 SQLITE_PRIVATE void sqlite3CreateView(
78505 Parse *pParse, /* The parsing context */
78506 Token *pBegin, /* The CREATE token that begins the statement */
78507 Token *pName1, /* The token that holds the name of the view */
78508 Token *pName2, /* The token that holds the name of the view */
78509 Select *pSelect, /* A SELECT statement that will become the new view */
78510 int isTemp, /* TRUE for a TEMPORARY view */
78511 int noErr /* Suppress error messages if VIEW already exists */
78513 Table *p;
78514 int n;
78515 const char *z;
78516 Token sEnd;
78517 DbFixer sFix;
78518 Token *pName;
78519 int iDb;
78520 sqlite3 *db = pParse->db;
78522 if( pParse->nVar>0 ){
78523 sqlite3ErrorMsg(pParse, "parameters are not allowed in views");
78524 sqlite3SelectDelete(db, pSelect);
78525 return;
78527 sqlite3StartTable(pParse, pName1, pName2, isTemp, 1, 0, noErr);
78528 p = pParse->pNewTable;
78529 if( p==0 || pParse->nErr ){
78530 sqlite3SelectDelete(db, pSelect);
78531 return;
78533 sqlite3TwoPartName(pParse, pName1, pName2, &pName);
78534 iDb = sqlite3SchemaToIndex(db, p->pSchema);
78535 if( sqlite3FixInit(&sFix, pParse, iDb, "view", pName)
78536 && sqlite3FixSelect(&sFix, pSelect)
78538 sqlite3SelectDelete(db, pSelect);
78539 return;
78542 /* Make a copy of the entire SELECT statement that defines the view.
78543 ** This will force all the Expr.token.z values to be dynamically
78544 ** allocated rather than point to the input string - which means that
78545 ** they will persist after the current sqlite3_exec() call returns.
78547 p->pSelect = sqlite3SelectDup(db, pSelect, EXPRDUP_REDUCE);
78548 sqlite3SelectDelete(db, pSelect);
78549 if( db->mallocFailed ){
78550 return;
78552 if( !db->init.busy ){
78553 sqlite3ViewGetColumnNames(pParse, p);
78556 /* Locate the end of the CREATE VIEW statement. Make sEnd point to
78557 ** the end.
78559 sEnd = pParse->sLastToken;
78560 if( ALWAYS(sEnd.z[0]!=0) && sEnd.z[0]!=';' ){
78561 sEnd.z += sEnd.n;
78563 sEnd.n = 0;
78564 n = (int)(sEnd.z - pBegin->z);
78565 z = pBegin->z;
78566 while( ALWAYS(n>0) && sqlite3Isspace(z[n-1]) ){ n--; }
78567 sEnd.z = &z[n-1];
78568 sEnd.n = 1;
78570 /* Use sqlite3EndTable() to add the view to the SQLITE_MASTER table */
78571 sqlite3EndTable(pParse, 0, &sEnd, 0);
78572 return;
78574 #endif /* SQLITE_OMIT_VIEW */
78576 #if !defined(SQLITE_OMIT_VIEW) || !defined(SQLITE_OMIT_VIRTUALTABLE)
78578 ** The Table structure pTable is really a VIEW. Fill in the names of
78579 ** the columns of the view in the pTable structure. Return the number
78580 ** of errors. If an error is seen leave an error message in pParse->zErrMsg.
78582 SQLITE_PRIVATE int sqlite3ViewGetColumnNames(Parse *pParse, Table *pTable){
78583 Table *pSelTab; /* A fake table from which we get the result set */
78584 Select *pSel; /* Copy of the SELECT that implements the view */
78585 int nErr = 0; /* Number of errors encountered */
78586 int n; /* Temporarily holds the number of cursors assigned */
78587 sqlite3 *db = pParse->db; /* Database connection for malloc errors */
78588 int (*xAuth)(void*,int,const char*,const char*,const char*,const char*);
78590 assert( pTable );
78592 #ifndef SQLITE_OMIT_VIRTUALTABLE
78593 if( sqlite3VtabCallConnect(pParse, pTable) ){
78594 return SQLITE_ERROR;
78596 if( IsVirtual(pTable) ) return 0;
78597 #endif
78599 #ifndef SQLITE_OMIT_VIEW
78600 /* A positive nCol means the columns names for this view are
78601 ** already known.
78603 if( pTable->nCol>0 ) return 0;
78605 /* A negative nCol is a special marker meaning that we are currently
78606 ** trying to compute the column names. If we enter this routine with
78607 ** a negative nCol, it means two or more views form a loop, like this:
78609 ** CREATE VIEW one AS SELECT * FROM two;
78610 ** CREATE VIEW two AS SELECT * FROM one;
78612 ** Actually, the error above is now caught prior to reaching this point.
78613 ** But the following test is still important as it does come up
78614 ** in the following:
78616 ** CREATE TABLE main.ex1(a);
78617 ** CREATE TEMP VIEW ex1 AS SELECT a FROM ex1;
78618 ** SELECT * FROM temp.ex1;
78620 if( pTable->nCol<0 ){
78621 sqlite3ErrorMsg(pParse, "view %s is circularly defined", pTable->zName);
78622 return 1;
78624 assert( pTable->nCol>=0 );
78626 /* If we get this far, it means we need to compute the table names.
78627 ** Note that the call to sqlite3ResultSetOfSelect() will expand any
78628 ** "*" elements in the results set of the view and will assign cursors
78629 ** to the elements of the FROM clause. But we do not want these changes
78630 ** to be permanent. So the computation is done on a copy of the SELECT
78631 ** statement that defines the view.
78633 assert( pTable->pSelect );
78634 pSel = sqlite3SelectDup(db, pTable->pSelect, 0);
78635 if( pSel ){
78636 u8 enableLookaside = db->lookaside.bEnabled;
78637 n = pParse->nTab;
78638 sqlite3SrcListAssignCursors(pParse, pSel->pSrc);
78639 pTable->nCol = -1;
78640 db->lookaside.bEnabled = 0;
78641 #ifndef SQLITE_OMIT_AUTHORIZATION
78642 xAuth = db->xAuth;
78643 db->xAuth = 0;
78644 pSelTab = sqlite3ResultSetOfSelect(pParse, pSel);
78645 db->xAuth = xAuth;
78646 #else
78647 pSelTab = sqlite3ResultSetOfSelect(pParse, pSel);
78648 #endif
78649 db->lookaside.bEnabled = enableLookaside;
78650 pParse->nTab = n;
78651 if( pSelTab ){
78652 assert( pTable->aCol==0 );
78653 pTable->nCol = pSelTab->nCol;
78654 pTable->aCol = pSelTab->aCol;
78655 pSelTab->nCol = 0;
78656 pSelTab->aCol = 0;
78657 sqlite3DeleteTable(db, pSelTab);
78658 assert( sqlite3SchemaMutexHeld(db, 0, pTable->pSchema) );
78659 pTable->pSchema->flags |= DB_UnresetViews;
78660 }else{
78661 pTable->nCol = 0;
78662 nErr++;
78664 sqlite3SelectDelete(db, pSel);
78665 } else {
78666 nErr++;
78668 #endif /* SQLITE_OMIT_VIEW */
78669 return nErr;
78671 #endif /* !defined(SQLITE_OMIT_VIEW) || !defined(SQLITE_OMIT_VIRTUALTABLE) */
78673 #ifndef SQLITE_OMIT_VIEW
78675 ** Clear the column names from every VIEW in database idx.
78677 static void sqliteViewResetAll(sqlite3 *db, int idx){
78678 HashElem *i;
78679 assert( sqlite3SchemaMutexHeld(db, idx, 0) );
78680 if( !DbHasProperty(db, idx, DB_UnresetViews) ) return;
78681 for(i=sqliteHashFirst(&db->aDb[idx].pSchema->tblHash); i;i=sqliteHashNext(i)){
78682 Table *pTab = sqliteHashData(i);
78683 if( pTab->pSelect ){
78684 sqliteDeleteColumnNames(db, pTab);
78685 pTab->aCol = 0;
78686 pTab->nCol = 0;
78689 DbClearProperty(db, idx, DB_UnresetViews);
78691 #else
78692 # define sqliteViewResetAll(A,B)
78693 #endif /* SQLITE_OMIT_VIEW */
78696 ** This function is called by the VDBE to adjust the internal schema
78697 ** used by SQLite when the btree layer moves a table root page. The
78698 ** root-page of a table or index in database iDb has changed from iFrom
78699 ** to iTo.
78701 ** Ticket #1728: The symbol table might still contain information
78702 ** on tables and/or indices that are the process of being deleted.
78703 ** If you are unlucky, one of those deleted indices or tables might
78704 ** have the same rootpage number as the real table or index that is
78705 ** being moved. So we cannot stop searching after the first match
78706 ** because the first match might be for one of the deleted indices
78707 ** or tables and not the table/index that is actually being moved.
78708 ** We must continue looping until all tables and indices with
78709 ** rootpage==iFrom have been converted to have a rootpage of iTo
78710 ** in order to be certain that we got the right one.
78712 #ifndef SQLITE_OMIT_AUTOVACUUM
78713 SQLITE_PRIVATE void sqlite3RootPageMoved(sqlite3 *db, int iDb, int iFrom, int iTo){
78714 HashElem *pElem;
78715 Hash *pHash;
78716 Db *pDb;
78718 assert( sqlite3SchemaMutexHeld(db, iDb, 0) );
78719 pDb = &db->aDb[iDb];
78720 pHash = &pDb->pSchema->tblHash;
78721 for(pElem=sqliteHashFirst(pHash); pElem; pElem=sqliteHashNext(pElem)){
78722 Table *pTab = sqliteHashData(pElem);
78723 if( pTab->tnum==iFrom ){
78724 pTab->tnum = iTo;
78727 pHash = &pDb->pSchema->idxHash;
78728 for(pElem=sqliteHashFirst(pHash); pElem; pElem=sqliteHashNext(pElem)){
78729 Index *pIdx = sqliteHashData(pElem);
78730 if( pIdx->tnum==iFrom ){
78731 pIdx->tnum = iTo;
78735 #endif
78738 ** Write code to erase the table with root-page iTable from database iDb.
78739 ** Also write code to modify the sqlite_master table and internal schema
78740 ** if a root-page of another table is moved by the btree-layer whilst
78741 ** erasing iTable (this can happen with an auto-vacuum database).
78743 static void destroyRootPage(Parse *pParse, int iTable, int iDb){
78744 Vdbe *v = sqlite3GetVdbe(pParse);
78745 int r1 = sqlite3GetTempReg(pParse);
78746 sqlite3VdbeAddOp3(v, OP_Destroy, iTable, r1, iDb);
78747 sqlite3MayAbort(pParse);
78748 #ifndef SQLITE_OMIT_AUTOVACUUM
78749 /* OP_Destroy stores an in integer r1. If this integer
78750 ** is non-zero, then it is the root page number of a table moved to
78751 ** location iTable. The following code modifies the sqlite_master table to
78752 ** reflect this.
78754 ** The "#NNN" in the SQL is a special constant that means whatever value
78755 ** is in register NNN. See grammar rules associated with the TK_REGISTER
78756 ** token for additional information.
78758 sqlite3NestedParse(pParse,
78759 "UPDATE %Q.%s SET rootpage=%d WHERE #%d AND rootpage=#%d",
78760 pParse->db->aDb[iDb].zName, SCHEMA_TABLE(iDb), iTable, r1, r1);
78761 #endif
78762 sqlite3ReleaseTempReg(pParse, r1);
78766 ** Write VDBE code to erase table pTab and all associated indices on disk.
78767 ** Code to update the sqlite_master tables and internal schema definitions
78768 ** in case a root-page belonging to another table is moved by the btree layer
78769 ** is also added (this can happen with an auto-vacuum database).
78771 static void destroyTable(Parse *pParse, Table *pTab){
78772 #ifdef SQLITE_OMIT_AUTOVACUUM
78773 Index *pIdx;
78774 int iDb = sqlite3SchemaToIndex(pParse->db, pTab->pSchema);
78775 destroyRootPage(pParse, pTab->tnum, iDb);
78776 for(pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext){
78777 destroyRootPage(pParse, pIdx->tnum, iDb);
78779 #else
78780 /* If the database may be auto-vacuum capable (if SQLITE_OMIT_AUTOVACUUM
78781 ** is not defined), then it is important to call OP_Destroy on the
78782 ** table and index root-pages in order, starting with the numerically
78783 ** largest root-page number. This guarantees that none of the root-pages
78784 ** to be destroyed is relocated by an earlier OP_Destroy. i.e. if the
78785 ** following were coded:
78787 ** OP_Destroy 4 0
78788 ** ...
78789 ** OP_Destroy 5 0
78791 ** and root page 5 happened to be the largest root-page number in the
78792 ** database, then root page 5 would be moved to page 4 by the
78793 ** "OP_Destroy 4 0" opcode. The subsequent "OP_Destroy 5 0" would hit
78794 ** a free-list page.
78796 int iTab = pTab->tnum;
78797 int iDestroyed = 0;
78799 while( 1 ){
78800 Index *pIdx;
78801 int iLargest = 0;
78803 if( iDestroyed==0 || iTab<iDestroyed ){
78804 iLargest = iTab;
78806 for(pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext){
78807 int iIdx = pIdx->tnum;
78808 assert( pIdx->pSchema==pTab->pSchema );
78809 if( (iDestroyed==0 || (iIdx<iDestroyed)) && iIdx>iLargest ){
78810 iLargest = iIdx;
78813 if( iLargest==0 ){
78814 return;
78815 }else{
78816 int iDb = sqlite3SchemaToIndex(pParse->db, pTab->pSchema);
78817 destroyRootPage(pParse, iLargest, iDb);
78818 iDestroyed = iLargest;
78821 #endif
78825 ** This routine is called to do the work of a DROP TABLE statement.
78826 ** pName is the name of the table to be dropped.
78828 SQLITE_PRIVATE void sqlite3DropTable(Parse *pParse, SrcList *pName, int isView, int noErr){
78829 Table *pTab;
78830 Vdbe *v;
78831 sqlite3 *db = pParse->db;
78832 int iDb;
78834 if( db->mallocFailed ){
78835 goto exit_drop_table;
78837 assert( pParse->nErr==0 );
78838 assert( pName->nSrc==1 );
78839 if( noErr ) db->suppressErr++;
78840 pTab = sqlite3LocateTable(pParse, isView,
78841 pName->a[0].zName, pName->a[0].zDatabase);
78842 if( noErr ) db->suppressErr--;
78844 if( pTab==0 ){
78845 if( noErr ) sqlite3CodeVerifyNamedSchema(pParse, pName->a[0].zDatabase);
78846 goto exit_drop_table;
78848 iDb = sqlite3SchemaToIndex(db, pTab->pSchema);
78849 assert( iDb>=0 && iDb<db->nDb );
78851 /* If pTab is a virtual table, call ViewGetColumnNames() to ensure
78852 ** it is initialized.
78854 if( IsVirtual(pTab) && sqlite3ViewGetColumnNames(pParse, pTab) ){
78855 goto exit_drop_table;
78857 #ifndef SQLITE_OMIT_AUTHORIZATION
78859 int code;
78860 const char *zTab = SCHEMA_TABLE(iDb);
78861 const char *zDb = db->aDb[iDb].zName;
78862 const char *zArg2 = 0;
78863 if( sqlite3AuthCheck(pParse, SQLITE_DELETE, zTab, 0, zDb)){
78864 goto exit_drop_table;
78866 if( isView ){
78867 if( !OMIT_TEMPDB && iDb==1 ){
78868 code = SQLITE_DROP_TEMP_VIEW;
78869 }else{
78870 code = SQLITE_DROP_VIEW;
78872 #ifndef SQLITE_OMIT_VIRTUALTABLE
78873 }else if( IsVirtual(pTab) ){
78874 code = SQLITE_DROP_VTABLE;
78875 zArg2 = sqlite3GetVTable(db, pTab)->pMod->zName;
78876 #endif
78877 }else{
78878 if( !OMIT_TEMPDB && iDb==1 ){
78879 code = SQLITE_DROP_TEMP_TABLE;
78880 }else{
78881 code = SQLITE_DROP_TABLE;
78884 if( sqlite3AuthCheck(pParse, code, pTab->zName, zArg2, zDb) ){
78885 goto exit_drop_table;
78887 if( sqlite3AuthCheck(pParse, SQLITE_DELETE, pTab->zName, 0, zDb) ){
78888 goto exit_drop_table;
78891 #endif
78892 if( sqlite3StrNICmp(pTab->zName, "sqlite_", 7)==0 ){
78893 sqlite3ErrorMsg(pParse, "table %s may not be dropped", pTab->zName);
78894 goto exit_drop_table;
78897 #ifndef SQLITE_OMIT_VIEW
78898 /* Ensure DROP TABLE is not used on a view, and DROP VIEW is not used
78899 ** on a table.
78901 if( isView && pTab->pSelect==0 ){
78902 sqlite3ErrorMsg(pParse, "use DROP TABLE to delete table %s", pTab->zName);
78903 goto exit_drop_table;
78905 if( !isView && pTab->pSelect ){
78906 sqlite3ErrorMsg(pParse, "use DROP VIEW to delete view %s", pTab->zName);
78907 goto exit_drop_table;
78909 #endif
78911 /* Generate code to remove the table from the master table
78912 ** on disk.
78914 v = sqlite3GetVdbe(pParse);
78915 if( v ){
78916 Trigger *pTrigger;
78917 Db *pDb = &db->aDb[iDb];
78918 sqlite3BeginWriteOperation(pParse, 1, iDb);
78920 #ifndef SQLITE_OMIT_VIRTUALTABLE
78921 if( IsVirtual(pTab) ){
78922 sqlite3VdbeAddOp0(v, OP_VBegin);
78924 #endif
78925 sqlite3FkDropTable(pParse, pName, pTab);
78927 /* Drop all triggers associated with the table being dropped. Code
78928 ** is generated to remove entries from sqlite_master and/or
78929 ** sqlite_temp_master if required.
78931 pTrigger = sqlite3TriggerList(pParse, pTab);
78932 while( pTrigger ){
78933 assert( pTrigger->pSchema==pTab->pSchema ||
78934 pTrigger->pSchema==db->aDb[1].pSchema );
78935 sqlite3DropTriggerPtr(pParse, pTrigger);
78936 pTrigger = pTrigger->pNext;
78939 #ifndef SQLITE_OMIT_AUTOINCREMENT
78940 /* Remove any entries of the sqlite_sequence table associated with
78941 ** the table being dropped. This is done before the table is dropped
78942 ** at the btree level, in case the sqlite_sequence table needs to
78943 ** move as a result of the drop (can happen in auto-vacuum mode).
78945 if( pTab->tabFlags & TF_Autoincrement ){
78946 sqlite3NestedParse(pParse,
78947 "DELETE FROM %s.sqlite_sequence WHERE name=%Q",
78948 pDb->zName, pTab->zName
78951 #endif
78953 /* Drop all SQLITE_MASTER table and index entries that refer to the
78954 ** table. The program name loops through the master table and deletes
78955 ** every row that refers to a table of the same name as the one being
78956 ** dropped. Triggers are handled seperately because a trigger can be
78957 ** created in the temp database that refers to a table in another
78958 ** database.
78960 sqlite3NestedParse(pParse,
78961 "DELETE FROM %Q.%s WHERE tbl_name=%Q and type!='trigger'",
78962 pDb->zName, SCHEMA_TABLE(iDb), pTab->zName);
78964 /* Drop any statistics from the sqlite_stat1 table, if it exists */
78965 if( sqlite3FindTable(db, "sqlite_stat1", db->aDb[iDb].zName) ){
78966 sqlite3NestedParse(pParse,
78967 "DELETE FROM %Q.sqlite_stat1 WHERE tbl=%Q", pDb->zName, pTab->zName
78971 if( !isView && !IsVirtual(pTab) ){
78972 destroyTable(pParse, pTab);
78975 /* Remove the table entry from SQLite's internal schema and modify
78976 ** the schema cookie.
78978 if( IsVirtual(pTab) ){
78979 sqlite3VdbeAddOp4(v, OP_VDestroy, iDb, 0, 0, pTab->zName, 0);
78981 sqlite3VdbeAddOp4(v, OP_DropTable, iDb, 0, 0, pTab->zName, 0);
78982 sqlite3ChangeCookie(pParse, iDb);
78984 sqliteViewResetAll(db, iDb);
78986 exit_drop_table:
78987 sqlite3SrcListDelete(db, pName);
78991 ** This routine is called to create a new foreign key on the table
78992 ** currently under construction. pFromCol determines which columns
78993 ** in the current table point to the foreign key. If pFromCol==0 then
78994 ** connect the key to the last column inserted. pTo is the name of
78995 ** the table referred to. pToCol is a list of tables in the other
78996 ** pTo table that the foreign key points to. flags contains all
78997 ** information about the conflict resolution algorithms specified
78998 ** in the ON DELETE, ON UPDATE and ON INSERT clauses.
79000 ** An FKey structure is created and added to the table currently
79001 ** under construction in the pParse->pNewTable field.
79003 ** The foreign key is set for IMMEDIATE processing. A subsequent call
79004 ** to sqlite3DeferForeignKey() might change this to DEFERRED.
79006 SQLITE_PRIVATE void sqlite3CreateForeignKey(
79007 Parse *pParse, /* Parsing context */
79008 ExprList *pFromCol, /* Columns in this table that point to other table */
79009 Token *pTo, /* Name of the other table */
79010 ExprList *pToCol, /* Columns in the other table */
79011 int flags /* Conflict resolution algorithms. */
79013 sqlite3 *db = pParse->db;
79014 #ifndef SQLITE_OMIT_FOREIGN_KEY
79015 FKey *pFKey = 0;
79016 FKey *pNextTo;
79017 Table *p = pParse->pNewTable;
79018 int nByte;
79019 int i;
79020 int nCol;
79021 char *z;
79023 assert( pTo!=0 );
79024 if( p==0 || IN_DECLARE_VTAB ) goto fk_end;
79025 if( pFromCol==0 ){
79026 int iCol = p->nCol-1;
79027 if( NEVER(iCol<0) ) goto fk_end;
79028 if( pToCol && pToCol->nExpr!=1 ){
79029 sqlite3ErrorMsg(pParse, "foreign key on %s"
79030 " should reference only one column of table %T",
79031 p->aCol[iCol].zName, pTo);
79032 goto fk_end;
79034 nCol = 1;
79035 }else if( pToCol && pToCol->nExpr!=pFromCol->nExpr ){
79036 sqlite3ErrorMsg(pParse,
79037 "number of columns in foreign key does not match the number of "
79038 "columns in the referenced table");
79039 goto fk_end;
79040 }else{
79041 nCol = pFromCol->nExpr;
79043 nByte = sizeof(*pFKey) + (nCol-1)*sizeof(pFKey->aCol[0]) + pTo->n + 1;
79044 if( pToCol ){
79045 for(i=0; i<pToCol->nExpr; i++){
79046 nByte += sqlite3Strlen30(pToCol->a[i].zName) + 1;
79049 pFKey = sqlite3DbMallocZero(db, nByte );
79050 if( pFKey==0 ){
79051 goto fk_end;
79053 pFKey->pFrom = p;
79054 pFKey->pNextFrom = p->pFKey;
79055 z = (char*)&pFKey->aCol[nCol];
79056 pFKey->zTo = z;
79057 memcpy(z, pTo->z, pTo->n);
79058 z[pTo->n] = 0;
79059 sqlite3Dequote(z);
79060 z += pTo->n+1;
79061 pFKey->nCol = nCol;
79062 if( pFromCol==0 ){
79063 pFKey->aCol[0].iFrom = p->nCol-1;
79064 }else{
79065 for(i=0; i<nCol; i++){
79066 int j;
79067 for(j=0; j<p->nCol; j++){
79068 if( sqlite3StrICmp(p->aCol[j].zName, pFromCol->a[i].zName)==0 ){
79069 pFKey->aCol[i].iFrom = j;
79070 break;
79073 if( j>=p->nCol ){
79074 sqlite3ErrorMsg(pParse,
79075 "unknown column \"%s\" in foreign key definition",
79076 pFromCol->a[i].zName);
79077 goto fk_end;
79081 if( pToCol ){
79082 for(i=0; i<nCol; i++){
79083 int n = sqlite3Strlen30(pToCol->a[i].zName);
79084 pFKey->aCol[i].zCol = z;
79085 memcpy(z, pToCol->a[i].zName, n);
79086 z[n] = 0;
79087 z += n+1;
79090 pFKey->isDeferred = 0;
79091 pFKey->aAction[0] = (u8)(flags & 0xff); /* ON DELETE action */
79092 pFKey->aAction[1] = (u8)((flags >> 8 ) & 0xff); /* ON UPDATE action */
79094 assert( sqlite3SchemaMutexHeld(db, 0, p->pSchema) );
79095 pNextTo = (FKey *)sqlite3HashInsert(&p->pSchema->fkeyHash,
79096 pFKey->zTo, sqlite3Strlen30(pFKey->zTo), (void *)pFKey
79098 if( pNextTo==pFKey ){
79099 db->mallocFailed = 1;
79100 goto fk_end;
79102 if( pNextTo ){
79103 assert( pNextTo->pPrevTo==0 );
79104 pFKey->pNextTo = pNextTo;
79105 pNextTo->pPrevTo = pFKey;
79108 /* Link the foreign key to the table as the last step.
79110 p->pFKey = pFKey;
79111 pFKey = 0;
79113 fk_end:
79114 sqlite3DbFree(db, pFKey);
79115 #endif /* !defined(SQLITE_OMIT_FOREIGN_KEY) */
79116 sqlite3ExprListDelete(db, pFromCol);
79117 sqlite3ExprListDelete(db, pToCol);
79121 ** This routine is called when an INITIALLY IMMEDIATE or INITIALLY DEFERRED
79122 ** clause is seen as part of a foreign key definition. The isDeferred
79123 ** parameter is 1 for INITIALLY DEFERRED and 0 for INITIALLY IMMEDIATE.
79124 ** The behavior of the most recently created foreign key is adjusted
79125 ** accordingly.
79127 SQLITE_PRIVATE void sqlite3DeferForeignKey(Parse *pParse, int isDeferred){
79128 #ifndef SQLITE_OMIT_FOREIGN_KEY
79129 Table *pTab;
79130 FKey *pFKey;
79131 if( (pTab = pParse->pNewTable)==0 || (pFKey = pTab->pFKey)==0 ) return;
79132 assert( isDeferred==0 || isDeferred==1 ); /* EV: R-30323-21917 */
79133 pFKey->isDeferred = (u8)isDeferred;
79134 #endif
79138 ** Generate code that will erase and refill index *pIdx. This is
79139 ** used to initialize a newly created index or to recompute the
79140 ** content of an index in response to a REINDEX command.
79142 ** if memRootPage is not negative, it means that the index is newly
79143 ** created. The register specified by memRootPage contains the
79144 ** root page number of the index. If memRootPage is negative, then
79145 ** the index already exists and must be cleared before being refilled and
79146 ** the root page number of the index is taken from pIndex->tnum.
79148 static void sqlite3RefillIndex(Parse *pParse, Index *pIndex, int memRootPage){
79149 Table *pTab = pIndex->pTable; /* The table that is indexed */
79150 int iTab = pParse->nTab++; /* Btree cursor used for pTab */
79151 int iIdx = pParse->nTab++; /* Btree cursor used for pIndex */
79152 int addr1; /* Address of top of loop */
79153 int tnum; /* Root page of index */
79154 Vdbe *v; /* Generate code into this virtual machine */
79155 KeyInfo *pKey; /* KeyInfo for index */
79156 int regIdxKey; /* Registers containing the index key */
79157 int regRecord; /* Register holding assemblied index record */
79158 sqlite3 *db = pParse->db; /* The database connection */
79159 int iDb = sqlite3SchemaToIndex(db, pIndex->pSchema);
79161 #ifndef SQLITE_OMIT_AUTHORIZATION
79162 if( sqlite3AuthCheck(pParse, SQLITE_REINDEX, pIndex->zName, 0,
79163 db->aDb[iDb].zName ) ){
79164 return;
79166 #endif
79168 /* Require a write-lock on the table to perform this operation */
79169 sqlite3TableLock(pParse, iDb, pTab->tnum, 1, pTab->zName);
79171 v = sqlite3GetVdbe(pParse);
79172 if( v==0 ) return;
79173 if( memRootPage>=0 ){
79174 tnum = memRootPage;
79175 }else{
79176 tnum = pIndex->tnum;
79177 sqlite3VdbeAddOp2(v, OP_Clear, tnum, iDb);
79179 pKey = sqlite3IndexKeyinfo(pParse, pIndex);
79180 sqlite3VdbeAddOp4(v, OP_OpenWrite, iIdx, tnum, iDb,
79181 (char *)pKey, P4_KEYINFO_HANDOFF);
79182 if( memRootPage>=0 ){
79183 sqlite3VdbeChangeP5(v, 1);
79185 sqlite3OpenTable(pParse, iTab, iDb, pTab, OP_OpenRead);
79186 addr1 = sqlite3VdbeAddOp2(v, OP_Rewind, iTab, 0);
79187 regRecord = sqlite3GetTempReg(pParse);
79188 regIdxKey = sqlite3GenerateIndexKey(pParse, pIndex, iTab, regRecord, 1);
79189 if( pIndex->onError!=OE_None ){
79190 const int regRowid = regIdxKey + pIndex->nColumn;
79191 const int j2 = sqlite3VdbeCurrentAddr(v) + 2;
79192 void * const pRegKey = SQLITE_INT_TO_PTR(regIdxKey);
79194 /* The registers accessed by the OP_IsUnique opcode were allocated
79195 ** using sqlite3GetTempRange() inside of the sqlite3GenerateIndexKey()
79196 ** call above. Just before that function was freed they were released
79197 ** (made available to the compiler for reuse) using
79198 ** sqlite3ReleaseTempRange(). So in some ways having the OP_IsUnique
79199 ** opcode use the values stored within seems dangerous. However, since
79200 ** we can be sure that no other temp registers have been allocated
79201 ** since sqlite3ReleaseTempRange() was called, it is safe to do so.
79203 sqlite3VdbeAddOp4(v, OP_IsUnique, iIdx, j2, regRowid, pRegKey, P4_INT32);
79204 sqlite3HaltConstraint(
79205 pParse, OE_Abort, "indexed columns are not unique", P4_STATIC);
79207 sqlite3VdbeAddOp2(v, OP_IdxInsert, iIdx, regRecord);
79208 sqlite3VdbeChangeP5(v, OPFLAG_USESEEKRESULT);
79209 sqlite3ReleaseTempReg(pParse, regRecord);
79210 sqlite3VdbeAddOp2(v, OP_Next, iTab, addr1+1);
79211 sqlite3VdbeJumpHere(v, addr1);
79212 sqlite3VdbeAddOp1(v, OP_Close, iTab);
79213 sqlite3VdbeAddOp1(v, OP_Close, iIdx);
79217 ** Create a new index for an SQL table. pName1.pName2 is the name of the index
79218 ** and pTblList is the name of the table that is to be indexed. Both will
79219 ** be NULL for a primary key or an index that is created to satisfy a
79220 ** UNIQUE constraint. If pTable and pIndex are NULL, use pParse->pNewTable
79221 ** as the table to be indexed. pParse->pNewTable is a table that is
79222 ** currently being constructed by a CREATE TABLE statement.
79224 ** pList is a list of columns to be indexed. pList will be NULL if this
79225 ** is a primary key or unique-constraint on the most recent column added
79226 ** to the table currently under construction.
79228 ** If the index is created successfully, return a pointer to the new Index
79229 ** structure. This is used by sqlite3AddPrimaryKey() to mark the index
79230 ** as the tables primary key (Index.autoIndex==2).
79232 SQLITE_PRIVATE Index *sqlite3CreateIndex(
79233 Parse *pParse, /* All information about this parse */
79234 Token *pName1, /* First part of index name. May be NULL */
79235 Token *pName2, /* Second part of index name. May be NULL */
79236 SrcList *pTblName, /* Table to index. Use pParse->pNewTable if 0 */
79237 ExprList *pList, /* A list of columns to be indexed */
79238 int onError, /* OE_Abort, OE_Ignore, OE_Replace, or OE_None */
79239 Token *pStart, /* The CREATE token that begins this statement */
79240 Token *pEnd, /* The ")" that closes the CREATE INDEX statement */
79241 int sortOrder, /* Sort order of primary key when pList==NULL */
79242 int ifNotExist /* Omit error if index already exists */
79244 Index *pRet = 0; /* Pointer to return */
79245 Table *pTab = 0; /* Table to be indexed */
79246 Index *pIndex = 0; /* The index to be created */
79247 char *zName = 0; /* Name of the index */
79248 int nName; /* Number of characters in zName */
79249 int i, j;
79250 Token nullId; /* Fake token for an empty ID list */
79251 DbFixer sFix; /* For assigning database names to pTable */
79252 int sortOrderMask; /* 1 to honor DESC in index. 0 to ignore. */
79253 sqlite3 *db = pParse->db;
79254 Db *pDb; /* The specific table containing the indexed database */
79255 int iDb; /* Index of the database that is being written */
79256 Token *pName = 0; /* Unqualified name of the index to create */
79257 struct ExprList_item *pListItem; /* For looping over pList */
79258 int nCol;
79259 int nExtra = 0;
79260 char *zExtra;
79262 assert( pStart==0 || pEnd!=0 ); /* pEnd must be non-NULL if pStart is */
79263 assert( pParse->nErr==0 ); /* Never called with prior errors */
79264 if( db->mallocFailed || IN_DECLARE_VTAB ){
79265 goto exit_create_index;
79267 if( SQLITE_OK!=sqlite3ReadSchema(pParse) ){
79268 goto exit_create_index;
79272 ** Find the table that is to be indexed. Return early if not found.
79274 if( pTblName!=0 ){
79276 /* Use the two-part index name to determine the database
79277 ** to search for the table. 'Fix' the table name to this db
79278 ** before looking up the table.
79280 assert( pName1 && pName2 );
79281 iDb = sqlite3TwoPartName(pParse, pName1, pName2, &pName);
79282 if( iDb<0 ) goto exit_create_index;
79284 #ifndef SQLITE_OMIT_TEMPDB
79285 /* If the index name was unqualified, check if the the table
79286 ** is a temp table. If so, set the database to 1. Do not do this
79287 ** if initialising a database schema.
79289 if( !db->init.busy ){
79290 pTab = sqlite3SrcListLookup(pParse, pTblName);
79291 if( pName2->n==0 && pTab && pTab->pSchema==db->aDb[1].pSchema ){
79292 iDb = 1;
79295 #endif
79297 if( sqlite3FixInit(&sFix, pParse, iDb, "index", pName) &&
79298 sqlite3FixSrcList(&sFix, pTblName)
79300 /* Because the parser constructs pTblName from a single identifier,
79301 ** sqlite3FixSrcList can never fail. */
79302 assert(0);
79304 pTab = sqlite3LocateTable(pParse, 0, pTblName->a[0].zName,
79305 pTblName->a[0].zDatabase);
79306 if( !pTab || db->mallocFailed ) goto exit_create_index;
79307 assert( db->aDb[iDb].pSchema==pTab->pSchema );
79308 }else{
79309 assert( pName==0 );
79310 pTab = pParse->pNewTable;
79311 if( !pTab ) goto exit_create_index;
79312 iDb = sqlite3SchemaToIndex(db, pTab->pSchema);
79314 pDb = &db->aDb[iDb];
79316 assert( pTab!=0 );
79317 assert( pParse->nErr==0 );
79318 if( sqlite3StrNICmp(pTab->zName, "sqlite_", 7)==0
79319 && sqlite3StrNICmp(&pTab->zName[7],"altertab_",9)!=0 ){
79320 sqlite3ErrorMsg(pParse, "table %s may not be indexed", pTab->zName);
79321 goto exit_create_index;
79323 #ifndef SQLITE_OMIT_VIEW
79324 if( pTab->pSelect ){
79325 sqlite3ErrorMsg(pParse, "views may not be indexed");
79326 goto exit_create_index;
79328 #endif
79329 #ifndef SQLITE_OMIT_VIRTUALTABLE
79330 if( IsVirtual(pTab) ){
79331 sqlite3ErrorMsg(pParse, "virtual tables may not be indexed");
79332 goto exit_create_index;
79334 #endif
79337 ** Find the name of the index. Make sure there is not already another
79338 ** index or table with the same name.
79340 ** Exception: If we are reading the names of permanent indices from the
79341 ** sqlite_master table (because some other process changed the schema) and
79342 ** one of the index names collides with the name of a temporary table or
79343 ** index, then we will continue to process this index.
79345 ** If pName==0 it means that we are
79346 ** dealing with a primary key or UNIQUE constraint. We have to invent our
79347 ** own name.
79349 if( pName ){
79350 zName = sqlite3NameFromToken(db, pName);
79351 if( zName==0 ) goto exit_create_index;
79352 if( SQLITE_OK!=sqlite3CheckObjectName(pParse, zName) ){
79353 goto exit_create_index;
79355 if( !db->init.busy ){
79356 if( sqlite3FindTable(db, zName, 0)!=0 ){
79357 sqlite3ErrorMsg(pParse, "there is already a table named %s", zName);
79358 goto exit_create_index;
79361 if( sqlite3FindIndex(db, zName, pDb->zName)!=0 ){
79362 if( !ifNotExist ){
79363 sqlite3ErrorMsg(pParse, "index %s already exists", zName);
79364 }else{
79365 assert( !db->init.busy );
79366 sqlite3CodeVerifySchema(pParse, iDb);
79368 goto exit_create_index;
79370 }else{
79371 int n;
79372 Index *pLoop;
79373 for(pLoop=pTab->pIndex, n=1; pLoop; pLoop=pLoop->pNext, n++){}
79374 zName = sqlite3MPrintf(db, "sqlite_autoindex_%s_%d", pTab->zName, n);
79375 if( zName==0 ){
79376 goto exit_create_index;
79380 /* Check for authorization to create an index.
79382 #ifndef SQLITE_OMIT_AUTHORIZATION
79384 const char *zDb = pDb->zName;
79385 if( sqlite3AuthCheck(pParse, SQLITE_INSERT, SCHEMA_TABLE(iDb), 0, zDb) ){
79386 goto exit_create_index;
79388 i = SQLITE_CREATE_INDEX;
79389 if( !OMIT_TEMPDB && iDb==1 ) i = SQLITE_CREATE_TEMP_INDEX;
79390 if( sqlite3AuthCheck(pParse, i, zName, pTab->zName, zDb) ){
79391 goto exit_create_index;
79394 #endif
79396 /* If pList==0, it means this routine was called to make a primary
79397 ** key out of the last column added to the table under construction.
79398 ** So create a fake list to simulate this.
79400 if( pList==0 ){
79401 nullId.z = pTab->aCol[pTab->nCol-1].zName;
79402 nullId.n = sqlite3Strlen30((char*)nullId.z);
79403 pList = sqlite3ExprListAppend(pParse, 0, 0);
79404 if( pList==0 ) goto exit_create_index;
79405 sqlite3ExprListSetName(pParse, pList, &nullId, 0);
79406 pList->a[0].sortOrder = (u8)sortOrder;
79409 /* Figure out how many bytes of space are required to store explicitly
79410 ** specified collation sequence names.
79412 for(i=0; i<pList->nExpr; i++){
79413 Expr *pExpr = pList->a[i].pExpr;
79414 if( pExpr ){
79415 CollSeq *pColl = pExpr->pColl;
79416 /* Either pColl!=0 or there was an OOM failure. But if an OOM
79417 ** failure we have quit before reaching this point. */
79418 if( ALWAYS(pColl) ){
79419 nExtra += (1 + sqlite3Strlen30(pColl->zName));
79425 ** Allocate the index structure.
79427 nName = sqlite3Strlen30(zName);
79428 nCol = pList->nExpr;
79429 pIndex = sqlite3DbMallocZero(db,
79430 sizeof(Index) + /* Index structure */
79431 sizeof(int)*nCol + /* Index.aiColumn */
79432 sizeof(int)*(nCol+1) + /* Index.aiRowEst */
79433 sizeof(char *)*nCol + /* Index.azColl */
79434 sizeof(u8)*nCol + /* Index.aSortOrder */
79435 nName + 1 + /* Index.zName */
79436 nExtra /* Collation sequence names */
79438 if( db->mallocFailed ){
79439 goto exit_create_index;
79441 pIndex->azColl = (char**)(&pIndex[1]);
79442 pIndex->aiColumn = (int *)(&pIndex->azColl[nCol]);
79443 pIndex->aiRowEst = (unsigned *)(&pIndex->aiColumn[nCol]);
79444 pIndex->aSortOrder = (u8 *)(&pIndex->aiRowEst[nCol+1]);
79445 pIndex->zName = (char *)(&pIndex->aSortOrder[nCol]);
79446 zExtra = (char *)(&pIndex->zName[nName+1]);
79447 memcpy(pIndex->zName, zName, nName+1);
79448 pIndex->pTable = pTab;
79449 pIndex->nColumn = pList->nExpr;
79450 pIndex->onError = (u8)onError;
79451 pIndex->autoIndex = (u8)(pName==0);
79452 pIndex->pSchema = db->aDb[iDb].pSchema;
79453 assert( sqlite3SchemaMutexHeld(db, iDb, 0) );
79455 /* Check to see if we should honor DESC requests on index columns
79457 if( pDb->pSchema->file_format>=4 ){
79458 sortOrderMask = -1; /* Honor DESC */
79459 }else{
79460 sortOrderMask = 0; /* Ignore DESC */
79463 /* Scan the names of the columns of the table to be indexed and
79464 ** load the column indices into the Index structure. Report an error
79465 ** if any column is not found.
79467 ** TODO: Add a test to make sure that the same column is not named
79468 ** more than once within the same index. Only the first instance of
79469 ** the column will ever be used by the optimizer. Note that using the
79470 ** same column more than once cannot be an error because that would
79471 ** break backwards compatibility - it needs to be a warning.
79473 for(i=0, pListItem=pList->a; i<pList->nExpr; i++, pListItem++){
79474 const char *zColName = pListItem->zName;
79475 Column *pTabCol;
79476 int requestedSortOrder;
79477 char *zColl; /* Collation sequence name */
79479 for(j=0, pTabCol=pTab->aCol; j<pTab->nCol; j++, pTabCol++){
79480 if( sqlite3StrICmp(zColName, pTabCol->zName)==0 ) break;
79482 if( j>=pTab->nCol ){
79483 sqlite3ErrorMsg(pParse, "table %s has no column named %s",
79484 pTab->zName, zColName);
79485 pParse->checkSchema = 1;
79486 goto exit_create_index;
79488 pIndex->aiColumn[i] = j;
79489 /* Justification of the ALWAYS(pListItem->pExpr->pColl): Because of
79490 ** the way the "idxlist" non-terminal is constructed by the parser,
79491 ** if pListItem->pExpr is not null then either pListItem->pExpr->pColl
79492 ** must exist or else there must have been an OOM error. But if there
79493 ** was an OOM error, we would never reach this point. */
79494 if( pListItem->pExpr && ALWAYS(pListItem->pExpr->pColl) ){
79495 int nColl;
79496 zColl = pListItem->pExpr->pColl->zName;
79497 nColl = sqlite3Strlen30(zColl) + 1;
79498 assert( nExtra>=nColl );
79499 memcpy(zExtra, zColl, nColl);
79500 zColl = zExtra;
79501 zExtra += nColl;
79502 nExtra -= nColl;
79503 }else{
79504 zColl = pTab->aCol[j].zColl;
79505 if( !zColl ){
79506 zColl = db->pDfltColl->zName;
79509 if( !db->init.busy && !sqlite3LocateCollSeq(pParse, zColl) ){
79510 goto exit_create_index;
79512 pIndex->azColl[i] = zColl;
79513 requestedSortOrder = pListItem->sortOrder & sortOrderMask;
79514 pIndex->aSortOrder[i] = (u8)requestedSortOrder;
79516 sqlite3DefaultRowEst(pIndex);
79518 if( pTab==pParse->pNewTable ){
79519 /* This routine has been called to create an automatic index as a
79520 ** result of a PRIMARY KEY or UNIQUE clause on a column definition, or
79521 ** a PRIMARY KEY or UNIQUE clause following the column definitions.
79522 ** i.e. one of:
79524 ** CREATE TABLE t(x PRIMARY KEY, y);
79525 ** CREATE TABLE t(x, y, UNIQUE(x, y));
79527 ** Either way, check to see if the table already has such an index. If
79528 ** so, don't bother creating this one. This only applies to
79529 ** automatically created indices. Users can do as they wish with
79530 ** explicit indices.
79532 ** Two UNIQUE or PRIMARY KEY constraints are considered equivalent
79533 ** (and thus suppressing the second one) even if they have different
79534 ** sort orders.
79536 ** If there are different collating sequences or if the columns of
79537 ** the constraint occur in different orders, then the constraints are
79538 ** considered distinct and both result in separate indices.
79540 Index *pIdx;
79541 for(pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext){
79542 int k;
79543 assert( pIdx->onError!=OE_None );
79544 assert( pIdx->autoIndex );
79545 assert( pIndex->onError!=OE_None );
79547 if( pIdx->nColumn!=pIndex->nColumn ) continue;
79548 for(k=0; k<pIdx->nColumn; k++){
79549 const char *z1;
79550 const char *z2;
79551 if( pIdx->aiColumn[k]!=pIndex->aiColumn[k] ) break;
79552 z1 = pIdx->azColl[k];
79553 z2 = pIndex->azColl[k];
79554 if( z1!=z2 && sqlite3StrICmp(z1, z2) ) break;
79556 if( k==pIdx->nColumn ){
79557 if( pIdx->onError!=pIndex->onError ){
79558 /* This constraint creates the same index as a previous
79559 ** constraint specified somewhere in the CREATE TABLE statement.
79560 ** However the ON CONFLICT clauses are different. If both this
79561 ** constraint and the previous equivalent constraint have explicit
79562 ** ON CONFLICT clauses this is an error. Otherwise, use the
79563 ** explicitly specified behaviour for the index.
79565 if( !(pIdx->onError==OE_Default || pIndex->onError==OE_Default) ){
79566 sqlite3ErrorMsg(pParse,
79567 "conflicting ON CONFLICT clauses specified", 0);
79569 if( pIdx->onError==OE_Default ){
79570 pIdx->onError = pIndex->onError;
79573 goto exit_create_index;
79578 /* Link the new Index structure to its table and to the other
79579 ** in-memory database structures.
79581 if( db->init.busy ){
79582 Index *p;
79583 assert( sqlite3SchemaMutexHeld(db, 0, pIndex->pSchema) );
79584 p = sqlite3HashInsert(&pIndex->pSchema->idxHash,
79585 pIndex->zName, sqlite3Strlen30(pIndex->zName),
79586 pIndex);
79587 if( p ){
79588 assert( p==pIndex ); /* Malloc must have failed */
79589 db->mallocFailed = 1;
79590 goto exit_create_index;
79592 db->flags |= SQLITE_InternChanges;
79593 if( pTblName!=0 ){
79594 pIndex->tnum = db->init.newTnum;
79598 /* If the db->init.busy is 0 then create the index on disk. This
79599 ** involves writing the index into the master table and filling in the
79600 ** index with the current table contents.
79602 ** The db->init.busy is 0 when the user first enters a CREATE INDEX
79603 ** command. db->init.busy is 1 when a database is opened and
79604 ** CREATE INDEX statements are read out of the master table. In
79605 ** the latter case the index already exists on disk, which is why
79606 ** we don't want to recreate it.
79608 ** If pTblName==0 it means this index is generated as a primary key
79609 ** or UNIQUE constraint of a CREATE TABLE statement. Since the table
79610 ** has just been created, it contains no data and the index initialization
79611 ** step can be skipped.
79613 else{ /* if( db->init.busy==0 ) */
79614 Vdbe *v;
79615 char *zStmt;
79616 int iMem = ++pParse->nMem;
79618 v = sqlite3GetVdbe(pParse);
79619 if( v==0 ) goto exit_create_index;
79622 /* Create the rootpage for the index
79624 sqlite3BeginWriteOperation(pParse, 1, iDb);
79625 sqlite3VdbeAddOp2(v, OP_CreateIndex, iDb, iMem);
79627 /* Gather the complete text of the CREATE INDEX statement into
79628 ** the zStmt variable
79630 if( pStart ){
79631 assert( pEnd!=0 );
79632 /* A named index with an explicit CREATE INDEX statement */
79633 zStmt = sqlite3MPrintf(db, "CREATE%s INDEX %.*s",
79634 onError==OE_None ? "" : " UNIQUE",
79635 pEnd->z - pName->z + 1,
79636 pName->z);
79637 }else{
79638 /* An automatic index created by a PRIMARY KEY or UNIQUE constraint */
79639 /* zStmt = sqlite3MPrintf(""); */
79640 zStmt = 0;
79643 /* Add an entry in sqlite_master for this index
79645 sqlite3NestedParse(pParse,
79646 "INSERT INTO %Q.%s VALUES('index',%Q,%Q,#%d,%Q);",
79647 db->aDb[iDb].zName, SCHEMA_TABLE(iDb),
79648 pIndex->zName,
79649 pTab->zName,
79650 iMem,
79651 zStmt
79653 sqlite3DbFree(db, zStmt);
79655 /* Fill the index with data and reparse the schema. Code an OP_Expire
79656 ** to invalidate all pre-compiled statements.
79658 if( pTblName ){
79659 sqlite3RefillIndex(pParse, pIndex, iMem);
79660 sqlite3ChangeCookie(pParse, iDb);
79661 sqlite3VdbeAddOp4(v, OP_ParseSchema, iDb, 0, 0,
79662 sqlite3MPrintf(db, "name='%q' AND type='index'", pIndex->zName),
79663 P4_DYNAMIC);
79664 sqlite3VdbeAddOp1(v, OP_Expire, 0);
79668 /* When adding an index to the list of indices for a table, make
79669 ** sure all indices labeled OE_Replace come after all those labeled
79670 ** OE_Ignore. This is necessary for the correct constraint check
79671 ** processing (in sqlite3GenerateConstraintChecks()) as part of
79672 ** UPDATE and INSERT statements.
79674 if( db->init.busy || pTblName==0 ){
79675 if( onError!=OE_Replace || pTab->pIndex==0
79676 || pTab->pIndex->onError==OE_Replace){
79677 pIndex->pNext = pTab->pIndex;
79678 pTab->pIndex = pIndex;
79679 }else{
79680 Index *pOther = pTab->pIndex;
79681 while( pOther->pNext && pOther->pNext->onError!=OE_Replace ){
79682 pOther = pOther->pNext;
79684 pIndex->pNext = pOther->pNext;
79685 pOther->pNext = pIndex;
79687 pRet = pIndex;
79688 pIndex = 0;
79691 /* Clean up before exiting */
79692 exit_create_index:
79693 if( pIndex ){
79694 sqlite3DbFree(db, pIndex->zColAff);
79695 sqlite3DbFree(db, pIndex);
79697 sqlite3ExprListDelete(db, pList);
79698 sqlite3SrcListDelete(db, pTblName);
79699 sqlite3DbFree(db, zName);
79700 return pRet;
79704 ** Fill the Index.aiRowEst[] array with default information - information
79705 ** to be used when we have not run the ANALYZE command.
79707 ** aiRowEst[0] is suppose to contain the number of elements in the index.
79708 ** Since we do not know, guess 1 million. aiRowEst[1] is an estimate of the
79709 ** number of rows in the table that match any particular value of the
79710 ** first column of the index. aiRowEst[2] is an estimate of the number
79711 ** of rows that match any particular combiniation of the first 2 columns
79712 ** of the index. And so forth. It must always be the case that
79714 ** aiRowEst[N]<=aiRowEst[N-1]
79715 ** aiRowEst[N]>=1
79717 ** Apart from that, we have little to go on besides intuition as to
79718 ** how aiRowEst[] should be initialized. The numbers generated here
79719 ** are based on typical values found in actual indices.
79721 SQLITE_PRIVATE void sqlite3DefaultRowEst(Index *pIdx){
79722 unsigned *a = pIdx->aiRowEst;
79723 int i;
79724 unsigned n;
79725 assert( a!=0 );
79726 a[0] = pIdx->pTable->nRowEst;
79727 if( a[0]<10 ) a[0] = 10;
79728 n = 10;
79729 for(i=1; i<=pIdx->nColumn; i++){
79730 a[i] = n;
79731 if( n>5 ) n--;
79733 if( pIdx->onError!=OE_None ){
79734 a[pIdx->nColumn] = 1;
79739 ** This routine will drop an existing named index. This routine
79740 ** implements the DROP INDEX statement.
79742 SQLITE_PRIVATE void sqlite3DropIndex(Parse *pParse, SrcList *pName, int ifExists){
79743 Index *pIndex;
79744 Vdbe *v;
79745 sqlite3 *db = pParse->db;
79746 int iDb;
79748 assert( pParse->nErr==0 ); /* Never called with prior errors */
79749 if( db->mallocFailed ){
79750 goto exit_drop_index;
79752 assert( pName->nSrc==1 );
79753 if( SQLITE_OK!=sqlite3ReadSchema(pParse) ){
79754 goto exit_drop_index;
79756 pIndex = sqlite3FindIndex(db, pName->a[0].zName, pName->a[0].zDatabase);
79757 if( pIndex==0 ){
79758 if( !ifExists ){
79759 sqlite3ErrorMsg(pParse, "no such index: %S", pName, 0);
79760 }else{
79761 sqlite3CodeVerifyNamedSchema(pParse, pName->a[0].zDatabase);
79763 pParse->checkSchema = 1;
79764 goto exit_drop_index;
79766 if( pIndex->autoIndex ){
79767 sqlite3ErrorMsg(pParse, "index associated with UNIQUE "
79768 "or PRIMARY KEY constraint cannot be dropped", 0);
79769 goto exit_drop_index;
79771 iDb = sqlite3SchemaToIndex(db, pIndex->pSchema);
79772 #ifndef SQLITE_OMIT_AUTHORIZATION
79774 int code = SQLITE_DROP_INDEX;
79775 Table *pTab = pIndex->pTable;
79776 const char *zDb = db->aDb[iDb].zName;
79777 const char *zTab = SCHEMA_TABLE(iDb);
79778 if( sqlite3AuthCheck(pParse, SQLITE_DELETE, zTab, 0, zDb) ){
79779 goto exit_drop_index;
79781 if( !OMIT_TEMPDB && iDb ) code = SQLITE_DROP_TEMP_INDEX;
79782 if( sqlite3AuthCheck(pParse, code, pIndex->zName, pTab->zName, zDb) ){
79783 goto exit_drop_index;
79786 #endif
79788 /* Generate code to remove the index and from the master table */
79789 v = sqlite3GetVdbe(pParse);
79790 if( v ){
79791 sqlite3BeginWriteOperation(pParse, 1, iDb);
79792 sqlite3NestedParse(pParse,
79793 "DELETE FROM %Q.%s WHERE name=%Q AND type='index'",
79794 db->aDb[iDb].zName, SCHEMA_TABLE(iDb),
79795 pIndex->zName
79797 if( sqlite3FindTable(db, "sqlite_stat1", db->aDb[iDb].zName) ){
79798 sqlite3NestedParse(pParse,
79799 "DELETE FROM %Q.sqlite_stat1 WHERE idx=%Q",
79800 db->aDb[iDb].zName, pIndex->zName
79803 sqlite3ChangeCookie(pParse, iDb);
79804 destroyRootPage(pParse, pIndex->tnum, iDb);
79805 sqlite3VdbeAddOp4(v, OP_DropIndex, iDb, 0, 0, pIndex->zName, 0);
79808 exit_drop_index:
79809 sqlite3SrcListDelete(db, pName);
79813 ** pArray is a pointer to an array of objects. Each object in the
79814 ** array is szEntry bytes in size. This routine allocates a new
79815 ** object on the end of the array.
79817 ** *pnEntry is the number of entries already in use. *pnAlloc is
79818 ** the previously allocated size of the array. initSize is the
79819 ** suggested initial array size allocation.
79821 ** The index of the new entry is returned in *pIdx.
79823 ** This routine returns a pointer to the array of objects. This
79824 ** might be the same as the pArray parameter or it might be a different
79825 ** pointer if the array was resized.
79827 SQLITE_PRIVATE void *sqlite3ArrayAllocate(
79828 sqlite3 *db, /* Connection to notify of malloc failures */
79829 void *pArray, /* Array of objects. Might be reallocated */
79830 int szEntry, /* Size of each object in the array */
79831 int initSize, /* Suggested initial allocation, in elements */
79832 int *pnEntry, /* Number of objects currently in use */
79833 int *pnAlloc, /* Current size of the allocation, in elements */
79834 int *pIdx /* Write the index of a new slot here */
79836 char *z;
79837 if( *pnEntry >= *pnAlloc ){
79838 void *pNew;
79839 int newSize;
79840 newSize = (*pnAlloc)*2 + initSize;
79841 pNew = sqlite3DbRealloc(db, pArray, newSize*szEntry);
79842 if( pNew==0 ){
79843 *pIdx = -1;
79844 return pArray;
79846 *pnAlloc = sqlite3DbMallocSize(db, pNew)/szEntry;
79847 pArray = pNew;
79849 z = (char*)pArray;
79850 memset(&z[*pnEntry * szEntry], 0, szEntry);
79851 *pIdx = *pnEntry;
79852 ++*pnEntry;
79853 return pArray;
79857 ** Append a new element to the given IdList. Create a new IdList if
79858 ** need be.
79860 ** A new IdList is returned, or NULL if malloc() fails.
79862 SQLITE_PRIVATE IdList *sqlite3IdListAppend(sqlite3 *db, IdList *pList, Token *pToken){
79863 int i;
79864 if( pList==0 ){
79865 pList = sqlite3DbMallocZero(db, sizeof(IdList) );
79866 if( pList==0 ) return 0;
79867 pList->nAlloc = 0;
79869 pList->a = sqlite3ArrayAllocate(
79871 pList->a,
79872 sizeof(pList->a[0]),
79874 &pList->nId,
79875 &pList->nAlloc,
79878 if( i<0 ){
79879 sqlite3IdListDelete(db, pList);
79880 return 0;
79882 pList->a[i].zName = sqlite3NameFromToken(db, pToken);
79883 return pList;
79887 ** Delete an IdList.
79889 SQLITE_PRIVATE void sqlite3IdListDelete(sqlite3 *db, IdList *pList){
79890 int i;
79891 if( pList==0 ) return;
79892 for(i=0; i<pList->nId; i++){
79893 sqlite3DbFree(db, pList->a[i].zName);
79895 sqlite3DbFree(db, pList->a);
79896 sqlite3DbFree(db, pList);
79900 ** Return the index in pList of the identifier named zId. Return -1
79901 ** if not found.
79903 SQLITE_PRIVATE int sqlite3IdListIndex(IdList *pList, const char *zName){
79904 int i;
79905 if( pList==0 ) return -1;
79906 for(i=0; i<pList->nId; i++){
79907 if( sqlite3StrICmp(pList->a[i].zName, zName)==0 ) return i;
79909 return -1;
79913 ** Expand the space allocated for the given SrcList object by
79914 ** creating nExtra new slots beginning at iStart. iStart is zero based.
79915 ** New slots are zeroed.
79917 ** For example, suppose a SrcList initially contains two entries: A,B.
79918 ** To append 3 new entries onto the end, do this:
79920 ** sqlite3SrcListEnlarge(db, pSrclist, 3, 2);
79922 ** After the call above it would contain: A, B, nil, nil, nil.
79923 ** If the iStart argument had been 1 instead of 2, then the result
79924 ** would have been: A, nil, nil, nil, B. To prepend the new slots,
79925 ** the iStart value would be 0. The result then would
79926 ** be: nil, nil, nil, A, B.
79928 ** If a memory allocation fails the SrcList is unchanged. The
79929 ** db->mallocFailed flag will be set to true.
79931 SQLITE_PRIVATE SrcList *sqlite3SrcListEnlarge(
79932 sqlite3 *db, /* Database connection to notify of OOM errors */
79933 SrcList *pSrc, /* The SrcList to be enlarged */
79934 int nExtra, /* Number of new slots to add to pSrc->a[] */
79935 int iStart /* Index in pSrc->a[] of first new slot */
79937 int i;
79939 /* Sanity checking on calling parameters */
79940 assert( iStart>=0 );
79941 assert( nExtra>=1 );
79942 assert( pSrc!=0 );
79943 assert( iStart<=pSrc->nSrc );
79945 /* Allocate additional space if needed */
79946 if( pSrc->nSrc+nExtra>pSrc->nAlloc ){
79947 SrcList *pNew;
79948 int nAlloc = pSrc->nSrc+nExtra;
79949 int nGot;
79950 pNew = sqlite3DbRealloc(db, pSrc,
79951 sizeof(*pSrc) + (nAlloc-1)*sizeof(pSrc->a[0]) );
79952 if( pNew==0 ){
79953 assert( db->mallocFailed );
79954 return pSrc;
79956 pSrc = pNew;
79957 nGot = (sqlite3DbMallocSize(db, pNew) - sizeof(*pSrc))/sizeof(pSrc->a[0])+1;
79958 pSrc->nAlloc = (u16)nGot;
79961 /* Move existing slots that come after the newly inserted slots
79962 ** out of the way */
79963 for(i=pSrc->nSrc-1; i>=iStart; i--){
79964 pSrc->a[i+nExtra] = pSrc->a[i];
79966 pSrc->nSrc += (i16)nExtra;
79968 /* Zero the newly allocated slots */
79969 memset(&pSrc->a[iStart], 0, sizeof(pSrc->a[0])*nExtra);
79970 for(i=iStart; i<iStart+nExtra; i++){
79971 pSrc->a[i].iCursor = -1;
79974 /* Return a pointer to the enlarged SrcList */
79975 return pSrc;
79980 ** Append a new table name to the given SrcList. Create a new SrcList if
79981 ** need be. A new entry is created in the SrcList even if pTable is NULL.
79983 ** A SrcList is returned, or NULL if there is an OOM error. The returned
79984 ** SrcList might be the same as the SrcList that was input or it might be
79985 ** a new one. If an OOM error does occurs, then the prior value of pList
79986 ** that is input to this routine is automatically freed.
79988 ** If pDatabase is not null, it means that the table has an optional
79989 ** database name prefix. Like this: "database.table". The pDatabase
79990 ** points to the table name and the pTable points to the database name.
79991 ** The SrcList.a[].zName field is filled with the table name which might
79992 ** come from pTable (if pDatabase is NULL) or from pDatabase.
79993 ** SrcList.a[].zDatabase is filled with the database name from pTable,
79994 ** or with NULL if no database is specified.
79996 ** In other words, if call like this:
79998 ** sqlite3SrcListAppend(D,A,B,0);
80000 ** Then B is a table name and the database name is unspecified. If called
80001 ** like this:
80003 ** sqlite3SrcListAppend(D,A,B,C);
80005 ** Then C is the table name and B is the database name. If C is defined
80006 ** then so is B. In other words, we never have a case where:
80008 ** sqlite3SrcListAppend(D,A,0,C);
80010 ** Both pTable and pDatabase are assumed to be quoted. They are dequoted
80011 ** before being added to the SrcList.
80013 SQLITE_PRIVATE SrcList *sqlite3SrcListAppend(
80014 sqlite3 *db, /* Connection to notify of malloc failures */
80015 SrcList *pList, /* Append to this SrcList. NULL creates a new SrcList */
80016 Token *pTable, /* Table to append */
80017 Token *pDatabase /* Database of the table */
80019 struct SrcList_item *pItem;
80020 assert( pDatabase==0 || pTable!=0 ); /* Cannot have C without B */
80021 if( pList==0 ){
80022 pList = sqlite3DbMallocZero(db, sizeof(SrcList) );
80023 if( pList==0 ) return 0;
80024 pList->nAlloc = 1;
80026 pList = sqlite3SrcListEnlarge(db, pList, 1, pList->nSrc);
80027 if( db->mallocFailed ){
80028 sqlite3SrcListDelete(db, pList);
80029 return 0;
80031 pItem = &pList->a[pList->nSrc-1];
80032 if( pDatabase && pDatabase->z==0 ){
80033 pDatabase = 0;
80035 if( pDatabase ){
80036 Token *pTemp = pDatabase;
80037 pDatabase = pTable;
80038 pTable = pTemp;
80040 pItem->zName = sqlite3NameFromToken(db, pTable);
80041 pItem->zDatabase = sqlite3NameFromToken(db, pDatabase);
80042 return pList;
80046 ** Assign VdbeCursor index numbers to all tables in a SrcList
80048 SQLITE_PRIVATE void sqlite3SrcListAssignCursors(Parse *pParse, SrcList *pList){
80049 int i;
80050 struct SrcList_item *pItem;
80051 assert(pList || pParse->db->mallocFailed );
80052 if( pList ){
80053 for(i=0, pItem=pList->a; i<pList->nSrc; i++, pItem++){
80054 if( pItem->iCursor>=0 ) break;
80055 pItem->iCursor = pParse->nTab++;
80056 if( pItem->pSelect ){
80057 sqlite3SrcListAssignCursors(pParse, pItem->pSelect->pSrc);
80064 ** Delete an entire SrcList including all its substructure.
80066 SQLITE_PRIVATE void sqlite3SrcListDelete(sqlite3 *db, SrcList *pList){
80067 int i;
80068 struct SrcList_item *pItem;
80069 if( pList==0 ) return;
80070 for(pItem=pList->a, i=0; i<pList->nSrc; i++, pItem++){
80071 sqlite3DbFree(db, pItem->zDatabase);
80072 sqlite3DbFree(db, pItem->zName);
80073 sqlite3DbFree(db, pItem->zAlias);
80074 sqlite3DbFree(db, pItem->zIndex);
80075 sqlite3DeleteTable(db, pItem->pTab);
80076 sqlite3SelectDelete(db, pItem->pSelect);
80077 sqlite3ExprDelete(db, pItem->pOn);
80078 sqlite3IdListDelete(db, pItem->pUsing);
80080 sqlite3DbFree(db, pList);
80084 ** This routine is called by the parser to add a new term to the
80085 ** end of a growing FROM clause. The "p" parameter is the part of
80086 ** the FROM clause that has already been constructed. "p" is NULL
80087 ** if this is the first term of the FROM clause. pTable and pDatabase
80088 ** are the name of the table and database named in the FROM clause term.
80089 ** pDatabase is NULL if the database name qualifier is missing - the
80090 ** usual case. If the term has a alias, then pAlias points to the
80091 ** alias token. If the term is a subquery, then pSubquery is the
80092 ** SELECT statement that the subquery encodes. The pTable and
80093 ** pDatabase parameters are NULL for subqueries. The pOn and pUsing
80094 ** parameters are the content of the ON and USING clauses.
80096 ** Return a new SrcList which encodes is the FROM with the new
80097 ** term added.
80099 SQLITE_PRIVATE SrcList *sqlite3SrcListAppendFromTerm(
80100 Parse *pParse, /* Parsing context */
80101 SrcList *p, /* The left part of the FROM clause already seen */
80102 Token *pTable, /* Name of the table to add to the FROM clause */
80103 Token *pDatabase, /* Name of the database containing pTable */
80104 Token *pAlias, /* The right-hand side of the AS subexpression */
80105 Select *pSubquery, /* A subquery used in place of a table name */
80106 Expr *pOn, /* The ON clause of a join */
80107 IdList *pUsing /* The USING clause of a join */
80109 struct SrcList_item *pItem;
80110 sqlite3 *db = pParse->db;
80111 if( !p && (pOn || pUsing) ){
80112 sqlite3ErrorMsg(pParse, "a JOIN clause is required before %s",
80113 (pOn ? "ON" : "USING")
80115 goto append_from_error;
80117 p = sqlite3SrcListAppend(db, p, pTable, pDatabase);
80118 if( p==0 || NEVER(p->nSrc==0) ){
80119 goto append_from_error;
80121 pItem = &p->a[p->nSrc-1];
80122 assert( pAlias!=0 );
80123 if( pAlias->n ){
80124 pItem->zAlias = sqlite3NameFromToken(db, pAlias);
80126 pItem->pSelect = pSubquery;
80127 pItem->pOn = pOn;
80128 pItem->pUsing = pUsing;
80129 return p;
80131 append_from_error:
80132 assert( p==0 );
80133 sqlite3ExprDelete(db, pOn);
80134 sqlite3IdListDelete(db, pUsing);
80135 sqlite3SelectDelete(db, pSubquery);
80136 return 0;
80140 ** Add an INDEXED BY or NOT INDEXED clause to the most recently added
80141 ** element of the source-list passed as the second argument.
80143 SQLITE_PRIVATE void sqlite3SrcListIndexedBy(Parse *pParse, SrcList *p, Token *pIndexedBy){
80144 assert( pIndexedBy!=0 );
80145 if( p && ALWAYS(p->nSrc>0) ){
80146 struct SrcList_item *pItem = &p->a[p->nSrc-1];
80147 assert( pItem->notIndexed==0 && pItem->zIndex==0 );
80148 if( pIndexedBy->n==1 && !pIndexedBy->z ){
80149 /* A "NOT INDEXED" clause was supplied. See parse.y
80150 ** construct "indexed_opt" for details. */
80151 pItem->notIndexed = 1;
80152 }else{
80153 pItem->zIndex = sqlite3NameFromToken(pParse->db, pIndexedBy);
80159 ** When building up a FROM clause in the parser, the join operator
80160 ** is initially attached to the left operand. But the code generator
80161 ** expects the join operator to be on the right operand. This routine
80162 ** Shifts all join operators from left to right for an entire FROM
80163 ** clause.
80165 ** Example: Suppose the join is like this:
80167 ** A natural cross join B
80169 ** The operator is "natural cross join". The A and B operands are stored
80170 ** in p->a[0] and p->a[1], respectively. The parser initially stores the
80171 ** operator with A. This routine shifts that operator over to B.
80173 SQLITE_PRIVATE void sqlite3SrcListShiftJoinType(SrcList *p){
80174 if( p && p->a ){
80175 int i;
80176 for(i=p->nSrc-1; i>0; i--){
80177 p->a[i].jointype = p->a[i-1].jointype;
80179 p->a[0].jointype = 0;
80184 ** Begin a transaction
80186 SQLITE_PRIVATE void sqlite3BeginTransaction(Parse *pParse, int type){
80187 sqlite3 *db;
80188 Vdbe *v;
80189 int i;
80191 assert( pParse!=0 );
80192 db = pParse->db;
80193 assert( db!=0 );
80194 /* if( db->aDb[0].pBt==0 ) return; */
80195 if( sqlite3AuthCheck(pParse, SQLITE_TRANSACTION, "BEGIN", 0, 0) ){
80196 return;
80198 v = sqlite3GetVdbe(pParse);
80199 if( !v ) return;
80200 if( type!=TK_DEFERRED ){
80201 for(i=0; i<db->nDb; i++){
80202 sqlite3VdbeAddOp2(v, OP_Transaction, i, (type==TK_EXCLUSIVE)+1);
80203 sqlite3VdbeUsesBtree(v, i);
80206 sqlite3VdbeAddOp2(v, OP_AutoCommit, 0, 0);
80210 ** Commit a transaction
80212 SQLITE_PRIVATE void sqlite3CommitTransaction(Parse *pParse){
80213 sqlite3 *db;
80214 Vdbe *v;
80216 assert( pParse!=0 );
80217 db = pParse->db;
80218 assert( db!=0 );
80219 /* if( db->aDb[0].pBt==0 ) return; */
80220 if( sqlite3AuthCheck(pParse, SQLITE_TRANSACTION, "COMMIT", 0, 0) ){
80221 return;
80223 v = sqlite3GetVdbe(pParse);
80224 if( v ){
80225 sqlite3VdbeAddOp2(v, OP_AutoCommit, 1, 0);
80230 ** Rollback a transaction
80232 SQLITE_PRIVATE void sqlite3RollbackTransaction(Parse *pParse){
80233 sqlite3 *db;
80234 Vdbe *v;
80236 assert( pParse!=0 );
80237 db = pParse->db;
80238 assert( db!=0 );
80239 /* if( db->aDb[0].pBt==0 ) return; */
80240 if( sqlite3AuthCheck(pParse, SQLITE_TRANSACTION, "ROLLBACK", 0, 0) ){
80241 return;
80243 v = sqlite3GetVdbe(pParse);
80244 if( v ){
80245 sqlite3VdbeAddOp2(v, OP_AutoCommit, 1, 1);
80250 ** This function is called by the parser when it parses a command to create,
80251 ** release or rollback an SQL savepoint.
80253 SQLITE_PRIVATE void sqlite3Savepoint(Parse *pParse, int op, Token *pName){
80254 char *zName = sqlite3NameFromToken(pParse->db, pName);
80255 if( zName ){
80256 Vdbe *v = sqlite3GetVdbe(pParse);
80257 #ifndef SQLITE_OMIT_AUTHORIZATION
80258 static const char * const az[] = { "BEGIN", "RELEASE", "ROLLBACK" };
80259 assert( !SAVEPOINT_BEGIN && SAVEPOINT_RELEASE==1 && SAVEPOINT_ROLLBACK==2 );
80260 #endif
80261 if( !v || sqlite3AuthCheck(pParse, SQLITE_SAVEPOINT, az[op], zName, 0) ){
80262 sqlite3DbFree(pParse->db, zName);
80263 return;
80265 sqlite3VdbeAddOp4(v, OP_Savepoint, op, 0, 0, zName, P4_DYNAMIC);
80270 ** Make sure the TEMP database is open and available for use. Return
80271 ** the number of errors. Leave any error messages in the pParse structure.
80273 SQLITE_PRIVATE int sqlite3OpenTempDatabase(Parse *pParse){
80274 sqlite3 *db = pParse->db;
80275 if( db->aDb[1].pBt==0 && !pParse->explain ){
80276 int rc;
80277 Btree *pBt;
80278 static const int flags =
80279 SQLITE_OPEN_READWRITE |
80280 SQLITE_OPEN_CREATE |
80281 SQLITE_OPEN_EXCLUSIVE |
80282 SQLITE_OPEN_DELETEONCLOSE |
80283 SQLITE_OPEN_TEMP_DB;
80285 rc = sqlite3BtreeOpen(0, db, &pBt, 0, flags);
80286 if( rc!=SQLITE_OK ){
80287 sqlite3ErrorMsg(pParse, "unable to open a temporary database "
80288 "file for storing temporary tables");
80289 pParse->rc = rc;
80290 return 1;
80292 db->aDb[1].pBt = pBt;
80293 assert( db->aDb[1].pSchema );
80294 if( SQLITE_NOMEM==sqlite3BtreeSetPageSize(pBt, db->nextPagesize, -1, 0) ){
80295 db->mallocFailed = 1;
80296 return 1;
80299 return 0;
80303 ** Generate VDBE code that will verify the schema cookie and start
80304 ** a read-transaction for all named database files.
80306 ** It is important that all schema cookies be verified and all
80307 ** read transactions be started before anything else happens in
80308 ** the VDBE program. But this routine can be called after much other
80309 ** code has been generated. So here is what we do:
80311 ** The first time this routine is called, we code an OP_Goto that
80312 ** will jump to a subroutine at the end of the program. Then we
80313 ** record every database that needs its schema verified in the
80314 ** pParse->cookieMask field. Later, after all other code has been
80315 ** generated, the subroutine that does the cookie verifications and
80316 ** starts the transactions will be coded and the OP_Goto P2 value
80317 ** will be made to point to that subroutine. The generation of the
80318 ** cookie verification subroutine code happens in sqlite3FinishCoding().
80320 ** If iDb<0 then code the OP_Goto only - don't set flag to verify the
80321 ** schema on any databases. This can be used to position the OP_Goto
80322 ** early in the code, before we know if any database tables will be used.
80324 SQLITE_PRIVATE void sqlite3CodeVerifySchema(Parse *pParse, int iDb){
80325 Parse *pToplevel = sqlite3ParseToplevel(pParse);
80327 if( pToplevel->cookieGoto==0 ){
80328 Vdbe *v = sqlite3GetVdbe(pToplevel);
80329 if( v==0 ) return; /* This only happens if there was a prior error */
80330 pToplevel->cookieGoto = sqlite3VdbeAddOp2(v, OP_Goto, 0, 0)+1;
80332 if( iDb>=0 ){
80333 sqlite3 *db = pToplevel->db;
80334 yDbMask mask;
80336 assert( iDb<db->nDb );
80337 assert( db->aDb[iDb].pBt!=0 || iDb==1 );
80338 assert( iDb<SQLITE_MAX_ATTACHED+2 );
80339 assert( sqlite3SchemaMutexHeld(db, iDb, 0) );
80340 mask = ((yDbMask)1)<<iDb;
80341 if( (pToplevel->cookieMask & mask)==0 ){
80342 pToplevel->cookieMask |= mask;
80343 pToplevel->cookieValue[iDb] = db->aDb[iDb].pSchema->schema_cookie;
80344 if( !OMIT_TEMPDB && iDb==1 ){
80345 sqlite3OpenTempDatabase(pToplevel);
80352 ** If argument zDb is NULL, then call sqlite3CodeVerifySchema() for each
80353 ** attached database. Otherwise, invoke it for the database named zDb only.
80355 SQLITE_PRIVATE void sqlite3CodeVerifyNamedSchema(Parse *pParse, const char *zDb){
80356 sqlite3 *db = pParse->db;
80357 int i;
80358 for(i=0; i<db->nDb; i++){
80359 Db *pDb = &db->aDb[i];
80360 if( pDb->pBt && (!zDb || 0==sqlite3StrICmp(zDb, pDb->zName)) ){
80361 sqlite3CodeVerifySchema(pParse, i);
80367 ** Generate VDBE code that prepares for doing an operation that
80368 ** might change the database.
80370 ** This routine starts a new transaction if we are not already within
80371 ** a transaction. If we are already within a transaction, then a checkpoint
80372 ** is set if the setStatement parameter is true. A checkpoint should
80373 ** be set for operations that might fail (due to a constraint) part of
80374 ** the way through and which will need to undo some writes without having to
80375 ** rollback the whole transaction. For operations where all constraints
80376 ** can be checked before any changes are made to the database, it is never
80377 ** necessary to undo a write and the checkpoint should not be set.
80379 SQLITE_PRIVATE void sqlite3BeginWriteOperation(Parse *pParse, int setStatement, int iDb){
80380 Parse *pToplevel = sqlite3ParseToplevel(pParse);
80381 sqlite3CodeVerifySchema(pParse, iDb);
80382 pToplevel->writeMask |= ((yDbMask)1)<<iDb;
80383 pToplevel->isMultiWrite |= setStatement;
80387 ** Indicate that the statement currently under construction might write
80388 ** more than one entry (example: deleting one row then inserting another,
80389 ** inserting multiple rows in a table, or inserting a row and index entries.)
80390 ** If an abort occurs after some of these writes have completed, then it will
80391 ** be necessary to undo the completed writes.
80393 SQLITE_PRIVATE void sqlite3MultiWrite(Parse *pParse){
80394 Parse *pToplevel = sqlite3ParseToplevel(pParse);
80395 pToplevel->isMultiWrite = 1;
80399 ** The code generator calls this routine if is discovers that it is
80400 ** possible to abort a statement prior to completion. In order to
80401 ** perform this abort without corrupting the database, we need to make
80402 ** sure that the statement is protected by a statement transaction.
80404 ** Technically, we only need to set the mayAbort flag if the
80405 ** isMultiWrite flag was previously set. There is a time dependency
80406 ** such that the abort must occur after the multiwrite. This makes
80407 ** some statements involving the REPLACE conflict resolution algorithm
80408 ** go a little faster. But taking advantage of this time dependency
80409 ** makes it more difficult to prove that the code is correct (in
80410 ** particular, it prevents us from writing an effective
80411 ** implementation of sqlite3AssertMayAbort()) and so we have chosen
80412 ** to take the safe route and skip the optimization.
80414 SQLITE_PRIVATE void sqlite3MayAbort(Parse *pParse){
80415 Parse *pToplevel = sqlite3ParseToplevel(pParse);
80416 pToplevel->mayAbort = 1;
80420 ** Code an OP_Halt that causes the vdbe to return an SQLITE_CONSTRAINT
80421 ** error. The onError parameter determines which (if any) of the statement
80422 ** and/or current transaction is rolled back.
80424 SQLITE_PRIVATE void sqlite3HaltConstraint(Parse *pParse, int onError, char *p4, int p4type){
80425 Vdbe *v = sqlite3GetVdbe(pParse);
80426 if( onError==OE_Abort ){
80427 sqlite3MayAbort(pParse);
80429 sqlite3VdbeAddOp4(v, OP_Halt, SQLITE_CONSTRAINT, onError, 0, p4, p4type);
80433 ** Check to see if pIndex uses the collating sequence pColl. Return
80434 ** true if it does and false if it does not.
80436 #ifndef SQLITE_OMIT_REINDEX
80437 static int collationMatch(const char *zColl, Index *pIndex){
80438 int i;
80439 assert( zColl!=0 );
80440 for(i=0; i<pIndex->nColumn; i++){
80441 const char *z = pIndex->azColl[i];
80442 assert( z!=0 );
80443 if( 0==sqlite3StrICmp(z, zColl) ){
80444 return 1;
80447 return 0;
80449 #endif
80452 ** Recompute all indices of pTab that use the collating sequence pColl.
80453 ** If pColl==0 then recompute all indices of pTab.
80455 #ifndef SQLITE_OMIT_REINDEX
80456 static void reindexTable(Parse *pParse, Table *pTab, char const *zColl){
80457 Index *pIndex; /* An index associated with pTab */
80459 for(pIndex=pTab->pIndex; pIndex; pIndex=pIndex->pNext){
80460 if( zColl==0 || collationMatch(zColl, pIndex) ){
80461 int iDb = sqlite3SchemaToIndex(pParse->db, pTab->pSchema);
80462 sqlite3BeginWriteOperation(pParse, 0, iDb);
80463 sqlite3RefillIndex(pParse, pIndex, -1);
80467 #endif
80470 ** Recompute all indices of all tables in all databases where the
80471 ** indices use the collating sequence pColl. If pColl==0 then recompute
80472 ** all indices everywhere.
80474 #ifndef SQLITE_OMIT_REINDEX
80475 static void reindexDatabases(Parse *pParse, char const *zColl){
80476 Db *pDb; /* A single database */
80477 int iDb; /* The database index number */
80478 sqlite3 *db = pParse->db; /* The database connection */
80479 HashElem *k; /* For looping over tables in pDb */
80480 Table *pTab; /* A table in the database */
80482 assert( sqlite3BtreeHoldsAllMutexes(db) ); /* Needed for schema access */
80483 for(iDb=0, pDb=db->aDb; iDb<db->nDb; iDb++, pDb++){
80484 assert( pDb!=0 );
80485 for(k=sqliteHashFirst(&pDb->pSchema->tblHash); k; k=sqliteHashNext(k)){
80486 pTab = (Table*)sqliteHashData(k);
80487 reindexTable(pParse, pTab, zColl);
80491 #endif
80494 ** Generate code for the REINDEX command.
80496 ** REINDEX -- 1
80497 ** REINDEX <collation> -- 2
80498 ** REINDEX ?<database>.?<tablename> -- 3
80499 ** REINDEX ?<database>.?<indexname> -- 4
80501 ** Form 1 causes all indices in all attached databases to be rebuilt.
80502 ** Form 2 rebuilds all indices in all databases that use the named
80503 ** collating function. Forms 3 and 4 rebuild the named index or all
80504 ** indices associated with the named table.
80506 #ifndef SQLITE_OMIT_REINDEX
80507 SQLITE_PRIVATE void sqlite3Reindex(Parse *pParse, Token *pName1, Token *pName2){
80508 CollSeq *pColl; /* Collating sequence to be reindexed, or NULL */
80509 char *z; /* Name of a table or index */
80510 const char *zDb; /* Name of the database */
80511 Table *pTab; /* A table in the database */
80512 Index *pIndex; /* An index associated with pTab */
80513 int iDb; /* The database index number */
80514 sqlite3 *db = pParse->db; /* The database connection */
80515 Token *pObjName; /* Name of the table or index to be reindexed */
80517 /* Read the database schema. If an error occurs, leave an error message
80518 ** and code in pParse and return NULL. */
80519 if( SQLITE_OK!=sqlite3ReadSchema(pParse) ){
80520 return;
80523 if( pName1==0 ){
80524 reindexDatabases(pParse, 0);
80525 return;
80526 }else if( NEVER(pName2==0) || pName2->z==0 ){
80527 char *zColl;
80528 assert( pName1->z );
80529 zColl = sqlite3NameFromToken(pParse->db, pName1);
80530 if( !zColl ) return;
80531 pColl = sqlite3FindCollSeq(db, ENC(db), zColl, 0);
80532 if( pColl ){
80533 reindexDatabases(pParse, zColl);
80534 sqlite3DbFree(db, zColl);
80535 return;
80537 sqlite3DbFree(db, zColl);
80539 iDb = sqlite3TwoPartName(pParse, pName1, pName2, &pObjName);
80540 if( iDb<0 ) return;
80541 z = sqlite3NameFromToken(db, pObjName);
80542 if( z==0 ) return;
80543 zDb = db->aDb[iDb].zName;
80544 pTab = sqlite3FindTable(db, z, zDb);
80545 if( pTab ){
80546 reindexTable(pParse, pTab, 0);
80547 sqlite3DbFree(db, z);
80548 return;
80550 pIndex = sqlite3FindIndex(db, z, zDb);
80551 sqlite3DbFree(db, z);
80552 if( pIndex ){
80553 sqlite3BeginWriteOperation(pParse, 0, iDb);
80554 sqlite3RefillIndex(pParse, pIndex, -1);
80555 return;
80557 sqlite3ErrorMsg(pParse, "unable to identify the object to be reindexed");
80559 #endif
80562 ** Return a dynamicly allocated KeyInfo structure that can be used
80563 ** with OP_OpenRead or OP_OpenWrite to access database index pIdx.
80565 ** If successful, a pointer to the new structure is returned. In this case
80566 ** the caller is responsible for calling sqlite3DbFree(db, ) on the returned
80567 ** pointer. If an error occurs (out of memory or missing collation
80568 ** sequence), NULL is returned and the state of pParse updated to reflect
80569 ** the error.
80571 SQLITE_PRIVATE KeyInfo *sqlite3IndexKeyinfo(Parse *pParse, Index *pIdx){
80572 int i;
80573 int nCol = pIdx->nColumn;
80574 int nBytes = sizeof(KeyInfo) + (nCol-1)*sizeof(CollSeq*) + nCol;
80575 sqlite3 *db = pParse->db;
80576 KeyInfo *pKey = (KeyInfo *)sqlite3DbMallocZero(db, nBytes);
80578 if( pKey ){
80579 pKey->db = pParse->db;
80580 pKey->aSortOrder = (u8 *)&(pKey->aColl[nCol]);
80581 assert( &pKey->aSortOrder[nCol]==&(((u8 *)pKey)[nBytes]) );
80582 for(i=0; i<nCol; i++){
80583 char *zColl = pIdx->azColl[i];
80584 assert( zColl );
80585 pKey->aColl[i] = sqlite3LocateCollSeq(pParse, zColl);
80586 pKey->aSortOrder[i] = pIdx->aSortOrder[i];
80588 pKey->nField = (u16)nCol;
80591 if( pParse->nErr ){
80592 sqlite3DbFree(db, pKey);
80593 pKey = 0;
80595 return pKey;
80598 /************** End of build.c ***********************************************/
80599 /************** Begin file callback.c ****************************************/
80601 ** 2005 May 23
80603 ** The author disclaims copyright to this source code. In place of
80604 ** a legal notice, here is a blessing:
80606 ** May you do good and not evil.
80607 ** May you find forgiveness for yourself and forgive others.
80608 ** May you share freely, never taking more than you give.
80610 *************************************************************************
80612 ** This file contains functions used to access the internal hash tables
80613 ** of user defined functions and collation sequences.
80618 ** Invoke the 'collation needed' callback to request a collation sequence
80619 ** in the encoding enc of name zName, length nName.
80621 static void callCollNeeded(sqlite3 *db, int enc, const char *zName){
80622 assert( !db->xCollNeeded || !db->xCollNeeded16 );
80623 if( db->xCollNeeded ){
80624 char *zExternal = sqlite3DbStrDup(db, zName);
80625 if( !zExternal ) return;
80626 db->xCollNeeded(db->pCollNeededArg, db, enc, zExternal);
80627 sqlite3DbFree(db, zExternal);
80629 #ifndef SQLITE_OMIT_UTF16
80630 if( db->xCollNeeded16 ){
80631 char const *zExternal;
80632 sqlite3_value *pTmp = sqlite3ValueNew(db);
80633 sqlite3ValueSetStr(pTmp, -1, zName, SQLITE_UTF8, SQLITE_STATIC);
80634 zExternal = sqlite3ValueText(pTmp, SQLITE_UTF16NATIVE);
80635 if( zExternal ){
80636 db->xCollNeeded16(db->pCollNeededArg, db, (int)ENC(db), zExternal);
80638 sqlite3ValueFree(pTmp);
80640 #endif
80644 ** This routine is called if the collation factory fails to deliver a
80645 ** collation function in the best encoding but there may be other versions
80646 ** of this collation function (for other text encodings) available. Use one
80647 ** of these instead if they exist. Avoid a UTF-8 <-> UTF-16 conversion if
80648 ** possible.
80650 static int synthCollSeq(sqlite3 *db, CollSeq *pColl){
80651 CollSeq *pColl2;
80652 char *z = pColl->zName;
80653 int i;
80654 static const u8 aEnc[] = { SQLITE_UTF16BE, SQLITE_UTF16LE, SQLITE_UTF8 };
80655 for(i=0; i<3; i++){
80656 pColl2 = sqlite3FindCollSeq(db, aEnc[i], z, 0);
80657 if( pColl2->xCmp!=0 ){
80658 memcpy(pColl, pColl2, sizeof(CollSeq));
80659 pColl->xDel = 0; /* Do not copy the destructor */
80660 return SQLITE_OK;
80663 return SQLITE_ERROR;
80667 ** This function is responsible for invoking the collation factory callback
80668 ** or substituting a collation sequence of a different encoding when the
80669 ** requested collation sequence is not available in the desired encoding.
80671 ** If it is not NULL, then pColl must point to the database native encoding
80672 ** collation sequence with name zName, length nName.
80674 ** The return value is either the collation sequence to be used in database
80675 ** db for collation type name zName, length nName, or NULL, if no collation
80676 ** sequence can be found.
80678 ** See also: sqlite3LocateCollSeq(), sqlite3FindCollSeq()
80680 SQLITE_PRIVATE CollSeq *sqlite3GetCollSeq(
80681 sqlite3* db, /* The database connection */
80682 u8 enc, /* The desired encoding for the collating sequence */
80683 CollSeq *pColl, /* Collating sequence with native encoding, or NULL */
80684 const char *zName /* Collating sequence name */
80686 CollSeq *p;
80688 p = pColl;
80689 if( !p ){
80690 p = sqlite3FindCollSeq(db, enc, zName, 0);
80692 if( !p || !p->xCmp ){
80693 /* No collation sequence of this type for this encoding is registered.
80694 ** Call the collation factory to see if it can supply us with one.
80696 callCollNeeded(db, enc, zName);
80697 p = sqlite3FindCollSeq(db, enc, zName, 0);
80699 if( p && !p->xCmp && synthCollSeq(db, p) ){
80700 p = 0;
80702 assert( !p || p->xCmp );
80703 return p;
80707 ** This routine is called on a collation sequence before it is used to
80708 ** check that it is defined. An undefined collation sequence exists when
80709 ** a database is loaded that contains references to collation sequences
80710 ** that have not been defined by sqlite3_create_collation() etc.
80712 ** If required, this routine calls the 'collation needed' callback to
80713 ** request a definition of the collating sequence. If this doesn't work,
80714 ** an equivalent collating sequence that uses a text encoding different
80715 ** from the main database is substituted, if one is available.
80717 SQLITE_PRIVATE int sqlite3CheckCollSeq(Parse *pParse, CollSeq *pColl){
80718 if( pColl ){
80719 const char *zName = pColl->zName;
80720 sqlite3 *db = pParse->db;
80721 CollSeq *p = sqlite3GetCollSeq(db, ENC(db), pColl, zName);
80722 if( !p ){
80723 sqlite3ErrorMsg(pParse, "no such collation sequence: %s", zName);
80724 pParse->nErr++;
80725 return SQLITE_ERROR;
80727 assert( p==pColl );
80729 return SQLITE_OK;
80735 ** Locate and return an entry from the db.aCollSeq hash table. If the entry
80736 ** specified by zName and nName is not found and parameter 'create' is
80737 ** true, then create a new entry. Otherwise return NULL.
80739 ** Each pointer stored in the sqlite3.aCollSeq hash table contains an
80740 ** array of three CollSeq structures. The first is the collation sequence
80741 ** prefferred for UTF-8, the second UTF-16le, and the third UTF-16be.
80743 ** Stored immediately after the three collation sequences is a copy of
80744 ** the collation sequence name. A pointer to this string is stored in
80745 ** each collation sequence structure.
80747 static CollSeq *findCollSeqEntry(
80748 sqlite3 *db, /* Database connection */
80749 const char *zName, /* Name of the collating sequence */
80750 int create /* Create a new entry if true */
80752 CollSeq *pColl;
80753 int nName = sqlite3Strlen30(zName);
80754 pColl = sqlite3HashFind(&db->aCollSeq, zName, nName);
80756 if( 0==pColl && create ){
80757 pColl = sqlite3DbMallocZero(db, 3*sizeof(*pColl) + nName + 1 );
80758 if( pColl ){
80759 CollSeq *pDel = 0;
80760 pColl[0].zName = (char*)&pColl[3];
80761 pColl[0].enc = SQLITE_UTF8;
80762 pColl[1].zName = (char*)&pColl[3];
80763 pColl[1].enc = SQLITE_UTF16LE;
80764 pColl[2].zName = (char*)&pColl[3];
80765 pColl[2].enc = SQLITE_UTF16BE;
80766 memcpy(pColl[0].zName, zName, nName);
80767 pColl[0].zName[nName] = 0;
80768 pDel = sqlite3HashInsert(&db->aCollSeq, pColl[0].zName, nName, pColl);
80770 /* If a malloc() failure occurred in sqlite3HashInsert(), it will
80771 ** return the pColl pointer to be deleted (because it wasn't added
80772 ** to the hash table).
80774 assert( pDel==0 || pDel==pColl );
80775 if( pDel!=0 ){
80776 db->mallocFailed = 1;
80777 sqlite3DbFree(db, pDel);
80778 pColl = 0;
80782 return pColl;
80786 ** Parameter zName points to a UTF-8 encoded string nName bytes long.
80787 ** Return the CollSeq* pointer for the collation sequence named zName
80788 ** for the encoding 'enc' from the database 'db'.
80790 ** If the entry specified is not found and 'create' is true, then create a
80791 ** new entry. Otherwise return NULL.
80793 ** A separate function sqlite3LocateCollSeq() is a wrapper around
80794 ** this routine. sqlite3LocateCollSeq() invokes the collation factory
80795 ** if necessary and generates an error message if the collating sequence
80796 ** cannot be found.
80798 ** See also: sqlite3LocateCollSeq(), sqlite3GetCollSeq()
80800 SQLITE_PRIVATE CollSeq *sqlite3FindCollSeq(
80801 sqlite3 *db,
80802 u8 enc,
80803 const char *zName,
80804 int create
80806 CollSeq *pColl;
80807 if( zName ){
80808 pColl = findCollSeqEntry(db, zName, create);
80809 }else{
80810 pColl = db->pDfltColl;
80812 assert( SQLITE_UTF8==1 && SQLITE_UTF16LE==2 && SQLITE_UTF16BE==3 );
80813 assert( enc>=SQLITE_UTF8 && enc<=SQLITE_UTF16BE );
80814 if( pColl ) pColl += enc-1;
80815 return pColl;
80818 /* During the search for the best function definition, this procedure
80819 ** is called to test how well the function passed as the first argument
80820 ** matches the request for a function with nArg arguments in a system
80821 ** that uses encoding enc. The value returned indicates how well the
80822 ** request is matched. A higher value indicates a better match.
80824 ** The returned value is always between 0 and 6, as follows:
80826 ** 0: Not a match, or if nArg<0 and the function is has no implementation.
80827 ** 1: A variable arguments function that prefers UTF-8 when a UTF-16
80828 ** encoding is requested, or vice versa.
80829 ** 2: A variable arguments function that uses UTF-16BE when UTF-16LE is
80830 ** requested, or vice versa.
80831 ** 3: A variable arguments function using the same text encoding.
80832 ** 4: A function with the exact number of arguments requested that
80833 ** prefers UTF-8 when a UTF-16 encoding is requested, or vice versa.
80834 ** 5: A function with the exact number of arguments requested that
80835 ** prefers UTF-16LE when UTF-16BE is requested, or vice versa.
80836 ** 6: An exact match.
80839 static int matchQuality(FuncDef *p, int nArg, u8 enc){
80840 int match = 0;
80841 if( p->nArg==-1 || p->nArg==nArg
80842 || (nArg==-1 && (p->xFunc!=0 || p->xStep!=0))
80844 match = 1;
80845 if( p->nArg==nArg || nArg==-1 ){
80846 match = 4;
80848 if( enc==p->iPrefEnc ){
80849 match += 2;
80851 else if( (enc==SQLITE_UTF16LE && p->iPrefEnc==SQLITE_UTF16BE) ||
80852 (enc==SQLITE_UTF16BE && p->iPrefEnc==SQLITE_UTF16LE) ){
80853 match += 1;
80856 return match;
80860 ** Search a FuncDefHash for a function with the given name. Return
80861 ** a pointer to the matching FuncDef if found, or 0 if there is no match.
80863 static FuncDef *functionSearch(
80864 FuncDefHash *pHash, /* Hash table to search */
80865 int h, /* Hash of the name */
80866 const char *zFunc, /* Name of function */
80867 int nFunc /* Number of bytes in zFunc */
80869 FuncDef *p;
80870 for(p=pHash->a[h]; p; p=p->pHash){
80871 if( sqlite3StrNICmp(p->zName, zFunc, nFunc)==0 && p->zName[nFunc]==0 ){
80872 return p;
80875 return 0;
80879 ** Insert a new FuncDef into a FuncDefHash hash table.
80881 SQLITE_PRIVATE void sqlite3FuncDefInsert(
80882 FuncDefHash *pHash, /* The hash table into which to insert */
80883 FuncDef *pDef /* The function definition to insert */
80885 FuncDef *pOther;
80886 int nName = sqlite3Strlen30(pDef->zName);
80887 u8 c1 = (u8)pDef->zName[0];
80888 int h = (sqlite3UpperToLower[c1] + nName) % ArraySize(pHash->a);
80889 pOther = functionSearch(pHash, h, pDef->zName, nName);
80890 if( pOther ){
80891 assert( pOther!=pDef && pOther->pNext!=pDef );
80892 pDef->pNext = pOther->pNext;
80893 pOther->pNext = pDef;
80894 }else{
80895 pDef->pNext = 0;
80896 pDef->pHash = pHash->a[h];
80897 pHash->a[h] = pDef;
80904 ** Locate a user function given a name, a number of arguments and a flag
80905 ** indicating whether the function prefers UTF-16 over UTF-8. Return a
80906 ** pointer to the FuncDef structure that defines that function, or return
80907 ** NULL if the function does not exist.
80909 ** If the createFlag argument is true, then a new (blank) FuncDef
80910 ** structure is created and liked into the "db" structure if a
80911 ** no matching function previously existed. When createFlag is true
80912 ** and the nArg parameter is -1, then only a function that accepts
80913 ** any number of arguments will be returned.
80915 ** If createFlag is false and nArg is -1, then the first valid
80916 ** function found is returned. A function is valid if either xFunc
80917 ** or xStep is non-zero.
80919 ** If createFlag is false, then a function with the required name and
80920 ** number of arguments may be returned even if the eTextRep flag does not
80921 ** match that requested.
80923 SQLITE_PRIVATE FuncDef *sqlite3FindFunction(
80924 sqlite3 *db, /* An open database */
80925 const char *zName, /* Name of the function. Not null-terminated */
80926 int nName, /* Number of characters in the name */
80927 int nArg, /* Number of arguments. -1 means any number */
80928 u8 enc, /* Preferred text encoding */
80929 int createFlag /* Create new entry if true and does not otherwise exist */
80931 FuncDef *p; /* Iterator variable */
80932 FuncDef *pBest = 0; /* Best match found so far */
80933 int bestScore = 0; /* Score of best match */
80934 int h; /* Hash value */
80937 assert( enc==SQLITE_UTF8 || enc==SQLITE_UTF16LE || enc==SQLITE_UTF16BE );
80938 h = (sqlite3UpperToLower[(u8)zName[0]] + nName) % ArraySize(db->aFunc.a);
80940 /* First search for a match amongst the application-defined functions.
80942 p = functionSearch(&db->aFunc, h, zName, nName);
80943 while( p ){
80944 int score = matchQuality(p, nArg, enc);
80945 if( score>bestScore ){
80946 pBest = p;
80947 bestScore = score;
80949 p = p->pNext;
80952 /* If no match is found, search the built-in functions.
80954 ** If the SQLITE_PreferBuiltin flag is set, then search the built-in
80955 ** functions even if a prior app-defined function was found. And give
80956 ** priority to built-in functions.
80958 ** Except, if createFlag is true, that means that we are trying to
80959 ** install a new function. Whatever FuncDef structure is returned it will
80960 ** have fields overwritten with new information appropriate for the
80961 ** new function. But the FuncDefs for built-in functions are read-only.
80962 ** So we must not search for built-ins when creating a new function.
80964 if( !createFlag && (pBest==0 || (db->flags & SQLITE_PreferBuiltin)!=0) ){
80965 FuncDefHash *pHash = &GLOBAL(FuncDefHash, sqlite3GlobalFunctions);
80966 bestScore = 0;
80967 p = functionSearch(pHash, h, zName, nName);
80968 while( p ){
80969 int score = matchQuality(p, nArg, enc);
80970 if( score>bestScore ){
80971 pBest = p;
80972 bestScore = score;
80974 p = p->pNext;
80978 /* If the createFlag parameter is true and the search did not reveal an
80979 ** exact match for the name, number of arguments and encoding, then add a
80980 ** new entry to the hash table and return it.
80982 if( createFlag && (bestScore<6 || pBest->nArg!=nArg) &&
80983 (pBest = sqlite3DbMallocZero(db, sizeof(*pBest)+nName+1))!=0 ){
80984 pBest->zName = (char *)&pBest[1];
80985 pBest->nArg = (u16)nArg;
80986 pBest->iPrefEnc = enc;
80987 memcpy(pBest->zName, zName, nName);
80988 pBest->zName[nName] = 0;
80989 sqlite3FuncDefInsert(&db->aFunc, pBest);
80992 if( pBest && (pBest->xStep || pBest->xFunc || createFlag) ){
80993 return pBest;
80995 return 0;
80999 ** Free all resources held by the schema structure. The void* argument points
81000 ** at a Schema struct. This function does not call sqlite3DbFree(db, ) on the
81001 ** pointer itself, it just cleans up subsidiary resources (i.e. the contents
81002 ** of the schema hash tables).
81004 ** The Schema.cache_size variable is not cleared.
81006 SQLITE_PRIVATE void sqlite3SchemaClear(void *p){
81007 Hash temp1;
81008 Hash temp2;
81009 HashElem *pElem;
81010 Schema *pSchema = (Schema *)p;
81012 temp1 = pSchema->tblHash;
81013 temp2 = pSchema->trigHash;
81014 sqlite3HashInit(&pSchema->trigHash);
81015 sqlite3HashClear(&pSchema->idxHash);
81016 for(pElem=sqliteHashFirst(&temp2); pElem; pElem=sqliteHashNext(pElem)){
81017 sqlite3DeleteTrigger(0, (Trigger*)sqliteHashData(pElem));
81019 sqlite3HashClear(&temp2);
81020 sqlite3HashInit(&pSchema->tblHash);
81021 for(pElem=sqliteHashFirst(&temp1); pElem; pElem=sqliteHashNext(pElem)){
81022 Table *pTab = sqliteHashData(pElem);
81023 sqlite3DeleteTable(0, pTab);
81025 sqlite3HashClear(&temp1);
81026 sqlite3HashClear(&pSchema->fkeyHash);
81027 pSchema->pSeqTab = 0;
81028 if( pSchema->flags & DB_SchemaLoaded ){
81029 pSchema->iGeneration++;
81030 pSchema->flags &= ~DB_SchemaLoaded;
81035 ** Find and return the schema associated with a BTree. Create
81036 ** a new one if necessary.
81038 SQLITE_PRIVATE Schema *sqlite3SchemaGet(sqlite3 *db, Btree *pBt){
81039 Schema * p;
81040 if( pBt ){
81041 p = (Schema *)sqlite3BtreeSchema(pBt, sizeof(Schema), sqlite3SchemaClear);
81042 }else{
81043 p = (Schema *)sqlite3DbMallocZero(0, sizeof(Schema));
81045 if( !p ){
81046 db->mallocFailed = 1;
81047 }else if ( 0==p->file_format ){
81048 sqlite3HashInit(&p->tblHash);
81049 sqlite3HashInit(&p->idxHash);
81050 sqlite3HashInit(&p->trigHash);
81051 sqlite3HashInit(&p->fkeyHash);
81052 p->enc = SQLITE_UTF8;
81054 return p;
81057 /************** End of callback.c ********************************************/
81058 /************** Begin file delete.c ******************************************/
81060 ** 2001 September 15
81062 ** The author disclaims copyright to this source code. In place of
81063 ** a legal notice, here is a blessing:
81065 ** May you do good and not evil.
81066 ** May you find forgiveness for yourself and forgive others.
81067 ** May you share freely, never taking more than you give.
81069 *************************************************************************
81070 ** This file contains C code routines that are called by the parser
81071 ** in order to generate code for DELETE FROM statements.
81075 ** While a SrcList can in general represent multiple tables and subqueries
81076 ** (as in the FROM clause of a SELECT statement) in this case it contains
81077 ** the name of a single table, as one might find in an INSERT, DELETE,
81078 ** or UPDATE statement. Look up that table in the symbol table and
81079 ** return a pointer. Set an error message and return NULL if the table
81080 ** name is not found or if any other error occurs.
81082 ** The following fields are initialized appropriate in pSrc:
81084 ** pSrc->a[0].pTab Pointer to the Table object
81085 ** pSrc->a[0].pIndex Pointer to the INDEXED BY index, if there is one
81088 SQLITE_PRIVATE Table *sqlite3SrcListLookup(Parse *pParse, SrcList *pSrc){
81089 struct SrcList_item *pItem = pSrc->a;
81090 Table *pTab;
81091 assert( pItem && pSrc->nSrc==1 );
81092 pTab = sqlite3LocateTable(pParse, 0, pItem->zName, pItem->zDatabase);
81093 sqlite3DeleteTable(pParse->db, pItem->pTab);
81094 pItem->pTab = pTab;
81095 if( pTab ){
81096 pTab->nRef++;
81098 if( sqlite3IndexedByLookup(pParse, pItem) ){
81099 pTab = 0;
81101 return pTab;
81105 ** Check to make sure the given table is writable. If it is not
81106 ** writable, generate an error message and return 1. If it is
81107 ** writable return 0;
81109 SQLITE_PRIVATE int sqlite3IsReadOnly(Parse *pParse, Table *pTab, int viewOk){
81110 /* A table is not writable under the following circumstances:
81112 ** 1) It is a virtual table and no implementation of the xUpdate method
81113 ** has been provided, or
81114 ** 2) It is a system table (i.e. sqlite_master), this call is not
81115 ** part of a nested parse and writable_schema pragma has not
81116 ** been specified.
81118 ** In either case leave an error message in pParse and return non-zero.
81120 if( ( IsVirtual(pTab)
81121 && sqlite3GetVTable(pParse->db, pTab)->pMod->pModule->xUpdate==0 )
81122 || ( (pTab->tabFlags & TF_Readonly)!=0
81123 && (pParse->db->flags & SQLITE_WriteSchema)==0
81124 && pParse->nested==0 )
81126 sqlite3ErrorMsg(pParse, "table %s may not be modified", pTab->zName);
81127 return 1;
81130 #ifndef SQLITE_OMIT_VIEW
81131 if( !viewOk && pTab->pSelect ){
81132 sqlite3ErrorMsg(pParse,"cannot modify %s because it is a view",pTab->zName);
81133 return 1;
81135 #endif
81136 return 0;
81140 #if !defined(SQLITE_OMIT_VIEW) && !defined(SQLITE_OMIT_TRIGGER)
81142 ** Evaluate a view and store its result in an ephemeral table. The
81143 ** pWhere argument is an optional WHERE clause that restricts the
81144 ** set of rows in the view that are to be added to the ephemeral table.
81146 SQLITE_PRIVATE void sqlite3MaterializeView(
81147 Parse *pParse, /* Parsing context */
81148 Table *pView, /* View definition */
81149 Expr *pWhere, /* Optional WHERE clause to be added */
81150 int iCur /* Cursor number for ephemerial table */
81152 SelectDest dest;
81153 Select *pDup;
81154 sqlite3 *db = pParse->db;
81156 pDup = sqlite3SelectDup(db, pView->pSelect, 0);
81157 if( pWhere ){
81158 SrcList *pFrom;
81160 pWhere = sqlite3ExprDup(db, pWhere, 0);
81161 pFrom = sqlite3SrcListAppend(db, 0, 0, 0);
81162 if( pFrom ){
81163 assert( pFrom->nSrc==1 );
81164 pFrom->a[0].zAlias = sqlite3DbStrDup(db, pView->zName);
81165 pFrom->a[0].pSelect = pDup;
81166 assert( pFrom->a[0].pOn==0 );
81167 assert( pFrom->a[0].pUsing==0 );
81168 }else{
81169 sqlite3SelectDelete(db, pDup);
81171 pDup = sqlite3SelectNew(pParse, 0, pFrom, pWhere, 0, 0, 0, 0, 0, 0);
81173 sqlite3SelectDestInit(&dest, SRT_EphemTab, iCur);
81174 sqlite3Select(pParse, pDup, &dest);
81175 sqlite3SelectDelete(db, pDup);
81177 #endif /* !defined(SQLITE_OMIT_VIEW) && !defined(SQLITE_OMIT_TRIGGER) */
81179 #if defined(SQLITE_ENABLE_UPDATE_DELETE_LIMIT) && !defined(SQLITE_OMIT_SUBQUERY)
81181 ** Generate an expression tree to implement the WHERE, ORDER BY,
81182 ** and LIMIT/OFFSET portion of DELETE and UPDATE statements.
81184 ** DELETE FROM table_wxyz WHERE a<5 ORDER BY a LIMIT 1;
81185 ** \__________________________/
81186 ** pLimitWhere (pInClause)
81188 SQLITE_PRIVATE Expr *sqlite3LimitWhere(
81189 Parse *pParse, /* The parser context */
81190 SrcList *pSrc, /* the FROM clause -- which tables to scan */
81191 Expr *pWhere, /* The WHERE clause. May be null */
81192 ExprList *pOrderBy, /* The ORDER BY clause. May be null */
81193 Expr *pLimit, /* The LIMIT clause. May be null */
81194 Expr *pOffset, /* The OFFSET clause. May be null */
81195 char *zStmtType /* Either DELETE or UPDATE. For error messages. */
81197 Expr *pWhereRowid = NULL; /* WHERE rowid .. */
81198 Expr *pInClause = NULL; /* WHERE rowid IN ( select ) */
81199 Expr *pSelectRowid = NULL; /* SELECT rowid ... */
81200 ExprList *pEList = NULL; /* Expression list contaning only pSelectRowid */
81201 SrcList *pSelectSrc = NULL; /* SELECT rowid FROM x ... (dup of pSrc) */
81202 Select *pSelect = NULL; /* Complete SELECT tree */
81204 /* Check that there isn't an ORDER BY without a LIMIT clause.
81206 if( pOrderBy && (pLimit == 0) ) {
81207 sqlite3ErrorMsg(pParse, "ORDER BY without LIMIT on %s", zStmtType);
81208 pParse->parseError = 1;
81209 goto limit_where_cleanup_2;
81212 /* We only need to generate a select expression if there
81213 ** is a limit/offset term to enforce.
81215 if( pLimit == 0 ) {
81216 /* if pLimit is null, pOffset will always be null as well. */
81217 assert( pOffset == 0 );
81218 return pWhere;
81221 /* Generate a select expression tree to enforce the limit/offset
81222 ** term for the DELETE or UPDATE statement. For example:
81223 ** DELETE FROM table_a WHERE col1=1 ORDER BY col2 LIMIT 1 OFFSET 1
81224 ** becomes:
81225 ** DELETE FROM table_a WHERE rowid IN (
81226 ** SELECT rowid FROM table_a WHERE col1=1 ORDER BY col2 LIMIT 1 OFFSET 1
81227 ** );
81230 pSelectRowid = sqlite3PExpr(pParse, TK_ROW, 0, 0, 0);
81231 if( pSelectRowid == 0 ) goto limit_where_cleanup_2;
81232 pEList = sqlite3ExprListAppend(pParse, 0, pSelectRowid);
81233 if( pEList == 0 ) goto limit_where_cleanup_2;
81235 /* duplicate the FROM clause as it is needed by both the DELETE/UPDATE tree
81236 ** and the SELECT subtree. */
81237 pSelectSrc = sqlite3SrcListDup(pParse->db, pSrc, 0);
81238 if( pSelectSrc == 0 ) {
81239 sqlite3ExprListDelete(pParse->db, pEList);
81240 goto limit_where_cleanup_2;
81243 /* generate the SELECT expression tree. */
81244 pSelect = sqlite3SelectNew(pParse,pEList,pSelectSrc,pWhere,0,0,
81245 pOrderBy,0,pLimit,pOffset);
81246 if( pSelect == 0 ) return 0;
81248 /* now generate the new WHERE rowid IN clause for the DELETE/UDPATE */
81249 pWhereRowid = sqlite3PExpr(pParse, TK_ROW, 0, 0, 0);
81250 if( pWhereRowid == 0 ) goto limit_where_cleanup_1;
81251 pInClause = sqlite3PExpr(pParse, TK_IN, pWhereRowid, 0, 0);
81252 if( pInClause == 0 ) goto limit_where_cleanup_1;
81254 pInClause->x.pSelect = pSelect;
81255 pInClause->flags |= EP_xIsSelect;
81256 sqlite3ExprSetHeight(pParse, pInClause);
81257 return pInClause;
81259 /* something went wrong. clean up anything allocated. */
81260 limit_where_cleanup_1:
81261 sqlite3SelectDelete(pParse->db, pSelect);
81262 return 0;
81264 limit_where_cleanup_2:
81265 sqlite3ExprDelete(pParse->db, pWhere);
81266 sqlite3ExprListDelete(pParse->db, pOrderBy);
81267 sqlite3ExprDelete(pParse->db, pLimit);
81268 sqlite3ExprDelete(pParse->db, pOffset);
81269 return 0;
81271 #endif /* defined(SQLITE_ENABLE_UPDATE_DELETE_LIMIT) && !defined(SQLITE_OMIT_SUBQUERY) */
81274 ** Generate code for a DELETE FROM statement.
81276 ** DELETE FROM table_wxyz WHERE a<5 AND b NOT NULL;
81277 ** \________/ \________________/
81278 ** pTabList pWhere
81280 SQLITE_PRIVATE void sqlite3DeleteFrom(
81281 Parse *pParse, /* The parser context */
81282 SrcList *pTabList, /* The table from which we should delete things */
81283 Expr *pWhere /* The WHERE clause. May be null */
81285 Vdbe *v; /* The virtual database engine */
81286 Table *pTab; /* The table from which records will be deleted */
81287 const char *zDb; /* Name of database holding pTab */
81288 int end, addr = 0; /* A couple addresses of generated code */
81289 int i; /* Loop counter */
81290 WhereInfo *pWInfo; /* Information about the WHERE clause */
81291 Index *pIdx; /* For looping over indices of the table */
81292 int iCur; /* VDBE Cursor number for pTab */
81293 sqlite3 *db; /* Main database structure */
81294 AuthContext sContext; /* Authorization context */
81295 NameContext sNC; /* Name context to resolve expressions in */
81296 int iDb; /* Database number */
81297 int memCnt = -1; /* Memory cell used for change counting */
81298 int rcauth; /* Value returned by authorization callback */
81300 #ifndef SQLITE_OMIT_TRIGGER
81301 int isView; /* True if attempting to delete from a view */
81302 Trigger *pTrigger; /* List of table triggers, if required */
81303 #endif
81305 memset(&sContext, 0, sizeof(sContext));
81306 db = pParse->db;
81307 if( pParse->nErr || db->mallocFailed ){
81308 goto delete_from_cleanup;
81310 assert( pTabList->nSrc==1 );
81312 /* Locate the table which we want to delete. This table has to be
81313 ** put in an SrcList structure because some of the subroutines we
81314 ** will be calling are designed to work with multiple tables and expect
81315 ** an SrcList* parameter instead of just a Table* parameter.
81317 pTab = sqlite3SrcListLookup(pParse, pTabList);
81318 if( pTab==0 ) goto delete_from_cleanup;
81320 /* Figure out if we have any triggers and if the table being
81321 ** deleted from is a view
81323 #ifndef SQLITE_OMIT_TRIGGER
81324 pTrigger = sqlite3TriggersExist(pParse, pTab, TK_DELETE, 0, 0);
81325 isView = pTab->pSelect!=0;
81326 #else
81327 # define pTrigger 0
81328 # define isView 0
81329 #endif
81330 #ifdef SQLITE_OMIT_VIEW
81331 # undef isView
81332 # define isView 0
81333 #endif
81335 /* If pTab is really a view, make sure it has been initialized.
81337 if( sqlite3ViewGetColumnNames(pParse, pTab) ){
81338 goto delete_from_cleanup;
81341 if( sqlite3IsReadOnly(pParse, pTab, (pTrigger?1:0)) ){
81342 goto delete_from_cleanup;
81344 iDb = sqlite3SchemaToIndex(db, pTab->pSchema);
81345 assert( iDb<db->nDb );
81346 zDb = db->aDb[iDb].zName;
81347 rcauth = sqlite3AuthCheck(pParse, SQLITE_DELETE, pTab->zName, 0, zDb);
81348 assert( rcauth==SQLITE_OK || rcauth==SQLITE_DENY || rcauth==SQLITE_IGNORE );
81349 if( rcauth==SQLITE_DENY ){
81350 goto delete_from_cleanup;
81352 assert(!isView || pTrigger);
81354 /* Assign cursor number to the table and all its indices.
81356 assert( pTabList->nSrc==1 );
81357 iCur = pTabList->a[0].iCursor = pParse->nTab++;
81358 for(pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext){
81359 pParse->nTab++;
81362 /* Start the view context
81364 if( isView ){
81365 sqlite3AuthContextPush(pParse, &sContext, pTab->zName);
81368 /* Begin generating code.
81370 v = sqlite3GetVdbe(pParse);
81371 if( v==0 ){
81372 goto delete_from_cleanup;
81374 if( pParse->nested==0 ) sqlite3VdbeCountChanges(v);
81375 sqlite3BeginWriteOperation(pParse, 1, iDb);
81377 /* If we are trying to delete from a view, realize that view into
81378 ** a ephemeral table.
81380 #if !defined(SQLITE_OMIT_VIEW) && !defined(SQLITE_OMIT_TRIGGER)
81381 if( isView ){
81382 sqlite3MaterializeView(pParse, pTab, pWhere, iCur);
81384 #endif
81386 /* Resolve the column names in the WHERE clause.
81388 memset(&sNC, 0, sizeof(sNC));
81389 sNC.pParse = pParse;
81390 sNC.pSrcList = pTabList;
81391 if( sqlite3ResolveExprNames(&sNC, pWhere) ){
81392 goto delete_from_cleanup;
81395 /* Initialize the counter of the number of rows deleted, if
81396 ** we are counting rows.
81398 if( db->flags & SQLITE_CountRows ){
81399 memCnt = ++pParse->nMem;
81400 sqlite3VdbeAddOp2(v, OP_Integer, 0, memCnt);
81403 #ifndef SQLITE_OMIT_TRUNCATE_OPTIMIZATION
81404 /* Special case: A DELETE without a WHERE clause deletes everything.
81405 ** It is easier just to erase the whole table. Prior to version 3.6.5,
81406 ** this optimization caused the row change count (the value returned by
81407 ** API function sqlite3_count_changes) to be set incorrectly. */
81408 if( rcauth==SQLITE_OK && pWhere==0 && !pTrigger && !IsVirtual(pTab)
81409 && 0==sqlite3FkRequired(pParse, pTab, 0, 0)
81411 assert( !isView );
81412 sqlite3VdbeAddOp4(v, OP_Clear, pTab->tnum, iDb, memCnt,
81413 pTab->zName, P4_STATIC);
81414 for(pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext){
81415 assert( pIdx->pSchema==pTab->pSchema );
81416 sqlite3VdbeAddOp2(v, OP_Clear, pIdx->tnum, iDb);
81418 }else
81419 #endif /* SQLITE_OMIT_TRUNCATE_OPTIMIZATION */
81420 /* The usual case: There is a WHERE clause so we have to scan through
81421 ** the table and pick which records to delete.
81424 int iRowSet = ++pParse->nMem; /* Register for rowset of rows to delete */
81425 int iRowid = ++pParse->nMem; /* Used for storing rowid values. */
81426 int regRowid; /* Actual register containing rowids */
81428 /* Collect rowids of every row to be deleted.
81430 sqlite3VdbeAddOp2(v, OP_Null, 0, iRowSet);
81431 pWInfo = sqlite3WhereBegin(pParse, pTabList, pWhere,0,WHERE_DUPLICATES_OK);
81432 if( pWInfo==0 ) goto delete_from_cleanup;
81433 regRowid = sqlite3ExprCodeGetColumn(pParse, pTab, -1, iCur, iRowid);
81434 sqlite3VdbeAddOp2(v, OP_RowSetAdd, iRowSet, regRowid);
81435 if( db->flags & SQLITE_CountRows ){
81436 sqlite3VdbeAddOp2(v, OP_AddImm, memCnt, 1);
81438 sqlite3WhereEnd(pWInfo);
81440 /* Delete every item whose key was written to the list during the
81441 ** database scan. We have to delete items after the scan is complete
81442 ** because deleting an item can change the scan order. */
81443 end = sqlite3VdbeMakeLabel(v);
81445 /* Unless this is a view, open cursors for the table we are
81446 ** deleting from and all its indices. If this is a view, then the
81447 ** only effect this statement has is to fire the INSTEAD OF
81448 ** triggers. */
81449 if( !isView ){
81450 sqlite3OpenTableAndIndices(pParse, pTab, iCur, OP_OpenWrite);
81453 addr = sqlite3VdbeAddOp3(v, OP_RowSetRead, iRowSet, end, iRowid);
81455 /* Delete the row */
81456 #ifndef SQLITE_OMIT_VIRTUALTABLE
81457 if( IsVirtual(pTab) ){
81458 const char *pVTab = (const char *)sqlite3GetVTable(db, pTab);
81459 sqlite3VtabMakeWritable(pParse, pTab);
81460 sqlite3VdbeAddOp4(v, OP_VUpdate, 0, 1, iRowid, pVTab, P4_VTAB);
81461 sqlite3MayAbort(pParse);
81462 }else
81463 #endif
81465 int count = (pParse->nested==0); /* True to count changes */
81466 sqlite3GenerateRowDelete(pParse, pTab, iCur, iRowid, count, pTrigger, OE_Default);
81469 /* End of the delete loop */
81470 sqlite3VdbeAddOp2(v, OP_Goto, 0, addr);
81471 sqlite3VdbeResolveLabel(v, end);
81473 /* Close the cursors open on the table and its indexes. */
81474 if( !isView && !IsVirtual(pTab) ){
81475 for(i=1, pIdx=pTab->pIndex; pIdx; i++, pIdx=pIdx->pNext){
81476 sqlite3VdbeAddOp2(v, OP_Close, iCur + i, pIdx->tnum);
81478 sqlite3VdbeAddOp1(v, OP_Close, iCur);
81482 /* Update the sqlite_sequence table by storing the content of the
81483 ** maximum rowid counter values recorded while inserting into
81484 ** autoincrement tables.
81486 if( pParse->nested==0 && pParse->pTriggerTab==0 ){
81487 sqlite3AutoincrementEnd(pParse);
81490 /* Return the number of rows that were deleted. If this routine is
81491 ** generating code because of a call to sqlite3NestedParse(), do not
81492 ** invoke the callback function.
81494 if( (db->flags&SQLITE_CountRows) && !pParse->nested && !pParse->pTriggerTab ){
81495 sqlite3VdbeAddOp2(v, OP_ResultRow, memCnt, 1);
81496 sqlite3VdbeSetNumCols(v, 1);
81497 sqlite3VdbeSetColName(v, 0, COLNAME_NAME, "rows deleted", SQLITE_STATIC);
81500 delete_from_cleanup:
81501 sqlite3AuthContextPop(&sContext);
81502 sqlite3SrcListDelete(db, pTabList);
81503 sqlite3ExprDelete(db, pWhere);
81504 return;
81506 /* Make sure "isView" and other macros defined above are undefined. Otherwise
81507 ** thely may interfere with compilation of other functions in this file
81508 ** (or in another file, if this file becomes part of the amalgamation). */
81509 #ifdef isView
81510 #undef isView
81511 #endif
81512 #ifdef pTrigger
81513 #undef pTrigger
81514 #endif
81517 ** This routine generates VDBE code that causes a single row of a
81518 ** single table to be deleted.
81520 ** The VDBE must be in a particular state when this routine is called.
81521 ** These are the requirements:
81523 ** 1. A read/write cursor pointing to pTab, the table containing the row
81524 ** to be deleted, must be opened as cursor number $iCur.
81526 ** 2. Read/write cursors for all indices of pTab must be open as
81527 ** cursor number base+i for the i-th index.
81529 ** 3. The record number of the row to be deleted must be stored in
81530 ** memory cell iRowid.
81532 ** This routine generates code to remove both the table record and all
81533 ** index entries that point to that record.
81535 SQLITE_PRIVATE void sqlite3GenerateRowDelete(
81536 Parse *pParse, /* Parsing context */
81537 Table *pTab, /* Table containing the row to be deleted */
81538 int iCur, /* Cursor number for the table */
81539 int iRowid, /* Memory cell that contains the rowid to delete */
81540 int count, /* If non-zero, increment the row change counter */
81541 Trigger *pTrigger, /* List of triggers to (potentially) fire */
81542 int onconf /* Default ON CONFLICT policy for triggers */
81544 Vdbe *v = pParse->pVdbe; /* Vdbe */
81545 int iOld = 0; /* First register in OLD.* array */
81546 int iLabel; /* Label resolved to end of generated code */
81548 /* Vdbe is guaranteed to have been allocated by this stage. */
81549 assert( v );
81551 /* Seek cursor iCur to the row to delete. If this row no longer exists
81552 ** (this can happen if a trigger program has already deleted it), do
81553 ** not attempt to delete it or fire any DELETE triggers. */
81554 iLabel = sqlite3VdbeMakeLabel(v);
81555 sqlite3VdbeAddOp3(v, OP_NotExists, iCur, iLabel, iRowid);
81557 /* If there are any triggers to fire, allocate a range of registers to
81558 ** use for the old.* references in the triggers. */
81559 if( sqlite3FkRequired(pParse, pTab, 0, 0) || pTrigger ){
81560 u32 mask; /* Mask of OLD.* columns in use */
81561 int iCol; /* Iterator used while populating OLD.* */
81563 /* TODO: Could use temporary registers here. Also could attempt to
81564 ** avoid copying the contents of the rowid register. */
81565 mask = sqlite3TriggerColmask(
81566 pParse, pTrigger, 0, 0, TRIGGER_BEFORE|TRIGGER_AFTER, pTab, onconf
81568 mask |= sqlite3FkOldmask(pParse, pTab);
81569 iOld = pParse->nMem+1;
81570 pParse->nMem += (1 + pTab->nCol);
81572 /* Populate the OLD.* pseudo-table register array. These values will be
81573 ** used by any BEFORE and AFTER triggers that exist. */
81574 sqlite3VdbeAddOp2(v, OP_Copy, iRowid, iOld);
81575 for(iCol=0; iCol<pTab->nCol; iCol++){
81576 if( mask==0xffffffff || mask&(1<<iCol) ){
81577 sqlite3ExprCodeGetColumnOfTable(v, pTab, iCur, iCol, iOld+iCol+1);
81581 /* Invoke BEFORE DELETE trigger programs. */
81582 sqlite3CodeRowTrigger(pParse, pTrigger,
81583 TK_DELETE, 0, TRIGGER_BEFORE, pTab, iOld, onconf, iLabel
81586 /* Seek the cursor to the row to be deleted again. It may be that
81587 ** the BEFORE triggers coded above have already removed the row
81588 ** being deleted. Do not attempt to delete the row a second time, and
81589 ** do not fire AFTER triggers. */
81590 sqlite3VdbeAddOp3(v, OP_NotExists, iCur, iLabel, iRowid);
81592 /* Do FK processing. This call checks that any FK constraints that
81593 ** refer to this table (i.e. constraints attached to other tables)
81594 ** are not violated by deleting this row. */
81595 sqlite3FkCheck(pParse, pTab, iOld, 0);
81598 /* Delete the index and table entries. Skip this step if pTab is really
81599 ** a view (in which case the only effect of the DELETE statement is to
81600 ** fire the INSTEAD OF triggers). */
81601 if( pTab->pSelect==0 ){
81602 sqlite3GenerateRowIndexDelete(pParse, pTab, iCur, 0);
81603 sqlite3VdbeAddOp2(v, OP_Delete, iCur, (count?OPFLAG_NCHANGE:0));
81604 if( count ){
81605 sqlite3VdbeChangeP4(v, -1, pTab->zName, P4_TRANSIENT);
81609 /* Do any ON CASCADE, SET NULL or SET DEFAULT operations required to
81610 ** handle rows (possibly in other tables) that refer via a foreign key
81611 ** to the row just deleted. */
81612 sqlite3FkActions(pParse, pTab, 0, iOld);
81614 /* Invoke AFTER DELETE trigger programs. */
81615 sqlite3CodeRowTrigger(pParse, pTrigger,
81616 TK_DELETE, 0, TRIGGER_AFTER, pTab, iOld, onconf, iLabel
81619 /* Jump here if the row had already been deleted before any BEFORE
81620 ** trigger programs were invoked. Or if a trigger program throws a
81621 ** RAISE(IGNORE) exception. */
81622 sqlite3VdbeResolveLabel(v, iLabel);
81626 ** This routine generates VDBE code that causes the deletion of all
81627 ** index entries associated with a single row of a single table.
81629 ** The VDBE must be in a particular state when this routine is called.
81630 ** These are the requirements:
81632 ** 1. A read/write cursor pointing to pTab, the table containing the row
81633 ** to be deleted, must be opened as cursor number "iCur".
81635 ** 2. Read/write cursors for all indices of pTab must be open as
81636 ** cursor number iCur+i for the i-th index.
81638 ** 3. The "iCur" cursor must be pointing to the row that is to be
81639 ** deleted.
81641 SQLITE_PRIVATE void sqlite3GenerateRowIndexDelete(
81642 Parse *pParse, /* Parsing and code generating context */
81643 Table *pTab, /* Table containing the row to be deleted */
81644 int iCur, /* Cursor number for the table */
81645 int *aRegIdx /* Only delete if aRegIdx!=0 && aRegIdx[i]>0 */
81647 int i;
81648 Index *pIdx;
81649 int r1;
81651 for(i=1, pIdx=pTab->pIndex; pIdx; i++, pIdx=pIdx->pNext){
81652 if( aRegIdx!=0 && aRegIdx[i-1]==0 ) continue;
81653 r1 = sqlite3GenerateIndexKey(pParse, pIdx, iCur, 0, 0);
81654 sqlite3VdbeAddOp3(pParse->pVdbe, OP_IdxDelete, iCur+i, r1,pIdx->nColumn+1);
81659 ** Generate code that will assemble an index key and put it in register
81660 ** regOut. The key with be for index pIdx which is an index on pTab.
81661 ** iCur is the index of a cursor open on the pTab table and pointing to
81662 ** the entry that needs indexing.
81664 ** Return a register number which is the first in a block of
81665 ** registers that holds the elements of the index key. The
81666 ** block of registers has already been deallocated by the time
81667 ** this routine returns.
81669 SQLITE_PRIVATE int sqlite3GenerateIndexKey(
81670 Parse *pParse, /* Parsing context */
81671 Index *pIdx, /* The index for which to generate a key */
81672 int iCur, /* Cursor number for the pIdx->pTable table */
81673 int regOut, /* Write the new index key to this register */
81674 int doMakeRec /* Run the OP_MakeRecord instruction if true */
81676 Vdbe *v = pParse->pVdbe;
81677 int j;
81678 Table *pTab = pIdx->pTable;
81679 int regBase;
81680 int nCol;
81682 nCol = pIdx->nColumn;
81683 regBase = sqlite3GetTempRange(pParse, nCol+1);
81684 sqlite3VdbeAddOp2(v, OP_Rowid, iCur, regBase+nCol);
81685 for(j=0; j<nCol; j++){
81686 int idx = pIdx->aiColumn[j];
81687 if( idx==pTab->iPKey ){
81688 sqlite3VdbeAddOp2(v, OP_SCopy, regBase+nCol, regBase+j);
81689 }else{
81690 sqlite3VdbeAddOp3(v, OP_Column, iCur, idx, regBase+j);
81691 sqlite3ColumnDefault(v, pTab, idx, -1);
81694 if( doMakeRec ){
81695 sqlite3VdbeAddOp3(v, OP_MakeRecord, regBase, nCol+1, regOut);
81696 sqlite3VdbeChangeP4(v, -1, sqlite3IndexAffinityStr(v, pIdx), P4_TRANSIENT);
81698 sqlite3ReleaseTempRange(pParse, regBase, nCol+1);
81699 return regBase;
81702 /************** End of delete.c **********************************************/
81703 /************** Begin file func.c ********************************************/
81705 ** 2002 February 23
81707 ** The author disclaims copyright to this source code. In place of
81708 ** a legal notice, here is a blessing:
81710 ** May you do good and not evil.
81711 ** May you find forgiveness for yourself and forgive others.
81712 ** May you share freely, never taking more than you give.
81714 *************************************************************************
81715 ** This file contains the C functions that implement various SQL
81716 ** functions of SQLite.
81718 ** There is only one exported symbol in this file - the function
81719 ** sqliteRegisterBuildinFunctions() found at the bottom of the file.
81720 ** All other code has file scope.
81724 ** Return the collating function associated with a function.
81726 static CollSeq *sqlite3GetFuncCollSeq(sqlite3_context *context){
81727 return context->pColl;
81731 ** Implementation of the non-aggregate min() and max() functions
81733 static void minmaxFunc(
81734 sqlite3_context *context,
81735 int argc,
81736 sqlite3_value **argv
81738 int i;
81739 int mask; /* 0 for min() or 0xffffffff for max() */
81740 int iBest;
81741 CollSeq *pColl;
81743 assert( argc>1 );
81744 mask = sqlite3_user_data(context)==0 ? 0 : -1;
81745 pColl = sqlite3GetFuncCollSeq(context);
81746 assert( pColl );
81747 assert( mask==-1 || mask==0 );
81748 iBest = 0;
81749 if( sqlite3_value_type(argv[0])==SQLITE_NULL ) return;
81750 for(i=1; i<argc; i++){
81751 if( sqlite3_value_type(argv[i])==SQLITE_NULL ) return;
81752 if( (sqlite3MemCompare(argv[iBest], argv[i], pColl)^mask)>=0 ){
81753 testcase( mask==0 );
81754 iBest = i;
81757 sqlite3_result_value(context, argv[iBest]);
81761 ** Return the type of the argument.
81763 static void typeofFunc(
81764 sqlite3_context *context,
81765 int NotUsed,
81766 sqlite3_value **argv
81768 const char *z = 0;
81769 UNUSED_PARAMETER(NotUsed);
81770 switch( sqlite3_value_type(argv[0]) ){
81771 case SQLITE_INTEGER: z = "integer"; break;
81772 case SQLITE_TEXT: z = "text"; break;
81773 case SQLITE_FLOAT: z = "real"; break;
81774 case SQLITE_BLOB: z = "blob"; break;
81775 default: z = "null"; break;
81777 sqlite3_result_text(context, z, -1, SQLITE_STATIC);
81782 ** Implementation of the length() function
81784 static void lengthFunc(
81785 sqlite3_context *context,
81786 int argc,
81787 sqlite3_value **argv
81789 int len;
81791 assert( argc==1 );
81792 UNUSED_PARAMETER(argc);
81793 switch( sqlite3_value_type(argv[0]) ){
81794 case SQLITE_BLOB:
81795 case SQLITE_INTEGER:
81796 case SQLITE_FLOAT: {
81797 sqlite3_result_int(context, sqlite3_value_bytes(argv[0]));
81798 break;
81800 case SQLITE_TEXT: {
81801 const unsigned char *z = sqlite3_value_text(argv[0]);
81802 if( z==0 ) return;
81803 len = 0;
81804 while( *z ){
81805 len++;
81806 SQLITE_SKIP_UTF8(z);
81808 sqlite3_result_int(context, len);
81809 break;
81811 default: {
81812 sqlite3_result_null(context);
81813 break;
81819 ** Implementation of the abs() function.
81821 ** IMP: R-23979-26855 The abs(X) function returns the absolute value of
81822 ** the numeric argument X.
81824 static void absFunc(sqlite3_context *context, int argc, sqlite3_value **argv){
81825 assert( argc==1 );
81826 UNUSED_PARAMETER(argc);
81827 switch( sqlite3_value_type(argv[0]) ){
81828 case SQLITE_INTEGER: {
81829 i64 iVal = sqlite3_value_int64(argv[0]);
81830 if( iVal<0 ){
81831 if( (iVal<<1)==0 ){
81832 /* IMP: R-35460-15084 If X is the integer -9223372036854775807 then
81833 ** abs(X) throws an integer overflow error since there is no
81834 ** equivalent positive 64-bit two complement value. */
81835 sqlite3_result_error(context, "integer overflow", -1);
81836 return;
81838 iVal = -iVal;
81840 sqlite3_result_int64(context, iVal);
81841 break;
81843 case SQLITE_NULL: {
81844 /* IMP: R-37434-19929 Abs(X) returns NULL if X is NULL. */
81845 sqlite3_result_null(context);
81846 break;
81848 default: {
81849 /* Because sqlite3_value_double() returns 0.0 if the argument is not
81850 ** something that can be converted into a number, we have:
81851 ** IMP: R-57326-31541 Abs(X) return 0.0 if X is a string or blob that
81852 ** cannot be converted to a numeric value.
81854 double rVal = sqlite3_value_double(argv[0]);
81855 if( rVal<0 ) rVal = -rVal;
81856 sqlite3_result_double(context, rVal);
81857 break;
81863 ** Implementation of the substr() function.
81865 ** substr(x,p1,p2) returns p2 characters of x[] beginning with p1.
81866 ** p1 is 1-indexed. So substr(x,1,1) returns the first character
81867 ** of x. If x is text, then we actually count UTF-8 characters.
81868 ** If x is a blob, then we count bytes.
81870 ** If p1 is negative, then we begin abs(p1) from the end of x[].
81872 ** If p2 is negative, return the p2 characters preceeding p1.
81874 static void substrFunc(
81875 sqlite3_context *context,
81876 int argc,
81877 sqlite3_value **argv
81879 const unsigned char *z;
81880 const unsigned char *z2;
81881 int len;
81882 int p0type;
81883 i64 p1, p2;
81884 int negP2 = 0;
81886 assert( argc==3 || argc==2 );
81887 if( sqlite3_value_type(argv[1])==SQLITE_NULL
81888 || (argc==3 && sqlite3_value_type(argv[2])==SQLITE_NULL)
81890 return;
81892 p0type = sqlite3_value_type(argv[0]);
81893 p1 = sqlite3_value_int(argv[1]);
81894 if( p0type==SQLITE_BLOB ){
81895 len = sqlite3_value_bytes(argv[0]);
81896 z = sqlite3_value_blob(argv[0]);
81897 if( z==0 ) return;
81898 assert( len==sqlite3_value_bytes(argv[0]) );
81899 }else{
81900 z = sqlite3_value_text(argv[0]);
81901 if( z==0 ) return;
81902 len = 0;
81903 if( p1<0 ){
81904 for(z2=z; *z2; len++){
81905 SQLITE_SKIP_UTF8(z2);
81909 if( argc==3 ){
81910 p2 = sqlite3_value_int(argv[2]);
81911 if( p2<0 ){
81912 p2 = -p2;
81913 negP2 = 1;
81915 }else{
81916 p2 = sqlite3_context_db_handle(context)->aLimit[SQLITE_LIMIT_LENGTH];
81918 if( p1<0 ){
81919 p1 += len;
81920 if( p1<0 ){
81921 p2 += p1;
81922 if( p2<0 ) p2 = 0;
81923 p1 = 0;
81925 }else if( p1>0 ){
81926 p1--;
81927 }else if( p2>0 ){
81928 p2--;
81930 if( negP2 ){
81931 p1 -= p2;
81932 if( p1<0 ){
81933 p2 += p1;
81934 p1 = 0;
81937 assert( p1>=0 && p2>=0 );
81938 if( p0type!=SQLITE_BLOB ){
81939 while( *z && p1 ){
81940 SQLITE_SKIP_UTF8(z);
81941 p1--;
81943 for(z2=z; *z2 && p2; p2--){
81944 SQLITE_SKIP_UTF8(z2);
81946 sqlite3_result_text(context, (char*)z, (int)(z2-z), SQLITE_TRANSIENT);
81947 }else{
81948 if( p1+p2>len ){
81949 p2 = len-p1;
81950 if( p2<0 ) p2 = 0;
81952 sqlite3_result_blob(context, (char*)&z[p1], (int)p2, SQLITE_TRANSIENT);
81957 ** Implementation of the round() function
81959 #ifndef SQLITE_OMIT_FLOATING_POINT
81960 static void roundFunc(sqlite3_context *context, int argc, sqlite3_value **argv){
81961 int n = 0;
81962 double r;
81963 char *zBuf;
81964 assert( argc==1 || argc==2 );
81965 if( argc==2 ){
81966 if( SQLITE_NULL==sqlite3_value_type(argv[1]) ) return;
81967 n = sqlite3_value_int(argv[1]);
81968 if( n>30 ) n = 30;
81969 if( n<0 ) n = 0;
81971 if( sqlite3_value_type(argv[0])==SQLITE_NULL ) return;
81972 r = sqlite3_value_double(argv[0]);
81973 /* If Y==0 and X will fit in a 64-bit int,
81974 ** handle the rounding directly,
81975 ** otherwise use printf.
81977 if( n==0 && r>=0 && r<LARGEST_INT64-1 ){
81978 r = (double)((sqlite_int64)(r+0.5));
81979 }else if( n==0 && r<0 && (-r)<LARGEST_INT64-1 ){
81980 r = -(double)((sqlite_int64)((-r)+0.5));
81981 }else{
81982 zBuf = sqlite3_mprintf("%.*f",n,r);
81983 if( zBuf==0 ){
81984 sqlite3_result_error_nomem(context);
81985 return;
81987 sqlite3AtoF(zBuf, &r, sqlite3Strlen30(zBuf), SQLITE_UTF8);
81988 sqlite3_free(zBuf);
81990 sqlite3_result_double(context, r);
81992 #endif
81995 ** Allocate nByte bytes of space using sqlite3_malloc(). If the
81996 ** allocation fails, call sqlite3_result_error_nomem() to notify
81997 ** the database handle that malloc() has failed and return NULL.
81998 ** If nByte is larger than the maximum string or blob length, then
81999 ** raise an SQLITE_TOOBIG exception and return NULL.
82001 static void *contextMalloc(sqlite3_context *context, i64 nByte){
82002 char *z;
82003 sqlite3 *db = sqlite3_context_db_handle(context);
82004 assert( nByte>0 );
82005 testcase( nByte==db->aLimit[SQLITE_LIMIT_LENGTH] );
82006 testcase( nByte==db->aLimit[SQLITE_LIMIT_LENGTH]+1 );
82007 if( nByte>db->aLimit[SQLITE_LIMIT_LENGTH] ){
82008 sqlite3_result_error_toobig(context);
82009 z = 0;
82010 }else{
82011 z = sqlite3Malloc((int)nByte);
82012 if( !z ){
82013 sqlite3_result_error_nomem(context);
82016 return z;
82020 ** Implementation of the upper() and lower() SQL functions.
82022 static void upperFunc(sqlite3_context *context, int argc, sqlite3_value **argv){
82023 char *z1;
82024 const char *z2;
82025 int i, n;
82026 UNUSED_PARAMETER(argc);
82027 z2 = (char*)sqlite3_value_text(argv[0]);
82028 n = sqlite3_value_bytes(argv[0]);
82029 /* Verify that the call to _bytes() does not invalidate the _text() pointer */
82030 assert( z2==(char*)sqlite3_value_text(argv[0]) );
82031 if( z2 ){
82032 z1 = contextMalloc(context, ((i64)n)+1);
82033 if( z1 ){
82034 memcpy(z1, z2, n+1);
82035 for(i=0; z1[i]; i++){
82036 z1[i] = (char)sqlite3Toupper(z1[i]);
82038 sqlite3_result_text(context, z1, -1, sqlite3_free);
82042 static void lowerFunc(sqlite3_context *context, int argc, sqlite3_value **argv){
82043 u8 *z1;
82044 const char *z2;
82045 int i, n;
82046 UNUSED_PARAMETER(argc);
82047 z2 = (char*)sqlite3_value_text(argv[0]);
82048 n = sqlite3_value_bytes(argv[0]);
82049 /* Verify that the call to _bytes() does not invalidate the _text() pointer */
82050 assert( z2==(char*)sqlite3_value_text(argv[0]) );
82051 if( z2 ){
82052 z1 = contextMalloc(context, ((i64)n)+1);
82053 if( z1 ){
82054 memcpy(z1, z2, n+1);
82055 for(i=0; z1[i]; i++){
82056 z1[i] = sqlite3Tolower(z1[i]);
82058 sqlite3_result_text(context, (char *)z1, -1, sqlite3_free);
82064 #if 0 /* This function is never used. */
82066 ** The COALESCE() and IFNULL() functions used to be implemented as shown
82067 ** here. But now they are implemented as VDBE code so that unused arguments
82068 ** do not have to be computed. This legacy implementation is retained as
82069 ** comment.
82072 ** Implementation of the IFNULL(), NVL(), and COALESCE() functions.
82073 ** All three do the same thing. They return the first non-NULL
82074 ** argument.
82076 static void ifnullFunc(
82077 sqlite3_context *context,
82078 int argc,
82079 sqlite3_value **argv
82081 int i;
82082 for(i=0; i<argc; i++){
82083 if( SQLITE_NULL!=sqlite3_value_type(argv[i]) ){
82084 sqlite3_result_value(context, argv[i]);
82085 break;
82089 #endif /* NOT USED */
82090 #define ifnullFunc versionFunc /* Substitute function - never called */
82093 ** Implementation of random(). Return a random integer.
82095 static void randomFunc(
82096 sqlite3_context *context,
82097 int NotUsed,
82098 sqlite3_value **NotUsed2
82100 sqlite_int64 r;
82101 UNUSED_PARAMETER2(NotUsed, NotUsed2);
82102 sqlite3_randomness(sizeof(r), &r);
82103 if( r<0 ){
82104 /* We need to prevent a random number of 0x8000000000000000
82105 ** (or -9223372036854775808) since when you do abs() of that
82106 ** number of you get the same value back again. To do this
82107 ** in a way that is testable, mask the sign bit off of negative
82108 ** values, resulting in a positive value. Then take the
82109 ** 2s complement of that positive value. The end result can
82110 ** therefore be no less than -9223372036854775807.
82112 r = -(r ^ (((sqlite3_int64)1)<<63));
82114 sqlite3_result_int64(context, r);
82118 ** Implementation of randomblob(N). Return a random blob
82119 ** that is N bytes long.
82121 static void randomBlob(
82122 sqlite3_context *context,
82123 int argc,
82124 sqlite3_value **argv
82126 int n;
82127 unsigned char *p;
82128 assert( argc==1 );
82129 UNUSED_PARAMETER(argc);
82130 n = sqlite3_value_int(argv[0]);
82131 if( n<1 ){
82132 n = 1;
82134 p = contextMalloc(context, n);
82135 if( p ){
82136 sqlite3_randomness(n, p);
82137 sqlite3_result_blob(context, (char*)p, n, sqlite3_free);
82142 ** Implementation of the last_insert_rowid() SQL function. The return
82143 ** value is the same as the sqlite3_last_insert_rowid() API function.
82145 static void last_insert_rowid(
82146 sqlite3_context *context,
82147 int NotUsed,
82148 sqlite3_value **NotUsed2
82150 sqlite3 *db = sqlite3_context_db_handle(context);
82151 UNUSED_PARAMETER2(NotUsed, NotUsed2);
82152 /* IMP: R-51513-12026 The last_insert_rowid() SQL function is a
82153 ** wrapper around the sqlite3_last_insert_rowid() C/C++ interface
82154 ** function. */
82155 sqlite3_result_int64(context, sqlite3_last_insert_rowid(db));
82159 ** Implementation of the changes() SQL function.
82161 ** IMP: R-62073-11209 The changes() SQL function is a wrapper
82162 ** around the sqlite3_changes() C/C++ function and hence follows the same
82163 ** rules for counting changes.
82165 static void changes(
82166 sqlite3_context *context,
82167 int NotUsed,
82168 sqlite3_value **NotUsed2
82170 sqlite3 *db = sqlite3_context_db_handle(context);
82171 UNUSED_PARAMETER2(NotUsed, NotUsed2);
82172 sqlite3_result_int(context, sqlite3_changes(db));
82176 ** Implementation of the total_changes() SQL function. The return value is
82177 ** the same as the sqlite3_total_changes() API function.
82179 static void total_changes(
82180 sqlite3_context *context,
82181 int NotUsed,
82182 sqlite3_value **NotUsed2
82184 sqlite3 *db = sqlite3_context_db_handle(context);
82185 UNUSED_PARAMETER2(NotUsed, NotUsed2);
82186 /* IMP: R-52756-41993 This function is a wrapper around the
82187 ** sqlite3_total_changes() C/C++ interface. */
82188 sqlite3_result_int(context, sqlite3_total_changes(db));
82192 ** A structure defining how to do GLOB-style comparisons.
82194 struct compareInfo {
82195 u8 matchAll;
82196 u8 matchOne;
82197 u8 matchSet;
82198 u8 noCase;
82202 ** For LIKE and GLOB matching on EBCDIC machines, assume that every
82203 ** character is exactly one byte in size. Also, all characters are
82204 ** able to participate in upper-case-to-lower-case mappings in EBCDIC
82205 ** whereas only characters less than 0x80 do in ASCII.
82207 #if defined(SQLITE_EBCDIC)
82208 # define sqlite3Utf8Read(A,C) (*(A++))
82209 # define GlogUpperToLower(A) A = sqlite3UpperToLower[A]
82210 #else
82211 # define GlogUpperToLower(A) if( A<0x80 ){ A = sqlite3UpperToLower[A]; }
82212 #endif
82214 static const struct compareInfo globInfo = { '*', '?', '[', 0 };
82215 /* The correct SQL-92 behavior is for the LIKE operator to ignore
82216 ** case. Thus 'a' LIKE 'A' would be true. */
82217 static const struct compareInfo likeInfoNorm = { '%', '_', 0, 1 };
82218 /* If SQLITE_CASE_SENSITIVE_LIKE is defined, then the LIKE operator
82219 ** is case sensitive causing 'a' LIKE 'A' to be false */
82220 static const struct compareInfo likeInfoAlt = { '%', '_', 0, 0 };
82223 ** Compare two UTF-8 strings for equality where the first string can
82224 ** potentially be a "glob" expression. Return true (1) if they
82225 ** are the same and false (0) if they are different.
82227 ** Globbing rules:
82229 ** '*' Matches any sequence of zero or more characters.
82231 ** '?' Matches exactly one character.
82233 ** [...] Matches one character from the enclosed list of
82234 ** characters.
82236 ** [^...] Matches one character not in the enclosed list.
82238 ** With the [...] and [^...] matching, a ']' character can be included
82239 ** in the list by making it the first character after '[' or '^'. A
82240 ** range of characters can be specified using '-'. Example:
82241 ** "[a-z]" matches any single lower-case letter. To match a '-', make
82242 ** it the last character in the list.
82244 ** This routine is usually quick, but can be N**2 in the worst case.
82246 ** Hints: to match '*' or '?', put them in "[]". Like this:
82248 ** abc[*]xyz Matches "abc*xyz" only
82250 static int patternCompare(
82251 const u8 *zPattern, /* The glob pattern */
82252 const u8 *zString, /* The string to compare against the glob */
82253 const struct compareInfo *pInfo, /* Information about how to do the compare */
82254 const int esc /* The escape character */
82256 int c, c2;
82257 int invert;
82258 int seen;
82259 u8 matchOne = pInfo->matchOne;
82260 u8 matchAll = pInfo->matchAll;
82261 u8 matchSet = pInfo->matchSet;
82262 u8 noCase = pInfo->noCase;
82263 int prevEscape = 0; /* True if the previous character was 'escape' */
82265 while( (c = sqlite3Utf8Read(zPattern,&zPattern))!=0 ){
82266 if( !prevEscape && c==matchAll ){
82267 while( (c=sqlite3Utf8Read(zPattern,&zPattern)) == matchAll
82268 || c == matchOne ){
82269 if( c==matchOne && sqlite3Utf8Read(zString, &zString)==0 ){
82270 return 0;
82273 if( c==0 ){
82274 return 1;
82275 }else if( c==esc ){
82276 c = sqlite3Utf8Read(zPattern, &zPattern);
82277 if( c==0 ){
82278 return 0;
82280 }else if( c==matchSet ){
82281 assert( esc==0 ); /* This is GLOB, not LIKE */
82282 assert( matchSet<0x80 ); /* '[' is a single-byte character */
82283 while( *zString && patternCompare(&zPattern[-1],zString,pInfo,esc)==0 ){
82284 SQLITE_SKIP_UTF8(zString);
82286 return *zString!=0;
82288 while( (c2 = sqlite3Utf8Read(zString,&zString))!=0 ){
82289 if( noCase ){
82290 GlogUpperToLower(c2);
82291 GlogUpperToLower(c);
82292 while( c2 != 0 && c2 != c ){
82293 c2 = sqlite3Utf8Read(zString, &zString);
82294 GlogUpperToLower(c2);
82296 }else{
82297 while( c2 != 0 && c2 != c ){
82298 c2 = sqlite3Utf8Read(zString, &zString);
82301 if( c2==0 ) return 0;
82302 if( patternCompare(zPattern,zString,pInfo,esc) ) return 1;
82304 return 0;
82305 }else if( !prevEscape && c==matchOne ){
82306 if( sqlite3Utf8Read(zString, &zString)==0 ){
82307 return 0;
82309 }else if( c==matchSet ){
82310 int prior_c = 0;
82311 assert( esc==0 ); /* This only occurs for GLOB, not LIKE */
82312 seen = 0;
82313 invert = 0;
82314 c = sqlite3Utf8Read(zString, &zString);
82315 if( c==0 ) return 0;
82316 c2 = sqlite3Utf8Read(zPattern, &zPattern);
82317 if( c2=='^' ){
82318 invert = 1;
82319 c2 = sqlite3Utf8Read(zPattern, &zPattern);
82321 if( c2==']' ){
82322 if( c==']' ) seen = 1;
82323 c2 = sqlite3Utf8Read(zPattern, &zPattern);
82325 while( c2 && c2!=']' ){
82326 if( c2=='-' && zPattern[0]!=']' && zPattern[0]!=0 && prior_c>0 ){
82327 c2 = sqlite3Utf8Read(zPattern, &zPattern);
82328 if( c>=prior_c && c<=c2 ) seen = 1;
82329 prior_c = 0;
82330 }else{
82331 if( c==c2 ){
82332 seen = 1;
82334 prior_c = c2;
82336 c2 = sqlite3Utf8Read(zPattern, &zPattern);
82338 if( c2==0 || (seen ^ invert)==0 ){
82339 return 0;
82341 }else if( esc==c && !prevEscape ){
82342 prevEscape = 1;
82343 }else{
82344 c2 = sqlite3Utf8Read(zString, &zString);
82345 if( noCase ){
82346 GlogUpperToLower(c);
82347 GlogUpperToLower(c2);
82349 if( c!=c2 ){
82350 return 0;
82352 prevEscape = 0;
82355 return *zString==0;
82359 ** Count the number of times that the LIKE operator (or GLOB which is
82360 ** just a variation of LIKE) gets called. This is used for testing
82361 ** only.
82363 #ifdef SQLITE_TEST
82364 SQLITE_API int sqlite3_like_count = 0;
82365 #endif
82369 ** Implementation of the like() SQL function. This function implements
82370 ** the build-in LIKE operator. The first argument to the function is the
82371 ** pattern and the second argument is the string. So, the SQL statements:
82373 ** A LIKE B
82375 ** is implemented as like(B,A).
82377 ** This same function (with a different compareInfo structure) computes
82378 ** the GLOB operator.
82380 static void likeFunc(
82381 sqlite3_context *context,
82382 int argc,
82383 sqlite3_value **argv
82385 const unsigned char *zA, *zB;
82386 int escape = 0;
82387 int nPat;
82388 sqlite3 *db = sqlite3_context_db_handle(context);
82390 zB = sqlite3_value_text(argv[0]);
82391 zA = sqlite3_value_text(argv[1]);
82393 /* Limit the length of the LIKE or GLOB pattern to avoid problems
82394 ** of deep recursion and N*N behavior in patternCompare().
82396 nPat = sqlite3_value_bytes(argv[0]);
82397 testcase( nPat==db->aLimit[SQLITE_LIMIT_LIKE_PATTERN_LENGTH] );
82398 testcase( nPat==db->aLimit[SQLITE_LIMIT_LIKE_PATTERN_LENGTH]+1 );
82399 if( nPat > db->aLimit[SQLITE_LIMIT_LIKE_PATTERN_LENGTH] ){
82400 sqlite3_result_error(context, "LIKE or GLOB pattern too complex", -1);
82401 return;
82403 assert( zB==sqlite3_value_text(argv[0]) ); /* Encoding did not change */
82405 if( argc==3 ){
82406 /* The escape character string must consist of a single UTF-8 character.
82407 ** Otherwise, return an error.
82409 const unsigned char *zEsc = sqlite3_value_text(argv[2]);
82410 if( zEsc==0 ) return;
82411 if( sqlite3Utf8CharLen((char*)zEsc, -1)!=1 ){
82412 sqlite3_result_error(context,
82413 "ESCAPE expression must be a single character", -1);
82414 return;
82416 escape = sqlite3Utf8Read(zEsc, &zEsc);
82418 if( zA && zB ){
82419 struct compareInfo *pInfo = sqlite3_user_data(context);
82420 #ifdef SQLITE_TEST
82421 sqlite3_like_count++;
82422 #endif
82424 sqlite3_result_int(context, patternCompare(zB, zA, pInfo, escape));
82429 ** Implementation of the NULLIF(x,y) function. The result is the first
82430 ** argument if the arguments are different. The result is NULL if the
82431 ** arguments are equal to each other.
82433 static void nullifFunc(
82434 sqlite3_context *context,
82435 int NotUsed,
82436 sqlite3_value **argv
82438 CollSeq *pColl = sqlite3GetFuncCollSeq(context);
82439 UNUSED_PARAMETER(NotUsed);
82440 if( sqlite3MemCompare(argv[0], argv[1], pColl)!=0 ){
82441 sqlite3_result_value(context, argv[0]);
82446 ** Implementation of the sqlite_version() function. The result is the version
82447 ** of the SQLite library that is running.
82449 static void versionFunc(
82450 sqlite3_context *context,
82451 int NotUsed,
82452 sqlite3_value **NotUsed2
82454 UNUSED_PARAMETER2(NotUsed, NotUsed2);
82455 /* IMP: R-48699-48617 This function is an SQL wrapper around the
82456 ** sqlite3_libversion() C-interface. */
82457 sqlite3_result_text(context, sqlite3_libversion(), -1, SQLITE_STATIC);
82461 ** Implementation of the sqlite_source_id() function. The result is a string
82462 ** that identifies the particular version of the source code used to build
82463 ** SQLite.
82465 static void sourceidFunc(
82466 sqlite3_context *context,
82467 int NotUsed,
82468 sqlite3_value **NotUsed2
82470 UNUSED_PARAMETER2(NotUsed, NotUsed2);
82471 /* IMP: R-24470-31136 This function is an SQL wrapper around the
82472 ** sqlite3_sourceid() C interface. */
82473 sqlite3_result_text(context, sqlite3_sourceid(), -1, SQLITE_STATIC);
82477 ** Implementation of the sqlite_compileoption_used() function.
82478 ** The result is an integer that identifies if the compiler option
82479 ** was used to build SQLite.
82481 #ifndef SQLITE_OMIT_COMPILEOPTION_DIAGS
82482 static void compileoptionusedFunc(
82483 sqlite3_context *context,
82484 int argc,
82485 sqlite3_value **argv
82487 const char *zOptName;
82488 assert( argc==1 );
82489 UNUSED_PARAMETER(argc);
82490 /* IMP: R-39564-36305 The sqlite_compileoption_used() SQL
82491 ** function is a wrapper around the sqlite3_compileoption_used() C/C++
82492 ** function.
82494 if( (zOptName = (const char*)sqlite3_value_text(argv[0]))!=0 ){
82495 sqlite3_result_int(context, sqlite3_compileoption_used(zOptName));
82498 #endif /* SQLITE_OMIT_COMPILEOPTION_DIAGS */
82501 ** Implementation of the sqlite_compileoption_get() function.
82502 ** The result is a string that identifies the compiler options
82503 ** used to build SQLite.
82505 #ifndef SQLITE_OMIT_COMPILEOPTION_DIAGS
82506 static void compileoptiongetFunc(
82507 sqlite3_context *context,
82508 int argc,
82509 sqlite3_value **argv
82511 int n;
82512 assert( argc==1 );
82513 UNUSED_PARAMETER(argc);
82514 /* IMP: R-04922-24076 The sqlite_compileoption_get() SQL function
82515 ** is a wrapper around the sqlite3_compileoption_get() C/C++ function.
82517 n = sqlite3_value_int(argv[0]);
82518 sqlite3_result_text(context, sqlite3_compileoption_get(n), -1, SQLITE_STATIC);
82520 #endif /* SQLITE_OMIT_COMPILEOPTION_DIAGS */
82522 /* Array for converting from half-bytes (nybbles) into ASCII hex
82523 ** digits. */
82524 static const char hexdigits[] = {
82525 '0', '1', '2', '3', '4', '5', '6', '7',
82526 '8', '9', 'A', 'B', 'C', 'D', 'E', 'F'
82530 ** EXPERIMENTAL - This is not an official function. The interface may
82531 ** change. This function may disappear. Do not write code that depends
82532 ** on this function.
82534 ** Implementation of the QUOTE() function. This function takes a single
82535 ** argument. If the argument is numeric, the return value is the same as
82536 ** the argument. If the argument is NULL, the return value is the string
82537 ** "NULL". Otherwise, the argument is enclosed in single quotes with
82538 ** single-quote escapes.
82540 static void quoteFunc(sqlite3_context *context, int argc, sqlite3_value **argv){
82541 assert( argc==1 );
82542 UNUSED_PARAMETER(argc);
82543 switch( sqlite3_value_type(argv[0]) ){
82544 case SQLITE_INTEGER:
82545 case SQLITE_FLOAT: {
82546 sqlite3_result_value(context, argv[0]);
82547 break;
82549 case SQLITE_BLOB: {
82550 char *zText = 0;
82551 char const *zBlob = sqlite3_value_blob(argv[0]);
82552 int nBlob = sqlite3_value_bytes(argv[0]);
82553 assert( zBlob==sqlite3_value_blob(argv[0]) ); /* No encoding change */
82554 zText = (char *)contextMalloc(context, (2*(i64)nBlob)+4);
82555 if( zText ){
82556 int i;
82557 for(i=0; i<nBlob; i++){
82558 zText[(i*2)+2] = hexdigits[(zBlob[i]>>4)&0x0F];
82559 zText[(i*2)+3] = hexdigits[(zBlob[i])&0x0F];
82561 zText[(nBlob*2)+2] = '\'';
82562 zText[(nBlob*2)+3] = '\0';
82563 zText[0] = 'X';
82564 zText[1] = '\'';
82565 sqlite3_result_text(context, zText, -1, SQLITE_TRANSIENT);
82566 sqlite3_free(zText);
82568 break;
82570 case SQLITE_TEXT: {
82571 int i,j;
82572 u64 n;
82573 const unsigned char *zArg = sqlite3_value_text(argv[0]);
82574 char *z;
82576 if( zArg==0 ) return;
82577 for(i=0, n=0; zArg[i]; i++){ if( zArg[i]=='\'' ) n++; }
82578 z = contextMalloc(context, ((i64)i)+((i64)n)+3);
82579 if( z ){
82580 z[0] = '\'';
82581 for(i=0, j=1; zArg[i]; i++){
82582 z[j++] = zArg[i];
82583 if( zArg[i]=='\'' ){
82584 z[j++] = '\'';
82587 z[j++] = '\'';
82588 z[j] = 0;
82589 sqlite3_result_text(context, z, j, sqlite3_free);
82591 break;
82593 default: {
82594 assert( sqlite3_value_type(argv[0])==SQLITE_NULL );
82595 sqlite3_result_text(context, "NULL", 4, SQLITE_STATIC);
82596 break;
82602 ** The hex() function. Interpret the argument as a blob. Return
82603 ** a hexadecimal rendering as text.
82605 static void hexFunc(
82606 sqlite3_context *context,
82607 int argc,
82608 sqlite3_value **argv
82610 int i, n;
82611 const unsigned char *pBlob;
82612 char *zHex, *z;
82613 assert( argc==1 );
82614 UNUSED_PARAMETER(argc);
82615 pBlob = sqlite3_value_blob(argv[0]);
82616 n = sqlite3_value_bytes(argv[0]);
82617 assert( pBlob==sqlite3_value_blob(argv[0]) ); /* No encoding change */
82618 z = zHex = contextMalloc(context, ((i64)n)*2 + 1);
82619 if( zHex ){
82620 for(i=0; i<n; i++, pBlob++){
82621 unsigned char c = *pBlob;
82622 *(z++) = hexdigits[(c>>4)&0xf];
82623 *(z++) = hexdigits[c&0xf];
82625 *z = 0;
82626 sqlite3_result_text(context, zHex, n*2, sqlite3_free);
82631 ** The zeroblob(N) function returns a zero-filled blob of size N bytes.
82633 static void zeroblobFunc(
82634 sqlite3_context *context,
82635 int argc,
82636 sqlite3_value **argv
82638 i64 n;
82639 sqlite3 *db = sqlite3_context_db_handle(context);
82640 assert( argc==1 );
82641 UNUSED_PARAMETER(argc);
82642 n = sqlite3_value_int64(argv[0]);
82643 testcase( n==db->aLimit[SQLITE_LIMIT_LENGTH] );
82644 testcase( n==db->aLimit[SQLITE_LIMIT_LENGTH]+1 );
82645 if( n>db->aLimit[SQLITE_LIMIT_LENGTH] ){
82646 sqlite3_result_error_toobig(context);
82647 }else{
82648 sqlite3_result_zeroblob(context, (int)n); /* IMP: R-00293-64994 */
82653 ** The replace() function. Three arguments are all strings: call
82654 ** them A, B, and C. The result is also a string which is derived
82655 ** from A by replacing every occurance of B with C. The match
82656 ** must be exact. Collating sequences are not used.
82658 static void replaceFunc(
82659 sqlite3_context *context,
82660 int argc,
82661 sqlite3_value **argv
82663 const unsigned char *zStr; /* The input string A */
82664 const unsigned char *zPattern; /* The pattern string B */
82665 const unsigned char *zRep; /* The replacement string C */
82666 unsigned char *zOut; /* The output */
82667 int nStr; /* Size of zStr */
82668 int nPattern; /* Size of zPattern */
82669 int nRep; /* Size of zRep */
82670 i64 nOut; /* Maximum size of zOut */
82671 int loopLimit; /* Last zStr[] that might match zPattern[] */
82672 int i, j; /* Loop counters */
82674 assert( argc==3 );
82675 UNUSED_PARAMETER(argc);
82676 zStr = sqlite3_value_text(argv[0]);
82677 if( zStr==0 ) return;
82678 nStr = sqlite3_value_bytes(argv[0]);
82679 assert( zStr==sqlite3_value_text(argv[0]) ); /* No encoding change */
82680 zPattern = sqlite3_value_text(argv[1]);
82681 if( zPattern==0 ){
82682 assert( sqlite3_value_type(argv[1])==SQLITE_NULL
82683 || sqlite3_context_db_handle(context)->mallocFailed );
82684 return;
82686 if( zPattern[0]==0 ){
82687 assert( sqlite3_value_type(argv[1])!=SQLITE_NULL );
82688 sqlite3_result_value(context, argv[0]);
82689 return;
82691 nPattern = sqlite3_value_bytes(argv[1]);
82692 assert( zPattern==sqlite3_value_text(argv[1]) ); /* No encoding change */
82693 zRep = sqlite3_value_text(argv[2]);
82694 if( zRep==0 ) return;
82695 nRep = sqlite3_value_bytes(argv[2]);
82696 assert( zRep==sqlite3_value_text(argv[2]) );
82697 nOut = nStr + 1;
82698 assert( nOut<SQLITE_MAX_LENGTH );
82699 zOut = contextMalloc(context, (i64)nOut);
82700 if( zOut==0 ){
82701 return;
82703 loopLimit = nStr - nPattern;
82704 for(i=j=0; i<=loopLimit; i++){
82705 if( zStr[i]!=zPattern[0] || memcmp(&zStr[i], zPattern, nPattern) ){
82706 zOut[j++] = zStr[i];
82707 }else{
82708 u8 *zOld;
82709 sqlite3 *db = sqlite3_context_db_handle(context);
82710 nOut += nRep - nPattern;
82711 testcase( nOut-1==db->aLimit[SQLITE_LIMIT_LENGTH] );
82712 testcase( nOut-2==db->aLimit[SQLITE_LIMIT_LENGTH] );
82713 if( nOut-1>db->aLimit[SQLITE_LIMIT_LENGTH] ){
82714 sqlite3_result_error_toobig(context);
82715 sqlite3_free(zOut);
82716 return;
82718 zOld = zOut;
82719 zOut = sqlite3_realloc(zOut, (int)nOut);
82720 if( zOut==0 ){
82721 sqlite3_result_error_nomem(context);
82722 sqlite3_free(zOld);
82723 return;
82725 memcpy(&zOut[j], zRep, nRep);
82726 j += nRep;
82727 i += nPattern-1;
82730 assert( j+nStr-i+1==nOut );
82731 memcpy(&zOut[j], &zStr[i], nStr-i);
82732 j += nStr - i;
82733 assert( j<=nOut );
82734 zOut[j] = 0;
82735 sqlite3_result_text(context, (char*)zOut, j, sqlite3_free);
82739 ** Implementation of the TRIM(), LTRIM(), and RTRIM() functions.
82740 ** The userdata is 0x1 for left trim, 0x2 for right trim, 0x3 for both.
82742 static void trimFunc(
82743 sqlite3_context *context,
82744 int argc,
82745 sqlite3_value **argv
82747 const unsigned char *zIn; /* Input string */
82748 const unsigned char *zCharSet; /* Set of characters to trim */
82749 int nIn; /* Number of bytes in input */
82750 int flags; /* 1: trimleft 2: trimright 3: trim */
82751 int i; /* Loop counter */
82752 unsigned char *aLen = 0; /* Length of each character in zCharSet */
82753 unsigned char **azChar = 0; /* Individual characters in zCharSet */
82754 int nChar; /* Number of characters in zCharSet */
82756 if( sqlite3_value_type(argv[0])==SQLITE_NULL ){
82757 return;
82759 zIn = sqlite3_value_text(argv[0]);
82760 if( zIn==0 ) return;
82761 nIn = sqlite3_value_bytes(argv[0]);
82762 assert( zIn==sqlite3_value_text(argv[0]) );
82763 if( argc==1 ){
82764 static const unsigned char lenOne[] = { 1 };
82765 static unsigned char * const azOne[] = { (u8*)" " };
82766 nChar = 1;
82767 aLen = (u8*)lenOne;
82768 azChar = (unsigned char **)azOne;
82769 zCharSet = 0;
82770 }else if( (zCharSet = sqlite3_value_text(argv[1]))==0 ){
82771 return;
82772 }else{
82773 const unsigned char *z;
82774 for(z=zCharSet, nChar=0; *z; nChar++){
82775 SQLITE_SKIP_UTF8(z);
82777 if( nChar>0 ){
82778 azChar = contextMalloc(context, ((i64)nChar)*(sizeof(char*)+1));
82779 if( azChar==0 ){
82780 return;
82782 aLen = (unsigned char*)&azChar[nChar];
82783 for(z=zCharSet, nChar=0; *z; nChar++){
82784 azChar[nChar] = (unsigned char *)z;
82785 SQLITE_SKIP_UTF8(z);
82786 aLen[nChar] = (u8)(z - azChar[nChar]);
82790 if( nChar>0 ){
82791 flags = SQLITE_PTR_TO_INT(sqlite3_user_data(context));
82792 if( flags & 1 ){
82793 while( nIn>0 ){
82794 int len = 0;
82795 for(i=0; i<nChar; i++){
82796 len = aLen[i];
82797 if( len<=nIn && memcmp(zIn, azChar[i], len)==0 ) break;
82799 if( i>=nChar ) break;
82800 zIn += len;
82801 nIn -= len;
82804 if( flags & 2 ){
82805 while( nIn>0 ){
82806 int len = 0;
82807 for(i=0; i<nChar; i++){
82808 len = aLen[i];
82809 if( len<=nIn && memcmp(&zIn[nIn-len],azChar[i],len)==0 ) break;
82811 if( i>=nChar ) break;
82812 nIn -= len;
82815 if( zCharSet ){
82816 sqlite3_free((void*)azChar);
82819 sqlite3_result_text(context, (char*)zIn, nIn, SQLITE_TRANSIENT);
82823 /* IMP: R-25361-16150 This function is omitted from SQLite by default. It
82824 ** is only available if the SQLITE_SOUNDEX compile-time option is used
82825 ** when SQLite is built.
82827 #ifdef SQLITE_SOUNDEX
82829 ** Compute the soundex encoding of a word.
82831 ** IMP: R-59782-00072 The soundex(X) function returns a string that is the
82832 ** soundex encoding of the string X.
82834 static void soundexFunc(
82835 sqlite3_context *context,
82836 int argc,
82837 sqlite3_value **argv
82839 char zResult[8];
82840 const u8 *zIn;
82841 int i, j;
82842 static const unsigned char iCode[] = {
82843 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
82844 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
82845 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
82846 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
82847 0, 0, 1, 2, 3, 0, 1, 2, 0, 0, 2, 2, 4, 5, 5, 0,
82848 1, 2, 6, 2, 3, 0, 1, 0, 2, 0, 2, 0, 0, 0, 0, 0,
82849 0, 0, 1, 2, 3, 0, 1, 2, 0, 0, 2, 2, 4, 5, 5, 0,
82850 1, 2, 6, 2, 3, 0, 1, 0, 2, 0, 2, 0, 0, 0, 0, 0,
82852 assert( argc==1 );
82853 zIn = (u8*)sqlite3_value_text(argv[0]);
82854 if( zIn==0 ) zIn = (u8*)"";
82855 for(i=0; zIn[i] && !sqlite3Isalpha(zIn[i]); i++){}
82856 if( zIn[i] ){
82857 u8 prevcode = iCode[zIn[i]&0x7f];
82858 zResult[0] = sqlite3Toupper(zIn[i]);
82859 for(j=1; j<4 && zIn[i]; i++){
82860 int code = iCode[zIn[i]&0x7f];
82861 if( code>0 ){
82862 if( code!=prevcode ){
82863 prevcode = code;
82864 zResult[j++] = code + '0';
82866 }else{
82867 prevcode = 0;
82870 while( j<4 ){
82871 zResult[j++] = '0';
82873 zResult[j] = 0;
82874 sqlite3_result_text(context, zResult, 4, SQLITE_TRANSIENT);
82875 }else{
82876 /* IMP: R-64894-50321 The string "?000" is returned if the argument
82877 ** is NULL or contains no ASCII alphabetic characters. */
82878 sqlite3_result_text(context, "?000", 4, SQLITE_STATIC);
82881 #endif /* SQLITE_SOUNDEX */
82883 #ifndef SQLITE_OMIT_LOAD_EXTENSION
82885 ** A function that loads a shared-library extension then returns NULL.
82887 static void loadExt(sqlite3_context *context, int argc, sqlite3_value **argv){
82888 const char *zFile = (const char *)sqlite3_value_text(argv[0]);
82889 const char *zProc;
82890 sqlite3 *db = sqlite3_context_db_handle(context);
82891 char *zErrMsg = 0;
82893 if( argc==2 ){
82894 zProc = (const char *)sqlite3_value_text(argv[1]);
82895 }else{
82896 zProc = 0;
82898 if( zFile && sqlite3_load_extension(db, zFile, zProc, &zErrMsg) ){
82899 sqlite3_result_error(context, zErrMsg, -1);
82900 sqlite3_free(zErrMsg);
82903 #endif
82907 ** An instance of the following structure holds the context of a
82908 ** sum() or avg() aggregate computation.
82910 typedef struct SumCtx SumCtx;
82911 struct SumCtx {
82912 double rSum; /* Floating point sum */
82913 i64 iSum; /* Integer sum */
82914 i64 cnt; /* Number of elements summed */
82915 u8 overflow; /* True if integer overflow seen */
82916 u8 approx; /* True if non-integer value was input to the sum */
82920 ** Routines used to compute the sum, average, and total.
82922 ** The SUM() function follows the (broken) SQL standard which means
82923 ** that it returns NULL if it sums over no inputs. TOTAL returns
82924 ** 0.0 in that case. In addition, TOTAL always returns a float where
82925 ** SUM might return an integer if it never encounters a floating point
82926 ** value. TOTAL never fails, but SUM might through an exception if
82927 ** it overflows an integer.
82929 static void sumStep(sqlite3_context *context, int argc, sqlite3_value **argv){
82930 SumCtx *p;
82931 int type;
82932 assert( argc==1 );
82933 UNUSED_PARAMETER(argc);
82934 p = sqlite3_aggregate_context(context, sizeof(*p));
82935 type = sqlite3_value_numeric_type(argv[0]);
82936 if( p && type!=SQLITE_NULL ){
82937 p->cnt++;
82938 if( type==SQLITE_INTEGER ){
82939 i64 v = sqlite3_value_int64(argv[0]);
82940 p->rSum += v;
82941 if( (p->approx|p->overflow)==0 && sqlite3AddInt64(&p->iSum, v) ){
82942 p->overflow = 1;
82944 }else{
82945 p->rSum += sqlite3_value_double(argv[0]);
82946 p->approx = 1;
82950 static void sumFinalize(sqlite3_context *context){
82951 SumCtx *p;
82952 p = sqlite3_aggregate_context(context, 0);
82953 if( p && p->cnt>0 ){
82954 if( p->overflow ){
82955 sqlite3_result_error(context,"integer overflow",-1);
82956 }else if( p->approx ){
82957 sqlite3_result_double(context, p->rSum);
82958 }else{
82959 sqlite3_result_int64(context, p->iSum);
82963 static void avgFinalize(sqlite3_context *context){
82964 SumCtx *p;
82965 p = sqlite3_aggregate_context(context, 0);
82966 if( p && p->cnt>0 ){
82967 sqlite3_result_double(context, p->rSum/(double)p->cnt);
82970 static void totalFinalize(sqlite3_context *context){
82971 SumCtx *p;
82972 p = sqlite3_aggregate_context(context, 0);
82973 /* (double)0 In case of SQLITE_OMIT_FLOATING_POINT... */
82974 sqlite3_result_double(context, p ? p->rSum : (double)0);
82978 ** The following structure keeps track of state information for the
82979 ** count() aggregate function.
82981 typedef struct CountCtx CountCtx;
82982 struct CountCtx {
82983 i64 n;
82987 ** Routines to implement the count() aggregate function.
82989 static void countStep(sqlite3_context *context, int argc, sqlite3_value **argv){
82990 CountCtx *p;
82991 p = sqlite3_aggregate_context(context, sizeof(*p));
82992 if( (argc==0 || SQLITE_NULL!=sqlite3_value_type(argv[0])) && p ){
82993 p->n++;
82996 #ifndef SQLITE_OMIT_DEPRECATED
82997 /* The sqlite3_aggregate_count() function is deprecated. But just to make
82998 ** sure it still operates correctly, verify that its count agrees with our
82999 ** internal count when using count(*) and when the total count can be
83000 ** expressed as a 32-bit integer. */
83001 assert( argc==1 || p==0 || p->n>0x7fffffff
83002 || p->n==sqlite3_aggregate_count(context) );
83003 #endif
83005 static void countFinalize(sqlite3_context *context){
83006 CountCtx *p;
83007 p = sqlite3_aggregate_context(context, 0);
83008 sqlite3_result_int64(context, p ? p->n : 0);
83012 ** Routines to implement min() and max() aggregate functions.
83014 static void minmaxStep(
83015 sqlite3_context *context,
83016 int NotUsed,
83017 sqlite3_value **argv
83019 Mem *pArg = (Mem *)argv[0];
83020 Mem *pBest;
83021 UNUSED_PARAMETER(NotUsed);
83023 if( sqlite3_value_type(argv[0])==SQLITE_NULL ) return;
83024 pBest = (Mem *)sqlite3_aggregate_context(context, sizeof(*pBest));
83025 if( !pBest ) return;
83027 if( pBest->flags ){
83028 int max;
83029 int cmp;
83030 CollSeq *pColl = sqlite3GetFuncCollSeq(context);
83031 /* This step function is used for both the min() and max() aggregates,
83032 ** the only difference between the two being that the sense of the
83033 ** comparison is inverted. For the max() aggregate, the
83034 ** sqlite3_user_data() function returns (void *)-1. For min() it
83035 ** returns (void *)db, where db is the sqlite3* database pointer.
83036 ** Therefore the next statement sets variable 'max' to 1 for the max()
83037 ** aggregate, or 0 for min().
83039 max = sqlite3_user_data(context)!=0;
83040 cmp = sqlite3MemCompare(pBest, pArg, pColl);
83041 if( (max && cmp<0) || (!max && cmp>0) ){
83042 sqlite3VdbeMemCopy(pBest, pArg);
83044 }else{
83045 sqlite3VdbeMemCopy(pBest, pArg);
83048 static void minMaxFinalize(sqlite3_context *context){
83049 sqlite3_value *pRes;
83050 pRes = (sqlite3_value *)sqlite3_aggregate_context(context, 0);
83051 if( pRes ){
83052 if( ALWAYS(pRes->flags) ){
83053 sqlite3_result_value(context, pRes);
83055 sqlite3VdbeMemRelease(pRes);
83060 ** group_concat(EXPR, ?SEPARATOR?)
83062 static void groupConcatStep(
83063 sqlite3_context *context,
83064 int argc,
83065 sqlite3_value **argv
83067 const char *zVal;
83068 StrAccum *pAccum;
83069 const char *zSep;
83070 int nVal, nSep;
83071 assert( argc==1 || argc==2 );
83072 if( sqlite3_value_type(argv[0])==SQLITE_NULL ) return;
83073 pAccum = (StrAccum*)sqlite3_aggregate_context(context, sizeof(*pAccum));
83075 if( pAccum ){
83076 sqlite3 *db = sqlite3_context_db_handle(context);
83077 int firstTerm = pAccum->useMalloc==0;
83078 pAccum->useMalloc = 2;
83079 pAccum->mxAlloc = db->aLimit[SQLITE_LIMIT_LENGTH];
83080 if( !firstTerm ){
83081 if( argc==2 ){
83082 zSep = (char*)sqlite3_value_text(argv[1]);
83083 nSep = sqlite3_value_bytes(argv[1]);
83084 }else{
83085 zSep = ",";
83086 nSep = 1;
83088 sqlite3StrAccumAppend(pAccum, zSep, nSep);
83090 zVal = (char*)sqlite3_value_text(argv[0]);
83091 nVal = sqlite3_value_bytes(argv[0]);
83092 sqlite3StrAccumAppend(pAccum, zVal, nVal);
83095 static void groupConcatFinalize(sqlite3_context *context){
83096 StrAccum *pAccum;
83097 pAccum = sqlite3_aggregate_context(context, 0);
83098 if( pAccum ){
83099 if( pAccum->tooBig ){
83100 sqlite3_result_error_toobig(context);
83101 }else if( pAccum->mallocFailed ){
83102 sqlite3_result_error_nomem(context);
83103 }else{
83104 sqlite3_result_text(context, sqlite3StrAccumFinish(pAccum), -1,
83105 sqlite3_free);
83111 ** This routine does per-connection function registration. Most
83112 ** of the built-in functions above are part of the global function set.
83113 ** This routine only deals with those that are not global.
83115 SQLITE_PRIVATE void sqlite3RegisterBuiltinFunctions(sqlite3 *db){
83116 int rc = sqlite3_overload_function(db, "MATCH", 2);
83117 assert( rc==SQLITE_NOMEM || rc==SQLITE_OK );
83118 if( rc==SQLITE_NOMEM ){
83119 db->mallocFailed = 1;
83124 ** Set the LIKEOPT flag on the 2-argument function with the given name.
83126 static void setLikeOptFlag(sqlite3 *db, const char *zName, u8 flagVal){
83127 FuncDef *pDef;
83128 pDef = sqlite3FindFunction(db, zName, sqlite3Strlen30(zName),
83129 2, SQLITE_UTF8, 0);
83130 if( ALWAYS(pDef) ){
83131 pDef->flags = flagVal;
83136 ** Register the built-in LIKE and GLOB functions. The caseSensitive
83137 ** parameter determines whether or not the LIKE operator is case
83138 ** sensitive. GLOB is always case sensitive.
83140 SQLITE_PRIVATE void sqlite3RegisterLikeFunctions(sqlite3 *db, int caseSensitive){
83141 struct compareInfo *pInfo;
83142 if( caseSensitive ){
83143 pInfo = (struct compareInfo*)&likeInfoAlt;
83144 }else{
83145 pInfo = (struct compareInfo*)&likeInfoNorm;
83147 sqlite3CreateFunc(db, "like", 2, SQLITE_UTF8, pInfo, likeFunc, 0, 0, 0);
83148 sqlite3CreateFunc(db, "like", 3, SQLITE_UTF8, pInfo, likeFunc, 0, 0, 0);
83149 sqlite3CreateFunc(db, "glob", 2, SQLITE_UTF8,
83150 (struct compareInfo*)&globInfo, likeFunc, 0, 0, 0);
83151 setLikeOptFlag(db, "glob", SQLITE_FUNC_LIKE | SQLITE_FUNC_CASE);
83152 setLikeOptFlag(db, "like",
83153 caseSensitive ? (SQLITE_FUNC_LIKE | SQLITE_FUNC_CASE) : SQLITE_FUNC_LIKE);
83157 ** pExpr points to an expression which implements a function. If
83158 ** it is appropriate to apply the LIKE optimization to that function
83159 ** then set aWc[0] through aWc[2] to the wildcard characters and
83160 ** return TRUE. If the function is not a LIKE-style function then
83161 ** return FALSE.
83163 SQLITE_PRIVATE int sqlite3IsLikeFunction(sqlite3 *db, Expr *pExpr, int *pIsNocase, char *aWc){
83164 FuncDef *pDef;
83165 if( pExpr->op!=TK_FUNCTION
83166 || !pExpr->x.pList
83167 || pExpr->x.pList->nExpr!=2
83169 return 0;
83171 assert( !ExprHasProperty(pExpr, EP_xIsSelect) );
83172 pDef = sqlite3FindFunction(db, pExpr->u.zToken,
83173 sqlite3Strlen30(pExpr->u.zToken),
83174 2, SQLITE_UTF8, 0);
83175 if( NEVER(pDef==0) || (pDef->flags & SQLITE_FUNC_LIKE)==0 ){
83176 return 0;
83179 /* The memcpy() statement assumes that the wildcard characters are
83180 ** the first three statements in the compareInfo structure. The
83181 ** asserts() that follow verify that assumption
83183 memcpy(aWc, pDef->pUserData, 3);
83184 assert( (char*)&likeInfoAlt == (char*)&likeInfoAlt.matchAll );
83185 assert( &((char*)&likeInfoAlt)[1] == (char*)&likeInfoAlt.matchOne );
83186 assert( &((char*)&likeInfoAlt)[2] == (char*)&likeInfoAlt.matchSet );
83187 *pIsNocase = (pDef->flags & SQLITE_FUNC_CASE)==0;
83188 return 1;
83192 ** All all of the FuncDef structures in the aBuiltinFunc[] array above
83193 ** to the global function hash table. This occurs at start-time (as
83194 ** a consequence of calling sqlite3_initialize()).
83196 ** After this routine runs
83198 SQLITE_PRIVATE void sqlite3RegisterGlobalFunctions(void){
83200 ** The following array holds FuncDef structures for all of the functions
83201 ** defined in this file.
83203 ** The array cannot be constant since changes are made to the
83204 ** FuncDef.pHash elements at start-time. The elements of this array
83205 ** are read-only after initialization is complete.
83207 static SQLITE_WSD FuncDef aBuiltinFunc[] = {
83208 FUNCTION(ltrim, 1, 1, 0, trimFunc ),
83209 FUNCTION(ltrim, 2, 1, 0, trimFunc ),
83210 FUNCTION(rtrim, 1, 2, 0, trimFunc ),
83211 FUNCTION(rtrim, 2, 2, 0, trimFunc ),
83212 FUNCTION(trim, 1, 3, 0, trimFunc ),
83213 FUNCTION(trim, 2, 3, 0, trimFunc ),
83214 FUNCTION(min, -1, 0, 1, minmaxFunc ),
83215 FUNCTION(min, 0, 0, 1, 0 ),
83216 AGGREGATE(min, 1, 0, 1, minmaxStep, minMaxFinalize ),
83217 FUNCTION(max, -1, 1, 1, minmaxFunc ),
83218 FUNCTION(max, 0, 1, 1, 0 ),
83219 AGGREGATE(max, 1, 1, 1, minmaxStep, minMaxFinalize ),
83220 FUNCTION(typeof, 1, 0, 0, typeofFunc ),
83221 FUNCTION(length, 1, 0, 0, lengthFunc ),
83222 FUNCTION(substr, 2, 0, 0, substrFunc ),
83223 FUNCTION(substr, 3, 0, 0, substrFunc ),
83224 FUNCTION(abs, 1, 0, 0, absFunc ),
83225 #ifndef SQLITE_OMIT_FLOATING_POINT
83226 FUNCTION(round, 1, 0, 0, roundFunc ),
83227 FUNCTION(round, 2, 0, 0, roundFunc ),
83228 #endif
83229 FUNCTION(upper, 1, 0, 0, upperFunc ),
83230 FUNCTION(lower, 1, 0, 0, lowerFunc ),
83231 FUNCTION(coalesce, 1, 0, 0, 0 ),
83232 FUNCTION(coalesce, 0, 0, 0, 0 ),
83233 /* FUNCTION(coalesce, -1, 0, 0, ifnullFunc ), */
83234 {-1,SQLITE_UTF8,SQLITE_FUNC_COALESCE,0,0,ifnullFunc,0,0,"coalesce",0,0},
83235 FUNCTION(hex, 1, 0, 0, hexFunc ),
83236 /* FUNCTION(ifnull, 2, 0, 0, ifnullFunc ), */
83237 {2,SQLITE_UTF8,SQLITE_FUNC_COALESCE,0,0,ifnullFunc,0,0,"ifnull",0,0},
83238 FUNCTION(random, 0, 0, 0, randomFunc ),
83239 FUNCTION(randomblob, 1, 0, 0, randomBlob ),
83240 FUNCTION(nullif, 2, 0, 1, nullifFunc ),
83241 FUNCTION(sqlite_version, 0, 0, 0, versionFunc ),
83242 FUNCTION(sqlite_source_id, 0, 0, 0, sourceidFunc ),
83243 #ifndef SQLITE_OMIT_COMPILEOPTION_DIAGS
83244 FUNCTION(sqlite_compileoption_used,1, 0, 0, compileoptionusedFunc ),
83245 FUNCTION(sqlite_compileoption_get, 1, 0, 0, compileoptiongetFunc ),
83246 #endif /* SQLITE_OMIT_COMPILEOPTION_DIAGS */
83247 FUNCTION(quote, 1, 0, 0, quoteFunc ),
83248 FUNCTION(last_insert_rowid, 0, 0, 0, last_insert_rowid),
83249 FUNCTION(changes, 0, 0, 0, changes ),
83250 FUNCTION(total_changes, 0, 0, 0, total_changes ),
83251 FUNCTION(replace, 3, 0, 0, replaceFunc ),
83252 FUNCTION(zeroblob, 1, 0, 0, zeroblobFunc ),
83253 #ifdef SQLITE_SOUNDEX
83254 FUNCTION(soundex, 1, 0, 0, soundexFunc ),
83255 #endif
83256 #ifndef SQLITE_OMIT_LOAD_EXTENSION
83257 FUNCTION(load_extension, 1, 0, 0, loadExt ),
83258 FUNCTION(load_extension, 2, 0, 0, loadExt ),
83259 #endif
83260 AGGREGATE(sum, 1, 0, 0, sumStep, sumFinalize ),
83261 AGGREGATE(total, 1, 0, 0, sumStep, totalFinalize ),
83262 AGGREGATE(avg, 1, 0, 0, sumStep, avgFinalize ),
83263 /* AGGREGATE(count, 0, 0, 0, countStep, countFinalize ), */
83264 {0,SQLITE_UTF8,SQLITE_FUNC_COUNT,0,0,0,countStep,countFinalize,"count",0,0},
83265 AGGREGATE(count, 1, 0, 0, countStep, countFinalize ),
83266 AGGREGATE(group_concat, 1, 0, 0, groupConcatStep, groupConcatFinalize),
83267 AGGREGATE(group_concat, 2, 0, 0, groupConcatStep, groupConcatFinalize),
83269 LIKEFUNC(glob, 2, &globInfo, SQLITE_FUNC_LIKE|SQLITE_FUNC_CASE),
83270 #ifdef SQLITE_CASE_SENSITIVE_LIKE
83271 LIKEFUNC(like, 2, &likeInfoAlt, SQLITE_FUNC_LIKE|SQLITE_FUNC_CASE),
83272 LIKEFUNC(like, 3, &likeInfoAlt, SQLITE_FUNC_LIKE|SQLITE_FUNC_CASE),
83273 #else
83274 LIKEFUNC(like, 2, &likeInfoNorm, SQLITE_FUNC_LIKE),
83275 LIKEFUNC(like, 3, &likeInfoNorm, SQLITE_FUNC_LIKE),
83276 #endif
83279 int i;
83280 FuncDefHash *pHash = &GLOBAL(FuncDefHash, sqlite3GlobalFunctions);
83281 FuncDef *aFunc = (FuncDef*)&GLOBAL(FuncDef, aBuiltinFunc);
83283 for(i=0; i<ArraySize(aBuiltinFunc); i++){
83284 sqlite3FuncDefInsert(pHash, &aFunc[i]);
83286 sqlite3RegisterDateTimeFunctions();
83287 #ifndef SQLITE_OMIT_ALTERTABLE
83288 sqlite3AlterFunctions();
83289 #endif
83292 /************** End of func.c ************************************************/
83293 /************** Begin file fkey.c ********************************************/
83296 ** The author disclaims copyright to this source code. In place of
83297 ** a legal notice, here is a blessing:
83299 ** May you do good and not evil.
83300 ** May you find forgiveness for yourself and forgive others.
83301 ** May you share freely, never taking more than you give.
83303 *************************************************************************
83304 ** This file contains code used by the compiler to add foreign key
83305 ** support to compiled SQL statements.
83308 #ifndef SQLITE_OMIT_FOREIGN_KEY
83309 #ifndef SQLITE_OMIT_TRIGGER
83312 ** Deferred and Immediate FKs
83313 ** --------------------------
83315 ** Foreign keys in SQLite come in two flavours: deferred and immediate.
83316 ** If an immediate foreign key constraint is violated, SQLITE_CONSTRAINT
83317 ** is returned and the current statement transaction rolled back. If a
83318 ** deferred foreign key constraint is violated, no action is taken
83319 ** immediately. However if the application attempts to commit the
83320 ** transaction before fixing the constraint violation, the attempt fails.
83322 ** Deferred constraints are implemented using a simple counter associated
83323 ** with the database handle. The counter is set to zero each time a
83324 ** database transaction is opened. Each time a statement is executed
83325 ** that causes a foreign key violation, the counter is incremented. Each
83326 ** time a statement is executed that removes an existing violation from
83327 ** the database, the counter is decremented. When the transaction is
83328 ** committed, the commit fails if the current value of the counter is
83329 ** greater than zero. This scheme has two big drawbacks:
83331 ** * When a commit fails due to a deferred foreign key constraint,
83332 ** there is no way to tell which foreign constraint is not satisfied,
83333 ** or which row it is not satisfied for.
83335 ** * If the database contains foreign key violations when the
83336 ** transaction is opened, this may cause the mechanism to malfunction.
83338 ** Despite these problems, this approach is adopted as it seems simpler
83339 ** than the alternatives.
83341 ** INSERT operations:
83343 ** I.1) For each FK for which the table is the child table, search
83344 ** the parent table for a match. If none is found increment the
83345 ** constraint counter.
83347 ** I.2) For each FK for which the table is the parent table,
83348 ** search the child table for rows that correspond to the new
83349 ** row in the parent table. Decrement the counter for each row
83350 ** found (as the constraint is now satisfied).
83352 ** DELETE operations:
83354 ** D.1) For each FK for which the table is the child table,
83355 ** search the parent table for a row that corresponds to the
83356 ** deleted row in the child table. If such a row is not found,
83357 ** decrement the counter.
83359 ** D.2) For each FK for which the table is the parent table, search
83360 ** the child table for rows that correspond to the deleted row
83361 ** in the parent table. For each found increment the counter.
83363 ** UPDATE operations:
83365 ** An UPDATE command requires that all 4 steps above are taken, but only
83366 ** for FK constraints for which the affected columns are actually
83367 ** modified (values must be compared at runtime).
83369 ** Note that I.1 and D.1 are very similar operations, as are I.2 and D.2.
83370 ** This simplifies the implementation a bit.
83372 ** For the purposes of immediate FK constraints, the OR REPLACE conflict
83373 ** resolution is considered to delete rows before the new row is inserted.
83374 ** If a delete caused by OR REPLACE violates an FK constraint, an exception
83375 ** is thrown, even if the FK constraint would be satisfied after the new
83376 ** row is inserted.
83378 ** Immediate constraints are usually handled similarly. The only difference
83379 ** is that the counter used is stored as part of each individual statement
83380 ** object (struct Vdbe). If, after the statement has run, its immediate
83381 ** constraint counter is greater than zero, it returns SQLITE_CONSTRAINT
83382 ** and the statement transaction is rolled back. An exception is an INSERT
83383 ** statement that inserts a single row only (no triggers). In this case,
83384 ** instead of using a counter, an exception is thrown immediately if the
83385 ** INSERT violates a foreign key constraint. This is necessary as such
83386 ** an INSERT does not open a statement transaction.
83388 ** TODO: How should dropping a table be handled? How should renaming a
83389 ** table be handled?
83392 ** Query API Notes
83393 ** ---------------
83395 ** Before coding an UPDATE or DELETE row operation, the code-generator
83396 ** for those two operations needs to know whether or not the operation
83397 ** requires any FK processing and, if so, which columns of the original
83398 ** row are required by the FK processing VDBE code (i.e. if FKs were
83399 ** implemented using triggers, which of the old.* columns would be
83400 ** accessed). No information is required by the code-generator before
83401 ** coding an INSERT operation. The functions used by the UPDATE/DELETE
83402 ** generation code to query for this information are:
83404 ** sqlite3FkRequired() - Test to see if FK processing is required.
83405 ** sqlite3FkOldmask() - Query for the set of required old.* columns.
83408 ** Externally accessible module functions
83409 ** --------------------------------------
83411 ** sqlite3FkCheck() - Check for foreign key violations.
83412 ** sqlite3FkActions() - Code triggers for ON UPDATE/ON DELETE actions.
83413 ** sqlite3FkDelete() - Delete an FKey structure.
83417 ** VDBE Calling Convention
83418 ** -----------------------
83420 ** Example:
83422 ** For the following INSERT statement:
83424 ** CREATE TABLE t1(a, b INTEGER PRIMARY KEY, c);
83425 ** INSERT INTO t1 VALUES(1, 2, 3.1);
83427 ** Register (x): 2 (type integer)
83428 ** Register (x+1): 1 (type integer)
83429 ** Register (x+2): NULL (type NULL)
83430 ** Register (x+3): 3.1 (type real)
83434 ** A foreign key constraint requires that the key columns in the parent
83435 ** table are collectively subject to a UNIQUE or PRIMARY KEY constraint.
83436 ** Given that pParent is the parent table for foreign key constraint pFKey,
83437 ** search the schema a unique index on the parent key columns.
83439 ** If successful, zero is returned. If the parent key is an INTEGER PRIMARY
83440 ** KEY column, then output variable *ppIdx is set to NULL. Otherwise, *ppIdx
83441 ** is set to point to the unique index.
83443 ** If the parent key consists of a single column (the foreign key constraint
83444 ** is not a composite foreign key), output variable *paiCol is set to NULL.
83445 ** Otherwise, it is set to point to an allocated array of size N, where
83446 ** N is the number of columns in the parent key. The first element of the
83447 ** array is the index of the child table column that is mapped by the FK
83448 ** constraint to the parent table column stored in the left-most column
83449 ** of index *ppIdx. The second element of the array is the index of the
83450 ** child table column that corresponds to the second left-most column of
83451 ** *ppIdx, and so on.
83453 ** If the required index cannot be found, either because:
83455 ** 1) The named parent key columns do not exist, or
83457 ** 2) The named parent key columns do exist, but are not subject to a
83458 ** UNIQUE or PRIMARY KEY constraint, or
83460 ** 3) No parent key columns were provided explicitly as part of the
83461 ** foreign key definition, and the parent table does not have a
83462 ** PRIMARY KEY, or
83464 ** 4) No parent key columns were provided explicitly as part of the
83465 ** foreign key definition, and the PRIMARY KEY of the parent table
83466 ** consists of a a different number of columns to the child key in
83467 ** the child table.
83469 ** then non-zero is returned, and a "foreign key mismatch" error loaded
83470 ** into pParse. If an OOM error occurs, non-zero is returned and the
83471 ** pParse->db->mallocFailed flag is set.
83473 static int locateFkeyIndex(
83474 Parse *pParse, /* Parse context to store any error in */
83475 Table *pParent, /* Parent table of FK constraint pFKey */
83476 FKey *pFKey, /* Foreign key to find index for */
83477 Index **ppIdx, /* OUT: Unique index on parent table */
83478 int **paiCol /* OUT: Map of index columns in pFKey */
83480 Index *pIdx = 0; /* Value to return via *ppIdx */
83481 int *aiCol = 0; /* Value to return via *paiCol */
83482 int nCol = pFKey->nCol; /* Number of columns in parent key */
83483 char *zKey = pFKey->aCol[0].zCol; /* Name of left-most parent key column */
83485 /* The caller is responsible for zeroing output parameters. */
83486 assert( ppIdx && *ppIdx==0 );
83487 assert( !paiCol || *paiCol==0 );
83488 assert( pParse );
83490 /* If this is a non-composite (single column) foreign key, check if it
83491 ** maps to the INTEGER PRIMARY KEY of table pParent. If so, leave *ppIdx
83492 ** and *paiCol set to zero and return early.
83494 ** Otherwise, for a composite foreign key (more than one column), allocate
83495 ** space for the aiCol array (returned via output parameter *paiCol).
83496 ** Non-composite foreign keys do not require the aiCol array.
83498 if( nCol==1 ){
83499 /* The FK maps to the IPK if any of the following are true:
83501 ** 1) There is an INTEGER PRIMARY KEY column and the FK is implicitly
83502 ** mapped to the primary key of table pParent, or
83503 ** 2) The FK is explicitly mapped to a column declared as INTEGER
83504 ** PRIMARY KEY.
83506 if( pParent->iPKey>=0 ){
83507 if( !zKey ) return 0;
83508 if( !sqlite3StrICmp(pParent->aCol[pParent->iPKey].zName, zKey) ) return 0;
83510 }else if( paiCol ){
83511 assert( nCol>1 );
83512 aiCol = (int *)sqlite3DbMallocRaw(pParse->db, nCol*sizeof(int));
83513 if( !aiCol ) return 1;
83514 *paiCol = aiCol;
83517 for(pIdx=pParent->pIndex; pIdx; pIdx=pIdx->pNext){
83518 if( pIdx->nColumn==nCol && pIdx->onError!=OE_None ){
83519 /* pIdx is a UNIQUE index (or a PRIMARY KEY) and has the right number
83520 ** of columns. If each indexed column corresponds to a foreign key
83521 ** column of pFKey, then this index is a winner. */
83523 if( zKey==0 ){
83524 /* If zKey is NULL, then this foreign key is implicitly mapped to
83525 ** the PRIMARY KEY of table pParent. The PRIMARY KEY index may be
83526 ** identified by the test (Index.autoIndex==2). */
83527 if( pIdx->autoIndex==2 ){
83528 if( aiCol ){
83529 int i;
83530 for(i=0; i<nCol; i++) aiCol[i] = pFKey->aCol[i].iFrom;
83532 break;
83534 }else{
83535 /* If zKey is non-NULL, then this foreign key was declared to
83536 ** map to an explicit list of columns in table pParent. Check if this
83537 ** index matches those columns. Also, check that the index uses
83538 ** the default collation sequences for each column. */
83539 int i, j;
83540 for(i=0; i<nCol; i++){
83541 int iCol = pIdx->aiColumn[i]; /* Index of column in parent tbl */
83542 char *zDfltColl; /* Def. collation for column */
83543 char *zIdxCol; /* Name of indexed column */
83545 /* If the index uses a collation sequence that is different from
83546 ** the default collation sequence for the column, this index is
83547 ** unusable. Bail out early in this case. */
83548 zDfltColl = pParent->aCol[iCol].zColl;
83549 if( !zDfltColl ){
83550 zDfltColl = "BINARY";
83552 if( sqlite3StrICmp(pIdx->azColl[i], zDfltColl) ) break;
83554 zIdxCol = pParent->aCol[iCol].zName;
83555 for(j=0; j<nCol; j++){
83556 if( sqlite3StrICmp(pFKey->aCol[j].zCol, zIdxCol)==0 ){
83557 if( aiCol ) aiCol[i] = pFKey->aCol[j].iFrom;
83558 break;
83561 if( j==nCol ) break;
83563 if( i==nCol ) break; /* pIdx is usable */
83568 if( !pIdx ){
83569 if( !pParse->disableTriggers ){
83570 sqlite3ErrorMsg(pParse, "foreign key mismatch");
83572 sqlite3DbFree(pParse->db, aiCol);
83573 return 1;
83576 *ppIdx = pIdx;
83577 return 0;
83581 ** This function is called when a row is inserted into or deleted from the
83582 ** child table of foreign key constraint pFKey. If an SQL UPDATE is executed
83583 ** on the child table of pFKey, this function is invoked twice for each row
83584 ** affected - once to "delete" the old row, and then again to "insert" the
83585 ** new row.
83587 ** Each time it is called, this function generates VDBE code to locate the
83588 ** row in the parent table that corresponds to the row being inserted into
83589 ** or deleted from the child table. If the parent row can be found, no
83590 ** special action is taken. Otherwise, if the parent row can *not* be
83591 ** found in the parent table:
83593 ** Operation | FK type | Action taken
83594 ** --------------------------------------------------------------------------
83595 ** INSERT immediate Increment the "immediate constraint counter".
83597 ** DELETE immediate Decrement the "immediate constraint counter".
83599 ** INSERT deferred Increment the "deferred constraint counter".
83601 ** DELETE deferred Decrement the "deferred constraint counter".
83603 ** These operations are identified in the comment at the top of this file
83604 ** (fkey.c) as "I.1" and "D.1".
83606 static void fkLookupParent(
83607 Parse *pParse, /* Parse context */
83608 int iDb, /* Index of database housing pTab */
83609 Table *pTab, /* Parent table of FK pFKey */
83610 Index *pIdx, /* Unique index on parent key columns in pTab */
83611 FKey *pFKey, /* Foreign key constraint */
83612 int *aiCol, /* Map from parent key columns to child table columns */
83613 int regData, /* Address of array containing child table row */
83614 int nIncr, /* Increment constraint counter by this */
83615 int isIgnore /* If true, pretend pTab contains all NULL values */
83617 int i; /* Iterator variable */
83618 Vdbe *v = sqlite3GetVdbe(pParse); /* Vdbe to add code to */
83619 int iCur = pParse->nTab - 1; /* Cursor number to use */
83620 int iOk = sqlite3VdbeMakeLabel(v); /* jump here if parent key found */
83622 /* If nIncr is less than zero, then check at runtime if there are any
83623 ** outstanding constraints to resolve. If there are not, there is no need
83624 ** to check if deleting this row resolves any outstanding violations.
83626 ** Check if any of the key columns in the child table row are NULL. If
83627 ** any are, then the constraint is considered satisfied. No need to
83628 ** search for a matching row in the parent table. */
83629 if( nIncr<0 ){
83630 sqlite3VdbeAddOp2(v, OP_FkIfZero, pFKey->isDeferred, iOk);
83632 for(i=0; i<pFKey->nCol; i++){
83633 int iReg = aiCol[i] + regData + 1;
83634 sqlite3VdbeAddOp2(v, OP_IsNull, iReg, iOk);
83637 if( isIgnore==0 ){
83638 if( pIdx==0 ){
83639 /* If pIdx is NULL, then the parent key is the INTEGER PRIMARY KEY
83640 ** column of the parent table (table pTab). */
83641 int iMustBeInt; /* Address of MustBeInt instruction */
83642 int regTemp = sqlite3GetTempReg(pParse);
83644 /* Invoke MustBeInt to coerce the child key value to an integer (i.e.
83645 ** apply the affinity of the parent key). If this fails, then there
83646 ** is no matching parent key. Before using MustBeInt, make a copy of
83647 ** the value. Otherwise, the value inserted into the child key column
83648 ** will have INTEGER affinity applied to it, which may not be correct. */
83649 sqlite3VdbeAddOp2(v, OP_SCopy, aiCol[0]+1+regData, regTemp);
83650 iMustBeInt = sqlite3VdbeAddOp2(v, OP_MustBeInt, regTemp, 0);
83652 /* If the parent table is the same as the child table, and we are about
83653 ** to increment the constraint-counter (i.e. this is an INSERT operation),
83654 ** then check if the row being inserted matches itself. If so, do not
83655 ** increment the constraint-counter. */
83656 if( pTab==pFKey->pFrom && nIncr==1 ){
83657 sqlite3VdbeAddOp3(v, OP_Eq, regData, iOk, regTemp);
83660 sqlite3OpenTable(pParse, iCur, iDb, pTab, OP_OpenRead);
83661 sqlite3VdbeAddOp3(v, OP_NotExists, iCur, 0, regTemp);
83662 sqlite3VdbeAddOp2(v, OP_Goto, 0, iOk);
83663 sqlite3VdbeJumpHere(v, sqlite3VdbeCurrentAddr(v)-2);
83664 sqlite3VdbeJumpHere(v, iMustBeInt);
83665 sqlite3ReleaseTempReg(pParse, regTemp);
83666 }else{
83667 int nCol = pFKey->nCol;
83668 int regTemp = sqlite3GetTempRange(pParse, nCol);
83669 int regRec = sqlite3GetTempReg(pParse);
83670 KeyInfo *pKey = sqlite3IndexKeyinfo(pParse, pIdx);
83672 sqlite3VdbeAddOp3(v, OP_OpenRead, iCur, pIdx->tnum, iDb);
83673 sqlite3VdbeChangeP4(v, -1, (char*)pKey, P4_KEYINFO_HANDOFF);
83674 for(i=0; i<nCol; i++){
83675 sqlite3VdbeAddOp2(v, OP_Copy, aiCol[i]+1+regData, regTemp+i);
83678 /* If the parent table is the same as the child table, and we are about
83679 ** to increment the constraint-counter (i.e. this is an INSERT operation),
83680 ** then check if the row being inserted matches itself. If so, do not
83681 ** increment the constraint-counter. */
83682 if( pTab==pFKey->pFrom && nIncr==1 ){
83683 int iJump = sqlite3VdbeCurrentAddr(v) + nCol + 1;
83684 for(i=0; i<nCol; i++){
83685 int iChild = aiCol[i]+1+regData;
83686 int iParent = pIdx->aiColumn[i]+1+regData;
83687 sqlite3VdbeAddOp3(v, OP_Ne, iChild, iJump, iParent);
83689 sqlite3VdbeAddOp2(v, OP_Goto, 0, iOk);
83692 sqlite3VdbeAddOp3(v, OP_MakeRecord, regTemp, nCol, regRec);
83693 sqlite3VdbeChangeP4(v, -1, sqlite3IndexAffinityStr(v,pIdx), P4_TRANSIENT);
83694 sqlite3VdbeAddOp4Int(v, OP_Found, iCur, iOk, regRec, 0);
83696 sqlite3ReleaseTempReg(pParse, regRec);
83697 sqlite3ReleaseTempRange(pParse, regTemp, nCol);
83701 if( !pFKey->isDeferred && !pParse->pToplevel && !pParse->isMultiWrite ){
83702 /* Special case: If this is an INSERT statement that will insert exactly
83703 ** one row into the table, raise a constraint immediately instead of
83704 ** incrementing a counter. This is necessary as the VM code is being
83705 ** generated for will not open a statement transaction. */
83706 assert( nIncr==1 );
83707 sqlite3HaltConstraint(
83708 pParse, OE_Abort, "foreign key constraint failed", P4_STATIC
83710 }else{
83711 if( nIncr>0 && pFKey->isDeferred==0 ){
83712 sqlite3ParseToplevel(pParse)->mayAbort = 1;
83714 sqlite3VdbeAddOp2(v, OP_FkCounter, pFKey->isDeferred, nIncr);
83717 sqlite3VdbeResolveLabel(v, iOk);
83718 sqlite3VdbeAddOp1(v, OP_Close, iCur);
83722 ** This function is called to generate code executed when a row is deleted
83723 ** from the parent table of foreign key constraint pFKey and, if pFKey is
83724 ** deferred, when a row is inserted into the same table. When generating
83725 ** code for an SQL UPDATE operation, this function may be called twice -
83726 ** once to "delete" the old row and once to "insert" the new row.
83728 ** The code generated by this function scans through the rows in the child
83729 ** table that correspond to the parent table row being deleted or inserted.
83730 ** For each child row found, one of the following actions is taken:
83732 ** Operation | FK type | Action taken
83733 ** --------------------------------------------------------------------------
83734 ** DELETE immediate Increment the "immediate constraint counter".
83735 ** Or, if the ON (UPDATE|DELETE) action is RESTRICT,
83736 ** throw a "foreign key constraint failed" exception.
83738 ** INSERT immediate Decrement the "immediate constraint counter".
83740 ** DELETE deferred Increment the "deferred constraint counter".
83741 ** Or, if the ON (UPDATE|DELETE) action is RESTRICT,
83742 ** throw a "foreign key constraint failed" exception.
83744 ** INSERT deferred Decrement the "deferred constraint counter".
83746 ** These operations are identified in the comment at the top of this file
83747 ** (fkey.c) as "I.2" and "D.2".
83749 static void fkScanChildren(
83750 Parse *pParse, /* Parse context */
83751 SrcList *pSrc, /* SrcList containing the table to scan */
83752 Table *pTab,
83753 Index *pIdx, /* Foreign key index */
83754 FKey *pFKey, /* Foreign key relationship */
83755 int *aiCol, /* Map from pIdx cols to child table cols */
83756 int regData, /* Referenced table data starts here */
83757 int nIncr /* Amount to increment deferred counter by */
83759 sqlite3 *db = pParse->db; /* Database handle */
83760 int i; /* Iterator variable */
83761 Expr *pWhere = 0; /* WHERE clause to scan with */
83762 NameContext sNameContext; /* Context used to resolve WHERE clause */
83763 WhereInfo *pWInfo; /* Context used by sqlite3WhereXXX() */
83764 int iFkIfZero = 0; /* Address of OP_FkIfZero */
83765 Vdbe *v = sqlite3GetVdbe(pParse);
83767 assert( !pIdx || pIdx->pTable==pTab );
83769 if( nIncr<0 ){
83770 iFkIfZero = sqlite3VdbeAddOp2(v, OP_FkIfZero, pFKey->isDeferred, 0);
83773 /* Create an Expr object representing an SQL expression like:
83775 ** <parent-key1> = <child-key1> AND <parent-key2> = <child-key2> ...
83777 ** The collation sequence used for the comparison should be that of
83778 ** the parent key columns. The affinity of the parent key column should
83779 ** be applied to each child key value before the comparison takes place.
83781 for(i=0; i<pFKey->nCol; i++){
83782 Expr *pLeft; /* Value from parent table row */
83783 Expr *pRight; /* Column ref to child table */
83784 Expr *pEq; /* Expression (pLeft = pRight) */
83785 int iCol; /* Index of column in child table */
83786 const char *zCol; /* Name of column in child table */
83788 pLeft = sqlite3Expr(db, TK_REGISTER, 0);
83789 if( pLeft ){
83790 /* Set the collation sequence and affinity of the LHS of each TK_EQ
83791 ** expression to the parent key column defaults. */
83792 if( pIdx ){
83793 Column *pCol;
83794 iCol = pIdx->aiColumn[i];
83795 pCol = &pTab->aCol[iCol];
83796 if( pTab->iPKey==iCol ) iCol = -1;
83797 pLeft->iTable = regData+iCol+1;
83798 pLeft->affinity = pCol->affinity;
83799 pLeft->pColl = sqlite3LocateCollSeq(pParse, pCol->zColl);
83800 }else{
83801 pLeft->iTable = regData;
83802 pLeft->affinity = SQLITE_AFF_INTEGER;
83805 iCol = aiCol ? aiCol[i] : pFKey->aCol[0].iFrom;
83806 assert( iCol>=0 );
83807 zCol = pFKey->pFrom->aCol[iCol].zName;
83808 pRight = sqlite3Expr(db, TK_ID, zCol);
83809 pEq = sqlite3PExpr(pParse, TK_EQ, pLeft, pRight, 0);
83810 pWhere = sqlite3ExprAnd(db, pWhere, pEq);
83813 /* If the child table is the same as the parent table, and this scan
83814 ** is taking place as part of a DELETE operation (operation D.2), omit the
83815 ** row being deleted from the scan by adding ($rowid != rowid) to the WHERE
83816 ** clause, where $rowid is the rowid of the row being deleted. */
83817 if( pTab==pFKey->pFrom && nIncr>0 ){
83818 Expr *pEq; /* Expression (pLeft = pRight) */
83819 Expr *pLeft; /* Value from parent table row */
83820 Expr *pRight; /* Column ref to child table */
83821 pLeft = sqlite3Expr(db, TK_REGISTER, 0);
83822 pRight = sqlite3Expr(db, TK_COLUMN, 0);
83823 if( pLeft && pRight ){
83824 pLeft->iTable = regData;
83825 pLeft->affinity = SQLITE_AFF_INTEGER;
83826 pRight->iTable = pSrc->a[0].iCursor;
83827 pRight->iColumn = -1;
83829 pEq = sqlite3PExpr(pParse, TK_NE, pLeft, pRight, 0);
83830 pWhere = sqlite3ExprAnd(db, pWhere, pEq);
83833 /* Resolve the references in the WHERE clause. */
83834 memset(&sNameContext, 0, sizeof(NameContext));
83835 sNameContext.pSrcList = pSrc;
83836 sNameContext.pParse = pParse;
83837 sqlite3ResolveExprNames(&sNameContext, pWhere);
83839 /* Create VDBE to loop through the entries in pSrc that match the WHERE
83840 ** clause. If the constraint is not deferred, throw an exception for
83841 ** each row found. Otherwise, for deferred constraints, increment the
83842 ** deferred constraint counter by nIncr for each row selected. */
83843 pWInfo = sqlite3WhereBegin(pParse, pSrc, pWhere, 0, 0);
83844 if( nIncr>0 && pFKey->isDeferred==0 ){
83845 sqlite3ParseToplevel(pParse)->mayAbort = 1;
83847 sqlite3VdbeAddOp2(v, OP_FkCounter, pFKey->isDeferred, nIncr);
83848 if( pWInfo ){
83849 sqlite3WhereEnd(pWInfo);
83852 /* Clean up the WHERE clause constructed above. */
83853 sqlite3ExprDelete(db, pWhere);
83854 if( iFkIfZero ){
83855 sqlite3VdbeJumpHere(v, iFkIfZero);
83860 ** This function returns a pointer to the head of a linked list of FK
83861 ** constraints for which table pTab is the parent table. For example,
83862 ** given the following schema:
83864 ** CREATE TABLE t1(a PRIMARY KEY);
83865 ** CREATE TABLE t2(b REFERENCES t1(a);
83867 ** Calling this function with table "t1" as an argument returns a pointer
83868 ** to the FKey structure representing the foreign key constraint on table
83869 ** "t2". Calling this function with "t2" as the argument would return a
83870 ** NULL pointer (as there are no FK constraints for which t2 is the parent
83871 ** table).
83873 SQLITE_PRIVATE FKey *sqlite3FkReferences(Table *pTab){
83874 int nName = sqlite3Strlen30(pTab->zName);
83875 return (FKey *)sqlite3HashFind(&pTab->pSchema->fkeyHash, pTab->zName, nName);
83879 ** The second argument is a Trigger structure allocated by the
83880 ** fkActionTrigger() routine. This function deletes the Trigger structure
83881 ** and all of its sub-components.
83883 ** The Trigger structure or any of its sub-components may be allocated from
83884 ** the lookaside buffer belonging to database handle dbMem.
83886 static void fkTriggerDelete(sqlite3 *dbMem, Trigger *p){
83887 if( p ){
83888 TriggerStep *pStep = p->step_list;
83889 sqlite3ExprDelete(dbMem, pStep->pWhere);
83890 sqlite3ExprListDelete(dbMem, pStep->pExprList);
83891 sqlite3SelectDelete(dbMem, pStep->pSelect);
83892 sqlite3ExprDelete(dbMem, p->pWhen);
83893 sqlite3DbFree(dbMem, p);
83898 ** This function is called to generate code that runs when table pTab is
83899 ** being dropped from the database. The SrcList passed as the second argument
83900 ** to this function contains a single entry guaranteed to resolve to
83901 ** table pTab.
83903 ** Normally, no code is required. However, if either
83905 ** (a) The table is the parent table of a FK constraint, or
83906 ** (b) The table is the child table of a deferred FK constraint and it is
83907 ** determined at runtime that there are outstanding deferred FK
83908 ** constraint violations in the database,
83910 ** then the equivalent of "DELETE FROM <tbl>" is executed before dropping
83911 ** the table from the database. Triggers are disabled while running this
83912 ** DELETE, but foreign key actions are not.
83914 SQLITE_PRIVATE void sqlite3FkDropTable(Parse *pParse, SrcList *pName, Table *pTab){
83915 sqlite3 *db = pParse->db;
83916 if( (db->flags&SQLITE_ForeignKeys) && !IsVirtual(pTab) && !pTab->pSelect ){
83917 int iSkip = 0;
83918 Vdbe *v = sqlite3GetVdbe(pParse);
83920 assert( v ); /* VDBE has already been allocated */
83921 if( sqlite3FkReferences(pTab)==0 ){
83922 /* Search for a deferred foreign key constraint for which this table
83923 ** is the child table. If one cannot be found, return without
83924 ** generating any VDBE code. If one can be found, then jump over
83925 ** the entire DELETE if there are no outstanding deferred constraints
83926 ** when this statement is run. */
83927 FKey *p;
83928 for(p=pTab->pFKey; p; p=p->pNextFrom){
83929 if( p->isDeferred ) break;
83931 if( !p ) return;
83932 iSkip = sqlite3VdbeMakeLabel(v);
83933 sqlite3VdbeAddOp2(v, OP_FkIfZero, 1, iSkip);
83936 pParse->disableTriggers = 1;
83937 sqlite3DeleteFrom(pParse, sqlite3SrcListDup(db, pName, 0), 0);
83938 pParse->disableTriggers = 0;
83940 /* If the DELETE has generated immediate foreign key constraint
83941 ** violations, halt the VDBE and return an error at this point, before
83942 ** any modifications to the schema are made. This is because statement
83943 ** transactions are not able to rollback schema changes. */
83944 sqlite3VdbeAddOp2(v, OP_FkIfZero, 0, sqlite3VdbeCurrentAddr(v)+2);
83945 sqlite3HaltConstraint(
83946 pParse, OE_Abort, "foreign key constraint failed", P4_STATIC
83949 if( iSkip ){
83950 sqlite3VdbeResolveLabel(v, iSkip);
83956 ** This function is called when inserting, deleting or updating a row of
83957 ** table pTab to generate VDBE code to perform foreign key constraint
83958 ** processing for the operation.
83960 ** For a DELETE operation, parameter regOld is passed the index of the
83961 ** first register in an array of (pTab->nCol+1) registers containing the
83962 ** rowid of the row being deleted, followed by each of the column values
83963 ** of the row being deleted, from left to right. Parameter regNew is passed
83964 ** zero in this case.
83966 ** For an INSERT operation, regOld is passed zero and regNew is passed the
83967 ** first register of an array of (pTab->nCol+1) registers containing the new
83968 ** row data.
83970 ** For an UPDATE operation, this function is called twice. Once before
83971 ** the original record is deleted from the table using the calling convention
83972 ** described for DELETE. Then again after the original record is deleted
83973 ** but before the new record is inserted using the INSERT convention.
83975 SQLITE_PRIVATE void sqlite3FkCheck(
83976 Parse *pParse, /* Parse context */
83977 Table *pTab, /* Row is being deleted from this table */
83978 int regOld, /* Previous row data is stored here */
83979 int regNew /* New row data is stored here */
83981 sqlite3 *db = pParse->db; /* Database handle */
83982 FKey *pFKey; /* Used to iterate through FKs */
83983 int iDb; /* Index of database containing pTab */
83984 const char *zDb; /* Name of database containing pTab */
83985 int isIgnoreErrors = pParse->disableTriggers;
83987 /* Exactly one of regOld and regNew should be non-zero. */
83988 assert( (regOld==0)!=(regNew==0) );
83990 /* If foreign-keys are disabled, this function is a no-op. */
83991 if( (db->flags&SQLITE_ForeignKeys)==0 ) return;
83993 iDb = sqlite3SchemaToIndex(db, pTab->pSchema);
83994 zDb = db->aDb[iDb].zName;
83996 /* Loop through all the foreign key constraints for which pTab is the
83997 ** child table (the table that the foreign key definition is part of). */
83998 for(pFKey=pTab->pFKey; pFKey; pFKey=pFKey->pNextFrom){
83999 Table *pTo; /* Parent table of foreign key pFKey */
84000 Index *pIdx = 0; /* Index on key columns in pTo */
84001 int *aiFree = 0;
84002 int *aiCol;
84003 int iCol;
84004 int i;
84005 int isIgnore = 0;
84007 /* Find the parent table of this foreign key. Also find a unique index
84008 ** on the parent key columns in the parent table. If either of these
84009 ** schema items cannot be located, set an error in pParse and return
84010 ** early. */
84011 if( pParse->disableTriggers ){
84012 pTo = sqlite3FindTable(db, pFKey->zTo, zDb);
84013 }else{
84014 pTo = sqlite3LocateTable(pParse, 0, pFKey->zTo, zDb);
84016 if( !pTo || locateFkeyIndex(pParse, pTo, pFKey, &pIdx, &aiFree) ){
84017 if( !isIgnoreErrors || db->mallocFailed ) return;
84018 continue;
84020 assert( pFKey->nCol==1 || (aiFree && pIdx) );
84022 if( aiFree ){
84023 aiCol = aiFree;
84024 }else{
84025 iCol = pFKey->aCol[0].iFrom;
84026 aiCol = &iCol;
84028 for(i=0; i<pFKey->nCol; i++){
84029 if( aiCol[i]==pTab->iPKey ){
84030 aiCol[i] = -1;
84032 #ifndef SQLITE_OMIT_AUTHORIZATION
84033 /* Request permission to read the parent key columns. If the
84034 ** authorization callback returns SQLITE_IGNORE, behave as if any
84035 ** values read from the parent table are NULL. */
84036 if( db->xAuth ){
84037 int rcauth;
84038 char *zCol = pTo->aCol[pIdx ? pIdx->aiColumn[i] : pTo->iPKey].zName;
84039 rcauth = sqlite3AuthReadCol(pParse, pTo->zName, zCol, iDb);
84040 isIgnore = (rcauth==SQLITE_IGNORE);
84042 #endif
84045 /* Take a shared-cache advisory read-lock on the parent table. Allocate
84046 ** a cursor to use to search the unique index on the parent key columns
84047 ** in the parent table. */
84048 sqlite3TableLock(pParse, iDb, pTo->tnum, 0, pTo->zName);
84049 pParse->nTab++;
84051 if( regOld!=0 ){
84052 /* A row is being removed from the child table. Search for the parent.
84053 ** If the parent does not exist, removing the child row resolves an
84054 ** outstanding foreign key constraint violation. */
84055 fkLookupParent(pParse, iDb, pTo, pIdx, pFKey, aiCol, regOld, -1,isIgnore);
84057 if( regNew!=0 ){
84058 /* A row is being added to the child table. If a parent row cannot
84059 ** be found, adding the child row has violated the FK constraint. */
84060 fkLookupParent(pParse, iDb, pTo, pIdx, pFKey, aiCol, regNew, +1,isIgnore);
84063 sqlite3DbFree(db, aiFree);
84066 /* Loop through all the foreign key constraints that refer to this table */
84067 for(pFKey = sqlite3FkReferences(pTab); pFKey; pFKey=pFKey->pNextTo){
84068 Index *pIdx = 0; /* Foreign key index for pFKey */
84069 SrcList *pSrc;
84070 int *aiCol = 0;
84072 if( !pFKey->isDeferred && !pParse->pToplevel && !pParse->isMultiWrite ){
84073 assert( regOld==0 && regNew!=0 );
84074 /* Inserting a single row into a parent table cannot cause an immediate
84075 ** foreign key violation. So do nothing in this case. */
84076 continue;
84079 if( locateFkeyIndex(pParse, pTab, pFKey, &pIdx, &aiCol) ){
84080 if( !isIgnoreErrors || db->mallocFailed ) return;
84081 continue;
84083 assert( aiCol || pFKey->nCol==1 );
84085 /* Create a SrcList structure containing a single table (the table
84086 ** the foreign key that refers to this table is attached to). This
84087 ** is required for the sqlite3WhereXXX() interface. */
84088 pSrc = sqlite3SrcListAppend(db, 0, 0, 0);
84089 if( pSrc ){
84090 struct SrcList_item *pItem = pSrc->a;
84091 pItem->pTab = pFKey->pFrom;
84092 pItem->zName = pFKey->pFrom->zName;
84093 pItem->pTab->nRef++;
84094 pItem->iCursor = pParse->nTab++;
84096 if( regNew!=0 ){
84097 fkScanChildren(pParse, pSrc, pTab, pIdx, pFKey, aiCol, regNew, -1);
84099 if( regOld!=0 ){
84100 /* If there is a RESTRICT action configured for the current operation
84101 ** on the parent table of this FK, then throw an exception
84102 ** immediately if the FK constraint is violated, even if this is a
84103 ** deferred trigger. That's what RESTRICT means. To defer checking
84104 ** the constraint, the FK should specify NO ACTION (represented
84105 ** using OE_None). NO ACTION is the default. */
84106 fkScanChildren(pParse, pSrc, pTab, pIdx, pFKey, aiCol, regOld, 1);
84108 pItem->zName = 0;
84109 sqlite3SrcListDelete(db, pSrc);
84111 sqlite3DbFree(db, aiCol);
84115 #define COLUMN_MASK(x) (((x)>31) ? 0xffffffff : ((u32)1<<(x)))
84118 ** This function is called before generating code to update or delete a
84119 ** row contained in table pTab.
84121 SQLITE_PRIVATE u32 sqlite3FkOldmask(
84122 Parse *pParse, /* Parse context */
84123 Table *pTab /* Table being modified */
84125 u32 mask = 0;
84126 if( pParse->db->flags&SQLITE_ForeignKeys ){
84127 FKey *p;
84128 int i;
84129 for(p=pTab->pFKey; p; p=p->pNextFrom){
84130 for(i=0; i<p->nCol; i++) mask |= COLUMN_MASK(p->aCol[i].iFrom);
84132 for(p=sqlite3FkReferences(pTab); p; p=p->pNextTo){
84133 Index *pIdx = 0;
84134 locateFkeyIndex(pParse, pTab, p, &pIdx, 0);
84135 if( pIdx ){
84136 for(i=0; i<pIdx->nColumn; i++) mask |= COLUMN_MASK(pIdx->aiColumn[i]);
84140 return mask;
84144 ** This function is called before generating code to update or delete a
84145 ** row contained in table pTab. If the operation is a DELETE, then
84146 ** parameter aChange is passed a NULL value. For an UPDATE, aChange points
84147 ** to an array of size N, where N is the number of columns in table pTab.
84148 ** If the i'th column is not modified by the UPDATE, then the corresponding
84149 ** entry in the aChange[] array is set to -1. If the column is modified,
84150 ** the value is 0 or greater. Parameter chngRowid is set to true if the
84151 ** UPDATE statement modifies the rowid fields of the table.
84153 ** If any foreign key processing will be required, this function returns
84154 ** true. If there is no foreign key related processing, this function
84155 ** returns false.
84157 SQLITE_PRIVATE int sqlite3FkRequired(
84158 Parse *pParse, /* Parse context */
84159 Table *pTab, /* Table being modified */
84160 int *aChange, /* Non-NULL for UPDATE operations */
84161 int chngRowid /* True for UPDATE that affects rowid */
84163 if( pParse->db->flags&SQLITE_ForeignKeys ){
84164 if( !aChange ){
84165 /* A DELETE operation. Foreign key processing is required if the
84166 ** table in question is either the child or parent table for any
84167 ** foreign key constraint. */
84168 return (sqlite3FkReferences(pTab) || pTab->pFKey);
84169 }else{
84170 /* This is an UPDATE. Foreign key processing is only required if the
84171 ** operation modifies one or more child or parent key columns. */
84172 int i;
84173 FKey *p;
84175 /* Check if any child key columns are being modified. */
84176 for(p=pTab->pFKey; p; p=p->pNextFrom){
84177 for(i=0; i<p->nCol; i++){
84178 int iChildKey = p->aCol[i].iFrom;
84179 if( aChange[iChildKey]>=0 ) return 1;
84180 if( iChildKey==pTab->iPKey && chngRowid ) return 1;
84184 /* Check if any parent key columns are being modified. */
84185 for(p=sqlite3FkReferences(pTab); p; p=p->pNextTo){
84186 for(i=0; i<p->nCol; i++){
84187 char *zKey = p->aCol[i].zCol;
84188 int iKey;
84189 for(iKey=0; iKey<pTab->nCol; iKey++){
84190 Column *pCol = &pTab->aCol[iKey];
84191 if( (zKey ? !sqlite3StrICmp(pCol->zName, zKey) : pCol->isPrimKey) ){
84192 if( aChange[iKey]>=0 ) return 1;
84193 if( iKey==pTab->iPKey && chngRowid ) return 1;
84200 return 0;
84204 ** This function is called when an UPDATE or DELETE operation is being
84205 ** compiled on table pTab, which is the parent table of foreign-key pFKey.
84206 ** If the current operation is an UPDATE, then the pChanges parameter is
84207 ** passed a pointer to the list of columns being modified. If it is a
84208 ** DELETE, pChanges is passed a NULL pointer.
84210 ** It returns a pointer to a Trigger structure containing a trigger
84211 ** equivalent to the ON UPDATE or ON DELETE action specified by pFKey.
84212 ** If the action is "NO ACTION" or "RESTRICT", then a NULL pointer is
84213 ** returned (these actions require no special handling by the triggers
84214 ** sub-system, code for them is created by fkScanChildren()).
84216 ** For example, if pFKey is the foreign key and pTab is table "p" in
84217 ** the following schema:
84219 ** CREATE TABLE p(pk PRIMARY KEY);
84220 ** CREATE TABLE c(ck REFERENCES p ON DELETE CASCADE);
84222 ** then the returned trigger structure is equivalent to:
84224 ** CREATE TRIGGER ... DELETE ON p BEGIN
84225 ** DELETE FROM c WHERE ck = old.pk;
84226 ** END;
84228 ** The returned pointer is cached as part of the foreign key object. It
84229 ** is eventually freed along with the rest of the foreign key object by
84230 ** sqlite3FkDelete().
84232 static Trigger *fkActionTrigger(
84233 Parse *pParse, /* Parse context */
84234 Table *pTab, /* Table being updated or deleted from */
84235 FKey *pFKey, /* Foreign key to get action for */
84236 ExprList *pChanges /* Change-list for UPDATE, NULL for DELETE */
84238 sqlite3 *db = pParse->db; /* Database handle */
84239 int action; /* One of OE_None, OE_Cascade etc. */
84240 Trigger *pTrigger; /* Trigger definition to return */
84241 int iAction = (pChanges!=0); /* 1 for UPDATE, 0 for DELETE */
84243 action = pFKey->aAction[iAction];
84244 pTrigger = pFKey->apTrigger[iAction];
84246 if( action!=OE_None && !pTrigger ){
84247 u8 enableLookaside; /* Copy of db->lookaside.bEnabled */
84248 char const *zFrom; /* Name of child table */
84249 int nFrom; /* Length in bytes of zFrom */
84250 Index *pIdx = 0; /* Parent key index for this FK */
84251 int *aiCol = 0; /* child table cols -> parent key cols */
84252 TriggerStep *pStep = 0; /* First (only) step of trigger program */
84253 Expr *pWhere = 0; /* WHERE clause of trigger step */
84254 ExprList *pList = 0; /* Changes list if ON UPDATE CASCADE */
84255 Select *pSelect = 0; /* If RESTRICT, "SELECT RAISE(...)" */
84256 int i; /* Iterator variable */
84257 Expr *pWhen = 0; /* WHEN clause for the trigger */
84259 if( locateFkeyIndex(pParse, pTab, pFKey, &pIdx, &aiCol) ) return 0;
84260 assert( aiCol || pFKey->nCol==1 );
84262 for(i=0; i<pFKey->nCol; i++){
84263 Token tOld = { "old", 3 }; /* Literal "old" token */
84264 Token tNew = { "new", 3 }; /* Literal "new" token */
84265 Token tFromCol; /* Name of column in child table */
84266 Token tToCol; /* Name of column in parent table */
84267 int iFromCol; /* Idx of column in child table */
84268 Expr *pEq; /* tFromCol = OLD.tToCol */
84270 iFromCol = aiCol ? aiCol[i] : pFKey->aCol[0].iFrom;
84271 assert( iFromCol>=0 );
84272 tToCol.z = pIdx ? pTab->aCol[pIdx->aiColumn[i]].zName : "oid";
84273 tFromCol.z = pFKey->pFrom->aCol[iFromCol].zName;
84275 tToCol.n = sqlite3Strlen30(tToCol.z);
84276 tFromCol.n = sqlite3Strlen30(tFromCol.z);
84278 /* Create the expression "OLD.zToCol = zFromCol". It is important
84279 ** that the "OLD.zToCol" term is on the LHS of the = operator, so
84280 ** that the affinity and collation sequence associated with the
84281 ** parent table are used for the comparison. */
84282 pEq = sqlite3PExpr(pParse, TK_EQ,
84283 sqlite3PExpr(pParse, TK_DOT,
84284 sqlite3PExpr(pParse, TK_ID, 0, 0, &tOld),
84285 sqlite3PExpr(pParse, TK_ID, 0, 0, &tToCol)
84286 , 0),
84287 sqlite3PExpr(pParse, TK_ID, 0, 0, &tFromCol)
84288 , 0);
84289 pWhere = sqlite3ExprAnd(db, pWhere, pEq);
84291 /* For ON UPDATE, construct the next term of the WHEN clause.
84292 ** The final WHEN clause will be like this:
84294 ** WHEN NOT(old.col1 IS new.col1 AND ... AND old.colN IS new.colN)
84296 if( pChanges ){
84297 pEq = sqlite3PExpr(pParse, TK_IS,
84298 sqlite3PExpr(pParse, TK_DOT,
84299 sqlite3PExpr(pParse, TK_ID, 0, 0, &tOld),
84300 sqlite3PExpr(pParse, TK_ID, 0, 0, &tToCol),
84302 sqlite3PExpr(pParse, TK_DOT,
84303 sqlite3PExpr(pParse, TK_ID, 0, 0, &tNew),
84304 sqlite3PExpr(pParse, TK_ID, 0, 0, &tToCol),
84307 pWhen = sqlite3ExprAnd(db, pWhen, pEq);
84310 if( action!=OE_Restrict && (action!=OE_Cascade || pChanges) ){
84311 Expr *pNew;
84312 if( action==OE_Cascade ){
84313 pNew = sqlite3PExpr(pParse, TK_DOT,
84314 sqlite3PExpr(pParse, TK_ID, 0, 0, &tNew),
84315 sqlite3PExpr(pParse, TK_ID, 0, 0, &tToCol)
84316 , 0);
84317 }else if( action==OE_SetDflt ){
84318 Expr *pDflt = pFKey->pFrom->aCol[iFromCol].pDflt;
84319 if( pDflt ){
84320 pNew = sqlite3ExprDup(db, pDflt, 0);
84321 }else{
84322 pNew = sqlite3PExpr(pParse, TK_NULL, 0, 0, 0);
84324 }else{
84325 pNew = sqlite3PExpr(pParse, TK_NULL, 0, 0, 0);
84327 pList = sqlite3ExprListAppend(pParse, pList, pNew);
84328 sqlite3ExprListSetName(pParse, pList, &tFromCol, 0);
84331 sqlite3DbFree(db, aiCol);
84333 zFrom = pFKey->pFrom->zName;
84334 nFrom = sqlite3Strlen30(zFrom);
84336 if( action==OE_Restrict ){
84337 Token tFrom;
84338 Expr *pRaise;
84340 tFrom.z = zFrom;
84341 tFrom.n = nFrom;
84342 pRaise = sqlite3Expr(db, TK_RAISE, "foreign key constraint failed");
84343 if( pRaise ){
84344 pRaise->affinity = OE_Abort;
84346 pSelect = sqlite3SelectNew(pParse,
84347 sqlite3ExprListAppend(pParse, 0, pRaise),
84348 sqlite3SrcListAppend(db, 0, &tFrom, 0),
84349 pWhere,
84350 0, 0, 0, 0, 0, 0
84352 pWhere = 0;
84355 /* Disable lookaside memory allocation */
84356 enableLookaside = db->lookaside.bEnabled;
84357 db->lookaside.bEnabled = 0;
84359 pTrigger = (Trigger *)sqlite3DbMallocZero(db,
84360 sizeof(Trigger) + /* struct Trigger */
84361 sizeof(TriggerStep) + /* Single step in trigger program */
84362 nFrom + 1 /* Space for pStep->target.z */
84364 if( pTrigger ){
84365 pStep = pTrigger->step_list = (TriggerStep *)&pTrigger[1];
84366 pStep->target.z = (char *)&pStep[1];
84367 pStep->target.n = nFrom;
84368 memcpy((char *)pStep->target.z, zFrom, nFrom);
84370 pStep->pWhere = sqlite3ExprDup(db, pWhere, EXPRDUP_REDUCE);
84371 pStep->pExprList = sqlite3ExprListDup(db, pList, EXPRDUP_REDUCE);
84372 pStep->pSelect = sqlite3SelectDup(db, pSelect, EXPRDUP_REDUCE);
84373 if( pWhen ){
84374 pWhen = sqlite3PExpr(pParse, TK_NOT, pWhen, 0, 0);
84375 pTrigger->pWhen = sqlite3ExprDup(db, pWhen, EXPRDUP_REDUCE);
84379 /* Re-enable the lookaside buffer, if it was disabled earlier. */
84380 db->lookaside.bEnabled = enableLookaside;
84382 sqlite3ExprDelete(db, pWhere);
84383 sqlite3ExprDelete(db, pWhen);
84384 sqlite3ExprListDelete(db, pList);
84385 sqlite3SelectDelete(db, pSelect);
84386 if( db->mallocFailed==1 ){
84387 fkTriggerDelete(db, pTrigger);
84388 return 0;
84391 switch( action ){
84392 case OE_Restrict:
84393 pStep->op = TK_SELECT;
84394 break;
84395 case OE_Cascade:
84396 if( !pChanges ){
84397 pStep->op = TK_DELETE;
84398 break;
84400 default:
84401 pStep->op = TK_UPDATE;
84403 pStep->pTrig = pTrigger;
84404 pTrigger->pSchema = pTab->pSchema;
84405 pTrigger->pTabSchema = pTab->pSchema;
84406 pFKey->apTrigger[iAction] = pTrigger;
84407 pTrigger->op = (pChanges ? TK_UPDATE : TK_DELETE);
84410 return pTrigger;
84414 ** This function is called when deleting or updating a row to implement
84415 ** any required CASCADE, SET NULL or SET DEFAULT actions.
84417 SQLITE_PRIVATE void sqlite3FkActions(
84418 Parse *pParse, /* Parse context */
84419 Table *pTab, /* Table being updated or deleted from */
84420 ExprList *pChanges, /* Change-list for UPDATE, NULL for DELETE */
84421 int regOld /* Address of array containing old row */
84423 /* If foreign-key support is enabled, iterate through all FKs that
84424 ** refer to table pTab. If there is an action associated with the FK
84425 ** for this operation (either update or delete), invoke the associated
84426 ** trigger sub-program. */
84427 if( pParse->db->flags&SQLITE_ForeignKeys ){
84428 FKey *pFKey; /* Iterator variable */
84429 for(pFKey = sqlite3FkReferences(pTab); pFKey; pFKey=pFKey->pNextTo){
84430 Trigger *pAction = fkActionTrigger(pParse, pTab, pFKey, pChanges);
84431 if( pAction ){
84432 sqlite3CodeRowTriggerDirect(pParse, pAction, pTab, regOld, OE_Abort, 0);
84438 #endif /* ifndef SQLITE_OMIT_TRIGGER */
84441 ** Free all memory associated with foreign key definitions attached to
84442 ** table pTab. Remove the deleted foreign keys from the Schema.fkeyHash
84443 ** hash table.
84445 SQLITE_PRIVATE void sqlite3FkDelete(sqlite3 *db, Table *pTab){
84446 FKey *pFKey; /* Iterator variable */
84447 FKey *pNext; /* Copy of pFKey->pNextFrom */
84449 assert( db==0 || sqlite3SchemaMutexHeld(db, 0, pTab->pSchema) );
84450 for(pFKey=pTab->pFKey; pFKey; pFKey=pNext){
84452 /* Remove the FK from the fkeyHash hash table. */
84453 if( !db || db->pnBytesFreed==0 ){
84454 if( pFKey->pPrevTo ){
84455 pFKey->pPrevTo->pNextTo = pFKey->pNextTo;
84456 }else{
84457 void *p = (void *)pFKey->pNextTo;
84458 const char *z = (p ? pFKey->pNextTo->zTo : pFKey->zTo);
84459 sqlite3HashInsert(&pTab->pSchema->fkeyHash, z, sqlite3Strlen30(z), p);
84461 if( pFKey->pNextTo ){
84462 pFKey->pNextTo->pPrevTo = pFKey->pPrevTo;
84466 /* EV: R-30323-21917 Each foreign key constraint in SQLite is
84467 ** classified as either immediate or deferred.
84469 assert( pFKey->isDeferred==0 || pFKey->isDeferred==1 );
84471 /* Delete any triggers created to implement actions for this FK. */
84472 #ifndef SQLITE_OMIT_TRIGGER
84473 fkTriggerDelete(db, pFKey->apTrigger[0]);
84474 fkTriggerDelete(db, pFKey->apTrigger[1]);
84475 #endif
84477 pNext = pFKey->pNextFrom;
84478 sqlite3DbFree(db, pFKey);
84481 #endif /* ifndef SQLITE_OMIT_FOREIGN_KEY */
84483 /************** End of fkey.c ************************************************/
84484 /************** Begin file insert.c ******************************************/
84486 ** 2001 September 15
84488 ** The author disclaims copyright to this source code. In place of
84489 ** a legal notice, here is a blessing:
84491 ** May you do good and not evil.
84492 ** May you find forgiveness for yourself and forgive others.
84493 ** May you share freely, never taking more than you give.
84495 *************************************************************************
84496 ** This file contains C code routines that are called by the parser
84497 ** to handle INSERT statements in SQLite.
84501 ** Generate code that will open a table for reading.
84503 SQLITE_PRIVATE void sqlite3OpenTable(
84504 Parse *p, /* Generate code into this VDBE */
84505 int iCur, /* The cursor number of the table */
84506 int iDb, /* The database index in sqlite3.aDb[] */
84507 Table *pTab, /* The table to be opened */
84508 int opcode /* OP_OpenRead or OP_OpenWrite */
84510 Vdbe *v;
84511 if( IsVirtual(pTab) ) return;
84512 v = sqlite3GetVdbe(p);
84513 assert( opcode==OP_OpenWrite || opcode==OP_OpenRead );
84514 sqlite3TableLock(p, iDb, pTab->tnum, (opcode==OP_OpenWrite)?1:0, pTab->zName);
84515 sqlite3VdbeAddOp3(v, opcode, iCur, pTab->tnum, iDb);
84516 sqlite3VdbeChangeP4(v, -1, SQLITE_INT_TO_PTR(pTab->nCol), P4_INT32);
84517 VdbeComment((v, "%s", pTab->zName));
84521 ** Return a pointer to the column affinity string associated with index
84522 ** pIdx. A column affinity string has one character for each column in
84523 ** the table, according to the affinity of the column:
84525 ** Character Column affinity
84526 ** ------------------------------
84527 ** 'a' TEXT
84528 ** 'b' NONE
84529 ** 'c' NUMERIC
84530 ** 'd' INTEGER
84531 ** 'e' REAL
84533 ** An extra 'b' is appended to the end of the string to cover the
84534 ** rowid that appears as the last column in every index.
84536 ** Memory for the buffer containing the column index affinity string
84537 ** is managed along with the rest of the Index structure. It will be
84538 ** released when sqlite3DeleteIndex() is called.
84540 SQLITE_PRIVATE const char *sqlite3IndexAffinityStr(Vdbe *v, Index *pIdx){
84541 if( !pIdx->zColAff ){
84542 /* The first time a column affinity string for a particular index is
84543 ** required, it is allocated and populated here. It is then stored as
84544 ** a member of the Index structure for subsequent use.
84546 ** The column affinity string will eventually be deleted by
84547 ** sqliteDeleteIndex() when the Index structure itself is cleaned
84548 ** up.
84550 int n;
84551 Table *pTab = pIdx->pTable;
84552 sqlite3 *db = sqlite3VdbeDb(v);
84553 pIdx->zColAff = (char *)sqlite3DbMallocRaw(0, pIdx->nColumn+2);
84554 if( !pIdx->zColAff ){
84555 db->mallocFailed = 1;
84556 return 0;
84558 for(n=0; n<pIdx->nColumn; n++){
84559 pIdx->zColAff[n] = pTab->aCol[pIdx->aiColumn[n]].affinity;
84561 pIdx->zColAff[n++] = SQLITE_AFF_NONE;
84562 pIdx->zColAff[n] = 0;
84565 return pIdx->zColAff;
84569 ** Set P4 of the most recently inserted opcode to a column affinity
84570 ** string for table pTab. A column affinity string has one character
84571 ** for each column indexed by the index, according to the affinity of the
84572 ** column:
84574 ** Character Column affinity
84575 ** ------------------------------
84576 ** 'a' TEXT
84577 ** 'b' NONE
84578 ** 'c' NUMERIC
84579 ** 'd' INTEGER
84580 ** 'e' REAL
84582 SQLITE_PRIVATE void sqlite3TableAffinityStr(Vdbe *v, Table *pTab){
84583 /* The first time a column affinity string for a particular table
84584 ** is required, it is allocated and populated here. It is then
84585 ** stored as a member of the Table structure for subsequent use.
84587 ** The column affinity string will eventually be deleted by
84588 ** sqlite3DeleteTable() when the Table structure itself is cleaned up.
84590 if( !pTab->zColAff ){
84591 char *zColAff;
84592 int i;
84593 sqlite3 *db = sqlite3VdbeDb(v);
84595 zColAff = (char *)sqlite3DbMallocRaw(0, pTab->nCol+1);
84596 if( !zColAff ){
84597 db->mallocFailed = 1;
84598 return;
84601 for(i=0; i<pTab->nCol; i++){
84602 zColAff[i] = pTab->aCol[i].affinity;
84604 zColAff[pTab->nCol] = '\0';
84606 pTab->zColAff = zColAff;
84609 sqlite3VdbeChangeP4(v, -1, pTab->zColAff, P4_TRANSIENT);
84613 ** Return non-zero if the table pTab in database iDb or any of its indices
84614 ** have been opened at any point in the VDBE program beginning at location
84615 ** iStartAddr throught the end of the program. This is used to see if
84616 ** a statement of the form "INSERT INTO <iDb, pTab> SELECT ..." can
84617 ** run without using temporary table for the results of the SELECT.
84619 static int readsTable(Parse *p, int iStartAddr, int iDb, Table *pTab){
84620 Vdbe *v = sqlite3GetVdbe(p);
84621 int i;
84622 int iEnd = sqlite3VdbeCurrentAddr(v);
84623 #ifndef SQLITE_OMIT_VIRTUALTABLE
84624 VTable *pVTab = IsVirtual(pTab) ? sqlite3GetVTable(p->db, pTab) : 0;
84625 #endif
84627 for(i=iStartAddr; i<iEnd; i++){
84628 VdbeOp *pOp = sqlite3VdbeGetOp(v, i);
84629 assert( pOp!=0 );
84630 if( pOp->opcode==OP_OpenRead && pOp->p3==iDb ){
84631 Index *pIndex;
84632 int tnum = pOp->p2;
84633 if( tnum==pTab->tnum ){
84634 return 1;
84636 for(pIndex=pTab->pIndex; pIndex; pIndex=pIndex->pNext){
84637 if( tnum==pIndex->tnum ){
84638 return 1;
84642 #ifndef SQLITE_OMIT_VIRTUALTABLE
84643 if( pOp->opcode==OP_VOpen && pOp->p4.pVtab==pVTab ){
84644 assert( pOp->p4.pVtab!=0 );
84645 assert( pOp->p4type==P4_VTAB );
84646 return 1;
84648 #endif
84650 return 0;
84653 #ifndef SQLITE_OMIT_AUTOINCREMENT
84655 ** Locate or create an AutoincInfo structure associated with table pTab
84656 ** which is in database iDb. Return the register number for the register
84657 ** that holds the maximum rowid.
84659 ** There is at most one AutoincInfo structure per table even if the
84660 ** same table is autoincremented multiple times due to inserts within
84661 ** triggers. A new AutoincInfo structure is created if this is the
84662 ** first use of table pTab. On 2nd and subsequent uses, the original
84663 ** AutoincInfo structure is used.
84665 ** Three memory locations are allocated:
84667 ** (1) Register to hold the name of the pTab table.
84668 ** (2) Register to hold the maximum ROWID of pTab.
84669 ** (3) Register to hold the rowid in sqlite_sequence of pTab
84671 ** The 2nd register is the one that is returned. That is all the
84672 ** insert routine needs to know about.
84674 static int autoIncBegin(
84675 Parse *pParse, /* Parsing context */
84676 int iDb, /* Index of the database holding pTab */
84677 Table *pTab /* The table we are writing to */
84679 int memId = 0; /* Register holding maximum rowid */
84680 if( pTab->tabFlags & TF_Autoincrement ){
84681 Parse *pToplevel = sqlite3ParseToplevel(pParse);
84682 AutoincInfo *pInfo;
84684 pInfo = pToplevel->pAinc;
84685 while( pInfo && pInfo->pTab!=pTab ){ pInfo = pInfo->pNext; }
84686 if( pInfo==0 ){
84687 pInfo = sqlite3DbMallocRaw(pParse->db, sizeof(*pInfo));
84688 if( pInfo==0 ) return 0;
84689 pInfo->pNext = pToplevel->pAinc;
84690 pToplevel->pAinc = pInfo;
84691 pInfo->pTab = pTab;
84692 pInfo->iDb = iDb;
84693 pToplevel->nMem++; /* Register to hold name of table */
84694 pInfo->regCtr = ++pToplevel->nMem; /* Max rowid register */
84695 pToplevel->nMem++; /* Rowid in sqlite_sequence */
84697 memId = pInfo->regCtr;
84699 return memId;
84703 ** This routine generates code that will initialize all of the
84704 ** register used by the autoincrement tracker.
84706 SQLITE_PRIVATE void sqlite3AutoincrementBegin(Parse *pParse){
84707 AutoincInfo *p; /* Information about an AUTOINCREMENT */
84708 sqlite3 *db = pParse->db; /* The database connection */
84709 Db *pDb; /* Database only autoinc table */
84710 int memId; /* Register holding max rowid */
84711 int addr; /* A VDBE address */
84712 Vdbe *v = pParse->pVdbe; /* VDBE under construction */
84714 /* This routine is never called during trigger-generation. It is
84715 ** only called from the top-level */
84716 assert( pParse->pTriggerTab==0 );
84717 assert( pParse==sqlite3ParseToplevel(pParse) );
84719 assert( v ); /* We failed long ago if this is not so */
84720 for(p = pParse->pAinc; p; p = p->pNext){
84721 pDb = &db->aDb[p->iDb];
84722 memId = p->regCtr;
84723 assert( sqlite3SchemaMutexHeld(db, 0, pDb->pSchema) );
84724 sqlite3OpenTable(pParse, 0, p->iDb, pDb->pSchema->pSeqTab, OP_OpenRead);
84725 addr = sqlite3VdbeCurrentAddr(v);
84726 sqlite3VdbeAddOp4(v, OP_String8, 0, memId-1, 0, p->pTab->zName, 0);
84727 sqlite3VdbeAddOp2(v, OP_Rewind, 0, addr+9);
84728 sqlite3VdbeAddOp3(v, OP_Column, 0, 0, memId);
84729 sqlite3VdbeAddOp3(v, OP_Ne, memId-1, addr+7, memId);
84730 sqlite3VdbeChangeP5(v, SQLITE_JUMPIFNULL);
84731 sqlite3VdbeAddOp2(v, OP_Rowid, 0, memId+1);
84732 sqlite3VdbeAddOp3(v, OP_Column, 0, 1, memId);
84733 sqlite3VdbeAddOp2(v, OP_Goto, 0, addr+9);
84734 sqlite3VdbeAddOp2(v, OP_Next, 0, addr+2);
84735 sqlite3VdbeAddOp2(v, OP_Integer, 0, memId);
84736 sqlite3VdbeAddOp0(v, OP_Close);
84741 ** Update the maximum rowid for an autoincrement calculation.
84743 ** This routine should be called when the top of the stack holds a
84744 ** new rowid that is about to be inserted. If that new rowid is
84745 ** larger than the maximum rowid in the memId memory cell, then the
84746 ** memory cell is updated. The stack is unchanged.
84748 static void autoIncStep(Parse *pParse, int memId, int regRowid){
84749 if( memId>0 ){
84750 sqlite3VdbeAddOp2(pParse->pVdbe, OP_MemMax, memId, regRowid);
84755 ** This routine generates the code needed to write autoincrement
84756 ** maximum rowid values back into the sqlite_sequence register.
84757 ** Every statement that might do an INSERT into an autoincrement
84758 ** table (either directly or through triggers) needs to call this
84759 ** routine just before the "exit" code.
84761 SQLITE_PRIVATE void sqlite3AutoincrementEnd(Parse *pParse){
84762 AutoincInfo *p;
84763 Vdbe *v = pParse->pVdbe;
84764 sqlite3 *db = pParse->db;
84766 assert( v );
84767 for(p = pParse->pAinc; p; p = p->pNext){
84768 Db *pDb = &db->aDb[p->iDb];
84769 int j1, j2, j3, j4, j5;
84770 int iRec;
84771 int memId = p->regCtr;
84773 iRec = sqlite3GetTempReg(pParse);
84774 assert( sqlite3SchemaMutexHeld(db, 0, pDb->pSchema) );
84775 sqlite3OpenTable(pParse, 0, p->iDb, pDb->pSchema->pSeqTab, OP_OpenWrite);
84776 j1 = sqlite3VdbeAddOp1(v, OP_NotNull, memId+1);
84777 j2 = sqlite3VdbeAddOp0(v, OP_Rewind);
84778 j3 = sqlite3VdbeAddOp3(v, OP_Column, 0, 0, iRec);
84779 j4 = sqlite3VdbeAddOp3(v, OP_Eq, memId-1, 0, iRec);
84780 sqlite3VdbeAddOp2(v, OP_Next, 0, j3);
84781 sqlite3VdbeJumpHere(v, j2);
84782 sqlite3VdbeAddOp2(v, OP_NewRowid, 0, memId+1);
84783 j5 = sqlite3VdbeAddOp0(v, OP_Goto);
84784 sqlite3VdbeJumpHere(v, j4);
84785 sqlite3VdbeAddOp2(v, OP_Rowid, 0, memId+1);
84786 sqlite3VdbeJumpHere(v, j1);
84787 sqlite3VdbeJumpHere(v, j5);
84788 sqlite3VdbeAddOp3(v, OP_MakeRecord, memId-1, 2, iRec);
84789 sqlite3VdbeAddOp3(v, OP_Insert, 0, iRec, memId+1);
84790 sqlite3VdbeChangeP5(v, OPFLAG_APPEND);
84791 sqlite3VdbeAddOp0(v, OP_Close);
84792 sqlite3ReleaseTempReg(pParse, iRec);
84795 #else
84797 ** If SQLITE_OMIT_AUTOINCREMENT is defined, then the three routines
84798 ** above are all no-ops
84800 # define autoIncBegin(A,B,C) (0)
84801 # define autoIncStep(A,B,C)
84802 #endif /* SQLITE_OMIT_AUTOINCREMENT */
84805 /* Forward declaration */
84806 static int xferOptimization(
84807 Parse *pParse, /* Parser context */
84808 Table *pDest, /* The table we are inserting into */
84809 Select *pSelect, /* A SELECT statement to use as the data source */
84810 int onError, /* How to handle constraint errors */
84811 int iDbDest /* The database of pDest */
84815 ** This routine is call to handle SQL of the following forms:
84817 ** insert into TABLE (IDLIST) values(EXPRLIST)
84818 ** insert into TABLE (IDLIST) select
84820 ** The IDLIST following the table name is always optional. If omitted,
84821 ** then a list of all columns for the table is substituted. The IDLIST
84822 ** appears in the pColumn parameter. pColumn is NULL if IDLIST is omitted.
84824 ** The pList parameter holds EXPRLIST in the first form of the INSERT
84825 ** statement above, and pSelect is NULL. For the second form, pList is
84826 ** NULL and pSelect is a pointer to the select statement used to generate
84827 ** data for the insert.
84829 ** The code generated follows one of four templates. For a simple
84830 ** select with data coming from a VALUES clause, the code executes
84831 ** once straight down through. Pseudo-code follows (we call this
84832 ** the "1st template"):
84834 ** open write cursor to <table> and its indices
84835 ** puts VALUES clause expressions onto the stack
84836 ** write the resulting record into <table>
84837 ** cleanup
84839 ** The three remaining templates assume the statement is of the form
84841 ** INSERT INTO <table> SELECT ...
84843 ** If the SELECT clause is of the restricted form "SELECT * FROM <table2>" -
84844 ** in other words if the SELECT pulls all columns from a single table
84845 ** and there is no WHERE or LIMIT or GROUP BY or ORDER BY clauses, and
84846 ** if <table2> and <table1> are distinct tables but have identical
84847 ** schemas, including all the same indices, then a special optimization
84848 ** is invoked that copies raw records from <table2> over to <table1>.
84849 ** See the xferOptimization() function for the implementation of this
84850 ** template. This is the 2nd template.
84852 ** open a write cursor to <table>
84853 ** open read cursor on <table2>
84854 ** transfer all records in <table2> over to <table>
84855 ** close cursors
84856 ** foreach index on <table>
84857 ** open a write cursor on the <table> index
84858 ** open a read cursor on the corresponding <table2> index
84859 ** transfer all records from the read to the write cursors
84860 ** close cursors
84861 ** end foreach
84863 ** The 3rd template is for when the second template does not apply
84864 ** and the SELECT clause does not read from <table> at any time.
84865 ** The generated code follows this template:
84867 ** EOF <- 0
84868 ** X <- A
84869 ** goto B
84870 ** A: setup for the SELECT
84871 ** loop over the rows in the SELECT
84872 ** load values into registers R..R+n
84873 ** yield X
84874 ** end loop
84875 ** cleanup after the SELECT
84876 ** EOF <- 1
84877 ** yield X
84878 ** goto A
84879 ** B: open write cursor to <table> and its indices
84880 ** C: yield X
84881 ** if EOF goto D
84882 ** insert the select result into <table> from R..R+n
84883 ** goto C
84884 ** D: cleanup
84886 ** The 4th template is used if the insert statement takes its
84887 ** values from a SELECT but the data is being inserted into a table
84888 ** that is also read as part of the SELECT. In the third form,
84889 ** we have to use a intermediate table to store the results of
84890 ** the select. The template is like this:
84892 ** EOF <- 0
84893 ** X <- A
84894 ** goto B
84895 ** A: setup for the SELECT
84896 ** loop over the tables in the SELECT
84897 ** load value into register R..R+n
84898 ** yield X
84899 ** end loop
84900 ** cleanup after the SELECT
84901 ** EOF <- 1
84902 ** yield X
84903 ** halt-error
84904 ** B: open temp table
84905 ** L: yield X
84906 ** if EOF goto M
84907 ** insert row from R..R+n into temp table
84908 ** goto L
84909 ** M: open write cursor to <table> and its indices
84910 ** rewind temp table
84911 ** C: loop over rows of intermediate table
84912 ** transfer values form intermediate table into <table>
84913 ** end loop
84914 ** D: cleanup
84916 SQLITE_PRIVATE void sqlite3Insert(
84917 Parse *pParse, /* Parser context */
84918 SrcList *pTabList, /* Name of table into which we are inserting */
84919 ExprList *pList, /* List of values to be inserted */
84920 Select *pSelect, /* A SELECT statement to use as the data source */
84921 IdList *pColumn, /* Column names corresponding to IDLIST. */
84922 int onError /* How to handle constraint errors */
84924 sqlite3 *db; /* The main database structure */
84925 Table *pTab; /* The table to insert into. aka TABLE */
84926 char *zTab; /* Name of the table into which we are inserting */
84927 const char *zDb; /* Name of the database holding this table */
84928 int i, j, idx; /* Loop counters */
84929 Vdbe *v; /* Generate code into this virtual machine */
84930 Index *pIdx; /* For looping over indices of the table */
84931 int nColumn; /* Number of columns in the data */
84932 int nHidden = 0; /* Number of hidden columns if TABLE is virtual */
84933 int baseCur = 0; /* VDBE Cursor number for pTab */
84934 int keyColumn = -1; /* Column that is the INTEGER PRIMARY KEY */
84935 int endOfLoop; /* Label for the end of the insertion loop */
84936 int useTempTable = 0; /* Store SELECT results in intermediate table */
84937 int srcTab = 0; /* Data comes from this temporary cursor if >=0 */
84938 int addrInsTop = 0; /* Jump to label "D" */
84939 int addrCont = 0; /* Top of insert loop. Label "C" in templates 3 and 4 */
84940 int addrSelect = 0; /* Address of coroutine that implements the SELECT */
84941 SelectDest dest; /* Destination for SELECT on rhs of INSERT */
84942 int iDb; /* Index of database holding TABLE */
84943 Db *pDb; /* The database containing table being inserted into */
84944 int appendFlag = 0; /* True if the insert is likely to be an append */
84946 /* Register allocations */
84947 int regFromSelect = 0;/* Base register for data coming from SELECT */
84948 int regAutoinc = 0; /* Register holding the AUTOINCREMENT counter */
84949 int regRowCount = 0; /* Memory cell used for the row counter */
84950 int regIns; /* Block of regs holding rowid+data being inserted */
84951 int regRowid; /* registers holding insert rowid */
84952 int regData; /* register holding first column to insert */
84953 int regEof = 0; /* Register recording end of SELECT data */
84954 int *aRegIdx = 0; /* One register allocated to each index */
84956 #ifndef SQLITE_OMIT_TRIGGER
84957 int isView; /* True if attempting to insert into a view */
84958 Trigger *pTrigger; /* List of triggers on pTab, if required */
84959 int tmask; /* Mask of trigger times */
84960 #endif
84962 db = pParse->db;
84963 memset(&dest, 0, sizeof(dest));
84964 if( pParse->nErr || db->mallocFailed ){
84965 goto insert_cleanup;
84968 /* Locate the table into which we will be inserting new information.
84970 assert( pTabList->nSrc==1 );
84971 zTab = pTabList->a[0].zName;
84972 if( NEVER(zTab==0) ) goto insert_cleanup;
84973 pTab = sqlite3SrcListLookup(pParse, pTabList);
84974 if( pTab==0 ){
84975 goto insert_cleanup;
84977 iDb = sqlite3SchemaToIndex(db, pTab->pSchema);
84978 assert( iDb<db->nDb );
84979 pDb = &db->aDb[iDb];
84980 zDb = pDb->zName;
84981 if( sqlite3AuthCheck(pParse, SQLITE_INSERT, pTab->zName, 0, zDb) ){
84982 goto insert_cleanup;
84985 /* Figure out if we have any triggers and if the table being
84986 ** inserted into is a view
84988 #ifndef SQLITE_OMIT_TRIGGER
84989 pTrigger = sqlite3TriggersExist(pParse, pTab, TK_INSERT, 0, &tmask);
84990 isView = pTab->pSelect!=0;
84991 #else
84992 # define pTrigger 0
84993 # define tmask 0
84994 # define isView 0
84995 #endif
84996 #ifdef SQLITE_OMIT_VIEW
84997 # undef isView
84998 # define isView 0
84999 #endif
85000 assert( (pTrigger && tmask) || (pTrigger==0 && tmask==0) );
85002 /* If pTab is really a view, make sure it has been initialized.
85003 ** ViewGetColumnNames() is a no-op if pTab is not a view (or virtual
85004 ** module table).
85006 if( sqlite3ViewGetColumnNames(pParse, pTab) ){
85007 goto insert_cleanup;
85010 /* Ensure that:
85011 * (a) the table is not read-only,
85012 * (b) that if it is a view then ON INSERT triggers exist
85014 if( sqlite3IsReadOnly(pParse, pTab, tmask) ){
85015 goto insert_cleanup;
85018 /* Allocate a VDBE
85020 v = sqlite3GetVdbe(pParse);
85021 if( v==0 ) goto insert_cleanup;
85022 if( pParse->nested==0 ) sqlite3VdbeCountChanges(v);
85023 sqlite3BeginWriteOperation(pParse, pSelect || pTrigger, iDb);
85025 #ifndef SQLITE_OMIT_XFER_OPT
85026 /* If the statement is of the form
85028 ** INSERT INTO <table1> SELECT * FROM <table2>;
85030 ** Then special optimizations can be applied that make the transfer
85031 ** very fast and which reduce fragmentation of indices.
85033 ** This is the 2nd template.
85035 if( pColumn==0 && xferOptimization(pParse, pTab, pSelect, onError, iDb) ){
85036 assert( !pTrigger );
85037 assert( pList==0 );
85038 goto insert_end;
85040 #endif /* SQLITE_OMIT_XFER_OPT */
85042 /* If this is an AUTOINCREMENT table, look up the sequence number in the
85043 ** sqlite_sequence table and store it in memory cell regAutoinc.
85045 regAutoinc = autoIncBegin(pParse, iDb, pTab);
85047 /* Figure out how many columns of data are supplied. If the data
85048 ** is coming from a SELECT statement, then generate a co-routine that
85049 ** produces a single row of the SELECT on each invocation. The
85050 ** co-routine is the common header to the 3rd and 4th templates.
85052 if( pSelect ){
85053 /* Data is coming from a SELECT. Generate code to implement that SELECT
85054 ** as a co-routine. The code is common to both the 3rd and 4th
85055 ** templates:
85057 ** EOF <- 0
85058 ** X <- A
85059 ** goto B
85060 ** A: setup for the SELECT
85061 ** loop over the tables in the SELECT
85062 ** load value into register R..R+n
85063 ** yield X
85064 ** end loop
85065 ** cleanup after the SELECT
85066 ** EOF <- 1
85067 ** yield X
85068 ** halt-error
85070 ** On each invocation of the co-routine, it puts a single row of the
85071 ** SELECT result into registers dest.iMem...dest.iMem+dest.nMem-1.
85072 ** (These output registers are allocated by sqlite3Select().) When
85073 ** the SELECT completes, it sets the EOF flag stored in regEof.
85075 int rc, j1;
85077 regEof = ++pParse->nMem;
85078 sqlite3VdbeAddOp2(v, OP_Integer, 0, regEof); /* EOF <- 0 */
85079 VdbeComment((v, "SELECT eof flag"));
85080 sqlite3SelectDestInit(&dest, SRT_Coroutine, ++pParse->nMem);
85081 addrSelect = sqlite3VdbeCurrentAddr(v)+2;
85082 sqlite3VdbeAddOp2(v, OP_Integer, addrSelect-1, dest.iParm);
85083 j1 = sqlite3VdbeAddOp2(v, OP_Goto, 0, 0);
85084 VdbeComment((v, "Jump over SELECT coroutine"));
85086 /* Resolve the expressions in the SELECT statement and execute it. */
85087 rc = sqlite3Select(pParse, pSelect, &dest);
85088 assert( pParse->nErr==0 || rc );
85089 if( rc || NEVER(pParse->nErr) || db->mallocFailed ){
85090 goto insert_cleanup;
85092 sqlite3VdbeAddOp2(v, OP_Integer, 1, regEof); /* EOF <- 1 */
85093 sqlite3VdbeAddOp1(v, OP_Yield, dest.iParm); /* yield X */
85094 sqlite3VdbeAddOp2(v, OP_Halt, SQLITE_INTERNAL, OE_Abort);
85095 VdbeComment((v, "End of SELECT coroutine"));
85096 sqlite3VdbeJumpHere(v, j1); /* label B: */
85098 regFromSelect = dest.iMem;
85099 assert( pSelect->pEList );
85100 nColumn = pSelect->pEList->nExpr;
85101 assert( dest.nMem==nColumn );
85103 /* Set useTempTable to TRUE if the result of the SELECT statement
85104 ** should be written into a temporary table (template 4). Set to
85105 ** FALSE if each* row of the SELECT can be written directly into
85106 ** the destination table (template 3).
85108 ** A temp table must be used if the table being updated is also one
85109 ** of the tables being read by the SELECT statement. Also use a
85110 ** temp table in the case of row triggers.
85112 if( pTrigger || readsTable(pParse, addrSelect, iDb, pTab) ){
85113 useTempTable = 1;
85116 if( useTempTable ){
85117 /* Invoke the coroutine to extract information from the SELECT
85118 ** and add it to a transient table srcTab. The code generated
85119 ** here is from the 4th template:
85121 ** B: open temp table
85122 ** L: yield X
85123 ** if EOF goto M
85124 ** insert row from R..R+n into temp table
85125 ** goto L
85126 ** M: ...
85128 int regRec; /* Register to hold packed record */
85129 int regTempRowid; /* Register to hold temp table ROWID */
85130 int addrTop; /* Label "L" */
85131 int addrIf; /* Address of jump to M */
85133 srcTab = pParse->nTab++;
85134 regRec = sqlite3GetTempReg(pParse);
85135 regTempRowid = sqlite3GetTempReg(pParse);
85136 sqlite3VdbeAddOp2(v, OP_OpenEphemeral, srcTab, nColumn);
85137 addrTop = sqlite3VdbeAddOp1(v, OP_Yield, dest.iParm);
85138 addrIf = sqlite3VdbeAddOp1(v, OP_If, regEof);
85139 sqlite3VdbeAddOp3(v, OP_MakeRecord, regFromSelect, nColumn, regRec);
85140 sqlite3VdbeAddOp2(v, OP_NewRowid, srcTab, regTempRowid);
85141 sqlite3VdbeAddOp3(v, OP_Insert, srcTab, regRec, regTempRowid);
85142 sqlite3VdbeAddOp2(v, OP_Goto, 0, addrTop);
85143 sqlite3VdbeJumpHere(v, addrIf);
85144 sqlite3ReleaseTempReg(pParse, regRec);
85145 sqlite3ReleaseTempReg(pParse, regTempRowid);
85147 }else{
85148 /* This is the case if the data for the INSERT is coming from a VALUES
85149 ** clause
85151 NameContext sNC;
85152 memset(&sNC, 0, sizeof(sNC));
85153 sNC.pParse = pParse;
85154 srcTab = -1;
85155 assert( useTempTable==0 );
85156 nColumn = pList ? pList->nExpr : 0;
85157 for(i=0; i<nColumn; i++){
85158 if( sqlite3ResolveExprNames(&sNC, pList->a[i].pExpr) ){
85159 goto insert_cleanup;
85164 /* Make sure the number of columns in the source data matches the number
85165 ** of columns to be inserted into the table.
85167 if( IsVirtual(pTab) ){
85168 for(i=0; i<pTab->nCol; i++){
85169 nHidden += (IsHiddenColumn(&pTab->aCol[i]) ? 1 : 0);
85172 if( pColumn==0 && nColumn && nColumn!=(pTab->nCol-nHidden) ){
85173 sqlite3ErrorMsg(pParse,
85174 "table %S has %d columns but %d values were supplied",
85175 pTabList, 0, pTab->nCol-nHidden, nColumn);
85176 goto insert_cleanup;
85178 if( pColumn!=0 && nColumn!=pColumn->nId ){
85179 sqlite3ErrorMsg(pParse, "%d values for %d columns", nColumn, pColumn->nId);
85180 goto insert_cleanup;
85183 /* If the INSERT statement included an IDLIST term, then make sure
85184 ** all elements of the IDLIST really are columns of the table and
85185 ** remember the column indices.
85187 ** If the table has an INTEGER PRIMARY KEY column and that column
85188 ** is named in the IDLIST, then record in the keyColumn variable
85189 ** the index into IDLIST of the primary key column. keyColumn is
85190 ** the index of the primary key as it appears in IDLIST, not as
85191 ** is appears in the original table. (The index of the primary
85192 ** key in the original table is pTab->iPKey.)
85194 if( pColumn ){
85195 for(i=0; i<pColumn->nId; i++){
85196 pColumn->a[i].idx = -1;
85198 for(i=0; i<pColumn->nId; i++){
85199 for(j=0; j<pTab->nCol; j++){
85200 if( sqlite3StrICmp(pColumn->a[i].zName, pTab->aCol[j].zName)==0 ){
85201 pColumn->a[i].idx = j;
85202 if( j==pTab->iPKey ){
85203 keyColumn = i;
85205 break;
85208 if( j>=pTab->nCol ){
85209 if( sqlite3IsRowid(pColumn->a[i].zName) ){
85210 keyColumn = i;
85211 }else{
85212 sqlite3ErrorMsg(pParse, "table %S has no column named %s",
85213 pTabList, 0, pColumn->a[i].zName);
85214 pParse->checkSchema = 1;
85215 goto insert_cleanup;
85221 /* If there is no IDLIST term but the table has an integer primary
85222 ** key, the set the keyColumn variable to the primary key column index
85223 ** in the original table definition.
85225 if( pColumn==0 && nColumn>0 ){
85226 keyColumn = pTab->iPKey;
85229 /* Initialize the count of rows to be inserted
85231 if( db->flags & SQLITE_CountRows ){
85232 regRowCount = ++pParse->nMem;
85233 sqlite3VdbeAddOp2(v, OP_Integer, 0, regRowCount);
85236 /* If this is not a view, open the table and and all indices */
85237 if( !isView ){
85238 int nIdx;
85240 baseCur = pParse->nTab;
85241 nIdx = sqlite3OpenTableAndIndices(pParse, pTab, baseCur, OP_OpenWrite);
85242 aRegIdx = sqlite3DbMallocRaw(db, sizeof(int)*(nIdx+1));
85243 if( aRegIdx==0 ){
85244 goto insert_cleanup;
85246 for(i=0; i<nIdx; i++){
85247 aRegIdx[i] = ++pParse->nMem;
85251 /* This is the top of the main insertion loop */
85252 if( useTempTable ){
85253 /* This block codes the top of loop only. The complete loop is the
85254 ** following pseudocode (template 4):
85256 ** rewind temp table
85257 ** C: loop over rows of intermediate table
85258 ** transfer values form intermediate table into <table>
85259 ** end loop
85260 ** D: ...
85262 addrInsTop = sqlite3VdbeAddOp1(v, OP_Rewind, srcTab);
85263 addrCont = sqlite3VdbeCurrentAddr(v);
85264 }else if( pSelect ){
85265 /* This block codes the top of loop only. The complete loop is the
85266 ** following pseudocode (template 3):
85268 ** C: yield X
85269 ** if EOF goto D
85270 ** insert the select result into <table> from R..R+n
85271 ** goto C
85272 ** D: ...
85274 addrCont = sqlite3VdbeAddOp1(v, OP_Yield, dest.iParm);
85275 addrInsTop = sqlite3VdbeAddOp1(v, OP_If, regEof);
85278 /* Allocate registers for holding the rowid of the new row,
85279 ** the content of the new row, and the assemblied row record.
85281 regRowid = regIns = pParse->nMem+1;
85282 pParse->nMem += pTab->nCol + 1;
85283 if( IsVirtual(pTab) ){
85284 regRowid++;
85285 pParse->nMem++;
85287 regData = regRowid+1;
85289 /* Run the BEFORE and INSTEAD OF triggers, if there are any
85291 endOfLoop = sqlite3VdbeMakeLabel(v);
85292 if( tmask & TRIGGER_BEFORE ){
85293 int regCols = sqlite3GetTempRange(pParse, pTab->nCol+1);
85295 /* build the NEW.* reference row. Note that if there is an INTEGER
85296 ** PRIMARY KEY into which a NULL is being inserted, that NULL will be
85297 ** translated into a unique ID for the row. But on a BEFORE trigger,
85298 ** we do not know what the unique ID will be (because the insert has
85299 ** not happened yet) so we substitute a rowid of -1
85301 if( keyColumn<0 ){
85302 sqlite3VdbeAddOp2(v, OP_Integer, -1, regCols);
85303 }else{
85304 int j1;
85305 if( useTempTable ){
85306 sqlite3VdbeAddOp3(v, OP_Column, srcTab, keyColumn, regCols);
85307 }else{
85308 assert( pSelect==0 ); /* Otherwise useTempTable is true */
85309 sqlite3ExprCode(pParse, pList->a[keyColumn].pExpr, regCols);
85311 j1 = sqlite3VdbeAddOp1(v, OP_NotNull, regCols);
85312 sqlite3VdbeAddOp2(v, OP_Integer, -1, regCols);
85313 sqlite3VdbeJumpHere(v, j1);
85314 sqlite3VdbeAddOp1(v, OP_MustBeInt, regCols);
85317 /* Cannot have triggers on a virtual table. If it were possible,
85318 ** this block would have to account for hidden column.
85320 assert( !IsVirtual(pTab) );
85322 /* Create the new column data
85324 for(i=0; i<pTab->nCol; i++){
85325 if( pColumn==0 ){
85326 j = i;
85327 }else{
85328 for(j=0; j<pColumn->nId; j++){
85329 if( pColumn->a[j].idx==i ) break;
85332 if( (!useTempTable && !pList) || (pColumn && j>=pColumn->nId) ){
85333 sqlite3ExprCode(pParse, pTab->aCol[i].pDflt, regCols+i+1);
85334 }else if( useTempTable ){
85335 sqlite3VdbeAddOp3(v, OP_Column, srcTab, j, regCols+i+1);
85336 }else{
85337 assert( pSelect==0 ); /* Otherwise useTempTable is true */
85338 sqlite3ExprCodeAndCache(pParse, pList->a[j].pExpr, regCols+i+1);
85342 /* If this is an INSERT on a view with an INSTEAD OF INSERT trigger,
85343 ** do not attempt any conversions before assembling the record.
85344 ** If this is a real table, attempt conversions as required by the
85345 ** table column affinities.
85347 if( !isView ){
85348 sqlite3VdbeAddOp2(v, OP_Affinity, regCols+1, pTab->nCol);
85349 sqlite3TableAffinityStr(v, pTab);
85352 /* Fire BEFORE or INSTEAD OF triggers */
85353 sqlite3CodeRowTrigger(pParse, pTrigger, TK_INSERT, 0, TRIGGER_BEFORE,
85354 pTab, regCols-pTab->nCol-1, onError, endOfLoop);
85356 sqlite3ReleaseTempRange(pParse, regCols, pTab->nCol+1);
85359 /* Push the record number for the new entry onto the stack. The
85360 ** record number is a randomly generate integer created by NewRowid
85361 ** except when the table has an INTEGER PRIMARY KEY column, in which
85362 ** case the record number is the same as that column.
85364 if( !isView ){
85365 if( IsVirtual(pTab) ){
85366 /* The row that the VUpdate opcode will delete: none */
85367 sqlite3VdbeAddOp2(v, OP_Null, 0, regIns);
85369 if( keyColumn>=0 ){
85370 if( useTempTable ){
85371 sqlite3VdbeAddOp3(v, OP_Column, srcTab, keyColumn, regRowid);
85372 }else if( pSelect ){
85373 sqlite3VdbeAddOp2(v, OP_SCopy, regFromSelect+keyColumn, regRowid);
85374 }else{
85375 VdbeOp *pOp;
85376 sqlite3ExprCode(pParse, pList->a[keyColumn].pExpr, regRowid);
85377 pOp = sqlite3VdbeGetOp(v, -1);
85378 if( ALWAYS(pOp) && pOp->opcode==OP_Null && !IsVirtual(pTab) ){
85379 appendFlag = 1;
85380 pOp->opcode = OP_NewRowid;
85381 pOp->p1 = baseCur;
85382 pOp->p2 = regRowid;
85383 pOp->p3 = regAutoinc;
85386 /* If the PRIMARY KEY expression is NULL, then use OP_NewRowid
85387 ** to generate a unique primary key value.
85389 if( !appendFlag ){
85390 int j1;
85391 if( !IsVirtual(pTab) ){
85392 j1 = sqlite3VdbeAddOp1(v, OP_NotNull, regRowid);
85393 sqlite3VdbeAddOp3(v, OP_NewRowid, baseCur, regRowid, regAutoinc);
85394 sqlite3VdbeJumpHere(v, j1);
85395 }else{
85396 j1 = sqlite3VdbeCurrentAddr(v);
85397 sqlite3VdbeAddOp2(v, OP_IsNull, regRowid, j1+2);
85399 sqlite3VdbeAddOp1(v, OP_MustBeInt, regRowid);
85401 }else if( IsVirtual(pTab) ){
85402 sqlite3VdbeAddOp2(v, OP_Null, 0, regRowid);
85403 }else{
85404 sqlite3VdbeAddOp3(v, OP_NewRowid, baseCur, regRowid, regAutoinc);
85405 appendFlag = 1;
85407 autoIncStep(pParse, regAutoinc, regRowid);
85409 /* Push onto the stack, data for all columns of the new entry, beginning
85410 ** with the first column.
85412 nHidden = 0;
85413 for(i=0; i<pTab->nCol; i++){
85414 int iRegStore = regRowid+1+i;
85415 if( i==pTab->iPKey ){
85416 /* The value of the INTEGER PRIMARY KEY column is always a NULL.
85417 ** Whenever this column is read, the record number will be substituted
85418 ** in its place. So will fill this column with a NULL to avoid
85419 ** taking up data space with information that will never be used. */
85420 sqlite3VdbeAddOp2(v, OP_Null, 0, iRegStore);
85421 continue;
85423 if( pColumn==0 ){
85424 if( IsHiddenColumn(&pTab->aCol[i]) ){
85425 assert( IsVirtual(pTab) );
85426 j = -1;
85427 nHidden++;
85428 }else{
85429 j = i - nHidden;
85431 }else{
85432 for(j=0; j<pColumn->nId; j++){
85433 if( pColumn->a[j].idx==i ) break;
85436 if( j<0 || nColumn==0 || (pColumn && j>=pColumn->nId) ){
85437 sqlite3ExprCode(pParse, pTab->aCol[i].pDflt, iRegStore);
85438 }else if( useTempTable ){
85439 sqlite3VdbeAddOp3(v, OP_Column, srcTab, j, iRegStore);
85440 }else if( pSelect ){
85441 sqlite3VdbeAddOp2(v, OP_SCopy, regFromSelect+j, iRegStore);
85442 }else{
85443 sqlite3ExprCode(pParse, pList->a[j].pExpr, iRegStore);
85447 /* Generate code to check constraints and generate index keys and
85448 ** do the insertion.
85450 #ifndef SQLITE_OMIT_VIRTUALTABLE
85451 if( IsVirtual(pTab) ){
85452 const char *pVTab = (const char *)sqlite3GetVTable(db, pTab);
85453 sqlite3VtabMakeWritable(pParse, pTab);
85454 sqlite3VdbeAddOp4(v, OP_VUpdate, 1, pTab->nCol+2, regIns, pVTab, P4_VTAB);
85455 sqlite3MayAbort(pParse);
85456 }else
85457 #endif
85459 int isReplace; /* Set to true if constraints may cause a replace */
85460 sqlite3GenerateConstraintChecks(pParse, pTab, baseCur, regIns, aRegIdx,
85461 keyColumn>=0, 0, onError, endOfLoop, &isReplace
85463 sqlite3FkCheck(pParse, pTab, 0, regIns);
85464 sqlite3CompleteInsertion(
85465 pParse, pTab, baseCur, regIns, aRegIdx, 0, appendFlag, isReplace==0
85470 /* Update the count of rows that are inserted
85472 if( (db->flags & SQLITE_CountRows)!=0 ){
85473 sqlite3VdbeAddOp2(v, OP_AddImm, regRowCount, 1);
85476 if( pTrigger ){
85477 /* Code AFTER triggers */
85478 sqlite3CodeRowTrigger(pParse, pTrigger, TK_INSERT, 0, TRIGGER_AFTER,
85479 pTab, regData-2-pTab->nCol, onError, endOfLoop);
85482 /* The bottom of the main insertion loop, if the data source
85483 ** is a SELECT statement.
85485 sqlite3VdbeResolveLabel(v, endOfLoop);
85486 if( useTempTable ){
85487 sqlite3VdbeAddOp2(v, OP_Next, srcTab, addrCont);
85488 sqlite3VdbeJumpHere(v, addrInsTop);
85489 sqlite3VdbeAddOp1(v, OP_Close, srcTab);
85490 }else if( pSelect ){
85491 sqlite3VdbeAddOp2(v, OP_Goto, 0, addrCont);
85492 sqlite3VdbeJumpHere(v, addrInsTop);
85495 if( !IsVirtual(pTab) && !isView ){
85496 /* Close all tables opened */
85497 sqlite3VdbeAddOp1(v, OP_Close, baseCur);
85498 for(idx=1, pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext, idx++){
85499 sqlite3VdbeAddOp1(v, OP_Close, idx+baseCur);
85503 insert_end:
85504 /* Update the sqlite_sequence table by storing the content of the
85505 ** maximum rowid counter values recorded while inserting into
85506 ** autoincrement tables.
85508 if( pParse->nested==0 && pParse->pTriggerTab==0 ){
85509 sqlite3AutoincrementEnd(pParse);
85513 ** Return the number of rows inserted. If this routine is
85514 ** generating code because of a call to sqlite3NestedParse(), do not
85515 ** invoke the callback function.
85517 if( (db->flags&SQLITE_CountRows) && !pParse->nested && !pParse->pTriggerTab ){
85518 sqlite3VdbeAddOp2(v, OP_ResultRow, regRowCount, 1);
85519 sqlite3VdbeSetNumCols(v, 1);
85520 sqlite3VdbeSetColName(v, 0, COLNAME_NAME, "rows inserted", SQLITE_STATIC);
85523 insert_cleanup:
85524 sqlite3SrcListDelete(db, pTabList);
85525 sqlite3ExprListDelete(db, pList);
85526 sqlite3SelectDelete(db, pSelect);
85527 sqlite3IdListDelete(db, pColumn);
85528 sqlite3DbFree(db, aRegIdx);
85531 /* Make sure "isView" and other macros defined above are undefined. Otherwise
85532 ** thely may interfere with compilation of other functions in this file
85533 ** (or in another file, if this file becomes part of the amalgamation). */
85534 #ifdef isView
85535 #undef isView
85536 #endif
85537 #ifdef pTrigger
85538 #undef pTrigger
85539 #endif
85540 #ifdef tmask
85541 #undef tmask
85542 #endif
85546 ** Generate code to do constraint checks prior to an INSERT or an UPDATE.
85548 ** The input is a range of consecutive registers as follows:
85550 ** 1. The rowid of the row after the update.
85552 ** 2. The data in the first column of the entry after the update.
85554 ** i. Data from middle columns...
85556 ** N. The data in the last column of the entry after the update.
85558 ** The regRowid parameter is the index of the register containing (1).
85560 ** If isUpdate is true and rowidChng is non-zero, then rowidChng contains
85561 ** the address of a register containing the rowid before the update takes
85562 ** place. isUpdate is true for UPDATEs and false for INSERTs. If isUpdate
85563 ** is false, indicating an INSERT statement, then a non-zero rowidChng
85564 ** indicates that the rowid was explicitly specified as part of the
85565 ** INSERT statement. If rowidChng is false, it means that the rowid is
85566 ** computed automatically in an insert or that the rowid value is not
85567 ** modified by an update.
85569 ** The code generated by this routine store new index entries into
85570 ** registers identified by aRegIdx[]. No index entry is created for
85571 ** indices where aRegIdx[i]==0. The order of indices in aRegIdx[] is
85572 ** the same as the order of indices on the linked list of indices
85573 ** attached to the table.
85575 ** This routine also generates code to check constraints. NOT NULL,
85576 ** CHECK, and UNIQUE constraints are all checked. If a constraint fails,
85577 ** then the appropriate action is performed. There are five possible
85578 ** actions: ROLLBACK, ABORT, FAIL, REPLACE, and IGNORE.
85580 ** Constraint type Action What Happens
85581 ** --------------- ---------- ----------------------------------------
85582 ** any ROLLBACK The current transaction is rolled back and
85583 ** sqlite3_exec() returns immediately with a
85584 ** return code of SQLITE_CONSTRAINT.
85586 ** any ABORT Back out changes from the current command
85587 ** only (do not do a complete rollback) then
85588 ** cause sqlite3_exec() to return immediately
85589 ** with SQLITE_CONSTRAINT.
85591 ** any FAIL Sqlite_exec() returns immediately with a
85592 ** return code of SQLITE_CONSTRAINT. The
85593 ** transaction is not rolled back and any
85594 ** prior changes are retained.
85596 ** any IGNORE The record number and data is popped from
85597 ** the stack and there is an immediate jump
85598 ** to label ignoreDest.
85600 ** NOT NULL REPLACE The NULL value is replace by the default
85601 ** value for that column. If the default value
85602 ** is NULL, the action is the same as ABORT.
85604 ** UNIQUE REPLACE The other row that conflicts with the row
85605 ** being inserted is removed.
85607 ** CHECK REPLACE Illegal. The results in an exception.
85609 ** Which action to take is determined by the overrideError parameter.
85610 ** Or if overrideError==OE_Default, then the pParse->onError parameter
85611 ** is used. Or if pParse->onError==OE_Default then the onError value
85612 ** for the constraint is used.
85614 ** The calling routine must open a read/write cursor for pTab with
85615 ** cursor number "baseCur". All indices of pTab must also have open
85616 ** read/write cursors with cursor number baseCur+i for the i-th cursor.
85617 ** Except, if there is no possibility of a REPLACE action then
85618 ** cursors do not need to be open for indices where aRegIdx[i]==0.
85620 SQLITE_PRIVATE void sqlite3GenerateConstraintChecks(
85621 Parse *pParse, /* The parser context */
85622 Table *pTab, /* the table into which we are inserting */
85623 int baseCur, /* Index of a read/write cursor pointing at pTab */
85624 int regRowid, /* Index of the range of input registers */
85625 int *aRegIdx, /* Register used by each index. 0 for unused indices */
85626 int rowidChng, /* True if the rowid might collide with existing entry */
85627 int isUpdate, /* True for UPDATE, False for INSERT */
85628 int overrideError, /* Override onError to this if not OE_Default */
85629 int ignoreDest, /* Jump to this label on an OE_Ignore resolution */
85630 int *pbMayReplace /* OUT: Set to true if constraint may cause a replace */
85632 int i; /* loop counter */
85633 Vdbe *v; /* VDBE under constrution */
85634 int nCol; /* Number of columns */
85635 int onError; /* Conflict resolution strategy */
85636 int j1; /* Addresss of jump instruction */
85637 int j2 = 0, j3; /* Addresses of jump instructions */
85638 int regData; /* Register containing first data column */
85639 int iCur; /* Table cursor number */
85640 Index *pIdx; /* Pointer to one of the indices */
85641 int seenReplace = 0; /* True if REPLACE is used to resolve INT PK conflict */
85642 int regOldRowid = (rowidChng && isUpdate) ? rowidChng : regRowid;
85644 v = sqlite3GetVdbe(pParse);
85645 assert( v!=0 );
85646 assert( pTab->pSelect==0 ); /* This table is not a VIEW */
85647 nCol = pTab->nCol;
85648 regData = regRowid + 1;
85650 /* Test all NOT NULL constraints.
85652 for(i=0; i<nCol; i++){
85653 if( i==pTab->iPKey ){
85654 continue;
85656 onError = pTab->aCol[i].notNull;
85657 if( onError==OE_None ) continue;
85658 if( overrideError!=OE_Default ){
85659 onError = overrideError;
85660 }else if( onError==OE_Default ){
85661 onError = OE_Abort;
85663 if( onError==OE_Replace && pTab->aCol[i].pDflt==0 ){
85664 onError = OE_Abort;
85666 assert( onError==OE_Rollback || onError==OE_Abort || onError==OE_Fail
85667 || onError==OE_Ignore || onError==OE_Replace );
85668 switch( onError ){
85669 case OE_Abort:
85670 sqlite3MayAbort(pParse);
85671 case OE_Rollback:
85672 case OE_Fail: {
85673 char *zMsg;
85674 sqlite3VdbeAddOp3(v, OP_HaltIfNull,
85675 SQLITE_CONSTRAINT, onError, regData+i);
85676 zMsg = sqlite3MPrintf(pParse->db, "%s.%s may not be NULL",
85677 pTab->zName, pTab->aCol[i].zName);
85678 sqlite3VdbeChangeP4(v, -1, zMsg, P4_DYNAMIC);
85679 break;
85681 case OE_Ignore: {
85682 sqlite3VdbeAddOp2(v, OP_IsNull, regData+i, ignoreDest);
85683 break;
85685 default: {
85686 assert( onError==OE_Replace );
85687 j1 = sqlite3VdbeAddOp1(v, OP_NotNull, regData+i);
85688 sqlite3ExprCode(pParse, pTab->aCol[i].pDflt, regData+i);
85689 sqlite3VdbeJumpHere(v, j1);
85690 break;
85695 /* Test all CHECK constraints
85697 #ifndef SQLITE_OMIT_CHECK
85698 if( pTab->pCheck && (pParse->db->flags & SQLITE_IgnoreChecks)==0 ){
85699 int allOk = sqlite3VdbeMakeLabel(v);
85700 pParse->ckBase = regData;
85701 sqlite3ExprIfTrue(pParse, pTab->pCheck, allOk, SQLITE_JUMPIFNULL);
85702 onError = overrideError!=OE_Default ? overrideError : OE_Abort;
85703 if( onError==OE_Ignore ){
85704 sqlite3VdbeAddOp2(v, OP_Goto, 0, ignoreDest);
85705 }else{
85706 if( onError==OE_Replace ) onError = OE_Abort; /* IMP: R-15569-63625 */
85707 sqlite3HaltConstraint(pParse, onError, 0, 0);
85709 sqlite3VdbeResolveLabel(v, allOk);
85711 #endif /* !defined(SQLITE_OMIT_CHECK) */
85713 /* If we have an INTEGER PRIMARY KEY, make sure the primary key
85714 ** of the new record does not previously exist. Except, if this
85715 ** is an UPDATE and the primary key is not changing, that is OK.
85717 if( rowidChng ){
85718 onError = pTab->keyConf;
85719 if( overrideError!=OE_Default ){
85720 onError = overrideError;
85721 }else if( onError==OE_Default ){
85722 onError = OE_Abort;
85725 if( isUpdate ){
85726 j2 = sqlite3VdbeAddOp3(v, OP_Eq, regRowid, 0, rowidChng);
85728 j3 = sqlite3VdbeAddOp3(v, OP_NotExists, baseCur, 0, regRowid);
85729 switch( onError ){
85730 default: {
85731 onError = OE_Abort;
85732 /* Fall thru into the next case */
85734 case OE_Rollback:
85735 case OE_Abort:
85736 case OE_Fail: {
85737 sqlite3HaltConstraint(
85738 pParse, onError, "PRIMARY KEY must be unique", P4_STATIC);
85739 break;
85741 case OE_Replace: {
85742 /* If there are DELETE triggers on this table and the
85743 ** recursive-triggers flag is set, call GenerateRowDelete() to
85744 ** remove the conflicting row from the the table. This will fire
85745 ** the triggers and remove both the table and index b-tree entries.
85747 ** Otherwise, if there are no triggers or the recursive-triggers
85748 ** flag is not set, but the table has one or more indexes, call
85749 ** GenerateRowIndexDelete(). This removes the index b-tree entries
85750 ** only. The table b-tree entry will be replaced by the new entry
85751 ** when it is inserted.
85753 ** If either GenerateRowDelete() or GenerateRowIndexDelete() is called,
85754 ** also invoke MultiWrite() to indicate that this VDBE may require
85755 ** statement rollback (if the statement is aborted after the delete
85756 ** takes place). Earlier versions called sqlite3MultiWrite() regardless,
85757 ** but being more selective here allows statements like:
85759 ** REPLACE INTO t(rowid) VALUES($newrowid)
85761 ** to run without a statement journal if there are no indexes on the
85762 ** table.
85764 Trigger *pTrigger = 0;
85765 if( pParse->db->flags&SQLITE_RecTriggers ){
85766 pTrigger = sqlite3TriggersExist(pParse, pTab, TK_DELETE, 0, 0);
85768 if( pTrigger || sqlite3FkRequired(pParse, pTab, 0, 0) ){
85769 sqlite3MultiWrite(pParse);
85770 sqlite3GenerateRowDelete(
85771 pParse, pTab, baseCur, regRowid, 0, pTrigger, OE_Replace
85773 }else if( pTab->pIndex ){
85774 sqlite3MultiWrite(pParse);
85775 sqlite3GenerateRowIndexDelete(pParse, pTab, baseCur, 0);
85777 seenReplace = 1;
85778 break;
85780 case OE_Ignore: {
85781 assert( seenReplace==0 );
85782 sqlite3VdbeAddOp2(v, OP_Goto, 0, ignoreDest);
85783 break;
85786 sqlite3VdbeJumpHere(v, j3);
85787 if( isUpdate ){
85788 sqlite3VdbeJumpHere(v, j2);
85792 /* Test all UNIQUE constraints by creating entries for each UNIQUE
85793 ** index and making sure that duplicate entries do not already exist.
85794 ** Add the new records to the indices as we go.
85796 for(iCur=0, pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext, iCur++){
85797 int regIdx;
85798 int regR;
85800 if( aRegIdx[iCur]==0 ) continue; /* Skip unused indices */
85802 /* Create a key for accessing the index entry */
85803 regIdx = sqlite3GetTempRange(pParse, pIdx->nColumn+1);
85804 for(i=0; i<pIdx->nColumn; i++){
85805 int idx = pIdx->aiColumn[i];
85806 if( idx==pTab->iPKey ){
85807 sqlite3VdbeAddOp2(v, OP_SCopy, regRowid, regIdx+i);
85808 }else{
85809 sqlite3VdbeAddOp2(v, OP_SCopy, regData+idx, regIdx+i);
85812 sqlite3VdbeAddOp2(v, OP_SCopy, regRowid, regIdx+i);
85813 sqlite3VdbeAddOp3(v, OP_MakeRecord, regIdx, pIdx->nColumn+1, aRegIdx[iCur]);
85814 sqlite3VdbeChangeP4(v, -1, sqlite3IndexAffinityStr(v, pIdx), P4_TRANSIENT);
85815 sqlite3ExprCacheAffinityChange(pParse, regIdx, pIdx->nColumn+1);
85817 /* Find out what action to take in case there is an indexing conflict */
85818 onError = pIdx->onError;
85819 if( onError==OE_None ){
85820 sqlite3ReleaseTempRange(pParse, regIdx, pIdx->nColumn+1);
85821 continue; /* pIdx is not a UNIQUE index */
85823 if( overrideError!=OE_Default ){
85824 onError = overrideError;
85825 }else if( onError==OE_Default ){
85826 onError = OE_Abort;
85828 if( seenReplace ){
85829 if( onError==OE_Ignore ) onError = OE_Replace;
85830 else if( onError==OE_Fail ) onError = OE_Abort;
85833 /* Check to see if the new index entry will be unique */
85834 regR = sqlite3GetTempReg(pParse);
85835 sqlite3VdbeAddOp2(v, OP_SCopy, regOldRowid, regR);
85836 j3 = sqlite3VdbeAddOp4(v, OP_IsUnique, baseCur+iCur+1, 0,
85837 regR, SQLITE_INT_TO_PTR(regIdx),
85838 P4_INT32);
85839 sqlite3ReleaseTempRange(pParse, regIdx, pIdx->nColumn+1);
85841 /* Generate code that executes if the new index entry is not unique */
85842 assert( onError==OE_Rollback || onError==OE_Abort || onError==OE_Fail
85843 || onError==OE_Ignore || onError==OE_Replace );
85844 switch( onError ){
85845 case OE_Rollback:
85846 case OE_Abort:
85847 case OE_Fail: {
85848 int j;
85849 StrAccum errMsg;
85850 const char *zSep;
85851 char *zErr;
85853 sqlite3StrAccumInit(&errMsg, 0, 0, 200);
85854 errMsg.db = pParse->db;
85855 zSep = pIdx->nColumn>1 ? "columns " : "column ";
85856 for(j=0; j<pIdx->nColumn; j++){
85857 char *zCol = pTab->aCol[pIdx->aiColumn[j]].zName;
85858 sqlite3StrAccumAppend(&errMsg, zSep, -1);
85859 zSep = ", ";
85860 sqlite3StrAccumAppend(&errMsg, zCol, -1);
85862 sqlite3StrAccumAppend(&errMsg,
85863 pIdx->nColumn>1 ? " are not unique" : " is not unique", -1);
85864 zErr = sqlite3StrAccumFinish(&errMsg);
85865 sqlite3HaltConstraint(pParse, onError, zErr, 0);
85866 sqlite3DbFree(errMsg.db, zErr);
85867 break;
85869 case OE_Ignore: {
85870 assert( seenReplace==0 );
85871 sqlite3VdbeAddOp2(v, OP_Goto, 0, ignoreDest);
85872 break;
85874 default: {
85875 Trigger *pTrigger = 0;
85876 assert( onError==OE_Replace );
85877 sqlite3MultiWrite(pParse);
85878 if( pParse->db->flags&SQLITE_RecTriggers ){
85879 pTrigger = sqlite3TriggersExist(pParse, pTab, TK_DELETE, 0, 0);
85881 sqlite3GenerateRowDelete(
85882 pParse, pTab, baseCur, regR, 0, pTrigger, OE_Replace
85884 seenReplace = 1;
85885 break;
85888 sqlite3VdbeJumpHere(v, j3);
85889 sqlite3ReleaseTempReg(pParse, regR);
85892 if( pbMayReplace ){
85893 *pbMayReplace = seenReplace;
85898 ** This routine generates code to finish the INSERT or UPDATE operation
85899 ** that was started by a prior call to sqlite3GenerateConstraintChecks.
85900 ** A consecutive range of registers starting at regRowid contains the
85901 ** rowid and the content to be inserted.
85903 ** The arguments to this routine should be the same as the first six
85904 ** arguments to sqlite3GenerateConstraintChecks.
85906 SQLITE_PRIVATE void sqlite3CompleteInsertion(
85907 Parse *pParse, /* The parser context */
85908 Table *pTab, /* the table into which we are inserting */
85909 int baseCur, /* Index of a read/write cursor pointing at pTab */
85910 int regRowid, /* Range of content */
85911 int *aRegIdx, /* Register used by each index. 0 for unused indices */
85912 int isUpdate, /* True for UPDATE, False for INSERT */
85913 int appendBias, /* True if this is likely to be an append */
85914 int useSeekResult /* True to set the USESEEKRESULT flag on OP_[Idx]Insert */
85916 int i;
85917 Vdbe *v;
85918 int nIdx;
85919 Index *pIdx;
85920 u8 pik_flags;
85921 int regData;
85922 int regRec;
85924 v = sqlite3GetVdbe(pParse);
85925 assert( v!=0 );
85926 assert( pTab->pSelect==0 ); /* This table is not a VIEW */
85927 for(nIdx=0, pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext, nIdx++){}
85928 for(i=nIdx-1; i>=0; i--){
85929 if( aRegIdx[i]==0 ) continue;
85930 sqlite3VdbeAddOp2(v, OP_IdxInsert, baseCur+i+1, aRegIdx[i]);
85931 if( useSeekResult ){
85932 sqlite3VdbeChangeP5(v, OPFLAG_USESEEKRESULT);
85935 regData = regRowid + 1;
85936 regRec = sqlite3GetTempReg(pParse);
85937 sqlite3VdbeAddOp3(v, OP_MakeRecord, regData, pTab->nCol, regRec);
85938 sqlite3TableAffinityStr(v, pTab);
85939 sqlite3ExprCacheAffinityChange(pParse, regData, pTab->nCol);
85940 if( pParse->nested ){
85941 pik_flags = 0;
85942 }else{
85943 pik_flags = OPFLAG_NCHANGE;
85944 pik_flags |= (isUpdate?OPFLAG_ISUPDATE:OPFLAG_LASTROWID);
85946 if( appendBias ){
85947 pik_flags |= OPFLAG_APPEND;
85949 if( useSeekResult ){
85950 pik_flags |= OPFLAG_USESEEKRESULT;
85952 sqlite3VdbeAddOp3(v, OP_Insert, baseCur, regRec, regRowid);
85953 if( !pParse->nested ){
85954 sqlite3VdbeChangeP4(v, -1, pTab->zName, P4_TRANSIENT);
85956 sqlite3VdbeChangeP5(v, pik_flags);
85960 ** Generate code that will open cursors for a table and for all
85961 ** indices of that table. The "baseCur" parameter is the cursor number used
85962 ** for the table. Indices are opened on subsequent cursors.
85964 ** Return the number of indices on the table.
85966 SQLITE_PRIVATE int sqlite3OpenTableAndIndices(
85967 Parse *pParse, /* Parsing context */
85968 Table *pTab, /* Table to be opened */
85969 int baseCur, /* Cursor number assigned to the table */
85970 int op /* OP_OpenRead or OP_OpenWrite */
85972 int i;
85973 int iDb;
85974 Index *pIdx;
85975 Vdbe *v;
85977 if( IsVirtual(pTab) ) return 0;
85978 iDb = sqlite3SchemaToIndex(pParse->db, pTab->pSchema);
85979 v = sqlite3GetVdbe(pParse);
85980 assert( v!=0 );
85981 sqlite3OpenTable(pParse, baseCur, iDb, pTab, op);
85982 for(i=1, pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext, i++){
85983 KeyInfo *pKey = sqlite3IndexKeyinfo(pParse, pIdx);
85984 assert( pIdx->pSchema==pTab->pSchema );
85985 sqlite3VdbeAddOp4(v, op, i+baseCur, pIdx->tnum, iDb,
85986 (char*)pKey, P4_KEYINFO_HANDOFF);
85987 VdbeComment((v, "%s", pIdx->zName));
85989 if( pParse->nTab<baseCur+i ){
85990 pParse->nTab = baseCur+i;
85992 return i-1;
85996 #ifdef SQLITE_TEST
85998 ** The following global variable is incremented whenever the
85999 ** transfer optimization is used. This is used for testing
86000 ** purposes only - to make sure the transfer optimization really
86001 ** is happening when it is suppose to.
86003 SQLITE_API int sqlite3_xferopt_count;
86004 #endif /* SQLITE_TEST */
86007 #ifndef SQLITE_OMIT_XFER_OPT
86009 ** Check to collation names to see if they are compatible.
86011 static int xferCompatibleCollation(const char *z1, const char *z2){
86012 if( z1==0 ){
86013 return z2==0;
86015 if( z2==0 ){
86016 return 0;
86018 return sqlite3StrICmp(z1, z2)==0;
86023 ** Check to see if index pSrc is compatible as a source of data
86024 ** for index pDest in an insert transfer optimization. The rules
86025 ** for a compatible index:
86027 ** * The index is over the same set of columns
86028 ** * The same DESC and ASC markings occurs on all columns
86029 ** * The same onError processing (OE_Abort, OE_Ignore, etc)
86030 ** * The same collating sequence on each column
86032 static int xferCompatibleIndex(Index *pDest, Index *pSrc){
86033 int i;
86034 assert( pDest && pSrc );
86035 assert( pDest->pTable!=pSrc->pTable );
86036 if( pDest->nColumn!=pSrc->nColumn ){
86037 return 0; /* Different number of columns */
86039 if( pDest->onError!=pSrc->onError ){
86040 return 0; /* Different conflict resolution strategies */
86042 for(i=0; i<pSrc->nColumn; i++){
86043 if( pSrc->aiColumn[i]!=pDest->aiColumn[i] ){
86044 return 0; /* Different columns indexed */
86046 if( pSrc->aSortOrder[i]!=pDest->aSortOrder[i] ){
86047 return 0; /* Different sort orders */
86049 if( !xferCompatibleCollation(pSrc->azColl[i],pDest->azColl[i]) ){
86050 return 0; /* Different collating sequences */
86054 /* If no test above fails then the indices must be compatible */
86055 return 1;
86059 ** Attempt the transfer optimization on INSERTs of the form
86061 ** INSERT INTO tab1 SELECT * FROM tab2;
86063 ** This optimization is only attempted if
86065 ** (1) tab1 and tab2 have identical schemas including all the
86066 ** same indices and constraints
86068 ** (2) tab1 and tab2 are different tables
86070 ** (3) There must be no triggers on tab1
86072 ** (4) The result set of the SELECT statement is "*"
86074 ** (5) The SELECT statement has no WHERE, HAVING, ORDER BY, GROUP BY,
86075 ** or LIMIT clause.
86077 ** (6) The SELECT statement is a simple (not a compound) select that
86078 ** contains only tab2 in its FROM clause
86080 ** This method for implementing the INSERT transfers raw records from
86081 ** tab2 over to tab1. The columns are not decoded. Raw records from
86082 ** the indices of tab2 are transfered to tab1 as well. In so doing,
86083 ** the resulting tab1 has much less fragmentation.
86085 ** This routine returns TRUE if the optimization is attempted. If any
86086 ** of the conditions above fail so that the optimization should not
86087 ** be attempted, then this routine returns FALSE.
86089 static int xferOptimization(
86090 Parse *pParse, /* Parser context */
86091 Table *pDest, /* The table we are inserting into */
86092 Select *pSelect, /* A SELECT statement to use as the data source */
86093 int onError, /* How to handle constraint errors */
86094 int iDbDest /* The database of pDest */
86096 ExprList *pEList; /* The result set of the SELECT */
86097 Table *pSrc; /* The table in the FROM clause of SELECT */
86098 Index *pSrcIdx, *pDestIdx; /* Source and destination indices */
86099 struct SrcList_item *pItem; /* An element of pSelect->pSrc */
86100 int i; /* Loop counter */
86101 int iDbSrc; /* The database of pSrc */
86102 int iSrc, iDest; /* Cursors from source and destination */
86103 int addr1, addr2; /* Loop addresses */
86104 int emptyDestTest; /* Address of test for empty pDest */
86105 int emptySrcTest; /* Address of test for empty pSrc */
86106 Vdbe *v; /* The VDBE we are building */
86107 KeyInfo *pKey; /* Key information for an index */
86108 int regAutoinc; /* Memory register used by AUTOINC */
86109 int destHasUniqueIdx = 0; /* True if pDest has a UNIQUE index */
86110 int regData, regRowid; /* Registers holding data and rowid */
86112 if( pSelect==0 ){
86113 return 0; /* Must be of the form INSERT INTO ... SELECT ... */
86115 if( sqlite3TriggerList(pParse, pDest) ){
86116 return 0; /* tab1 must not have triggers */
86118 #ifndef SQLITE_OMIT_VIRTUALTABLE
86119 if( pDest->tabFlags & TF_Virtual ){
86120 return 0; /* tab1 must not be a virtual table */
86122 #endif
86123 if( onError==OE_Default ){
86124 onError = OE_Abort;
86126 if( onError!=OE_Abort && onError!=OE_Rollback ){
86127 return 0; /* Cannot do OR REPLACE or OR IGNORE or OR FAIL */
86129 assert(pSelect->pSrc); /* allocated even if there is no FROM clause */
86130 if( pSelect->pSrc->nSrc!=1 ){
86131 return 0; /* FROM clause must have exactly one term */
86133 if( pSelect->pSrc->a[0].pSelect ){
86134 return 0; /* FROM clause cannot contain a subquery */
86136 if( pSelect->pWhere ){
86137 return 0; /* SELECT may not have a WHERE clause */
86139 if( pSelect->pOrderBy ){
86140 return 0; /* SELECT may not have an ORDER BY clause */
86142 /* Do not need to test for a HAVING clause. If HAVING is present but
86143 ** there is no ORDER BY, we will get an error. */
86144 if( pSelect->pGroupBy ){
86145 return 0; /* SELECT may not have a GROUP BY clause */
86147 if( pSelect->pLimit ){
86148 return 0; /* SELECT may not have a LIMIT clause */
86150 assert( pSelect->pOffset==0 ); /* Must be so if pLimit==0 */
86151 if( pSelect->pPrior ){
86152 return 0; /* SELECT may not be a compound query */
86154 if( pSelect->selFlags & SF_Distinct ){
86155 return 0; /* SELECT may not be DISTINCT */
86157 pEList = pSelect->pEList;
86158 assert( pEList!=0 );
86159 if( pEList->nExpr!=1 ){
86160 return 0; /* The result set must have exactly one column */
86162 assert( pEList->a[0].pExpr );
86163 if( pEList->a[0].pExpr->op!=TK_ALL ){
86164 return 0; /* The result set must be the special operator "*" */
86167 /* At this point we have established that the statement is of the
86168 ** correct syntactic form to participate in this optimization. Now
86169 ** we have to check the semantics.
86171 pItem = pSelect->pSrc->a;
86172 pSrc = sqlite3LocateTable(pParse, 0, pItem->zName, pItem->zDatabase);
86173 if( pSrc==0 ){
86174 return 0; /* FROM clause does not contain a real table */
86176 if( pSrc==pDest ){
86177 return 0; /* tab1 and tab2 may not be the same table */
86179 #ifndef SQLITE_OMIT_VIRTUALTABLE
86180 if( pSrc->tabFlags & TF_Virtual ){
86181 return 0; /* tab2 must not be a virtual table */
86183 #endif
86184 if( pSrc->pSelect ){
86185 return 0; /* tab2 may not be a view */
86187 if( pDest->nCol!=pSrc->nCol ){
86188 return 0; /* Number of columns must be the same in tab1 and tab2 */
86190 if( pDest->iPKey!=pSrc->iPKey ){
86191 return 0; /* Both tables must have the same INTEGER PRIMARY KEY */
86193 for(i=0; i<pDest->nCol; i++){
86194 if( pDest->aCol[i].affinity!=pSrc->aCol[i].affinity ){
86195 return 0; /* Affinity must be the same on all columns */
86197 if( !xferCompatibleCollation(pDest->aCol[i].zColl, pSrc->aCol[i].zColl) ){
86198 return 0; /* Collating sequence must be the same on all columns */
86200 if( pDest->aCol[i].notNull && !pSrc->aCol[i].notNull ){
86201 return 0; /* tab2 must be NOT NULL if tab1 is */
86204 for(pDestIdx=pDest->pIndex; pDestIdx; pDestIdx=pDestIdx->pNext){
86205 if( pDestIdx->onError!=OE_None ){
86206 destHasUniqueIdx = 1;
86208 for(pSrcIdx=pSrc->pIndex; pSrcIdx; pSrcIdx=pSrcIdx->pNext){
86209 if( xferCompatibleIndex(pDestIdx, pSrcIdx) ) break;
86211 if( pSrcIdx==0 ){
86212 return 0; /* pDestIdx has no corresponding index in pSrc */
86215 #ifndef SQLITE_OMIT_CHECK
86216 if( pDest->pCheck && sqlite3ExprCompare(pSrc->pCheck, pDest->pCheck) ){
86217 return 0; /* Tables have different CHECK constraints. Ticket #2252 */
86219 #endif
86221 /* If we get this far, it means either:
86223 ** * We can always do the transfer if the table contains an
86224 ** an integer primary key
86226 ** * We can conditionally do the transfer if the destination
86227 ** table is empty.
86229 #ifdef SQLITE_TEST
86230 sqlite3_xferopt_count++;
86231 #endif
86232 iDbSrc = sqlite3SchemaToIndex(pParse->db, pSrc->pSchema);
86233 v = sqlite3GetVdbe(pParse);
86234 sqlite3CodeVerifySchema(pParse, iDbSrc);
86235 iSrc = pParse->nTab++;
86236 iDest = pParse->nTab++;
86237 regAutoinc = autoIncBegin(pParse, iDbDest, pDest);
86238 sqlite3OpenTable(pParse, iDest, iDbDest, pDest, OP_OpenWrite);
86239 if( (pDest->iPKey<0 && pDest->pIndex!=0) || destHasUniqueIdx ){
86240 /* If tables do not have an INTEGER PRIMARY KEY and there
86241 ** are indices to be copied and the destination is not empty,
86242 ** we have to disallow the transfer optimization because the
86243 ** the rowids might change which will mess up indexing.
86245 ** Or if the destination has a UNIQUE index and is not empty,
86246 ** we also disallow the transfer optimization because we cannot
86247 ** insure that all entries in the union of DEST and SRC will be
86248 ** unique.
86250 addr1 = sqlite3VdbeAddOp2(v, OP_Rewind, iDest, 0);
86251 emptyDestTest = sqlite3VdbeAddOp2(v, OP_Goto, 0, 0);
86252 sqlite3VdbeJumpHere(v, addr1);
86253 }else{
86254 emptyDestTest = 0;
86256 sqlite3OpenTable(pParse, iSrc, iDbSrc, pSrc, OP_OpenRead);
86257 emptySrcTest = sqlite3VdbeAddOp2(v, OP_Rewind, iSrc, 0);
86258 regData = sqlite3GetTempReg(pParse);
86259 regRowid = sqlite3GetTempReg(pParse);
86260 if( pDest->iPKey>=0 ){
86261 addr1 = sqlite3VdbeAddOp2(v, OP_Rowid, iSrc, regRowid);
86262 addr2 = sqlite3VdbeAddOp3(v, OP_NotExists, iDest, 0, regRowid);
86263 sqlite3HaltConstraint(
86264 pParse, onError, "PRIMARY KEY must be unique", P4_STATIC);
86265 sqlite3VdbeJumpHere(v, addr2);
86266 autoIncStep(pParse, regAutoinc, regRowid);
86267 }else if( pDest->pIndex==0 ){
86268 addr1 = sqlite3VdbeAddOp2(v, OP_NewRowid, iDest, regRowid);
86269 }else{
86270 addr1 = sqlite3VdbeAddOp2(v, OP_Rowid, iSrc, regRowid);
86271 assert( (pDest->tabFlags & TF_Autoincrement)==0 );
86273 sqlite3VdbeAddOp2(v, OP_RowData, iSrc, regData);
86274 sqlite3VdbeAddOp3(v, OP_Insert, iDest, regData, regRowid);
86275 sqlite3VdbeChangeP5(v, OPFLAG_NCHANGE|OPFLAG_LASTROWID|OPFLAG_APPEND);
86276 sqlite3VdbeChangeP4(v, -1, pDest->zName, 0);
86277 sqlite3VdbeAddOp2(v, OP_Next, iSrc, addr1);
86278 for(pDestIdx=pDest->pIndex; pDestIdx; pDestIdx=pDestIdx->pNext){
86279 for(pSrcIdx=pSrc->pIndex; ALWAYS(pSrcIdx); pSrcIdx=pSrcIdx->pNext){
86280 if( xferCompatibleIndex(pDestIdx, pSrcIdx) ) break;
86282 assert( pSrcIdx );
86283 sqlite3VdbeAddOp2(v, OP_Close, iSrc, 0);
86284 sqlite3VdbeAddOp2(v, OP_Close, iDest, 0);
86285 pKey = sqlite3IndexKeyinfo(pParse, pSrcIdx);
86286 sqlite3VdbeAddOp4(v, OP_OpenRead, iSrc, pSrcIdx->tnum, iDbSrc,
86287 (char*)pKey, P4_KEYINFO_HANDOFF);
86288 VdbeComment((v, "%s", pSrcIdx->zName));
86289 pKey = sqlite3IndexKeyinfo(pParse, pDestIdx);
86290 sqlite3VdbeAddOp4(v, OP_OpenWrite, iDest, pDestIdx->tnum, iDbDest,
86291 (char*)pKey, P4_KEYINFO_HANDOFF);
86292 VdbeComment((v, "%s", pDestIdx->zName));
86293 addr1 = sqlite3VdbeAddOp2(v, OP_Rewind, iSrc, 0);
86294 sqlite3VdbeAddOp2(v, OP_RowKey, iSrc, regData);
86295 sqlite3VdbeAddOp3(v, OP_IdxInsert, iDest, regData, 1);
86296 sqlite3VdbeAddOp2(v, OP_Next, iSrc, addr1+1);
86297 sqlite3VdbeJumpHere(v, addr1);
86299 sqlite3VdbeJumpHere(v, emptySrcTest);
86300 sqlite3ReleaseTempReg(pParse, regRowid);
86301 sqlite3ReleaseTempReg(pParse, regData);
86302 sqlite3VdbeAddOp2(v, OP_Close, iSrc, 0);
86303 sqlite3VdbeAddOp2(v, OP_Close, iDest, 0);
86304 if( emptyDestTest ){
86305 sqlite3VdbeAddOp2(v, OP_Halt, SQLITE_OK, 0);
86306 sqlite3VdbeJumpHere(v, emptyDestTest);
86307 sqlite3VdbeAddOp2(v, OP_Close, iDest, 0);
86308 return 0;
86309 }else{
86310 return 1;
86313 #endif /* SQLITE_OMIT_XFER_OPT */
86315 /************** End of insert.c **********************************************/
86316 /************** Begin file legacy.c ******************************************/
86318 ** 2001 September 15
86320 ** The author disclaims copyright to this source code. In place of
86321 ** a legal notice, here is a blessing:
86323 ** May you do good and not evil.
86324 ** May you find forgiveness for yourself and forgive others.
86325 ** May you share freely, never taking more than you give.
86327 *************************************************************************
86328 ** Main file for the SQLite library. The routines in this file
86329 ** implement the programmer interface to the library. Routines in
86330 ** other files are for internal use by SQLite and should not be
86331 ** accessed by users of the library.
86336 ** Execute SQL code. Return one of the SQLITE_ success/failure
86337 ** codes. Also write an error message into memory obtained from
86338 ** malloc() and make *pzErrMsg point to that message.
86340 ** If the SQL is a query, then for each row in the query result
86341 ** the xCallback() function is called. pArg becomes the first
86342 ** argument to xCallback(). If xCallback=NULL then no callback
86343 ** is invoked, even for queries.
86345 SQLITE_API int sqlite3_exec(
86346 sqlite3 *db, /* The database on which the SQL executes */
86347 const char *zSql, /* The SQL to be executed */
86348 sqlite3_callback xCallback, /* Invoke this callback routine */
86349 void *pArg, /* First argument to xCallback() */
86350 char **pzErrMsg /* Write error messages here */
86352 int rc = SQLITE_OK; /* Return code */
86353 const char *zLeftover; /* Tail of unprocessed SQL */
86354 sqlite3_stmt *pStmt = 0; /* The current SQL statement */
86355 char **azCols = 0; /* Names of result columns */
86356 int nRetry = 0; /* Number of retry attempts */
86357 int callbackIsInit; /* True if callback data is initialized */
86359 if( !sqlite3SafetyCheckOk(db) ) return SQLITE_MISUSE_BKPT;
86360 if( zSql==0 ) zSql = "";
86362 sqlite3_mutex_enter(db->mutex);
86363 sqlite3Error(db, SQLITE_OK, 0);
86364 while( (rc==SQLITE_OK || (rc==SQLITE_SCHEMA && (++nRetry)<2)) && zSql[0] ){
86365 int nCol;
86366 char **azVals = 0;
86368 pStmt = 0;
86369 rc = sqlite3_prepare(db, zSql, -1, &pStmt, &zLeftover);
86370 assert( rc==SQLITE_OK || pStmt==0 );
86371 if( rc!=SQLITE_OK ){
86372 continue;
86374 if( !pStmt ){
86375 /* this happens for a comment or white-space */
86376 zSql = zLeftover;
86377 continue;
86380 callbackIsInit = 0;
86381 nCol = sqlite3_column_count(pStmt);
86383 while( 1 ){
86384 int i;
86385 rc = sqlite3_step(pStmt);
86387 /* Invoke the callback function if required */
86388 if( xCallback && (SQLITE_ROW==rc ||
86389 (SQLITE_DONE==rc && !callbackIsInit
86390 && db->flags&SQLITE_NullCallback)) ){
86391 if( !callbackIsInit ){
86392 azCols = sqlite3DbMallocZero(db, 2*nCol*sizeof(const char*) + 1);
86393 if( azCols==0 ){
86394 goto exec_out;
86396 for(i=0; i<nCol; i++){
86397 azCols[i] = (char *)sqlite3_column_name(pStmt, i);
86398 /* sqlite3VdbeSetColName() installs column names as UTF8
86399 ** strings so there is no way for sqlite3_column_name() to fail. */
86400 assert( azCols[i]!=0 );
86402 callbackIsInit = 1;
86404 if( rc==SQLITE_ROW ){
86405 azVals = &azCols[nCol];
86406 for(i=0; i<nCol; i++){
86407 azVals[i] = (char *)sqlite3_column_text(pStmt, i);
86408 if( !azVals[i] && sqlite3_column_type(pStmt, i)!=SQLITE_NULL ){
86409 db->mallocFailed = 1;
86410 goto exec_out;
86414 if( xCallback(pArg, nCol, azVals, azCols) ){
86415 rc = SQLITE_ABORT;
86416 sqlite3VdbeFinalize((Vdbe *)pStmt);
86417 pStmt = 0;
86418 sqlite3Error(db, SQLITE_ABORT, 0);
86419 goto exec_out;
86423 if( rc!=SQLITE_ROW ){
86424 rc = sqlite3VdbeFinalize((Vdbe *)pStmt);
86425 pStmt = 0;
86426 if( rc!=SQLITE_SCHEMA ){
86427 nRetry = 0;
86428 zSql = zLeftover;
86429 while( sqlite3Isspace(zSql[0]) ) zSql++;
86431 break;
86435 sqlite3DbFree(db, azCols);
86436 azCols = 0;
86439 exec_out:
86440 if( pStmt ) sqlite3VdbeFinalize((Vdbe *)pStmt);
86441 sqlite3DbFree(db, azCols);
86443 rc = sqlite3ApiExit(db, rc);
86444 if( rc!=SQLITE_OK && ALWAYS(rc==sqlite3_errcode(db)) && pzErrMsg ){
86445 int nErrMsg = 1 + sqlite3Strlen30(sqlite3_errmsg(db));
86446 *pzErrMsg = sqlite3Malloc(nErrMsg);
86447 if( *pzErrMsg ){
86448 memcpy(*pzErrMsg, sqlite3_errmsg(db), nErrMsg);
86449 }else{
86450 rc = SQLITE_NOMEM;
86451 sqlite3Error(db, SQLITE_NOMEM, 0);
86453 }else if( pzErrMsg ){
86454 *pzErrMsg = 0;
86457 assert( (rc&db->errMask)==rc );
86458 sqlite3_mutex_leave(db->mutex);
86459 return rc;
86462 /************** End of legacy.c **********************************************/
86463 /************** Begin file loadext.c *****************************************/
86465 ** 2006 June 7
86467 ** The author disclaims copyright to this source code. In place of
86468 ** a legal notice, here is a blessing:
86470 ** May you do good and not evil.
86471 ** May you find forgiveness for yourself and forgive others.
86472 ** May you share freely, never taking more than you give.
86474 *************************************************************************
86475 ** This file contains code used to dynamically load extensions into
86476 ** the SQLite library.
86479 #ifndef SQLITE_CORE
86480 #define SQLITE_CORE 1 /* Disable the API redefinition in sqlite3ext.h */
86481 #endif
86482 /************** Include sqlite3ext.h in the middle of loadext.c **************/
86483 /************** Begin file sqlite3ext.h **************************************/
86485 ** 2006 June 7
86487 ** The author disclaims copyright to this source code. In place of
86488 ** a legal notice, here is a blessing:
86490 ** May you do good and not evil.
86491 ** May you find forgiveness for yourself and forgive others.
86492 ** May you share freely, never taking more than you give.
86494 *************************************************************************
86495 ** This header file defines the SQLite interface for use by
86496 ** shared libraries that want to be imported as extensions into
86497 ** an SQLite instance. Shared libraries that intend to be loaded
86498 ** as extensions by SQLite should #include this file instead of
86499 ** sqlite3.h.
86501 #ifndef _SQLITE3EXT_H_
86502 #define _SQLITE3EXT_H_
86504 typedef struct sqlite3_api_routines sqlite3_api_routines;
86507 ** The following structure holds pointers to all of the SQLite API
86508 ** routines.
86510 ** WARNING: In order to maintain backwards compatibility, add new
86511 ** interfaces to the end of this structure only. If you insert new
86512 ** interfaces in the middle of this structure, then older different
86513 ** versions of SQLite will not be able to load each others' shared
86514 ** libraries!
86516 struct sqlite3_api_routines {
86517 void * (*aggregate_context)(sqlite3_context*,int nBytes);
86518 int (*aggregate_count)(sqlite3_context*);
86519 int (*bind_blob)(sqlite3_stmt*,int,const void*,int n,void(*)(void*));
86520 int (*bind_double)(sqlite3_stmt*,int,double);
86521 int (*bind_int)(sqlite3_stmt*,int,int);
86522 int (*bind_int64)(sqlite3_stmt*,int,sqlite_int64);
86523 int (*bind_null)(sqlite3_stmt*,int);
86524 int (*bind_parameter_count)(sqlite3_stmt*);
86525 int (*bind_parameter_index)(sqlite3_stmt*,const char*zName);
86526 const char * (*bind_parameter_name)(sqlite3_stmt*,int);
86527 int (*bind_text)(sqlite3_stmt*,int,const char*,int n,void(*)(void*));
86528 int (*bind_text16)(sqlite3_stmt*,int,const void*,int,void(*)(void*));
86529 int (*bind_value)(sqlite3_stmt*,int,const sqlite3_value*);
86530 int (*busy_handler)(sqlite3*,int(*)(void*,int),void*);
86531 int (*busy_timeout)(sqlite3*,int ms);
86532 int (*changes)(sqlite3*);
86533 int (*close)(sqlite3*);
86534 int (*collation_needed)(sqlite3*,void*,void(*)(void*,sqlite3*,int eTextRep,const char*));
86535 int (*collation_needed16)(sqlite3*,void*,void(*)(void*,sqlite3*,int eTextRep,const void*));
86536 const void * (*column_blob)(sqlite3_stmt*,int iCol);
86537 int (*column_bytes)(sqlite3_stmt*,int iCol);
86538 int (*column_bytes16)(sqlite3_stmt*,int iCol);
86539 int (*column_count)(sqlite3_stmt*pStmt);
86540 const char * (*column_database_name)(sqlite3_stmt*,int);
86541 const void * (*column_database_name16)(sqlite3_stmt*,int);
86542 const char * (*column_decltype)(sqlite3_stmt*,int i);
86543 const void * (*column_decltype16)(sqlite3_stmt*,int);
86544 double (*column_double)(sqlite3_stmt*,int iCol);
86545 int (*column_int)(sqlite3_stmt*,int iCol);
86546 sqlite_int64 (*column_int64)(sqlite3_stmt*,int iCol);
86547 const char * (*column_name)(sqlite3_stmt*,int);
86548 const void * (*column_name16)(sqlite3_stmt*,int);
86549 const char * (*column_origin_name)(sqlite3_stmt*,int);
86550 const void * (*column_origin_name16)(sqlite3_stmt*,int);
86551 const char * (*column_table_name)(sqlite3_stmt*,int);
86552 const void * (*column_table_name16)(sqlite3_stmt*,int);
86553 const unsigned char * (*column_text)(sqlite3_stmt*,int iCol);
86554 const void * (*column_text16)(sqlite3_stmt*,int iCol);
86555 int (*column_type)(sqlite3_stmt*,int iCol);
86556 sqlite3_value* (*column_value)(sqlite3_stmt*,int iCol);
86557 void * (*commit_hook)(sqlite3*,int(*)(void*),void*);
86558 int (*complete)(const char*sql);
86559 int (*complete16)(const void*sql);
86560 int (*create_collation)(sqlite3*,const char*,int,void*,int(*)(void*,int,const void*,int,const void*));
86561 int (*create_collation16)(sqlite3*,const void*,int,void*,int(*)(void*,int,const void*,int,const void*));
86562 int (*create_function)(sqlite3*,const char*,int,int,void*,void (*xFunc)(sqlite3_context*,int,sqlite3_value**),void (*xStep)(sqlite3_context*,int,sqlite3_value**),void (*xFinal)(sqlite3_context*));
86563 int (*create_function16)(sqlite3*,const void*,int,int,void*,void (*xFunc)(sqlite3_context*,int,sqlite3_value**),void (*xStep)(sqlite3_context*,int,sqlite3_value**),void (*xFinal)(sqlite3_context*));
86564 int (*create_module)(sqlite3*,const char*,const sqlite3_module*,void*);
86565 int (*data_count)(sqlite3_stmt*pStmt);
86566 sqlite3 * (*db_handle)(sqlite3_stmt*);
86567 int (*declare_vtab)(sqlite3*,const char*);
86568 int (*enable_shared_cache)(int);
86569 int (*errcode)(sqlite3*db);
86570 const char * (*errmsg)(sqlite3*);
86571 const void * (*errmsg16)(sqlite3*);
86572 int (*exec)(sqlite3*,const char*,sqlite3_callback,void*,char**);
86573 int (*expired)(sqlite3_stmt*);
86574 int (*finalize)(sqlite3_stmt*pStmt);
86575 void (*free)(void*);
86576 void (*free_table)(char**result);
86577 int (*get_autocommit)(sqlite3*);
86578 void * (*get_auxdata)(sqlite3_context*,int);
86579 int (*get_table)(sqlite3*,const char*,char***,int*,int*,char**);
86580 int (*global_recover)(void);
86581 void (*interruptx)(sqlite3*);
86582 sqlite_int64 (*last_insert_rowid)(sqlite3*);
86583 const char * (*libversion)(void);
86584 int (*libversion_number)(void);
86585 void *(*malloc)(int);
86586 char * (*mprintf)(const char*,...);
86587 int (*open)(const char*,sqlite3**);
86588 int (*open16)(const void*,sqlite3**);
86589 int (*prepare)(sqlite3*,const char*,int,sqlite3_stmt**,const char**);
86590 int (*prepare16)(sqlite3*,const void*,int,sqlite3_stmt**,const void**);
86591 void * (*profile)(sqlite3*,void(*)(void*,const char*,sqlite_uint64),void*);
86592 void (*progress_handler)(sqlite3*,int,int(*)(void*),void*);
86593 void *(*realloc)(void*,int);
86594 int (*reset)(sqlite3_stmt*pStmt);
86595 void (*result_blob)(sqlite3_context*,const void*,int,void(*)(void*));
86596 void (*result_double)(sqlite3_context*,double);
86597 void (*result_error)(sqlite3_context*,const char*,int);
86598 void (*result_error16)(sqlite3_context*,const void*,int);
86599 void (*result_int)(sqlite3_context*,int);
86600 void (*result_int64)(sqlite3_context*,sqlite_int64);
86601 void (*result_null)(sqlite3_context*);
86602 void (*result_text)(sqlite3_context*,const char*,int,void(*)(void*));
86603 void (*result_text16)(sqlite3_context*,const void*,int,void(*)(void*));
86604 void (*result_text16be)(sqlite3_context*,const void*,int,void(*)(void*));
86605 void (*result_text16le)(sqlite3_context*,const void*,int,void(*)(void*));
86606 void (*result_value)(sqlite3_context*,sqlite3_value*);
86607 void * (*rollback_hook)(sqlite3*,void(*)(void*),void*);
86608 int (*set_authorizer)(sqlite3*,int(*)(void*,int,const char*,const char*,const char*,const char*),void*);
86609 void (*set_auxdata)(sqlite3_context*,int,void*,void (*)(void*));
86610 char * (*snprintf)(int,char*,const char*,...);
86611 int (*step)(sqlite3_stmt*);
86612 int (*table_column_metadata)(sqlite3*,const char*,const char*,const char*,char const**,char const**,int*,int*,int*);
86613 void (*thread_cleanup)(void);
86614 int (*total_changes)(sqlite3*);
86615 void * (*trace)(sqlite3*,void(*xTrace)(void*,const char*),void*);
86616 int (*transfer_bindings)(sqlite3_stmt*,sqlite3_stmt*);
86617 void * (*update_hook)(sqlite3*,void(*)(void*,int ,char const*,char const*,sqlite_int64),void*);
86618 void * (*user_data)(sqlite3_context*);
86619 const void * (*value_blob)(sqlite3_value*);
86620 int (*value_bytes)(sqlite3_value*);
86621 int (*value_bytes16)(sqlite3_value*);
86622 double (*value_double)(sqlite3_value*);
86623 int (*value_int)(sqlite3_value*);
86624 sqlite_int64 (*value_int64)(sqlite3_value*);
86625 int (*value_numeric_type)(sqlite3_value*);
86626 const unsigned char * (*value_text)(sqlite3_value*);
86627 const void * (*value_text16)(sqlite3_value*);
86628 const void * (*value_text16be)(sqlite3_value*);
86629 const void * (*value_text16le)(sqlite3_value*);
86630 int (*value_type)(sqlite3_value*);
86631 char *(*vmprintf)(const char*,va_list);
86632 /* Added ??? */
86633 int (*overload_function)(sqlite3*, const char *zFuncName, int nArg);
86634 /* Added by 3.3.13 */
86635 int (*prepare_v2)(sqlite3*,const char*,int,sqlite3_stmt**,const char**);
86636 int (*prepare16_v2)(sqlite3*,const void*,int,sqlite3_stmt**,const void**);
86637 int (*clear_bindings)(sqlite3_stmt*);
86638 /* Added by 3.4.1 */
86639 int (*create_module_v2)(sqlite3*,const char*,const sqlite3_module*,void*,void (*xDestroy)(void *));
86640 /* Added by 3.5.0 */
86641 int (*bind_zeroblob)(sqlite3_stmt*,int,int);
86642 int (*blob_bytes)(sqlite3_blob*);
86643 int (*blob_close)(sqlite3_blob*);
86644 int (*blob_open)(sqlite3*,const char*,const char*,const char*,sqlite3_int64,int,sqlite3_blob**);
86645 int (*blob_read)(sqlite3_blob*,void*,int,int);
86646 int (*blob_write)(sqlite3_blob*,const void*,int,int);
86647 int (*create_collation_v2)(sqlite3*,const char*,int,void*,int(*)(void*,int,const void*,int,const void*),void(*)(void*));
86648 int (*file_control)(sqlite3*,const char*,int,void*);
86649 sqlite3_int64 (*memory_highwater)(int);
86650 sqlite3_int64 (*memory_used)(void);
86651 sqlite3_mutex *(*mutex_alloc)(int);
86652 void (*mutex_enter)(sqlite3_mutex*);
86653 void (*mutex_free)(sqlite3_mutex*);
86654 void (*mutex_leave)(sqlite3_mutex*);
86655 int (*mutex_try)(sqlite3_mutex*);
86656 int (*open_v2)(const char*,sqlite3**,int,const char*);
86657 int (*release_memory)(int);
86658 void (*result_error_nomem)(sqlite3_context*);
86659 void (*result_error_toobig)(sqlite3_context*);
86660 int (*sleep)(int);
86661 void (*soft_heap_limit)(int);
86662 sqlite3_vfs *(*vfs_find)(const char*);
86663 int (*vfs_register)(sqlite3_vfs*,int);
86664 int (*vfs_unregister)(sqlite3_vfs*);
86665 int (*xthreadsafe)(void);
86666 void (*result_zeroblob)(sqlite3_context*,int);
86667 void (*result_error_code)(sqlite3_context*,int);
86668 int (*test_control)(int, ...);
86669 void (*randomness)(int,void*);
86670 sqlite3 *(*context_db_handle)(sqlite3_context*);
86671 int (*extended_result_codes)(sqlite3*,int);
86672 int (*limit)(sqlite3*,int,int);
86673 sqlite3_stmt *(*next_stmt)(sqlite3*,sqlite3_stmt*);
86674 const char *(*sql)(sqlite3_stmt*);
86675 int (*status)(int,int*,int*,int);
86676 int (*backup_finish)(sqlite3_backup*);
86677 sqlite3_backup *(*backup_init)(sqlite3*,const char*,sqlite3*,const char*);
86678 int (*backup_pagecount)(sqlite3_backup*);
86679 int (*backup_remaining)(sqlite3_backup*);
86680 int (*backup_step)(sqlite3_backup*,int);
86681 const char *(*compileoption_get)(int);
86682 int (*compileoption_used)(const char*);
86683 int (*create_function_v2)(sqlite3*,const char*,int,int,void*,void (*xFunc)(sqlite3_context*,int,sqlite3_value**),void (*xStep)(sqlite3_context*,int,sqlite3_value**),void (*xFinal)(sqlite3_context*),void(*xDestroy)(void*));
86684 int (*db_config)(sqlite3*,int,...);
86685 sqlite3_mutex *(*db_mutex)(sqlite3*);
86686 int (*db_status)(sqlite3*,int,int*,int*,int);
86687 int (*extended_errcode)(sqlite3*);
86688 void (*log)(int,const char*,...);
86689 sqlite3_int64 (*soft_heap_limit64)(sqlite3_int64);
86690 const char *(*sourceid)(void);
86691 int (*stmt_status)(sqlite3_stmt*,int,int);
86692 int (*strnicmp)(const char*,const char*,int);
86693 int (*unlock_notify)(sqlite3*,void(*)(void**,int),void*);
86694 int (*wal_autocheckpoint)(sqlite3*,int);
86695 int (*wal_checkpoint)(sqlite3*,const char*);
86696 void *(*wal_hook)(sqlite3*,int(*)(void*,sqlite3*,const char*,int),void*);
86700 ** The following macros redefine the API routines so that they are
86701 ** redirected throught the global sqlite3_api structure.
86703 ** This header file is also used by the loadext.c source file
86704 ** (part of the main SQLite library - not an extension) so that
86705 ** it can get access to the sqlite3_api_routines structure
86706 ** definition. But the main library does not want to redefine
86707 ** the API. So the redefinition macros are only valid if the
86708 ** SQLITE_CORE macros is undefined.
86710 #ifndef SQLITE_CORE
86711 #define sqlite3_aggregate_context sqlite3_api->aggregate_context
86712 #ifndef SQLITE_OMIT_DEPRECATED
86713 #define sqlite3_aggregate_count sqlite3_api->aggregate_count
86714 #endif
86715 #define sqlite3_bind_blob sqlite3_api->bind_blob
86716 #define sqlite3_bind_double sqlite3_api->bind_double
86717 #define sqlite3_bind_int sqlite3_api->bind_int
86718 #define sqlite3_bind_int64 sqlite3_api->bind_int64
86719 #define sqlite3_bind_null sqlite3_api->bind_null
86720 #define sqlite3_bind_parameter_count sqlite3_api->bind_parameter_count
86721 #define sqlite3_bind_parameter_index sqlite3_api->bind_parameter_index
86722 #define sqlite3_bind_parameter_name sqlite3_api->bind_parameter_name
86723 #define sqlite3_bind_text sqlite3_api->bind_text
86724 #define sqlite3_bind_text16 sqlite3_api->bind_text16
86725 #define sqlite3_bind_value sqlite3_api->bind_value
86726 #define sqlite3_busy_handler sqlite3_api->busy_handler
86727 #define sqlite3_busy_timeout sqlite3_api->busy_timeout
86728 #define sqlite3_changes sqlite3_api->changes
86729 #define sqlite3_close sqlite3_api->close
86730 #define sqlite3_collation_needed sqlite3_api->collation_needed
86731 #define sqlite3_collation_needed16 sqlite3_api->collation_needed16
86732 #define sqlite3_column_blob sqlite3_api->column_blob
86733 #define sqlite3_column_bytes sqlite3_api->column_bytes
86734 #define sqlite3_column_bytes16 sqlite3_api->column_bytes16
86735 #define sqlite3_column_count sqlite3_api->column_count
86736 #define sqlite3_column_database_name sqlite3_api->column_database_name
86737 #define sqlite3_column_database_name16 sqlite3_api->column_database_name16
86738 #define sqlite3_column_decltype sqlite3_api->column_decltype
86739 #define sqlite3_column_decltype16 sqlite3_api->column_decltype16
86740 #define sqlite3_column_double sqlite3_api->column_double
86741 #define sqlite3_column_int sqlite3_api->column_int
86742 #define sqlite3_column_int64 sqlite3_api->column_int64
86743 #define sqlite3_column_name sqlite3_api->column_name
86744 #define sqlite3_column_name16 sqlite3_api->column_name16
86745 #define sqlite3_column_origin_name sqlite3_api->column_origin_name
86746 #define sqlite3_column_origin_name16 sqlite3_api->column_origin_name16
86747 #define sqlite3_column_table_name sqlite3_api->column_table_name
86748 #define sqlite3_column_table_name16 sqlite3_api->column_table_name16
86749 #define sqlite3_column_text sqlite3_api->column_text
86750 #define sqlite3_column_text16 sqlite3_api->column_text16
86751 #define sqlite3_column_type sqlite3_api->column_type
86752 #define sqlite3_column_value sqlite3_api->column_value
86753 #define sqlite3_commit_hook sqlite3_api->commit_hook
86754 #define sqlite3_complete sqlite3_api->complete
86755 #define sqlite3_complete16 sqlite3_api->complete16
86756 #define sqlite3_create_collation sqlite3_api->create_collation
86757 #define sqlite3_create_collation16 sqlite3_api->create_collation16
86758 #define sqlite3_create_function sqlite3_api->create_function
86759 #define sqlite3_create_function16 sqlite3_api->create_function16
86760 #define sqlite3_create_module sqlite3_api->create_module
86761 #define sqlite3_create_module_v2 sqlite3_api->create_module_v2
86762 #define sqlite3_data_count sqlite3_api->data_count
86763 #define sqlite3_db_handle sqlite3_api->db_handle
86764 #define sqlite3_declare_vtab sqlite3_api->declare_vtab
86765 #define sqlite3_enable_shared_cache sqlite3_api->enable_shared_cache
86766 #define sqlite3_errcode sqlite3_api->errcode
86767 #define sqlite3_errmsg sqlite3_api->errmsg
86768 #define sqlite3_errmsg16 sqlite3_api->errmsg16
86769 #define sqlite3_exec sqlite3_api->exec
86770 #ifndef SQLITE_OMIT_DEPRECATED
86771 #define sqlite3_expired sqlite3_api->expired
86772 #endif
86773 #define sqlite3_finalize sqlite3_api->finalize
86774 #define sqlite3_free sqlite3_api->free
86775 #define sqlite3_free_table sqlite3_api->free_table
86776 #define sqlite3_get_autocommit sqlite3_api->get_autocommit
86777 #define sqlite3_get_auxdata sqlite3_api->get_auxdata
86778 #define sqlite3_get_table sqlite3_api->get_table
86779 #ifndef SQLITE_OMIT_DEPRECATED
86780 #define sqlite3_global_recover sqlite3_api->global_recover
86781 #endif
86782 #define sqlite3_interrupt sqlite3_api->interruptx
86783 #define sqlite3_last_insert_rowid sqlite3_api->last_insert_rowid
86784 #define sqlite3_libversion sqlite3_api->libversion
86785 #define sqlite3_libversion_number sqlite3_api->libversion_number
86786 #define sqlite3_malloc sqlite3_api->malloc
86787 #define sqlite3_mprintf sqlite3_api->mprintf
86788 #define sqlite3_open sqlite3_api->open
86789 #define sqlite3_open16 sqlite3_api->open16
86790 #define sqlite3_prepare sqlite3_api->prepare
86791 #define sqlite3_prepare16 sqlite3_api->prepare16
86792 #define sqlite3_prepare_v2 sqlite3_api->prepare_v2
86793 #define sqlite3_prepare16_v2 sqlite3_api->prepare16_v2
86794 #define sqlite3_profile sqlite3_api->profile
86795 #define sqlite3_progress_handler sqlite3_api->progress_handler
86796 #define sqlite3_realloc sqlite3_api->realloc
86797 #define sqlite3_reset sqlite3_api->reset
86798 #define sqlite3_result_blob sqlite3_api->result_blob
86799 #define sqlite3_result_double sqlite3_api->result_double
86800 #define sqlite3_result_error sqlite3_api->result_error
86801 #define sqlite3_result_error16 sqlite3_api->result_error16
86802 #define sqlite3_result_int sqlite3_api->result_int
86803 #define sqlite3_result_int64 sqlite3_api->result_int64
86804 #define sqlite3_result_null sqlite3_api->result_null
86805 #define sqlite3_result_text sqlite3_api->result_text
86806 #define sqlite3_result_text16 sqlite3_api->result_text16
86807 #define sqlite3_result_text16be sqlite3_api->result_text16be
86808 #define sqlite3_result_text16le sqlite3_api->result_text16le
86809 #define sqlite3_result_value sqlite3_api->result_value
86810 #define sqlite3_rollback_hook sqlite3_api->rollback_hook
86811 #define sqlite3_set_authorizer sqlite3_api->set_authorizer
86812 #define sqlite3_set_auxdata sqlite3_api->set_auxdata
86813 #define sqlite3_snprintf sqlite3_api->snprintf
86814 #define sqlite3_step sqlite3_api->step
86815 #define sqlite3_table_column_metadata sqlite3_api->table_column_metadata
86816 #define sqlite3_thread_cleanup sqlite3_api->thread_cleanup
86817 #define sqlite3_total_changes sqlite3_api->total_changes
86818 #define sqlite3_trace sqlite3_api->trace
86819 #ifndef SQLITE_OMIT_DEPRECATED
86820 #define sqlite3_transfer_bindings sqlite3_api->transfer_bindings
86821 #endif
86822 #define sqlite3_update_hook sqlite3_api->update_hook
86823 #define sqlite3_user_data sqlite3_api->user_data
86824 #define sqlite3_value_blob sqlite3_api->value_blob
86825 #define sqlite3_value_bytes sqlite3_api->value_bytes
86826 #define sqlite3_value_bytes16 sqlite3_api->value_bytes16
86827 #define sqlite3_value_double sqlite3_api->value_double
86828 #define sqlite3_value_int sqlite3_api->value_int
86829 #define sqlite3_value_int64 sqlite3_api->value_int64
86830 #define sqlite3_value_numeric_type sqlite3_api->value_numeric_type
86831 #define sqlite3_value_text sqlite3_api->value_text
86832 #define sqlite3_value_text16 sqlite3_api->value_text16
86833 #define sqlite3_value_text16be sqlite3_api->value_text16be
86834 #define sqlite3_value_text16le sqlite3_api->value_text16le
86835 #define sqlite3_value_type sqlite3_api->value_type
86836 #define sqlite3_vmprintf sqlite3_api->vmprintf
86837 #define sqlite3_overload_function sqlite3_api->overload_function
86838 #define sqlite3_prepare_v2 sqlite3_api->prepare_v2
86839 #define sqlite3_prepare16_v2 sqlite3_api->prepare16_v2
86840 #define sqlite3_clear_bindings sqlite3_api->clear_bindings
86841 #define sqlite3_bind_zeroblob sqlite3_api->bind_zeroblob
86842 #define sqlite3_blob_bytes sqlite3_api->blob_bytes
86843 #define sqlite3_blob_close sqlite3_api->blob_close
86844 #define sqlite3_blob_open sqlite3_api->blob_open
86845 #define sqlite3_blob_read sqlite3_api->blob_read
86846 #define sqlite3_blob_write sqlite3_api->blob_write
86847 #define sqlite3_create_collation_v2 sqlite3_api->create_collation_v2
86848 #define sqlite3_file_control sqlite3_api->file_control
86849 #define sqlite3_memory_highwater sqlite3_api->memory_highwater
86850 #define sqlite3_memory_used sqlite3_api->memory_used
86851 #define sqlite3_mutex_alloc sqlite3_api->mutex_alloc
86852 #define sqlite3_mutex_enter sqlite3_api->mutex_enter
86853 #define sqlite3_mutex_free sqlite3_api->mutex_free
86854 #define sqlite3_mutex_leave sqlite3_api->mutex_leave
86855 #define sqlite3_mutex_try sqlite3_api->mutex_try
86856 #define sqlite3_open_v2 sqlite3_api->open_v2
86857 #define sqlite3_release_memory sqlite3_api->release_memory
86858 #define sqlite3_result_error_nomem sqlite3_api->result_error_nomem
86859 #define sqlite3_result_error_toobig sqlite3_api->result_error_toobig
86860 #define sqlite3_sleep sqlite3_api->sleep
86861 #define sqlite3_soft_heap_limit sqlite3_api->soft_heap_limit
86862 #define sqlite3_vfs_find sqlite3_api->vfs_find
86863 #define sqlite3_vfs_register sqlite3_api->vfs_register
86864 #define sqlite3_vfs_unregister sqlite3_api->vfs_unregister
86865 #define sqlite3_threadsafe sqlite3_api->xthreadsafe
86866 #define sqlite3_result_zeroblob sqlite3_api->result_zeroblob
86867 #define sqlite3_result_error_code sqlite3_api->result_error_code
86868 #define sqlite3_test_control sqlite3_api->test_control
86869 #define sqlite3_randomness sqlite3_api->randomness
86870 #define sqlite3_context_db_handle sqlite3_api->context_db_handle
86871 #define sqlite3_extended_result_codes sqlite3_api->extended_result_codes
86872 #define sqlite3_limit sqlite3_api->limit
86873 #define sqlite3_next_stmt sqlite3_api->next_stmt
86874 #define sqlite3_sql sqlite3_api->sql
86875 #define sqlite3_status sqlite3_api->status
86876 #define sqlite3_backup_finish sqlite3_api->backup_finish
86877 #define sqlite3_backup_init sqlite3_api->backup_init
86878 #define sqlite3_backup_pagecount sqlite3_api->backup_pagecount
86879 #define sqlite3_backup_remaining sqlite3_api->backup_remaining
86880 #define sqlite3_backup_step sqlite3_api->backup_step
86881 #define sqlite3_compileoption_get sqlite3_api->compileoption_get
86882 #define sqlite3_compileoption_used sqlite3_api->compileoption_used
86883 #define sqlite3_create_function_v2 sqlite3_api->create_function_v2
86884 #define sqlite3_db_config sqlite3_api->db_config
86885 #define sqlite3_db_mutex sqlite3_api->db_mutex
86886 #define sqlite3_db_status sqlite3_api->db_status
86887 #define sqlite3_extended_errcode sqlite3_api->extended_errcode
86888 #define sqlite3_log sqlite3_api->log
86889 #define sqlite3_soft_heap_limit64 sqlite3_api->soft_heap_limit64
86890 #define sqlite3_sourceid sqlite3_api->sourceid
86891 #define sqlite3_stmt_status sqlite3_api->stmt_status
86892 #define sqlite3_strnicmp sqlite3_api->strnicmp
86893 #define sqlite3_unlock_notify sqlite3_api->unlock_notify
86894 #define sqlite3_wal_autocheckpoint sqlite3_api->wal_autocheckpoint
86895 #define sqlite3_wal_checkpoint sqlite3_api->wal_checkpoint
86896 #define sqlite3_wal_hook sqlite3_api->wal_hook
86897 #endif /* SQLITE_CORE */
86899 #define SQLITE_EXTENSION_INIT1 const sqlite3_api_routines *sqlite3_api = 0;
86900 #define SQLITE_EXTENSION_INIT2(v) sqlite3_api = v;
86902 #endif /* _SQLITE3EXT_H_ */
86904 /************** End of sqlite3ext.h ******************************************/
86905 /************** Continuing where we left off in loadext.c ********************/
86907 #ifndef SQLITE_OMIT_LOAD_EXTENSION
86910 ** Some API routines are omitted when various features are
86911 ** excluded from a build of SQLite. Substitute a NULL pointer
86912 ** for any missing APIs.
86914 #ifndef SQLITE_ENABLE_COLUMN_METADATA
86915 # define sqlite3_column_database_name 0
86916 # define sqlite3_column_database_name16 0
86917 # define sqlite3_column_table_name 0
86918 # define sqlite3_column_table_name16 0
86919 # define sqlite3_column_origin_name 0
86920 # define sqlite3_column_origin_name16 0
86921 # define sqlite3_table_column_metadata 0
86922 #endif
86924 #ifdef SQLITE_OMIT_AUTHORIZATION
86925 # define sqlite3_set_authorizer 0
86926 #endif
86928 #ifdef SQLITE_OMIT_UTF16
86929 # define sqlite3_bind_text16 0
86930 # define sqlite3_collation_needed16 0
86931 # define sqlite3_column_decltype16 0
86932 # define sqlite3_column_name16 0
86933 # define sqlite3_column_text16 0
86934 # define sqlite3_complete16 0
86935 # define sqlite3_create_collation16 0
86936 # define sqlite3_create_function16 0
86937 # define sqlite3_errmsg16 0
86938 # define sqlite3_open16 0
86939 # define sqlite3_prepare16 0
86940 # define sqlite3_prepare16_v2 0
86941 # define sqlite3_result_error16 0
86942 # define sqlite3_result_text16 0
86943 # define sqlite3_result_text16be 0
86944 # define sqlite3_result_text16le 0
86945 # define sqlite3_value_text16 0
86946 # define sqlite3_value_text16be 0
86947 # define sqlite3_value_text16le 0
86948 # define sqlite3_column_database_name16 0
86949 # define sqlite3_column_table_name16 0
86950 # define sqlite3_column_origin_name16 0
86951 #endif
86953 #ifdef SQLITE_OMIT_COMPLETE
86954 # define sqlite3_complete 0
86955 # define sqlite3_complete16 0
86956 #endif
86958 #ifdef SQLITE_OMIT_DECLTYPE
86959 # define sqlite3_column_decltype16 0
86960 # define sqlite3_column_decltype 0
86961 #endif
86963 #ifdef SQLITE_OMIT_PROGRESS_CALLBACK
86964 # define sqlite3_progress_handler 0
86965 #endif
86967 #ifdef SQLITE_OMIT_VIRTUALTABLE
86968 # define sqlite3_create_module 0
86969 # define sqlite3_create_module_v2 0
86970 # define sqlite3_declare_vtab 0
86971 #endif
86973 #ifdef SQLITE_OMIT_SHARED_CACHE
86974 # define sqlite3_enable_shared_cache 0
86975 #endif
86977 #ifdef SQLITE_OMIT_TRACE
86978 # define sqlite3_profile 0
86979 # define sqlite3_trace 0
86980 #endif
86982 #ifdef SQLITE_OMIT_GET_TABLE
86983 # define sqlite3_free_table 0
86984 # define sqlite3_get_table 0
86985 #endif
86987 #ifdef SQLITE_OMIT_INCRBLOB
86988 #define sqlite3_bind_zeroblob 0
86989 #define sqlite3_blob_bytes 0
86990 #define sqlite3_blob_close 0
86991 #define sqlite3_blob_open 0
86992 #define sqlite3_blob_read 0
86993 #define sqlite3_blob_write 0
86994 #endif
86997 ** The following structure contains pointers to all SQLite API routines.
86998 ** A pointer to this structure is passed into extensions when they are
86999 ** loaded so that the extension can make calls back into the SQLite
87000 ** library.
87002 ** When adding new APIs, add them to the bottom of this structure
87003 ** in order to preserve backwards compatibility.
87005 ** Extensions that use newer APIs should first call the
87006 ** sqlite3_libversion_number() to make sure that the API they
87007 ** intend to use is supported by the library. Extensions should
87008 ** also check to make sure that the pointer to the function is
87009 ** not NULL before calling it.
87011 static const sqlite3_api_routines sqlite3Apis = {
87012 sqlite3_aggregate_context,
87013 #ifndef SQLITE_OMIT_DEPRECATED
87014 sqlite3_aggregate_count,
87015 #else
87017 #endif
87018 sqlite3_bind_blob,
87019 sqlite3_bind_double,
87020 sqlite3_bind_int,
87021 sqlite3_bind_int64,
87022 sqlite3_bind_null,
87023 sqlite3_bind_parameter_count,
87024 sqlite3_bind_parameter_index,
87025 sqlite3_bind_parameter_name,
87026 sqlite3_bind_text,
87027 sqlite3_bind_text16,
87028 sqlite3_bind_value,
87029 sqlite3_busy_handler,
87030 sqlite3_busy_timeout,
87031 sqlite3_changes,
87032 sqlite3_close,
87033 sqlite3_collation_needed,
87034 sqlite3_collation_needed16,
87035 sqlite3_column_blob,
87036 sqlite3_column_bytes,
87037 sqlite3_column_bytes16,
87038 sqlite3_column_count,
87039 sqlite3_column_database_name,
87040 sqlite3_column_database_name16,
87041 sqlite3_column_decltype,
87042 sqlite3_column_decltype16,
87043 sqlite3_column_double,
87044 sqlite3_column_int,
87045 sqlite3_column_int64,
87046 sqlite3_column_name,
87047 sqlite3_column_name16,
87048 sqlite3_column_origin_name,
87049 sqlite3_column_origin_name16,
87050 sqlite3_column_table_name,
87051 sqlite3_column_table_name16,
87052 sqlite3_column_text,
87053 sqlite3_column_text16,
87054 sqlite3_column_type,
87055 sqlite3_column_value,
87056 sqlite3_commit_hook,
87057 sqlite3_complete,
87058 sqlite3_complete16,
87059 sqlite3_create_collation,
87060 sqlite3_create_collation16,
87061 sqlite3_create_function,
87062 sqlite3_create_function16,
87063 sqlite3_create_module,
87064 sqlite3_data_count,
87065 sqlite3_db_handle,
87066 sqlite3_declare_vtab,
87067 sqlite3_enable_shared_cache,
87068 sqlite3_errcode,
87069 sqlite3_errmsg,
87070 sqlite3_errmsg16,
87071 sqlite3_exec,
87072 #ifndef SQLITE_OMIT_DEPRECATED
87073 sqlite3_expired,
87074 #else
87076 #endif
87077 sqlite3_finalize,
87078 sqlite3_free,
87079 sqlite3_free_table,
87080 sqlite3_get_autocommit,
87081 sqlite3_get_auxdata,
87082 sqlite3_get_table,
87083 0, /* Was sqlite3_global_recover(), but that function is deprecated */
87084 sqlite3_interrupt,
87085 sqlite3_last_insert_rowid,
87086 sqlite3_libversion,
87087 sqlite3_libversion_number,
87088 sqlite3_malloc,
87089 sqlite3_mprintf,
87090 sqlite3_open,
87091 sqlite3_open16,
87092 sqlite3_prepare,
87093 sqlite3_prepare16,
87094 sqlite3_profile,
87095 sqlite3_progress_handler,
87096 sqlite3_realloc,
87097 sqlite3_reset,
87098 sqlite3_result_blob,
87099 sqlite3_result_double,
87100 sqlite3_result_error,
87101 sqlite3_result_error16,
87102 sqlite3_result_int,
87103 sqlite3_result_int64,
87104 sqlite3_result_null,
87105 sqlite3_result_text,
87106 sqlite3_result_text16,
87107 sqlite3_result_text16be,
87108 sqlite3_result_text16le,
87109 sqlite3_result_value,
87110 sqlite3_rollback_hook,
87111 sqlite3_set_authorizer,
87112 sqlite3_set_auxdata,
87113 sqlite3_snprintf,
87114 sqlite3_step,
87115 sqlite3_table_column_metadata,
87116 #ifndef SQLITE_OMIT_DEPRECATED
87117 sqlite3_thread_cleanup,
87118 #else
87120 #endif
87121 sqlite3_total_changes,
87122 sqlite3_trace,
87123 #ifndef SQLITE_OMIT_DEPRECATED
87124 sqlite3_transfer_bindings,
87125 #else
87127 #endif
87128 sqlite3_update_hook,
87129 sqlite3_user_data,
87130 sqlite3_value_blob,
87131 sqlite3_value_bytes,
87132 sqlite3_value_bytes16,
87133 sqlite3_value_double,
87134 sqlite3_value_int,
87135 sqlite3_value_int64,
87136 sqlite3_value_numeric_type,
87137 sqlite3_value_text,
87138 sqlite3_value_text16,
87139 sqlite3_value_text16be,
87140 sqlite3_value_text16le,
87141 sqlite3_value_type,
87142 sqlite3_vmprintf,
87144 ** The original API set ends here. All extensions can call any
87145 ** of the APIs above provided that the pointer is not NULL. But
87146 ** before calling APIs that follow, extension should check the
87147 ** sqlite3_libversion_number() to make sure they are dealing with
87148 ** a library that is new enough to support that API.
87149 *************************************************************************
87151 sqlite3_overload_function,
87154 ** Added after 3.3.13
87156 sqlite3_prepare_v2,
87157 sqlite3_prepare16_v2,
87158 sqlite3_clear_bindings,
87161 ** Added for 3.4.1
87163 sqlite3_create_module_v2,
87166 ** Added for 3.5.0
87168 sqlite3_bind_zeroblob,
87169 sqlite3_blob_bytes,
87170 sqlite3_blob_close,
87171 sqlite3_blob_open,
87172 sqlite3_blob_read,
87173 sqlite3_blob_write,
87174 sqlite3_create_collation_v2,
87175 sqlite3_file_control,
87176 sqlite3_memory_highwater,
87177 sqlite3_memory_used,
87178 #ifdef SQLITE_MUTEX_OMIT
87184 #else
87185 sqlite3_mutex_alloc,
87186 sqlite3_mutex_enter,
87187 sqlite3_mutex_free,
87188 sqlite3_mutex_leave,
87189 sqlite3_mutex_try,
87190 #endif
87191 sqlite3_open_v2,
87192 sqlite3_release_memory,
87193 sqlite3_result_error_nomem,
87194 sqlite3_result_error_toobig,
87195 sqlite3_sleep,
87196 sqlite3_soft_heap_limit,
87197 sqlite3_vfs_find,
87198 sqlite3_vfs_register,
87199 sqlite3_vfs_unregister,
87202 ** Added for 3.5.8
87204 sqlite3_threadsafe,
87205 sqlite3_result_zeroblob,
87206 sqlite3_result_error_code,
87207 sqlite3_test_control,
87208 sqlite3_randomness,
87209 sqlite3_context_db_handle,
87212 ** Added for 3.6.0
87214 sqlite3_extended_result_codes,
87215 sqlite3_limit,
87216 sqlite3_next_stmt,
87217 sqlite3_sql,
87218 sqlite3_status,
87221 ** Added for 3.7.4
87223 sqlite3_backup_finish,
87224 sqlite3_backup_init,
87225 sqlite3_backup_pagecount,
87226 sqlite3_backup_remaining,
87227 sqlite3_backup_step,
87228 #ifndef SQLITE_OMIT_COMPILEOPTION_DIAGS
87229 sqlite3_compileoption_get,
87230 sqlite3_compileoption_used,
87231 #else
87234 #endif
87235 sqlite3_create_function_v2,
87236 sqlite3_db_config,
87237 sqlite3_db_mutex,
87238 sqlite3_db_status,
87239 sqlite3_extended_errcode,
87240 sqlite3_log,
87241 sqlite3_soft_heap_limit64,
87242 sqlite3_sourceid,
87243 sqlite3_stmt_status,
87244 sqlite3_strnicmp,
87245 #ifdef SQLITE_ENABLE_UNLOCK_NOTIFY
87246 sqlite3_unlock_notify,
87247 #else
87249 #endif
87250 #ifndef SQLITE_OMIT_WAL
87251 sqlite3_wal_autocheckpoint,
87252 sqlite3_wal_checkpoint,
87253 sqlite3_wal_hook,
87254 #else
87258 #endif
87262 ** Attempt to load an SQLite extension library contained in the file
87263 ** zFile. The entry point is zProc. zProc may be 0 in which case a
87264 ** default entry point name (sqlite3_extension_init) is used. Use
87265 ** of the default name is recommended.
87267 ** Return SQLITE_OK on success and SQLITE_ERROR if something goes wrong.
87269 ** If an error occurs and pzErrMsg is not 0, then fill *pzErrMsg with
87270 ** error message text. The calling function should free this memory
87271 ** by calling sqlite3DbFree(db, ).
87273 static int sqlite3LoadExtension(
87274 sqlite3 *db, /* Load the extension into this database connection */
87275 const char *zFile, /* Name of the shared library containing extension */
87276 const char *zProc, /* Entry point. Use "sqlite3_extension_init" if 0 */
87277 char **pzErrMsg /* Put error message here if not 0 */
87279 sqlite3_vfs *pVfs = db->pVfs;
87280 void *handle;
87281 int (*xInit)(sqlite3*,char**,const sqlite3_api_routines*);
87282 char *zErrmsg = 0;
87283 void **aHandle;
87284 const int nMsg = 300;
87286 if( pzErrMsg ) *pzErrMsg = 0;
87288 /* Ticket #1863. To avoid a creating security problems for older
87289 ** applications that relink against newer versions of SQLite, the
87290 ** ability to run load_extension is turned off by default. One
87291 ** must call sqlite3_enable_load_extension() to turn on extension
87292 ** loading. Otherwise you get the following error.
87294 if( (db->flags & SQLITE_LoadExtension)==0 ){
87295 if( pzErrMsg ){
87296 *pzErrMsg = sqlite3_mprintf("not authorized");
87298 return SQLITE_ERROR;
87301 if( zProc==0 ){
87302 zProc = "sqlite3_extension_init";
87305 handle = sqlite3OsDlOpen(pVfs, zFile);
87306 if( handle==0 ){
87307 if( pzErrMsg ){
87308 *pzErrMsg = zErrmsg = sqlite3_malloc(nMsg);
87309 if( zErrmsg ){
87310 sqlite3_snprintf(nMsg, zErrmsg,
87311 "unable to open shared library [%s]", zFile);
87312 sqlite3OsDlError(pVfs, nMsg-1, zErrmsg);
87315 return SQLITE_ERROR;
87317 xInit = (int(*)(sqlite3*,char**,const sqlite3_api_routines*))
87318 sqlite3OsDlSym(pVfs, handle, zProc);
87319 if( xInit==0 ){
87320 if( pzErrMsg ){
87321 *pzErrMsg = zErrmsg = sqlite3_malloc(nMsg);
87322 if( zErrmsg ){
87323 sqlite3_snprintf(nMsg, zErrmsg,
87324 "no entry point [%s] in shared library [%s]", zProc,zFile);
87325 sqlite3OsDlError(pVfs, nMsg-1, zErrmsg);
87327 sqlite3OsDlClose(pVfs, handle);
87329 return SQLITE_ERROR;
87330 }else if( xInit(db, &zErrmsg, &sqlite3Apis) ){
87331 if( pzErrMsg ){
87332 *pzErrMsg = sqlite3_mprintf("error during initialization: %s", zErrmsg);
87334 sqlite3_free(zErrmsg);
87335 sqlite3OsDlClose(pVfs, handle);
87336 return SQLITE_ERROR;
87339 /* Append the new shared library handle to the db->aExtension array. */
87340 aHandle = sqlite3DbMallocZero(db, sizeof(handle)*(db->nExtension+1));
87341 if( aHandle==0 ){
87342 return SQLITE_NOMEM;
87344 if( db->nExtension>0 ){
87345 memcpy(aHandle, db->aExtension, sizeof(handle)*db->nExtension);
87347 sqlite3DbFree(db, db->aExtension);
87348 db->aExtension = aHandle;
87350 db->aExtension[db->nExtension++] = handle;
87351 return SQLITE_OK;
87353 SQLITE_API int sqlite3_load_extension(
87354 sqlite3 *db, /* Load the extension into this database connection */
87355 const char *zFile, /* Name of the shared library containing extension */
87356 const char *zProc, /* Entry point. Use "sqlite3_extension_init" if 0 */
87357 char **pzErrMsg /* Put error message here if not 0 */
87359 int rc;
87360 sqlite3_mutex_enter(db->mutex);
87361 rc = sqlite3LoadExtension(db, zFile, zProc, pzErrMsg);
87362 rc = sqlite3ApiExit(db, rc);
87363 sqlite3_mutex_leave(db->mutex);
87364 return rc;
87368 ** Call this routine when the database connection is closing in order
87369 ** to clean up loaded extensions
87371 SQLITE_PRIVATE void sqlite3CloseExtensions(sqlite3 *db){
87372 int i;
87373 assert( sqlite3_mutex_held(db->mutex) );
87374 for(i=0; i<db->nExtension; i++){
87375 sqlite3OsDlClose(db->pVfs, db->aExtension[i]);
87377 sqlite3DbFree(db, db->aExtension);
87381 ** Enable or disable extension loading. Extension loading is disabled by
87382 ** default so as not to open security holes in older applications.
87384 SQLITE_API int sqlite3_enable_load_extension(sqlite3 *db, int onoff){
87385 sqlite3_mutex_enter(db->mutex);
87386 if( onoff ){
87387 db->flags |= SQLITE_LoadExtension;
87388 }else{
87389 db->flags &= ~SQLITE_LoadExtension;
87391 sqlite3_mutex_leave(db->mutex);
87392 return SQLITE_OK;
87395 #endif /* SQLITE_OMIT_LOAD_EXTENSION */
87398 ** The auto-extension code added regardless of whether or not extension
87399 ** loading is supported. We need a dummy sqlite3Apis pointer for that
87400 ** code if regular extension loading is not available. This is that
87401 ** dummy pointer.
87403 #ifdef SQLITE_OMIT_LOAD_EXTENSION
87404 static const sqlite3_api_routines sqlite3Apis = { 0 };
87405 #endif
87409 ** The following object holds the list of automatically loaded
87410 ** extensions.
87412 ** This list is shared across threads. The SQLITE_MUTEX_STATIC_MASTER
87413 ** mutex must be held while accessing this list.
87415 typedef struct sqlite3AutoExtList sqlite3AutoExtList;
87416 static SQLITE_WSD struct sqlite3AutoExtList {
87417 int nExt; /* Number of entries in aExt[] */
87418 void (**aExt)(void); /* Pointers to the extension init functions */
87419 } sqlite3Autoext = { 0, 0 };
87421 /* The "wsdAutoext" macro will resolve to the autoextension
87422 ** state vector. If writable static data is unsupported on the target,
87423 ** we have to locate the state vector at run-time. In the more common
87424 ** case where writable static data is supported, wsdStat can refer directly
87425 ** to the "sqlite3Autoext" state vector declared above.
87427 #ifdef SQLITE_OMIT_WSD
87428 # define wsdAutoextInit \
87429 sqlite3AutoExtList *x = &GLOBAL(sqlite3AutoExtList,sqlite3Autoext)
87430 # define wsdAutoext x[0]
87431 #else
87432 # define wsdAutoextInit
87433 # define wsdAutoext sqlite3Autoext
87434 #endif
87438 ** Register a statically linked extension that is automatically
87439 ** loaded by every new database connection.
87441 SQLITE_API int sqlite3_auto_extension(void (*xInit)(void)){
87442 int rc = SQLITE_OK;
87443 #ifndef SQLITE_OMIT_AUTOINIT
87444 rc = sqlite3_initialize();
87445 if( rc ){
87446 return rc;
87447 }else
87448 #endif
87450 int i;
87451 #if SQLITE_THREADSAFE
87452 sqlite3_mutex *mutex = sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_MASTER);
87453 #endif
87454 wsdAutoextInit;
87455 sqlite3_mutex_enter(mutex);
87456 for(i=0; i<wsdAutoext.nExt; i++){
87457 if( wsdAutoext.aExt[i]==xInit ) break;
87459 if( i==wsdAutoext.nExt ){
87460 int nByte = (wsdAutoext.nExt+1)*sizeof(wsdAutoext.aExt[0]);
87461 void (**aNew)(void);
87462 aNew = sqlite3_realloc(wsdAutoext.aExt, nByte);
87463 if( aNew==0 ){
87464 rc = SQLITE_NOMEM;
87465 }else{
87466 wsdAutoext.aExt = aNew;
87467 wsdAutoext.aExt[wsdAutoext.nExt] = xInit;
87468 wsdAutoext.nExt++;
87471 sqlite3_mutex_leave(mutex);
87472 assert( (rc&0xff)==rc );
87473 return rc;
87478 ** Reset the automatic extension loading mechanism.
87480 SQLITE_API void sqlite3_reset_auto_extension(void){
87481 #ifndef SQLITE_OMIT_AUTOINIT
87482 if( sqlite3_initialize()==SQLITE_OK )
87483 #endif
87485 #if SQLITE_THREADSAFE
87486 sqlite3_mutex *mutex = sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_MASTER);
87487 #endif
87488 wsdAutoextInit;
87489 sqlite3_mutex_enter(mutex);
87490 sqlite3_free(wsdAutoext.aExt);
87491 wsdAutoext.aExt = 0;
87492 wsdAutoext.nExt = 0;
87493 sqlite3_mutex_leave(mutex);
87498 ** Load all automatic extensions.
87500 ** If anything goes wrong, set an error in the database connection.
87502 SQLITE_PRIVATE void sqlite3AutoLoadExtensions(sqlite3 *db){
87503 int i;
87504 int go = 1;
87505 int (*xInit)(sqlite3*,char**,const sqlite3_api_routines*);
87507 wsdAutoextInit;
87508 if( wsdAutoext.nExt==0 ){
87509 /* Common case: early out without every having to acquire a mutex */
87510 return;
87512 for(i=0; go; i++){
87513 char *zErrmsg;
87514 #if SQLITE_THREADSAFE
87515 sqlite3_mutex *mutex = sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_MASTER);
87516 #endif
87517 sqlite3_mutex_enter(mutex);
87518 if( i>=wsdAutoext.nExt ){
87519 xInit = 0;
87520 go = 0;
87521 }else{
87522 xInit = (int(*)(sqlite3*,char**,const sqlite3_api_routines*))
87523 wsdAutoext.aExt[i];
87525 sqlite3_mutex_leave(mutex);
87526 zErrmsg = 0;
87527 if( xInit && xInit(db, &zErrmsg, &sqlite3Apis) ){
87528 sqlite3Error(db, SQLITE_ERROR,
87529 "automatic extension loading failed: %s", zErrmsg);
87530 go = 0;
87532 sqlite3_free(zErrmsg);
87536 /************** End of loadext.c *********************************************/
87537 /************** Begin file pragma.c ******************************************/
87539 ** 2003 April 6
87541 ** The author disclaims copyright to this source code. In place of
87542 ** a legal notice, here is a blessing:
87544 ** May you do good and not evil.
87545 ** May you find forgiveness for yourself and forgive others.
87546 ** May you share freely, never taking more than you give.
87548 *************************************************************************
87549 ** This file contains code used to implement the PRAGMA command.
87552 /* Ignore this whole file if pragmas are disabled
87554 #if !defined(SQLITE_OMIT_PRAGMA)
87557 ** Interpret the given string as a safety level. Return 0 for OFF,
87558 ** 1 for ON or NORMAL and 2 for FULL. Return 1 for an empty or
87559 ** unrecognized string argument.
87561 ** Note that the values returned are one less that the values that
87562 ** should be passed into sqlite3BtreeSetSafetyLevel(). The is done
87563 ** to support legacy SQL code. The safety level used to be boolean
87564 ** and older scripts may have used numbers 0 for OFF and 1 for ON.
87566 static u8 getSafetyLevel(const char *z){
87567 /* 123456789 123456789 */
87568 static const char zText[] = "onoffalseyestruefull";
87569 static const u8 iOffset[] = {0, 1, 2, 4, 9, 12, 16};
87570 static const u8 iLength[] = {2, 2, 3, 5, 3, 4, 4};
87571 static const u8 iValue[] = {1, 0, 0, 0, 1, 1, 2};
87572 int i, n;
87573 if( sqlite3Isdigit(*z) ){
87574 return (u8)sqlite3Atoi(z);
87576 n = sqlite3Strlen30(z);
87577 for(i=0; i<ArraySize(iLength); i++){
87578 if( iLength[i]==n && sqlite3StrNICmp(&zText[iOffset[i]],z,n)==0 ){
87579 return iValue[i];
87582 return 1;
87586 ** Interpret the given string as a boolean value.
87588 static u8 getBoolean(const char *z){
87589 return getSafetyLevel(z)&1;
87593 ** Interpret the given string as a locking mode value.
87595 static int getLockingMode(const char *z){
87596 if( z ){
87597 if( 0==sqlite3StrICmp(z, "exclusive") ) return PAGER_LOCKINGMODE_EXCLUSIVE;
87598 if( 0==sqlite3StrICmp(z, "normal") ) return PAGER_LOCKINGMODE_NORMAL;
87600 return PAGER_LOCKINGMODE_QUERY;
87603 #ifndef SQLITE_OMIT_AUTOVACUUM
87605 ** Interpret the given string as an auto-vacuum mode value.
87607 ** The following strings, "none", "full" and "incremental" are
87608 ** acceptable, as are their numeric equivalents: 0, 1 and 2 respectively.
87610 static int getAutoVacuum(const char *z){
87611 int i;
87612 if( 0==sqlite3StrICmp(z, "none") ) return BTREE_AUTOVACUUM_NONE;
87613 if( 0==sqlite3StrICmp(z, "full") ) return BTREE_AUTOVACUUM_FULL;
87614 if( 0==sqlite3StrICmp(z, "incremental") ) return BTREE_AUTOVACUUM_INCR;
87615 i = sqlite3Atoi(z);
87616 return (u8)((i>=0&&i<=2)?i:0);
87618 #endif /* ifndef SQLITE_OMIT_AUTOVACUUM */
87620 #ifndef SQLITE_OMIT_PAGER_PRAGMAS
87622 ** Interpret the given string as a temp db location. Return 1 for file
87623 ** backed temporary databases, 2 for the Red-Black tree in memory database
87624 ** and 0 to use the compile-time default.
87626 static int getTempStore(const char *z){
87627 if( z[0]>='0' && z[0]<='2' ){
87628 return z[0] - '0';
87629 }else if( sqlite3StrICmp(z, "file")==0 ){
87630 return 1;
87631 }else if( sqlite3StrICmp(z, "memory")==0 ){
87632 return 2;
87633 }else{
87634 return 0;
87637 #endif /* SQLITE_PAGER_PRAGMAS */
87639 #ifndef SQLITE_OMIT_PAGER_PRAGMAS
87641 ** Invalidate temp storage, either when the temp storage is changed
87642 ** from default, or when 'file' and the temp_store_directory has changed
87644 static int invalidateTempStorage(Parse *pParse){
87645 sqlite3 *db = pParse->db;
87646 if( db->aDb[1].pBt!=0 ){
87647 if( !db->autoCommit || sqlite3BtreeIsInReadTrans(db->aDb[1].pBt) ){
87648 sqlite3ErrorMsg(pParse, "temporary storage cannot be changed "
87649 "from within a transaction");
87650 return SQLITE_ERROR;
87652 sqlite3BtreeClose(db->aDb[1].pBt);
87653 db->aDb[1].pBt = 0;
87654 sqlite3ResetInternalSchema(db, -1);
87656 return SQLITE_OK;
87658 #endif /* SQLITE_PAGER_PRAGMAS */
87660 #ifndef SQLITE_OMIT_PAGER_PRAGMAS
87662 ** If the TEMP database is open, close it and mark the database schema
87663 ** as needing reloading. This must be done when using the SQLITE_TEMP_STORE
87664 ** or DEFAULT_TEMP_STORE pragmas.
87666 static int changeTempStorage(Parse *pParse, const char *zStorageType){
87667 int ts = getTempStore(zStorageType);
87668 sqlite3 *db = pParse->db;
87669 if( db->temp_store==ts ) return SQLITE_OK;
87670 if( invalidateTempStorage( pParse ) != SQLITE_OK ){
87671 return SQLITE_ERROR;
87673 db->temp_store = (u8)ts;
87674 return SQLITE_OK;
87676 #endif /* SQLITE_PAGER_PRAGMAS */
87679 ** Generate code to return a single integer value.
87681 static void returnSingleInt(Parse *pParse, const char *zLabel, i64 value){
87682 Vdbe *v = sqlite3GetVdbe(pParse);
87683 int mem = ++pParse->nMem;
87684 i64 *pI64 = sqlite3DbMallocRaw(pParse->db, sizeof(value));
87685 if( pI64 ){
87686 memcpy(pI64, &value, sizeof(value));
87688 sqlite3VdbeAddOp4(v, OP_Int64, 0, mem, 0, (char*)pI64, P4_INT64);
87689 sqlite3VdbeSetNumCols(v, 1);
87690 sqlite3VdbeSetColName(v, 0, COLNAME_NAME, zLabel, SQLITE_STATIC);
87691 sqlite3VdbeAddOp2(v, OP_ResultRow, mem, 1);
87694 #ifndef SQLITE_OMIT_FLAG_PRAGMAS
87696 ** Check to see if zRight and zLeft refer to a pragma that queries
87697 ** or changes one of the flags in db->flags. Return 1 if so and 0 if not.
87698 ** Also, implement the pragma.
87700 static int flagPragma(Parse *pParse, const char *zLeft, const char *zRight){
87701 static const struct sPragmaType {
87702 const char *zName; /* Name of the pragma */
87703 int mask; /* Mask for the db->flags value */
87704 } aPragma[] = {
87705 { "full_column_names", SQLITE_FullColNames },
87706 { "short_column_names", SQLITE_ShortColNames },
87707 { "count_changes", SQLITE_CountRows },
87708 { "empty_result_callbacks", SQLITE_NullCallback },
87709 { "legacy_file_format", SQLITE_LegacyFileFmt },
87710 { "fullfsync", SQLITE_FullFSync },
87711 { "checkpoint_fullfsync", SQLITE_CkptFullFSync },
87712 { "reverse_unordered_selects", SQLITE_ReverseOrder },
87713 #ifndef SQLITE_OMIT_AUTOMATIC_INDEX
87714 { "automatic_index", SQLITE_AutoIndex },
87715 #endif
87716 #ifdef SQLITE_DEBUG
87717 { "sql_trace", SQLITE_SqlTrace },
87718 { "vdbe_listing", SQLITE_VdbeListing },
87719 { "vdbe_trace", SQLITE_VdbeTrace },
87720 #endif
87721 #ifndef SQLITE_OMIT_CHECK
87722 { "ignore_check_constraints", SQLITE_IgnoreChecks },
87723 #endif
87724 /* The following is VERY experimental */
87725 { "writable_schema", SQLITE_WriteSchema|SQLITE_RecoveryMode },
87726 { "omit_readlock", SQLITE_NoReadlock },
87728 /* TODO: Maybe it shouldn't be possible to change the ReadUncommitted
87729 ** flag if there are any active statements. */
87730 { "read_uncommitted", SQLITE_ReadUncommitted },
87731 { "recursive_triggers", SQLITE_RecTriggers },
87733 /* This flag may only be set if both foreign-key and trigger support
87734 ** are present in the build. */
87735 #if !defined(SQLITE_OMIT_FOREIGN_KEY) && !defined(SQLITE_OMIT_TRIGGER)
87736 { "foreign_keys", SQLITE_ForeignKeys },
87737 #endif
87739 int i;
87740 const struct sPragmaType *p;
87741 for(i=0, p=aPragma; i<ArraySize(aPragma); i++, p++){
87742 if( sqlite3StrICmp(zLeft, p->zName)==0 ){
87743 sqlite3 *db = pParse->db;
87744 Vdbe *v;
87745 v = sqlite3GetVdbe(pParse);
87746 assert( v!=0 ); /* Already allocated by sqlite3Pragma() */
87747 if( ALWAYS(v) ){
87748 if( zRight==0 ){
87749 returnSingleInt(pParse, p->zName, (db->flags & p->mask)!=0 );
87750 }else{
87751 int mask = p->mask; /* Mask of bits to set or clear. */
87752 if( db->autoCommit==0 ){
87753 /* Foreign key support may not be enabled or disabled while not
87754 ** in auto-commit mode. */
87755 mask &= ~(SQLITE_ForeignKeys);
87758 if( getBoolean(zRight) ){
87759 db->flags |= mask;
87760 }else{
87761 db->flags &= ~mask;
87764 /* Many of the flag-pragmas modify the code generated by the SQL
87765 ** compiler (eg. count_changes). So add an opcode to expire all
87766 ** compiled SQL statements after modifying a pragma value.
87768 sqlite3VdbeAddOp2(v, OP_Expire, 0, 0);
87772 return 1;
87775 return 0;
87777 #endif /* SQLITE_OMIT_FLAG_PRAGMAS */
87780 ** Return a human-readable name for a constraint resolution action.
87782 #ifndef SQLITE_OMIT_FOREIGN_KEY
87783 static const char *actionName(u8 action){
87784 const char *zName;
87785 switch( action ){
87786 case OE_SetNull: zName = "SET NULL"; break;
87787 case OE_SetDflt: zName = "SET DEFAULT"; break;
87788 case OE_Cascade: zName = "CASCADE"; break;
87789 case OE_Restrict: zName = "RESTRICT"; break;
87790 default: zName = "NO ACTION";
87791 assert( action==OE_None ); break;
87793 return zName;
87795 #endif
87799 ** Parameter eMode must be one of the PAGER_JOURNALMODE_XXX constants
87800 ** defined in pager.h. This function returns the associated lowercase
87801 ** journal-mode name.
87803 SQLITE_PRIVATE const char *sqlite3JournalModename(int eMode){
87804 static char * const azModeName[] = {
87805 "delete", "persist", "off", "truncate", "memory"
87806 #ifndef SQLITE_OMIT_WAL
87807 , "wal"
87808 #endif
87810 assert( PAGER_JOURNALMODE_DELETE==0 );
87811 assert( PAGER_JOURNALMODE_PERSIST==1 );
87812 assert( PAGER_JOURNALMODE_OFF==2 );
87813 assert( PAGER_JOURNALMODE_TRUNCATE==3 );
87814 assert( PAGER_JOURNALMODE_MEMORY==4 );
87815 assert( PAGER_JOURNALMODE_WAL==5 );
87816 assert( eMode>=0 && eMode<=ArraySize(azModeName) );
87818 if( eMode==ArraySize(azModeName) ) return 0;
87819 return azModeName[eMode];
87823 ** Process a pragma statement.
87825 ** Pragmas are of this form:
87827 ** PRAGMA [database.]id [= value]
87829 ** The identifier might also be a string. The value is a string, and
87830 ** identifier, or a number. If minusFlag is true, then the value is
87831 ** a number that was preceded by a minus sign.
87833 ** If the left side is "database.id" then pId1 is the database name
87834 ** and pId2 is the id. If the left side is just "id" then pId1 is the
87835 ** id and pId2 is any empty string.
87837 SQLITE_PRIVATE void sqlite3Pragma(
87838 Parse *pParse,
87839 Token *pId1, /* First part of [database.]id field */
87840 Token *pId2, /* Second part of [database.]id field, or NULL */
87841 Token *pValue, /* Token for <value>, or NULL */
87842 int minusFlag /* True if a '-' sign preceded <value> */
87844 char *zLeft = 0; /* Nul-terminated UTF-8 string <id> */
87845 char *zRight = 0; /* Nul-terminated UTF-8 string <value>, or NULL */
87846 const char *zDb = 0; /* The database name */
87847 Token *pId; /* Pointer to <id> token */
87848 int iDb; /* Database index for <database> */
87849 sqlite3 *db = pParse->db;
87850 Db *pDb;
87851 Vdbe *v = pParse->pVdbe = sqlite3VdbeCreate(db);
87852 if( v==0 ) return;
87853 sqlite3VdbeRunOnlyOnce(v);
87854 pParse->nMem = 2;
87856 /* Interpret the [database.] part of the pragma statement. iDb is the
87857 ** index of the database this pragma is being applied to in db.aDb[]. */
87858 iDb = sqlite3TwoPartName(pParse, pId1, pId2, &pId);
87859 if( iDb<0 ) return;
87860 pDb = &db->aDb[iDb];
87862 /* If the temp database has been explicitly named as part of the
87863 ** pragma, make sure it is open.
87865 if( iDb==1 && sqlite3OpenTempDatabase(pParse) ){
87866 return;
87869 zLeft = sqlite3NameFromToken(db, pId);
87870 if( !zLeft ) return;
87871 if( minusFlag ){
87872 zRight = sqlite3MPrintf(db, "-%T", pValue);
87873 }else{
87874 zRight = sqlite3NameFromToken(db, pValue);
87877 assert( pId2 );
87878 zDb = pId2->n>0 ? pDb->zName : 0;
87879 if( sqlite3AuthCheck(pParse, SQLITE_PRAGMA, zLeft, zRight, zDb) ){
87880 goto pragma_out;
87883 #ifndef SQLITE_OMIT_PAGER_PRAGMAS
87885 ** PRAGMA [database.]default_cache_size
87886 ** PRAGMA [database.]default_cache_size=N
87888 ** The first form reports the current persistent setting for the
87889 ** page cache size. The value returned is the maximum number of
87890 ** pages in the page cache. The second form sets both the current
87891 ** page cache size value and the persistent page cache size value
87892 ** stored in the database file.
87894 ** Older versions of SQLite would set the default cache size to a
87895 ** negative number to indicate synchronous=OFF. These days, synchronous
87896 ** is always on by default regardless of the sign of the default cache
87897 ** size. But continue to take the absolute value of the default cache
87898 ** size of historical compatibility.
87900 if( sqlite3StrICmp(zLeft,"default_cache_size")==0 ){
87901 static const VdbeOpList getCacheSize[] = {
87902 { OP_Transaction, 0, 0, 0}, /* 0 */
87903 { OP_ReadCookie, 0, 1, BTREE_DEFAULT_CACHE_SIZE}, /* 1 */
87904 { OP_IfPos, 1, 7, 0},
87905 { OP_Integer, 0, 2, 0},
87906 { OP_Subtract, 1, 2, 1},
87907 { OP_IfPos, 1, 7, 0},
87908 { OP_Integer, 0, 1, 0}, /* 6 */
87909 { OP_ResultRow, 1, 1, 0},
87911 int addr;
87912 if( sqlite3ReadSchema(pParse) ) goto pragma_out;
87913 sqlite3VdbeUsesBtree(v, iDb);
87914 if( !zRight ){
87915 sqlite3VdbeSetNumCols(v, 1);
87916 sqlite3VdbeSetColName(v, 0, COLNAME_NAME, "cache_size", SQLITE_STATIC);
87917 pParse->nMem += 2;
87918 addr = sqlite3VdbeAddOpList(v, ArraySize(getCacheSize), getCacheSize);
87919 sqlite3VdbeChangeP1(v, addr, iDb);
87920 sqlite3VdbeChangeP1(v, addr+1, iDb);
87921 sqlite3VdbeChangeP1(v, addr+6, SQLITE_DEFAULT_CACHE_SIZE);
87922 }else{
87923 int size = sqlite3AbsInt32(sqlite3Atoi(zRight));
87924 sqlite3BeginWriteOperation(pParse, 0, iDb);
87925 sqlite3VdbeAddOp2(v, OP_Integer, size, 1);
87926 sqlite3VdbeAddOp3(v, OP_SetCookie, iDb, BTREE_DEFAULT_CACHE_SIZE, 1);
87927 assert( sqlite3SchemaMutexHeld(db, iDb, 0) );
87928 pDb->pSchema->cache_size = size;
87929 sqlite3BtreeSetCacheSize(pDb->pBt, pDb->pSchema->cache_size);
87931 }else
87934 ** PRAGMA [database.]page_size
87935 ** PRAGMA [database.]page_size=N
87937 ** The first form reports the current setting for the
87938 ** database page size in bytes. The second form sets the
87939 ** database page size value. The value can only be set if
87940 ** the database has not yet been created.
87942 if( sqlite3StrICmp(zLeft,"page_size")==0 ){
87943 Btree *pBt = pDb->pBt;
87944 assert( pBt!=0 );
87945 if( !zRight ){
87946 int size = ALWAYS(pBt) ? sqlite3BtreeGetPageSize(pBt) : 0;
87947 returnSingleInt(pParse, "page_size", size);
87948 }else{
87949 /* Malloc may fail when setting the page-size, as there is an internal
87950 ** buffer that the pager module resizes using sqlite3_realloc().
87952 db->nextPagesize = sqlite3Atoi(zRight);
87953 if( SQLITE_NOMEM==sqlite3BtreeSetPageSize(pBt, db->nextPagesize, -1, 0) ){
87954 db->mallocFailed = 1;
87957 }else
87960 ** PRAGMA [database.]secure_delete
87961 ** PRAGMA [database.]secure_delete=ON/OFF
87963 ** The first form reports the current setting for the
87964 ** secure_delete flag. The second form changes the secure_delete
87965 ** flag setting and reports thenew value.
87967 if( sqlite3StrICmp(zLeft,"secure_delete")==0 ){
87968 Btree *pBt = pDb->pBt;
87969 int b = -1;
87970 assert( pBt!=0 );
87971 if( zRight ){
87972 b = getBoolean(zRight);
87974 if( pId2->n==0 && b>=0 ){
87975 int ii;
87976 for(ii=0; ii<db->nDb; ii++){
87977 sqlite3BtreeSecureDelete(db->aDb[ii].pBt, b);
87980 b = sqlite3BtreeSecureDelete(pBt, b);
87981 returnSingleInt(pParse, "secure_delete", b);
87982 }else
87985 ** PRAGMA [database.]max_page_count
87986 ** PRAGMA [database.]max_page_count=N
87988 ** The first form reports the current setting for the
87989 ** maximum number of pages in the database file. The
87990 ** second form attempts to change this setting. Both
87991 ** forms return the current setting.
87993 ** PRAGMA [database.]page_count
87995 ** Return the number of pages in the specified database.
87997 if( sqlite3StrICmp(zLeft,"page_count")==0
87998 || sqlite3StrICmp(zLeft,"max_page_count")==0
88000 int iReg;
88001 if( sqlite3ReadSchema(pParse) ) goto pragma_out;
88002 sqlite3CodeVerifySchema(pParse, iDb);
88003 iReg = ++pParse->nMem;
88004 if( zLeft[0]=='p' ){
88005 sqlite3VdbeAddOp2(v, OP_Pagecount, iDb, iReg);
88006 }else{
88007 sqlite3VdbeAddOp3(v, OP_MaxPgcnt, iDb, iReg, sqlite3Atoi(zRight));
88009 sqlite3VdbeAddOp2(v, OP_ResultRow, iReg, 1);
88010 sqlite3VdbeSetNumCols(v, 1);
88011 sqlite3VdbeSetColName(v, 0, COLNAME_NAME, zLeft, SQLITE_TRANSIENT);
88012 }else
88015 ** PRAGMA [database.]locking_mode
88016 ** PRAGMA [database.]locking_mode = (normal|exclusive)
88018 if( sqlite3StrICmp(zLeft,"locking_mode")==0 ){
88019 const char *zRet = "normal";
88020 int eMode = getLockingMode(zRight);
88022 if( pId2->n==0 && eMode==PAGER_LOCKINGMODE_QUERY ){
88023 /* Simple "PRAGMA locking_mode;" statement. This is a query for
88024 ** the current default locking mode (which may be different to
88025 ** the locking-mode of the main database).
88027 eMode = db->dfltLockMode;
88028 }else{
88029 Pager *pPager;
88030 if( pId2->n==0 ){
88031 /* This indicates that no database name was specified as part
88032 ** of the PRAGMA command. In this case the locking-mode must be
88033 ** set on all attached databases, as well as the main db file.
88035 ** Also, the sqlite3.dfltLockMode variable is set so that
88036 ** any subsequently attached databases also use the specified
88037 ** locking mode.
88039 int ii;
88040 assert(pDb==&db->aDb[0]);
88041 for(ii=2; ii<db->nDb; ii++){
88042 pPager = sqlite3BtreePager(db->aDb[ii].pBt);
88043 sqlite3PagerLockingMode(pPager, eMode);
88045 db->dfltLockMode = (u8)eMode;
88047 pPager = sqlite3BtreePager(pDb->pBt);
88048 eMode = sqlite3PagerLockingMode(pPager, eMode);
88051 assert(eMode==PAGER_LOCKINGMODE_NORMAL||eMode==PAGER_LOCKINGMODE_EXCLUSIVE);
88052 if( eMode==PAGER_LOCKINGMODE_EXCLUSIVE ){
88053 zRet = "exclusive";
88055 sqlite3VdbeSetNumCols(v, 1);
88056 sqlite3VdbeSetColName(v, 0, COLNAME_NAME, "locking_mode", SQLITE_STATIC);
88057 sqlite3VdbeAddOp4(v, OP_String8, 0, 1, 0, zRet, 0);
88058 sqlite3VdbeAddOp2(v, OP_ResultRow, 1, 1);
88059 }else
88062 ** PRAGMA [database.]journal_mode
88063 ** PRAGMA [database.]journal_mode =
88064 ** (delete|persist|off|truncate|memory|wal|off)
88066 if( sqlite3StrICmp(zLeft,"journal_mode")==0 ){
88067 int eMode; /* One of the PAGER_JOURNALMODE_XXX symbols */
88068 int ii; /* Loop counter */
88070 /* Force the schema to be loaded on all databases. This cases all
88071 ** database files to be opened and the journal_modes set. */
88072 if( sqlite3ReadSchema(pParse) ){
88073 goto pragma_out;
88076 sqlite3VdbeSetNumCols(v, 1);
88077 sqlite3VdbeSetColName(v, 0, COLNAME_NAME, "journal_mode", SQLITE_STATIC);
88079 if( zRight==0 ){
88080 /* If there is no "=MODE" part of the pragma, do a query for the
88081 ** current mode */
88082 eMode = PAGER_JOURNALMODE_QUERY;
88083 }else{
88084 const char *zMode;
88085 int n = sqlite3Strlen30(zRight);
88086 for(eMode=0; (zMode = sqlite3JournalModename(eMode))!=0; eMode++){
88087 if( sqlite3StrNICmp(zRight, zMode, n)==0 ) break;
88089 if( !zMode ){
88090 /* If the "=MODE" part does not match any known journal mode,
88091 ** then do a query */
88092 eMode = PAGER_JOURNALMODE_QUERY;
88095 if( eMode==PAGER_JOURNALMODE_QUERY && pId2->n==0 ){
88096 /* Convert "PRAGMA journal_mode" into "PRAGMA main.journal_mode" */
88097 iDb = 0;
88098 pId2->n = 1;
88100 for(ii=db->nDb-1; ii>=0; ii--){
88101 if( db->aDb[ii].pBt && (ii==iDb || pId2->n==0) ){
88102 sqlite3VdbeUsesBtree(v, ii);
88103 sqlite3VdbeAddOp3(v, OP_JournalMode, ii, 1, eMode);
88106 sqlite3VdbeAddOp2(v, OP_ResultRow, 1, 1);
88107 }else
88110 ** PRAGMA [database.]journal_size_limit
88111 ** PRAGMA [database.]journal_size_limit=N
88113 ** Get or set the size limit on rollback journal files.
88115 if( sqlite3StrICmp(zLeft,"journal_size_limit")==0 ){
88116 Pager *pPager = sqlite3BtreePager(pDb->pBt);
88117 i64 iLimit = -2;
88118 if( zRight ){
88119 sqlite3Atoi64(zRight, &iLimit, 1000000, SQLITE_UTF8);
88120 if( iLimit<-1 ) iLimit = -1;
88122 iLimit = sqlite3PagerJournalSizeLimit(pPager, iLimit);
88123 returnSingleInt(pParse, "journal_size_limit", iLimit);
88124 }else
88126 #endif /* SQLITE_OMIT_PAGER_PRAGMAS */
88129 ** PRAGMA [database.]auto_vacuum
88130 ** PRAGMA [database.]auto_vacuum=N
88132 ** Get or set the value of the database 'auto-vacuum' parameter.
88133 ** The value is one of: 0 NONE 1 FULL 2 INCREMENTAL
88135 #ifndef SQLITE_OMIT_AUTOVACUUM
88136 if( sqlite3StrICmp(zLeft,"auto_vacuum")==0 ){
88137 Btree *pBt = pDb->pBt;
88138 assert( pBt!=0 );
88139 if( sqlite3ReadSchema(pParse) ){
88140 goto pragma_out;
88142 if( !zRight ){
88143 int auto_vacuum;
88144 if( ALWAYS(pBt) ){
88145 auto_vacuum = sqlite3BtreeGetAutoVacuum(pBt);
88146 }else{
88147 auto_vacuum = SQLITE_DEFAULT_AUTOVACUUM;
88149 returnSingleInt(pParse, "auto_vacuum", auto_vacuum);
88150 }else{
88151 int eAuto = getAutoVacuum(zRight);
88152 assert( eAuto>=0 && eAuto<=2 );
88153 db->nextAutovac = (u8)eAuto;
88154 if( ALWAYS(eAuto>=0) ){
88155 /* Call SetAutoVacuum() to set initialize the internal auto and
88156 ** incr-vacuum flags. This is required in case this connection
88157 ** creates the database file. It is important that it is created
88158 ** as an auto-vacuum capable db.
88160 int rc = sqlite3BtreeSetAutoVacuum(pBt, eAuto);
88161 if( rc==SQLITE_OK && (eAuto==1 || eAuto==2) ){
88162 /* When setting the auto_vacuum mode to either "full" or
88163 ** "incremental", write the value of meta[6] in the database
88164 ** file. Before writing to meta[6], check that meta[3] indicates
88165 ** that this really is an auto-vacuum capable database.
88167 static const VdbeOpList setMeta6[] = {
88168 { OP_Transaction, 0, 1, 0}, /* 0 */
88169 { OP_ReadCookie, 0, 1, BTREE_LARGEST_ROOT_PAGE},
88170 { OP_If, 1, 0, 0}, /* 2 */
88171 { OP_Halt, SQLITE_OK, OE_Abort, 0}, /* 3 */
88172 { OP_Integer, 0, 1, 0}, /* 4 */
88173 { OP_SetCookie, 0, BTREE_INCR_VACUUM, 1}, /* 5 */
88175 int iAddr;
88176 iAddr = sqlite3VdbeAddOpList(v, ArraySize(setMeta6), setMeta6);
88177 sqlite3VdbeChangeP1(v, iAddr, iDb);
88178 sqlite3VdbeChangeP1(v, iAddr+1, iDb);
88179 sqlite3VdbeChangeP2(v, iAddr+2, iAddr+4);
88180 sqlite3VdbeChangeP1(v, iAddr+4, eAuto-1);
88181 sqlite3VdbeChangeP1(v, iAddr+5, iDb);
88182 sqlite3VdbeUsesBtree(v, iDb);
88186 }else
88187 #endif
88190 ** PRAGMA [database.]incremental_vacuum(N)
88192 ** Do N steps of incremental vacuuming on a database.
88194 #ifndef SQLITE_OMIT_AUTOVACUUM
88195 if( sqlite3StrICmp(zLeft,"incremental_vacuum")==0 ){
88196 int iLimit, addr;
88197 if( sqlite3ReadSchema(pParse) ){
88198 goto pragma_out;
88200 if( zRight==0 || !sqlite3GetInt32(zRight, &iLimit) || iLimit<=0 ){
88201 iLimit = 0x7fffffff;
88203 sqlite3BeginWriteOperation(pParse, 0, iDb);
88204 sqlite3VdbeAddOp2(v, OP_Integer, iLimit, 1);
88205 addr = sqlite3VdbeAddOp1(v, OP_IncrVacuum, iDb);
88206 sqlite3VdbeAddOp1(v, OP_ResultRow, 1);
88207 sqlite3VdbeAddOp2(v, OP_AddImm, 1, -1);
88208 sqlite3VdbeAddOp2(v, OP_IfPos, 1, addr);
88209 sqlite3VdbeJumpHere(v, addr);
88210 }else
88211 #endif
88213 #ifndef SQLITE_OMIT_PAGER_PRAGMAS
88215 ** PRAGMA [database.]cache_size
88216 ** PRAGMA [database.]cache_size=N
88218 ** The first form reports the current local setting for the
88219 ** page cache size. The local setting can be different from
88220 ** the persistent cache size value that is stored in the database
88221 ** file itself. The value returned is the maximum number of
88222 ** pages in the page cache. The second form sets the local
88223 ** page cache size value. It does not change the persistent
88224 ** cache size stored on the disk so the cache size will revert
88225 ** to its default value when the database is closed and reopened.
88226 ** N should be a positive integer.
88228 if( sqlite3StrICmp(zLeft,"cache_size")==0 ){
88229 if( sqlite3ReadSchema(pParse) ) goto pragma_out;
88230 assert( sqlite3SchemaMutexHeld(db, iDb, 0) );
88231 if( !zRight ){
88232 returnSingleInt(pParse, "cache_size", pDb->pSchema->cache_size);
88233 }else{
88234 int size = sqlite3AbsInt32(sqlite3Atoi(zRight));
88235 pDb->pSchema->cache_size = size;
88236 sqlite3BtreeSetCacheSize(pDb->pBt, pDb->pSchema->cache_size);
88238 }else
88241 ** PRAGMA temp_store
88242 ** PRAGMA temp_store = "default"|"memory"|"file"
88244 ** Return or set the local value of the temp_store flag. Changing
88245 ** the local value does not make changes to the disk file and the default
88246 ** value will be restored the next time the database is opened.
88248 ** Note that it is possible for the library compile-time options to
88249 ** override this setting
88251 if( sqlite3StrICmp(zLeft, "temp_store")==0 ){
88252 if( !zRight ){
88253 returnSingleInt(pParse, "temp_store", db->temp_store);
88254 }else{
88255 changeTempStorage(pParse, zRight);
88257 }else
88260 ** PRAGMA temp_store_directory
88261 ** PRAGMA temp_store_directory = ""|"directory_name"
88263 ** Return or set the local value of the temp_store_directory flag. Changing
88264 ** the value sets a specific directory to be used for temporary files.
88265 ** Setting to a null string reverts to the default temporary directory search.
88266 ** If temporary directory is changed, then invalidateTempStorage.
88269 if( sqlite3StrICmp(zLeft, "temp_store_directory")==0 ){
88270 if( !zRight ){
88271 if( sqlite3_temp_directory ){
88272 sqlite3VdbeSetNumCols(v, 1);
88273 sqlite3VdbeSetColName(v, 0, COLNAME_NAME,
88274 "temp_store_directory", SQLITE_STATIC);
88275 sqlite3VdbeAddOp4(v, OP_String8, 0, 1, 0, sqlite3_temp_directory, 0);
88276 sqlite3VdbeAddOp2(v, OP_ResultRow, 1, 1);
88278 }else{
88279 #ifndef SQLITE_OMIT_WSD
88280 if( zRight[0] ){
88281 int rc;
88282 int res;
88283 rc = sqlite3OsAccess(db->pVfs, zRight, SQLITE_ACCESS_READWRITE, &res);
88284 if( rc!=SQLITE_OK || res==0 ){
88285 sqlite3ErrorMsg(pParse, "not a writable directory");
88286 goto pragma_out;
88289 if( SQLITE_TEMP_STORE==0
88290 || (SQLITE_TEMP_STORE==1 && db->temp_store<=1)
88291 || (SQLITE_TEMP_STORE==2 && db->temp_store==1)
88293 invalidateTempStorage(pParse);
88295 sqlite3_free(sqlite3_temp_directory);
88296 if( zRight[0] ){
88297 sqlite3_temp_directory = sqlite3_mprintf("%s", zRight);
88298 }else{
88299 sqlite3_temp_directory = 0;
88301 #endif /* SQLITE_OMIT_WSD */
88303 }else
88305 #if !defined(SQLITE_ENABLE_LOCKING_STYLE)
88306 # if defined(__APPLE__)
88307 # define SQLITE_ENABLE_LOCKING_STYLE 1
88308 # else
88309 # define SQLITE_ENABLE_LOCKING_STYLE 0
88310 # endif
88311 #endif
88312 #if SQLITE_ENABLE_LOCKING_STYLE
88314 ** PRAGMA [database.]lock_proxy_file
88315 ** PRAGMA [database.]lock_proxy_file = ":auto:"|"lock_file_path"
88317 ** Return or set the value of the lock_proxy_file flag. Changing
88318 ** the value sets a specific file to be used for database access locks.
88321 if( sqlite3StrICmp(zLeft, "lock_proxy_file")==0 ){
88322 if( !zRight ){
88323 Pager *pPager = sqlite3BtreePager(pDb->pBt);
88324 char *proxy_file_path = NULL;
88325 sqlite3_file *pFile = sqlite3PagerFile(pPager);
88326 sqlite3OsFileControl(pFile, SQLITE_GET_LOCKPROXYFILE,
88327 &proxy_file_path);
88329 if( proxy_file_path ){
88330 sqlite3VdbeSetNumCols(v, 1);
88331 sqlite3VdbeSetColName(v, 0, COLNAME_NAME,
88332 "lock_proxy_file", SQLITE_STATIC);
88333 sqlite3VdbeAddOp4(v, OP_String8, 0, 1, 0, proxy_file_path, 0);
88334 sqlite3VdbeAddOp2(v, OP_ResultRow, 1, 1);
88336 }else{
88337 Pager *pPager = sqlite3BtreePager(pDb->pBt);
88338 sqlite3_file *pFile = sqlite3PagerFile(pPager);
88339 int res;
88340 if( zRight[0] ){
88341 res=sqlite3OsFileControl(pFile, SQLITE_SET_LOCKPROXYFILE,
88342 zRight);
88343 } else {
88344 res=sqlite3OsFileControl(pFile, SQLITE_SET_LOCKPROXYFILE,
88345 NULL);
88347 if( res!=SQLITE_OK ){
88348 sqlite3ErrorMsg(pParse, "failed to set lock proxy file");
88349 goto pragma_out;
88352 }else
88353 #endif /* SQLITE_ENABLE_LOCKING_STYLE */
88356 ** PRAGMA [database.]synchronous
88357 ** PRAGMA [database.]synchronous=OFF|ON|NORMAL|FULL
88359 ** Return or set the local value of the synchronous flag. Changing
88360 ** the local value does not make changes to the disk file and the
88361 ** default value will be restored the next time the database is
88362 ** opened.
88364 if( sqlite3StrICmp(zLeft,"synchronous")==0 ){
88365 if( sqlite3ReadSchema(pParse) ) goto pragma_out;
88366 if( !zRight ){
88367 returnSingleInt(pParse, "synchronous", pDb->safety_level-1);
88368 }else{
88369 if( !db->autoCommit ){
88370 sqlite3ErrorMsg(pParse,
88371 "Safety level may not be changed inside a transaction");
88372 }else{
88373 pDb->safety_level = getSafetyLevel(zRight)+1;
88376 }else
88377 #endif /* SQLITE_OMIT_PAGER_PRAGMAS */
88379 #ifndef SQLITE_OMIT_FLAG_PRAGMAS
88380 if( flagPragma(pParse, zLeft, zRight) ){
88381 /* The flagPragma() subroutine also generates any necessary code
88382 ** there is nothing more to do here */
88383 }else
88384 #endif /* SQLITE_OMIT_FLAG_PRAGMAS */
88386 #ifndef SQLITE_OMIT_SCHEMA_PRAGMAS
88388 ** PRAGMA table_info(<table>)
88390 ** Return a single row for each column of the named table. The columns of
88391 ** the returned data set are:
88393 ** cid: Column id (numbered from left to right, starting at 0)
88394 ** name: Column name
88395 ** type: Column declaration type.
88396 ** notnull: True if 'NOT NULL' is part of column declaration
88397 ** dflt_value: The default value for the column, if any.
88399 if( sqlite3StrICmp(zLeft, "table_info")==0 && zRight ){
88400 Table *pTab;
88401 if( sqlite3ReadSchema(pParse) ) goto pragma_out;
88402 pTab = sqlite3FindTable(db, zRight, zDb);
88403 if( pTab ){
88404 int i;
88405 int nHidden = 0;
88406 Column *pCol;
88407 sqlite3VdbeSetNumCols(v, 6);
88408 pParse->nMem = 6;
88409 sqlite3VdbeSetColName(v, 0, COLNAME_NAME, "cid", SQLITE_STATIC);
88410 sqlite3VdbeSetColName(v, 1, COLNAME_NAME, "name", SQLITE_STATIC);
88411 sqlite3VdbeSetColName(v, 2, COLNAME_NAME, "type", SQLITE_STATIC);
88412 sqlite3VdbeSetColName(v, 3, COLNAME_NAME, "notnull", SQLITE_STATIC);
88413 sqlite3VdbeSetColName(v, 4, COLNAME_NAME, "dflt_value", SQLITE_STATIC);
88414 sqlite3VdbeSetColName(v, 5, COLNAME_NAME, "pk", SQLITE_STATIC);
88415 sqlite3ViewGetColumnNames(pParse, pTab);
88416 for(i=0, pCol=pTab->aCol; i<pTab->nCol; i++, pCol++){
88417 if( IsHiddenColumn(pCol) ){
88418 nHidden++;
88419 continue;
88421 sqlite3VdbeAddOp2(v, OP_Integer, i-nHidden, 1);
88422 sqlite3VdbeAddOp4(v, OP_String8, 0, 2, 0, pCol->zName, 0);
88423 sqlite3VdbeAddOp4(v, OP_String8, 0, 3, 0,
88424 pCol->zType ? pCol->zType : "", 0);
88425 sqlite3VdbeAddOp2(v, OP_Integer, (pCol->notNull ? 1 : 0), 4);
88426 if( pCol->zDflt ){
88427 sqlite3VdbeAddOp4(v, OP_String8, 0, 5, 0, (char*)pCol->zDflt, 0);
88428 }else{
88429 sqlite3VdbeAddOp2(v, OP_Null, 0, 5);
88431 sqlite3VdbeAddOp2(v, OP_Integer, pCol->isPrimKey, 6);
88432 sqlite3VdbeAddOp2(v, OP_ResultRow, 1, 6);
88435 }else
88437 if( sqlite3StrICmp(zLeft, "index_info")==0 && zRight ){
88438 Index *pIdx;
88439 Table *pTab;
88440 if( sqlite3ReadSchema(pParse) ) goto pragma_out;
88441 pIdx = sqlite3FindIndex(db, zRight, zDb);
88442 if( pIdx ){
88443 int i;
88444 pTab = pIdx->pTable;
88445 sqlite3VdbeSetNumCols(v, 3);
88446 pParse->nMem = 3;
88447 sqlite3VdbeSetColName(v, 0, COLNAME_NAME, "seqno", SQLITE_STATIC);
88448 sqlite3VdbeSetColName(v, 1, COLNAME_NAME, "cid", SQLITE_STATIC);
88449 sqlite3VdbeSetColName(v, 2, COLNAME_NAME, "name", SQLITE_STATIC);
88450 for(i=0; i<pIdx->nColumn; i++){
88451 int cnum = pIdx->aiColumn[i];
88452 sqlite3VdbeAddOp2(v, OP_Integer, i, 1);
88453 sqlite3VdbeAddOp2(v, OP_Integer, cnum, 2);
88454 assert( pTab->nCol>cnum );
88455 sqlite3VdbeAddOp4(v, OP_String8, 0, 3, 0, pTab->aCol[cnum].zName, 0);
88456 sqlite3VdbeAddOp2(v, OP_ResultRow, 1, 3);
88459 }else
88461 if( sqlite3StrICmp(zLeft, "index_list")==0 && zRight ){
88462 Index *pIdx;
88463 Table *pTab;
88464 if( sqlite3ReadSchema(pParse) ) goto pragma_out;
88465 pTab = sqlite3FindTable(db, zRight, zDb);
88466 if( pTab ){
88467 v = sqlite3GetVdbe(pParse);
88468 pIdx = pTab->pIndex;
88469 if( pIdx ){
88470 int i = 0;
88471 sqlite3VdbeSetNumCols(v, 3);
88472 pParse->nMem = 3;
88473 sqlite3VdbeSetColName(v, 0, COLNAME_NAME, "seq", SQLITE_STATIC);
88474 sqlite3VdbeSetColName(v, 1, COLNAME_NAME, "name", SQLITE_STATIC);
88475 sqlite3VdbeSetColName(v, 2, COLNAME_NAME, "unique", SQLITE_STATIC);
88476 while(pIdx){
88477 sqlite3VdbeAddOp2(v, OP_Integer, i, 1);
88478 sqlite3VdbeAddOp4(v, OP_String8, 0, 2, 0, pIdx->zName, 0);
88479 sqlite3VdbeAddOp2(v, OP_Integer, pIdx->onError!=OE_None, 3);
88480 sqlite3VdbeAddOp2(v, OP_ResultRow, 1, 3);
88481 ++i;
88482 pIdx = pIdx->pNext;
88486 }else
88488 if( sqlite3StrICmp(zLeft, "database_list")==0 ){
88489 int i;
88490 if( sqlite3ReadSchema(pParse) ) goto pragma_out;
88491 sqlite3VdbeSetNumCols(v, 3);
88492 pParse->nMem = 3;
88493 sqlite3VdbeSetColName(v, 0, COLNAME_NAME, "seq", SQLITE_STATIC);
88494 sqlite3VdbeSetColName(v, 1, COLNAME_NAME, "name", SQLITE_STATIC);
88495 sqlite3VdbeSetColName(v, 2, COLNAME_NAME, "file", SQLITE_STATIC);
88496 for(i=0; i<db->nDb; i++){
88497 if( db->aDb[i].pBt==0 ) continue;
88498 assert( db->aDb[i].zName!=0 );
88499 sqlite3VdbeAddOp2(v, OP_Integer, i, 1);
88500 sqlite3VdbeAddOp4(v, OP_String8, 0, 2, 0, db->aDb[i].zName, 0);
88501 sqlite3VdbeAddOp4(v, OP_String8, 0, 3, 0,
88502 sqlite3BtreeGetFilename(db->aDb[i].pBt), 0);
88503 sqlite3VdbeAddOp2(v, OP_ResultRow, 1, 3);
88505 }else
88507 if( sqlite3StrICmp(zLeft, "collation_list")==0 ){
88508 int i = 0;
88509 HashElem *p;
88510 sqlite3VdbeSetNumCols(v, 2);
88511 pParse->nMem = 2;
88512 sqlite3VdbeSetColName(v, 0, COLNAME_NAME, "seq", SQLITE_STATIC);
88513 sqlite3VdbeSetColName(v, 1, COLNAME_NAME, "name", SQLITE_STATIC);
88514 for(p=sqliteHashFirst(&db->aCollSeq); p; p=sqliteHashNext(p)){
88515 CollSeq *pColl = (CollSeq *)sqliteHashData(p);
88516 sqlite3VdbeAddOp2(v, OP_Integer, i++, 1);
88517 sqlite3VdbeAddOp4(v, OP_String8, 0, 2, 0, pColl->zName, 0);
88518 sqlite3VdbeAddOp2(v, OP_ResultRow, 1, 2);
88520 }else
88521 #endif /* SQLITE_OMIT_SCHEMA_PRAGMAS */
88523 #ifndef SQLITE_OMIT_FOREIGN_KEY
88524 if( sqlite3StrICmp(zLeft, "foreign_key_list")==0 && zRight ){
88525 FKey *pFK;
88526 Table *pTab;
88527 if( sqlite3ReadSchema(pParse) ) goto pragma_out;
88528 pTab = sqlite3FindTable(db, zRight, zDb);
88529 if( pTab ){
88530 v = sqlite3GetVdbe(pParse);
88531 pFK = pTab->pFKey;
88532 if( pFK ){
88533 int i = 0;
88534 sqlite3VdbeSetNumCols(v, 8);
88535 pParse->nMem = 8;
88536 sqlite3VdbeSetColName(v, 0, COLNAME_NAME, "id", SQLITE_STATIC);
88537 sqlite3VdbeSetColName(v, 1, COLNAME_NAME, "seq", SQLITE_STATIC);
88538 sqlite3VdbeSetColName(v, 2, COLNAME_NAME, "table", SQLITE_STATIC);
88539 sqlite3VdbeSetColName(v, 3, COLNAME_NAME, "from", SQLITE_STATIC);
88540 sqlite3VdbeSetColName(v, 4, COLNAME_NAME, "to", SQLITE_STATIC);
88541 sqlite3VdbeSetColName(v, 5, COLNAME_NAME, "on_update", SQLITE_STATIC);
88542 sqlite3VdbeSetColName(v, 6, COLNAME_NAME, "on_delete", SQLITE_STATIC);
88543 sqlite3VdbeSetColName(v, 7, COLNAME_NAME, "match", SQLITE_STATIC);
88544 while(pFK){
88545 int j;
88546 for(j=0; j<pFK->nCol; j++){
88547 char *zCol = pFK->aCol[j].zCol;
88548 char *zOnDelete = (char *)actionName(pFK->aAction[0]);
88549 char *zOnUpdate = (char *)actionName(pFK->aAction[1]);
88550 sqlite3VdbeAddOp2(v, OP_Integer, i, 1);
88551 sqlite3VdbeAddOp2(v, OP_Integer, j, 2);
88552 sqlite3VdbeAddOp4(v, OP_String8, 0, 3, 0, pFK->zTo, 0);
88553 sqlite3VdbeAddOp4(v, OP_String8, 0, 4, 0,
88554 pTab->aCol[pFK->aCol[j].iFrom].zName, 0);
88555 sqlite3VdbeAddOp4(v, zCol ? OP_String8 : OP_Null, 0, 5, 0, zCol, 0);
88556 sqlite3VdbeAddOp4(v, OP_String8, 0, 6, 0, zOnUpdate, 0);
88557 sqlite3VdbeAddOp4(v, OP_String8, 0, 7, 0, zOnDelete, 0);
88558 sqlite3VdbeAddOp4(v, OP_String8, 0, 8, 0, "NONE", 0);
88559 sqlite3VdbeAddOp2(v, OP_ResultRow, 1, 8);
88561 ++i;
88562 pFK = pFK->pNextFrom;
88566 }else
88567 #endif /* !defined(SQLITE_OMIT_FOREIGN_KEY) */
88569 #ifndef NDEBUG
88570 if( sqlite3StrICmp(zLeft, "parser_trace")==0 ){
88571 if( zRight ){
88572 if( getBoolean(zRight) ){
88573 sqlite3ParserTrace(stderr, "parser: ");
88574 }else{
88575 sqlite3ParserTrace(0, 0);
88578 }else
88579 #endif
88581 /* Reinstall the LIKE and GLOB functions. The variant of LIKE
88582 ** used will be case sensitive or not depending on the RHS.
88584 if( sqlite3StrICmp(zLeft, "case_sensitive_like")==0 ){
88585 if( zRight ){
88586 sqlite3RegisterLikeFunctions(db, getBoolean(zRight));
88588 }else
88590 #ifndef SQLITE_INTEGRITY_CHECK_ERROR_MAX
88591 # define SQLITE_INTEGRITY_CHECK_ERROR_MAX 100
88592 #endif
88594 #ifndef SQLITE_OMIT_INTEGRITY_CHECK
88595 /* Pragma "quick_check" is an experimental reduced version of
88596 ** integrity_check designed to detect most database corruption
88597 ** without most of the overhead of a full integrity-check.
88599 if( sqlite3StrICmp(zLeft, "integrity_check")==0
88600 || sqlite3StrICmp(zLeft, "quick_check")==0
88602 int i, j, addr, mxErr;
88604 /* Code that appears at the end of the integrity check. If no error
88605 ** messages have been generated, output OK. Otherwise output the
88606 ** error message
88608 static const VdbeOpList endCode[] = {
88609 { OP_AddImm, 1, 0, 0}, /* 0 */
88610 { OP_IfNeg, 1, 0, 0}, /* 1 */
88611 { OP_String8, 0, 3, 0}, /* 2 */
88612 { OP_ResultRow, 3, 1, 0},
88615 int isQuick = (zLeft[0]=='q');
88617 /* Initialize the VDBE program */
88618 if( sqlite3ReadSchema(pParse) ) goto pragma_out;
88619 pParse->nMem = 6;
88620 sqlite3VdbeSetNumCols(v, 1);
88621 sqlite3VdbeSetColName(v, 0, COLNAME_NAME, "integrity_check", SQLITE_STATIC);
88623 /* Set the maximum error count */
88624 mxErr = SQLITE_INTEGRITY_CHECK_ERROR_MAX;
88625 if( zRight ){
88626 sqlite3GetInt32(zRight, &mxErr);
88627 if( mxErr<=0 ){
88628 mxErr = SQLITE_INTEGRITY_CHECK_ERROR_MAX;
88631 sqlite3VdbeAddOp2(v, OP_Integer, mxErr, 1); /* reg[1] holds errors left */
88633 /* Do an integrity check on each database file */
88634 for(i=0; i<db->nDb; i++){
88635 HashElem *x;
88636 Hash *pTbls;
88637 int cnt = 0;
88639 if( OMIT_TEMPDB && i==1 ) continue;
88641 sqlite3CodeVerifySchema(pParse, i);
88642 addr = sqlite3VdbeAddOp1(v, OP_IfPos, 1); /* Halt if out of errors */
88643 sqlite3VdbeAddOp2(v, OP_Halt, 0, 0);
88644 sqlite3VdbeJumpHere(v, addr);
88646 /* Do an integrity check of the B-Tree
88648 ** Begin by filling registers 2, 3, ... with the root pages numbers
88649 ** for all tables and indices in the database.
88651 assert( sqlite3SchemaMutexHeld(db, iDb, 0) );
88652 pTbls = &db->aDb[i].pSchema->tblHash;
88653 for(x=sqliteHashFirst(pTbls); x; x=sqliteHashNext(x)){
88654 Table *pTab = sqliteHashData(x);
88655 Index *pIdx;
88656 sqlite3VdbeAddOp2(v, OP_Integer, pTab->tnum, 2+cnt);
88657 cnt++;
88658 for(pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext){
88659 sqlite3VdbeAddOp2(v, OP_Integer, pIdx->tnum, 2+cnt);
88660 cnt++;
88664 /* Make sure sufficient number of registers have been allocated */
88665 if( pParse->nMem < cnt+4 ){
88666 pParse->nMem = cnt+4;
88669 /* Do the b-tree integrity checks */
88670 sqlite3VdbeAddOp3(v, OP_IntegrityCk, 2, cnt, 1);
88671 sqlite3VdbeChangeP5(v, (u8)i);
88672 addr = sqlite3VdbeAddOp1(v, OP_IsNull, 2);
88673 sqlite3VdbeAddOp4(v, OP_String8, 0, 3, 0,
88674 sqlite3MPrintf(db, "*** in database %s ***\n", db->aDb[i].zName),
88675 P4_DYNAMIC);
88676 sqlite3VdbeAddOp3(v, OP_Move, 2, 4, 1);
88677 sqlite3VdbeAddOp3(v, OP_Concat, 4, 3, 2);
88678 sqlite3VdbeAddOp2(v, OP_ResultRow, 2, 1);
88679 sqlite3VdbeJumpHere(v, addr);
88681 /* Make sure all the indices are constructed correctly.
88683 for(x=sqliteHashFirst(pTbls); x && !isQuick; x=sqliteHashNext(x)){
88684 Table *pTab = sqliteHashData(x);
88685 Index *pIdx;
88686 int loopTop;
88688 if( pTab->pIndex==0 ) continue;
88689 addr = sqlite3VdbeAddOp1(v, OP_IfPos, 1); /* Stop if out of errors */
88690 sqlite3VdbeAddOp2(v, OP_Halt, 0, 0);
88691 sqlite3VdbeJumpHere(v, addr);
88692 sqlite3OpenTableAndIndices(pParse, pTab, 1, OP_OpenRead);
88693 sqlite3VdbeAddOp2(v, OP_Integer, 0, 2); /* reg(2) will count entries */
88694 loopTop = sqlite3VdbeAddOp2(v, OP_Rewind, 1, 0);
88695 sqlite3VdbeAddOp2(v, OP_AddImm, 2, 1); /* increment entry count */
88696 for(j=0, pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext, j++){
88697 int jmp2;
88698 int r1;
88699 static const VdbeOpList idxErr[] = {
88700 { OP_AddImm, 1, -1, 0},
88701 { OP_String8, 0, 3, 0}, /* 1 */
88702 { OP_Rowid, 1, 4, 0},
88703 { OP_String8, 0, 5, 0}, /* 3 */
88704 { OP_String8, 0, 6, 0}, /* 4 */
88705 { OP_Concat, 4, 3, 3},
88706 { OP_Concat, 5, 3, 3},
88707 { OP_Concat, 6, 3, 3},
88708 { OP_ResultRow, 3, 1, 0},
88709 { OP_IfPos, 1, 0, 0}, /* 9 */
88710 { OP_Halt, 0, 0, 0},
88712 r1 = sqlite3GenerateIndexKey(pParse, pIdx, 1, 3, 0);
88713 jmp2 = sqlite3VdbeAddOp4Int(v, OP_Found, j+2, 0, r1, pIdx->nColumn+1);
88714 addr = sqlite3VdbeAddOpList(v, ArraySize(idxErr), idxErr);
88715 sqlite3VdbeChangeP4(v, addr+1, "rowid ", P4_STATIC);
88716 sqlite3VdbeChangeP4(v, addr+3, " missing from index ", P4_STATIC);
88717 sqlite3VdbeChangeP4(v, addr+4, pIdx->zName, P4_TRANSIENT);
88718 sqlite3VdbeJumpHere(v, addr+9);
88719 sqlite3VdbeJumpHere(v, jmp2);
88721 sqlite3VdbeAddOp2(v, OP_Next, 1, loopTop+1);
88722 sqlite3VdbeJumpHere(v, loopTop);
88723 for(j=0, pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext, j++){
88724 static const VdbeOpList cntIdx[] = {
88725 { OP_Integer, 0, 3, 0},
88726 { OP_Rewind, 0, 0, 0}, /* 1 */
88727 { OP_AddImm, 3, 1, 0},
88728 { OP_Next, 0, 0, 0}, /* 3 */
88729 { OP_Eq, 2, 0, 3}, /* 4 */
88730 { OP_AddImm, 1, -1, 0},
88731 { OP_String8, 0, 2, 0}, /* 6 */
88732 { OP_String8, 0, 3, 0}, /* 7 */
88733 { OP_Concat, 3, 2, 2},
88734 { OP_ResultRow, 2, 1, 0},
88736 addr = sqlite3VdbeAddOp1(v, OP_IfPos, 1);
88737 sqlite3VdbeAddOp2(v, OP_Halt, 0, 0);
88738 sqlite3VdbeJumpHere(v, addr);
88739 addr = sqlite3VdbeAddOpList(v, ArraySize(cntIdx), cntIdx);
88740 sqlite3VdbeChangeP1(v, addr+1, j+2);
88741 sqlite3VdbeChangeP2(v, addr+1, addr+4);
88742 sqlite3VdbeChangeP1(v, addr+3, j+2);
88743 sqlite3VdbeChangeP2(v, addr+3, addr+2);
88744 sqlite3VdbeJumpHere(v, addr+4);
88745 sqlite3VdbeChangeP4(v, addr+6,
88746 "wrong # of entries in index ", P4_STATIC);
88747 sqlite3VdbeChangeP4(v, addr+7, pIdx->zName, P4_TRANSIENT);
88751 addr = sqlite3VdbeAddOpList(v, ArraySize(endCode), endCode);
88752 sqlite3VdbeChangeP2(v, addr, -mxErr);
88753 sqlite3VdbeJumpHere(v, addr+1);
88754 sqlite3VdbeChangeP4(v, addr+2, "ok", P4_STATIC);
88755 }else
88756 #endif /* SQLITE_OMIT_INTEGRITY_CHECK */
88758 #ifndef SQLITE_OMIT_UTF16
88760 ** PRAGMA encoding
88761 ** PRAGMA encoding = "utf-8"|"utf-16"|"utf-16le"|"utf-16be"
88763 ** In its first form, this pragma returns the encoding of the main
88764 ** database. If the database is not initialized, it is initialized now.
88766 ** The second form of this pragma is a no-op if the main database file
88767 ** has not already been initialized. In this case it sets the default
88768 ** encoding that will be used for the main database file if a new file
88769 ** is created. If an existing main database file is opened, then the
88770 ** default text encoding for the existing database is used.
88772 ** In all cases new databases created using the ATTACH command are
88773 ** created to use the same default text encoding as the main database. If
88774 ** the main database has not been initialized and/or created when ATTACH
88775 ** is executed, this is done before the ATTACH operation.
88777 ** In the second form this pragma sets the text encoding to be used in
88778 ** new database files created using this database handle. It is only
88779 ** useful if invoked immediately after the main database i
88781 if( sqlite3StrICmp(zLeft, "encoding")==0 ){
88782 static const struct EncName {
88783 char *zName;
88784 u8 enc;
88785 } encnames[] = {
88786 { "UTF8", SQLITE_UTF8 },
88787 { "UTF-8", SQLITE_UTF8 }, /* Must be element [1] */
88788 { "UTF-16le", SQLITE_UTF16LE }, /* Must be element [2] */
88789 { "UTF-16be", SQLITE_UTF16BE }, /* Must be element [3] */
88790 { "UTF16le", SQLITE_UTF16LE },
88791 { "UTF16be", SQLITE_UTF16BE },
88792 { "UTF-16", 0 }, /* SQLITE_UTF16NATIVE */
88793 { "UTF16", 0 }, /* SQLITE_UTF16NATIVE */
88794 { 0, 0 }
88796 const struct EncName *pEnc;
88797 if( !zRight ){ /* "PRAGMA encoding" */
88798 if( sqlite3ReadSchema(pParse) ) goto pragma_out;
88799 sqlite3VdbeSetNumCols(v, 1);
88800 sqlite3VdbeSetColName(v, 0, COLNAME_NAME, "encoding", SQLITE_STATIC);
88801 sqlite3VdbeAddOp2(v, OP_String8, 0, 1);
88802 assert( encnames[SQLITE_UTF8].enc==SQLITE_UTF8 );
88803 assert( encnames[SQLITE_UTF16LE].enc==SQLITE_UTF16LE );
88804 assert( encnames[SQLITE_UTF16BE].enc==SQLITE_UTF16BE );
88805 sqlite3VdbeChangeP4(v, -1, encnames[ENC(pParse->db)].zName, P4_STATIC);
88806 sqlite3VdbeAddOp2(v, OP_ResultRow, 1, 1);
88807 }else{ /* "PRAGMA encoding = XXX" */
88808 /* Only change the value of sqlite.enc if the database handle is not
88809 ** initialized. If the main database exists, the new sqlite.enc value
88810 ** will be overwritten when the schema is next loaded. If it does not
88811 ** already exists, it will be created to use the new encoding value.
88813 if(
88814 !(DbHasProperty(db, 0, DB_SchemaLoaded)) ||
88815 DbHasProperty(db, 0, DB_Empty)
88817 for(pEnc=&encnames[0]; pEnc->zName; pEnc++){
88818 if( 0==sqlite3StrICmp(zRight, pEnc->zName) ){
88819 ENC(pParse->db) = pEnc->enc ? pEnc->enc : SQLITE_UTF16NATIVE;
88820 break;
88823 if( !pEnc->zName ){
88824 sqlite3ErrorMsg(pParse, "unsupported encoding: %s", zRight);
88828 }else
88829 #endif /* SQLITE_OMIT_UTF16 */
88831 #ifndef SQLITE_OMIT_SCHEMA_VERSION_PRAGMAS
88833 ** PRAGMA [database.]schema_version
88834 ** PRAGMA [database.]schema_version = <integer>
88836 ** PRAGMA [database.]user_version
88837 ** PRAGMA [database.]user_version = <integer>
88839 ** The pragma's schema_version and user_version are used to set or get
88840 ** the value of the schema-version and user-version, respectively. Both
88841 ** the schema-version and the user-version are 32-bit signed integers
88842 ** stored in the database header.
88844 ** The schema-cookie is usually only manipulated internally by SQLite. It
88845 ** is incremented by SQLite whenever the database schema is modified (by
88846 ** creating or dropping a table or index). The schema version is used by
88847 ** SQLite each time a query is executed to ensure that the internal cache
88848 ** of the schema used when compiling the SQL query matches the schema of
88849 ** the database against which the compiled query is actually executed.
88850 ** Subverting this mechanism by using "PRAGMA schema_version" to modify
88851 ** the schema-version is potentially dangerous and may lead to program
88852 ** crashes or database corruption. Use with caution!
88854 ** The user-version is not used internally by SQLite. It may be used by
88855 ** applications for any purpose.
88857 if( sqlite3StrICmp(zLeft, "schema_version")==0
88858 || sqlite3StrICmp(zLeft, "user_version")==0
88859 || sqlite3StrICmp(zLeft, "freelist_count")==0
88861 int iCookie; /* Cookie index. 1 for schema-cookie, 6 for user-cookie. */
88862 sqlite3VdbeUsesBtree(v, iDb);
88863 switch( zLeft[0] ){
88864 case 'f': case 'F':
88865 iCookie = BTREE_FREE_PAGE_COUNT;
88866 break;
88867 case 's': case 'S':
88868 iCookie = BTREE_SCHEMA_VERSION;
88869 break;
88870 default:
88871 iCookie = BTREE_USER_VERSION;
88872 break;
88875 if( zRight && iCookie!=BTREE_FREE_PAGE_COUNT ){
88876 /* Write the specified cookie value */
88877 static const VdbeOpList setCookie[] = {
88878 { OP_Transaction, 0, 1, 0}, /* 0 */
88879 { OP_Integer, 0, 1, 0}, /* 1 */
88880 { OP_SetCookie, 0, 0, 1}, /* 2 */
88882 int addr = sqlite3VdbeAddOpList(v, ArraySize(setCookie), setCookie);
88883 sqlite3VdbeChangeP1(v, addr, iDb);
88884 sqlite3VdbeChangeP1(v, addr+1, sqlite3Atoi(zRight));
88885 sqlite3VdbeChangeP1(v, addr+2, iDb);
88886 sqlite3VdbeChangeP2(v, addr+2, iCookie);
88887 }else{
88888 /* Read the specified cookie value */
88889 static const VdbeOpList readCookie[] = {
88890 { OP_Transaction, 0, 0, 0}, /* 0 */
88891 { OP_ReadCookie, 0, 1, 0}, /* 1 */
88892 { OP_ResultRow, 1, 1, 0}
88894 int addr = sqlite3VdbeAddOpList(v, ArraySize(readCookie), readCookie);
88895 sqlite3VdbeChangeP1(v, addr, iDb);
88896 sqlite3VdbeChangeP1(v, addr+1, iDb);
88897 sqlite3VdbeChangeP3(v, addr+1, iCookie);
88898 sqlite3VdbeSetNumCols(v, 1);
88899 sqlite3VdbeSetColName(v, 0, COLNAME_NAME, zLeft, SQLITE_TRANSIENT);
88901 }else
88902 #endif /* SQLITE_OMIT_SCHEMA_VERSION_PRAGMAS */
88904 #ifndef SQLITE_OMIT_COMPILEOPTION_DIAGS
88906 ** PRAGMA compile_options
88908 ** Return the names of all compile-time options used in this build,
88909 ** one option per row.
88911 if( sqlite3StrICmp(zLeft, "compile_options")==0 ){
88912 int i = 0;
88913 const char *zOpt;
88914 sqlite3VdbeSetNumCols(v, 1);
88915 pParse->nMem = 1;
88916 sqlite3VdbeSetColName(v, 0, COLNAME_NAME, "compile_option", SQLITE_STATIC);
88917 while( (zOpt = sqlite3_compileoption_get(i++))!=0 ){
88918 sqlite3VdbeAddOp4(v, OP_String8, 0, 1, 0, zOpt, 0);
88919 sqlite3VdbeAddOp2(v, OP_ResultRow, 1, 1);
88921 }else
88922 #endif /* SQLITE_OMIT_COMPILEOPTION_DIAGS */
88924 #ifndef SQLITE_OMIT_WAL
88926 ** PRAGMA [database.]wal_checkpoint = passive|full|restart
88928 ** Checkpoint the database.
88930 if( sqlite3StrICmp(zLeft, "wal_checkpoint")==0 ){
88931 int iBt = (pId2->z?iDb:SQLITE_MAX_ATTACHED);
88932 int eMode = SQLITE_CHECKPOINT_PASSIVE;
88933 if( zRight ){
88934 if( sqlite3StrICmp(zRight, "full")==0 ){
88935 eMode = SQLITE_CHECKPOINT_FULL;
88936 }else if( sqlite3StrICmp(zRight, "restart")==0 ){
88937 eMode = SQLITE_CHECKPOINT_RESTART;
88940 if( sqlite3ReadSchema(pParse) ) goto pragma_out;
88941 sqlite3VdbeSetNumCols(v, 3);
88942 pParse->nMem = 3;
88943 sqlite3VdbeSetColName(v, 0, COLNAME_NAME, "busy", SQLITE_STATIC);
88944 sqlite3VdbeSetColName(v, 1, COLNAME_NAME, "log", SQLITE_STATIC);
88945 sqlite3VdbeSetColName(v, 2, COLNAME_NAME, "checkpointed", SQLITE_STATIC);
88947 sqlite3VdbeAddOp3(v, OP_Checkpoint, iBt, eMode, 1);
88948 sqlite3VdbeAddOp2(v, OP_ResultRow, 1, 3);
88949 }else
88952 ** PRAGMA wal_autocheckpoint
88953 ** PRAGMA wal_autocheckpoint = N
88955 ** Configure a database connection to automatically checkpoint a database
88956 ** after accumulating N frames in the log. Or query for the current value
88957 ** of N.
88959 if( sqlite3StrICmp(zLeft, "wal_autocheckpoint")==0 ){
88960 if( zRight ){
88961 sqlite3_wal_autocheckpoint(db, sqlite3Atoi(zRight));
88963 returnSingleInt(pParse, "wal_autocheckpoint",
88964 db->xWalCallback==sqlite3WalDefaultHook ?
88965 SQLITE_PTR_TO_INT(db->pWalArg) : 0);
88966 }else
88967 #endif
88969 #if defined(SQLITE_DEBUG) || defined(SQLITE_TEST)
88971 ** Report the current state of file logs for all databases
88973 if( sqlite3StrICmp(zLeft, "lock_status")==0 ){
88974 static const char *const azLockName[] = {
88975 "unlocked", "shared", "reserved", "pending", "exclusive"
88977 int i;
88978 sqlite3VdbeSetNumCols(v, 2);
88979 pParse->nMem = 2;
88980 sqlite3VdbeSetColName(v, 0, COLNAME_NAME, "database", SQLITE_STATIC);
88981 sqlite3VdbeSetColName(v, 1, COLNAME_NAME, "status", SQLITE_STATIC);
88982 for(i=0; i<db->nDb; i++){
88983 Btree *pBt;
88984 Pager *pPager;
88985 const char *zState = "unknown";
88986 int j;
88987 if( db->aDb[i].zName==0 ) continue;
88988 sqlite3VdbeAddOp4(v, OP_String8, 0, 1, 0, db->aDb[i].zName, P4_STATIC);
88989 pBt = db->aDb[i].pBt;
88990 if( pBt==0 || (pPager = sqlite3BtreePager(pBt))==0 ){
88991 zState = "closed";
88992 }else if( sqlite3_file_control(db, i ? db->aDb[i].zName : 0,
88993 SQLITE_FCNTL_LOCKSTATE, &j)==SQLITE_OK ){
88994 zState = azLockName[j];
88996 sqlite3VdbeAddOp4(v, OP_String8, 0, 2, 0, zState, P4_STATIC);
88997 sqlite3VdbeAddOp2(v, OP_ResultRow, 1, 2);
89000 }else
89001 #endif
89003 #ifdef SQLITE_HAS_CODEC
89004 if( sqlite3StrICmp(zLeft, "key")==0 && zRight ){
89005 sqlite3_key(db, zRight, sqlite3Strlen30(zRight));
89006 }else
89007 if( sqlite3StrICmp(zLeft, "rekey")==0 && zRight ){
89008 sqlite3_rekey(db, zRight, sqlite3Strlen30(zRight));
89009 }else
89010 if( zRight && (sqlite3StrICmp(zLeft, "hexkey")==0 ||
89011 sqlite3StrICmp(zLeft, "hexrekey")==0) ){
89012 int i, h1, h2;
89013 char zKey[40];
89014 for(i=0; (h1 = zRight[i])!=0 && (h2 = zRight[i+1])!=0; i+=2){
89015 h1 += 9*(1&(h1>>6));
89016 h2 += 9*(1&(h2>>6));
89017 zKey[i/2] = (h2 & 0x0f) | ((h1 & 0xf)<<4);
89019 if( (zLeft[3] & 0xf)==0xb ){
89020 sqlite3_key(db, zKey, i/2);
89021 }else{
89022 sqlite3_rekey(db, zKey, i/2);
89024 }else
89025 #endif
89026 #if defined(SQLITE_HAS_CODEC) || defined(SQLITE_ENABLE_CEROD)
89027 if( sqlite3StrICmp(zLeft, "activate_extensions")==0 ){
89028 #ifdef SQLITE_HAS_CODEC
89029 if( sqlite3StrNICmp(zRight, "see-", 4)==0 ){
89030 sqlite3_activate_see(&zRight[4]);
89032 #endif
89033 #ifdef SQLITE_ENABLE_CEROD
89034 if( sqlite3StrNICmp(zRight, "cerod-", 6)==0 ){
89035 sqlite3_activate_cerod(&zRight[6]);
89037 #endif
89038 }else
89039 #endif
89042 {/* Empty ELSE clause */}
89045 ** Reset the safety level, in case the fullfsync flag or synchronous
89046 ** setting changed.
89048 #ifndef SQLITE_OMIT_PAGER_PRAGMAS
89049 if( db->autoCommit ){
89050 sqlite3BtreeSetSafetyLevel(pDb->pBt, pDb->safety_level,
89051 (db->flags&SQLITE_FullFSync)!=0,
89052 (db->flags&SQLITE_CkptFullFSync)!=0);
89054 #endif
89055 pragma_out:
89056 sqlite3DbFree(db, zLeft);
89057 sqlite3DbFree(db, zRight);
89060 #endif /* SQLITE_OMIT_PRAGMA */
89062 /************** End of pragma.c **********************************************/
89063 /************** Begin file prepare.c *****************************************/
89065 ** 2005 May 25
89067 ** The author disclaims copyright to this source code. In place of
89068 ** a legal notice, here is a blessing:
89070 ** May you do good and not evil.
89071 ** May you find forgiveness for yourself and forgive others.
89072 ** May you share freely, never taking more than you give.
89074 *************************************************************************
89075 ** This file contains the implementation of the sqlite3_prepare()
89076 ** interface, and routines that contribute to loading the database schema
89077 ** from disk.
89081 ** Fill the InitData structure with an error message that indicates
89082 ** that the database is corrupt.
89084 static void corruptSchema(
89085 InitData *pData, /* Initialization context */
89086 const char *zObj, /* Object being parsed at the point of error */
89087 const char *zExtra /* Error information */
89089 sqlite3 *db = pData->db;
89090 if( !db->mallocFailed && (db->flags & SQLITE_RecoveryMode)==0 ){
89091 if( zObj==0 ) zObj = "?";
89092 sqlite3SetString(pData->pzErrMsg, db,
89093 "malformed database schema (%s)", zObj);
89094 if( zExtra ){
89095 *pData->pzErrMsg = sqlite3MAppendf(db, *pData->pzErrMsg,
89096 "%s - %s", *pData->pzErrMsg, zExtra);
89099 pData->rc = db->mallocFailed ? SQLITE_NOMEM : SQLITE_CORRUPT_BKPT;
89103 ** This is the callback routine for the code that initializes the
89104 ** database. See sqlite3Init() below for additional information.
89105 ** This routine is also called from the OP_ParseSchema opcode of the VDBE.
89107 ** Each callback contains the following information:
89109 ** argv[0] = name of thing being created
89110 ** argv[1] = root page number for table or index. 0 for trigger or view.
89111 ** argv[2] = SQL text for the CREATE statement.
89114 SQLITE_PRIVATE int sqlite3InitCallback(void *pInit, int argc, char **argv, char **NotUsed){
89115 InitData *pData = (InitData*)pInit;
89116 sqlite3 *db = pData->db;
89117 int iDb = pData->iDb;
89119 assert( argc==3 );
89120 UNUSED_PARAMETER2(NotUsed, argc);
89121 assert( sqlite3_mutex_held(db->mutex) );
89122 DbClearProperty(db, iDb, DB_Empty);
89123 if( db->mallocFailed ){
89124 corruptSchema(pData, argv[0], 0);
89125 return 1;
89128 assert( iDb>=0 && iDb<db->nDb );
89129 if( argv==0 ) return 0; /* Might happen if EMPTY_RESULT_CALLBACKS are on */
89130 if( argv[1]==0 ){
89131 corruptSchema(pData, argv[0], 0);
89132 }else if( argv[2] && argv[2][0] ){
89133 /* Call the parser to process a CREATE TABLE, INDEX or VIEW.
89134 ** But because db->init.busy is set to 1, no VDBE code is generated
89135 ** or executed. All the parser does is build the internal data
89136 ** structures that describe the table, index, or view.
89138 int rc;
89139 sqlite3_stmt *pStmt;
89140 TESTONLY(int rcp); /* Return code from sqlite3_prepare() */
89142 assert( db->init.busy );
89143 db->init.iDb = iDb;
89144 db->init.newTnum = sqlite3Atoi(argv[1]);
89145 db->init.orphanTrigger = 0;
89146 TESTONLY(rcp = ) sqlite3_prepare(db, argv[2], -1, &pStmt, 0);
89147 rc = db->errCode;
89148 assert( (rc&0xFF)==(rcp&0xFF) );
89149 db->init.iDb = 0;
89150 if( SQLITE_OK!=rc ){
89151 if( db->init.orphanTrigger ){
89152 assert( iDb==1 );
89153 }else{
89154 pData->rc = rc;
89155 if( rc==SQLITE_NOMEM ){
89156 db->mallocFailed = 1;
89157 }else if( rc!=SQLITE_INTERRUPT && (rc&0xFF)!=SQLITE_LOCKED ){
89158 corruptSchema(pData, argv[0], sqlite3_errmsg(db));
89162 sqlite3_finalize(pStmt);
89163 }else if( argv[0]==0 ){
89164 corruptSchema(pData, 0, 0);
89165 }else{
89166 /* If the SQL column is blank it means this is an index that
89167 ** was created to be the PRIMARY KEY or to fulfill a UNIQUE
89168 ** constraint for a CREATE TABLE. The index should have already
89169 ** been created when we processed the CREATE TABLE. All we have
89170 ** to do here is record the root page number for that index.
89172 Index *pIndex;
89173 pIndex = sqlite3FindIndex(db, argv[0], db->aDb[iDb].zName);
89174 if( pIndex==0 ){
89175 /* This can occur if there exists an index on a TEMP table which
89176 ** has the same name as another index on a permanent index. Since
89177 ** the permanent table is hidden by the TEMP table, we can also
89178 ** safely ignore the index on the permanent table.
89180 /* Do Nothing */;
89181 }else if( sqlite3GetInt32(argv[1], &pIndex->tnum)==0 ){
89182 corruptSchema(pData, argv[0], "invalid rootpage");
89185 return 0;
89189 ** Attempt to read the database schema and initialize internal
89190 ** data structures for a single database file. The index of the
89191 ** database file is given by iDb. iDb==0 is used for the main
89192 ** database. iDb==1 should never be used. iDb>=2 is used for
89193 ** auxiliary databases. Return one of the SQLITE_ error codes to
89194 ** indicate success or failure.
89196 static int sqlite3InitOne(sqlite3 *db, int iDb, char **pzErrMsg){
89197 int rc;
89198 int i;
89199 int size;
89200 Table *pTab;
89201 Db *pDb;
89202 char const *azArg[4];
89203 int meta[5];
89204 InitData initData;
89205 char const *zMasterSchema;
89206 char const *zMasterName;
89207 int openedTransaction = 0;
89210 ** The master database table has a structure like this
89212 static const char master_schema[] =
89213 "CREATE TABLE sqlite_master(\n"
89214 " type text,\n"
89215 " name text,\n"
89216 " tbl_name text,\n"
89217 " rootpage integer,\n"
89218 " sql text\n"
89221 #ifndef SQLITE_OMIT_TEMPDB
89222 static const char temp_master_schema[] =
89223 "CREATE TEMP TABLE sqlite_temp_master(\n"
89224 " type text,\n"
89225 " name text,\n"
89226 " tbl_name text,\n"
89227 " rootpage integer,\n"
89228 " sql text\n"
89231 #else
89232 #define temp_master_schema 0
89233 #endif
89235 assert( iDb>=0 && iDb<db->nDb );
89236 assert( db->aDb[iDb].pSchema );
89237 assert( sqlite3_mutex_held(db->mutex) );
89238 assert( iDb==1 || sqlite3BtreeHoldsMutex(db->aDb[iDb].pBt) );
89240 /* zMasterSchema and zInitScript are set to point at the master schema
89241 ** and initialisation script appropriate for the database being
89242 ** initialised. zMasterName is the name of the master table.
89244 if( !OMIT_TEMPDB && iDb==1 ){
89245 zMasterSchema = temp_master_schema;
89246 }else{
89247 zMasterSchema = master_schema;
89249 zMasterName = SCHEMA_TABLE(iDb);
89251 /* Construct the schema tables. */
89252 azArg[0] = zMasterName;
89253 azArg[1] = "1";
89254 azArg[2] = zMasterSchema;
89255 azArg[3] = 0;
89256 initData.db = db;
89257 initData.iDb = iDb;
89258 initData.rc = SQLITE_OK;
89259 initData.pzErrMsg = pzErrMsg;
89260 sqlite3InitCallback(&initData, 3, (char **)azArg, 0);
89261 if( initData.rc ){
89262 rc = initData.rc;
89263 goto error_out;
89265 pTab = sqlite3FindTable(db, zMasterName, db->aDb[iDb].zName);
89266 if( ALWAYS(pTab) ){
89267 pTab->tabFlags |= TF_Readonly;
89270 /* Create a cursor to hold the database open
89272 pDb = &db->aDb[iDb];
89273 if( pDb->pBt==0 ){
89274 if( !OMIT_TEMPDB && ALWAYS(iDb==1) ){
89275 DbSetProperty(db, 1, DB_SchemaLoaded);
89277 return SQLITE_OK;
89280 /* If there is not already a read-only (or read-write) transaction opened
89281 ** on the b-tree database, open one now. If a transaction is opened, it
89282 ** will be closed before this function returns. */
89283 sqlite3BtreeEnter(pDb->pBt);
89284 if( !sqlite3BtreeIsInReadTrans(pDb->pBt) ){
89285 rc = sqlite3BtreeBeginTrans(pDb->pBt, 0);
89286 if( rc!=SQLITE_OK ){
89287 sqlite3SetString(pzErrMsg, db, "%s", sqlite3ErrStr(rc));
89288 goto initone_error_out;
89290 openedTransaction = 1;
89293 /* Get the database meta information.
89295 ** Meta values are as follows:
89296 ** meta[0] Schema cookie. Changes with each schema change.
89297 ** meta[1] File format of schema layer.
89298 ** meta[2] Size of the page cache.
89299 ** meta[3] Largest rootpage (auto/incr_vacuum mode)
89300 ** meta[4] Db text encoding. 1:UTF-8 2:UTF-16LE 3:UTF-16BE
89301 ** meta[5] User version
89302 ** meta[6] Incremental vacuum mode
89303 ** meta[7] unused
89304 ** meta[8] unused
89305 ** meta[9] unused
89307 ** Note: The #defined SQLITE_UTF* symbols in sqliteInt.h correspond to
89308 ** the possible values of meta[4].
89310 for(i=0; i<ArraySize(meta); i++){
89311 sqlite3BtreeGetMeta(pDb->pBt, i+1, (u32 *)&meta[i]);
89313 pDb->pSchema->schema_cookie = meta[BTREE_SCHEMA_VERSION-1];
89315 /* If opening a non-empty database, check the text encoding. For the
89316 ** main database, set sqlite3.enc to the encoding of the main database.
89317 ** For an attached db, it is an error if the encoding is not the same
89318 ** as sqlite3.enc.
89320 if( meta[BTREE_TEXT_ENCODING-1] ){ /* text encoding */
89321 if( iDb==0 ){
89322 u8 encoding;
89323 /* If opening the main database, set ENC(db). */
89324 encoding = (u8)meta[BTREE_TEXT_ENCODING-1] & 3;
89325 if( encoding==0 ) encoding = SQLITE_UTF8;
89326 ENC(db) = encoding;
89327 db->pDfltColl = sqlite3FindCollSeq(db, SQLITE_UTF8, "BINARY", 0);
89328 }else{
89329 /* If opening an attached database, the encoding much match ENC(db) */
89330 if( meta[BTREE_TEXT_ENCODING-1]!=ENC(db) ){
89331 sqlite3SetString(pzErrMsg, db, "attached databases must use the same"
89332 " text encoding as main database");
89333 rc = SQLITE_ERROR;
89334 goto initone_error_out;
89337 }else{
89338 DbSetProperty(db, iDb, DB_Empty);
89340 pDb->pSchema->enc = ENC(db);
89342 if( pDb->pSchema->cache_size==0 ){
89343 size = sqlite3AbsInt32(meta[BTREE_DEFAULT_CACHE_SIZE-1]);
89344 if( size==0 ){ size = SQLITE_DEFAULT_CACHE_SIZE; }
89345 pDb->pSchema->cache_size = size;
89346 sqlite3BtreeSetCacheSize(pDb->pBt, pDb->pSchema->cache_size);
89350 ** file_format==1 Version 3.0.0.
89351 ** file_format==2 Version 3.1.3. // ALTER TABLE ADD COLUMN
89352 ** file_format==3 Version 3.1.4. // ditto but with non-NULL defaults
89353 ** file_format==4 Version 3.3.0. // DESC indices. Boolean constants
89355 pDb->pSchema->file_format = (u8)meta[BTREE_FILE_FORMAT-1];
89356 if( pDb->pSchema->file_format==0 ){
89357 pDb->pSchema->file_format = 1;
89359 if( pDb->pSchema->file_format>SQLITE_MAX_FILE_FORMAT ){
89360 sqlite3SetString(pzErrMsg, db, "unsupported file format");
89361 rc = SQLITE_ERROR;
89362 goto initone_error_out;
89365 /* Ticket #2804: When we open a database in the newer file format,
89366 ** clear the legacy_file_format pragma flag so that a VACUUM will
89367 ** not downgrade the database and thus invalidate any descending
89368 ** indices that the user might have created.
89370 if( iDb==0 && meta[BTREE_FILE_FORMAT-1]>=4 ){
89371 db->flags &= ~SQLITE_LegacyFileFmt;
89374 /* Read the schema information out of the schema tables
89376 assert( db->init.busy );
89378 char *zSql;
89379 zSql = sqlite3MPrintf(db,
89380 "SELECT name, rootpage, sql FROM '%q'.%s ORDER BY rowid",
89381 db->aDb[iDb].zName, zMasterName);
89382 #ifndef SQLITE_OMIT_AUTHORIZATION
89384 int (*xAuth)(void*,int,const char*,const char*,const char*,const char*);
89385 xAuth = db->xAuth;
89386 db->xAuth = 0;
89387 #endif
89388 rc = sqlite3_exec(db, zSql, sqlite3InitCallback, &initData, 0);
89389 #ifndef SQLITE_OMIT_AUTHORIZATION
89390 db->xAuth = xAuth;
89392 #endif
89393 if( rc==SQLITE_OK ) rc = initData.rc;
89394 sqlite3DbFree(db, zSql);
89395 #ifndef SQLITE_OMIT_ANALYZE
89396 if( rc==SQLITE_OK ){
89397 sqlite3AnalysisLoad(db, iDb);
89399 #endif
89401 if( db->mallocFailed ){
89402 rc = SQLITE_NOMEM;
89403 sqlite3ResetInternalSchema(db, -1);
89405 if( rc==SQLITE_OK || (db->flags&SQLITE_RecoveryMode)){
89406 /* Black magic: If the SQLITE_RecoveryMode flag is set, then consider
89407 ** the schema loaded, even if errors occurred. In this situation the
89408 ** current sqlite3_prepare() operation will fail, but the following one
89409 ** will attempt to compile the supplied statement against whatever subset
89410 ** of the schema was loaded before the error occurred. The primary
89411 ** purpose of this is to allow access to the sqlite_master table
89412 ** even when its contents have been corrupted.
89414 DbSetProperty(db, iDb, DB_SchemaLoaded);
89415 rc = SQLITE_OK;
89418 /* Jump here for an error that occurs after successfully allocating
89419 ** curMain and calling sqlite3BtreeEnter(). For an error that occurs
89420 ** before that point, jump to error_out.
89422 initone_error_out:
89423 if( openedTransaction ){
89424 sqlite3BtreeCommit(pDb->pBt);
89426 sqlite3BtreeLeave(pDb->pBt);
89428 error_out:
89429 if( rc==SQLITE_NOMEM || rc==SQLITE_IOERR_NOMEM ){
89430 db->mallocFailed = 1;
89432 return rc;
89436 ** Initialize all database files - the main database file, the file
89437 ** used to store temporary tables, and any additional database files
89438 ** created using ATTACH statements. Return a success code. If an
89439 ** error occurs, write an error message into *pzErrMsg.
89441 ** After a database is initialized, the DB_SchemaLoaded bit is set
89442 ** bit is set in the flags field of the Db structure. If the database
89443 ** file was of zero-length, then the DB_Empty flag is also set.
89445 SQLITE_PRIVATE int sqlite3Init(sqlite3 *db, char **pzErrMsg){
89446 int i, rc;
89447 int commit_internal = !(db->flags&SQLITE_InternChanges);
89449 assert( sqlite3_mutex_held(db->mutex) );
89450 rc = SQLITE_OK;
89451 db->init.busy = 1;
89452 for(i=0; rc==SQLITE_OK && i<db->nDb; i++){
89453 if( DbHasProperty(db, i, DB_SchemaLoaded) || i==1 ) continue;
89454 rc = sqlite3InitOne(db, i, pzErrMsg);
89455 if( rc ){
89456 sqlite3ResetInternalSchema(db, i);
89460 /* Once all the other databases have been initialised, load the schema
89461 ** for the TEMP database. This is loaded last, as the TEMP database
89462 ** schema may contain references to objects in other databases.
89464 #ifndef SQLITE_OMIT_TEMPDB
89465 if( rc==SQLITE_OK && ALWAYS(db->nDb>1)
89466 && !DbHasProperty(db, 1, DB_SchemaLoaded) ){
89467 rc = sqlite3InitOne(db, 1, pzErrMsg);
89468 if( rc ){
89469 sqlite3ResetInternalSchema(db, 1);
89472 #endif
89474 db->init.busy = 0;
89475 if( rc==SQLITE_OK && commit_internal ){
89476 sqlite3CommitInternalChanges(db);
89479 return rc;
89483 ** This routine is a no-op if the database schema is already initialised.
89484 ** Otherwise, the schema is loaded. An error code is returned.
89486 SQLITE_PRIVATE int sqlite3ReadSchema(Parse *pParse){
89487 int rc = SQLITE_OK;
89488 sqlite3 *db = pParse->db;
89489 assert( sqlite3_mutex_held(db->mutex) );
89490 if( !db->init.busy ){
89491 rc = sqlite3Init(db, &pParse->zErrMsg);
89493 if( rc!=SQLITE_OK ){
89494 pParse->rc = rc;
89495 pParse->nErr++;
89497 return rc;
89502 ** Check schema cookies in all databases. If any cookie is out
89503 ** of date set pParse->rc to SQLITE_SCHEMA. If all schema cookies
89504 ** make no changes to pParse->rc.
89506 static void schemaIsValid(Parse *pParse){
89507 sqlite3 *db = pParse->db;
89508 int iDb;
89509 int rc;
89510 int cookie;
89512 assert( pParse->checkSchema );
89513 assert( sqlite3_mutex_held(db->mutex) );
89514 for(iDb=0; iDb<db->nDb; iDb++){
89515 int openedTransaction = 0; /* True if a transaction is opened */
89516 Btree *pBt = db->aDb[iDb].pBt; /* Btree database to read cookie from */
89517 if( pBt==0 ) continue;
89519 /* If there is not already a read-only (or read-write) transaction opened
89520 ** on the b-tree database, open one now. If a transaction is opened, it
89521 ** will be closed immediately after reading the meta-value. */
89522 if( !sqlite3BtreeIsInReadTrans(pBt) ){
89523 rc = sqlite3BtreeBeginTrans(pBt, 0);
89524 if( rc==SQLITE_NOMEM || rc==SQLITE_IOERR_NOMEM ){
89525 db->mallocFailed = 1;
89527 if( rc!=SQLITE_OK ) return;
89528 openedTransaction = 1;
89531 /* Read the schema cookie from the database. If it does not match the
89532 ** value stored as part of the in-memory schema representation,
89533 ** set Parse.rc to SQLITE_SCHEMA. */
89534 sqlite3BtreeGetMeta(pBt, BTREE_SCHEMA_VERSION, (u32 *)&cookie);
89535 assert( sqlite3SchemaMutexHeld(db, iDb, 0) );
89536 if( cookie!=db->aDb[iDb].pSchema->schema_cookie ){
89537 sqlite3ResetInternalSchema(db, iDb);
89538 pParse->rc = SQLITE_SCHEMA;
89541 /* Close the transaction, if one was opened. */
89542 if( openedTransaction ){
89543 sqlite3BtreeCommit(pBt);
89549 ** Convert a schema pointer into the iDb index that indicates
89550 ** which database file in db->aDb[] the schema refers to.
89552 ** If the same database is attached more than once, the first
89553 ** attached database is returned.
89555 SQLITE_PRIVATE int sqlite3SchemaToIndex(sqlite3 *db, Schema *pSchema){
89556 int i = -1000000;
89558 /* If pSchema is NULL, then return -1000000. This happens when code in
89559 ** expr.c is trying to resolve a reference to a transient table (i.e. one
89560 ** created by a sub-select). In this case the return value of this
89561 ** function should never be used.
89563 ** We return -1000000 instead of the more usual -1 simply because using
89564 ** -1000000 as the incorrect index into db->aDb[] is much
89565 ** more likely to cause a segfault than -1 (of course there are assert()
89566 ** statements too, but it never hurts to play the odds).
89568 assert( sqlite3_mutex_held(db->mutex) );
89569 if( pSchema ){
89570 for(i=0; ALWAYS(i<db->nDb); i++){
89571 if( db->aDb[i].pSchema==pSchema ){
89572 break;
89575 assert( i>=0 && i<db->nDb );
89577 return i;
89581 ** Compile the UTF-8 encoded SQL statement zSql into a statement handle.
89583 static int sqlite3Prepare(
89584 sqlite3 *db, /* Database handle. */
89585 const char *zSql, /* UTF-8 encoded SQL statement. */
89586 int nBytes, /* Length of zSql in bytes. */
89587 int saveSqlFlag, /* True to copy SQL text into the sqlite3_stmt */
89588 Vdbe *pReprepare, /* VM being reprepared */
89589 sqlite3_stmt **ppStmt, /* OUT: A pointer to the prepared statement */
89590 const char **pzTail /* OUT: End of parsed string */
89592 Parse *pParse; /* Parsing context */
89593 char *zErrMsg = 0; /* Error message */
89594 int rc = SQLITE_OK; /* Result code */
89595 int i; /* Loop counter */
89597 /* Allocate the parsing context */
89598 pParse = sqlite3StackAllocZero(db, sizeof(*pParse));
89599 if( pParse==0 ){
89600 rc = SQLITE_NOMEM;
89601 goto end_prepare;
89603 pParse->pReprepare = pReprepare;
89604 assert( ppStmt && *ppStmt==0 );
89605 assert( !db->mallocFailed );
89606 assert( sqlite3_mutex_held(db->mutex) );
89608 /* Check to verify that it is possible to get a read lock on all
89609 ** database schemas. The inability to get a read lock indicates that
89610 ** some other database connection is holding a write-lock, which in
89611 ** turn means that the other connection has made uncommitted changes
89612 ** to the schema.
89614 ** Were we to proceed and prepare the statement against the uncommitted
89615 ** schema changes and if those schema changes are subsequently rolled
89616 ** back and different changes are made in their place, then when this
89617 ** prepared statement goes to run the schema cookie would fail to detect
89618 ** the schema change. Disaster would follow.
89620 ** This thread is currently holding mutexes on all Btrees (because
89621 ** of the sqlite3BtreeEnterAll() in sqlite3LockAndPrepare()) so it
89622 ** is not possible for another thread to start a new schema change
89623 ** while this routine is running. Hence, we do not need to hold
89624 ** locks on the schema, we just need to make sure nobody else is
89625 ** holding them.
89627 ** Note that setting READ_UNCOMMITTED overrides most lock detection,
89628 ** but it does *not* override schema lock detection, so this all still
89629 ** works even if READ_UNCOMMITTED is set.
89631 for(i=0; i<db->nDb; i++) {
89632 Btree *pBt = db->aDb[i].pBt;
89633 if( pBt ){
89634 assert( sqlite3BtreeHoldsMutex(pBt) );
89635 rc = sqlite3BtreeSchemaLocked(pBt);
89636 if( rc ){
89637 const char *zDb = db->aDb[i].zName;
89638 sqlite3Error(db, rc, "database schema is locked: %s", zDb);
89639 testcase( db->flags & SQLITE_ReadUncommitted );
89640 goto end_prepare;
89645 sqlite3VtabUnlockList(db);
89647 pParse->db = db;
89648 pParse->nQueryLoop = (double)1;
89649 if( nBytes>=0 && (nBytes==0 || zSql[nBytes-1]!=0) ){
89650 char *zSqlCopy;
89651 int mxLen = db->aLimit[SQLITE_LIMIT_SQL_LENGTH];
89652 testcase( nBytes==mxLen );
89653 testcase( nBytes==mxLen+1 );
89654 if( nBytes>mxLen ){
89655 sqlite3Error(db, SQLITE_TOOBIG, "statement too long");
89656 rc = sqlite3ApiExit(db, SQLITE_TOOBIG);
89657 goto end_prepare;
89659 zSqlCopy = sqlite3DbStrNDup(db, zSql, nBytes);
89660 if( zSqlCopy ){
89661 sqlite3RunParser(pParse, zSqlCopy, &zErrMsg);
89662 sqlite3DbFree(db, zSqlCopy);
89663 pParse->zTail = &zSql[pParse->zTail-zSqlCopy];
89664 }else{
89665 pParse->zTail = &zSql[nBytes];
89667 }else{
89668 sqlite3RunParser(pParse, zSql, &zErrMsg);
89670 assert( 1==(int)pParse->nQueryLoop );
89672 if( db->mallocFailed ){
89673 pParse->rc = SQLITE_NOMEM;
89675 if( pParse->rc==SQLITE_DONE ) pParse->rc = SQLITE_OK;
89676 if( pParse->checkSchema ){
89677 schemaIsValid(pParse);
89679 if( db->mallocFailed ){
89680 pParse->rc = SQLITE_NOMEM;
89682 if( pzTail ){
89683 *pzTail = pParse->zTail;
89685 rc = pParse->rc;
89687 #ifndef SQLITE_OMIT_EXPLAIN
89688 if( rc==SQLITE_OK && pParse->pVdbe && pParse->explain ){
89689 static const char * const azColName[] = {
89690 "addr", "opcode", "p1", "p2", "p3", "p4", "p5", "comment",
89691 "selectid", "order", "from", "detail"
89693 int iFirst, mx;
89694 if( pParse->explain==2 ){
89695 sqlite3VdbeSetNumCols(pParse->pVdbe, 4);
89696 iFirst = 8;
89697 mx = 12;
89698 }else{
89699 sqlite3VdbeSetNumCols(pParse->pVdbe, 8);
89700 iFirst = 0;
89701 mx = 8;
89703 for(i=iFirst; i<mx; i++){
89704 sqlite3VdbeSetColName(pParse->pVdbe, i-iFirst, COLNAME_NAME,
89705 azColName[i], SQLITE_STATIC);
89708 #endif
89710 assert( db->init.busy==0 || saveSqlFlag==0 );
89711 if( db->init.busy==0 ){
89712 Vdbe *pVdbe = pParse->pVdbe;
89713 sqlite3VdbeSetSql(pVdbe, zSql, (int)(pParse->zTail-zSql), saveSqlFlag);
89715 if( pParse->pVdbe && (rc!=SQLITE_OK || db->mallocFailed) ){
89716 sqlite3VdbeFinalize(pParse->pVdbe);
89717 assert(!(*ppStmt));
89718 }else{
89719 *ppStmt = (sqlite3_stmt*)pParse->pVdbe;
89722 if( zErrMsg ){
89723 sqlite3Error(db, rc, "%s", zErrMsg);
89724 sqlite3DbFree(db, zErrMsg);
89725 }else{
89726 sqlite3Error(db, rc, 0);
89729 /* Delete any TriggerPrg structures allocated while parsing this statement. */
89730 while( pParse->pTriggerPrg ){
89731 TriggerPrg *pT = pParse->pTriggerPrg;
89732 pParse->pTriggerPrg = pT->pNext;
89733 sqlite3DbFree(db, pT);
89736 end_prepare:
89738 sqlite3StackFree(db, pParse);
89739 rc = sqlite3ApiExit(db, rc);
89740 assert( (rc&db->errMask)==rc );
89741 return rc;
89743 static int sqlite3LockAndPrepare(
89744 sqlite3 *db, /* Database handle. */
89745 const char *zSql, /* UTF-8 encoded SQL statement. */
89746 int nBytes, /* Length of zSql in bytes. */
89747 int saveSqlFlag, /* True to copy SQL text into the sqlite3_stmt */
89748 Vdbe *pOld, /* VM being reprepared */
89749 sqlite3_stmt **ppStmt, /* OUT: A pointer to the prepared statement */
89750 const char **pzTail /* OUT: End of parsed string */
89752 int rc;
89753 assert( ppStmt!=0 );
89754 *ppStmt = 0;
89755 if( !sqlite3SafetyCheckOk(db) ){
89756 return SQLITE_MISUSE_BKPT;
89758 sqlite3_mutex_enter(db->mutex);
89759 sqlite3BtreeEnterAll(db);
89760 rc = sqlite3Prepare(db, zSql, nBytes, saveSqlFlag, pOld, ppStmt, pzTail);
89761 if( rc==SQLITE_SCHEMA ){
89762 sqlite3_finalize(*ppStmt);
89763 rc = sqlite3Prepare(db, zSql, nBytes, saveSqlFlag, pOld, ppStmt, pzTail);
89765 sqlite3BtreeLeaveAll(db);
89766 sqlite3_mutex_leave(db->mutex);
89767 return rc;
89771 ** Rerun the compilation of a statement after a schema change.
89773 ** If the statement is successfully recompiled, return SQLITE_OK. Otherwise,
89774 ** if the statement cannot be recompiled because another connection has
89775 ** locked the sqlite3_master table, return SQLITE_LOCKED. If any other error
89776 ** occurs, return SQLITE_SCHEMA.
89778 SQLITE_PRIVATE int sqlite3Reprepare(Vdbe *p){
89779 int rc;
89780 sqlite3_stmt *pNew;
89781 const char *zSql;
89782 sqlite3 *db;
89784 assert( sqlite3_mutex_held(sqlite3VdbeDb(p)->mutex) );
89785 zSql = sqlite3_sql((sqlite3_stmt *)p);
89786 assert( zSql!=0 ); /* Reprepare only called for prepare_v2() statements */
89787 db = sqlite3VdbeDb(p);
89788 assert( sqlite3_mutex_held(db->mutex) );
89789 rc = sqlite3LockAndPrepare(db, zSql, -1, 0, p, &pNew, 0);
89790 if( rc ){
89791 if( rc==SQLITE_NOMEM ){
89792 db->mallocFailed = 1;
89794 assert( pNew==0 );
89795 return rc;
89796 }else{
89797 assert( pNew!=0 );
89799 sqlite3VdbeSwap((Vdbe*)pNew, p);
89800 sqlite3TransferBindings(pNew, (sqlite3_stmt*)p);
89801 sqlite3VdbeResetStepResult((Vdbe*)pNew);
89802 sqlite3VdbeFinalize((Vdbe*)pNew);
89803 return SQLITE_OK;
89808 ** Two versions of the official API. Legacy and new use. In the legacy
89809 ** version, the original SQL text is not saved in the prepared statement
89810 ** and so if a schema change occurs, SQLITE_SCHEMA is returned by
89811 ** sqlite3_step(). In the new version, the original SQL text is retained
89812 ** and the statement is automatically recompiled if an schema change
89813 ** occurs.
89815 SQLITE_API int sqlite3_prepare(
89816 sqlite3 *db, /* Database handle. */
89817 const char *zSql, /* UTF-8 encoded SQL statement. */
89818 int nBytes, /* Length of zSql in bytes. */
89819 sqlite3_stmt **ppStmt, /* OUT: A pointer to the prepared statement */
89820 const char **pzTail /* OUT: End of parsed string */
89822 int rc;
89823 rc = sqlite3LockAndPrepare(db,zSql,nBytes,0,0,ppStmt,pzTail);
89824 assert( rc==SQLITE_OK || ppStmt==0 || *ppStmt==0 ); /* VERIFY: F13021 */
89825 return rc;
89827 SQLITE_API int sqlite3_prepare_v2(
89828 sqlite3 *db, /* Database handle. */
89829 const char *zSql, /* UTF-8 encoded SQL statement. */
89830 int nBytes, /* Length of zSql in bytes. */
89831 sqlite3_stmt **ppStmt, /* OUT: A pointer to the prepared statement */
89832 const char **pzTail /* OUT: End of parsed string */
89834 int rc;
89835 rc = sqlite3LockAndPrepare(db,zSql,nBytes,1,0,ppStmt,pzTail);
89836 assert( rc==SQLITE_OK || ppStmt==0 || *ppStmt==0 ); /* VERIFY: F13021 */
89837 return rc;
89841 #ifndef SQLITE_OMIT_UTF16
89843 ** Compile the UTF-16 encoded SQL statement zSql into a statement handle.
89845 static int sqlite3Prepare16(
89846 sqlite3 *db, /* Database handle. */
89847 const void *zSql, /* UTF-16 encoded SQL statement. */
89848 int nBytes, /* Length of zSql in bytes. */
89849 int saveSqlFlag, /* True to save SQL text into the sqlite3_stmt */
89850 sqlite3_stmt **ppStmt, /* OUT: A pointer to the prepared statement */
89851 const void **pzTail /* OUT: End of parsed string */
89853 /* This function currently works by first transforming the UTF-16
89854 ** encoded string to UTF-8, then invoking sqlite3_prepare(). The
89855 ** tricky bit is figuring out the pointer to return in *pzTail.
89857 char *zSql8;
89858 const char *zTail8 = 0;
89859 int rc = SQLITE_OK;
89861 assert( ppStmt );
89862 *ppStmt = 0;
89863 if( !sqlite3SafetyCheckOk(db) ){
89864 return SQLITE_MISUSE_BKPT;
89866 sqlite3_mutex_enter(db->mutex);
89867 zSql8 = sqlite3Utf16to8(db, zSql, nBytes, SQLITE_UTF16NATIVE);
89868 if( zSql8 ){
89869 rc = sqlite3LockAndPrepare(db, zSql8, -1, saveSqlFlag, 0, ppStmt, &zTail8);
89872 if( zTail8 && pzTail ){
89873 /* If sqlite3_prepare returns a tail pointer, we calculate the
89874 ** equivalent pointer into the UTF-16 string by counting the unicode
89875 ** characters between zSql8 and zTail8, and then returning a pointer
89876 ** the same number of characters into the UTF-16 string.
89878 int chars_parsed = sqlite3Utf8CharLen(zSql8, (int)(zTail8-zSql8));
89879 *pzTail = (u8 *)zSql + sqlite3Utf16ByteLen(zSql, chars_parsed);
89881 sqlite3DbFree(db, zSql8);
89882 rc = sqlite3ApiExit(db, rc);
89883 sqlite3_mutex_leave(db->mutex);
89884 return rc;
89888 ** Two versions of the official API. Legacy and new use. In the legacy
89889 ** version, the original SQL text is not saved in the prepared statement
89890 ** and so if a schema change occurs, SQLITE_SCHEMA is returned by
89891 ** sqlite3_step(). In the new version, the original SQL text is retained
89892 ** and the statement is automatically recompiled if an schema change
89893 ** occurs.
89895 SQLITE_API int sqlite3_prepare16(
89896 sqlite3 *db, /* Database handle. */
89897 const void *zSql, /* UTF-16 encoded SQL statement. */
89898 int nBytes, /* Length of zSql in bytes. */
89899 sqlite3_stmt **ppStmt, /* OUT: A pointer to the prepared statement */
89900 const void **pzTail /* OUT: End of parsed string */
89902 int rc;
89903 rc = sqlite3Prepare16(db,zSql,nBytes,0,ppStmt,pzTail);
89904 assert( rc==SQLITE_OK || ppStmt==0 || *ppStmt==0 ); /* VERIFY: F13021 */
89905 return rc;
89907 SQLITE_API int sqlite3_prepare16_v2(
89908 sqlite3 *db, /* Database handle. */
89909 const void *zSql, /* UTF-16 encoded SQL statement. */
89910 int nBytes, /* Length of zSql in bytes. */
89911 sqlite3_stmt **ppStmt, /* OUT: A pointer to the prepared statement */
89912 const void **pzTail /* OUT: End of parsed string */
89914 int rc;
89915 rc = sqlite3Prepare16(db,zSql,nBytes,1,ppStmt,pzTail);
89916 assert( rc==SQLITE_OK || ppStmt==0 || *ppStmt==0 ); /* VERIFY: F13021 */
89917 return rc;
89920 #endif /* SQLITE_OMIT_UTF16 */
89922 /************** End of prepare.c *********************************************/
89923 /************** Begin file select.c ******************************************/
89925 ** 2001 September 15
89927 ** The author disclaims copyright to this source code. In place of
89928 ** a legal notice, here is a blessing:
89930 ** May you do good and not evil.
89931 ** May you find forgiveness for yourself and forgive others.
89932 ** May you share freely, never taking more than you give.
89934 *************************************************************************
89935 ** This file contains C code routines that are called by the parser
89936 ** to handle SELECT statements in SQLite.
89941 ** Delete all the content of a Select structure but do not deallocate
89942 ** the select structure itself.
89944 static void clearSelect(sqlite3 *db, Select *p){
89945 sqlite3ExprListDelete(db, p->pEList);
89946 sqlite3SrcListDelete(db, p->pSrc);
89947 sqlite3ExprDelete(db, p->pWhere);
89948 sqlite3ExprListDelete(db, p->pGroupBy);
89949 sqlite3ExprDelete(db, p->pHaving);
89950 sqlite3ExprListDelete(db, p->pOrderBy);
89951 sqlite3SelectDelete(db, p->pPrior);
89952 sqlite3ExprDelete(db, p->pLimit);
89953 sqlite3ExprDelete(db, p->pOffset);
89957 ** Initialize a SelectDest structure.
89959 SQLITE_PRIVATE void sqlite3SelectDestInit(SelectDest *pDest, int eDest, int iParm){
89960 pDest->eDest = (u8)eDest;
89961 pDest->iParm = iParm;
89962 pDest->affinity = 0;
89963 pDest->iMem = 0;
89964 pDest->nMem = 0;
89969 ** Allocate a new Select structure and return a pointer to that
89970 ** structure.
89972 SQLITE_PRIVATE Select *sqlite3SelectNew(
89973 Parse *pParse, /* Parsing context */
89974 ExprList *pEList, /* which columns to include in the result */
89975 SrcList *pSrc, /* the FROM clause -- which tables to scan */
89976 Expr *pWhere, /* the WHERE clause */
89977 ExprList *pGroupBy, /* the GROUP BY clause */
89978 Expr *pHaving, /* the HAVING clause */
89979 ExprList *pOrderBy, /* the ORDER BY clause */
89980 int isDistinct, /* true if the DISTINCT keyword is present */
89981 Expr *pLimit, /* LIMIT value. NULL means not used */
89982 Expr *pOffset /* OFFSET value. NULL means no offset */
89984 Select *pNew;
89985 Select standin;
89986 sqlite3 *db = pParse->db;
89987 pNew = sqlite3DbMallocZero(db, sizeof(*pNew) );
89988 assert( db->mallocFailed || !pOffset || pLimit ); /* OFFSET implies LIMIT */
89989 if( pNew==0 ){
89990 pNew = &standin;
89991 memset(pNew, 0, sizeof(*pNew));
89993 if( pEList==0 ){
89994 pEList = sqlite3ExprListAppend(pParse, 0, sqlite3Expr(db,TK_ALL,0));
89996 pNew->pEList = pEList;
89997 pNew->pSrc = pSrc;
89998 pNew->pWhere = pWhere;
89999 pNew->pGroupBy = pGroupBy;
90000 pNew->pHaving = pHaving;
90001 pNew->pOrderBy = pOrderBy;
90002 pNew->selFlags = isDistinct ? SF_Distinct : 0;
90003 pNew->op = TK_SELECT;
90004 pNew->pLimit = pLimit;
90005 pNew->pOffset = pOffset;
90006 assert( pOffset==0 || pLimit!=0 );
90007 pNew->addrOpenEphm[0] = -1;
90008 pNew->addrOpenEphm[1] = -1;
90009 pNew->addrOpenEphm[2] = -1;
90010 if( db->mallocFailed ) {
90011 clearSelect(db, pNew);
90012 if( pNew!=&standin ) sqlite3DbFree(db, pNew);
90013 pNew = 0;
90015 return pNew;
90019 ** Delete the given Select structure and all of its substructures.
90021 SQLITE_PRIVATE void sqlite3SelectDelete(sqlite3 *db, Select *p){
90022 if( p ){
90023 clearSelect(db, p);
90024 sqlite3DbFree(db, p);
90029 ** Given 1 to 3 identifiers preceeding the JOIN keyword, determine the
90030 ** type of join. Return an integer constant that expresses that type
90031 ** in terms of the following bit values:
90033 ** JT_INNER
90034 ** JT_CROSS
90035 ** JT_OUTER
90036 ** JT_NATURAL
90037 ** JT_LEFT
90038 ** JT_RIGHT
90040 ** A full outer join is the combination of JT_LEFT and JT_RIGHT.
90042 ** If an illegal or unsupported join type is seen, then still return
90043 ** a join type, but put an error in the pParse structure.
90045 SQLITE_PRIVATE int sqlite3JoinType(Parse *pParse, Token *pA, Token *pB, Token *pC){
90046 int jointype = 0;
90047 Token *apAll[3];
90048 Token *p;
90049 /* 0123456789 123456789 123456789 123 */
90050 static const char zKeyText[] = "naturaleftouterightfullinnercross";
90051 static const struct {
90052 u8 i; /* Beginning of keyword text in zKeyText[] */
90053 u8 nChar; /* Length of the keyword in characters */
90054 u8 code; /* Join type mask */
90055 } aKeyword[] = {
90056 /* natural */ { 0, 7, JT_NATURAL },
90057 /* left */ { 6, 4, JT_LEFT|JT_OUTER },
90058 /* outer */ { 10, 5, JT_OUTER },
90059 /* right */ { 14, 5, JT_RIGHT|JT_OUTER },
90060 /* full */ { 19, 4, JT_LEFT|JT_RIGHT|JT_OUTER },
90061 /* inner */ { 23, 5, JT_INNER },
90062 /* cross */ { 28, 5, JT_INNER|JT_CROSS },
90064 int i, j;
90065 apAll[0] = pA;
90066 apAll[1] = pB;
90067 apAll[2] = pC;
90068 for(i=0; i<3 && apAll[i]; i++){
90069 p = apAll[i];
90070 for(j=0; j<ArraySize(aKeyword); j++){
90071 if( p->n==aKeyword[j].nChar
90072 && sqlite3StrNICmp((char*)p->z, &zKeyText[aKeyword[j].i], p->n)==0 ){
90073 jointype |= aKeyword[j].code;
90074 break;
90077 testcase( j==0 || j==1 || j==2 || j==3 || j==4 || j==5 || j==6 );
90078 if( j>=ArraySize(aKeyword) ){
90079 jointype |= JT_ERROR;
90080 break;
90084 (jointype & (JT_INNER|JT_OUTER))==(JT_INNER|JT_OUTER) ||
90085 (jointype & JT_ERROR)!=0
90087 const char *zSp = " ";
90088 assert( pB!=0 );
90089 if( pC==0 ){ zSp++; }
90090 sqlite3ErrorMsg(pParse, "unknown or unsupported join type: "
90091 "%T %T%s%T", pA, pB, zSp, pC);
90092 jointype = JT_INNER;
90093 }else if( (jointype & JT_OUTER)!=0
90094 && (jointype & (JT_LEFT|JT_RIGHT))!=JT_LEFT ){
90095 sqlite3ErrorMsg(pParse,
90096 "RIGHT and FULL OUTER JOINs are not currently supported");
90097 jointype = JT_INNER;
90099 return jointype;
90103 ** Return the index of a column in a table. Return -1 if the column
90104 ** is not contained in the table.
90106 static int columnIndex(Table *pTab, const char *zCol){
90107 int i;
90108 for(i=0; i<pTab->nCol; i++){
90109 if( sqlite3StrICmp(pTab->aCol[i].zName, zCol)==0 ) return i;
90111 return -1;
90115 ** Search the first N tables in pSrc, from left to right, looking for a
90116 ** table that has a column named zCol.
90118 ** When found, set *piTab and *piCol to the table index and column index
90119 ** of the matching column and return TRUE.
90121 ** If not found, return FALSE.
90123 static int tableAndColumnIndex(
90124 SrcList *pSrc, /* Array of tables to search */
90125 int N, /* Number of tables in pSrc->a[] to search */
90126 const char *zCol, /* Name of the column we are looking for */
90127 int *piTab, /* Write index of pSrc->a[] here */
90128 int *piCol /* Write index of pSrc->a[*piTab].pTab->aCol[] here */
90130 int i; /* For looping over tables in pSrc */
90131 int iCol; /* Index of column matching zCol */
90133 assert( (piTab==0)==(piCol==0) ); /* Both or neither are NULL */
90134 for(i=0; i<N; i++){
90135 iCol = columnIndex(pSrc->a[i].pTab, zCol);
90136 if( iCol>=0 ){
90137 if( piTab ){
90138 *piTab = i;
90139 *piCol = iCol;
90141 return 1;
90144 return 0;
90148 ** This function is used to add terms implied by JOIN syntax to the
90149 ** WHERE clause expression of a SELECT statement. The new term, which
90150 ** is ANDed with the existing WHERE clause, is of the form:
90152 ** (tab1.col1 = tab2.col2)
90154 ** where tab1 is the iSrc'th table in SrcList pSrc and tab2 is the
90155 ** (iSrc+1)'th. Column col1 is column iColLeft of tab1, and col2 is
90156 ** column iColRight of tab2.
90158 static void addWhereTerm(
90159 Parse *pParse, /* Parsing context */
90160 SrcList *pSrc, /* List of tables in FROM clause */
90161 int iLeft, /* Index of first table to join in pSrc */
90162 int iColLeft, /* Index of column in first table */
90163 int iRight, /* Index of second table in pSrc */
90164 int iColRight, /* Index of column in second table */
90165 int isOuterJoin, /* True if this is an OUTER join */
90166 Expr **ppWhere /* IN/OUT: The WHERE clause to add to */
90168 sqlite3 *db = pParse->db;
90169 Expr *pE1;
90170 Expr *pE2;
90171 Expr *pEq;
90173 assert( iLeft<iRight );
90174 assert( pSrc->nSrc>iRight );
90175 assert( pSrc->a[iLeft].pTab );
90176 assert( pSrc->a[iRight].pTab );
90178 pE1 = sqlite3CreateColumnExpr(db, pSrc, iLeft, iColLeft);
90179 pE2 = sqlite3CreateColumnExpr(db, pSrc, iRight, iColRight);
90181 pEq = sqlite3PExpr(pParse, TK_EQ, pE1, pE2, 0);
90182 if( pEq && isOuterJoin ){
90183 ExprSetProperty(pEq, EP_FromJoin);
90184 assert( !ExprHasAnyProperty(pEq, EP_TokenOnly|EP_Reduced) );
90185 ExprSetIrreducible(pEq);
90186 pEq->iRightJoinTable = (i16)pE2->iTable;
90188 *ppWhere = sqlite3ExprAnd(db, *ppWhere, pEq);
90192 ** Set the EP_FromJoin property on all terms of the given expression.
90193 ** And set the Expr.iRightJoinTable to iTable for every term in the
90194 ** expression.
90196 ** The EP_FromJoin property is used on terms of an expression to tell
90197 ** the LEFT OUTER JOIN processing logic that this term is part of the
90198 ** join restriction specified in the ON or USING clause and not a part
90199 ** of the more general WHERE clause. These terms are moved over to the
90200 ** WHERE clause during join processing but we need to remember that they
90201 ** originated in the ON or USING clause.
90203 ** The Expr.iRightJoinTable tells the WHERE clause processing that the
90204 ** expression depends on table iRightJoinTable even if that table is not
90205 ** explicitly mentioned in the expression. That information is needed
90206 ** for cases like this:
90208 ** SELECT * FROM t1 LEFT JOIN t2 ON t1.a=t2.b AND t1.x=5
90210 ** The where clause needs to defer the handling of the t1.x=5
90211 ** term until after the t2 loop of the join. In that way, a
90212 ** NULL t2 row will be inserted whenever t1.x!=5. If we do not
90213 ** defer the handling of t1.x=5, it will be processed immediately
90214 ** after the t1 loop and rows with t1.x!=5 will never appear in
90215 ** the output, which is incorrect.
90217 static void setJoinExpr(Expr *p, int iTable){
90218 while( p ){
90219 ExprSetProperty(p, EP_FromJoin);
90220 assert( !ExprHasAnyProperty(p, EP_TokenOnly|EP_Reduced) );
90221 ExprSetIrreducible(p);
90222 p->iRightJoinTable = (i16)iTable;
90223 setJoinExpr(p->pLeft, iTable);
90224 p = p->pRight;
90229 ** This routine processes the join information for a SELECT statement.
90230 ** ON and USING clauses are converted into extra terms of the WHERE clause.
90231 ** NATURAL joins also create extra WHERE clause terms.
90233 ** The terms of a FROM clause are contained in the Select.pSrc structure.
90234 ** The left most table is the first entry in Select.pSrc. The right-most
90235 ** table is the last entry. The join operator is held in the entry to
90236 ** the left. Thus entry 0 contains the join operator for the join between
90237 ** entries 0 and 1. Any ON or USING clauses associated with the join are
90238 ** also attached to the left entry.
90240 ** This routine returns the number of errors encountered.
90242 static int sqliteProcessJoin(Parse *pParse, Select *p){
90243 SrcList *pSrc; /* All tables in the FROM clause */
90244 int i, j; /* Loop counters */
90245 struct SrcList_item *pLeft; /* Left table being joined */
90246 struct SrcList_item *pRight; /* Right table being joined */
90248 pSrc = p->pSrc;
90249 pLeft = &pSrc->a[0];
90250 pRight = &pLeft[1];
90251 for(i=0; i<pSrc->nSrc-1; i++, pRight++, pLeft++){
90252 Table *pLeftTab = pLeft->pTab;
90253 Table *pRightTab = pRight->pTab;
90254 int isOuter;
90256 if( NEVER(pLeftTab==0 || pRightTab==0) ) continue;
90257 isOuter = (pRight->jointype & JT_OUTER)!=0;
90259 /* When the NATURAL keyword is present, add WHERE clause terms for
90260 ** every column that the two tables have in common.
90262 if( pRight->jointype & JT_NATURAL ){
90263 if( pRight->pOn || pRight->pUsing ){
90264 sqlite3ErrorMsg(pParse, "a NATURAL join may not have "
90265 "an ON or USING clause", 0);
90266 return 1;
90268 for(j=0; j<pRightTab->nCol; j++){
90269 char *zName; /* Name of column in the right table */
90270 int iLeft; /* Matching left table */
90271 int iLeftCol; /* Matching column in the left table */
90273 zName = pRightTab->aCol[j].zName;
90274 if( tableAndColumnIndex(pSrc, i+1, zName, &iLeft, &iLeftCol) ){
90275 addWhereTerm(pParse, pSrc, iLeft, iLeftCol, i+1, j,
90276 isOuter, &p->pWhere);
90281 /* Disallow both ON and USING clauses in the same join
90283 if( pRight->pOn && pRight->pUsing ){
90284 sqlite3ErrorMsg(pParse, "cannot have both ON and USING "
90285 "clauses in the same join");
90286 return 1;
90289 /* Add the ON clause to the end of the WHERE clause, connected by
90290 ** an AND operator.
90292 if( pRight->pOn ){
90293 if( isOuter ) setJoinExpr(pRight->pOn, pRight->iCursor);
90294 p->pWhere = sqlite3ExprAnd(pParse->db, p->pWhere, pRight->pOn);
90295 pRight->pOn = 0;
90298 /* Create extra terms on the WHERE clause for each column named
90299 ** in the USING clause. Example: If the two tables to be joined are
90300 ** A and B and the USING clause names X, Y, and Z, then add this
90301 ** to the WHERE clause: A.X=B.X AND A.Y=B.Y AND A.Z=B.Z
90302 ** Report an error if any column mentioned in the USING clause is
90303 ** not contained in both tables to be joined.
90305 if( pRight->pUsing ){
90306 IdList *pList = pRight->pUsing;
90307 for(j=0; j<pList->nId; j++){
90308 char *zName; /* Name of the term in the USING clause */
90309 int iLeft; /* Table on the left with matching column name */
90310 int iLeftCol; /* Column number of matching column on the left */
90311 int iRightCol; /* Column number of matching column on the right */
90313 zName = pList->a[j].zName;
90314 iRightCol = columnIndex(pRightTab, zName);
90315 if( iRightCol<0
90316 || !tableAndColumnIndex(pSrc, i+1, zName, &iLeft, &iLeftCol)
90318 sqlite3ErrorMsg(pParse, "cannot join using column %s - column "
90319 "not present in both tables", zName);
90320 return 1;
90322 addWhereTerm(pParse, pSrc, iLeft, iLeftCol, i+1, iRightCol,
90323 isOuter, &p->pWhere);
90327 return 0;
90331 ** Insert code into "v" that will push the record on the top of the
90332 ** stack into the sorter.
90334 static void pushOntoSorter(
90335 Parse *pParse, /* Parser context */
90336 ExprList *pOrderBy, /* The ORDER BY clause */
90337 Select *pSelect, /* The whole SELECT statement */
90338 int regData /* Register holding data to be sorted */
90340 Vdbe *v = pParse->pVdbe;
90341 int nExpr = pOrderBy->nExpr;
90342 int regBase = sqlite3GetTempRange(pParse, nExpr+2);
90343 int regRecord = sqlite3GetTempReg(pParse);
90344 sqlite3ExprCacheClear(pParse);
90345 sqlite3ExprCodeExprList(pParse, pOrderBy, regBase, 0);
90346 sqlite3VdbeAddOp2(v, OP_Sequence, pOrderBy->iECursor, regBase+nExpr);
90347 sqlite3ExprCodeMove(pParse, regData, regBase+nExpr+1, 1);
90348 sqlite3VdbeAddOp3(v, OP_MakeRecord, regBase, nExpr + 2, regRecord);
90349 sqlite3VdbeAddOp2(v, OP_IdxInsert, pOrderBy->iECursor, regRecord);
90350 sqlite3ReleaseTempReg(pParse, regRecord);
90351 sqlite3ReleaseTempRange(pParse, regBase, nExpr+2);
90352 if( pSelect->iLimit ){
90353 int addr1, addr2;
90354 int iLimit;
90355 if( pSelect->iOffset ){
90356 iLimit = pSelect->iOffset+1;
90357 }else{
90358 iLimit = pSelect->iLimit;
90360 addr1 = sqlite3VdbeAddOp1(v, OP_IfZero, iLimit);
90361 sqlite3VdbeAddOp2(v, OP_AddImm, iLimit, -1);
90362 addr2 = sqlite3VdbeAddOp0(v, OP_Goto);
90363 sqlite3VdbeJumpHere(v, addr1);
90364 sqlite3VdbeAddOp1(v, OP_Last, pOrderBy->iECursor);
90365 sqlite3VdbeAddOp1(v, OP_Delete, pOrderBy->iECursor);
90366 sqlite3VdbeJumpHere(v, addr2);
90371 ** Add code to implement the OFFSET
90373 static void codeOffset(
90374 Vdbe *v, /* Generate code into this VM */
90375 Select *p, /* The SELECT statement being coded */
90376 int iContinue /* Jump here to skip the current record */
90378 if( p->iOffset && iContinue!=0 ){
90379 int addr;
90380 sqlite3VdbeAddOp2(v, OP_AddImm, p->iOffset, -1);
90381 addr = sqlite3VdbeAddOp1(v, OP_IfNeg, p->iOffset);
90382 sqlite3VdbeAddOp2(v, OP_Goto, 0, iContinue);
90383 VdbeComment((v, "skip OFFSET records"));
90384 sqlite3VdbeJumpHere(v, addr);
90389 ** Add code that will check to make sure the N registers starting at iMem
90390 ** form a distinct entry. iTab is a sorting index that holds previously
90391 ** seen combinations of the N values. A new entry is made in iTab
90392 ** if the current N values are new.
90394 ** A jump to addrRepeat is made and the N+1 values are popped from the
90395 ** stack if the top N elements are not distinct.
90397 static void codeDistinct(
90398 Parse *pParse, /* Parsing and code generating context */
90399 int iTab, /* A sorting index used to test for distinctness */
90400 int addrRepeat, /* Jump to here if not distinct */
90401 int N, /* Number of elements */
90402 int iMem /* First element */
90404 Vdbe *v;
90405 int r1;
90407 v = pParse->pVdbe;
90408 r1 = sqlite3GetTempReg(pParse);
90409 sqlite3VdbeAddOp4Int(v, OP_Found, iTab, addrRepeat, iMem, N);
90410 sqlite3VdbeAddOp3(v, OP_MakeRecord, iMem, N, r1);
90411 sqlite3VdbeAddOp2(v, OP_IdxInsert, iTab, r1);
90412 sqlite3ReleaseTempReg(pParse, r1);
90415 #ifndef SQLITE_OMIT_SUBQUERY
90417 ** Generate an error message when a SELECT is used within a subexpression
90418 ** (example: "a IN (SELECT * FROM table)") but it has more than 1 result
90419 ** column. We do this in a subroutine because the error used to occur
90420 ** in multiple places. (The error only occurs in one place now, but we
90421 ** retain the subroutine to minimize code disruption.)
90423 static int checkForMultiColumnSelectError(
90424 Parse *pParse, /* Parse context. */
90425 SelectDest *pDest, /* Destination of SELECT results */
90426 int nExpr /* Number of result columns returned by SELECT */
90428 int eDest = pDest->eDest;
90429 if( nExpr>1 && (eDest==SRT_Mem || eDest==SRT_Set) ){
90430 sqlite3ErrorMsg(pParse, "only a single result allowed for "
90431 "a SELECT that is part of an expression");
90432 return 1;
90433 }else{
90434 return 0;
90437 #endif
90440 ** This routine generates the code for the inside of the inner loop
90441 ** of a SELECT.
90443 ** If srcTab and nColumn are both zero, then the pEList expressions
90444 ** are evaluated in order to get the data for this row. If nColumn>0
90445 ** then data is pulled from srcTab and pEList is used only to get the
90446 ** datatypes for each column.
90448 static void selectInnerLoop(
90449 Parse *pParse, /* The parser context */
90450 Select *p, /* The complete select statement being coded */
90451 ExprList *pEList, /* List of values being extracted */
90452 int srcTab, /* Pull data from this table */
90453 int nColumn, /* Number of columns in the source table */
90454 ExprList *pOrderBy, /* If not NULL, sort results using this key */
90455 int distinct, /* If >=0, make sure results are distinct */
90456 SelectDest *pDest, /* How to dispose of the results */
90457 int iContinue, /* Jump here to continue with next row */
90458 int iBreak /* Jump here to break out of the inner loop */
90460 Vdbe *v = pParse->pVdbe;
90461 int i;
90462 int hasDistinct; /* True if the DISTINCT keyword is present */
90463 int regResult; /* Start of memory holding result set */
90464 int eDest = pDest->eDest; /* How to dispose of results */
90465 int iParm = pDest->iParm; /* First argument to disposal method */
90466 int nResultCol; /* Number of result columns */
90468 assert( v );
90469 if( NEVER(v==0) ) return;
90470 assert( pEList!=0 );
90471 hasDistinct = distinct>=0;
90472 if( pOrderBy==0 && !hasDistinct ){
90473 codeOffset(v, p, iContinue);
90476 /* Pull the requested columns.
90478 if( nColumn>0 ){
90479 nResultCol = nColumn;
90480 }else{
90481 nResultCol = pEList->nExpr;
90483 if( pDest->iMem==0 ){
90484 pDest->iMem = pParse->nMem+1;
90485 pDest->nMem = nResultCol;
90486 pParse->nMem += nResultCol;
90487 }else{
90488 assert( pDest->nMem==nResultCol );
90490 regResult = pDest->iMem;
90491 if( nColumn>0 ){
90492 for(i=0; i<nColumn; i++){
90493 sqlite3VdbeAddOp3(v, OP_Column, srcTab, i, regResult+i);
90495 }else if( eDest!=SRT_Exists ){
90496 /* If the destination is an EXISTS(...) expression, the actual
90497 ** values returned by the SELECT are not required.
90499 sqlite3ExprCacheClear(pParse);
90500 sqlite3ExprCodeExprList(pParse, pEList, regResult, eDest==SRT_Output);
90502 nColumn = nResultCol;
90504 /* If the DISTINCT keyword was present on the SELECT statement
90505 ** and this row has been seen before, then do not make this row
90506 ** part of the result.
90508 if( hasDistinct ){
90509 assert( pEList!=0 );
90510 assert( pEList->nExpr==nColumn );
90511 codeDistinct(pParse, distinct, iContinue, nColumn, regResult);
90512 if( pOrderBy==0 ){
90513 codeOffset(v, p, iContinue);
90517 switch( eDest ){
90518 /* In this mode, write each query result to the key of the temporary
90519 ** table iParm.
90521 #ifndef SQLITE_OMIT_COMPOUND_SELECT
90522 case SRT_Union: {
90523 int r1;
90524 r1 = sqlite3GetTempReg(pParse);
90525 sqlite3VdbeAddOp3(v, OP_MakeRecord, regResult, nColumn, r1);
90526 sqlite3VdbeAddOp2(v, OP_IdxInsert, iParm, r1);
90527 sqlite3ReleaseTempReg(pParse, r1);
90528 break;
90531 /* Construct a record from the query result, but instead of
90532 ** saving that record, use it as a key to delete elements from
90533 ** the temporary table iParm.
90535 case SRT_Except: {
90536 sqlite3VdbeAddOp3(v, OP_IdxDelete, iParm, regResult, nColumn);
90537 break;
90539 #endif
90541 /* Store the result as data using a unique key.
90543 case SRT_Table:
90544 case SRT_EphemTab: {
90545 int r1 = sqlite3GetTempReg(pParse);
90546 testcase( eDest==SRT_Table );
90547 testcase( eDest==SRT_EphemTab );
90548 sqlite3VdbeAddOp3(v, OP_MakeRecord, regResult, nColumn, r1);
90549 if( pOrderBy ){
90550 pushOntoSorter(pParse, pOrderBy, p, r1);
90551 }else{
90552 int r2 = sqlite3GetTempReg(pParse);
90553 sqlite3VdbeAddOp2(v, OP_NewRowid, iParm, r2);
90554 sqlite3VdbeAddOp3(v, OP_Insert, iParm, r1, r2);
90555 sqlite3VdbeChangeP5(v, OPFLAG_APPEND);
90556 sqlite3ReleaseTempReg(pParse, r2);
90558 sqlite3ReleaseTempReg(pParse, r1);
90559 break;
90562 #ifndef SQLITE_OMIT_SUBQUERY
90563 /* If we are creating a set for an "expr IN (SELECT ...)" construct,
90564 ** then there should be a single item on the stack. Write this
90565 ** item into the set table with bogus data.
90567 case SRT_Set: {
90568 assert( nColumn==1 );
90569 p->affinity = sqlite3CompareAffinity(pEList->a[0].pExpr, pDest->affinity);
90570 if( pOrderBy ){
90571 /* At first glance you would think we could optimize out the
90572 ** ORDER BY in this case since the order of entries in the set
90573 ** does not matter. But there might be a LIMIT clause, in which
90574 ** case the order does matter */
90575 pushOntoSorter(pParse, pOrderBy, p, regResult);
90576 }else{
90577 int r1 = sqlite3GetTempReg(pParse);
90578 sqlite3VdbeAddOp4(v, OP_MakeRecord, regResult, 1, r1, &p->affinity, 1);
90579 sqlite3ExprCacheAffinityChange(pParse, regResult, 1);
90580 sqlite3VdbeAddOp2(v, OP_IdxInsert, iParm, r1);
90581 sqlite3ReleaseTempReg(pParse, r1);
90583 break;
90586 /* If any row exist in the result set, record that fact and abort.
90588 case SRT_Exists: {
90589 sqlite3VdbeAddOp2(v, OP_Integer, 1, iParm);
90590 /* The LIMIT clause will terminate the loop for us */
90591 break;
90594 /* If this is a scalar select that is part of an expression, then
90595 ** store the results in the appropriate memory cell and break out
90596 ** of the scan loop.
90598 case SRT_Mem: {
90599 assert( nColumn==1 );
90600 if( pOrderBy ){
90601 pushOntoSorter(pParse, pOrderBy, p, regResult);
90602 }else{
90603 sqlite3ExprCodeMove(pParse, regResult, iParm, 1);
90604 /* The LIMIT clause will jump out of the loop for us */
90606 break;
90608 #endif /* #ifndef SQLITE_OMIT_SUBQUERY */
90610 /* Send the data to the callback function or to a subroutine. In the
90611 ** case of a subroutine, the subroutine itself is responsible for
90612 ** popping the data from the stack.
90614 case SRT_Coroutine:
90615 case SRT_Output: {
90616 testcase( eDest==SRT_Coroutine );
90617 testcase( eDest==SRT_Output );
90618 if( pOrderBy ){
90619 int r1 = sqlite3GetTempReg(pParse);
90620 sqlite3VdbeAddOp3(v, OP_MakeRecord, regResult, nColumn, r1);
90621 pushOntoSorter(pParse, pOrderBy, p, r1);
90622 sqlite3ReleaseTempReg(pParse, r1);
90623 }else if( eDest==SRT_Coroutine ){
90624 sqlite3VdbeAddOp1(v, OP_Yield, pDest->iParm);
90625 }else{
90626 sqlite3VdbeAddOp2(v, OP_ResultRow, regResult, nColumn);
90627 sqlite3ExprCacheAffinityChange(pParse, regResult, nColumn);
90629 break;
90632 #if !defined(SQLITE_OMIT_TRIGGER)
90633 /* Discard the results. This is used for SELECT statements inside
90634 ** the body of a TRIGGER. The purpose of such selects is to call
90635 ** user-defined functions that have side effects. We do not care
90636 ** about the actual results of the select.
90638 default: {
90639 assert( eDest==SRT_Discard );
90640 break;
90642 #endif
90645 /* Jump to the end of the loop if the LIMIT is reached. Except, if
90646 ** there is a sorter, in which case the sorter has already limited
90647 ** the output for us.
90649 if( pOrderBy==0 && p->iLimit ){
90650 sqlite3VdbeAddOp3(v, OP_IfZero, p->iLimit, iBreak, -1);
90655 ** Given an expression list, generate a KeyInfo structure that records
90656 ** the collating sequence for each expression in that expression list.
90658 ** If the ExprList is an ORDER BY or GROUP BY clause then the resulting
90659 ** KeyInfo structure is appropriate for initializing a virtual index to
90660 ** implement that clause. If the ExprList is the result set of a SELECT
90661 ** then the KeyInfo structure is appropriate for initializing a virtual
90662 ** index to implement a DISTINCT test.
90664 ** Space to hold the KeyInfo structure is obtain from malloc. The calling
90665 ** function is responsible for seeing that this structure is eventually
90666 ** freed. Add the KeyInfo structure to the P4 field of an opcode using
90667 ** P4_KEYINFO_HANDOFF is the usual way of dealing with this.
90669 static KeyInfo *keyInfoFromExprList(Parse *pParse, ExprList *pList){
90670 sqlite3 *db = pParse->db;
90671 int nExpr;
90672 KeyInfo *pInfo;
90673 struct ExprList_item *pItem;
90674 int i;
90676 nExpr = pList->nExpr;
90677 pInfo = sqlite3DbMallocZero(db, sizeof(*pInfo) + nExpr*(sizeof(CollSeq*)+1) );
90678 if( pInfo ){
90679 pInfo->aSortOrder = (u8*)&pInfo->aColl[nExpr];
90680 pInfo->nField = (u16)nExpr;
90681 pInfo->enc = ENC(db);
90682 pInfo->db = db;
90683 for(i=0, pItem=pList->a; i<nExpr; i++, pItem++){
90684 CollSeq *pColl;
90685 pColl = sqlite3ExprCollSeq(pParse, pItem->pExpr);
90686 if( !pColl ){
90687 pColl = db->pDfltColl;
90689 pInfo->aColl[i] = pColl;
90690 pInfo->aSortOrder[i] = pItem->sortOrder;
90693 return pInfo;
90696 #ifndef SQLITE_OMIT_COMPOUND_SELECT
90698 ** Name of the connection operator, used for error messages.
90700 static const char *selectOpName(int id){
90701 char *z;
90702 switch( id ){
90703 case TK_ALL: z = "UNION ALL"; break;
90704 case TK_INTERSECT: z = "INTERSECT"; break;
90705 case TK_EXCEPT: z = "EXCEPT"; break;
90706 default: z = "UNION"; break;
90708 return z;
90710 #endif /* SQLITE_OMIT_COMPOUND_SELECT */
90712 #ifndef SQLITE_OMIT_EXPLAIN
90714 ** Unless an "EXPLAIN QUERY PLAN" command is being processed, this function
90715 ** is a no-op. Otherwise, it adds a single row of output to the EQP result,
90716 ** where the caption is of the form:
90718 ** "USE TEMP B-TREE FOR xxx"
90720 ** where xxx is one of "DISTINCT", "ORDER BY" or "GROUP BY". Exactly which
90721 ** is determined by the zUsage argument.
90723 static void explainTempTable(Parse *pParse, const char *zUsage){
90724 if( pParse->explain==2 ){
90725 Vdbe *v = pParse->pVdbe;
90726 char *zMsg = sqlite3MPrintf(pParse->db, "USE TEMP B-TREE FOR %s", zUsage);
90727 sqlite3VdbeAddOp4(v, OP_Explain, pParse->iSelectId, 0, 0, zMsg, P4_DYNAMIC);
90732 ** Assign expression b to lvalue a. A second, no-op, version of this macro
90733 ** is provided when SQLITE_OMIT_EXPLAIN is defined. This allows the code
90734 ** in sqlite3Select() to assign values to structure member variables that
90735 ** only exist if SQLITE_OMIT_EXPLAIN is not defined without polluting the
90736 ** code with #ifndef directives.
90738 # define explainSetInteger(a, b) a = b
90740 #else
90741 /* No-op versions of the explainXXX() functions and macros. */
90742 # define explainTempTable(y,z)
90743 # define explainSetInteger(y,z)
90744 #endif
90746 #if !defined(SQLITE_OMIT_EXPLAIN) && !defined(SQLITE_OMIT_COMPOUND_SELECT)
90748 ** Unless an "EXPLAIN QUERY PLAN" command is being processed, this function
90749 ** is a no-op. Otherwise, it adds a single row of output to the EQP result,
90750 ** where the caption is of one of the two forms:
90752 ** "COMPOSITE SUBQUERIES iSub1 and iSub2 (op)"
90753 ** "COMPOSITE SUBQUERIES iSub1 and iSub2 USING TEMP B-TREE (op)"
90755 ** where iSub1 and iSub2 are the integers passed as the corresponding
90756 ** function parameters, and op is the text representation of the parameter
90757 ** of the same name. The parameter "op" must be one of TK_UNION, TK_EXCEPT,
90758 ** TK_INTERSECT or TK_ALL. The first form is used if argument bUseTmp is
90759 ** false, or the second form if it is true.
90761 static void explainComposite(
90762 Parse *pParse, /* Parse context */
90763 int op, /* One of TK_UNION, TK_EXCEPT etc. */
90764 int iSub1, /* Subquery id 1 */
90765 int iSub2, /* Subquery id 2 */
90766 int bUseTmp /* True if a temp table was used */
90768 assert( op==TK_UNION || op==TK_EXCEPT || op==TK_INTERSECT || op==TK_ALL );
90769 if( pParse->explain==2 ){
90770 Vdbe *v = pParse->pVdbe;
90771 char *zMsg = sqlite3MPrintf(
90772 pParse->db, "COMPOUND SUBQUERIES %d AND %d %s(%s)", iSub1, iSub2,
90773 bUseTmp?"USING TEMP B-TREE ":"", selectOpName(op)
90775 sqlite3VdbeAddOp4(v, OP_Explain, pParse->iSelectId, 0, 0, zMsg, P4_DYNAMIC);
90778 #else
90779 /* No-op versions of the explainXXX() functions and macros. */
90780 # define explainComposite(v,w,x,y,z)
90781 #endif
90784 ** If the inner loop was generated using a non-null pOrderBy argument,
90785 ** then the results were placed in a sorter. After the loop is terminated
90786 ** we need to run the sorter and output the results. The following
90787 ** routine generates the code needed to do that.
90789 static void generateSortTail(
90790 Parse *pParse, /* Parsing context */
90791 Select *p, /* The SELECT statement */
90792 Vdbe *v, /* Generate code into this VDBE */
90793 int nColumn, /* Number of columns of data */
90794 SelectDest *pDest /* Write the sorted results here */
90796 int addrBreak = sqlite3VdbeMakeLabel(v); /* Jump here to exit loop */
90797 int addrContinue = sqlite3VdbeMakeLabel(v); /* Jump here for next cycle */
90798 int addr;
90799 int iTab;
90800 int pseudoTab = 0;
90801 ExprList *pOrderBy = p->pOrderBy;
90803 int eDest = pDest->eDest;
90804 int iParm = pDest->iParm;
90806 int regRow;
90807 int regRowid;
90809 iTab = pOrderBy->iECursor;
90810 regRow = sqlite3GetTempReg(pParse);
90811 if( eDest==SRT_Output || eDest==SRT_Coroutine ){
90812 pseudoTab = pParse->nTab++;
90813 sqlite3VdbeAddOp3(v, OP_OpenPseudo, pseudoTab, regRow, nColumn);
90814 regRowid = 0;
90815 }else{
90816 regRowid = sqlite3GetTempReg(pParse);
90818 addr = 1 + sqlite3VdbeAddOp2(v, OP_Sort, iTab, addrBreak);
90819 codeOffset(v, p, addrContinue);
90820 sqlite3VdbeAddOp3(v, OP_Column, iTab, pOrderBy->nExpr + 1, regRow);
90821 switch( eDest ){
90822 case SRT_Table:
90823 case SRT_EphemTab: {
90824 testcase( eDest==SRT_Table );
90825 testcase( eDest==SRT_EphemTab );
90826 sqlite3VdbeAddOp2(v, OP_NewRowid, iParm, regRowid);
90827 sqlite3VdbeAddOp3(v, OP_Insert, iParm, regRow, regRowid);
90828 sqlite3VdbeChangeP5(v, OPFLAG_APPEND);
90829 break;
90831 #ifndef SQLITE_OMIT_SUBQUERY
90832 case SRT_Set: {
90833 assert( nColumn==1 );
90834 sqlite3VdbeAddOp4(v, OP_MakeRecord, regRow, 1, regRowid, &p->affinity, 1);
90835 sqlite3ExprCacheAffinityChange(pParse, regRow, 1);
90836 sqlite3VdbeAddOp2(v, OP_IdxInsert, iParm, regRowid);
90837 break;
90839 case SRT_Mem: {
90840 assert( nColumn==1 );
90841 sqlite3ExprCodeMove(pParse, regRow, iParm, 1);
90842 /* The LIMIT clause will terminate the loop for us */
90843 break;
90845 #endif
90846 default: {
90847 int i;
90848 assert( eDest==SRT_Output || eDest==SRT_Coroutine );
90849 testcase( eDest==SRT_Output );
90850 testcase( eDest==SRT_Coroutine );
90851 for(i=0; i<nColumn; i++){
90852 assert( regRow!=pDest->iMem+i );
90853 sqlite3VdbeAddOp3(v, OP_Column, pseudoTab, i, pDest->iMem+i);
90854 if( i==0 ){
90855 sqlite3VdbeChangeP5(v, OPFLAG_CLEARCACHE);
90858 if( eDest==SRT_Output ){
90859 sqlite3VdbeAddOp2(v, OP_ResultRow, pDest->iMem, nColumn);
90860 sqlite3ExprCacheAffinityChange(pParse, pDest->iMem, nColumn);
90861 }else{
90862 sqlite3VdbeAddOp1(v, OP_Yield, pDest->iParm);
90864 break;
90867 sqlite3ReleaseTempReg(pParse, regRow);
90868 sqlite3ReleaseTempReg(pParse, regRowid);
90870 /* The bottom of the loop
90872 sqlite3VdbeResolveLabel(v, addrContinue);
90873 sqlite3VdbeAddOp2(v, OP_Next, iTab, addr);
90874 sqlite3VdbeResolveLabel(v, addrBreak);
90875 if( eDest==SRT_Output || eDest==SRT_Coroutine ){
90876 sqlite3VdbeAddOp2(v, OP_Close, pseudoTab, 0);
90881 ** Return a pointer to a string containing the 'declaration type' of the
90882 ** expression pExpr. The string may be treated as static by the caller.
90884 ** The declaration type is the exact datatype definition extracted from the
90885 ** original CREATE TABLE statement if the expression is a column. The
90886 ** declaration type for a ROWID field is INTEGER. Exactly when an expression
90887 ** is considered a column can be complex in the presence of subqueries. The
90888 ** result-set expression in all of the following SELECT statements is
90889 ** considered a column by this function.
90891 ** SELECT col FROM tbl;
90892 ** SELECT (SELECT col FROM tbl;
90893 ** SELECT (SELECT col FROM tbl);
90894 ** SELECT abc FROM (SELECT col AS abc FROM tbl);
90896 ** The declaration type for any expression other than a column is NULL.
90898 static const char *columnType(
90899 NameContext *pNC,
90900 Expr *pExpr,
90901 const char **pzOriginDb,
90902 const char **pzOriginTab,
90903 const char **pzOriginCol
90905 char const *zType = 0;
90906 char const *zOriginDb = 0;
90907 char const *zOriginTab = 0;
90908 char const *zOriginCol = 0;
90909 int j;
90910 if( NEVER(pExpr==0) || pNC->pSrcList==0 ) return 0;
90912 switch( pExpr->op ){
90913 case TK_AGG_COLUMN:
90914 case TK_COLUMN: {
90915 /* The expression is a column. Locate the table the column is being
90916 ** extracted from in NameContext.pSrcList. This table may be real
90917 ** database table or a subquery.
90919 Table *pTab = 0; /* Table structure column is extracted from */
90920 Select *pS = 0; /* Select the column is extracted from */
90921 int iCol = pExpr->iColumn; /* Index of column in pTab */
90922 testcase( pExpr->op==TK_AGG_COLUMN );
90923 testcase( pExpr->op==TK_COLUMN );
90924 while( pNC && !pTab ){
90925 SrcList *pTabList = pNC->pSrcList;
90926 for(j=0;j<pTabList->nSrc && pTabList->a[j].iCursor!=pExpr->iTable;j++);
90927 if( j<pTabList->nSrc ){
90928 pTab = pTabList->a[j].pTab;
90929 pS = pTabList->a[j].pSelect;
90930 }else{
90931 pNC = pNC->pNext;
90935 if( pTab==0 ){
90936 /* At one time, code such as "SELECT new.x" within a trigger would
90937 ** cause this condition to run. Since then, we have restructured how
90938 ** trigger code is generated and so this condition is no longer
90939 ** possible. However, it can still be true for statements like
90940 ** the following:
90942 ** CREATE TABLE t1(col INTEGER);
90943 ** SELECT (SELECT t1.col) FROM FROM t1;
90945 ** when columnType() is called on the expression "t1.col" in the
90946 ** sub-select. In this case, set the column type to NULL, even
90947 ** though it should really be "INTEGER".
90949 ** This is not a problem, as the column type of "t1.col" is never
90950 ** used. When columnType() is called on the expression
90951 ** "(SELECT t1.col)", the correct type is returned (see the TK_SELECT
90952 ** branch below. */
90953 break;
90956 assert( pTab && pExpr->pTab==pTab );
90957 if( pS ){
90958 /* The "table" is actually a sub-select or a view in the FROM clause
90959 ** of the SELECT statement. Return the declaration type and origin
90960 ** data for the result-set column of the sub-select.
90962 if( iCol>=0 && ALWAYS(iCol<pS->pEList->nExpr) ){
90963 /* If iCol is less than zero, then the expression requests the
90964 ** rowid of the sub-select or view. This expression is legal (see
90965 ** test case misc2.2.2) - it always evaluates to NULL.
90967 NameContext sNC;
90968 Expr *p = pS->pEList->a[iCol].pExpr;
90969 sNC.pSrcList = pS->pSrc;
90970 sNC.pNext = pNC;
90971 sNC.pParse = pNC->pParse;
90972 zType = columnType(&sNC, p, &zOriginDb, &zOriginTab, &zOriginCol);
90974 }else if( ALWAYS(pTab->pSchema) ){
90975 /* A real table */
90976 assert( !pS );
90977 if( iCol<0 ) iCol = pTab->iPKey;
90978 assert( iCol==-1 || (iCol>=0 && iCol<pTab->nCol) );
90979 if( iCol<0 ){
90980 zType = "INTEGER";
90981 zOriginCol = "rowid";
90982 }else{
90983 zType = pTab->aCol[iCol].zType;
90984 zOriginCol = pTab->aCol[iCol].zName;
90986 zOriginTab = pTab->zName;
90987 if( pNC->pParse ){
90988 int iDb = sqlite3SchemaToIndex(pNC->pParse->db, pTab->pSchema);
90989 zOriginDb = pNC->pParse->db->aDb[iDb].zName;
90992 break;
90994 #ifndef SQLITE_OMIT_SUBQUERY
90995 case TK_SELECT: {
90996 /* The expression is a sub-select. Return the declaration type and
90997 ** origin info for the single column in the result set of the SELECT
90998 ** statement.
91000 NameContext sNC;
91001 Select *pS = pExpr->x.pSelect;
91002 Expr *p = pS->pEList->a[0].pExpr;
91003 assert( ExprHasProperty(pExpr, EP_xIsSelect) );
91004 sNC.pSrcList = pS->pSrc;
91005 sNC.pNext = pNC;
91006 sNC.pParse = pNC->pParse;
91007 zType = columnType(&sNC, p, &zOriginDb, &zOriginTab, &zOriginCol);
91008 break;
91010 #endif
91013 if( pzOriginDb ){
91014 assert( pzOriginTab && pzOriginCol );
91015 *pzOriginDb = zOriginDb;
91016 *pzOriginTab = zOriginTab;
91017 *pzOriginCol = zOriginCol;
91019 return zType;
91023 ** Generate code that will tell the VDBE the declaration types of columns
91024 ** in the result set.
91026 static void generateColumnTypes(
91027 Parse *pParse, /* Parser context */
91028 SrcList *pTabList, /* List of tables */
91029 ExprList *pEList /* Expressions defining the result set */
91031 #ifndef SQLITE_OMIT_DECLTYPE
91032 Vdbe *v = pParse->pVdbe;
91033 int i;
91034 NameContext sNC;
91035 sNC.pSrcList = pTabList;
91036 sNC.pParse = pParse;
91037 for(i=0; i<pEList->nExpr; i++){
91038 Expr *p = pEList->a[i].pExpr;
91039 const char *zType;
91040 #ifdef SQLITE_ENABLE_COLUMN_METADATA
91041 const char *zOrigDb = 0;
91042 const char *zOrigTab = 0;
91043 const char *zOrigCol = 0;
91044 zType = columnType(&sNC, p, &zOrigDb, &zOrigTab, &zOrigCol);
91046 /* The vdbe must make its own copy of the column-type and other
91047 ** column specific strings, in case the schema is reset before this
91048 ** virtual machine is deleted.
91050 sqlite3VdbeSetColName(v, i, COLNAME_DATABASE, zOrigDb, SQLITE_TRANSIENT);
91051 sqlite3VdbeSetColName(v, i, COLNAME_TABLE, zOrigTab, SQLITE_TRANSIENT);
91052 sqlite3VdbeSetColName(v, i, COLNAME_COLUMN, zOrigCol, SQLITE_TRANSIENT);
91053 #else
91054 zType = columnType(&sNC, p, 0, 0, 0);
91055 #endif
91056 sqlite3VdbeSetColName(v, i, COLNAME_DECLTYPE, zType, SQLITE_TRANSIENT);
91058 #endif /* SQLITE_OMIT_DECLTYPE */
91062 ** Generate code that will tell the VDBE the names of columns
91063 ** in the result set. This information is used to provide the
91064 ** azCol[] values in the callback.
91066 static void generateColumnNames(
91067 Parse *pParse, /* Parser context */
91068 SrcList *pTabList, /* List of tables */
91069 ExprList *pEList /* Expressions defining the result set */
91071 Vdbe *v = pParse->pVdbe;
91072 int i, j;
91073 sqlite3 *db = pParse->db;
91074 int fullNames, shortNames;
91076 #ifndef SQLITE_OMIT_EXPLAIN
91077 /* If this is an EXPLAIN, skip this step */
91078 if( pParse->explain ){
91079 return;
91081 #endif
91083 if( pParse->colNamesSet || NEVER(v==0) || db->mallocFailed ) return;
91084 pParse->colNamesSet = 1;
91085 fullNames = (db->flags & SQLITE_FullColNames)!=0;
91086 shortNames = (db->flags & SQLITE_ShortColNames)!=0;
91087 sqlite3VdbeSetNumCols(v, pEList->nExpr);
91088 for(i=0; i<pEList->nExpr; i++){
91089 Expr *p;
91090 p = pEList->a[i].pExpr;
91091 if( NEVER(p==0) ) continue;
91092 if( pEList->a[i].zName ){
91093 char *zName = pEList->a[i].zName;
91094 sqlite3VdbeSetColName(v, i, COLNAME_NAME, zName, SQLITE_TRANSIENT);
91095 }else if( (p->op==TK_COLUMN || p->op==TK_AGG_COLUMN) && pTabList ){
91096 Table *pTab;
91097 char *zCol;
91098 int iCol = p->iColumn;
91099 for(j=0; ALWAYS(j<pTabList->nSrc); j++){
91100 if( pTabList->a[j].iCursor==p->iTable ) break;
91102 assert( j<pTabList->nSrc );
91103 pTab = pTabList->a[j].pTab;
91104 if( iCol<0 ) iCol = pTab->iPKey;
91105 assert( iCol==-1 || (iCol>=0 && iCol<pTab->nCol) );
91106 if( iCol<0 ){
91107 zCol = "rowid";
91108 }else{
91109 zCol = pTab->aCol[iCol].zName;
91111 if( !shortNames && !fullNames ){
91112 sqlite3VdbeSetColName(v, i, COLNAME_NAME,
91113 sqlite3DbStrDup(db, pEList->a[i].zSpan), SQLITE_DYNAMIC);
91114 }else if( fullNames ){
91115 char *zName = 0;
91116 zName = sqlite3MPrintf(db, "%s.%s", pTab->zName, zCol);
91117 sqlite3VdbeSetColName(v, i, COLNAME_NAME, zName, SQLITE_DYNAMIC);
91118 }else{
91119 sqlite3VdbeSetColName(v, i, COLNAME_NAME, zCol, SQLITE_TRANSIENT);
91121 }else{
91122 sqlite3VdbeSetColName(v, i, COLNAME_NAME,
91123 sqlite3DbStrDup(db, pEList->a[i].zSpan), SQLITE_DYNAMIC);
91126 generateColumnTypes(pParse, pTabList, pEList);
91130 ** Given a an expression list (which is really the list of expressions
91131 ** that form the result set of a SELECT statement) compute appropriate
91132 ** column names for a table that would hold the expression list.
91134 ** All column names will be unique.
91136 ** Only the column names are computed. Column.zType, Column.zColl,
91137 ** and other fields of Column are zeroed.
91139 ** Return SQLITE_OK on success. If a memory allocation error occurs,
91140 ** store NULL in *paCol and 0 in *pnCol and return SQLITE_NOMEM.
91142 static int selectColumnsFromExprList(
91143 Parse *pParse, /* Parsing context */
91144 ExprList *pEList, /* Expr list from which to derive column names */
91145 int *pnCol, /* Write the number of columns here */
91146 Column **paCol /* Write the new column list here */
91148 sqlite3 *db = pParse->db; /* Database connection */
91149 int i, j; /* Loop counters */
91150 int cnt; /* Index added to make the name unique */
91151 Column *aCol, *pCol; /* For looping over result columns */
91152 int nCol; /* Number of columns in the result set */
91153 Expr *p; /* Expression for a single result column */
91154 char *zName; /* Column name */
91155 int nName; /* Size of name in zName[] */
91157 *pnCol = nCol = pEList->nExpr;
91158 aCol = *paCol = sqlite3DbMallocZero(db, sizeof(aCol[0])*nCol);
91159 if( aCol==0 ) return SQLITE_NOMEM;
91160 for(i=0, pCol=aCol; i<nCol; i++, pCol++){
91161 /* Get an appropriate name for the column
91163 p = pEList->a[i].pExpr;
91164 assert( p->pRight==0 || ExprHasProperty(p->pRight, EP_IntValue)
91165 || p->pRight->u.zToken==0 || p->pRight->u.zToken[0]!=0 );
91166 if( (zName = pEList->a[i].zName)!=0 ){
91167 /* If the column contains an "AS <name>" phrase, use <name> as the name */
91168 zName = sqlite3DbStrDup(db, zName);
91169 }else{
91170 Expr *pColExpr = p; /* The expression that is the result column name */
91171 Table *pTab; /* Table associated with this expression */
91172 while( pColExpr->op==TK_DOT ) pColExpr = pColExpr->pRight;
91173 if( pColExpr->op==TK_COLUMN && ALWAYS(pColExpr->pTab!=0) ){
91174 /* For columns use the column name name */
91175 int iCol = pColExpr->iColumn;
91176 pTab = pColExpr->pTab;
91177 if( iCol<0 ) iCol = pTab->iPKey;
91178 zName = sqlite3MPrintf(db, "%s",
91179 iCol>=0 ? pTab->aCol[iCol].zName : "rowid");
91180 }else if( pColExpr->op==TK_ID ){
91181 assert( !ExprHasProperty(pColExpr, EP_IntValue) );
91182 zName = sqlite3MPrintf(db, "%s", pColExpr->u.zToken);
91183 }else{
91184 /* Use the original text of the column expression as its name */
91185 zName = sqlite3MPrintf(db, "%s", pEList->a[i].zSpan);
91188 if( db->mallocFailed ){
91189 sqlite3DbFree(db, zName);
91190 break;
91193 /* Make sure the column name is unique. If the name is not unique,
91194 ** append a integer to the name so that it becomes unique.
91196 nName = sqlite3Strlen30(zName);
91197 for(j=cnt=0; j<i; j++){
91198 if( sqlite3StrICmp(aCol[j].zName, zName)==0 ){
91199 char *zNewName;
91200 zName[nName] = 0;
91201 zNewName = sqlite3MPrintf(db, "%s:%d", zName, ++cnt);
91202 sqlite3DbFree(db, zName);
91203 zName = zNewName;
91204 j = -1;
91205 if( zName==0 ) break;
91208 pCol->zName = zName;
91210 if( db->mallocFailed ){
91211 for(j=0; j<i; j++){
91212 sqlite3DbFree(db, aCol[j].zName);
91214 sqlite3DbFree(db, aCol);
91215 *paCol = 0;
91216 *pnCol = 0;
91217 return SQLITE_NOMEM;
91219 return SQLITE_OK;
91223 ** Add type and collation information to a column list based on
91224 ** a SELECT statement.
91226 ** The column list presumably came from selectColumnNamesFromExprList().
91227 ** The column list has only names, not types or collations. This
91228 ** routine goes through and adds the types and collations.
91230 ** This routine requires that all identifiers in the SELECT
91231 ** statement be resolved.
91233 static void selectAddColumnTypeAndCollation(
91234 Parse *pParse, /* Parsing contexts */
91235 int nCol, /* Number of columns */
91236 Column *aCol, /* List of columns */
91237 Select *pSelect /* SELECT used to determine types and collations */
91239 sqlite3 *db = pParse->db;
91240 NameContext sNC;
91241 Column *pCol;
91242 CollSeq *pColl;
91243 int i;
91244 Expr *p;
91245 struct ExprList_item *a;
91247 assert( pSelect!=0 );
91248 assert( (pSelect->selFlags & SF_Resolved)!=0 );
91249 assert( nCol==pSelect->pEList->nExpr || db->mallocFailed );
91250 if( db->mallocFailed ) return;
91251 memset(&sNC, 0, sizeof(sNC));
91252 sNC.pSrcList = pSelect->pSrc;
91253 a = pSelect->pEList->a;
91254 for(i=0, pCol=aCol; i<nCol; i++, pCol++){
91255 p = a[i].pExpr;
91256 pCol->zType = sqlite3DbStrDup(db, columnType(&sNC, p, 0, 0, 0));
91257 pCol->affinity = sqlite3ExprAffinity(p);
91258 if( pCol->affinity==0 ) pCol->affinity = SQLITE_AFF_NONE;
91259 pColl = sqlite3ExprCollSeq(pParse, p);
91260 if( pColl ){
91261 pCol->zColl = sqlite3DbStrDup(db, pColl->zName);
91267 ** Given a SELECT statement, generate a Table structure that describes
91268 ** the result set of that SELECT.
91270 SQLITE_PRIVATE Table *sqlite3ResultSetOfSelect(Parse *pParse, Select *pSelect){
91271 Table *pTab;
91272 sqlite3 *db = pParse->db;
91273 int savedFlags;
91275 savedFlags = db->flags;
91276 db->flags &= ~SQLITE_FullColNames;
91277 db->flags |= SQLITE_ShortColNames;
91278 sqlite3SelectPrep(pParse, pSelect, 0);
91279 if( pParse->nErr ) return 0;
91280 while( pSelect->pPrior ) pSelect = pSelect->pPrior;
91281 db->flags = savedFlags;
91282 pTab = sqlite3DbMallocZero(db, sizeof(Table) );
91283 if( pTab==0 ){
91284 return 0;
91286 /* The sqlite3ResultSetOfSelect() is only used n contexts where lookaside
91287 ** is disabled */
91288 assert( db->lookaside.bEnabled==0 );
91289 pTab->nRef = 1;
91290 pTab->zName = 0;
91291 pTab->nRowEst = 1000000;
91292 selectColumnsFromExprList(pParse, pSelect->pEList, &pTab->nCol, &pTab->aCol);
91293 selectAddColumnTypeAndCollation(pParse, pTab->nCol, pTab->aCol, pSelect);
91294 pTab->iPKey = -1;
91295 if( db->mallocFailed ){
91296 sqlite3DeleteTable(db, pTab);
91297 return 0;
91299 return pTab;
91303 ** Get a VDBE for the given parser context. Create a new one if necessary.
91304 ** If an error occurs, return NULL and leave a message in pParse.
91306 SQLITE_PRIVATE Vdbe *sqlite3GetVdbe(Parse *pParse){
91307 Vdbe *v = pParse->pVdbe;
91308 if( v==0 ){
91309 v = pParse->pVdbe = sqlite3VdbeCreate(pParse->db);
91310 #ifndef SQLITE_OMIT_TRACE
91311 if( v ){
91312 sqlite3VdbeAddOp0(v, OP_Trace);
91314 #endif
91316 return v;
91321 ** Compute the iLimit and iOffset fields of the SELECT based on the
91322 ** pLimit and pOffset expressions. pLimit and pOffset hold the expressions
91323 ** that appear in the original SQL statement after the LIMIT and OFFSET
91324 ** keywords. Or NULL if those keywords are omitted. iLimit and iOffset
91325 ** are the integer memory register numbers for counters used to compute
91326 ** the limit and offset. If there is no limit and/or offset, then
91327 ** iLimit and iOffset are negative.
91329 ** This routine changes the values of iLimit and iOffset only if
91330 ** a limit or offset is defined by pLimit and pOffset. iLimit and
91331 ** iOffset should have been preset to appropriate default values
91332 ** (usually but not always -1) prior to calling this routine.
91333 ** Only if pLimit!=0 or pOffset!=0 do the limit registers get
91334 ** redefined. The UNION ALL operator uses this property to force
91335 ** the reuse of the same limit and offset registers across multiple
91336 ** SELECT statements.
91338 static void computeLimitRegisters(Parse *pParse, Select *p, int iBreak){
91339 Vdbe *v = 0;
91340 int iLimit = 0;
91341 int iOffset;
91342 int addr1, n;
91343 if( p->iLimit ) return;
91346 ** "LIMIT -1" always shows all rows. There is some
91347 ** contraversy about what the correct behavior should be.
91348 ** The current implementation interprets "LIMIT 0" to mean
91349 ** no rows.
91351 sqlite3ExprCacheClear(pParse);
91352 assert( p->pOffset==0 || p->pLimit!=0 );
91353 if( p->pLimit ){
91354 p->iLimit = iLimit = ++pParse->nMem;
91355 v = sqlite3GetVdbe(pParse);
91356 if( NEVER(v==0) ) return; /* VDBE should have already been allocated */
91357 if( sqlite3ExprIsInteger(p->pLimit, &n) ){
91358 sqlite3VdbeAddOp2(v, OP_Integer, n, iLimit);
91359 VdbeComment((v, "LIMIT counter"));
91360 if( n==0 ){
91361 sqlite3VdbeAddOp2(v, OP_Goto, 0, iBreak);
91362 }else{
91363 if( p->nSelectRow > (double)n ) p->nSelectRow = (double)n;
91365 }else{
91366 sqlite3ExprCode(pParse, p->pLimit, iLimit);
91367 sqlite3VdbeAddOp1(v, OP_MustBeInt, iLimit);
91368 VdbeComment((v, "LIMIT counter"));
91369 sqlite3VdbeAddOp2(v, OP_IfZero, iLimit, iBreak);
91371 if( p->pOffset ){
91372 p->iOffset = iOffset = ++pParse->nMem;
91373 pParse->nMem++; /* Allocate an extra register for limit+offset */
91374 sqlite3ExprCode(pParse, p->pOffset, iOffset);
91375 sqlite3VdbeAddOp1(v, OP_MustBeInt, iOffset);
91376 VdbeComment((v, "OFFSET counter"));
91377 addr1 = sqlite3VdbeAddOp1(v, OP_IfPos, iOffset);
91378 sqlite3VdbeAddOp2(v, OP_Integer, 0, iOffset);
91379 sqlite3VdbeJumpHere(v, addr1);
91380 sqlite3VdbeAddOp3(v, OP_Add, iLimit, iOffset, iOffset+1);
91381 VdbeComment((v, "LIMIT+OFFSET"));
91382 addr1 = sqlite3VdbeAddOp1(v, OP_IfPos, iLimit);
91383 sqlite3VdbeAddOp2(v, OP_Integer, -1, iOffset+1);
91384 sqlite3VdbeJumpHere(v, addr1);
91389 #ifndef SQLITE_OMIT_COMPOUND_SELECT
91391 ** Return the appropriate collating sequence for the iCol-th column of
91392 ** the result set for the compound-select statement "p". Return NULL if
91393 ** the column has no default collating sequence.
91395 ** The collating sequence for the compound select is taken from the
91396 ** left-most term of the select that has a collating sequence.
91398 static CollSeq *multiSelectCollSeq(Parse *pParse, Select *p, int iCol){
91399 CollSeq *pRet;
91400 if( p->pPrior ){
91401 pRet = multiSelectCollSeq(pParse, p->pPrior, iCol);
91402 }else{
91403 pRet = 0;
91405 assert( iCol>=0 );
91406 if( pRet==0 && iCol<p->pEList->nExpr ){
91407 pRet = sqlite3ExprCollSeq(pParse, p->pEList->a[iCol].pExpr);
91409 return pRet;
91411 #endif /* SQLITE_OMIT_COMPOUND_SELECT */
91413 /* Forward reference */
91414 static int multiSelectOrderBy(
91415 Parse *pParse, /* Parsing context */
91416 Select *p, /* The right-most of SELECTs to be coded */
91417 SelectDest *pDest /* What to do with query results */
91421 #ifndef SQLITE_OMIT_COMPOUND_SELECT
91423 ** This routine is called to process a compound query form from
91424 ** two or more separate queries using UNION, UNION ALL, EXCEPT, or
91425 ** INTERSECT
91427 ** "p" points to the right-most of the two queries. the query on the
91428 ** left is p->pPrior. The left query could also be a compound query
91429 ** in which case this routine will be called recursively.
91431 ** The results of the total query are to be written into a destination
91432 ** of type eDest with parameter iParm.
91434 ** Example 1: Consider a three-way compound SQL statement.
91436 ** SELECT a FROM t1 UNION SELECT b FROM t2 UNION SELECT c FROM t3
91438 ** This statement is parsed up as follows:
91440 ** SELECT c FROM t3
91441 ** |
91442 ** `-----> SELECT b FROM t2
91443 ** |
91444 ** `------> SELECT a FROM t1
91446 ** The arrows in the diagram above represent the Select.pPrior pointer.
91447 ** So if this routine is called with p equal to the t3 query, then
91448 ** pPrior will be the t2 query. p->op will be TK_UNION in this case.
91450 ** Notice that because of the way SQLite parses compound SELECTs, the
91451 ** individual selects always group from left to right.
91453 static int multiSelect(
91454 Parse *pParse, /* Parsing context */
91455 Select *p, /* The right-most of SELECTs to be coded */
91456 SelectDest *pDest /* What to do with query results */
91458 int rc = SQLITE_OK; /* Success code from a subroutine */
91459 Select *pPrior; /* Another SELECT immediately to our left */
91460 Vdbe *v; /* Generate code to this VDBE */
91461 SelectDest dest; /* Alternative data destination */
91462 Select *pDelete = 0; /* Chain of simple selects to delete */
91463 sqlite3 *db; /* Database connection */
91464 #ifndef SQLITE_OMIT_EXPLAIN
91465 int iSub1; /* EQP id of left-hand query */
91466 int iSub2; /* EQP id of right-hand query */
91467 #endif
91469 /* Make sure there is no ORDER BY or LIMIT clause on prior SELECTs. Only
91470 ** the last (right-most) SELECT in the series may have an ORDER BY or LIMIT.
91472 assert( p && p->pPrior ); /* Calling function guarantees this much */
91473 db = pParse->db;
91474 pPrior = p->pPrior;
91475 assert( pPrior->pRightmost!=pPrior );
91476 assert( pPrior->pRightmost==p->pRightmost );
91477 dest = *pDest;
91478 if( pPrior->pOrderBy ){
91479 sqlite3ErrorMsg(pParse,"ORDER BY clause should come after %s not before",
91480 selectOpName(p->op));
91481 rc = 1;
91482 goto multi_select_end;
91484 if( pPrior->pLimit ){
91485 sqlite3ErrorMsg(pParse,"LIMIT clause should come after %s not before",
91486 selectOpName(p->op));
91487 rc = 1;
91488 goto multi_select_end;
91491 v = sqlite3GetVdbe(pParse);
91492 assert( v!=0 ); /* The VDBE already created by calling function */
91494 /* Create the destination temporary table if necessary
91496 if( dest.eDest==SRT_EphemTab ){
91497 assert( p->pEList );
91498 sqlite3VdbeAddOp2(v, OP_OpenEphemeral, dest.iParm, p->pEList->nExpr);
91499 sqlite3VdbeChangeP5(v, BTREE_UNORDERED);
91500 dest.eDest = SRT_Table;
91503 /* Make sure all SELECTs in the statement have the same number of elements
91504 ** in their result sets.
91506 assert( p->pEList && pPrior->pEList );
91507 if( p->pEList->nExpr!=pPrior->pEList->nExpr ){
91508 sqlite3ErrorMsg(pParse, "SELECTs to the left and right of %s"
91509 " do not have the same number of result columns", selectOpName(p->op));
91510 rc = 1;
91511 goto multi_select_end;
91514 /* Compound SELECTs that have an ORDER BY clause are handled separately.
91516 if( p->pOrderBy ){
91517 return multiSelectOrderBy(pParse, p, pDest);
91520 /* Generate code for the left and right SELECT statements.
91522 switch( p->op ){
91523 case TK_ALL: {
91524 int addr = 0;
91525 int nLimit;
91526 assert( !pPrior->pLimit );
91527 pPrior->pLimit = p->pLimit;
91528 pPrior->pOffset = p->pOffset;
91529 explainSetInteger(iSub1, pParse->iNextSelectId);
91530 rc = sqlite3Select(pParse, pPrior, &dest);
91531 p->pLimit = 0;
91532 p->pOffset = 0;
91533 if( rc ){
91534 goto multi_select_end;
91536 p->pPrior = 0;
91537 p->iLimit = pPrior->iLimit;
91538 p->iOffset = pPrior->iOffset;
91539 if( p->iLimit ){
91540 addr = sqlite3VdbeAddOp1(v, OP_IfZero, p->iLimit);
91541 VdbeComment((v, "Jump ahead if LIMIT reached"));
91543 explainSetInteger(iSub2, pParse->iNextSelectId);
91544 rc = sqlite3Select(pParse, p, &dest);
91545 testcase( rc!=SQLITE_OK );
91546 pDelete = p->pPrior;
91547 p->pPrior = pPrior;
91548 p->nSelectRow += pPrior->nSelectRow;
91549 if( pPrior->pLimit
91550 && sqlite3ExprIsInteger(pPrior->pLimit, &nLimit)
91551 && p->nSelectRow > (double)nLimit
91553 p->nSelectRow = (double)nLimit;
91555 if( addr ){
91556 sqlite3VdbeJumpHere(v, addr);
91558 break;
91560 case TK_EXCEPT:
91561 case TK_UNION: {
91562 int unionTab; /* Cursor number of the temporary table holding result */
91563 u8 op = 0; /* One of the SRT_ operations to apply to self */
91564 int priorOp; /* The SRT_ operation to apply to prior selects */
91565 Expr *pLimit, *pOffset; /* Saved values of p->nLimit and p->nOffset */
91566 int addr;
91567 SelectDest uniondest;
91569 testcase( p->op==TK_EXCEPT );
91570 testcase( p->op==TK_UNION );
91571 priorOp = SRT_Union;
91572 if( dest.eDest==priorOp && ALWAYS(!p->pLimit &&!p->pOffset) ){
91573 /* We can reuse a temporary table generated by a SELECT to our
91574 ** right.
91576 assert( p->pRightmost!=p ); /* Can only happen for leftward elements
91577 ** of a 3-way or more compound */
91578 assert( p->pLimit==0 ); /* Not allowed on leftward elements */
91579 assert( p->pOffset==0 ); /* Not allowed on leftward elements */
91580 unionTab = dest.iParm;
91581 }else{
91582 /* We will need to create our own temporary table to hold the
91583 ** intermediate results.
91585 unionTab = pParse->nTab++;
91586 assert( p->pOrderBy==0 );
91587 addr = sqlite3VdbeAddOp2(v, OP_OpenEphemeral, unionTab, 0);
91588 assert( p->addrOpenEphm[0] == -1 );
91589 p->addrOpenEphm[0] = addr;
91590 p->pRightmost->selFlags |= SF_UsesEphemeral;
91591 assert( p->pEList );
91594 /* Code the SELECT statements to our left
91596 assert( !pPrior->pOrderBy );
91597 sqlite3SelectDestInit(&uniondest, priorOp, unionTab);
91598 explainSetInteger(iSub1, pParse->iNextSelectId);
91599 rc = sqlite3Select(pParse, pPrior, &uniondest);
91600 if( rc ){
91601 goto multi_select_end;
91604 /* Code the current SELECT statement
91606 if( p->op==TK_EXCEPT ){
91607 op = SRT_Except;
91608 }else{
91609 assert( p->op==TK_UNION );
91610 op = SRT_Union;
91612 p->pPrior = 0;
91613 pLimit = p->pLimit;
91614 p->pLimit = 0;
91615 pOffset = p->pOffset;
91616 p->pOffset = 0;
91617 uniondest.eDest = op;
91618 explainSetInteger(iSub2, pParse->iNextSelectId);
91619 rc = sqlite3Select(pParse, p, &uniondest);
91620 testcase( rc!=SQLITE_OK );
91621 /* Query flattening in sqlite3Select() might refill p->pOrderBy.
91622 ** Be sure to delete p->pOrderBy, therefore, to avoid a memory leak. */
91623 sqlite3ExprListDelete(db, p->pOrderBy);
91624 pDelete = p->pPrior;
91625 p->pPrior = pPrior;
91626 p->pOrderBy = 0;
91627 if( p->op==TK_UNION ) p->nSelectRow += pPrior->nSelectRow;
91628 sqlite3ExprDelete(db, p->pLimit);
91629 p->pLimit = pLimit;
91630 p->pOffset = pOffset;
91631 p->iLimit = 0;
91632 p->iOffset = 0;
91634 /* Convert the data in the temporary table into whatever form
91635 ** it is that we currently need.
91637 assert( unionTab==dest.iParm || dest.eDest!=priorOp );
91638 if( dest.eDest!=priorOp ){
91639 int iCont, iBreak, iStart;
91640 assert( p->pEList );
91641 if( dest.eDest==SRT_Output ){
91642 Select *pFirst = p;
91643 while( pFirst->pPrior ) pFirst = pFirst->pPrior;
91644 generateColumnNames(pParse, 0, pFirst->pEList);
91646 iBreak = sqlite3VdbeMakeLabel(v);
91647 iCont = sqlite3VdbeMakeLabel(v);
91648 computeLimitRegisters(pParse, p, iBreak);
91649 sqlite3VdbeAddOp2(v, OP_Rewind, unionTab, iBreak);
91650 iStart = sqlite3VdbeCurrentAddr(v);
91651 selectInnerLoop(pParse, p, p->pEList, unionTab, p->pEList->nExpr,
91652 0, -1, &dest, iCont, iBreak);
91653 sqlite3VdbeResolveLabel(v, iCont);
91654 sqlite3VdbeAddOp2(v, OP_Next, unionTab, iStart);
91655 sqlite3VdbeResolveLabel(v, iBreak);
91656 sqlite3VdbeAddOp2(v, OP_Close, unionTab, 0);
91658 break;
91660 default: assert( p->op==TK_INTERSECT ); {
91661 int tab1, tab2;
91662 int iCont, iBreak, iStart;
91663 Expr *pLimit, *pOffset;
91664 int addr;
91665 SelectDest intersectdest;
91666 int r1;
91668 /* INTERSECT is different from the others since it requires
91669 ** two temporary tables. Hence it has its own case. Begin
91670 ** by allocating the tables we will need.
91672 tab1 = pParse->nTab++;
91673 tab2 = pParse->nTab++;
91674 assert( p->pOrderBy==0 );
91676 addr = sqlite3VdbeAddOp2(v, OP_OpenEphemeral, tab1, 0);
91677 assert( p->addrOpenEphm[0] == -1 );
91678 p->addrOpenEphm[0] = addr;
91679 p->pRightmost->selFlags |= SF_UsesEphemeral;
91680 assert( p->pEList );
91682 /* Code the SELECTs to our left into temporary table "tab1".
91684 sqlite3SelectDestInit(&intersectdest, SRT_Union, tab1);
91685 explainSetInteger(iSub1, pParse->iNextSelectId);
91686 rc = sqlite3Select(pParse, pPrior, &intersectdest);
91687 if( rc ){
91688 goto multi_select_end;
91691 /* Code the current SELECT into temporary table "tab2"
91693 addr = sqlite3VdbeAddOp2(v, OP_OpenEphemeral, tab2, 0);
91694 assert( p->addrOpenEphm[1] == -1 );
91695 p->addrOpenEphm[1] = addr;
91696 p->pPrior = 0;
91697 pLimit = p->pLimit;
91698 p->pLimit = 0;
91699 pOffset = p->pOffset;
91700 p->pOffset = 0;
91701 intersectdest.iParm = tab2;
91702 explainSetInteger(iSub2, pParse->iNextSelectId);
91703 rc = sqlite3Select(pParse, p, &intersectdest);
91704 testcase( rc!=SQLITE_OK );
91705 pDelete = p->pPrior;
91706 p->pPrior = pPrior;
91707 if( p->nSelectRow>pPrior->nSelectRow ) p->nSelectRow = pPrior->nSelectRow;
91708 sqlite3ExprDelete(db, p->pLimit);
91709 p->pLimit = pLimit;
91710 p->pOffset = pOffset;
91712 /* Generate code to take the intersection of the two temporary
91713 ** tables.
91715 assert( p->pEList );
91716 if( dest.eDest==SRT_Output ){
91717 Select *pFirst = p;
91718 while( pFirst->pPrior ) pFirst = pFirst->pPrior;
91719 generateColumnNames(pParse, 0, pFirst->pEList);
91721 iBreak = sqlite3VdbeMakeLabel(v);
91722 iCont = sqlite3VdbeMakeLabel(v);
91723 computeLimitRegisters(pParse, p, iBreak);
91724 sqlite3VdbeAddOp2(v, OP_Rewind, tab1, iBreak);
91725 r1 = sqlite3GetTempReg(pParse);
91726 iStart = sqlite3VdbeAddOp2(v, OP_RowKey, tab1, r1);
91727 sqlite3VdbeAddOp4Int(v, OP_NotFound, tab2, iCont, r1, 0);
91728 sqlite3ReleaseTempReg(pParse, r1);
91729 selectInnerLoop(pParse, p, p->pEList, tab1, p->pEList->nExpr,
91730 0, -1, &dest, iCont, iBreak);
91731 sqlite3VdbeResolveLabel(v, iCont);
91732 sqlite3VdbeAddOp2(v, OP_Next, tab1, iStart);
91733 sqlite3VdbeResolveLabel(v, iBreak);
91734 sqlite3VdbeAddOp2(v, OP_Close, tab2, 0);
91735 sqlite3VdbeAddOp2(v, OP_Close, tab1, 0);
91736 break;
91740 explainComposite(pParse, p->op, iSub1, iSub2, p->op!=TK_ALL);
91742 /* Compute collating sequences used by
91743 ** temporary tables needed to implement the compound select.
91744 ** Attach the KeyInfo structure to all temporary tables.
91746 ** This section is run by the right-most SELECT statement only.
91747 ** SELECT statements to the left always skip this part. The right-most
91748 ** SELECT might also skip this part if it has no ORDER BY clause and
91749 ** no temp tables are required.
91751 if( p->selFlags & SF_UsesEphemeral ){
91752 int i; /* Loop counter */
91753 KeyInfo *pKeyInfo; /* Collating sequence for the result set */
91754 Select *pLoop; /* For looping through SELECT statements */
91755 CollSeq **apColl; /* For looping through pKeyInfo->aColl[] */
91756 int nCol; /* Number of columns in result set */
91758 assert( p->pRightmost==p );
91759 nCol = p->pEList->nExpr;
91760 pKeyInfo = sqlite3DbMallocZero(db,
91761 sizeof(*pKeyInfo)+nCol*(sizeof(CollSeq*) + 1));
91762 if( !pKeyInfo ){
91763 rc = SQLITE_NOMEM;
91764 goto multi_select_end;
91767 pKeyInfo->enc = ENC(db);
91768 pKeyInfo->nField = (u16)nCol;
91770 for(i=0, apColl=pKeyInfo->aColl; i<nCol; i++, apColl++){
91771 *apColl = multiSelectCollSeq(pParse, p, i);
91772 if( 0==*apColl ){
91773 *apColl = db->pDfltColl;
91777 for(pLoop=p; pLoop; pLoop=pLoop->pPrior){
91778 for(i=0; i<2; i++){
91779 int addr = pLoop->addrOpenEphm[i];
91780 if( addr<0 ){
91781 /* If [0] is unused then [1] is also unused. So we can
91782 ** always safely abort as soon as the first unused slot is found */
91783 assert( pLoop->addrOpenEphm[1]<0 );
91784 break;
91786 sqlite3VdbeChangeP2(v, addr, nCol);
91787 sqlite3VdbeChangeP4(v, addr, (char*)pKeyInfo, P4_KEYINFO);
91788 pLoop->addrOpenEphm[i] = -1;
91791 sqlite3DbFree(db, pKeyInfo);
91794 multi_select_end:
91795 pDest->iMem = dest.iMem;
91796 pDest->nMem = dest.nMem;
91797 sqlite3SelectDelete(db, pDelete);
91798 return rc;
91800 #endif /* SQLITE_OMIT_COMPOUND_SELECT */
91803 ** Code an output subroutine for a coroutine implementation of a
91804 ** SELECT statment.
91806 ** The data to be output is contained in pIn->iMem. There are
91807 ** pIn->nMem columns to be output. pDest is where the output should
91808 ** be sent.
91810 ** regReturn is the number of the register holding the subroutine
91811 ** return address.
91813 ** If regPrev>0 then it is the first register in a vector that
91814 ** records the previous output. mem[regPrev] is a flag that is false
91815 ** if there has been no previous output. If regPrev>0 then code is
91816 ** generated to suppress duplicates. pKeyInfo is used for comparing
91817 ** keys.
91819 ** If the LIMIT found in p->iLimit is reached, jump immediately to
91820 ** iBreak.
91822 static int generateOutputSubroutine(
91823 Parse *pParse, /* Parsing context */
91824 Select *p, /* The SELECT statement */
91825 SelectDest *pIn, /* Coroutine supplying data */
91826 SelectDest *pDest, /* Where to send the data */
91827 int regReturn, /* The return address register */
91828 int regPrev, /* Previous result register. No uniqueness if 0 */
91829 KeyInfo *pKeyInfo, /* For comparing with previous entry */
91830 int p4type, /* The p4 type for pKeyInfo */
91831 int iBreak /* Jump here if we hit the LIMIT */
91833 Vdbe *v = pParse->pVdbe;
91834 int iContinue;
91835 int addr;
91837 addr = sqlite3VdbeCurrentAddr(v);
91838 iContinue = sqlite3VdbeMakeLabel(v);
91840 /* Suppress duplicates for UNION, EXCEPT, and INTERSECT
91842 if( regPrev ){
91843 int j1, j2;
91844 j1 = sqlite3VdbeAddOp1(v, OP_IfNot, regPrev);
91845 j2 = sqlite3VdbeAddOp4(v, OP_Compare, pIn->iMem, regPrev+1, pIn->nMem,
91846 (char*)pKeyInfo, p4type);
91847 sqlite3VdbeAddOp3(v, OP_Jump, j2+2, iContinue, j2+2);
91848 sqlite3VdbeJumpHere(v, j1);
91849 sqlite3ExprCodeCopy(pParse, pIn->iMem, regPrev+1, pIn->nMem);
91850 sqlite3VdbeAddOp2(v, OP_Integer, 1, regPrev);
91852 if( pParse->db->mallocFailed ) return 0;
91854 /* Suppress the the first OFFSET entries if there is an OFFSET clause
91856 codeOffset(v, p, iContinue);
91858 switch( pDest->eDest ){
91859 /* Store the result as data using a unique key.
91861 case SRT_Table:
91862 case SRT_EphemTab: {
91863 int r1 = sqlite3GetTempReg(pParse);
91864 int r2 = sqlite3GetTempReg(pParse);
91865 testcase( pDest->eDest==SRT_Table );
91866 testcase( pDest->eDest==SRT_EphemTab );
91867 sqlite3VdbeAddOp3(v, OP_MakeRecord, pIn->iMem, pIn->nMem, r1);
91868 sqlite3VdbeAddOp2(v, OP_NewRowid, pDest->iParm, r2);
91869 sqlite3VdbeAddOp3(v, OP_Insert, pDest->iParm, r1, r2);
91870 sqlite3VdbeChangeP5(v, OPFLAG_APPEND);
91871 sqlite3ReleaseTempReg(pParse, r2);
91872 sqlite3ReleaseTempReg(pParse, r1);
91873 break;
91876 #ifndef SQLITE_OMIT_SUBQUERY
91877 /* If we are creating a set for an "expr IN (SELECT ...)" construct,
91878 ** then there should be a single item on the stack. Write this
91879 ** item into the set table with bogus data.
91881 case SRT_Set: {
91882 int r1;
91883 assert( pIn->nMem==1 );
91884 p->affinity =
91885 sqlite3CompareAffinity(p->pEList->a[0].pExpr, pDest->affinity);
91886 r1 = sqlite3GetTempReg(pParse);
91887 sqlite3VdbeAddOp4(v, OP_MakeRecord, pIn->iMem, 1, r1, &p->affinity, 1);
91888 sqlite3ExprCacheAffinityChange(pParse, pIn->iMem, 1);
91889 sqlite3VdbeAddOp2(v, OP_IdxInsert, pDest->iParm, r1);
91890 sqlite3ReleaseTempReg(pParse, r1);
91891 break;
91894 #if 0 /* Never occurs on an ORDER BY query */
91895 /* If any row exist in the result set, record that fact and abort.
91897 case SRT_Exists: {
91898 sqlite3VdbeAddOp2(v, OP_Integer, 1, pDest->iParm);
91899 /* The LIMIT clause will terminate the loop for us */
91900 break;
91902 #endif
91904 /* If this is a scalar select that is part of an expression, then
91905 ** store the results in the appropriate memory cell and break out
91906 ** of the scan loop.
91908 case SRT_Mem: {
91909 assert( pIn->nMem==1 );
91910 sqlite3ExprCodeMove(pParse, pIn->iMem, pDest->iParm, 1);
91911 /* The LIMIT clause will jump out of the loop for us */
91912 break;
91914 #endif /* #ifndef SQLITE_OMIT_SUBQUERY */
91916 /* The results are stored in a sequence of registers
91917 ** starting at pDest->iMem. Then the co-routine yields.
91919 case SRT_Coroutine: {
91920 if( pDest->iMem==0 ){
91921 pDest->iMem = sqlite3GetTempRange(pParse, pIn->nMem);
91922 pDest->nMem = pIn->nMem;
91924 sqlite3ExprCodeMove(pParse, pIn->iMem, pDest->iMem, pDest->nMem);
91925 sqlite3VdbeAddOp1(v, OP_Yield, pDest->iParm);
91926 break;
91929 /* If none of the above, then the result destination must be
91930 ** SRT_Output. This routine is never called with any other
91931 ** destination other than the ones handled above or SRT_Output.
91933 ** For SRT_Output, results are stored in a sequence of registers.
91934 ** Then the OP_ResultRow opcode is used to cause sqlite3_step() to
91935 ** return the next row of result.
91937 default: {
91938 assert( pDest->eDest==SRT_Output );
91939 sqlite3VdbeAddOp2(v, OP_ResultRow, pIn->iMem, pIn->nMem);
91940 sqlite3ExprCacheAffinityChange(pParse, pIn->iMem, pIn->nMem);
91941 break;
91945 /* Jump to the end of the loop if the LIMIT is reached.
91947 if( p->iLimit ){
91948 sqlite3VdbeAddOp3(v, OP_IfZero, p->iLimit, iBreak, -1);
91951 /* Generate the subroutine return
91953 sqlite3VdbeResolveLabel(v, iContinue);
91954 sqlite3VdbeAddOp1(v, OP_Return, regReturn);
91956 return addr;
91960 ** Alternative compound select code generator for cases when there
91961 ** is an ORDER BY clause.
91963 ** We assume a query of the following form:
91965 ** <selectA> <operator> <selectB> ORDER BY <orderbylist>
91967 ** <operator> is one of UNION ALL, UNION, EXCEPT, or INTERSECT. The idea
91968 ** is to code both <selectA> and <selectB> with the ORDER BY clause as
91969 ** co-routines. Then run the co-routines in parallel and merge the results
91970 ** into the output. In addition to the two coroutines (called selectA and
91971 ** selectB) there are 7 subroutines:
91973 ** outA: Move the output of the selectA coroutine into the output
91974 ** of the compound query.
91976 ** outB: Move the output of the selectB coroutine into the output
91977 ** of the compound query. (Only generated for UNION and
91978 ** UNION ALL. EXCEPT and INSERTSECT never output a row that
91979 ** appears only in B.)
91981 ** AltB: Called when there is data from both coroutines and A<B.
91983 ** AeqB: Called when there is data from both coroutines and A==B.
91985 ** AgtB: Called when there is data from both coroutines and A>B.
91987 ** EofA: Called when data is exhausted from selectA.
91989 ** EofB: Called when data is exhausted from selectB.
91991 ** The implementation of the latter five subroutines depend on which
91992 ** <operator> is used:
91995 ** UNION ALL UNION EXCEPT INTERSECT
91996 ** ------------- ----------------- -------------- -----------------
91997 ** AltB: outA, nextA outA, nextA outA, nextA nextA
91999 ** AeqB: outA, nextA nextA nextA outA, nextA
92001 ** AgtB: outB, nextB outB, nextB nextB nextB
92003 ** EofA: outB, nextB outB, nextB halt halt
92005 ** EofB: outA, nextA outA, nextA outA, nextA halt
92007 ** In the AltB, AeqB, and AgtB subroutines, an EOF on A following nextA
92008 ** causes an immediate jump to EofA and an EOF on B following nextB causes
92009 ** an immediate jump to EofB. Within EofA and EofB, and EOF on entry or
92010 ** following nextX causes a jump to the end of the select processing.
92012 ** Duplicate removal in the UNION, EXCEPT, and INTERSECT cases is handled
92013 ** within the output subroutine. The regPrev register set holds the previously
92014 ** output value. A comparison is made against this value and the output
92015 ** is skipped if the next results would be the same as the previous.
92017 ** The implementation plan is to implement the two coroutines and seven
92018 ** subroutines first, then put the control logic at the bottom. Like this:
92020 ** goto Init
92021 ** coA: coroutine for left query (A)
92022 ** coB: coroutine for right query (B)
92023 ** outA: output one row of A
92024 ** outB: output one row of B (UNION and UNION ALL only)
92025 ** EofA: ...
92026 ** EofB: ...
92027 ** AltB: ...
92028 ** AeqB: ...
92029 ** AgtB: ...
92030 ** Init: initialize coroutine registers
92031 ** yield coA
92032 ** if eof(A) goto EofA
92033 ** yield coB
92034 ** if eof(B) goto EofB
92035 ** Cmpr: Compare A, B
92036 ** Jump AltB, AeqB, AgtB
92037 ** End: ...
92039 ** We call AltB, AeqB, AgtB, EofA, and EofB "subroutines" but they are not
92040 ** actually called using Gosub and they do not Return. EofA and EofB loop
92041 ** until all data is exhausted then jump to the "end" labe. AltB, AeqB,
92042 ** and AgtB jump to either L2 or to one of EofA or EofB.
92044 #ifndef SQLITE_OMIT_COMPOUND_SELECT
92045 static int multiSelectOrderBy(
92046 Parse *pParse, /* Parsing context */
92047 Select *p, /* The right-most of SELECTs to be coded */
92048 SelectDest *pDest /* What to do with query results */
92050 int i, j; /* Loop counters */
92051 Select *pPrior; /* Another SELECT immediately to our left */
92052 Vdbe *v; /* Generate code to this VDBE */
92053 SelectDest destA; /* Destination for coroutine A */
92054 SelectDest destB; /* Destination for coroutine B */
92055 int regAddrA; /* Address register for select-A coroutine */
92056 int regEofA; /* Flag to indicate when select-A is complete */
92057 int regAddrB; /* Address register for select-B coroutine */
92058 int regEofB; /* Flag to indicate when select-B is complete */
92059 int addrSelectA; /* Address of the select-A coroutine */
92060 int addrSelectB; /* Address of the select-B coroutine */
92061 int regOutA; /* Address register for the output-A subroutine */
92062 int regOutB; /* Address register for the output-B subroutine */
92063 int addrOutA; /* Address of the output-A subroutine */
92064 int addrOutB = 0; /* Address of the output-B subroutine */
92065 int addrEofA; /* Address of the select-A-exhausted subroutine */
92066 int addrEofB; /* Address of the select-B-exhausted subroutine */
92067 int addrAltB; /* Address of the A<B subroutine */
92068 int addrAeqB; /* Address of the A==B subroutine */
92069 int addrAgtB; /* Address of the A>B subroutine */
92070 int regLimitA; /* Limit register for select-A */
92071 int regLimitB; /* Limit register for select-A */
92072 int regPrev; /* A range of registers to hold previous output */
92073 int savedLimit; /* Saved value of p->iLimit */
92074 int savedOffset; /* Saved value of p->iOffset */
92075 int labelCmpr; /* Label for the start of the merge algorithm */
92076 int labelEnd; /* Label for the end of the overall SELECT stmt */
92077 int j1; /* Jump instructions that get retargetted */
92078 int op; /* One of TK_ALL, TK_UNION, TK_EXCEPT, TK_INTERSECT */
92079 KeyInfo *pKeyDup = 0; /* Comparison information for duplicate removal */
92080 KeyInfo *pKeyMerge; /* Comparison information for merging rows */
92081 sqlite3 *db; /* Database connection */
92082 ExprList *pOrderBy; /* The ORDER BY clause */
92083 int nOrderBy; /* Number of terms in the ORDER BY clause */
92084 int *aPermute; /* Mapping from ORDER BY terms to result set columns */
92085 #ifndef SQLITE_OMIT_EXPLAIN
92086 int iSub1; /* EQP id of left-hand query */
92087 int iSub2; /* EQP id of right-hand query */
92088 #endif
92090 assert( p->pOrderBy!=0 );
92091 assert( pKeyDup==0 ); /* "Managed" code needs this. Ticket #3382. */
92092 db = pParse->db;
92093 v = pParse->pVdbe;
92094 assert( v!=0 ); /* Already thrown the error if VDBE alloc failed */
92095 labelEnd = sqlite3VdbeMakeLabel(v);
92096 labelCmpr = sqlite3VdbeMakeLabel(v);
92099 /* Patch up the ORDER BY clause
92101 op = p->op;
92102 pPrior = p->pPrior;
92103 assert( pPrior->pOrderBy==0 );
92104 pOrderBy = p->pOrderBy;
92105 assert( pOrderBy );
92106 nOrderBy = pOrderBy->nExpr;
92108 /* For operators other than UNION ALL we have to make sure that
92109 ** the ORDER BY clause covers every term of the result set. Add
92110 ** terms to the ORDER BY clause as necessary.
92112 if( op!=TK_ALL ){
92113 for(i=1; db->mallocFailed==0 && i<=p->pEList->nExpr; i++){
92114 struct ExprList_item *pItem;
92115 for(j=0, pItem=pOrderBy->a; j<nOrderBy; j++, pItem++){
92116 assert( pItem->iCol>0 );
92117 if( pItem->iCol==i ) break;
92119 if( j==nOrderBy ){
92120 Expr *pNew = sqlite3Expr(db, TK_INTEGER, 0);
92121 if( pNew==0 ) return SQLITE_NOMEM;
92122 pNew->flags |= EP_IntValue;
92123 pNew->u.iValue = i;
92124 pOrderBy = sqlite3ExprListAppend(pParse, pOrderBy, pNew);
92125 pOrderBy->a[nOrderBy++].iCol = (u16)i;
92130 /* Compute the comparison permutation and keyinfo that is used with
92131 ** the permutation used to determine if the next
92132 ** row of results comes from selectA or selectB. Also add explicit
92133 ** collations to the ORDER BY clause terms so that when the subqueries
92134 ** to the right and the left are evaluated, they use the correct
92135 ** collation.
92137 aPermute = sqlite3DbMallocRaw(db, sizeof(int)*nOrderBy);
92138 if( aPermute ){
92139 struct ExprList_item *pItem;
92140 for(i=0, pItem=pOrderBy->a; i<nOrderBy; i++, pItem++){
92141 assert( pItem->iCol>0 && pItem->iCol<=p->pEList->nExpr );
92142 aPermute[i] = pItem->iCol - 1;
92144 pKeyMerge =
92145 sqlite3DbMallocRaw(db, sizeof(*pKeyMerge)+nOrderBy*(sizeof(CollSeq*)+1));
92146 if( pKeyMerge ){
92147 pKeyMerge->aSortOrder = (u8*)&pKeyMerge->aColl[nOrderBy];
92148 pKeyMerge->nField = (u16)nOrderBy;
92149 pKeyMerge->enc = ENC(db);
92150 for(i=0; i<nOrderBy; i++){
92151 CollSeq *pColl;
92152 Expr *pTerm = pOrderBy->a[i].pExpr;
92153 if( pTerm->flags & EP_ExpCollate ){
92154 pColl = pTerm->pColl;
92155 }else{
92156 pColl = multiSelectCollSeq(pParse, p, aPermute[i]);
92157 pTerm->flags |= EP_ExpCollate;
92158 pTerm->pColl = pColl;
92160 pKeyMerge->aColl[i] = pColl;
92161 pKeyMerge->aSortOrder[i] = pOrderBy->a[i].sortOrder;
92164 }else{
92165 pKeyMerge = 0;
92168 /* Reattach the ORDER BY clause to the query.
92170 p->pOrderBy = pOrderBy;
92171 pPrior->pOrderBy = sqlite3ExprListDup(pParse->db, pOrderBy, 0);
92173 /* Allocate a range of temporary registers and the KeyInfo needed
92174 ** for the logic that removes duplicate result rows when the
92175 ** operator is UNION, EXCEPT, or INTERSECT (but not UNION ALL).
92177 if( op==TK_ALL ){
92178 regPrev = 0;
92179 }else{
92180 int nExpr = p->pEList->nExpr;
92181 assert( nOrderBy>=nExpr || db->mallocFailed );
92182 regPrev = sqlite3GetTempRange(pParse, nExpr+1);
92183 sqlite3VdbeAddOp2(v, OP_Integer, 0, regPrev);
92184 pKeyDup = sqlite3DbMallocZero(db,
92185 sizeof(*pKeyDup) + nExpr*(sizeof(CollSeq*)+1) );
92186 if( pKeyDup ){
92187 pKeyDup->aSortOrder = (u8*)&pKeyDup->aColl[nExpr];
92188 pKeyDup->nField = (u16)nExpr;
92189 pKeyDup->enc = ENC(db);
92190 for(i=0; i<nExpr; i++){
92191 pKeyDup->aColl[i] = multiSelectCollSeq(pParse, p, i);
92192 pKeyDup->aSortOrder[i] = 0;
92197 /* Separate the left and the right query from one another
92199 p->pPrior = 0;
92200 sqlite3ResolveOrderGroupBy(pParse, p, p->pOrderBy, "ORDER");
92201 if( pPrior->pPrior==0 ){
92202 sqlite3ResolveOrderGroupBy(pParse, pPrior, pPrior->pOrderBy, "ORDER");
92205 /* Compute the limit registers */
92206 computeLimitRegisters(pParse, p, labelEnd);
92207 if( p->iLimit && op==TK_ALL ){
92208 regLimitA = ++pParse->nMem;
92209 regLimitB = ++pParse->nMem;
92210 sqlite3VdbeAddOp2(v, OP_Copy, p->iOffset ? p->iOffset+1 : p->iLimit,
92211 regLimitA);
92212 sqlite3VdbeAddOp2(v, OP_Copy, regLimitA, regLimitB);
92213 }else{
92214 regLimitA = regLimitB = 0;
92216 sqlite3ExprDelete(db, p->pLimit);
92217 p->pLimit = 0;
92218 sqlite3ExprDelete(db, p->pOffset);
92219 p->pOffset = 0;
92221 regAddrA = ++pParse->nMem;
92222 regEofA = ++pParse->nMem;
92223 regAddrB = ++pParse->nMem;
92224 regEofB = ++pParse->nMem;
92225 regOutA = ++pParse->nMem;
92226 regOutB = ++pParse->nMem;
92227 sqlite3SelectDestInit(&destA, SRT_Coroutine, regAddrA);
92228 sqlite3SelectDestInit(&destB, SRT_Coroutine, regAddrB);
92230 /* Jump past the various subroutines and coroutines to the main
92231 ** merge loop
92233 j1 = sqlite3VdbeAddOp0(v, OP_Goto);
92234 addrSelectA = sqlite3VdbeCurrentAddr(v);
92237 /* Generate a coroutine to evaluate the SELECT statement to the
92238 ** left of the compound operator - the "A" select.
92240 VdbeNoopComment((v, "Begin coroutine for left SELECT"));
92241 pPrior->iLimit = regLimitA;
92242 explainSetInteger(iSub1, pParse->iNextSelectId);
92243 sqlite3Select(pParse, pPrior, &destA);
92244 sqlite3VdbeAddOp2(v, OP_Integer, 1, regEofA);
92245 sqlite3VdbeAddOp1(v, OP_Yield, regAddrA);
92246 VdbeNoopComment((v, "End coroutine for left SELECT"));
92248 /* Generate a coroutine to evaluate the SELECT statement on
92249 ** the right - the "B" select
92251 addrSelectB = sqlite3VdbeCurrentAddr(v);
92252 VdbeNoopComment((v, "Begin coroutine for right SELECT"));
92253 savedLimit = p->iLimit;
92254 savedOffset = p->iOffset;
92255 p->iLimit = regLimitB;
92256 p->iOffset = 0;
92257 explainSetInteger(iSub2, pParse->iNextSelectId);
92258 sqlite3Select(pParse, p, &destB);
92259 p->iLimit = savedLimit;
92260 p->iOffset = savedOffset;
92261 sqlite3VdbeAddOp2(v, OP_Integer, 1, regEofB);
92262 sqlite3VdbeAddOp1(v, OP_Yield, regAddrB);
92263 VdbeNoopComment((v, "End coroutine for right SELECT"));
92265 /* Generate a subroutine that outputs the current row of the A
92266 ** select as the next output row of the compound select.
92268 VdbeNoopComment((v, "Output routine for A"));
92269 addrOutA = generateOutputSubroutine(pParse,
92270 p, &destA, pDest, regOutA,
92271 regPrev, pKeyDup, P4_KEYINFO_HANDOFF, labelEnd);
92273 /* Generate a subroutine that outputs the current row of the B
92274 ** select as the next output row of the compound select.
92276 if( op==TK_ALL || op==TK_UNION ){
92277 VdbeNoopComment((v, "Output routine for B"));
92278 addrOutB = generateOutputSubroutine(pParse,
92279 p, &destB, pDest, regOutB,
92280 regPrev, pKeyDup, P4_KEYINFO_STATIC, labelEnd);
92283 /* Generate a subroutine to run when the results from select A
92284 ** are exhausted and only data in select B remains.
92286 VdbeNoopComment((v, "eof-A subroutine"));
92287 if( op==TK_EXCEPT || op==TK_INTERSECT ){
92288 addrEofA = sqlite3VdbeAddOp2(v, OP_Goto, 0, labelEnd);
92289 }else{
92290 addrEofA = sqlite3VdbeAddOp2(v, OP_If, regEofB, labelEnd);
92291 sqlite3VdbeAddOp2(v, OP_Gosub, regOutB, addrOutB);
92292 sqlite3VdbeAddOp1(v, OP_Yield, regAddrB);
92293 sqlite3VdbeAddOp2(v, OP_Goto, 0, addrEofA);
92294 p->nSelectRow += pPrior->nSelectRow;
92297 /* Generate a subroutine to run when the results from select B
92298 ** are exhausted and only data in select A remains.
92300 if( op==TK_INTERSECT ){
92301 addrEofB = addrEofA;
92302 if( p->nSelectRow > pPrior->nSelectRow ) p->nSelectRow = pPrior->nSelectRow;
92303 }else{
92304 VdbeNoopComment((v, "eof-B subroutine"));
92305 addrEofB = sqlite3VdbeAddOp2(v, OP_If, regEofA, labelEnd);
92306 sqlite3VdbeAddOp2(v, OP_Gosub, regOutA, addrOutA);
92307 sqlite3VdbeAddOp1(v, OP_Yield, regAddrA);
92308 sqlite3VdbeAddOp2(v, OP_Goto, 0, addrEofB);
92311 /* Generate code to handle the case of A<B
92313 VdbeNoopComment((v, "A-lt-B subroutine"));
92314 addrAltB = sqlite3VdbeAddOp2(v, OP_Gosub, regOutA, addrOutA);
92315 sqlite3VdbeAddOp1(v, OP_Yield, regAddrA);
92316 sqlite3VdbeAddOp2(v, OP_If, regEofA, addrEofA);
92317 sqlite3VdbeAddOp2(v, OP_Goto, 0, labelCmpr);
92319 /* Generate code to handle the case of A==B
92321 if( op==TK_ALL ){
92322 addrAeqB = addrAltB;
92323 }else if( op==TK_INTERSECT ){
92324 addrAeqB = addrAltB;
92325 addrAltB++;
92326 }else{
92327 VdbeNoopComment((v, "A-eq-B subroutine"));
92328 addrAeqB =
92329 sqlite3VdbeAddOp1(v, OP_Yield, regAddrA);
92330 sqlite3VdbeAddOp2(v, OP_If, regEofA, addrEofA);
92331 sqlite3VdbeAddOp2(v, OP_Goto, 0, labelCmpr);
92334 /* Generate code to handle the case of A>B
92336 VdbeNoopComment((v, "A-gt-B subroutine"));
92337 addrAgtB = sqlite3VdbeCurrentAddr(v);
92338 if( op==TK_ALL || op==TK_UNION ){
92339 sqlite3VdbeAddOp2(v, OP_Gosub, regOutB, addrOutB);
92341 sqlite3VdbeAddOp1(v, OP_Yield, regAddrB);
92342 sqlite3VdbeAddOp2(v, OP_If, regEofB, addrEofB);
92343 sqlite3VdbeAddOp2(v, OP_Goto, 0, labelCmpr);
92345 /* This code runs once to initialize everything.
92347 sqlite3VdbeJumpHere(v, j1);
92348 sqlite3VdbeAddOp2(v, OP_Integer, 0, regEofA);
92349 sqlite3VdbeAddOp2(v, OP_Integer, 0, regEofB);
92350 sqlite3VdbeAddOp2(v, OP_Gosub, regAddrA, addrSelectA);
92351 sqlite3VdbeAddOp2(v, OP_Gosub, regAddrB, addrSelectB);
92352 sqlite3VdbeAddOp2(v, OP_If, regEofA, addrEofA);
92353 sqlite3VdbeAddOp2(v, OP_If, regEofB, addrEofB);
92355 /* Implement the main merge loop
92357 sqlite3VdbeResolveLabel(v, labelCmpr);
92358 sqlite3VdbeAddOp4(v, OP_Permutation, 0, 0, 0, (char*)aPermute, P4_INTARRAY);
92359 sqlite3VdbeAddOp4(v, OP_Compare, destA.iMem, destB.iMem, nOrderBy,
92360 (char*)pKeyMerge, P4_KEYINFO_HANDOFF);
92361 sqlite3VdbeAddOp3(v, OP_Jump, addrAltB, addrAeqB, addrAgtB);
92363 /* Release temporary registers
92365 if( regPrev ){
92366 sqlite3ReleaseTempRange(pParse, regPrev, nOrderBy+1);
92369 /* Jump to the this point in order to terminate the query.
92371 sqlite3VdbeResolveLabel(v, labelEnd);
92373 /* Set the number of output columns
92375 if( pDest->eDest==SRT_Output ){
92376 Select *pFirst = pPrior;
92377 while( pFirst->pPrior ) pFirst = pFirst->pPrior;
92378 generateColumnNames(pParse, 0, pFirst->pEList);
92381 /* Reassembly the compound query so that it will be freed correctly
92382 ** by the calling function */
92383 if( p->pPrior ){
92384 sqlite3SelectDelete(db, p->pPrior);
92386 p->pPrior = pPrior;
92388 /*** TBD: Insert subroutine calls to close cursors on incomplete
92389 **** subqueries ****/
92390 explainComposite(pParse, p->op, iSub1, iSub2, 0);
92391 return SQLITE_OK;
92393 #endif
92395 #if !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW)
92396 /* Forward Declarations */
92397 static void substExprList(sqlite3*, ExprList*, int, ExprList*);
92398 static void substSelect(sqlite3*, Select *, int, ExprList *);
92401 ** Scan through the expression pExpr. Replace every reference to
92402 ** a column in table number iTable with a copy of the iColumn-th
92403 ** entry in pEList. (But leave references to the ROWID column
92404 ** unchanged.)
92406 ** This routine is part of the flattening procedure. A subquery
92407 ** whose result set is defined by pEList appears as entry in the
92408 ** FROM clause of a SELECT such that the VDBE cursor assigned to that
92409 ** FORM clause entry is iTable. This routine make the necessary
92410 ** changes to pExpr so that it refers directly to the source table
92411 ** of the subquery rather the result set of the subquery.
92413 static Expr *substExpr(
92414 sqlite3 *db, /* Report malloc errors to this connection */
92415 Expr *pExpr, /* Expr in which substitution occurs */
92416 int iTable, /* Table to be substituted */
92417 ExprList *pEList /* Substitute expressions */
92419 if( pExpr==0 ) return 0;
92420 if( pExpr->op==TK_COLUMN && pExpr->iTable==iTable ){
92421 if( pExpr->iColumn<0 ){
92422 pExpr->op = TK_NULL;
92423 }else{
92424 Expr *pNew;
92425 assert( pEList!=0 && pExpr->iColumn<pEList->nExpr );
92426 assert( pExpr->pLeft==0 && pExpr->pRight==0 );
92427 pNew = sqlite3ExprDup(db, pEList->a[pExpr->iColumn].pExpr, 0);
92428 if( pNew && pExpr->pColl ){
92429 pNew->pColl = pExpr->pColl;
92431 sqlite3ExprDelete(db, pExpr);
92432 pExpr = pNew;
92434 }else{
92435 pExpr->pLeft = substExpr(db, pExpr->pLeft, iTable, pEList);
92436 pExpr->pRight = substExpr(db, pExpr->pRight, iTable, pEList);
92437 if( ExprHasProperty(pExpr, EP_xIsSelect) ){
92438 substSelect(db, pExpr->x.pSelect, iTable, pEList);
92439 }else{
92440 substExprList(db, pExpr->x.pList, iTable, pEList);
92443 return pExpr;
92445 static void substExprList(
92446 sqlite3 *db, /* Report malloc errors here */
92447 ExprList *pList, /* List to scan and in which to make substitutes */
92448 int iTable, /* Table to be substituted */
92449 ExprList *pEList /* Substitute values */
92451 int i;
92452 if( pList==0 ) return;
92453 for(i=0; i<pList->nExpr; i++){
92454 pList->a[i].pExpr = substExpr(db, pList->a[i].pExpr, iTable, pEList);
92457 static void substSelect(
92458 sqlite3 *db, /* Report malloc errors here */
92459 Select *p, /* SELECT statement in which to make substitutions */
92460 int iTable, /* Table to be replaced */
92461 ExprList *pEList /* Substitute values */
92463 SrcList *pSrc;
92464 struct SrcList_item *pItem;
92465 int i;
92466 if( !p ) return;
92467 substExprList(db, p->pEList, iTable, pEList);
92468 substExprList(db, p->pGroupBy, iTable, pEList);
92469 substExprList(db, p->pOrderBy, iTable, pEList);
92470 p->pHaving = substExpr(db, p->pHaving, iTable, pEList);
92471 p->pWhere = substExpr(db, p->pWhere, iTable, pEList);
92472 substSelect(db, p->pPrior, iTable, pEList);
92473 pSrc = p->pSrc;
92474 assert( pSrc ); /* Even for (SELECT 1) we have: pSrc!=0 but pSrc->nSrc==0 */
92475 if( ALWAYS(pSrc) ){
92476 for(i=pSrc->nSrc, pItem=pSrc->a; i>0; i--, pItem++){
92477 substSelect(db, pItem->pSelect, iTable, pEList);
92481 #endif /* !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW) */
92483 #if !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW)
92485 ** This routine attempts to flatten subqueries in order to speed
92486 ** execution. It returns 1 if it makes changes and 0 if no flattening
92487 ** occurs.
92489 ** To understand the concept of flattening, consider the following
92490 ** query:
92492 ** SELECT a FROM (SELECT x+y AS a FROM t1 WHERE z<100) WHERE a>5
92494 ** The default way of implementing this query is to execute the
92495 ** subquery first and store the results in a temporary table, then
92496 ** run the outer query on that temporary table. This requires two
92497 ** passes over the data. Furthermore, because the temporary table
92498 ** has no indices, the WHERE clause on the outer query cannot be
92499 ** optimized.
92501 ** This routine attempts to rewrite queries such as the above into
92502 ** a single flat select, like this:
92504 ** SELECT x+y AS a FROM t1 WHERE z<100 AND a>5
92506 ** The code generated for this simpification gives the same result
92507 ** but only has to scan the data once. And because indices might
92508 ** exist on the table t1, a complete scan of the data might be
92509 ** avoided.
92511 ** Flattening is only attempted if all of the following are true:
92513 ** (1) The subquery and the outer query do not both use aggregates.
92515 ** (2) The subquery is not an aggregate or the outer query is not a join.
92517 ** (3) The subquery is not the right operand of a left outer join
92518 ** (Originally ticket #306. Strengthened by ticket #3300)
92520 ** (4) The subquery is not DISTINCT.
92522 ** (**) At one point restrictions (4) and (5) defined a subset of DISTINCT
92523 ** sub-queries that were excluded from this optimization. Restriction
92524 ** (4) has since been expanded to exclude all DISTINCT subqueries.
92526 ** (6) The subquery does not use aggregates or the outer query is not
92527 ** DISTINCT.
92529 ** (7) The subquery has a FROM clause.
92531 ** (8) The subquery does not use LIMIT or the outer query is not a join.
92533 ** (9) The subquery does not use LIMIT or the outer query does not use
92534 ** aggregates.
92536 ** (10) The subquery does not use aggregates or the outer query does not
92537 ** use LIMIT.
92539 ** (11) The subquery and the outer query do not both have ORDER BY clauses.
92541 ** (**) Not implemented. Subsumed into restriction (3). Was previously
92542 ** a separate restriction deriving from ticket #350.
92544 ** (13) The subquery and outer query do not both use LIMIT.
92546 ** (14) The subquery does not use OFFSET.
92548 ** (15) The outer query is not part of a compound select or the
92549 ** subquery does not have a LIMIT clause.
92550 ** (See ticket #2339 and ticket [02a8e81d44]).
92552 ** (16) The outer query is not an aggregate or the subquery does
92553 ** not contain ORDER BY. (Ticket #2942) This used to not matter
92554 ** until we introduced the group_concat() function.
92556 ** (17) The sub-query is not a compound select, or it is a UNION ALL
92557 ** compound clause made up entirely of non-aggregate queries, and
92558 ** the parent query:
92560 ** * is not itself part of a compound select,
92561 ** * is not an aggregate or DISTINCT query, and
92562 ** * has no other tables or sub-selects in the FROM clause.
92564 ** The parent and sub-query may contain WHERE clauses. Subject to
92565 ** rules (11), (13) and (14), they may also contain ORDER BY,
92566 ** LIMIT and OFFSET clauses.
92568 ** (18) If the sub-query is a compound select, then all terms of the
92569 ** ORDER by clause of the parent must be simple references to
92570 ** columns of the sub-query.
92572 ** (19) The subquery does not use LIMIT or the outer query does not
92573 ** have a WHERE clause.
92575 ** (20) If the sub-query is a compound select, then it must not use
92576 ** an ORDER BY clause. Ticket #3773. We could relax this constraint
92577 ** somewhat by saying that the terms of the ORDER BY clause must
92578 ** appear as unmodified result columns in the outer query. But
92579 ** have other optimizations in mind to deal with that case.
92581 ** (21) The subquery does not use LIMIT or the outer query is not
92582 ** DISTINCT. (See ticket [752e1646fc]).
92584 ** In this routine, the "p" parameter is a pointer to the outer query.
92585 ** The subquery is p->pSrc->a[iFrom]. isAgg is true if the outer query
92586 ** uses aggregates and subqueryIsAgg is true if the subquery uses aggregates.
92588 ** If flattening is not attempted, this routine is a no-op and returns 0.
92589 ** If flattening is attempted this routine returns 1.
92591 ** All of the expression analysis must occur on both the outer query and
92592 ** the subquery before this routine runs.
92594 static int flattenSubquery(
92595 Parse *pParse, /* Parsing context */
92596 Select *p, /* The parent or outer SELECT statement */
92597 int iFrom, /* Index in p->pSrc->a[] of the inner subquery */
92598 int isAgg, /* True if outer SELECT uses aggregate functions */
92599 int subqueryIsAgg /* True if the subquery uses aggregate functions */
92601 const char *zSavedAuthContext = pParse->zAuthContext;
92602 Select *pParent;
92603 Select *pSub; /* The inner query or "subquery" */
92604 Select *pSub1; /* Pointer to the rightmost select in sub-query */
92605 SrcList *pSrc; /* The FROM clause of the outer query */
92606 SrcList *pSubSrc; /* The FROM clause of the subquery */
92607 ExprList *pList; /* The result set of the outer query */
92608 int iParent; /* VDBE cursor number of the pSub result set temp table */
92609 int i; /* Loop counter */
92610 Expr *pWhere; /* The WHERE clause */
92611 struct SrcList_item *pSubitem; /* The subquery */
92612 sqlite3 *db = pParse->db;
92614 /* Check to see if flattening is permitted. Return 0 if not.
92616 assert( p!=0 );
92617 assert( p->pPrior==0 ); /* Unable to flatten compound queries */
92618 if( db->flags & SQLITE_QueryFlattener ) return 0;
92619 pSrc = p->pSrc;
92620 assert( pSrc && iFrom>=0 && iFrom<pSrc->nSrc );
92621 pSubitem = &pSrc->a[iFrom];
92622 iParent = pSubitem->iCursor;
92623 pSub = pSubitem->pSelect;
92624 assert( pSub!=0 );
92625 if( isAgg && subqueryIsAgg ) return 0; /* Restriction (1) */
92626 if( subqueryIsAgg && pSrc->nSrc>1 ) return 0; /* Restriction (2) */
92627 pSubSrc = pSub->pSrc;
92628 assert( pSubSrc );
92629 /* Prior to version 3.1.2, when LIMIT and OFFSET had to be simple constants,
92630 ** not arbitrary expresssions, we allowed some combining of LIMIT and OFFSET
92631 ** because they could be computed at compile-time. But when LIMIT and OFFSET
92632 ** became arbitrary expressions, we were forced to add restrictions (13)
92633 ** and (14). */
92634 if( pSub->pLimit && p->pLimit ) return 0; /* Restriction (13) */
92635 if( pSub->pOffset ) return 0; /* Restriction (14) */
92636 if( p->pRightmost && pSub->pLimit ){
92637 return 0; /* Restriction (15) */
92639 if( pSubSrc->nSrc==0 ) return 0; /* Restriction (7) */
92640 if( pSub->selFlags & SF_Distinct ) return 0; /* Restriction (5) */
92641 if( pSub->pLimit && (pSrc->nSrc>1 || isAgg) ){
92642 return 0; /* Restrictions (8)(9) */
92644 if( (p->selFlags & SF_Distinct)!=0 && subqueryIsAgg ){
92645 return 0; /* Restriction (6) */
92647 if( p->pOrderBy && pSub->pOrderBy ){
92648 return 0; /* Restriction (11) */
92650 if( isAgg && pSub->pOrderBy ) return 0; /* Restriction (16) */
92651 if( pSub->pLimit && p->pWhere ) return 0; /* Restriction (19) */
92652 if( pSub->pLimit && (p->selFlags & SF_Distinct)!=0 ){
92653 return 0; /* Restriction (21) */
92656 /* OBSOLETE COMMENT 1:
92657 ** Restriction 3: If the subquery is a join, make sure the subquery is
92658 ** not used as the right operand of an outer join. Examples of why this
92659 ** is not allowed:
92661 ** t1 LEFT OUTER JOIN (t2 JOIN t3)
92663 ** If we flatten the above, we would get
92665 ** (t1 LEFT OUTER JOIN t2) JOIN t3
92667 ** which is not at all the same thing.
92669 ** OBSOLETE COMMENT 2:
92670 ** Restriction 12: If the subquery is the right operand of a left outer
92671 ** join, make sure the subquery has no WHERE clause.
92672 ** An examples of why this is not allowed:
92674 ** t1 LEFT OUTER JOIN (SELECT * FROM t2 WHERE t2.x>0)
92676 ** If we flatten the above, we would get
92678 ** (t1 LEFT OUTER JOIN t2) WHERE t2.x>0
92680 ** But the t2.x>0 test will always fail on a NULL row of t2, which
92681 ** effectively converts the OUTER JOIN into an INNER JOIN.
92683 ** THIS OVERRIDES OBSOLETE COMMENTS 1 AND 2 ABOVE:
92684 ** Ticket #3300 shows that flattening the right term of a LEFT JOIN
92685 ** is fraught with danger. Best to avoid the whole thing. If the
92686 ** subquery is the right term of a LEFT JOIN, then do not flatten.
92688 if( (pSubitem->jointype & JT_OUTER)!=0 ){
92689 return 0;
92692 /* Restriction 17: If the sub-query is a compound SELECT, then it must
92693 ** use only the UNION ALL operator. And none of the simple select queries
92694 ** that make up the compound SELECT are allowed to be aggregate or distinct
92695 ** queries.
92697 if( pSub->pPrior ){
92698 if( pSub->pOrderBy ){
92699 return 0; /* Restriction 20 */
92701 if( isAgg || (p->selFlags & SF_Distinct)!=0 || pSrc->nSrc!=1 ){
92702 return 0;
92704 for(pSub1=pSub; pSub1; pSub1=pSub1->pPrior){
92705 testcase( (pSub1->selFlags & (SF_Distinct|SF_Aggregate))==SF_Distinct );
92706 testcase( (pSub1->selFlags & (SF_Distinct|SF_Aggregate))==SF_Aggregate );
92707 if( (pSub1->selFlags & (SF_Distinct|SF_Aggregate))!=0
92708 || (pSub1->pPrior && pSub1->op!=TK_ALL)
92709 || NEVER(pSub1->pSrc==0) || pSub1->pSrc->nSrc!=1
92711 return 0;
92715 /* Restriction 18. */
92716 if( p->pOrderBy ){
92717 int ii;
92718 for(ii=0; ii<p->pOrderBy->nExpr; ii++){
92719 if( p->pOrderBy->a[ii].iCol==0 ) return 0;
92724 /***** If we reach this point, flattening is permitted. *****/
92726 /* Authorize the subquery */
92727 pParse->zAuthContext = pSubitem->zName;
92728 sqlite3AuthCheck(pParse, SQLITE_SELECT, 0, 0, 0);
92729 pParse->zAuthContext = zSavedAuthContext;
92731 /* If the sub-query is a compound SELECT statement, then (by restrictions
92732 ** 17 and 18 above) it must be a UNION ALL and the parent query must
92733 ** be of the form:
92735 ** SELECT <expr-list> FROM (<sub-query>) <where-clause>
92737 ** followed by any ORDER BY, LIMIT and/or OFFSET clauses. This block
92738 ** creates N-1 copies of the parent query without any ORDER BY, LIMIT or
92739 ** OFFSET clauses and joins them to the left-hand-side of the original
92740 ** using UNION ALL operators. In this case N is the number of simple
92741 ** select statements in the compound sub-query.
92743 ** Example:
92745 ** SELECT a+1 FROM (
92746 ** SELECT x FROM tab
92747 ** UNION ALL
92748 ** SELECT y FROM tab
92749 ** UNION ALL
92750 ** SELECT abs(z*2) FROM tab2
92751 ** ) WHERE a!=5 ORDER BY 1
92753 ** Transformed into:
92755 ** SELECT x+1 FROM tab WHERE x+1!=5
92756 ** UNION ALL
92757 ** SELECT y+1 FROM tab WHERE y+1!=5
92758 ** UNION ALL
92759 ** SELECT abs(z*2)+1 FROM tab2 WHERE abs(z*2)+1!=5
92760 ** ORDER BY 1
92762 ** We call this the "compound-subquery flattening".
92764 for(pSub=pSub->pPrior; pSub; pSub=pSub->pPrior){
92765 Select *pNew;
92766 ExprList *pOrderBy = p->pOrderBy;
92767 Expr *pLimit = p->pLimit;
92768 Select *pPrior = p->pPrior;
92769 p->pOrderBy = 0;
92770 p->pSrc = 0;
92771 p->pPrior = 0;
92772 p->pLimit = 0;
92773 pNew = sqlite3SelectDup(db, p, 0);
92774 p->pLimit = pLimit;
92775 p->pOrderBy = pOrderBy;
92776 p->pSrc = pSrc;
92777 p->op = TK_ALL;
92778 p->pRightmost = 0;
92779 if( pNew==0 ){
92780 pNew = pPrior;
92781 }else{
92782 pNew->pPrior = pPrior;
92783 pNew->pRightmost = 0;
92785 p->pPrior = pNew;
92786 if( db->mallocFailed ) return 1;
92789 /* Begin flattening the iFrom-th entry of the FROM clause
92790 ** in the outer query.
92792 pSub = pSub1 = pSubitem->pSelect;
92794 /* Delete the transient table structure associated with the
92795 ** subquery
92797 sqlite3DbFree(db, pSubitem->zDatabase);
92798 sqlite3DbFree(db, pSubitem->zName);
92799 sqlite3DbFree(db, pSubitem->zAlias);
92800 pSubitem->zDatabase = 0;
92801 pSubitem->zName = 0;
92802 pSubitem->zAlias = 0;
92803 pSubitem->pSelect = 0;
92805 /* Defer deleting the Table object associated with the
92806 ** subquery until code generation is
92807 ** complete, since there may still exist Expr.pTab entries that
92808 ** refer to the subquery even after flattening. Ticket #3346.
92810 ** pSubitem->pTab is always non-NULL by test restrictions and tests above.
92812 if( ALWAYS(pSubitem->pTab!=0) ){
92813 Table *pTabToDel = pSubitem->pTab;
92814 if( pTabToDel->nRef==1 ){
92815 Parse *pToplevel = sqlite3ParseToplevel(pParse);
92816 pTabToDel->pNextZombie = pToplevel->pZombieTab;
92817 pToplevel->pZombieTab = pTabToDel;
92818 }else{
92819 pTabToDel->nRef--;
92821 pSubitem->pTab = 0;
92824 /* The following loop runs once for each term in a compound-subquery
92825 ** flattening (as described above). If we are doing a different kind
92826 ** of flattening - a flattening other than a compound-subquery flattening -
92827 ** then this loop only runs once.
92829 ** This loop moves all of the FROM elements of the subquery into the
92830 ** the FROM clause of the outer query. Before doing this, remember
92831 ** the cursor number for the original outer query FROM element in
92832 ** iParent. The iParent cursor will never be used. Subsequent code
92833 ** will scan expressions looking for iParent references and replace
92834 ** those references with expressions that resolve to the subquery FROM
92835 ** elements we are now copying in.
92837 for(pParent=p; pParent; pParent=pParent->pPrior, pSub=pSub->pPrior){
92838 int nSubSrc;
92839 u8 jointype = 0;
92840 pSubSrc = pSub->pSrc; /* FROM clause of subquery */
92841 nSubSrc = pSubSrc->nSrc; /* Number of terms in subquery FROM clause */
92842 pSrc = pParent->pSrc; /* FROM clause of the outer query */
92844 if( pSrc ){
92845 assert( pParent==p ); /* First time through the loop */
92846 jointype = pSubitem->jointype;
92847 }else{
92848 assert( pParent!=p ); /* 2nd and subsequent times through the loop */
92849 pSrc = pParent->pSrc = sqlite3SrcListAppend(db, 0, 0, 0);
92850 if( pSrc==0 ){
92851 assert( db->mallocFailed );
92852 break;
92856 /* The subquery uses a single slot of the FROM clause of the outer
92857 ** query. If the subquery has more than one element in its FROM clause,
92858 ** then expand the outer query to make space for it to hold all elements
92859 ** of the subquery.
92861 ** Example:
92863 ** SELECT * FROM tabA, (SELECT * FROM sub1, sub2), tabB;
92865 ** The outer query has 3 slots in its FROM clause. One slot of the
92866 ** outer query (the middle slot) is used by the subquery. The next
92867 ** block of code will expand the out query to 4 slots. The middle
92868 ** slot is expanded to two slots in order to make space for the
92869 ** two elements in the FROM clause of the subquery.
92871 if( nSubSrc>1 ){
92872 pParent->pSrc = pSrc = sqlite3SrcListEnlarge(db, pSrc, nSubSrc-1,iFrom+1);
92873 if( db->mallocFailed ){
92874 break;
92878 /* Transfer the FROM clause terms from the subquery into the
92879 ** outer query.
92881 for(i=0; i<nSubSrc; i++){
92882 sqlite3IdListDelete(db, pSrc->a[i+iFrom].pUsing);
92883 pSrc->a[i+iFrom] = pSubSrc->a[i];
92884 memset(&pSubSrc->a[i], 0, sizeof(pSubSrc->a[i]));
92886 pSrc->a[iFrom].jointype = jointype;
92888 /* Now begin substituting subquery result set expressions for
92889 ** references to the iParent in the outer query.
92891 ** Example:
92893 ** SELECT a+5, b*10 FROM (SELECT x*3 AS a, y+10 AS b FROM t1) WHERE a>b;
92894 ** \ \_____________ subquery __________/ /
92895 ** \_____________________ outer query ______________________________/
92897 ** We look at every expression in the outer query and every place we see
92898 ** "a" we substitute "x*3" and every place we see "b" we substitute "y+10".
92900 pList = pParent->pEList;
92901 for(i=0; i<pList->nExpr; i++){
92902 if( pList->a[i].zName==0 ){
92903 const char *zSpan = pList->a[i].zSpan;
92904 if( ALWAYS(zSpan) ){
92905 pList->a[i].zName = sqlite3DbStrDup(db, zSpan);
92909 substExprList(db, pParent->pEList, iParent, pSub->pEList);
92910 if( isAgg ){
92911 substExprList(db, pParent->pGroupBy, iParent, pSub->pEList);
92912 pParent->pHaving = substExpr(db, pParent->pHaving, iParent, pSub->pEList);
92914 if( pSub->pOrderBy ){
92915 assert( pParent->pOrderBy==0 );
92916 pParent->pOrderBy = pSub->pOrderBy;
92917 pSub->pOrderBy = 0;
92918 }else if( pParent->pOrderBy ){
92919 substExprList(db, pParent->pOrderBy, iParent, pSub->pEList);
92921 if( pSub->pWhere ){
92922 pWhere = sqlite3ExprDup(db, pSub->pWhere, 0);
92923 }else{
92924 pWhere = 0;
92926 if( subqueryIsAgg ){
92927 assert( pParent->pHaving==0 );
92928 pParent->pHaving = pParent->pWhere;
92929 pParent->pWhere = pWhere;
92930 pParent->pHaving = substExpr(db, pParent->pHaving, iParent, pSub->pEList);
92931 pParent->pHaving = sqlite3ExprAnd(db, pParent->pHaving,
92932 sqlite3ExprDup(db, pSub->pHaving, 0));
92933 assert( pParent->pGroupBy==0 );
92934 pParent->pGroupBy = sqlite3ExprListDup(db, pSub->pGroupBy, 0);
92935 }else{
92936 pParent->pWhere = substExpr(db, pParent->pWhere, iParent, pSub->pEList);
92937 pParent->pWhere = sqlite3ExprAnd(db, pParent->pWhere, pWhere);
92940 /* The flattened query is distinct if either the inner or the
92941 ** outer query is distinct.
92943 pParent->selFlags |= pSub->selFlags & SF_Distinct;
92946 ** SELECT ... FROM (SELECT ... LIMIT a OFFSET b) LIMIT x OFFSET y;
92948 ** One is tempted to try to add a and b to combine the limits. But this
92949 ** does not work if either limit is negative.
92951 if( pSub->pLimit ){
92952 pParent->pLimit = pSub->pLimit;
92953 pSub->pLimit = 0;
92957 /* Finially, delete what is left of the subquery and return
92958 ** success.
92960 sqlite3SelectDelete(db, pSub1);
92962 return 1;
92964 #endif /* !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW) */
92967 ** Analyze the SELECT statement passed as an argument to see if it
92968 ** is a min() or max() query. Return WHERE_ORDERBY_MIN or WHERE_ORDERBY_MAX if
92969 ** it is, or 0 otherwise. At present, a query is considered to be
92970 ** a min()/max() query if:
92972 ** 1. There is a single object in the FROM clause.
92974 ** 2. There is a single expression in the result set, and it is
92975 ** either min(x) or max(x), where x is a column reference.
92977 static u8 minMaxQuery(Select *p){
92978 Expr *pExpr;
92979 ExprList *pEList = p->pEList;
92981 if( pEList->nExpr!=1 ) return WHERE_ORDERBY_NORMAL;
92982 pExpr = pEList->a[0].pExpr;
92983 if( pExpr->op!=TK_AGG_FUNCTION ) return 0;
92984 if( NEVER(ExprHasProperty(pExpr, EP_xIsSelect)) ) return 0;
92985 pEList = pExpr->x.pList;
92986 if( pEList==0 || pEList->nExpr!=1 ) return 0;
92987 if( pEList->a[0].pExpr->op!=TK_AGG_COLUMN ) return WHERE_ORDERBY_NORMAL;
92988 assert( !ExprHasProperty(pExpr, EP_IntValue) );
92989 if( sqlite3StrICmp(pExpr->u.zToken,"min")==0 ){
92990 return WHERE_ORDERBY_MIN;
92991 }else if( sqlite3StrICmp(pExpr->u.zToken,"max")==0 ){
92992 return WHERE_ORDERBY_MAX;
92994 return WHERE_ORDERBY_NORMAL;
92998 ** The select statement passed as the first argument is an aggregate query.
92999 ** The second argment is the associated aggregate-info object. This
93000 ** function tests if the SELECT is of the form:
93002 ** SELECT count(*) FROM <tbl>
93004 ** where table is a database table, not a sub-select or view. If the query
93005 ** does match this pattern, then a pointer to the Table object representing
93006 ** <tbl> is returned. Otherwise, 0 is returned.
93008 static Table *isSimpleCount(Select *p, AggInfo *pAggInfo){
93009 Table *pTab;
93010 Expr *pExpr;
93012 assert( !p->pGroupBy );
93014 if( p->pWhere || p->pEList->nExpr!=1
93015 || p->pSrc->nSrc!=1 || p->pSrc->a[0].pSelect
93017 return 0;
93019 pTab = p->pSrc->a[0].pTab;
93020 pExpr = p->pEList->a[0].pExpr;
93021 assert( pTab && !pTab->pSelect && pExpr );
93023 if( IsVirtual(pTab) ) return 0;
93024 if( pExpr->op!=TK_AGG_FUNCTION ) return 0;
93025 if( (pAggInfo->aFunc[0].pFunc->flags&SQLITE_FUNC_COUNT)==0 ) return 0;
93026 if( pExpr->flags&EP_Distinct ) return 0;
93028 return pTab;
93032 ** If the source-list item passed as an argument was augmented with an
93033 ** INDEXED BY clause, then try to locate the specified index. If there
93034 ** was such a clause and the named index cannot be found, return
93035 ** SQLITE_ERROR and leave an error in pParse. Otherwise, populate
93036 ** pFrom->pIndex and return SQLITE_OK.
93038 SQLITE_PRIVATE int sqlite3IndexedByLookup(Parse *pParse, struct SrcList_item *pFrom){
93039 if( pFrom->pTab && pFrom->zIndex ){
93040 Table *pTab = pFrom->pTab;
93041 char *zIndex = pFrom->zIndex;
93042 Index *pIdx;
93043 for(pIdx=pTab->pIndex;
93044 pIdx && sqlite3StrICmp(pIdx->zName, zIndex);
93045 pIdx=pIdx->pNext
93047 if( !pIdx ){
93048 sqlite3ErrorMsg(pParse, "no such index: %s", zIndex, 0);
93049 pParse->checkSchema = 1;
93050 return SQLITE_ERROR;
93052 pFrom->pIndex = pIdx;
93054 return SQLITE_OK;
93058 ** This routine is a Walker callback for "expanding" a SELECT statement.
93059 ** "Expanding" means to do the following:
93061 ** (1) Make sure VDBE cursor numbers have been assigned to every
93062 ** element of the FROM clause.
93064 ** (2) Fill in the pTabList->a[].pTab fields in the SrcList that
93065 ** defines FROM clause. When views appear in the FROM clause,
93066 ** fill pTabList->a[].pSelect with a copy of the SELECT statement
93067 ** that implements the view. A copy is made of the view's SELECT
93068 ** statement so that we can freely modify or delete that statement
93069 ** without worrying about messing up the presistent representation
93070 ** of the view.
93072 ** (3) Add terms to the WHERE clause to accomodate the NATURAL keyword
93073 ** on joins and the ON and USING clause of joins.
93075 ** (4) Scan the list of columns in the result set (pEList) looking
93076 ** for instances of the "*" operator or the TABLE.* operator.
93077 ** If found, expand each "*" to be every column in every table
93078 ** and TABLE.* to be every column in TABLE.
93081 static int selectExpander(Walker *pWalker, Select *p){
93082 Parse *pParse = pWalker->pParse;
93083 int i, j, k;
93084 SrcList *pTabList;
93085 ExprList *pEList;
93086 struct SrcList_item *pFrom;
93087 sqlite3 *db = pParse->db;
93089 if( db->mallocFailed ){
93090 return WRC_Abort;
93092 if( NEVER(p->pSrc==0) || (p->selFlags & SF_Expanded)!=0 ){
93093 return WRC_Prune;
93095 p->selFlags |= SF_Expanded;
93096 pTabList = p->pSrc;
93097 pEList = p->pEList;
93099 /* Make sure cursor numbers have been assigned to all entries in
93100 ** the FROM clause of the SELECT statement.
93102 sqlite3SrcListAssignCursors(pParse, pTabList);
93104 /* Look up every table named in the FROM clause of the select. If
93105 ** an entry of the FROM clause is a subquery instead of a table or view,
93106 ** then create a transient table structure to describe the subquery.
93108 for(i=0, pFrom=pTabList->a; i<pTabList->nSrc; i++, pFrom++){
93109 Table *pTab;
93110 if( pFrom->pTab!=0 ){
93111 /* This statement has already been prepared. There is no need
93112 ** to go further. */
93113 assert( i==0 );
93114 return WRC_Prune;
93116 if( pFrom->zName==0 ){
93117 #ifndef SQLITE_OMIT_SUBQUERY
93118 Select *pSel = pFrom->pSelect;
93119 /* A sub-query in the FROM clause of a SELECT */
93120 assert( pSel!=0 );
93121 assert( pFrom->pTab==0 );
93122 sqlite3WalkSelect(pWalker, pSel);
93123 pFrom->pTab = pTab = sqlite3DbMallocZero(db, sizeof(Table));
93124 if( pTab==0 ) return WRC_Abort;
93125 pTab->nRef = 1;
93126 pTab->zName = sqlite3MPrintf(db, "sqlite_subquery_%p_", (void*)pTab);
93127 while( pSel->pPrior ){ pSel = pSel->pPrior; }
93128 selectColumnsFromExprList(pParse, pSel->pEList, &pTab->nCol, &pTab->aCol);
93129 pTab->iPKey = -1;
93130 pTab->nRowEst = 1000000;
93131 pTab->tabFlags |= TF_Ephemeral;
93132 #endif
93133 }else{
93134 /* An ordinary table or view name in the FROM clause */
93135 assert( pFrom->pTab==0 );
93136 pFrom->pTab = pTab =
93137 sqlite3LocateTable(pParse,0,pFrom->zName,pFrom->zDatabase);
93138 if( pTab==0 ) return WRC_Abort;
93139 pTab->nRef++;
93140 #if !defined(SQLITE_OMIT_VIEW) || !defined (SQLITE_OMIT_VIRTUALTABLE)
93141 if( pTab->pSelect || IsVirtual(pTab) ){
93142 /* We reach here if the named table is a really a view */
93143 if( sqlite3ViewGetColumnNames(pParse, pTab) ) return WRC_Abort;
93144 assert( pFrom->pSelect==0 );
93145 pFrom->pSelect = sqlite3SelectDup(db, pTab->pSelect, 0);
93146 sqlite3WalkSelect(pWalker, pFrom->pSelect);
93148 #endif
93151 /* Locate the index named by the INDEXED BY clause, if any. */
93152 if( sqlite3IndexedByLookup(pParse, pFrom) ){
93153 return WRC_Abort;
93157 /* Process NATURAL keywords, and ON and USING clauses of joins.
93159 if( db->mallocFailed || sqliteProcessJoin(pParse, p) ){
93160 return WRC_Abort;
93163 /* For every "*" that occurs in the column list, insert the names of
93164 ** all columns in all tables. And for every TABLE.* insert the names
93165 ** of all columns in TABLE. The parser inserted a special expression
93166 ** with the TK_ALL operator for each "*" that it found in the column list.
93167 ** The following code just has to locate the TK_ALL expressions and expand
93168 ** each one to the list of all columns in all tables.
93170 ** The first loop just checks to see if there are any "*" operators
93171 ** that need expanding.
93173 for(k=0; k<pEList->nExpr; k++){
93174 Expr *pE = pEList->a[k].pExpr;
93175 if( pE->op==TK_ALL ) break;
93176 assert( pE->op!=TK_DOT || pE->pRight!=0 );
93177 assert( pE->op!=TK_DOT || (pE->pLeft!=0 && pE->pLeft->op==TK_ID) );
93178 if( pE->op==TK_DOT && pE->pRight->op==TK_ALL ) break;
93180 if( k<pEList->nExpr ){
93182 ** If we get here it means the result set contains one or more "*"
93183 ** operators that need to be expanded. Loop through each expression
93184 ** in the result set and expand them one by one.
93186 struct ExprList_item *a = pEList->a;
93187 ExprList *pNew = 0;
93188 int flags = pParse->db->flags;
93189 int longNames = (flags & SQLITE_FullColNames)!=0
93190 && (flags & SQLITE_ShortColNames)==0;
93192 for(k=0; k<pEList->nExpr; k++){
93193 Expr *pE = a[k].pExpr;
93194 assert( pE->op!=TK_DOT || pE->pRight!=0 );
93195 if( pE->op!=TK_ALL && (pE->op!=TK_DOT || pE->pRight->op!=TK_ALL) ){
93196 /* This particular expression does not need to be expanded.
93198 pNew = sqlite3ExprListAppend(pParse, pNew, a[k].pExpr);
93199 if( pNew ){
93200 pNew->a[pNew->nExpr-1].zName = a[k].zName;
93201 pNew->a[pNew->nExpr-1].zSpan = a[k].zSpan;
93202 a[k].zName = 0;
93203 a[k].zSpan = 0;
93205 a[k].pExpr = 0;
93206 }else{
93207 /* This expression is a "*" or a "TABLE.*" and needs to be
93208 ** expanded. */
93209 int tableSeen = 0; /* Set to 1 when TABLE matches */
93210 char *zTName; /* text of name of TABLE */
93211 if( pE->op==TK_DOT ){
93212 assert( pE->pLeft!=0 );
93213 assert( !ExprHasProperty(pE->pLeft, EP_IntValue) );
93214 zTName = pE->pLeft->u.zToken;
93215 }else{
93216 zTName = 0;
93218 for(i=0, pFrom=pTabList->a; i<pTabList->nSrc; i++, pFrom++){
93219 Table *pTab = pFrom->pTab;
93220 char *zTabName = pFrom->zAlias;
93221 if( zTabName==0 ){
93222 zTabName = pTab->zName;
93224 if( db->mallocFailed ) break;
93225 if( zTName && sqlite3StrICmp(zTName, zTabName)!=0 ){
93226 continue;
93228 tableSeen = 1;
93229 for(j=0; j<pTab->nCol; j++){
93230 Expr *pExpr, *pRight;
93231 char *zName = pTab->aCol[j].zName;
93232 char *zColname; /* The computed column name */
93233 char *zToFree; /* Malloced string that needs to be freed */
93234 Token sColname; /* Computed column name as a token */
93236 /* If a column is marked as 'hidden' (currently only possible
93237 ** for virtual tables), do not include it in the expanded
93238 ** result-set list.
93240 if( IsHiddenColumn(&pTab->aCol[j]) ){
93241 assert(IsVirtual(pTab));
93242 continue;
93245 if( i>0 && zTName==0 ){
93246 if( (pFrom->jointype & JT_NATURAL)!=0
93247 && tableAndColumnIndex(pTabList, i, zName, 0, 0)
93249 /* In a NATURAL join, omit the join columns from the
93250 ** table to the right of the join */
93251 continue;
93253 if( sqlite3IdListIndex(pFrom->pUsing, zName)>=0 ){
93254 /* In a join with a USING clause, omit columns in the
93255 ** using clause from the table on the right. */
93256 continue;
93259 pRight = sqlite3Expr(db, TK_ID, zName);
93260 zColname = zName;
93261 zToFree = 0;
93262 if( longNames || pTabList->nSrc>1 ){
93263 Expr *pLeft;
93264 pLeft = sqlite3Expr(db, TK_ID, zTabName);
93265 pExpr = sqlite3PExpr(pParse, TK_DOT, pLeft, pRight, 0);
93266 if( longNames ){
93267 zColname = sqlite3MPrintf(db, "%s.%s", zTabName, zName);
93268 zToFree = zColname;
93270 }else{
93271 pExpr = pRight;
93273 pNew = sqlite3ExprListAppend(pParse, pNew, pExpr);
93274 sColname.z = zColname;
93275 sColname.n = sqlite3Strlen30(zColname);
93276 sqlite3ExprListSetName(pParse, pNew, &sColname, 0);
93277 sqlite3DbFree(db, zToFree);
93280 if( !tableSeen ){
93281 if( zTName ){
93282 sqlite3ErrorMsg(pParse, "no such table: %s", zTName);
93283 }else{
93284 sqlite3ErrorMsg(pParse, "no tables specified");
93289 sqlite3ExprListDelete(db, pEList);
93290 p->pEList = pNew;
93292 #if SQLITE_MAX_COLUMN
93293 if( p->pEList && p->pEList->nExpr>db->aLimit[SQLITE_LIMIT_COLUMN] ){
93294 sqlite3ErrorMsg(pParse, "too many columns in result set");
93296 #endif
93297 return WRC_Continue;
93301 ** No-op routine for the parse-tree walker.
93303 ** When this routine is the Walker.xExprCallback then expression trees
93304 ** are walked without any actions being taken at each node. Presumably,
93305 ** when this routine is used for Walker.xExprCallback then
93306 ** Walker.xSelectCallback is set to do something useful for every
93307 ** subquery in the parser tree.
93309 static int exprWalkNoop(Walker *NotUsed, Expr *NotUsed2){
93310 UNUSED_PARAMETER2(NotUsed, NotUsed2);
93311 return WRC_Continue;
93315 ** This routine "expands" a SELECT statement and all of its subqueries.
93316 ** For additional information on what it means to "expand" a SELECT
93317 ** statement, see the comment on the selectExpand worker callback above.
93319 ** Expanding a SELECT statement is the first step in processing a
93320 ** SELECT statement. The SELECT statement must be expanded before
93321 ** name resolution is performed.
93323 ** If anything goes wrong, an error message is written into pParse.
93324 ** The calling function can detect the problem by looking at pParse->nErr
93325 ** and/or pParse->db->mallocFailed.
93327 static void sqlite3SelectExpand(Parse *pParse, Select *pSelect){
93328 Walker w;
93329 w.xSelectCallback = selectExpander;
93330 w.xExprCallback = exprWalkNoop;
93331 w.pParse = pParse;
93332 sqlite3WalkSelect(&w, pSelect);
93336 #ifndef SQLITE_OMIT_SUBQUERY
93338 ** This is a Walker.xSelectCallback callback for the sqlite3SelectTypeInfo()
93339 ** interface.
93341 ** For each FROM-clause subquery, add Column.zType and Column.zColl
93342 ** information to the Table structure that represents the result set
93343 ** of that subquery.
93345 ** The Table structure that represents the result set was constructed
93346 ** by selectExpander() but the type and collation information was omitted
93347 ** at that point because identifiers had not yet been resolved. This
93348 ** routine is called after identifier resolution.
93350 static int selectAddSubqueryTypeInfo(Walker *pWalker, Select *p){
93351 Parse *pParse;
93352 int i;
93353 SrcList *pTabList;
93354 struct SrcList_item *pFrom;
93356 assert( p->selFlags & SF_Resolved );
93357 if( (p->selFlags & SF_HasTypeInfo)==0 ){
93358 p->selFlags |= SF_HasTypeInfo;
93359 pParse = pWalker->pParse;
93360 pTabList = p->pSrc;
93361 for(i=0, pFrom=pTabList->a; i<pTabList->nSrc; i++, pFrom++){
93362 Table *pTab = pFrom->pTab;
93363 if( ALWAYS(pTab!=0) && (pTab->tabFlags & TF_Ephemeral)!=0 ){
93364 /* A sub-query in the FROM clause of a SELECT */
93365 Select *pSel = pFrom->pSelect;
93366 assert( pSel );
93367 while( pSel->pPrior ) pSel = pSel->pPrior;
93368 selectAddColumnTypeAndCollation(pParse, pTab->nCol, pTab->aCol, pSel);
93372 return WRC_Continue;
93374 #endif
93378 ** This routine adds datatype and collating sequence information to
93379 ** the Table structures of all FROM-clause subqueries in a
93380 ** SELECT statement.
93382 ** Use this routine after name resolution.
93384 static void sqlite3SelectAddTypeInfo(Parse *pParse, Select *pSelect){
93385 #ifndef SQLITE_OMIT_SUBQUERY
93386 Walker w;
93387 w.xSelectCallback = selectAddSubqueryTypeInfo;
93388 w.xExprCallback = exprWalkNoop;
93389 w.pParse = pParse;
93390 sqlite3WalkSelect(&w, pSelect);
93391 #endif
93396 ** This routine sets of a SELECT statement for processing. The
93397 ** following is accomplished:
93399 ** * VDBE Cursor numbers are assigned to all FROM-clause terms.
93400 ** * Ephemeral Table objects are created for all FROM-clause subqueries.
93401 ** * ON and USING clauses are shifted into WHERE statements
93402 ** * Wildcards "*" and "TABLE.*" in result sets are expanded.
93403 ** * Identifiers in expression are matched to tables.
93405 ** This routine acts recursively on all subqueries within the SELECT.
93407 SQLITE_PRIVATE void sqlite3SelectPrep(
93408 Parse *pParse, /* The parser context */
93409 Select *p, /* The SELECT statement being coded. */
93410 NameContext *pOuterNC /* Name context for container */
93412 sqlite3 *db;
93413 if( NEVER(p==0) ) return;
93414 db = pParse->db;
93415 if( p->selFlags & SF_HasTypeInfo ) return;
93416 sqlite3SelectExpand(pParse, p);
93417 if( pParse->nErr || db->mallocFailed ) return;
93418 sqlite3ResolveSelectNames(pParse, p, pOuterNC);
93419 if( pParse->nErr || db->mallocFailed ) return;
93420 sqlite3SelectAddTypeInfo(pParse, p);
93424 ** Reset the aggregate accumulator.
93426 ** The aggregate accumulator is a set of memory cells that hold
93427 ** intermediate results while calculating an aggregate. This
93428 ** routine simply stores NULLs in all of those memory cells.
93430 static void resetAccumulator(Parse *pParse, AggInfo *pAggInfo){
93431 Vdbe *v = pParse->pVdbe;
93432 int i;
93433 struct AggInfo_func *pFunc;
93434 if( pAggInfo->nFunc+pAggInfo->nColumn==0 ){
93435 return;
93437 for(i=0; i<pAggInfo->nColumn; i++){
93438 sqlite3VdbeAddOp2(v, OP_Null, 0, pAggInfo->aCol[i].iMem);
93440 for(pFunc=pAggInfo->aFunc, i=0; i<pAggInfo->nFunc; i++, pFunc++){
93441 sqlite3VdbeAddOp2(v, OP_Null, 0, pFunc->iMem);
93442 if( pFunc->iDistinct>=0 ){
93443 Expr *pE = pFunc->pExpr;
93444 assert( !ExprHasProperty(pE, EP_xIsSelect) );
93445 if( pE->x.pList==0 || pE->x.pList->nExpr!=1 ){
93446 sqlite3ErrorMsg(pParse, "DISTINCT aggregates must have exactly one "
93447 "argument");
93448 pFunc->iDistinct = -1;
93449 }else{
93450 KeyInfo *pKeyInfo = keyInfoFromExprList(pParse, pE->x.pList);
93451 sqlite3VdbeAddOp4(v, OP_OpenEphemeral, pFunc->iDistinct, 0, 0,
93452 (char*)pKeyInfo, P4_KEYINFO_HANDOFF);
93459 ** Invoke the OP_AggFinalize opcode for every aggregate function
93460 ** in the AggInfo structure.
93462 static void finalizeAggFunctions(Parse *pParse, AggInfo *pAggInfo){
93463 Vdbe *v = pParse->pVdbe;
93464 int i;
93465 struct AggInfo_func *pF;
93466 for(i=0, pF=pAggInfo->aFunc; i<pAggInfo->nFunc; i++, pF++){
93467 ExprList *pList = pF->pExpr->x.pList;
93468 assert( !ExprHasProperty(pF->pExpr, EP_xIsSelect) );
93469 sqlite3VdbeAddOp4(v, OP_AggFinal, pF->iMem, pList ? pList->nExpr : 0, 0,
93470 (void*)pF->pFunc, P4_FUNCDEF);
93475 ** Update the accumulator memory cells for an aggregate based on
93476 ** the current cursor position.
93478 static void updateAccumulator(Parse *pParse, AggInfo *pAggInfo){
93479 Vdbe *v = pParse->pVdbe;
93480 int i;
93481 struct AggInfo_func *pF;
93482 struct AggInfo_col *pC;
93484 pAggInfo->directMode = 1;
93485 sqlite3ExprCacheClear(pParse);
93486 for(i=0, pF=pAggInfo->aFunc; i<pAggInfo->nFunc; i++, pF++){
93487 int nArg;
93488 int addrNext = 0;
93489 int regAgg;
93490 ExprList *pList = pF->pExpr->x.pList;
93491 assert( !ExprHasProperty(pF->pExpr, EP_xIsSelect) );
93492 if( pList ){
93493 nArg = pList->nExpr;
93494 regAgg = sqlite3GetTempRange(pParse, nArg);
93495 sqlite3ExprCodeExprList(pParse, pList, regAgg, 1);
93496 }else{
93497 nArg = 0;
93498 regAgg = 0;
93500 if( pF->iDistinct>=0 ){
93501 addrNext = sqlite3VdbeMakeLabel(v);
93502 assert( nArg==1 );
93503 codeDistinct(pParse, pF->iDistinct, addrNext, 1, regAgg);
93505 if( pF->pFunc->flags & SQLITE_FUNC_NEEDCOLL ){
93506 CollSeq *pColl = 0;
93507 struct ExprList_item *pItem;
93508 int j;
93509 assert( pList!=0 ); /* pList!=0 if pF->pFunc has NEEDCOLL */
93510 for(j=0, pItem=pList->a; !pColl && j<nArg; j++, pItem++){
93511 pColl = sqlite3ExprCollSeq(pParse, pItem->pExpr);
93513 if( !pColl ){
93514 pColl = pParse->db->pDfltColl;
93516 sqlite3VdbeAddOp4(v, OP_CollSeq, 0, 0, 0, (char *)pColl, P4_COLLSEQ);
93518 sqlite3VdbeAddOp4(v, OP_AggStep, 0, regAgg, pF->iMem,
93519 (void*)pF->pFunc, P4_FUNCDEF);
93520 sqlite3VdbeChangeP5(v, (u8)nArg);
93521 sqlite3ExprCacheAffinityChange(pParse, regAgg, nArg);
93522 sqlite3ReleaseTempRange(pParse, regAgg, nArg);
93523 if( addrNext ){
93524 sqlite3VdbeResolveLabel(v, addrNext);
93525 sqlite3ExprCacheClear(pParse);
93529 /* Before populating the accumulator registers, clear the column cache.
93530 ** Otherwise, if any of the required column values are already present
93531 ** in registers, sqlite3ExprCode() may use OP_SCopy to copy the value
93532 ** to pC->iMem. But by the time the value is used, the original register
93533 ** may have been used, invalidating the underlying buffer holding the
93534 ** text or blob value. See ticket [883034dcb5].
93536 ** Another solution would be to change the OP_SCopy used to copy cached
93537 ** values to an OP_Copy.
93539 sqlite3ExprCacheClear(pParse);
93540 for(i=0, pC=pAggInfo->aCol; i<pAggInfo->nAccumulator; i++, pC++){
93541 sqlite3ExprCode(pParse, pC->pExpr, pC->iMem);
93543 pAggInfo->directMode = 0;
93544 sqlite3ExprCacheClear(pParse);
93548 ** Add a single OP_Explain instruction to the VDBE to explain a simple
93549 ** count(*) query ("SELECT count(*) FROM pTab").
93551 #ifndef SQLITE_OMIT_EXPLAIN
93552 static void explainSimpleCount(
93553 Parse *pParse, /* Parse context */
93554 Table *pTab, /* Table being queried */
93555 Index *pIdx /* Index used to optimize scan, or NULL */
93557 if( pParse->explain==2 ){
93558 char *zEqp = sqlite3MPrintf(pParse->db, "SCAN TABLE %s %s%s(~%d rows)",
93559 pTab->zName,
93560 pIdx ? "USING COVERING INDEX " : "",
93561 pIdx ? pIdx->zName : "",
93562 pTab->nRowEst
93564 sqlite3VdbeAddOp4(
93565 pParse->pVdbe, OP_Explain, pParse->iSelectId, 0, 0, zEqp, P4_DYNAMIC
93569 #else
93570 # define explainSimpleCount(a,b,c)
93571 #endif
93574 ** Generate code for the SELECT statement given in the p argument.
93576 ** The results are distributed in various ways depending on the
93577 ** contents of the SelectDest structure pointed to by argument pDest
93578 ** as follows:
93580 ** pDest->eDest Result
93581 ** ------------ -------------------------------------------
93582 ** SRT_Output Generate a row of output (using the OP_ResultRow
93583 ** opcode) for each row in the result set.
93585 ** SRT_Mem Only valid if the result is a single column.
93586 ** Store the first column of the first result row
93587 ** in register pDest->iParm then abandon the rest
93588 ** of the query. This destination implies "LIMIT 1".
93590 ** SRT_Set The result must be a single column. Store each
93591 ** row of result as the key in table pDest->iParm.
93592 ** Apply the affinity pDest->affinity before storing
93593 ** results. Used to implement "IN (SELECT ...)".
93595 ** SRT_Union Store results as a key in a temporary table pDest->iParm.
93597 ** SRT_Except Remove results from the temporary table pDest->iParm.
93599 ** SRT_Table Store results in temporary table pDest->iParm.
93600 ** This is like SRT_EphemTab except that the table
93601 ** is assumed to already be open.
93603 ** SRT_EphemTab Create an temporary table pDest->iParm and store
93604 ** the result there. The cursor is left open after
93605 ** returning. This is like SRT_Table except that
93606 ** this destination uses OP_OpenEphemeral to create
93607 ** the table first.
93609 ** SRT_Coroutine Generate a co-routine that returns a new row of
93610 ** results each time it is invoked. The entry point
93611 ** of the co-routine is stored in register pDest->iParm.
93613 ** SRT_Exists Store a 1 in memory cell pDest->iParm if the result
93614 ** set is not empty.
93616 ** SRT_Discard Throw the results away. This is used by SELECT
93617 ** statements within triggers whose only purpose is
93618 ** the side-effects of functions.
93620 ** This routine returns the number of errors. If any errors are
93621 ** encountered, then an appropriate error message is left in
93622 ** pParse->zErrMsg.
93624 ** This routine does NOT free the Select structure passed in. The
93625 ** calling function needs to do that.
93627 SQLITE_PRIVATE int sqlite3Select(
93628 Parse *pParse, /* The parser context */
93629 Select *p, /* The SELECT statement being coded. */
93630 SelectDest *pDest /* What to do with the query results */
93632 int i, j; /* Loop counters */
93633 WhereInfo *pWInfo; /* Return from sqlite3WhereBegin() */
93634 Vdbe *v; /* The virtual machine under construction */
93635 int isAgg; /* True for select lists like "count(*)" */
93636 ExprList *pEList; /* List of columns to extract. */
93637 SrcList *pTabList; /* List of tables to select from */
93638 Expr *pWhere; /* The WHERE clause. May be NULL */
93639 ExprList *pOrderBy; /* The ORDER BY clause. May be NULL */
93640 ExprList *pGroupBy; /* The GROUP BY clause. May be NULL */
93641 Expr *pHaving; /* The HAVING clause. May be NULL */
93642 int isDistinct; /* True if the DISTINCT keyword is present */
93643 int distinct; /* Table to use for the distinct set */
93644 int rc = 1; /* Value to return from this function */
93645 int addrSortIndex; /* Address of an OP_OpenEphemeral instruction */
93646 AggInfo sAggInfo; /* Information used by aggregate queries */
93647 int iEnd; /* Address of the end of the query */
93648 sqlite3 *db; /* The database connection */
93650 #ifndef SQLITE_OMIT_EXPLAIN
93651 int iRestoreSelectId = pParse->iSelectId;
93652 pParse->iSelectId = pParse->iNextSelectId++;
93653 #endif
93655 db = pParse->db;
93656 if( p==0 || db->mallocFailed || pParse->nErr ){
93657 return 1;
93659 if( sqlite3AuthCheck(pParse, SQLITE_SELECT, 0, 0, 0) ) return 1;
93660 memset(&sAggInfo, 0, sizeof(sAggInfo));
93662 if( IgnorableOrderby(pDest) ){
93663 assert(pDest->eDest==SRT_Exists || pDest->eDest==SRT_Union ||
93664 pDest->eDest==SRT_Except || pDest->eDest==SRT_Discard);
93665 /* If ORDER BY makes no difference in the output then neither does
93666 ** DISTINCT so it can be removed too. */
93667 sqlite3ExprListDelete(db, p->pOrderBy);
93668 p->pOrderBy = 0;
93669 p->selFlags &= ~SF_Distinct;
93671 sqlite3SelectPrep(pParse, p, 0);
93672 pOrderBy = p->pOrderBy;
93673 pTabList = p->pSrc;
93674 pEList = p->pEList;
93675 if( pParse->nErr || db->mallocFailed ){
93676 goto select_end;
93678 isAgg = (p->selFlags & SF_Aggregate)!=0;
93679 assert( pEList!=0 );
93681 /* Begin generating code.
93683 v = sqlite3GetVdbe(pParse);
93684 if( v==0 ) goto select_end;
93686 /* If writing to memory or generating a set
93687 ** only a single column may be output.
93689 #ifndef SQLITE_OMIT_SUBQUERY
93690 if( checkForMultiColumnSelectError(pParse, pDest, pEList->nExpr) ){
93691 goto select_end;
93693 #endif
93695 /* Generate code for all sub-queries in the FROM clause
93697 #if !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW)
93698 for(i=0; !p->pPrior && i<pTabList->nSrc; i++){
93699 struct SrcList_item *pItem = &pTabList->a[i];
93700 SelectDest dest;
93701 Select *pSub = pItem->pSelect;
93702 int isAggSub;
93704 if( pSub==0 || pItem->isPopulated ) continue;
93706 /* Increment Parse.nHeight by the height of the largest expression
93707 ** tree refered to by this, the parent select. The child select
93708 ** may contain expression trees of at most
93709 ** (SQLITE_MAX_EXPR_DEPTH-Parse.nHeight) height. This is a bit
93710 ** more conservative than necessary, but much easier than enforcing
93711 ** an exact limit.
93713 pParse->nHeight += sqlite3SelectExprHeight(p);
93715 /* Check to see if the subquery can be absorbed into the parent. */
93716 isAggSub = (pSub->selFlags & SF_Aggregate)!=0;
93717 if( flattenSubquery(pParse, p, i, isAgg, isAggSub) ){
93718 if( isAggSub ){
93719 isAgg = 1;
93720 p->selFlags |= SF_Aggregate;
93722 i = -1;
93723 }else{
93724 sqlite3SelectDestInit(&dest, SRT_EphemTab, pItem->iCursor);
93725 assert( pItem->isPopulated==0 );
93726 explainSetInteger(pItem->iSelectId, (u8)pParse->iNextSelectId);
93727 sqlite3Select(pParse, pSub, &dest);
93728 pItem->isPopulated = 1;
93729 pItem->pTab->nRowEst = (unsigned)pSub->nSelectRow;
93731 if( /*pParse->nErr ||*/ db->mallocFailed ){
93732 goto select_end;
93734 pParse->nHeight -= sqlite3SelectExprHeight(p);
93735 pTabList = p->pSrc;
93736 if( !IgnorableOrderby(pDest) ){
93737 pOrderBy = p->pOrderBy;
93740 pEList = p->pEList;
93741 #endif
93742 pWhere = p->pWhere;
93743 pGroupBy = p->pGroupBy;
93744 pHaving = p->pHaving;
93745 isDistinct = (p->selFlags & SF_Distinct)!=0;
93747 #ifndef SQLITE_OMIT_COMPOUND_SELECT
93748 /* If there is are a sequence of queries, do the earlier ones first.
93750 if( p->pPrior ){
93751 if( p->pRightmost==0 ){
93752 Select *pLoop, *pRight = 0;
93753 int cnt = 0;
93754 int mxSelect;
93755 for(pLoop=p; pLoop; pLoop=pLoop->pPrior, cnt++){
93756 pLoop->pRightmost = p;
93757 pLoop->pNext = pRight;
93758 pRight = pLoop;
93760 mxSelect = db->aLimit[SQLITE_LIMIT_COMPOUND_SELECT];
93761 if( mxSelect && cnt>mxSelect ){
93762 sqlite3ErrorMsg(pParse, "too many terms in compound SELECT");
93763 goto select_end;
93766 rc = multiSelect(pParse, p, pDest);
93767 explainSetInteger(pParse->iSelectId, iRestoreSelectId);
93768 return rc;
93770 #endif
93772 /* If possible, rewrite the query to use GROUP BY instead of DISTINCT.
93773 ** GROUP BY might use an index, DISTINCT never does.
93775 assert( p->pGroupBy==0 || (p->selFlags & SF_Aggregate)!=0 );
93776 if( (p->selFlags & (SF_Distinct|SF_Aggregate))==SF_Distinct ){
93777 p->pGroupBy = sqlite3ExprListDup(db, p->pEList, 0);
93778 pGroupBy = p->pGroupBy;
93779 p->selFlags &= ~SF_Distinct;
93782 /* If there is both a GROUP BY and an ORDER BY clause and they are
93783 ** identical, then disable the ORDER BY clause since the GROUP BY
93784 ** will cause elements to come out in the correct order. This is
93785 ** an optimization - the correct answer should result regardless.
93786 ** Use the SQLITE_GroupByOrder flag with SQLITE_TESTCTRL_OPTIMIZER
93787 ** to disable this optimization for testing purposes.
93789 if( sqlite3ExprListCompare(p->pGroupBy, pOrderBy)==0
93790 && (db->flags & SQLITE_GroupByOrder)==0 ){
93791 pOrderBy = 0;
93794 /* If there is an ORDER BY clause, then this sorting
93795 ** index might end up being unused if the data can be
93796 ** extracted in pre-sorted order. If that is the case, then the
93797 ** OP_OpenEphemeral instruction will be changed to an OP_Noop once
93798 ** we figure out that the sorting index is not needed. The addrSortIndex
93799 ** variable is used to facilitate that change.
93801 if( pOrderBy ){
93802 KeyInfo *pKeyInfo;
93803 pKeyInfo = keyInfoFromExprList(pParse, pOrderBy);
93804 pOrderBy->iECursor = pParse->nTab++;
93805 p->addrOpenEphm[2] = addrSortIndex =
93806 sqlite3VdbeAddOp4(v, OP_OpenEphemeral,
93807 pOrderBy->iECursor, pOrderBy->nExpr+2, 0,
93808 (char*)pKeyInfo, P4_KEYINFO_HANDOFF);
93809 }else{
93810 addrSortIndex = -1;
93813 /* If the output is destined for a temporary table, open that table.
93815 if( pDest->eDest==SRT_EphemTab ){
93816 sqlite3VdbeAddOp2(v, OP_OpenEphemeral, pDest->iParm, pEList->nExpr);
93819 /* Set the limiter.
93821 iEnd = sqlite3VdbeMakeLabel(v);
93822 p->nSelectRow = (double)LARGEST_INT64;
93823 computeLimitRegisters(pParse, p, iEnd);
93825 /* Open a virtual index to use for the distinct set.
93827 if( p->selFlags & SF_Distinct ){
93828 KeyInfo *pKeyInfo;
93829 assert( isAgg || pGroupBy );
93830 distinct = pParse->nTab++;
93831 pKeyInfo = keyInfoFromExprList(pParse, p->pEList);
93832 sqlite3VdbeAddOp4(v, OP_OpenEphemeral, distinct, 0, 0,
93833 (char*)pKeyInfo, P4_KEYINFO_HANDOFF);
93834 sqlite3VdbeChangeP5(v, BTREE_UNORDERED);
93835 }else{
93836 distinct = -1;
93839 /* Aggregate and non-aggregate queries are handled differently */
93840 if( !isAgg && pGroupBy==0 ){
93841 /* This case is for non-aggregate queries
93842 ** Begin the database scan
93844 pWInfo = sqlite3WhereBegin(pParse, pTabList, pWhere, &pOrderBy, 0);
93845 if( pWInfo==0 ) goto select_end;
93846 if( pWInfo->nRowOut < p->nSelectRow ) p->nSelectRow = pWInfo->nRowOut;
93848 /* If sorting index that was created by a prior OP_OpenEphemeral
93849 ** instruction ended up not being needed, then change the OP_OpenEphemeral
93850 ** into an OP_Noop.
93852 if( addrSortIndex>=0 && pOrderBy==0 ){
93853 sqlite3VdbeChangeToNoop(v, addrSortIndex, 1);
93854 p->addrOpenEphm[2] = -1;
93857 /* Use the standard inner loop
93859 assert(!isDistinct);
93860 selectInnerLoop(pParse, p, pEList, 0, 0, pOrderBy, -1, pDest,
93861 pWInfo->iContinue, pWInfo->iBreak);
93863 /* End the database scan loop.
93865 sqlite3WhereEnd(pWInfo);
93866 }else{
93867 /* This is the processing for aggregate queries */
93868 NameContext sNC; /* Name context for processing aggregate information */
93869 int iAMem; /* First Mem address for storing current GROUP BY */
93870 int iBMem; /* First Mem address for previous GROUP BY */
93871 int iUseFlag; /* Mem address holding flag indicating that at least
93872 ** one row of the input to the aggregator has been
93873 ** processed */
93874 int iAbortFlag; /* Mem address which causes query abort if positive */
93875 int groupBySort; /* Rows come from source in GROUP BY order */
93876 int addrEnd; /* End of processing for this SELECT */
93878 /* Remove any and all aliases between the result set and the
93879 ** GROUP BY clause.
93881 if( pGroupBy ){
93882 int k; /* Loop counter */
93883 struct ExprList_item *pItem; /* For looping over expression in a list */
93885 for(k=p->pEList->nExpr, pItem=p->pEList->a; k>0; k--, pItem++){
93886 pItem->iAlias = 0;
93888 for(k=pGroupBy->nExpr, pItem=pGroupBy->a; k>0; k--, pItem++){
93889 pItem->iAlias = 0;
93891 if( p->nSelectRow>(double)100 ) p->nSelectRow = (double)100;
93892 }else{
93893 p->nSelectRow = (double)1;
93897 /* Create a label to jump to when we want to abort the query */
93898 addrEnd = sqlite3VdbeMakeLabel(v);
93900 /* Convert TK_COLUMN nodes into TK_AGG_COLUMN and make entries in
93901 ** sAggInfo for all TK_AGG_FUNCTION nodes in expressions of the
93902 ** SELECT statement.
93904 memset(&sNC, 0, sizeof(sNC));
93905 sNC.pParse = pParse;
93906 sNC.pSrcList = pTabList;
93907 sNC.pAggInfo = &sAggInfo;
93908 sAggInfo.nSortingColumn = pGroupBy ? pGroupBy->nExpr+1 : 0;
93909 sAggInfo.pGroupBy = pGroupBy;
93910 sqlite3ExprAnalyzeAggList(&sNC, pEList);
93911 sqlite3ExprAnalyzeAggList(&sNC, pOrderBy);
93912 if( pHaving ){
93913 sqlite3ExprAnalyzeAggregates(&sNC, pHaving);
93915 sAggInfo.nAccumulator = sAggInfo.nColumn;
93916 for(i=0; i<sAggInfo.nFunc; i++){
93917 assert( !ExprHasProperty(sAggInfo.aFunc[i].pExpr, EP_xIsSelect) );
93918 sqlite3ExprAnalyzeAggList(&sNC, sAggInfo.aFunc[i].pExpr->x.pList);
93920 if( db->mallocFailed ) goto select_end;
93922 /* Processing for aggregates with GROUP BY is very different and
93923 ** much more complex than aggregates without a GROUP BY.
93925 if( pGroupBy ){
93926 KeyInfo *pKeyInfo; /* Keying information for the group by clause */
93927 int j1; /* A-vs-B comparision jump */
93928 int addrOutputRow; /* Start of subroutine that outputs a result row */
93929 int regOutputRow; /* Return address register for output subroutine */
93930 int addrSetAbort; /* Set the abort flag and return */
93931 int addrTopOfLoop; /* Top of the input loop */
93932 int addrSortingIdx; /* The OP_OpenEphemeral for the sorting index */
93933 int addrReset; /* Subroutine for resetting the accumulator */
93934 int regReset; /* Return address register for reset subroutine */
93936 /* If there is a GROUP BY clause we might need a sorting index to
93937 ** implement it. Allocate that sorting index now. If it turns out
93938 ** that we do not need it after all, the OpenEphemeral instruction
93939 ** will be converted into a Noop.
93941 sAggInfo.sortingIdx = pParse->nTab++;
93942 pKeyInfo = keyInfoFromExprList(pParse, pGroupBy);
93943 addrSortingIdx = sqlite3VdbeAddOp4(v, OP_OpenEphemeral,
93944 sAggInfo.sortingIdx, sAggInfo.nSortingColumn,
93945 0, (char*)pKeyInfo, P4_KEYINFO_HANDOFF);
93947 /* Initialize memory locations used by GROUP BY aggregate processing
93949 iUseFlag = ++pParse->nMem;
93950 iAbortFlag = ++pParse->nMem;
93951 regOutputRow = ++pParse->nMem;
93952 addrOutputRow = sqlite3VdbeMakeLabel(v);
93953 regReset = ++pParse->nMem;
93954 addrReset = sqlite3VdbeMakeLabel(v);
93955 iAMem = pParse->nMem + 1;
93956 pParse->nMem += pGroupBy->nExpr;
93957 iBMem = pParse->nMem + 1;
93958 pParse->nMem += pGroupBy->nExpr;
93959 sqlite3VdbeAddOp2(v, OP_Integer, 0, iAbortFlag);
93960 VdbeComment((v, "clear abort flag"));
93961 sqlite3VdbeAddOp2(v, OP_Integer, 0, iUseFlag);
93962 VdbeComment((v, "indicate accumulator empty"));
93964 /* Begin a loop that will extract all source rows in GROUP BY order.
93965 ** This might involve two separate loops with an OP_Sort in between, or
93966 ** it might be a single loop that uses an index to extract information
93967 ** in the right order to begin with.
93969 sqlite3VdbeAddOp2(v, OP_Gosub, regReset, addrReset);
93970 pWInfo = sqlite3WhereBegin(pParse, pTabList, pWhere, &pGroupBy, 0);
93971 if( pWInfo==0 ) goto select_end;
93972 if( pGroupBy==0 ){
93973 /* The optimizer is able to deliver rows in group by order so
93974 ** we do not have to sort. The OP_OpenEphemeral table will be
93975 ** cancelled later because we still need to use the pKeyInfo
93977 pGroupBy = p->pGroupBy;
93978 groupBySort = 0;
93979 }else{
93980 /* Rows are coming out in undetermined order. We have to push
93981 ** each row into a sorting index, terminate the first loop,
93982 ** then loop over the sorting index in order to get the output
93983 ** in sorted order
93985 int regBase;
93986 int regRecord;
93987 int nCol;
93988 int nGroupBy;
93990 explainTempTable(pParse,
93991 isDistinct && !(p->selFlags&SF_Distinct)?"DISTINCT":"GROUP BY");
93993 groupBySort = 1;
93994 nGroupBy = pGroupBy->nExpr;
93995 nCol = nGroupBy + 1;
93996 j = nGroupBy+1;
93997 for(i=0; i<sAggInfo.nColumn; i++){
93998 if( sAggInfo.aCol[i].iSorterColumn>=j ){
93999 nCol++;
94000 j++;
94003 regBase = sqlite3GetTempRange(pParse, nCol);
94004 sqlite3ExprCacheClear(pParse);
94005 sqlite3ExprCodeExprList(pParse, pGroupBy, regBase, 0);
94006 sqlite3VdbeAddOp2(v, OP_Sequence, sAggInfo.sortingIdx,regBase+nGroupBy);
94007 j = nGroupBy+1;
94008 for(i=0; i<sAggInfo.nColumn; i++){
94009 struct AggInfo_col *pCol = &sAggInfo.aCol[i];
94010 if( pCol->iSorterColumn>=j ){
94011 int r1 = j + regBase;
94012 int r2;
94014 r2 = sqlite3ExprCodeGetColumn(pParse,
94015 pCol->pTab, pCol->iColumn, pCol->iTable, r1);
94016 if( r1!=r2 ){
94017 sqlite3VdbeAddOp2(v, OP_SCopy, r2, r1);
94019 j++;
94022 regRecord = sqlite3GetTempReg(pParse);
94023 sqlite3VdbeAddOp3(v, OP_MakeRecord, regBase, nCol, regRecord);
94024 sqlite3VdbeAddOp2(v, OP_IdxInsert, sAggInfo.sortingIdx, regRecord);
94025 sqlite3ReleaseTempReg(pParse, regRecord);
94026 sqlite3ReleaseTempRange(pParse, regBase, nCol);
94027 sqlite3WhereEnd(pWInfo);
94028 sqlite3VdbeAddOp2(v, OP_Sort, sAggInfo.sortingIdx, addrEnd);
94029 VdbeComment((v, "GROUP BY sort"));
94030 sAggInfo.useSortingIdx = 1;
94031 sqlite3ExprCacheClear(pParse);
94034 /* Evaluate the current GROUP BY terms and store in b0, b1, b2...
94035 ** (b0 is memory location iBMem+0, b1 is iBMem+1, and so forth)
94036 ** Then compare the current GROUP BY terms against the GROUP BY terms
94037 ** from the previous row currently stored in a0, a1, a2...
94039 addrTopOfLoop = sqlite3VdbeCurrentAddr(v);
94040 sqlite3ExprCacheClear(pParse);
94041 for(j=0; j<pGroupBy->nExpr; j++){
94042 if( groupBySort ){
94043 sqlite3VdbeAddOp3(v, OP_Column, sAggInfo.sortingIdx, j, iBMem+j);
94044 }else{
94045 sAggInfo.directMode = 1;
94046 sqlite3ExprCode(pParse, pGroupBy->a[j].pExpr, iBMem+j);
94049 sqlite3VdbeAddOp4(v, OP_Compare, iAMem, iBMem, pGroupBy->nExpr,
94050 (char*)pKeyInfo, P4_KEYINFO);
94051 j1 = sqlite3VdbeCurrentAddr(v);
94052 sqlite3VdbeAddOp3(v, OP_Jump, j1+1, 0, j1+1);
94054 /* Generate code that runs whenever the GROUP BY changes.
94055 ** Changes in the GROUP BY are detected by the previous code
94056 ** block. If there were no changes, this block is skipped.
94058 ** This code copies current group by terms in b0,b1,b2,...
94059 ** over to a0,a1,a2. It then calls the output subroutine
94060 ** and resets the aggregate accumulator registers in preparation
94061 ** for the next GROUP BY batch.
94063 sqlite3ExprCodeMove(pParse, iBMem, iAMem, pGroupBy->nExpr);
94064 sqlite3VdbeAddOp2(v, OP_Gosub, regOutputRow, addrOutputRow);
94065 VdbeComment((v, "output one row"));
94066 sqlite3VdbeAddOp2(v, OP_IfPos, iAbortFlag, addrEnd);
94067 VdbeComment((v, "check abort flag"));
94068 sqlite3VdbeAddOp2(v, OP_Gosub, regReset, addrReset);
94069 VdbeComment((v, "reset accumulator"));
94071 /* Update the aggregate accumulators based on the content of
94072 ** the current row
94074 sqlite3VdbeJumpHere(v, j1);
94075 updateAccumulator(pParse, &sAggInfo);
94076 sqlite3VdbeAddOp2(v, OP_Integer, 1, iUseFlag);
94077 VdbeComment((v, "indicate data in accumulator"));
94079 /* End of the loop
94081 if( groupBySort ){
94082 sqlite3VdbeAddOp2(v, OP_Next, sAggInfo.sortingIdx, addrTopOfLoop);
94083 }else{
94084 sqlite3WhereEnd(pWInfo);
94085 sqlite3VdbeChangeToNoop(v, addrSortingIdx, 1);
94088 /* Output the final row of result
94090 sqlite3VdbeAddOp2(v, OP_Gosub, regOutputRow, addrOutputRow);
94091 VdbeComment((v, "output final row"));
94093 /* Jump over the subroutines
94095 sqlite3VdbeAddOp2(v, OP_Goto, 0, addrEnd);
94097 /* Generate a subroutine that outputs a single row of the result
94098 ** set. This subroutine first looks at the iUseFlag. If iUseFlag
94099 ** is less than or equal to zero, the subroutine is a no-op. If
94100 ** the processing calls for the query to abort, this subroutine
94101 ** increments the iAbortFlag memory location before returning in
94102 ** order to signal the caller to abort.
94104 addrSetAbort = sqlite3VdbeCurrentAddr(v);
94105 sqlite3VdbeAddOp2(v, OP_Integer, 1, iAbortFlag);
94106 VdbeComment((v, "set abort flag"));
94107 sqlite3VdbeAddOp1(v, OP_Return, regOutputRow);
94108 sqlite3VdbeResolveLabel(v, addrOutputRow);
94109 addrOutputRow = sqlite3VdbeCurrentAddr(v);
94110 sqlite3VdbeAddOp2(v, OP_IfPos, iUseFlag, addrOutputRow+2);
94111 VdbeComment((v, "Groupby result generator entry point"));
94112 sqlite3VdbeAddOp1(v, OP_Return, regOutputRow);
94113 finalizeAggFunctions(pParse, &sAggInfo);
94114 sqlite3ExprIfFalse(pParse, pHaving, addrOutputRow+1, SQLITE_JUMPIFNULL);
94115 selectInnerLoop(pParse, p, p->pEList, 0, 0, pOrderBy,
94116 distinct, pDest,
94117 addrOutputRow+1, addrSetAbort);
94118 sqlite3VdbeAddOp1(v, OP_Return, regOutputRow);
94119 VdbeComment((v, "end groupby result generator"));
94121 /* Generate a subroutine that will reset the group-by accumulator
94123 sqlite3VdbeResolveLabel(v, addrReset);
94124 resetAccumulator(pParse, &sAggInfo);
94125 sqlite3VdbeAddOp1(v, OP_Return, regReset);
94127 } /* endif pGroupBy. Begin aggregate queries without GROUP BY: */
94128 else {
94129 ExprList *pDel = 0;
94130 #ifndef SQLITE_OMIT_BTREECOUNT
94131 Table *pTab;
94132 if( (pTab = isSimpleCount(p, &sAggInfo))!=0 ){
94133 /* If isSimpleCount() returns a pointer to a Table structure, then
94134 ** the SQL statement is of the form:
94136 ** SELECT count(*) FROM <tbl>
94138 ** where the Table structure returned represents table <tbl>.
94140 ** This statement is so common that it is optimized specially. The
94141 ** OP_Count instruction is executed either on the intkey table that
94142 ** contains the data for table <tbl> or on one of its indexes. It
94143 ** is better to execute the op on an index, as indexes are almost
94144 ** always spread across less pages than their corresponding tables.
94146 const int iDb = sqlite3SchemaToIndex(pParse->db, pTab->pSchema);
94147 const int iCsr = pParse->nTab++; /* Cursor to scan b-tree */
94148 Index *pIdx; /* Iterator variable */
94149 KeyInfo *pKeyInfo = 0; /* Keyinfo for scanned index */
94150 Index *pBest = 0; /* Best index found so far */
94151 int iRoot = pTab->tnum; /* Root page of scanned b-tree */
94153 sqlite3CodeVerifySchema(pParse, iDb);
94154 sqlite3TableLock(pParse, iDb, pTab->tnum, 0, pTab->zName);
94156 /* Search for the index that has the least amount of columns. If
94157 ** there is such an index, and it has less columns than the table
94158 ** does, then we can assume that it consumes less space on disk and
94159 ** will therefore be cheaper to scan to determine the query result.
94160 ** In this case set iRoot to the root page number of the index b-tree
94161 ** and pKeyInfo to the KeyInfo structure required to navigate the
94162 ** index.
94164 ** In practice the KeyInfo structure will not be used. It is only
94165 ** passed to keep OP_OpenRead happy.
94167 for(pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext){
94168 if( !pBest || pIdx->nColumn<pBest->nColumn ){
94169 pBest = pIdx;
94172 if( pBest && pBest->nColumn<pTab->nCol ){
94173 iRoot = pBest->tnum;
94174 pKeyInfo = sqlite3IndexKeyinfo(pParse, pBest);
94177 /* Open a read-only cursor, execute the OP_Count, close the cursor. */
94178 sqlite3VdbeAddOp3(v, OP_OpenRead, iCsr, iRoot, iDb);
94179 if( pKeyInfo ){
94180 sqlite3VdbeChangeP4(v, -1, (char *)pKeyInfo, P4_KEYINFO_HANDOFF);
94182 sqlite3VdbeAddOp2(v, OP_Count, iCsr, sAggInfo.aFunc[0].iMem);
94183 sqlite3VdbeAddOp1(v, OP_Close, iCsr);
94184 explainSimpleCount(pParse, pTab, pBest);
94185 }else
94186 #endif /* SQLITE_OMIT_BTREECOUNT */
94188 /* Check if the query is of one of the following forms:
94190 ** SELECT min(x) FROM ...
94191 ** SELECT max(x) FROM ...
94193 ** If it is, then ask the code in where.c to attempt to sort results
94194 ** as if there was an "ORDER ON x" or "ORDER ON x DESC" clause.
94195 ** If where.c is able to produce results sorted in this order, then
94196 ** add vdbe code to break out of the processing loop after the
94197 ** first iteration (since the first iteration of the loop is
94198 ** guaranteed to operate on the row with the minimum or maximum
94199 ** value of x, the only row required).
94201 ** A special flag must be passed to sqlite3WhereBegin() to slightly
94202 ** modify behaviour as follows:
94204 ** + If the query is a "SELECT min(x)", then the loop coded by
94205 ** where.c should not iterate over any values with a NULL value
94206 ** for x.
94208 ** + The optimizer code in where.c (the thing that decides which
94209 ** index or indices to use) should place a different priority on
94210 ** satisfying the 'ORDER BY' clause than it does in other cases.
94211 ** Refer to code and comments in where.c for details.
94213 ExprList *pMinMax = 0;
94214 u8 flag = minMaxQuery(p);
94215 if( flag ){
94216 assert( !ExprHasProperty(p->pEList->a[0].pExpr, EP_xIsSelect) );
94217 pMinMax = sqlite3ExprListDup(db, p->pEList->a[0].pExpr->x.pList,0);
94218 pDel = pMinMax;
94219 if( pMinMax && !db->mallocFailed ){
94220 pMinMax->a[0].sortOrder = flag!=WHERE_ORDERBY_MIN ?1:0;
94221 pMinMax->a[0].pExpr->op = TK_COLUMN;
94225 /* This case runs if the aggregate has no GROUP BY clause. The
94226 ** processing is much simpler since there is only a single row
94227 ** of output.
94229 resetAccumulator(pParse, &sAggInfo);
94230 pWInfo = sqlite3WhereBegin(pParse, pTabList, pWhere, &pMinMax, flag);
94231 if( pWInfo==0 ){
94232 sqlite3ExprListDelete(db, pDel);
94233 goto select_end;
94235 updateAccumulator(pParse, &sAggInfo);
94236 if( !pMinMax && flag ){
94237 sqlite3VdbeAddOp2(v, OP_Goto, 0, pWInfo->iBreak);
94238 VdbeComment((v, "%s() by index",
94239 (flag==WHERE_ORDERBY_MIN?"min":"max")));
94241 sqlite3WhereEnd(pWInfo);
94242 finalizeAggFunctions(pParse, &sAggInfo);
94245 pOrderBy = 0;
94246 sqlite3ExprIfFalse(pParse, pHaving, addrEnd, SQLITE_JUMPIFNULL);
94247 selectInnerLoop(pParse, p, p->pEList, 0, 0, 0, -1,
94248 pDest, addrEnd, addrEnd);
94249 sqlite3ExprListDelete(db, pDel);
94251 sqlite3VdbeResolveLabel(v, addrEnd);
94253 } /* endif aggregate query */
94255 if( distinct>=0 ){
94256 explainTempTable(pParse, "DISTINCT");
94259 /* If there is an ORDER BY clause, then we need to sort the results
94260 ** and send them to the callback one by one.
94262 if( pOrderBy ){
94263 explainTempTable(pParse, "ORDER BY");
94264 generateSortTail(pParse, p, v, pEList->nExpr, pDest);
94267 /* Jump here to skip this query
94269 sqlite3VdbeResolveLabel(v, iEnd);
94271 /* The SELECT was successfully coded. Set the return code to 0
94272 ** to indicate no errors.
94274 rc = 0;
94276 /* Control jumps to here if an error is encountered above, or upon
94277 ** successful coding of the SELECT.
94279 select_end:
94280 explainSetInteger(pParse->iSelectId, iRestoreSelectId);
94282 /* Identify column names if results of the SELECT are to be output.
94284 if( rc==SQLITE_OK && pDest->eDest==SRT_Output ){
94285 generateColumnNames(pParse, pTabList, pEList);
94288 sqlite3DbFree(db, sAggInfo.aCol);
94289 sqlite3DbFree(db, sAggInfo.aFunc);
94290 return rc;
94293 #if defined(SQLITE_DEBUG)
94295 *******************************************************************************
94296 ** The following code is used for testing and debugging only. The code
94297 ** that follows does not appear in normal builds.
94299 ** These routines are used to print out the content of all or part of a
94300 ** parse structures such as Select or Expr. Such printouts are useful
94301 ** for helping to understand what is happening inside the code generator
94302 ** during the execution of complex SELECT statements.
94304 ** These routine are not called anywhere from within the normal
94305 ** code base. Then are intended to be called from within the debugger
94306 ** or from temporary "printf" statements inserted for debugging.
94308 SQLITE_PRIVATE void sqlite3PrintExpr(Expr *p){
94309 if( !ExprHasProperty(p, EP_IntValue) && p->u.zToken ){
94310 sqlite3DebugPrintf("(%s", p->u.zToken);
94311 }else{
94312 sqlite3DebugPrintf("(%d", p->op);
94314 if( p->pLeft ){
94315 sqlite3DebugPrintf(" ");
94316 sqlite3PrintExpr(p->pLeft);
94318 if( p->pRight ){
94319 sqlite3DebugPrintf(" ");
94320 sqlite3PrintExpr(p->pRight);
94322 sqlite3DebugPrintf(")");
94324 SQLITE_PRIVATE void sqlite3PrintExprList(ExprList *pList){
94325 int i;
94326 for(i=0; i<pList->nExpr; i++){
94327 sqlite3PrintExpr(pList->a[i].pExpr);
94328 if( i<pList->nExpr-1 ){
94329 sqlite3DebugPrintf(", ");
94333 SQLITE_PRIVATE void sqlite3PrintSelect(Select *p, int indent){
94334 sqlite3DebugPrintf("%*sSELECT(%p) ", indent, "", p);
94335 sqlite3PrintExprList(p->pEList);
94336 sqlite3DebugPrintf("\n");
94337 if( p->pSrc ){
94338 char *zPrefix;
94339 int i;
94340 zPrefix = "FROM";
94341 for(i=0; i<p->pSrc->nSrc; i++){
94342 struct SrcList_item *pItem = &p->pSrc->a[i];
94343 sqlite3DebugPrintf("%*s ", indent+6, zPrefix);
94344 zPrefix = "";
94345 if( pItem->pSelect ){
94346 sqlite3DebugPrintf("(\n");
94347 sqlite3PrintSelect(pItem->pSelect, indent+10);
94348 sqlite3DebugPrintf("%*s)", indent+8, "");
94349 }else if( pItem->zName ){
94350 sqlite3DebugPrintf("%s", pItem->zName);
94352 if( pItem->pTab ){
94353 sqlite3DebugPrintf("(table: %s)", pItem->pTab->zName);
94355 if( pItem->zAlias ){
94356 sqlite3DebugPrintf(" AS %s", pItem->zAlias);
94358 if( i<p->pSrc->nSrc-1 ){
94359 sqlite3DebugPrintf(",");
94361 sqlite3DebugPrintf("\n");
94364 if( p->pWhere ){
94365 sqlite3DebugPrintf("%*s WHERE ", indent, "");
94366 sqlite3PrintExpr(p->pWhere);
94367 sqlite3DebugPrintf("\n");
94369 if( p->pGroupBy ){
94370 sqlite3DebugPrintf("%*s GROUP BY ", indent, "");
94371 sqlite3PrintExprList(p->pGroupBy);
94372 sqlite3DebugPrintf("\n");
94374 if( p->pHaving ){
94375 sqlite3DebugPrintf("%*s HAVING ", indent, "");
94376 sqlite3PrintExpr(p->pHaving);
94377 sqlite3DebugPrintf("\n");
94379 if( p->pOrderBy ){
94380 sqlite3DebugPrintf("%*s ORDER BY ", indent, "");
94381 sqlite3PrintExprList(p->pOrderBy);
94382 sqlite3DebugPrintf("\n");
94385 /* End of the structure debug printing code
94386 *****************************************************************************/
94387 #endif /* defined(SQLITE_TEST) || defined(SQLITE_DEBUG) */
94389 /************** End of select.c **********************************************/
94390 /************** Begin file table.c *******************************************/
94392 ** 2001 September 15
94394 ** The author disclaims copyright to this source code. In place of
94395 ** a legal notice, here is a blessing:
94397 ** May you do good and not evil.
94398 ** May you find forgiveness for yourself and forgive others.
94399 ** May you share freely, never taking more than you give.
94401 *************************************************************************
94402 ** This file contains the sqlite3_get_table() and sqlite3_free_table()
94403 ** interface routines. These are just wrappers around the main
94404 ** interface routine of sqlite3_exec().
94406 ** These routines are in a separate files so that they will not be linked
94407 ** if they are not used.
94410 #ifndef SQLITE_OMIT_GET_TABLE
94413 ** This structure is used to pass data from sqlite3_get_table() through
94414 ** to the callback function is uses to build the result.
94416 typedef struct TabResult {
94417 char **azResult; /* Accumulated output */
94418 char *zErrMsg; /* Error message text, if an error occurs */
94419 int nAlloc; /* Slots allocated for azResult[] */
94420 int nRow; /* Number of rows in the result */
94421 int nColumn; /* Number of columns in the result */
94422 int nData; /* Slots used in azResult[]. (nRow+1)*nColumn */
94423 int rc; /* Return code from sqlite3_exec() */
94424 } TabResult;
94427 ** This routine is called once for each row in the result table. Its job
94428 ** is to fill in the TabResult structure appropriately, allocating new
94429 ** memory as necessary.
94431 static int sqlite3_get_table_cb(void *pArg, int nCol, char **argv, char **colv){
94432 TabResult *p = (TabResult*)pArg; /* Result accumulator */
94433 int need; /* Slots needed in p->azResult[] */
94434 int i; /* Loop counter */
94435 char *z; /* A single column of result */
94437 /* Make sure there is enough space in p->azResult to hold everything
94438 ** we need to remember from this invocation of the callback.
94440 if( p->nRow==0 && argv!=0 ){
94441 need = nCol*2;
94442 }else{
94443 need = nCol;
94445 if( p->nData + need > p->nAlloc ){
94446 char **azNew;
94447 p->nAlloc = p->nAlloc*2 + need;
94448 azNew = sqlite3_realloc( p->azResult, sizeof(char*)*p->nAlloc );
94449 if( azNew==0 ) goto malloc_failed;
94450 p->azResult = azNew;
94453 /* If this is the first row, then generate an extra row containing
94454 ** the names of all columns.
94456 if( p->nRow==0 ){
94457 p->nColumn = nCol;
94458 for(i=0; i<nCol; i++){
94459 z = sqlite3_mprintf("%s", colv[i]);
94460 if( z==0 ) goto malloc_failed;
94461 p->azResult[p->nData++] = z;
94463 }else if( p->nColumn!=nCol ){
94464 sqlite3_free(p->zErrMsg);
94465 p->zErrMsg = sqlite3_mprintf(
94466 "sqlite3_get_table() called with two or more incompatible queries"
94468 p->rc = SQLITE_ERROR;
94469 return 1;
94472 /* Copy over the row data
94474 if( argv!=0 ){
94475 for(i=0; i<nCol; i++){
94476 if( argv[i]==0 ){
94477 z = 0;
94478 }else{
94479 int n = sqlite3Strlen30(argv[i])+1;
94480 z = sqlite3_malloc( n );
94481 if( z==0 ) goto malloc_failed;
94482 memcpy(z, argv[i], n);
94484 p->azResult[p->nData++] = z;
94486 p->nRow++;
94488 return 0;
94490 malloc_failed:
94491 p->rc = SQLITE_NOMEM;
94492 return 1;
94496 ** Query the database. But instead of invoking a callback for each row,
94497 ** malloc() for space to hold the result and return the entire results
94498 ** at the conclusion of the call.
94500 ** The result that is written to ***pazResult is held in memory obtained
94501 ** from malloc(). But the caller cannot free this memory directly.
94502 ** Instead, the entire table should be passed to sqlite3_free_table() when
94503 ** the calling procedure is finished using it.
94505 SQLITE_API int sqlite3_get_table(
94506 sqlite3 *db, /* The database on which the SQL executes */
94507 const char *zSql, /* The SQL to be executed */
94508 char ***pazResult, /* Write the result table here */
94509 int *pnRow, /* Write the number of rows in the result here */
94510 int *pnColumn, /* Write the number of columns of result here */
94511 char **pzErrMsg /* Write error messages here */
94513 int rc;
94514 TabResult res;
94516 *pazResult = 0;
94517 if( pnColumn ) *pnColumn = 0;
94518 if( pnRow ) *pnRow = 0;
94519 if( pzErrMsg ) *pzErrMsg = 0;
94520 res.zErrMsg = 0;
94521 res.nRow = 0;
94522 res.nColumn = 0;
94523 res.nData = 1;
94524 res.nAlloc = 20;
94525 res.rc = SQLITE_OK;
94526 res.azResult = sqlite3_malloc(sizeof(char*)*res.nAlloc );
94527 if( res.azResult==0 ){
94528 db->errCode = SQLITE_NOMEM;
94529 return SQLITE_NOMEM;
94531 res.azResult[0] = 0;
94532 rc = sqlite3_exec(db, zSql, sqlite3_get_table_cb, &res, pzErrMsg);
94533 assert( sizeof(res.azResult[0])>= sizeof(res.nData) );
94534 res.azResult[0] = SQLITE_INT_TO_PTR(res.nData);
94535 if( (rc&0xff)==SQLITE_ABORT ){
94536 sqlite3_free_table(&res.azResult[1]);
94537 if( res.zErrMsg ){
94538 if( pzErrMsg ){
94539 sqlite3_free(*pzErrMsg);
94540 *pzErrMsg = sqlite3_mprintf("%s",res.zErrMsg);
94542 sqlite3_free(res.zErrMsg);
94544 db->errCode = res.rc; /* Assume 32-bit assignment is atomic */
94545 return res.rc;
94547 sqlite3_free(res.zErrMsg);
94548 if( rc!=SQLITE_OK ){
94549 sqlite3_free_table(&res.azResult[1]);
94550 return rc;
94552 if( res.nAlloc>res.nData ){
94553 char **azNew;
94554 azNew = sqlite3_realloc( res.azResult, sizeof(char*)*res.nData );
94555 if( azNew==0 ){
94556 sqlite3_free_table(&res.azResult[1]);
94557 db->errCode = SQLITE_NOMEM;
94558 return SQLITE_NOMEM;
94560 res.azResult = azNew;
94562 *pazResult = &res.azResult[1];
94563 if( pnColumn ) *pnColumn = res.nColumn;
94564 if( pnRow ) *pnRow = res.nRow;
94565 return rc;
94569 ** This routine frees the space the sqlite3_get_table() malloced.
94571 SQLITE_API void sqlite3_free_table(
94572 char **azResult /* Result returned from from sqlite3_get_table() */
94574 if( azResult ){
94575 int i, n;
94576 azResult--;
94577 assert( azResult!=0 );
94578 n = SQLITE_PTR_TO_INT(azResult[0]);
94579 for(i=1; i<n; i++){ if( azResult[i] ) sqlite3_free(azResult[i]); }
94580 sqlite3_free(azResult);
94584 #endif /* SQLITE_OMIT_GET_TABLE */
94586 /************** End of table.c ***********************************************/
94587 /************** Begin file trigger.c *****************************************/
94590 ** The author disclaims copyright to this source code. In place of
94591 ** a legal notice, here is a blessing:
94593 ** May you do good and not evil.
94594 ** May you find forgiveness for yourself and forgive others.
94595 ** May you share freely, never taking more than you give.
94597 *************************************************************************
94598 ** This file contains the implementation for TRIGGERs
94601 #ifndef SQLITE_OMIT_TRIGGER
94603 ** Delete a linked list of TriggerStep structures.
94605 SQLITE_PRIVATE void sqlite3DeleteTriggerStep(sqlite3 *db, TriggerStep *pTriggerStep){
94606 while( pTriggerStep ){
94607 TriggerStep * pTmp = pTriggerStep;
94608 pTriggerStep = pTriggerStep->pNext;
94610 sqlite3ExprDelete(db, pTmp->pWhere);
94611 sqlite3ExprListDelete(db, pTmp->pExprList);
94612 sqlite3SelectDelete(db, pTmp->pSelect);
94613 sqlite3IdListDelete(db, pTmp->pIdList);
94615 sqlite3DbFree(db, pTmp);
94620 ** Given table pTab, return a list of all the triggers attached to
94621 ** the table. The list is connected by Trigger.pNext pointers.
94623 ** All of the triggers on pTab that are in the same database as pTab
94624 ** are already attached to pTab->pTrigger. But there might be additional
94625 ** triggers on pTab in the TEMP schema. This routine prepends all
94626 ** TEMP triggers on pTab to the beginning of the pTab->pTrigger list
94627 ** and returns the combined list.
94629 ** To state it another way: This routine returns a list of all triggers
94630 ** that fire off of pTab. The list will include any TEMP triggers on
94631 ** pTab as well as the triggers lised in pTab->pTrigger.
94633 SQLITE_PRIVATE Trigger *sqlite3TriggerList(Parse *pParse, Table *pTab){
94634 Schema * const pTmpSchema = pParse->db->aDb[1].pSchema;
94635 Trigger *pList = 0; /* List of triggers to return */
94637 if( pParse->disableTriggers ){
94638 return 0;
94641 if( pTmpSchema!=pTab->pSchema ){
94642 HashElem *p;
94643 assert( sqlite3SchemaMutexHeld(pParse->db, 0, pTmpSchema) );
94644 for(p=sqliteHashFirst(&pTmpSchema->trigHash); p; p=sqliteHashNext(p)){
94645 Trigger *pTrig = (Trigger *)sqliteHashData(p);
94646 if( pTrig->pTabSchema==pTab->pSchema
94647 && 0==sqlite3StrICmp(pTrig->table, pTab->zName)
94649 pTrig->pNext = (pList ? pList : pTab->pTrigger);
94650 pList = pTrig;
94655 return (pList ? pList : pTab->pTrigger);
94659 ** This is called by the parser when it sees a CREATE TRIGGER statement
94660 ** up to the point of the BEGIN before the trigger actions. A Trigger
94661 ** structure is generated based on the information available and stored
94662 ** in pParse->pNewTrigger. After the trigger actions have been parsed, the
94663 ** sqlite3FinishTrigger() function is called to complete the trigger
94664 ** construction process.
94666 SQLITE_PRIVATE void sqlite3BeginTrigger(
94667 Parse *pParse, /* The parse context of the CREATE TRIGGER statement */
94668 Token *pName1, /* The name of the trigger */
94669 Token *pName2, /* The name of the trigger */
94670 int tr_tm, /* One of TK_BEFORE, TK_AFTER, TK_INSTEAD */
94671 int op, /* One of TK_INSERT, TK_UPDATE, TK_DELETE */
94672 IdList *pColumns, /* column list if this is an UPDATE OF trigger */
94673 SrcList *pTableName,/* The name of the table/view the trigger applies to */
94674 Expr *pWhen, /* WHEN clause */
94675 int isTemp, /* True if the TEMPORARY keyword is present */
94676 int noErr /* Suppress errors if the trigger already exists */
94678 Trigger *pTrigger = 0; /* The new trigger */
94679 Table *pTab; /* Table that the trigger fires off of */
94680 char *zName = 0; /* Name of the trigger */
94681 sqlite3 *db = pParse->db; /* The database connection */
94682 int iDb; /* The database to store the trigger in */
94683 Token *pName; /* The unqualified db name */
94684 DbFixer sFix; /* State vector for the DB fixer */
94685 int iTabDb; /* Index of the database holding pTab */
94687 assert( pName1!=0 ); /* pName1->z might be NULL, but not pName1 itself */
94688 assert( pName2!=0 );
94689 assert( op==TK_INSERT || op==TK_UPDATE || op==TK_DELETE );
94690 assert( op>0 && op<0xff );
94691 if( isTemp ){
94692 /* If TEMP was specified, then the trigger name may not be qualified. */
94693 if( pName2->n>0 ){
94694 sqlite3ErrorMsg(pParse, "temporary trigger may not have qualified name");
94695 goto trigger_cleanup;
94697 iDb = 1;
94698 pName = pName1;
94699 }else{
94700 /* Figure out the db that the the trigger will be created in */
94701 iDb = sqlite3TwoPartName(pParse, pName1, pName2, &pName);
94702 if( iDb<0 ){
94703 goto trigger_cleanup;
94707 /* If the trigger name was unqualified, and the table is a temp table,
94708 ** then set iDb to 1 to create the trigger in the temporary database.
94709 ** If sqlite3SrcListLookup() returns 0, indicating the table does not
94710 ** exist, the error is caught by the block below.
94712 if( !pTableName || db->mallocFailed ){
94713 goto trigger_cleanup;
94715 pTab = sqlite3SrcListLookup(pParse, pTableName);
94716 if( db->init.busy==0 && pName2->n==0 && pTab
94717 && pTab->pSchema==db->aDb[1].pSchema ){
94718 iDb = 1;
94721 /* Ensure the table name matches database name and that the table exists */
94722 if( db->mallocFailed ) goto trigger_cleanup;
94723 assert( pTableName->nSrc==1 );
94724 if( sqlite3FixInit(&sFix, pParse, iDb, "trigger", pName) &&
94725 sqlite3FixSrcList(&sFix, pTableName) ){
94726 goto trigger_cleanup;
94728 pTab = sqlite3SrcListLookup(pParse, pTableName);
94729 if( !pTab ){
94730 /* The table does not exist. */
94731 if( db->init.iDb==1 ){
94732 /* Ticket #3810.
94733 ** Normally, whenever a table is dropped, all associated triggers are
94734 ** dropped too. But if a TEMP trigger is created on a non-TEMP table
94735 ** and the table is dropped by a different database connection, the
94736 ** trigger is not visible to the database connection that does the
94737 ** drop so the trigger cannot be dropped. This results in an
94738 ** "orphaned trigger" - a trigger whose associated table is missing.
94740 db->init.orphanTrigger = 1;
94742 goto trigger_cleanup;
94744 if( IsVirtual(pTab) ){
94745 sqlite3ErrorMsg(pParse, "cannot create triggers on virtual tables");
94746 goto trigger_cleanup;
94749 /* Check that the trigger name is not reserved and that no trigger of the
94750 ** specified name exists */
94751 zName = sqlite3NameFromToken(db, pName);
94752 if( !zName || SQLITE_OK!=sqlite3CheckObjectName(pParse, zName) ){
94753 goto trigger_cleanup;
94755 assert( sqlite3SchemaMutexHeld(db, iDb, 0) );
94756 if( sqlite3HashFind(&(db->aDb[iDb].pSchema->trigHash),
94757 zName, sqlite3Strlen30(zName)) ){
94758 if( !noErr ){
94759 sqlite3ErrorMsg(pParse, "trigger %T already exists", pName);
94760 }else{
94761 assert( !db->init.busy );
94762 sqlite3CodeVerifySchema(pParse, iDb);
94764 goto trigger_cleanup;
94767 /* Do not create a trigger on a system table */
94768 if( sqlite3StrNICmp(pTab->zName, "sqlite_", 7)==0 ){
94769 sqlite3ErrorMsg(pParse, "cannot create trigger on system table");
94770 pParse->nErr++;
94771 goto trigger_cleanup;
94774 /* INSTEAD of triggers are only for views and views only support INSTEAD
94775 ** of triggers.
94777 if( pTab->pSelect && tr_tm!=TK_INSTEAD ){
94778 sqlite3ErrorMsg(pParse, "cannot create %s trigger on view: %S",
94779 (tr_tm == TK_BEFORE)?"BEFORE":"AFTER", pTableName, 0);
94780 goto trigger_cleanup;
94782 if( !pTab->pSelect && tr_tm==TK_INSTEAD ){
94783 sqlite3ErrorMsg(pParse, "cannot create INSTEAD OF"
94784 " trigger on table: %S", pTableName, 0);
94785 goto trigger_cleanup;
94787 iTabDb = sqlite3SchemaToIndex(db, pTab->pSchema);
94789 #ifndef SQLITE_OMIT_AUTHORIZATION
94791 int code = SQLITE_CREATE_TRIGGER;
94792 const char *zDb = db->aDb[iTabDb].zName;
94793 const char *zDbTrig = isTemp ? db->aDb[1].zName : zDb;
94794 if( iTabDb==1 || isTemp ) code = SQLITE_CREATE_TEMP_TRIGGER;
94795 if( sqlite3AuthCheck(pParse, code, zName, pTab->zName, zDbTrig) ){
94796 goto trigger_cleanup;
94798 if( sqlite3AuthCheck(pParse, SQLITE_INSERT, SCHEMA_TABLE(iTabDb),0,zDb)){
94799 goto trigger_cleanup;
94802 #endif
94804 /* INSTEAD OF triggers can only appear on views and BEFORE triggers
94805 ** cannot appear on views. So we might as well translate every
94806 ** INSTEAD OF trigger into a BEFORE trigger. It simplifies code
94807 ** elsewhere.
94809 if (tr_tm == TK_INSTEAD){
94810 tr_tm = TK_BEFORE;
94813 /* Build the Trigger object */
94814 pTrigger = (Trigger*)sqlite3DbMallocZero(db, sizeof(Trigger));
94815 if( pTrigger==0 ) goto trigger_cleanup;
94816 pTrigger->zName = zName;
94817 zName = 0;
94818 pTrigger->table = sqlite3DbStrDup(db, pTableName->a[0].zName);
94819 pTrigger->pSchema = db->aDb[iDb].pSchema;
94820 pTrigger->pTabSchema = pTab->pSchema;
94821 pTrigger->op = (u8)op;
94822 pTrigger->tr_tm = tr_tm==TK_BEFORE ? TRIGGER_BEFORE : TRIGGER_AFTER;
94823 pTrigger->pWhen = sqlite3ExprDup(db, pWhen, EXPRDUP_REDUCE);
94824 pTrigger->pColumns = sqlite3IdListDup(db, pColumns);
94825 assert( pParse->pNewTrigger==0 );
94826 pParse->pNewTrigger = pTrigger;
94828 trigger_cleanup:
94829 sqlite3DbFree(db, zName);
94830 sqlite3SrcListDelete(db, pTableName);
94831 sqlite3IdListDelete(db, pColumns);
94832 sqlite3ExprDelete(db, pWhen);
94833 if( !pParse->pNewTrigger ){
94834 sqlite3DeleteTrigger(db, pTrigger);
94835 }else{
94836 assert( pParse->pNewTrigger==pTrigger );
94841 ** This routine is called after all of the trigger actions have been parsed
94842 ** in order to complete the process of building the trigger.
94844 SQLITE_PRIVATE void sqlite3FinishTrigger(
94845 Parse *pParse, /* Parser context */
94846 TriggerStep *pStepList, /* The triggered program */
94847 Token *pAll /* Token that describes the complete CREATE TRIGGER */
94849 Trigger *pTrig = pParse->pNewTrigger; /* Trigger being finished */
94850 char *zName; /* Name of trigger */
94851 sqlite3 *db = pParse->db; /* The database */
94852 DbFixer sFix; /* Fixer object */
94853 int iDb; /* Database containing the trigger */
94854 Token nameToken; /* Trigger name for error reporting */
94856 pParse->pNewTrigger = 0;
94857 if( NEVER(pParse->nErr) || !pTrig ) goto triggerfinish_cleanup;
94858 zName = pTrig->zName;
94859 iDb = sqlite3SchemaToIndex(pParse->db, pTrig->pSchema);
94860 pTrig->step_list = pStepList;
94861 while( pStepList ){
94862 pStepList->pTrig = pTrig;
94863 pStepList = pStepList->pNext;
94865 nameToken.z = pTrig->zName;
94866 nameToken.n = sqlite3Strlen30(nameToken.z);
94867 if( sqlite3FixInit(&sFix, pParse, iDb, "trigger", &nameToken)
94868 && sqlite3FixTriggerStep(&sFix, pTrig->step_list) ){
94869 goto triggerfinish_cleanup;
94872 /* if we are not initializing,
94873 ** build the sqlite_master entry
94875 if( !db->init.busy ){
94876 Vdbe *v;
94877 char *z;
94879 /* Make an entry in the sqlite_master table */
94880 v = sqlite3GetVdbe(pParse);
94881 if( v==0 ) goto triggerfinish_cleanup;
94882 sqlite3BeginWriteOperation(pParse, 0, iDb);
94883 z = sqlite3DbStrNDup(db, (char*)pAll->z, pAll->n);
94884 sqlite3NestedParse(pParse,
94885 "INSERT INTO %Q.%s VALUES('trigger',%Q,%Q,0,'CREATE TRIGGER %q')",
94886 db->aDb[iDb].zName, SCHEMA_TABLE(iDb), zName,
94887 pTrig->table, z);
94888 sqlite3DbFree(db, z);
94889 sqlite3ChangeCookie(pParse, iDb);
94890 sqlite3VdbeAddOp4(v, OP_ParseSchema, iDb, 0, 0, sqlite3MPrintf(
94891 db, "type='trigger' AND name='%q'", zName), P4_DYNAMIC
94895 if( db->init.busy ){
94896 Trigger *pLink = pTrig;
94897 Hash *pHash = &db->aDb[iDb].pSchema->trigHash;
94898 assert( sqlite3SchemaMutexHeld(db, iDb, 0) );
94899 pTrig = sqlite3HashInsert(pHash, zName, sqlite3Strlen30(zName), pTrig);
94900 if( pTrig ){
94901 db->mallocFailed = 1;
94902 }else if( pLink->pSchema==pLink->pTabSchema ){
94903 Table *pTab;
94904 int n = sqlite3Strlen30(pLink->table);
94905 pTab = sqlite3HashFind(&pLink->pTabSchema->tblHash, pLink->table, n);
94906 assert( pTab!=0 );
94907 pLink->pNext = pTab->pTrigger;
94908 pTab->pTrigger = pLink;
94912 triggerfinish_cleanup:
94913 sqlite3DeleteTrigger(db, pTrig);
94914 assert( !pParse->pNewTrigger );
94915 sqlite3DeleteTriggerStep(db, pStepList);
94919 ** Turn a SELECT statement (that the pSelect parameter points to) into
94920 ** a trigger step. Return a pointer to a TriggerStep structure.
94922 ** The parser calls this routine when it finds a SELECT statement in
94923 ** body of a TRIGGER.
94925 SQLITE_PRIVATE TriggerStep *sqlite3TriggerSelectStep(sqlite3 *db, Select *pSelect){
94926 TriggerStep *pTriggerStep = sqlite3DbMallocZero(db, sizeof(TriggerStep));
94927 if( pTriggerStep==0 ) {
94928 sqlite3SelectDelete(db, pSelect);
94929 return 0;
94931 pTriggerStep->op = TK_SELECT;
94932 pTriggerStep->pSelect = pSelect;
94933 pTriggerStep->orconf = OE_Default;
94934 return pTriggerStep;
94938 ** Allocate space to hold a new trigger step. The allocated space
94939 ** holds both the TriggerStep object and the TriggerStep.target.z string.
94941 ** If an OOM error occurs, NULL is returned and db->mallocFailed is set.
94943 static TriggerStep *triggerStepAllocate(
94944 sqlite3 *db, /* Database connection */
94945 u8 op, /* Trigger opcode */
94946 Token *pName /* The target name */
94948 TriggerStep *pTriggerStep;
94950 pTriggerStep = sqlite3DbMallocZero(db, sizeof(TriggerStep) + pName->n);
94951 if( pTriggerStep ){
94952 char *z = (char*)&pTriggerStep[1];
94953 memcpy(z, pName->z, pName->n);
94954 pTriggerStep->target.z = z;
94955 pTriggerStep->target.n = pName->n;
94956 pTriggerStep->op = op;
94958 return pTriggerStep;
94962 ** Build a trigger step out of an INSERT statement. Return a pointer
94963 ** to the new trigger step.
94965 ** The parser calls this routine when it sees an INSERT inside the
94966 ** body of a trigger.
94968 SQLITE_PRIVATE TriggerStep *sqlite3TriggerInsertStep(
94969 sqlite3 *db, /* The database connection */
94970 Token *pTableName, /* Name of the table into which we insert */
94971 IdList *pColumn, /* List of columns in pTableName to insert into */
94972 ExprList *pEList, /* The VALUE clause: a list of values to be inserted */
94973 Select *pSelect, /* A SELECT statement that supplies values */
94974 u8 orconf /* The conflict algorithm (OE_Abort, OE_Replace, etc.) */
94976 TriggerStep *pTriggerStep;
94978 assert(pEList == 0 || pSelect == 0);
94979 assert(pEList != 0 || pSelect != 0 || db->mallocFailed);
94981 pTriggerStep = triggerStepAllocate(db, TK_INSERT, pTableName);
94982 if( pTriggerStep ){
94983 pTriggerStep->pSelect = sqlite3SelectDup(db, pSelect, EXPRDUP_REDUCE);
94984 pTriggerStep->pIdList = pColumn;
94985 pTriggerStep->pExprList = sqlite3ExprListDup(db, pEList, EXPRDUP_REDUCE);
94986 pTriggerStep->orconf = orconf;
94987 }else{
94988 sqlite3IdListDelete(db, pColumn);
94990 sqlite3ExprListDelete(db, pEList);
94991 sqlite3SelectDelete(db, pSelect);
94993 return pTriggerStep;
94997 ** Construct a trigger step that implements an UPDATE statement and return
94998 ** a pointer to that trigger step. The parser calls this routine when it
94999 ** sees an UPDATE statement inside the body of a CREATE TRIGGER.
95001 SQLITE_PRIVATE TriggerStep *sqlite3TriggerUpdateStep(
95002 sqlite3 *db, /* The database connection */
95003 Token *pTableName, /* Name of the table to be updated */
95004 ExprList *pEList, /* The SET clause: list of column and new values */
95005 Expr *pWhere, /* The WHERE clause */
95006 u8 orconf /* The conflict algorithm. (OE_Abort, OE_Ignore, etc) */
95008 TriggerStep *pTriggerStep;
95010 pTriggerStep = triggerStepAllocate(db, TK_UPDATE, pTableName);
95011 if( pTriggerStep ){
95012 pTriggerStep->pExprList = sqlite3ExprListDup(db, pEList, EXPRDUP_REDUCE);
95013 pTriggerStep->pWhere = sqlite3ExprDup(db, pWhere, EXPRDUP_REDUCE);
95014 pTriggerStep->orconf = orconf;
95016 sqlite3ExprListDelete(db, pEList);
95017 sqlite3ExprDelete(db, pWhere);
95018 return pTriggerStep;
95022 ** Construct a trigger step that implements a DELETE statement and return
95023 ** a pointer to that trigger step. The parser calls this routine when it
95024 ** sees a DELETE statement inside the body of a CREATE TRIGGER.
95026 SQLITE_PRIVATE TriggerStep *sqlite3TriggerDeleteStep(
95027 sqlite3 *db, /* Database connection */
95028 Token *pTableName, /* The table from which rows are deleted */
95029 Expr *pWhere /* The WHERE clause */
95031 TriggerStep *pTriggerStep;
95033 pTriggerStep = triggerStepAllocate(db, TK_DELETE, pTableName);
95034 if( pTriggerStep ){
95035 pTriggerStep->pWhere = sqlite3ExprDup(db, pWhere, EXPRDUP_REDUCE);
95036 pTriggerStep->orconf = OE_Default;
95038 sqlite3ExprDelete(db, pWhere);
95039 return pTriggerStep;
95043 ** Recursively delete a Trigger structure
95045 SQLITE_PRIVATE void sqlite3DeleteTrigger(sqlite3 *db, Trigger *pTrigger){
95046 if( pTrigger==0 ) return;
95047 sqlite3DeleteTriggerStep(db, pTrigger->step_list);
95048 sqlite3DbFree(db, pTrigger->zName);
95049 sqlite3DbFree(db, pTrigger->table);
95050 sqlite3ExprDelete(db, pTrigger->pWhen);
95051 sqlite3IdListDelete(db, pTrigger->pColumns);
95052 sqlite3DbFree(db, pTrigger);
95056 ** This function is called to drop a trigger from the database schema.
95058 ** This may be called directly from the parser and therefore identifies
95059 ** the trigger by name. The sqlite3DropTriggerPtr() routine does the
95060 ** same job as this routine except it takes a pointer to the trigger
95061 ** instead of the trigger name.
95063 SQLITE_PRIVATE void sqlite3DropTrigger(Parse *pParse, SrcList *pName, int noErr){
95064 Trigger *pTrigger = 0;
95065 int i;
95066 const char *zDb;
95067 const char *zName;
95068 int nName;
95069 sqlite3 *db = pParse->db;
95071 if( db->mallocFailed ) goto drop_trigger_cleanup;
95072 if( SQLITE_OK!=sqlite3ReadSchema(pParse) ){
95073 goto drop_trigger_cleanup;
95076 assert( pName->nSrc==1 );
95077 zDb = pName->a[0].zDatabase;
95078 zName = pName->a[0].zName;
95079 nName = sqlite3Strlen30(zName);
95080 assert( zDb!=0 || sqlite3BtreeHoldsAllMutexes(db) );
95081 for(i=OMIT_TEMPDB; i<db->nDb; i++){
95082 int j = (i<2) ? i^1 : i; /* Search TEMP before MAIN */
95083 if( zDb && sqlite3StrICmp(db->aDb[j].zName, zDb) ) continue;
95084 assert( sqlite3SchemaMutexHeld(db, j, 0) );
95085 pTrigger = sqlite3HashFind(&(db->aDb[j].pSchema->trigHash), zName, nName);
95086 if( pTrigger ) break;
95088 if( !pTrigger ){
95089 if( !noErr ){
95090 sqlite3ErrorMsg(pParse, "no such trigger: %S", pName, 0);
95091 }else{
95092 sqlite3CodeVerifyNamedSchema(pParse, zDb);
95094 pParse->checkSchema = 1;
95095 goto drop_trigger_cleanup;
95097 sqlite3DropTriggerPtr(pParse, pTrigger);
95099 drop_trigger_cleanup:
95100 sqlite3SrcListDelete(db, pName);
95104 ** Return a pointer to the Table structure for the table that a trigger
95105 ** is set on.
95107 static Table *tableOfTrigger(Trigger *pTrigger){
95108 int n = sqlite3Strlen30(pTrigger->table);
95109 return sqlite3HashFind(&pTrigger->pTabSchema->tblHash, pTrigger->table, n);
95114 ** Drop a trigger given a pointer to that trigger.
95116 SQLITE_PRIVATE void sqlite3DropTriggerPtr(Parse *pParse, Trigger *pTrigger){
95117 Table *pTable;
95118 Vdbe *v;
95119 sqlite3 *db = pParse->db;
95120 int iDb;
95122 iDb = sqlite3SchemaToIndex(pParse->db, pTrigger->pSchema);
95123 assert( iDb>=0 && iDb<db->nDb );
95124 pTable = tableOfTrigger(pTrigger);
95125 assert( pTable );
95126 assert( pTable->pSchema==pTrigger->pSchema || iDb==1 );
95127 #ifndef SQLITE_OMIT_AUTHORIZATION
95129 int code = SQLITE_DROP_TRIGGER;
95130 const char *zDb = db->aDb[iDb].zName;
95131 const char *zTab = SCHEMA_TABLE(iDb);
95132 if( iDb==1 ) code = SQLITE_DROP_TEMP_TRIGGER;
95133 if( sqlite3AuthCheck(pParse, code, pTrigger->zName, pTable->zName, zDb) ||
95134 sqlite3AuthCheck(pParse, SQLITE_DELETE, zTab, 0, zDb) ){
95135 return;
95138 #endif
95140 /* Generate code to destroy the database record of the trigger.
95142 assert( pTable!=0 );
95143 if( (v = sqlite3GetVdbe(pParse))!=0 ){
95144 int base;
95145 static const VdbeOpList dropTrigger[] = {
95146 { OP_Rewind, 0, ADDR(9), 0},
95147 { OP_String8, 0, 1, 0}, /* 1 */
95148 { OP_Column, 0, 1, 2},
95149 { OP_Ne, 2, ADDR(8), 1},
95150 { OP_String8, 0, 1, 0}, /* 4: "trigger" */
95151 { OP_Column, 0, 0, 2},
95152 { OP_Ne, 2, ADDR(8), 1},
95153 { OP_Delete, 0, 0, 0},
95154 { OP_Next, 0, ADDR(1), 0}, /* 8 */
95157 sqlite3BeginWriteOperation(pParse, 0, iDb);
95158 sqlite3OpenMasterTable(pParse, iDb);
95159 base = sqlite3VdbeAddOpList(v, ArraySize(dropTrigger), dropTrigger);
95160 sqlite3VdbeChangeP4(v, base+1, pTrigger->zName, P4_TRANSIENT);
95161 sqlite3VdbeChangeP4(v, base+4, "trigger", P4_STATIC);
95162 sqlite3ChangeCookie(pParse, iDb);
95163 sqlite3VdbeAddOp2(v, OP_Close, 0, 0);
95164 sqlite3VdbeAddOp4(v, OP_DropTrigger, iDb, 0, 0, pTrigger->zName, 0);
95165 if( pParse->nMem<3 ){
95166 pParse->nMem = 3;
95172 ** Remove a trigger from the hash tables of the sqlite* pointer.
95174 SQLITE_PRIVATE void sqlite3UnlinkAndDeleteTrigger(sqlite3 *db, int iDb, const char *zName){
95175 Trigger *pTrigger;
95176 Hash *pHash;
95178 assert( sqlite3SchemaMutexHeld(db, iDb, 0) );
95179 pHash = &(db->aDb[iDb].pSchema->trigHash);
95180 pTrigger = sqlite3HashInsert(pHash, zName, sqlite3Strlen30(zName), 0);
95181 if( ALWAYS(pTrigger) ){
95182 if( pTrigger->pSchema==pTrigger->pTabSchema ){
95183 Table *pTab = tableOfTrigger(pTrigger);
95184 Trigger **pp;
95185 for(pp=&pTab->pTrigger; *pp!=pTrigger; pp=&((*pp)->pNext));
95186 *pp = (*pp)->pNext;
95188 sqlite3DeleteTrigger(db, pTrigger);
95189 db->flags |= SQLITE_InternChanges;
95194 ** pEList is the SET clause of an UPDATE statement. Each entry
95195 ** in pEList is of the format <id>=<expr>. If any of the entries
95196 ** in pEList have an <id> which matches an identifier in pIdList,
95197 ** then return TRUE. If pIdList==NULL, then it is considered a
95198 ** wildcard that matches anything. Likewise if pEList==NULL then
95199 ** it matches anything so always return true. Return false only
95200 ** if there is no match.
95202 static int checkColumnOverlap(IdList *pIdList, ExprList *pEList){
95203 int e;
95204 if( pIdList==0 || NEVER(pEList==0) ) return 1;
95205 for(e=0; e<pEList->nExpr; e++){
95206 if( sqlite3IdListIndex(pIdList, pEList->a[e].zName)>=0 ) return 1;
95208 return 0;
95212 ** Return a list of all triggers on table pTab if there exists at least
95213 ** one trigger that must be fired when an operation of type 'op' is
95214 ** performed on the table, and, if that operation is an UPDATE, if at
95215 ** least one of the columns in pChanges is being modified.
95217 SQLITE_PRIVATE Trigger *sqlite3TriggersExist(
95218 Parse *pParse, /* Parse context */
95219 Table *pTab, /* The table the contains the triggers */
95220 int op, /* one of TK_DELETE, TK_INSERT, TK_UPDATE */
95221 ExprList *pChanges, /* Columns that change in an UPDATE statement */
95222 int *pMask /* OUT: Mask of TRIGGER_BEFORE|TRIGGER_AFTER */
95224 int mask = 0;
95225 Trigger *pList = 0;
95226 Trigger *p;
95228 if( (pParse->db->flags & SQLITE_EnableTrigger)!=0 ){
95229 pList = sqlite3TriggerList(pParse, pTab);
95231 assert( pList==0 || IsVirtual(pTab)==0 );
95232 for(p=pList; p; p=p->pNext){
95233 if( p->op==op && checkColumnOverlap(p->pColumns, pChanges) ){
95234 mask |= p->tr_tm;
95237 if( pMask ){
95238 *pMask = mask;
95240 return (mask ? pList : 0);
95244 ** Convert the pStep->target token into a SrcList and return a pointer
95245 ** to that SrcList.
95247 ** This routine adds a specific database name, if needed, to the target when
95248 ** forming the SrcList. This prevents a trigger in one database from
95249 ** referring to a target in another database. An exception is when the
95250 ** trigger is in TEMP in which case it can refer to any other database it
95251 ** wants.
95253 static SrcList *targetSrcList(
95254 Parse *pParse, /* The parsing context */
95255 TriggerStep *pStep /* The trigger containing the target token */
95257 int iDb; /* Index of the database to use */
95258 SrcList *pSrc; /* SrcList to be returned */
95260 pSrc = sqlite3SrcListAppend(pParse->db, 0, &pStep->target, 0);
95261 if( pSrc ){
95262 assert( pSrc->nSrc>0 );
95263 assert( pSrc->a!=0 );
95264 iDb = sqlite3SchemaToIndex(pParse->db, pStep->pTrig->pSchema);
95265 if( iDb==0 || iDb>=2 ){
95266 sqlite3 *db = pParse->db;
95267 assert( iDb<pParse->db->nDb );
95268 pSrc->a[pSrc->nSrc-1].zDatabase = sqlite3DbStrDup(db, db->aDb[iDb].zName);
95271 return pSrc;
95275 ** Generate VDBE code for the statements inside the body of a single
95276 ** trigger.
95278 static int codeTriggerProgram(
95279 Parse *pParse, /* The parser context */
95280 TriggerStep *pStepList, /* List of statements inside the trigger body */
95281 int orconf /* Conflict algorithm. (OE_Abort, etc) */
95283 TriggerStep *pStep;
95284 Vdbe *v = pParse->pVdbe;
95285 sqlite3 *db = pParse->db;
95287 assert( pParse->pTriggerTab && pParse->pToplevel );
95288 assert( pStepList );
95289 assert( v!=0 );
95290 for(pStep=pStepList; pStep; pStep=pStep->pNext){
95291 /* Figure out the ON CONFLICT policy that will be used for this step
95292 ** of the trigger program. If the statement that caused this trigger
95293 ** to fire had an explicit ON CONFLICT, then use it. Otherwise, use
95294 ** the ON CONFLICT policy that was specified as part of the trigger
95295 ** step statement. Example:
95297 ** CREATE TRIGGER AFTER INSERT ON t1 BEGIN;
95298 ** INSERT OR REPLACE INTO t2 VALUES(new.a, new.b);
95299 ** END;
95301 ** INSERT INTO t1 ... ; -- insert into t2 uses REPLACE policy
95302 ** INSERT OR IGNORE INTO t1 ... ; -- insert into t2 uses IGNORE policy
95304 pParse->eOrconf = (orconf==OE_Default)?pStep->orconf:(u8)orconf;
95306 switch( pStep->op ){
95307 case TK_UPDATE: {
95308 sqlite3Update(pParse,
95309 targetSrcList(pParse, pStep),
95310 sqlite3ExprListDup(db, pStep->pExprList, 0),
95311 sqlite3ExprDup(db, pStep->pWhere, 0),
95312 pParse->eOrconf
95314 break;
95316 case TK_INSERT: {
95317 sqlite3Insert(pParse,
95318 targetSrcList(pParse, pStep),
95319 sqlite3ExprListDup(db, pStep->pExprList, 0),
95320 sqlite3SelectDup(db, pStep->pSelect, 0),
95321 sqlite3IdListDup(db, pStep->pIdList),
95322 pParse->eOrconf
95324 break;
95326 case TK_DELETE: {
95327 sqlite3DeleteFrom(pParse,
95328 targetSrcList(pParse, pStep),
95329 sqlite3ExprDup(db, pStep->pWhere, 0)
95331 break;
95333 default: assert( pStep->op==TK_SELECT ); {
95334 SelectDest sDest;
95335 Select *pSelect = sqlite3SelectDup(db, pStep->pSelect, 0);
95336 sqlite3SelectDestInit(&sDest, SRT_Discard, 0);
95337 sqlite3Select(pParse, pSelect, &sDest);
95338 sqlite3SelectDelete(db, pSelect);
95339 break;
95342 if( pStep->op!=TK_SELECT ){
95343 sqlite3VdbeAddOp0(v, OP_ResetCount);
95347 return 0;
95350 #ifdef SQLITE_DEBUG
95352 ** This function is used to add VdbeComment() annotations to a VDBE
95353 ** program. It is not used in production code, only for debugging.
95355 static const char *onErrorText(int onError){
95356 switch( onError ){
95357 case OE_Abort: return "abort";
95358 case OE_Rollback: return "rollback";
95359 case OE_Fail: return "fail";
95360 case OE_Replace: return "replace";
95361 case OE_Ignore: return "ignore";
95362 case OE_Default: return "default";
95364 return "n/a";
95366 #endif
95369 ** Parse context structure pFrom has just been used to create a sub-vdbe
95370 ** (trigger program). If an error has occurred, transfer error information
95371 ** from pFrom to pTo.
95373 static void transferParseError(Parse *pTo, Parse *pFrom){
95374 assert( pFrom->zErrMsg==0 || pFrom->nErr );
95375 assert( pTo->zErrMsg==0 || pTo->nErr );
95376 if( pTo->nErr==0 ){
95377 pTo->zErrMsg = pFrom->zErrMsg;
95378 pTo->nErr = pFrom->nErr;
95379 }else{
95380 sqlite3DbFree(pFrom->db, pFrom->zErrMsg);
95385 ** Create and populate a new TriggerPrg object with a sub-program
95386 ** implementing trigger pTrigger with ON CONFLICT policy orconf.
95388 static TriggerPrg *codeRowTrigger(
95389 Parse *pParse, /* Current parse context */
95390 Trigger *pTrigger, /* Trigger to code */
95391 Table *pTab, /* The table pTrigger is attached to */
95392 int orconf /* ON CONFLICT policy to code trigger program with */
95394 Parse *pTop = sqlite3ParseToplevel(pParse);
95395 sqlite3 *db = pParse->db; /* Database handle */
95396 TriggerPrg *pPrg; /* Value to return */
95397 Expr *pWhen = 0; /* Duplicate of trigger WHEN expression */
95398 Vdbe *v; /* Temporary VM */
95399 NameContext sNC; /* Name context for sub-vdbe */
95400 SubProgram *pProgram = 0; /* Sub-vdbe for trigger program */
95401 Parse *pSubParse; /* Parse context for sub-vdbe */
95402 int iEndTrigger = 0; /* Label to jump to if WHEN is false */
95404 assert( pTrigger->zName==0 || pTab==tableOfTrigger(pTrigger) );
95405 assert( pTop->pVdbe );
95407 /* Allocate the TriggerPrg and SubProgram objects. To ensure that they
95408 ** are freed if an error occurs, link them into the Parse.pTriggerPrg
95409 ** list of the top-level Parse object sooner rather than later. */
95410 pPrg = sqlite3DbMallocZero(db, sizeof(TriggerPrg));
95411 if( !pPrg ) return 0;
95412 pPrg->pNext = pTop->pTriggerPrg;
95413 pTop->pTriggerPrg = pPrg;
95414 pPrg->pProgram = pProgram = sqlite3DbMallocZero(db, sizeof(SubProgram));
95415 if( !pProgram ) return 0;
95416 sqlite3VdbeLinkSubProgram(pTop->pVdbe, pProgram);
95417 pPrg->pTrigger = pTrigger;
95418 pPrg->orconf = orconf;
95419 pPrg->aColmask[0] = 0xffffffff;
95420 pPrg->aColmask[1] = 0xffffffff;
95422 /* Allocate and populate a new Parse context to use for coding the
95423 ** trigger sub-program. */
95424 pSubParse = sqlite3StackAllocZero(db, sizeof(Parse));
95425 if( !pSubParse ) return 0;
95426 memset(&sNC, 0, sizeof(sNC));
95427 sNC.pParse = pSubParse;
95428 pSubParse->db = db;
95429 pSubParse->pTriggerTab = pTab;
95430 pSubParse->pToplevel = pTop;
95431 pSubParse->zAuthContext = pTrigger->zName;
95432 pSubParse->eTriggerOp = pTrigger->op;
95433 pSubParse->nQueryLoop = pParse->nQueryLoop;
95435 v = sqlite3GetVdbe(pSubParse);
95436 if( v ){
95437 VdbeComment((v, "Start: %s.%s (%s %s%s%s ON %s)",
95438 pTrigger->zName, onErrorText(orconf),
95439 (pTrigger->tr_tm==TRIGGER_BEFORE ? "BEFORE" : "AFTER"),
95440 (pTrigger->op==TK_UPDATE ? "UPDATE" : ""),
95441 (pTrigger->op==TK_INSERT ? "INSERT" : ""),
95442 (pTrigger->op==TK_DELETE ? "DELETE" : ""),
95443 pTab->zName
95445 #ifndef SQLITE_OMIT_TRACE
95446 sqlite3VdbeChangeP4(v, -1,
95447 sqlite3MPrintf(db, "-- TRIGGER %s", pTrigger->zName), P4_DYNAMIC
95449 #endif
95451 /* If one was specified, code the WHEN clause. If it evaluates to false
95452 ** (or NULL) the sub-vdbe is immediately halted by jumping to the
95453 ** OP_Halt inserted at the end of the program. */
95454 if( pTrigger->pWhen ){
95455 pWhen = sqlite3ExprDup(db, pTrigger->pWhen, 0);
95456 if( SQLITE_OK==sqlite3ResolveExprNames(&sNC, pWhen)
95457 && db->mallocFailed==0
95459 iEndTrigger = sqlite3VdbeMakeLabel(v);
95460 sqlite3ExprIfFalse(pSubParse, pWhen, iEndTrigger, SQLITE_JUMPIFNULL);
95462 sqlite3ExprDelete(db, pWhen);
95465 /* Code the trigger program into the sub-vdbe. */
95466 codeTriggerProgram(pSubParse, pTrigger->step_list, orconf);
95468 /* Insert an OP_Halt at the end of the sub-program. */
95469 if( iEndTrigger ){
95470 sqlite3VdbeResolveLabel(v, iEndTrigger);
95472 sqlite3VdbeAddOp0(v, OP_Halt);
95473 VdbeComment((v, "End: %s.%s", pTrigger->zName, onErrorText(orconf)));
95475 transferParseError(pParse, pSubParse);
95476 if( db->mallocFailed==0 ){
95477 pProgram->aOp = sqlite3VdbeTakeOpArray(v, &pProgram->nOp, &pTop->nMaxArg);
95479 pProgram->nMem = pSubParse->nMem;
95480 pProgram->nCsr = pSubParse->nTab;
95481 pProgram->token = (void *)pTrigger;
95482 pPrg->aColmask[0] = pSubParse->oldmask;
95483 pPrg->aColmask[1] = pSubParse->newmask;
95484 sqlite3VdbeDelete(v);
95487 assert( !pSubParse->pAinc && !pSubParse->pZombieTab );
95488 assert( !pSubParse->pTriggerPrg && !pSubParse->nMaxArg );
95489 sqlite3StackFree(db, pSubParse);
95491 return pPrg;
95495 ** Return a pointer to a TriggerPrg object containing the sub-program for
95496 ** trigger pTrigger with default ON CONFLICT algorithm orconf. If no such
95497 ** TriggerPrg object exists, a new object is allocated and populated before
95498 ** being returned.
95500 static TriggerPrg *getRowTrigger(
95501 Parse *pParse, /* Current parse context */
95502 Trigger *pTrigger, /* Trigger to code */
95503 Table *pTab, /* The table trigger pTrigger is attached to */
95504 int orconf /* ON CONFLICT algorithm. */
95506 Parse *pRoot = sqlite3ParseToplevel(pParse);
95507 TriggerPrg *pPrg;
95509 assert( pTrigger->zName==0 || pTab==tableOfTrigger(pTrigger) );
95511 /* It may be that this trigger has already been coded (or is in the
95512 ** process of being coded). If this is the case, then an entry with
95513 ** a matching TriggerPrg.pTrigger field will be present somewhere
95514 ** in the Parse.pTriggerPrg list. Search for such an entry. */
95515 for(pPrg=pRoot->pTriggerPrg;
95516 pPrg && (pPrg->pTrigger!=pTrigger || pPrg->orconf!=orconf);
95517 pPrg=pPrg->pNext
95520 /* If an existing TriggerPrg could not be located, create a new one. */
95521 if( !pPrg ){
95522 pPrg = codeRowTrigger(pParse, pTrigger, pTab, orconf);
95525 return pPrg;
95529 ** Generate code for the trigger program associated with trigger p on
95530 ** table pTab. The reg, orconf and ignoreJump parameters passed to this
95531 ** function are the same as those described in the header function for
95532 ** sqlite3CodeRowTrigger()
95534 SQLITE_PRIVATE void sqlite3CodeRowTriggerDirect(
95535 Parse *pParse, /* Parse context */
95536 Trigger *p, /* Trigger to code */
95537 Table *pTab, /* The table to code triggers from */
95538 int reg, /* Reg array containing OLD.* and NEW.* values */
95539 int orconf, /* ON CONFLICT policy */
95540 int ignoreJump /* Instruction to jump to for RAISE(IGNORE) */
95542 Vdbe *v = sqlite3GetVdbe(pParse); /* Main VM */
95543 TriggerPrg *pPrg;
95544 pPrg = getRowTrigger(pParse, p, pTab, orconf);
95545 assert( pPrg || pParse->nErr || pParse->db->mallocFailed );
95547 /* Code the OP_Program opcode in the parent VDBE. P4 of the OP_Program
95548 ** is a pointer to the sub-vdbe containing the trigger program. */
95549 if( pPrg ){
95550 int bRecursive = (p->zName && 0==(pParse->db->flags&SQLITE_RecTriggers));
95552 sqlite3VdbeAddOp3(v, OP_Program, reg, ignoreJump, ++pParse->nMem);
95553 sqlite3VdbeChangeP4(v, -1, (const char *)pPrg->pProgram, P4_SUBPROGRAM);
95554 VdbeComment(
95555 (v, "Call: %s.%s", (p->zName?p->zName:"fkey"), onErrorText(orconf)));
95557 /* Set the P5 operand of the OP_Program instruction to non-zero if
95558 ** recursive invocation of this trigger program is disallowed. Recursive
95559 ** invocation is disallowed if (a) the sub-program is really a trigger,
95560 ** not a foreign key action, and (b) the flag to enable recursive triggers
95561 ** is clear. */
95562 sqlite3VdbeChangeP5(v, (u8)bRecursive);
95567 ** This is called to code the required FOR EACH ROW triggers for an operation
95568 ** on table pTab. The operation to code triggers for (INSERT, UPDATE or DELETE)
95569 ** is given by the op paramater. The tr_tm parameter determines whether the
95570 ** BEFORE or AFTER triggers are coded. If the operation is an UPDATE, then
95571 ** parameter pChanges is passed the list of columns being modified.
95573 ** If there are no triggers that fire at the specified time for the specified
95574 ** operation on pTab, this function is a no-op.
95576 ** The reg argument is the address of the first in an array of registers
95577 ** that contain the values substituted for the new.* and old.* references
95578 ** in the trigger program. If N is the number of columns in table pTab
95579 ** (a copy of pTab->nCol), then registers are populated as follows:
95581 ** Register Contains
95582 ** ------------------------------------------------------
95583 ** reg+0 OLD.rowid
95584 ** reg+1 OLD.* value of left-most column of pTab
95585 ** ... ...
95586 ** reg+N OLD.* value of right-most column of pTab
95587 ** reg+N+1 NEW.rowid
95588 ** reg+N+2 OLD.* value of left-most column of pTab
95589 ** ... ...
95590 ** reg+N+N+1 NEW.* value of right-most column of pTab
95592 ** For ON DELETE triggers, the registers containing the NEW.* values will
95593 ** never be accessed by the trigger program, so they are not allocated or
95594 ** populated by the caller (there is no data to populate them with anyway).
95595 ** Similarly, for ON INSERT triggers the values stored in the OLD.* registers
95596 ** are never accessed, and so are not allocated by the caller. So, for an
95597 ** ON INSERT trigger, the value passed to this function as parameter reg
95598 ** is not a readable register, although registers (reg+N) through
95599 ** (reg+N+N+1) are.
95601 ** Parameter orconf is the default conflict resolution algorithm for the
95602 ** trigger program to use (REPLACE, IGNORE etc.). Parameter ignoreJump
95603 ** is the instruction that control should jump to if a trigger program
95604 ** raises an IGNORE exception.
95606 SQLITE_PRIVATE void sqlite3CodeRowTrigger(
95607 Parse *pParse, /* Parse context */
95608 Trigger *pTrigger, /* List of triggers on table pTab */
95609 int op, /* One of TK_UPDATE, TK_INSERT, TK_DELETE */
95610 ExprList *pChanges, /* Changes list for any UPDATE OF triggers */
95611 int tr_tm, /* One of TRIGGER_BEFORE, TRIGGER_AFTER */
95612 Table *pTab, /* The table to code triggers from */
95613 int reg, /* The first in an array of registers (see above) */
95614 int orconf, /* ON CONFLICT policy */
95615 int ignoreJump /* Instruction to jump to for RAISE(IGNORE) */
95617 Trigger *p; /* Used to iterate through pTrigger list */
95619 assert( op==TK_UPDATE || op==TK_INSERT || op==TK_DELETE );
95620 assert( tr_tm==TRIGGER_BEFORE || tr_tm==TRIGGER_AFTER );
95621 assert( (op==TK_UPDATE)==(pChanges!=0) );
95623 for(p=pTrigger; p; p=p->pNext){
95625 /* Sanity checking: The schema for the trigger and for the table are
95626 ** always defined. The trigger must be in the same schema as the table
95627 ** or else it must be a TEMP trigger. */
95628 assert( p->pSchema!=0 );
95629 assert( p->pTabSchema!=0 );
95630 assert( p->pSchema==p->pTabSchema
95631 || p->pSchema==pParse->db->aDb[1].pSchema );
95633 /* Determine whether we should code this trigger */
95634 if( p->op==op
95635 && p->tr_tm==tr_tm
95636 && checkColumnOverlap(p->pColumns, pChanges)
95638 sqlite3CodeRowTriggerDirect(pParse, p, pTab, reg, orconf, ignoreJump);
95644 ** Triggers may access values stored in the old.* or new.* pseudo-table.
95645 ** This function returns a 32-bit bitmask indicating which columns of the
95646 ** old.* or new.* tables actually are used by triggers. This information
95647 ** may be used by the caller, for example, to avoid having to load the entire
95648 ** old.* record into memory when executing an UPDATE or DELETE command.
95650 ** Bit 0 of the returned mask is set if the left-most column of the
95651 ** table may be accessed using an [old|new].<col> reference. Bit 1 is set if
95652 ** the second leftmost column value is required, and so on. If there
95653 ** are more than 32 columns in the table, and at least one of the columns
95654 ** with an index greater than 32 may be accessed, 0xffffffff is returned.
95656 ** It is not possible to determine if the old.rowid or new.rowid column is
95657 ** accessed by triggers. The caller must always assume that it is.
95659 ** Parameter isNew must be either 1 or 0. If it is 0, then the mask returned
95660 ** applies to the old.* table. If 1, the new.* table.
95662 ** Parameter tr_tm must be a mask with one or both of the TRIGGER_BEFORE
95663 ** and TRIGGER_AFTER bits set. Values accessed by BEFORE triggers are only
95664 ** included in the returned mask if the TRIGGER_BEFORE bit is set in the
95665 ** tr_tm parameter. Similarly, values accessed by AFTER triggers are only
95666 ** included in the returned mask if the TRIGGER_AFTER bit is set in tr_tm.
95668 SQLITE_PRIVATE u32 sqlite3TriggerColmask(
95669 Parse *pParse, /* Parse context */
95670 Trigger *pTrigger, /* List of triggers on table pTab */
95671 ExprList *pChanges, /* Changes list for any UPDATE OF triggers */
95672 int isNew, /* 1 for new.* ref mask, 0 for old.* ref mask */
95673 int tr_tm, /* Mask of TRIGGER_BEFORE|TRIGGER_AFTER */
95674 Table *pTab, /* The table to code triggers from */
95675 int orconf /* Default ON CONFLICT policy for trigger steps */
95677 const int op = pChanges ? TK_UPDATE : TK_DELETE;
95678 u32 mask = 0;
95679 Trigger *p;
95681 assert( isNew==1 || isNew==0 );
95682 for(p=pTrigger; p; p=p->pNext){
95683 if( p->op==op && (tr_tm&p->tr_tm)
95684 && checkColumnOverlap(p->pColumns,pChanges)
95686 TriggerPrg *pPrg;
95687 pPrg = getRowTrigger(pParse, p, pTab, orconf);
95688 if( pPrg ){
95689 mask |= pPrg->aColmask[isNew];
95694 return mask;
95697 #endif /* !defined(SQLITE_OMIT_TRIGGER) */
95699 /************** End of trigger.c *********************************************/
95700 /************** Begin file update.c ******************************************/
95702 ** 2001 September 15
95704 ** The author disclaims copyright to this source code. In place of
95705 ** a legal notice, here is a blessing:
95707 ** May you do good and not evil.
95708 ** May you find forgiveness for yourself and forgive others.
95709 ** May you share freely, never taking more than you give.
95711 *************************************************************************
95712 ** This file contains C code routines that are called by the parser
95713 ** to handle UPDATE statements.
95716 #ifndef SQLITE_OMIT_VIRTUALTABLE
95717 /* Forward declaration */
95718 static void updateVirtualTable(
95719 Parse *pParse, /* The parsing context */
95720 SrcList *pSrc, /* The virtual table to be modified */
95721 Table *pTab, /* The virtual table */
95722 ExprList *pChanges, /* The columns to change in the UPDATE statement */
95723 Expr *pRowidExpr, /* Expression used to recompute the rowid */
95724 int *aXRef, /* Mapping from columns of pTab to entries in pChanges */
95725 Expr *pWhere /* WHERE clause of the UPDATE statement */
95727 #endif /* SQLITE_OMIT_VIRTUALTABLE */
95730 ** The most recently coded instruction was an OP_Column to retrieve the
95731 ** i-th column of table pTab. This routine sets the P4 parameter of the
95732 ** OP_Column to the default value, if any.
95734 ** The default value of a column is specified by a DEFAULT clause in the
95735 ** column definition. This was either supplied by the user when the table
95736 ** was created, or added later to the table definition by an ALTER TABLE
95737 ** command. If the latter, then the row-records in the table btree on disk
95738 ** may not contain a value for the column and the default value, taken
95739 ** from the P4 parameter of the OP_Column instruction, is returned instead.
95740 ** If the former, then all row-records are guaranteed to include a value
95741 ** for the column and the P4 value is not required.
95743 ** Column definitions created by an ALTER TABLE command may only have
95744 ** literal default values specified: a number, null or a string. (If a more
95745 ** complicated default expression value was provided, it is evaluated
95746 ** when the ALTER TABLE is executed and one of the literal values written
95747 ** into the sqlite_master table.)
95749 ** Therefore, the P4 parameter is only required if the default value for
95750 ** the column is a literal number, string or null. The sqlite3ValueFromExpr()
95751 ** function is capable of transforming these types of expressions into
95752 ** sqlite3_value objects.
95754 ** If parameter iReg is not negative, code an OP_RealAffinity instruction
95755 ** on register iReg. This is used when an equivalent integer value is
95756 ** stored in place of an 8-byte floating point value in order to save
95757 ** space.
95759 SQLITE_PRIVATE void sqlite3ColumnDefault(Vdbe *v, Table *pTab, int i, int iReg){
95760 assert( pTab!=0 );
95761 if( !pTab->pSelect ){
95762 sqlite3_value *pValue;
95763 u8 enc = ENC(sqlite3VdbeDb(v));
95764 Column *pCol = &pTab->aCol[i];
95765 VdbeComment((v, "%s.%s", pTab->zName, pCol->zName));
95766 assert( i<pTab->nCol );
95767 sqlite3ValueFromExpr(sqlite3VdbeDb(v), pCol->pDflt, enc,
95768 pCol->affinity, &pValue);
95769 if( pValue ){
95770 sqlite3VdbeChangeP4(v, -1, (const char *)pValue, P4_MEM);
95772 #ifndef SQLITE_OMIT_FLOATING_POINT
95773 if( iReg>=0 && pTab->aCol[i].affinity==SQLITE_AFF_REAL ){
95774 sqlite3VdbeAddOp1(v, OP_RealAffinity, iReg);
95776 #endif
95781 ** Process an UPDATE statement.
95783 ** UPDATE OR IGNORE table_wxyz SET a=b, c=d WHERE e<5 AND f NOT NULL;
95784 ** \_______/ \________/ \______/ \________________/
95785 * onError pTabList pChanges pWhere
95787 SQLITE_PRIVATE void sqlite3Update(
95788 Parse *pParse, /* The parser context */
95789 SrcList *pTabList, /* The table in which we should change things */
95790 ExprList *pChanges, /* Things to be changed */
95791 Expr *pWhere, /* The WHERE clause. May be null */
95792 int onError /* How to handle constraint errors */
95794 int i, j; /* Loop counters */
95795 Table *pTab; /* The table to be updated */
95796 int addr = 0; /* VDBE instruction address of the start of the loop */
95797 WhereInfo *pWInfo; /* Information about the WHERE clause */
95798 Vdbe *v; /* The virtual database engine */
95799 Index *pIdx; /* For looping over indices */
95800 int nIdx; /* Number of indices that need updating */
95801 int iCur; /* VDBE Cursor number of pTab */
95802 sqlite3 *db; /* The database structure */
95803 int *aRegIdx = 0; /* One register assigned to each index to be updated */
95804 int *aXRef = 0; /* aXRef[i] is the index in pChanges->a[] of the
95805 ** an expression for the i-th column of the table.
95806 ** aXRef[i]==-1 if the i-th column is not changed. */
95807 int chngRowid; /* True if the record number is being changed */
95808 Expr *pRowidExpr = 0; /* Expression defining the new record number */
95809 int openAll = 0; /* True if all indices need to be opened */
95810 AuthContext sContext; /* The authorization context */
95811 NameContext sNC; /* The name-context to resolve expressions in */
95812 int iDb; /* Database containing the table being updated */
95813 int okOnePass; /* True for one-pass algorithm without the FIFO */
95814 int hasFK; /* True if foreign key processing is required */
95816 #ifndef SQLITE_OMIT_TRIGGER
95817 int isView; /* True when updating a view (INSTEAD OF trigger) */
95818 Trigger *pTrigger; /* List of triggers on pTab, if required */
95819 int tmask; /* Mask of TRIGGER_BEFORE|TRIGGER_AFTER */
95820 #endif
95821 int newmask; /* Mask of NEW.* columns accessed by BEFORE triggers */
95823 /* Register Allocations */
95824 int regRowCount = 0; /* A count of rows changed */
95825 int regOldRowid; /* The old rowid */
95826 int regNewRowid; /* The new rowid */
95827 int regNew;
95828 int regOld = 0;
95829 int regRowSet = 0; /* Rowset of rows to be updated */
95831 memset(&sContext, 0, sizeof(sContext));
95832 db = pParse->db;
95833 if( pParse->nErr || db->mallocFailed ){
95834 goto update_cleanup;
95836 assert( pTabList->nSrc==1 );
95838 /* Locate the table which we want to update.
95840 pTab = sqlite3SrcListLookup(pParse, pTabList);
95841 if( pTab==0 ) goto update_cleanup;
95842 iDb = sqlite3SchemaToIndex(pParse->db, pTab->pSchema);
95844 /* Figure out if we have any triggers and if the table being
95845 ** updated is a view.
95847 #ifndef SQLITE_OMIT_TRIGGER
95848 pTrigger = sqlite3TriggersExist(pParse, pTab, TK_UPDATE, pChanges, &tmask);
95849 isView = pTab->pSelect!=0;
95850 assert( pTrigger || tmask==0 );
95851 #else
95852 # define pTrigger 0
95853 # define isView 0
95854 # define tmask 0
95855 #endif
95856 #ifdef SQLITE_OMIT_VIEW
95857 # undef isView
95858 # define isView 0
95859 #endif
95861 if( sqlite3ViewGetColumnNames(pParse, pTab) ){
95862 goto update_cleanup;
95864 if( sqlite3IsReadOnly(pParse, pTab, tmask) ){
95865 goto update_cleanup;
95867 aXRef = sqlite3DbMallocRaw(db, sizeof(int) * pTab->nCol );
95868 if( aXRef==0 ) goto update_cleanup;
95869 for(i=0; i<pTab->nCol; i++) aXRef[i] = -1;
95871 /* Allocate a cursors for the main database table and for all indices.
95872 ** The index cursors might not be used, but if they are used they
95873 ** need to occur right after the database cursor. So go ahead and
95874 ** allocate enough space, just in case.
95876 pTabList->a[0].iCursor = iCur = pParse->nTab++;
95877 for(pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext){
95878 pParse->nTab++;
95881 /* Initialize the name-context */
95882 memset(&sNC, 0, sizeof(sNC));
95883 sNC.pParse = pParse;
95884 sNC.pSrcList = pTabList;
95886 /* Resolve the column names in all the expressions of the
95887 ** of the UPDATE statement. Also find the column index
95888 ** for each column to be updated in the pChanges array. For each
95889 ** column to be updated, make sure we have authorization to change
95890 ** that column.
95892 chngRowid = 0;
95893 for(i=0; i<pChanges->nExpr; i++){
95894 if( sqlite3ResolveExprNames(&sNC, pChanges->a[i].pExpr) ){
95895 goto update_cleanup;
95897 for(j=0; j<pTab->nCol; j++){
95898 if( sqlite3StrICmp(pTab->aCol[j].zName, pChanges->a[i].zName)==0 ){
95899 if( j==pTab->iPKey ){
95900 chngRowid = 1;
95901 pRowidExpr = pChanges->a[i].pExpr;
95903 aXRef[j] = i;
95904 break;
95907 if( j>=pTab->nCol ){
95908 if( sqlite3IsRowid(pChanges->a[i].zName) ){
95909 chngRowid = 1;
95910 pRowidExpr = pChanges->a[i].pExpr;
95911 }else{
95912 sqlite3ErrorMsg(pParse, "no such column: %s", pChanges->a[i].zName);
95913 pParse->checkSchema = 1;
95914 goto update_cleanup;
95917 #ifndef SQLITE_OMIT_AUTHORIZATION
95919 int rc;
95920 rc = sqlite3AuthCheck(pParse, SQLITE_UPDATE, pTab->zName,
95921 pTab->aCol[j].zName, db->aDb[iDb].zName);
95922 if( rc==SQLITE_DENY ){
95923 goto update_cleanup;
95924 }else if( rc==SQLITE_IGNORE ){
95925 aXRef[j] = -1;
95928 #endif
95931 hasFK = sqlite3FkRequired(pParse, pTab, aXRef, chngRowid);
95933 /* Allocate memory for the array aRegIdx[]. There is one entry in the
95934 ** array for each index associated with table being updated. Fill in
95935 ** the value with a register number for indices that are to be used
95936 ** and with zero for unused indices.
95938 for(nIdx=0, pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext, nIdx++){}
95939 if( nIdx>0 ){
95940 aRegIdx = sqlite3DbMallocRaw(db, sizeof(Index*) * nIdx );
95941 if( aRegIdx==0 ) goto update_cleanup;
95943 for(j=0, pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext, j++){
95944 int reg;
95945 if( chngRowid ){
95946 reg = ++pParse->nMem;
95947 }else{
95948 reg = 0;
95949 for(i=0; i<pIdx->nColumn; i++){
95950 if( aXRef[pIdx->aiColumn[i]]>=0 ){
95951 reg = ++pParse->nMem;
95952 break;
95956 aRegIdx[j] = reg;
95959 /* Begin generating code. */
95960 v = sqlite3GetVdbe(pParse);
95961 if( v==0 ) goto update_cleanup;
95962 if( pParse->nested==0 ) sqlite3VdbeCountChanges(v);
95963 sqlite3BeginWriteOperation(pParse, 1, iDb);
95965 #ifndef SQLITE_OMIT_VIRTUALTABLE
95966 /* Virtual tables must be handled separately */
95967 if( IsVirtual(pTab) ){
95968 updateVirtualTable(pParse, pTabList, pTab, pChanges, pRowidExpr, aXRef,
95969 pWhere);
95970 pWhere = 0;
95971 pTabList = 0;
95972 goto update_cleanup;
95974 #endif
95976 /* Allocate required registers. */
95977 regOldRowid = regNewRowid = ++pParse->nMem;
95978 if( pTrigger || hasFK ){
95979 regOld = pParse->nMem + 1;
95980 pParse->nMem += pTab->nCol;
95982 if( chngRowid || pTrigger || hasFK ){
95983 regNewRowid = ++pParse->nMem;
95985 regNew = pParse->nMem + 1;
95986 pParse->nMem += pTab->nCol;
95988 /* Start the view context. */
95989 if( isView ){
95990 sqlite3AuthContextPush(pParse, &sContext, pTab->zName);
95993 /* If we are trying to update a view, realize that view into
95994 ** a ephemeral table.
95996 #if !defined(SQLITE_OMIT_VIEW) && !defined(SQLITE_OMIT_TRIGGER)
95997 if( isView ){
95998 sqlite3MaterializeView(pParse, pTab, pWhere, iCur);
96000 #endif
96002 /* Resolve the column names in all the expressions in the
96003 ** WHERE clause.
96005 if( sqlite3ResolveExprNames(&sNC, pWhere) ){
96006 goto update_cleanup;
96009 /* Begin the database scan
96011 sqlite3VdbeAddOp2(v, OP_Null, 0, regOldRowid);
96012 pWInfo = sqlite3WhereBegin(pParse, pTabList, pWhere,0, WHERE_ONEPASS_DESIRED);
96013 if( pWInfo==0 ) goto update_cleanup;
96014 okOnePass = pWInfo->okOnePass;
96016 /* Remember the rowid of every item to be updated.
96018 sqlite3VdbeAddOp2(v, OP_Rowid, iCur, regOldRowid);
96019 if( !okOnePass ){
96020 regRowSet = ++pParse->nMem;
96021 sqlite3VdbeAddOp2(v, OP_RowSetAdd, regRowSet, regOldRowid);
96024 /* End the database scan loop.
96026 sqlite3WhereEnd(pWInfo);
96028 /* Initialize the count of updated rows
96030 if( (db->flags & SQLITE_CountRows) && !pParse->pTriggerTab ){
96031 regRowCount = ++pParse->nMem;
96032 sqlite3VdbeAddOp2(v, OP_Integer, 0, regRowCount);
96035 if( !isView ){
96037 ** Open every index that needs updating. Note that if any
96038 ** index could potentially invoke a REPLACE conflict resolution
96039 ** action, then we need to open all indices because we might need
96040 ** to be deleting some records.
96042 if( !okOnePass ) sqlite3OpenTable(pParse, iCur, iDb, pTab, OP_OpenWrite);
96043 if( onError==OE_Replace ){
96044 openAll = 1;
96045 }else{
96046 openAll = 0;
96047 for(pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext){
96048 if( pIdx->onError==OE_Replace ){
96049 openAll = 1;
96050 break;
96054 for(i=0, pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext, i++){
96055 if( openAll || aRegIdx[i]>0 ){
96056 KeyInfo *pKey = sqlite3IndexKeyinfo(pParse, pIdx);
96057 sqlite3VdbeAddOp4(v, OP_OpenWrite, iCur+i+1, pIdx->tnum, iDb,
96058 (char*)pKey, P4_KEYINFO_HANDOFF);
96059 assert( pParse->nTab>iCur+i+1 );
96064 /* Top of the update loop */
96065 if( okOnePass ){
96066 int a1 = sqlite3VdbeAddOp1(v, OP_NotNull, regOldRowid);
96067 addr = sqlite3VdbeAddOp0(v, OP_Goto);
96068 sqlite3VdbeJumpHere(v, a1);
96069 }else{
96070 addr = sqlite3VdbeAddOp3(v, OP_RowSetRead, regRowSet, 0, regOldRowid);
96073 /* Make cursor iCur point to the record that is being updated. If
96074 ** this record does not exist for some reason (deleted by a trigger,
96075 ** for example, then jump to the next iteration of the RowSet loop. */
96076 sqlite3VdbeAddOp3(v, OP_NotExists, iCur, addr, regOldRowid);
96078 /* If the record number will change, set register regNewRowid to
96079 ** contain the new value. If the record number is not being modified,
96080 ** then regNewRowid is the same register as regOldRowid, which is
96081 ** already populated. */
96082 assert( chngRowid || pTrigger || hasFK || regOldRowid==regNewRowid );
96083 if( chngRowid ){
96084 sqlite3ExprCode(pParse, pRowidExpr, regNewRowid);
96085 sqlite3VdbeAddOp1(v, OP_MustBeInt, regNewRowid);
96088 /* If there are triggers on this table, populate an array of registers
96089 ** with the required old.* column data. */
96090 if( hasFK || pTrigger ){
96091 u32 oldmask = (hasFK ? sqlite3FkOldmask(pParse, pTab) : 0);
96092 oldmask |= sqlite3TriggerColmask(pParse,
96093 pTrigger, pChanges, 0, TRIGGER_BEFORE|TRIGGER_AFTER, pTab, onError
96095 for(i=0; i<pTab->nCol; i++){
96096 if( aXRef[i]<0 || oldmask==0xffffffff || (i<32 && (oldmask & (1<<i))) ){
96097 sqlite3ExprCodeGetColumnOfTable(v, pTab, iCur, i, regOld+i);
96098 }else{
96099 sqlite3VdbeAddOp2(v, OP_Null, 0, regOld+i);
96102 if( chngRowid==0 ){
96103 sqlite3VdbeAddOp2(v, OP_Copy, regOldRowid, regNewRowid);
96107 /* Populate the array of registers beginning at regNew with the new
96108 ** row data. This array is used to check constaints, create the new
96109 ** table and index records, and as the values for any new.* references
96110 ** made by triggers.
96112 ** If there are one or more BEFORE triggers, then do not populate the
96113 ** registers associated with columns that are (a) not modified by
96114 ** this UPDATE statement and (b) not accessed by new.* references. The
96115 ** values for registers not modified by the UPDATE must be reloaded from
96116 ** the database after the BEFORE triggers are fired anyway (as the trigger
96117 ** may have modified them). So not loading those that are not going to
96118 ** be used eliminates some redundant opcodes.
96120 newmask = sqlite3TriggerColmask(
96121 pParse, pTrigger, pChanges, 1, TRIGGER_BEFORE, pTab, onError
96123 for(i=0; i<pTab->nCol; i++){
96124 if( i==pTab->iPKey ){
96125 sqlite3VdbeAddOp2(v, OP_Null, 0, regNew+i);
96126 }else{
96127 j = aXRef[i];
96128 if( j>=0 ){
96129 sqlite3ExprCode(pParse, pChanges->a[j].pExpr, regNew+i);
96130 }else if( 0==(tmask&TRIGGER_BEFORE) || i>31 || (newmask&(1<<i)) ){
96131 /* This branch loads the value of a column that will not be changed
96132 ** into a register. This is done if there are no BEFORE triggers, or
96133 ** if there are one or more BEFORE triggers that use this value via
96134 ** a new.* reference in a trigger program.
96136 testcase( i==31 );
96137 testcase( i==32 );
96138 sqlite3VdbeAddOp3(v, OP_Column, iCur, i, regNew+i);
96139 sqlite3ColumnDefault(v, pTab, i, regNew+i);
96144 /* Fire any BEFORE UPDATE triggers. This happens before constraints are
96145 ** verified. One could argue that this is wrong.
96147 if( tmask&TRIGGER_BEFORE ){
96148 sqlite3VdbeAddOp2(v, OP_Affinity, regNew, pTab->nCol);
96149 sqlite3TableAffinityStr(v, pTab);
96150 sqlite3CodeRowTrigger(pParse, pTrigger, TK_UPDATE, pChanges,
96151 TRIGGER_BEFORE, pTab, regOldRowid, onError, addr);
96153 /* The row-trigger may have deleted the row being updated. In this
96154 ** case, jump to the next row. No updates or AFTER triggers are
96155 ** required. This behaviour - what happens when the row being updated
96156 ** is deleted or renamed by a BEFORE trigger - is left undefined in the
96157 ** documentation.
96159 sqlite3VdbeAddOp3(v, OP_NotExists, iCur, addr, regOldRowid);
96161 /* If it did not delete it, the row-trigger may still have modified
96162 ** some of the columns of the row being updated. Load the values for
96163 ** all columns not modified by the update statement into their
96164 ** registers in case this has happened.
96166 for(i=0; i<pTab->nCol; i++){
96167 if( aXRef[i]<0 && i!=pTab->iPKey ){
96168 sqlite3VdbeAddOp3(v, OP_Column, iCur, i, regNew+i);
96169 sqlite3ColumnDefault(v, pTab, i, regNew+i);
96174 if( !isView ){
96175 int j1; /* Address of jump instruction */
96177 /* Do constraint checks. */
96178 sqlite3GenerateConstraintChecks(pParse, pTab, iCur, regNewRowid,
96179 aRegIdx, (chngRowid?regOldRowid:0), 1, onError, addr, 0);
96181 /* Do FK constraint checks. */
96182 if( hasFK ){
96183 sqlite3FkCheck(pParse, pTab, regOldRowid, 0);
96186 /* Delete the index entries associated with the current record. */
96187 j1 = sqlite3VdbeAddOp3(v, OP_NotExists, iCur, 0, regOldRowid);
96188 sqlite3GenerateRowIndexDelete(pParse, pTab, iCur, aRegIdx);
96190 /* If changing the record number, delete the old record. */
96191 if( hasFK || chngRowid ){
96192 sqlite3VdbeAddOp2(v, OP_Delete, iCur, 0);
96194 sqlite3VdbeJumpHere(v, j1);
96196 if( hasFK ){
96197 sqlite3FkCheck(pParse, pTab, 0, regNewRowid);
96200 /* Insert the new index entries and the new record. */
96201 sqlite3CompleteInsertion(pParse, pTab, iCur, regNewRowid, aRegIdx, 1, 0, 0);
96203 /* Do any ON CASCADE, SET NULL or SET DEFAULT operations required to
96204 ** handle rows (possibly in other tables) that refer via a foreign key
96205 ** to the row just updated. */
96206 if( hasFK ){
96207 sqlite3FkActions(pParse, pTab, pChanges, regOldRowid);
96211 /* Increment the row counter
96213 if( (db->flags & SQLITE_CountRows) && !pParse->pTriggerTab){
96214 sqlite3VdbeAddOp2(v, OP_AddImm, regRowCount, 1);
96217 sqlite3CodeRowTrigger(pParse, pTrigger, TK_UPDATE, pChanges,
96218 TRIGGER_AFTER, pTab, regOldRowid, onError, addr);
96220 /* Repeat the above with the next record to be updated, until
96221 ** all record selected by the WHERE clause have been updated.
96223 sqlite3VdbeAddOp2(v, OP_Goto, 0, addr);
96224 sqlite3VdbeJumpHere(v, addr);
96226 /* Close all tables */
96227 for(i=0, pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext, i++){
96228 if( openAll || aRegIdx[i]>0 ){
96229 sqlite3VdbeAddOp2(v, OP_Close, iCur+i+1, 0);
96232 sqlite3VdbeAddOp2(v, OP_Close, iCur, 0);
96234 /* Update the sqlite_sequence table by storing the content of the
96235 ** maximum rowid counter values recorded while inserting into
96236 ** autoincrement tables.
96238 if( pParse->nested==0 && pParse->pTriggerTab==0 ){
96239 sqlite3AutoincrementEnd(pParse);
96243 ** Return the number of rows that were changed. If this routine is
96244 ** generating code because of a call to sqlite3NestedParse(), do not
96245 ** invoke the callback function.
96247 if( (db->flags&SQLITE_CountRows) && !pParse->pTriggerTab && !pParse->nested ){
96248 sqlite3VdbeAddOp2(v, OP_ResultRow, regRowCount, 1);
96249 sqlite3VdbeSetNumCols(v, 1);
96250 sqlite3VdbeSetColName(v, 0, COLNAME_NAME, "rows updated", SQLITE_STATIC);
96253 update_cleanup:
96254 sqlite3AuthContextPop(&sContext);
96255 sqlite3DbFree(db, aRegIdx);
96256 sqlite3DbFree(db, aXRef);
96257 sqlite3SrcListDelete(db, pTabList);
96258 sqlite3ExprListDelete(db, pChanges);
96259 sqlite3ExprDelete(db, pWhere);
96260 return;
96262 /* Make sure "isView" and other macros defined above are undefined. Otherwise
96263 ** thely may interfere with compilation of other functions in this file
96264 ** (or in another file, if this file becomes part of the amalgamation). */
96265 #ifdef isView
96266 #undef isView
96267 #endif
96268 #ifdef pTrigger
96269 #undef pTrigger
96270 #endif
96272 #ifndef SQLITE_OMIT_VIRTUALTABLE
96274 ** Generate code for an UPDATE of a virtual table.
96276 ** The strategy is that we create an ephemerial table that contains
96277 ** for each row to be changed:
96279 ** (A) The original rowid of that row.
96280 ** (B) The revised rowid for the row. (note1)
96281 ** (C) The content of every column in the row.
96283 ** Then we loop over this ephemeral table and for each row in
96284 ** the ephermeral table call VUpdate.
96286 ** When finished, drop the ephemeral table.
96288 ** (note1) Actually, if we know in advance that (A) is always the same
96289 ** as (B) we only store (A), then duplicate (A) when pulling
96290 ** it out of the ephemeral table before calling VUpdate.
96292 static void updateVirtualTable(
96293 Parse *pParse, /* The parsing context */
96294 SrcList *pSrc, /* The virtual table to be modified */
96295 Table *pTab, /* The virtual table */
96296 ExprList *pChanges, /* The columns to change in the UPDATE statement */
96297 Expr *pRowid, /* Expression used to recompute the rowid */
96298 int *aXRef, /* Mapping from columns of pTab to entries in pChanges */
96299 Expr *pWhere /* WHERE clause of the UPDATE statement */
96301 Vdbe *v = pParse->pVdbe; /* Virtual machine under construction */
96302 ExprList *pEList = 0; /* The result set of the SELECT statement */
96303 Select *pSelect = 0; /* The SELECT statement */
96304 Expr *pExpr; /* Temporary expression */
96305 int ephemTab; /* Table holding the result of the SELECT */
96306 int i; /* Loop counter */
96307 int addr; /* Address of top of loop */
96308 int iReg; /* First register in set passed to OP_VUpdate */
96309 sqlite3 *db = pParse->db; /* Database connection */
96310 const char *pVTab = (const char*)sqlite3GetVTable(db, pTab);
96311 SelectDest dest;
96313 /* Construct the SELECT statement that will find the new values for
96314 ** all updated rows.
96316 pEList = sqlite3ExprListAppend(pParse, 0, sqlite3Expr(db, TK_ID, "_rowid_"));
96317 if( pRowid ){
96318 pEList = sqlite3ExprListAppend(pParse, pEList,
96319 sqlite3ExprDup(db, pRowid, 0));
96321 assert( pTab->iPKey<0 );
96322 for(i=0; i<pTab->nCol; i++){
96323 if( aXRef[i]>=0 ){
96324 pExpr = sqlite3ExprDup(db, pChanges->a[aXRef[i]].pExpr, 0);
96325 }else{
96326 pExpr = sqlite3Expr(db, TK_ID, pTab->aCol[i].zName);
96328 pEList = sqlite3ExprListAppend(pParse, pEList, pExpr);
96330 pSelect = sqlite3SelectNew(pParse, pEList, pSrc, pWhere, 0, 0, 0, 0, 0, 0);
96332 /* Create the ephemeral table into which the update results will
96333 ** be stored.
96335 assert( v );
96336 ephemTab = pParse->nTab++;
96337 sqlite3VdbeAddOp2(v, OP_OpenEphemeral, ephemTab, pTab->nCol+1+(pRowid!=0));
96338 sqlite3VdbeChangeP5(v, BTREE_UNORDERED);
96340 /* fill the ephemeral table
96342 sqlite3SelectDestInit(&dest, SRT_Table, ephemTab);
96343 sqlite3Select(pParse, pSelect, &dest);
96345 /* Generate code to scan the ephemeral table and call VUpdate. */
96346 iReg = ++pParse->nMem;
96347 pParse->nMem += pTab->nCol+1;
96348 addr = sqlite3VdbeAddOp2(v, OP_Rewind, ephemTab, 0);
96349 sqlite3VdbeAddOp3(v, OP_Column, ephemTab, 0, iReg);
96350 sqlite3VdbeAddOp3(v, OP_Column, ephemTab, (pRowid?1:0), iReg+1);
96351 for(i=0; i<pTab->nCol; i++){
96352 sqlite3VdbeAddOp3(v, OP_Column, ephemTab, i+1+(pRowid!=0), iReg+2+i);
96354 sqlite3VtabMakeWritable(pParse, pTab);
96355 sqlite3VdbeAddOp4(v, OP_VUpdate, 0, pTab->nCol+2, iReg, pVTab, P4_VTAB);
96356 sqlite3MayAbort(pParse);
96357 sqlite3VdbeAddOp2(v, OP_Next, ephemTab, addr+1);
96358 sqlite3VdbeJumpHere(v, addr);
96359 sqlite3VdbeAddOp2(v, OP_Close, ephemTab, 0);
96361 /* Cleanup */
96362 sqlite3SelectDelete(db, pSelect);
96364 #endif /* SQLITE_OMIT_VIRTUALTABLE */
96366 /************** End of update.c **********************************************/
96367 /************** Begin file vacuum.c ******************************************/
96369 ** 2003 April 6
96371 ** The author disclaims copyright to this source code. In place of
96372 ** a legal notice, here is a blessing:
96374 ** May you do good and not evil.
96375 ** May you find forgiveness for yourself and forgive others.
96376 ** May you share freely, never taking more than you give.
96378 *************************************************************************
96379 ** This file contains code used to implement the VACUUM command.
96381 ** Most of the code in this file may be omitted by defining the
96382 ** SQLITE_OMIT_VACUUM macro.
96385 #if !defined(SQLITE_OMIT_VACUUM) && !defined(SQLITE_OMIT_ATTACH)
96387 ** Finalize a prepared statement. If there was an error, store the
96388 ** text of the error message in *pzErrMsg. Return the result code.
96390 static int vacuumFinalize(sqlite3 *db, sqlite3_stmt *pStmt, char **pzErrMsg){
96391 int rc;
96392 rc = sqlite3VdbeFinalize((Vdbe*)pStmt);
96393 if( rc ){
96394 sqlite3SetString(pzErrMsg, db, sqlite3_errmsg(db));
96396 return rc;
96400 ** Execute zSql on database db. Return an error code.
96402 static int execSql(sqlite3 *db, char **pzErrMsg, const char *zSql){
96403 sqlite3_stmt *pStmt;
96404 VVA_ONLY( int rc; )
96405 if( !zSql ){
96406 return SQLITE_NOMEM;
96408 if( SQLITE_OK!=sqlite3_prepare(db, zSql, -1, &pStmt, 0) ){
96409 sqlite3SetString(pzErrMsg, db, sqlite3_errmsg(db));
96410 return sqlite3_errcode(db);
96412 VVA_ONLY( rc = ) sqlite3_step(pStmt);
96413 assert( rc!=SQLITE_ROW );
96414 return vacuumFinalize(db, pStmt, pzErrMsg);
96418 ** Execute zSql on database db. The statement returns exactly
96419 ** one column. Execute this as SQL on the same database.
96421 static int execExecSql(sqlite3 *db, char **pzErrMsg, const char *zSql){
96422 sqlite3_stmt *pStmt;
96423 int rc;
96425 rc = sqlite3_prepare(db, zSql, -1, &pStmt, 0);
96426 if( rc!=SQLITE_OK ) return rc;
96428 while( SQLITE_ROW==sqlite3_step(pStmt) ){
96429 rc = execSql(db, pzErrMsg, (char*)sqlite3_column_text(pStmt, 0));
96430 if( rc!=SQLITE_OK ){
96431 vacuumFinalize(db, pStmt, pzErrMsg);
96432 return rc;
96436 return vacuumFinalize(db, pStmt, pzErrMsg);
96440 ** The non-standard VACUUM command is used to clean up the database,
96441 ** collapse free space, etc. It is modelled after the VACUUM command
96442 ** in PostgreSQL.
96444 ** In version 1.0.x of SQLite, the VACUUM command would call
96445 ** gdbm_reorganize() on all the database tables. But beginning
96446 ** with 2.0.0, SQLite no longer uses GDBM so this command has
96447 ** become a no-op.
96449 SQLITE_PRIVATE void sqlite3Vacuum(Parse *pParse){
96450 Vdbe *v = sqlite3GetVdbe(pParse);
96451 if( v ){
96452 sqlite3VdbeAddOp2(v, OP_Vacuum, 0, 0);
96454 return;
96458 ** This routine implements the OP_Vacuum opcode of the VDBE.
96460 SQLITE_PRIVATE int sqlite3RunVacuum(char **pzErrMsg, sqlite3 *db){
96461 int rc = SQLITE_OK; /* Return code from service routines */
96462 Btree *pMain; /* The database being vacuumed */
96463 Btree *pTemp; /* The temporary database we vacuum into */
96464 char *zSql = 0; /* SQL statements */
96465 int saved_flags; /* Saved value of the db->flags */
96466 int saved_nChange; /* Saved value of db->nChange */
96467 int saved_nTotalChange; /* Saved value of db->nTotalChange */
96468 void (*saved_xTrace)(void*,const char*); /* Saved db->xTrace */
96469 Db *pDb = 0; /* Database to detach at end of vacuum */
96470 int isMemDb; /* True if vacuuming a :memory: database */
96471 int nRes; /* Bytes of reserved space at the end of each page */
96472 int nDb; /* Number of attached databases */
96474 if( !db->autoCommit ){
96475 sqlite3SetString(pzErrMsg, db, "cannot VACUUM from within a transaction");
96476 return SQLITE_ERROR;
96478 if( db->activeVdbeCnt>1 ){
96479 sqlite3SetString(pzErrMsg, db,"cannot VACUUM - SQL statements in progress");
96480 return SQLITE_ERROR;
96483 /* Save the current value of the database flags so that it can be
96484 ** restored before returning. Then set the writable-schema flag, and
96485 ** disable CHECK and foreign key constraints. */
96486 saved_flags = db->flags;
96487 saved_nChange = db->nChange;
96488 saved_nTotalChange = db->nTotalChange;
96489 saved_xTrace = db->xTrace;
96490 db->flags |= SQLITE_WriteSchema | SQLITE_IgnoreChecks | SQLITE_PreferBuiltin;
96491 db->flags &= ~(SQLITE_ForeignKeys | SQLITE_ReverseOrder);
96492 db->xTrace = 0;
96494 pMain = db->aDb[0].pBt;
96495 isMemDb = sqlite3PagerIsMemdb(sqlite3BtreePager(pMain));
96497 /* Attach the temporary database as 'vacuum_db'. The synchronous pragma
96498 ** can be set to 'off' for this file, as it is not recovered if a crash
96499 ** occurs anyway. The integrity of the database is maintained by a
96500 ** (possibly synchronous) transaction opened on the main database before
96501 ** sqlite3BtreeCopyFile() is called.
96503 ** An optimisation would be to use a non-journaled pager.
96504 ** (Later:) I tried setting "PRAGMA vacuum_db.journal_mode=OFF" but
96505 ** that actually made the VACUUM run slower. Very little journalling
96506 ** actually occurs when doing a vacuum since the vacuum_db is initially
96507 ** empty. Only the journal header is written. Apparently it takes more
96508 ** time to parse and run the PRAGMA to turn journalling off than it does
96509 ** to write the journal header file.
96511 nDb = db->nDb;
96512 if( sqlite3TempInMemory(db) ){
96513 zSql = "ATTACH ':memory:' AS vacuum_db;";
96514 }else{
96515 zSql = "ATTACH '' AS vacuum_db;";
96517 rc = execSql(db, pzErrMsg, zSql);
96518 if( db->nDb>nDb ){
96519 pDb = &db->aDb[db->nDb-1];
96520 assert( strcmp(pDb->zName,"vacuum_db")==0 );
96522 if( rc!=SQLITE_OK ) goto end_of_vacuum;
96523 pTemp = db->aDb[db->nDb-1].pBt;
96525 /* The call to execSql() to attach the temp database has left the file
96526 ** locked (as there was more than one active statement when the transaction
96527 ** to read the schema was concluded. Unlock it here so that this doesn't
96528 ** cause problems for the call to BtreeSetPageSize() below. */
96529 sqlite3BtreeCommit(pTemp);
96531 nRes = sqlite3BtreeGetReserve(pMain);
96533 /* A VACUUM cannot change the pagesize of an encrypted database. */
96534 #ifdef SQLITE_HAS_CODEC
96535 if( db->nextPagesize ){
96536 extern void sqlite3CodecGetKey(sqlite3*, int, void**, int*);
96537 int nKey;
96538 char *zKey;
96539 sqlite3CodecGetKey(db, 0, (void**)&zKey, &nKey);
96540 if( nKey ) db->nextPagesize = 0;
96542 #endif
96544 /* Do not attempt to change the page size for a WAL database */
96545 if( sqlite3PagerGetJournalMode(sqlite3BtreePager(pMain))
96546 ==PAGER_JOURNALMODE_WAL ){
96547 db->nextPagesize = 0;
96550 if( sqlite3BtreeSetPageSize(pTemp, sqlite3BtreeGetPageSize(pMain), nRes, 0)
96551 || (!isMemDb && sqlite3BtreeSetPageSize(pTemp, db->nextPagesize, nRes, 0))
96552 || NEVER(db->mallocFailed)
96554 rc = SQLITE_NOMEM;
96555 goto end_of_vacuum;
96557 rc = execSql(db, pzErrMsg, "PRAGMA vacuum_db.synchronous=OFF");
96558 if( rc!=SQLITE_OK ){
96559 goto end_of_vacuum;
96562 #ifndef SQLITE_OMIT_AUTOVACUUM
96563 sqlite3BtreeSetAutoVacuum(pTemp, db->nextAutovac>=0 ? db->nextAutovac :
96564 sqlite3BtreeGetAutoVacuum(pMain));
96565 #endif
96567 /* Begin a transaction */
96568 rc = execSql(db, pzErrMsg, "BEGIN EXCLUSIVE;");
96569 if( rc!=SQLITE_OK ) goto end_of_vacuum;
96571 /* Query the schema of the main database. Create a mirror schema
96572 ** in the temporary database.
96574 rc = execExecSql(db, pzErrMsg,
96575 "SELECT 'CREATE TABLE vacuum_db.' || substr(sql,14) "
96576 " FROM sqlite_master WHERE type='table' AND name!='sqlite_sequence'"
96577 " AND rootpage>0"
96579 if( rc!=SQLITE_OK ) goto end_of_vacuum;
96580 rc = execExecSql(db, pzErrMsg,
96581 "SELECT 'CREATE INDEX vacuum_db.' || substr(sql,14)"
96582 " FROM sqlite_master WHERE sql LIKE 'CREATE INDEX %' ");
96583 if( rc!=SQLITE_OK ) goto end_of_vacuum;
96584 rc = execExecSql(db, pzErrMsg,
96585 "SELECT 'CREATE UNIQUE INDEX vacuum_db.' || substr(sql,21) "
96586 " FROM sqlite_master WHERE sql LIKE 'CREATE UNIQUE INDEX %'");
96587 if( rc!=SQLITE_OK ) goto end_of_vacuum;
96589 /* Loop through the tables in the main database. For each, do
96590 ** an "INSERT INTO vacuum_db.xxx SELECT * FROM main.xxx;" to copy
96591 ** the contents to the temporary database.
96593 rc = execExecSql(db, pzErrMsg,
96594 "SELECT 'INSERT INTO vacuum_db.' || quote(name) "
96595 "|| ' SELECT * FROM main.' || quote(name) || ';'"
96596 "FROM main.sqlite_master "
96597 "WHERE type = 'table' AND name!='sqlite_sequence' "
96598 " AND rootpage>0"
96600 if( rc!=SQLITE_OK ) goto end_of_vacuum;
96602 /* Copy over the sequence table
96604 rc = execExecSql(db, pzErrMsg,
96605 "SELECT 'DELETE FROM vacuum_db.' || quote(name) || ';' "
96606 "FROM vacuum_db.sqlite_master WHERE name='sqlite_sequence' "
96608 if( rc!=SQLITE_OK ) goto end_of_vacuum;
96609 rc = execExecSql(db, pzErrMsg,
96610 "SELECT 'INSERT INTO vacuum_db.' || quote(name) "
96611 "|| ' SELECT * FROM main.' || quote(name) || ';' "
96612 "FROM vacuum_db.sqlite_master WHERE name=='sqlite_sequence';"
96614 if( rc!=SQLITE_OK ) goto end_of_vacuum;
96617 /* Copy the triggers, views, and virtual tables from the main database
96618 ** over to the temporary database. None of these objects has any
96619 ** associated storage, so all we have to do is copy their entries
96620 ** from the SQLITE_MASTER table.
96622 rc = execSql(db, pzErrMsg,
96623 "INSERT INTO vacuum_db.sqlite_master "
96624 " SELECT type, name, tbl_name, rootpage, sql"
96625 " FROM main.sqlite_master"
96626 " WHERE type='view' OR type='trigger'"
96627 " OR (type='table' AND rootpage=0)"
96629 if( rc ) goto end_of_vacuum;
96631 /* At this point, unless the main db was completely empty, there is now a
96632 ** transaction open on the vacuum database, but not on the main database.
96633 ** Open a btree level transaction on the main database. This allows a
96634 ** call to sqlite3BtreeCopyFile(). The main database btree level
96635 ** transaction is then committed, so the SQL level never knows it was
96636 ** opened for writing. This way, the SQL transaction used to create the
96637 ** temporary database never needs to be committed.
96640 u32 meta;
96641 int i;
96643 /* This array determines which meta meta values are preserved in the
96644 ** vacuum. Even entries are the meta value number and odd entries
96645 ** are an increment to apply to the meta value after the vacuum.
96646 ** The increment is used to increase the schema cookie so that other
96647 ** connections to the same database will know to reread the schema.
96649 static const unsigned char aCopy[] = {
96650 BTREE_SCHEMA_VERSION, 1, /* Add one to the old schema cookie */
96651 BTREE_DEFAULT_CACHE_SIZE, 0, /* Preserve the default page cache size */
96652 BTREE_TEXT_ENCODING, 0, /* Preserve the text encoding */
96653 BTREE_USER_VERSION, 0, /* Preserve the user version */
96656 assert( 1==sqlite3BtreeIsInTrans(pTemp) );
96657 assert( 1==sqlite3BtreeIsInTrans(pMain) );
96659 /* Copy Btree meta values */
96660 for(i=0; i<ArraySize(aCopy); i+=2){
96661 /* GetMeta() and UpdateMeta() cannot fail in this context because
96662 ** we already have page 1 loaded into cache and marked dirty. */
96663 sqlite3BtreeGetMeta(pMain, aCopy[i], &meta);
96664 rc = sqlite3BtreeUpdateMeta(pTemp, aCopy[i], meta+aCopy[i+1]);
96665 if( NEVER(rc!=SQLITE_OK) ) goto end_of_vacuum;
96668 rc = sqlite3BtreeCopyFile(pMain, pTemp);
96669 if( rc!=SQLITE_OK ) goto end_of_vacuum;
96670 rc = sqlite3BtreeCommit(pTemp);
96671 if( rc!=SQLITE_OK ) goto end_of_vacuum;
96672 #ifndef SQLITE_OMIT_AUTOVACUUM
96673 sqlite3BtreeSetAutoVacuum(pMain, sqlite3BtreeGetAutoVacuum(pTemp));
96674 #endif
96677 assert( rc==SQLITE_OK );
96678 rc = sqlite3BtreeSetPageSize(pMain, sqlite3BtreeGetPageSize(pTemp), nRes,1);
96680 end_of_vacuum:
96681 /* Restore the original value of db->flags */
96682 db->flags = saved_flags;
96683 db->nChange = saved_nChange;
96684 db->nTotalChange = saved_nTotalChange;
96685 db->xTrace = saved_xTrace;
96686 sqlite3BtreeSetPageSize(pMain, -1, -1, 1);
96688 /* Currently there is an SQL level transaction open on the vacuum
96689 ** database. No locks are held on any other files (since the main file
96690 ** was committed at the btree level). So it safe to end the transaction
96691 ** by manually setting the autoCommit flag to true and detaching the
96692 ** vacuum database. The vacuum_db journal file is deleted when the pager
96693 ** is closed by the DETACH.
96695 db->autoCommit = 1;
96697 if( pDb ){
96698 sqlite3BtreeClose(pDb->pBt);
96699 pDb->pBt = 0;
96700 pDb->pSchema = 0;
96703 /* This both clears the schemas and reduces the size of the db->aDb[]
96704 ** array. */
96705 sqlite3ResetInternalSchema(db, -1);
96707 return rc;
96710 #endif /* SQLITE_OMIT_VACUUM && SQLITE_OMIT_ATTACH */
96712 /************** End of vacuum.c **********************************************/
96713 /************** Begin file vtab.c ********************************************/
96715 ** 2006 June 10
96717 ** The author disclaims copyright to this source code. In place of
96718 ** a legal notice, here is a blessing:
96720 ** May you do good and not evil.
96721 ** May you find forgiveness for yourself and forgive others.
96722 ** May you share freely, never taking more than you give.
96724 *************************************************************************
96725 ** This file contains code used to help implement virtual tables.
96727 #ifndef SQLITE_OMIT_VIRTUALTABLE
96730 ** The actual function that does the work of creating a new module.
96731 ** This function implements the sqlite3_create_module() and
96732 ** sqlite3_create_module_v2() interfaces.
96734 static int createModule(
96735 sqlite3 *db, /* Database in which module is registered */
96736 const char *zName, /* Name assigned to this module */
96737 const sqlite3_module *pModule, /* The definition of the module */
96738 void *pAux, /* Context pointer for xCreate/xConnect */
96739 void (*xDestroy)(void *) /* Module destructor function */
96741 int rc, nName;
96742 Module *pMod;
96744 sqlite3_mutex_enter(db->mutex);
96745 nName = sqlite3Strlen30(zName);
96746 pMod = (Module *)sqlite3DbMallocRaw(db, sizeof(Module) + nName + 1);
96747 if( pMod ){
96748 Module *pDel;
96749 char *zCopy = (char *)(&pMod[1]);
96750 memcpy(zCopy, zName, nName+1);
96751 pMod->zName = zCopy;
96752 pMod->pModule = pModule;
96753 pMod->pAux = pAux;
96754 pMod->xDestroy = xDestroy;
96755 pDel = (Module *)sqlite3HashInsert(&db->aModule, zCopy, nName, (void*)pMod);
96756 if( pDel && pDel->xDestroy ){
96757 pDel->xDestroy(pDel->pAux);
96759 sqlite3DbFree(db, pDel);
96760 if( pDel==pMod ){
96761 db->mallocFailed = 1;
96763 sqlite3ResetInternalSchema(db, -1);
96764 }else if( xDestroy ){
96765 xDestroy(pAux);
96767 rc = sqlite3ApiExit(db, SQLITE_OK);
96768 sqlite3_mutex_leave(db->mutex);
96769 return rc;
96774 ** External API function used to create a new virtual-table module.
96776 SQLITE_API int sqlite3_create_module(
96777 sqlite3 *db, /* Database in which module is registered */
96778 const char *zName, /* Name assigned to this module */
96779 const sqlite3_module *pModule, /* The definition of the module */
96780 void *pAux /* Context pointer for xCreate/xConnect */
96782 return createModule(db, zName, pModule, pAux, 0);
96786 ** External API function used to create a new virtual-table module.
96788 SQLITE_API int sqlite3_create_module_v2(
96789 sqlite3 *db, /* Database in which module is registered */
96790 const char *zName, /* Name assigned to this module */
96791 const sqlite3_module *pModule, /* The definition of the module */
96792 void *pAux, /* Context pointer for xCreate/xConnect */
96793 void (*xDestroy)(void *) /* Module destructor function */
96795 return createModule(db, zName, pModule, pAux, xDestroy);
96799 ** Lock the virtual table so that it cannot be disconnected.
96800 ** Locks nest. Every lock should have a corresponding unlock.
96801 ** If an unlock is omitted, resources leaks will occur.
96803 ** If a disconnect is attempted while a virtual table is locked,
96804 ** the disconnect is deferred until all locks have been removed.
96806 SQLITE_PRIVATE void sqlite3VtabLock(VTable *pVTab){
96807 pVTab->nRef++;
96812 ** pTab is a pointer to a Table structure representing a virtual-table.
96813 ** Return a pointer to the VTable object used by connection db to access
96814 ** this virtual-table, if one has been created, or NULL otherwise.
96816 SQLITE_PRIVATE VTable *sqlite3GetVTable(sqlite3 *db, Table *pTab){
96817 VTable *pVtab;
96818 assert( IsVirtual(pTab) );
96819 for(pVtab=pTab->pVTable; pVtab && pVtab->db!=db; pVtab=pVtab->pNext);
96820 return pVtab;
96824 ** Decrement the ref-count on a virtual table object. When the ref-count
96825 ** reaches zero, call the xDisconnect() method to delete the object.
96827 SQLITE_PRIVATE void sqlite3VtabUnlock(VTable *pVTab){
96828 sqlite3 *db = pVTab->db;
96830 assert( db );
96831 assert( pVTab->nRef>0 );
96832 assert( sqlite3SafetyCheckOk(db) );
96834 pVTab->nRef--;
96835 if( pVTab->nRef==0 ){
96836 sqlite3_vtab *p = pVTab->pVtab;
96837 if( p ){
96838 p->pModule->xDisconnect(p);
96840 sqlite3DbFree(db, pVTab);
96845 ** Table p is a virtual table. This function moves all elements in the
96846 ** p->pVTable list to the sqlite3.pDisconnect lists of their associated
96847 ** database connections to be disconnected at the next opportunity.
96848 ** Except, if argument db is not NULL, then the entry associated with
96849 ** connection db is left in the p->pVTable list.
96851 static VTable *vtabDisconnectAll(sqlite3 *db, Table *p){
96852 VTable *pRet = 0;
96853 VTable *pVTable = p->pVTable;
96854 p->pVTable = 0;
96856 /* Assert that the mutex (if any) associated with the BtShared database
96857 ** that contains table p is held by the caller. See header comments
96858 ** above function sqlite3VtabUnlockList() for an explanation of why
96859 ** this makes it safe to access the sqlite3.pDisconnect list of any
96860 ** database connection that may have an entry in the p->pVTable list.
96862 assert( db==0 || sqlite3SchemaMutexHeld(db, 0, p->pSchema) );
96864 while( pVTable ){
96865 sqlite3 *db2 = pVTable->db;
96866 VTable *pNext = pVTable->pNext;
96867 assert( db2 );
96868 if( db2==db ){
96869 pRet = pVTable;
96870 p->pVTable = pRet;
96871 pRet->pNext = 0;
96872 }else{
96873 pVTable->pNext = db2->pDisconnect;
96874 db2->pDisconnect = pVTable;
96876 pVTable = pNext;
96879 assert( !db || pRet );
96880 return pRet;
96885 ** Disconnect all the virtual table objects in the sqlite3.pDisconnect list.
96887 ** This function may only be called when the mutexes associated with all
96888 ** shared b-tree databases opened using connection db are held by the
96889 ** caller. This is done to protect the sqlite3.pDisconnect list. The
96890 ** sqlite3.pDisconnect list is accessed only as follows:
96892 ** 1) By this function. In this case, all BtShared mutexes and the mutex
96893 ** associated with the database handle itself must be held.
96895 ** 2) By function vtabDisconnectAll(), when it adds a VTable entry to
96896 ** the sqlite3.pDisconnect list. In this case either the BtShared mutex
96897 ** associated with the database the virtual table is stored in is held
96898 ** or, if the virtual table is stored in a non-sharable database, then
96899 ** the database handle mutex is held.
96901 ** As a result, a sqlite3.pDisconnect cannot be accessed simultaneously
96902 ** by multiple threads. It is thread-safe.
96904 SQLITE_PRIVATE void sqlite3VtabUnlockList(sqlite3 *db){
96905 VTable *p = db->pDisconnect;
96906 db->pDisconnect = 0;
96908 assert( sqlite3BtreeHoldsAllMutexes(db) );
96909 assert( sqlite3_mutex_held(db->mutex) );
96911 if( p ){
96912 sqlite3ExpirePreparedStatements(db);
96913 do {
96914 VTable *pNext = p->pNext;
96915 sqlite3VtabUnlock(p);
96916 p = pNext;
96917 }while( p );
96922 ** Clear any and all virtual-table information from the Table record.
96923 ** This routine is called, for example, just before deleting the Table
96924 ** record.
96926 ** Since it is a virtual-table, the Table structure contains a pointer
96927 ** to the head of a linked list of VTable structures. Each VTable
96928 ** structure is associated with a single sqlite3* user of the schema.
96929 ** The reference count of the VTable structure associated with database
96930 ** connection db is decremented immediately (which may lead to the
96931 ** structure being xDisconnected and free). Any other VTable structures
96932 ** in the list are moved to the sqlite3.pDisconnect list of the associated
96933 ** database connection.
96935 SQLITE_PRIVATE void sqlite3VtabClear(sqlite3 *db, Table *p){
96936 if( !db || db->pnBytesFreed==0 ) vtabDisconnectAll(0, p);
96937 if( p->azModuleArg ){
96938 int i;
96939 for(i=0; i<p->nModuleArg; i++){
96940 sqlite3DbFree(db, p->azModuleArg[i]);
96942 sqlite3DbFree(db, p->azModuleArg);
96947 ** Add a new module argument to pTable->azModuleArg[].
96948 ** The string is not copied - the pointer is stored. The
96949 ** string will be freed automatically when the table is
96950 ** deleted.
96952 static void addModuleArgument(sqlite3 *db, Table *pTable, char *zArg){
96953 int i = pTable->nModuleArg++;
96954 int nBytes = sizeof(char *)*(1+pTable->nModuleArg);
96955 char **azModuleArg;
96956 azModuleArg = sqlite3DbRealloc(db, pTable->azModuleArg, nBytes);
96957 if( azModuleArg==0 ){
96958 int j;
96959 for(j=0; j<i; j++){
96960 sqlite3DbFree(db, pTable->azModuleArg[j]);
96962 sqlite3DbFree(db, zArg);
96963 sqlite3DbFree(db, pTable->azModuleArg);
96964 pTable->nModuleArg = 0;
96965 }else{
96966 azModuleArg[i] = zArg;
96967 azModuleArg[i+1] = 0;
96969 pTable->azModuleArg = azModuleArg;
96973 ** The parser calls this routine when it first sees a CREATE VIRTUAL TABLE
96974 ** statement. The module name has been parsed, but the optional list
96975 ** of parameters that follow the module name are still pending.
96977 SQLITE_PRIVATE void sqlite3VtabBeginParse(
96978 Parse *pParse, /* Parsing context */
96979 Token *pName1, /* Name of new table, or database name */
96980 Token *pName2, /* Name of new table or NULL */
96981 Token *pModuleName /* Name of the module for the virtual table */
96983 int iDb; /* The database the table is being created in */
96984 Table *pTable; /* The new virtual table */
96985 sqlite3 *db; /* Database connection */
96987 sqlite3StartTable(pParse, pName1, pName2, 0, 0, 1, 0);
96988 pTable = pParse->pNewTable;
96989 if( pTable==0 ) return;
96990 assert( 0==pTable->pIndex );
96992 db = pParse->db;
96993 iDb = sqlite3SchemaToIndex(db, pTable->pSchema);
96994 assert( iDb>=0 );
96996 pTable->tabFlags |= TF_Virtual;
96997 pTable->nModuleArg = 0;
96998 addModuleArgument(db, pTable, sqlite3NameFromToken(db, pModuleName));
96999 addModuleArgument(db, pTable, sqlite3DbStrDup(db, db->aDb[iDb].zName));
97000 addModuleArgument(db, pTable, sqlite3DbStrDup(db, pTable->zName));
97001 pParse->sNameToken.n = (int)(&pModuleName->z[pModuleName->n] - pName1->z);
97003 #ifndef SQLITE_OMIT_AUTHORIZATION
97004 /* Creating a virtual table invokes the authorization callback twice.
97005 ** The first invocation, to obtain permission to INSERT a row into the
97006 ** sqlite_master table, has already been made by sqlite3StartTable().
97007 ** The second call, to obtain permission to create the table, is made now.
97009 if( pTable->azModuleArg ){
97010 sqlite3AuthCheck(pParse, SQLITE_CREATE_VTABLE, pTable->zName,
97011 pTable->azModuleArg[0], pParse->db->aDb[iDb].zName);
97013 #endif
97017 ** This routine takes the module argument that has been accumulating
97018 ** in pParse->zArg[] and appends it to the list of arguments on the
97019 ** virtual table currently under construction in pParse->pTable.
97021 static void addArgumentToVtab(Parse *pParse){
97022 if( pParse->sArg.z && ALWAYS(pParse->pNewTable) ){
97023 const char *z = (const char*)pParse->sArg.z;
97024 int n = pParse->sArg.n;
97025 sqlite3 *db = pParse->db;
97026 addModuleArgument(db, pParse->pNewTable, sqlite3DbStrNDup(db, z, n));
97031 ** The parser calls this routine after the CREATE VIRTUAL TABLE statement
97032 ** has been completely parsed.
97034 SQLITE_PRIVATE void sqlite3VtabFinishParse(Parse *pParse, Token *pEnd){
97035 Table *pTab = pParse->pNewTable; /* The table being constructed */
97036 sqlite3 *db = pParse->db; /* The database connection */
97038 if( pTab==0 ) return;
97039 addArgumentToVtab(pParse);
97040 pParse->sArg.z = 0;
97041 if( pTab->nModuleArg<1 ) return;
97043 /* If the CREATE VIRTUAL TABLE statement is being entered for the
97044 ** first time (in other words if the virtual table is actually being
97045 ** created now instead of just being read out of sqlite_master) then
97046 ** do additional initialization work and store the statement text
97047 ** in the sqlite_master table.
97049 if( !db->init.busy ){
97050 char *zStmt;
97051 char *zWhere;
97052 int iDb;
97053 Vdbe *v;
97055 /* Compute the complete text of the CREATE VIRTUAL TABLE statement */
97056 if( pEnd ){
97057 pParse->sNameToken.n = (int)(pEnd->z - pParse->sNameToken.z) + pEnd->n;
97059 zStmt = sqlite3MPrintf(db, "CREATE VIRTUAL TABLE %T", &pParse->sNameToken);
97061 /* A slot for the record has already been allocated in the
97062 ** SQLITE_MASTER table. We just need to update that slot with all
97063 ** the information we've collected.
97065 ** The VM register number pParse->regRowid holds the rowid of an
97066 ** entry in the sqlite_master table tht was created for this vtab
97067 ** by sqlite3StartTable().
97069 iDb = sqlite3SchemaToIndex(db, pTab->pSchema);
97070 sqlite3NestedParse(pParse,
97071 "UPDATE %Q.%s "
97072 "SET type='table', name=%Q, tbl_name=%Q, rootpage=0, sql=%Q "
97073 "WHERE rowid=#%d",
97074 db->aDb[iDb].zName, SCHEMA_TABLE(iDb),
97075 pTab->zName,
97076 pTab->zName,
97077 zStmt,
97078 pParse->regRowid
97080 sqlite3DbFree(db, zStmt);
97081 v = sqlite3GetVdbe(pParse);
97082 sqlite3ChangeCookie(pParse, iDb);
97084 sqlite3VdbeAddOp2(v, OP_Expire, 0, 0);
97085 zWhere = sqlite3MPrintf(db, "name='%q' AND type='table'", pTab->zName);
97086 sqlite3VdbeAddOp4(v, OP_ParseSchema, iDb, 0, 0, zWhere, P4_DYNAMIC);
97087 sqlite3VdbeAddOp4(v, OP_VCreate, iDb, 0, 0,
97088 pTab->zName, sqlite3Strlen30(pTab->zName) + 1);
97091 /* If we are rereading the sqlite_master table create the in-memory
97092 ** record of the table. The xConnect() method is not called until
97093 ** the first time the virtual table is used in an SQL statement. This
97094 ** allows a schema that contains virtual tables to be loaded before
97095 ** the required virtual table implementations are registered. */
97096 else {
97097 Table *pOld;
97098 Schema *pSchema = pTab->pSchema;
97099 const char *zName = pTab->zName;
97100 int nName = sqlite3Strlen30(zName);
97101 assert( sqlite3SchemaMutexHeld(db, 0, pSchema) );
97102 pOld = sqlite3HashInsert(&pSchema->tblHash, zName, nName, pTab);
97103 if( pOld ){
97104 db->mallocFailed = 1;
97105 assert( pTab==pOld ); /* Malloc must have failed inside HashInsert() */
97106 return;
97108 pParse->pNewTable = 0;
97113 ** The parser calls this routine when it sees the first token
97114 ** of an argument to the module name in a CREATE VIRTUAL TABLE statement.
97116 SQLITE_PRIVATE void sqlite3VtabArgInit(Parse *pParse){
97117 addArgumentToVtab(pParse);
97118 pParse->sArg.z = 0;
97119 pParse->sArg.n = 0;
97123 ** The parser calls this routine for each token after the first token
97124 ** in an argument to the module name in a CREATE VIRTUAL TABLE statement.
97126 SQLITE_PRIVATE void sqlite3VtabArgExtend(Parse *pParse, Token *p){
97127 Token *pArg = &pParse->sArg;
97128 if( pArg->z==0 ){
97129 pArg->z = p->z;
97130 pArg->n = p->n;
97131 }else{
97132 assert(pArg->z < p->z);
97133 pArg->n = (int)(&p->z[p->n] - pArg->z);
97138 ** Invoke a virtual table constructor (either xCreate or xConnect). The
97139 ** pointer to the function to invoke is passed as the fourth parameter
97140 ** to this procedure.
97142 static int vtabCallConstructor(
97143 sqlite3 *db,
97144 Table *pTab,
97145 Module *pMod,
97146 int (*xConstruct)(sqlite3*,void*,int,const char*const*,sqlite3_vtab**,char**),
97147 char **pzErr
97149 VTable *pVTable;
97150 int rc;
97151 const char *const*azArg = (const char *const*)pTab->azModuleArg;
97152 int nArg = pTab->nModuleArg;
97153 char *zErr = 0;
97154 char *zModuleName = sqlite3MPrintf(db, "%s", pTab->zName);
97156 if( !zModuleName ){
97157 return SQLITE_NOMEM;
97160 pVTable = sqlite3DbMallocZero(db, sizeof(VTable));
97161 if( !pVTable ){
97162 sqlite3DbFree(db, zModuleName);
97163 return SQLITE_NOMEM;
97165 pVTable->db = db;
97166 pVTable->pMod = pMod;
97168 assert( !db->pVTab );
97169 assert( xConstruct );
97170 db->pVTab = pTab;
97172 /* Invoke the virtual table constructor */
97173 rc = xConstruct(db, pMod->pAux, nArg, azArg, &pVTable->pVtab, &zErr);
97174 if( rc==SQLITE_NOMEM ) db->mallocFailed = 1;
97176 if( SQLITE_OK!=rc ){
97177 if( zErr==0 ){
97178 *pzErr = sqlite3MPrintf(db, "vtable constructor failed: %s", zModuleName);
97179 }else {
97180 *pzErr = sqlite3MPrintf(db, "%s", zErr);
97181 sqlite3_free(zErr);
97183 sqlite3DbFree(db, pVTable);
97184 }else if( ALWAYS(pVTable->pVtab) ){
97185 /* Justification of ALWAYS(): A correct vtab constructor must allocate
97186 ** the sqlite3_vtab object if successful. */
97187 pVTable->pVtab->pModule = pMod->pModule;
97188 pVTable->nRef = 1;
97189 if( db->pVTab ){
97190 const char *zFormat = "vtable constructor did not declare schema: %s";
97191 *pzErr = sqlite3MPrintf(db, zFormat, pTab->zName);
97192 sqlite3VtabUnlock(pVTable);
97193 rc = SQLITE_ERROR;
97194 }else{
97195 int iCol;
97196 /* If everything went according to plan, link the new VTable structure
97197 ** into the linked list headed by pTab->pVTable. Then loop through the
97198 ** columns of the table to see if any of them contain the token "hidden".
97199 ** If so, set the Column.isHidden flag and remove the token from
97200 ** the type string. */
97201 pVTable->pNext = pTab->pVTable;
97202 pTab->pVTable = pVTable;
97204 for(iCol=0; iCol<pTab->nCol; iCol++){
97205 char *zType = pTab->aCol[iCol].zType;
97206 int nType;
97207 int i = 0;
97208 if( !zType ) continue;
97209 nType = sqlite3Strlen30(zType);
97210 if( sqlite3StrNICmp("hidden", zType, 6)||(zType[6] && zType[6]!=' ') ){
97211 for(i=0; i<nType; i++){
97212 if( (0==sqlite3StrNICmp(" hidden", &zType[i], 7))
97213 && (zType[i+7]=='\0' || zType[i+7]==' ')
97215 i++;
97216 break;
97220 if( i<nType ){
97221 int j;
97222 int nDel = 6 + (zType[i+6] ? 1 : 0);
97223 for(j=i; (j+nDel)<=nType; j++){
97224 zType[j] = zType[j+nDel];
97226 if( zType[i]=='\0' && i>0 ){
97227 assert(zType[i-1]==' ');
97228 zType[i-1] = '\0';
97230 pTab->aCol[iCol].isHidden = 1;
97236 sqlite3DbFree(db, zModuleName);
97237 db->pVTab = 0;
97238 return rc;
97242 ** This function is invoked by the parser to call the xConnect() method
97243 ** of the virtual table pTab. If an error occurs, an error code is returned
97244 ** and an error left in pParse.
97246 ** This call is a no-op if table pTab is not a virtual table.
97248 SQLITE_PRIVATE int sqlite3VtabCallConnect(Parse *pParse, Table *pTab){
97249 sqlite3 *db = pParse->db;
97250 const char *zMod;
97251 Module *pMod;
97252 int rc;
97254 assert( pTab );
97255 if( (pTab->tabFlags & TF_Virtual)==0 || sqlite3GetVTable(db, pTab) ){
97256 return SQLITE_OK;
97259 /* Locate the required virtual table module */
97260 zMod = pTab->azModuleArg[0];
97261 pMod = (Module*)sqlite3HashFind(&db->aModule, zMod, sqlite3Strlen30(zMod));
97263 if( !pMod ){
97264 const char *zModule = pTab->azModuleArg[0];
97265 sqlite3ErrorMsg(pParse, "no such module: %s", zModule);
97266 rc = SQLITE_ERROR;
97267 }else{
97268 char *zErr = 0;
97269 rc = vtabCallConstructor(db, pTab, pMod, pMod->pModule->xConnect, &zErr);
97270 if( rc!=SQLITE_OK ){
97271 sqlite3ErrorMsg(pParse, "%s", zErr);
97273 sqlite3DbFree(db, zErr);
97276 return rc;
97280 ** Add the virtual table pVTab to the array sqlite3.aVTrans[].
97282 static int addToVTrans(sqlite3 *db, VTable *pVTab){
97283 const int ARRAY_INCR = 5;
97285 /* Grow the sqlite3.aVTrans array if required */
97286 if( (db->nVTrans%ARRAY_INCR)==0 ){
97287 VTable **aVTrans;
97288 int nBytes = sizeof(sqlite3_vtab *) * (db->nVTrans + ARRAY_INCR);
97289 aVTrans = sqlite3DbRealloc(db, (void *)db->aVTrans, nBytes);
97290 if( !aVTrans ){
97291 return SQLITE_NOMEM;
97293 memset(&aVTrans[db->nVTrans], 0, sizeof(sqlite3_vtab *)*ARRAY_INCR);
97294 db->aVTrans = aVTrans;
97297 /* Add pVtab to the end of sqlite3.aVTrans */
97298 db->aVTrans[db->nVTrans++] = pVTab;
97299 sqlite3VtabLock(pVTab);
97300 return SQLITE_OK;
97304 ** This function is invoked by the vdbe to call the xCreate method
97305 ** of the virtual table named zTab in database iDb.
97307 ** If an error occurs, *pzErr is set to point an an English language
97308 ** description of the error and an SQLITE_XXX error code is returned.
97309 ** In this case the caller must call sqlite3DbFree(db, ) on *pzErr.
97311 SQLITE_PRIVATE int sqlite3VtabCallCreate(sqlite3 *db, int iDb, const char *zTab, char **pzErr){
97312 int rc = SQLITE_OK;
97313 Table *pTab;
97314 Module *pMod;
97315 const char *zMod;
97317 pTab = sqlite3FindTable(db, zTab, db->aDb[iDb].zName);
97318 assert( pTab && (pTab->tabFlags & TF_Virtual)!=0 && !pTab->pVTable );
97320 /* Locate the required virtual table module */
97321 zMod = pTab->azModuleArg[0];
97322 pMod = (Module*)sqlite3HashFind(&db->aModule, zMod, sqlite3Strlen30(zMod));
97324 /* If the module has been registered and includes a Create method,
97325 ** invoke it now. If the module has not been registered, return an
97326 ** error. Otherwise, do nothing.
97328 if( !pMod ){
97329 *pzErr = sqlite3MPrintf(db, "no such module: %s", zMod);
97330 rc = SQLITE_ERROR;
97331 }else{
97332 rc = vtabCallConstructor(db, pTab, pMod, pMod->pModule->xCreate, pzErr);
97335 /* Justification of ALWAYS(): The xConstructor method is required to
97336 ** create a valid sqlite3_vtab if it returns SQLITE_OK. */
97337 if( rc==SQLITE_OK && ALWAYS(sqlite3GetVTable(db, pTab)) ){
97338 rc = addToVTrans(db, sqlite3GetVTable(db, pTab));
97341 return rc;
97345 ** This function is used to set the schema of a virtual table. It is only
97346 ** valid to call this function from within the xCreate() or xConnect() of a
97347 ** virtual table module.
97349 SQLITE_API int sqlite3_declare_vtab(sqlite3 *db, const char *zCreateTable){
97350 Parse *pParse;
97352 int rc = SQLITE_OK;
97353 Table *pTab;
97354 char *zErr = 0;
97356 sqlite3_mutex_enter(db->mutex);
97357 pTab = db->pVTab;
97358 if( !pTab ){
97359 sqlite3Error(db, SQLITE_MISUSE, 0);
97360 sqlite3_mutex_leave(db->mutex);
97361 return SQLITE_MISUSE_BKPT;
97363 assert( (pTab->tabFlags & TF_Virtual)!=0 );
97365 pParse = sqlite3StackAllocZero(db, sizeof(*pParse));
97366 if( pParse==0 ){
97367 rc = SQLITE_NOMEM;
97368 }else{
97369 pParse->declareVtab = 1;
97370 pParse->db = db;
97371 pParse->nQueryLoop = 1;
97373 if( SQLITE_OK==sqlite3RunParser(pParse, zCreateTable, &zErr)
97374 && pParse->pNewTable
97375 && !db->mallocFailed
97376 && !pParse->pNewTable->pSelect
97377 && (pParse->pNewTable->tabFlags & TF_Virtual)==0
97379 if( !pTab->aCol ){
97380 pTab->aCol = pParse->pNewTable->aCol;
97381 pTab->nCol = pParse->pNewTable->nCol;
97382 pParse->pNewTable->nCol = 0;
97383 pParse->pNewTable->aCol = 0;
97385 db->pVTab = 0;
97386 }else{
97387 sqlite3Error(db, SQLITE_ERROR, (zErr ? "%s" : 0), zErr);
97388 sqlite3DbFree(db, zErr);
97389 rc = SQLITE_ERROR;
97391 pParse->declareVtab = 0;
97393 if( pParse->pVdbe ){
97394 sqlite3VdbeFinalize(pParse->pVdbe);
97396 sqlite3DeleteTable(db, pParse->pNewTable);
97397 sqlite3StackFree(db, pParse);
97400 assert( (rc&0xff)==rc );
97401 rc = sqlite3ApiExit(db, rc);
97402 sqlite3_mutex_leave(db->mutex);
97403 return rc;
97407 ** This function is invoked by the vdbe to call the xDestroy method
97408 ** of the virtual table named zTab in database iDb. This occurs
97409 ** when a DROP TABLE is mentioned.
97411 ** This call is a no-op if zTab is not a virtual table.
97413 SQLITE_PRIVATE int sqlite3VtabCallDestroy(sqlite3 *db, int iDb, const char *zTab){
97414 int rc = SQLITE_OK;
97415 Table *pTab;
97417 pTab = sqlite3FindTable(db, zTab, db->aDb[iDb].zName);
97418 if( ALWAYS(pTab!=0 && pTab->pVTable!=0) ){
97419 VTable *p = vtabDisconnectAll(db, pTab);
97421 assert( rc==SQLITE_OK );
97422 rc = p->pMod->pModule->xDestroy(p->pVtab);
97424 /* Remove the sqlite3_vtab* from the aVTrans[] array, if applicable */
97425 if( rc==SQLITE_OK ){
97426 assert( pTab->pVTable==p && p->pNext==0 );
97427 p->pVtab = 0;
97428 pTab->pVTable = 0;
97429 sqlite3VtabUnlock(p);
97433 return rc;
97437 ** This function invokes either the xRollback or xCommit method
97438 ** of each of the virtual tables in the sqlite3.aVTrans array. The method
97439 ** called is identified by the second argument, "offset", which is
97440 ** the offset of the method to call in the sqlite3_module structure.
97442 ** The array is cleared after invoking the callbacks.
97444 static void callFinaliser(sqlite3 *db, int offset){
97445 int i;
97446 if( db->aVTrans ){
97447 for(i=0; i<db->nVTrans; i++){
97448 VTable *pVTab = db->aVTrans[i];
97449 sqlite3_vtab *p = pVTab->pVtab;
97450 if( p ){
97451 int (*x)(sqlite3_vtab *);
97452 x = *(int (**)(sqlite3_vtab *))((char *)p->pModule + offset);
97453 if( x ) x(p);
97455 sqlite3VtabUnlock(pVTab);
97457 sqlite3DbFree(db, db->aVTrans);
97458 db->nVTrans = 0;
97459 db->aVTrans = 0;
97464 ** Invoke the xSync method of all virtual tables in the sqlite3.aVTrans
97465 ** array. Return the error code for the first error that occurs, or
97466 ** SQLITE_OK if all xSync operations are successful.
97468 ** Set *pzErrmsg to point to a buffer that should be released using
97469 ** sqlite3DbFree() containing an error message, if one is available.
97471 SQLITE_PRIVATE int sqlite3VtabSync(sqlite3 *db, char **pzErrmsg){
97472 int i;
97473 int rc = SQLITE_OK;
97474 VTable **aVTrans = db->aVTrans;
97476 db->aVTrans = 0;
97477 for(i=0; rc==SQLITE_OK && i<db->nVTrans; i++){
97478 int (*x)(sqlite3_vtab *);
97479 sqlite3_vtab *pVtab = aVTrans[i]->pVtab;
97480 if( pVtab && (x = pVtab->pModule->xSync)!=0 ){
97481 rc = x(pVtab);
97482 sqlite3DbFree(db, *pzErrmsg);
97483 *pzErrmsg = sqlite3DbStrDup(db, pVtab->zErrMsg);
97484 sqlite3_free(pVtab->zErrMsg);
97487 db->aVTrans = aVTrans;
97488 return rc;
97492 ** Invoke the xRollback method of all virtual tables in the
97493 ** sqlite3.aVTrans array. Then clear the array itself.
97495 SQLITE_PRIVATE int sqlite3VtabRollback(sqlite3 *db){
97496 callFinaliser(db, offsetof(sqlite3_module,xRollback));
97497 return SQLITE_OK;
97501 ** Invoke the xCommit method of all virtual tables in the
97502 ** sqlite3.aVTrans array. Then clear the array itself.
97504 SQLITE_PRIVATE int sqlite3VtabCommit(sqlite3 *db){
97505 callFinaliser(db, offsetof(sqlite3_module,xCommit));
97506 return SQLITE_OK;
97510 ** If the virtual table pVtab supports the transaction interface
97511 ** (xBegin/xRollback/xCommit and optionally xSync) and a transaction is
97512 ** not currently open, invoke the xBegin method now.
97514 ** If the xBegin call is successful, place the sqlite3_vtab pointer
97515 ** in the sqlite3.aVTrans array.
97517 SQLITE_PRIVATE int sqlite3VtabBegin(sqlite3 *db, VTable *pVTab){
97518 int rc = SQLITE_OK;
97519 const sqlite3_module *pModule;
97521 /* Special case: If db->aVTrans is NULL and db->nVTrans is greater
97522 ** than zero, then this function is being called from within a
97523 ** virtual module xSync() callback. It is illegal to write to
97524 ** virtual module tables in this case, so return SQLITE_LOCKED.
97526 if( sqlite3VtabInSync(db) ){
97527 return SQLITE_LOCKED;
97529 if( !pVTab ){
97530 return SQLITE_OK;
97532 pModule = pVTab->pVtab->pModule;
97534 if( pModule->xBegin ){
97535 int i;
97538 /* If pVtab is already in the aVTrans array, return early */
97539 for(i=0; i<db->nVTrans; i++){
97540 if( db->aVTrans[i]==pVTab ){
97541 return SQLITE_OK;
97545 /* Invoke the xBegin method */
97546 rc = pModule->xBegin(pVTab->pVtab);
97547 if( rc==SQLITE_OK ){
97548 rc = addToVTrans(db, pVTab);
97551 return rc;
97555 ** The first parameter (pDef) is a function implementation. The
97556 ** second parameter (pExpr) is the first argument to this function.
97557 ** If pExpr is a column in a virtual table, then let the virtual
97558 ** table implementation have an opportunity to overload the function.
97560 ** This routine is used to allow virtual table implementations to
97561 ** overload MATCH, LIKE, GLOB, and REGEXP operators.
97563 ** Return either the pDef argument (indicating no change) or a
97564 ** new FuncDef structure that is marked as ephemeral using the
97565 ** SQLITE_FUNC_EPHEM flag.
97567 SQLITE_PRIVATE FuncDef *sqlite3VtabOverloadFunction(
97568 sqlite3 *db, /* Database connection for reporting malloc problems */
97569 FuncDef *pDef, /* Function to possibly overload */
97570 int nArg, /* Number of arguments to the function */
97571 Expr *pExpr /* First argument to the function */
97573 Table *pTab;
97574 sqlite3_vtab *pVtab;
97575 sqlite3_module *pMod;
97576 void (*xFunc)(sqlite3_context*,int,sqlite3_value**) = 0;
97577 void *pArg = 0;
97578 FuncDef *pNew;
97579 int rc = 0;
97580 char *zLowerName;
97581 unsigned char *z;
97584 /* Check to see the left operand is a column in a virtual table */
97585 if( NEVER(pExpr==0) ) return pDef;
97586 if( pExpr->op!=TK_COLUMN ) return pDef;
97587 pTab = pExpr->pTab;
97588 if( NEVER(pTab==0) ) return pDef;
97589 if( (pTab->tabFlags & TF_Virtual)==0 ) return pDef;
97590 pVtab = sqlite3GetVTable(db, pTab)->pVtab;
97591 assert( pVtab!=0 );
97592 assert( pVtab->pModule!=0 );
97593 pMod = (sqlite3_module *)pVtab->pModule;
97594 if( pMod->xFindFunction==0 ) return pDef;
97596 /* Call the xFindFunction method on the virtual table implementation
97597 ** to see if the implementation wants to overload this function
97599 zLowerName = sqlite3DbStrDup(db, pDef->zName);
97600 if( zLowerName ){
97601 for(z=(unsigned char*)zLowerName; *z; z++){
97602 *z = sqlite3UpperToLower[*z];
97604 rc = pMod->xFindFunction(pVtab, nArg, zLowerName, &xFunc, &pArg);
97605 sqlite3DbFree(db, zLowerName);
97607 if( rc==0 ){
97608 return pDef;
97611 /* Create a new ephemeral function definition for the overloaded
97612 ** function */
97613 pNew = sqlite3DbMallocZero(db, sizeof(*pNew)
97614 + sqlite3Strlen30(pDef->zName) + 1);
97615 if( pNew==0 ){
97616 return pDef;
97618 *pNew = *pDef;
97619 pNew->zName = (char *)&pNew[1];
97620 memcpy(pNew->zName, pDef->zName, sqlite3Strlen30(pDef->zName)+1);
97621 pNew->xFunc = xFunc;
97622 pNew->pUserData = pArg;
97623 pNew->flags |= SQLITE_FUNC_EPHEM;
97624 return pNew;
97628 ** Make sure virtual table pTab is contained in the pParse->apVirtualLock[]
97629 ** array so that an OP_VBegin will get generated for it. Add pTab to the
97630 ** array if it is missing. If pTab is already in the array, this routine
97631 ** is a no-op.
97633 SQLITE_PRIVATE void sqlite3VtabMakeWritable(Parse *pParse, Table *pTab){
97634 Parse *pToplevel = sqlite3ParseToplevel(pParse);
97635 int i, n;
97636 Table **apVtabLock;
97638 assert( IsVirtual(pTab) );
97639 for(i=0; i<pToplevel->nVtabLock; i++){
97640 if( pTab==pToplevel->apVtabLock[i] ) return;
97642 n = (pToplevel->nVtabLock+1)*sizeof(pToplevel->apVtabLock[0]);
97643 apVtabLock = sqlite3_realloc(pToplevel->apVtabLock, n);
97644 if( apVtabLock ){
97645 pToplevel->apVtabLock = apVtabLock;
97646 pToplevel->apVtabLock[pToplevel->nVtabLock++] = pTab;
97647 }else{
97648 pToplevel->db->mallocFailed = 1;
97652 #endif /* SQLITE_OMIT_VIRTUALTABLE */
97654 /************** End of vtab.c ************************************************/
97655 /************** Begin file where.c *******************************************/
97657 ** 2001 September 15
97659 ** The author disclaims copyright to this source code. In place of
97660 ** a legal notice, here is a blessing:
97662 ** May you do good and not evil.
97663 ** May you find forgiveness for yourself and forgive others.
97664 ** May you share freely, never taking more than you give.
97666 *************************************************************************
97667 ** This module contains C code that generates VDBE code used to process
97668 ** the WHERE clause of SQL statements. This module is responsible for
97669 ** generating the code that loops through a table looking for applicable
97670 ** rows. Indices are selected and used to speed the search when doing
97671 ** so is applicable. Because this module is responsible for selecting
97672 ** indices, you might also think of this module as the "query optimizer".
97677 ** Trace output macros
97679 #if defined(SQLITE_TEST) || defined(SQLITE_DEBUG)
97680 SQLITE_PRIVATE int sqlite3WhereTrace = 0;
97681 #endif
97682 #if defined(SQLITE_TEST) && defined(SQLITE_DEBUG)
97683 # define WHERETRACE(X) if(sqlite3WhereTrace) sqlite3DebugPrintf X
97684 #else
97685 # define WHERETRACE(X)
97686 #endif
97688 /* Forward reference
97690 typedef struct WhereClause WhereClause;
97691 typedef struct WhereMaskSet WhereMaskSet;
97692 typedef struct WhereOrInfo WhereOrInfo;
97693 typedef struct WhereAndInfo WhereAndInfo;
97694 typedef struct WhereCost WhereCost;
97697 ** The query generator uses an array of instances of this structure to
97698 ** help it analyze the subexpressions of the WHERE clause. Each WHERE
97699 ** clause subexpression is separated from the others by AND operators,
97700 ** usually, or sometimes subexpressions separated by OR.
97702 ** All WhereTerms are collected into a single WhereClause structure.
97703 ** The following identity holds:
97705 ** WhereTerm.pWC->a[WhereTerm.idx] == WhereTerm
97707 ** When a term is of the form:
97709 ** X <op> <expr>
97711 ** where X is a column name and <op> is one of certain operators,
97712 ** then WhereTerm.leftCursor and WhereTerm.u.leftColumn record the
97713 ** cursor number and column number for X. WhereTerm.eOperator records
97714 ** the <op> using a bitmask encoding defined by WO_xxx below. The
97715 ** use of a bitmask encoding for the operator allows us to search
97716 ** quickly for terms that match any of several different operators.
97718 ** A WhereTerm might also be two or more subterms connected by OR:
97720 ** (t1.X <op> <expr>) OR (t1.Y <op> <expr>) OR ....
97722 ** In this second case, wtFlag as the TERM_ORINFO set and eOperator==WO_OR
97723 ** and the WhereTerm.u.pOrInfo field points to auxiliary information that
97724 ** is collected about the
97726 ** If a term in the WHERE clause does not match either of the two previous
97727 ** categories, then eOperator==0. The WhereTerm.pExpr field is still set
97728 ** to the original subexpression content and wtFlags is set up appropriately
97729 ** but no other fields in the WhereTerm object are meaningful.
97731 ** When eOperator!=0, prereqRight and prereqAll record sets of cursor numbers,
97732 ** but they do so indirectly. A single WhereMaskSet structure translates
97733 ** cursor number into bits and the translated bit is stored in the prereq
97734 ** fields. The translation is used in order to maximize the number of
97735 ** bits that will fit in a Bitmask. The VDBE cursor numbers might be
97736 ** spread out over the non-negative integers. For example, the cursor
97737 ** numbers might be 3, 8, 9, 10, 20, 23, 41, and 45. The WhereMaskSet
97738 ** translates these sparse cursor numbers into consecutive integers
97739 ** beginning with 0 in order to make the best possible use of the available
97740 ** bits in the Bitmask. So, in the example above, the cursor numbers
97741 ** would be mapped into integers 0 through 7.
97743 ** The number of terms in a join is limited by the number of bits
97744 ** in prereqRight and prereqAll. The default is 64 bits, hence SQLite
97745 ** is only able to process joins with 64 or fewer tables.
97747 typedef struct WhereTerm WhereTerm;
97748 struct WhereTerm {
97749 Expr *pExpr; /* Pointer to the subexpression that is this term */
97750 int iParent; /* Disable pWC->a[iParent] when this term disabled */
97751 int leftCursor; /* Cursor number of X in "X <op> <expr>" */
97752 union {
97753 int leftColumn; /* Column number of X in "X <op> <expr>" */
97754 WhereOrInfo *pOrInfo; /* Extra information if eOperator==WO_OR */
97755 WhereAndInfo *pAndInfo; /* Extra information if eOperator==WO_AND */
97756 } u;
97757 u16 eOperator; /* A WO_xx value describing <op> */
97758 u8 wtFlags; /* TERM_xxx bit flags. See below */
97759 u8 nChild; /* Number of children that must disable us */
97760 WhereClause *pWC; /* The clause this term is part of */
97761 Bitmask prereqRight; /* Bitmask of tables used by pExpr->pRight */
97762 Bitmask prereqAll; /* Bitmask of tables referenced by pExpr */
97766 ** Allowed values of WhereTerm.wtFlags
97768 #define TERM_DYNAMIC 0x01 /* Need to call sqlite3ExprDelete(db, pExpr) */
97769 #define TERM_VIRTUAL 0x02 /* Added by the optimizer. Do not code */
97770 #define TERM_CODED 0x04 /* This term is already coded */
97771 #define TERM_COPIED 0x08 /* Has a child */
97772 #define TERM_ORINFO 0x10 /* Need to free the WhereTerm.u.pOrInfo object */
97773 #define TERM_ANDINFO 0x20 /* Need to free the WhereTerm.u.pAndInfo obj */
97774 #define TERM_OR_OK 0x40 /* Used during OR-clause processing */
97775 #ifdef SQLITE_ENABLE_STAT2
97776 # define TERM_VNULL 0x80 /* Manufactured x>NULL or x<=NULL term */
97777 #else
97778 # define TERM_VNULL 0x00 /* Disabled if not using stat2 */
97779 #endif
97782 ** An instance of the following structure holds all information about a
97783 ** WHERE clause. Mostly this is a container for one or more WhereTerms.
97785 struct WhereClause {
97786 Parse *pParse; /* The parser context */
97787 WhereMaskSet *pMaskSet; /* Mapping of table cursor numbers to bitmasks */
97788 Bitmask vmask; /* Bitmask identifying virtual table cursors */
97789 u8 op; /* Split operator. TK_AND or TK_OR */
97790 int nTerm; /* Number of terms */
97791 int nSlot; /* Number of entries in a[] */
97792 WhereTerm *a; /* Each a[] describes a term of the WHERE cluase */
97793 #if defined(SQLITE_SMALL_STACK)
97794 WhereTerm aStatic[1]; /* Initial static space for a[] */
97795 #else
97796 WhereTerm aStatic[8]; /* Initial static space for a[] */
97797 #endif
97801 ** A WhereTerm with eOperator==WO_OR has its u.pOrInfo pointer set to
97802 ** a dynamically allocated instance of the following structure.
97804 struct WhereOrInfo {
97805 WhereClause wc; /* Decomposition into subterms */
97806 Bitmask indexable; /* Bitmask of all indexable tables in the clause */
97810 ** A WhereTerm with eOperator==WO_AND has its u.pAndInfo pointer set to
97811 ** a dynamically allocated instance of the following structure.
97813 struct WhereAndInfo {
97814 WhereClause wc; /* The subexpression broken out */
97818 ** An instance of the following structure keeps track of a mapping
97819 ** between VDBE cursor numbers and bits of the bitmasks in WhereTerm.
97821 ** The VDBE cursor numbers are small integers contained in
97822 ** SrcList_item.iCursor and Expr.iTable fields. For any given WHERE
97823 ** clause, the cursor numbers might not begin with 0 and they might
97824 ** contain gaps in the numbering sequence. But we want to make maximum
97825 ** use of the bits in our bitmasks. This structure provides a mapping
97826 ** from the sparse cursor numbers into consecutive integers beginning
97827 ** with 0.
97829 ** If WhereMaskSet.ix[A]==B it means that The A-th bit of a Bitmask
97830 ** corresponds VDBE cursor number B. The A-th bit of a bitmask is 1<<A.
97832 ** For example, if the WHERE clause expression used these VDBE
97833 ** cursors: 4, 5, 8, 29, 57, 73. Then the WhereMaskSet structure
97834 ** would map those cursor numbers into bits 0 through 5.
97836 ** Note that the mapping is not necessarily ordered. In the example
97837 ** above, the mapping might go like this: 4->3, 5->1, 8->2, 29->0,
97838 ** 57->5, 73->4. Or one of 719 other combinations might be used. It
97839 ** does not really matter. What is important is that sparse cursor
97840 ** numbers all get mapped into bit numbers that begin with 0 and contain
97841 ** no gaps.
97843 struct WhereMaskSet {
97844 int n; /* Number of assigned cursor values */
97845 int ix[BMS]; /* Cursor assigned to each bit */
97849 ** A WhereCost object records a lookup strategy and the estimated
97850 ** cost of pursuing that strategy.
97852 struct WhereCost {
97853 WherePlan plan; /* The lookup strategy */
97854 double rCost; /* Overall cost of pursuing this search strategy */
97855 Bitmask used; /* Bitmask of cursors used by this plan */
97859 ** Bitmasks for the operators that indices are able to exploit. An
97860 ** OR-ed combination of these values can be used when searching for
97861 ** terms in the where clause.
97863 #define WO_IN 0x001
97864 #define WO_EQ 0x002
97865 #define WO_LT (WO_EQ<<(TK_LT-TK_EQ))
97866 #define WO_LE (WO_EQ<<(TK_LE-TK_EQ))
97867 #define WO_GT (WO_EQ<<(TK_GT-TK_EQ))
97868 #define WO_GE (WO_EQ<<(TK_GE-TK_EQ))
97869 #define WO_MATCH 0x040
97870 #define WO_ISNULL 0x080
97871 #define WO_OR 0x100 /* Two or more OR-connected terms */
97872 #define WO_AND 0x200 /* Two or more AND-connected terms */
97873 #define WO_NOOP 0x800 /* This term does not restrict search space */
97875 #define WO_ALL 0xfff /* Mask of all possible WO_* values */
97876 #define WO_SINGLE 0x0ff /* Mask of all non-compound WO_* values */
97879 ** Value for wsFlags returned by bestIndex() and stored in
97880 ** WhereLevel.wsFlags. These flags determine which search
97881 ** strategies are appropriate.
97883 ** The least significant 12 bits is reserved as a mask for WO_ values above.
97884 ** The WhereLevel.wsFlags field is usually set to WO_IN|WO_EQ|WO_ISNULL.
97885 ** But if the table is the right table of a left join, WhereLevel.wsFlags
97886 ** is set to WO_IN|WO_EQ. The WhereLevel.wsFlags field can then be used as
97887 ** the "op" parameter to findTerm when we are resolving equality constraints.
97888 ** ISNULL constraints will then not be used on the right table of a left
97889 ** join. Tickets #2177 and #2189.
97891 #define WHERE_ROWID_EQ 0x00001000 /* rowid=EXPR or rowid IN (...) */
97892 #define WHERE_ROWID_RANGE 0x00002000 /* rowid<EXPR and/or rowid>EXPR */
97893 #define WHERE_COLUMN_EQ 0x00010000 /* x=EXPR or x IN (...) or x IS NULL */
97894 #define WHERE_COLUMN_RANGE 0x00020000 /* x<EXPR and/or x>EXPR */
97895 #define WHERE_COLUMN_IN 0x00040000 /* x IN (...) */
97896 #define WHERE_COLUMN_NULL 0x00080000 /* x IS NULL */
97897 #define WHERE_INDEXED 0x000f0000 /* Anything that uses an index */
97898 #define WHERE_NOT_FULLSCAN 0x100f3000 /* Does not do a full table scan */
97899 #define WHERE_IN_ABLE 0x000f1000 /* Able to support an IN operator */
97900 #define WHERE_TOP_LIMIT 0x00100000 /* x<EXPR or x<=EXPR constraint */
97901 #define WHERE_BTM_LIMIT 0x00200000 /* x>EXPR or x>=EXPR constraint */
97902 #define WHERE_BOTH_LIMIT 0x00300000 /* Both x>EXPR and x<EXPR */
97903 #define WHERE_IDX_ONLY 0x00800000 /* Use index only - omit table */
97904 #define WHERE_ORDERBY 0x01000000 /* Output will appear in correct order */
97905 #define WHERE_REVERSE 0x02000000 /* Scan in reverse order */
97906 #define WHERE_UNIQUE 0x04000000 /* Selects no more than one row */
97907 #define WHERE_VIRTUALTABLE 0x08000000 /* Use virtual-table processing */
97908 #define WHERE_MULTI_OR 0x10000000 /* OR using multiple indices */
97909 #define WHERE_TEMP_INDEX 0x20000000 /* Uses an ephemeral index */
97912 ** Initialize a preallocated WhereClause structure.
97914 static void whereClauseInit(
97915 WhereClause *pWC, /* The WhereClause to be initialized */
97916 Parse *pParse, /* The parsing context */
97917 WhereMaskSet *pMaskSet /* Mapping from table cursor numbers to bitmasks */
97919 pWC->pParse = pParse;
97920 pWC->pMaskSet = pMaskSet;
97921 pWC->nTerm = 0;
97922 pWC->nSlot = ArraySize(pWC->aStatic);
97923 pWC->a = pWC->aStatic;
97924 pWC->vmask = 0;
97927 /* Forward reference */
97928 static void whereClauseClear(WhereClause*);
97931 ** Deallocate all memory associated with a WhereOrInfo object.
97933 static void whereOrInfoDelete(sqlite3 *db, WhereOrInfo *p){
97934 whereClauseClear(&p->wc);
97935 sqlite3DbFree(db, p);
97939 ** Deallocate all memory associated with a WhereAndInfo object.
97941 static void whereAndInfoDelete(sqlite3 *db, WhereAndInfo *p){
97942 whereClauseClear(&p->wc);
97943 sqlite3DbFree(db, p);
97947 ** Deallocate a WhereClause structure. The WhereClause structure
97948 ** itself is not freed. This routine is the inverse of whereClauseInit().
97950 static void whereClauseClear(WhereClause *pWC){
97951 int i;
97952 WhereTerm *a;
97953 sqlite3 *db = pWC->pParse->db;
97954 for(i=pWC->nTerm-1, a=pWC->a; i>=0; i--, a++){
97955 if( a->wtFlags & TERM_DYNAMIC ){
97956 sqlite3ExprDelete(db, a->pExpr);
97958 if( a->wtFlags & TERM_ORINFO ){
97959 whereOrInfoDelete(db, a->u.pOrInfo);
97960 }else if( a->wtFlags & TERM_ANDINFO ){
97961 whereAndInfoDelete(db, a->u.pAndInfo);
97964 if( pWC->a!=pWC->aStatic ){
97965 sqlite3DbFree(db, pWC->a);
97970 ** Add a single new WhereTerm entry to the WhereClause object pWC.
97971 ** The new WhereTerm object is constructed from Expr p and with wtFlags.
97972 ** The index in pWC->a[] of the new WhereTerm is returned on success.
97973 ** 0 is returned if the new WhereTerm could not be added due to a memory
97974 ** allocation error. The memory allocation failure will be recorded in
97975 ** the db->mallocFailed flag so that higher-level functions can detect it.
97977 ** This routine will increase the size of the pWC->a[] array as necessary.
97979 ** If the wtFlags argument includes TERM_DYNAMIC, then responsibility
97980 ** for freeing the expression p is assumed by the WhereClause object pWC.
97981 ** This is true even if this routine fails to allocate a new WhereTerm.
97983 ** WARNING: This routine might reallocate the space used to store
97984 ** WhereTerms. All pointers to WhereTerms should be invalidated after
97985 ** calling this routine. Such pointers may be reinitialized by referencing
97986 ** the pWC->a[] array.
97988 static int whereClauseInsert(WhereClause *pWC, Expr *p, u8 wtFlags){
97989 WhereTerm *pTerm;
97990 int idx;
97991 testcase( wtFlags & TERM_VIRTUAL ); /* EV: R-00211-15100 */
97992 if( pWC->nTerm>=pWC->nSlot ){
97993 WhereTerm *pOld = pWC->a;
97994 sqlite3 *db = pWC->pParse->db;
97995 pWC->a = sqlite3DbMallocRaw(db, sizeof(pWC->a[0])*pWC->nSlot*2 );
97996 if( pWC->a==0 ){
97997 if( wtFlags & TERM_DYNAMIC ){
97998 sqlite3ExprDelete(db, p);
98000 pWC->a = pOld;
98001 return 0;
98003 memcpy(pWC->a, pOld, sizeof(pWC->a[0])*pWC->nTerm);
98004 if( pOld!=pWC->aStatic ){
98005 sqlite3DbFree(db, pOld);
98007 pWC->nSlot = sqlite3DbMallocSize(db, pWC->a)/sizeof(pWC->a[0]);
98009 pTerm = &pWC->a[idx = pWC->nTerm++];
98010 pTerm->pExpr = p;
98011 pTerm->wtFlags = wtFlags;
98012 pTerm->pWC = pWC;
98013 pTerm->iParent = -1;
98014 return idx;
98018 ** This routine identifies subexpressions in the WHERE clause where
98019 ** each subexpression is separated by the AND operator or some other
98020 ** operator specified in the op parameter. The WhereClause structure
98021 ** is filled with pointers to subexpressions. For example:
98023 ** WHERE a=='hello' AND coalesce(b,11)<10 AND (c+12!=d OR c==22)
98024 ** \________/ \_______________/ \________________/
98025 ** slot[0] slot[1] slot[2]
98027 ** The original WHERE clause in pExpr is unaltered. All this routine
98028 ** does is make slot[] entries point to substructure within pExpr.
98030 ** In the previous sentence and in the diagram, "slot[]" refers to
98031 ** the WhereClause.a[] array. The slot[] array grows as needed to contain
98032 ** all terms of the WHERE clause.
98034 static void whereSplit(WhereClause *pWC, Expr *pExpr, int op){
98035 pWC->op = (u8)op;
98036 if( pExpr==0 ) return;
98037 if( pExpr->op!=op ){
98038 whereClauseInsert(pWC, pExpr, 0);
98039 }else{
98040 whereSplit(pWC, pExpr->pLeft, op);
98041 whereSplit(pWC, pExpr->pRight, op);
98046 ** Initialize an expression mask set (a WhereMaskSet object)
98048 #define initMaskSet(P) memset(P, 0, sizeof(*P))
98051 ** Return the bitmask for the given cursor number. Return 0 if
98052 ** iCursor is not in the set.
98054 static Bitmask getMask(WhereMaskSet *pMaskSet, int iCursor){
98055 int i;
98056 assert( pMaskSet->n<=(int)sizeof(Bitmask)*8 );
98057 for(i=0; i<pMaskSet->n; i++){
98058 if( pMaskSet->ix[i]==iCursor ){
98059 return ((Bitmask)1)<<i;
98062 return 0;
98066 ** Create a new mask for cursor iCursor.
98068 ** There is one cursor per table in the FROM clause. The number of
98069 ** tables in the FROM clause is limited by a test early in the
98070 ** sqlite3WhereBegin() routine. So we know that the pMaskSet->ix[]
98071 ** array will never overflow.
98073 static void createMask(WhereMaskSet *pMaskSet, int iCursor){
98074 assert( pMaskSet->n < ArraySize(pMaskSet->ix) );
98075 pMaskSet->ix[pMaskSet->n++] = iCursor;
98079 ** This routine walks (recursively) an expression tree and generates
98080 ** a bitmask indicating which tables are used in that expression
98081 ** tree.
98083 ** In order for this routine to work, the calling function must have
98084 ** previously invoked sqlite3ResolveExprNames() on the expression. See
98085 ** the header comment on that routine for additional information.
98086 ** The sqlite3ResolveExprNames() routines looks for column names and
98087 ** sets their opcodes to TK_COLUMN and their Expr.iTable fields to
98088 ** the VDBE cursor number of the table. This routine just has to
98089 ** translate the cursor numbers into bitmask values and OR all
98090 ** the bitmasks together.
98092 static Bitmask exprListTableUsage(WhereMaskSet*, ExprList*);
98093 static Bitmask exprSelectTableUsage(WhereMaskSet*, Select*);
98094 static Bitmask exprTableUsage(WhereMaskSet *pMaskSet, Expr *p){
98095 Bitmask mask = 0;
98096 if( p==0 ) return 0;
98097 if( p->op==TK_COLUMN ){
98098 mask = getMask(pMaskSet, p->iTable);
98099 return mask;
98101 mask = exprTableUsage(pMaskSet, p->pRight);
98102 mask |= exprTableUsage(pMaskSet, p->pLeft);
98103 if( ExprHasProperty(p, EP_xIsSelect) ){
98104 mask |= exprSelectTableUsage(pMaskSet, p->x.pSelect);
98105 }else{
98106 mask |= exprListTableUsage(pMaskSet, p->x.pList);
98108 return mask;
98110 static Bitmask exprListTableUsage(WhereMaskSet *pMaskSet, ExprList *pList){
98111 int i;
98112 Bitmask mask = 0;
98113 if( pList ){
98114 for(i=0; i<pList->nExpr; i++){
98115 mask |= exprTableUsage(pMaskSet, pList->a[i].pExpr);
98118 return mask;
98120 static Bitmask exprSelectTableUsage(WhereMaskSet *pMaskSet, Select *pS){
98121 Bitmask mask = 0;
98122 while( pS ){
98123 mask |= exprListTableUsage(pMaskSet, pS->pEList);
98124 mask |= exprListTableUsage(pMaskSet, pS->pGroupBy);
98125 mask |= exprListTableUsage(pMaskSet, pS->pOrderBy);
98126 mask |= exprTableUsage(pMaskSet, pS->pWhere);
98127 mask |= exprTableUsage(pMaskSet, pS->pHaving);
98128 pS = pS->pPrior;
98130 return mask;
98134 ** Return TRUE if the given operator is one of the operators that is
98135 ** allowed for an indexable WHERE clause term. The allowed operators are
98136 ** "=", "<", ">", "<=", ">=", and "IN".
98138 ** IMPLEMENTATION-OF: R-59926-26393 To be usable by an index a term must be
98139 ** of one of the following forms: column = expression column > expression
98140 ** column >= expression column < expression column <= expression
98141 ** expression = column expression > column expression >= column
98142 ** expression < column expression <= column column IN
98143 ** (expression-list) column IN (subquery) column IS NULL
98145 static int allowedOp(int op){
98146 assert( TK_GT>TK_EQ && TK_GT<TK_GE );
98147 assert( TK_LT>TK_EQ && TK_LT<TK_GE );
98148 assert( TK_LE>TK_EQ && TK_LE<TK_GE );
98149 assert( TK_GE==TK_EQ+4 );
98150 return op==TK_IN || (op>=TK_EQ && op<=TK_GE) || op==TK_ISNULL;
98154 ** Swap two objects of type TYPE.
98156 #define SWAP(TYPE,A,B) {TYPE t=A; A=B; B=t;}
98159 ** Commute a comparison operator. Expressions of the form "X op Y"
98160 ** are converted into "Y op X".
98162 ** If a collation sequence is associated with either the left or right
98163 ** side of the comparison, it remains associated with the same side after
98164 ** the commutation. So "Y collate NOCASE op X" becomes
98165 ** "X collate NOCASE op Y". This is because any collation sequence on
98166 ** the left hand side of a comparison overrides any collation sequence
98167 ** attached to the right. For the same reason the EP_ExpCollate flag
98168 ** is not commuted.
98170 static void exprCommute(Parse *pParse, Expr *pExpr){
98171 u16 expRight = (pExpr->pRight->flags & EP_ExpCollate);
98172 u16 expLeft = (pExpr->pLeft->flags & EP_ExpCollate);
98173 assert( allowedOp(pExpr->op) && pExpr->op!=TK_IN );
98174 pExpr->pRight->pColl = sqlite3ExprCollSeq(pParse, pExpr->pRight);
98175 pExpr->pLeft->pColl = sqlite3ExprCollSeq(pParse, pExpr->pLeft);
98176 SWAP(CollSeq*,pExpr->pRight->pColl,pExpr->pLeft->pColl);
98177 pExpr->pRight->flags = (pExpr->pRight->flags & ~EP_ExpCollate) | expLeft;
98178 pExpr->pLeft->flags = (pExpr->pLeft->flags & ~EP_ExpCollate) | expRight;
98179 SWAP(Expr*,pExpr->pRight,pExpr->pLeft);
98180 if( pExpr->op>=TK_GT ){
98181 assert( TK_LT==TK_GT+2 );
98182 assert( TK_GE==TK_LE+2 );
98183 assert( TK_GT>TK_EQ );
98184 assert( TK_GT<TK_LE );
98185 assert( pExpr->op>=TK_GT && pExpr->op<=TK_GE );
98186 pExpr->op = ((pExpr->op-TK_GT)^2)+TK_GT;
98191 ** Translate from TK_xx operator to WO_xx bitmask.
98193 static u16 operatorMask(int op){
98194 u16 c;
98195 assert( allowedOp(op) );
98196 if( op==TK_IN ){
98197 c = WO_IN;
98198 }else if( op==TK_ISNULL ){
98199 c = WO_ISNULL;
98200 }else{
98201 assert( (WO_EQ<<(op-TK_EQ)) < 0x7fff );
98202 c = (u16)(WO_EQ<<(op-TK_EQ));
98204 assert( op!=TK_ISNULL || c==WO_ISNULL );
98205 assert( op!=TK_IN || c==WO_IN );
98206 assert( op!=TK_EQ || c==WO_EQ );
98207 assert( op!=TK_LT || c==WO_LT );
98208 assert( op!=TK_LE || c==WO_LE );
98209 assert( op!=TK_GT || c==WO_GT );
98210 assert( op!=TK_GE || c==WO_GE );
98211 return c;
98215 ** Search for a term in the WHERE clause that is of the form "X <op> <expr>"
98216 ** where X is a reference to the iColumn of table iCur and <op> is one of
98217 ** the WO_xx operator codes specified by the op parameter.
98218 ** Return a pointer to the term. Return 0 if not found.
98220 static WhereTerm *findTerm(
98221 WhereClause *pWC, /* The WHERE clause to be searched */
98222 int iCur, /* Cursor number of LHS */
98223 int iColumn, /* Column number of LHS */
98224 Bitmask notReady, /* RHS must not overlap with this mask */
98225 u32 op, /* Mask of WO_xx values describing operator */
98226 Index *pIdx /* Must be compatible with this index, if not NULL */
98228 WhereTerm *pTerm;
98229 int k;
98230 assert( iCur>=0 );
98231 op &= WO_ALL;
98232 for(pTerm=pWC->a, k=pWC->nTerm; k; k--, pTerm++){
98233 if( pTerm->leftCursor==iCur
98234 && (pTerm->prereqRight & notReady)==0
98235 && pTerm->u.leftColumn==iColumn
98236 && (pTerm->eOperator & op)!=0
98238 if( pIdx && pTerm->eOperator!=WO_ISNULL ){
98239 Expr *pX = pTerm->pExpr;
98240 CollSeq *pColl;
98241 char idxaff;
98242 int j;
98243 Parse *pParse = pWC->pParse;
98245 idxaff = pIdx->pTable->aCol[iColumn].affinity;
98246 if( !sqlite3IndexAffinityOk(pX, idxaff) ) continue;
98248 /* Figure out the collation sequence required from an index for
98249 ** it to be useful for optimising expression pX. Store this
98250 ** value in variable pColl.
98252 assert(pX->pLeft);
98253 pColl = sqlite3BinaryCompareCollSeq(pParse, pX->pLeft, pX->pRight);
98254 assert(pColl || pParse->nErr);
98256 for(j=0; pIdx->aiColumn[j]!=iColumn; j++){
98257 if( NEVER(j>=pIdx->nColumn) ) return 0;
98259 if( pColl && sqlite3StrICmp(pColl->zName, pIdx->azColl[j]) ) continue;
98261 return pTerm;
98264 return 0;
98267 /* Forward reference */
98268 static void exprAnalyze(SrcList*, WhereClause*, int);
98271 ** Call exprAnalyze on all terms in a WHERE clause.
98275 static void exprAnalyzeAll(
98276 SrcList *pTabList, /* the FROM clause */
98277 WhereClause *pWC /* the WHERE clause to be analyzed */
98279 int i;
98280 for(i=pWC->nTerm-1; i>=0; i--){
98281 exprAnalyze(pTabList, pWC, i);
98285 #ifndef SQLITE_OMIT_LIKE_OPTIMIZATION
98287 ** Check to see if the given expression is a LIKE or GLOB operator that
98288 ** can be optimized using inequality constraints. Return TRUE if it is
98289 ** so and false if not.
98291 ** In order for the operator to be optimizible, the RHS must be a string
98292 ** literal that does not begin with a wildcard.
98294 static int isLikeOrGlob(
98295 Parse *pParse, /* Parsing and code generating context */
98296 Expr *pExpr, /* Test this expression */
98297 Expr **ppPrefix, /* Pointer to TK_STRING expression with pattern prefix */
98298 int *pisComplete, /* True if the only wildcard is % in the last character */
98299 int *pnoCase /* True if uppercase is equivalent to lowercase */
98301 const char *z = 0; /* String on RHS of LIKE operator */
98302 Expr *pRight, *pLeft; /* Right and left size of LIKE operator */
98303 ExprList *pList; /* List of operands to the LIKE operator */
98304 int c; /* One character in z[] */
98305 int cnt; /* Number of non-wildcard prefix characters */
98306 char wc[3]; /* Wildcard characters */
98307 sqlite3 *db = pParse->db; /* Database connection */
98308 sqlite3_value *pVal = 0;
98309 int op; /* Opcode of pRight */
98311 if( !sqlite3IsLikeFunction(db, pExpr, pnoCase, wc) ){
98312 return 0;
98314 #ifdef SQLITE_EBCDIC
98315 if( *pnoCase ) return 0;
98316 #endif
98317 pList = pExpr->x.pList;
98318 pLeft = pList->a[1].pExpr;
98319 if( pLeft->op!=TK_COLUMN || sqlite3ExprAffinity(pLeft)!=SQLITE_AFF_TEXT ){
98320 /* IMP: R-02065-49465 The left-hand side of the LIKE or GLOB operator must
98321 ** be the name of an indexed column with TEXT affinity. */
98322 return 0;
98324 assert( pLeft->iColumn!=(-1) ); /* Because IPK never has AFF_TEXT */
98326 pRight = pList->a[0].pExpr;
98327 op = pRight->op;
98328 if( op==TK_REGISTER ){
98329 op = pRight->op2;
98331 if( op==TK_VARIABLE ){
98332 Vdbe *pReprepare = pParse->pReprepare;
98333 int iCol = pRight->iColumn;
98334 pVal = sqlite3VdbeGetValue(pReprepare, iCol, SQLITE_AFF_NONE);
98335 if( pVal && sqlite3_value_type(pVal)==SQLITE_TEXT ){
98336 z = (char *)sqlite3_value_text(pVal);
98338 sqlite3VdbeSetVarmask(pParse->pVdbe, iCol); /* IMP: R-23257-02778 */
98339 assert( pRight->op==TK_VARIABLE || pRight->op==TK_REGISTER );
98340 }else if( op==TK_STRING ){
98341 z = pRight->u.zToken;
98343 if( z ){
98344 cnt = 0;
98345 while( (c=z[cnt])!=0 && c!=wc[0] && c!=wc[1] && c!=wc[2] ){
98346 cnt++;
98348 if( cnt!=0 && 255!=(u8)z[cnt-1] ){
98349 Expr *pPrefix;
98350 *pisComplete = c==wc[0] && z[cnt+1]==0;
98351 pPrefix = sqlite3Expr(db, TK_STRING, z);
98352 if( pPrefix ) pPrefix->u.zToken[cnt] = 0;
98353 *ppPrefix = pPrefix;
98354 if( op==TK_VARIABLE ){
98355 Vdbe *v = pParse->pVdbe;
98356 sqlite3VdbeSetVarmask(v, pRight->iColumn); /* IMP: R-23257-02778 */
98357 if( *pisComplete && pRight->u.zToken[1] ){
98358 /* If the rhs of the LIKE expression is a variable, and the current
98359 ** value of the variable means there is no need to invoke the LIKE
98360 ** function, then no OP_Variable will be added to the program.
98361 ** This causes problems for the sqlite3_bind_parameter_name()
98362 ** API. To workaround them, add a dummy OP_Variable here.
98364 int r1 = sqlite3GetTempReg(pParse);
98365 sqlite3ExprCodeTarget(pParse, pRight, r1);
98366 sqlite3VdbeChangeP3(v, sqlite3VdbeCurrentAddr(v)-1, 0);
98367 sqlite3ReleaseTempReg(pParse, r1);
98370 }else{
98371 z = 0;
98375 sqlite3ValueFree(pVal);
98376 return (z!=0);
98378 #endif /* SQLITE_OMIT_LIKE_OPTIMIZATION */
98381 #ifndef SQLITE_OMIT_VIRTUALTABLE
98383 ** Check to see if the given expression is of the form
98385 ** column MATCH expr
98387 ** If it is then return TRUE. If not, return FALSE.
98389 static int isMatchOfColumn(
98390 Expr *pExpr /* Test this expression */
98392 ExprList *pList;
98394 if( pExpr->op!=TK_FUNCTION ){
98395 return 0;
98397 if( sqlite3StrICmp(pExpr->u.zToken,"match")!=0 ){
98398 return 0;
98400 pList = pExpr->x.pList;
98401 if( pList->nExpr!=2 ){
98402 return 0;
98404 if( pList->a[1].pExpr->op != TK_COLUMN ){
98405 return 0;
98407 return 1;
98409 #endif /* SQLITE_OMIT_VIRTUALTABLE */
98412 ** If the pBase expression originated in the ON or USING clause of
98413 ** a join, then transfer the appropriate markings over to derived.
98415 static void transferJoinMarkings(Expr *pDerived, Expr *pBase){
98416 pDerived->flags |= pBase->flags & EP_FromJoin;
98417 pDerived->iRightJoinTable = pBase->iRightJoinTable;
98420 #if !defined(SQLITE_OMIT_OR_OPTIMIZATION) && !defined(SQLITE_OMIT_SUBQUERY)
98422 ** Analyze a term that consists of two or more OR-connected
98423 ** subterms. So in:
98425 ** ... WHERE (a=5) AND (b=7 OR c=9 OR d=13) AND (d=13)
98426 ** ^^^^^^^^^^^^^^^^^^^^
98428 ** This routine analyzes terms such as the middle term in the above example.
98429 ** A WhereOrTerm object is computed and attached to the term under
98430 ** analysis, regardless of the outcome of the analysis. Hence:
98432 ** WhereTerm.wtFlags |= TERM_ORINFO
98433 ** WhereTerm.u.pOrInfo = a dynamically allocated WhereOrTerm object
98435 ** The term being analyzed must have two or more of OR-connected subterms.
98436 ** A single subterm might be a set of AND-connected sub-subterms.
98437 ** Examples of terms under analysis:
98439 ** (A) t1.x=t2.y OR t1.x=t2.z OR t1.y=15 OR t1.z=t3.a+5
98440 ** (B) x=expr1 OR expr2=x OR x=expr3
98441 ** (C) t1.x=t2.y OR (t1.x=t2.z AND t1.y=15)
98442 ** (D) x=expr1 OR (y>11 AND y<22 AND z LIKE '*hello*')
98443 ** (E) (p.a=1 AND q.b=2 AND r.c=3) OR (p.x=4 AND q.y=5 AND r.z=6)
98445 ** CASE 1:
98447 ** If all subterms are of the form T.C=expr for some single column of C
98448 ** a single table T (as shown in example B above) then create a new virtual
98449 ** term that is an equivalent IN expression. In other words, if the term
98450 ** being analyzed is:
98452 ** x = expr1 OR expr2 = x OR x = expr3
98454 ** then create a new virtual term like this:
98456 ** x IN (expr1,expr2,expr3)
98458 ** CASE 2:
98460 ** If all subterms are indexable by a single table T, then set
98462 ** WhereTerm.eOperator = WO_OR
98463 ** WhereTerm.u.pOrInfo->indexable |= the cursor number for table T
98465 ** A subterm is "indexable" if it is of the form
98466 ** "T.C <op> <expr>" where C is any column of table T and
98467 ** <op> is one of "=", "<", "<=", ">", ">=", "IS NULL", or "IN".
98468 ** A subterm is also indexable if it is an AND of two or more
98469 ** subsubterms at least one of which is indexable. Indexable AND
98470 ** subterms have their eOperator set to WO_AND and they have
98471 ** u.pAndInfo set to a dynamically allocated WhereAndTerm object.
98473 ** From another point of view, "indexable" means that the subterm could
98474 ** potentially be used with an index if an appropriate index exists.
98475 ** This analysis does not consider whether or not the index exists; that
98476 ** is something the bestIndex() routine will determine. This analysis
98477 ** only looks at whether subterms appropriate for indexing exist.
98479 ** All examples A through E above all satisfy case 2. But if a term
98480 ** also statisfies case 1 (such as B) we know that the optimizer will
98481 ** always prefer case 1, so in that case we pretend that case 2 is not
98482 ** satisfied.
98484 ** It might be the case that multiple tables are indexable. For example,
98485 ** (E) above is indexable on tables P, Q, and R.
98487 ** Terms that satisfy case 2 are candidates for lookup by using
98488 ** separate indices to find rowids for each subterm and composing
98489 ** the union of all rowids using a RowSet object. This is similar
98490 ** to "bitmap indices" in other database engines.
98492 ** OTHERWISE:
98494 ** If neither case 1 nor case 2 apply, then leave the eOperator set to
98495 ** zero. This term is not useful for search.
98497 static void exprAnalyzeOrTerm(
98498 SrcList *pSrc, /* the FROM clause */
98499 WhereClause *pWC, /* the complete WHERE clause */
98500 int idxTerm /* Index of the OR-term to be analyzed */
98502 Parse *pParse = pWC->pParse; /* Parser context */
98503 sqlite3 *db = pParse->db; /* Database connection */
98504 WhereTerm *pTerm = &pWC->a[idxTerm]; /* The term to be analyzed */
98505 Expr *pExpr = pTerm->pExpr; /* The expression of the term */
98506 WhereMaskSet *pMaskSet = pWC->pMaskSet; /* Table use masks */
98507 int i; /* Loop counters */
98508 WhereClause *pOrWc; /* Breakup of pTerm into subterms */
98509 WhereTerm *pOrTerm; /* A Sub-term within the pOrWc */
98510 WhereOrInfo *pOrInfo; /* Additional information associated with pTerm */
98511 Bitmask chngToIN; /* Tables that might satisfy case 1 */
98512 Bitmask indexable; /* Tables that are indexable, satisfying case 2 */
98515 ** Break the OR clause into its separate subterms. The subterms are
98516 ** stored in a WhereClause structure containing within the WhereOrInfo
98517 ** object that is attached to the original OR clause term.
98519 assert( (pTerm->wtFlags & (TERM_DYNAMIC|TERM_ORINFO|TERM_ANDINFO))==0 );
98520 assert( pExpr->op==TK_OR );
98521 pTerm->u.pOrInfo = pOrInfo = sqlite3DbMallocZero(db, sizeof(*pOrInfo));
98522 if( pOrInfo==0 ) return;
98523 pTerm->wtFlags |= TERM_ORINFO;
98524 pOrWc = &pOrInfo->wc;
98525 whereClauseInit(pOrWc, pWC->pParse, pMaskSet);
98526 whereSplit(pOrWc, pExpr, TK_OR);
98527 exprAnalyzeAll(pSrc, pOrWc);
98528 if( db->mallocFailed ) return;
98529 assert( pOrWc->nTerm>=2 );
98532 ** Compute the set of tables that might satisfy cases 1 or 2.
98534 indexable = ~(Bitmask)0;
98535 chngToIN = ~(pWC->vmask);
98536 for(i=pOrWc->nTerm-1, pOrTerm=pOrWc->a; i>=0 && indexable; i--, pOrTerm++){
98537 if( (pOrTerm->eOperator & WO_SINGLE)==0 ){
98538 WhereAndInfo *pAndInfo;
98539 assert( pOrTerm->eOperator==0 );
98540 assert( (pOrTerm->wtFlags & (TERM_ANDINFO|TERM_ORINFO))==0 );
98541 chngToIN = 0;
98542 pAndInfo = sqlite3DbMallocRaw(db, sizeof(*pAndInfo));
98543 if( pAndInfo ){
98544 WhereClause *pAndWC;
98545 WhereTerm *pAndTerm;
98546 int j;
98547 Bitmask b = 0;
98548 pOrTerm->u.pAndInfo = pAndInfo;
98549 pOrTerm->wtFlags |= TERM_ANDINFO;
98550 pOrTerm->eOperator = WO_AND;
98551 pAndWC = &pAndInfo->wc;
98552 whereClauseInit(pAndWC, pWC->pParse, pMaskSet);
98553 whereSplit(pAndWC, pOrTerm->pExpr, TK_AND);
98554 exprAnalyzeAll(pSrc, pAndWC);
98555 testcase( db->mallocFailed );
98556 if( !db->mallocFailed ){
98557 for(j=0, pAndTerm=pAndWC->a; j<pAndWC->nTerm; j++, pAndTerm++){
98558 assert( pAndTerm->pExpr );
98559 if( allowedOp(pAndTerm->pExpr->op) ){
98560 b |= getMask(pMaskSet, pAndTerm->leftCursor);
98564 indexable &= b;
98566 }else if( pOrTerm->wtFlags & TERM_COPIED ){
98567 /* Skip this term for now. We revisit it when we process the
98568 ** corresponding TERM_VIRTUAL term */
98569 }else{
98570 Bitmask b;
98571 b = getMask(pMaskSet, pOrTerm->leftCursor);
98572 if( pOrTerm->wtFlags & TERM_VIRTUAL ){
98573 WhereTerm *pOther = &pOrWc->a[pOrTerm->iParent];
98574 b |= getMask(pMaskSet, pOther->leftCursor);
98576 indexable &= b;
98577 if( pOrTerm->eOperator!=WO_EQ ){
98578 chngToIN = 0;
98579 }else{
98580 chngToIN &= b;
98586 ** Record the set of tables that satisfy case 2. The set might be
98587 ** empty.
98589 pOrInfo->indexable = indexable;
98590 pTerm->eOperator = indexable==0 ? 0 : WO_OR;
98593 ** chngToIN holds a set of tables that *might* satisfy case 1. But
98594 ** we have to do some additional checking to see if case 1 really
98595 ** is satisfied.
98597 ** chngToIN will hold either 0, 1, or 2 bits. The 0-bit case means
98598 ** that there is no possibility of transforming the OR clause into an
98599 ** IN operator because one or more terms in the OR clause contain
98600 ** something other than == on a column in the single table. The 1-bit
98601 ** case means that every term of the OR clause is of the form
98602 ** "table.column=expr" for some single table. The one bit that is set
98603 ** will correspond to the common table. We still need to check to make
98604 ** sure the same column is used on all terms. The 2-bit case is when
98605 ** the all terms are of the form "table1.column=table2.column". It
98606 ** might be possible to form an IN operator with either table1.column
98607 ** or table2.column as the LHS if either is common to every term of
98608 ** the OR clause.
98610 ** Note that terms of the form "table.column1=table.column2" (the
98611 ** same table on both sizes of the ==) cannot be optimized.
98613 if( chngToIN ){
98614 int okToChngToIN = 0; /* True if the conversion to IN is valid */
98615 int iColumn = -1; /* Column index on lhs of IN operator */
98616 int iCursor = -1; /* Table cursor common to all terms */
98617 int j = 0; /* Loop counter */
98619 /* Search for a table and column that appears on one side or the
98620 ** other of the == operator in every subterm. That table and column
98621 ** will be recorded in iCursor and iColumn. There might not be any
98622 ** such table and column. Set okToChngToIN if an appropriate table
98623 ** and column is found but leave okToChngToIN false if not found.
98625 for(j=0; j<2 && !okToChngToIN; j++){
98626 pOrTerm = pOrWc->a;
98627 for(i=pOrWc->nTerm-1; i>=0; i--, pOrTerm++){
98628 assert( pOrTerm->eOperator==WO_EQ );
98629 pOrTerm->wtFlags &= ~TERM_OR_OK;
98630 if( pOrTerm->leftCursor==iCursor ){
98631 /* This is the 2-bit case and we are on the second iteration and
98632 ** current term is from the first iteration. So skip this term. */
98633 assert( j==1 );
98634 continue;
98636 if( (chngToIN & getMask(pMaskSet, pOrTerm->leftCursor))==0 ){
98637 /* This term must be of the form t1.a==t2.b where t2 is in the
98638 ** chngToIN set but t1 is not. This term will be either preceeded
98639 ** or follwed by an inverted copy (t2.b==t1.a). Skip this term
98640 ** and use its inversion. */
98641 testcase( pOrTerm->wtFlags & TERM_COPIED );
98642 testcase( pOrTerm->wtFlags & TERM_VIRTUAL );
98643 assert( pOrTerm->wtFlags & (TERM_COPIED|TERM_VIRTUAL) );
98644 continue;
98646 iColumn = pOrTerm->u.leftColumn;
98647 iCursor = pOrTerm->leftCursor;
98648 break;
98650 if( i<0 ){
98651 /* No candidate table+column was found. This can only occur
98652 ** on the second iteration */
98653 assert( j==1 );
98654 assert( (chngToIN&(chngToIN-1))==0 );
98655 assert( chngToIN==getMask(pMaskSet, iCursor) );
98656 break;
98658 testcase( j==1 );
98660 /* We have found a candidate table and column. Check to see if that
98661 ** table and column is common to every term in the OR clause */
98662 okToChngToIN = 1;
98663 for(; i>=0 && okToChngToIN; i--, pOrTerm++){
98664 assert( pOrTerm->eOperator==WO_EQ );
98665 if( pOrTerm->leftCursor!=iCursor ){
98666 pOrTerm->wtFlags &= ~TERM_OR_OK;
98667 }else if( pOrTerm->u.leftColumn!=iColumn ){
98668 okToChngToIN = 0;
98669 }else{
98670 int affLeft, affRight;
98671 /* If the right-hand side is also a column, then the affinities
98672 ** of both right and left sides must be such that no type
98673 ** conversions are required on the right. (Ticket #2249)
98675 affRight = sqlite3ExprAffinity(pOrTerm->pExpr->pRight);
98676 affLeft = sqlite3ExprAffinity(pOrTerm->pExpr->pLeft);
98677 if( affRight!=0 && affRight!=affLeft ){
98678 okToChngToIN = 0;
98679 }else{
98680 pOrTerm->wtFlags |= TERM_OR_OK;
98686 /* At this point, okToChngToIN is true if original pTerm satisfies
98687 ** case 1. In that case, construct a new virtual term that is
98688 ** pTerm converted into an IN operator.
98690 ** EV: R-00211-15100
98692 if( okToChngToIN ){
98693 Expr *pDup; /* A transient duplicate expression */
98694 ExprList *pList = 0; /* The RHS of the IN operator */
98695 Expr *pLeft = 0; /* The LHS of the IN operator */
98696 Expr *pNew; /* The complete IN operator */
98698 for(i=pOrWc->nTerm-1, pOrTerm=pOrWc->a; i>=0; i--, pOrTerm++){
98699 if( (pOrTerm->wtFlags & TERM_OR_OK)==0 ) continue;
98700 assert( pOrTerm->eOperator==WO_EQ );
98701 assert( pOrTerm->leftCursor==iCursor );
98702 assert( pOrTerm->u.leftColumn==iColumn );
98703 pDup = sqlite3ExprDup(db, pOrTerm->pExpr->pRight, 0);
98704 pList = sqlite3ExprListAppend(pWC->pParse, pList, pDup);
98705 pLeft = pOrTerm->pExpr->pLeft;
98707 assert( pLeft!=0 );
98708 pDup = sqlite3ExprDup(db, pLeft, 0);
98709 pNew = sqlite3PExpr(pParse, TK_IN, pDup, 0, 0);
98710 if( pNew ){
98711 int idxNew;
98712 transferJoinMarkings(pNew, pExpr);
98713 assert( !ExprHasProperty(pNew, EP_xIsSelect) );
98714 pNew->x.pList = pList;
98715 idxNew = whereClauseInsert(pWC, pNew, TERM_VIRTUAL|TERM_DYNAMIC);
98716 testcase( idxNew==0 );
98717 exprAnalyze(pSrc, pWC, idxNew);
98718 pTerm = &pWC->a[idxTerm];
98719 pWC->a[idxNew].iParent = idxTerm;
98720 pTerm->nChild = 1;
98721 }else{
98722 sqlite3ExprListDelete(db, pList);
98724 pTerm->eOperator = WO_NOOP; /* case 1 trumps case 2 */
98728 #endif /* !SQLITE_OMIT_OR_OPTIMIZATION && !SQLITE_OMIT_SUBQUERY */
98732 ** The input to this routine is an WhereTerm structure with only the
98733 ** "pExpr" field filled in. The job of this routine is to analyze the
98734 ** subexpression and populate all the other fields of the WhereTerm
98735 ** structure.
98737 ** If the expression is of the form "<expr> <op> X" it gets commuted
98738 ** to the standard form of "X <op> <expr>".
98740 ** If the expression is of the form "X <op> Y" where both X and Y are
98741 ** columns, then the original expression is unchanged and a new virtual
98742 ** term of the form "Y <op> X" is added to the WHERE clause and
98743 ** analyzed separately. The original term is marked with TERM_COPIED
98744 ** and the new term is marked with TERM_DYNAMIC (because it's pExpr
98745 ** needs to be freed with the WhereClause) and TERM_VIRTUAL (because it
98746 ** is a commuted copy of a prior term.) The original term has nChild=1
98747 ** and the copy has idxParent set to the index of the original term.
98749 static void exprAnalyze(
98750 SrcList *pSrc, /* the FROM clause */
98751 WhereClause *pWC, /* the WHERE clause */
98752 int idxTerm /* Index of the term to be analyzed */
98754 WhereTerm *pTerm; /* The term to be analyzed */
98755 WhereMaskSet *pMaskSet; /* Set of table index masks */
98756 Expr *pExpr; /* The expression to be analyzed */
98757 Bitmask prereqLeft; /* Prerequesites of the pExpr->pLeft */
98758 Bitmask prereqAll; /* Prerequesites of pExpr */
98759 Bitmask extraRight = 0; /* Extra dependencies on LEFT JOIN */
98760 Expr *pStr1 = 0; /* RHS of LIKE/GLOB operator */
98761 int isComplete = 0; /* RHS of LIKE/GLOB ends with wildcard */
98762 int noCase = 0; /* LIKE/GLOB distinguishes case */
98763 int op; /* Top-level operator. pExpr->op */
98764 Parse *pParse = pWC->pParse; /* Parsing context */
98765 sqlite3 *db = pParse->db; /* Database connection */
98767 if( db->mallocFailed ){
98768 return;
98770 pTerm = &pWC->a[idxTerm];
98771 pMaskSet = pWC->pMaskSet;
98772 pExpr = pTerm->pExpr;
98773 prereqLeft = exprTableUsage(pMaskSet, pExpr->pLeft);
98774 op = pExpr->op;
98775 if( op==TK_IN ){
98776 assert( pExpr->pRight==0 );
98777 if( ExprHasProperty(pExpr, EP_xIsSelect) ){
98778 pTerm->prereqRight = exprSelectTableUsage(pMaskSet, pExpr->x.pSelect);
98779 }else{
98780 pTerm->prereqRight = exprListTableUsage(pMaskSet, pExpr->x.pList);
98782 }else if( op==TK_ISNULL ){
98783 pTerm->prereqRight = 0;
98784 }else{
98785 pTerm->prereqRight = exprTableUsage(pMaskSet, pExpr->pRight);
98787 prereqAll = exprTableUsage(pMaskSet, pExpr);
98788 if( ExprHasProperty(pExpr, EP_FromJoin) ){
98789 Bitmask x = getMask(pMaskSet, pExpr->iRightJoinTable);
98790 prereqAll |= x;
98791 extraRight = x-1; /* ON clause terms may not be used with an index
98792 ** on left table of a LEFT JOIN. Ticket #3015 */
98794 pTerm->prereqAll = prereqAll;
98795 pTerm->leftCursor = -1;
98796 pTerm->iParent = -1;
98797 pTerm->eOperator = 0;
98798 if( allowedOp(op) && (pTerm->prereqRight & prereqLeft)==0 ){
98799 Expr *pLeft = pExpr->pLeft;
98800 Expr *pRight = pExpr->pRight;
98801 if( pLeft->op==TK_COLUMN ){
98802 pTerm->leftCursor = pLeft->iTable;
98803 pTerm->u.leftColumn = pLeft->iColumn;
98804 pTerm->eOperator = operatorMask(op);
98806 if( pRight && pRight->op==TK_COLUMN ){
98807 WhereTerm *pNew;
98808 Expr *pDup;
98809 if( pTerm->leftCursor>=0 ){
98810 int idxNew;
98811 pDup = sqlite3ExprDup(db, pExpr, 0);
98812 if( db->mallocFailed ){
98813 sqlite3ExprDelete(db, pDup);
98814 return;
98816 idxNew = whereClauseInsert(pWC, pDup, TERM_VIRTUAL|TERM_DYNAMIC);
98817 if( idxNew==0 ) return;
98818 pNew = &pWC->a[idxNew];
98819 pNew->iParent = idxTerm;
98820 pTerm = &pWC->a[idxTerm];
98821 pTerm->nChild = 1;
98822 pTerm->wtFlags |= TERM_COPIED;
98823 }else{
98824 pDup = pExpr;
98825 pNew = pTerm;
98827 exprCommute(pParse, pDup);
98828 pLeft = pDup->pLeft;
98829 pNew->leftCursor = pLeft->iTable;
98830 pNew->u.leftColumn = pLeft->iColumn;
98831 testcase( (prereqLeft | extraRight) != prereqLeft );
98832 pNew->prereqRight = prereqLeft | extraRight;
98833 pNew->prereqAll = prereqAll;
98834 pNew->eOperator = operatorMask(pDup->op);
98838 #ifndef SQLITE_OMIT_BETWEEN_OPTIMIZATION
98839 /* If a term is the BETWEEN operator, create two new virtual terms
98840 ** that define the range that the BETWEEN implements. For example:
98842 ** a BETWEEN b AND c
98844 ** is converted into:
98846 ** (a BETWEEN b AND c) AND (a>=b) AND (a<=c)
98848 ** The two new terms are added onto the end of the WhereClause object.
98849 ** The new terms are "dynamic" and are children of the original BETWEEN
98850 ** term. That means that if the BETWEEN term is coded, the children are
98851 ** skipped. Or, if the children are satisfied by an index, the original
98852 ** BETWEEN term is skipped.
98854 else if( pExpr->op==TK_BETWEEN && pWC->op==TK_AND ){
98855 ExprList *pList = pExpr->x.pList;
98856 int i;
98857 static const u8 ops[] = {TK_GE, TK_LE};
98858 assert( pList!=0 );
98859 assert( pList->nExpr==2 );
98860 for(i=0; i<2; i++){
98861 Expr *pNewExpr;
98862 int idxNew;
98863 pNewExpr = sqlite3PExpr(pParse, ops[i],
98864 sqlite3ExprDup(db, pExpr->pLeft, 0),
98865 sqlite3ExprDup(db, pList->a[i].pExpr, 0), 0);
98866 idxNew = whereClauseInsert(pWC, pNewExpr, TERM_VIRTUAL|TERM_DYNAMIC);
98867 testcase( idxNew==0 );
98868 exprAnalyze(pSrc, pWC, idxNew);
98869 pTerm = &pWC->a[idxTerm];
98870 pWC->a[idxNew].iParent = idxTerm;
98872 pTerm->nChild = 2;
98874 #endif /* SQLITE_OMIT_BETWEEN_OPTIMIZATION */
98876 #if !defined(SQLITE_OMIT_OR_OPTIMIZATION) && !defined(SQLITE_OMIT_SUBQUERY)
98877 /* Analyze a term that is composed of two or more subterms connected by
98878 ** an OR operator.
98880 else if( pExpr->op==TK_OR ){
98881 assert( pWC->op==TK_AND );
98882 exprAnalyzeOrTerm(pSrc, pWC, idxTerm);
98883 pTerm = &pWC->a[idxTerm];
98885 #endif /* SQLITE_OMIT_OR_OPTIMIZATION */
98887 #ifndef SQLITE_OMIT_LIKE_OPTIMIZATION
98888 /* Add constraints to reduce the search space on a LIKE or GLOB
98889 ** operator.
98891 ** A like pattern of the form "x LIKE 'abc%'" is changed into constraints
98893 ** x>='abc' AND x<'abd' AND x LIKE 'abc%'
98895 ** The last character of the prefix "abc" is incremented to form the
98896 ** termination condition "abd".
98898 if( pWC->op==TK_AND
98899 && isLikeOrGlob(pParse, pExpr, &pStr1, &isComplete, &noCase)
98901 Expr *pLeft; /* LHS of LIKE/GLOB operator */
98902 Expr *pStr2; /* Copy of pStr1 - RHS of LIKE/GLOB operator */
98903 Expr *pNewExpr1;
98904 Expr *pNewExpr2;
98905 int idxNew1;
98906 int idxNew2;
98907 CollSeq *pColl; /* Collating sequence to use */
98909 pLeft = pExpr->x.pList->a[1].pExpr;
98910 pStr2 = sqlite3ExprDup(db, pStr1, 0);
98911 if( !db->mallocFailed ){
98912 u8 c, *pC; /* Last character before the first wildcard */
98913 pC = (u8*)&pStr2->u.zToken[sqlite3Strlen30(pStr2->u.zToken)-1];
98914 c = *pC;
98915 if( noCase ){
98916 /* The point is to increment the last character before the first
98917 ** wildcard. But if we increment '@', that will push it into the
98918 ** alphabetic range where case conversions will mess up the
98919 ** inequality. To avoid this, make sure to also run the full
98920 ** LIKE on all candidate expressions by clearing the isComplete flag
98922 if( c=='A'-1 ) isComplete = 0; /* EV: R-64339-08207 */
98925 c = sqlite3UpperToLower[c];
98927 *pC = c + 1;
98929 pColl = sqlite3FindCollSeq(db, SQLITE_UTF8, noCase ? "NOCASE" : "BINARY",0);
98930 pNewExpr1 = sqlite3PExpr(pParse, TK_GE,
98931 sqlite3ExprSetColl(sqlite3ExprDup(db,pLeft,0), pColl),
98932 pStr1, 0);
98933 idxNew1 = whereClauseInsert(pWC, pNewExpr1, TERM_VIRTUAL|TERM_DYNAMIC);
98934 testcase( idxNew1==0 );
98935 exprAnalyze(pSrc, pWC, idxNew1);
98936 pNewExpr2 = sqlite3PExpr(pParse, TK_LT,
98937 sqlite3ExprSetColl(sqlite3ExprDup(db,pLeft,0), pColl),
98938 pStr2, 0);
98939 idxNew2 = whereClauseInsert(pWC, pNewExpr2, TERM_VIRTUAL|TERM_DYNAMIC);
98940 testcase( idxNew2==0 );
98941 exprAnalyze(pSrc, pWC, idxNew2);
98942 pTerm = &pWC->a[idxTerm];
98943 if( isComplete ){
98944 pWC->a[idxNew1].iParent = idxTerm;
98945 pWC->a[idxNew2].iParent = idxTerm;
98946 pTerm->nChild = 2;
98949 #endif /* SQLITE_OMIT_LIKE_OPTIMIZATION */
98951 #ifndef SQLITE_OMIT_VIRTUALTABLE
98952 /* Add a WO_MATCH auxiliary term to the constraint set if the
98953 ** current expression is of the form: column MATCH expr.
98954 ** This information is used by the xBestIndex methods of
98955 ** virtual tables. The native query optimizer does not attempt
98956 ** to do anything with MATCH functions.
98958 if( isMatchOfColumn(pExpr) ){
98959 int idxNew;
98960 Expr *pRight, *pLeft;
98961 WhereTerm *pNewTerm;
98962 Bitmask prereqColumn, prereqExpr;
98964 pRight = pExpr->x.pList->a[0].pExpr;
98965 pLeft = pExpr->x.pList->a[1].pExpr;
98966 prereqExpr = exprTableUsage(pMaskSet, pRight);
98967 prereqColumn = exprTableUsage(pMaskSet, pLeft);
98968 if( (prereqExpr & prereqColumn)==0 ){
98969 Expr *pNewExpr;
98970 pNewExpr = sqlite3PExpr(pParse, TK_MATCH,
98971 0, sqlite3ExprDup(db, pRight, 0), 0);
98972 idxNew = whereClauseInsert(pWC, pNewExpr, TERM_VIRTUAL|TERM_DYNAMIC);
98973 testcase( idxNew==0 );
98974 pNewTerm = &pWC->a[idxNew];
98975 pNewTerm->prereqRight = prereqExpr;
98976 pNewTerm->leftCursor = pLeft->iTable;
98977 pNewTerm->u.leftColumn = pLeft->iColumn;
98978 pNewTerm->eOperator = WO_MATCH;
98979 pNewTerm->iParent = idxTerm;
98980 pTerm = &pWC->a[idxTerm];
98981 pTerm->nChild = 1;
98982 pTerm->wtFlags |= TERM_COPIED;
98983 pNewTerm->prereqAll = pTerm->prereqAll;
98986 #endif /* SQLITE_OMIT_VIRTUALTABLE */
98988 #ifdef SQLITE_ENABLE_STAT2
98989 /* When sqlite_stat2 histogram data is available an operator of the
98990 ** form "x IS NOT NULL" can sometimes be evaluated more efficiently
98991 ** as "x>NULL" if x is not an INTEGER PRIMARY KEY. So construct a
98992 ** virtual term of that form.
98994 ** Note that the virtual term must be tagged with TERM_VNULL. This
98995 ** TERM_VNULL tag will suppress the not-null check at the beginning
98996 ** of the loop. Without the TERM_VNULL flag, the not-null check at
98997 ** the start of the loop will prevent any results from being returned.
98999 if( pExpr->op==TK_NOTNULL
99000 && pExpr->pLeft->op==TK_COLUMN
99001 && pExpr->pLeft->iColumn>=0
99003 Expr *pNewExpr;
99004 Expr *pLeft = pExpr->pLeft;
99005 int idxNew;
99006 WhereTerm *pNewTerm;
99008 pNewExpr = sqlite3PExpr(pParse, TK_GT,
99009 sqlite3ExprDup(db, pLeft, 0),
99010 sqlite3PExpr(pParse, TK_NULL, 0, 0, 0), 0);
99012 idxNew = whereClauseInsert(pWC, pNewExpr,
99013 TERM_VIRTUAL|TERM_DYNAMIC|TERM_VNULL);
99014 if( idxNew ){
99015 pNewTerm = &pWC->a[idxNew];
99016 pNewTerm->prereqRight = 0;
99017 pNewTerm->leftCursor = pLeft->iTable;
99018 pNewTerm->u.leftColumn = pLeft->iColumn;
99019 pNewTerm->eOperator = WO_GT;
99020 pNewTerm->iParent = idxTerm;
99021 pTerm = &pWC->a[idxTerm];
99022 pTerm->nChild = 1;
99023 pTerm->wtFlags |= TERM_COPIED;
99024 pNewTerm->prereqAll = pTerm->prereqAll;
99027 #endif /* SQLITE_ENABLE_STAT2 */
99029 /* Prevent ON clause terms of a LEFT JOIN from being used to drive
99030 ** an index for tables to the left of the join.
99032 pTerm->prereqRight |= extraRight;
99036 ** Return TRUE if any of the expressions in pList->a[iFirst...] contain
99037 ** a reference to any table other than the iBase table.
99039 static int referencesOtherTables(
99040 ExprList *pList, /* Search expressions in ths list */
99041 WhereMaskSet *pMaskSet, /* Mapping from tables to bitmaps */
99042 int iFirst, /* Be searching with the iFirst-th expression */
99043 int iBase /* Ignore references to this table */
99045 Bitmask allowed = ~getMask(pMaskSet, iBase);
99046 while( iFirst<pList->nExpr ){
99047 if( (exprTableUsage(pMaskSet, pList->a[iFirst++].pExpr)&allowed)!=0 ){
99048 return 1;
99051 return 0;
99056 ** This routine decides if pIdx can be used to satisfy the ORDER BY
99057 ** clause. If it can, it returns 1. If pIdx cannot satisfy the
99058 ** ORDER BY clause, this routine returns 0.
99060 ** pOrderBy is an ORDER BY clause from a SELECT statement. pTab is the
99061 ** left-most table in the FROM clause of that same SELECT statement and
99062 ** the table has a cursor number of "base". pIdx is an index on pTab.
99064 ** nEqCol is the number of columns of pIdx that are used as equality
99065 ** constraints. Any of these columns may be missing from the ORDER BY
99066 ** clause and the match can still be a success.
99068 ** All terms of the ORDER BY that match against the index must be either
99069 ** ASC or DESC. (Terms of the ORDER BY clause past the end of a UNIQUE
99070 ** index do not need to satisfy this constraint.) The *pbRev value is
99071 ** set to 1 if the ORDER BY clause is all DESC and it is set to 0 if
99072 ** the ORDER BY clause is all ASC.
99074 static int isSortingIndex(
99075 Parse *pParse, /* Parsing context */
99076 WhereMaskSet *pMaskSet, /* Mapping from table cursor numbers to bitmaps */
99077 Index *pIdx, /* The index we are testing */
99078 int base, /* Cursor number for the table to be sorted */
99079 ExprList *pOrderBy, /* The ORDER BY clause */
99080 int nEqCol, /* Number of index columns with == constraints */
99081 int wsFlags, /* Index usages flags */
99082 int *pbRev /* Set to 1 if ORDER BY is DESC */
99084 int i, j; /* Loop counters */
99085 int sortOrder = 0; /* XOR of index and ORDER BY sort direction */
99086 int nTerm; /* Number of ORDER BY terms */
99087 struct ExprList_item *pTerm; /* A term of the ORDER BY clause */
99088 sqlite3 *db = pParse->db;
99090 assert( pOrderBy!=0 );
99091 nTerm = pOrderBy->nExpr;
99092 assert( nTerm>0 );
99094 /* Argument pIdx must either point to a 'real' named index structure,
99095 ** or an index structure allocated on the stack by bestBtreeIndex() to
99096 ** represent the rowid index that is part of every table. */
99097 assert( pIdx->zName || (pIdx->nColumn==1 && pIdx->aiColumn[0]==-1) );
99099 /* Match terms of the ORDER BY clause against columns of
99100 ** the index.
99102 ** Note that indices have pIdx->nColumn regular columns plus
99103 ** one additional column containing the rowid. The rowid column
99104 ** of the index is also allowed to match against the ORDER BY
99105 ** clause.
99107 for(i=j=0, pTerm=pOrderBy->a; j<nTerm && i<=pIdx->nColumn; i++){
99108 Expr *pExpr; /* The expression of the ORDER BY pTerm */
99109 CollSeq *pColl; /* The collating sequence of pExpr */
99110 int termSortOrder; /* Sort order for this term */
99111 int iColumn; /* The i-th column of the index. -1 for rowid */
99112 int iSortOrder; /* 1 for DESC, 0 for ASC on the i-th index term */
99113 const char *zColl; /* Name of the collating sequence for i-th index term */
99115 pExpr = pTerm->pExpr;
99116 if( pExpr->op!=TK_COLUMN || pExpr->iTable!=base ){
99117 /* Can not use an index sort on anything that is not a column in the
99118 ** left-most table of the FROM clause */
99119 break;
99121 pColl = sqlite3ExprCollSeq(pParse, pExpr);
99122 if( !pColl ){
99123 pColl = db->pDfltColl;
99125 if( pIdx->zName && i<pIdx->nColumn ){
99126 iColumn = pIdx->aiColumn[i];
99127 if( iColumn==pIdx->pTable->iPKey ){
99128 iColumn = -1;
99130 iSortOrder = pIdx->aSortOrder[i];
99131 zColl = pIdx->azColl[i];
99132 }else{
99133 iColumn = -1;
99134 iSortOrder = 0;
99135 zColl = pColl->zName;
99137 if( pExpr->iColumn!=iColumn || sqlite3StrICmp(pColl->zName, zColl) ){
99138 /* Term j of the ORDER BY clause does not match column i of the index */
99139 if( i<nEqCol ){
99140 /* If an index column that is constrained by == fails to match an
99141 ** ORDER BY term, that is OK. Just ignore that column of the index
99143 continue;
99144 }else if( i==pIdx->nColumn ){
99145 /* Index column i is the rowid. All other terms match. */
99146 break;
99147 }else{
99148 /* If an index column fails to match and is not constrained by ==
99149 ** then the index cannot satisfy the ORDER BY constraint.
99151 return 0;
99154 assert( pIdx->aSortOrder!=0 || iColumn==-1 );
99155 assert( pTerm->sortOrder==0 || pTerm->sortOrder==1 );
99156 assert( iSortOrder==0 || iSortOrder==1 );
99157 termSortOrder = iSortOrder ^ pTerm->sortOrder;
99158 if( i>nEqCol ){
99159 if( termSortOrder!=sortOrder ){
99160 /* Indices can only be used if all ORDER BY terms past the
99161 ** equality constraints are all either DESC or ASC. */
99162 return 0;
99164 }else{
99165 sortOrder = termSortOrder;
99167 j++;
99168 pTerm++;
99169 if( iColumn<0 && !referencesOtherTables(pOrderBy, pMaskSet, j, base) ){
99170 /* If the indexed column is the primary key and everything matches
99171 ** so far and none of the ORDER BY terms to the right reference other
99172 ** tables in the join, then we are assured that the index can be used
99173 ** to sort because the primary key is unique and so none of the other
99174 ** columns will make any difference
99176 j = nTerm;
99180 *pbRev = sortOrder!=0;
99181 if( j>=nTerm ){
99182 /* All terms of the ORDER BY clause are covered by this index so
99183 ** this index can be used for sorting. */
99184 return 1;
99186 if( pIdx->onError!=OE_None && i==pIdx->nColumn
99187 && (wsFlags & WHERE_COLUMN_NULL)==0
99188 && !referencesOtherTables(pOrderBy, pMaskSet, j, base) ){
99189 /* All terms of this index match some prefix of the ORDER BY clause
99190 ** and the index is UNIQUE and no terms on the tail of the ORDER BY
99191 ** clause reference other tables in a join. If this is all true then
99192 ** the order by clause is superfluous. Not that if the matching
99193 ** condition is IS NULL then the result is not necessarily unique
99194 ** even on a UNIQUE index, so disallow those cases. */
99195 return 1;
99197 return 0;
99201 ** Prepare a crude estimate of the logarithm of the input value.
99202 ** The results need not be exact. This is only used for estimating
99203 ** the total cost of performing operations with O(logN) or O(NlogN)
99204 ** complexity. Because N is just a guess, it is no great tragedy if
99205 ** logN is a little off.
99207 static double estLog(double N){
99208 double logN = 1;
99209 double x = 10;
99210 while( N>x ){
99211 logN += 1;
99212 x *= 10;
99214 return logN;
99218 ** Two routines for printing the content of an sqlite3_index_info
99219 ** structure. Used for testing and debugging only. If neither
99220 ** SQLITE_TEST or SQLITE_DEBUG are defined, then these routines
99221 ** are no-ops.
99223 #if !defined(SQLITE_OMIT_VIRTUALTABLE) && defined(SQLITE_DEBUG)
99224 static void TRACE_IDX_INPUTS(sqlite3_index_info *p){
99225 int i;
99226 if( !sqlite3WhereTrace ) return;
99227 for(i=0; i<p->nConstraint; i++){
99228 sqlite3DebugPrintf(" constraint[%d]: col=%d termid=%d op=%d usabled=%d\n",
99230 p->aConstraint[i].iColumn,
99231 p->aConstraint[i].iTermOffset,
99232 p->aConstraint[i].op,
99233 p->aConstraint[i].usable);
99235 for(i=0; i<p->nOrderBy; i++){
99236 sqlite3DebugPrintf(" orderby[%d]: col=%d desc=%d\n",
99238 p->aOrderBy[i].iColumn,
99239 p->aOrderBy[i].desc);
99242 static void TRACE_IDX_OUTPUTS(sqlite3_index_info *p){
99243 int i;
99244 if( !sqlite3WhereTrace ) return;
99245 for(i=0; i<p->nConstraint; i++){
99246 sqlite3DebugPrintf(" usage[%d]: argvIdx=%d omit=%d\n",
99248 p->aConstraintUsage[i].argvIndex,
99249 p->aConstraintUsage[i].omit);
99251 sqlite3DebugPrintf(" idxNum=%d\n", p->idxNum);
99252 sqlite3DebugPrintf(" idxStr=%s\n", p->idxStr);
99253 sqlite3DebugPrintf(" orderByConsumed=%d\n", p->orderByConsumed);
99254 sqlite3DebugPrintf(" estimatedCost=%g\n", p->estimatedCost);
99256 #else
99257 #define TRACE_IDX_INPUTS(A)
99258 #define TRACE_IDX_OUTPUTS(A)
99259 #endif
99262 ** Required because bestIndex() is called by bestOrClauseIndex()
99264 static void bestIndex(
99265 Parse*, WhereClause*, struct SrcList_item*,
99266 Bitmask, Bitmask, ExprList*, WhereCost*);
99269 ** This routine attempts to find an scanning strategy that can be used
99270 ** to optimize an 'OR' expression that is part of a WHERE clause.
99272 ** The table associated with FROM clause term pSrc may be either a
99273 ** regular B-Tree table or a virtual table.
99275 static void bestOrClauseIndex(
99276 Parse *pParse, /* The parsing context */
99277 WhereClause *pWC, /* The WHERE clause */
99278 struct SrcList_item *pSrc, /* The FROM clause term to search */
99279 Bitmask notReady, /* Mask of cursors not available for indexing */
99280 Bitmask notValid, /* Cursors not available for any purpose */
99281 ExprList *pOrderBy, /* The ORDER BY clause */
99282 WhereCost *pCost /* Lowest cost query plan */
99284 #ifndef SQLITE_OMIT_OR_OPTIMIZATION
99285 const int iCur = pSrc->iCursor; /* The cursor of the table to be accessed */
99286 const Bitmask maskSrc = getMask(pWC->pMaskSet, iCur); /* Bitmask for pSrc */
99287 WhereTerm * const pWCEnd = &pWC->a[pWC->nTerm]; /* End of pWC->a[] */
99288 WhereTerm *pTerm; /* A single term of the WHERE clause */
99290 /* No OR-clause optimization allowed if the INDEXED BY or NOT INDEXED clauses
99291 ** are used */
99292 if( pSrc->notIndexed || pSrc->pIndex!=0 ){
99293 return;
99296 /* Search the WHERE clause terms for a usable WO_OR term. */
99297 for(pTerm=pWC->a; pTerm<pWCEnd; pTerm++){
99298 if( pTerm->eOperator==WO_OR
99299 && ((pTerm->prereqAll & ~maskSrc) & notReady)==0
99300 && (pTerm->u.pOrInfo->indexable & maskSrc)!=0
99302 WhereClause * const pOrWC = &pTerm->u.pOrInfo->wc;
99303 WhereTerm * const pOrWCEnd = &pOrWC->a[pOrWC->nTerm];
99304 WhereTerm *pOrTerm;
99305 int flags = WHERE_MULTI_OR;
99306 double rTotal = 0;
99307 double nRow = 0;
99308 Bitmask used = 0;
99310 for(pOrTerm=pOrWC->a; pOrTerm<pOrWCEnd; pOrTerm++){
99311 WhereCost sTermCost;
99312 WHERETRACE(("... Multi-index OR testing for term %d of %d....\n",
99313 (pOrTerm - pOrWC->a), (pTerm - pWC->a)
99315 if( pOrTerm->eOperator==WO_AND ){
99316 WhereClause *pAndWC = &pOrTerm->u.pAndInfo->wc;
99317 bestIndex(pParse, pAndWC, pSrc, notReady, notValid, 0, &sTermCost);
99318 }else if( pOrTerm->leftCursor==iCur ){
99319 WhereClause tempWC;
99320 tempWC.pParse = pWC->pParse;
99321 tempWC.pMaskSet = pWC->pMaskSet;
99322 tempWC.op = TK_AND;
99323 tempWC.a = pOrTerm;
99324 tempWC.nTerm = 1;
99325 bestIndex(pParse, &tempWC, pSrc, notReady, notValid, 0, &sTermCost);
99326 }else{
99327 continue;
99329 rTotal += sTermCost.rCost;
99330 nRow += sTermCost.plan.nRow;
99331 used |= sTermCost.used;
99332 if( rTotal>=pCost->rCost ) break;
99335 /* If there is an ORDER BY clause, increase the scan cost to account
99336 ** for the cost of the sort. */
99337 if( pOrderBy!=0 ){
99338 WHERETRACE(("... sorting increases OR cost %.9g to %.9g\n",
99339 rTotal, rTotal+nRow*estLog(nRow)));
99340 rTotal += nRow*estLog(nRow);
99343 /* If the cost of scanning using this OR term for optimization is
99344 ** less than the current cost stored in pCost, replace the contents
99345 ** of pCost. */
99346 WHERETRACE(("... multi-index OR cost=%.9g nrow=%.9g\n", rTotal, nRow));
99347 if( rTotal<pCost->rCost ){
99348 pCost->rCost = rTotal;
99349 pCost->used = used;
99350 pCost->plan.nRow = nRow;
99351 pCost->plan.wsFlags = flags;
99352 pCost->plan.u.pTerm = pTerm;
99356 #endif /* SQLITE_OMIT_OR_OPTIMIZATION */
99359 #ifndef SQLITE_OMIT_AUTOMATIC_INDEX
99361 ** Return TRUE if the WHERE clause term pTerm is of a form where it
99362 ** could be used with an index to access pSrc, assuming an appropriate
99363 ** index existed.
99365 static int termCanDriveIndex(
99366 WhereTerm *pTerm, /* WHERE clause term to check */
99367 struct SrcList_item *pSrc, /* Table we are trying to access */
99368 Bitmask notReady /* Tables in outer loops of the join */
99370 char aff;
99371 if( pTerm->leftCursor!=pSrc->iCursor ) return 0;
99372 if( pTerm->eOperator!=WO_EQ ) return 0;
99373 if( (pTerm->prereqRight & notReady)!=0 ) return 0;
99374 aff = pSrc->pTab->aCol[pTerm->u.leftColumn].affinity;
99375 if( !sqlite3IndexAffinityOk(pTerm->pExpr, aff) ) return 0;
99376 return 1;
99378 #endif
99380 #ifndef SQLITE_OMIT_AUTOMATIC_INDEX
99382 ** If the query plan for pSrc specified in pCost is a full table scan
99383 ** and indexing is allows (if there is no NOT INDEXED clause) and it
99384 ** possible to construct a transient index that would perform better
99385 ** than a full table scan even when the cost of constructing the index
99386 ** is taken into account, then alter the query plan to use the
99387 ** transient index.
99389 static void bestAutomaticIndex(
99390 Parse *pParse, /* The parsing context */
99391 WhereClause *pWC, /* The WHERE clause */
99392 struct SrcList_item *pSrc, /* The FROM clause term to search */
99393 Bitmask notReady, /* Mask of cursors that are not available */
99394 WhereCost *pCost /* Lowest cost query plan */
99396 double nTableRow; /* Rows in the input table */
99397 double logN; /* log(nTableRow) */
99398 double costTempIdx; /* per-query cost of the transient index */
99399 WhereTerm *pTerm; /* A single term of the WHERE clause */
99400 WhereTerm *pWCEnd; /* End of pWC->a[] */
99401 Table *pTable; /* Table tht might be indexed */
99403 if( (pParse->db->flags & SQLITE_AutoIndex)==0 ){
99404 /* Automatic indices are disabled at run-time */
99405 return;
99407 if( (pCost->plan.wsFlags & WHERE_NOT_FULLSCAN)!=0 ){
99408 /* We already have some kind of index in use for this query. */
99409 return;
99411 if( pSrc->notIndexed ){
99412 /* The NOT INDEXED clause appears in the SQL. */
99413 return;
99416 assert( pParse->nQueryLoop >= (double)1 );
99417 pTable = pSrc->pTab;
99418 nTableRow = pTable->nRowEst;
99419 logN = estLog(nTableRow);
99420 costTempIdx = 2*logN*(nTableRow/pParse->nQueryLoop + 1);
99421 if( costTempIdx>=pCost->rCost ){
99422 /* The cost of creating the transient table would be greater than
99423 ** doing the full table scan */
99424 return;
99427 /* Search for any equality comparison term */
99428 pWCEnd = &pWC->a[pWC->nTerm];
99429 for(pTerm=pWC->a; pTerm<pWCEnd; pTerm++){
99430 if( termCanDriveIndex(pTerm, pSrc, notReady) ){
99431 WHERETRACE(("auto-index reduces cost from %.1f to %.1f\n",
99432 pCost->rCost, costTempIdx));
99433 pCost->rCost = costTempIdx;
99434 pCost->plan.nRow = logN + 1;
99435 pCost->plan.wsFlags = WHERE_TEMP_INDEX;
99436 pCost->used = pTerm->prereqRight;
99437 break;
99441 #else
99442 # define bestAutomaticIndex(A,B,C,D,E) /* no-op */
99443 #endif /* SQLITE_OMIT_AUTOMATIC_INDEX */
99446 #ifndef SQLITE_OMIT_AUTOMATIC_INDEX
99448 ** Generate code to construct the Index object for an automatic index
99449 ** and to set up the WhereLevel object pLevel so that the code generator
99450 ** makes use of the automatic index.
99452 static void constructAutomaticIndex(
99453 Parse *pParse, /* The parsing context */
99454 WhereClause *pWC, /* The WHERE clause */
99455 struct SrcList_item *pSrc, /* The FROM clause term to get the next index */
99456 Bitmask notReady, /* Mask of cursors that are not available */
99457 WhereLevel *pLevel /* Write new index here */
99459 int nColumn; /* Number of columns in the constructed index */
99460 WhereTerm *pTerm; /* A single term of the WHERE clause */
99461 WhereTerm *pWCEnd; /* End of pWC->a[] */
99462 int nByte; /* Byte of memory needed for pIdx */
99463 Index *pIdx; /* Object describing the transient index */
99464 Vdbe *v; /* Prepared statement under construction */
99465 int regIsInit; /* Register set by initialization */
99466 int addrInit; /* Address of the initialization bypass jump */
99467 Table *pTable; /* The table being indexed */
99468 KeyInfo *pKeyinfo; /* Key information for the index */
99469 int addrTop; /* Top of the index fill loop */
99470 int regRecord; /* Register holding an index record */
99471 int n; /* Column counter */
99472 int i; /* Loop counter */
99473 int mxBitCol; /* Maximum column in pSrc->colUsed */
99474 CollSeq *pColl; /* Collating sequence to on a column */
99475 Bitmask idxCols; /* Bitmap of columns used for indexing */
99476 Bitmask extraCols; /* Bitmap of additional columns */
99478 /* Generate code to skip over the creation and initialization of the
99479 ** transient index on 2nd and subsequent iterations of the loop. */
99480 v = pParse->pVdbe;
99481 assert( v!=0 );
99482 regIsInit = ++pParse->nMem;
99483 addrInit = sqlite3VdbeAddOp1(v, OP_If, regIsInit);
99484 sqlite3VdbeAddOp2(v, OP_Integer, 1, regIsInit);
99486 /* Count the number of columns that will be added to the index
99487 ** and used to match WHERE clause constraints */
99488 nColumn = 0;
99489 pTable = pSrc->pTab;
99490 pWCEnd = &pWC->a[pWC->nTerm];
99491 idxCols = 0;
99492 for(pTerm=pWC->a; pTerm<pWCEnd; pTerm++){
99493 if( termCanDriveIndex(pTerm, pSrc, notReady) ){
99494 int iCol = pTerm->u.leftColumn;
99495 Bitmask cMask = iCol>=BMS ? ((Bitmask)1)<<(BMS-1) : ((Bitmask)1)<<iCol;
99496 testcase( iCol==BMS );
99497 testcase( iCol==BMS-1 );
99498 if( (idxCols & cMask)==0 ){
99499 nColumn++;
99500 idxCols |= cMask;
99504 assert( nColumn>0 );
99505 pLevel->plan.nEq = nColumn;
99507 /* Count the number of additional columns needed to create a
99508 ** covering index. A "covering index" is an index that contains all
99509 ** columns that are needed by the query. With a covering index, the
99510 ** original table never needs to be accessed. Automatic indices must
99511 ** be a covering index because the index will not be updated if the
99512 ** original table changes and the index and table cannot both be used
99513 ** if they go out of sync.
99515 extraCols = pSrc->colUsed & (~idxCols | (((Bitmask)1)<<(BMS-1)));
99516 mxBitCol = (pTable->nCol >= BMS-1) ? BMS-1 : pTable->nCol;
99517 testcase( pTable->nCol==BMS-1 );
99518 testcase( pTable->nCol==BMS-2 );
99519 for(i=0; i<mxBitCol; i++){
99520 if( extraCols & (((Bitmask)1)<<i) ) nColumn++;
99522 if( pSrc->colUsed & (((Bitmask)1)<<(BMS-1)) ){
99523 nColumn += pTable->nCol - BMS + 1;
99525 pLevel->plan.wsFlags |= WHERE_COLUMN_EQ | WHERE_IDX_ONLY | WO_EQ;
99527 /* Construct the Index object to describe this index */
99528 nByte = sizeof(Index);
99529 nByte += nColumn*sizeof(int); /* Index.aiColumn */
99530 nByte += nColumn*sizeof(char*); /* Index.azColl */
99531 nByte += nColumn; /* Index.aSortOrder */
99532 pIdx = sqlite3DbMallocZero(pParse->db, nByte);
99533 if( pIdx==0 ) return;
99534 pLevel->plan.u.pIdx = pIdx;
99535 pIdx->azColl = (char**)&pIdx[1];
99536 pIdx->aiColumn = (int*)&pIdx->azColl[nColumn];
99537 pIdx->aSortOrder = (u8*)&pIdx->aiColumn[nColumn];
99538 pIdx->zName = "auto-index";
99539 pIdx->nColumn = nColumn;
99540 pIdx->pTable = pTable;
99541 n = 0;
99542 idxCols = 0;
99543 for(pTerm=pWC->a; pTerm<pWCEnd; pTerm++){
99544 if( termCanDriveIndex(pTerm, pSrc, notReady) ){
99545 int iCol = pTerm->u.leftColumn;
99546 Bitmask cMask = iCol>=BMS ? ((Bitmask)1)<<(BMS-1) : ((Bitmask)1)<<iCol;
99547 if( (idxCols & cMask)==0 ){
99548 Expr *pX = pTerm->pExpr;
99549 idxCols |= cMask;
99550 pIdx->aiColumn[n] = pTerm->u.leftColumn;
99551 pColl = sqlite3BinaryCompareCollSeq(pParse, pX->pLeft, pX->pRight);
99552 pIdx->azColl[n] = ALWAYS(pColl) ? pColl->zName : "BINARY";
99553 n++;
99557 assert( (u32)n==pLevel->plan.nEq );
99559 /* Add additional columns needed to make the automatic index into
99560 ** a covering index */
99561 for(i=0; i<mxBitCol; i++){
99562 if( extraCols & (((Bitmask)1)<<i) ){
99563 pIdx->aiColumn[n] = i;
99564 pIdx->azColl[n] = "BINARY";
99565 n++;
99568 if( pSrc->colUsed & (((Bitmask)1)<<(BMS-1)) ){
99569 for(i=BMS-1; i<pTable->nCol; i++){
99570 pIdx->aiColumn[n] = i;
99571 pIdx->azColl[n] = "BINARY";
99572 n++;
99575 assert( n==nColumn );
99577 /* Create the automatic index */
99578 pKeyinfo = sqlite3IndexKeyinfo(pParse, pIdx);
99579 assert( pLevel->iIdxCur>=0 );
99580 sqlite3VdbeAddOp4(v, OP_OpenAutoindex, pLevel->iIdxCur, nColumn+1, 0,
99581 (char*)pKeyinfo, P4_KEYINFO_HANDOFF);
99582 VdbeComment((v, "for %s", pTable->zName));
99584 /* Fill the automatic index with content */
99585 addrTop = sqlite3VdbeAddOp1(v, OP_Rewind, pLevel->iTabCur);
99586 regRecord = sqlite3GetTempReg(pParse);
99587 sqlite3GenerateIndexKey(pParse, pIdx, pLevel->iTabCur, regRecord, 1);
99588 sqlite3VdbeAddOp2(v, OP_IdxInsert, pLevel->iIdxCur, regRecord);
99589 sqlite3VdbeChangeP5(v, OPFLAG_USESEEKRESULT);
99590 sqlite3VdbeAddOp2(v, OP_Next, pLevel->iTabCur, addrTop+1);
99591 sqlite3VdbeChangeP5(v, SQLITE_STMTSTATUS_AUTOINDEX);
99592 sqlite3VdbeJumpHere(v, addrTop);
99593 sqlite3ReleaseTempReg(pParse, regRecord);
99595 /* Jump here when skipping the initialization */
99596 sqlite3VdbeJumpHere(v, addrInit);
99598 #endif /* SQLITE_OMIT_AUTOMATIC_INDEX */
99600 #ifndef SQLITE_OMIT_VIRTUALTABLE
99602 ** Allocate and populate an sqlite3_index_info structure. It is the
99603 ** responsibility of the caller to eventually release the structure
99604 ** by passing the pointer returned by this function to sqlite3_free().
99606 static sqlite3_index_info *allocateIndexInfo(
99607 Parse *pParse,
99608 WhereClause *pWC,
99609 struct SrcList_item *pSrc,
99610 ExprList *pOrderBy
99612 int i, j;
99613 int nTerm;
99614 struct sqlite3_index_constraint *pIdxCons;
99615 struct sqlite3_index_orderby *pIdxOrderBy;
99616 struct sqlite3_index_constraint_usage *pUsage;
99617 WhereTerm *pTerm;
99618 int nOrderBy;
99619 sqlite3_index_info *pIdxInfo;
99621 WHERETRACE(("Recomputing index info for %s...\n", pSrc->pTab->zName));
99623 /* Count the number of possible WHERE clause constraints referring
99624 ** to this virtual table */
99625 for(i=nTerm=0, pTerm=pWC->a; i<pWC->nTerm; i++, pTerm++){
99626 if( pTerm->leftCursor != pSrc->iCursor ) continue;
99627 assert( (pTerm->eOperator&(pTerm->eOperator-1))==0 );
99628 testcase( pTerm->eOperator==WO_IN );
99629 testcase( pTerm->eOperator==WO_ISNULL );
99630 if( pTerm->eOperator & (WO_IN|WO_ISNULL) ) continue;
99631 nTerm++;
99634 /* If the ORDER BY clause contains only columns in the current
99635 ** virtual table then allocate space for the aOrderBy part of
99636 ** the sqlite3_index_info structure.
99638 nOrderBy = 0;
99639 if( pOrderBy ){
99640 for(i=0; i<pOrderBy->nExpr; i++){
99641 Expr *pExpr = pOrderBy->a[i].pExpr;
99642 if( pExpr->op!=TK_COLUMN || pExpr->iTable!=pSrc->iCursor ) break;
99644 if( i==pOrderBy->nExpr ){
99645 nOrderBy = pOrderBy->nExpr;
99649 /* Allocate the sqlite3_index_info structure
99651 pIdxInfo = sqlite3DbMallocZero(pParse->db, sizeof(*pIdxInfo)
99652 + (sizeof(*pIdxCons) + sizeof(*pUsage))*nTerm
99653 + sizeof(*pIdxOrderBy)*nOrderBy );
99654 if( pIdxInfo==0 ){
99655 sqlite3ErrorMsg(pParse, "out of memory");
99656 /* (double)0 In case of SQLITE_OMIT_FLOATING_POINT... */
99657 return 0;
99660 /* Initialize the structure. The sqlite3_index_info structure contains
99661 ** many fields that are declared "const" to prevent xBestIndex from
99662 ** changing them. We have to do some funky casting in order to
99663 ** initialize those fields.
99665 pIdxCons = (struct sqlite3_index_constraint*)&pIdxInfo[1];
99666 pIdxOrderBy = (struct sqlite3_index_orderby*)&pIdxCons[nTerm];
99667 pUsage = (struct sqlite3_index_constraint_usage*)&pIdxOrderBy[nOrderBy];
99668 *(int*)&pIdxInfo->nConstraint = nTerm;
99669 *(int*)&pIdxInfo->nOrderBy = nOrderBy;
99670 *(struct sqlite3_index_constraint**)&pIdxInfo->aConstraint = pIdxCons;
99671 *(struct sqlite3_index_orderby**)&pIdxInfo->aOrderBy = pIdxOrderBy;
99672 *(struct sqlite3_index_constraint_usage**)&pIdxInfo->aConstraintUsage =
99673 pUsage;
99675 for(i=j=0, pTerm=pWC->a; i<pWC->nTerm; i++, pTerm++){
99676 if( pTerm->leftCursor != pSrc->iCursor ) continue;
99677 assert( (pTerm->eOperator&(pTerm->eOperator-1))==0 );
99678 testcase( pTerm->eOperator==WO_IN );
99679 testcase( pTerm->eOperator==WO_ISNULL );
99680 if( pTerm->eOperator & (WO_IN|WO_ISNULL) ) continue;
99681 pIdxCons[j].iColumn = pTerm->u.leftColumn;
99682 pIdxCons[j].iTermOffset = i;
99683 pIdxCons[j].op = (u8)pTerm->eOperator;
99684 /* The direct assignment in the previous line is possible only because
99685 ** the WO_ and SQLITE_INDEX_CONSTRAINT_ codes are identical. The
99686 ** following asserts verify this fact. */
99687 assert( WO_EQ==SQLITE_INDEX_CONSTRAINT_EQ );
99688 assert( WO_LT==SQLITE_INDEX_CONSTRAINT_LT );
99689 assert( WO_LE==SQLITE_INDEX_CONSTRAINT_LE );
99690 assert( WO_GT==SQLITE_INDEX_CONSTRAINT_GT );
99691 assert( WO_GE==SQLITE_INDEX_CONSTRAINT_GE );
99692 assert( WO_MATCH==SQLITE_INDEX_CONSTRAINT_MATCH );
99693 assert( pTerm->eOperator & (WO_EQ|WO_LT|WO_LE|WO_GT|WO_GE|WO_MATCH) );
99694 j++;
99696 for(i=0; i<nOrderBy; i++){
99697 Expr *pExpr = pOrderBy->a[i].pExpr;
99698 pIdxOrderBy[i].iColumn = pExpr->iColumn;
99699 pIdxOrderBy[i].desc = pOrderBy->a[i].sortOrder;
99702 return pIdxInfo;
99706 ** The table object reference passed as the second argument to this function
99707 ** must represent a virtual table. This function invokes the xBestIndex()
99708 ** method of the virtual table with the sqlite3_index_info pointer passed
99709 ** as the argument.
99711 ** If an error occurs, pParse is populated with an error message and a
99712 ** non-zero value is returned. Otherwise, 0 is returned and the output
99713 ** part of the sqlite3_index_info structure is left populated.
99715 ** Whether or not an error is returned, it is the responsibility of the
99716 ** caller to eventually free p->idxStr if p->needToFreeIdxStr indicates
99717 ** that this is required.
99719 static int vtabBestIndex(Parse *pParse, Table *pTab, sqlite3_index_info *p){
99720 sqlite3_vtab *pVtab = sqlite3GetVTable(pParse->db, pTab)->pVtab;
99721 int i;
99722 int rc;
99724 WHERETRACE(("xBestIndex for %s\n", pTab->zName));
99725 TRACE_IDX_INPUTS(p);
99726 rc = pVtab->pModule->xBestIndex(pVtab, p);
99727 TRACE_IDX_OUTPUTS(p);
99729 if( rc!=SQLITE_OK ){
99730 if( rc==SQLITE_NOMEM ){
99731 pParse->db->mallocFailed = 1;
99732 }else if( !pVtab->zErrMsg ){
99733 sqlite3ErrorMsg(pParse, "%s", sqlite3ErrStr(rc));
99734 }else{
99735 sqlite3ErrorMsg(pParse, "%s", pVtab->zErrMsg);
99738 sqlite3_free(pVtab->zErrMsg);
99739 pVtab->zErrMsg = 0;
99741 for(i=0; i<p->nConstraint; i++){
99742 if( !p->aConstraint[i].usable && p->aConstraintUsage[i].argvIndex>0 ){
99743 sqlite3ErrorMsg(pParse,
99744 "table %s: xBestIndex returned an invalid plan", pTab->zName);
99748 return pParse->nErr;
99753 ** Compute the best index for a virtual table.
99755 ** The best index is computed by the xBestIndex method of the virtual
99756 ** table module. This routine is really just a wrapper that sets up
99757 ** the sqlite3_index_info structure that is used to communicate with
99758 ** xBestIndex.
99760 ** In a join, this routine might be called multiple times for the
99761 ** same virtual table. The sqlite3_index_info structure is created
99762 ** and initialized on the first invocation and reused on all subsequent
99763 ** invocations. The sqlite3_index_info structure is also used when
99764 ** code is generated to access the virtual table. The whereInfoDelete()
99765 ** routine takes care of freeing the sqlite3_index_info structure after
99766 ** everybody has finished with it.
99768 static void bestVirtualIndex(
99769 Parse *pParse, /* The parsing context */
99770 WhereClause *pWC, /* The WHERE clause */
99771 struct SrcList_item *pSrc, /* The FROM clause term to search */
99772 Bitmask notReady, /* Mask of cursors not available for index */
99773 Bitmask notValid, /* Cursors not valid for any purpose */
99774 ExprList *pOrderBy, /* The order by clause */
99775 WhereCost *pCost, /* Lowest cost query plan */
99776 sqlite3_index_info **ppIdxInfo /* Index information passed to xBestIndex */
99778 Table *pTab = pSrc->pTab;
99779 sqlite3_index_info *pIdxInfo;
99780 struct sqlite3_index_constraint *pIdxCons;
99781 struct sqlite3_index_constraint_usage *pUsage;
99782 WhereTerm *pTerm;
99783 int i, j;
99784 int nOrderBy;
99785 double rCost;
99787 /* Make sure wsFlags is initialized to some sane value. Otherwise, if the
99788 ** malloc in allocateIndexInfo() fails and this function returns leaving
99789 ** wsFlags in an uninitialized state, the caller may behave unpredictably.
99791 memset(pCost, 0, sizeof(*pCost));
99792 pCost->plan.wsFlags = WHERE_VIRTUALTABLE;
99794 /* If the sqlite3_index_info structure has not been previously
99795 ** allocated and initialized, then allocate and initialize it now.
99797 pIdxInfo = *ppIdxInfo;
99798 if( pIdxInfo==0 ){
99799 *ppIdxInfo = pIdxInfo = allocateIndexInfo(pParse, pWC, pSrc, pOrderBy);
99801 if( pIdxInfo==0 ){
99802 return;
99805 /* At this point, the sqlite3_index_info structure that pIdxInfo points
99806 ** to will have been initialized, either during the current invocation or
99807 ** during some prior invocation. Now we just have to customize the
99808 ** details of pIdxInfo for the current invocation and pass it to
99809 ** xBestIndex.
99812 /* The module name must be defined. Also, by this point there must
99813 ** be a pointer to an sqlite3_vtab structure. Otherwise
99814 ** sqlite3ViewGetColumnNames() would have picked up the error.
99816 assert( pTab->azModuleArg && pTab->azModuleArg[0] );
99817 assert( sqlite3GetVTable(pParse->db, pTab) );
99819 /* Set the aConstraint[].usable fields and initialize all
99820 ** output variables to zero.
99822 ** aConstraint[].usable is true for constraints where the right-hand
99823 ** side contains only references to tables to the left of the current
99824 ** table. In other words, if the constraint is of the form:
99826 ** column = expr
99828 ** and we are evaluating a join, then the constraint on column is
99829 ** only valid if all tables referenced in expr occur to the left
99830 ** of the table containing column.
99832 ** The aConstraints[] array contains entries for all constraints
99833 ** on the current table. That way we only have to compute it once
99834 ** even though we might try to pick the best index multiple times.
99835 ** For each attempt at picking an index, the order of tables in the
99836 ** join might be different so we have to recompute the usable flag
99837 ** each time.
99839 pIdxCons = *(struct sqlite3_index_constraint**)&pIdxInfo->aConstraint;
99840 pUsage = pIdxInfo->aConstraintUsage;
99841 for(i=0; i<pIdxInfo->nConstraint; i++, pIdxCons++){
99842 j = pIdxCons->iTermOffset;
99843 pTerm = &pWC->a[j];
99844 pIdxCons->usable = (pTerm->prereqRight&notReady) ? 0 : 1;
99846 memset(pUsage, 0, sizeof(pUsage[0])*pIdxInfo->nConstraint);
99847 if( pIdxInfo->needToFreeIdxStr ){
99848 sqlite3_free(pIdxInfo->idxStr);
99850 pIdxInfo->idxStr = 0;
99851 pIdxInfo->idxNum = 0;
99852 pIdxInfo->needToFreeIdxStr = 0;
99853 pIdxInfo->orderByConsumed = 0;
99854 /* ((double)2) In case of SQLITE_OMIT_FLOATING_POINT... */
99855 pIdxInfo->estimatedCost = SQLITE_BIG_DBL / ((double)2);
99856 nOrderBy = pIdxInfo->nOrderBy;
99857 if( !pOrderBy ){
99858 pIdxInfo->nOrderBy = 0;
99861 if( vtabBestIndex(pParse, pTab, pIdxInfo) ){
99862 return;
99865 pIdxCons = *(struct sqlite3_index_constraint**)&pIdxInfo->aConstraint;
99866 for(i=0; i<pIdxInfo->nConstraint; i++){
99867 if( pUsage[i].argvIndex>0 ){
99868 pCost->used |= pWC->a[pIdxCons[i].iTermOffset].prereqRight;
99872 /* If there is an ORDER BY clause, and the selected virtual table index
99873 ** does not satisfy it, increase the cost of the scan accordingly. This
99874 ** matches the processing for non-virtual tables in bestBtreeIndex().
99876 rCost = pIdxInfo->estimatedCost;
99877 if( pOrderBy && pIdxInfo->orderByConsumed==0 ){
99878 rCost += estLog(rCost)*rCost;
99881 /* The cost is not allowed to be larger than SQLITE_BIG_DBL (the
99882 ** inital value of lowestCost in this loop. If it is, then the
99883 ** (cost<lowestCost) test below will never be true.
99885 ** Use "(double)2" instead of "2.0" in case OMIT_FLOATING_POINT
99886 ** is defined.
99888 if( (SQLITE_BIG_DBL/((double)2))<rCost ){
99889 pCost->rCost = (SQLITE_BIG_DBL/((double)2));
99890 }else{
99891 pCost->rCost = rCost;
99893 pCost->plan.u.pVtabIdx = pIdxInfo;
99894 if( pIdxInfo->orderByConsumed ){
99895 pCost->plan.wsFlags |= WHERE_ORDERBY;
99897 pCost->plan.nEq = 0;
99898 pIdxInfo->nOrderBy = nOrderBy;
99900 /* Try to find a more efficient access pattern by using multiple indexes
99901 ** to optimize an OR expression within the WHERE clause.
99903 bestOrClauseIndex(pParse, pWC, pSrc, notReady, notValid, pOrderBy, pCost);
99905 #endif /* SQLITE_OMIT_VIRTUALTABLE */
99908 ** Argument pIdx is a pointer to an index structure that has an array of
99909 ** SQLITE_INDEX_SAMPLES evenly spaced samples of the first indexed column
99910 ** stored in Index.aSample. These samples divide the domain of values stored
99911 ** the index into (SQLITE_INDEX_SAMPLES+1) regions.
99912 ** Region 0 contains all values less than the first sample value. Region
99913 ** 1 contains values between the first and second samples. Region 2 contains
99914 ** values between samples 2 and 3. And so on. Region SQLITE_INDEX_SAMPLES
99915 ** contains values larger than the last sample.
99917 ** If the index contains many duplicates of a single value, then it is
99918 ** possible that two or more adjacent samples can hold the same value.
99919 ** When that is the case, the smallest possible region code is returned
99920 ** when roundUp is false and the largest possible region code is returned
99921 ** when roundUp is true.
99923 ** If successful, this function determines which of the regions value
99924 ** pVal lies in, sets *piRegion to the region index (a value between 0
99925 ** and SQLITE_INDEX_SAMPLES+1, inclusive) and returns SQLITE_OK.
99926 ** Or, if an OOM occurs while converting text values between encodings,
99927 ** SQLITE_NOMEM is returned and *piRegion is undefined.
99929 #ifdef SQLITE_ENABLE_STAT2
99930 static int whereRangeRegion(
99931 Parse *pParse, /* Database connection */
99932 Index *pIdx, /* Index to consider domain of */
99933 sqlite3_value *pVal, /* Value to consider */
99934 int roundUp, /* Return largest valid region if true */
99935 int *piRegion /* OUT: Region of domain in which value lies */
99937 assert( roundUp==0 || roundUp==1 );
99938 if( ALWAYS(pVal) ){
99939 IndexSample *aSample = pIdx->aSample;
99940 int i = 0;
99941 int eType = sqlite3_value_type(pVal);
99943 if( eType==SQLITE_INTEGER || eType==SQLITE_FLOAT ){
99944 double r = sqlite3_value_double(pVal);
99945 for(i=0; i<SQLITE_INDEX_SAMPLES; i++){
99946 if( aSample[i].eType==SQLITE_NULL ) continue;
99947 if( aSample[i].eType>=SQLITE_TEXT ) break;
99948 if( roundUp ){
99949 if( aSample[i].u.r>r ) break;
99950 }else{
99951 if( aSample[i].u.r>=r ) break;
99954 }else if( eType==SQLITE_NULL ){
99955 i = 0;
99956 if( roundUp ){
99957 while( i<SQLITE_INDEX_SAMPLES && aSample[i].eType==SQLITE_NULL ) i++;
99959 }else{
99960 sqlite3 *db = pParse->db;
99961 CollSeq *pColl;
99962 const u8 *z;
99963 int n;
99965 /* pVal comes from sqlite3ValueFromExpr() so the type cannot be NULL */
99966 assert( eType==SQLITE_TEXT || eType==SQLITE_BLOB );
99968 if( eType==SQLITE_BLOB ){
99969 z = (const u8 *)sqlite3_value_blob(pVal);
99970 pColl = db->pDfltColl;
99971 assert( pColl->enc==SQLITE_UTF8 );
99972 }else{
99973 pColl = sqlite3GetCollSeq(db, SQLITE_UTF8, 0, *pIdx->azColl);
99974 if( pColl==0 ){
99975 sqlite3ErrorMsg(pParse, "no such collation sequence: %s",
99976 *pIdx->azColl);
99977 return SQLITE_ERROR;
99979 z = (const u8 *)sqlite3ValueText(pVal, pColl->enc);
99980 if( !z ){
99981 return SQLITE_NOMEM;
99983 assert( z && pColl && pColl->xCmp );
99985 n = sqlite3ValueBytes(pVal, pColl->enc);
99987 for(i=0; i<SQLITE_INDEX_SAMPLES; i++){
99988 int c;
99989 int eSampletype = aSample[i].eType;
99990 if( eSampletype==SQLITE_NULL || eSampletype<eType ) continue;
99991 if( (eSampletype!=eType) ) break;
99992 #ifndef SQLITE_OMIT_UTF16
99993 if( pColl->enc!=SQLITE_UTF8 ){
99994 int nSample;
99995 char *zSample = sqlite3Utf8to16(
99996 db, pColl->enc, aSample[i].u.z, aSample[i].nByte, &nSample
99998 if( !zSample ){
99999 assert( db->mallocFailed );
100000 return SQLITE_NOMEM;
100002 c = pColl->xCmp(pColl->pUser, nSample, zSample, n, z);
100003 sqlite3DbFree(db, zSample);
100004 }else
100005 #endif
100007 c = pColl->xCmp(pColl->pUser, aSample[i].nByte, aSample[i].u.z, n, z);
100009 if( c-roundUp>=0 ) break;
100013 assert( i>=0 && i<=SQLITE_INDEX_SAMPLES );
100014 *piRegion = i;
100016 return SQLITE_OK;
100018 #endif /* #ifdef SQLITE_ENABLE_STAT2 */
100021 ** If expression pExpr represents a literal value, set *pp to point to
100022 ** an sqlite3_value structure containing the same value, with affinity
100023 ** aff applied to it, before returning. It is the responsibility of the
100024 ** caller to eventually release this structure by passing it to
100025 ** sqlite3ValueFree().
100027 ** If the current parse is a recompile (sqlite3Reprepare()) and pExpr
100028 ** is an SQL variable that currently has a non-NULL value bound to it,
100029 ** create an sqlite3_value structure containing this value, again with
100030 ** affinity aff applied to it, instead.
100032 ** If neither of the above apply, set *pp to NULL.
100034 ** If an error occurs, return an error code. Otherwise, SQLITE_OK.
100036 #ifdef SQLITE_ENABLE_STAT2
100037 static int valueFromExpr(
100038 Parse *pParse,
100039 Expr *pExpr,
100040 u8 aff,
100041 sqlite3_value **pp
100043 if( pExpr->op==TK_VARIABLE
100044 || (pExpr->op==TK_REGISTER && pExpr->op2==TK_VARIABLE)
100046 int iVar = pExpr->iColumn;
100047 sqlite3VdbeSetVarmask(pParse->pVdbe, iVar); /* IMP: R-23257-02778 */
100048 *pp = sqlite3VdbeGetValue(pParse->pReprepare, iVar, aff);
100049 return SQLITE_OK;
100051 return sqlite3ValueFromExpr(pParse->db, pExpr, SQLITE_UTF8, aff, pp);
100053 #endif
100056 ** This function is used to estimate the number of rows that will be visited
100057 ** by scanning an index for a range of values. The range may have an upper
100058 ** bound, a lower bound, or both. The WHERE clause terms that set the upper
100059 ** and lower bounds are represented by pLower and pUpper respectively. For
100060 ** example, assuming that index p is on t1(a):
100062 ** ... FROM t1 WHERE a > ? AND a < ? ...
100063 ** |_____| |_____|
100064 ** | |
100065 ** pLower pUpper
100067 ** If either of the upper or lower bound is not present, then NULL is passed in
100068 ** place of the corresponding WhereTerm.
100070 ** The nEq parameter is passed the index of the index column subject to the
100071 ** range constraint. Or, equivalently, the number of equality constraints
100072 ** optimized by the proposed index scan. For example, assuming index p is
100073 ** on t1(a, b), and the SQL query is:
100075 ** ... FROM t1 WHERE a = ? AND b > ? AND b < ? ...
100077 ** then nEq should be passed the value 1 (as the range restricted column,
100078 ** b, is the second left-most column of the index). Or, if the query is:
100080 ** ... FROM t1 WHERE a > ? AND a < ? ...
100082 ** then nEq should be passed 0.
100084 ** The returned value is an integer between 1 and 100, inclusive. A return
100085 ** value of 1 indicates that the proposed range scan is expected to visit
100086 ** approximately 1/100th (1%) of the rows selected by the nEq equality
100087 ** constraints (if any). A return value of 100 indicates that it is expected
100088 ** that the range scan will visit every row (100%) selected by the equality
100089 ** constraints.
100091 ** In the absence of sqlite_stat2 ANALYZE data, each range inequality
100092 ** reduces the search space by 3/4ths. Hence a single constraint (x>?)
100093 ** results in a return of 25 and a range constraint (x>? AND x<?) results
100094 ** in a return of 6.
100096 static int whereRangeScanEst(
100097 Parse *pParse, /* Parsing & code generating context */
100098 Index *p, /* The index containing the range-compared column; "x" */
100099 int nEq, /* index into p->aCol[] of the range-compared column */
100100 WhereTerm *pLower, /* Lower bound on the range. ex: "x>123" Might be NULL */
100101 WhereTerm *pUpper, /* Upper bound on the range. ex: "x<455" Might be NULL */
100102 int *piEst /* OUT: Return value */
100104 int rc = SQLITE_OK;
100106 #ifdef SQLITE_ENABLE_STAT2
100108 if( nEq==0 && p->aSample ){
100109 sqlite3_value *pLowerVal = 0;
100110 sqlite3_value *pUpperVal = 0;
100111 int iEst;
100112 int iLower = 0;
100113 int iUpper = SQLITE_INDEX_SAMPLES;
100114 int roundUpUpper = 0;
100115 int roundUpLower = 0;
100116 u8 aff = p->pTable->aCol[p->aiColumn[0]].affinity;
100118 if( pLower ){
100119 Expr *pExpr = pLower->pExpr->pRight;
100120 rc = valueFromExpr(pParse, pExpr, aff, &pLowerVal);
100121 assert( pLower->eOperator==WO_GT || pLower->eOperator==WO_GE );
100122 roundUpLower = (pLower->eOperator==WO_GT) ?1:0;
100124 if( rc==SQLITE_OK && pUpper ){
100125 Expr *pExpr = pUpper->pExpr->pRight;
100126 rc = valueFromExpr(pParse, pExpr, aff, &pUpperVal);
100127 assert( pUpper->eOperator==WO_LT || pUpper->eOperator==WO_LE );
100128 roundUpUpper = (pUpper->eOperator==WO_LE) ?1:0;
100131 if( rc!=SQLITE_OK || (pLowerVal==0 && pUpperVal==0) ){
100132 sqlite3ValueFree(pLowerVal);
100133 sqlite3ValueFree(pUpperVal);
100134 goto range_est_fallback;
100135 }else if( pLowerVal==0 ){
100136 rc = whereRangeRegion(pParse, p, pUpperVal, roundUpUpper, &iUpper);
100137 if( pLower ) iLower = iUpper/2;
100138 }else if( pUpperVal==0 ){
100139 rc = whereRangeRegion(pParse, p, pLowerVal, roundUpLower, &iLower);
100140 if( pUpper ) iUpper = (iLower + SQLITE_INDEX_SAMPLES + 1)/2;
100141 }else{
100142 rc = whereRangeRegion(pParse, p, pUpperVal, roundUpUpper, &iUpper);
100143 if( rc==SQLITE_OK ){
100144 rc = whereRangeRegion(pParse, p, pLowerVal, roundUpLower, &iLower);
100147 WHERETRACE(("range scan regions: %d..%d\n", iLower, iUpper));
100149 iEst = iUpper - iLower;
100150 testcase( iEst==SQLITE_INDEX_SAMPLES );
100151 assert( iEst<=SQLITE_INDEX_SAMPLES );
100152 if( iEst<1 ){
100153 *piEst = 50/SQLITE_INDEX_SAMPLES;
100154 }else{
100155 *piEst = (iEst*100)/SQLITE_INDEX_SAMPLES;
100157 sqlite3ValueFree(pLowerVal);
100158 sqlite3ValueFree(pUpperVal);
100159 return rc;
100161 range_est_fallback:
100162 #else
100163 UNUSED_PARAMETER(pParse);
100164 UNUSED_PARAMETER(p);
100165 UNUSED_PARAMETER(nEq);
100166 #endif
100167 assert( pLower || pUpper );
100168 *piEst = 100;
100169 if( pLower && (pLower->wtFlags & TERM_VNULL)==0 ) *piEst /= 4;
100170 if( pUpper ) *piEst /= 4;
100171 return rc;
100174 #ifdef SQLITE_ENABLE_STAT2
100176 ** Estimate the number of rows that will be returned based on
100177 ** an equality constraint x=VALUE and where that VALUE occurs in
100178 ** the histogram data. This only works when x is the left-most
100179 ** column of an index and sqlite_stat2 histogram data is available
100180 ** for that index. When pExpr==NULL that means the constraint is
100181 ** "x IS NULL" instead of "x=VALUE".
100183 ** Write the estimated row count into *pnRow and return SQLITE_OK.
100184 ** If unable to make an estimate, leave *pnRow unchanged and return
100185 ** non-zero.
100187 ** This routine can fail if it is unable to load a collating sequence
100188 ** required for string comparison, or if unable to allocate memory
100189 ** for a UTF conversion required for comparison. The error is stored
100190 ** in the pParse structure.
100192 static int whereEqualScanEst(
100193 Parse *pParse, /* Parsing & code generating context */
100194 Index *p, /* The index whose left-most column is pTerm */
100195 Expr *pExpr, /* Expression for VALUE in the x=VALUE constraint */
100196 double *pnRow /* Write the revised row estimate here */
100198 sqlite3_value *pRhs = 0; /* VALUE on right-hand side of pTerm */
100199 int iLower, iUpper; /* Range of histogram regions containing pRhs */
100200 u8 aff; /* Column affinity */
100201 int rc; /* Subfunction return code */
100202 double nRowEst; /* New estimate of the number of rows */
100204 assert( p->aSample!=0 );
100205 aff = p->pTable->aCol[p->aiColumn[0]].affinity;
100206 if( pExpr ){
100207 rc = valueFromExpr(pParse, pExpr, aff, &pRhs);
100208 if( rc ) goto whereEqualScanEst_cancel;
100209 }else{
100210 pRhs = sqlite3ValueNew(pParse->db);
100212 if( pRhs==0 ) return SQLITE_NOTFOUND;
100213 rc = whereRangeRegion(pParse, p, pRhs, 0, &iLower);
100214 if( rc ) goto whereEqualScanEst_cancel;
100215 rc = whereRangeRegion(pParse, p, pRhs, 1, &iUpper);
100216 if( rc ) goto whereEqualScanEst_cancel;
100217 WHERETRACE(("equality scan regions: %d..%d\n", iLower, iUpper));
100218 if( iLower>=iUpper ){
100219 nRowEst = p->aiRowEst[0]/(SQLITE_INDEX_SAMPLES*2);
100220 if( nRowEst<*pnRow ) *pnRow = nRowEst;
100221 }else{
100222 nRowEst = (iUpper-iLower)*p->aiRowEst[0]/SQLITE_INDEX_SAMPLES;
100223 *pnRow = nRowEst;
100226 whereEqualScanEst_cancel:
100227 sqlite3ValueFree(pRhs);
100228 return rc;
100230 #endif /* defined(SQLITE_ENABLE_STAT2) */
100232 #ifdef SQLITE_ENABLE_STAT2
100234 ** Estimate the number of rows that will be returned based on
100235 ** an IN constraint where the right-hand side of the IN operator
100236 ** is a list of values. Example:
100238 ** WHERE x IN (1,2,3,4)
100240 ** Write the estimated row count into *pnRow and return SQLITE_OK.
100241 ** If unable to make an estimate, leave *pnRow unchanged and return
100242 ** non-zero.
100244 ** This routine can fail if it is unable to load a collating sequence
100245 ** required for string comparison, or if unable to allocate memory
100246 ** for a UTF conversion required for comparison. The error is stored
100247 ** in the pParse structure.
100249 static int whereInScanEst(
100250 Parse *pParse, /* Parsing & code generating context */
100251 Index *p, /* The index whose left-most column is pTerm */
100252 ExprList *pList, /* The value list on the RHS of "x IN (v1,v2,v3,...)" */
100253 double *pnRow /* Write the revised row estimate here */
100255 sqlite3_value *pVal = 0; /* One value from list */
100256 int iLower, iUpper; /* Range of histogram regions containing pRhs */
100257 u8 aff; /* Column affinity */
100258 int rc = SQLITE_OK; /* Subfunction return code */
100259 double nRowEst; /* New estimate of the number of rows */
100260 int nSpan = 0; /* Number of histogram regions spanned */
100261 int nSingle = 0; /* Histogram regions hit by a single value */
100262 int nNotFound = 0; /* Count of values that are not constants */
100263 int i; /* Loop counter */
100264 u8 aSpan[SQLITE_INDEX_SAMPLES+1]; /* Histogram regions that are spanned */
100265 u8 aSingle[SQLITE_INDEX_SAMPLES+1]; /* Histogram regions hit once */
100267 assert( p->aSample!=0 );
100268 aff = p->pTable->aCol[p->aiColumn[0]].affinity;
100269 memset(aSpan, 0, sizeof(aSpan));
100270 memset(aSingle, 0, sizeof(aSingle));
100271 for(i=0; i<pList->nExpr; i++){
100272 sqlite3ValueFree(pVal);
100273 rc = valueFromExpr(pParse, pList->a[i].pExpr, aff, &pVal);
100274 if( rc ) break;
100275 if( pVal==0 || sqlite3_value_type(pVal)==SQLITE_NULL ){
100276 nNotFound++;
100277 continue;
100279 rc = whereRangeRegion(pParse, p, pVal, 0, &iLower);
100280 if( rc ) break;
100281 rc = whereRangeRegion(pParse, p, pVal, 1, &iUpper);
100282 if( rc ) break;
100283 if( iLower>=iUpper ){
100284 aSingle[iLower] = 1;
100285 }else{
100286 assert( iLower>=0 && iUpper<=SQLITE_INDEX_SAMPLES );
100287 while( iLower<iUpper ) aSpan[iLower++] = 1;
100290 if( rc==SQLITE_OK ){
100291 for(i=nSpan=0; i<=SQLITE_INDEX_SAMPLES; i++){
100292 if( aSpan[i] ){
100293 nSpan++;
100294 }else if( aSingle[i] ){
100295 nSingle++;
100298 nRowEst = (nSpan*2+nSingle)*p->aiRowEst[0]/(2*SQLITE_INDEX_SAMPLES)
100299 + nNotFound*p->aiRowEst[1];
100300 if( nRowEst > p->aiRowEst[0] ) nRowEst = p->aiRowEst[0];
100301 *pnRow = nRowEst;
100302 WHERETRACE(("IN row estimate: nSpan=%d, nSingle=%d, nNotFound=%d, est=%g\n",
100303 nSpan, nSingle, nNotFound, nRowEst));
100305 sqlite3ValueFree(pVal);
100306 return rc;
100308 #endif /* defined(SQLITE_ENABLE_STAT2) */
100312 ** Find the best query plan for accessing a particular table. Write the
100313 ** best query plan and its cost into the WhereCost object supplied as the
100314 ** last parameter.
100316 ** The lowest cost plan wins. The cost is an estimate of the amount of
100317 ** CPU and disk I/O needed to process the requested result.
100318 ** Factors that influence cost include:
100320 ** * The estimated number of rows that will be retrieved. (The
100321 ** fewer the better.)
100323 ** * Whether or not sorting must occur.
100325 ** * Whether or not there must be separate lookups in the
100326 ** index and in the main table.
100328 ** If there was an INDEXED BY clause (pSrc->pIndex) attached to the table in
100329 ** the SQL statement, then this function only considers plans using the
100330 ** named index. If no such plan is found, then the returned cost is
100331 ** SQLITE_BIG_DBL. If a plan is found that uses the named index,
100332 ** then the cost is calculated in the usual way.
100334 ** If a NOT INDEXED clause (pSrc->notIndexed!=0) was attached to the table
100335 ** in the SELECT statement, then no indexes are considered. However, the
100336 ** selected plan may still take advantage of the built-in rowid primary key
100337 ** index.
100339 static void bestBtreeIndex(
100340 Parse *pParse, /* The parsing context */
100341 WhereClause *pWC, /* The WHERE clause */
100342 struct SrcList_item *pSrc, /* The FROM clause term to search */
100343 Bitmask notReady, /* Mask of cursors not available for indexing */
100344 Bitmask notValid, /* Cursors not available for any purpose */
100345 ExprList *pOrderBy, /* The ORDER BY clause */
100346 WhereCost *pCost /* Lowest cost query plan */
100348 int iCur = pSrc->iCursor; /* The cursor of the table to be accessed */
100349 Index *pProbe; /* An index we are evaluating */
100350 Index *pIdx; /* Copy of pProbe, or zero for IPK index */
100351 int eqTermMask; /* Current mask of valid equality operators */
100352 int idxEqTermMask; /* Index mask of valid equality operators */
100353 Index sPk; /* A fake index object for the primary key */
100354 unsigned int aiRowEstPk[2]; /* The aiRowEst[] value for the sPk index */
100355 int aiColumnPk = -1; /* The aColumn[] value for the sPk index */
100356 int wsFlagMask; /* Allowed flags in pCost->plan.wsFlag */
100358 /* Initialize the cost to a worst-case value */
100359 memset(pCost, 0, sizeof(*pCost));
100360 pCost->rCost = SQLITE_BIG_DBL;
100362 /* If the pSrc table is the right table of a LEFT JOIN then we may not
100363 ** use an index to satisfy IS NULL constraints on that table. This is
100364 ** because columns might end up being NULL if the table does not match -
100365 ** a circumstance which the index cannot help us discover. Ticket #2177.
100367 if( pSrc->jointype & JT_LEFT ){
100368 idxEqTermMask = WO_EQ|WO_IN;
100369 }else{
100370 idxEqTermMask = WO_EQ|WO_IN|WO_ISNULL;
100373 if( pSrc->pIndex ){
100374 /* An INDEXED BY clause specifies a particular index to use */
100375 pIdx = pProbe = pSrc->pIndex;
100376 wsFlagMask = ~(WHERE_ROWID_EQ|WHERE_ROWID_RANGE);
100377 eqTermMask = idxEqTermMask;
100378 }else{
100379 /* There is no INDEXED BY clause. Create a fake Index object in local
100380 ** variable sPk to represent the rowid primary key index. Make this
100381 ** fake index the first in a chain of Index objects with all of the real
100382 ** indices to follow */
100383 Index *pFirst; /* First of real indices on the table */
100384 memset(&sPk, 0, sizeof(Index));
100385 sPk.nColumn = 1;
100386 sPk.aiColumn = &aiColumnPk;
100387 sPk.aiRowEst = aiRowEstPk;
100388 sPk.onError = OE_Replace;
100389 sPk.pTable = pSrc->pTab;
100390 aiRowEstPk[0] = pSrc->pTab->nRowEst;
100391 aiRowEstPk[1] = 1;
100392 pFirst = pSrc->pTab->pIndex;
100393 if( pSrc->notIndexed==0 ){
100394 /* The real indices of the table are only considered if the
100395 ** NOT INDEXED qualifier is omitted from the FROM clause */
100396 sPk.pNext = pFirst;
100398 pProbe = &sPk;
100399 wsFlagMask = ~(
100400 WHERE_COLUMN_IN|WHERE_COLUMN_EQ|WHERE_COLUMN_NULL|WHERE_COLUMN_RANGE
100402 eqTermMask = WO_EQ|WO_IN;
100403 pIdx = 0;
100406 /* Loop over all indices looking for the best one to use
100408 for(; pProbe; pIdx=pProbe=pProbe->pNext){
100409 const unsigned int * const aiRowEst = pProbe->aiRowEst;
100410 double cost; /* Cost of using pProbe */
100411 double nRow; /* Estimated number of rows in result set */
100412 double log10N; /* base-10 logarithm of nRow (inexact) */
100413 int rev; /* True to scan in reverse order */
100414 int wsFlags = 0;
100415 Bitmask used = 0;
100417 /* The following variables are populated based on the properties of
100418 ** index being evaluated. They are then used to determine the expected
100419 ** cost and number of rows returned.
100421 ** nEq:
100422 ** Number of equality terms that can be implemented using the index.
100423 ** In other words, the number of initial fields in the index that
100424 ** are used in == or IN or NOT NULL constraints of the WHERE clause.
100426 ** nInMul:
100427 ** The "in-multiplier". This is an estimate of how many seek operations
100428 ** SQLite must perform on the index in question. For example, if the
100429 ** WHERE clause is:
100431 ** WHERE a IN (1, 2, 3) AND b IN (4, 5, 6)
100433 ** SQLite must perform 9 lookups on an index on (a, b), so nInMul is
100434 ** set to 9. Given the same schema and either of the following WHERE
100435 ** clauses:
100437 ** WHERE a = 1
100438 ** WHERE a >= 2
100440 ** nInMul is set to 1.
100442 ** If there exists a WHERE term of the form "x IN (SELECT ...)", then
100443 ** the sub-select is assumed to return 25 rows for the purposes of
100444 ** determining nInMul.
100446 ** bInEst:
100447 ** Set to true if there was at least one "x IN (SELECT ...)" term used
100448 ** in determining the value of nInMul. Note that the RHS of the
100449 ** IN operator must be a SELECT, not a value list, for this variable
100450 ** to be true.
100452 ** estBound:
100453 ** An estimate on the amount of the table that must be searched. A
100454 ** value of 100 means the entire table is searched. Range constraints
100455 ** might reduce this to a value less than 100 to indicate that only
100456 ** a fraction of the table needs searching. In the absence of
100457 ** sqlite_stat2 ANALYZE data, a single inequality reduces the search
100458 ** space to 1/4rd its original size. So an x>? constraint reduces
100459 ** estBound to 25. Two constraints (x>? AND x<?) reduce estBound to 6.
100461 ** bSort:
100462 ** Boolean. True if there is an ORDER BY clause that will require an
100463 ** external sort (i.e. scanning the index being evaluated will not
100464 ** correctly order records).
100466 ** bLookup:
100467 ** Boolean. True if a table lookup is required for each index entry
100468 ** visited. In other words, true if this is not a covering index.
100469 ** This is always false for the rowid primary key index of a table.
100470 ** For other indexes, it is true unless all the columns of the table
100471 ** used by the SELECT statement are present in the index (such an
100472 ** index is sometimes described as a covering index).
100473 ** For example, given the index on (a, b), the second of the following
100474 ** two queries requires table b-tree lookups in order to find the value
100475 ** of column c, but the first does not because columns a and b are
100476 ** both available in the index.
100478 ** SELECT a, b FROM tbl WHERE a = 1;
100479 ** SELECT a, b, c FROM tbl WHERE a = 1;
100481 int nEq; /* Number of == or IN terms matching index */
100482 int bInEst = 0; /* True if "x IN (SELECT...)" seen */
100483 int nInMul = 1; /* Number of distinct equalities to lookup */
100484 int estBound = 100; /* Estimated reduction in search space */
100485 int nBound = 0; /* Number of range constraints seen */
100486 int bSort = 0; /* True if external sort required */
100487 int bLookup = 0; /* True if not a covering index */
100488 WhereTerm *pTerm; /* A single term of the WHERE clause */
100489 #ifdef SQLITE_ENABLE_STAT2
100490 WhereTerm *pFirstTerm = 0; /* First term matching the index */
100491 #endif
100493 /* Determine the values of nEq and nInMul */
100494 for(nEq=0; nEq<pProbe->nColumn; nEq++){
100495 int j = pProbe->aiColumn[nEq];
100496 pTerm = findTerm(pWC, iCur, j, notReady, eqTermMask, pIdx);
100497 if( pTerm==0 ) break;
100498 wsFlags |= (WHERE_COLUMN_EQ|WHERE_ROWID_EQ);
100499 if( pTerm->eOperator & WO_IN ){
100500 Expr *pExpr = pTerm->pExpr;
100501 wsFlags |= WHERE_COLUMN_IN;
100502 if( ExprHasProperty(pExpr, EP_xIsSelect) ){
100503 /* "x IN (SELECT ...)": Assume the SELECT returns 25 rows */
100504 nInMul *= 25;
100505 bInEst = 1;
100506 }else if( ALWAYS(pExpr->x.pList && pExpr->x.pList->nExpr) ){
100507 /* "x IN (value, value, ...)" */
100508 nInMul *= pExpr->x.pList->nExpr;
100510 }else if( pTerm->eOperator & WO_ISNULL ){
100511 wsFlags |= WHERE_COLUMN_NULL;
100513 #ifdef SQLITE_ENABLE_STAT2
100514 if( nEq==0 && pProbe->aSample ) pFirstTerm = pTerm;
100515 #endif
100516 used |= pTerm->prereqRight;
100519 /* Determine the value of estBound. */
100520 if( nEq<pProbe->nColumn && pProbe->bUnordered==0 ){
100521 int j = pProbe->aiColumn[nEq];
100522 if( findTerm(pWC, iCur, j, notReady, WO_LT|WO_LE|WO_GT|WO_GE, pIdx) ){
100523 WhereTerm *pTop = findTerm(pWC, iCur, j, notReady, WO_LT|WO_LE, pIdx);
100524 WhereTerm *pBtm = findTerm(pWC, iCur, j, notReady, WO_GT|WO_GE, pIdx);
100525 whereRangeScanEst(pParse, pProbe, nEq, pBtm, pTop, &estBound);
100526 if( pTop ){
100527 nBound = 1;
100528 wsFlags |= WHERE_TOP_LIMIT;
100529 used |= pTop->prereqRight;
100531 if( pBtm ){
100532 nBound++;
100533 wsFlags |= WHERE_BTM_LIMIT;
100534 used |= pBtm->prereqRight;
100536 wsFlags |= (WHERE_COLUMN_RANGE|WHERE_ROWID_RANGE);
100538 }else if( pProbe->onError!=OE_None ){
100539 testcase( wsFlags & WHERE_COLUMN_IN );
100540 testcase( wsFlags & WHERE_COLUMN_NULL );
100541 if( (wsFlags & (WHERE_COLUMN_IN|WHERE_COLUMN_NULL))==0 ){
100542 wsFlags |= WHERE_UNIQUE;
100546 /* If there is an ORDER BY clause and the index being considered will
100547 ** naturally scan rows in the required order, set the appropriate flags
100548 ** in wsFlags. Otherwise, if there is an ORDER BY clause but the index
100549 ** will scan rows in a different order, set the bSort variable. */
100550 if( pOrderBy ){
100551 if( (wsFlags & WHERE_COLUMN_IN)==0
100552 && pProbe->bUnordered==0
100553 && isSortingIndex(pParse, pWC->pMaskSet, pProbe, iCur, pOrderBy,
100554 nEq, wsFlags, &rev)
100556 wsFlags |= WHERE_ROWID_RANGE|WHERE_COLUMN_RANGE|WHERE_ORDERBY;
100557 wsFlags |= (rev ? WHERE_REVERSE : 0);
100558 }else{
100559 bSort = 1;
100563 /* If currently calculating the cost of using an index (not the IPK
100564 ** index), determine if all required column data may be obtained without
100565 ** using the main table (i.e. if the index is a covering
100566 ** index for this query). If it is, set the WHERE_IDX_ONLY flag in
100567 ** wsFlags. Otherwise, set the bLookup variable to true. */
100568 if( pIdx && wsFlags ){
100569 Bitmask m = pSrc->colUsed;
100570 int j;
100571 for(j=0; j<pIdx->nColumn; j++){
100572 int x = pIdx->aiColumn[j];
100573 if( x<BMS-1 ){
100574 m &= ~(((Bitmask)1)<<x);
100577 if( m==0 ){
100578 wsFlags |= WHERE_IDX_ONLY;
100579 }else{
100580 bLookup = 1;
100585 ** Estimate the number of rows of output. For an "x IN (SELECT...)"
100586 ** constraint, do not let the estimate exceed half the rows in the table.
100588 nRow = (double)(aiRowEst[nEq] * nInMul);
100589 if( bInEst && nRow*2>aiRowEst[0] ){
100590 nRow = aiRowEst[0]/2;
100591 nInMul = (int)(nRow / aiRowEst[nEq]);
100594 #ifdef SQLITE_ENABLE_STAT2
100595 /* If the constraint is of the form x=VALUE and histogram
100596 ** data is available for column x, then it might be possible
100597 ** to get a better estimate on the number of rows based on
100598 ** VALUE and how common that value is according to the histogram.
100600 if( nRow>(double)1 && nEq==1 && pFirstTerm!=0 ){
100601 if( pFirstTerm->eOperator & (WO_EQ|WO_ISNULL) ){
100602 testcase( pFirstTerm->eOperator==WO_EQ );
100603 testcase( pFirstTerm->eOperator==WO_ISNULL );
100604 whereEqualScanEst(pParse, pProbe, pFirstTerm->pExpr->pRight, &nRow);
100605 }else if( pFirstTerm->eOperator==WO_IN && bInEst==0 ){
100606 whereInScanEst(pParse, pProbe, pFirstTerm->pExpr->x.pList, &nRow);
100609 #endif /* SQLITE_ENABLE_STAT2 */
100611 /* Adjust the number of output rows and downward to reflect rows
100612 ** that are excluded by range constraints.
100614 nRow = (nRow * (double)estBound) / (double)100;
100615 if( nRow<1 ) nRow = 1;
100617 /* Experiments run on real SQLite databases show that the time needed
100618 ** to do a binary search to locate a row in a table or index is roughly
100619 ** log10(N) times the time to move from one row to the next row within
100620 ** a table or index. The actual times can vary, with the size of
100621 ** records being an important factor. Both moves and searches are
100622 ** slower with larger records, presumably because fewer records fit
100623 ** on one page and hence more pages have to be fetched.
100625 ** The ANALYZE command and the sqlite_stat1 and sqlite_stat2 tables do
100626 ** not give us data on the relative sizes of table and index records.
100627 ** So this computation assumes table records are about twice as big
100628 ** as index records
100630 if( (wsFlags & WHERE_NOT_FULLSCAN)==0 ){
100631 /* The cost of a full table scan is a number of move operations equal
100632 ** to the number of rows in the table.
100634 ** We add an additional 4x penalty to full table scans. This causes
100635 ** the cost function to err on the side of choosing an index over
100636 ** choosing a full scan. This 4x full-scan penalty is an arguable
100637 ** decision and one which we expect to revisit in the future. But
100638 ** it seems to be working well enough at the moment.
100640 cost = aiRowEst[0]*4;
100641 }else{
100642 log10N = estLog(aiRowEst[0]);
100643 cost = nRow;
100644 if( pIdx ){
100645 if( bLookup ){
100646 /* For an index lookup followed by a table lookup:
100647 ** nInMul index searches to find the start of each index range
100648 ** + nRow steps through the index
100649 ** + nRow table searches to lookup the table entry using the rowid
100651 cost += (nInMul + nRow)*log10N;
100652 }else{
100653 /* For a covering index:
100654 ** nInMul index searches to find the initial entry
100655 ** + nRow steps through the index
100657 cost += nInMul*log10N;
100659 }else{
100660 /* For a rowid primary key lookup:
100661 ** nInMult table searches to find the initial entry for each range
100662 ** + nRow steps through the table
100664 cost += nInMul*log10N;
100668 /* Add in the estimated cost of sorting the result. Actual experimental
100669 ** measurements of sorting performance in SQLite show that sorting time
100670 ** adds C*N*log10(N) to the cost, where N is the number of rows to be
100671 ** sorted and C is a factor between 1.95 and 4.3. We will split the
100672 ** difference and select C of 3.0.
100674 if( bSort ){
100675 cost += nRow*estLog(nRow)*3;
100678 /**** Cost of using this index has now been computed ****/
100680 /* If there are additional constraints on this table that cannot
100681 ** be used with the current index, but which might lower the number
100682 ** of output rows, adjust the nRow value accordingly. This only
100683 ** matters if the current index is the least costly, so do not bother
100684 ** with this step if we already know this index will not be chosen.
100685 ** Also, never reduce the output row count below 2 using this step.
100687 ** It is critical that the notValid mask be used here instead of
100688 ** the notReady mask. When computing an "optimal" index, the notReady
100689 ** mask will only have one bit set - the bit for the current table.
100690 ** The notValid mask, on the other hand, always has all bits set for
100691 ** tables that are not in outer loops. If notReady is used here instead
100692 ** of notValid, then a optimal index that depends on inner joins loops
100693 ** might be selected even when there exists an optimal index that has
100694 ** no such dependency.
100696 if( nRow>2 && cost<=pCost->rCost ){
100697 int k; /* Loop counter */
100698 int nSkipEq = nEq; /* Number of == constraints to skip */
100699 int nSkipRange = nBound; /* Number of < constraints to skip */
100700 Bitmask thisTab; /* Bitmap for pSrc */
100702 thisTab = getMask(pWC->pMaskSet, iCur);
100703 for(pTerm=pWC->a, k=pWC->nTerm; nRow>2 && k; k--, pTerm++){
100704 if( pTerm->wtFlags & TERM_VIRTUAL ) continue;
100705 if( (pTerm->prereqAll & notValid)!=thisTab ) continue;
100706 if( pTerm->eOperator & (WO_EQ|WO_IN|WO_ISNULL) ){
100707 if( nSkipEq ){
100708 /* Ignore the first nEq equality matches since the index
100709 ** has already accounted for these */
100710 nSkipEq--;
100711 }else{
100712 /* Assume each additional equality match reduces the result
100713 ** set size by a factor of 10 */
100714 nRow /= 10;
100716 }else if( pTerm->eOperator & (WO_LT|WO_LE|WO_GT|WO_GE) ){
100717 if( nSkipRange ){
100718 /* Ignore the first nSkipRange range constraints since the index
100719 ** has already accounted for these */
100720 nSkipRange--;
100721 }else{
100722 /* Assume each additional range constraint reduces the result
100723 ** set size by a factor of 3. Indexed range constraints reduce
100724 ** the search space by a larger factor: 4. We make indexed range
100725 ** more selective intentionally because of the subjective
100726 ** observation that indexed range constraints really are more
100727 ** selective in practice, on average. */
100728 nRow /= 3;
100730 }else if( pTerm->eOperator!=WO_NOOP ){
100731 /* Any other expression lowers the output row count by half */
100732 nRow /= 2;
100735 if( nRow<2 ) nRow = 2;
100739 WHERETRACE((
100740 "%s(%s): nEq=%d nInMul=%d estBound=%d bSort=%d bLookup=%d wsFlags=0x%x\n"
100741 " notReady=0x%llx log10N=%.1f nRow=%.1f cost=%.1f used=0x%llx\n",
100742 pSrc->pTab->zName, (pIdx ? pIdx->zName : "ipk"),
100743 nEq, nInMul, estBound, bSort, bLookup, wsFlags,
100744 notReady, log10N, nRow, cost, used
100747 /* If this index is the best we have seen so far, then record this
100748 ** index and its cost in the pCost structure.
100750 if( (!pIdx || wsFlags)
100751 && (cost<pCost->rCost || (cost<=pCost->rCost && nRow<pCost->plan.nRow))
100753 pCost->rCost = cost;
100754 pCost->used = used;
100755 pCost->plan.nRow = nRow;
100756 pCost->plan.wsFlags = (wsFlags&wsFlagMask);
100757 pCost->plan.nEq = nEq;
100758 pCost->plan.u.pIdx = pIdx;
100761 /* If there was an INDEXED BY clause, then only that one index is
100762 ** considered. */
100763 if( pSrc->pIndex ) break;
100765 /* Reset masks for the next index in the loop */
100766 wsFlagMask = ~(WHERE_ROWID_EQ|WHERE_ROWID_RANGE);
100767 eqTermMask = idxEqTermMask;
100770 /* If there is no ORDER BY clause and the SQLITE_ReverseOrder flag
100771 ** is set, then reverse the order that the index will be scanned
100772 ** in. This is used for application testing, to help find cases
100773 ** where application behaviour depends on the (undefined) order that
100774 ** SQLite outputs rows in in the absence of an ORDER BY clause. */
100775 if( !pOrderBy && pParse->db->flags & SQLITE_ReverseOrder ){
100776 pCost->plan.wsFlags |= WHERE_REVERSE;
100779 assert( pOrderBy || (pCost->plan.wsFlags&WHERE_ORDERBY)==0 );
100780 assert( pCost->plan.u.pIdx==0 || (pCost->plan.wsFlags&WHERE_ROWID_EQ)==0 );
100781 assert( pSrc->pIndex==0
100782 || pCost->plan.u.pIdx==0
100783 || pCost->plan.u.pIdx==pSrc->pIndex
100786 WHERETRACE(("best index is: %s\n",
100787 ((pCost->plan.wsFlags & WHERE_NOT_FULLSCAN)==0 ? "none" :
100788 pCost->plan.u.pIdx ? pCost->plan.u.pIdx->zName : "ipk")
100791 bestOrClauseIndex(pParse, pWC, pSrc, notReady, notValid, pOrderBy, pCost);
100792 bestAutomaticIndex(pParse, pWC, pSrc, notReady, pCost);
100793 pCost->plan.wsFlags |= eqTermMask;
100797 ** Find the query plan for accessing table pSrc->pTab. Write the
100798 ** best query plan and its cost into the WhereCost object supplied
100799 ** as the last parameter. This function may calculate the cost of
100800 ** both real and virtual table scans.
100802 static void bestIndex(
100803 Parse *pParse, /* The parsing context */
100804 WhereClause *pWC, /* The WHERE clause */
100805 struct SrcList_item *pSrc, /* The FROM clause term to search */
100806 Bitmask notReady, /* Mask of cursors not available for indexing */
100807 Bitmask notValid, /* Cursors not available for any purpose */
100808 ExprList *pOrderBy, /* The ORDER BY clause */
100809 WhereCost *pCost /* Lowest cost query plan */
100811 #ifndef SQLITE_OMIT_VIRTUALTABLE
100812 if( IsVirtual(pSrc->pTab) ){
100813 sqlite3_index_info *p = 0;
100814 bestVirtualIndex(pParse, pWC, pSrc, notReady, notValid, pOrderBy, pCost,&p);
100815 if( p->needToFreeIdxStr ){
100816 sqlite3_free(p->idxStr);
100818 sqlite3DbFree(pParse->db, p);
100819 }else
100820 #endif
100822 bestBtreeIndex(pParse, pWC, pSrc, notReady, notValid, pOrderBy, pCost);
100827 ** Disable a term in the WHERE clause. Except, do not disable the term
100828 ** if it controls a LEFT OUTER JOIN and it did not originate in the ON
100829 ** or USING clause of that join.
100831 ** Consider the term t2.z='ok' in the following queries:
100833 ** (1) SELECT * FROM t1 LEFT JOIN t2 ON t1.a=t2.x WHERE t2.z='ok'
100834 ** (2) SELECT * FROM t1 LEFT JOIN t2 ON t1.a=t2.x AND t2.z='ok'
100835 ** (3) SELECT * FROM t1, t2 WHERE t1.a=t2.x AND t2.z='ok'
100837 ** The t2.z='ok' is disabled in the in (2) because it originates
100838 ** in the ON clause. The term is disabled in (3) because it is not part
100839 ** of a LEFT OUTER JOIN. In (1), the term is not disabled.
100841 ** IMPLEMENTATION-OF: R-24597-58655 No tests are done for terms that are
100842 ** completely satisfied by indices.
100844 ** Disabling a term causes that term to not be tested in the inner loop
100845 ** of the join. Disabling is an optimization. When terms are satisfied
100846 ** by indices, we disable them to prevent redundant tests in the inner
100847 ** loop. We would get the correct results if nothing were ever disabled,
100848 ** but joins might run a little slower. The trick is to disable as much
100849 ** as we can without disabling too much. If we disabled in (1), we'd get
100850 ** the wrong answer. See ticket #813.
100852 static void disableTerm(WhereLevel *pLevel, WhereTerm *pTerm){
100853 if( pTerm
100854 && (pTerm->wtFlags & TERM_CODED)==0
100855 && (pLevel->iLeftJoin==0 || ExprHasProperty(pTerm->pExpr, EP_FromJoin))
100857 pTerm->wtFlags |= TERM_CODED;
100858 if( pTerm->iParent>=0 ){
100859 WhereTerm *pOther = &pTerm->pWC->a[pTerm->iParent];
100860 if( (--pOther->nChild)==0 ){
100861 disableTerm(pLevel, pOther);
100868 ** Code an OP_Affinity opcode to apply the column affinity string zAff
100869 ** to the n registers starting at base.
100871 ** As an optimization, SQLITE_AFF_NONE entries (which are no-ops) at the
100872 ** beginning and end of zAff are ignored. If all entries in zAff are
100873 ** SQLITE_AFF_NONE, then no code gets generated.
100875 ** This routine makes its own copy of zAff so that the caller is free
100876 ** to modify zAff after this routine returns.
100878 static void codeApplyAffinity(Parse *pParse, int base, int n, char *zAff){
100879 Vdbe *v = pParse->pVdbe;
100880 if( zAff==0 ){
100881 assert( pParse->db->mallocFailed );
100882 return;
100884 assert( v!=0 );
100886 /* Adjust base and n to skip over SQLITE_AFF_NONE entries at the beginning
100887 ** and end of the affinity string.
100889 while( n>0 && zAff[0]==SQLITE_AFF_NONE ){
100891 base++;
100892 zAff++;
100894 while( n>1 && zAff[n-1]==SQLITE_AFF_NONE ){
100898 /* Code the OP_Affinity opcode if there is anything left to do. */
100899 if( n>0 ){
100900 sqlite3VdbeAddOp2(v, OP_Affinity, base, n);
100901 sqlite3VdbeChangeP4(v, -1, zAff, n);
100902 sqlite3ExprCacheAffinityChange(pParse, base, n);
100908 ** Generate code for a single equality term of the WHERE clause. An equality
100909 ** term can be either X=expr or X IN (...). pTerm is the term to be
100910 ** coded.
100912 ** The current value for the constraint is left in register iReg.
100914 ** For a constraint of the form X=expr, the expression is evaluated and its
100915 ** result is left on the stack. For constraints of the form X IN (...)
100916 ** this routine sets up a loop that will iterate over all values of X.
100918 static int codeEqualityTerm(
100919 Parse *pParse, /* The parsing context */
100920 WhereTerm *pTerm, /* The term of the WHERE clause to be coded */
100921 WhereLevel *pLevel, /* When level of the FROM clause we are working on */
100922 int iTarget /* Attempt to leave results in this register */
100924 Expr *pX = pTerm->pExpr;
100925 Vdbe *v = pParse->pVdbe;
100926 int iReg; /* Register holding results */
100928 assert( iTarget>0 );
100929 if( pX->op==TK_EQ ){
100930 iReg = sqlite3ExprCodeTarget(pParse, pX->pRight, iTarget);
100931 }else if( pX->op==TK_ISNULL ){
100932 iReg = iTarget;
100933 sqlite3VdbeAddOp2(v, OP_Null, 0, iReg);
100934 #ifndef SQLITE_OMIT_SUBQUERY
100935 }else{
100936 int eType;
100937 int iTab;
100938 struct InLoop *pIn;
100940 assert( pX->op==TK_IN );
100941 iReg = iTarget;
100942 eType = sqlite3FindInIndex(pParse, pX, 0);
100943 iTab = pX->iTable;
100944 sqlite3VdbeAddOp2(v, OP_Rewind, iTab, 0);
100945 assert( pLevel->plan.wsFlags & WHERE_IN_ABLE );
100946 if( pLevel->u.in.nIn==0 ){
100947 pLevel->addrNxt = sqlite3VdbeMakeLabel(v);
100949 pLevel->u.in.nIn++;
100950 pLevel->u.in.aInLoop =
100951 sqlite3DbReallocOrFree(pParse->db, pLevel->u.in.aInLoop,
100952 sizeof(pLevel->u.in.aInLoop[0])*pLevel->u.in.nIn);
100953 pIn = pLevel->u.in.aInLoop;
100954 if( pIn ){
100955 pIn += pLevel->u.in.nIn - 1;
100956 pIn->iCur = iTab;
100957 if( eType==IN_INDEX_ROWID ){
100958 pIn->addrInTop = sqlite3VdbeAddOp2(v, OP_Rowid, iTab, iReg);
100959 }else{
100960 pIn->addrInTop = sqlite3VdbeAddOp3(v, OP_Column, iTab, 0, iReg);
100962 sqlite3VdbeAddOp1(v, OP_IsNull, iReg);
100963 }else{
100964 pLevel->u.in.nIn = 0;
100966 #endif
100968 disableTerm(pLevel, pTerm);
100969 return iReg;
100973 ** Generate code that will evaluate all == and IN constraints for an
100974 ** index.
100976 ** For example, consider table t1(a,b,c,d,e,f) with index i1(a,b,c).
100977 ** Suppose the WHERE clause is this: a==5 AND b IN (1,2,3) AND c>5 AND c<10
100978 ** The index has as many as three equality constraints, but in this
100979 ** example, the third "c" value is an inequality. So only two
100980 ** constraints are coded. This routine will generate code to evaluate
100981 ** a==5 and b IN (1,2,3). The current values for a and b will be stored
100982 ** in consecutive registers and the index of the first register is returned.
100984 ** In the example above nEq==2. But this subroutine works for any value
100985 ** of nEq including 0. If nEq==0, this routine is nearly a no-op.
100986 ** The only thing it does is allocate the pLevel->iMem memory cell and
100987 ** compute the affinity string.
100989 ** This routine always allocates at least one memory cell and returns
100990 ** the index of that memory cell. The code that
100991 ** calls this routine will use that memory cell to store the termination
100992 ** key value of the loop. If one or more IN operators appear, then
100993 ** this routine allocates an additional nEq memory cells for internal
100994 ** use.
100996 ** Before returning, *pzAff is set to point to a buffer containing a
100997 ** copy of the column affinity string of the index allocated using
100998 ** sqlite3DbMalloc(). Except, entries in the copy of the string associated
100999 ** with equality constraints that use NONE affinity are set to
101000 ** SQLITE_AFF_NONE. This is to deal with SQL such as the following:
101002 ** CREATE TABLE t1(a TEXT PRIMARY KEY, b);
101003 ** SELECT ... FROM t1 AS t2, t1 WHERE t1.a = t2.b;
101005 ** In the example above, the index on t1(a) has TEXT affinity. But since
101006 ** the right hand side of the equality constraint (t2.b) has NONE affinity,
101007 ** no conversion should be attempted before using a t2.b value as part of
101008 ** a key to search the index. Hence the first byte in the returned affinity
101009 ** string in this example would be set to SQLITE_AFF_NONE.
101011 static int codeAllEqualityTerms(
101012 Parse *pParse, /* Parsing context */
101013 WhereLevel *pLevel, /* Which nested loop of the FROM we are coding */
101014 WhereClause *pWC, /* The WHERE clause */
101015 Bitmask notReady, /* Which parts of FROM have not yet been coded */
101016 int nExtraReg, /* Number of extra registers to allocate */
101017 char **pzAff /* OUT: Set to point to affinity string */
101019 int nEq = pLevel->plan.nEq; /* The number of == or IN constraints to code */
101020 Vdbe *v = pParse->pVdbe; /* The vm under construction */
101021 Index *pIdx; /* The index being used for this loop */
101022 int iCur = pLevel->iTabCur; /* The cursor of the table */
101023 WhereTerm *pTerm; /* A single constraint term */
101024 int j; /* Loop counter */
101025 int regBase; /* Base register */
101026 int nReg; /* Number of registers to allocate */
101027 char *zAff; /* Affinity string to return */
101029 /* This module is only called on query plans that use an index. */
101030 assert( pLevel->plan.wsFlags & WHERE_INDEXED );
101031 pIdx = pLevel->plan.u.pIdx;
101033 /* Figure out how many memory cells we will need then allocate them.
101035 regBase = pParse->nMem + 1;
101036 nReg = pLevel->plan.nEq + nExtraReg;
101037 pParse->nMem += nReg;
101039 zAff = sqlite3DbStrDup(pParse->db, sqlite3IndexAffinityStr(v, pIdx));
101040 if( !zAff ){
101041 pParse->db->mallocFailed = 1;
101044 /* Evaluate the equality constraints
101046 assert( pIdx->nColumn>=nEq );
101047 for(j=0; j<nEq; j++){
101048 int r1;
101049 int k = pIdx->aiColumn[j];
101050 pTerm = findTerm(pWC, iCur, k, notReady, pLevel->plan.wsFlags, pIdx);
101051 if( NEVER(pTerm==0) ) break;
101052 /* The following true for indices with redundant columns.
101053 ** Ex: CREATE INDEX i1 ON t1(a,b,a); SELECT * FROM t1 WHERE a=0 AND b=0; */
101054 testcase( (pTerm->wtFlags & TERM_CODED)!=0 );
101055 testcase( pTerm->wtFlags & TERM_VIRTUAL ); /* EV: R-30575-11662 */
101056 r1 = codeEqualityTerm(pParse, pTerm, pLevel, regBase+j);
101057 if( r1!=regBase+j ){
101058 if( nReg==1 ){
101059 sqlite3ReleaseTempReg(pParse, regBase);
101060 regBase = r1;
101061 }else{
101062 sqlite3VdbeAddOp2(v, OP_SCopy, r1, regBase+j);
101065 testcase( pTerm->eOperator & WO_ISNULL );
101066 testcase( pTerm->eOperator & WO_IN );
101067 if( (pTerm->eOperator & (WO_ISNULL|WO_IN))==0 ){
101068 Expr *pRight = pTerm->pExpr->pRight;
101069 sqlite3ExprCodeIsNullJump(v, pRight, regBase+j, pLevel->addrBrk);
101070 if( zAff ){
101071 if( sqlite3CompareAffinity(pRight, zAff[j])==SQLITE_AFF_NONE ){
101072 zAff[j] = SQLITE_AFF_NONE;
101074 if( sqlite3ExprNeedsNoAffinityChange(pRight, zAff[j]) ){
101075 zAff[j] = SQLITE_AFF_NONE;
101080 *pzAff = zAff;
101081 return regBase;
101084 #ifndef SQLITE_OMIT_EXPLAIN
101086 ** This routine is a helper for explainIndexRange() below
101088 ** pStr holds the text of an expression that we are building up one term
101089 ** at a time. This routine adds a new term to the end of the expression.
101090 ** Terms are separated by AND so add the "AND" text for second and subsequent
101091 ** terms only.
101093 static void explainAppendTerm(
101094 StrAccum *pStr, /* The text expression being built */
101095 int iTerm, /* Index of this term. First is zero */
101096 const char *zColumn, /* Name of the column */
101097 const char *zOp /* Name of the operator */
101099 if( iTerm ) sqlite3StrAccumAppend(pStr, " AND ", 5);
101100 sqlite3StrAccumAppend(pStr, zColumn, -1);
101101 sqlite3StrAccumAppend(pStr, zOp, 1);
101102 sqlite3StrAccumAppend(pStr, "?", 1);
101106 ** Argument pLevel describes a strategy for scanning table pTab. This
101107 ** function returns a pointer to a string buffer containing a description
101108 ** of the subset of table rows scanned by the strategy in the form of an
101109 ** SQL expression. Or, if all rows are scanned, NULL is returned.
101111 ** For example, if the query:
101113 ** SELECT * FROM t1 WHERE a=1 AND b>2;
101115 ** is run and there is an index on (a, b), then this function returns a
101116 ** string similar to:
101118 ** "a=? AND b>?"
101120 ** The returned pointer points to memory obtained from sqlite3DbMalloc().
101121 ** It is the responsibility of the caller to free the buffer when it is
101122 ** no longer required.
101124 static char *explainIndexRange(sqlite3 *db, WhereLevel *pLevel, Table *pTab){
101125 WherePlan *pPlan = &pLevel->plan;
101126 Index *pIndex = pPlan->u.pIdx;
101127 int nEq = pPlan->nEq;
101128 int i, j;
101129 Column *aCol = pTab->aCol;
101130 int *aiColumn = pIndex->aiColumn;
101131 StrAccum txt;
101133 if( nEq==0 && (pPlan->wsFlags & (WHERE_BTM_LIMIT|WHERE_TOP_LIMIT))==0 ){
101134 return 0;
101136 sqlite3StrAccumInit(&txt, 0, 0, SQLITE_MAX_LENGTH);
101137 txt.db = db;
101138 sqlite3StrAccumAppend(&txt, " (", 2);
101139 for(i=0; i<nEq; i++){
101140 explainAppendTerm(&txt, i, aCol[aiColumn[i]].zName, "=");
101143 j = i;
101144 if( pPlan->wsFlags&WHERE_BTM_LIMIT ){
101145 explainAppendTerm(&txt, i++, aCol[aiColumn[j]].zName, ">");
101147 if( pPlan->wsFlags&WHERE_TOP_LIMIT ){
101148 explainAppendTerm(&txt, i, aCol[aiColumn[j]].zName, "<");
101150 sqlite3StrAccumAppend(&txt, ")", 1);
101151 return sqlite3StrAccumFinish(&txt);
101155 ** This function is a no-op unless currently processing an EXPLAIN QUERY PLAN
101156 ** command. If the query being compiled is an EXPLAIN QUERY PLAN, a single
101157 ** record is added to the output to describe the table scan strategy in
101158 ** pLevel.
101160 static void explainOneScan(
101161 Parse *pParse, /* Parse context */
101162 SrcList *pTabList, /* Table list this loop refers to */
101163 WhereLevel *pLevel, /* Scan to write OP_Explain opcode for */
101164 int iLevel, /* Value for "level" column of output */
101165 int iFrom, /* Value for "from" column of output */
101166 u16 wctrlFlags /* Flags passed to sqlite3WhereBegin() */
101168 if( pParse->explain==2 ){
101169 u32 flags = pLevel->plan.wsFlags;
101170 struct SrcList_item *pItem = &pTabList->a[pLevel->iFrom];
101171 Vdbe *v = pParse->pVdbe; /* VM being constructed */
101172 sqlite3 *db = pParse->db; /* Database handle */
101173 char *zMsg; /* Text to add to EQP output */
101174 sqlite3_int64 nRow; /* Expected number of rows visited by scan */
101175 int iId = pParse->iSelectId; /* Select id (left-most output column) */
101176 int isSearch; /* True for a SEARCH. False for SCAN. */
101178 if( (flags&WHERE_MULTI_OR) || (wctrlFlags&WHERE_ONETABLE_ONLY) ) return;
101180 isSearch = (pLevel->plan.nEq>0)
101181 || (flags&(WHERE_BTM_LIMIT|WHERE_TOP_LIMIT))!=0
101182 || (wctrlFlags&(WHERE_ORDERBY_MIN|WHERE_ORDERBY_MAX));
101184 zMsg = sqlite3MPrintf(db, "%s", isSearch?"SEARCH":"SCAN");
101185 if( pItem->pSelect ){
101186 zMsg = sqlite3MAppendf(db, zMsg, "%s SUBQUERY %d", zMsg,pItem->iSelectId);
101187 }else{
101188 zMsg = sqlite3MAppendf(db, zMsg, "%s TABLE %s", zMsg, pItem->zName);
101191 if( pItem->zAlias ){
101192 zMsg = sqlite3MAppendf(db, zMsg, "%s AS %s", zMsg, pItem->zAlias);
101194 if( (flags & WHERE_INDEXED)!=0 ){
101195 char *zWhere = explainIndexRange(db, pLevel, pItem->pTab);
101196 zMsg = sqlite3MAppendf(db, zMsg, "%s USING %s%sINDEX%s%s%s", zMsg,
101197 ((flags & WHERE_TEMP_INDEX)?"AUTOMATIC ":""),
101198 ((flags & WHERE_IDX_ONLY)?"COVERING ":""),
101199 ((flags & WHERE_TEMP_INDEX)?"":" "),
101200 ((flags & WHERE_TEMP_INDEX)?"": pLevel->plan.u.pIdx->zName),
101201 zWhere
101203 sqlite3DbFree(db, zWhere);
101204 }else if( flags & (WHERE_ROWID_EQ|WHERE_ROWID_RANGE) ){
101205 zMsg = sqlite3MAppendf(db, zMsg, "%s USING INTEGER PRIMARY KEY", zMsg);
101207 if( flags&WHERE_ROWID_EQ ){
101208 zMsg = sqlite3MAppendf(db, zMsg, "%s (rowid=?)", zMsg);
101209 }else if( (flags&WHERE_BOTH_LIMIT)==WHERE_BOTH_LIMIT ){
101210 zMsg = sqlite3MAppendf(db, zMsg, "%s (rowid>? AND rowid<?)", zMsg);
101211 }else if( flags&WHERE_BTM_LIMIT ){
101212 zMsg = sqlite3MAppendf(db, zMsg, "%s (rowid>?)", zMsg);
101213 }else if( flags&WHERE_TOP_LIMIT ){
101214 zMsg = sqlite3MAppendf(db, zMsg, "%s (rowid<?)", zMsg);
101217 #ifndef SQLITE_OMIT_VIRTUALTABLE
101218 else if( (flags & WHERE_VIRTUALTABLE)!=0 ){
101219 sqlite3_index_info *pVtabIdx = pLevel->plan.u.pVtabIdx;
101220 zMsg = sqlite3MAppendf(db, zMsg, "%s VIRTUAL TABLE INDEX %d:%s", zMsg,
101221 pVtabIdx->idxNum, pVtabIdx->idxStr);
101223 #endif
101224 if( wctrlFlags&(WHERE_ORDERBY_MIN|WHERE_ORDERBY_MAX) ){
101225 testcase( wctrlFlags & WHERE_ORDERBY_MIN );
101226 nRow = 1;
101227 }else{
101228 nRow = (sqlite3_int64)pLevel->plan.nRow;
101230 zMsg = sqlite3MAppendf(db, zMsg, "%s (~%lld rows)", zMsg, nRow);
101231 sqlite3VdbeAddOp4(v, OP_Explain, iId, iLevel, iFrom, zMsg, P4_DYNAMIC);
101234 #else
101235 # define explainOneScan(u,v,w,x,y,z)
101236 #endif /* SQLITE_OMIT_EXPLAIN */
101240 ** Generate code for the start of the iLevel-th loop in the WHERE clause
101241 ** implementation described by pWInfo.
101243 static Bitmask codeOneLoopStart(
101244 WhereInfo *pWInfo, /* Complete information about the WHERE clause */
101245 int iLevel, /* Which level of pWInfo->a[] should be coded */
101246 u16 wctrlFlags, /* One of the WHERE_* flags defined in sqliteInt.h */
101247 Bitmask notReady /* Which tables are currently available */
101249 int j, k; /* Loop counters */
101250 int iCur; /* The VDBE cursor for the table */
101251 int addrNxt; /* Where to jump to continue with the next IN case */
101252 int omitTable; /* True if we use the index only */
101253 int bRev; /* True if we need to scan in reverse order */
101254 WhereLevel *pLevel; /* The where level to be coded */
101255 WhereClause *pWC; /* Decomposition of the entire WHERE clause */
101256 WhereTerm *pTerm; /* A WHERE clause term */
101257 Parse *pParse; /* Parsing context */
101258 Vdbe *v; /* The prepared stmt under constructions */
101259 struct SrcList_item *pTabItem; /* FROM clause term being coded */
101260 int addrBrk; /* Jump here to break out of the loop */
101261 int addrCont; /* Jump here to continue with next cycle */
101262 int iRowidReg = 0; /* Rowid is stored in this register, if not zero */
101263 int iReleaseReg = 0; /* Temp register to free before returning */
101265 pParse = pWInfo->pParse;
101266 v = pParse->pVdbe;
101267 pWC = pWInfo->pWC;
101268 pLevel = &pWInfo->a[iLevel];
101269 pTabItem = &pWInfo->pTabList->a[pLevel->iFrom];
101270 iCur = pTabItem->iCursor;
101271 bRev = (pLevel->plan.wsFlags & WHERE_REVERSE)!=0;
101272 omitTable = (pLevel->plan.wsFlags & WHERE_IDX_ONLY)!=0
101273 && (wctrlFlags & WHERE_FORCE_TABLE)==0;
101275 /* Create labels for the "break" and "continue" instructions
101276 ** for the current loop. Jump to addrBrk to break out of a loop.
101277 ** Jump to cont to go immediately to the next iteration of the
101278 ** loop.
101280 ** When there is an IN operator, we also have a "addrNxt" label that
101281 ** means to continue with the next IN value combination. When
101282 ** there are no IN operators in the constraints, the "addrNxt" label
101283 ** is the same as "addrBrk".
101285 addrBrk = pLevel->addrBrk = pLevel->addrNxt = sqlite3VdbeMakeLabel(v);
101286 addrCont = pLevel->addrCont = sqlite3VdbeMakeLabel(v);
101288 /* If this is the right table of a LEFT OUTER JOIN, allocate and
101289 ** initialize a memory cell that records if this table matches any
101290 ** row of the left table of the join.
101292 if( pLevel->iFrom>0 && (pTabItem[0].jointype & JT_LEFT)!=0 ){
101293 pLevel->iLeftJoin = ++pParse->nMem;
101294 sqlite3VdbeAddOp2(v, OP_Integer, 0, pLevel->iLeftJoin);
101295 VdbeComment((v, "init LEFT JOIN no-match flag"));
101298 #ifndef SQLITE_OMIT_VIRTUALTABLE
101299 if( (pLevel->plan.wsFlags & WHERE_VIRTUALTABLE)!=0 ){
101300 /* Case 0: The table is a virtual-table. Use the VFilter and VNext
101301 ** to access the data.
101303 int iReg; /* P3 Value for OP_VFilter */
101304 sqlite3_index_info *pVtabIdx = pLevel->plan.u.pVtabIdx;
101305 int nConstraint = pVtabIdx->nConstraint;
101306 struct sqlite3_index_constraint_usage *aUsage =
101307 pVtabIdx->aConstraintUsage;
101308 const struct sqlite3_index_constraint *aConstraint =
101309 pVtabIdx->aConstraint;
101311 sqlite3ExprCachePush(pParse);
101312 iReg = sqlite3GetTempRange(pParse, nConstraint+2);
101313 for(j=1; j<=nConstraint; j++){
101314 for(k=0; k<nConstraint; k++){
101315 if( aUsage[k].argvIndex==j ){
101316 int iTerm = aConstraint[k].iTermOffset;
101317 sqlite3ExprCode(pParse, pWC->a[iTerm].pExpr->pRight, iReg+j+1);
101318 break;
101321 if( k==nConstraint ) break;
101323 sqlite3VdbeAddOp2(v, OP_Integer, pVtabIdx->idxNum, iReg);
101324 sqlite3VdbeAddOp2(v, OP_Integer, j-1, iReg+1);
101325 sqlite3VdbeAddOp4(v, OP_VFilter, iCur, addrBrk, iReg, pVtabIdx->idxStr,
101326 pVtabIdx->needToFreeIdxStr ? P4_MPRINTF : P4_STATIC);
101327 pVtabIdx->needToFreeIdxStr = 0;
101328 for(j=0; j<nConstraint; j++){
101329 if( aUsage[j].omit ){
101330 int iTerm = aConstraint[j].iTermOffset;
101331 disableTerm(pLevel, &pWC->a[iTerm]);
101334 pLevel->op = OP_VNext;
101335 pLevel->p1 = iCur;
101336 pLevel->p2 = sqlite3VdbeCurrentAddr(v);
101337 sqlite3ReleaseTempRange(pParse, iReg, nConstraint+2);
101338 sqlite3ExprCachePop(pParse, 1);
101339 }else
101340 #endif /* SQLITE_OMIT_VIRTUALTABLE */
101342 if( pLevel->plan.wsFlags & WHERE_ROWID_EQ ){
101343 /* Case 1: We can directly reference a single row using an
101344 ** equality comparison against the ROWID field. Or
101345 ** we reference multiple rows using a "rowid IN (...)"
101346 ** construct.
101348 iReleaseReg = sqlite3GetTempReg(pParse);
101349 pTerm = findTerm(pWC, iCur, -1, notReady, WO_EQ|WO_IN, 0);
101350 assert( pTerm!=0 );
101351 assert( pTerm->pExpr!=0 );
101352 assert( pTerm->leftCursor==iCur );
101353 assert( omitTable==0 );
101354 testcase( pTerm->wtFlags & TERM_VIRTUAL ); /* EV: R-30575-11662 */
101355 iRowidReg = codeEqualityTerm(pParse, pTerm, pLevel, iReleaseReg);
101356 addrNxt = pLevel->addrNxt;
101357 sqlite3VdbeAddOp2(v, OP_MustBeInt, iRowidReg, addrNxt);
101358 sqlite3VdbeAddOp3(v, OP_NotExists, iCur, addrNxt, iRowidReg);
101359 sqlite3ExprCacheStore(pParse, iCur, -1, iRowidReg);
101360 VdbeComment((v, "pk"));
101361 pLevel->op = OP_Noop;
101362 }else if( pLevel->plan.wsFlags & WHERE_ROWID_RANGE ){
101363 /* Case 2: We have an inequality comparison against the ROWID field.
101365 int testOp = OP_Noop;
101366 int start;
101367 int memEndValue = 0;
101368 WhereTerm *pStart, *pEnd;
101370 assert( omitTable==0 );
101371 pStart = findTerm(pWC, iCur, -1, notReady, WO_GT|WO_GE, 0);
101372 pEnd = findTerm(pWC, iCur, -1, notReady, WO_LT|WO_LE, 0);
101373 if( bRev ){
101374 pTerm = pStart;
101375 pStart = pEnd;
101376 pEnd = pTerm;
101378 if( pStart ){
101379 Expr *pX; /* The expression that defines the start bound */
101380 int r1, rTemp; /* Registers for holding the start boundary */
101382 /* The following constant maps TK_xx codes into corresponding
101383 ** seek opcodes. It depends on a particular ordering of TK_xx
101385 const u8 aMoveOp[] = {
101386 /* TK_GT */ OP_SeekGt,
101387 /* TK_LE */ OP_SeekLe,
101388 /* TK_LT */ OP_SeekLt,
101389 /* TK_GE */ OP_SeekGe
101391 assert( TK_LE==TK_GT+1 ); /* Make sure the ordering.. */
101392 assert( TK_LT==TK_GT+2 ); /* ... of the TK_xx values... */
101393 assert( TK_GE==TK_GT+3 ); /* ... is correcct. */
101395 testcase( pStart->wtFlags & TERM_VIRTUAL ); /* EV: R-30575-11662 */
101396 pX = pStart->pExpr;
101397 assert( pX!=0 );
101398 assert( pStart->leftCursor==iCur );
101399 r1 = sqlite3ExprCodeTemp(pParse, pX->pRight, &rTemp);
101400 sqlite3VdbeAddOp3(v, aMoveOp[pX->op-TK_GT], iCur, addrBrk, r1);
101401 VdbeComment((v, "pk"));
101402 sqlite3ExprCacheAffinityChange(pParse, r1, 1);
101403 sqlite3ReleaseTempReg(pParse, rTemp);
101404 disableTerm(pLevel, pStart);
101405 }else{
101406 sqlite3VdbeAddOp2(v, bRev ? OP_Last : OP_Rewind, iCur, addrBrk);
101408 if( pEnd ){
101409 Expr *pX;
101410 pX = pEnd->pExpr;
101411 assert( pX!=0 );
101412 assert( pEnd->leftCursor==iCur );
101413 testcase( pEnd->wtFlags & TERM_VIRTUAL ); /* EV: R-30575-11662 */
101414 memEndValue = ++pParse->nMem;
101415 sqlite3ExprCode(pParse, pX->pRight, memEndValue);
101416 if( pX->op==TK_LT || pX->op==TK_GT ){
101417 testOp = bRev ? OP_Le : OP_Ge;
101418 }else{
101419 testOp = bRev ? OP_Lt : OP_Gt;
101421 disableTerm(pLevel, pEnd);
101423 start = sqlite3VdbeCurrentAddr(v);
101424 pLevel->op = bRev ? OP_Prev : OP_Next;
101425 pLevel->p1 = iCur;
101426 pLevel->p2 = start;
101427 if( pStart==0 && pEnd==0 ){
101428 pLevel->p5 = SQLITE_STMTSTATUS_FULLSCAN_STEP;
101429 }else{
101430 assert( pLevel->p5==0 );
101432 if( testOp!=OP_Noop ){
101433 iRowidReg = iReleaseReg = sqlite3GetTempReg(pParse);
101434 sqlite3VdbeAddOp2(v, OP_Rowid, iCur, iRowidReg);
101435 sqlite3ExprCacheStore(pParse, iCur, -1, iRowidReg);
101436 sqlite3VdbeAddOp3(v, testOp, memEndValue, addrBrk, iRowidReg);
101437 sqlite3VdbeChangeP5(v, SQLITE_AFF_NUMERIC | SQLITE_JUMPIFNULL);
101439 }else if( pLevel->plan.wsFlags & (WHERE_COLUMN_RANGE|WHERE_COLUMN_EQ) ){
101440 /* Case 3: A scan using an index.
101442 ** The WHERE clause may contain zero or more equality
101443 ** terms ("==" or "IN" operators) that refer to the N
101444 ** left-most columns of the index. It may also contain
101445 ** inequality constraints (>, <, >= or <=) on the indexed
101446 ** column that immediately follows the N equalities. Only
101447 ** the right-most column can be an inequality - the rest must
101448 ** use the "==" and "IN" operators. For example, if the
101449 ** index is on (x,y,z), then the following clauses are all
101450 ** optimized:
101452 ** x=5
101453 ** x=5 AND y=10
101454 ** x=5 AND y<10
101455 ** x=5 AND y>5 AND y<10
101456 ** x=5 AND y=5 AND z<=10
101458 ** The z<10 term of the following cannot be used, only
101459 ** the x=5 term:
101461 ** x=5 AND z<10
101463 ** N may be zero if there are inequality constraints.
101464 ** If there are no inequality constraints, then N is at
101465 ** least one.
101467 ** This case is also used when there are no WHERE clause
101468 ** constraints but an index is selected anyway, in order
101469 ** to force the output order to conform to an ORDER BY.
101471 static const u8 aStartOp[] = {
101474 OP_Rewind, /* 2: (!start_constraints && startEq && !bRev) */
101475 OP_Last, /* 3: (!start_constraints && startEq && bRev) */
101476 OP_SeekGt, /* 4: (start_constraints && !startEq && !bRev) */
101477 OP_SeekLt, /* 5: (start_constraints && !startEq && bRev) */
101478 OP_SeekGe, /* 6: (start_constraints && startEq && !bRev) */
101479 OP_SeekLe /* 7: (start_constraints && startEq && bRev) */
101481 static const u8 aEndOp[] = {
101482 OP_Noop, /* 0: (!end_constraints) */
101483 OP_IdxGE, /* 1: (end_constraints && !bRev) */
101484 OP_IdxLT /* 2: (end_constraints && bRev) */
101486 int nEq = pLevel->plan.nEq; /* Number of == or IN terms */
101487 int isMinQuery = 0; /* If this is an optimized SELECT min(x).. */
101488 int regBase; /* Base register holding constraint values */
101489 int r1; /* Temp register */
101490 WhereTerm *pRangeStart = 0; /* Inequality constraint at range start */
101491 WhereTerm *pRangeEnd = 0; /* Inequality constraint at range end */
101492 int startEq; /* True if range start uses ==, >= or <= */
101493 int endEq; /* True if range end uses ==, >= or <= */
101494 int start_constraints; /* Start of range is constrained */
101495 int nConstraint; /* Number of constraint terms */
101496 Index *pIdx; /* The index we will be using */
101497 int iIdxCur; /* The VDBE cursor for the index */
101498 int nExtraReg = 0; /* Number of extra registers needed */
101499 int op; /* Instruction opcode */
101500 char *zStartAff; /* Affinity for start of range constraint */
101501 char *zEndAff; /* Affinity for end of range constraint */
101503 pIdx = pLevel->plan.u.pIdx;
101504 iIdxCur = pLevel->iIdxCur;
101505 k = pIdx->aiColumn[nEq]; /* Column for inequality constraints */
101507 /* If this loop satisfies a sort order (pOrderBy) request that
101508 ** was passed to this function to implement a "SELECT min(x) ..."
101509 ** query, then the caller will only allow the loop to run for
101510 ** a single iteration. This means that the first row returned
101511 ** should not have a NULL value stored in 'x'. If column 'x' is
101512 ** the first one after the nEq equality constraints in the index,
101513 ** this requires some special handling.
101515 if( (wctrlFlags&WHERE_ORDERBY_MIN)!=0
101516 && (pLevel->plan.wsFlags&WHERE_ORDERBY)
101517 && (pIdx->nColumn>nEq)
101519 /* assert( pOrderBy->nExpr==1 ); */
101520 /* assert( pOrderBy->a[0].pExpr->iColumn==pIdx->aiColumn[nEq] ); */
101521 isMinQuery = 1;
101522 nExtraReg = 1;
101525 /* Find any inequality constraint terms for the start and end
101526 ** of the range.
101528 if( pLevel->plan.wsFlags & WHERE_TOP_LIMIT ){
101529 pRangeEnd = findTerm(pWC, iCur, k, notReady, (WO_LT|WO_LE), pIdx);
101530 nExtraReg = 1;
101532 if( pLevel->plan.wsFlags & WHERE_BTM_LIMIT ){
101533 pRangeStart = findTerm(pWC, iCur, k, notReady, (WO_GT|WO_GE), pIdx);
101534 nExtraReg = 1;
101537 /* Generate code to evaluate all constraint terms using == or IN
101538 ** and store the values of those terms in an array of registers
101539 ** starting at regBase.
101541 regBase = codeAllEqualityTerms(
101542 pParse, pLevel, pWC, notReady, nExtraReg, &zStartAff
101544 zEndAff = sqlite3DbStrDup(pParse->db, zStartAff);
101545 addrNxt = pLevel->addrNxt;
101547 /* If we are doing a reverse order scan on an ascending index, or
101548 ** a forward order scan on a descending index, interchange the
101549 ** start and end terms (pRangeStart and pRangeEnd).
101551 if( nEq<pIdx->nColumn && bRev==(pIdx->aSortOrder[nEq]==SQLITE_SO_ASC) ){
101552 SWAP(WhereTerm *, pRangeEnd, pRangeStart);
101555 testcase( pRangeStart && pRangeStart->eOperator & WO_LE );
101556 testcase( pRangeStart && pRangeStart->eOperator & WO_GE );
101557 testcase( pRangeEnd && pRangeEnd->eOperator & WO_LE );
101558 testcase( pRangeEnd && pRangeEnd->eOperator & WO_GE );
101559 startEq = !pRangeStart || pRangeStart->eOperator & (WO_LE|WO_GE);
101560 endEq = !pRangeEnd || pRangeEnd->eOperator & (WO_LE|WO_GE);
101561 start_constraints = pRangeStart || nEq>0;
101563 /* Seek the index cursor to the start of the range. */
101564 nConstraint = nEq;
101565 if( pRangeStart ){
101566 Expr *pRight = pRangeStart->pExpr->pRight;
101567 sqlite3ExprCode(pParse, pRight, regBase+nEq);
101568 if( (pRangeStart->wtFlags & TERM_VNULL)==0 ){
101569 sqlite3ExprCodeIsNullJump(v, pRight, regBase+nEq, addrNxt);
101571 if( zStartAff ){
101572 if( sqlite3CompareAffinity(pRight, zStartAff[nEq])==SQLITE_AFF_NONE){
101573 /* Since the comparison is to be performed with no conversions
101574 ** applied to the operands, set the affinity to apply to pRight to
101575 ** SQLITE_AFF_NONE. */
101576 zStartAff[nEq] = SQLITE_AFF_NONE;
101578 if( sqlite3ExprNeedsNoAffinityChange(pRight, zStartAff[nEq]) ){
101579 zStartAff[nEq] = SQLITE_AFF_NONE;
101582 nConstraint++;
101583 testcase( pRangeStart->wtFlags & TERM_VIRTUAL ); /* EV: R-30575-11662 */
101584 }else if( isMinQuery ){
101585 sqlite3VdbeAddOp2(v, OP_Null, 0, regBase+nEq);
101586 nConstraint++;
101587 startEq = 0;
101588 start_constraints = 1;
101590 codeApplyAffinity(pParse, regBase, nConstraint, zStartAff);
101591 op = aStartOp[(start_constraints<<2) + (startEq<<1) + bRev];
101592 assert( op!=0 );
101593 testcase( op==OP_Rewind );
101594 testcase( op==OP_Last );
101595 testcase( op==OP_SeekGt );
101596 testcase( op==OP_SeekGe );
101597 testcase( op==OP_SeekLe );
101598 testcase( op==OP_SeekLt );
101599 sqlite3VdbeAddOp4Int(v, op, iIdxCur, addrNxt, regBase, nConstraint);
101601 /* Load the value for the inequality constraint at the end of the
101602 ** range (if any).
101604 nConstraint = nEq;
101605 if( pRangeEnd ){
101606 Expr *pRight = pRangeEnd->pExpr->pRight;
101607 sqlite3ExprCacheRemove(pParse, regBase+nEq, 1);
101608 sqlite3ExprCode(pParse, pRight, regBase+nEq);
101609 if( (pRangeEnd->wtFlags & TERM_VNULL)==0 ){
101610 sqlite3ExprCodeIsNullJump(v, pRight, regBase+nEq, addrNxt);
101612 if( zEndAff ){
101613 if( sqlite3CompareAffinity(pRight, zEndAff[nEq])==SQLITE_AFF_NONE){
101614 /* Since the comparison is to be performed with no conversions
101615 ** applied to the operands, set the affinity to apply to pRight to
101616 ** SQLITE_AFF_NONE. */
101617 zEndAff[nEq] = SQLITE_AFF_NONE;
101619 if( sqlite3ExprNeedsNoAffinityChange(pRight, zEndAff[nEq]) ){
101620 zEndAff[nEq] = SQLITE_AFF_NONE;
101623 codeApplyAffinity(pParse, regBase, nEq+1, zEndAff);
101624 nConstraint++;
101625 testcase( pRangeEnd->wtFlags & TERM_VIRTUAL ); /* EV: R-30575-11662 */
101627 sqlite3DbFree(pParse->db, zStartAff);
101628 sqlite3DbFree(pParse->db, zEndAff);
101630 /* Top of the loop body */
101631 pLevel->p2 = sqlite3VdbeCurrentAddr(v);
101633 /* Check if the index cursor is past the end of the range. */
101634 op = aEndOp[(pRangeEnd || nEq) * (1 + bRev)];
101635 testcase( op==OP_Noop );
101636 testcase( op==OP_IdxGE );
101637 testcase( op==OP_IdxLT );
101638 if( op!=OP_Noop ){
101639 sqlite3VdbeAddOp4Int(v, op, iIdxCur, addrNxt, regBase, nConstraint);
101640 sqlite3VdbeChangeP5(v, endEq!=bRev ?1:0);
101643 /* If there are inequality constraints, check that the value
101644 ** of the table column that the inequality contrains is not NULL.
101645 ** If it is, jump to the next iteration of the loop.
101647 r1 = sqlite3GetTempReg(pParse);
101648 testcase( pLevel->plan.wsFlags & WHERE_BTM_LIMIT );
101649 testcase( pLevel->plan.wsFlags & WHERE_TOP_LIMIT );
101650 if( (pLevel->plan.wsFlags & (WHERE_BTM_LIMIT|WHERE_TOP_LIMIT))!=0 ){
101651 sqlite3VdbeAddOp3(v, OP_Column, iIdxCur, nEq, r1);
101652 sqlite3VdbeAddOp2(v, OP_IsNull, r1, addrCont);
101654 sqlite3ReleaseTempReg(pParse, r1);
101656 /* Seek the table cursor, if required */
101657 disableTerm(pLevel, pRangeStart);
101658 disableTerm(pLevel, pRangeEnd);
101659 if( !omitTable ){
101660 iRowidReg = iReleaseReg = sqlite3GetTempReg(pParse);
101661 sqlite3VdbeAddOp2(v, OP_IdxRowid, iIdxCur, iRowidReg);
101662 sqlite3ExprCacheStore(pParse, iCur, -1, iRowidReg);
101663 sqlite3VdbeAddOp2(v, OP_Seek, iCur, iRowidReg); /* Deferred seek */
101666 /* Record the instruction used to terminate the loop. Disable
101667 ** WHERE clause terms made redundant by the index range scan.
101669 if( pLevel->plan.wsFlags & WHERE_UNIQUE ){
101670 pLevel->op = OP_Noop;
101671 }else if( bRev ){
101672 pLevel->op = OP_Prev;
101673 }else{
101674 pLevel->op = OP_Next;
101676 pLevel->p1 = iIdxCur;
101677 }else
101679 #ifndef SQLITE_OMIT_OR_OPTIMIZATION
101680 if( pLevel->plan.wsFlags & WHERE_MULTI_OR ){
101681 /* Case 4: Two or more separately indexed terms connected by OR
101683 ** Example:
101685 ** CREATE TABLE t1(a,b,c,d);
101686 ** CREATE INDEX i1 ON t1(a);
101687 ** CREATE INDEX i2 ON t1(b);
101688 ** CREATE INDEX i3 ON t1(c);
101690 ** SELECT * FROM t1 WHERE a=5 OR b=7 OR (c=11 AND d=13)
101692 ** In the example, there are three indexed terms connected by OR.
101693 ** The top of the loop looks like this:
101695 ** Null 1 # Zero the rowset in reg 1
101697 ** Then, for each indexed term, the following. The arguments to
101698 ** RowSetTest are such that the rowid of the current row is inserted
101699 ** into the RowSet. If it is already present, control skips the
101700 ** Gosub opcode and jumps straight to the code generated by WhereEnd().
101702 ** sqlite3WhereBegin(<term>)
101703 ** RowSetTest # Insert rowid into rowset
101704 ** Gosub 2 A
101705 ** sqlite3WhereEnd()
101707 ** Following the above, code to terminate the loop. Label A, the target
101708 ** of the Gosub above, jumps to the instruction right after the Goto.
101710 ** Null 1 # Zero the rowset in reg 1
101711 ** Goto B # The loop is finished.
101713 ** A: <loop body> # Return data, whatever.
101715 ** Return 2 # Jump back to the Gosub
101717 ** B: <after the loop>
101720 WhereClause *pOrWc; /* The OR-clause broken out into subterms */
101721 SrcList *pOrTab; /* Shortened table list or OR-clause generation */
101723 int regReturn = ++pParse->nMem; /* Register used with OP_Gosub */
101724 int regRowset = 0; /* Register for RowSet object */
101725 int regRowid = 0; /* Register holding rowid */
101726 int iLoopBody = sqlite3VdbeMakeLabel(v); /* Start of loop body */
101727 int iRetInit; /* Address of regReturn init */
101728 int untestedTerms = 0; /* Some terms not completely tested */
101729 int ii;
101731 pTerm = pLevel->plan.u.pTerm;
101732 assert( pTerm!=0 );
101733 assert( pTerm->eOperator==WO_OR );
101734 assert( (pTerm->wtFlags & TERM_ORINFO)!=0 );
101735 pOrWc = &pTerm->u.pOrInfo->wc;
101736 pLevel->op = OP_Return;
101737 pLevel->p1 = regReturn;
101739 /* Set up a new SrcList ni pOrTab containing the table being scanned
101740 ** by this loop in the a[0] slot and all notReady tables in a[1..] slots.
101741 ** This becomes the SrcList in the recursive call to sqlite3WhereBegin().
101743 if( pWInfo->nLevel>1 ){
101744 int nNotReady; /* The number of notReady tables */
101745 struct SrcList_item *origSrc; /* Original list of tables */
101746 nNotReady = pWInfo->nLevel - iLevel - 1;
101747 pOrTab = sqlite3StackAllocRaw(pParse->db,
101748 sizeof(*pOrTab)+ nNotReady*sizeof(pOrTab->a[0]));
101749 if( pOrTab==0 ) return notReady;
101750 pOrTab->nAlloc = (i16)(nNotReady + 1);
101751 pOrTab->nSrc = pOrTab->nAlloc;
101752 memcpy(pOrTab->a, pTabItem, sizeof(*pTabItem));
101753 origSrc = pWInfo->pTabList->a;
101754 for(k=1; k<=nNotReady; k++){
101755 memcpy(&pOrTab->a[k], &origSrc[pLevel[k].iFrom], sizeof(pOrTab->a[k]));
101757 }else{
101758 pOrTab = pWInfo->pTabList;
101761 /* Initialize the rowset register to contain NULL. An SQL NULL is
101762 ** equivalent to an empty rowset.
101764 ** Also initialize regReturn to contain the address of the instruction
101765 ** immediately following the OP_Return at the bottom of the loop. This
101766 ** is required in a few obscure LEFT JOIN cases where control jumps
101767 ** over the top of the loop into the body of it. In this case the
101768 ** correct response for the end-of-loop code (the OP_Return) is to
101769 ** fall through to the next instruction, just as an OP_Next does if
101770 ** called on an uninitialized cursor.
101772 if( (wctrlFlags & WHERE_DUPLICATES_OK)==0 ){
101773 regRowset = ++pParse->nMem;
101774 regRowid = ++pParse->nMem;
101775 sqlite3VdbeAddOp2(v, OP_Null, 0, regRowset);
101777 iRetInit = sqlite3VdbeAddOp2(v, OP_Integer, 0, regReturn);
101779 for(ii=0; ii<pOrWc->nTerm; ii++){
101780 WhereTerm *pOrTerm = &pOrWc->a[ii];
101781 if( pOrTerm->leftCursor==iCur || pOrTerm->eOperator==WO_AND ){
101782 WhereInfo *pSubWInfo; /* Info for single OR-term scan */
101783 /* Loop through table entries that match term pOrTerm. */
101784 pSubWInfo = sqlite3WhereBegin(pParse, pOrTab, pOrTerm->pExpr, 0,
101785 WHERE_OMIT_OPEN | WHERE_OMIT_CLOSE |
101786 WHERE_FORCE_TABLE | WHERE_ONETABLE_ONLY);
101787 if( pSubWInfo ){
101788 explainOneScan(
101789 pParse, pOrTab, &pSubWInfo->a[0], iLevel, pLevel->iFrom, 0
101791 if( (wctrlFlags & WHERE_DUPLICATES_OK)==0 ){
101792 int iSet = ((ii==pOrWc->nTerm-1)?-1:ii);
101793 int r;
101794 r = sqlite3ExprCodeGetColumn(pParse, pTabItem->pTab, -1, iCur,
101795 regRowid);
101796 sqlite3VdbeAddOp4Int(v, OP_RowSetTest, regRowset,
101797 sqlite3VdbeCurrentAddr(v)+2, r, iSet);
101799 sqlite3VdbeAddOp2(v, OP_Gosub, regReturn, iLoopBody);
101801 /* The pSubWInfo->untestedTerms flag means that this OR term
101802 ** contained one or more AND term from a notReady table. The
101803 ** terms from the notReady table could not be tested and will
101804 ** need to be tested later.
101806 if( pSubWInfo->untestedTerms ) untestedTerms = 1;
101808 /* Finish the loop through table entries that match term pOrTerm. */
101809 sqlite3WhereEnd(pSubWInfo);
101813 sqlite3VdbeChangeP1(v, iRetInit, sqlite3VdbeCurrentAddr(v));
101814 sqlite3VdbeAddOp2(v, OP_Goto, 0, pLevel->addrBrk);
101815 sqlite3VdbeResolveLabel(v, iLoopBody);
101817 if( pWInfo->nLevel>1 ) sqlite3StackFree(pParse->db, pOrTab);
101818 if( !untestedTerms ) disableTerm(pLevel, pTerm);
101819 }else
101820 #endif /* SQLITE_OMIT_OR_OPTIMIZATION */
101823 /* Case 5: There is no usable index. We must do a complete
101824 ** scan of the entire table.
101826 static const u8 aStep[] = { OP_Next, OP_Prev };
101827 static const u8 aStart[] = { OP_Rewind, OP_Last };
101828 assert( bRev==0 || bRev==1 );
101829 assert( omitTable==0 );
101830 pLevel->op = aStep[bRev];
101831 pLevel->p1 = iCur;
101832 pLevel->p2 = 1 + sqlite3VdbeAddOp2(v, aStart[bRev], iCur, addrBrk);
101833 pLevel->p5 = SQLITE_STMTSTATUS_FULLSCAN_STEP;
101835 notReady &= ~getMask(pWC->pMaskSet, iCur);
101837 /* Insert code to test every subexpression that can be completely
101838 ** computed using the current set of tables.
101840 ** IMPLEMENTATION-OF: R-49525-50935 Terms that cannot be satisfied through
101841 ** the use of indices become tests that are evaluated against each row of
101842 ** the relevant input tables.
101844 for(pTerm=pWC->a, j=pWC->nTerm; j>0; j--, pTerm++){
101845 Expr *pE;
101846 testcase( pTerm->wtFlags & TERM_VIRTUAL ); /* IMP: R-30575-11662 */
101847 testcase( pTerm->wtFlags & TERM_CODED );
101848 if( pTerm->wtFlags & (TERM_VIRTUAL|TERM_CODED) ) continue;
101849 if( (pTerm->prereqAll & notReady)!=0 ){
101850 testcase( pWInfo->untestedTerms==0
101851 && (pWInfo->wctrlFlags & WHERE_ONETABLE_ONLY)!=0 );
101852 pWInfo->untestedTerms = 1;
101853 continue;
101855 pE = pTerm->pExpr;
101856 assert( pE!=0 );
101857 if( pLevel->iLeftJoin && !ExprHasProperty(pE, EP_FromJoin) ){
101858 continue;
101860 sqlite3ExprIfFalse(pParse, pE, addrCont, SQLITE_JUMPIFNULL);
101861 pTerm->wtFlags |= TERM_CODED;
101864 /* For a LEFT OUTER JOIN, generate code that will record the fact that
101865 ** at least one row of the right table has matched the left table.
101867 if( pLevel->iLeftJoin ){
101868 pLevel->addrFirst = sqlite3VdbeCurrentAddr(v);
101869 sqlite3VdbeAddOp2(v, OP_Integer, 1, pLevel->iLeftJoin);
101870 VdbeComment((v, "record LEFT JOIN hit"));
101871 sqlite3ExprCacheClear(pParse);
101872 for(pTerm=pWC->a, j=0; j<pWC->nTerm; j++, pTerm++){
101873 testcase( pTerm->wtFlags & TERM_VIRTUAL ); /* IMP: R-30575-11662 */
101874 testcase( pTerm->wtFlags & TERM_CODED );
101875 if( pTerm->wtFlags & (TERM_VIRTUAL|TERM_CODED) ) continue;
101876 if( (pTerm->prereqAll & notReady)!=0 ){
101877 assert( pWInfo->untestedTerms );
101878 continue;
101880 assert( pTerm->pExpr );
101881 sqlite3ExprIfFalse(pParse, pTerm->pExpr, addrCont, SQLITE_JUMPIFNULL);
101882 pTerm->wtFlags |= TERM_CODED;
101885 sqlite3ReleaseTempReg(pParse, iReleaseReg);
101887 return notReady;
101890 #if defined(SQLITE_TEST)
101892 ** The following variable holds a text description of query plan generated
101893 ** by the most recent call to sqlite3WhereBegin(). Each call to WhereBegin
101894 ** overwrites the previous. This information is used for testing and
101895 ** analysis only.
101897 SQLITE_API char sqlite3_query_plan[BMS*2*40]; /* Text of the join */
101898 static int nQPlan = 0; /* Next free slow in _query_plan[] */
101900 #endif /* SQLITE_TEST */
101904 ** Free a WhereInfo structure
101906 static void whereInfoFree(sqlite3 *db, WhereInfo *pWInfo){
101907 if( ALWAYS(pWInfo) ){
101908 int i;
101909 for(i=0; i<pWInfo->nLevel; i++){
101910 sqlite3_index_info *pInfo = pWInfo->a[i].pIdxInfo;
101911 if( pInfo ){
101912 /* assert( pInfo->needToFreeIdxStr==0 || db->mallocFailed ); */
101913 if( pInfo->needToFreeIdxStr ){
101914 sqlite3_free(pInfo->idxStr);
101916 sqlite3DbFree(db, pInfo);
101918 if( pWInfo->a[i].plan.wsFlags & WHERE_TEMP_INDEX ){
101919 Index *pIdx = pWInfo->a[i].plan.u.pIdx;
101920 if( pIdx ){
101921 sqlite3DbFree(db, pIdx->zColAff);
101922 sqlite3DbFree(db, pIdx);
101926 whereClauseClear(pWInfo->pWC);
101927 sqlite3DbFree(db, pWInfo);
101933 ** Generate the beginning of the loop used for WHERE clause processing.
101934 ** The return value is a pointer to an opaque structure that contains
101935 ** information needed to terminate the loop. Later, the calling routine
101936 ** should invoke sqlite3WhereEnd() with the return value of this function
101937 ** in order to complete the WHERE clause processing.
101939 ** If an error occurs, this routine returns NULL.
101941 ** The basic idea is to do a nested loop, one loop for each table in
101942 ** the FROM clause of a select. (INSERT and UPDATE statements are the
101943 ** same as a SELECT with only a single table in the FROM clause.) For
101944 ** example, if the SQL is this:
101946 ** SELECT * FROM t1, t2, t3 WHERE ...;
101948 ** Then the code generated is conceptually like the following:
101950 ** foreach row1 in t1 do \ Code generated
101951 ** foreach row2 in t2 do |-- by sqlite3WhereBegin()
101952 ** foreach row3 in t3 do /
101953 ** ...
101954 ** end \ Code generated
101955 ** end |-- by sqlite3WhereEnd()
101956 ** end /
101958 ** Note that the loops might not be nested in the order in which they
101959 ** appear in the FROM clause if a different order is better able to make
101960 ** use of indices. Note also that when the IN operator appears in
101961 ** the WHERE clause, it might result in additional nested loops for
101962 ** scanning through all values on the right-hand side of the IN.
101964 ** There are Btree cursors associated with each table. t1 uses cursor
101965 ** number pTabList->a[0].iCursor. t2 uses the cursor pTabList->a[1].iCursor.
101966 ** And so forth. This routine generates code to open those VDBE cursors
101967 ** and sqlite3WhereEnd() generates the code to close them.
101969 ** The code that sqlite3WhereBegin() generates leaves the cursors named
101970 ** in pTabList pointing at their appropriate entries. The [...] code
101971 ** can use OP_Column and OP_Rowid opcodes on these cursors to extract
101972 ** data from the various tables of the loop.
101974 ** If the WHERE clause is empty, the foreach loops must each scan their
101975 ** entire tables. Thus a three-way join is an O(N^3) operation. But if
101976 ** the tables have indices and there are terms in the WHERE clause that
101977 ** refer to those indices, a complete table scan can be avoided and the
101978 ** code will run much faster. Most of the work of this routine is checking
101979 ** to see if there are indices that can be used to speed up the loop.
101981 ** Terms of the WHERE clause are also used to limit which rows actually
101982 ** make it to the "..." in the middle of the loop. After each "foreach",
101983 ** terms of the WHERE clause that use only terms in that loop and outer
101984 ** loops are evaluated and if false a jump is made around all subsequent
101985 ** inner loops (or around the "..." if the test occurs within the inner-
101986 ** most loop)
101988 ** OUTER JOINS
101990 ** An outer join of tables t1 and t2 is conceptally coded as follows:
101992 ** foreach row1 in t1 do
101993 ** flag = 0
101994 ** foreach row2 in t2 do
101995 ** start:
101996 ** ...
101997 ** flag = 1
101998 ** end
101999 ** if flag==0 then
102000 ** move the row2 cursor to a null row
102001 ** goto start
102002 ** fi
102003 ** end
102005 ** ORDER BY CLAUSE PROCESSING
102007 ** *ppOrderBy is a pointer to the ORDER BY clause of a SELECT statement,
102008 ** if there is one. If there is no ORDER BY clause or if this routine
102009 ** is called from an UPDATE or DELETE statement, then ppOrderBy is NULL.
102011 ** If an index can be used so that the natural output order of the table
102012 ** scan is correct for the ORDER BY clause, then that index is used and
102013 ** *ppOrderBy is set to NULL. This is an optimization that prevents an
102014 ** unnecessary sort of the result set if an index appropriate for the
102015 ** ORDER BY clause already exists.
102017 ** If the where clause loops cannot be arranged to provide the correct
102018 ** output order, then the *ppOrderBy is unchanged.
102020 SQLITE_PRIVATE WhereInfo *sqlite3WhereBegin(
102021 Parse *pParse, /* The parser context */
102022 SrcList *pTabList, /* A list of all tables to be scanned */
102023 Expr *pWhere, /* The WHERE clause */
102024 ExprList **ppOrderBy, /* An ORDER BY clause, or NULL */
102025 u16 wctrlFlags /* One of the WHERE_* flags defined in sqliteInt.h */
102027 int i; /* Loop counter */
102028 int nByteWInfo; /* Num. bytes allocated for WhereInfo struct */
102029 int nTabList; /* Number of elements in pTabList */
102030 WhereInfo *pWInfo; /* Will become the return value of this function */
102031 Vdbe *v = pParse->pVdbe; /* The virtual database engine */
102032 Bitmask notReady; /* Cursors that are not yet positioned */
102033 WhereMaskSet *pMaskSet; /* The expression mask set */
102034 WhereClause *pWC; /* Decomposition of the WHERE clause */
102035 struct SrcList_item *pTabItem; /* A single entry from pTabList */
102036 WhereLevel *pLevel; /* A single level in the pWInfo list */
102037 int iFrom; /* First unused FROM clause element */
102038 int andFlags; /* AND-ed combination of all pWC->a[].wtFlags */
102039 sqlite3 *db; /* Database connection */
102041 /* The number of tables in the FROM clause is limited by the number of
102042 ** bits in a Bitmask
102044 testcase( pTabList->nSrc==BMS );
102045 if( pTabList->nSrc>BMS ){
102046 sqlite3ErrorMsg(pParse, "at most %d tables in a join", BMS);
102047 return 0;
102050 /* This function normally generates a nested loop for all tables in
102051 ** pTabList. But if the WHERE_ONETABLE_ONLY flag is set, then we should
102052 ** only generate code for the first table in pTabList and assume that
102053 ** any cursors associated with subsequent tables are uninitialized.
102055 nTabList = (wctrlFlags & WHERE_ONETABLE_ONLY) ? 1 : pTabList->nSrc;
102057 /* Allocate and initialize the WhereInfo structure that will become the
102058 ** return value. A single allocation is used to store the WhereInfo
102059 ** struct, the contents of WhereInfo.a[], the WhereClause structure
102060 ** and the WhereMaskSet structure. Since WhereClause contains an 8-byte
102061 ** field (type Bitmask) it must be aligned on an 8-byte boundary on
102062 ** some architectures. Hence the ROUND8() below.
102064 db = pParse->db;
102065 nByteWInfo = ROUND8(sizeof(WhereInfo)+(nTabList-1)*sizeof(WhereLevel));
102066 pWInfo = sqlite3DbMallocZero(db,
102067 nByteWInfo +
102068 sizeof(WhereClause) +
102069 sizeof(WhereMaskSet)
102071 if( db->mallocFailed ){
102072 sqlite3DbFree(db, pWInfo);
102073 pWInfo = 0;
102074 goto whereBeginError;
102076 pWInfo->nLevel = nTabList;
102077 pWInfo->pParse = pParse;
102078 pWInfo->pTabList = pTabList;
102079 pWInfo->iBreak = sqlite3VdbeMakeLabel(v);
102080 pWInfo->pWC = pWC = (WhereClause *)&((u8 *)pWInfo)[nByteWInfo];
102081 pWInfo->wctrlFlags = wctrlFlags;
102082 pWInfo->savedNQueryLoop = pParse->nQueryLoop;
102083 pMaskSet = (WhereMaskSet*)&pWC[1];
102085 /* Split the WHERE clause into separate subexpressions where each
102086 ** subexpression is separated by an AND operator.
102088 initMaskSet(pMaskSet);
102089 whereClauseInit(pWC, pParse, pMaskSet);
102090 sqlite3ExprCodeConstants(pParse, pWhere);
102091 whereSplit(pWC, pWhere, TK_AND); /* IMP: R-15842-53296 */
102093 /* Special case: a WHERE clause that is constant. Evaluate the
102094 ** expression and either jump over all of the code or fall thru.
102096 if( pWhere && (nTabList==0 || sqlite3ExprIsConstantNotJoin(pWhere)) ){
102097 sqlite3ExprIfFalse(pParse, pWhere, pWInfo->iBreak, SQLITE_JUMPIFNULL);
102098 pWhere = 0;
102101 /* Assign a bit from the bitmask to every term in the FROM clause.
102103 ** When assigning bitmask values to FROM clause cursors, it must be
102104 ** the case that if X is the bitmask for the N-th FROM clause term then
102105 ** the bitmask for all FROM clause terms to the left of the N-th term
102106 ** is (X-1). An expression from the ON clause of a LEFT JOIN can use
102107 ** its Expr.iRightJoinTable value to find the bitmask of the right table
102108 ** of the join. Subtracting one from the right table bitmask gives a
102109 ** bitmask for all tables to the left of the join. Knowing the bitmask
102110 ** for all tables to the left of a left join is important. Ticket #3015.
102112 ** Configure the WhereClause.vmask variable so that bits that correspond
102113 ** to virtual table cursors are set. This is used to selectively disable
102114 ** the OR-to-IN transformation in exprAnalyzeOrTerm(). It is not helpful
102115 ** with virtual tables.
102117 ** Note that bitmasks are created for all pTabList->nSrc tables in
102118 ** pTabList, not just the first nTabList tables. nTabList is normally
102119 ** equal to pTabList->nSrc but might be shortened to 1 if the
102120 ** WHERE_ONETABLE_ONLY flag is set.
102122 assert( pWC->vmask==0 && pMaskSet->n==0 );
102123 for(i=0; i<pTabList->nSrc; i++){
102124 createMask(pMaskSet, pTabList->a[i].iCursor);
102125 #ifndef SQLITE_OMIT_VIRTUALTABLE
102126 if( ALWAYS(pTabList->a[i].pTab) && IsVirtual(pTabList->a[i].pTab) ){
102127 pWC->vmask |= ((Bitmask)1 << i);
102129 #endif
102131 #ifndef NDEBUG
102133 Bitmask toTheLeft = 0;
102134 for(i=0; i<pTabList->nSrc; i++){
102135 Bitmask m = getMask(pMaskSet, pTabList->a[i].iCursor);
102136 assert( (m-1)==toTheLeft );
102137 toTheLeft |= m;
102140 #endif
102142 /* Analyze all of the subexpressions. Note that exprAnalyze() might
102143 ** add new virtual terms onto the end of the WHERE clause. We do not
102144 ** want to analyze these virtual terms, so start analyzing at the end
102145 ** and work forward so that the added virtual terms are never processed.
102147 exprAnalyzeAll(pTabList, pWC);
102148 if( db->mallocFailed ){
102149 goto whereBeginError;
102152 /* Chose the best index to use for each table in the FROM clause.
102154 ** This loop fills in the following fields:
102156 ** pWInfo->a[].pIdx The index to use for this level of the loop.
102157 ** pWInfo->a[].wsFlags WHERE_xxx flags associated with pIdx
102158 ** pWInfo->a[].nEq The number of == and IN constraints
102159 ** pWInfo->a[].iFrom Which term of the FROM clause is being coded
102160 ** pWInfo->a[].iTabCur The VDBE cursor for the database table
102161 ** pWInfo->a[].iIdxCur The VDBE cursor for the index
102162 ** pWInfo->a[].pTerm When wsFlags==WO_OR, the OR-clause term
102164 ** This loop also figures out the nesting order of tables in the FROM
102165 ** clause.
102167 notReady = ~(Bitmask)0;
102168 andFlags = ~0;
102169 WHERETRACE(("*** Optimizer Start ***\n"));
102170 for(i=iFrom=0, pLevel=pWInfo->a; i<nTabList; i++, pLevel++){
102171 WhereCost bestPlan; /* Most efficient plan seen so far */
102172 Index *pIdx; /* Index for FROM table at pTabItem */
102173 int j; /* For looping over FROM tables */
102174 int bestJ = -1; /* The value of j */
102175 Bitmask m; /* Bitmask value for j or bestJ */
102176 int isOptimal; /* Iterator for optimal/non-optimal search */
102177 int nUnconstrained; /* Number tables without INDEXED BY */
102178 Bitmask notIndexed; /* Mask of tables that cannot use an index */
102180 memset(&bestPlan, 0, sizeof(bestPlan));
102181 bestPlan.rCost = SQLITE_BIG_DBL;
102182 WHERETRACE(("*** Begin search for loop %d ***\n", i));
102184 /* Loop through the remaining entries in the FROM clause to find the
102185 ** next nested loop. The loop tests all FROM clause entries
102186 ** either once or twice.
102188 ** The first test is always performed if there are two or more entries
102189 ** remaining and never performed if there is only one FROM clause entry
102190 ** to choose from. The first test looks for an "optimal" scan. In
102191 ** this context an optimal scan is one that uses the same strategy
102192 ** for the given FROM clause entry as would be selected if the entry
102193 ** were used as the innermost nested loop. In other words, a table
102194 ** is chosen such that the cost of running that table cannot be reduced
102195 ** by waiting for other tables to run first. This "optimal" test works
102196 ** by first assuming that the FROM clause is on the inner loop and finding
102197 ** its query plan, then checking to see if that query plan uses any
102198 ** other FROM clause terms that are notReady. If no notReady terms are
102199 ** used then the "optimal" query plan works.
102201 ** Note that the WhereCost.nRow parameter for an optimal scan might
102202 ** not be as small as it would be if the table really were the innermost
102203 ** join. The nRow value can be reduced by WHERE clause constraints
102204 ** that do not use indices. But this nRow reduction only happens if the
102205 ** table really is the innermost join.
102207 ** The second loop iteration is only performed if no optimal scan
102208 ** strategies were found by the first iteration. This second iteration
102209 ** is used to search for the lowest cost scan overall.
102211 ** Previous versions of SQLite performed only the second iteration -
102212 ** the next outermost loop was always that with the lowest overall
102213 ** cost. However, this meant that SQLite could select the wrong plan
102214 ** for scripts such as the following:
102216 ** CREATE TABLE t1(a, b);
102217 ** CREATE TABLE t2(c, d);
102218 ** SELECT * FROM t2, t1 WHERE t2.rowid = t1.a;
102220 ** The best strategy is to iterate through table t1 first. However it
102221 ** is not possible to determine this with a simple greedy algorithm.
102222 ** Since the cost of a linear scan through table t2 is the same
102223 ** as the cost of a linear scan through table t1, a simple greedy
102224 ** algorithm may choose to use t2 for the outer loop, which is a much
102225 ** costlier approach.
102227 nUnconstrained = 0;
102228 notIndexed = 0;
102229 for(isOptimal=(iFrom<nTabList-1); isOptimal>=0 && bestJ<0; isOptimal--){
102230 Bitmask mask; /* Mask of tables not yet ready */
102231 for(j=iFrom, pTabItem=&pTabList->a[j]; j<nTabList; j++, pTabItem++){
102232 int doNotReorder; /* True if this table should not be reordered */
102233 WhereCost sCost; /* Cost information from best[Virtual]Index() */
102234 ExprList *pOrderBy; /* ORDER BY clause for index to optimize */
102236 doNotReorder = (pTabItem->jointype & (JT_LEFT|JT_CROSS))!=0;
102237 if( j!=iFrom && doNotReorder ) break;
102238 m = getMask(pMaskSet, pTabItem->iCursor);
102239 if( (m & notReady)==0 ){
102240 if( j==iFrom ) iFrom++;
102241 continue;
102243 mask = (isOptimal ? m : notReady);
102244 pOrderBy = ((i==0 && ppOrderBy )?*ppOrderBy:0);
102245 if( pTabItem->pIndex==0 ) nUnconstrained++;
102247 WHERETRACE(("=== trying table %d with isOptimal=%d ===\n",
102248 j, isOptimal));
102249 assert( pTabItem->pTab );
102250 #ifndef SQLITE_OMIT_VIRTUALTABLE
102251 if( IsVirtual(pTabItem->pTab) ){
102252 sqlite3_index_info **pp = &pWInfo->a[j].pIdxInfo;
102253 bestVirtualIndex(pParse, pWC, pTabItem, mask, notReady, pOrderBy,
102254 &sCost, pp);
102255 }else
102256 #endif
102258 bestBtreeIndex(pParse, pWC, pTabItem, mask, notReady, pOrderBy,
102259 &sCost);
102261 assert( isOptimal || (sCost.used&notReady)==0 );
102263 /* If an INDEXED BY clause is present, then the plan must use that
102264 ** index if it uses any index at all */
102265 assert( pTabItem->pIndex==0
102266 || (sCost.plan.wsFlags & WHERE_NOT_FULLSCAN)==0
102267 || sCost.plan.u.pIdx==pTabItem->pIndex );
102269 if( isOptimal && (sCost.plan.wsFlags & WHERE_NOT_FULLSCAN)==0 ){
102270 notIndexed |= m;
102273 /* Conditions under which this table becomes the best so far:
102275 ** (1) The table must not depend on other tables that have not
102276 ** yet run.
102278 ** (2) A full-table-scan plan cannot supercede indexed plan unless
102279 ** the full-table-scan is an "optimal" plan as defined above.
102281 ** (3) All tables have an INDEXED BY clause or this table lacks an
102282 ** INDEXED BY clause or this table uses the specific
102283 ** index specified by its INDEXED BY clause. This rule ensures
102284 ** that a best-so-far is always selected even if an impossible
102285 ** combination of INDEXED BY clauses are given. The error
102286 ** will be detected and relayed back to the application later.
102287 ** The NEVER() comes about because rule (2) above prevents
102288 ** An indexable full-table-scan from reaching rule (3).
102290 ** (4) The plan cost must be lower than prior plans or else the
102291 ** cost must be the same and the number of rows must be lower.
102293 if( (sCost.used&notReady)==0 /* (1) */
102294 && (bestJ<0 || (notIndexed&m)!=0 /* (2) */
102295 || (bestPlan.plan.wsFlags & WHERE_NOT_FULLSCAN)==0
102296 || (sCost.plan.wsFlags & WHERE_NOT_FULLSCAN)!=0)
102297 && (nUnconstrained==0 || pTabItem->pIndex==0 /* (3) */
102298 || NEVER((sCost.plan.wsFlags & WHERE_NOT_FULLSCAN)!=0))
102299 && (bestJ<0 || sCost.rCost<bestPlan.rCost /* (4) */
102300 || (sCost.rCost<=bestPlan.rCost
102301 && sCost.plan.nRow<bestPlan.plan.nRow))
102303 WHERETRACE(("=== table %d is best so far"
102304 " with cost=%g and nRow=%g\n",
102305 j, sCost.rCost, sCost.plan.nRow));
102306 bestPlan = sCost;
102307 bestJ = j;
102309 if( doNotReorder ) break;
102312 assert( bestJ>=0 );
102313 assert( notReady & getMask(pMaskSet, pTabList->a[bestJ].iCursor) );
102314 WHERETRACE(("*** Optimizer selects table %d for loop %d"
102315 " with cost=%g and nRow=%g\n",
102316 bestJ, pLevel-pWInfo->a, bestPlan.rCost, bestPlan.plan.nRow));
102317 if( (bestPlan.plan.wsFlags & WHERE_ORDERBY)!=0 ){
102318 *ppOrderBy = 0;
102320 andFlags &= bestPlan.plan.wsFlags;
102321 pLevel->plan = bestPlan.plan;
102322 testcase( bestPlan.plan.wsFlags & WHERE_INDEXED );
102323 testcase( bestPlan.plan.wsFlags & WHERE_TEMP_INDEX );
102324 if( bestPlan.plan.wsFlags & (WHERE_INDEXED|WHERE_TEMP_INDEX) ){
102325 pLevel->iIdxCur = pParse->nTab++;
102326 }else{
102327 pLevel->iIdxCur = -1;
102329 notReady &= ~getMask(pMaskSet, pTabList->a[bestJ].iCursor);
102330 pLevel->iFrom = (u8)bestJ;
102331 if( bestPlan.plan.nRow>=(double)1 ){
102332 pParse->nQueryLoop *= bestPlan.plan.nRow;
102335 /* Check that if the table scanned by this loop iteration had an
102336 ** INDEXED BY clause attached to it, that the named index is being
102337 ** used for the scan. If not, then query compilation has failed.
102338 ** Return an error.
102340 pIdx = pTabList->a[bestJ].pIndex;
102341 if( pIdx ){
102342 if( (bestPlan.plan.wsFlags & WHERE_INDEXED)==0 ){
102343 sqlite3ErrorMsg(pParse, "cannot use index: %s", pIdx->zName);
102344 goto whereBeginError;
102345 }else{
102346 /* If an INDEXED BY clause is used, the bestIndex() function is
102347 ** guaranteed to find the index specified in the INDEXED BY clause
102348 ** if it find an index at all. */
102349 assert( bestPlan.plan.u.pIdx==pIdx );
102353 WHERETRACE(("*** Optimizer Finished ***\n"));
102354 if( pParse->nErr || db->mallocFailed ){
102355 goto whereBeginError;
102358 /* If the total query only selects a single row, then the ORDER BY
102359 ** clause is irrelevant.
102361 if( (andFlags & WHERE_UNIQUE)!=0 && ppOrderBy ){
102362 *ppOrderBy = 0;
102365 /* If the caller is an UPDATE or DELETE statement that is requesting
102366 ** to use a one-pass algorithm, determine if this is appropriate.
102367 ** The one-pass algorithm only works if the WHERE clause constraints
102368 ** the statement to update a single row.
102370 assert( (wctrlFlags & WHERE_ONEPASS_DESIRED)==0 || pWInfo->nLevel==1 );
102371 if( (wctrlFlags & WHERE_ONEPASS_DESIRED)!=0 && (andFlags & WHERE_UNIQUE)!=0 ){
102372 pWInfo->okOnePass = 1;
102373 pWInfo->a[0].plan.wsFlags &= ~WHERE_IDX_ONLY;
102376 /* Open all tables in the pTabList and any indices selected for
102377 ** searching those tables.
102379 sqlite3CodeVerifySchema(pParse, -1); /* Insert the cookie verifier Goto */
102380 notReady = ~(Bitmask)0;
102381 pWInfo->nRowOut = (double)1;
102382 for(i=0, pLevel=pWInfo->a; i<nTabList; i++, pLevel++){
102383 Table *pTab; /* Table to open */
102384 int iDb; /* Index of database containing table/index */
102386 pTabItem = &pTabList->a[pLevel->iFrom];
102387 pTab = pTabItem->pTab;
102388 pLevel->iTabCur = pTabItem->iCursor;
102389 pWInfo->nRowOut *= pLevel->plan.nRow;
102390 iDb = sqlite3SchemaToIndex(db, pTab->pSchema);
102391 if( (pTab->tabFlags & TF_Ephemeral)!=0 || pTab->pSelect ){
102392 /* Do nothing */
102393 }else
102394 #ifndef SQLITE_OMIT_VIRTUALTABLE
102395 if( (pLevel->plan.wsFlags & WHERE_VIRTUALTABLE)!=0 ){
102396 const char *pVTab = (const char *)sqlite3GetVTable(db, pTab);
102397 int iCur = pTabItem->iCursor;
102398 sqlite3VdbeAddOp4(v, OP_VOpen, iCur, 0, 0, pVTab, P4_VTAB);
102399 }else
102400 #endif
102401 if( (pLevel->plan.wsFlags & WHERE_IDX_ONLY)==0
102402 && (wctrlFlags & WHERE_OMIT_OPEN)==0 ){
102403 int op = pWInfo->okOnePass ? OP_OpenWrite : OP_OpenRead;
102404 sqlite3OpenTable(pParse, pTabItem->iCursor, iDb, pTab, op);
102405 testcase( pTab->nCol==BMS-1 );
102406 testcase( pTab->nCol==BMS );
102407 if( !pWInfo->okOnePass && pTab->nCol<BMS ){
102408 Bitmask b = pTabItem->colUsed;
102409 int n = 0;
102410 for(; b; b=b>>1, n++){}
102411 sqlite3VdbeChangeP4(v, sqlite3VdbeCurrentAddr(v)-1,
102412 SQLITE_INT_TO_PTR(n), P4_INT32);
102413 assert( n<=pTab->nCol );
102415 }else{
102416 sqlite3TableLock(pParse, iDb, pTab->tnum, 0, pTab->zName);
102418 #ifndef SQLITE_OMIT_AUTOMATIC_INDEX
102419 if( (pLevel->plan.wsFlags & WHERE_TEMP_INDEX)!=0 ){
102420 constructAutomaticIndex(pParse, pWC, pTabItem, notReady, pLevel);
102421 }else
102422 #endif
102423 if( (pLevel->plan.wsFlags & WHERE_INDEXED)!=0 ){
102424 Index *pIx = pLevel->plan.u.pIdx;
102425 KeyInfo *pKey = sqlite3IndexKeyinfo(pParse, pIx);
102426 int iIdxCur = pLevel->iIdxCur;
102427 assert( pIx->pSchema==pTab->pSchema );
102428 assert( iIdxCur>=0 );
102429 sqlite3VdbeAddOp4(v, OP_OpenRead, iIdxCur, pIx->tnum, iDb,
102430 (char*)pKey, P4_KEYINFO_HANDOFF);
102431 VdbeComment((v, "%s", pIx->zName));
102433 sqlite3CodeVerifySchema(pParse, iDb);
102434 notReady &= ~getMask(pWC->pMaskSet, pTabItem->iCursor);
102436 pWInfo->iTop = sqlite3VdbeCurrentAddr(v);
102437 if( db->mallocFailed ) goto whereBeginError;
102439 /* Generate the code to do the search. Each iteration of the for
102440 ** loop below generates code for a single nested loop of the VM
102441 ** program.
102443 notReady = ~(Bitmask)0;
102444 for(i=0; i<nTabList; i++){
102445 pLevel = &pWInfo->a[i];
102446 explainOneScan(pParse, pTabList, pLevel, i, pLevel->iFrom, wctrlFlags);
102447 notReady = codeOneLoopStart(pWInfo, i, wctrlFlags, notReady);
102448 pWInfo->iContinue = pLevel->addrCont;
102451 #ifdef SQLITE_TEST /* For testing and debugging use only */
102452 /* Record in the query plan information about the current table
102453 ** and the index used to access it (if any). If the table itself
102454 ** is not used, its name is just '{}'. If no index is used
102455 ** the index is listed as "{}". If the primary key is used the
102456 ** index name is '*'.
102458 for(i=0; i<nTabList; i++){
102459 char *z;
102460 int n;
102461 pLevel = &pWInfo->a[i];
102462 pTabItem = &pTabList->a[pLevel->iFrom];
102463 z = pTabItem->zAlias;
102464 if( z==0 ) z = pTabItem->pTab->zName;
102465 n = sqlite3Strlen30(z);
102466 if( n+nQPlan < sizeof(sqlite3_query_plan)-10 ){
102467 if( pLevel->plan.wsFlags & WHERE_IDX_ONLY ){
102468 memcpy(&sqlite3_query_plan[nQPlan], "{}", 2);
102469 nQPlan += 2;
102470 }else{
102471 memcpy(&sqlite3_query_plan[nQPlan], z, n);
102472 nQPlan += n;
102474 sqlite3_query_plan[nQPlan++] = ' ';
102476 testcase( pLevel->plan.wsFlags & WHERE_ROWID_EQ );
102477 testcase( pLevel->plan.wsFlags & WHERE_ROWID_RANGE );
102478 if( pLevel->plan.wsFlags & (WHERE_ROWID_EQ|WHERE_ROWID_RANGE) ){
102479 memcpy(&sqlite3_query_plan[nQPlan], "* ", 2);
102480 nQPlan += 2;
102481 }else if( (pLevel->plan.wsFlags & WHERE_INDEXED)!=0 ){
102482 n = sqlite3Strlen30(pLevel->plan.u.pIdx->zName);
102483 if( n+nQPlan < sizeof(sqlite3_query_plan)-2 ){
102484 memcpy(&sqlite3_query_plan[nQPlan], pLevel->plan.u.pIdx->zName, n);
102485 nQPlan += n;
102486 sqlite3_query_plan[nQPlan++] = ' ';
102488 }else{
102489 memcpy(&sqlite3_query_plan[nQPlan], "{} ", 3);
102490 nQPlan += 3;
102493 while( nQPlan>0 && sqlite3_query_plan[nQPlan-1]==' ' ){
102494 sqlite3_query_plan[--nQPlan] = 0;
102496 sqlite3_query_plan[nQPlan] = 0;
102497 nQPlan = 0;
102498 #endif /* SQLITE_TEST // Testing and debugging use only */
102500 /* Record the continuation address in the WhereInfo structure. Then
102501 ** clean up and return.
102503 return pWInfo;
102505 /* Jump here if malloc fails */
102506 whereBeginError:
102507 if( pWInfo ){
102508 pParse->nQueryLoop = pWInfo->savedNQueryLoop;
102509 whereInfoFree(db, pWInfo);
102511 return 0;
102515 ** Generate the end of the WHERE loop. See comments on
102516 ** sqlite3WhereBegin() for additional information.
102518 SQLITE_PRIVATE void sqlite3WhereEnd(WhereInfo *pWInfo){
102519 Parse *pParse = pWInfo->pParse;
102520 Vdbe *v = pParse->pVdbe;
102521 int i;
102522 WhereLevel *pLevel;
102523 SrcList *pTabList = pWInfo->pTabList;
102524 sqlite3 *db = pParse->db;
102526 /* Generate loop termination code.
102528 sqlite3ExprCacheClear(pParse);
102529 for(i=pWInfo->nLevel-1; i>=0; i--){
102530 pLevel = &pWInfo->a[i];
102531 sqlite3VdbeResolveLabel(v, pLevel->addrCont);
102532 if( pLevel->op!=OP_Noop ){
102533 sqlite3VdbeAddOp2(v, pLevel->op, pLevel->p1, pLevel->p2);
102534 sqlite3VdbeChangeP5(v, pLevel->p5);
102536 if( pLevel->plan.wsFlags & WHERE_IN_ABLE && pLevel->u.in.nIn>0 ){
102537 struct InLoop *pIn;
102538 int j;
102539 sqlite3VdbeResolveLabel(v, pLevel->addrNxt);
102540 for(j=pLevel->u.in.nIn, pIn=&pLevel->u.in.aInLoop[j-1]; j>0; j--, pIn--){
102541 sqlite3VdbeJumpHere(v, pIn->addrInTop+1);
102542 sqlite3VdbeAddOp2(v, OP_Next, pIn->iCur, pIn->addrInTop);
102543 sqlite3VdbeJumpHere(v, pIn->addrInTop-1);
102545 sqlite3DbFree(db, pLevel->u.in.aInLoop);
102547 sqlite3VdbeResolveLabel(v, pLevel->addrBrk);
102548 if( pLevel->iLeftJoin ){
102549 int addr;
102550 addr = sqlite3VdbeAddOp1(v, OP_IfPos, pLevel->iLeftJoin);
102551 assert( (pLevel->plan.wsFlags & WHERE_IDX_ONLY)==0
102552 || (pLevel->plan.wsFlags & WHERE_INDEXED)!=0 );
102553 if( (pLevel->plan.wsFlags & WHERE_IDX_ONLY)==0 ){
102554 sqlite3VdbeAddOp1(v, OP_NullRow, pTabList->a[i].iCursor);
102556 if( pLevel->iIdxCur>=0 ){
102557 sqlite3VdbeAddOp1(v, OP_NullRow, pLevel->iIdxCur);
102559 if( pLevel->op==OP_Return ){
102560 sqlite3VdbeAddOp2(v, OP_Gosub, pLevel->p1, pLevel->addrFirst);
102561 }else{
102562 sqlite3VdbeAddOp2(v, OP_Goto, 0, pLevel->addrFirst);
102564 sqlite3VdbeJumpHere(v, addr);
102568 /* The "break" point is here, just past the end of the outer loop.
102569 ** Set it.
102571 sqlite3VdbeResolveLabel(v, pWInfo->iBreak);
102573 /* Close all of the cursors that were opened by sqlite3WhereBegin.
102575 assert( pWInfo->nLevel==1 || pWInfo->nLevel==pTabList->nSrc );
102576 for(i=0, pLevel=pWInfo->a; i<pWInfo->nLevel; i++, pLevel++){
102577 struct SrcList_item *pTabItem = &pTabList->a[pLevel->iFrom];
102578 Table *pTab = pTabItem->pTab;
102579 assert( pTab!=0 );
102580 if( (pTab->tabFlags & TF_Ephemeral)==0
102581 && pTab->pSelect==0
102582 && (pWInfo->wctrlFlags & WHERE_OMIT_CLOSE)==0
102584 int ws = pLevel->plan.wsFlags;
102585 if( !pWInfo->okOnePass && (ws & WHERE_IDX_ONLY)==0 ){
102586 sqlite3VdbeAddOp1(v, OP_Close, pTabItem->iCursor);
102588 if( (ws & WHERE_INDEXED)!=0 && (ws & WHERE_TEMP_INDEX)==0 ){
102589 sqlite3VdbeAddOp1(v, OP_Close, pLevel->iIdxCur);
102593 /* If this scan uses an index, make code substitutions to read data
102594 ** from the index in preference to the table. Sometimes, this means
102595 ** the table need never be read from. This is a performance boost,
102596 ** as the vdbe level waits until the table is read before actually
102597 ** seeking the table cursor to the record corresponding to the current
102598 ** position in the index.
102600 ** Calls to the code generator in between sqlite3WhereBegin and
102601 ** sqlite3WhereEnd will have created code that references the table
102602 ** directly. This loop scans all that code looking for opcodes
102603 ** that reference the table and converts them into opcodes that
102604 ** reference the index.
102606 if( (pLevel->plan.wsFlags & WHERE_INDEXED)!=0 && !db->mallocFailed){
102607 int k, j, last;
102608 VdbeOp *pOp;
102609 Index *pIdx = pLevel->plan.u.pIdx;
102611 assert( pIdx!=0 );
102612 pOp = sqlite3VdbeGetOp(v, pWInfo->iTop);
102613 last = sqlite3VdbeCurrentAddr(v);
102614 for(k=pWInfo->iTop; k<last; k++, pOp++){
102615 if( pOp->p1!=pLevel->iTabCur ) continue;
102616 if( pOp->opcode==OP_Column ){
102617 for(j=0; j<pIdx->nColumn; j++){
102618 if( pOp->p2==pIdx->aiColumn[j] ){
102619 pOp->p2 = j;
102620 pOp->p1 = pLevel->iIdxCur;
102621 break;
102624 assert( (pLevel->plan.wsFlags & WHERE_IDX_ONLY)==0
102625 || j<pIdx->nColumn );
102626 }else if( pOp->opcode==OP_Rowid ){
102627 pOp->p1 = pLevel->iIdxCur;
102628 pOp->opcode = OP_IdxRowid;
102634 /* Final cleanup
102636 pParse->nQueryLoop = pWInfo->savedNQueryLoop;
102637 whereInfoFree(db, pWInfo);
102638 return;
102641 /************** End of where.c ***********************************************/
102642 /************** Begin file parse.c *******************************************/
102643 /* Driver template for the LEMON parser generator.
102644 ** The author disclaims copyright to this source code.
102646 ** This version of "lempar.c" is modified, slightly, for use by SQLite.
102647 ** The only modifications are the addition of a couple of NEVER()
102648 ** macros to disable tests that are needed in the case of a general
102649 ** LALR(1) grammar but which are always false in the
102650 ** specific grammar used by SQLite.
102652 /* First off, code is included that follows the "include" declaration
102653 ** in the input grammar file. */
102657 ** Disable all error recovery processing in the parser push-down
102658 ** automaton.
102660 #define YYNOERRORRECOVERY 1
102663 ** Make yytestcase() the same as testcase()
102665 #define yytestcase(X) testcase(X)
102668 ** An instance of this structure holds information about the
102669 ** LIMIT clause of a SELECT statement.
102671 struct LimitVal {
102672 Expr *pLimit; /* The LIMIT expression. NULL if there is no limit */
102673 Expr *pOffset; /* The OFFSET expression. NULL if there is none */
102677 ** An instance of this structure is used to store the LIKE,
102678 ** GLOB, NOT LIKE, and NOT GLOB operators.
102680 struct LikeOp {
102681 Token eOperator; /* "like" or "glob" or "regexp" */
102682 int not; /* True if the NOT keyword is present */
102686 ** An instance of the following structure describes the event of a
102687 ** TRIGGER. "a" is the event type, one of TK_UPDATE, TK_INSERT,
102688 ** TK_DELETE, or TK_INSTEAD. If the event is of the form
102690 ** UPDATE ON (a,b,c)
102692 ** Then the "b" IdList records the list "a,b,c".
102694 struct TrigEvent { int a; IdList * b; };
102697 ** An instance of this structure holds the ATTACH key and the key type.
102699 struct AttachKey { int type; Token key; };
102702 /* This is a utility routine used to set the ExprSpan.zStart and
102703 ** ExprSpan.zEnd values of pOut so that the span covers the complete
102704 ** range of text beginning with pStart and going to the end of pEnd.
102706 static void spanSet(ExprSpan *pOut, Token *pStart, Token *pEnd){
102707 pOut->zStart = pStart->z;
102708 pOut->zEnd = &pEnd->z[pEnd->n];
102711 /* Construct a new Expr object from a single identifier. Use the
102712 ** new Expr to populate pOut. Set the span of pOut to be the identifier
102713 ** that created the expression.
102715 static void spanExpr(ExprSpan *pOut, Parse *pParse, int op, Token *pValue){
102716 pOut->pExpr = sqlite3PExpr(pParse, op, 0, 0, pValue);
102717 pOut->zStart = pValue->z;
102718 pOut->zEnd = &pValue->z[pValue->n];
102721 /* This routine constructs a binary expression node out of two ExprSpan
102722 ** objects and uses the result to populate a new ExprSpan object.
102724 static void spanBinaryExpr(
102725 ExprSpan *pOut, /* Write the result here */
102726 Parse *pParse, /* The parsing context. Errors accumulate here */
102727 int op, /* The binary operation */
102728 ExprSpan *pLeft, /* The left operand */
102729 ExprSpan *pRight /* The right operand */
102731 pOut->pExpr = sqlite3PExpr(pParse, op, pLeft->pExpr, pRight->pExpr, 0);
102732 pOut->zStart = pLeft->zStart;
102733 pOut->zEnd = pRight->zEnd;
102736 /* Construct an expression node for a unary postfix operator
102738 static void spanUnaryPostfix(
102739 ExprSpan *pOut, /* Write the new expression node here */
102740 Parse *pParse, /* Parsing context to record errors */
102741 int op, /* The operator */
102742 ExprSpan *pOperand, /* The operand */
102743 Token *pPostOp /* The operand token for setting the span */
102745 pOut->pExpr = sqlite3PExpr(pParse, op, pOperand->pExpr, 0, 0);
102746 pOut->zStart = pOperand->zStart;
102747 pOut->zEnd = &pPostOp->z[pPostOp->n];
102750 /* A routine to convert a binary TK_IS or TK_ISNOT expression into a
102751 ** unary TK_ISNULL or TK_NOTNULL expression. */
102752 static void binaryToUnaryIfNull(Parse *pParse, Expr *pY, Expr *pA, int op){
102753 sqlite3 *db = pParse->db;
102754 if( db->mallocFailed==0 && pY->op==TK_NULL ){
102755 pA->op = (u8)op;
102756 sqlite3ExprDelete(db, pA->pRight);
102757 pA->pRight = 0;
102761 /* Construct an expression node for a unary prefix operator
102763 static void spanUnaryPrefix(
102764 ExprSpan *pOut, /* Write the new expression node here */
102765 Parse *pParse, /* Parsing context to record errors */
102766 int op, /* The operator */
102767 ExprSpan *pOperand, /* The operand */
102768 Token *pPreOp /* The operand token for setting the span */
102770 pOut->pExpr = sqlite3PExpr(pParse, op, pOperand->pExpr, 0, 0);
102771 pOut->zStart = pPreOp->z;
102772 pOut->zEnd = pOperand->zEnd;
102774 /* Next is all token values, in a form suitable for use by makeheaders.
102775 ** This section will be null unless lemon is run with the -m switch.
102778 ** These constants (all generated automatically by the parser generator)
102779 ** specify the various kinds of tokens (terminals) that the parser
102780 ** understands.
102782 ** Each symbol here is a terminal symbol in the grammar.
102784 /* Make sure the INTERFACE macro is defined.
102786 #ifndef INTERFACE
102787 # define INTERFACE 1
102788 #endif
102789 /* The next thing included is series of defines which control
102790 ** various aspects of the generated parser.
102791 ** YYCODETYPE is the data type used for storing terminal
102792 ** and nonterminal numbers. "unsigned char" is
102793 ** used if there are fewer than 250 terminals
102794 ** and nonterminals. "int" is used otherwise.
102795 ** YYNOCODE is a number of type YYCODETYPE which corresponds
102796 ** to no legal terminal or nonterminal number. This
102797 ** number is used to fill in empty slots of the hash
102798 ** table.
102799 ** YYFALLBACK If defined, this indicates that one or more tokens
102800 ** have fall-back values which should be used if the
102801 ** original value of the token will not parse.
102802 ** YYACTIONTYPE is the data type used for storing terminal
102803 ** and nonterminal numbers. "unsigned char" is
102804 ** used if there are fewer than 250 rules and
102805 ** states combined. "int" is used otherwise.
102806 ** sqlite3ParserTOKENTYPE is the data type used for minor tokens given
102807 ** directly to the parser from the tokenizer.
102808 ** YYMINORTYPE is the data type used for all minor tokens.
102809 ** This is typically a union of many types, one of
102810 ** which is sqlite3ParserTOKENTYPE. The entry in the union
102811 ** for base tokens is called "yy0".
102812 ** YYSTACKDEPTH is the maximum depth of the parser's stack. If
102813 ** zero the stack is dynamically sized using realloc()
102814 ** sqlite3ParserARG_SDECL A static variable declaration for the %extra_argument
102815 ** sqlite3ParserARG_PDECL A parameter declaration for the %extra_argument
102816 ** sqlite3ParserARG_STORE Code to store %extra_argument into yypParser
102817 ** sqlite3ParserARG_FETCH Code to extract %extra_argument from yypParser
102818 ** YYNSTATE the combined number of states.
102819 ** YYNRULE the number of rules in the grammar
102820 ** YYERRORSYMBOL is the code number of the error symbol. If not
102821 ** defined, then do no error processing.
102823 #define YYCODETYPE unsigned char
102824 #define YYNOCODE 253
102825 #define YYACTIONTYPE unsigned short int
102826 #define YYWILDCARD 67
102827 #define sqlite3ParserTOKENTYPE Token
102828 typedef union {
102829 int yyinit;
102830 sqlite3ParserTOKENTYPE yy0;
102831 int yy4;
102832 struct TrigEvent yy90;
102833 ExprSpan yy118;
102834 TriggerStep* yy203;
102835 u8 yy210;
102836 struct {int value; int mask;} yy215;
102837 SrcList* yy259;
102838 struct LimitVal yy292;
102839 Expr* yy314;
102840 ExprList* yy322;
102841 struct LikeOp yy342;
102842 IdList* yy384;
102843 Select* yy387;
102844 } YYMINORTYPE;
102845 #ifndef YYSTACKDEPTH
102846 #define YYSTACKDEPTH 100
102847 #endif
102848 #define sqlite3ParserARG_SDECL Parse *pParse;
102849 #define sqlite3ParserARG_PDECL ,Parse *pParse
102850 #define sqlite3ParserARG_FETCH Parse *pParse = yypParser->pParse
102851 #define sqlite3ParserARG_STORE yypParser->pParse = pParse
102852 #define YYNSTATE 630
102853 #define YYNRULE 329
102854 #define YYFALLBACK 1
102855 #define YY_NO_ACTION (YYNSTATE+YYNRULE+2)
102856 #define YY_ACCEPT_ACTION (YYNSTATE+YYNRULE+1)
102857 #define YY_ERROR_ACTION (YYNSTATE+YYNRULE)
102859 /* The yyzerominor constant is used to initialize instances of
102860 ** YYMINORTYPE objects to zero. */
102861 static const YYMINORTYPE yyzerominor = { 0 };
102863 /* Define the yytestcase() macro to be a no-op if is not already defined
102864 ** otherwise.
102866 ** Applications can choose to define yytestcase() in the %include section
102867 ** to a macro that can assist in verifying code coverage. For production
102868 ** code the yytestcase() macro should be turned off. But it is useful
102869 ** for testing.
102871 #ifndef yytestcase
102872 # define yytestcase(X)
102873 #endif
102876 /* Next are the tables used to determine what action to take based on the
102877 ** current state and lookahead token. These tables are used to implement
102878 ** functions that take a state number and lookahead value and return an
102879 ** action integer.
102881 ** Suppose the action integer is N. Then the action is determined as
102882 ** follows
102884 ** 0 <= N < YYNSTATE Shift N. That is, push the lookahead
102885 ** token onto the stack and goto state N.
102887 ** YYNSTATE <= N < YYNSTATE+YYNRULE Reduce by rule N-YYNSTATE.
102889 ** N == YYNSTATE+YYNRULE A syntax error has occurred.
102891 ** N == YYNSTATE+YYNRULE+1 The parser accepts its input.
102893 ** N == YYNSTATE+YYNRULE+2 No such action. Denotes unused
102894 ** slots in the yy_action[] table.
102896 ** The action table is constructed as a single large table named yy_action[].
102897 ** Given state S and lookahead X, the action is computed as
102899 ** yy_action[ yy_shift_ofst[S] + X ]
102901 ** If the index value yy_shift_ofst[S]+X is out of range or if the value
102902 ** yy_lookahead[yy_shift_ofst[S]+X] is not equal to X or if yy_shift_ofst[S]
102903 ** is equal to YY_SHIFT_USE_DFLT, it means that the action is not in the table
102904 ** and that yy_default[S] should be used instead.
102906 ** The formula above is for computing the action when the lookahead is
102907 ** a terminal symbol. If the lookahead is a non-terminal (as occurs after
102908 ** a reduce action) then the yy_reduce_ofst[] array is used in place of
102909 ** the yy_shift_ofst[] array and YY_REDUCE_USE_DFLT is used in place of
102910 ** YY_SHIFT_USE_DFLT.
102912 ** The following are the tables generated in this section:
102914 ** yy_action[] A single table containing all actions.
102915 ** yy_lookahead[] A table containing the lookahead for each entry in
102916 ** yy_action. Used to detect hash collisions.
102917 ** yy_shift_ofst[] For each state, the offset into yy_action for
102918 ** shifting terminals.
102919 ** yy_reduce_ofst[] For each state, the offset into yy_action for
102920 ** shifting non-terminals after a reduce.
102921 ** yy_default[] Default action for each state.
102923 #define YY_ACTTAB_COUNT (1557)
102924 static const YYACTIONTYPE yy_action[] = {
102925 /* 0 */ 313, 960, 186, 419, 2, 172, 627, 597, 55, 55,
102926 /* 10 */ 55, 55, 48, 53, 53, 53, 53, 52, 52, 51,
102927 /* 20 */ 51, 51, 50, 238, 302, 283, 623, 622, 516, 515,
102928 /* 30 */ 590, 584, 55, 55, 55, 55, 282, 53, 53, 53,
102929 /* 40 */ 53, 52, 52, 51, 51, 51, 50, 238, 6, 56,
102930 /* 50 */ 57, 47, 582, 581, 583, 583, 54, 54, 55, 55,
102931 /* 60 */ 55, 55, 608, 53, 53, 53, 53, 52, 52, 51,
102932 /* 70 */ 51, 51, 50, 238, 313, 597, 409, 330, 579, 579,
102933 /* 80 */ 32, 53, 53, 53, 53, 52, 52, 51, 51, 51,
102934 /* 90 */ 50, 238, 330, 217, 620, 619, 166, 411, 624, 382,
102935 /* 100 */ 379, 378, 7, 491, 590, 584, 200, 199, 198, 58,
102936 /* 110 */ 377, 300, 414, 621, 481, 66, 623, 622, 621, 580,
102937 /* 120 */ 254, 601, 94, 56, 57, 47, 582, 581, 583, 583,
102938 /* 130 */ 54, 54, 55, 55, 55, 55, 671, 53, 53, 53,
102939 /* 140 */ 53, 52, 52, 51, 51, 51, 50, 238, 313, 532,
102940 /* 150 */ 226, 506, 507, 133, 177, 139, 284, 385, 279, 384,
102941 /* 160 */ 169, 197, 342, 398, 251, 226, 253, 275, 388, 167,
102942 /* 170 */ 139, 284, 385, 279, 384, 169, 570, 236, 590, 584,
102943 /* 180 */ 672, 240, 275, 157, 620, 619, 554, 437, 51, 51,
102944 /* 190 */ 51, 50, 238, 343, 439, 553, 438, 56, 57, 47,
102945 /* 200 */ 582, 581, 583, 583, 54, 54, 55, 55, 55, 55,
102946 /* 210 */ 465, 53, 53, 53, 53, 52, 52, 51, 51, 51,
102947 /* 220 */ 50, 238, 313, 390, 52, 52, 51, 51, 51, 50,
102948 /* 230 */ 238, 391, 166, 491, 566, 382, 379, 378, 409, 440,
102949 /* 240 */ 579, 579, 252, 440, 607, 66, 377, 513, 621, 49,
102950 /* 250 */ 46, 147, 590, 584, 621, 16, 466, 189, 621, 441,
102951 /* 260 */ 442, 673, 526, 441, 340, 577, 595, 64, 194, 482,
102952 /* 270 */ 434, 56, 57, 47, 582, 581, 583, 583, 54, 54,
102953 /* 280 */ 55, 55, 55, 55, 30, 53, 53, 53, 53, 52,
102954 /* 290 */ 52, 51, 51, 51, 50, 238, 313, 593, 593, 593,
102955 /* 300 */ 387, 578, 606, 493, 259, 351, 258, 411, 1, 623,
102956 /* 310 */ 622, 496, 623, 622, 65, 240, 623, 622, 597, 443,
102957 /* 320 */ 237, 239, 414, 341, 237, 602, 590, 584, 18, 603,
102958 /* 330 */ 166, 601, 87, 382, 379, 378, 67, 623, 622, 38,
102959 /* 340 */ 623, 622, 176, 270, 377, 56, 57, 47, 582, 581,
102960 /* 350 */ 583, 583, 54, 54, 55, 55, 55, 55, 175, 53,
102961 /* 360 */ 53, 53, 53, 52, 52, 51, 51, 51, 50, 238,
102962 /* 370 */ 313, 396, 233, 411, 531, 565, 317, 620, 619, 44,
102963 /* 380 */ 620, 619, 240, 206, 620, 619, 597, 266, 414, 268,
102964 /* 390 */ 409, 597, 579, 579, 352, 184, 505, 601, 73, 533,
102965 /* 400 */ 590, 584, 466, 548, 190, 620, 619, 576, 620, 619,
102966 /* 410 */ 547, 383, 551, 35, 332, 575, 574, 600, 504, 56,
102967 /* 420 */ 57, 47, 582, 581, 583, 583, 54, 54, 55, 55,
102968 /* 430 */ 55, 55, 567, 53, 53, 53, 53, 52, 52, 51,
102969 /* 440 */ 51, 51, 50, 238, 313, 411, 561, 561, 528, 364,
102970 /* 450 */ 259, 351, 258, 183, 361, 549, 524, 374, 411, 597,
102971 /* 460 */ 414, 240, 560, 560, 409, 604, 579, 579, 328, 601,
102972 /* 470 */ 93, 623, 622, 414, 590, 584, 237, 564, 559, 559,
102973 /* 480 */ 520, 402, 601, 87, 409, 210, 579, 579, 168, 421,
102974 /* 490 */ 950, 519, 950, 56, 57, 47, 582, 581, 583, 583,
102975 /* 500 */ 54, 54, 55, 55, 55, 55, 192, 53, 53, 53,
102976 /* 510 */ 53, 52, 52, 51, 51, 51, 50, 238, 313, 600,
102977 /* 520 */ 293, 563, 511, 234, 357, 146, 475, 475, 367, 411,
102978 /* 530 */ 562, 411, 358, 542, 425, 171, 411, 215, 144, 620,
102979 /* 540 */ 619, 544, 318, 353, 414, 203, 414, 275, 590, 584,
102980 /* 550 */ 549, 414, 174, 601, 94, 601, 79, 558, 471, 61,
102981 /* 560 */ 601, 79, 421, 949, 350, 949, 34, 56, 57, 47,
102982 /* 570 */ 582, 581, 583, 583, 54, 54, 55, 55, 55, 55,
102983 /* 580 */ 535, 53, 53, 53, 53, 52, 52, 51, 51, 51,
102984 /* 590 */ 50, 238, 313, 307, 424, 394, 272, 49, 46, 147,
102985 /* 600 */ 349, 322, 4, 411, 491, 312, 321, 425, 568, 492,
102986 /* 610 */ 216, 264, 407, 575, 574, 429, 66, 549, 414, 621,
102987 /* 620 */ 540, 602, 590, 584, 13, 603, 621, 601, 72, 12,
102988 /* 630 */ 618, 617, 616, 202, 210, 621, 546, 469, 422, 319,
102989 /* 640 */ 148, 56, 57, 47, 582, 581, 583, 583, 54, 54,
102990 /* 650 */ 55, 55, 55, 55, 338, 53, 53, 53, 53, 52,
102991 /* 660 */ 52, 51, 51, 51, 50, 238, 313, 600, 600, 411,
102992 /* 670 */ 39, 21, 37, 170, 237, 875, 411, 572, 572, 201,
102993 /* 680 */ 144, 473, 538, 331, 414, 474, 143, 146, 630, 628,
102994 /* 690 */ 334, 414, 353, 601, 68, 168, 590, 584, 132, 365,
102995 /* 700 */ 601, 96, 307, 423, 530, 336, 49, 46, 147, 568,
102996 /* 710 */ 406, 216, 549, 360, 529, 56, 57, 47, 582, 581,
102997 /* 720 */ 583, 583, 54, 54, 55, 55, 55, 55, 411, 53,
102998 /* 730 */ 53, 53, 53, 52, 52, 51, 51, 51, 50, 238,
102999 /* 740 */ 313, 411, 605, 414, 484, 510, 172, 422, 597, 318,
103000 /* 750 */ 496, 485, 601, 99, 411, 142, 414, 411, 231, 411,
103001 /* 760 */ 540, 411, 359, 629, 2, 601, 97, 426, 308, 414,
103002 /* 770 */ 590, 584, 414, 20, 414, 621, 414, 621, 601, 106,
103003 /* 780 */ 503, 601, 105, 601, 108, 601, 109, 204, 28, 56,
103004 /* 790 */ 57, 47, 582, 581, 583, 583, 54, 54, 55, 55,
103005 /* 800 */ 55, 55, 411, 53, 53, 53, 53, 52, 52, 51,
103006 /* 810 */ 51, 51, 50, 238, 313, 411, 597, 414, 411, 276,
103007 /* 820 */ 214, 600, 411, 366, 213, 381, 601, 134, 274, 500,
103008 /* 830 */ 414, 167, 130, 414, 621, 411, 354, 414, 376, 601,
103009 /* 840 */ 135, 129, 601, 100, 590, 584, 601, 104, 522, 521,
103010 /* 850 */ 414, 621, 224, 273, 600, 167, 327, 282, 600, 601,
103011 /* 860 */ 103, 468, 521, 56, 57, 47, 582, 581, 583, 583,
103012 /* 870 */ 54, 54, 55, 55, 55, 55, 411, 53, 53, 53,
103013 /* 880 */ 53, 52, 52, 51, 51, 51, 50, 238, 313, 411,
103014 /* 890 */ 27, 414, 411, 375, 276, 167, 359, 544, 50, 238,
103015 /* 900 */ 601, 95, 128, 223, 414, 411, 165, 414, 411, 621,
103016 /* 910 */ 411, 621, 612, 601, 102, 372, 601, 76, 590, 584,
103017 /* 920 */ 414, 570, 236, 414, 470, 414, 167, 621, 188, 601,
103018 /* 930 */ 98, 225, 601, 138, 601, 137, 232, 56, 45, 47,
103019 /* 940 */ 582, 581, 583, 583, 54, 54, 55, 55, 55, 55,
103020 /* 950 */ 411, 53, 53, 53, 53, 52, 52, 51, 51, 51,
103021 /* 960 */ 50, 238, 313, 276, 276, 414, 411, 276, 544, 459,
103022 /* 970 */ 359, 171, 209, 479, 601, 136, 628, 334, 621, 621,
103023 /* 980 */ 125, 414, 621, 368, 411, 621, 257, 540, 589, 588,
103024 /* 990 */ 601, 75, 590, 584, 458, 446, 23, 23, 124, 414,
103025 /* 1000 */ 326, 325, 621, 427, 324, 309, 600, 288, 601, 92,
103026 /* 1010 */ 586, 585, 57, 47, 582, 581, 583, 583, 54, 54,
103027 /* 1020 */ 55, 55, 55, 55, 411, 53, 53, 53, 53, 52,
103028 /* 1030 */ 52, 51, 51, 51, 50, 238, 313, 587, 411, 414,
103029 /* 1040 */ 411, 207, 611, 476, 171, 472, 160, 123, 601, 91,
103030 /* 1050 */ 323, 261, 15, 414, 464, 414, 411, 621, 411, 354,
103031 /* 1060 */ 222, 411, 601, 74, 601, 90, 590, 584, 159, 264,
103032 /* 1070 */ 158, 414, 461, 414, 621, 600, 414, 121, 120, 25,
103033 /* 1080 */ 601, 89, 601, 101, 621, 601, 88, 47, 582, 581,
103034 /* 1090 */ 583, 583, 54, 54, 55, 55, 55, 55, 544, 53,
103035 /* 1100 */ 53, 53, 53, 52, 52, 51, 51, 51, 50, 238,
103036 /* 1110 */ 43, 405, 263, 3, 610, 264, 140, 415, 622, 24,
103037 /* 1120 */ 410, 11, 456, 594, 118, 155, 219, 452, 408, 621,
103038 /* 1130 */ 621, 621, 156, 43, 405, 621, 3, 286, 621, 113,
103039 /* 1140 */ 415, 622, 111, 445, 411, 400, 557, 403, 545, 10,
103040 /* 1150 */ 411, 408, 264, 110, 205, 436, 541, 566, 453, 414,
103041 /* 1160 */ 621, 621, 63, 621, 435, 414, 411, 621, 601, 94,
103042 /* 1170 */ 403, 621, 411, 337, 601, 86, 150, 40, 41, 534,
103043 /* 1180 */ 566, 414, 242, 264, 42, 413, 412, 414, 600, 595,
103044 /* 1190 */ 601, 85, 191, 333, 107, 451, 601, 84, 621, 539,
103045 /* 1200 */ 40, 41, 420, 230, 411, 149, 316, 42, 413, 412,
103046 /* 1210 */ 398, 127, 595, 315, 621, 399, 278, 625, 181, 414,
103047 /* 1220 */ 593, 593, 593, 592, 591, 14, 450, 411, 601, 71,
103048 /* 1230 */ 240, 621, 43, 405, 264, 3, 615, 180, 264, 415,
103049 /* 1240 */ 622, 614, 414, 593, 593, 593, 592, 591, 14, 621,
103050 /* 1250 */ 408, 601, 70, 621, 417, 33, 405, 613, 3, 411,
103051 /* 1260 */ 264, 411, 415, 622, 418, 626, 178, 509, 8, 403,
103052 /* 1270 */ 241, 416, 126, 408, 414, 621, 414, 449, 208, 566,
103053 /* 1280 */ 240, 221, 621, 601, 83, 601, 82, 599, 297, 277,
103054 /* 1290 */ 296, 30, 403, 31, 395, 264, 295, 397, 489, 40,
103055 /* 1300 */ 41, 411, 566, 220, 621, 294, 42, 413, 412, 271,
103056 /* 1310 */ 621, 595, 600, 621, 59, 60, 414, 269, 267, 623,
103057 /* 1320 */ 622, 36, 40, 41, 621, 601, 81, 598, 235, 42,
103058 /* 1330 */ 413, 412, 621, 621, 595, 265, 344, 411, 248, 556,
103059 /* 1340 */ 173, 185, 593, 593, 593, 592, 591, 14, 218, 29,
103060 /* 1350 */ 621, 543, 414, 305, 304, 303, 179, 301, 411, 566,
103061 /* 1360 */ 454, 601, 80, 289, 335, 593, 593, 593, 592, 591,
103062 /* 1370 */ 14, 411, 287, 414, 151, 392, 246, 260, 411, 196,
103063 /* 1380 */ 195, 523, 601, 69, 411, 245, 414, 526, 537, 285,
103064 /* 1390 */ 389, 595, 621, 414, 536, 601, 17, 362, 153, 414,
103065 /* 1400 */ 466, 463, 601, 78, 154, 414, 462, 152, 601, 77,
103066 /* 1410 */ 355, 255, 621, 455, 601, 9, 621, 386, 444, 517,
103067 /* 1420 */ 247, 621, 593, 593, 593, 621, 621, 244, 621, 243,
103068 /* 1430 */ 430, 518, 292, 621, 329, 621, 145, 393, 280, 513,
103069 /* 1440 */ 291, 131, 621, 514, 621, 621, 311, 621, 259, 346,
103070 /* 1450 */ 249, 621, 621, 229, 314, 621, 228, 512, 227, 240,
103071 /* 1460 */ 494, 488, 310, 164, 487, 486, 373, 480, 163, 262,
103072 /* 1470 */ 369, 371, 162, 26, 212, 478, 477, 161, 141, 363,
103073 /* 1480 */ 467, 122, 339, 187, 119, 348, 347, 117, 116, 115,
103074 /* 1490 */ 114, 112, 182, 457, 320, 22, 433, 432, 448, 19,
103075 /* 1500 */ 609, 431, 428, 62, 193, 596, 573, 298, 555, 552,
103076 /* 1510 */ 571, 404, 290, 380, 498, 510, 495, 306, 281, 499,
103077 /* 1520 */ 250, 5, 497, 460, 345, 447, 569, 550, 238, 299,
103078 /* 1530 */ 527, 525, 508, 961, 502, 501, 961, 401, 961, 211,
103079 /* 1540 */ 490, 356, 256, 961, 483, 961, 961, 961, 961, 961,
103080 /* 1550 */ 961, 961, 961, 961, 961, 961, 370,
103082 static const YYCODETYPE yy_lookahead[] = {
103083 /* 0 */ 19, 142, 143, 144, 145, 24, 1, 26, 77, 78,
103084 /* 10 */ 79, 80, 81, 82, 83, 84, 85, 86, 87, 88,
103085 /* 20 */ 89, 90, 91, 92, 15, 98, 26, 27, 7, 8,
103086 /* 30 */ 49, 50, 77, 78, 79, 80, 109, 82, 83, 84,
103087 /* 40 */ 85, 86, 87, 88, 89, 90, 91, 92, 22, 68,
103088 /* 50 */ 69, 70, 71, 72, 73, 74, 75, 76, 77, 78,
103089 /* 60 */ 79, 80, 23, 82, 83, 84, 85, 86, 87, 88,
103090 /* 70 */ 89, 90, 91, 92, 19, 94, 112, 19, 114, 115,
103091 /* 80 */ 25, 82, 83, 84, 85, 86, 87, 88, 89, 90,
103092 /* 90 */ 91, 92, 19, 22, 94, 95, 96, 150, 150, 99,
103093 /* 100 */ 100, 101, 76, 150, 49, 50, 105, 106, 107, 54,
103094 /* 110 */ 110, 158, 165, 165, 161, 162, 26, 27, 165, 113,
103095 /* 120 */ 16, 174, 175, 68, 69, 70, 71, 72, 73, 74,
103096 /* 130 */ 75, 76, 77, 78, 79, 80, 118, 82, 83, 84,
103097 /* 140 */ 85, 86, 87, 88, 89, 90, 91, 92, 19, 23,
103098 /* 150 */ 92, 97, 98, 24, 96, 97, 98, 99, 100, 101,
103099 /* 160 */ 102, 25, 97, 216, 60, 92, 62, 109, 221, 25,
103100 /* 170 */ 97, 98, 99, 100, 101, 102, 86, 87, 49, 50,
103101 /* 180 */ 118, 116, 109, 25, 94, 95, 32, 97, 88, 89,
103102 /* 190 */ 90, 91, 92, 128, 104, 41, 106, 68, 69, 70,
103103 /* 200 */ 71, 72, 73, 74, 75, 76, 77, 78, 79, 80,
103104 /* 210 */ 11, 82, 83, 84, 85, 86, 87, 88, 89, 90,
103105 /* 220 */ 91, 92, 19, 19, 86, 87, 88, 89, 90, 91,
103106 /* 230 */ 92, 27, 96, 150, 66, 99, 100, 101, 112, 150,
103107 /* 240 */ 114, 115, 138, 150, 161, 162, 110, 103, 165, 222,
103108 /* 250 */ 223, 224, 49, 50, 165, 22, 57, 24, 165, 170,
103109 /* 260 */ 171, 118, 94, 170, 171, 23, 98, 25, 185, 186,
103110 /* 270 */ 243, 68, 69, 70, 71, 72, 73, 74, 75, 76,
103111 /* 280 */ 77, 78, 79, 80, 126, 82, 83, 84, 85, 86,
103112 /* 290 */ 87, 88, 89, 90, 91, 92, 19, 129, 130, 131,
103113 /* 300 */ 88, 23, 172, 173, 105, 106, 107, 150, 22, 26,
103114 /* 310 */ 27, 181, 26, 27, 22, 116, 26, 27, 26, 230,
103115 /* 320 */ 231, 197, 165, 230, 231, 113, 49, 50, 204, 117,
103116 /* 330 */ 96, 174, 175, 99, 100, 101, 22, 26, 27, 136,
103117 /* 340 */ 26, 27, 118, 16, 110, 68, 69, 70, 71, 72,
103118 /* 350 */ 73, 74, 75, 76, 77, 78, 79, 80, 118, 82,
103119 /* 360 */ 83, 84, 85, 86, 87, 88, 89, 90, 91, 92,
103120 /* 370 */ 19, 214, 215, 150, 23, 23, 155, 94, 95, 22,
103121 /* 380 */ 94, 95, 116, 160, 94, 95, 94, 60, 165, 62,
103122 /* 390 */ 112, 26, 114, 115, 128, 23, 36, 174, 175, 88,
103123 /* 400 */ 49, 50, 57, 120, 22, 94, 95, 23, 94, 95,
103124 /* 410 */ 120, 51, 25, 136, 169, 170, 171, 194, 58, 68,
103125 /* 420 */ 69, 70, 71, 72, 73, 74, 75, 76, 77, 78,
103126 /* 430 */ 79, 80, 23, 82, 83, 84, 85, 86, 87, 88,
103127 /* 440 */ 89, 90, 91, 92, 19, 150, 12, 12, 23, 228,
103128 /* 450 */ 105, 106, 107, 23, 233, 25, 165, 19, 150, 94,
103129 /* 460 */ 165, 116, 28, 28, 112, 174, 114, 115, 108, 174,
103130 /* 470 */ 175, 26, 27, 165, 49, 50, 231, 11, 44, 44,
103131 /* 480 */ 46, 46, 174, 175, 112, 160, 114, 115, 50, 22,
103132 /* 490 */ 23, 57, 25, 68, 69, 70, 71, 72, 73, 74,
103133 /* 500 */ 75, 76, 77, 78, 79, 80, 119, 82, 83, 84,
103134 /* 510 */ 85, 86, 87, 88, 89, 90, 91, 92, 19, 194,
103135 /* 520 */ 225, 23, 23, 215, 19, 95, 105, 106, 107, 150,
103136 /* 530 */ 23, 150, 27, 23, 67, 25, 150, 206, 207, 94,
103137 /* 540 */ 95, 166, 104, 218, 165, 22, 165, 109, 49, 50,
103138 /* 550 */ 120, 165, 25, 174, 175, 174, 175, 23, 21, 234,
103139 /* 560 */ 174, 175, 22, 23, 239, 25, 25, 68, 69, 70,
103140 /* 570 */ 71, 72, 73, 74, 75, 76, 77, 78, 79, 80,
103141 /* 580 */ 205, 82, 83, 84, 85, 86, 87, 88, 89, 90,
103142 /* 590 */ 91, 92, 19, 22, 23, 216, 23, 222, 223, 224,
103143 /* 600 */ 63, 220, 35, 150, 150, 163, 220, 67, 166, 167,
103144 /* 610 */ 168, 150, 169, 170, 171, 161, 162, 25, 165, 165,
103145 /* 620 */ 150, 113, 49, 50, 25, 117, 165, 174, 175, 35,
103146 /* 630 */ 7, 8, 9, 160, 160, 165, 120, 100, 67, 247,
103147 /* 640 */ 248, 68, 69, 70, 71, 72, 73, 74, 75, 76,
103148 /* 650 */ 77, 78, 79, 80, 193, 82, 83, 84, 85, 86,
103149 /* 660 */ 87, 88, 89, 90, 91, 92, 19, 194, 194, 150,
103150 /* 670 */ 135, 24, 137, 35, 231, 138, 150, 129, 130, 206,
103151 /* 680 */ 207, 30, 27, 213, 165, 34, 118, 95, 0, 1,
103152 /* 690 */ 2, 165, 218, 174, 175, 50, 49, 50, 22, 48,
103153 /* 700 */ 174, 175, 22, 23, 23, 244, 222, 223, 224, 166,
103154 /* 710 */ 167, 168, 120, 239, 23, 68, 69, 70, 71, 72,
103155 /* 720 */ 73, 74, 75, 76, 77, 78, 79, 80, 150, 82,
103156 /* 730 */ 83, 84, 85, 86, 87, 88, 89, 90, 91, 92,
103157 /* 740 */ 19, 150, 173, 165, 181, 182, 24, 67, 26, 104,
103158 /* 750 */ 181, 188, 174, 175, 150, 39, 165, 150, 52, 150,
103159 /* 760 */ 150, 150, 150, 144, 145, 174, 175, 249, 250, 165,
103160 /* 770 */ 49, 50, 165, 52, 165, 165, 165, 165, 174, 175,
103161 /* 780 */ 29, 174, 175, 174, 175, 174, 175, 160, 22, 68,
103162 /* 790 */ 69, 70, 71, 72, 73, 74, 75, 76, 77, 78,
103163 /* 800 */ 79, 80, 150, 82, 83, 84, 85, 86, 87, 88,
103164 /* 810 */ 89, 90, 91, 92, 19, 150, 94, 165, 150, 150,
103165 /* 820 */ 160, 194, 150, 213, 160, 52, 174, 175, 23, 23,
103166 /* 830 */ 165, 25, 22, 165, 165, 150, 150, 165, 52, 174,
103167 /* 840 */ 175, 22, 174, 175, 49, 50, 174, 175, 190, 191,
103168 /* 850 */ 165, 165, 240, 23, 194, 25, 187, 109, 194, 174,
103169 /* 860 */ 175, 190, 191, 68, 69, 70, 71, 72, 73, 74,
103170 /* 870 */ 75, 76, 77, 78, 79, 80, 150, 82, 83, 84,
103171 /* 880 */ 85, 86, 87, 88, 89, 90, 91, 92, 19, 150,
103172 /* 890 */ 22, 165, 150, 23, 150, 25, 150, 166, 91, 92,
103173 /* 900 */ 174, 175, 22, 217, 165, 150, 102, 165, 150, 165,
103174 /* 910 */ 150, 165, 150, 174, 175, 19, 174, 175, 49, 50,
103175 /* 920 */ 165, 86, 87, 165, 23, 165, 25, 165, 24, 174,
103176 /* 930 */ 175, 187, 174, 175, 174, 175, 205, 68, 69, 70,
103177 /* 940 */ 71, 72, 73, 74, 75, 76, 77, 78, 79, 80,
103178 /* 950 */ 150, 82, 83, 84, 85, 86, 87, 88, 89, 90,
103179 /* 960 */ 91, 92, 19, 150, 150, 165, 150, 150, 166, 23,
103180 /* 970 */ 150, 25, 160, 20, 174, 175, 1, 2, 165, 165,
103181 /* 980 */ 104, 165, 165, 43, 150, 165, 240, 150, 49, 50,
103182 /* 990 */ 174, 175, 49, 50, 23, 23, 25, 25, 53, 165,
103183 /* 1000 */ 187, 187, 165, 23, 187, 25, 194, 205, 174, 175,
103184 /* 1010 */ 71, 72, 69, 70, 71, 72, 73, 74, 75, 76,
103185 /* 1020 */ 77, 78, 79, 80, 150, 82, 83, 84, 85, 86,
103186 /* 1030 */ 87, 88, 89, 90, 91, 92, 19, 98, 150, 165,
103187 /* 1040 */ 150, 160, 150, 59, 25, 53, 104, 22, 174, 175,
103188 /* 1050 */ 213, 138, 5, 165, 1, 165, 150, 165, 150, 150,
103189 /* 1060 */ 240, 150, 174, 175, 174, 175, 49, 50, 118, 150,
103190 /* 1070 */ 35, 165, 27, 165, 165, 194, 165, 108, 127, 76,
103191 /* 1080 */ 174, 175, 174, 175, 165, 174, 175, 70, 71, 72,
103192 /* 1090 */ 73, 74, 75, 76, 77, 78, 79, 80, 166, 82,
103193 /* 1100 */ 83, 84, 85, 86, 87, 88, 89, 90, 91, 92,
103194 /* 1110 */ 19, 20, 193, 22, 150, 150, 150, 26, 27, 76,
103195 /* 1120 */ 150, 22, 1, 150, 119, 121, 217, 20, 37, 165,
103196 /* 1130 */ 165, 165, 16, 19, 20, 165, 22, 205, 165, 119,
103197 /* 1140 */ 26, 27, 108, 128, 150, 150, 150, 56, 150, 22,
103198 /* 1150 */ 150, 37, 150, 127, 160, 23, 150, 66, 193, 165,
103199 /* 1160 */ 165, 165, 16, 165, 23, 165, 150, 165, 174, 175,
103200 /* 1170 */ 56, 165, 150, 65, 174, 175, 15, 86, 87, 88,
103201 /* 1180 */ 66, 165, 140, 150, 93, 94, 95, 165, 194, 98,
103202 /* 1190 */ 174, 175, 22, 3, 164, 193, 174, 175, 165, 150,
103203 /* 1200 */ 86, 87, 4, 180, 150, 248, 251, 93, 94, 95,
103204 /* 1210 */ 216, 180, 98, 251, 165, 221, 150, 149, 6, 165,
103205 /* 1220 */ 129, 130, 131, 132, 133, 134, 193, 150, 174, 175,
103206 /* 1230 */ 116, 165, 19, 20, 150, 22, 149, 151, 150, 26,
103207 /* 1240 */ 27, 149, 165, 129, 130, 131, 132, 133, 134, 165,
103208 /* 1250 */ 37, 174, 175, 165, 149, 19, 20, 13, 22, 150,
103209 /* 1260 */ 150, 150, 26, 27, 146, 147, 151, 150, 25, 56,
103210 /* 1270 */ 152, 159, 154, 37, 165, 165, 165, 193, 160, 66,
103211 /* 1280 */ 116, 193, 165, 174, 175, 174, 175, 194, 199, 150,
103212 /* 1290 */ 200, 126, 56, 124, 123, 150, 201, 122, 150, 86,
103213 /* 1300 */ 87, 150, 66, 193, 165, 202, 93, 94, 95, 150,
103214 /* 1310 */ 165, 98, 194, 165, 125, 22, 165, 150, 150, 26,
103215 /* 1320 */ 27, 135, 86, 87, 165, 174, 175, 203, 226, 93,
103216 /* 1330 */ 94, 95, 165, 165, 98, 150, 218, 150, 193, 157,
103217 /* 1340 */ 118, 157, 129, 130, 131, 132, 133, 134, 5, 104,
103218 /* 1350 */ 165, 211, 165, 10, 11, 12, 13, 14, 150, 66,
103219 /* 1360 */ 17, 174, 175, 210, 246, 129, 130, 131, 132, 133,
103220 /* 1370 */ 134, 150, 210, 165, 31, 121, 33, 150, 150, 86,
103221 /* 1380 */ 87, 176, 174, 175, 150, 42, 165, 94, 211, 210,
103222 /* 1390 */ 150, 98, 165, 165, 211, 174, 175, 150, 55, 165,
103223 /* 1400 */ 57, 150, 174, 175, 61, 165, 150, 64, 174, 175,
103224 /* 1410 */ 150, 150, 165, 150, 174, 175, 165, 104, 150, 184,
103225 /* 1420 */ 150, 165, 129, 130, 131, 165, 165, 150, 165, 150,
103226 /* 1430 */ 150, 176, 150, 165, 47, 165, 150, 150, 176, 103,
103227 /* 1440 */ 150, 22, 165, 178, 165, 165, 179, 165, 105, 106,
103228 /* 1450 */ 107, 165, 165, 229, 111, 165, 92, 176, 229, 116,
103229 /* 1460 */ 184, 176, 179, 156, 176, 176, 18, 157, 156, 237,
103230 /* 1470 */ 45, 157, 156, 135, 157, 157, 238, 156, 68, 157,
103231 /* 1480 */ 189, 189, 139, 219, 22, 157, 18, 192, 192, 192,
103232 /* 1490 */ 192, 189, 219, 199, 157, 242, 40, 157, 199, 242,
103233 /* 1500 */ 153, 157, 38, 245, 196, 166, 232, 198, 177, 177,
103234 /* 1510 */ 232, 227, 209, 178, 166, 182, 166, 148, 177, 177,
103235 /* 1520 */ 209, 196, 177, 199, 209, 199, 166, 208, 92, 195,
103236 /* 1530 */ 174, 174, 183, 252, 183, 183, 252, 191, 252, 235,
103237 /* 1540 */ 186, 241, 241, 252, 186, 252, 252, 252, 252, 252,
103238 /* 1550 */ 252, 252, 252, 252, 252, 252, 236,
103240 #define YY_SHIFT_USE_DFLT (-74)
103241 #define YY_SHIFT_COUNT (418)
103242 #define YY_SHIFT_MIN (-73)
103243 #define YY_SHIFT_MAX (1468)
103244 static const short yy_shift_ofst[] = {
103245 /* 0 */ 975, 1114, 1343, 1114, 1213, 1213, 90, 90, 0, -19,
103246 /* 10 */ 1213, 1213, 1213, 1213, 1213, 345, 445, 721, 1091, 1213,
103247 /* 20 */ 1213, 1213, 1213, 1213, 1213, 1213, 1213, 1213, 1213, 1213,
103248 /* 30 */ 1213, 1213, 1213, 1213, 1213, 1213, 1213, 1213, 1213, 1213,
103249 /* 40 */ 1213, 1213, 1213, 1213, 1213, 1213, 1213, 1236, 1213, 1213,
103250 /* 50 */ 1213, 1213, 1213, 1213, 1213, 1213, 1213, 1213, 1213, 1213,
103251 /* 60 */ 1213, 199, 445, 445, 835, 835, 365, 1164, 55, 647,
103252 /* 70 */ 573, 499, 425, 351, 277, 203, 129, 795, 795, 795,
103253 /* 80 */ 795, 795, 795, 795, 795, 795, 795, 795, 795, 795,
103254 /* 90 */ 795, 795, 795, 795, 795, 869, 795, 943, 1017, 1017,
103255 /* 100 */ -69, -45, -45, -45, -45, -45, -1, 58, 138, 100,
103256 /* 110 */ 445, 445, 445, 445, 445, 445, 445, 445, 445, 445,
103257 /* 120 */ 445, 445, 445, 445, 445, 445, 537, 438, 445, 445,
103258 /* 130 */ 445, 445, 445, 365, 807, 1436, -74, -74, -74, 1293,
103259 /* 140 */ 73, 434, 434, 311, 314, 290, 283, 286, 540, 467,
103260 /* 150 */ 445, 445, 445, 445, 445, 445, 445, 445, 445, 445,
103261 /* 160 */ 445, 445, 445, 445, 445, 445, 445, 445, 445, 445,
103262 /* 170 */ 445, 445, 445, 445, 445, 445, 445, 445, 445, 445,
103263 /* 180 */ 445, 445, 65, 722, 722, 722, 688, 266, 1164, 1164,
103264 /* 190 */ 1164, -74, -74, -74, 136, 168, 168, 234, 360, 360,
103265 /* 200 */ 360, 430, 372, 435, 352, 278, 126, -36, -36, -36,
103266 /* 210 */ -36, 421, 651, -36, -36, 592, 292, 212, 623, 158,
103267 /* 220 */ 204, 204, 505, 158, 505, 144, 365, 154, 365, 154,
103268 /* 230 */ 645, 154, 204, 154, 154, 535, 548, 548, 365, 387,
103269 /* 240 */ 508, 233, 1464, 1222, 1222, 1456, 1456, 1222, 1462, 1410,
103270 /* 250 */ 1165, 1468, 1468, 1468, 1468, 1222, 1165, 1462, 1410, 1410,
103271 /* 260 */ 1222, 1448, 1338, 1425, 1222, 1222, 1448, 1222, 1448, 1222,
103272 /* 270 */ 1448, 1419, 1313, 1313, 1313, 1387, 1364, 1364, 1419, 1313,
103273 /* 280 */ 1336, 1313, 1387, 1313, 1313, 1254, 1245, 1254, 1245, 1254,
103274 /* 290 */ 1245, 1222, 1222, 1186, 1189, 1175, 1169, 1171, 1165, 1164,
103275 /* 300 */ 1243, 1244, 1244, 1212, 1212, 1212, 1212, -74, -74, -74,
103276 /* 310 */ -74, -74, -74, 939, 104, 680, 571, 327, 1, 980,
103277 /* 320 */ 26, 972, 971, 946, 901, 870, 830, 806, 54, 21,
103278 /* 330 */ -73, 510, 242, 1198, 1190, 1170, 1042, 1161, 1108, 1146,
103279 /* 340 */ 1141, 1132, 1015, 1127, 1026, 1034, 1020, 1107, 1004, 1116,
103280 /* 350 */ 1121, 1005, 1099, 951, 1043, 1003, 969, 1045, 1035, 950,
103281 /* 360 */ 1053, 1047, 1025, 942, 913, 992, 1019, 945, 984, 940,
103282 /* 370 */ 876, 904, 953, 896, 748, 804, 880, 786, 868, 819,
103283 /* 380 */ 805, 810, 773, 751, 766, 706, 716, 691, 681, 568,
103284 /* 390 */ 655, 638, 676, 516, 541, 594, 599, 567, 541, 534,
103285 /* 400 */ 507, 527, 498, 523, 466, 382, 409, 384, 357, 6,
103286 /* 410 */ 240, 224, 143, 62, 18, 71, 39, 9, 5,
103288 #define YY_REDUCE_USE_DFLT (-142)
103289 #define YY_REDUCE_COUNT (312)
103290 #define YY_REDUCE_MIN (-141)
103291 #define YY_REDUCE_MAX (1369)
103292 static const short yy_reduce_ofst[] = {
103293 /* 0 */ -141, 994, 1118, 223, 157, -53, 93, 89, 83, 375,
103294 /* 10 */ 386, 381, 379, 308, 295, 325, -47, 27, 1240, 1234,
103295 /* 20 */ 1228, 1221, 1208, 1187, 1151, 1111, 1109, 1077, 1054, 1022,
103296 /* 30 */ 1016, 1000, 911, 908, 906, 890, 888, 874, 834, 816,
103297 /* 40 */ 800, 760, 758, 755, 742, 739, 726, 685, 672, 668,
103298 /* 50 */ 665, 652, 611, 609, 607, 604, 591, 578, 526, 519,
103299 /* 60 */ 453, 474, 454, 461, 443, 245, 442, 473, 484, 484,
103300 /* 70 */ 484, 484, 484, 484, 484, 484, 484, 484, 484, 484,
103301 /* 80 */ 484, 484, 484, 484, 484, 484, 484, 484, 484, 484,
103302 /* 90 */ 484, 484, 484, 484, 484, 484, 484, 484, 484, 484,
103303 /* 100 */ 484, 484, 484, 484, 484, 484, 484, 130, 484, 484,
103304 /* 110 */ 1145, 909, 1110, 1088, 1084, 1033, 1002, 965, 820, 837,
103305 /* 120 */ 746, 686, 612, 817, 610, 919, 221, 563, 814, 813,
103306 /* 130 */ 744, 669, 470, 543, 484, 484, 484, 484, 484, 291,
103307 /* 140 */ 569, 671, 658, 970, 1290, 1287, 1286, 1282, 518, 518,
103308 /* 150 */ 1280, 1279, 1277, 1270, 1268, 1263, 1261, 1260, 1256, 1251,
103309 /* 160 */ 1247, 1227, 1185, 1168, 1167, 1159, 1148, 1139, 1117, 1066,
103310 /* 170 */ 1049, 1006, 998, 996, 995, 973, 970, 966, 964, 892,
103311 /* 180 */ 762, -52, 881, 932, 802, 731, 619, 812, 664, 660,
103312 /* 190 */ 627, 392, 331, 124, 1358, 1357, 1356, 1354, 1352, 1351,
103313 /* 200 */ 1349, 1319, 1334, 1346, 1334, 1334, 1334, 1334, 1334, 1334,
103314 /* 210 */ 1334, 1320, 1304, 1334, 1334, 1319, 1360, 1325, 1369, 1326,
103315 /* 220 */ 1315, 1311, 1301, 1324, 1300, 1335, 1350, 1345, 1348, 1342,
103316 /* 230 */ 1333, 1341, 1303, 1332, 1331, 1284, 1278, 1274, 1339, 1309,
103317 /* 240 */ 1308, 1347, 1258, 1344, 1340, 1257, 1253, 1337, 1273, 1302,
103318 /* 250 */ 1299, 1298, 1297, 1296, 1295, 1328, 1294, 1264, 1292, 1291,
103319 /* 260 */ 1322, 1321, 1238, 1232, 1318, 1317, 1316, 1314, 1312, 1310,
103320 /* 270 */ 1307, 1283, 1289, 1288, 1285, 1276, 1229, 1224, 1267, 1281,
103321 /* 280 */ 1265, 1262, 1235, 1255, 1205, 1183, 1179, 1177, 1162, 1140,
103322 /* 290 */ 1153, 1184, 1182, 1102, 1124, 1103, 1095, 1090, 1089, 1093,
103323 /* 300 */ 1112, 1115, 1086, 1105, 1092, 1087, 1068, 962, 955, 957,
103324 /* 310 */ 1031, 1023, 1030,
103326 static const YYACTIONTYPE yy_default[] = {
103327 /* 0 */ 635, 870, 959, 959, 959, 870, 899, 899, 959, 759,
103328 /* 10 */ 959, 959, 959, 959, 868, 959, 959, 933, 959, 959,
103329 /* 20 */ 959, 959, 959, 959, 959, 959, 959, 959, 959, 959,
103330 /* 30 */ 959, 959, 959, 959, 959, 959, 959, 959, 959, 959,
103331 /* 40 */ 959, 959, 959, 959, 959, 959, 959, 959, 959, 959,
103332 /* 50 */ 959, 959, 959, 959, 959, 959, 959, 959, 959, 959,
103333 /* 60 */ 959, 959, 959, 959, 899, 899, 674, 763, 794, 959,
103334 /* 70 */ 959, 959, 959, 959, 959, 959, 959, 932, 934, 809,
103335 /* 80 */ 808, 802, 801, 912, 774, 799, 792, 785, 796, 871,
103336 /* 90 */ 864, 865, 863, 867, 872, 959, 795, 831, 848, 830,
103337 /* 100 */ 842, 847, 854, 846, 843, 833, 832, 666, 834, 835,
103338 /* 110 */ 959, 959, 959, 959, 959, 959, 959, 959, 959, 959,
103339 /* 120 */ 959, 959, 959, 959, 959, 959, 661, 728, 959, 959,
103340 /* 130 */ 959, 959, 959, 959, 836, 837, 851, 850, 849, 959,
103341 /* 140 */ 959, 959, 959, 959, 959, 959, 959, 959, 959, 959,
103342 /* 150 */ 959, 939, 937, 959, 883, 959, 959, 959, 959, 959,
103343 /* 160 */ 959, 959, 959, 959, 959, 959, 959, 959, 959, 959,
103344 /* 170 */ 959, 959, 959, 959, 959, 959, 959, 959, 959, 959,
103345 /* 180 */ 959, 641, 959, 759, 759, 759, 635, 959, 959, 959,
103346 /* 190 */ 959, 951, 763, 753, 719, 959, 959, 959, 959, 959,
103347 /* 200 */ 959, 959, 959, 959, 959, 959, 959, 804, 742, 922,
103348 /* 210 */ 924, 959, 905, 740, 663, 761, 676, 751, 643, 798,
103349 /* 220 */ 776, 776, 917, 798, 917, 700, 959, 788, 959, 788,
103350 /* 230 */ 697, 788, 776, 788, 788, 866, 959, 959, 959, 760,
103351 /* 240 */ 751, 959, 944, 767, 767, 936, 936, 767, 810, 732,
103352 /* 250 */ 798, 739, 739, 739, 739, 767, 798, 810, 732, 732,
103353 /* 260 */ 767, 658, 911, 909, 767, 767, 658, 767, 658, 767,
103354 /* 270 */ 658, 876, 730, 730, 730, 715, 880, 880, 876, 730,
103355 /* 280 */ 700, 730, 715, 730, 730, 780, 775, 780, 775, 780,
103356 /* 290 */ 775, 767, 767, 959, 793, 781, 791, 789, 798, 959,
103357 /* 300 */ 718, 651, 651, 640, 640, 640, 640, 956, 956, 951,
103358 /* 310 */ 702, 702, 684, 959, 959, 959, 959, 959, 959, 959,
103359 /* 320 */ 885, 959, 959, 959, 959, 959, 959, 959, 959, 959,
103360 /* 330 */ 959, 959, 959, 959, 636, 946, 959, 959, 943, 959,
103361 /* 340 */ 959, 959, 959, 959, 959, 959, 959, 959, 959, 959,
103362 /* 350 */ 959, 959, 959, 959, 959, 959, 959, 959, 959, 915,
103363 /* 360 */ 959, 959, 959, 959, 959, 959, 908, 907, 959, 959,
103364 /* 370 */ 959, 959, 959, 959, 959, 959, 959, 959, 959, 959,
103365 /* 380 */ 959, 959, 959, 959, 959, 959, 959, 959, 959, 959,
103366 /* 390 */ 959, 959, 959, 959, 790, 959, 782, 959, 869, 959,
103367 /* 400 */ 959, 959, 959, 959, 959, 959, 959, 959, 959, 745,
103368 /* 410 */ 819, 959, 818, 822, 817, 668, 959, 649, 959, 632,
103369 /* 420 */ 637, 955, 958, 957, 954, 953, 952, 947, 945, 942,
103370 /* 430 */ 941, 940, 938, 935, 931, 889, 887, 894, 893, 892,
103371 /* 440 */ 891, 890, 888, 886, 884, 805, 803, 800, 797, 930,
103372 /* 450 */ 882, 741, 738, 737, 657, 948, 914, 923, 921, 811,
103373 /* 460 */ 920, 919, 918, 916, 913, 900, 807, 806, 733, 874,
103374 /* 470 */ 873, 660, 904, 903, 902, 906, 910, 901, 769, 659,
103375 /* 480 */ 656, 665, 722, 721, 729, 727, 726, 725, 724, 723,
103376 /* 490 */ 720, 667, 675, 686, 714, 699, 698, 879, 881, 878,
103377 /* 500 */ 877, 707, 706, 712, 711, 710, 709, 708, 705, 704,
103378 /* 510 */ 703, 696, 695, 701, 694, 717, 716, 713, 693, 736,
103379 /* 520 */ 735, 734, 731, 692, 691, 690, 822, 689, 688, 828,
103380 /* 530 */ 827, 815, 858, 756, 755, 754, 766, 765, 778, 777,
103381 /* 540 */ 813, 812, 779, 764, 758, 757, 773, 772, 771, 770,
103382 /* 550 */ 762, 752, 784, 787, 786, 783, 860, 768, 857, 929,
103383 /* 560 */ 928, 927, 926, 925, 862, 861, 829, 826, 679, 680,
103384 /* 570 */ 898, 896, 897, 895, 682, 681, 678, 677, 859, 747,
103385 /* 580 */ 746, 855, 852, 844, 840, 856, 853, 845, 841, 839,
103386 /* 590 */ 838, 824, 823, 821, 820, 816, 825, 670, 748, 744,
103387 /* 600 */ 743, 814, 750, 749, 687, 685, 683, 664, 662, 655,
103388 /* 610 */ 653, 652, 654, 650, 648, 647, 646, 645, 644, 673,
103389 /* 620 */ 672, 671, 669, 668, 642, 639, 638, 634, 633, 631,
103392 /* The next table maps tokens into fallback tokens. If a construct
103393 ** like the following:
103395 ** %fallback ID X Y Z.
103397 ** appears in the grammar, then ID becomes a fallback token for X, Y,
103398 ** and Z. Whenever one of the tokens X, Y, or Z is input to the parser
103399 ** but it does not parse, the type of the token is changed to ID and
103400 ** the parse is retried before an error is thrown.
103402 #ifdef YYFALLBACK
103403 static const YYCODETYPE yyFallback[] = {
103404 0, /* $ => nothing */
103405 0, /* SEMI => nothing */
103406 26, /* EXPLAIN => ID */
103407 26, /* QUERY => ID */
103408 26, /* PLAN => ID */
103409 26, /* BEGIN => ID */
103410 0, /* TRANSACTION => nothing */
103411 26, /* DEFERRED => ID */
103412 26, /* IMMEDIATE => ID */
103413 26, /* EXCLUSIVE => ID */
103414 0, /* COMMIT => nothing */
103415 26, /* END => ID */
103416 26, /* ROLLBACK => ID */
103417 26, /* SAVEPOINT => ID */
103418 26, /* RELEASE => ID */
103419 0, /* TO => nothing */
103420 0, /* TABLE => nothing */
103421 0, /* CREATE => nothing */
103422 26, /* IF => ID */
103423 0, /* NOT => nothing */
103424 0, /* EXISTS => nothing */
103425 26, /* TEMP => ID */
103426 0, /* LP => nothing */
103427 0, /* RP => nothing */
103428 0, /* AS => nothing */
103429 0, /* COMMA => nothing */
103430 0, /* ID => nothing */
103431 0, /* INDEXED => nothing */
103432 26, /* ABORT => ID */
103433 26, /* ACTION => ID */
103434 26, /* AFTER => ID */
103435 26, /* ANALYZE => ID */
103436 26, /* ASC => ID */
103437 26, /* ATTACH => ID */
103438 26, /* BEFORE => ID */
103439 26, /* BY => ID */
103440 26, /* CASCADE => ID */
103441 26, /* CAST => ID */
103442 26, /* COLUMNKW => ID */
103443 26, /* CONFLICT => ID */
103444 26, /* DATABASE => ID */
103445 26, /* DESC => ID */
103446 26, /* DETACH => ID */
103447 26, /* EACH => ID */
103448 26, /* FAIL => ID */
103449 26, /* FOR => ID */
103450 26, /* IGNORE => ID */
103451 26, /* INITIALLY => ID */
103452 26, /* INSTEAD => ID */
103453 26, /* LIKE_KW => ID */
103454 26, /* MATCH => ID */
103455 26, /* NO => ID */
103456 26, /* KEY => ID */
103457 26, /* OF => ID */
103458 26, /* OFFSET => ID */
103459 26, /* PRAGMA => ID */
103460 26, /* RAISE => ID */
103461 26, /* REPLACE => ID */
103462 26, /* RESTRICT => ID */
103463 26, /* ROW => ID */
103464 26, /* TRIGGER => ID */
103465 26, /* VACUUM => ID */
103466 26, /* VIEW => ID */
103467 26, /* VIRTUAL => ID */
103468 26, /* REINDEX => ID */
103469 26, /* RENAME => ID */
103470 26, /* CTIME_KW => ID */
103472 #endif /* YYFALLBACK */
103474 /* The following structure represents a single element of the
103475 ** parser's stack. Information stored includes:
103477 ** + The state number for the parser at this level of the stack.
103479 ** + The value of the token stored at this level of the stack.
103480 ** (In other words, the "major" token.)
103482 ** + The semantic value stored at this level of the stack. This is
103483 ** the information used by the action routines in the grammar.
103484 ** It is sometimes called the "minor" token.
103486 struct yyStackEntry {
103487 YYACTIONTYPE stateno; /* The state-number */
103488 YYCODETYPE major; /* The major token value. This is the code
103489 ** number for the token at this stack level */
103490 YYMINORTYPE minor; /* The user-supplied minor token value. This
103491 ** is the value of the token */
103493 typedef struct yyStackEntry yyStackEntry;
103495 /* The state of the parser is completely contained in an instance of
103496 ** the following structure */
103497 struct yyParser {
103498 int yyidx; /* Index of top element in stack */
103499 #ifdef YYTRACKMAXSTACKDEPTH
103500 int yyidxMax; /* Maximum value of yyidx */
103501 #endif
103502 int yyerrcnt; /* Shifts left before out of the error */
103503 sqlite3ParserARG_SDECL /* A place to hold %extra_argument */
103504 #if YYSTACKDEPTH<=0
103505 int yystksz; /* Current side of the stack */
103506 yyStackEntry *yystack; /* The parser's stack */
103507 #else
103508 yyStackEntry yystack[YYSTACKDEPTH]; /* The parser's stack */
103509 #endif
103511 typedef struct yyParser yyParser;
103513 #ifndef NDEBUG
103514 static FILE *yyTraceFILE = 0;
103515 static char *yyTracePrompt = 0;
103516 #endif /* NDEBUG */
103518 #ifndef NDEBUG
103520 ** Turn parser tracing on by giving a stream to which to write the trace
103521 ** and a prompt to preface each trace message. Tracing is turned off
103522 ** by making either argument NULL
103524 ** Inputs:
103525 ** <ul>
103526 ** <li> A FILE* to which trace output should be written.
103527 ** If NULL, then tracing is turned off.
103528 ** <li> A prefix string written at the beginning of every
103529 ** line of trace output. If NULL, then tracing is
103530 ** turned off.
103531 ** </ul>
103533 ** Outputs:
103534 ** None.
103536 SQLITE_PRIVATE void sqlite3ParserTrace(FILE *TraceFILE, char *zTracePrompt){
103537 yyTraceFILE = TraceFILE;
103538 yyTracePrompt = zTracePrompt;
103539 if( yyTraceFILE==0 ) yyTracePrompt = 0;
103540 else if( yyTracePrompt==0 ) yyTraceFILE = 0;
103542 #endif /* NDEBUG */
103544 #ifndef NDEBUG
103545 /* For tracing shifts, the names of all terminals and nonterminals
103546 ** are required. The following table supplies these names */
103547 static const char *const yyTokenName[] = {
103548 "$", "SEMI", "EXPLAIN", "QUERY",
103549 "PLAN", "BEGIN", "TRANSACTION", "DEFERRED",
103550 "IMMEDIATE", "EXCLUSIVE", "COMMIT", "END",
103551 "ROLLBACK", "SAVEPOINT", "RELEASE", "TO",
103552 "TABLE", "CREATE", "IF", "NOT",
103553 "EXISTS", "TEMP", "LP", "RP",
103554 "AS", "COMMA", "ID", "INDEXED",
103555 "ABORT", "ACTION", "AFTER", "ANALYZE",
103556 "ASC", "ATTACH", "BEFORE", "BY",
103557 "CASCADE", "CAST", "COLUMNKW", "CONFLICT",
103558 "DATABASE", "DESC", "DETACH", "EACH",
103559 "FAIL", "FOR", "IGNORE", "INITIALLY",
103560 "INSTEAD", "LIKE_KW", "MATCH", "NO",
103561 "KEY", "OF", "OFFSET", "PRAGMA",
103562 "RAISE", "REPLACE", "RESTRICT", "ROW",
103563 "TRIGGER", "VACUUM", "VIEW", "VIRTUAL",
103564 "REINDEX", "RENAME", "CTIME_KW", "ANY",
103565 "OR", "AND", "IS", "BETWEEN",
103566 "IN", "ISNULL", "NOTNULL", "NE",
103567 "EQ", "GT", "LE", "LT",
103568 "GE", "ESCAPE", "BITAND", "BITOR",
103569 "LSHIFT", "RSHIFT", "PLUS", "MINUS",
103570 "STAR", "SLASH", "REM", "CONCAT",
103571 "COLLATE", "BITNOT", "STRING", "JOIN_KW",
103572 "CONSTRAINT", "DEFAULT", "NULL", "PRIMARY",
103573 "UNIQUE", "CHECK", "REFERENCES", "AUTOINCR",
103574 "ON", "INSERT", "DELETE", "UPDATE",
103575 "SET", "DEFERRABLE", "FOREIGN", "DROP",
103576 "UNION", "ALL", "EXCEPT", "INTERSECT",
103577 "SELECT", "DISTINCT", "DOT", "FROM",
103578 "JOIN", "USING", "ORDER", "GROUP",
103579 "HAVING", "LIMIT", "WHERE", "INTO",
103580 "VALUES", "INTEGER", "FLOAT", "BLOB",
103581 "REGISTER", "VARIABLE", "CASE", "WHEN",
103582 "THEN", "ELSE", "INDEX", "ALTER",
103583 "ADD", "error", "input", "cmdlist",
103584 "ecmd", "explain", "cmdx", "cmd",
103585 "transtype", "trans_opt", "nm", "savepoint_opt",
103586 "create_table", "create_table_args", "createkw", "temp",
103587 "ifnotexists", "dbnm", "columnlist", "conslist_opt",
103588 "select", "column", "columnid", "type",
103589 "carglist", "id", "ids", "typetoken",
103590 "typename", "signed", "plus_num", "minus_num",
103591 "carg", "ccons", "term", "expr",
103592 "onconf", "sortorder", "autoinc", "idxlist_opt",
103593 "refargs", "defer_subclause", "refarg", "refact",
103594 "init_deferred_pred_opt", "conslist", "tcons", "idxlist",
103595 "defer_subclause_opt", "orconf", "resolvetype", "raisetype",
103596 "ifexists", "fullname", "oneselect", "multiselect_op",
103597 "distinct", "selcollist", "from", "where_opt",
103598 "groupby_opt", "having_opt", "orderby_opt", "limit_opt",
103599 "sclp", "as", "seltablist", "stl_prefix",
103600 "joinop", "indexed_opt", "on_opt", "using_opt",
103601 "joinop2", "inscollist", "sortlist", "sortitem",
103602 "nexprlist", "setlist", "insert_cmd", "inscollist_opt",
103603 "itemlist", "exprlist", "likeop", "between_op",
103604 "in_op", "case_operand", "case_exprlist", "case_else",
103605 "uniqueflag", "collate", "nmnum", "plus_opt",
103606 "number", "trigger_decl", "trigger_cmd_list", "trigger_time",
103607 "trigger_event", "foreach_clause", "when_clause", "trigger_cmd",
103608 "trnm", "tridxby", "database_kw_opt", "key_opt",
103609 "add_column_fullname", "kwcolumn_opt", "create_vtab", "vtabarglist",
103610 "vtabarg", "vtabargtoken", "lp", "anylist",
103612 #endif /* NDEBUG */
103614 #ifndef NDEBUG
103615 /* For tracing reduce actions, the names of all rules are required.
103617 static const char *const yyRuleName[] = {
103618 /* 0 */ "input ::= cmdlist",
103619 /* 1 */ "cmdlist ::= cmdlist ecmd",
103620 /* 2 */ "cmdlist ::= ecmd",
103621 /* 3 */ "ecmd ::= SEMI",
103622 /* 4 */ "ecmd ::= explain cmdx SEMI",
103623 /* 5 */ "explain ::=",
103624 /* 6 */ "explain ::= EXPLAIN",
103625 /* 7 */ "explain ::= EXPLAIN QUERY PLAN",
103626 /* 8 */ "cmdx ::= cmd",
103627 /* 9 */ "cmd ::= BEGIN transtype trans_opt",
103628 /* 10 */ "trans_opt ::=",
103629 /* 11 */ "trans_opt ::= TRANSACTION",
103630 /* 12 */ "trans_opt ::= TRANSACTION nm",
103631 /* 13 */ "transtype ::=",
103632 /* 14 */ "transtype ::= DEFERRED",
103633 /* 15 */ "transtype ::= IMMEDIATE",
103634 /* 16 */ "transtype ::= EXCLUSIVE",
103635 /* 17 */ "cmd ::= COMMIT trans_opt",
103636 /* 18 */ "cmd ::= END trans_opt",
103637 /* 19 */ "cmd ::= ROLLBACK trans_opt",
103638 /* 20 */ "savepoint_opt ::= SAVEPOINT",
103639 /* 21 */ "savepoint_opt ::=",
103640 /* 22 */ "cmd ::= SAVEPOINT nm",
103641 /* 23 */ "cmd ::= RELEASE savepoint_opt nm",
103642 /* 24 */ "cmd ::= ROLLBACK trans_opt TO savepoint_opt nm",
103643 /* 25 */ "cmd ::= create_table create_table_args",
103644 /* 26 */ "create_table ::= createkw temp TABLE ifnotexists nm dbnm",
103645 /* 27 */ "createkw ::= CREATE",
103646 /* 28 */ "ifnotexists ::=",
103647 /* 29 */ "ifnotexists ::= IF NOT EXISTS",
103648 /* 30 */ "temp ::= TEMP",
103649 /* 31 */ "temp ::=",
103650 /* 32 */ "create_table_args ::= LP columnlist conslist_opt RP",
103651 /* 33 */ "create_table_args ::= AS select",
103652 /* 34 */ "columnlist ::= columnlist COMMA column",
103653 /* 35 */ "columnlist ::= column",
103654 /* 36 */ "column ::= columnid type carglist",
103655 /* 37 */ "columnid ::= nm",
103656 /* 38 */ "id ::= ID",
103657 /* 39 */ "id ::= INDEXED",
103658 /* 40 */ "ids ::= ID|STRING",
103659 /* 41 */ "nm ::= id",
103660 /* 42 */ "nm ::= STRING",
103661 /* 43 */ "nm ::= JOIN_KW",
103662 /* 44 */ "type ::=",
103663 /* 45 */ "type ::= typetoken",
103664 /* 46 */ "typetoken ::= typename",
103665 /* 47 */ "typetoken ::= typename LP signed RP",
103666 /* 48 */ "typetoken ::= typename LP signed COMMA signed RP",
103667 /* 49 */ "typename ::= ids",
103668 /* 50 */ "typename ::= typename ids",
103669 /* 51 */ "signed ::= plus_num",
103670 /* 52 */ "signed ::= minus_num",
103671 /* 53 */ "carglist ::= carglist carg",
103672 /* 54 */ "carglist ::=",
103673 /* 55 */ "carg ::= CONSTRAINT nm ccons",
103674 /* 56 */ "carg ::= ccons",
103675 /* 57 */ "ccons ::= DEFAULT term",
103676 /* 58 */ "ccons ::= DEFAULT LP expr RP",
103677 /* 59 */ "ccons ::= DEFAULT PLUS term",
103678 /* 60 */ "ccons ::= DEFAULT MINUS term",
103679 /* 61 */ "ccons ::= DEFAULT id",
103680 /* 62 */ "ccons ::= NULL onconf",
103681 /* 63 */ "ccons ::= NOT NULL onconf",
103682 /* 64 */ "ccons ::= PRIMARY KEY sortorder onconf autoinc",
103683 /* 65 */ "ccons ::= UNIQUE onconf",
103684 /* 66 */ "ccons ::= CHECK LP expr RP",
103685 /* 67 */ "ccons ::= REFERENCES nm idxlist_opt refargs",
103686 /* 68 */ "ccons ::= defer_subclause",
103687 /* 69 */ "ccons ::= COLLATE ids",
103688 /* 70 */ "autoinc ::=",
103689 /* 71 */ "autoinc ::= AUTOINCR",
103690 /* 72 */ "refargs ::=",
103691 /* 73 */ "refargs ::= refargs refarg",
103692 /* 74 */ "refarg ::= MATCH nm",
103693 /* 75 */ "refarg ::= ON INSERT refact",
103694 /* 76 */ "refarg ::= ON DELETE refact",
103695 /* 77 */ "refarg ::= ON UPDATE refact",
103696 /* 78 */ "refact ::= SET NULL",
103697 /* 79 */ "refact ::= SET DEFAULT",
103698 /* 80 */ "refact ::= CASCADE",
103699 /* 81 */ "refact ::= RESTRICT",
103700 /* 82 */ "refact ::= NO ACTION",
103701 /* 83 */ "defer_subclause ::= NOT DEFERRABLE init_deferred_pred_opt",
103702 /* 84 */ "defer_subclause ::= DEFERRABLE init_deferred_pred_opt",
103703 /* 85 */ "init_deferred_pred_opt ::=",
103704 /* 86 */ "init_deferred_pred_opt ::= INITIALLY DEFERRED",
103705 /* 87 */ "init_deferred_pred_opt ::= INITIALLY IMMEDIATE",
103706 /* 88 */ "conslist_opt ::=",
103707 /* 89 */ "conslist_opt ::= COMMA conslist",
103708 /* 90 */ "conslist ::= conslist COMMA tcons",
103709 /* 91 */ "conslist ::= conslist tcons",
103710 /* 92 */ "conslist ::= tcons",
103711 /* 93 */ "tcons ::= CONSTRAINT nm",
103712 /* 94 */ "tcons ::= PRIMARY KEY LP idxlist autoinc RP onconf",
103713 /* 95 */ "tcons ::= UNIQUE LP idxlist RP onconf",
103714 /* 96 */ "tcons ::= CHECK LP expr RP onconf",
103715 /* 97 */ "tcons ::= FOREIGN KEY LP idxlist RP REFERENCES nm idxlist_opt refargs defer_subclause_opt",
103716 /* 98 */ "defer_subclause_opt ::=",
103717 /* 99 */ "defer_subclause_opt ::= defer_subclause",
103718 /* 100 */ "onconf ::=",
103719 /* 101 */ "onconf ::= ON CONFLICT resolvetype",
103720 /* 102 */ "orconf ::=",
103721 /* 103 */ "orconf ::= OR resolvetype",
103722 /* 104 */ "resolvetype ::= raisetype",
103723 /* 105 */ "resolvetype ::= IGNORE",
103724 /* 106 */ "resolvetype ::= REPLACE",
103725 /* 107 */ "cmd ::= DROP TABLE ifexists fullname",
103726 /* 108 */ "ifexists ::= IF EXISTS",
103727 /* 109 */ "ifexists ::=",
103728 /* 110 */ "cmd ::= createkw temp VIEW ifnotexists nm dbnm AS select",
103729 /* 111 */ "cmd ::= DROP VIEW ifexists fullname",
103730 /* 112 */ "cmd ::= select",
103731 /* 113 */ "select ::= oneselect",
103732 /* 114 */ "select ::= select multiselect_op oneselect",
103733 /* 115 */ "multiselect_op ::= UNION",
103734 /* 116 */ "multiselect_op ::= UNION ALL",
103735 /* 117 */ "multiselect_op ::= EXCEPT|INTERSECT",
103736 /* 118 */ "oneselect ::= SELECT distinct selcollist from where_opt groupby_opt having_opt orderby_opt limit_opt",
103737 /* 119 */ "distinct ::= DISTINCT",
103738 /* 120 */ "distinct ::= ALL",
103739 /* 121 */ "distinct ::=",
103740 /* 122 */ "sclp ::= selcollist COMMA",
103741 /* 123 */ "sclp ::=",
103742 /* 124 */ "selcollist ::= sclp expr as",
103743 /* 125 */ "selcollist ::= sclp STAR",
103744 /* 126 */ "selcollist ::= sclp nm DOT STAR",
103745 /* 127 */ "as ::= AS nm",
103746 /* 128 */ "as ::= ids",
103747 /* 129 */ "as ::=",
103748 /* 130 */ "from ::=",
103749 /* 131 */ "from ::= FROM seltablist",
103750 /* 132 */ "stl_prefix ::= seltablist joinop",
103751 /* 133 */ "stl_prefix ::=",
103752 /* 134 */ "seltablist ::= stl_prefix nm dbnm as indexed_opt on_opt using_opt",
103753 /* 135 */ "seltablist ::= stl_prefix LP select RP as on_opt using_opt",
103754 /* 136 */ "seltablist ::= stl_prefix LP seltablist RP as on_opt using_opt",
103755 /* 137 */ "dbnm ::=",
103756 /* 138 */ "dbnm ::= DOT nm",
103757 /* 139 */ "fullname ::= nm dbnm",
103758 /* 140 */ "joinop ::= COMMA|JOIN",
103759 /* 141 */ "joinop ::= JOIN_KW JOIN",
103760 /* 142 */ "joinop ::= JOIN_KW nm JOIN",
103761 /* 143 */ "joinop ::= JOIN_KW nm nm JOIN",
103762 /* 144 */ "on_opt ::= ON expr",
103763 /* 145 */ "on_opt ::=",
103764 /* 146 */ "indexed_opt ::=",
103765 /* 147 */ "indexed_opt ::= INDEXED BY nm",
103766 /* 148 */ "indexed_opt ::= NOT INDEXED",
103767 /* 149 */ "using_opt ::= USING LP inscollist RP",
103768 /* 150 */ "using_opt ::=",
103769 /* 151 */ "orderby_opt ::=",
103770 /* 152 */ "orderby_opt ::= ORDER BY sortlist",
103771 /* 153 */ "sortlist ::= sortlist COMMA sortitem sortorder",
103772 /* 154 */ "sortlist ::= sortitem sortorder",
103773 /* 155 */ "sortitem ::= expr",
103774 /* 156 */ "sortorder ::= ASC",
103775 /* 157 */ "sortorder ::= DESC",
103776 /* 158 */ "sortorder ::=",
103777 /* 159 */ "groupby_opt ::=",
103778 /* 160 */ "groupby_opt ::= GROUP BY nexprlist",
103779 /* 161 */ "having_opt ::=",
103780 /* 162 */ "having_opt ::= HAVING expr",
103781 /* 163 */ "limit_opt ::=",
103782 /* 164 */ "limit_opt ::= LIMIT expr",
103783 /* 165 */ "limit_opt ::= LIMIT expr OFFSET expr",
103784 /* 166 */ "limit_opt ::= LIMIT expr COMMA expr",
103785 /* 167 */ "cmd ::= DELETE FROM fullname indexed_opt where_opt",
103786 /* 168 */ "where_opt ::=",
103787 /* 169 */ "where_opt ::= WHERE expr",
103788 /* 170 */ "cmd ::= UPDATE orconf fullname indexed_opt SET setlist where_opt",
103789 /* 171 */ "setlist ::= setlist COMMA nm EQ expr",
103790 /* 172 */ "setlist ::= nm EQ expr",
103791 /* 173 */ "cmd ::= insert_cmd INTO fullname inscollist_opt VALUES LP itemlist RP",
103792 /* 174 */ "cmd ::= insert_cmd INTO fullname inscollist_opt select",
103793 /* 175 */ "cmd ::= insert_cmd INTO fullname inscollist_opt DEFAULT VALUES",
103794 /* 176 */ "insert_cmd ::= INSERT orconf",
103795 /* 177 */ "insert_cmd ::= REPLACE",
103796 /* 178 */ "itemlist ::= itemlist COMMA expr",
103797 /* 179 */ "itemlist ::= expr",
103798 /* 180 */ "inscollist_opt ::=",
103799 /* 181 */ "inscollist_opt ::= LP inscollist RP",
103800 /* 182 */ "inscollist ::= inscollist COMMA nm",
103801 /* 183 */ "inscollist ::= nm",
103802 /* 184 */ "expr ::= term",
103803 /* 185 */ "expr ::= LP expr RP",
103804 /* 186 */ "term ::= NULL",
103805 /* 187 */ "expr ::= id",
103806 /* 188 */ "expr ::= JOIN_KW",
103807 /* 189 */ "expr ::= nm DOT nm",
103808 /* 190 */ "expr ::= nm DOT nm DOT nm",
103809 /* 191 */ "term ::= INTEGER|FLOAT|BLOB",
103810 /* 192 */ "term ::= STRING",
103811 /* 193 */ "expr ::= REGISTER",
103812 /* 194 */ "expr ::= VARIABLE",
103813 /* 195 */ "expr ::= expr COLLATE ids",
103814 /* 196 */ "expr ::= CAST LP expr AS typetoken RP",
103815 /* 197 */ "expr ::= ID LP distinct exprlist RP",
103816 /* 198 */ "expr ::= ID LP STAR RP",
103817 /* 199 */ "term ::= CTIME_KW",
103818 /* 200 */ "expr ::= expr AND expr",
103819 /* 201 */ "expr ::= expr OR expr",
103820 /* 202 */ "expr ::= expr LT|GT|GE|LE expr",
103821 /* 203 */ "expr ::= expr EQ|NE expr",
103822 /* 204 */ "expr ::= expr BITAND|BITOR|LSHIFT|RSHIFT expr",
103823 /* 205 */ "expr ::= expr PLUS|MINUS expr",
103824 /* 206 */ "expr ::= expr STAR|SLASH|REM expr",
103825 /* 207 */ "expr ::= expr CONCAT expr",
103826 /* 208 */ "likeop ::= LIKE_KW",
103827 /* 209 */ "likeop ::= NOT LIKE_KW",
103828 /* 210 */ "likeop ::= MATCH",
103829 /* 211 */ "likeop ::= NOT MATCH",
103830 /* 212 */ "expr ::= expr likeop expr",
103831 /* 213 */ "expr ::= expr likeop expr ESCAPE expr",
103832 /* 214 */ "expr ::= expr ISNULL|NOTNULL",
103833 /* 215 */ "expr ::= expr NOT NULL",
103834 /* 216 */ "expr ::= expr IS expr",
103835 /* 217 */ "expr ::= expr IS NOT expr",
103836 /* 218 */ "expr ::= NOT expr",
103837 /* 219 */ "expr ::= BITNOT expr",
103838 /* 220 */ "expr ::= MINUS expr",
103839 /* 221 */ "expr ::= PLUS expr",
103840 /* 222 */ "between_op ::= BETWEEN",
103841 /* 223 */ "between_op ::= NOT BETWEEN",
103842 /* 224 */ "expr ::= expr between_op expr AND expr",
103843 /* 225 */ "in_op ::= IN",
103844 /* 226 */ "in_op ::= NOT IN",
103845 /* 227 */ "expr ::= expr in_op LP exprlist RP",
103846 /* 228 */ "expr ::= LP select RP",
103847 /* 229 */ "expr ::= expr in_op LP select RP",
103848 /* 230 */ "expr ::= expr in_op nm dbnm",
103849 /* 231 */ "expr ::= EXISTS LP select RP",
103850 /* 232 */ "expr ::= CASE case_operand case_exprlist case_else END",
103851 /* 233 */ "case_exprlist ::= case_exprlist WHEN expr THEN expr",
103852 /* 234 */ "case_exprlist ::= WHEN expr THEN expr",
103853 /* 235 */ "case_else ::= ELSE expr",
103854 /* 236 */ "case_else ::=",
103855 /* 237 */ "case_operand ::= expr",
103856 /* 238 */ "case_operand ::=",
103857 /* 239 */ "exprlist ::= nexprlist",
103858 /* 240 */ "exprlist ::=",
103859 /* 241 */ "nexprlist ::= nexprlist COMMA expr",
103860 /* 242 */ "nexprlist ::= expr",
103861 /* 243 */ "cmd ::= createkw uniqueflag INDEX ifnotexists nm dbnm ON nm LP idxlist RP",
103862 /* 244 */ "uniqueflag ::= UNIQUE",
103863 /* 245 */ "uniqueflag ::=",
103864 /* 246 */ "idxlist_opt ::=",
103865 /* 247 */ "idxlist_opt ::= LP idxlist RP",
103866 /* 248 */ "idxlist ::= idxlist COMMA nm collate sortorder",
103867 /* 249 */ "idxlist ::= nm collate sortorder",
103868 /* 250 */ "collate ::=",
103869 /* 251 */ "collate ::= COLLATE ids",
103870 /* 252 */ "cmd ::= DROP INDEX ifexists fullname",
103871 /* 253 */ "cmd ::= VACUUM",
103872 /* 254 */ "cmd ::= VACUUM nm",
103873 /* 255 */ "cmd ::= PRAGMA nm dbnm",
103874 /* 256 */ "cmd ::= PRAGMA nm dbnm EQ nmnum",
103875 /* 257 */ "cmd ::= PRAGMA nm dbnm LP nmnum RP",
103876 /* 258 */ "cmd ::= PRAGMA nm dbnm EQ minus_num",
103877 /* 259 */ "cmd ::= PRAGMA nm dbnm LP minus_num RP",
103878 /* 260 */ "nmnum ::= plus_num",
103879 /* 261 */ "nmnum ::= nm",
103880 /* 262 */ "nmnum ::= ON",
103881 /* 263 */ "nmnum ::= DELETE",
103882 /* 264 */ "nmnum ::= DEFAULT",
103883 /* 265 */ "plus_num ::= plus_opt number",
103884 /* 266 */ "minus_num ::= MINUS number",
103885 /* 267 */ "number ::= INTEGER|FLOAT",
103886 /* 268 */ "plus_opt ::= PLUS",
103887 /* 269 */ "plus_opt ::=",
103888 /* 270 */ "cmd ::= createkw trigger_decl BEGIN trigger_cmd_list END",
103889 /* 271 */ "trigger_decl ::= temp TRIGGER ifnotexists nm dbnm trigger_time trigger_event ON fullname foreach_clause when_clause",
103890 /* 272 */ "trigger_time ::= BEFORE",
103891 /* 273 */ "trigger_time ::= AFTER",
103892 /* 274 */ "trigger_time ::= INSTEAD OF",
103893 /* 275 */ "trigger_time ::=",
103894 /* 276 */ "trigger_event ::= DELETE|INSERT",
103895 /* 277 */ "trigger_event ::= UPDATE",
103896 /* 278 */ "trigger_event ::= UPDATE OF inscollist",
103897 /* 279 */ "foreach_clause ::=",
103898 /* 280 */ "foreach_clause ::= FOR EACH ROW",
103899 /* 281 */ "when_clause ::=",
103900 /* 282 */ "when_clause ::= WHEN expr",
103901 /* 283 */ "trigger_cmd_list ::= trigger_cmd_list trigger_cmd SEMI",
103902 /* 284 */ "trigger_cmd_list ::= trigger_cmd SEMI",
103903 /* 285 */ "trnm ::= nm",
103904 /* 286 */ "trnm ::= nm DOT nm",
103905 /* 287 */ "tridxby ::=",
103906 /* 288 */ "tridxby ::= INDEXED BY nm",
103907 /* 289 */ "tridxby ::= NOT INDEXED",
103908 /* 290 */ "trigger_cmd ::= UPDATE orconf trnm tridxby SET setlist where_opt",
103909 /* 291 */ "trigger_cmd ::= insert_cmd INTO trnm inscollist_opt VALUES LP itemlist RP",
103910 /* 292 */ "trigger_cmd ::= insert_cmd INTO trnm inscollist_opt select",
103911 /* 293 */ "trigger_cmd ::= DELETE FROM trnm tridxby where_opt",
103912 /* 294 */ "trigger_cmd ::= select",
103913 /* 295 */ "expr ::= RAISE LP IGNORE RP",
103914 /* 296 */ "expr ::= RAISE LP raisetype COMMA nm RP",
103915 /* 297 */ "raisetype ::= ROLLBACK",
103916 /* 298 */ "raisetype ::= ABORT",
103917 /* 299 */ "raisetype ::= FAIL",
103918 /* 300 */ "cmd ::= DROP TRIGGER ifexists fullname",
103919 /* 301 */ "cmd ::= ATTACH database_kw_opt expr AS expr key_opt",
103920 /* 302 */ "cmd ::= DETACH database_kw_opt expr",
103921 /* 303 */ "key_opt ::=",
103922 /* 304 */ "key_opt ::= KEY expr",
103923 /* 305 */ "database_kw_opt ::= DATABASE",
103924 /* 306 */ "database_kw_opt ::=",
103925 /* 307 */ "cmd ::= REINDEX",
103926 /* 308 */ "cmd ::= REINDEX nm dbnm",
103927 /* 309 */ "cmd ::= ANALYZE",
103928 /* 310 */ "cmd ::= ANALYZE nm dbnm",
103929 /* 311 */ "cmd ::= ALTER TABLE fullname RENAME TO nm",
103930 /* 312 */ "cmd ::= ALTER TABLE add_column_fullname ADD kwcolumn_opt column",
103931 /* 313 */ "add_column_fullname ::= fullname",
103932 /* 314 */ "kwcolumn_opt ::=",
103933 /* 315 */ "kwcolumn_opt ::= COLUMNKW",
103934 /* 316 */ "cmd ::= create_vtab",
103935 /* 317 */ "cmd ::= create_vtab LP vtabarglist RP",
103936 /* 318 */ "create_vtab ::= createkw VIRTUAL TABLE nm dbnm USING nm",
103937 /* 319 */ "vtabarglist ::= vtabarg",
103938 /* 320 */ "vtabarglist ::= vtabarglist COMMA vtabarg",
103939 /* 321 */ "vtabarg ::=",
103940 /* 322 */ "vtabarg ::= vtabarg vtabargtoken",
103941 /* 323 */ "vtabargtoken ::= ANY",
103942 /* 324 */ "vtabargtoken ::= lp anylist RP",
103943 /* 325 */ "lp ::= LP",
103944 /* 326 */ "anylist ::=",
103945 /* 327 */ "anylist ::= anylist LP anylist RP",
103946 /* 328 */ "anylist ::= anylist ANY",
103948 #endif /* NDEBUG */
103951 #if YYSTACKDEPTH<=0
103953 ** Try to increase the size of the parser stack.
103955 static void yyGrowStack(yyParser *p){
103956 int newSize;
103957 yyStackEntry *pNew;
103959 newSize = p->yystksz*2 + 100;
103960 pNew = realloc(p->yystack, newSize*sizeof(pNew[0]));
103961 if( pNew ){
103962 p->yystack = pNew;
103963 p->yystksz = newSize;
103964 #ifndef NDEBUG
103965 if( yyTraceFILE ){
103966 fprintf(yyTraceFILE,"%sStack grows to %d entries!\n",
103967 yyTracePrompt, p->yystksz);
103969 #endif
103972 #endif
103975 ** This function allocates a new parser.
103976 ** The only argument is a pointer to a function which works like
103977 ** malloc.
103979 ** Inputs:
103980 ** A pointer to the function used to allocate memory.
103982 ** Outputs:
103983 ** A pointer to a parser. This pointer is used in subsequent calls
103984 ** to sqlite3Parser and sqlite3ParserFree.
103986 SQLITE_PRIVATE void *sqlite3ParserAlloc(void *(*mallocProc)(size_t)){
103987 yyParser *pParser;
103988 pParser = (yyParser*)(*mallocProc)( (size_t)sizeof(yyParser) );
103989 if( pParser ){
103990 pParser->yyidx = -1;
103991 #ifdef YYTRACKMAXSTACKDEPTH
103992 pParser->yyidxMax = 0;
103993 #endif
103994 #if YYSTACKDEPTH<=0
103995 pParser->yystack = NULL;
103996 pParser->yystksz = 0;
103997 yyGrowStack(pParser);
103998 #endif
104000 return pParser;
104003 /* The following function deletes the value associated with a
104004 ** symbol. The symbol can be either a terminal or nonterminal.
104005 ** "yymajor" is the symbol code, and "yypminor" is a pointer to
104006 ** the value.
104008 static void yy_destructor(
104009 yyParser *yypParser, /* The parser */
104010 YYCODETYPE yymajor, /* Type code for object to destroy */
104011 YYMINORTYPE *yypminor /* The object to be destroyed */
104013 sqlite3ParserARG_FETCH;
104014 switch( yymajor ){
104015 /* Here is inserted the actions which take place when a
104016 ** terminal or non-terminal is destroyed. This can happen
104017 ** when the symbol is popped from the stack during a
104018 ** reduce or during error processing or when a parser is
104019 ** being destroyed before it is finished parsing.
104021 ** Note: during a reduce, the only symbols destroyed are those
104022 ** which appear on the RHS of the rule, but which are not used
104023 ** inside the C code.
104025 case 160: /* select */
104026 case 194: /* oneselect */
104028 sqlite3SelectDelete(pParse->db, (yypminor->yy387));
104030 break;
104031 case 174: /* term */
104032 case 175: /* expr */
104034 sqlite3ExprDelete(pParse->db, (yypminor->yy118).pExpr);
104036 break;
104037 case 179: /* idxlist_opt */
104038 case 187: /* idxlist */
104039 case 197: /* selcollist */
104040 case 200: /* groupby_opt */
104041 case 202: /* orderby_opt */
104042 case 204: /* sclp */
104043 case 214: /* sortlist */
104044 case 216: /* nexprlist */
104045 case 217: /* setlist */
104046 case 220: /* itemlist */
104047 case 221: /* exprlist */
104048 case 226: /* case_exprlist */
104050 sqlite3ExprListDelete(pParse->db, (yypminor->yy322));
104052 break;
104053 case 193: /* fullname */
104054 case 198: /* from */
104055 case 206: /* seltablist */
104056 case 207: /* stl_prefix */
104058 sqlite3SrcListDelete(pParse->db, (yypminor->yy259));
104060 break;
104061 case 199: /* where_opt */
104062 case 201: /* having_opt */
104063 case 210: /* on_opt */
104064 case 215: /* sortitem */
104065 case 225: /* case_operand */
104066 case 227: /* case_else */
104067 case 238: /* when_clause */
104068 case 243: /* key_opt */
104070 sqlite3ExprDelete(pParse->db, (yypminor->yy314));
104072 break;
104073 case 211: /* using_opt */
104074 case 213: /* inscollist */
104075 case 219: /* inscollist_opt */
104077 sqlite3IdListDelete(pParse->db, (yypminor->yy384));
104079 break;
104080 case 234: /* trigger_cmd_list */
104081 case 239: /* trigger_cmd */
104083 sqlite3DeleteTriggerStep(pParse->db, (yypminor->yy203));
104085 break;
104086 case 236: /* trigger_event */
104088 sqlite3IdListDelete(pParse->db, (yypminor->yy90).b);
104090 break;
104091 default: break; /* If no destructor action specified: do nothing */
104096 ** Pop the parser's stack once.
104098 ** If there is a destructor routine associated with the token which
104099 ** is popped from the stack, then call it.
104101 ** Return the major token number for the symbol popped.
104103 static int yy_pop_parser_stack(yyParser *pParser){
104104 YYCODETYPE yymajor;
104105 yyStackEntry *yytos = &pParser->yystack[pParser->yyidx];
104107 /* There is no mechanism by which the parser stack can be popped below
104108 ** empty in SQLite. */
104109 if( NEVER(pParser->yyidx<0) ) return 0;
104110 #ifndef NDEBUG
104111 if( yyTraceFILE && pParser->yyidx>=0 ){
104112 fprintf(yyTraceFILE,"%sPopping %s\n",
104113 yyTracePrompt,
104114 yyTokenName[yytos->major]);
104116 #endif
104117 yymajor = yytos->major;
104118 yy_destructor(pParser, yymajor, &yytos->minor);
104119 pParser->yyidx--;
104120 return yymajor;
104124 ** Deallocate and destroy a parser. Destructors are all called for
104125 ** all stack elements before shutting the parser down.
104127 ** Inputs:
104128 ** <ul>
104129 ** <li> A pointer to the parser. This should be a pointer
104130 ** obtained from sqlite3ParserAlloc.
104131 ** <li> A pointer to a function used to reclaim memory obtained
104132 ** from malloc.
104133 ** </ul>
104135 SQLITE_PRIVATE void sqlite3ParserFree(
104136 void *p, /* The parser to be deleted */
104137 void (*freeProc)(void*) /* Function used to reclaim memory */
104139 yyParser *pParser = (yyParser*)p;
104140 /* In SQLite, we never try to destroy a parser that was not successfully
104141 ** created in the first place. */
104142 if( NEVER(pParser==0) ) return;
104143 while( pParser->yyidx>=0 ) yy_pop_parser_stack(pParser);
104144 #if YYSTACKDEPTH<=0
104145 free(pParser->yystack);
104146 #endif
104147 (*freeProc)((void*)pParser);
104151 ** Return the peak depth of the stack for a parser.
104153 #ifdef YYTRACKMAXSTACKDEPTH
104154 SQLITE_PRIVATE int sqlite3ParserStackPeak(void *p){
104155 yyParser *pParser = (yyParser*)p;
104156 return pParser->yyidxMax;
104158 #endif
104161 ** Find the appropriate action for a parser given the terminal
104162 ** look-ahead token iLookAhead.
104164 ** If the look-ahead token is YYNOCODE, then check to see if the action is
104165 ** independent of the look-ahead. If it is, return the action, otherwise
104166 ** return YY_NO_ACTION.
104168 static int yy_find_shift_action(
104169 yyParser *pParser, /* The parser */
104170 YYCODETYPE iLookAhead /* The look-ahead token */
104172 int i;
104173 int stateno = pParser->yystack[pParser->yyidx].stateno;
104175 if( stateno>YY_SHIFT_COUNT
104176 || (i = yy_shift_ofst[stateno])==YY_SHIFT_USE_DFLT ){
104177 return yy_default[stateno];
104179 assert( iLookAhead!=YYNOCODE );
104180 i += iLookAhead;
104181 if( i<0 || i>=YY_ACTTAB_COUNT || yy_lookahead[i]!=iLookAhead ){
104182 if( iLookAhead>0 ){
104183 #ifdef YYFALLBACK
104184 YYCODETYPE iFallback; /* Fallback token */
104185 if( iLookAhead<sizeof(yyFallback)/sizeof(yyFallback[0])
104186 && (iFallback = yyFallback[iLookAhead])!=0 ){
104187 #ifndef NDEBUG
104188 if( yyTraceFILE ){
104189 fprintf(yyTraceFILE, "%sFALLBACK %s => %s\n",
104190 yyTracePrompt, yyTokenName[iLookAhead], yyTokenName[iFallback]);
104192 #endif
104193 return yy_find_shift_action(pParser, iFallback);
104195 #endif
104196 #ifdef YYWILDCARD
104198 int j = i - iLookAhead + YYWILDCARD;
104200 #if YY_SHIFT_MIN+YYWILDCARD<0
104201 j>=0 &&
104202 #endif
104203 #if YY_SHIFT_MAX+YYWILDCARD>=YY_ACTTAB_COUNT
104204 j<YY_ACTTAB_COUNT &&
104205 #endif
104206 yy_lookahead[j]==YYWILDCARD
104208 #ifndef NDEBUG
104209 if( yyTraceFILE ){
104210 fprintf(yyTraceFILE, "%sWILDCARD %s => %s\n",
104211 yyTracePrompt, yyTokenName[iLookAhead], yyTokenName[YYWILDCARD]);
104213 #endif /* NDEBUG */
104214 return yy_action[j];
104217 #endif /* YYWILDCARD */
104219 return yy_default[stateno];
104220 }else{
104221 return yy_action[i];
104226 ** Find the appropriate action for a parser given the non-terminal
104227 ** look-ahead token iLookAhead.
104229 ** If the look-ahead token is YYNOCODE, then check to see if the action is
104230 ** independent of the look-ahead. If it is, return the action, otherwise
104231 ** return YY_NO_ACTION.
104233 static int yy_find_reduce_action(
104234 int stateno, /* Current state number */
104235 YYCODETYPE iLookAhead /* The look-ahead token */
104237 int i;
104238 #ifdef YYERRORSYMBOL
104239 if( stateno>YY_REDUCE_COUNT ){
104240 return yy_default[stateno];
104242 #else
104243 assert( stateno<=YY_REDUCE_COUNT );
104244 #endif
104245 i = yy_reduce_ofst[stateno];
104246 assert( i!=YY_REDUCE_USE_DFLT );
104247 assert( iLookAhead!=YYNOCODE );
104248 i += iLookAhead;
104249 #ifdef YYERRORSYMBOL
104250 if( i<0 || i>=YY_ACTTAB_COUNT || yy_lookahead[i]!=iLookAhead ){
104251 return yy_default[stateno];
104253 #else
104254 assert( i>=0 && i<YY_ACTTAB_COUNT );
104255 assert( yy_lookahead[i]==iLookAhead );
104256 #endif
104257 return yy_action[i];
104261 ** The following routine is called if the stack overflows.
104263 static void yyStackOverflow(yyParser *yypParser, YYMINORTYPE *yypMinor){
104264 sqlite3ParserARG_FETCH;
104265 yypParser->yyidx--;
104266 #ifndef NDEBUG
104267 if( yyTraceFILE ){
104268 fprintf(yyTraceFILE,"%sStack Overflow!\n",yyTracePrompt);
104270 #endif
104271 while( yypParser->yyidx>=0 ) yy_pop_parser_stack(yypParser);
104272 /* Here code is inserted which will execute if the parser
104273 ** stack every overflows */
104275 UNUSED_PARAMETER(yypMinor); /* Silence some compiler warnings */
104276 sqlite3ErrorMsg(pParse, "parser stack overflow");
104277 pParse->parseError = 1;
104278 sqlite3ParserARG_STORE; /* Suppress warning about unused %extra_argument var */
104282 ** Perform a shift action.
104284 static void yy_shift(
104285 yyParser *yypParser, /* The parser to be shifted */
104286 int yyNewState, /* The new state to shift in */
104287 int yyMajor, /* The major token to shift in */
104288 YYMINORTYPE *yypMinor /* Pointer to the minor token to shift in */
104290 yyStackEntry *yytos;
104291 yypParser->yyidx++;
104292 #ifdef YYTRACKMAXSTACKDEPTH
104293 if( yypParser->yyidx>yypParser->yyidxMax ){
104294 yypParser->yyidxMax = yypParser->yyidx;
104296 #endif
104297 #if YYSTACKDEPTH>0
104298 if( yypParser->yyidx>=YYSTACKDEPTH ){
104299 yyStackOverflow(yypParser, yypMinor);
104300 return;
104302 #else
104303 if( yypParser->yyidx>=yypParser->yystksz ){
104304 yyGrowStack(yypParser);
104305 if( yypParser->yyidx>=yypParser->yystksz ){
104306 yyStackOverflow(yypParser, yypMinor);
104307 return;
104310 #endif
104311 yytos = &yypParser->yystack[yypParser->yyidx];
104312 yytos->stateno = (YYACTIONTYPE)yyNewState;
104313 yytos->major = (YYCODETYPE)yyMajor;
104314 yytos->minor = *yypMinor;
104315 #ifndef NDEBUG
104316 if( yyTraceFILE && yypParser->yyidx>0 ){
104317 int i;
104318 fprintf(yyTraceFILE,"%sShift %d\n",yyTracePrompt,yyNewState);
104319 fprintf(yyTraceFILE,"%sStack:",yyTracePrompt);
104320 for(i=1; i<=yypParser->yyidx; i++)
104321 fprintf(yyTraceFILE," %s",yyTokenName[yypParser->yystack[i].major]);
104322 fprintf(yyTraceFILE,"\n");
104324 #endif
104327 /* The following table contains information about every rule that
104328 ** is used during the reduce.
104330 static const struct {
104331 YYCODETYPE lhs; /* Symbol on the left-hand side of the rule */
104332 unsigned char nrhs; /* Number of right-hand side symbols in the rule */
104333 } yyRuleInfo[] = {
104334 { 142, 1 },
104335 { 143, 2 },
104336 { 143, 1 },
104337 { 144, 1 },
104338 { 144, 3 },
104339 { 145, 0 },
104340 { 145, 1 },
104341 { 145, 3 },
104342 { 146, 1 },
104343 { 147, 3 },
104344 { 149, 0 },
104345 { 149, 1 },
104346 { 149, 2 },
104347 { 148, 0 },
104348 { 148, 1 },
104349 { 148, 1 },
104350 { 148, 1 },
104351 { 147, 2 },
104352 { 147, 2 },
104353 { 147, 2 },
104354 { 151, 1 },
104355 { 151, 0 },
104356 { 147, 2 },
104357 { 147, 3 },
104358 { 147, 5 },
104359 { 147, 2 },
104360 { 152, 6 },
104361 { 154, 1 },
104362 { 156, 0 },
104363 { 156, 3 },
104364 { 155, 1 },
104365 { 155, 0 },
104366 { 153, 4 },
104367 { 153, 2 },
104368 { 158, 3 },
104369 { 158, 1 },
104370 { 161, 3 },
104371 { 162, 1 },
104372 { 165, 1 },
104373 { 165, 1 },
104374 { 166, 1 },
104375 { 150, 1 },
104376 { 150, 1 },
104377 { 150, 1 },
104378 { 163, 0 },
104379 { 163, 1 },
104380 { 167, 1 },
104381 { 167, 4 },
104382 { 167, 6 },
104383 { 168, 1 },
104384 { 168, 2 },
104385 { 169, 1 },
104386 { 169, 1 },
104387 { 164, 2 },
104388 { 164, 0 },
104389 { 172, 3 },
104390 { 172, 1 },
104391 { 173, 2 },
104392 { 173, 4 },
104393 { 173, 3 },
104394 { 173, 3 },
104395 { 173, 2 },
104396 { 173, 2 },
104397 { 173, 3 },
104398 { 173, 5 },
104399 { 173, 2 },
104400 { 173, 4 },
104401 { 173, 4 },
104402 { 173, 1 },
104403 { 173, 2 },
104404 { 178, 0 },
104405 { 178, 1 },
104406 { 180, 0 },
104407 { 180, 2 },
104408 { 182, 2 },
104409 { 182, 3 },
104410 { 182, 3 },
104411 { 182, 3 },
104412 { 183, 2 },
104413 { 183, 2 },
104414 { 183, 1 },
104415 { 183, 1 },
104416 { 183, 2 },
104417 { 181, 3 },
104418 { 181, 2 },
104419 { 184, 0 },
104420 { 184, 2 },
104421 { 184, 2 },
104422 { 159, 0 },
104423 { 159, 2 },
104424 { 185, 3 },
104425 { 185, 2 },
104426 { 185, 1 },
104427 { 186, 2 },
104428 { 186, 7 },
104429 { 186, 5 },
104430 { 186, 5 },
104431 { 186, 10 },
104432 { 188, 0 },
104433 { 188, 1 },
104434 { 176, 0 },
104435 { 176, 3 },
104436 { 189, 0 },
104437 { 189, 2 },
104438 { 190, 1 },
104439 { 190, 1 },
104440 { 190, 1 },
104441 { 147, 4 },
104442 { 192, 2 },
104443 { 192, 0 },
104444 { 147, 8 },
104445 { 147, 4 },
104446 { 147, 1 },
104447 { 160, 1 },
104448 { 160, 3 },
104449 { 195, 1 },
104450 { 195, 2 },
104451 { 195, 1 },
104452 { 194, 9 },
104453 { 196, 1 },
104454 { 196, 1 },
104455 { 196, 0 },
104456 { 204, 2 },
104457 { 204, 0 },
104458 { 197, 3 },
104459 { 197, 2 },
104460 { 197, 4 },
104461 { 205, 2 },
104462 { 205, 1 },
104463 { 205, 0 },
104464 { 198, 0 },
104465 { 198, 2 },
104466 { 207, 2 },
104467 { 207, 0 },
104468 { 206, 7 },
104469 { 206, 7 },
104470 { 206, 7 },
104471 { 157, 0 },
104472 { 157, 2 },
104473 { 193, 2 },
104474 { 208, 1 },
104475 { 208, 2 },
104476 { 208, 3 },
104477 { 208, 4 },
104478 { 210, 2 },
104479 { 210, 0 },
104480 { 209, 0 },
104481 { 209, 3 },
104482 { 209, 2 },
104483 { 211, 4 },
104484 { 211, 0 },
104485 { 202, 0 },
104486 { 202, 3 },
104487 { 214, 4 },
104488 { 214, 2 },
104489 { 215, 1 },
104490 { 177, 1 },
104491 { 177, 1 },
104492 { 177, 0 },
104493 { 200, 0 },
104494 { 200, 3 },
104495 { 201, 0 },
104496 { 201, 2 },
104497 { 203, 0 },
104498 { 203, 2 },
104499 { 203, 4 },
104500 { 203, 4 },
104501 { 147, 5 },
104502 { 199, 0 },
104503 { 199, 2 },
104504 { 147, 7 },
104505 { 217, 5 },
104506 { 217, 3 },
104507 { 147, 8 },
104508 { 147, 5 },
104509 { 147, 6 },
104510 { 218, 2 },
104511 { 218, 1 },
104512 { 220, 3 },
104513 { 220, 1 },
104514 { 219, 0 },
104515 { 219, 3 },
104516 { 213, 3 },
104517 { 213, 1 },
104518 { 175, 1 },
104519 { 175, 3 },
104520 { 174, 1 },
104521 { 175, 1 },
104522 { 175, 1 },
104523 { 175, 3 },
104524 { 175, 5 },
104525 { 174, 1 },
104526 { 174, 1 },
104527 { 175, 1 },
104528 { 175, 1 },
104529 { 175, 3 },
104530 { 175, 6 },
104531 { 175, 5 },
104532 { 175, 4 },
104533 { 174, 1 },
104534 { 175, 3 },
104535 { 175, 3 },
104536 { 175, 3 },
104537 { 175, 3 },
104538 { 175, 3 },
104539 { 175, 3 },
104540 { 175, 3 },
104541 { 175, 3 },
104542 { 222, 1 },
104543 { 222, 2 },
104544 { 222, 1 },
104545 { 222, 2 },
104546 { 175, 3 },
104547 { 175, 5 },
104548 { 175, 2 },
104549 { 175, 3 },
104550 { 175, 3 },
104551 { 175, 4 },
104552 { 175, 2 },
104553 { 175, 2 },
104554 { 175, 2 },
104555 { 175, 2 },
104556 { 223, 1 },
104557 { 223, 2 },
104558 { 175, 5 },
104559 { 224, 1 },
104560 { 224, 2 },
104561 { 175, 5 },
104562 { 175, 3 },
104563 { 175, 5 },
104564 { 175, 4 },
104565 { 175, 4 },
104566 { 175, 5 },
104567 { 226, 5 },
104568 { 226, 4 },
104569 { 227, 2 },
104570 { 227, 0 },
104571 { 225, 1 },
104572 { 225, 0 },
104573 { 221, 1 },
104574 { 221, 0 },
104575 { 216, 3 },
104576 { 216, 1 },
104577 { 147, 11 },
104578 { 228, 1 },
104579 { 228, 0 },
104580 { 179, 0 },
104581 { 179, 3 },
104582 { 187, 5 },
104583 { 187, 3 },
104584 { 229, 0 },
104585 { 229, 2 },
104586 { 147, 4 },
104587 { 147, 1 },
104588 { 147, 2 },
104589 { 147, 3 },
104590 { 147, 5 },
104591 { 147, 6 },
104592 { 147, 5 },
104593 { 147, 6 },
104594 { 230, 1 },
104595 { 230, 1 },
104596 { 230, 1 },
104597 { 230, 1 },
104598 { 230, 1 },
104599 { 170, 2 },
104600 { 171, 2 },
104601 { 232, 1 },
104602 { 231, 1 },
104603 { 231, 0 },
104604 { 147, 5 },
104605 { 233, 11 },
104606 { 235, 1 },
104607 { 235, 1 },
104608 { 235, 2 },
104609 { 235, 0 },
104610 { 236, 1 },
104611 { 236, 1 },
104612 { 236, 3 },
104613 { 237, 0 },
104614 { 237, 3 },
104615 { 238, 0 },
104616 { 238, 2 },
104617 { 234, 3 },
104618 { 234, 2 },
104619 { 240, 1 },
104620 { 240, 3 },
104621 { 241, 0 },
104622 { 241, 3 },
104623 { 241, 2 },
104624 { 239, 7 },
104625 { 239, 8 },
104626 { 239, 5 },
104627 { 239, 5 },
104628 { 239, 1 },
104629 { 175, 4 },
104630 { 175, 6 },
104631 { 191, 1 },
104632 { 191, 1 },
104633 { 191, 1 },
104634 { 147, 4 },
104635 { 147, 6 },
104636 { 147, 3 },
104637 { 243, 0 },
104638 { 243, 2 },
104639 { 242, 1 },
104640 { 242, 0 },
104641 { 147, 1 },
104642 { 147, 3 },
104643 { 147, 1 },
104644 { 147, 3 },
104645 { 147, 6 },
104646 { 147, 6 },
104647 { 244, 1 },
104648 { 245, 0 },
104649 { 245, 1 },
104650 { 147, 1 },
104651 { 147, 4 },
104652 { 246, 7 },
104653 { 247, 1 },
104654 { 247, 3 },
104655 { 248, 0 },
104656 { 248, 2 },
104657 { 249, 1 },
104658 { 249, 3 },
104659 { 250, 1 },
104660 { 251, 0 },
104661 { 251, 4 },
104662 { 251, 2 },
104665 static void yy_accept(yyParser*); /* Forward Declaration */
104668 ** Perform a reduce action and the shift that must immediately
104669 ** follow the reduce.
104671 static void yy_reduce(
104672 yyParser *yypParser, /* The parser */
104673 int yyruleno /* Number of the rule by which to reduce */
104675 int yygoto; /* The next state */
104676 int yyact; /* The next action */
104677 YYMINORTYPE yygotominor; /* The LHS of the rule reduced */
104678 yyStackEntry *yymsp; /* The top of the parser's stack */
104679 int yysize; /* Amount to pop the stack */
104680 sqlite3ParserARG_FETCH;
104681 yymsp = &yypParser->yystack[yypParser->yyidx];
104682 #ifndef NDEBUG
104683 if( yyTraceFILE && yyruleno>=0
104684 && yyruleno<(int)(sizeof(yyRuleName)/sizeof(yyRuleName[0])) ){
104685 fprintf(yyTraceFILE, "%sReduce [%s].\n", yyTracePrompt,
104686 yyRuleName[yyruleno]);
104688 #endif /* NDEBUG */
104690 /* Silence complaints from purify about yygotominor being uninitialized
104691 ** in some cases when it is copied into the stack after the following
104692 ** switch. yygotominor is uninitialized when a rule reduces that does
104693 ** not set the value of its left-hand side nonterminal. Leaving the
104694 ** value of the nonterminal uninitialized is utterly harmless as long
104695 ** as the value is never used. So really the only thing this code
104696 ** accomplishes is to quieten purify.
104698 ** 2007-01-16: The wireshark project (www.wireshark.org) reports that
104699 ** without this code, their parser segfaults. I'm not sure what there
104700 ** parser is doing to make this happen. This is the second bug report
104701 ** from wireshark this week. Clearly they are stressing Lemon in ways
104702 ** that it has not been previously stressed... (SQLite ticket #2172)
104704 /*memset(&yygotominor, 0, sizeof(yygotominor));*/
104705 yygotominor = yyzerominor;
104708 switch( yyruleno ){
104709 /* Beginning here are the reduction cases. A typical example
104710 ** follows:
104711 ** case 0:
104712 ** #line <lineno> <grammarfile>
104713 ** { ... } // User supplied code
104714 ** #line <lineno> <thisfile>
104715 ** break;
104717 case 5: /* explain ::= */
104718 { sqlite3BeginParse(pParse, 0); }
104719 break;
104720 case 6: /* explain ::= EXPLAIN */
104721 { sqlite3BeginParse(pParse, 1); }
104722 break;
104723 case 7: /* explain ::= EXPLAIN QUERY PLAN */
104724 { sqlite3BeginParse(pParse, 2); }
104725 break;
104726 case 8: /* cmdx ::= cmd */
104727 { sqlite3FinishCoding(pParse); }
104728 break;
104729 case 9: /* cmd ::= BEGIN transtype trans_opt */
104730 {sqlite3BeginTransaction(pParse, yymsp[-1].minor.yy4);}
104731 break;
104732 case 13: /* transtype ::= */
104733 {yygotominor.yy4 = TK_DEFERRED;}
104734 break;
104735 case 14: /* transtype ::= DEFERRED */
104736 case 15: /* transtype ::= IMMEDIATE */ yytestcase(yyruleno==15);
104737 case 16: /* transtype ::= EXCLUSIVE */ yytestcase(yyruleno==16);
104738 case 115: /* multiselect_op ::= UNION */ yytestcase(yyruleno==115);
104739 case 117: /* multiselect_op ::= EXCEPT|INTERSECT */ yytestcase(yyruleno==117);
104740 {yygotominor.yy4 = yymsp[0].major;}
104741 break;
104742 case 17: /* cmd ::= COMMIT trans_opt */
104743 case 18: /* cmd ::= END trans_opt */ yytestcase(yyruleno==18);
104744 {sqlite3CommitTransaction(pParse);}
104745 break;
104746 case 19: /* cmd ::= ROLLBACK trans_opt */
104747 {sqlite3RollbackTransaction(pParse);}
104748 break;
104749 case 22: /* cmd ::= SAVEPOINT nm */
104751 sqlite3Savepoint(pParse, SAVEPOINT_BEGIN, &yymsp[0].minor.yy0);
104753 break;
104754 case 23: /* cmd ::= RELEASE savepoint_opt nm */
104756 sqlite3Savepoint(pParse, SAVEPOINT_RELEASE, &yymsp[0].minor.yy0);
104758 break;
104759 case 24: /* cmd ::= ROLLBACK trans_opt TO savepoint_opt nm */
104761 sqlite3Savepoint(pParse, SAVEPOINT_ROLLBACK, &yymsp[0].minor.yy0);
104763 break;
104764 case 26: /* create_table ::= createkw temp TABLE ifnotexists nm dbnm */
104766 sqlite3StartTable(pParse,&yymsp[-1].minor.yy0,&yymsp[0].minor.yy0,yymsp[-4].minor.yy4,0,0,yymsp[-2].minor.yy4);
104768 break;
104769 case 27: /* createkw ::= CREATE */
104771 pParse->db->lookaside.bEnabled = 0;
104772 yygotominor.yy0 = yymsp[0].minor.yy0;
104774 break;
104775 case 28: /* ifnotexists ::= */
104776 case 31: /* temp ::= */ yytestcase(yyruleno==31);
104777 case 70: /* autoinc ::= */ yytestcase(yyruleno==70);
104778 case 83: /* defer_subclause ::= NOT DEFERRABLE init_deferred_pred_opt */ yytestcase(yyruleno==83);
104779 case 85: /* init_deferred_pred_opt ::= */ yytestcase(yyruleno==85);
104780 case 87: /* init_deferred_pred_opt ::= INITIALLY IMMEDIATE */ yytestcase(yyruleno==87);
104781 case 98: /* defer_subclause_opt ::= */ yytestcase(yyruleno==98);
104782 case 109: /* ifexists ::= */ yytestcase(yyruleno==109);
104783 case 120: /* distinct ::= ALL */ yytestcase(yyruleno==120);
104784 case 121: /* distinct ::= */ yytestcase(yyruleno==121);
104785 case 222: /* between_op ::= BETWEEN */ yytestcase(yyruleno==222);
104786 case 225: /* in_op ::= IN */ yytestcase(yyruleno==225);
104787 {yygotominor.yy4 = 0;}
104788 break;
104789 case 29: /* ifnotexists ::= IF NOT EXISTS */
104790 case 30: /* temp ::= TEMP */ yytestcase(yyruleno==30);
104791 case 71: /* autoinc ::= AUTOINCR */ yytestcase(yyruleno==71);
104792 case 86: /* init_deferred_pred_opt ::= INITIALLY DEFERRED */ yytestcase(yyruleno==86);
104793 case 108: /* ifexists ::= IF EXISTS */ yytestcase(yyruleno==108);
104794 case 119: /* distinct ::= DISTINCT */ yytestcase(yyruleno==119);
104795 case 223: /* between_op ::= NOT BETWEEN */ yytestcase(yyruleno==223);
104796 case 226: /* in_op ::= NOT IN */ yytestcase(yyruleno==226);
104797 {yygotominor.yy4 = 1;}
104798 break;
104799 case 32: /* create_table_args ::= LP columnlist conslist_opt RP */
104801 sqlite3EndTable(pParse,&yymsp[-1].minor.yy0,&yymsp[0].minor.yy0,0);
104803 break;
104804 case 33: /* create_table_args ::= AS select */
104806 sqlite3EndTable(pParse,0,0,yymsp[0].minor.yy387);
104807 sqlite3SelectDelete(pParse->db, yymsp[0].minor.yy387);
104809 break;
104810 case 36: /* column ::= columnid type carglist */
104812 yygotominor.yy0.z = yymsp[-2].minor.yy0.z;
104813 yygotominor.yy0.n = (int)(pParse->sLastToken.z-yymsp[-2].minor.yy0.z) + pParse->sLastToken.n;
104815 break;
104816 case 37: /* columnid ::= nm */
104818 sqlite3AddColumn(pParse,&yymsp[0].minor.yy0);
104819 yygotominor.yy0 = yymsp[0].minor.yy0;
104821 break;
104822 case 38: /* id ::= ID */
104823 case 39: /* id ::= INDEXED */ yytestcase(yyruleno==39);
104824 case 40: /* ids ::= ID|STRING */ yytestcase(yyruleno==40);
104825 case 41: /* nm ::= id */ yytestcase(yyruleno==41);
104826 case 42: /* nm ::= STRING */ yytestcase(yyruleno==42);
104827 case 43: /* nm ::= JOIN_KW */ yytestcase(yyruleno==43);
104828 case 46: /* typetoken ::= typename */ yytestcase(yyruleno==46);
104829 case 49: /* typename ::= ids */ yytestcase(yyruleno==49);
104830 case 127: /* as ::= AS nm */ yytestcase(yyruleno==127);
104831 case 128: /* as ::= ids */ yytestcase(yyruleno==128);
104832 case 138: /* dbnm ::= DOT nm */ yytestcase(yyruleno==138);
104833 case 147: /* indexed_opt ::= INDEXED BY nm */ yytestcase(yyruleno==147);
104834 case 251: /* collate ::= COLLATE ids */ yytestcase(yyruleno==251);
104835 case 260: /* nmnum ::= plus_num */ yytestcase(yyruleno==260);
104836 case 261: /* nmnum ::= nm */ yytestcase(yyruleno==261);
104837 case 262: /* nmnum ::= ON */ yytestcase(yyruleno==262);
104838 case 263: /* nmnum ::= DELETE */ yytestcase(yyruleno==263);
104839 case 264: /* nmnum ::= DEFAULT */ yytestcase(yyruleno==264);
104840 case 265: /* plus_num ::= plus_opt number */ yytestcase(yyruleno==265);
104841 case 266: /* minus_num ::= MINUS number */ yytestcase(yyruleno==266);
104842 case 267: /* number ::= INTEGER|FLOAT */ yytestcase(yyruleno==267);
104843 case 285: /* trnm ::= nm */ yytestcase(yyruleno==285);
104844 {yygotominor.yy0 = yymsp[0].minor.yy0;}
104845 break;
104846 case 45: /* type ::= typetoken */
104847 {sqlite3AddColumnType(pParse,&yymsp[0].minor.yy0);}
104848 break;
104849 case 47: /* typetoken ::= typename LP signed RP */
104851 yygotominor.yy0.z = yymsp[-3].minor.yy0.z;
104852 yygotominor.yy0.n = (int)(&yymsp[0].minor.yy0.z[yymsp[0].minor.yy0.n] - yymsp[-3].minor.yy0.z);
104854 break;
104855 case 48: /* typetoken ::= typename LP signed COMMA signed RP */
104857 yygotominor.yy0.z = yymsp[-5].minor.yy0.z;
104858 yygotominor.yy0.n = (int)(&yymsp[0].minor.yy0.z[yymsp[0].minor.yy0.n] - yymsp[-5].minor.yy0.z);
104860 break;
104861 case 50: /* typename ::= typename ids */
104862 {yygotominor.yy0.z=yymsp[-1].minor.yy0.z; yygotominor.yy0.n=yymsp[0].minor.yy0.n+(int)(yymsp[0].minor.yy0.z-yymsp[-1].minor.yy0.z);}
104863 break;
104864 case 57: /* ccons ::= DEFAULT term */
104865 case 59: /* ccons ::= DEFAULT PLUS term */ yytestcase(yyruleno==59);
104866 {sqlite3AddDefaultValue(pParse,&yymsp[0].minor.yy118);}
104867 break;
104868 case 58: /* ccons ::= DEFAULT LP expr RP */
104869 {sqlite3AddDefaultValue(pParse,&yymsp[-1].minor.yy118);}
104870 break;
104871 case 60: /* ccons ::= DEFAULT MINUS term */
104873 ExprSpan v;
104874 v.pExpr = sqlite3PExpr(pParse, TK_UMINUS, yymsp[0].minor.yy118.pExpr, 0, 0);
104875 v.zStart = yymsp[-1].minor.yy0.z;
104876 v.zEnd = yymsp[0].minor.yy118.zEnd;
104877 sqlite3AddDefaultValue(pParse,&v);
104879 break;
104880 case 61: /* ccons ::= DEFAULT id */
104882 ExprSpan v;
104883 spanExpr(&v, pParse, TK_STRING, &yymsp[0].minor.yy0);
104884 sqlite3AddDefaultValue(pParse,&v);
104886 break;
104887 case 63: /* ccons ::= NOT NULL onconf */
104888 {sqlite3AddNotNull(pParse, yymsp[0].minor.yy4);}
104889 break;
104890 case 64: /* ccons ::= PRIMARY KEY sortorder onconf autoinc */
104891 {sqlite3AddPrimaryKey(pParse,0,yymsp[-1].minor.yy4,yymsp[0].minor.yy4,yymsp[-2].minor.yy4);}
104892 break;
104893 case 65: /* ccons ::= UNIQUE onconf */
104894 {sqlite3CreateIndex(pParse,0,0,0,0,yymsp[0].minor.yy4,0,0,0,0);}
104895 break;
104896 case 66: /* ccons ::= CHECK LP expr RP */
104897 {sqlite3AddCheckConstraint(pParse,yymsp[-1].minor.yy118.pExpr);}
104898 break;
104899 case 67: /* ccons ::= REFERENCES nm idxlist_opt refargs */
104900 {sqlite3CreateForeignKey(pParse,0,&yymsp[-2].minor.yy0,yymsp[-1].minor.yy322,yymsp[0].minor.yy4);}
104901 break;
104902 case 68: /* ccons ::= defer_subclause */
104903 {sqlite3DeferForeignKey(pParse,yymsp[0].minor.yy4);}
104904 break;
104905 case 69: /* ccons ::= COLLATE ids */
104906 {sqlite3AddCollateType(pParse, &yymsp[0].minor.yy0);}
104907 break;
104908 case 72: /* refargs ::= */
104909 { yygotominor.yy4 = OE_None*0x0101; /* EV: R-19803-45884 */}
104910 break;
104911 case 73: /* refargs ::= refargs refarg */
104912 { yygotominor.yy4 = (yymsp[-1].minor.yy4 & ~yymsp[0].minor.yy215.mask) | yymsp[0].minor.yy215.value; }
104913 break;
104914 case 74: /* refarg ::= MATCH nm */
104915 case 75: /* refarg ::= ON INSERT refact */ yytestcase(yyruleno==75);
104916 { yygotominor.yy215.value = 0; yygotominor.yy215.mask = 0x000000; }
104917 break;
104918 case 76: /* refarg ::= ON DELETE refact */
104919 { yygotominor.yy215.value = yymsp[0].minor.yy4; yygotominor.yy215.mask = 0x0000ff; }
104920 break;
104921 case 77: /* refarg ::= ON UPDATE refact */
104922 { yygotominor.yy215.value = yymsp[0].minor.yy4<<8; yygotominor.yy215.mask = 0x00ff00; }
104923 break;
104924 case 78: /* refact ::= SET NULL */
104925 { yygotominor.yy4 = OE_SetNull; /* EV: R-33326-45252 */}
104926 break;
104927 case 79: /* refact ::= SET DEFAULT */
104928 { yygotominor.yy4 = OE_SetDflt; /* EV: R-33326-45252 */}
104929 break;
104930 case 80: /* refact ::= CASCADE */
104931 { yygotominor.yy4 = OE_Cascade; /* EV: R-33326-45252 */}
104932 break;
104933 case 81: /* refact ::= RESTRICT */
104934 { yygotominor.yy4 = OE_Restrict; /* EV: R-33326-45252 */}
104935 break;
104936 case 82: /* refact ::= NO ACTION */
104937 { yygotominor.yy4 = OE_None; /* EV: R-33326-45252 */}
104938 break;
104939 case 84: /* defer_subclause ::= DEFERRABLE init_deferred_pred_opt */
104940 case 99: /* defer_subclause_opt ::= defer_subclause */ yytestcase(yyruleno==99);
104941 case 101: /* onconf ::= ON CONFLICT resolvetype */ yytestcase(yyruleno==101);
104942 case 104: /* resolvetype ::= raisetype */ yytestcase(yyruleno==104);
104943 {yygotominor.yy4 = yymsp[0].minor.yy4;}
104944 break;
104945 case 88: /* conslist_opt ::= */
104946 {yygotominor.yy0.n = 0; yygotominor.yy0.z = 0;}
104947 break;
104948 case 89: /* conslist_opt ::= COMMA conslist */
104949 {yygotominor.yy0 = yymsp[-1].minor.yy0;}
104950 break;
104951 case 94: /* tcons ::= PRIMARY KEY LP idxlist autoinc RP onconf */
104952 {sqlite3AddPrimaryKey(pParse,yymsp[-3].minor.yy322,yymsp[0].minor.yy4,yymsp[-2].minor.yy4,0);}
104953 break;
104954 case 95: /* tcons ::= UNIQUE LP idxlist RP onconf */
104955 {sqlite3CreateIndex(pParse,0,0,0,yymsp[-2].minor.yy322,yymsp[0].minor.yy4,0,0,0,0);}
104956 break;
104957 case 96: /* tcons ::= CHECK LP expr RP onconf */
104958 {sqlite3AddCheckConstraint(pParse,yymsp[-2].minor.yy118.pExpr);}
104959 break;
104960 case 97: /* tcons ::= FOREIGN KEY LP idxlist RP REFERENCES nm idxlist_opt refargs defer_subclause_opt */
104962 sqlite3CreateForeignKey(pParse, yymsp[-6].minor.yy322, &yymsp[-3].minor.yy0, yymsp[-2].minor.yy322, yymsp[-1].minor.yy4);
104963 sqlite3DeferForeignKey(pParse, yymsp[0].minor.yy4);
104965 break;
104966 case 100: /* onconf ::= */
104967 {yygotominor.yy4 = OE_Default;}
104968 break;
104969 case 102: /* orconf ::= */
104970 {yygotominor.yy210 = OE_Default;}
104971 break;
104972 case 103: /* orconf ::= OR resolvetype */
104973 {yygotominor.yy210 = (u8)yymsp[0].minor.yy4;}
104974 break;
104975 case 105: /* resolvetype ::= IGNORE */
104976 {yygotominor.yy4 = OE_Ignore;}
104977 break;
104978 case 106: /* resolvetype ::= REPLACE */
104979 {yygotominor.yy4 = OE_Replace;}
104980 break;
104981 case 107: /* cmd ::= DROP TABLE ifexists fullname */
104983 sqlite3DropTable(pParse, yymsp[0].minor.yy259, 0, yymsp[-1].minor.yy4);
104985 break;
104986 case 110: /* cmd ::= createkw temp VIEW ifnotexists nm dbnm AS select */
104988 sqlite3CreateView(pParse, &yymsp[-7].minor.yy0, &yymsp[-3].minor.yy0, &yymsp[-2].minor.yy0, yymsp[0].minor.yy387, yymsp[-6].minor.yy4, yymsp[-4].minor.yy4);
104990 break;
104991 case 111: /* cmd ::= DROP VIEW ifexists fullname */
104993 sqlite3DropTable(pParse, yymsp[0].minor.yy259, 1, yymsp[-1].minor.yy4);
104995 break;
104996 case 112: /* cmd ::= select */
104998 SelectDest dest = {SRT_Output, 0, 0, 0, 0};
104999 sqlite3Select(pParse, yymsp[0].minor.yy387, &dest);
105000 sqlite3SelectDelete(pParse->db, yymsp[0].minor.yy387);
105002 break;
105003 case 113: /* select ::= oneselect */
105004 {yygotominor.yy387 = yymsp[0].minor.yy387;}
105005 break;
105006 case 114: /* select ::= select multiselect_op oneselect */
105008 if( yymsp[0].minor.yy387 ){
105009 yymsp[0].minor.yy387->op = (u8)yymsp[-1].minor.yy4;
105010 yymsp[0].minor.yy387->pPrior = yymsp[-2].minor.yy387;
105011 }else{
105012 sqlite3SelectDelete(pParse->db, yymsp[-2].minor.yy387);
105014 yygotominor.yy387 = yymsp[0].minor.yy387;
105016 break;
105017 case 116: /* multiselect_op ::= UNION ALL */
105018 {yygotominor.yy4 = TK_ALL;}
105019 break;
105020 case 118: /* oneselect ::= SELECT distinct selcollist from where_opt groupby_opt having_opt orderby_opt limit_opt */
105022 yygotominor.yy387 = sqlite3SelectNew(pParse,yymsp[-6].minor.yy322,yymsp[-5].minor.yy259,yymsp[-4].minor.yy314,yymsp[-3].minor.yy322,yymsp[-2].minor.yy314,yymsp[-1].minor.yy322,yymsp[-7].minor.yy4,yymsp[0].minor.yy292.pLimit,yymsp[0].minor.yy292.pOffset);
105024 break;
105025 case 122: /* sclp ::= selcollist COMMA */
105026 case 247: /* idxlist_opt ::= LP idxlist RP */ yytestcase(yyruleno==247);
105027 {yygotominor.yy322 = yymsp[-1].minor.yy322;}
105028 break;
105029 case 123: /* sclp ::= */
105030 case 151: /* orderby_opt ::= */ yytestcase(yyruleno==151);
105031 case 159: /* groupby_opt ::= */ yytestcase(yyruleno==159);
105032 case 240: /* exprlist ::= */ yytestcase(yyruleno==240);
105033 case 246: /* idxlist_opt ::= */ yytestcase(yyruleno==246);
105034 {yygotominor.yy322 = 0;}
105035 break;
105036 case 124: /* selcollist ::= sclp expr as */
105038 yygotominor.yy322 = sqlite3ExprListAppend(pParse, yymsp[-2].minor.yy322, yymsp[-1].minor.yy118.pExpr);
105039 if( yymsp[0].minor.yy0.n>0 ) sqlite3ExprListSetName(pParse, yygotominor.yy322, &yymsp[0].minor.yy0, 1);
105040 sqlite3ExprListSetSpan(pParse,yygotominor.yy322,&yymsp[-1].minor.yy118);
105042 break;
105043 case 125: /* selcollist ::= sclp STAR */
105045 Expr *p = sqlite3Expr(pParse->db, TK_ALL, 0);
105046 yygotominor.yy322 = sqlite3ExprListAppend(pParse, yymsp[-1].minor.yy322, p);
105048 break;
105049 case 126: /* selcollist ::= sclp nm DOT STAR */
105051 Expr *pRight = sqlite3PExpr(pParse, TK_ALL, 0, 0, &yymsp[0].minor.yy0);
105052 Expr *pLeft = sqlite3PExpr(pParse, TK_ID, 0, 0, &yymsp[-2].minor.yy0);
105053 Expr *pDot = sqlite3PExpr(pParse, TK_DOT, pLeft, pRight, 0);
105054 yygotominor.yy322 = sqlite3ExprListAppend(pParse,yymsp[-3].minor.yy322, pDot);
105056 break;
105057 case 129: /* as ::= */
105058 {yygotominor.yy0.n = 0;}
105059 break;
105060 case 130: /* from ::= */
105061 {yygotominor.yy259 = sqlite3DbMallocZero(pParse->db, sizeof(*yygotominor.yy259));}
105062 break;
105063 case 131: /* from ::= FROM seltablist */
105065 yygotominor.yy259 = yymsp[0].minor.yy259;
105066 sqlite3SrcListShiftJoinType(yygotominor.yy259);
105068 break;
105069 case 132: /* stl_prefix ::= seltablist joinop */
105071 yygotominor.yy259 = yymsp[-1].minor.yy259;
105072 if( ALWAYS(yygotominor.yy259 && yygotominor.yy259->nSrc>0) ) yygotominor.yy259->a[yygotominor.yy259->nSrc-1].jointype = (u8)yymsp[0].minor.yy4;
105074 break;
105075 case 133: /* stl_prefix ::= */
105076 {yygotominor.yy259 = 0;}
105077 break;
105078 case 134: /* seltablist ::= stl_prefix nm dbnm as indexed_opt on_opt using_opt */
105080 yygotominor.yy259 = sqlite3SrcListAppendFromTerm(pParse,yymsp[-6].minor.yy259,&yymsp[-5].minor.yy0,&yymsp[-4].minor.yy0,&yymsp[-3].minor.yy0,0,yymsp[-1].minor.yy314,yymsp[0].minor.yy384);
105081 sqlite3SrcListIndexedBy(pParse, yygotominor.yy259, &yymsp[-2].minor.yy0);
105083 break;
105084 case 135: /* seltablist ::= stl_prefix LP select RP as on_opt using_opt */
105086 yygotominor.yy259 = sqlite3SrcListAppendFromTerm(pParse,yymsp[-6].minor.yy259,0,0,&yymsp[-2].minor.yy0,yymsp[-4].minor.yy387,yymsp[-1].minor.yy314,yymsp[0].minor.yy384);
105088 break;
105089 case 136: /* seltablist ::= stl_prefix LP seltablist RP as on_opt using_opt */
105091 if( yymsp[-6].minor.yy259==0 && yymsp[-2].minor.yy0.n==0 && yymsp[-1].minor.yy314==0 && yymsp[0].minor.yy384==0 ){
105092 yygotominor.yy259 = yymsp[-4].minor.yy259;
105093 }else{
105094 Select *pSubquery;
105095 sqlite3SrcListShiftJoinType(yymsp[-4].minor.yy259);
105096 pSubquery = sqlite3SelectNew(pParse,0,yymsp[-4].minor.yy259,0,0,0,0,0,0,0);
105097 yygotominor.yy259 = sqlite3SrcListAppendFromTerm(pParse,yymsp[-6].minor.yy259,0,0,&yymsp[-2].minor.yy0,pSubquery,yymsp[-1].minor.yy314,yymsp[0].minor.yy384);
105100 break;
105101 case 137: /* dbnm ::= */
105102 case 146: /* indexed_opt ::= */ yytestcase(yyruleno==146);
105103 {yygotominor.yy0.z=0; yygotominor.yy0.n=0;}
105104 break;
105105 case 139: /* fullname ::= nm dbnm */
105106 {yygotominor.yy259 = sqlite3SrcListAppend(pParse->db,0,&yymsp[-1].minor.yy0,&yymsp[0].minor.yy0);}
105107 break;
105108 case 140: /* joinop ::= COMMA|JOIN */
105109 { yygotominor.yy4 = JT_INNER; }
105110 break;
105111 case 141: /* joinop ::= JOIN_KW JOIN */
105112 { yygotominor.yy4 = sqlite3JoinType(pParse,&yymsp[-1].minor.yy0,0,0); }
105113 break;
105114 case 142: /* joinop ::= JOIN_KW nm JOIN */
105115 { yygotominor.yy4 = sqlite3JoinType(pParse,&yymsp[-2].minor.yy0,&yymsp[-1].minor.yy0,0); }
105116 break;
105117 case 143: /* joinop ::= JOIN_KW nm nm JOIN */
105118 { yygotominor.yy4 = sqlite3JoinType(pParse,&yymsp[-3].minor.yy0,&yymsp[-2].minor.yy0,&yymsp[-1].minor.yy0); }
105119 break;
105120 case 144: /* on_opt ::= ON expr */
105121 case 155: /* sortitem ::= expr */ yytestcase(yyruleno==155);
105122 case 162: /* having_opt ::= HAVING expr */ yytestcase(yyruleno==162);
105123 case 169: /* where_opt ::= WHERE expr */ yytestcase(yyruleno==169);
105124 case 235: /* case_else ::= ELSE expr */ yytestcase(yyruleno==235);
105125 case 237: /* case_operand ::= expr */ yytestcase(yyruleno==237);
105126 {yygotominor.yy314 = yymsp[0].minor.yy118.pExpr;}
105127 break;
105128 case 145: /* on_opt ::= */
105129 case 161: /* having_opt ::= */ yytestcase(yyruleno==161);
105130 case 168: /* where_opt ::= */ yytestcase(yyruleno==168);
105131 case 236: /* case_else ::= */ yytestcase(yyruleno==236);
105132 case 238: /* case_operand ::= */ yytestcase(yyruleno==238);
105133 {yygotominor.yy314 = 0;}
105134 break;
105135 case 148: /* indexed_opt ::= NOT INDEXED */
105136 {yygotominor.yy0.z=0; yygotominor.yy0.n=1;}
105137 break;
105138 case 149: /* using_opt ::= USING LP inscollist RP */
105139 case 181: /* inscollist_opt ::= LP inscollist RP */ yytestcase(yyruleno==181);
105140 {yygotominor.yy384 = yymsp[-1].minor.yy384;}
105141 break;
105142 case 150: /* using_opt ::= */
105143 case 180: /* inscollist_opt ::= */ yytestcase(yyruleno==180);
105144 {yygotominor.yy384 = 0;}
105145 break;
105146 case 152: /* orderby_opt ::= ORDER BY sortlist */
105147 case 160: /* groupby_opt ::= GROUP BY nexprlist */ yytestcase(yyruleno==160);
105148 case 239: /* exprlist ::= nexprlist */ yytestcase(yyruleno==239);
105149 {yygotominor.yy322 = yymsp[0].minor.yy322;}
105150 break;
105151 case 153: /* sortlist ::= sortlist COMMA sortitem sortorder */
105153 yygotominor.yy322 = sqlite3ExprListAppend(pParse,yymsp[-3].minor.yy322,yymsp[-1].minor.yy314);
105154 if( yygotominor.yy322 ) yygotominor.yy322->a[yygotominor.yy322->nExpr-1].sortOrder = (u8)yymsp[0].minor.yy4;
105156 break;
105157 case 154: /* sortlist ::= sortitem sortorder */
105159 yygotominor.yy322 = sqlite3ExprListAppend(pParse,0,yymsp[-1].minor.yy314);
105160 if( yygotominor.yy322 && ALWAYS(yygotominor.yy322->a) ) yygotominor.yy322->a[0].sortOrder = (u8)yymsp[0].minor.yy4;
105162 break;
105163 case 156: /* sortorder ::= ASC */
105164 case 158: /* sortorder ::= */ yytestcase(yyruleno==158);
105165 {yygotominor.yy4 = SQLITE_SO_ASC;}
105166 break;
105167 case 157: /* sortorder ::= DESC */
105168 {yygotominor.yy4 = SQLITE_SO_DESC;}
105169 break;
105170 case 163: /* limit_opt ::= */
105171 {yygotominor.yy292.pLimit = 0; yygotominor.yy292.pOffset = 0;}
105172 break;
105173 case 164: /* limit_opt ::= LIMIT expr */
105174 {yygotominor.yy292.pLimit = yymsp[0].minor.yy118.pExpr; yygotominor.yy292.pOffset = 0;}
105175 break;
105176 case 165: /* limit_opt ::= LIMIT expr OFFSET expr */
105177 {yygotominor.yy292.pLimit = yymsp[-2].minor.yy118.pExpr; yygotominor.yy292.pOffset = yymsp[0].minor.yy118.pExpr;}
105178 break;
105179 case 166: /* limit_opt ::= LIMIT expr COMMA expr */
105180 {yygotominor.yy292.pOffset = yymsp[-2].minor.yy118.pExpr; yygotominor.yy292.pLimit = yymsp[0].minor.yy118.pExpr;}
105181 break;
105182 case 167: /* cmd ::= DELETE FROM fullname indexed_opt where_opt */
105184 sqlite3SrcListIndexedBy(pParse, yymsp[-2].minor.yy259, &yymsp[-1].minor.yy0);
105185 sqlite3DeleteFrom(pParse,yymsp[-2].minor.yy259,yymsp[0].minor.yy314);
105187 break;
105188 case 170: /* cmd ::= UPDATE orconf fullname indexed_opt SET setlist where_opt */
105190 sqlite3SrcListIndexedBy(pParse, yymsp[-4].minor.yy259, &yymsp[-3].minor.yy0);
105191 sqlite3ExprListCheckLength(pParse,yymsp[-1].minor.yy322,"set list");
105192 sqlite3Update(pParse,yymsp[-4].minor.yy259,yymsp[-1].minor.yy322,yymsp[0].minor.yy314,yymsp[-5].minor.yy210);
105194 break;
105195 case 171: /* setlist ::= setlist COMMA nm EQ expr */
105197 yygotominor.yy322 = sqlite3ExprListAppend(pParse, yymsp[-4].minor.yy322, yymsp[0].minor.yy118.pExpr);
105198 sqlite3ExprListSetName(pParse, yygotominor.yy322, &yymsp[-2].minor.yy0, 1);
105200 break;
105201 case 172: /* setlist ::= nm EQ expr */
105203 yygotominor.yy322 = sqlite3ExprListAppend(pParse, 0, yymsp[0].minor.yy118.pExpr);
105204 sqlite3ExprListSetName(pParse, yygotominor.yy322, &yymsp[-2].minor.yy0, 1);
105206 break;
105207 case 173: /* cmd ::= insert_cmd INTO fullname inscollist_opt VALUES LP itemlist RP */
105208 {sqlite3Insert(pParse, yymsp[-5].minor.yy259, yymsp[-1].minor.yy322, 0, yymsp[-4].minor.yy384, yymsp[-7].minor.yy210);}
105209 break;
105210 case 174: /* cmd ::= insert_cmd INTO fullname inscollist_opt select */
105211 {sqlite3Insert(pParse, yymsp[-2].minor.yy259, 0, yymsp[0].minor.yy387, yymsp[-1].minor.yy384, yymsp[-4].minor.yy210);}
105212 break;
105213 case 175: /* cmd ::= insert_cmd INTO fullname inscollist_opt DEFAULT VALUES */
105214 {sqlite3Insert(pParse, yymsp[-3].minor.yy259, 0, 0, yymsp[-2].minor.yy384, yymsp[-5].minor.yy210);}
105215 break;
105216 case 176: /* insert_cmd ::= INSERT orconf */
105217 {yygotominor.yy210 = yymsp[0].minor.yy210;}
105218 break;
105219 case 177: /* insert_cmd ::= REPLACE */
105220 {yygotominor.yy210 = OE_Replace;}
105221 break;
105222 case 178: /* itemlist ::= itemlist COMMA expr */
105223 case 241: /* nexprlist ::= nexprlist COMMA expr */ yytestcase(yyruleno==241);
105224 {yygotominor.yy322 = sqlite3ExprListAppend(pParse,yymsp[-2].minor.yy322,yymsp[0].minor.yy118.pExpr);}
105225 break;
105226 case 179: /* itemlist ::= expr */
105227 case 242: /* nexprlist ::= expr */ yytestcase(yyruleno==242);
105228 {yygotominor.yy322 = sqlite3ExprListAppend(pParse,0,yymsp[0].minor.yy118.pExpr);}
105229 break;
105230 case 182: /* inscollist ::= inscollist COMMA nm */
105231 {yygotominor.yy384 = sqlite3IdListAppend(pParse->db,yymsp[-2].minor.yy384,&yymsp[0].minor.yy0);}
105232 break;
105233 case 183: /* inscollist ::= nm */
105234 {yygotominor.yy384 = sqlite3IdListAppend(pParse->db,0,&yymsp[0].minor.yy0);}
105235 break;
105236 case 184: /* expr ::= term */
105237 {yygotominor.yy118 = yymsp[0].minor.yy118;}
105238 break;
105239 case 185: /* expr ::= LP expr RP */
105240 {yygotominor.yy118.pExpr = yymsp[-1].minor.yy118.pExpr; spanSet(&yygotominor.yy118,&yymsp[-2].minor.yy0,&yymsp[0].minor.yy0);}
105241 break;
105242 case 186: /* term ::= NULL */
105243 case 191: /* term ::= INTEGER|FLOAT|BLOB */ yytestcase(yyruleno==191);
105244 case 192: /* term ::= STRING */ yytestcase(yyruleno==192);
105245 {spanExpr(&yygotominor.yy118, pParse, yymsp[0].major, &yymsp[0].minor.yy0);}
105246 break;
105247 case 187: /* expr ::= id */
105248 case 188: /* expr ::= JOIN_KW */ yytestcase(yyruleno==188);
105249 {spanExpr(&yygotominor.yy118, pParse, TK_ID, &yymsp[0].minor.yy0);}
105250 break;
105251 case 189: /* expr ::= nm DOT nm */
105253 Expr *temp1 = sqlite3PExpr(pParse, TK_ID, 0, 0, &yymsp[-2].minor.yy0);
105254 Expr *temp2 = sqlite3PExpr(pParse, TK_ID, 0, 0, &yymsp[0].minor.yy0);
105255 yygotominor.yy118.pExpr = sqlite3PExpr(pParse, TK_DOT, temp1, temp2, 0);
105256 spanSet(&yygotominor.yy118,&yymsp[-2].minor.yy0,&yymsp[0].minor.yy0);
105258 break;
105259 case 190: /* expr ::= nm DOT nm DOT nm */
105261 Expr *temp1 = sqlite3PExpr(pParse, TK_ID, 0, 0, &yymsp[-4].minor.yy0);
105262 Expr *temp2 = sqlite3PExpr(pParse, TK_ID, 0, 0, &yymsp[-2].minor.yy0);
105263 Expr *temp3 = sqlite3PExpr(pParse, TK_ID, 0, 0, &yymsp[0].minor.yy0);
105264 Expr *temp4 = sqlite3PExpr(pParse, TK_DOT, temp2, temp3, 0);
105265 yygotominor.yy118.pExpr = sqlite3PExpr(pParse, TK_DOT, temp1, temp4, 0);
105266 spanSet(&yygotominor.yy118,&yymsp[-4].minor.yy0,&yymsp[0].minor.yy0);
105268 break;
105269 case 193: /* expr ::= REGISTER */
105271 /* When doing a nested parse, one can include terms in an expression
105272 ** that look like this: #1 #2 ... These terms refer to registers
105273 ** in the virtual machine. #N is the N-th register. */
105274 if( pParse->nested==0 ){
105275 sqlite3ErrorMsg(pParse, "near \"%T\": syntax error", &yymsp[0].minor.yy0);
105276 yygotominor.yy118.pExpr = 0;
105277 }else{
105278 yygotominor.yy118.pExpr = sqlite3PExpr(pParse, TK_REGISTER, 0, 0, &yymsp[0].minor.yy0);
105279 if( yygotominor.yy118.pExpr ) sqlite3GetInt32(&yymsp[0].minor.yy0.z[1], &yygotominor.yy118.pExpr->iTable);
105281 spanSet(&yygotominor.yy118, &yymsp[0].minor.yy0, &yymsp[0].minor.yy0);
105283 break;
105284 case 194: /* expr ::= VARIABLE */
105286 spanExpr(&yygotominor.yy118, pParse, TK_VARIABLE, &yymsp[0].minor.yy0);
105287 sqlite3ExprAssignVarNumber(pParse, yygotominor.yy118.pExpr);
105288 spanSet(&yygotominor.yy118, &yymsp[0].minor.yy0, &yymsp[0].minor.yy0);
105290 break;
105291 case 195: /* expr ::= expr COLLATE ids */
105293 yygotominor.yy118.pExpr = sqlite3ExprSetCollByToken(pParse, yymsp[-2].minor.yy118.pExpr, &yymsp[0].minor.yy0);
105294 yygotominor.yy118.zStart = yymsp[-2].minor.yy118.zStart;
105295 yygotominor.yy118.zEnd = &yymsp[0].minor.yy0.z[yymsp[0].minor.yy0.n];
105297 break;
105298 case 196: /* expr ::= CAST LP expr AS typetoken RP */
105300 yygotominor.yy118.pExpr = sqlite3PExpr(pParse, TK_CAST, yymsp[-3].minor.yy118.pExpr, 0, &yymsp[-1].minor.yy0);
105301 spanSet(&yygotominor.yy118,&yymsp[-5].minor.yy0,&yymsp[0].minor.yy0);
105303 break;
105304 case 197: /* expr ::= ID LP distinct exprlist RP */
105306 if( yymsp[-1].minor.yy322 && yymsp[-1].minor.yy322->nExpr>pParse->db->aLimit[SQLITE_LIMIT_FUNCTION_ARG] ){
105307 sqlite3ErrorMsg(pParse, "too many arguments on function %T", &yymsp[-4].minor.yy0);
105309 yygotominor.yy118.pExpr = sqlite3ExprFunction(pParse, yymsp[-1].minor.yy322, &yymsp[-4].minor.yy0);
105310 spanSet(&yygotominor.yy118,&yymsp[-4].minor.yy0,&yymsp[0].minor.yy0);
105311 if( yymsp[-2].minor.yy4 && yygotominor.yy118.pExpr ){
105312 yygotominor.yy118.pExpr->flags |= EP_Distinct;
105315 break;
105316 case 198: /* expr ::= ID LP STAR RP */
105318 yygotominor.yy118.pExpr = sqlite3ExprFunction(pParse, 0, &yymsp[-3].minor.yy0);
105319 spanSet(&yygotominor.yy118,&yymsp[-3].minor.yy0,&yymsp[0].minor.yy0);
105321 break;
105322 case 199: /* term ::= CTIME_KW */
105324 /* The CURRENT_TIME, CURRENT_DATE, and CURRENT_TIMESTAMP values are
105325 ** treated as functions that return constants */
105326 yygotominor.yy118.pExpr = sqlite3ExprFunction(pParse, 0,&yymsp[0].minor.yy0);
105327 if( yygotominor.yy118.pExpr ){
105328 yygotominor.yy118.pExpr->op = TK_CONST_FUNC;
105330 spanSet(&yygotominor.yy118, &yymsp[0].minor.yy0, &yymsp[0].minor.yy0);
105332 break;
105333 case 200: /* expr ::= expr AND expr */
105334 case 201: /* expr ::= expr OR expr */ yytestcase(yyruleno==201);
105335 case 202: /* expr ::= expr LT|GT|GE|LE expr */ yytestcase(yyruleno==202);
105336 case 203: /* expr ::= expr EQ|NE expr */ yytestcase(yyruleno==203);
105337 case 204: /* expr ::= expr BITAND|BITOR|LSHIFT|RSHIFT expr */ yytestcase(yyruleno==204);
105338 case 205: /* expr ::= expr PLUS|MINUS expr */ yytestcase(yyruleno==205);
105339 case 206: /* expr ::= expr STAR|SLASH|REM expr */ yytestcase(yyruleno==206);
105340 case 207: /* expr ::= expr CONCAT expr */ yytestcase(yyruleno==207);
105341 {spanBinaryExpr(&yygotominor.yy118,pParse,yymsp[-1].major,&yymsp[-2].minor.yy118,&yymsp[0].minor.yy118);}
105342 break;
105343 case 208: /* likeop ::= LIKE_KW */
105344 case 210: /* likeop ::= MATCH */ yytestcase(yyruleno==210);
105345 {yygotominor.yy342.eOperator = yymsp[0].minor.yy0; yygotominor.yy342.not = 0;}
105346 break;
105347 case 209: /* likeop ::= NOT LIKE_KW */
105348 case 211: /* likeop ::= NOT MATCH */ yytestcase(yyruleno==211);
105349 {yygotominor.yy342.eOperator = yymsp[0].minor.yy0; yygotominor.yy342.not = 1;}
105350 break;
105351 case 212: /* expr ::= expr likeop expr */
105353 ExprList *pList;
105354 pList = sqlite3ExprListAppend(pParse,0, yymsp[0].minor.yy118.pExpr);
105355 pList = sqlite3ExprListAppend(pParse,pList, yymsp[-2].minor.yy118.pExpr);
105356 yygotominor.yy118.pExpr = sqlite3ExprFunction(pParse, pList, &yymsp[-1].minor.yy342.eOperator);
105357 if( yymsp[-1].minor.yy342.not ) yygotominor.yy118.pExpr = sqlite3PExpr(pParse, TK_NOT, yygotominor.yy118.pExpr, 0, 0);
105358 yygotominor.yy118.zStart = yymsp[-2].minor.yy118.zStart;
105359 yygotominor.yy118.zEnd = yymsp[0].minor.yy118.zEnd;
105360 if( yygotominor.yy118.pExpr ) yygotominor.yy118.pExpr->flags |= EP_InfixFunc;
105362 break;
105363 case 213: /* expr ::= expr likeop expr ESCAPE expr */
105365 ExprList *pList;
105366 pList = sqlite3ExprListAppend(pParse,0, yymsp[-2].minor.yy118.pExpr);
105367 pList = sqlite3ExprListAppend(pParse,pList, yymsp[-4].minor.yy118.pExpr);
105368 pList = sqlite3ExprListAppend(pParse,pList, yymsp[0].minor.yy118.pExpr);
105369 yygotominor.yy118.pExpr = sqlite3ExprFunction(pParse, pList, &yymsp[-3].minor.yy342.eOperator);
105370 if( yymsp[-3].minor.yy342.not ) yygotominor.yy118.pExpr = sqlite3PExpr(pParse, TK_NOT, yygotominor.yy118.pExpr, 0, 0);
105371 yygotominor.yy118.zStart = yymsp[-4].minor.yy118.zStart;
105372 yygotominor.yy118.zEnd = yymsp[0].minor.yy118.zEnd;
105373 if( yygotominor.yy118.pExpr ) yygotominor.yy118.pExpr->flags |= EP_InfixFunc;
105375 break;
105376 case 214: /* expr ::= expr ISNULL|NOTNULL */
105377 {spanUnaryPostfix(&yygotominor.yy118,pParse,yymsp[0].major,&yymsp[-1].minor.yy118,&yymsp[0].minor.yy0);}
105378 break;
105379 case 215: /* expr ::= expr NOT NULL */
105380 {spanUnaryPostfix(&yygotominor.yy118,pParse,TK_NOTNULL,&yymsp[-2].minor.yy118,&yymsp[0].minor.yy0);}
105381 break;
105382 case 216: /* expr ::= expr IS expr */
105384 spanBinaryExpr(&yygotominor.yy118,pParse,TK_IS,&yymsp[-2].minor.yy118,&yymsp[0].minor.yy118);
105385 binaryToUnaryIfNull(pParse, yymsp[0].minor.yy118.pExpr, yygotominor.yy118.pExpr, TK_ISNULL);
105387 break;
105388 case 217: /* expr ::= expr IS NOT expr */
105390 spanBinaryExpr(&yygotominor.yy118,pParse,TK_ISNOT,&yymsp[-3].minor.yy118,&yymsp[0].minor.yy118);
105391 binaryToUnaryIfNull(pParse, yymsp[0].minor.yy118.pExpr, yygotominor.yy118.pExpr, TK_NOTNULL);
105393 break;
105394 case 218: /* expr ::= NOT expr */
105395 case 219: /* expr ::= BITNOT expr */ yytestcase(yyruleno==219);
105396 {spanUnaryPrefix(&yygotominor.yy118,pParse,yymsp[-1].major,&yymsp[0].minor.yy118,&yymsp[-1].minor.yy0);}
105397 break;
105398 case 220: /* expr ::= MINUS expr */
105399 {spanUnaryPrefix(&yygotominor.yy118,pParse,TK_UMINUS,&yymsp[0].minor.yy118,&yymsp[-1].minor.yy0);}
105400 break;
105401 case 221: /* expr ::= PLUS expr */
105402 {spanUnaryPrefix(&yygotominor.yy118,pParse,TK_UPLUS,&yymsp[0].minor.yy118,&yymsp[-1].minor.yy0);}
105403 break;
105404 case 224: /* expr ::= expr between_op expr AND expr */
105406 ExprList *pList = sqlite3ExprListAppend(pParse,0, yymsp[-2].minor.yy118.pExpr);
105407 pList = sqlite3ExprListAppend(pParse,pList, yymsp[0].minor.yy118.pExpr);
105408 yygotominor.yy118.pExpr = sqlite3PExpr(pParse, TK_BETWEEN, yymsp[-4].minor.yy118.pExpr, 0, 0);
105409 if( yygotominor.yy118.pExpr ){
105410 yygotominor.yy118.pExpr->x.pList = pList;
105411 }else{
105412 sqlite3ExprListDelete(pParse->db, pList);
105414 if( yymsp[-3].minor.yy4 ) yygotominor.yy118.pExpr = sqlite3PExpr(pParse, TK_NOT, yygotominor.yy118.pExpr, 0, 0);
105415 yygotominor.yy118.zStart = yymsp[-4].minor.yy118.zStart;
105416 yygotominor.yy118.zEnd = yymsp[0].minor.yy118.zEnd;
105418 break;
105419 case 227: /* expr ::= expr in_op LP exprlist RP */
105421 if( yymsp[-1].minor.yy322==0 ){
105422 /* Expressions of the form
105424 ** expr1 IN ()
105425 ** expr1 NOT IN ()
105427 ** simplify to constants 0 (false) and 1 (true), respectively,
105428 ** regardless of the value of expr1.
105430 yygotominor.yy118.pExpr = sqlite3PExpr(pParse, TK_INTEGER, 0, 0, &sqlite3IntTokens[yymsp[-3].minor.yy4]);
105431 sqlite3ExprDelete(pParse->db, yymsp[-4].minor.yy118.pExpr);
105432 }else{
105433 yygotominor.yy118.pExpr = sqlite3PExpr(pParse, TK_IN, yymsp[-4].minor.yy118.pExpr, 0, 0);
105434 if( yygotominor.yy118.pExpr ){
105435 yygotominor.yy118.pExpr->x.pList = yymsp[-1].minor.yy322;
105436 sqlite3ExprSetHeight(pParse, yygotominor.yy118.pExpr);
105437 }else{
105438 sqlite3ExprListDelete(pParse->db, yymsp[-1].minor.yy322);
105440 if( yymsp[-3].minor.yy4 ) yygotominor.yy118.pExpr = sqlite3PExpr(pParse, TK_NOT, yygotominor.yy118.pExpr, 0, 0);
105442 yygotominor.yy118.zStart = yymsp[-4].minor.yy118.zStart;
105443 yygotominor.yy118.zEnd = &yymsp[0].minor.yy0.z[yymsp[0].minor.yy0.n];
105445 break;
105446 case 228: /* expr ::= LP select RP */
105448 yygotominor.yy118.pExpr = sqlite3PExpr(pParse, TK_SELECT, 0, 0, 0);
105449 if( yygotominor.yy118.pExpr ){
105450 yygotominor.yy118.pExpr->x.pSelect = yymsp[-1].minor.yy387;
105451 ExprSetProperty(yygotominor.yy118.pExpr, EP_xIsSelect);
105452 sqlite3ExprSetHeight(pParse, yygotominor.yy118.pExpr);
105453 }else{
105454 sqlite3SelectDelete(pParse->db, yymsp[-1].minor.yy387);
105456 yygotominor.yy118.zStart = yymsp[-2].minor.yy0.z;
105457 yygotominor.yy118.zEnd = &yymsp[0].minor.yy0.z[yymsp[0].minor.yy0.n];
105459 break;
105460 case 229: /* expr ::= expr in_op LP select RP */
105462 yygotominor.yy118.pExpr = sqlite3PExpr(pParse, TK_IN, yymsp[-4].minor.yy118.pExpr, 0, 0);
105463 if( yygotominor.yy118.pExpr ){
105464 yygotominor.yy118.pExpr->x.pSelect = yymsp[-1].minor.yy387;
105465 ExprSetProperty(yygotominor.yy118.pExpr, EP_xIsSelect);
105466 sqlite3ExprSetHeight(pParse, yygotominor.yy118.pExpr);
105467 }else{
105468 sqlite3SelectDelete(pParse->db, yymsp[-1].minor.yy387);
105470 if( yymsp[-3].minor.yy4 ) yygotominor.yy118.pExpr = sqlite3PExpr(pParse, TK_NOT, yygotominor.yy118.pExpr, 0, 0);
105471 yygotominor.yy118.zStart = yymsp[-4].minor.yy118.zStart;
105472 yygotominor.yy118.zEnd = &yymsp[0].minor.yy0.z[yymsp[0].minor.yy0.n];
105474 break;
105475 case 230: /* expr ::= expr in_op nm dbnm */
105477 SrcList *pSrc = sqlite3SrcListAppend(pParse->db, 0,&yymsp[-1].minor.yy0,&yymsp[0].minor.yy0);
105478 yygotominor.yy118.pExpr = sqlite3PExpr(pParse, TK_IN, yymsp[-3].minor.yy118.pExpr, 0, 0);
105479 if( yygotominor.yy118.pExpr ){
105480 yygotominor.yy118.pExpr->x.pSelect = sqlite3SelectNew(pParse, 0,pSrc,0,0,0,0,0,0,0);
105481 ExprSetProperty(yygotominor.yy118.pExpr, EP_xIsSelect);
105482 sqlite3ExprSetHeight(pParse, yygotominor.yy118.pExpr);
105483 }else{
105484 sqlite3SrcListDelete(pParse->db, pSrc);
105486 if( yymsp[-2].minor.yy4 ) yygotominor.yy118.pExpr = sqlite3PExpr(pParse, TK_NOT, yygotominor.yy118.pExpr, 0, 0);
105487 yygotominor.yy118.zStart = yymsp[-3].minor.yy118.zStart;
105488 yygotominor.yy118.zEnd = yymsp[0].minor.yy0.z ? &yymsp[0].minor.yy0.z[yymsp[0].minor.yy0.n] : &yymsp[-1].minor.yy0.z[yymsp[-1].minor.yy0.n];
105490 break;
105491 case 231: /* expr ::= EXISTS LP select RP */
105493 Expr *p = yygotominor.yy118.pExpr = sqlite3PExpr(pParse, TK_EXISTS, 0, 0, 0);
105494 if( p ){
105495 p->x.pSelect = yymsp[-1].minor.yy387;
105496 ExprSetProperty(p, EP_xIsSelect);
105497 sqlite3ExprSetHeight(pParse, p);
105498 }else{
105499 sqlite3SelectDelete(pParse->db, yymsp[-1].minor.yy387);
105501 yygotominor.yy118.zStart = yymsp[-3].minor.yy0.z;
105502 yygotominor.yy118.zEnd = &yymsp[0].minor.yy0.z[yymsp[0].minor.yy0.n];
105504 break;
105505 case 232: /* expr ::= CASE case_operand case_exprlist case_else END */
105507 yygotominor.yy118.pExpr = sqlite3PExpr(pParse, TK_CASE, yymsp[-3].minor.yy314, yymsp[-1].minor.yy314, 0);
105508 if( yygotominor.yy118.pExpr ){
105509 yygotominor.yy118.pExpr->x.pList = yymsp[-2].minor.yy322;
105510 sqlite3ExprSetHeight(pParse, yygotominor.yy118.pExpr);
105511 }else{
105512 sqlite3ExprListDelete(pParse->db, yymsp[-2].minor.yy322);
105514 yygotominor.yy118.zStart = yymsp[-4].minor.yy0.z;
105515 yygotominor.yy118.zEnd = &yymsp[0].minor.yy0.z[yymsp[0].minor.yy0.n];
105517 break;
105518 case 233: /* case_exprlist ::= case_exprlist WHEN expr THEN expr */
105520 yygotominor.yy322 = sqlite3ExprListAppend(pParse,yymsp[-4].minor.yy322, yymsp[-2].minor.yy118.pExpr);
105521 yygotominor.yy322 = sqlite3ExprListAppend(pParse,yygotominor.yy322, yymsp[0].minor.yy118.pExpr);
105523 break;
105524 case 234: /* case_exprlist ::= WHEN expr THEN expr */
105526 yygotominor.yy322 = sqlite3ExprListAppend(pParse,0, yymsp[-2].minor.yy118.pExpr);
105527 yygotominor.yy322 = sqlite3ExprListAppend(pParse,yygotominor.yy322, yymsp[0].minor.yy118.pExpr);
105529 break;
105530 case 243: /* cmd ::= createkw uniqueflag INDEX ifnotexists nm dbnm ON nm LP idxlist RP */
105532 sqlite3CreateIndex(pParse, &yymsp[-6].minor.yy0, &yymsp[-5].minor.yy0,
105533 sqlite3SrcListAppend(pParse->db,0,&yymsp[-3].minor.yy0,0), yymsp[-1].minor.yy322, yymsp[-9].minor.yy4,
105534 &yymsp[-10].minor.yy0, &yymsp[0].minor.yy0, SQLITE_SO_ASC, yymsp[-7].minor.yy4);
105536 break;
105537 case 244: /* uniqueflag ::= UNIQUE */
105538 case 298: /* raisetype ::= ABORT */ yytestcase(yyruleno==298);
105539 {yygotominor.yy4 = OE_Abort;}
105540 break;
105541 case 245: /* uniqueflag ::= */
105542 {yygotominor.yy4 = OE_None;}
105543 break;
105544 case 248: /* idxlist ::= idxlist COMMA nm collate sortorder */
105546 Expr *p = 0;
105547 if( yymsp[-1].minor.yy0.n>0 ){
105548 p = sqlite3Expr(pParse->db, TK_COLUMN, 0);
105549 sqlite3ExprSetCollByToken(pParse, p, &yymsp[-1].minor.yy0);
105551 yygotominor.yy322 = sqlite3ExprListAppend(pParse,yymsp[-4].minor.yy322, p);
105552 sqlite3ExprListSetName(pParse,yygotominor.yy322,&yymsp[-2].minor.yy0,1);
105553 sqlite3ExprListCheckLength(pParse, yygotominor.yy322, "index");
105554 if( yygotominor.yy322 ) yygotominor.yy322->a[yygotominor.yy322->nExpr-1].sortOrder = (u8)yymsp[0].minor.yy4;
105556 break;
105557 case 249: /* idxlist ::= nm collate sortorder */
105559 Expr *p = 0;
105560 if( yymsp[-1].minor.yy0.n>0 ){
105561 p = sqlite3PExpr(pParse, TK_COLUMN, 0, 0, 0);
105562 sqlite3ExprSetCollByToken(pParse, p, &yymsp[-1].minor.yy0);
105564 yygotominor.yy322 = sqlite3ExprListAppend(pParse,0, p);
105565 sqlite3ExprListSetName(pParse, yygotominor.yy322, &yymsp[-2].minor.yy0, 1);
105566 sqlite3ExprListCheckLength(pParse, yygotominor.yy322, "index");
105567 if( yygotominor.yy322 ) yygotominor.yy322->a[yygotominor.yy322->nExpr-1].sortOrder = (u8)yymsp[0].minor.yy4;
105569 break;
105570 case 250: /* collate ::= */
105571 {yygotominor.yy0.z = 0; yygotominor.yy0.n = 0;}
105572 break;
105573 case 252: /* cmd ::= DROP INDEX ifexists fullname */
105574 {sqlite3DropIndex(pParse, yymsp[0].minor.yy259, yymsp[-1].minor.yy4);}
105575 break;
105576 case 253: /* cmd ::= VACUUM */
105577 case 254: /* cmd ::= VACUUM nm */ yytestcase(yyruleno==254);
105578 {sqlite3Vacuum(pParse);}
105579 break;
105580 case 255: /* cmd ::= PRAGMA nm dbnm */
105581 {sqlite3Pragma(pParse,&yymsp[-1].minor.yy0,&yymsp[0].minor.yy0,0,0);}
105582 break;
105583 case 256: /* cmd ::= PRAGMA nm dbnm EQ nmnum */
105584 {sqlite3Pragma(pParse,&yymsp[-3].minor.yy0,&yymsp[-2].minor.yy0,&yymsp[0].minor.yy0,0);}
105585 break;
105586 case 257: /* cmd ::= PRAGMA nm dbnm LP nmnum RP */
105587 {sqlite3Pragma(pParse,&yymsp[-4].minor.yy0,&yymsp[-3].minor.yy0,&yymsp[-1].minor.yy0,0);}
105588 break;
105589 case 258: /* cmd ::= PRAGMA nm dbnm EQ minus_num */
105590 {sqlite3Pragma(pParse,&yymsp[-3].minor.yy0,&yymsp[-2].minor.yy0,&yymsp[0].minor.yy0,1);}
105591 break;
105592 case 259: /* cmd ::= PRAGMA nm dbnm LP minus_num RP */
105593 {sqlite3Pragma(pParse,&yymsp[-4].minor.yy0,&yymsp[-3].minor.yy0,&yymsp[-1].minor.yy0,1);}
105594 break;
105595 case 270: /* cmd ::= createkw trigger_decl BEGIN trigger_cmd_list END */
105597 Token all;
105598 all.z = yymsp[-3].minor.yy0.z;
105599 all.n = (int)(yymsp[0].minor.yy0.z - yymsp[-3].minor.yy0.z) + yymsp[0].minor.yy0.n;
105600 sqlite3FinishTrigger(pParse, yymsp[-1].minor.yy203, &all);
105602 break;
105603 case 271: /* trigger_decl ::= temp TRIGGER ifnotexists nm dbnm trigger_time trigger_event ON fullname foreach_clause when_clause */
105605 sqlite3BeginTrigger(pParse, &yymsp[-7].minor.yy0, &yymsp[-6].minor.yy0, yymsp[-5].minor.yy4, yymsp[-4].minor.yy90.a, yymsp[-4].minor.yy90.b, yymsp[-2].minor.yy259, yymsp[0].minor.yy314, yymsp[-10].minor.yy4, yymsp[-8].minor.yy4);
105606 yygotominor.yy0 = (yymsp[-6].minor.yy0.n==0?yymsp[-7].minor.yy0:yymsp[-6].minor.yy0);
105608 break;
105609 case 272: /* trigger_time ::= BEFORE */
105610 case 275: /* trigger_time ::= */ yytestcase(yyruleno==275);
105611 { yygotominor.yy4 = TK_BEFORE; }
105612 break;
105613 case 273: /* trigger_time ::= AFTER */
105614 { yygotominor.yy4 = TK_AFTER; }
105615 break;
105616 case 274: /* trigger_time ::= INSTEAD OF */
105617 { yygotominor.yy4 = TK_INSTEAD;}
105618 break;
105619 case 276: /* trigger_event ::= DELETE|INSERT */
105620 case 277: /* trigger_event ::= UPDATE */ yytestcase(yyruleno==277);
105621 {yygotominor.yy90.a = yymsp[0].major; yygotominor.yy90.b = 0;}
105622 break;
105623 case 278: /* trigger_event ::= UPDATE OF inscollist */
105624 {yygotominor.yy90.a = TK_UPDATE; yygotominor.yy90.b = yymsp[0].minor.yy384;}
105625 break;
105626 case 281: /* when_clause ::= */
105627 case 303: /* key_opt ::= */ yytestcase(yyruleno==303);
105628 { yygotominor.yy314 = 0; }
105629 break;
105630 case 282: /* when_clause ::= WHEN expr */
105631 case 304: /* key_opt ::= KEY expr */ yytestcase(yyruleno==304);
105632 { yygotominor.yy314 = yymsp[0].minor.yy118.pExpr; }
105633 break;
105634 case 283: /* trigger_cmd_list ::= trigger_cmd_list trigger_cmd SEMI */
105636 assert( yymsp[-2].minor.yy203!=0 );
105637 yymsp[-2].minor.yy203->pLast->pNext = yymsp[-1].minor.yy203;
105638 yymsp[-2].minor.yy203->pLast = yymsp[-1].minor.yy203;
105639 yygotominor.yy203 = yymsp[-2].minor.yy203;
105641 break;
105642 case 284: /* trigger_cmd_list ::= trigger_cmd SEMI */
105644 assert( yymsp[-1].minor.yy203!=0 );
105645 yymsp[-1].minor.yy203->pLast = yymsp[-1].minor.yy203;
105646 yygotominor.yy203 = yymsp[-1].minor.yy203;
105648 break;
105649 case 286: /* trnm ::= nm DOT nm */
105651 yygotominor.yy0 = yymsp[0].minor.yy0;
105652 sqlite3ErrorMsg(pParse,
105653 "qualified table names are not allowed on INSERT, UPDATE, and DELETE "
105654 "statements within triggers");
105656 break;
105657 case 288: /* tridxby ::= INDEXED BY nm */
105659 sqlite3ErrorMsg(pParse,
105660 "the INDEXED BY clause is not allowed on UPDATE or DELETE statements "
105661 "within triggers");
105663 break;
105664 case 289: /* tridxby ::= NOT INDEXED */
105666 sqlite3ErrorMsg(pParse,
105667 "the NOT INDEXED clause is not allowed on UPDATE or DELETE statements "
105668 "within triggers");
105670 break;
105671 case 290: /* trigger_cmd ::= UPDATE orconf trnm tridxby SET setlist where_opt */
105672 { yygotominor.yy203 = sqlite3TriggerUpdateStep(pParse->db, &yymsp[-4].minor.yy0, yymsp[-1].minor.yy322, yymsp[0].minor.yy314, yymsp[-5].minor.yy210); }
105673 break;
105674 case 291: /* trigger_cmd ::= insert_cmd INTO trnm inscollist_opt VALUES LP itemlist RP */
105675 {yygotominor.yy203 = sqlite3TriggerInsertStep(pParse->db, &yymsp[-5].minor.yy0, yymsp[-4].minor.yy384, yymsp[-1].minor.yy322, 0, yymsp[-7].minor.yy210);}
105676 break;
105677 case 292: /* trigger_cmd ::= insert_cmd INTO trnm inscollist_opt select */
105678 {yygotominor.yy203 = sqlite3TriggerInsertStep(pParse->db, &yymsp[-2].minor.yy0, yymsp[-1].minor.yy384, 0, yymsp[0].minor.yy387, yymsp[-4].minor.yy210);}
105679 break;
105680 case 293: /* trigger_cmd ::= DELETE FROM trnm tridxby where_opt */
105681 {yygotominor.yy203 = sqlite3TriggerDeleteStep(pParse->db, &yymsp[-2].minor.yy0, yymsp[0].minor.yy314);}
105682 break;
105683 case 294: /* trigger_cmd ::= select */
105684 {yygotominor.yy203 = sqlite3TriggerSelectStep(pParse->db, yymsp[0].minor.yy387); }
105685 break;
105686 case 295: /* expr ::= RAISE LP IGNORE RP */
105688 yygotominor.yy118.pExpr = sqlite3PExpr(pParse, TK_RAISE, 0, 0, 0);
105689 if( yygotominor.yy118.pExpr ){
105690 yygotominor.yy118.pExpr->affinity = OE_Ignore;
105692 yygotominor.yy118.zStart = yymsp[-3].minor.yy0.z;
105693 yygotominor.yy118.zEnd = &yymsp[0].minor.yy0.z[yymsp[0].minor.yy0.n];
105695 break;
105696 case 296: /* expr ::= RAISE LP raisetype COMMA nm RP */
105698 yygotominor.yy118.pExpr = sqlite3PExpr(pParse, TK_RAISE, 0, 0, &yymsp[-1].minor.yy0);
105699 if( yygotominor.yy118.pExpr ) {
105700 yygotominor.yy118.pExpr->affinity = (char)yymsp[-3].minor.yy4;
105702 yygotominor.yy118.zStart = yymsp[-5].minor.yy0.z;
105703 yygotominor.yy118.zEnd = &yymsp[0].minor.yy0.z[yymsp[0].minor.yy0.n];
105705 break;
105706 case 297: /* raisetype ::= ROLLBACK */
105707 {yygotominor.yy4 = OE_Rollback;}
105708 break;
105709 case 299: /* raisetype ::= FAIL */
105710 {yygotominor.yy4 = OE_Fail;}
105711 break;
105712 case 300: /* cmd ::= DROP TRIGGER ifexists fullname */
105714 sqlite3DropTrigger(pParse,yymsp[0].minor.yy259,yymsp[-1].minor.yy4);
105716 break;
105717 case 301: /* cmd ::= ATTACH database_kw_opt expr AS expr key_opt */
105719 sqlite3Attach(pParse, yymsp[-3].minor.yy118.pExpr, yymsp[-1].minor.yy118.pExpr, yymsp[0].minor.yy314);
105721 break;
105722 case 302: /* cmd ::= DETACH database_kw_opt expr */
105724 sqlite3Detach(pParse, yymsp[0].minor.yy118.pExpr);
105726 break;
105727 case 307: /* cmd ::= REINDEX */
105728 {sqlite3Reindex(pParse, 0, 0);}
105729 break;
105730 case 308: /* cmd ::= REINDEX nm dbnm */
105731 {sqlite3Reindex(pParse, &yymsp[-1].minor.yy0, &yymsp[0].minor.yy0);}
105732 break;
105733 case 309: /* cmd ::= ANALYZE */
105734 {sqlite3Analyze(pParse, 0, 0);}
105735 break;
105736 case 310: /* cmd ::= ANALYZE nm dbnm */
105737 {sqlite3Analyze(pParse, &yymsp[-1].minor.yy0, &yymsp[0].minor.yy0);}
105738 break;
105739 case 311: /* cmd ::= ALTER TABLE fullname RENAME TO nm */
105741 sqlite3AlterRenameTable(pParse,yymsp[-3].minor.yy259,&yymsp[0].minor.yy0);
105743 break;
105744 case 312: /* cmd ::= ALTER TABLE add_column_fullname ADD kwcolumn_opt column */
105746 sqlite3AlterFinishAddColumn(pParse, &yymsp[0].minor.yy0);
105748 break;
105749 case 313: /* add_column_fullname ::= fullname */
105751 pParse->db->lookaside.bEnabled = 0;
105752 sqlite3AlterBeginAddColumn(pParse, yymsp[0].minor.yy259);
105754 break;
105755 case 316: /* cmd ::= create_vtab */
105756 {sqlite3VtabFinishParse(pParse,0);}
105757 break;
105758 case 317: /* cmd ::= create_vtab LP vtabarglist RP */
105759 {sqlite3VtabFinishParse(pParse,&yymsp[0].minor.yy0);}
105760 break;
105761 case 318: /* create_vtab ::= createkw VIRTUAL TABLE nm dbnm USING nm */
105763 sqlite3VtabBeginParse(pParse, &yymsp[-3].minor.yy0, &yymsp[-2].minor.yy0, &yymsp[0].minor.yy0);
105765 break;
105766 case 321: /* vtabarg ::= */
105767 {sqlite3VtabArgInit(pParse);}
105768 break;
105769 case 323: /* vtabargtoken ::= ANY */
105770 case 324: /* vtabargtoken ::= lp anylist RP */ yytestcase(yyruleno==324);
105771 case 325: /* lp ::= LP */ yytestcase(yyruleno==325);
105772 {sqlite3VtabArgExtend(pParse,&yymsp[0].minor.yy0);}
105773 break;
105774 default:
105775 /* (0) input ::= cmdlist */ yytestcase(yyruleno==0);
105776 /* (1) cmdlist ::= cmdlist ecmd */ yytestcase(yyruleno==1);
105777 /* (2) cmdlist ::= ecmd */ yytestcase(yyruleno==2);
105778 /* (3) ecmd ::= SEMI */ yytestcase(yyruleno==3);
105779 /* (4) ecmd ::= explain cmdx SEMI */ yytestcase(yyruleno==4);
105780 /* (10) trans_opt ::= */ yytestcase(yyruleno==10);
105781 /* (11) trans_opt ::= TRANSACTION */ yytestcase(yyruleno==11);
105782 /* (12) trans_opt ::= TRANSACTION nm */ yytestcase(yyruleno==12);
105783 /* (20) savepoint_opt ::= SAVEPOINT */ yytestcase(yyruleno==20);
105784 /* (21) savepoint_opt ::= */ yytestcase(yyruleno==21);
105785 /* (25) cmd ::= create_table create_table_args */ yytestcase(yyruleno==25);
105786 /* (34) columnlist ::= columnlist COMMA column */ yytestcase(yyruleno==34);
105787 /* (35) columnlist ::= column */ yytestcase(yyruleno==35);
105788 /* (44) type ::= */ yytestcase(yyruleno==44);
105789 /* (51) signed ::= plus_num */ yytestcase(yyruleno==51);
105790 /* (52) signed ::= minus_num */ yytestcase(yyruleno==52);
105791 /* (53) carglist ::= carglist carg */ yytestcase(yyruleno==53);
105792 /* (54) carglist ::= */ yytestcase(yyruleno==54);
105793 /* (55) carg ::= CONSTRAINT nm ccons */ yytestcase(yyruleno==55);
105794 /* (56) carg ::= ccons */ yytestcase(yyruleno==56);
105795 /* (62) ccons ::= NULL onconf */ yytestcase(yyruleno==62);
105796 /* (90) conslist ::= conslist COMMA tcons */ yytestcase(yyruleno==90);
105797 /* (91) conslist ::= conslist tcons */ yytestcase(yyruleno==91);
105798 /* (92) conslist ::= tcons */ yytestcase(yyruleno==92);
105799 /* (93) tcons ::= CONSTRAINT nm */ yytestcase(yyruleno==93);
105800 /* (268) plus_opt ::= PLUS */ yytestcase(yyruleno==268);
105801 /* (269) plus_opt ::= */ yytestcase(yyruleno==269);
105802 /* (279) foreach_clause ::= */ yytestcase(yyruleno==279);
105803 /* (280) foreach_clause ::= FOR EACH ROW */ yytestcase(yyruleno==280);
105804 /* (287) tridxby ::= */ yytestcase(yyruleno==287);
105805 /* (305) database_kw_opt ::= DATABASE */ yytestcase(yyruleno==305);
105806 /* (306) database_kw_opt ::= */ yytestcase(yyruleno==306);
105807 /* (314) kwcolumn_opt ::= */ yytestcase(yyruleno==314);
105808 /* (315) kwcolumn_opt ::= COLUMNKW */ yytestcase(yyruleno==315);
105809 /* (319) vtabarglist ::= vtabarg */ yytestcase(yyruleno==319);
105810 /* (320) vtabarglist ::= vtabarglist COMMA vtabarg */ yytestcase(yyruleno==320);
105811 /* (322) vtabarg ::= vtabarg vtabargtoken */ yytestcase(yyruleno==322);
105812 /* (326) anylist ::= */ yytestcase(yyruleno==326);
105813 /* (327) anylist ::= anylist LP anylist RP */ yytestcase(yyruleno==327);
105814 /* (328) anylist ::= anylist ANY */ yytestcase(yyruleno==328);
105815 break;
105817 yygoto = yyRuleInfo[yyruleno].lhs;
105818 yysize = yyRuleInfo[yyruleno].nrhs;
105819 yypParser->yyidx -= yysize;
105820 yyact = yy_find_reduce_action(yymsp[-yysize].stateno,(YYCODETYPE)yygoto);
105821 if( yyact < YYNSTATE ){
105822 #ifdef NDEBUG
105823 /* If we are not debugging and the reduce action popped at least
105824 ** one element off the stack, then we can push the new element back
105825 ** onto the stack here, and skip the stack overflow test in yy_shift().
105826 ** That gives a significant speed improvement. */
105827 if( yysize ){
105828 yypParser->yyidx++;
105829 yymsp -= yysize-1;
105830 yymsp->stateno = (YYACTIONTYPE)yyact;
105831 yymsp->major = (YYCODETYPE)yygoto;
105832 yymsp->minor = yygotominor;
105833 }else
105834 #endif
105836 yy_shift(yypParser,yyact,yygoto,&yygotominor);
105838 }else{
105839 assert( yyact == YYNSTATE + YYNRULE + 1 );
105840 yy_accept(yypParser);
105845 ** The following code executes when the parse fails
105847 #ifndef YYNOERRORRECOVERY
105848 static void yy_parse_failed(
105849 yyParser *yypParser /* The parser */
105851 sqlite3ParserARG_FETCH;
105852 #ifndef NDEBUG
105853 if( yyTraceFILE ){
105854 fprintf(yyTraceFILE,"%sFail!\n",yyTracePrompt);
105856 #endif
105857 while( yypParser->yyidx>=0 ) yy_pop_parser_stack(yypParser);
105858 /* Here code is inserted which will be executed whenever the
105859 ** parser fails */
105860 sqlite3ParserARG_STORE; /* Suppress warning about unused %extra_argument variable */
105862 #endif /* YYNOERRORRECOVERY */
105865 ** The following code executes when a syntax error first occurs.
105867 static void yy_syntax_error(
105868 yyParser *yypParser, /* The parser */
105869 int yymajor, /* The major type of the error token */
105870 YYMINORTYPE yyminor /* The minor type of the error token */
105872 sqlite3ParserARG_FETCH;
105873 #define TOKEN (yyminor.yy0)
105875 UNUSED_PARAMETER(yymajor); /* Silence some compiler warnings */
105876 assert( TOKEN.z[0] ); /* The tokenizer always gives us a token */
105877 sqlite3ErrorMsg(pParse, "near \"%T\": syntax error", &TOKEN);
105878 pParse->parseError = 1;
105879 sqlite3ParserARG_STORE; /* Suppress warning about unused %extra_argument variable */
105883 ** The following is executed when the parser accepts
105885 static void yy_accept(
105886 yyParser *yypParser /* The parser */
105888 sqlite3ParserARG_FETCH;
105889 #ifndef NDEBUG
105890 if( yyTraceFILE ){
105891 fprintf(yyTraceFILE,"%sAccept!\n",yyTracePrompt);
105893 #endif
105894 while( yypParser->yyidx>=0 ) yy_pop_parser_stack(yypParser);
105895 /* Here code is inserted which will be executed whenever the
105896 ** parser accepts */
105897 sqlite3ParserARG_STORE; /* Suppress warning about unused %extra_argument variable */
105900 /* The main parser program.
105901 ** The first argument is a pointer to a structure obtained from
105902 ** "sqlite3ParserAlloc" which describes the current state of the parser.
105903 ** The second argument is the major token number. The third is
105904 ** the minor token. The fourth optional argument is whatever the
105905 ** user wants (and specified in the grammar) and is available for
105906 ** use by the action routines.
105908 ** Inputs:
105909 ** <ul>
105910 ** <li> A pointer to the parser (an opaque structure.)
105911 ** <li> The major token number.
105912 ** <li> The minor token number.
105913 ** <li> An option argument of a grammar-specified type.
105914 ** </ul>
105916 ** Outputs:
105917 ** None.
105919 SQLITE_PRIVATE void sqlite3Parser(
105920 void *yyp, /* The parser */
105921 int yymajor, /* The major token code number */
105922 sqlite3ParserTOKENTYPE yyminor /* The value for the token */
105923 sqlite3ParserARG_PDECL /* Optional %extra_argument parameter */
105925 YYMINORTYPE yyminorunion;
105926 int yyact; /* The parser action. */
105927 int yyendofinput; /* True if we are at the end of input */
105928 #ifdef YYERRORSYMBOL
105929 int yyerrorhit = 0; /* True if yymajor has invoked an error */
105930 #endif
105931 yyParser *yypParser; /* The parser */
105933 /* (re)initialize the parser, if necessary */
105934 yypParser = (yyParser*)yyp;
105935 if( yypParser->yyidx<0 ){
105936 #if YYSTACKDEPTH<=0
105937 if( yypParser->yystksz <=0 ){
105938 /*memset(&yyminorunion, 0, sizeof(yyminorunion));*/
105939 yyminorunion = yyzerominor;
105940 yyStackOverflow(yypParser, &yyminorunion);
105941 return;
105943 #endif
105944 yypParser->yyidx = 0;
105945 yypParser->yyerrcnt = -1;
105946 yypParser->yystack[0].stateno = 0;
105947 yypParser->yystack[0].major = 0;
105949 yyminorunion.yy0 = yyminor;
105950 yyendofinput = (yymajor==0);
105951 sqlite3ParserARG_STORE;
105953 #ifndef NDEBUG
105954 if( yyTraceFILE ){
105955 fprintf(yyTraceFILE,"%sInput %s\n",yyTracePrompt,yyTokenName[yymajor]);
105957 #endif
105960 yyact = yy_find_shift_action(yypParser,(YYCODETYPE)yymajor);
105961 if( yyact<YYNSTATE ){
105962 assert( !yyendofinput ); /* Impossible to shift the $ token */
105963 yy_shift(yypParser,yyact,yymajor,&yyminorunion);
105964 yypParser->yyerrcnt--;
105965 yymajor = YYNOCODE;
105966 }else if( yyact < YYNSTATE + YYNRULE ){
105967 yy_reduce(yypParser,yyact-YYNSTATE);
105968 }else{
105969 assert( yyact == YY_ERROR_ACTION );
105970 #ifdef YYERRORSYMBOL
105971 int yymx;
105972 #endif
105973 #ifndef NDEBUG
105974 if( yyTraceFILE ){
105975 fprintf(yyTraceFILE,"%sSyntax Error!\n",yyTracePrompt);
105977 #endif
105978 #ifdef YYERRORSYMBOL
105979 /* A syntax error has occurred.
105980 ** The response to an error depends upon whether or not the
105981 ** grammar defines an error token "ERROR".
105983 ** This is what we do if the grammar does define ERROR:
105985 ** * Call the %syntax_error function.
105987 ** * Begin popping the stack until we enter a state where
105988 ** it is legal to shift the error symbol, then shift
105989 ** the error symbol.
105991 ** * Set the error count to three.
105993 ** * Begin accepting and shifting new tokens. No new error
105994 ** processing will occur until three tokens have been
105995 ** shifted successfully.
105998 if( yypParser->yyerrcnt<0 ){
105999 yy_syntax_error(yypParser,yymajor,yyminorunion);
106001 yymx = yypParser->yystack[yypParser->yyidx].major;
106002 if( yymx==YYERRORSYMBOL || yyerrorhit ){
106003 #ifndef NDEBUG
106004 if( yyTraceFILE ){
106005 fprintf(yyTraceFILE,"%sDiscard input token %s\n",
106006 yyTracePrompt,yyTokenName[yymajor]);
106008 #endif
106009 yy_destructor(yypParser, (YYCODETYPE)yymajor,&yyminorunion);
106010 yymajor = YYNOCODE;
106011 }else{
106012 while(
106013 yypParser->yyidx >= 0 &&
106014 yymx != YYERRORSYMBOL &&
106015 (yyact = yy_find_reduce_action(
106016 yypParser->yystack[yypParser->yyidx].stateno,
106017 YYERRORSYMBOL)) >= YYNSTATE
106019 yy_pop_parser_stack(yypParser);
106021 if( yypParser->yyidx < 0 || yymajor==0 ){
106022 yy_destructor(yypParser,(YYCODETYPE)yymajor,&yyminorunion);
106023 yy_parse_failed(yypParser);
106024 yymajor = YYNOCODE;
106025 }else if( yymx!=YYERRORSYMBOL ){
106026 YYMINORTYPE u2;
106027 u2.YYERRSYMDT = 0;
106028 yy_shift(yypParser,yyact,YYERRORSYMBOL,&u2);
106031 yypParser->yyerrcnt = 3;
106032 yyerrorhit = 1;
106033 #elif defined(YYNOERRORRECOVERY)
106034 /* If the YYNOERRORRECOVERY macro is defined, then do not attempt to
106035 ** do any kind of error recovery. Instead, simply invoke the syntax
106036 ** error routine and continue going as if nothing had happened.
106038 ** Applications can set this macro (for example inside %include) if
106039 ** they intend to abandon the parse upon the first syntax error seen.
106041 yy_syntax_error(yypParser,yymajor,yyminorunion);
106042 yy_destructor(yypParser,(YYCODETYPE)yymajor,&yyminorunion);
106043 yymajor = YYNOCODE;
106045 #else /* YYERRORSYMBOL is not defined */
106046 /* This is what we do if the grammar does not define ERROR:
106048 ** * Report an error message, and throw away the input token.
106050 ** * If the input token is $, then fail the parse.
106052 ** As before, subsequent error messages are suppressed until
106053 ** three input tokens have been successfully shifted.
106055 if( yypParser->yyerrcnt<=0 ){
106056 yy_syntax_error(yypParser,yymajor,yyminorunion);
106058 yypParser->yyerrcnt = 3;
106059 yy_destructor(yypParser,(YYCODETYPE)yymajor,&yyminorunion);
106060 if( yyendofinput ){
106061 yy_parse_failed(yypParser);
106063 yymajor = YYNOCODE;
106064 #endif
106066 }while( yymajor!=YYNOCODE && yypParser->yyidx>=0 );
106067 return;
106070 /************** End of parse.c ***********************************************/
106071 /************** Begin file tokenize.c ****************************************/
106073 ** 2001 September 15
106075 ** The author disclaims copyright to this source code. In place of
106076 ** a legal notice, here is a blessing:
106078 ** May you do good and not evil.
106079 ** May you find forgiveness for yourself and forgive others.
106080 ** May you share freely, never taking more than you give.
106082 *************************************************************************
106083 ** An tokenizer for SQL
106085 ** This file contains C code that splits an SQL input string up into
106086 ** individual tokens and sends those tokens one-by-one over to the
106087 ** parser for analysis.
106091 ** The charMap() macro maps alphabetic characters into their
106092 ** lower-case ASCII equivalent. On ASCII machines, this is just
106093 ** an upper-to-lower case map. On EBCDIC machines we also need
106094 ** to adjust the encoding. Only alphabetic characters and underscores
106095 ** need to be translated.
106097 #ifdef SQLITE_ASCII
106098 # define charMap(X) sqlite3UpperToLower[(unsigned char)X]
106099 #endif
106100 #ifdef SQLITE_EBCDIC
106101 # define charMap(X) ebcdicToAscii[(unsigned char)X]
106102 const unsigned char ebcdicToAscii[] = {
106103 /* 0 1 2 3 4 5 6 7 8 9 A B C D E F */
106104 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, /* 0x */
106105 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, /* 1x */
106106 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, /* 2x */
106107 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, /* 3x */
106108 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, /* 4x */
106109 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, /* 5x */
106110 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 95, 0, 0, /* 6x */
106111 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, /* 7x */
106112 0, 97, 98, 99,100,101,102,103,104,105, 0, 0, 0, 0, 0, 0, /* 8x */
106113 0,106,107,108,109,110,111,112,113,114, 0, 0, 0, 0, 0, 0, /* 9x */
106114 0, 0,115,116,117,118,119,120,121,122, 0, 0, 0, 0, 0, 0, /* Ax */
106115 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, /* Bx */
106116 0, 97, 98, 99,100,101,102,103,104,105, 0, 0, 0, 0, 0, 0, /* Cx */
106117 0,106,107,108,109,110,111,112,113,114, 0, 0, 0, 0, 0, 0, /* Dx */
106118 0, 0,115,116,117,118,119,120,121,122, 0, 0, 0, 0, 0, 0, /* Ex */
106119 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, /* Fx */
106121 #endif
106124 ** The sqlite3KeywordCode function looks up an identifier to determine if
106125 ** it is a keyword. If it is a keyword, the token code of that keyword is
106126 ** returned. If the input is not a keyword, TK_ID is returned.
106128 ** The implementation of this routine was generated by a program,
106129 ** mkkeywordhash.h, located in the tool subdirectory of the distribution.
106130 ** The output of the mkkeywordhash.c program is written into a file
106131 ** named keywordhash.h and then included into this source file by
106132 ** the #include below.
106134 /************** Include keywordhash.h in the middle of tokenize.c ************/
106135 /************** Begin file keywordhash.h *************************************/
106136 /***** This file contains automatically generated code ******
106138 ** The code in this file has been automatically generated by
106140 ** sqlite/tool/mkkeywordhash.c
106142 ** The code in this file implements a function that determines whether
106143 ** or not a given identifier is really an SQL keyword. The same thing
106144 ** might be implemented more directly using a hand-written hash table.
106145 ** But by using this automatically generated code, the size of the code
106146 ** is substantially reduced. This is important for embedded applications
106147 ** on platforms with limited memory.
106149 /* Hash score: 175 */
106150 static int keywordCode(const char *z, int n){
106151 /* zText[] encodes 811 bytes of keywords in 541 bytes */
106152 /* REINDEXEDESCAPEACHECKEYBEFOREIGNOREGEXPLAINSTEADDATABASELECT */
106153 /* ABLEFTHENDEFERRABLELSEXCEPTRANSACTIONATURALTERAISEXCLUSIVE */
106154 /* XISTSAVEPOINTERSECTRIGGEREFERENCESCONSTRAINTOFFSETEMPORARY */
106155 /* UNIQUERYATTACHAVINGROUPDATEBEGINNERELEASEBETWEENOTNULLIKE */
106156 /* CASCADELETECASECOLLATECREATECURRENT_DATEDETACHIMMEDIATEJOIN */
106157 /* SERTMATCHPLANALYZEPRAGMABORTVALUESVIRTUALIMITWHENWHERENAME */
106158 /* AFTEREPLACEANDEFAULTAUTOINCREMENTCASTCOLUMNCOMMITCONFLICTCROSS */
106159 /* CURRENT_TIMESTAMPRIMARYDEFERREDISTINCTDROPFAILFROMFULLGLOBYIF */
106160 /* ISNULLORDERESTRICTOUTERIGHTROLLBACKROWUNIONUSINGVACUUMVIEW */
106161 /* INITIALLY */
106162 static const char zText[540] = {
106163 'R','E','I','N','D','E','X','E','D','E','S','C','A','P','E','A','C','H',
106164 'E','C','K','E','Y','B','E','F','O','R','E','I','G','N','O','R','E','G',
106165 'E','X','P','L','A','I','N','S','T','E','A','D','D','A','T','A','B','A',
106166 'S','E','L','E','C','T','A','B','L','E','F','T','H','E','N','D','E','F',
106167 'E','R','R','A','B','L','E','L','S','E','X','C','E','P','T','R','A','N',
106168 'S','A','C','T','I','O','N','A','T','U','R','A','L','T','E','R','A','I',
106169 'S','E','X','C','L','U','S','I','V','E','X','I','S','T','S','A','V','E',
106170 'P','O','I','N','T','E','R','S','E','C','T','R','I','G','G','E','R','E',
106171 'F','E','R','E','N','C','E','S','C','O','N','S','T','R','A','I','N','T',
106172 'O','F','F','S','E','T','E','M','P','O','R','A','R','Y','U','N','I','Q',
106173 'U','E','R','Y','A','T','T','A','C','H','A','V','I','N','G','R','O','U',
106174 'P','D','A','T','E','B','E','G','I','N','N','E','R','E','L','E','A','S',
106175 'E','B','E','T','W','E','E','N','O','T','N','U','L','L','I','K','E','C',
106176 'A','S','C','A','D','E','L','E','T','E','C','A','S','E','C','O','L','L',
106177 'A','T','E','C','R','E','A','T','E','C','U','R','R','E','N','T','_','D',
106178 'A','T','E','D','E','T','A','C','H','I','M','M','E','D','I','A','T','E',
106179 'J','O','I','N','S','E','R','T','M','A','T','C','H','P','L','A','N','A',
106180 'L','Y','Z','E','P','R','A','G','M','A','B','O','R','T','V','A','L','U',
106181 'E','S','V','I','R','T','U','A','L','I','M','I','T','W','H','E','N','W',
106182 'H','E','R','E','N','A','M','E','A','F','T','E','R','E','P','L','A','C',
106183 'E','A','N','D','E','F','A','U','L','T','A','U','T','O','I','N','C','R',
106184 'E','M','E','N','T','C','A','S','T','C','O','L','U','M','N','C','O','M',
106185 'M','I','T','C','O','N','F','L','I','C','T','C','R','O','S','S','C','U',
106186 'R','R','E','N','T','_','T','I','M','E','S','T','A','M','P','R','I','M',
106187 'A','R','Y','D','E','F','E','R','R','E','D','I','S','T','I','N','C','T',
106188 'D','R','O','P','F','A','I','L','F','R','O','M','F','U','L','L','G','L',
106189 'O','B','Y','I','F','I','S','N','U','L','L','O','R','D','E','R','E','S',
106190 'T','R','I','C','T','O','U','T','E','R','I','G','H','T','R','O','L','L',
106191 'B','A','C','K','R','O','W','U','N','I','O','N','U','S','I','N','G','V',
106192 'A','C','U','U','M','V','I','E','W','I','N','I','T','I','A','L','L','Y',
106194 static const unsigned char aHash[127] = {
106195 72, 101, 114, 70, 0, 45, 0, 0, 78, 0, 73, 0, 0,
106196 42, 12, 74, 15, 0, 113, 81, 50, 108, 0, 19, 0, 0,
106197 118, 0, 116, 111, 0, 22, 89, 0, 9, 0, 0, 66, 67,
106198 0, 65, 6, 0, 48, 86, 98, 0, 115, 97, 0, 0, 44,
106199 0, 99, 24, 0, 17, 0, 119, 49, 23, 0, 5, 106, 25,
106200 92, 0, 0, 121, 102, 56, 120, 53, 28, 51, 0, 87, 0,
106201 96, 26, 0, 95, 0, 0, 0, 91, 88, 93, 84, 105, 14,
106202 39, 104, 0, 77, 0, 18, 85, 107, 32, 0, 117, 76, 109,
106203 58, 46, 80, 0, 0, 90, 40, 0, 112, 0, 36, 0, 0,
106204 29, 0, 82, 59, 60, 0, 20, 57, 0, 52,
106206 static const unsigned char aNext[121] = {
106207 0, 0, 0, 0, 4, 0, 0, 0, 0, 0, 0, 0, 0,
106208 0, 2, 0, 0, 0, 0, 0, 0, 13, 0, 0, 0, 0,
106209 0, 7, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
106210 0, 0, 0, 0, 33, 0, 21, 0, 0, 0, 43, 3, 47,
106211 0, 0, 0, 0, 30, 0, 54, 0, 38, 0, 0, 0, 1,
106212 62, 0, 0, 63, 0, 41, 0, 0, 0, 0, 0, 0, 0,
106213 61, 0, 0, 0, 0, 31, 55, 16, 34, 10, 0, 0, 0,
106214 0, 0, 0, 0, 11, 68, 75, 0, 8, 0, 100, 94, 0,
106215 103, 0, 83, 0, 71, 0, 0, 110, 27, 37, 69, 79, 0,
106216 35, 64, 0, 0,
106218 static const unsigned char aLen[121] = {
106219 7, 7, 5, 4, 6, 4, 5, 3, 6, 7, 3, 6, 6,
106220 7, 7, 3, 8, 2, 6, 5, 4, 4, 3, 10, 4, 6,
106221 11, 6, 2, 7, 5, 5, 9, 6, 9, 9, 7, 10, 10,
106222 4, 6, 2, 3, 9, 4, 2, 6, 5, 6, 6, 5, 6,
106223 5, 5, 7, 7, 7, 3, 2, 4, 4, 7, 3, 6, 4,
106224 7, 6, 12, 6, 9, 4, 6, 5, 4, 7, 6, 5, 6,
106225 7, 5, 4, 5, 6, 5, 7, 3, 7, 13, 2, 2, 4,
106226 6, 6, 8, 5, 17, 12, 7, 8, 8, 2, 4, 4, 4,
106227 4, 4, 2, 2, 6, 5, 8, 5, 5, 8, 3, 5, 5,
106228 6, 4, 9, 3,
106230 static const unsigned short int aOffset[121] = {
106231 0, 2, 2, 8, 9, 14, 16, 20, 23, 25, 25, 29, 33,
106232 36, 41, 46, 48, 53, 54, 59, 62, 65, 67, 69, 78, 81,
106233 86, 91, 95, 96, 101, 105, 109, 117, 122, 128, 136, 142, 152,
106234 159, 162, 162, 165, 167, 167, 171, 176, 179, 184, 189, 194, 197,
106235 203, 206, 210, 217, 223, 223, 223, 226, 229, 233, 234, 238, 244,
106236 248, 255, 261, 273, 279, 288, 290, 296, 301, 303, 310, 315, 320,
106237 326, 332, 337, 341, 344, 350, 354, 361, 363, 370, 372, 374, 383,
106238 387, 393, 399, 407, 412, 412, 428, 435, 442, 443, 450, 454, 458,
106239 462, 466, 469, 471, 473, 479, 483, 491, 495, 500, 508, 511, 516,
106240 521, 527, 531, 536,
106242 static const unsigned char aCode[121] = {
106243 TK_REINDEX, TK_INDEXED, TK_INDEX, TK_DESC, TK_ESCAPE,
106244 TK_EACH, TK_CHECK, TK_KEY, TK_BEFORE, TK_FOREIGN,
106245 TK_FOR, TK_IGNORE, TK_LIKE_KW, TK_EXPLAIN, TK_INSTEAD,
106246 TK_ADD, TK_DATABASE, TK_AS, TK_SELECT, TK_TABLE,
106247 TK_JOIN_KW, TK_THEN, TK_END, TK_DEFERRABLE, TK_ELSE,
106248 TK_EXCEPT, TK_TRANSACTION,TK_ACTION, TK_ON, TK_JOIN_KW,
106249 TK_ALTER, TK_RAISE, TK_EXCLUSIVE, TK_EXISTS, TK_SAVEPOINT,
106250 TK_INTERSECT, TK_TRIGGER, TK_REFERENCES, TK_CONSTRAINT, TK_INTO,
106251 TK_OFFSET, TK_OF, TK_SET, TK_TEMP, TK_TEMP,
106252 TK_OR, TK_UNIQUE, TK_QUERY, TK_ATTACH, TK_HAVING,
106253 TK_GROUP, TK_UPDATE, TK_BEGIN, TK_JOIN_KW, TK_RELEASE,
106254 TK_BETWEEN, TK_NOTNULL, TK_NOT, TK_NO, TK_NULL,
106255 TK_LIKE_KW, TK_CASCADE, TK_ASC, TK_DELETE, TK_CASE,
106256 TK_COLLATE, TK_CREATE, TK_CTIME_KW, TK_DETACH, TK_IMMEDIATE,
106257 TK_JOIN, TK_INSERT, TK_MATCH, TK_PLAN, TK_ANALYZE,
106258 TK_PRAGMA, TK_ABORT, TK_VALUES, TK_VIRTUAL, TK_LIMIT,
106259 TK_WHEN, TK_WHERE, TK_RENAME, TK_AFTER, TK_REPLACE,
106260 TK_AND, TK_DEFAULT, TK_AUTOINCR, TK_TO, TK_IN,
106261 TK_CAST, TK_COLUMNKW, TK_COMMIT, TK_CONFLICT, TK_JOIN_KW,
106262 TK_CTIME_KW, TK_CTIME_KW, TK_PRIMARY, TK_DEFERRED, TK_DISTINCT,
106263 TK_IS, TK_DROP, TK_FAIL, TK_FROM, TK_JOIN_KW,
106264 TK_LIKE_KW, TK_BY, TK_IF, TK_ISNULL, TK_ORDER,
106265 TK_RESTRICT, TK_JOIN_KW, TK_JOIN_KW, TK_ROLLBACK, TK_ROW,
106266 TK_UNION, TK_USING, TK_VACUUM, TK_VIEW, TK_INITIALLY,
106267 TK_ALL,
106269 int h, i;
106270 if( n<2 ) return TK_ID;
106271 h = ((charMap(z[0])*4) ^
106272 (charMap(z[n-1])*3) ^
106273 n) % 127;
106274 for(i=((int)aHash[h])-1; i>=0; i=((int)aNext[i])-1){
106275 if( aLen[i]==n && sqlite3StrNICmp(&zText[aOffset[i]],z,n)==0 ){
106276 testcase( i==0 ); /* REINDEX */
106277 testcase( i==1 ); /* INDEXED */
106278 testcase( i==2 ); /* INDEX */
106279 testcase( i==3 ); /* DESC */
106280 testcase( i==4 ); /* ESCAPE */
106281 testcase( i==5 ); /* EACH */
106282 testcase( i==6 ); /* CHECK */
106283 testcase( i==7 ); /* KEY */
106284 testcase( i==8 ); /* BEFORE */
106285 testcase( i==9 ); /* FOREIGN */
106286 testcase( i==10 ); /* FOR */
106287 testcase( i==11 ); /* IGNORE */
106288 testcase( i==12 ); /* REGEXP */
106289 testcase( i==13 ); /* EXPLAIN */
106290 testcase( i==14 ); /* INSTEAD */
106291 testcase( i==15 ); /* ADD */
106292 testcase( i==16 ); /* DATABASE */
106293 testcase( i==17 ); /* AS */
106294 testcase( i==18 ); /* SELECT */
106295 testcase( i==19 ); /* TABLE */
106296 testcase( i==20 ); /* LEFT */
106297 testcase( i==21 ); /* THEN */
106298 testcase( i==22 ); /* END */
106299 testcase( i==23 ); /* DEFERRABLE */
106300 testcase( i==24 ); /* ELSE */
106301 testcase( i==25 ); /* EXCEPT */
106302 testcase( i==26 ); /* TRANSACTION */
106303 testcase( i==27 ); /* ACTION */
106304 testcase( i==28 ); /* ON */
106305 testcase( i==29 ); /* NATURAL */
106306 testcase( i==30 ); /* ALTER */
106307 testcase( i==31 ); /* RAISE */
106308 testcase( i==32 ); /* EXCLUSIVE */
106309 testcase( i==33 ); /* EXISTS */
106310 testcase( i==34 ); /* SAVEPOINT */
106311 testcase( i==35 ); /* INTERSECT */
106312 testcase( i==36 ); /* TRIGGER */
106313 testcase( i==37 ); /* REFERENCES */
106314 testcase( i==38 ); /* CONSTRAINT */
106315 testcase( i==39 ); /* INTO */
106316 testcase( i==40 ); /* OFFSET */
106317 testcase( i==41 ); /* OF */
106318 testcase( i==42 ); /* SET */
106319 testcase( i==43 ); /* TEMPORARY */
106320 testcase( i==44 ); /* TEMP */
106321 testcase( i==45 ); /* OR */
106322 testcase( i==46 ); /* UNIQUE */
106323 testcase( i==47 ); /* QUERY */
106324 testcase( i==48 ); /* ATTACH */
106325 testcase( i==49 ); /* HAVING */
106326 testcase( i==50 ); /* GROUP */
106327 testcase( i==51 ); /* UPDATE */
106328 testcase( i==52 ); /* BEGIN */
106329 testcase( i==53 ); /* INNER */
106330 testcase( i==54 ); /* RELEASE */
106331 testcase( i==55 ); /* BETWEEN */
106332 testcase( i==56 ); /* NOTNULL */
106333 testcase( i==57 ); /* NOT */
106334 testcase( i==58 ); /* NO */
106335 testcase( i==59 ); /* NULL */
106336 testcase( i==60 ); /* LIKE */
106337 testcase( i==61 ); /* CASCADE */
106338 testcase( i==62 ); /* ASC */
106339 testcase( i==63 ); /* DELETE */
106340 testcase( i==64 ); /* CASE */
106341 testcase( i==65 ); /* COLLATE */
106342 testcase( i==66 ); /* CREATE */
106343 testcase( i==67 ); /* CURRENT_DATE */
106344 testcase( i==68 ); /* DETACH */
106345 testcase( i==69 ); /* IMMEDIATE */
106346 testcase( i==70 ); /* JOIN */
106347 testcase( i==71 ); /* INSERT */
106348 testcase( i==72 ); /* MATCH */
106349 testcase( i==73 ); /* PLAN */
106350 testcase( i==74 ); /* ANALYZE */
106351 testcase( i==75 ); /* PRAGMA */
106352 testcase( i==76 ); /* ABORT */
106353 testcase( i==77 ); /* VALUES */
106354 testcase( i==78 ); /* VIRTUAL */
106355 testcase( i==79 ); /* LIMIT */
106356 testcase( i==80 ); /* WHEN */
106357 testcase( i==81 ); /* WHERE */
106358 testcase( i==82 ); /* RENAME */
106359 testcase( i==83 ); /* AFTER */
106360 testcase( i==84 ); /* REPLACE */
106361 testcase( i==85 ); /* AND */
106362 testcase( i==86 ); /* DEFAULT */
106363 testcase( i==87 ); /* AUTOINCREMENT */
106364 testcase( i==88 ); /* TO */
106365 testcase( i==89 ); /* IN */
106366 testcase( i==90 ); /* CAST */
106367 testcase( i==91 ); /* COLUMN */
106368 testcase( i==92 ); /* COMMIT */
106369 testcase( i==93 ); /* CONFLICT */
106370 testcase( i==94 ); /* CROSS */
106371 testcase( i==95 ); /* CURRENT_TIMESTAMP */
106372 testcase( i==96 ); /* CURRENT_TIME */
106373 testcase( i==97 ); /* PRIMARY */
106374 testcase( i==98 ); /* DEFERRED */
106375 testcase( i==99 ); /* DISTINCT */
106376 testcase( i==100 ); /* IS */
106377 testcase( i==101 ); /* DROP */
106378 testcase( i==102 ); /* FAIL */
106379 testcase( i==103 ); /* FROM */
106380 testcase( i==104 ); /* FULL */
106381 testcase( i==105 ); /* GLOB */
106382 testcase( i==106 ); /* BY */
106383 testcase( i==107 ); /* IF */
106384 testcase( i==108 ); /* ISNULL */
106385 testcase( i==109 ); /* ORDER */
106386 testcase( i==110 ); /* RESTRICT */
106387 testcase( i==111 ); /* OUTER */
106388 testcase( i==112 ); /* RIGHT */
106389 testcase( i==113 ); /* ROLLBACK */
106390 testcase( i==114 ); /* ROW */
106391 testcase( i==115 ); /* UNION */
106392 testcase( i==116 ); /* USING */
106393 testcase( i==117 ); /* VACUUM */
106394 testcase( i==118 ); /* VIEW */
106395 testcase( i==119 ); /* INITIALLY */
106396 testcase( i==120 ); /* ALL */
106397 return aCode[i];
106400 return TK_ID;
106402 SQLITE_PRIVATE int sqlite3KeywordCode(const unsigned char *z, int n){
106403 return keywordCode((char*)z, n);
106405 #define SQLITE_N_KEYWORD 121
106407 /************** End of keywordhash.h *****************************************/
106408 /************** Continuing where we left off in tokenize.c *******************/
106412 ** If X is a character that can be used in an identifier then
106413 ** IdChar(X) will be true. Otherwise it is false.
106415 ** For ASCII, any character with the high-order bit set is
106416 ** allowed in an identifier. For 7-bit characters,
106417 ** sqlite3IsIdChar[X] must be 1.
106419 ** For EBCDIC, the rules are more complex but have the same
106420 ** end result.
106422 ** Ticket #1066. the SQL standard does not allow '$' in the
106423 ** middle of identfiers. But many SQL implementations do.
106424 ** SQLite will allow '$' in identifiers for compatibility.
106425 ** But the feature is undocumented.
106427 #ifdef SQLITE_ASCII
106428 #define IdChar(C) ((sqlite3CtypeMap[(unsigned char)C]&0x46)!=0)
106429 #endif
106430 #ifdef SQLITE_EBCDIC
106431 SQLITE_PRIVATE const char sqlite3IsEbcdicIdChar[] = {
106432 /* x0 x1 x2 x3 x4 x5 x6 x7 x8 x9 xA xB xC xD xE xF */
106433 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, /* 4x */
106434 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 0, 0, 0, 0, /* 5x */
106435 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 1, 0, 0, /* 6x */
106436 0, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, /* 7x */
106437 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 1, 1, 1, 0, /* 8x */
106438 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 1, 0, 1, 0, /* 9x */
106439 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 0, /* Ax */
106440 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, /* Bx */
106441 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, /* Cx */
106442 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, /* Dx */
106443 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, /* Ex */
106444 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 0, /* Fx */
106446 #define IdChar(C) (((c=C)>=0x42 && sqlite3IsEbcdicIdChar[c-0x40]))
106447 #endif
106451 ** Return the length of the token that begins at z[0].
106452 ** Store the token type in *tokenType before returning.
106454 SQLITE_PRIVATE int sqlite3GetToken(const unsigned char *z, int *tokenType){
106455 int i, c;
106456 switch( *z ){
106457 case ' ': case '\t': case '\n': case '\f': case '\r': {
106458 testcase( z[0]==' ' );
106459 testcase( z[0]=='\t' );
106460 testcase( z[0]=='\n' );
106461 testcase( z[0]=='\f' );
106462 testcase( z[0]=='\r' );
106463 for(i=1; sqlite3Isspace(z[i]); i++){}
106464 *tokenType = TK_SPACE;
106465 return i;
106467 case '-': {
106468 if( z[1]=='-' ){
106469 /* IMP: R-15891-05542 -- syntax diagram for comments */
106470 for(i=2; (c=z[i])!=0 && c!='\n'; i++){}
106471 *tokenType = TK_SPACE; /* IMP: R-22934-25134 */
106472 return i;
106474 *tokenType = TK_MINUS;
106475 return 1;
106477 case '(': {
106478 *tokenType = TK_LP;
106479 return 1;
106481 case ')': {
106482 *tokenType = TK_RP;
106483 return 1;
106485 case ';': {
106486 *tokenType = TK_SEMI;
106487 return 1;
106489 case '+': {
106490 *tokenType = TK_PLUS;
106491 return 1;
106493 case '*': {
106494 *tokenType = TK_STAR;
106495 return 1;
106497 case '/': {
106498 if( z[1]!='*' || z[2]==0 ){
106499 *tokenType = TK_SLASH;
106500 return 1;
106502 /* IMP: R-15891-05542 -- syntax diagram for comments */
106503 for(i=3, c=z[2]; (c!='*' || z[i]!='/') && (c=z[i])!=0; i++){}
106504 if( c ) i++;
106505 *tokenType = TK_SPACE; /* IMP: R-22934-25134 */
106506 return i;
106508 case '%': {
106509 *tokenType = TK_REM;
106510 return 1;
106512 case '=': {
106513 *tokenType = TK_EQ;
106514 return 1 + (z[1]=='=');
106516 case '<': {
106517 if( (c=z[1])=='=' ){
106518 *tokenType = TK_LE;
106519 return 2;
106520 }else if( c=='>' ){
106521 *tokenType = TK_NE;
106522 return 2;
106523 }else if( c=='<' ){
106524 *tokenType = TK_LSHIFT;
106525 return 2;
106526 }else{
106527 *tokenType = TK_LT;
106528 return 1;
106531 case '>': {
106532 if( (c=z[1])=='=' ){
106533 *tokenType = TK_GE;
106534 return 2;
106535 }else if( c=='>' ){
106536 *tokenType = TK_RSHIFT;
106537 return 2;
106538 }else{
106539 *tokenType = TK_GT;
106540 return 1;
106543 case '!': {
106544 if( z[1]!='=' ){
106545 *tokenType = TK_ILLEGAL;
106546 return 2;
106547 }else{
106548 *tokenType = TK_NE;
106549 return 2;
106552 case '|': {
106553 if( z[1]!='|' ){
106554 *tokenType = TK_BITOR;
106555 return 1;
106556 }else{
106557 *tokenType = TK_CONCAT;
106558 return 2;
106561 case ',': {
106562 *tokenType = TK_COMMA;
106563 return 1;
106565 case '&': {
106566 *tokenType = TK_BITAND;
106567 return 1;
106569 case '~': {
106570 *tokenType = TK_BITNOT;
106571 return 1;
106573 case '`':
106574 case '\'':
106575 case '"': {
106576 int delim = z[0];
106577 testcase( delim=='`' );
106578 testcase( delim=='\'' );
106579 testcase( delim=='"' );
106580 for(i=1; (c=z[i])!=0; i++){
106581 if( c==delim ){
106582 if( z[i+1]==delim ){
106584 }else{
106585 break;
106589 if( c=='\'' ){
106590 *tokenType = TK_STRING;
106591 return i+1;
106592 }else if( c!=0 ){
106593 *tokenType = TK_ID;
106594 return i+1;
106595 }else{
106596 *tokenType = TK_ILLEGAL;
106597 return i;
106600 case '.': {
106601 #ifndef SQLITE_OMIT_FLOATING_POINT
106602 if( !sqlite3Isdigit(z[1]) )
106603 #endif
106605 *tokenType = TK_DOT;
106606 return 1;
106608 /* If the next character is a digit, this is a floating point
106609 ** number that begins with ".". Fall thru into the next case */
106611 case '0': case '1': case '2': case '3': case '4':
106612 case '5': case '6': case '7': case '8': case '9': {
106613 testcase( z[0]=='0' ); testcase( z[0]=='1' ); testcase( z[0]=='2' );
106614 testcase( z[0]=='3' ); testcase( z[0]=='4' ); testcase( z[0]=='5' );
106615 testcase( z[0]=='6' ); testcase( z[0]=='7' ); testcase( z[0]=='8' );
106616 testcase( z[0]=='9' );
106617 *tokenType = TK_INTEGER;
106618 for(i=0; sqlite3Isdigit(z[i]); i++){}
106619 #ifndef SQLITE_OMIT_FLOATING_POINT
106620 if( z[i]=='.' ){
106622 while( sqlite3Isdigit(z[i]) ){ i++; }
106623 *tokenType = TK_FLOAT;
106625 if( (z[i]=='e' || z[i]=='E') &&
106626 ( sqlite3Isdigit(z[i+1])
106627 || ((z[i+1]=='+' || z[i+1]=='-') && sqlite3Isdigit(z[i+2]))
106630 i += 2;
106631 while( sqlite3Isdigit(z[i]) ){ i++; }
106632 *tokenType = TK_FLOAT;
106634 #endif
106635 while( IdChar(z[i]) ){
106636 *tokenType = TK_ILLEGAL;
106639 return i;
106641 case '[': {
106642 for(i=1, c=z[0]; c!=']' && (c=z[i])!=0; i++){}
106643 *tokenType = c==']' ? TK_ID : TK_ILLEGAL;
106644 return i;
106646 case '?': {
106647 *tokenType = TK_VARIABLE;
106648 for(i=1; sqlite3Isdigit(z[i]); i++){}
106649 return i;
106651 case '#': {
106652 for(i=1; sqlite3Isdigit(z[i]); i++){}
106653 if( i>1 ){
106654 /* Parameters of the form #NNN (where NNN is a number) are used
106655 ** internally by sqlite3NestedParse. */
106656 *tokenType = TK_REGISTER;
106657 return i;
106659 /* Fall through into the next case if the '#' is not followed by
106660 ** a digit. Try to match #AAAA where AAAA is a parameter name. */
106662 #ifndef SQLITE_OMIT_TCL_VARIABLE
106663 case '$':
106664 #endif
106665 case '@': /* For compatibility with MS SQL Server */
106666 case ':': {
106667 int n = 0;
106668 testcase( z[0]=='$' ); testcase( z[0]=='@' ); testcase( z[0]==':' );
106669 *tokenType = TK_VARIABLE;
106670 for(i=1; (c=z[i])!=0; i++){
106671 if( IdChar(c) ){
106673 #ifndef SQLITE_OMIT_TCL_VARIABLE
106674 }else if( c=='(' && n>0 ){
106677 }while( (c=z[i])!=0 && !sqlite3Isspace(c) && c!=')' );
106678 if( c==')' ){
106680 }else{
106681 *tokenType = TK_ILLEGAL;
106683 break;
106684 }else if( c==':' && z[i+1]==':' ){
106686 #endif
106687 }else{
106688 break;
106691 if( n==0 ) *tokenType = TK_ILLEGAL;
106692 return i;
106694 #ifndef SQLITE_OMIT_BLOB_LITERAL
106695 case 'x': case 'X': {
106696 testcase( z[0]=='x' ); testcase( z[0]=='X' );
106697 if( z[1]=='\'' ){
106698 *tokenType = TK_BLOB;
106699 for(i=2; (c=z[i])!=0 && c!='\''; i++){
106700 if( !sqlite3Isxdigit(c) ){
106701 *tokenType = TK_ILLEGAL;
106704 if( i%2 || !c ) *tokenType = TK_ILLEGAL;
106705 if( c ) i++;
106706 return i;
106708 /* Otherwise fall through to the next case */
106710 #endif
106711 default: {
106712 if( !IdChar(*z) ){
106713 break;
106715 for(i=1; IdChar(z[i]); i++){}
106716 *tokenType = keywordCode((char*)z, i);
106717 return i;
106720 *tokenType = TK_ILLEGAL;
106721 return 1;
106725 ** Run the parser on the given SQL string. The parser structure is
106726 ** passed in. An SQLITE_ status code is returned. If an error occurs
106727 ** then an and attempt is made to write an error message into
106728 ** memory obtained from sqlite3_malloc() and to make *pzErrMsg point to that
106729 ** error message.
106731 SQLITE_PRIVATE int sqlite3RunParser(Parse *pParse, const char *zSql, char **pzErrMsg){
106732 int nErr = 0; /* Number of errors encountered */
106733 int i; /* Loop counter */
106734 void *pEngine; /* The LEMON-generated LALR(1) parser */
106735 int tokenType; /* type of the next token */
106736 int lastTokenParsed = -1; /* type of the previous token */
106737 u8 enableLookaside; /* Saved value of db->lookaside.bEnabled */
106738 sqlite3 *db = pParse->db; /* The database connection */
106739 int mxSqlLen; /* Max length of an SQL string */
106742 mxSqlLen = db->aLimit[SQLITE_LIMIT_SQL_LENGTH];
106743 if( db->activeVdbeCnt==0 ){
106744 db->u1.isInterrupted = 0;
106746 pParse->rc = SQLITE_OK;
106747 pParse->zTail = zSql;
106748 i = 0;
106749 assert( pzErrMsg!=0 );
106750 pEngine = sqlite3ParserAlloc((void*(*)(size_t))sqlite3Malloc);
106751 if( pEngine==0 ){
106752 db->mallocFailed = 1;
106753 return SQLITE_NOMEM;
106755 assert( pParse->pNewTable==0 );
106756 assert( pParse->pNewTrigger==0 );
106757 assert( pParse->nVar==0 );
106758 assert( pParse->nVarExpr==0 );
106759 assert( pParse->nVarExprAlloc==0 );
106760 assert( pParse->apVarExpr==0 );
106761 enableLookaside = db->lookaside.bEnabled;
106762 if( db->lookaside.pStart ) db->lookaside.bEnabled = 1;
106763 while( !db->mallocFailed && zSql[i]!=0 ){
106764 assert( i>=0 );
106765 pParse->sLastToken.z = &zSql[i];
106766 pParse->sLastToken.n = sqlite3GetToken((unsigned char*)&zSql[i],&tokenType);
106767 i += pParse->sLastToken.n;
106768 if( i>mxSqlLen ){
106769 pParse->rc = SQLITE_TOOBIG;
106770 break;
106772 switch( tokenType ){
106773 case TK_SPACE: {
106774 if( db->u1.isInterrupted ){
106775 sqlite3ErrorMsg(pParse, "interrupt");
106776 pParse->rc = SQLITE_INTERRUPT;
106777 goto abort_parse;
106779 break;
106781 case TK_ILLEGAL: {
106782 sqlite3DbFree(db, *pzErrMsg);
106783 *pzErrMsg = sqlite3MPrintf(db, "unrecognized token: \"%T\"",
106784 &pParse->sLastToken);
106785 nErr++;
106786 goto abort_parse;
106788 case TK_SEMI: {
106789 pParse->zTail = &zSql[i];
106790 /* Fall thru into the default case */
106792 default: {
106793 sqlite3Parser(pEngine, tokenType, pParse->sLastToken, pParse);
106794 lastTokenParsed = tokenType;
106795 if( pParse->rc!=SQLITE_OK ){
106796 goto abort_parse;
106798 break;
106802 abort_parse:
106803 if( zSql[i]==0 && nErr==0 && pParse->rc==SQLITE_OK ){
106804 if( lastTokenParsed!=TK_SEMI ){
106805 sqlite3Parser(pEngine, TK_SEMI, pParse->sLastToken, pParse);
106806 pParse->zTail = &zSql[i];
106808 sqlite3Parser(pEngine, 0, pParse->sLastToken, pParse);
106810 #ifdef YYTRACKMAXSTACKDEPTH
106811 sqlite3StatusSet(SQLITE_STATUS_PARSER_STACK,
106812 sqlite3ParserStackPeak(pEngine)
106814 #endif /* YYDEBUG */
106815 sqlite3ParserFree(pEngine, sqlite3_free);
106816 db->lookaside.bEnabled = enableLookaside;
106817 if( db->mallocFailed ){
106818 pParse->rc = SQLITE_NOMEM;
106820 if( pParse->rc!=SQLITE_OK && pParse->rc!=SQLITE_DONE && pParse->zErrMsg==0 ){
106821 sqlite3SetString(&pParse->zErrMsg, db, "%s", sqlite3ErrStr(pParse->rc));
106823 assert( pzErrMsg!=0 );
106824 if( pParse->zErrMsg ){
106825 *pzErrMsg = pParse->zErrMsg;
106826 sqlite3_log(pParse->rc, "%s", *pzErrMsg);
106827 pParse->zErrMsg = 0;
106828 nErr++;
106830 if( pParse->pVdbe && pParse->nErr>0 && pParse->nested==0 ){
106831 sqlite3VdbeDelete(pParse->pVdbe);
106832 pParse->pVdbe = 0;
106834 #ifndef SQLITE_OMIT_SHARED_CACHE
106835 if( pParse->nested==0 ){
106836 sqlite3DbFree(db, pParse->aTableLock);
106837 pParse->aTableLock = 0;
106838 pParse->nTableLock = 0;
106840 #endif
106841 #ifndef SQLITE_OMIT_VIRTUALTABLE
106842 sqlite3_free(pParse->apVtabLock);
106843 #endif
106845 if( !IN_DECLARE_VTAB ){
106846 /* If the pParse->declareVtab flag is set, do not delete any table
106847 ** structure built up in pParse->pNewTable. The calling code (see vtab.c)
106848 ** will take responsibility for freeing the Table structure.
106850 sqlite3DeleteTable(db, pParse->pNewTable);
106853 sqlite3DeleteTrigger(db, pParse->pNewTrigger);
106854 sqlite3DbFree(db, pParse->apVarExpr);
106855 sqlite3DbFree(db, pParse->aAlias);
106856 while( pParse->pAinc ){
106857 AutoincInfo *p = pParse->pAinc;
106858 pParse->pAinc = p->pNext;
106859 sqlite3DbFree(db, p);
106861 while( pParse->pZombieTab ){
106862 Table *p = pParse->pZombieTab;
106863 pParse->pZombieTab = p->pNextZombie;
106864 sqlite3DeleteTable(db, p);
106866 if( nErr>0 && pParse->rc==SQLITE_OK ){
106867 pParse->rc = SQLITE_ERROR;
106869 return nErr;
106872 /************** End of tokenize.c ********************************************/
106873 /************** Begin file complete.c ****************************************/
106875 ** 2001 September 15
106877 ** The author disclaims copyright to this source code. In place of
106878 ** a legal notice, here is a blessing:
106880 ** May you do good and not evil.
106881 ** May you find forgiveness for yourself and forgive others.
106882 ** May you share freely, never taking more than you give.
106884 *************************************************************************
106885 ** An tokenizer for SQL
106887 ** This file contains C code that implements the sqlite3_complete() API.
106888 ** This code used to be part of the tokenizer.c source file. But by
106889 ** separating it out, the code will be automatically omitted from
106890 ** static links that do not use it.
106892 #ifndef SQLITE_OMIT_COMPLETE
106895 ** This is defined in tokenize.c. We just have to import the definition.
106897 #ifndef SQLITE_AMALGAMATION
106898 #ifdef SQLITE_ASCII
106899 #define IdChar(C) ((sqlite3CtypeMap[(unsigned char)C]&0x46)!=0)
106900 #endif
106901 #ifdef SQLITE_EBCDIC
106902 SQLITE_PRIVATE const char sqlite3IsEbcdicIdChar[];
106903 #define IdChar(C) (((c=C)>=0x42 && sqlite3IsEbcdicIdChar[c-0x40]))
106904 #endif
106905 #endif /* SQLITE_AMALGAMATION */
106909 ** Token types used by the sqlite3_complete() routine. See the header
106910 ** comments on that procedure for additional information.
106912 #define tkSEMI 0
106913 #define tkWS 1
106914 #define tkOTHER 2
106915 #ifndef SQLITE_OMIT_TRIGGER
106916 #define tkEXPLAIN 3
106917 #define tkCREATE 4
106918 #define tkTEMP 5
106919 #define tkTRIGGER 6
106920 #define tkEND 7
106921 #endif
106924 ** Return TRUE if the given SQL string ends in a semicolon.
106926 ** Special handling is require for CREATE TRIGGER statements.
106927 ** Whenever the CREATE TRIGGER keywords are seen, the statement
106928 ** must end with ";END;".
106930 ** This implementation uses a state machine with 8 states:
106932 ** (0) INVALID We have not yet seen a non-whitespace character.
106934 ** (1) START At the beginning or end of an SQL statement. This routine
106935 ** returns 1 if it ends in the START state and 0 if it ends
106936 ** in any other state.
106938 ** (2) NORMAL We are in the middle of statement which ends with a single
106939 ** semicolon.
106941 ** (3) EXPLAIN The keyword EXPLAIN has been seen at the beginning of
106942 ** a statement.
106944 ** (4) CREATE The keyword CREATE has been seen at the beginning of a
106945 ** statement, possibly preceeded by EXPLAIN and/or followed by
106946 ** TEMP or TEMPORARY
106948 ** (5) TRIGGER We are in the middle of a trigger definition that must be
106949 ** ended by a semicolon, the keyword END, and another semicolon.
106951 ** (6) SEMI We've seen the first semicolon in the ";END;" that occurs at
106952 ** the end of a trigger definition.
106954 ** (7) END We've seen the ";END" of the ";END;" that occurs at the end
106955 ** of a trigger difinition.
106957 ** Transitions between states above are determined by tokens extracted
106958 ** from the input. The following tokens are significant:
106960 ** (0) tkSEMI A semicolon.
106961 ** (1) tkWS Whitespace.
106962 ** (2) tkOTHER Any other SQL token.
106963 ** (3) tkEXPLAIN The "explain" keyword.
106964 ** (4) tkCREATE The "create" keyword.
106965 ** (5) tkTEMP The "temp" or "temporary" keyword.
106966 ** (6) tkTRIGGER The "trigger" keyword.
106967 ** (7) tkEND The "end" keyword.
106969 ** Whitespace never causes a state transition and is always ignored.
106970 ** This means that a SQL string of all whitespace is invalid.
106972 ** If we compile with SQLITE_OMIT_TRIGGER, all of the computation needed
106973 ** to recognize the end of a trigger can be omitted. All we have to do
106974 ** is look for a semicolon that is not part of an string or comment.
106976 SQLITE_API int sqlite3_complete(const char *zSql){
106977 u8 state = 0; /* Current state, using numbers defined in header comment */
106978 u8 token; /* Value of the next token */
106980 #ifndef SQLITE_OMIT_TRIGGER
106981 /* A complex statement machine used to detect the end of a CREATE TRIGGER
106982 ** statement. This is the normal case.
106984 static const u8 trans[8][8] = {
106985 /* Token: */
106986 /* State: ** SEMI WS OTHER EXPLAIN CREATE TEMP TRIGGER END */
106987 /* 0 INVALID: */ { 1, 0, 2, 3, 4, 2, 2, 2, },
106988 /* 1 START: */ { 1, 1, 2, 3, 4, 2, 2, 2, },
106989 /* 2 NORMAL: */ { 1, 2, 2, 2, 2, 2, 2, 2, },
106990 /* 3 EXPLAIN: */ { 1, 3, 3, 2, 4, 2, 2, 2, },
106991 /* 4 CREATE: */ { 1, 4, 2, 2, 2, 4, 5, 2, },
106992 /* 5 TRIGGER: */ { 6, 5, 5, 5, 5, 5, 5, 5, },
106993 /* 6 SEMI: */ { 6, 6, 5, 5, 5, 5, 5, 7, },
106994 /* 7 END: */ { 1, 7, 5, 5, 5, 5, 5, 5, },
106996 #else
106997 /* If triggers are not supported by this compile then the statement machine
106998 ** used to detect the end of a statement is much simplier
107000 static const u8 trans[3][3] = {
107001 /* Token: */
107002 /* State: ** SEMI WS OTHER */
107003 /* 0 INVALID: */ { 1, 0, 2, },
107004 /* 1 START: */ { 1, 1, 2, },
107005 /* 2 NORMAL: */ { 1, 2, 2, },
107007 #endif /* SQLITE_OMIT_TRIGGER */
107009 while( *zSql ){
107010 switch( *zSql ){
107011 case ';': { /* A semicolon */
107012 token = tkSEMI;
107013 break;
107015 case ' ':
107016 case '\r':
107017 case '\t':
107018 case '\n':
107019 case '\f': { /* White space is ignored */
107020 token = tkWS;
107021 break;
107023 case '/': { /* C-style comments */
107024 if( zSql[1]!='*' ){
107025 token = tkOTHER;
107026 break;
107028 zSql += 2;
107029 while( zSql[0] && (zSql[0]!='*' || zSql[1]!='/') ){ zSql++; }
107030 if( zSql[0]==0 ) return 0;
107031 zSql++;
107032 token = tkWS;
107033 break;
107035 case '-': { /* SQL-style comments from "--" to end of line */
107036 if( zSql[1]!='-' ){
107037 token = tkOTHER;
107038 break;
107040 while( *zSql && *zSql!='\n' ){ zSql++; }
107041 if( *zSql==0 ) return state==1;
107042 token = tkWS;
107043 break;
107045 case '[': { /* Microsoft-style identifiers in [...] */
107046 zSql++;
107047 while( *zSql && *zSql!=']' ){ zSql++; }
107048 if( *zSql==0 ) return 0;
107049 token = tkOTHER;
107050 break;
107052 case '`': /* Grave-accent quoted symbols used by MySQL */
107053 case '"': /* single- and double-quoted strings */
107054 case '\'': {
107055 int c = *zSql;
107056 zSql++;
107057 while( *zSql && *zSql!=c ){ zSql++; }
107058 if( *zSql==0 ) return 0;
107059 token = tkOTHER;
107060 break;
107062 default: {
107063 #ifdef SQLITE_EBCDIC
107064 unsigned char c;
107065 #endif
107066 if( IdChar((u8)*zSql) ){
107067 /* Keywords and unquoted identifiers */
107068 int nId;
107069 for(nId=1; IdChar(zSql[nId]); nId++){}
107070 #ifdef SQLITE_OMIT_TRIGGER
107071 token = tkOTHER;
107072 #else
107073 switch( *zSql ){
107074 case 'c': case 'C': {
107075 if( nId==6 && sqlite3StrNICmp(zSql, "create", 6)==0 ){
107076 token = tkCREATE;
107077 }else{
107078 token = tkOTHER;
107080 break;
107082 case 't': case 'T': {
107083 if( nId==7 && sqlite3StrNICmp(zSql, "trigger", 7)==0 ){
107084 token = tkTRIGGER;
107085 }else if( nId==4 && sqlite3StrNICmp(zSql, "temp", 4)==0 ){
107086 token = tkTEMP;
107087 }else if( nId==9 && sqlite3StrNICmp(zSql, "temporary", 9)==0 ){
107088 token = tkTEMP;
107089 }else{
107090 token = tkOTHER;
107092 break;
107094 case 'e': case 'E': {
107095 if( nId==3 && sqlite3StrNICmp(zSql, "end", 3)==0 ){
107096 token = tkEND;
107097 }else
107098 #ifndef SQLITE_OMIT_EXPLAIN
107099 if( nId==7 && sqlite3StrNICmp(zSql, "explain", 7)==0 ){
107100 token = tkEXPLAIN;
107101 }else
107102 #endif
107104 token = tkOTHER;
107106 break;
107108 default: {
107109 token = tkOTHER;
107110 break;
107113 #endif /* SQLITE_OMIT_TRIGGER */
107114 zSql += nId-1;
107115 }else{
107116 /* Operators and special symbols */
107117 token = tkOTHER;
107119 break;
107122 state = trans[state][token];
107123 zSql++;
107125 return state==1;
107128 #ifndef SQLITE_OMIT_UTF16
107130 ** This routine is the same as the sqlite3_complete() routine described
107131 ** above, except that the parameter is required to be UTF-16 encoded, not
107132 ** UTF-8.
107134 SQLITE_API int sqlite3_complete16(const void *zSql){
107135 sqlite3_value *pVal;
107136 char const *zSql8;
107137 int rc = SQLITE_NOMEM;
107139 #ifndef SQLITE_OMIT_AUTOINIT
107140 rc = sqlite3_initialize();
107141 if( rc ) return rc;
107142 #endif
107143 pVal = sqlite3ValueNew(0);
107144 sqlite3ValueSetStr(pVal, -1, zSql, SQLITE_UTF16NATIVE, SQLITE_STATIC);
107145 zSql8 = sqlite3ValueText(pVal, SQLITE_UTF8);
107146 if( zSql8 ){
107147 rc = sqlite3_complete(zSql8);
107148 }else{
107149 rc = SQLITE_NOMEM;
107151 sqlite3ValueFree(pVal);
107152 return sqlite3ApiExit(0, rc);
107154 #endif /* SQLITE_OMIT_UTF16 */
107155 #endif /* SQLITE_OMIT_COMPLETE */
107157 /************** End of complete.c ********************************************/
107158 /************** Begin file main.c ********************************************/
107160 ** 2001 September 15
107162 ** The author disclaims copyright to this source code. In place of
107163 ** a legal notice, here is a blessing:
107165 ** May you do good and not evil.
107166 ** May you find forgiveness for yourself and forgive others.
107167 ** May you share freely, never taking more than you give.
107169 *************************************************************************
107170 ** Main file for the SQLite library. The routines in this file
107171 ** implement the programmer interface to the library. Routines in
107172 ** other files are for internal use by SQLite and should not be
107173 ** accessed by users of the library.
107176 #ifdef SQLITE_ENABLE_FTS3
107177 /************** Include fts3.h in the middle of main.c ***********************/
107178 /************** Begin file fts3.h ********************************************/
107180 ** 2006 Oct 10
107182 ** The author disclaims copyright to this source code. In place of
107183 ** a legal notice, here is a blessing:
107185 ** May you do good and not evil.
107186 ** May you find forgiveness for yourself and forgive others.
107187 ** May you share freely, never taking more than you give.
107189 ******************************************************************************
107191 ** This header file is used by programs that want to link against the
107192 ** FTS3 library. All it does is declare the sqlite3Fts3Init() interface.
107195 #if 0
107196 extern "C" {
107197 #endif /* __cplusplus */
107199 SQLITE_PRIVATE int sqlite3Fts3Init(sqlite3 *db);
107201 #if 0
107202 } /* extern "C" */
107203 #endif /* __cplusplus */
107205 /************** End of fts3.h ************************************************/
107206 /************** Continuing where we left off in main.c ***********************/
107207 #endif
107208 #ifdef SQLITE_ENABLE_RTREE
107209 /************** Include rtree.h in the middle of main.c **********************/
107210 /************** Begin file rtree.h *******************************************/
107212 ** 2008 May 26
107214 ** The author disclaims copyright to this source code. In place of
107215 ** a legal notice, here is a blessing:
107217 ** May you do good and not evil.
107218 ** May you find forgiveness for yourself and forgive others.
107219 ** May you share freely, never taking more than you give.
107221 ******************************************************************************
107223 ** This header file is used by programs that want to link against the
107224 ** RTREE library. All it does is declare the sqlite3RtreeInit() interface.
107227 #if 0
107228 extern "C" {
107229 #endif /* __cplusplus */
107231 SQLITE_PRIVATE int sqlite3RtreeInit(sqlite3 *db);
107233 #if 0
107234 } /* extern "C" */
107235 #endif /* __cplusplus */
107237 /************** End of rtree.h ***********************************************/
107238 /************** Continuing where we left off in main.c ***********************/
107239 #endif
107240 #ifdef SQLITE_ENABLE_ICU
107241 /************** Include sqliteicu.h in the middle of main.c ******************/
107242 /************** Begin file sqliteicu.h ***************************************/
107244 ** 2008 May 26
107246 ** The author disclaims copyright to this source code. In place of
107247 ** a legal notice, here is a blessing:
107249 ** May you do good and not evil.
107250 ** May you find forgiveness for yourself and forgive others.
107251 ** May you share freely, never taking more than you give.
107253 ******************************************************************************
107255 ** This header file is used by programs that want to link against the
107256 ** ICU extension. All it does is declare the sqlite3IcuInit() interface.
107259 #if 0
107260 extern "C" {
107261 #endif /* __cplusplus */
107263 SQLITE_PRIVATE int sqlite3IcuInit(sqlite3 *db);
107265 #if 0
107266 } /* extern "C" */
107267 #endif /* __cplusplus */
107270 /************** End of sqliteicu.h *******************************************/
107271 /************** Continuing where we left off in main.c ***********************/
107272 #endif
107274 #ifndef SQLITE_AMALGAMATION
107275 /* IMPLEMENTATION-OF: R-46656-45156 The sqlite3_version[] string constant
107276 ** contains the text of SQLITE_VERSION macro.
107278 SQLITE_API const char sqlite3_version[] = SQLITE_VERSION;
107279 #endif
107281 /* IMPLEMENTATION-OF: R-53536-42575 The sqlite3_libversion() function returns
107282 ** a pointer to the to the sqlite3_version[] string constant.
107284 SQLITE_API const char *sqlite3_libversion(void){ return sqlite3_version; }
107286 /* IMPLEMENTATION-OF: R-63124-39300 The sqlite3_sourceid() function returns a
107287 ** pointer to a string constant whose value is the same as the
107288 ** SQLITE_SOURCE_ID C preprocessor macro.
107290 SQLITE_API const char *sqlite3_sourceid(void){ return SQLITE_SOURCE_ID; }
107292 /* IMPLEMENTATION-OF: R-35210-63508 The sqlite3_libversion_number() function
107293 ** returns an integer equal to SQLITE_VERSION_NUMBER.
107295 SQLITE_API int sqlite3_libversion_number(void){ return SQLITE_VERSION_NUMBER; }
107297 /* IMPLEMENTATION-OF: R-54823-41343 The sqlite3_threadsafe() function returns
107298 ** zero if and only if SQLite was compiled mutexing code omitted due to
107299 ** the SQLITE_THREADSAFE compile-time option being set to 0.
107301 SQLITE_API int sqlite3_threadsafe(void){ return SQLITE_THREADSAFE; }
107303 #if !defined(SQLITE_OMIT_TRACE) && defined(SQLITE_ENABLE_IOTRACE)
107305 ** If the following function pointer is not NULL and if
107306 ** SQLITE_ENABLE_IOTRACE is enabled, then messages describing
107307 ** I/O active are written using this function. These messages
107308 ** are intended for debugging activity only.
107310 SQLITE_PRIVATE void (*sqlite3IoTrace)(const char*, ...) = 0;
107311 #endif
107314 ** If the following global variable points to a string which is the
107315 ** name of a directory, then that directory will be used to store
107316 ** temporary files.
107318 ** See also the "PRAGMA temp_store_directory" SQL command.
107320 SQLITE_API char *sqlite3_temp_directory = 0;
107323 ** Initialize SQLite.
107325 ** This routine must be called to initialize the memory allocation,
107326 ** VFS, and mutex subsystems prior to doing any serious work with
107327 ** SQLite. But as long as you do not compile with SQLITE_OMIT_AUTOINIT
107328 ** this routine will be called automatically by key routines such as
107329 ** sqlite3_open().
107331 ** This routine is a no-op except on its very first call for the process,
107332 ** or for the first call after a call to sqlite3_shutdown.
107334 ** The first thread to call this routine runs the initialization to
107335 ** completion. If subsequent threads call this routine before the first
107336 ** thread has finished the initialization process, then the subsequent
107337 ** threads must block until the first thread finishes with the initialization.
107339 ** The first thread might call this routine recursively. Recursive
107340 ** calls to this routine should not block, of course. Otherwise the
107341 ** initialization process would never complete.
107343 ** Let X be the first thread to enter this routine. Let Y be some other
107344 ** thread. Then while the initial invocation of this routine by X is
107345 ** incomplete, it is required that:
107347 ** * Calls to this routine from Y must block until the outer-most
107348 ** call by X completes.
107350 ** * Recursive calls to this routine from thread X return immediately
107351 ** without blocking.
107353 SQLITE_API int sqlite3_initialize(void){
107354 sqlite3_mutex *pMaster; /* The main static mutex */
107355 int rc; /* Result code */
107357 #ifdef SQLITE_OMIT_WSD
107358 rc = sqlite3_wsd_init(4096, 24);
107359 if( rc!=SQLITE_OK ){
107360 return rc;
107362 #endif
107364 /* If SQLite is already completely initialized, then this call
107365 ** to sqlite3_initialize() should be a no-op. But the initialization
107366 ** must be complete. So isInit must not be set until the very end
107367 ** of this routine.
107369 if( sqlite3GlobalConfig.isInit ) return SQLITE_OK;
107371 /* Make sure the mutex subsystem is initialized. If unable to
107372 ** initialize the mutex subsystem, return early with the error.
107373 ** If the system is so sick that we are unable to allocate a mutex,
107374 ** there is not much SQLite is going to be able to do.
107376 ** The mutex subsystem must take care of serializing its own
107377 ** initialization.
107379 rc = sqlite3MutexInit();
107380 if( rc ) return rc;
107382 /* Initialize the malloc() system and the recursive pInitMutex mutex.
107383 ** This operation is protected by the STATIC_MASTER mutex. Note that
107384 ** MutexAlloc() is called for a static mutex prior to initializing the
107385 ** malloc subsystem - this implies that the allocation of a static
107386 ** mutex must not require support from the malloc subsystem.
107388 pMaster = sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_MASTER);
107389 sqlite3_mutex_enter(pMaster);
107390 sqlite3GlobalConfig.isMutexInit = 1;
107391 if( !sqlite3GlobalConfig.isMallocInit ){
107392 rc = sqlite3MallocInit();
107394 if( rc==SQLITE_OK ){
107395 sqlite3GlobalConfig.isMallocInit = 1;
107396 if( !sqlite3GlobalConfig.pInitMutex ){
107397 sqlite3GlobalConfig.pInitMutex =
107398 sqlite3MutexAlloc(SQLITE_MUTEX_RECURSIVE);
107399 if( sqlite3GlobalConfig.bCoreMutex && !sqlite3GlobalConfig.pInitMutex ){
107400 rc = SQLITE_NOMEM;
107404 if( rc==SQLITE_OK ){
107405 sqlite3GlobalConfig.nRefInitMutex++;
107407 sqlite3_mutex_leave(pMaster);
107409 /* If rc is not SQLITE_OK at this point, then either the malloc
107410 ** subsystem could not be initialized or the system failed to allocate
107411 ** the pInitMutex mutex. Return an error in either case. */
107412 if( rc!=SQLITE_OK ){
107413 return rc;
107416 /* Do the rest of the initialization under the recursive mutex so
107417 ** that we will be able to handle recursive calls into
107418 ** sqlite3_initialize(). The recursive calls normally come through
107419 ** sqlite3_os_init() when it invokes sqlite3_vfs_register(), but other
107420 ** recursive calls might also be possible.
107422 ** IMPLEMENTATION-OF: R-00140-37445 SQLite automatically serializes calls
107423 ** to the xInit method, so the xInit method need not be threadsafe.
107425 ** The following mutex is what serializes access to the appdef pcache xInit
107426 ** methods. The sqlite3_pcache_methods.xInit() all is embedded in the
107427 ** call to sqlite3PcacheInitialize().
107429 sqlite3_mutex_enter(sqlite3GlobalConfig.pInitMutex);
107430 if( sqlite3GlobalConfig.isInit==0 && sqlite3GlobalConfig.inProgress==0 ){
107431 FuncDefHash *pHash = &GLOBAL(FuncDefHash, sqlite3GlobalFunctions);
107432 sqlite3GlobalConfig.inProgress = 1;
107433 memset(pHash, 0, sizeof(sqlite3GlobalFunctions));
107434 sqlite3RegisterGlobalFunctions();
107435 if( sqlite3GlobalConfig.isPCacheInit==0 ){
107436 rc = sqlite3PcacheInitialize();
107438 if( rc==SQLITE_OK ){
107439 sqlite3GlobalConfig.isPCacheInit = 1;
107440 rc = sqlite3OsInit();
107442 if( rc==SQLITE_OK ){
107443 sqlite3PCacheBufferSetup( sqlite3GlobalConfig.pPage,
107444 sqlite3GlobalConfig.szPage, sqlite3GlobalConfig.nPage);
107445 sqlite3GlobalConfig.isInit = 1;
107447 sqlite3GlobalConfig.inProgress = 0;
107449 sqlite3_mutex_leave(sqlite3GlobalConfig.pInitMutex);
107451 /* Go back under the static mutex and clean up the recursive
107452 ** mutex to prevent a resource leak.
107454 sqlite3_mutex_enter(pMaster);
107455 sqlite3GlobalConfig.nRefInitMutex--;
107456 if( sqlite3GlobalConfig.nRefInitMutex<=0 ){
107457 assert( sqlite3GlobalConfig.nRefInitMutex==0 );
107458 sqlite3_mutex_free(sqlite3GlobalConfig.pInitMutex);
107459 sqlite3GlobalConfig.pInitMutex = 0;
107461 sqlite3_mutex_leave(pMaster);
107463 /* The following is just a sanity check to make sure SQLite has
107464 ** been compiled correctly. It is important to run this code, but
107465 ** we don't want to run it too often and soak up CPU cycles for no
107466 ** reason. So we run it once during initialization.
107468 #ifndef NDEBUG
107469 #ifndef SQLITE_OMIT_FLOATING_POINT
107470 /* This section of code's only "output" is via assert() statements. */
107471 if ( rc==SQLITE_OK ){
107472 u64 x = (((u64)1)<<63)-1;
107473 double y;
107474 assert(sizeof(x)==8);
107475 assert(sizeof(x)==sizeof(y));
107476 memcpy(&y, &x, 8);
107477 assert( sqlite3IsNaN(y) );
107479 #endif
107480 #endif
107482 return rc;
107486 ** Undo the effects of sqlite3_initialize(). Must not be called while
107487 ** there are outstanding database connections or memory allocations or
107488 ** while any part of SQLite is otherwise in use in any thread. This
107489 ** routine is not threadsafe. But it is safe to invoke this routine
107490 ** on when SQLite is already shut down. If SQLite is already shut down
107491 ** when this routine is invoked, then this routine is a harmless no-op.
107493 SQLITE_API int sqlite3_shutdown(void){
107494 if( sqlite3GlobalConfig.isInit ){
107495 sqlite3_os_end();
107496 sqlite3_reset_auto_extension();
107497 sqlite3GlobalConfig.isInit = 0;
107499 if( sqlite3GlobalConfig.isPCacheInit ){
107500 sqlite3PcacheShutdown();
107501 sqlite3GlobalConfig.isPCacheInit = 0;
107503 if( sqlite3GlobalConfig.isMallocInit ){
107504 sqlite3MallocEnd();
107505 sqlite3GlobalConfig.isMallocInit = 0;
107507 if( sqlite3GlobalConfig.isMutexInit ){
107508 sqlite3MutexEnd();
107509 sqlite3GlobalConfig.isMutexInit = 0;
107512 return SQLITE_OK;
107516 ** This API allows applications to modify the global configuration of
107517 ** the SQLite library at run-time.
107519 ** This routine should only be called when there are no outstanding
107520 ** database connections or memory allocations. This routine is not
107521 ** threadsafe. Failure to heed these warnings can lead to unpredictable
107522 ** behavior.
107524 SQLITE_API int sqlite3_config(int op, ...){
107525 va_list ap;
107526 int rc = SQLITE_OK;
107528 /* sqlite3_config() shall return SQLITE_MISUSE if it is invoked while
107529 ** the SQLite library is in use. */
107530 if( sqlite3GlobalConfig.isInit ) return SQLITE_MISUSE_BKPT;
107532 va_start(ap, op);
107533 switch( op ){
107535 /* Mutex configuration options are only available in a threadsafe
107536 ** compile.
107538 #if defined(SQLITE_THREADSAFE) && SQLITE_THREADSAFE>0
107539 case SQLITE_CONFIG_SINGLETHREAD: {
107540 /* Disable all mutexing */
107541 sqlite3GlobalConfig.bCoreMutex = 0;
107542 sqlite3GlobalConfig.bFullMutex = 0;
107543 break;
107545 case SQLITE_CONFIG_MULTITHREAD: {
107546 /* Disable mutexing of database connections */
107547 /* Enable mutexing of core data structures */
107548 sqlite3GlobalConfig.bCoreMutex = 1;
107549 sqlite3GlobalConfig.bFullMutex = 0;
107550 break;
107552 case SQLITE_CONFIG_SERIALIZED: {
107553 /* Enable all mutexing */
107554 sqlite3GlobalConfig.bCoreMutex = 1;
107555 sqlite3GlobalConfig.bFullMutex = 1;
107556 break;
107558 case SQLITE_CONFIG_MUTEX: {
107559 /* Specify an alternative mutex implementation */
107560 sqlite3GlobalConfig.mutex = *va_arg(ap, sqlite3_mutex_methods*);
107561 break;
107563 case SQLITE_CONFIG_GETMUTEX: {
107564 /* Retrieve the current mutex implementation */
107565 *va_arg(ap, sqlite3_mutex_methods*) = sqlite3GlobalConfig.mutex;
107566 break;
107568 #endif
107571 case SQLITE_CONFIG_MALLOC: {
107572 /* Specify an alternative malloc implementation */
107573 sqlite3GlobalConfig.m = *va_arg(ap, sqlite3_mem_methods*);
107574 break;
107576 case SQLITE_CONFIG_GETMALLOC: {
107577 /* Retrieve the current malloc() implementation */
107578 if( sqlite3GlobalConfig.m.xMalloc==0 ) sqlite3MemSetDefault();
107579 *va_arg(ap, sqlite3_mem_methods*) = sqlite3GlobalConfig.m;
107580 break;
107582 case SQLITE_CONFIG_MEMSTATUS: {
107583 /* Enable or disable the malloc status collection */
107584 sqlite3GlobalConfig.bMemstat = va_arg(ap, int);
107585 break;
107587 case SQLITE_CONFIG_SCRATCH: {
107588 /* Designate a buffer for scratch memory space */
107589 sqlite3GlobalConfig.pScratch = va_arg(ap, void*);
107590 sqlite3GlobalConfig.szScratch = va_arg(ap, int);
107591 sqlite3GlobalConfig.nScratch = va_arg(ap, int);
107592 break;
107594 case SQLITE_CONFIG_PAGECACHE: {
107595 /* Designate a buffer for page cache memory space */
107596 sqlite3GlobalConfig.pPage = va_arg(ap, void*);
107597 sqlite3GlobalConfig.szPage = va_arg(ap, int);
107598 sqlite3GlobalConfig.nPage = va_arg(ap, int);
107599 break;
107602 case SQLITE_CONFIG_PCACHE: {
107603 /* Specify an alternative page cache implementation */
107604 sqlite3GlobalConfig.pcache = *va_arg(ap, sqlite3_pcache_methods*);
107605 break;
107608 case SQLITE_CONFIG_GETPCACHE: {
107609 if( sqlite3GlobalConfig.pcache.xInit==0 ){
107610 sqlite3PCacheSetDefault();
107612 *va_arg(ap, sqlite3_pcache_methods*) = sqlite3GlobalConfig.pcache;
107613 break;
107616 #if defined(SQLITE_ENABLE_MEMSYS3) || defined(SQLITE_ENABLE_MEMSYS5)
107617 case SQLITE_CONFIG_HEAP: {
107618 /* Designate a buffer for heap memory space */
107619 sqlite3GlobalConfig.pHeap = va_arg(ap, void*);
107620 sqlite3GlobalConfig.nHeap = va_arg(ap, int);
107621 sqlite3GlobalConfig.mnReq = va_arg(ap, int);
107623 if( sqlite3GlobalConfig.mnReq<1 ){
107624 sqlite3GlobalConfig.mnReq = 1;
107625 }else if( sqlite3GlobalConfig.mnReq>(1<<12) ){
107626 /* cap min request size at 2^12 */
107627 sqlite3GlobalConfig.mnReq = (1<<12);
107630 if( sqlite3GlobalConfig.pHeap==0 ){
107631 /* If the heap pointer is NULL, then restore the malloc implementation
107632 ** back to NULL pointers too. This will cause the malloc to go
107633 ** back to its default implementation when sqlite3_initialize() is
107634 ** run.
107636 memset(&sqlite3GlobalConfig.m, 0, sizeof(sqlite3GlobalConfig.m));
107637 }else{
107638 /* The heap pointer is not NULL, then install one of the
107639 ** mem5.c/mem3.c methods. If neither ENABLE_MEMSYS3 nor
107640 ** ENABLE_MEMSYS5 is defined, return an error.
107642 #ifdef SQLITE_ENABLE_MEMSYS3
107643 sqlite3GlobalConfig.m = *sqlite3MemGetMemsys3();
107644 #endif
107645 #ifdef SQLITE_ENABLE_MEMSYS5
107646 sqlite3GlobalConfig.m = *sqlite3MemGetMemsys5();
107647 #endif
107649 break;
107651 #endif
107653 case SQLITE_CONFIG_LOOKASIDE: {
107654 sqlite3GlobalConfig.szLookaside = va_arg(ap, int);
107655 sqlite3GlobalConfig.nLookaside = va_arg(ap, int);
107656 break;
107659 /* Record a pointer to the logger funcction and its first argument.
107660 ** The default is NULL. Logging is disabled if the function pointer is
107661 ** NULL.
107663 case SQLITE_CONFIG_LOG: {
107664 /* MSVC is picky about pulling func ptrs from va lists.
107665 ** http://support.microsoft.com/kb/47961
107666 ** sqlite3GlobalConfig.xLog = va_arg(ap, void(*)(void*,int,const char*));
107668 typedef void(*LOGFUNC_t)(void*,int,const char*);
107669 sqlite3GlobalConfig.xLog = va_arg(ap, LOGFUNC_t);
107670 sqlite3GlobalConfig.pLogArg = va_arg(ap, void*);
107671 break;
107674 default: {
107675 rc = SQLITE_ERROR;
107676 break;
107679 va_end(ap);
107680 return rc;
107684 ** Set up the lookaside buffers for a database connection.
107685 ** Return SQLITE_OK on success.
107686 ** If lookaside is already active, return SQLITE_BUSY.
107688 ** The sz parameter is the number of bytes in each lookaside slot.
107689 ** The cnt parameter is the number of slots. If pStart is NULL the
107690 ** space for the lookaside memory is obtained from sqlite3_malloc().
107691 ** If pStart is not NULL then it is sz*cnt bytes of memory to use for
107692 ** the lookaside memory.
107694 static int setupLookaside(sqlite3 *db, void *pBuf, int sz, int cnt){
107695 void *pStart;
107696 if( db->lookaside.nOut ){
107697 return SQLITE_BUSY;
107699 /* Free any existing lookaside buffer for this handle before
107700 ** allocating a new one so we don't have to have space for
107701 ** both at the same time.
107703 if( db->lookaside.bMalloced ){
107704 sqlite3_free(db->lookaside.pStart);
107706 /* The size of a lookaside slot needs to be larger than a pointer
107707 ** to be useful.
107709 if( sz<=(int)sizeof(LookasideSlot*) ) sz = 0;
107710 if( cnt<0 ) cnt = 0;
107711 if( sz==0 || cnt==0 ){
107712 sz = 0;
107713 pStart = 0;
107714 }else if( pBuf==0 ){
107715 sz = ROUNDDOWN8(sz); /* IMP: R-33038-09382 */
107716 sqlite3BeginBenignMalloc();
107717 pStart = sqlite3Malloc( sz*cnt ); /* IMP: R-61949-35727 */
107718 sqlite3EndBenignMalloc();
107719 }else{
107720 sz = ROUNDDOWN8(sz); /* IMP: R-33038-09382 */
107721 pStart = pBuf;
107723 db->lookaside.pStart = pStart;
107724 db->lookaside.pFree = 0;
107725 db->lookaside.sz = (u16)sz;
107726 if( pStart ){
107727 int i;
107728 LookasideSlot *p;
107729 assert( sz > (int)sizeof(LookasideSlot*) );
107730 p = (LookasideSlot*)pStart;
107731 for(i=cnt-1; i>=0; i--){
107732 p->pNext = db->lookaside.pFree;
107733 db->lookaside.pFree = p;
107734 p = (LookasideSlot*)&((u8*)p)[sz];
107736 db->lookaside.pEnd = p;
107737 db->lookaside.bEnabled = 1;
107738 db->lookaside.bMalloced = pBuf==0 ?1:0;
107739 }else{
107740 db->lookaside.pEnd = 0;
107741 db->lookaside.bEnabled = 0;
107742 db->lookaside.bMalloced = 0;
107744 return SQLITE_OK;
107748 ** Return the mutex associated with a database connection.
107750 SQLITE_API sqlite3_mutex *sqlite3_db_mutex(sqlite3 *db){
107751 return db->mutex;
107755 ** Configuration settings for an individual database connection
107757 SQLITE_API int sqlite3_db_config(sqlite3 *db, int op, ...){
107758 va_list ap;
107759 int rc;
107760 va_start(ap, op);
107761 switch( op ){
107762 case SQLITE_DBCONFIG_LOOKASIDE: {
107763 void *pBuf = va_arg(ap, void*); /* IMP: R-26835-10964 */
107764 int sz = va_arg(ap, int); /* IMP: R-47871-25994 */
107765 int cnt = va_arg(ap, int); /* IMP: R-04460-53386 */
107766 rc = setupLookaside(db, pBuf, sz, cnt);
107767 break;
107769 default: {
107770 static const struct {
107771 int op; /* The opcode */
107772 u32 mask; /* Mask of the bit in sqlite3.flags to set/clear */
107773 } aFlagOp[] = {
107774 { SQLITE_DBCONFIG_ENABLE_FKEY, SQLITE_ForeignKeys },
107775 { SQLITE_DBCONFIG_ENABLE_TRIGGER, SQLITE_EnableTrigger },
107777 unsigned int i;
107778 rc = SQLITE_ERROR; /* IMP: R-42790-23372 */
107779 for(i=0; i<ArraySize(aFlagOp); i++){
107780 if( aFlagOp[i].op==op ){
107781 int onoff = va_arg(ap, int);
107782 int *pRes = va_arg(ap, int*);
107783 int oldFlags = db->flags;
107784 if( onoff>0 ){
107785 db->flags |= aFlagOp[i].mask;
107786 }else if( onoff==0 ){
107787 db->flags &= ~aFlagOp[i].mask;
107789 if( oldFlags!=db->flags ){
107790 sqlite3ExpirePreparedStatements(db);
107792 if( pRes ){
107793 *pRes = (db->flags & aFlagOp[i].mask)!=0;
107795 rc = SQLITE_OK;
107796 break;
107799 break;
107802 va_end(ap);
107803 return rc;
107808 ** Return true if the buffer z[0..n-1] contains all spaces.
107810 static int allSpaces(const char *z, int n){
107811 while( n>0 && z[n-1]==' ' ){ n--; }
107812 return n==0;
107816 ** This is the default collating function named "BINARY" which is always
107817 ** available.
107819 ** If the padFlag argument is not NULL then space padding at the end
107820 ** of strings is ignored. This implements the RTRIM collation.
107822 static int binCollFunc(
107823 void *padFlag,
107824 int nKey1, const void *pKey1,
107825 int nKey2, const void *pKey2
107827 int rc, n;
107828 n = nKey1<nKey2 ? nKey1 : nKey2;
107829 rc = memcmp(pKey1, pKey2, n);
107830 if( rc==0 ){
107831 if( padFlag
107832 && allSpaces(((char*)pKey1)+n, nKey1-n)
107833 && allSpaces(((char*)pKey2)+n, nKey2-n)
107835 /* Leave rc unchanged at 0 */
107836 }else{
107837 rc = nKey1 - nKey2;
107840 return rc;
107844 ** Another built-in collating sequence: NOCASE.
107846 ** This collating sequence is intended to be used for "case independant
107847 ** comparison". SQLite's knowledge of upper and lower case equivalents
107848 ** extends only to the 26 characters used in the English language.
107850 ** At the moment there is only a UTF-8 implementation.
107852 static int nocaseCollatingFunc(
107853 void *NotUsed,
107854 int nKey1, const void *pKey1,
107855 int nKey2, const void *pKey2
107857 int r = sqlite3StrNICmp(
107858 (const char *)pKey1, (const char *)pKey2, (nKey1<nKey2)?nKey1:nKey2);
107859 UNUSED_PARAMETER(NotUsed);
107860 if( 0==r ){
107861 r = nKey1-nKey2;
107863 return r;
107867 ** Return the ROWID of the most recent insert
107869 SQLITE_API sqlite_int64 sqlite3_last_insert_rowid(sqlite3 *db){
107870 return db->lastRowid;
107874 ** Return the number of changes in the most recent call to sqlite3_exec().
107876 SQLITE_API int sqlite3_changes(sqlite3 *db){
107877 return db->nChange;
107881 ** Return the number of changes since the database handle was opened.
107883 SQLITE_API int sqlite3_total_changes(sqlite3 *db){
107884 return db->nTotalChange;
107888 ** Close all open savepoints. This function only manipulates fields of the
107889 ** database handle object, it does not close any savepoints that may be open
107890 ** at the b-tree/pager level.
107892 SQLITE_PRIVATE void sqlite3CloseSavepoints(sqlite3 *db){
107893 while( db->pSavepoint ){
107894 Savepoint *pTmp = db->pSavepoint;
107895 db->pSavepoint = pTmp->pNext;
107896 sqlite3DbFree(db, pTmp);
107898 db->nSavepoint = 0;
107899 db->nStatement = 0;
107900 db->isTransactionSavepoint = 0;
107904 ** Invoke the destructor function associated with FuncDef p, if any. Except,
107905 ** if this is not the last copy of the function, do not invoke it. Multiple
107906 ** copies of a single function are created when create_function() is called
107907 ** with SQLITE_ANY as the encoding.
107909 static void functionDestroy(sqlite3 *db, FuncDef *p){
107910 FuncDestructor *pDestructor = p->pDestructor;
107911 if( pDestructor ){
107912 pDestructor->nRef--;
107913 if( pDestructor->nRef==0 ){
107914 pDestructor->xDestroy(pDestructor->pUserData);
107915 sqlite3DbFree(db, pDestructor);
107921 ** Close an existing SQLite database
107923 SQLITE_API int sqlite3_close(sqlite3 *db){
107924 HashElem *i; /* Hash table iterator */
107925 int j;
107927 if( !db ){
107928 return SQLITE_OK;
107930 if( !sqlite3SafetyCheckSickOrOk(db) ){
107931 return SQLITE_MISUSE_BKPT;
107933 sqlite3_mutex_enter(db->mutex);
107935 /* Force xDestroy calls on all virtual tables */
107936 sqlite3ResetInternalSchema(db, -1);
107938 /* If a transaction is open, the ResetInternalSchema() call above
107939 ** will not have called the xDisconnect() method on any virtual
107940 ** tables in the db->aVTrans[] array. The following sqlite3VtabRollback()
107941 ** call will do so. We need to do this before the check for active
107942 ** SQL statements below, as the v-table implementation may be storing
107943 ** some prepared statements internally.
107945 sqlite3VtabRollback(db);
107947 /* If there are any outstanding VMs, return SQLITE_BUSY. */
107948 if( db->pVdbe ){
107949 sqlite3Error(db, SQLITE_BUSY,
107950 "unable to close due to unfinalised statements");
107951 sqlite3_mutex_leave(db->mutex);
107952 return SQLITE_BUSY;
107954 assert( sqlite3SafetyCheckSickOrOk(db) );
107956 for(j=0; j<db->nDb; j++){
107957 Btree *pBt = db->aDb[j].pBt;
107958 if( pBt && sqlite3BtreeIsInBackup(pBt) ){
107959 sqlite3Error(db, SQLITE_BUSY,
107960 "unable to close due to unfinished backup operation");
107961 sqlite3_mutex_leave(db->mutex);
107962 return SQLITE_BUSY;
107966 /* Free any outstanding Savepoint structures. */
107967 sqlite3CloseSavepoints(db);
107969 for(j=0; j<db->nDb; j++){
107970 struct Db *pDb = &db->aDb[j];
107971 if( pDb->pBt ){
107972 sqlite3BtreeClose(pDb->pBt);
107973 pDb->pBt = 0;
107974 if( j!=1 ){
107975 pDb->pSchema = 0;
107979 sqlite3ResetInternalSchema(db, -1);
107981 /* Tell the code in notify.c that the connection no longer holds any
107982 ** locks and does not require any further unlock-notify callbacks.
107984 sqlite3ConnectionClosed(db);
107986 assert( db->nDb<=2 );
107987 assert( db->aDb==db->aDbStatic );
107988 for(j=0; j<ArraySize(db->aFunc.a); j++){
107989 FuncDef *pNext, *pHash, *p;
107990 for(p=db->aFunc.a[j]; p; p=pHash){
107991 pHash = p->pHash;
107992 while( p ){
107993 functionDestroy(db, p);
107994 pNext = p->pNext;
107995 sqlite3DbFree(db, p);
107996 p = pNext;
108000 for(i=sqliteHashFirst(&db->aCollSeq); i; i=sqliteHashNext(i)){
108001 CollSeq *pColl = (CollSeq *)sqliteHashData(i);
108002 /* Invoke any destructors registered for collation sequence user data. */
108003 for(j=0; j<3; j++){
108004 if( pColl[j].xDel ){
108005 pColl[j].xDel(pColl[j].pUser);
108008 sqlite3DbFree(db, pColl);
108010 sqlite3HashClear(&db->aCollSeq);
108011 #ifndef SQLITE_OMIT_VIRTUALTABLE
108012 for(i=sqliteHashFirst(&db->aModule); i; i=sqliteHashNext(i)){
108013 Module *pMod = (Module *)sqliteHashData(i);
108014 if( pMod->xDestroy ){
108015 pMod->xDestroy(pMod->pAux);
108017 sqlite3DbFree(db, pMod);
108019 sqlite3HashClear(&db->aModule);
108020 #endif
108022 sqlite3Error(db, SQLITE_OK, 0); /* Deallocates any cached error strings. */
108023 if( db->pErr ){
108024 sqlite3ValueFree(db->pErr);
108026 sqlite3CloseExtensions(db);
108028 db->magic = SQLITE_MAGIC_ERROR;
108030 /* The temp-database schema is allocated differently from the other schema
108031 ** objects (using sqliteMalloc() directly, instead of sqlite3BtreeSchema()).
108032 ** So it needs to be freed here. Todo: Why not roll the temp schema into
108033 ** the same sqliteMalloc() as the one that allocates the database
108034 ** structure?
108036 sqlite3DbFree(db, db->aDb[1].pSchema);
108037 sqlite3_mutex_leave(db->mutex);
108038 db->magic = SQLITE_MAGIC_CLOSED;
108039 sqlite3_mutex_free(db->mutex);
108040 assert( db->lookaside.nOut==0 ); /* Fails on a lookaside memory leak */
108041 if( db->lookaside.bMalloced ){
108042 sqlite3_free(db->lookaside.pStart);
108044 sqlite3_free(db);
108045 return SQLITE_OK;
108049 ** Rollback all database files.
108051 SQLITE_PRIVATE void sqlite3RollbackAll(sqlite3 *db){
108052 int i;
108053 int inTrans = 0;
108054 assert( sqlite3_mutex_held(db->mutex) );
108055 sqlite3BeginBenignMalloc();
108056 for(i=0; i<db->nDb; i++){
108057 if( db->aDb[i].pBt ){
108058 if( sqlite3BtreeIsInTrans(db->aDb[i].pBt) ){
108059 inTrans = 1;
108061 sqlite3BtreeRollback(db->aDb[i].pBt);
108062 db->aDb[i].inTrans = 0;
108065 sqlite3VtabRollback(db);
108066 sqlite3EndBenignMalloc();
108068 if( db->flags&SQLITE_InternChanges ){
108069 sqlite3ExpirePreparedStatements(db);
108070 sqlite3ResetInternalSchema(db, -1);
108073 /* Any deferred constraint violations have now been resolved. */
108074 db->nDeferredCons = 0;
108076 /* If one has been configured, invoke the rollback-hook callback */
108077 if( db->xRollbackCallback && (inTrans || !db->autoCommit) ){
108078 db->xRollbackCallback(db->pRollbackArg);
108083 ** Return a static string that describes the kind of error specified in the
108084 ** argument.
108086 SQLITE_PRIVATE const char *sqlite3ErrStr(int rc){
108087 static const char* const aMsg[] = {
108088 /* SQLITE_OK */ "not an error",
108089 /* SQLITE_ERROR */ "SQL logic error or missing database",
108090 /* SQLITE_INTERNAL */ 0,
108091 /* SQLITE_PERM */ "access permission denied",
108092 /* SQLITE_ABORT */ "callback requested query abort",
108093 /* SQLITE_BUSY */ "database is locked",
108094 /* SQLITE_LOCKED */ "database table is locked",
108095 /* SQLITE_NOMEM */ "out of memory",
108096 /* SQLITE_READONLY */ "attempt to write a readonly database",
108097 /* SQLITE_INTERRUPT */ "interrupted",
108098 /* SQLITE_IOERR */ "disk I/O error",
108099 /* SQLITE_CORRUPT */ "database disk image is malformed",
108100 /* SQLITE_NOTFOUND */ "unknown operation",
108101 /* SQLITE_FULL */ "database or disk is full",
108102 /* SQLITE_CANTOPEN */ "unable to open database file",
108103 /* SQLITE_PROTOCOL */ "locking protocol",
108104 /* SQLITE_EMPTY */ "table contains no data",
108105 /* SQLITE_SCHEMA */ "database schema has changed",
108106 /* SQLITE_TOOBIG */ "string or blob too big",
108107 /* SQLITE_CONSTRAINT */ "constraint failed",
108108 /* SQLITE_MISMATCH */ "datatype mismatch",
108109 /* SQLITE_MISUSE */ "library routine called out of sequence",
108110 /* SQLITE_NOLFS */ "large file support is disabled",
108111 /* SQLITE_AUTH */ "authorization denied",
108112 /* SQLITE_FORMAT */ "auxiliary database format error",
108113 /* SQLITE_RANGE */ "bind or column index out of range",
108114 /* SQLITE_NOTADB */ "file is encrypted or is not a database",
108116 rc &= 0xff;
108117 if( ALWAYS(rc>=0) && rc<(int)(sizeof(aMsg)/sizeof(aMsg[0])) && aMsg[rc]!=0 ){
108118 return aMsg[rc];
108119 }else{
108120 return "unknown error";
108125 ** This routine implements a busy callback that sleeps and tries
108126 ** again until a timeout value is reached. The timeout value is
108127 ** an integer number of milliseconds passed in as the first
108128 ** argument.
108130 static int sqliteDefaultBusyCallback(
108131 void *ptr, /* Database connection */
108132 int count /* Number of times table has been busy */
108134 #if SQLITE_OS_WIN || (defined(HAVE_USLEEP) && HAVE_USLEEP)
108135 static const u8 delays[] =
108136 { 1, 2, 5, 10, 15, 20, 25, 25, 25, 50, 50, 100 };
108137 static const u8 totals[] =
108138 { 0, 1, 3, 8, 18, 33, 53, 78, 103, 128, 178, 228 };
108139 # define NDELAY ArraySize(delays)
108140 sqlite3 *db = (sqlite3 *)ptr;
108141 int timeout = db->busyTimeout;
108142 int delay, prior;
108144 assert( count>=0 );
108145 if( count < NDELAY ){
108146 delay = delays[count];
108147 prior = totals[count];
108148 }else{
108149 delay = delays[NDELAY-1];
108150 prior = totals[NDELAY-1] + delay*(count-(NDELAY-1));
108152 if( prior + delay > timeout ){
108153 delay = timeout - prior;
108154 if( delay<=0 ) return 0;
108156 sqlite3OsSleep(db->pVfs, delay*1000);
108157 return 1;
108158 #else
108159 sqlite3 *db = (sqlite3 *)ptr;
108160 int timeout = ((sqlite3 *)ptr)->busyTimeout;
108161 if( (count+1)*1000 > timeout ){
108162 return 0;
108164 sqlite3OsSleep(db->pVfs, 1000000);
108165 return 1;
108166 #endif
108170 ** Invoke the given busy handler.
108172 ** This routine is called when an operation failed with a lock.
108173 ** If this routine returns non-zero, the lock is retried. If it
108174 ** returns 0, the operation aborts with an SQLITE_BUSY error.
108176 SQLITE_PRIVATE int sqlite3InvokeBusyHandler(BusyHandler *p){
108177 int rc;
108178 if( NEVER(p==0) || p->xFunc==0 || p->nBusy<0 ) return 0;
108179 rc = p->xFunc(p->pArg, p->nBusy);
108180 if( rc==0 ){
108181 p->nBusy = -1;
108182 }else{
108183 p->nBusy++;
108185 return rc;
108189 ** This routine sets the busy callback for an Sqlite database to the
108190 ** given callback function with the given argument.
108192 SQLITE_API int sqlite3_busy_handler(
108193 sqlite3 *db,
108194 int (*xBusy)(void*,int),
108195 void *pArg
108197 sqlite3_mutex_enter(db->mutex);
108198 db->busyHandler.xFunc = xBusy;
108199 db->busyHandler.pArg = pArg;
108200 db->busyHandler.nBusy = 0;
108201 sqlite3_mutex_leave(db->mutex);
108202 return SQLITE_OK;
108205 #ifndef SQLITE_OMIT_PROGRESS_CALLBACK
108207 ** This routine sets the progress callback for an Sqlite database to the
108208 ** given callback function with the given argument. The progress callback will
108209 ** be invoked every nOps opcodes.
108211 SQLITE_API void sqlite3_progress_handler(
108212 sqlite3 *db,
108213 int nOps,
108214 int (*xProgress)(void*),
108215 void *pArg
108217 sqlite3_mutex_enter(db->mutex);
108218 if( nOps>0 ){
108219 db->xProgress = xProgress;
108220 db->nProgressOps = nOps;
108221 db->pProgressArg = pArg;
108222 }else{
108223 db->xProgress = 0;
108224 db->nProgressOps = 0;
108225 db->pProgressArg = 0;
108227 sqlite3_mutex_leave(db->mutex);
108229 #endif
108233 ** This routine installs a default busy handler that waits for the
108234 ** specified number of milliseconds before returning 0.
108236 SQLITE_API int sqlite3_busy_timeout(sqlite3 *db, int ms){
108237 if( ms>0 ){
108238 db->busyTimeout = ms;
108239 sqlite3_busy_handler(db, sqliteDefaultBusyCallback, (void*)db);
108240 }else{
108241 sqlite3_busy_handler(db, 0, 0);
108243 return SQLITE_OK;
108247 ** Cause any pending operation to stop at its earliest opportunity.
108249 SQLITE_API void sqlite3_interrupt(sqlite3 *db){
108250 db->u1.isInterrupted = 1;
108255 ** This function is exactly the same as sqlite3_create_function(), except
108256 ** that it is designed to be called by internal code. The difference is
108257 ** that if a malloc() fails in sqlite3_create_function(), an error code
108258 ** is returned and the mallocFailed flag cleared.
108260 SQLITE_PRIVATE int sqlite3CreateFunc(
108261 sqlite3 *db,
108262 const char *zFunctionName,
108263 int nArg,
108264 int enc,
108265 void *pUserData,
108266 void (*xFunc)(sqlite3_context*,int,sqlite3_value **),
108267 void (*xStep)(sqlite3_context*,int,sqlite3_value **),
108268 void (*xFinal)(sqlite3_context*),
108269 FuncDestructor *pDestructor
108271 FuncDef *p;
108272 int nName;
108274 assert( sqlite3_mutex_held(db->mutex) );
108275 if( zFunctionName==0 ||
108276 (xFunc && (xFinal || xStep)) ||
108277 (!xFunc && (xFinal && !xStep)) ||
108278 (!xFunc && (!xFinal && xStep)) ||
108279 (nArg<-1 || nArg>SQLITE_MAX_FUNCTION_ARG) ||
108280 (255<(nName = sqlite3Strlen30( zFunctionName))) ){
108281 return SQLITE_MISUSE_BKPT;
108284 #ifndef SQLITE_OMIT_UTF16
108285 /* If SQLITE_UTF16 is specified as the encoding type, transform this
108286 ** to one of SQLITE_UTF16LE or SQLITE_UTF16BE using the
108287 ** SQLITE_UTF16NATIVE macro. SQLITE_UTF16 is not used internally.
108289 ** If SQLITE_ANY is specified, add three versions of the function
108290 ** to the hash table.
108292 if( enc==SQLITE_UTF16 ){
108293 enc = SQLITE_UTF16NATIVE;
108294 }else if( enc==SQLITE_ANY ){
108295 int rc;
108296 rc = sqlite3CreateFunc(db, zFunctionName, nArg, SQLITE_UTF8,
108297 pUserData, xFunc, xStep, xFinal, pDestructor);
108298 if( rc==SQLITE_OK ){
108299 rc = sqlite3CreateFunc(db, zFunctionName, nArg, SQLITE_UTF16LE,
108300 pUserData, xFunc, xStep, xFinal, pDestructor);
108302 if( rc!=SQLITE_OK ){
108303 return rc;
108305 enc = SQLITE_UTF16BE;
108307 #else
108308 enc = SQLITE_UTF8;
108309 #endif
108311 /* Check if an existing function is being overridden or deleted. If so,
108312 ** and there are active VMs, then return SQLITE_BUSY. If a function
108313 ** is being overridden/deleted but there are no active VMs, allow the
108314 ** operation to continue but invalidate all precompiled statements.
108316 p = sqlite3FindFunction(db, zFunctionName, nName, nArg, (u8)enc, 0);
108317 if( p && p->iPrefEnc==enc && p->nArg==nArg ){
108318 if( db->activeVdbeCnt ){
108319 sqlite3Error(db, SQLITE_BUSY,
108320 "unable to delete/modify user-function due to active statements");
108321 assert( !db->mallocFailed );
108322 return SQLITE_BUSY;
108323 }else{
108324 sqlite3ExpirePreparedStatements(db);
108328 p = sqlite3FindFunction(db, zFunctionName, nName, nArg, (u8)enc, 1);
108329 assert(p || db->mallocFailed);
108330 if( !p ){
108331 return SQLITE_NOMEM;
108334 /* If an older version of the function with a configured destructor is
108335 ** being replaced invoke the destructor function here. */
108336 functionDestroy(db, p);
108338 if( pDestructor ){
108339 pDestructor->nRef++;
108341 p->pDestructor = pDestructor;
108342 p->flags = 0;
108343 p->xFunc = xFunc;
108344 p->xStep = xStep;
108345 p->xFinalize = xFinal;
108346 p->pUserData = pUserData;
108347 p->nArg = (u16)nArg;
108348 return SQLITE_OK;
108352 ** Create new user functions.
108354 SQLITE_API int sqlite3_create_function(
108355 sqlite3 *db,
108356 const char *zFunc,
108357 int nArg,
108358 int enc,
108359 void *p,
108360 void (*xFunc)(sqlite3_context*,int,sqlite3_value **),
108361 void (*xStep)(sqlite3_context*,int,sqlite3_value **),
108362 void (*xFinal)(sqlite3_context*)
108364 return sqlite3_create_function_v2(db, zFunc, nArg, enc, p, xFunc, xStep,
108365 xFinal, 0);
108368 SQLITE_API int sqlite3_create_function_v2(
108369 sqlite3 *db,
108370 const char *zFunc,
108371 int nArg,
108372 int enc,
108373 void *p,
108374 void (*xFunc)(sqlite3_context*,int,sqlite3_value **),
108375 void (*xStep)(sqlite3_context*,int,sqlite3_value **),
108376 void (*xFinal)(sqlite3_context*),
108377 void (*xDestroy)(void *)
108379 int rc = SQLITE_ERROR;
108380 FuncDestructor *pArg = 0;
108381 sqlite3_mutex_enter(db->mutex);
108382 if( xDestroy ){
108383 pArg = (FuncDestructor *)sqlite3DbMallocZero(db, sizeof(FuncDestructor));
108384 if( !pArg ){
108385 xDestroy(p);
108386 goto out;
108388 pArg->xDestroy = xDestroy;
108389 pArg->pUserData = p;
108391 rc = sqlite3CreateFunc(db, zFunc, nArg, enc, p, xFunc, xStep, xFinal, pArg);
108392 if( pArg && pArg->nRef==0 ){
108393 assert( rc!=SQLITE_OK );
108394 xDestroy(p);
108395 sqlite3DbFree(db, pArg);
108399 rc = sqlite3ApiExit(db, rc);
108400 sqlite3_mutex_leave(db->mutex);
108401 return rc;
108404 #ifndef SQLITE_OMIT_UTF16
108405 SQLITE_API int sqlite3_create_function16(
108406 sqlite3 *db,
108407 const void *zFunctionName,
108408 int nArg,
108409 int eTextRep,
108410 void *p,
108411 void (*xFunc)(sqlite3_context*,int,sqlite3_value**),
108412 void (*xStep)(sqlite3_context*,int,sqlite3_value**),
108413 void (*xFinal)(sqlite3_context*)
108415 int rc;
108416 char *zFunc8;
108417 sqlite3_mutex_enter(db->mutex);
108418 assert( !db->mallocFailed );
108419 zFunc8 = sqlite3Utf16to8(db, zFunctionName, -1, SQLITE_UTF16NATIVE);
108420 rc = sqlite3CreateFunc(db, zFunc8, nArg, eTextRep, p, xFunc, xStep, xFinal,0);
108421 sqlite3DbFree(db, zFunc8);
108422 rc = sqlite3ApiExit(db, rc);
108423 sqlite3_mutex_leave(db->mutex);
108424 return rc;
108426 #endif
108430 ** Declare that a function has been overloaded by a virtual table.
108432 ** If the function already exists as a regular global function, then
108433 ** this routine is a no-op. If the function does not exist, then create
108434 ** a new one that always throws a run-time error.
108436 ** When virtual tables intend to provide an overloaded function, they
108437 ** should call this routine to make sure the global function exists.
108438 ** A global function must exist in order for name resolution to work
108439 ** properly.
108441 SQLITE_API int sqlite3_overload_function(
108442 sqlite3 *db,
108443 const char *zName,
108444 int nArg
108446 int nName = sqlite3Strlen30(zName);
108447 int rc;
108448 sqlite3_mutex_enter(db->mutex);
108449 if( sqlite3FindFunction(db, zName, nName, nArg, SQLITE_UTF8, 0)==0 ){
108450 sqlite3CreateFunc(db, zName, nArg, SQLITE_UTF8,
108451 0, sqlite3InvalidFunction, 0, 0, 0);
108453 rc = sqlite3ApiExit(db, SQLITE_OK);
108454 sqlite3_mutex_leave(db->mutex);
108455 return rc;
108458 #ifndef SQLITE_OMIT_TRACE
108460 ** Register a trace function. The pArg from the previously registered trace
108461 ** is returned.
108463 ** A NULL trace function means that no tracing is executes. A non-NULL
108464 ** trace is a pointer to a function that is invoked at the start of each
108465 ** SQL statement.
108467 SQLITE_API void *sqlite3_trace(sqlite3 *db, void (*xTrace)(void*,const char*), void *pArg){
108468 void *pOld;
108469 sqlite3_mutex_enter(db->mutex);
108470 pOld = db->pTraceArg;
108471 db->xTrace = xTrace;
108472 db->pTraceArg = pArg;
108473 sqlite3_mutex_leave(db->mutex);
108474 return pOld;
108477 ** Register a profile function. The pArg from the previously registered
108478 ** profile function is returned.
108480 ** A NULL profile function means that no profiling is executes. A non-NULL
108481 ** profile is a pointer to a function that is invoked at the conclusion of
108482 ** each SQL statement that is run.
108484 SQLITE_API void *sqlite3_profile(
108485 sqlite3 *db,
108486 void (*xProfile)(void*,const char*,sqlite_uint64),
108487 void *pArg
108489 void *pOld;
108490 sqlite3_mutex_enter(db->mutex);
108491 pOld = db->pProfileArg;
108492 db->xProfile = xProfile;
108493 db->pProfileArg = pArg;
108494 sqlite3_mutex_leave(db->mutex);
108495 return pOld;
108497 #endif /* SQLITE_OMIT_TRACE */
108499 /*** EXPERIMENTAL ***
108501 ** Register a function to be invoked when a transaction comments.
108502 ** If the invoked function returns non-zero, then the commit becomes a
108503 ** rollback.
108505 SQLITE_API void *sqlite3_commit_hook(
108506 sqlite3 *db, /* Attach the hook to this database */
108507 int (*xCallback)(void*), /* Function to invoke on each commit */
108508 void *pArg /* Argument to the function */
108510 void *pOld;
108511 sqlite3_mutex_enter(db->mutex);
108512 pOld = db->pCommitArg;
108513 db->xCommitCallback = xCallback;
108514 db->pCommitArg = pArg;
108515 sqlite3_mutex_leave(db->mutex);
108516 return pOld;
108520 ** Register a callback to be invoked each time a row is updated,
108521 ** inserted or deleted using this database connection.
108523 SQLITE_API void *sqlite3_update_hook(
108524 sqlite3 *db, /* Attach the hook to this database */
108525 void (*xCallback)(void*,int,char const *,char const *,sqlite_int64),
108526 void *pArg /* Argument to the function */
108528 void *pRet;
108529 sqlite3_mutex_enter(db->mutex);
108530 pRet = db->pUpdateArg;
108531 db->xUpdateCallback = xCallback;
108532 db->pUpdateArg = pArg;
108533 sqlite3_mutex_leave(db->mutex);
108534 return pRet;
108538 ** Register a callback to be invoked each time a transaction is rolled
108539 ** back by this database connection.
108541 SQLITE_API void *sqlite3_rollback_hook(
108542 sqlite3 *db, /* Attach the hook to this database */
108543 void (*xCallback)(void*), /* Callback function */
108544 void *pArg /* Argument to the function */
108546 void *pRet;
108547 sqlite3_mutex_enter(db->mutex);
108548 pRet = db->pRollbackArg;
108549 db->xRollbackCallback = xCallback;
108550 db->pRollbackArg = pArg;
108551 sqlite3_mutex_leave(db->mutex);
108552 return pRet;
108555 #ifndef SQLITE_OMIT_WAL
108557 ** The sqlite3_wal_hook() callback registered by sqlite3_wal_autocheckpoint().
108558 ** Invoke sqlite3_wal_checkpoint if the number of frames in the log file
108559 ** is greater than sqlite3.pWalArg cast to an integer (the value configured by
108560 ** wal_autocheckpoint()).
108562 SQLITE_PRIVATE int sqlite3WalDefaultHook(
108563 void *pClientData, /* Argument */
108564 sqlite3 *db, /* Connection */
108565 const char *zDb, /* Database */
108566 int nFrame /* Size of WAL */
108568 if( nFrame>=SQLITE_PTR_TO_INT(pClientData) ){
108569 sqlite3BeginBenignMalloc();
108570 sqlite3_wal_checkpoint(db, zDb);
108571 sqlite3EndBenignMalloc();
108573 return SQLITE_OK;
108575 #endif /* SQLITE_OMIT_WAL */
108578 ** Configure an sqlite3_wal_hook() callback to automatically checkpoint
108579 ** a database after committing a transaction if there are nFrame or
108580 ** more frames in the log file. Passing zero or a negative value as the
108581 ** nFrame parameter disables automatic checkpoints entirely.
108583 ** The callback registered by this function replaces any existing callback
108584 ** registered using sqlite3_wal_hook(). Likewise, registering a callback
108585 ** using sqlite3_wal_hook() disables the automatic checkpoint mechanism
108586 ** configured by this function.
108588 SQLITE_API int sqlite3_wal_autocheckpoint(sqlite3 *db, int nFrame){
108589 #ifdef SQLITE_OMIT_WAL
108590 UNUSED_PARAMETER(db);
108591 UNUSED_PARAMETER(nFrame);
108592 #else
108593 if( nFrame>0 ){
108594 sqlite3_wal_hook(db, sqlite3WalDefaultHook, SQLITE_INT_TO_PTR(nFrame));
108595 }else{
108596 sqlite3_wal_hook(db, 0, 0);
108598 #endif
108599 return SQLITE_OK;
108603 ** Register a callback to be invoked each time a transaction is written
108604 ** into the write-ahead-log by this database connection.
108606 SQLITE_API void *sqlite3_wal_hook(
108607 sqlite3 *db, /* Attach the hook to this db handle */
108608 int(*xCallback)(void *, sqlite3*, const char*, int),
108609 void *pArg /* First argument passed to xCallback() */
108611 #ifndef SQLITE_OMIT_WAL
108612 void *pRet;
108613 sqlite3_mutex_enter(db->mutex);
108614 pRet = db->pWalArg;
108615 db->xWalCallback = xCallback;
108616 db->pWalArg = pArg;
108617 sqlite3_mutex_leave(db->mutex);
108618 return pRet;
108619 #else
108620 return 0;
108621 #endif
108625 ** Checkpoint database zDb.
108627 SQLITE_API int sqlite3_wal_checkpoint_v2(
108628 sqlite3 *db, /* Database handle */
108629 const char *zDb, /* Name of attached database (or NULL) */
108630 int eMode, /* SQLITE_CHECKPOINT_* value */
108631 int *pnLog, /* OUT: Size of WAL log in frames */
108632 int *pnCkpt /* OUT: Total number of frames checkpointed */
108634 #ifdef SQLITE_OMIT_WAL
108635 return SQLITE_OK;
108636 #else
108637 int rc; /* Return code */
108638 int iDb = SQLITE_MAX_ATTACHED; /* sqlite3.aDb[] index of db to checkpoint */
108640 /* Initialize the output variables to -1 in case an error occurs. */
108641 if( pnLog ) *pnLog = -1;
108642 if( pnCkpt ) *pnCkpt = -1;
108644 assert( SQLITE_CHECKPOINT_FULL>SQLITE_CHECKPOINT_PASSIVE );
108645 assert( SQLITE_CHECKPOINT_FULL<SQLITE_CHECKPOINT_RESTART );
108646 assert( SQLITE_CHECKPOINT_PASSIVE+2==SQLITE_CHECKPOINT_RESTART );
108647 if( eMode<SQLITE_CHECKPOINT_PASSIVE || eMode>SQLITE_CHECKPOINT_RESTART ){
108648 return SQLITE_MISUSE;
108651 sqlite3_mutex_enter(db->mutex);
108652 if( zDb && zDb[0] ){
108653 iDb = sqlite3FindDbName(db, zDb);
108655 if( iDb<0 ){
108656 rc = SQLITE_ERROR;
108657 sqlite3Error(db, SQLITE_ERROR, "unknown database: %s", zDb);
108658 }else{
108659 rc = sqlite3Checkpoint(db, iDb, eMode, pnLog, pnCkpt);
108660 sqlite3Error(db, rc, 0);
108662 rc = sqlite3ApiExit(db, rc);
108663 sqlite3_mutex_leave(db->mutex);
108664 return rc;
108665 #endif
108670 ** Checkpoint database zDb. If zDb is NULL, or if the buffer zDb points
108671 ** to contains a zero-length string, all attached databases are
108672 ** checkpointed.
108674 SQLITE_API int sqlite3_wal_checkpoint(sqlite3 *db, const char *zDb){
108675 return sqlite3_wal_checkpoint_v2(db, zDb, SQLITE_CHECKPOINT_PASSIVE, 0, 0);
108678 #ifndef SQLITE_OMIT_WAL
108680 ** Run a checkpoint on database iDb. This is a no-op if database iDb is
108681 ** not currently open in WAL mode.
108683 ** If a transaction is open on the database being checkpointed, this
108684 ** function returns SQLITE_LOCKED and a checkpoint is not attempted. If
108685 ** an error occurs while running the checkpoint, an SQLite error code is
108686 ** returned (i.e. SQLITE_IOERR). Otherwise, SQLITE_OK.
108688 ** The mutex on database handle db should be held by the caller. The mutex
108689 ** associated with the specific b-tree being checkpointed is taken by
108690 ** this function while the checkpoint is running.
108692 ** If iDb is passed SQLITE_MAX_ATTACHED, then all attached databases are
108693 ** checkpointed. If an error is encountered it is returned immediately -
108694 ** no attempt is made to checkpoint any remaining databases.
108696 ** Parameter eMode is one of SQLITE_CHECKPOINT_PASSIVE, FULL or RESTART.
108698 SQLITE_PRIVATE int sqlite3Checkpoint(sqlite3 *db, int iDb, int eMode, int *pnLog, int *pnCkpt){
108699 int rc = SQLITE_OK; /* Return code */
108700 int i; /* Used to iterate through attached dbs */
108701 int bBusy = 0; /* True if SQLITE_BUSY has been encountered */
108703 assert( sqlite3_mutex_held(db->mutex) );
108704 assert( !pnLog || *pnLog==-1 );
108705 assert( !pnCkpt || *pnCkpt==-1 );
108707 for(i=0; i<db->nDb && rc==SQLITE_OK; i++){
108708 if( i==iDb || iDb==SQLITE_MAX_ATTACHED ){
108709 rc = sqlite3BtreeCheckpoint(db->aDb[i].pBt, eMode, pnLog, pnCkpt);
108710 pnLog = 0;
108711 pnCkpt = 0;
108712 if( rc==SQLITE_BUSY ){
108713 bBusy = 1;
108714 rc = SQLITE_OK;
108719 return (rc==SQLITE_OK && bBusy) ? SQLITE_BUSY : rc;
108721 #endif /* SQLITE_OMIT_WAL */
108724 ** This function returns true if main-memory should be used instead of
108725 ** a temporary file for transient pager files and statement journals.
108726 ** The value returned depends on the value of db->temp_store (runtime
108727 ** parameter) and the compile time value of SQLITE_TEMP_STORE. The
108728 ** following table describes the relationship between these two values
108729 ** and this functions return value.
108731 ** SQLITE_TEMP_STORE db->temp_store Location of temporary database
108732 ** ----------------- -------------- ------------------------------
108733 ** 0 any file (return 0)
108734 ** 1 1 file (return 0)
108735 ** 1 2 memory (return 1)
108736 ** 1 0 file (return 0)
108737 ** 2 1 file (return 0)
108738 ** 2 2 memory (return 1)
108739 ** 2 0 memory (return 1)
108740 ** 3 any memory (return 1)
108742 SQLITE_PRIVATE int sqlite3TempInMemory(const sqlite3 *db){
108743 #if SQLITE_TEMP_STORE==1
108744 return ( db->temp_store==2 );
108745 #endif
108746 #if SQLITE_TEMP_STORE==2
108747 return ( db->temp_store!=1 );
108748 #endif
108749 #if SQLITE_TEMP_STORE==3
108750 return 1;
108751 #endif
108752 #if SQLITE_TEMP_STORE<1 || SQLITE_TEMP_STORE>3
108753 return 0;
108754 #endif
108758 ** Return UTF-8 encoded English language explanation of the most recent
108759 ** error.
108761 SQLITE_API const char *sqlite3_errmsg(sqlite3 *db){
108762 const char *z;
108763 if( !db ){
108764 return sqlite3ErrStr(SQLITE_NOMEM);
108766 if( !sqlite3SafetyCheckSickOrOk(db) ){
108767 return sqlite3ErrStr(SQLITE_MISUSE_BKPT);
108769 sqlite3_mutex_enter(db->mutex);
108770 if( db->mallocFailed ){
108771 z = sqlite3ErrStr(SQLITE_NOMEM);
108772 }else{
108773 z = (char*)sqlite3_value_text(db->pErr);
108774 assert( !db->mallocFailed );
108775 if( z==0 ){
108776 z = sqlite3ErrStr(db->errCode);
108779 sqlite3_mutex_leave(db->mutex);
108780 return z;
108783 #ifndef SQLITE_OMIT_UTF16
108785 ** Return UTF-16 encoded English language explanation of the most recent
108786 ** error.
108788 SQLITE_API const void *sqlite3_errmsg16(sqlite3 *db){
108789 static const u16 outOfMem[] = {
108790 'o', 'u', 't', ' ', 'o', 'f', ' ', 'm', 'e', 'm', 'o', 'r', 'y', 0
108792 static const u16 misuse[] = {
108793 'l', 'i', 'b', 'r', 'a', 'r', 'y', ' ',
108794 'r', 'o', 'u', 't', 'i', 'n', 'e', ' ',
108795 'c', 'a', 'l', 'l', 'e', 'd', ' ',
108796 'o', 'u', 't', ' ',
108797 'o', 'f', ' ',
108798 's', 'e', 'q', 'u', 'e', 'n', 'c', 'e', 0
108801 const void *z;
108802 if( !db ){
108803 return (void *)outOfMem;
108805 if( !sqlite3SafetyCheckSickOrOk(db) ){
108806 return (void *)misuse;
108808 sqlite3_mutex_enter(db->mutex);
108809 if( db->mallocFailed ){
108810 z = (void *)outOfMem;
108811 }else{
108812 z = sqlite3_value_text16(db->pErr);
108813 if( z==0 ){
108814 sqlite3ValueSetStr(db->pErr, -1, sqlite3ErrStr(db->errCode),
108815 SQLITE_UTF8, SQLITE_STATIC);
108816 z = sqlite3_value_text16(db->pErr);
108818 /* A malloc() may have failed within the call to sqlite3_value_text16()
108819 ** above. If this is the case, then the db->mallocFailed flag needs to
108820 ** be cleared before returning. Do this directly, instead of via
108821 ** sqlite3ApiExit(), to avoid setting the database handle error message.
108823 db->mallocFailed = 0;
108825 sqlite3_mutex_leave(db->mutex);
108826 return z;
108828 #endif /* SQLITE_OMIT_UTF16 */
108831 ** Return the most recent error code generated by an SQLite routine. If NULL is
108832 ** passed to this function, we assume a malloc() failed during sqlite3_open().
108834 SQLITE_API int sqlite3_errcode(sqlite3 *db){
108835 if( db && !sqlite3SafetyCheckSickOrOk(db) ){
108836 return SQLITE_MISUSE_BKPT;
108838 if( !db || db->mallocFailed ){
108839 return SQLITE_NOMEM;
108841 return db->errCode & db->errMask;
108843 SQLITE_API int sqlite3_extended_errcode(sqlite3 *db){
108844 if( db && !sqlite3SafetyCheckSickOrOk(db) ){
108845 return SQLITE_MISUSE_BKPT;
108847 if( !db || db->mallocFailed ){
108848 return SQLITE_NOMEM;
108850 return db->errCode;
108854 ** Create a new collating function for database "db". The name is zName
108855 ** and the encoding is enc.
108857 static int createCollation(
108858 sqlite3* db,
108859 const char *zName,
108860 u8 enc,
108861 u8 collType,
108862 void* pCtx,
108863 int(*xCompare)(void*,int,const void*,int,const void*),
108864 void(*xDel)(void*)
108866 CollSeq *pColl;
108867 int enc2;
108868 int nName = sqlite3Strlen30(zName);
108870 assert( sqlite3_mutex_held(db->mutex) );
108872 /* If SQLITE_UTF16 is specified as the encoding type, transform this
108873 ** to one of SQLITE_UTF16LE or SQLITE_UTF16BE using the
108874 ** SQLITE_UTF16NATIVE macro. SQLITE_UTF16 is not used internally.
108876 enc2 = enc;
108877 testcase( enc2==SQLITE_UTF16 );
108878 testcase( enc2==SQLITE_UTF16_ALIGNED );
108879 if( enc2==SQLITE_UTF16 || enc2==SQLITE_UTF16_ALIGNED ){
108880 enc2 = SQLITE_UTF16NATIVE;
108882 if( enc2<SQLITE_UTF8 || enc2>SQLITE_UTF16BE ){
108883 return SQLITE_MISUSE_BKPT;
108886 /* Check if this call is removing or replacing an existing collation
108887 ** sequence. If so, and there are active VMs, return busy. If there
108888 ** are no active VMs, invalidate any pre-compiled statements.
108890 pColl = sqlite3FindCollSeq(db, (u8)enc2, zName, 0);
108891 if( pColl && pColl->xCmp ){
108892 if( db->activeVdbeCnt ){
108893 sqlite3Error(db, SQLITE_BUSY,
108894 "unable to delete/modify collation sequence due to active statements");
108895 return SQLITE_BUSY;
108897 sqlite3ExpirePreparedStatements(db);
108899 /* If collation sequence pColl was created directly by a call to
108900 ** sqlite3_create_collation, and not generated by synthCollSeq(),
108901 ** then any copies made by synthCollSeq() need to be invalidated.
108902 ** Also, collation destructor - CollSeq.xDel() - function may need
108903 ** to be called.
108905 if( (pColl->enc & ~SQLITE_UTF16_ALIGNED)==enc2 ){
108906 CollSeq *aColl = sqlite3HashFind(&db->aCollSeq, zName, nName);
108907 int j;
108908 for(j=0; j<3; j++){
108909 CollSeq *p = &aColl[j];
108910 if( p->enc==pColl->enc ){
108911 if( p->xDel ){
108912 p->xDel(p->pUser);
108914 p->xCmp = 0;
108920 pColl = sqlite3FindCollSeq(db, (u8)enc2, zName, 1);
108921 if( pColl==0 ) return SQLITE_NOMEM;
108922 pColl->xCmp = xCompare;
108923 pColl->pUser = pCtx;
108924 pColl->xDel = xDel;
108925 pColl->enc = (u8)(enc2 | (enc & SQLITE_UTF16_ALIGNED));
108926 pColl->type = collType;
108927 sqlite3Error(db, SQLITE_OK, 0);
108928 return SQLITE_OK;
108933 ** This array defines hard upper bounds on limit values. The
108934 ** initializer must be kept in sync with the SQLITE_LIMIT_*
108935 ** #defines in sqlite3.h.
108937 static const int aHardLimit[] = {
108938 SQLITE_MAX_LENGTH,
108939 SQLITE_MAX_SQL_LENGTH,
108940 SQLITE_MAX_COLUMN,
108941 SQLITE_MAX_EXPR_DEPTH,
108942 SQLITE_MAX_COMPOUND_SELECT,
108943 SQLITE_MAX_VDBE_OP,
108944 SQLITE_MAX_FUNCTION_ARG,
108945 SQLITE_MAX_ATTACHED,
108946 SQLITE_MAX_LIKE_PATTERN_LENGTH,
108947 SQLITE_MAX_VARIABLE_NUMBER,
108948 SQLITE_MAX_TRIGGER_DEPTH,
108952 ** Make sure the hard limits are set to reasonable values
108954 #if SQLITE_MAX_LENGTH<100
108955 # error SQLITE_MAX_LENGTH must be at least 100
108956 #endif
108957 #if SQLITE_MAX_SQL_LENGTH<100
108958 # error SQLITE_MAX_SQL_LENGTH must be at least 100
108959 #endif
108960 #if SQLITE_MAX_SQL_LENGTH>SQLITE_MAX_LENGTH
108961 # error SQLITE_MAX_SQL_LENGTH must not be greater than SQLITE_MAX_LENGTH
108962 #endif
108963 #if SQLITE_MAX_COMPOUND_SELECT<2
108964 # error SQLITE_MAX_COMPOUND_SELECT must be at least 2
108965 #endif
108966 #if SQLITE_MAX_VDBE_OP<40
108967 # error SQLITE_MAX_VDBE_OP must be at least 40
108968 #endif
108969 #if SQLITE_MAX_FUNCTION_ARG<0 || SQLITE_MAX_FUNCTION_ARG>1000
108970 # error SQLITE_MAX_FUNCTION_ARG must be between 0 and 1000
108971 #endif
108972 #if SQLITE_MAX_ATTACHED<0 || SQLITE_MAX_ATTACHED>62
108973 # error SQLITE_MAX_ATTACHED must be between 0 and 62
108974 #endif
108975 #if SQLITE_MAX_LIKE_PATTERN_LENGTH<1
108976 # error SQLITE_MAX_LIKE_PATTERN_LENGTH must be at least 1
108977 #endif
108978 #if SQLITE_MAX_COLUMN>32767
108979 # error SQLITE_MAX_COLUMN must not exceed 32767
108980 #endif
108981 #if SQLITE_MAX_TRIGGER_DEPTH<1
108982 # error SQLITE_MAX_TRIGGER_DEPTH must be at least 1
108983 #endif
108987 ** Change the value of a limit. Report the old value.
108988 ** If an invalid limit index is supplied, report -1.
108989 ** Make no changes but still report the old value if the
108990 ** new limit is negative.
108992 ** A new lower limit does not shrink existing constructs.
108993 ** It merely prevents new constructs that exceed the limit
108994 ** from forming.
108996 SQLITE_API int sqlite3_limit(sqlite3 *db, int limitId, int newLimit){
108997 int oldLimit;
109000 /* EVIDENCE-OF: R-30189-54097 For each limit category SQLITE_LIMIT_NAME
109001 ** there is a hard upper bound set at compile-time by a C preprocessor
109002 ** macro called SQLITE_MAX_NAME. (The "_LIMIT_" in the name is changed to
109003 ** "_MAX_".)
109005 assert( aHardLimit[SQLITE_LIMIT_LENGTH]==SQLITE_MAX_LENGTH );
109006 assert( aHardLimit[SQLITE_LIMIT_SQL_LENGTH]==SQLITE_MAX_SQL_LENGTH );
109007 assert( aHardLimit[SQLITE_LIMIT_COLUMN]==SQLITE_MAX_COLUMN );
109008 assert( aHardLimit[SQLITE_LIMIT_EXPR_DEPTH]==SQLITE_MAX_EXPR_DEPTH );
109009 assert( aHardLimit[SQLITE_LIMIT_COMPOUND_SELECT]==SQLITE_MAX_COMPOUND_SELECT);
109010 assert( aHardLimit[SQLITE_LIMIT_VDBE_OP]==SQLITE_MAX_VDBE_OP );
109011 assert( aHardLimit[SQLITE_LIMIT_FUNCTION_ARG]==SQLITE_MAX_FUNCTION_ARG );
109012 assert( aHardLimit[SQLITE_LIMIT_ATTACHED]==SQLITE_MAX_ATTACHED );
109013 assert( aHardLimit[SQLITE_LIMIT_LIKE_PATTERN_LENGTH]==
109014 SQLITE_MAX_LIKE_PATTERN_LENGTH );
109015 assert( aHardLimit[SQLITE_LIMIT_VARIABLE_NUMBER]==SQLITE_MAX_VARIABLE_NUMBER);
109016 assert( aHardLimit[SQLITE_LIMIT_TRIGGER_DEPTH]==SQLITE_MAX_TRIGGER_DEPTH );
109017 assert( SQLITE_LIMIT_TRIGGER_DEPTH==(SQLITE_N_LIMIT-1) );
109020 if( limitId<0 || limitId>=SQLITE_N_LIMIT ){
109021 return -1;
109023 oldLimit = db->aLimit[limitId];
109024 if( newLimit>=0 ){ /* IMP: R-52476-28732 */
109025 if( newLimit>aHardLimit[limitId] ){
109026 newLimit = aHardLimit[limitId]; /* IMP: R-51463-25634 */
109028 db->aLimit[limitId] = newLimit;
109030 return oldLimit; /* IMP: R-53341-35419 */
109034 ** This routine does the work of opening a database on behalf of
109035 ** sqlite3_open() and sqlite3_open16(). The database filename "zFilename"
109036 ** is UTF-8 encoded.
109038 static int openDatabase(
109039 const char *zFilename, /* Database filename UTF-8 encoded */
109040 sqlite3 **ppDb, /* OUT: Returned database handle */
109041 unsigned flags, /* Operational flags */
109042 const char *zVfs /* Name of the VFS to use */
109044 sqlite3 *db;
109045 int rc;
109046 int isThreadsafe;
109048 *ppDb = 0;
109049 #ifndef SQLITE_OMIT_AUTOINIT
109050 rc = sqlite3_initialize();
109051 if( rc ) return rc;
109052 #endif
109054 /* Only allow sensible combinations of bits in the flags argument.
109055 ** Throw an error if any non-sense combination is used. If we
109056 ** do not block illegal combinations here, it could trigger
109057 ** assert() statements in deeper layers. Sensible combinations
109058 ** are:
109060 ** 1: SQLITE_OPEN_READONLY
109061 ** 2: SQLITE_OPEN_READWRITE
109062 ** 6: SQLITE_OPEN_READWRITE | SQLITE_OPEN_CREATE
109064 assert( SQLITE_OPEN_READONLY == 0x01 );
109065 assert( SQLITE_OPEN_READWRITE == 0x02 );
109066 assert( SQLITE_OPEN_CREATE == 0x04 );
109067 testcase( (1<<(flags&7))==0x02 ); /* READONLY */
109068 testcase( (1<<(flags&7))==0x04 ); /* READWRITE */
109069 testcase( (1<<(flags&7))==0x40 ); /* READWRITE | CREATE */
109070 if( ((1<<(flags&7)) & 0x46)==0 ) return SQLITE_MISUSE;
109072 if( sqlite3GlobalConfig.bCoreMutex==0 ){
109073 isThreadsafe = 0;
109074 }else if( flags & SQLITE_OPEN_NOMUTEX ){
109075 isThreadsafe = 0;
109076 }else if( flags & SQLITE_OPEN_FULLMUTEX ){
109077 isThreadsafe = 1;
109078 }else{
109079 isThreadsafe = sqlite3GlobalConfig.bFullMutex;
109081 if( flags & SQLITE_OPEN_PRIVATECACHE ){
109082 flags &= ~SQLITE_OPEN_SHAREDCACHE;
109083 }else if( sqlite3GlobalConfig.sharedCacheEnabled ){
109084 flags |= SQLITE_OPEN_SHAREDCACHE;
109087 /* Remove harmful bits from the flags parameter
109089 ** The SQLITE_OPEN_NOMUTEX and SQLITE_OPEN_FULLMUTEX flags were
109090 ** dealt with in the previous code block. Besides these, the only
109091 ** valid input flags for sqlite3_open_v2() are SQLITE_OPEN_READONLY,
109092 ** SQLITE_OPEN_READWRITE, SQLITE_OPEN_CREATE, SQLITE_OPEN_SHAREDCACHE,
109093 ** SQLITE_OPEN_PRIVATECACHE, and some reserved bits. Silently mask
109094 ** off all other flags.
109096 flags &= ~( SQLITE_OPEN_DELETEONCLOSE |
109097 SQLITE_OPEN_EXCLUSIVE |
109098 SQLITE_OPEN_MAIN_DB |
109099 SQLITE_OPEN_TEMP_DB |
109100 SQLITE_OPEN_TRANSIENT_DB |
109101 SQLITE_OPEN_MAIN_JOURNAL |
109102 SQLITE_OPEN_TEMP_JOURNAL |
109103 SQLITE_OPEN_SUBJOURNAL |
109104 SQLITE_OPEN_MASTER_JOURNAL |
109105 SQLITE_OPEN_NOMUTEX |
109106 SQLITE_OPEN_FULLMUTEX |
109107 SQLITE_OPEN_WAL
109110 /* Allocate the sqlite data structure */
109111 db = sqlite3MallocZero( sizeof(sqlite3) );
109112 if( db==0 ) goto opendb_out;
109113 if( isThreadsafe ){
109114 db->mutex = sqlite3MutexAlloc(SQLITE_MUTEX_RECURSIVE);
109115 if( db->mutex==0 ){
109116 sqlite3_free(db);
109117 db = 0;
109118 goto opendb_out;
109121 sqlite3_mutex_enter(db->mutex);
109122 db->errMask = 0xff;
109123 db->nDb = 2;
109124 db->magic = SQLITE_MAGIC_BUSY;
109125 db->aDb = db->aDbStatic;
109127 assert( sizeof(db->aLimit)==sizeof(aHardLimit) );
109128 memcpy(db->aLimit, aHardLimit, sizeof(db->aLimit));
109129 db->autoCommit = 1;
109130 db->nextAutovac = -1;
109131 db->nextPagesize = 0;
109132 db->flags |= SQLITE_ShortColNames | SQLITE_AutoIndex | SQLITE_EnableTrigger
109133 #if SQLITE_DEFAULT_FILE_FORMAT<4
109134 | SQLITE_LegacyFileFmt
109135 #endif
109136 #ifdef SQLITE_ENABLE_LOAD_EXTENSION
109137 | SQLITE_LoadExtension
109138 #endif
109139 #if SQLITE_DEFAULT_RECURSIVE_TRIGGERS
109140 | SQLITE_RecTriggers
109141 #endif
109142 #if defined(SQLITE_DEFAULT_FOREIGN_KEYS) && SQLITE_DEFAULT_FOREIGN_KEYS
109143 | SQLITE_ForeignKeys
109144 #endif
109146 sqlite3HashInit(&db->aCollSeq);
109147 #ifndef SQLITE_OMIT_VIRTUALTABLE
109148 sqlite3HashInit(&db->aModule);
109149 #endif
109151 db->pVfs = sqlite3_vfs_find(zVfs);
109152 if( !db->pVfs ){
109153 rc = SQLITE_ERROR;
109154 sqlite3Error(db, rc, "no such vfs: %s", zVfs);
109155 goto opendb_out;
109158 /* Add the default collation sequence BINARY. BINARY works for both UTF-8
109159 ** and UTF-16, so add a version for each to avoid any unnecessary
109160 ** conversions. The only error that can occur here is a malloc() failure.
109162 createCollation(db, "BINARY", SQLITE_UTF8, SQLITE_COLL_BINARY, 0,
109163 binCollFunc, 0);
109164 createCollation(db, "BINARY", SQLITE_UTF16BE, SQLITE_COLL_BINARY, 0,
109165 binCollFunc, 0);
109166 createCollation(db, "BINARY", SQLITE_UTF16LE, SQLITE_COLL_BINARY, 0,
109167 binCollFunc, 0);
109168 createCollation(db, "RTRIM", SQLITE_UTF8, SQLITE_COLL_USER, (void*)1,
109169 binCollFunc, 0);
109170 if( db->mallocFailed ){
109171 goto opendb_out;
109173 db->pDfltColl = sqlite3FindCollSeq(db, SQLITE_UTF8, "BINARY", 0);
109174 assert( db->pDfltColl!=0 );
109176 /* Also add a UTF-8 case-insensitive collation sequence. */
109177 createCollation(db, "NOCASE", SQLITE_UTF8, SQLITE_COLL_NOCASE, 0,
109178 nocaseCollatingFunc, 0);
109180 /* Open the backend database driver */
109181 db->openFlags = flags;
109182 rc = sqlite3BtreeOpen(zFilename, db, &db->aDb[0].pBt, 0,
109183 flags | SQLITE_OPEN_MAIN_DB);
109184 if( rc!=SQLITE_OK ){
109185 if( rc==SQLITE_IOERR_NOMEM ){
109186 rc = SQLITE_NOMEM;
109188 sqlite3Error(db, rc, 0);
109189 goto opendb_out;
109191 db->aDb[0].pSchema = sqlite3SchemaGet(db, db->aDb[0].pBt);
109192 db->aDb[1].pSchema = sqlite3SchemaGet(db, 0);
109195 /* The default safety_level for the main database is 'full'; for the temp
109196 ** database it is 'NONE'. This matches the pager layer defaults.
109198 db->aDb[0].zName = "main";
109199 db->aDb[0].safety_level = 3;
109200 db->aDb[1].zName = "temp";
109201 db->aDb[1].safety_level = 1;
109203 db->magic = SQLITE_MAGIC_OPEN;
109204 if( db->mallocFailed ){
109205 goto opendb_out;
109208 /* Register all built-in functions, but do not attempt to read the
109209 ** database schema yet. This is delayed until the first time the database
109210 ** is accessed.
109212 sqlite3Error(db, SQLITE_OK, 0);
109213 sqlite3RegisterBuiltinFunctions(db);
109215 /* Load automatic extensions - extensions that have been registered
109216 ** using the sqlite3_automatic_extension() API.
109218 sqlite3AutoLoadExtensions(db);
109219 rc = sqlite3_errcode(db);
109220 if( rc!=SQLITE_OK ){
109221 goto opendb_out;
109224 #ifdef SQLITE_ENABLE_FTS1
109225 if( !db->mallocFailed ){
109226 extern int sqlite3Fts1Init(sqlite3*);
109227 rc = sqlite3Fts1Init(db);
109229 #endif
109231 #ifdef SQLITE_ENABLE_FTS2
109232 if( !db->mallocFailed && rc==SQLITE_OK ){
109233 extern int sqlite3Fts2Init(sqlite3*);
109234 rc = sqlite3Fts2Init(db);
109236 #endif
109238 #ifdef SQLITE_ENABLE_FTS3
109239 if( !db->mallocFailed && rc==SQLITE_OK ){
109240 rc = sqlite3Fts3Init(db);
109242 #endif
109244 #ifdef SQLITE_ENABLE_ICU
109245 if( !db->mallocFailed && rc==SQLITE_OK ){
109246 rc = sqlite3IcuInit(db);
109248 #endif
109250 #ifdef SQLITE_ENABLE_RTREE
109251 if( !db->mallocFailed && rc==SQLITE_OK){
109252 rc = sqlite3RtreeInit(db);
109254 #endif
109256 sqlite3Error(db, rc, 0);
109258 /* -DSQLITE_DEFAULT_LOCKING_MODE=1 makes EXCLUSIVE the default locking
109259 ** mode. -DSQLITE_DEFAULT_LOCKING_MODE=0 make NORMAL the default locking
109260 ** mode. Doing nothing at all also makes NORMAL the default.
109262 #ifdef SQLITE_DEFAULT_LOCKING_MODE
109263 db->dfltLockMode = SQLITE_DEFAULT_LOCKING_MODE;
109264 sqlite3PagerLockingMode(sqlite3BtreePager(db->aDb[0].pBt),
109265 SQLITE_DEFAULT_LOCKING_MODE);
109266 #endif
109268 /* Enable the lookaside-malloc subsystem */
109269 setupLookaside(db, 0, sqlite3GlobalConfig.szLookaside,
109270 sqlite3GlobalConfig.nLookaside);
109272 sqlite3_wal_autocheckpoint(db, SQLITE_DEFAULT_WAL_AUTOCHECKPOINT);
109274 opendb_out:
109275 if( db ){
109276 assert( db->mutex!=0 || isThreadsafe==0 || sqlite3GlobalConfig.bFullMutex==0 );
109277 sqlite3_mutex_leave(db->mutex);
109279 rc = sqlite3_errcode(db);
109280 if( rc==SQLITE_NOMEM ){
109281 sqlite3_close(db);
109282 db = 0;
109283 }else if( rc!=SQLITE_OK ){
109284 db->magic = SQLITE_MAGIC_SICK;
109286 *ppDb = db;
109287 return sqlite3ApiExit(0, rc);
109291 ** Open a new database handle.
109293 SQLITE_API int sqlite3_open(
109294 const char *zFilename,
109295 sqlite3 **ppDb
109297 return openDatabase(zFilename, ppDb,
109298 SQLITE_OPEN_READWRITE | SQLITE_OPEN_CREATE, 0);
109300 SQLITE_API int sqlite3_open_v2(
109301 const char *filename, /* Database filename (UTF-8) */
109302 sqlite3 **ppDb, /* OUT: SQLite db handle */
109303 int flags, /* Flags */
109304 const char *zVfs /* Name of VFS module to use */
109306 return openDatabase(filename, ppDb, flags, zVfs);
109309 #ifndef SQLITE_OMIT_UTF16
109311 ** Open a new database handle.
109313 SQLITE_API int sqlite3_open16(
109314 const void *zFilename,
109315 sqlite3 **ppDb
109317 char const *zFilename8; /* zFilename encoded in UTF-8 instead of UTF-16 */
109318 sqlite3_value *pVal;
109319 int rc;
109321 assert( zFilename );
109322 assert( ppDb );
109323 *ppDb = 0;
109324 #ifndef SQLITE_OMIT_AUTOINIT
109325 rc = sqlite3_initialize();
109326 if( rc ) return rc;
109327 #endif
109328 pVal = sqlite3ValueNew(0);
109329 sqlite3ValueSetStr(pVal, -1, zFilename, SQLITE_UTF16NATIVE, SQLITE_STATIC);
109330 zFilename8 = sqlite3ValueText(pVal, SQLITE_UTF8);
109331 if( zFilename8 ){
109332 rc = openDatabase(zFilename8, ppDb,
109333 SQLITE_OPEN_READWRITE | SQLITE_OPEN_CREATE, 0);
109334 assert( *ppDb || rc==SQLITE_NOMEM );
109335 if( rc==SQLITE_OK && !DbHasProperty(*ppDb, 0, DB_SchemaLoaded) ){
109336 ENC(*ppDb) = SQLITE_UTF16NATIVE;
109338 }else{
109339 rc = SQLITE_NOMEM;
109341 sqlite3ValueFree(pVal);
109343 return sqlite3ApiExit(0, rc);
109345 #endif /* SQLITE_OMIT_UTF16 */
109348 ** Register a new collation sequence with the database handle db.
109350 SQLITE_API int sqlite3_create_collation(
109351 sqlite3* db,
109352 const char *zName,
109353 int enc,
109354 void* pCtx,
109355 int(*xCompare)(void*,int,const void*,int,const void*)
109357 int rc;
109358 sqlite3_mutex_enter(db->mutex);
109359 assert( !db->mallocFailed );
109360 rc = createCollation(db, zName, (u8)enc, SQLITE_COLL_USER, pCtx, xCompare, 0);
109361 rc = sqlite3ApiExit(db, rc);
109362 sqlite3_mutex_leave(db->mutex);
109363 return rc;
109367 ** Register a new collation sequence with the database handle db.
109369 SQLITE_API int sqlite3_create_collation_v2(
109370 sqlite3* db,
109371 const char *zName,
109372 int enc,
109373 void* pCtx,
109374 int(*xCompare)(void*,int,const void*,int,const void*),
109375 void(*xDel)(void*)
109377 int rc;
109378 sqlite3_mutex_enter(db->mutex);
109379 assert( !db->mallocFailed );
109380 rc = createCollation(db, zName, (u8)enc, SQLITE_COLL_USER, pCtx, xCompare, xDel);
109381 rc = sqlite3ApiExit(db, rc);
109382 sqlite3_mutex_leave(db->mutex);
109383 return rc;
109386 #ifndef SQLITE_OMIT_UTF16
109388 ** Register a new collation sequence with the database handle db.
109390 SQLITE_API int sqlite3_create_collation16(
109391 sqlite3* db,
109392 const void *zName,
109393 int enc,
109394 void* pCtx,
109395 int(*xCompare)(void*,int,const void*,int,const void*)
109397 int rc = SQLITE_OK;
109398 char *zName8;
109399 sqlite3_mutex_enter(db->mutex);
109400 assert( !db->mallocFailed );
109401 zName8 = sqlite3Utf16to8(db, zName, -1, SQLITE_UTF16NATIVE);
109402 if( zName8 ){
109403 rc = createCollation(db, zName8, (u8)enc, SQLITE_COLL_USER, pCtx, xCompare, 0);
109404 sqlite3DbFree(db, zName8);
109406 rc = sqlite3ApiExit(db, rc);
109407 sqlite3_mutex_leave(db->mutex);
109408 return rc;
109410 #endif /* SQLITE_OMIT_UTF16 */
109413 ** Register a collation sequence factory callback with the database handle
109414 ** db. Replace any previously installed collation sequence factory.
109416 SQLITE_API int sqlite3_collation_needed(
109417 sqlite3 *db,
109418 void *pCollNeededArg,
109419 void(*xCollNeeded)(void*,sqlite3*,int eTextRep,const char*)
109421 sqlite3_mutex_enter(db->mutex);
109422 db->xCollNeeded = xCollNeeded;
109423 db->xCollNeeded16 = 0;
109424 db->pCollNeededArg = pCollNeededArg;
109425 sqlite3_mutex_leave(db->mutex);
109426 return SQLITE_OK;
109429 #ifndef SQLITE_OMIT_UTF16
109431 ** Register a collation sequence factory callback with the database handle
109432 ** db. Replace any previously installed collation sequence factory.
109434 SQLITE_API int sqlite3_collation_needed16(
109435 sqlite3 *db,
109436 void *pCollNeededArg,
109437 void(*xCollNeeded16)(void*,sqlite3*,int eTextRep,const void*)
109439 sqlite3_mutex_enter(db->mutex);
109440 db->xCollNeeded = 0;
109441 db->xCollNeeded16 = xCollNeeded16;
109442 db->pCollNeededArg = pCollNeededArg;
109443 sqlite3_mutex_leave(db->mutex);
109444 return SQLITE_OK;
109446 #endif /* SQLITE_OMIT_UTF16 */
109448 #ifndef SQLITE_OMIT_DEPRECATED
109450 ** This function is now an anachronism. It used to be used to recover from a
109451 ** malloc() failure, but SQLite now does this automatically.
109453 SQLITE_API int sqlite3_global_recover(void){
109454 return SQLITE_OK;
109456 #endif
109459 ** Test to see whether or not the database connection is in autocommit
109460 ** mode. Return TRUE if it is and FALSE if not. Autocommit mode is on
109461 ** by default. Autocommit is disabled by a BEGIN statement and reenabled
109462 ** by the next COMMIT or ROLLBACK.
109464 ******* THIS IS AN EXPERIMENTAL API AND IS SUBJECT TO CHANGE ******
109466 SQLITE_API int sqlite3_get_autocommit(sqlite3 *db){
109467 return db->autoCommit;
109471 ** The following routines are subtitutes for constants SQLITE_CORRUPT,
109472 ** SQLITE_MISUSE, SQLITE_CANTOPEN, SQLITE_IOERR and possibly other error
109473 ** constants. They server two purposes:
109475 ** 1. Serve as a convenient place to set a breakpoint in a debugger
109476 ** to detect when version error conditions occurs.
109478 ** 2. Invoke sqlite3_log() to provide the source code location where
109479 ** a low-level error is first detected.
109481 SQLITE_PRIVATE int sqlite3CorruptError(int lineno){
109482 testcase( sqlite3GlobalConfig.xLog!=0 );
109483 sqlite3_log(SQLITE_CORRUPT,
109484 "database corruption at line %d of [%.10s]",
109485 lineno, 20+sqlite3_sourceid());
109486 return SQLITE_CORRUPT;
109488 SQLITE_PRIVATE int sqlite3MisuseError(int lineno){
109489 testcase( sqlite3GlobalConfig.xLog!=0 );
109490 sqlite3_log(SQLITE_MISUSE,
109491 "misuse at line %d of [%.10s]",
109492 lineno, 20+sqlite3_sourceid());
109493 return SQLITE_MISUSE;
109495 SQLITE_PRIVATE int sqlite3CantopenError(int lineno){
109496 testcase( sqlite3GlobalConfig.xLog!=0 );
109497 sqlite3_log(SQLITE_CANTOPEN,
109498 "cannot open file at line %d of [%.10s]",
109499 lineno, 20+sqlite3_sourceid());
109500 return SQLITE_CANTOPEN;
109504 #ifndef SQLITE_OMIT_DEPRECATED
109506 ** This is a convenience routine that makes sure that all thread-specific
109507 ** data for this thread has been deallocated.
109509 ** SQLite no longer uses thread-specific data so this routine is now a
109510 ** no-op. It is retained for historical compatibility.
109512 SQLITE_API void sqlite3_thread_cleanup(void){
109514 #endif
109517 ** Return meta information about a specific column of a database table.
109518 ** See comment in sqlite3.h (sqlite.h.in) for details.
109520 #ifdef SQLITE_ENABLE_COLUMN_METADATA
109521 SQLITE_API int sqlite3_table_column_metadata(
109522 sqlite3 *db, /* Connection handle */
109523 const char *zDbName, /* Database name or NULL */
109524 const char *zTableName, /* Table name */
109525 const char *zColumnName, /* Column name */
109526 char const **pzDataType, /* OUTPUT: Declared data type */
109527 char const **pzCollSeq, /* OUTPUT: Collation sequence name */
109528 int *pNotNull, /* OUTPUT: True if NOT NULL constraint exists */
109529 int *pPrimaryKey, /* OUTPUT: True if column part of PK */
109530 int *pAutoinc /* OUTPUT: True if column is auto-increment */
109532 int rc;
109533 char *zErrMsg = 0;
109534 Table *pTab = 0;
109535 Column *pCol = 0;
109536 int iCol;
109538 char const *zDataType = 0;
109539 char const *zCollSeq = 0;
109540 int notnull = 0;
109541 int primarykey = 0;
109542 int autoinc = 0;
109544 /* Ensure the database schema has been loaded */
109545 sqlite3_mutex_enter(db->mutex);
109546 sqlite3BtreeEnterAll(db);
109547 rc = sqlite3Init(db, &zErrMsg);
109548 if( SQLITE_OK!=rc ){
109549 goto error_out;
109552 /* Locate the table in question */
109553 pTab = sqlite3FindTable(db, zTableName, zDbName);
109554 if( !pTab || pTab->pSelect ){
109555 pTab = 0;
109556 goto error_out;
109559 /* Find the column for which info is requested */
109560 if( sqlite3IsRowid(zColumnName) ){
109561 iCol = pTab->iPKey;
109562 if( iCol>=0 ){
109563 pCol = &pTab->aCol[iCol];
109565 }else{
109566 for(iCol=0; iCol<pTab->nCol; iCol++){
109567 pCol = &pTab->aCol[iCol];
109568 if( 0==sqlite3StrICmp(pCol->zName, zColumnName) ){
109569 break;
109572 if( iCol==pTab->nCol ){
109573 pTab = 0;
109574 goto error_out;
109578 /* The following block stores the meta information that will be returned
109579 ** to the caller in local variables zDataType, zCollSeq, notnull, primarykey
109580 ** and autoinc. At this point there are two possibilities:
109582 ** 1. The specified column name was rowid", "oid" or "_rowid_"
109583 ** and there is no explicitly declared IPK column.
109585 ** 2. The table is not a view and the column name identified an
109586 ** explicitly declared column. Copy meta information from *pCol.
109588 if( pCol ){
109589 zDataType = pCol->zType;
109590 zCollSeq = pCol->zColl;
109591 notnull = pCol->notNull!=0;
109592 primarykey = pCol->isPrimKey!=0;
109593 autoinc = pTab->iPKey==iCol && (pTab->tabFlags & TF_Autoincrement)!=0;
109594 }else{
109595 zDataType = "INTEGER";
109596 primarykey = 1;
109598 if( !zCollSeq ){
109599 zCollSeq = "BINARY";
109602 error_out:
109603 sqlite3BtreeLeaveAll(db);
109605 /* Whether the function call succeeded or failed, set the output parameters
109606 ** to whatever their local counterparts contain. If an error did occur,
109607 ** this has the effect of zeroing all output parameters.
109609 if( pzDataType ) *pzDataType = zDataType;
109610 if( pzCollSeq ) *pzCollSeq = zCollSeq;
109611 if( pNotNull ) *pNotNull = notnull;
109612 if( pPrimaryKey ) *pPrimaryKey = primarykey;
109613 if( pAutoinc ) *pAutoinc = autoinc;
109615 if( SQLITE_OK==rc && !pTab ){
109616 sqlite3DbFree(db, zErrMsg);
109617 zErrMsg = sqlite3MPrintf(db, "no such table column: %s.%s", zTableName,
109618 zColumnName);
109619 rc = SQLITE_ERROR;
109621 sqlite3Error(db, rc, (zErrMsg?"%s":0), zErrMsg);
109622 sqlite3DbFree(db, zErrMsg);
109623 rc = sqlite3ApiExit(db, rc);
109624 sqlite3_mutex_leave(db->mutex);
109625 return rc;
109627 #endif
109630 ** Sleep for a little while. Return the amount of time slept.
109632 SQLITE_API int sqlite3_sleep(int ms){
109633 sqlite3_vfs *pVfs;
109634 int rc;
109635 pVfs = sqlite3_vfs_find(0);
109636 if( pVfs==0 ) return 0;
109638 /* This function works in milliseconds, but the underlying OsSleep()
109639 ** API uses microseconds. Hence the 1000's.
109641 rc = (sqlite3OsSleep(pVfs, 1000*ms)/1000);
109642 return rc;
109646 ** Enable or disable the extended result codes.
109648 SQLITE_API int sqlite3_extended_result_codes(sqlite3 *db, int onoff){
109649 sqlite3_mutex_enter(db->mutex);
109650 db->errMask = onoff ? 0xffffffff : 0xff;
109651 sqlite3_mutex_leave(db->mutex);
109652 return SQLITE_OK;
109656 ** Invoke the xFileControl method on a particular database.
109658 SQLITE_API int sqlite3_file_control(sqlite3 *db, const char *zDbName, int op, void *pArg){
109659 int rc = SQLITE_ERROR;
109660 int iDb;
109661 sqlite3_mutex_enter(db->mutex);
109662 if( zDbName==0 ){
109663 iDb = 0;
109664 }else{
109665 for(iDb=0; iDb<db->nDb; iDb++){
109666 if( strcmp(db->aDb[iDb].zName, zDbName)==0 ) break;
109669 if( iDb<db->nDb ){
109670 Btree *pBtree = db->aDb[iDb].pBt;
109671 if( pBtree ){
109672 Pager *pPager;
109673 sqlite3_file *fd;
109674 sqlite3BtreeEnter(pBtree);
109675 pPager = sqlite3BtreePager(pBtree);
109676 assert( pPager!=0 );
109677 fd = sqlite3PagerFile(pPager);
109678 assert( fd!=0 );
109679 if( op==SQLITE_FCNTL_FILE_POINTER ){
109680 *(sqlite3_file**)pArg = fd;
109681 rc = SQLITE_OK;
109682 }else if( fd->pMethods ){
109683 rc = sqlite3OsFileControl(fd, op, pArg);
109684 }else{
109685 rc = SQLITE_NOTFOUND;
109687 sqlite3BtreeLeave(pBtree);
109690 sqlite3_mutex_leave(db->mutex);
109691 return rc;
109695 ** Interface to the testing logic.
109697 SQLITE_API int sqlite3_test_control(int op, ...){
109698 int rc = 0;
109699 #ifndef SQLITE_OMIT_BUILTIN_TEST
109700 va_list ap;
109701 va_start(ap, op);
109702 switch( op ){
109705 ** Save the current state of the PRNG.
109707 case SQLITE_TESTCTRL_PRNG_SAVE: {
109708 sqlite3PrngSaveState();
109709 break;
109713 ** Restore the state of the PRNG to the last state saved using
109714 ** PRNG_SAVE. If PRNG_SAVE has never before been called, then
109715 ** this verb acts like PRNG_RESET.
109717 case SQLITE_TESTCTRL_PRNG_RESTORE: {
109718 sqlite3PrngRestoreState();
109719 break;
109723 ** Reset the PRNG back to its uninitialized state. The next call
109724 ** to sqlite3_randomness() will reseed the PRNG using a single call
109725 ** to the xRandomness method of the default VFS.
109727 case SQLITE_TESTCTRL_PRNG_RESET: {
109728 sqlite3PrngResetState();
109729 break;
109733 ** sqlite3_test_control(BITVEC_TEST, size, program)
109735 ** Run a test against a Bitvec object of size. The program argument
109736 ** is an array of integers that defines the test. Return -1 on a
109737 ** memory allocation error, 0 on success, or non-zero for an error.
109738 ** See the sqlite3BitvecBuiltinTest() for additional information.
109740 case SQLITE_TESTCTRL_BITVEC_TEST: {
109741 int sz = va_arg(ap, int);
109742 int *aProg = va_arg(ap, int*);
109743 rc = sqlite3BitvecBuiltinTest(sz, aProg);
109744 break;
109748 ** sqlite3_test_control(BENIGN_MALLOC_HOOKS, xBegin, xEnd)
109750 ** Register hooks to call to indicate which malloc() failures
109751 ** are benign.
109753 case SQLITE_TESTCTRL_BENIGN_MALLOC_HOOKS: {
109754 typedef void (*void_function)(void);
109755 void_function xBenignBegin;
109756 void_function xBenignEnd;
109757 xBenignBegin = va_arg(ap, void_function);
109758 xBenignEnd = va_arg(ap, void_function);
109759 sqlite3BenignMallocHooks(xBenignBegin, xBenignEnd);
109760 break;
109764 ** sqlite3_test_control(SQLITE_TESTCTRL_PENDING_BYTE, unsigned int X)
109766 ** Set the PENDING byte to the value in the argument, if X>0.
109767 ** Make no changes if X==0. Return the value of the pending byte
109768 ** as it existing before this routine was called.
109770 ** IMPORTANT: Changing the PENDING byte from 0x40000000 results in
109771 ** an incompatible database file format. Changing the PENDING byte
109772 ** while any database connection is open results in undefined and
109773 ** dileterious behavior.
109775 case SQLITE_TESTCTRL_PENDING_BYTE: {
109776 rc = PENDING_BYTE;
109777 #ifndef SQLITE_OMIT_WSD
109779 unsigned int newVal = va_arg(ap, unsigned int);
109780 if( newVal ) sqlite3PendingByte = newVal;
109782 #endif
109783 break;
109787 ** sqlite3_test_control(SQLITE_TESTCTRL_ASSERT, int X)
109789 ** This action provides a run-time test to see whether or not
109790 ** assert() was enabled at compile-time. If X is true and assert()
109791 ** is enabled, then the return value is true. If X is true and
109792 ** assert() is disabled, then the return value is zero. If X is
109793 ** false and assert() is enabled, then the assertion fires and the
109794 ** process aborts. If X is false and assert() is disabled, then the
109795 ** return value is zero.
109797 case SQLITE_TESTCTRL_ASSERT: {
109798 volatile int x = 0;
109799 assert( (x = va_arg(ap,int))!=0 );
109800 rc = x;
109801 break;
109806 ** sqlite3_test_control(SQLITE_TESTCTRL_ALWAYS, int X)
109808 ** This action provides a run-time test to see how the ALWAYS and
109809 ** NEVER macros were defined at compile-time.
109811 ** The return value is ALWAYS(X).
109813 ** The recommended test is X==2. If the return value is 2, that means
109814 ** ALWAYS() and NEVER() are both no-op pass-through macros, which is the
109815 ** default setting. If the return value is 1, then ALWAYS() is either
109816 ** hard-coded to true or else it asserts if its argument is false.
109817 ** The first behavior (hard-coded to true) is the case if
109818 ** SQLITE_TESTCTRL_ASSERT shows that assert() is disabled and the second
109819 ** behavior (assert if the argument to ALWAYS() is false) is the case if
109820 ** SQLITE_TESTCTRL_ASSERT shows that assert() is enabled.
109822 ** The run-time test procedure might look something like this:
109824 ** if( sqlite3_test_control(SQLITE_TESTCTRL_ALWAYS, 2)==2 ){
109825 ** // ALWAYS() and NEVER() are no-op pass-through macros
109826 ** }else if( sqlite3_test_control(SQLITE_TESTCTRL_ASSERT, 1) ){
109827 ** // ALWAYS(x) asserts that x is true. NEVER(x) asserts x is false.
109828 ** }else{
109829 ** // ALWAYS(x) is a constant 1. NEVER(x) is a constant 0.
109832 case SQLITE_TESTCTRL_ALWAYS: {
109833 int x = va_arg(ap,int);
109834 rc = ALWAYS(x);
109835 break;
109838 /* sqlite3_test_control(SQLITE_TESTCTRL_RESERVE, sqlite3 *db, int N)
109840 ** Set the nReserve size to N for the main database on the database
109841 ** connection db.
109843 case SQLITE_TESTCTRL_RESERVE: {
109844 sqlite3 *db = va_arg(ap, sqlite3*);
109845 int x = va_arg(ap,int);
109846 sqlite3_mutex_enter(db->mutex);
109847 sqlite3BtreeSetPageSize(db->aDb[0].pBt, 0, x, 0);
109848 sqlite3_mutex_leave(db->mutex);
109849 break;
109852 /* sqlite3_test_control(SQLITE_TESTCTRL_OPTIMIZATIONS, sqlite3 *db, int N)
109854 ** Enable or disable various optimizations for testing purposes. The
109855 ** argument N is a bitmask of optimizations to be disabled. For normal
109856 ** operation N should be 0. The idea is that a test program (like the
109857 ** SQL Logic Test or SLT test module) can run the same SQL multiple times
109858 ** with various optimizations disabled to verify that the same answer
109859 ** is obtained in every case.
109861 case SQLITE_TESTCTRL_OPTIMIZATIONS: {
109862 sqlite3 *db = va_arg(ap, sqlite3*);
109863 int x = va_arg(ap,int);
109864 db->flags = (x & SQLITE_OptMask) | (db->flags & ~SQLITE_OptMask);
109865 break;
109868 #ifdef SQLITE_N_KEYWORD
109869 /* sqlite3_test_control(SQLITE_TESTCTRL_ISKEYWORD, const char *zWord)
109871 ** If zWord is a keyword recognized by the parser, then return the
109872 ** number of keywords. Or if zWord is not a keyword, return 0.
109874 ** This test feature is only available in the amalgamation since
109875 ** the SQLITE_N_KEYWORD macro is not defined in this file if SQLite
109876 ** is built using separate source files.
109878 case SQLITE_TESTCTRL_ISKEYWORD: {
109879 const char *zWord = va_arg(ap, const char*);
109880 int n = sqlite3Strlen30(zWord);
109881 rc = (sqlite3KeywordCode((u8*)zWord, n)!=TK_ID) ? SQLITE_N_KEYWORD : 0;
109882 break;
109884 #endif
109886 /* sqlite3_test_control(SQLITE_TESTCTRL_PGHDRSZ)
109888 ** Return the size of a pcache header in bytes.
109890 case SQLITE_TESTCTRL_PGHDRSZ: {
109891 rc = sizeof(PgHdr);
109892 break;
109895 /* sqlite3_test_control(SQLITE_TESTCTRL_SCRATCHMALLOC, sz, &pNew, pFree);
109897 ** Pass pFree into sqlite3ScratchFree().
109898 ** If sz>0 then allocate a scratch buffer into pNew.
109900 case SQLITE_TESTCTRL_SCRATCHMALLOC: {
109901 void *pFree, **ppNew;
109902 int sz;
109903 sz = va_arg(ap, int);
109904 ppNew = va_arg(ap, void**);
109905 pFree = va_arg(ap, void*);
109906 if( sz ) *ppNew = sqlite3ScratchMalloc(sz);
109907 sqlite3ScratchFree(pFree);
109908 break;
109912 va_end(ap);
109913 #endif /* SQLITE_OMIT_BUILTIN_TEST */
109914 return rc;
109917 /************** End of main.c ************************************************/
109918 /************** Begin file notify.c ******************************************/
109920 ** 2009 March 3
109922 ** The author disclaims copyright to this source code. In place of
109923 ** a legal notice, here is a blessing:
109925 ** May you do good and not evil.
109926 ** May you find forgiveness for yourself and forgive others.
109927 ** May you share freely, never taking more than you give.
109929 *************************************************************************
109931 ** This file contains the implementation of the sqlite3_unlock_notify()
109932 ** API method and its associated functionality.
109935 /* Omit this entire file if SQLITE_ENABLE_UNLOCK_NOTIFY is not defined. */
109936 #ifdef SQLITE_ENABLE_UNLOCK_NOTIFY
109939 ** Public interfaces:
109941 ** sqlite3ConnectionBlocked()
109942 ** sqlite3ConnectionUnlocked()
109943 ** sqlite3ConnectionClosed()
109944 ** sqlite3_unlock_notify()
109947 #define assertMutexHeld() \
109948 assert( sqlite3_mutex_held(sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_MASTER)) )
109951 ** Head of a linked list of all sqlite3 objects created by this process
109952 ** for which either sqlite3.pBlockingConnection or sqlite3.pUnlockConnection
109953 ** is not NULL. This variable may only accessed while the STATIC_MASTER
109954 ** mutex is held.
109956 static sqlite3 *SQLITE_WSD sqlite3BlockedList = 0;
109958 #ifndef NDEBUG
109960 ** This function is a complex assert() that verifies the following
109961 ** properties of the blocked connections list:
109963 ** 1) Each entry in the list has a non-NULL value for either
109964 ** pUnlockConnection or pBlockingConnection, or both.
109966 ** 2) All entries in the list that share a common value for
109967 ** xUnlockNotify are grouped together.
109969 ** 3) If the argument db is not NULL, then none of the entries in the
109970 ** blocked connections list have pUnlockConnection or pBlockingConnection
109971 ** set to db. This is used when closing connection db.
109973 static void checkListProperties(sqlite3 *db){
109974 sqlite3 *p;
109975 for(p=sqlite3BlockedList; p; p=p->pNextBlocked){
109976 int seen = 0;
109977 sqlite3 *p2;
109979 /* Verify property (1) */
109980 assert( p->pUnlockConnection || p->pBlockingConnection );
109982 /* Verify property (2) */
109983 for(p2=sqlite3BlockedList; p2!=p; p2=p2->pNextBlocked){
109984 if( p2->xUnlockNotify==p->xUnlockNotify ) seen = 1;
109985 assert( p2->xUnlockNotify==p->xUnlockNotify || !seen );
109986 assert( db==0 || p->pUnlockConnection!=db );
109987 assert( db==0 || p->pBlockingConnection!=db );
109991 #else
109992 # define checkListProperties(x)
109993 #endif
109996 ** Remove connection db from the blocked connections list. If connection
109997 ** db is not currently a part of the list, this function is a no-op.
109999 static void removeFromBlockedList(sqlite3 *db){
110000 sqlite3 **pp;
110001 assertMutexHeld();
110002 for(pp=&sqlite3BlockedList; *pp; pp = &(*pp)->pNextBlocked){
110003 if( *pp==db ){
110004 *pp = (*pp)->pNextBlocked;
110005 break;
110011 ** Add connection db to the blocked connections list. It is assumed
110012 ** that it is not already a part of the list.
110014 static void addToBlockedList(sqlite3 *db){
110015 sqlite3 **pp;
110016 assertMutexHeld();
110018 pp=&sqlite3BlockedList;
110019 *pp && (*pp)->xUnlockNotify!=db->xUnlockNotify;
110020 pp=&(*pp)->pNextBlocked
110022 db->pNextBlocked = *pp;
110023 *pp = db;
110027 ** Obtain the STATIC_MASTER mutex.
110029 static void enterMutex(void){
110030 sqlite3_mutex_enter(sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_MASTER));
110031 checkListProperties(0);
110035 ** Release the STATIC_MASTER mutex.
110037 static void leaveMutex(void){
110038 assertMutexHeld();
110039 checkListProperties(0);
110040 sqlite3_mutex_leave(sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_MASTER));
110044 ** Register an unlock-notify callback.
110046 ** This is called after connection "db" has attempted some operation
110047 ** but has received an SQLITE_LOCKED error because another connection
110048 ** (call it pOther) in the same process was busy using the same shared
110049 ** cache. pOther is found by looking at db->pBlockingConnection.
110051 ** If there is no blocking connection, the callback is invoked immediately,
110052 ** before this routine returns.
110054 ** If pOther is already blocked on db, then report SQLITE_LOCKED, to indicate
110055 ** a deadlock.
110057 ** Otherwise, make arrangements to invoke xNotify when pOther drops
110058 ** its locks.
110060 ** Each call to this routine overrides any prior callbacks registered
110061 ** on the same "db". If xNotify==0 then any prior callbacks are immediately
110062 ** cancelled.
110064 SQLITE_API int sqlite3_unlock_notify(
110065 sqlite3 *db,
110066 void (*xNotify)(void **, int),
110067 void *pArg
110069 int rc = SQLITE_OK;
110071 sqlite3_mutex_enter(db->mutex);
110072 enterMutex();
110074 if( xNotify==0 ){
110075 removeFromBlockedList(db);
110076 db->pBlockingConnection = 0;
110077 db->pUnlockConnection = 0;
110078 db->xUnlockNotify = 0;
110079 db->pUnlockArg = 0;
110080 }else if( 0==db->pBlockingConnection ){
110081 /* The blocking transaction has been concluded. Or there never was a
110082 ** blocking transaction. In either case, invoke the notify callback
110083 ** immediately.
110085 xNotify(&pArg, 1);
110086 }else{
110087 sqlite3 *p;
110089 for(p=db->pBlockingConnection; p && p!=db; p=p->pUnlockConnection){}
110090 if( p ){
110091 rc = SQLITE_LOCKED; /* Deadlock detected. */
110092 }else{
110093 db->pUnlockConnection = db->pBlockingConnection;
110094 db->xUnlockNotify = xNotify;
110095 db->pUnlockArg = pArg;
110096 removeFromBlockedList(db);
110097 addToBlockedList(db);
110101 leaveMutex();
110102 assert( !db->mallocFailed );
110103 sqlite3Error(db, rc, (rc?"database is deadlocked":0));
110104 sqlite3_mutex_leave(db->mutex);
110105 return rc;
110109 ** This function is called while stepping or preparing a statement
110110 ** associated with connection db. The operation will return SQLITE_LOCKED
110111 ** to the user because it requires a lock that will not be available
110112 ** until connection pBlocker concludes its current transaction.
110114 SQLITE_PRIVATE void sqlite3ConnectionBlocked(sqlite3 *db, sqlite3 *pBlocker){
110115 enterMutex();
110116 if( db->pBlockingConnection==0 && db->pUnlockConnection==0 ){
110117 addToBlockedList(db);
110119 db->pBlockingConnection = pBlocker;
110120 leaveMutex();
110124 ** This function is called when
110125 ** the transaction opened by database db has just finished. Locks held
110126 ** by database connection db have been released.
110128 ** This function loops through each entry in the blocked connections
110129 ** list and does the following:
110131 ** 1) If the sqlite3.pBlockingConnection member of a list entry is
110132 ** set to db, then set pBlockingConnection=0.
110134 ** 2) If the sqlite3.pUnlockConnection member of a list entry is
110135 ** set to db, then invoke the configured unlock-notify callback and
110136 ** set pUnlockConnection=0.
110138 ** 3) If the two steps above mean that pBlockingConnection==0 and
110139 ** pUnlockConnection==0, remove the entry from the blocked connections
110140 ** list.
110142 SQLITE_PRIVATE void sqlite3ConnectionUnlocked(sqlite3 *db){
110143 void (*xUnlockNotify)(void **, int) = 0; /* Unlock-notify cb to invoke */
110144 int nArg = 0; /* Number of entries in aArg[] */
110145 sqlite3 **pp; /* Iterator variable */
110146 void **aArg; /* Arguments to the unlock callback */
110147 void **aDyn = 0; /* Dynamically allocated space for aArg[] */
110148 void *aStatic[16]; /* Starter space for aArg[]. No malloc required */
110150 aArg = aStatic;
110151 enterMutex(); /* Enter STATIC_MASTER mutex */
110153 /* This loop runs once for each entry in the blocked-connections list. */
110154 for(pp=&sqlite3BlockedList; *pp; /* no-op */ ){
110155 sqlite3 *p = *pp;
110157 /* Step 1. */
110158 if( p->pBlockingConnection==db ){
110159 p->pBlockingConnection = 0;
110162 /* Step 2. */
110163 if( p->pUnlockConnection==db ){
110164 assert( p->xUnlockNotify );
110165 if( p->xUnlockNotify!=xUnlockNotify && nArg!=0 ){
110166 xUnlockNotify(aArg, nArg);
110167 nArg = 0;
110170 sqlite3BeginBenignMalloc();
110171 assert( aArg==aDyn || (aDyn==0 && aArg==aStatic) );
110172 assert( nArg<=(int)ArraySize(aStatic) || aArg==aDyn );
110173 if( (!aDyn && nArg==(int)ArraySize(aStatic))
110174 || (aDyn && nArg==(int)(sqlite3MallocSize(aDyn)/sizeof(void*)))
110176 /* The aArg[] array needs to grow. */
110177 void **pNew = (void **)sqlite3Malloc(nArg*sizeof(void *)*2);
110178 if( pNew ){
110179 memcpy(pNew, aArg, nArg*sizeof(void *));
110180 sqlite3_free(aDyn);
110181 aDyn = aArg = pNew;
110182 }else{
110183 /* This occurs when the array of context pointers that need to
110184 ** be passed to the unlock-notify callback is larger than the
110185 ** aStatic[] array allocated on the stack and the attempt to
110186 ** allocate a larger array from the heap has failed.
110188 ** This is a difficult situation to handle. Returning an error
110189 ** code to the caller is insufficient, as even if an error code
110190 ** is returned the transaction on connection db will still be
110191 ** closed and the unlock-notify callbacks on blocked connections
110192 ** will go unissued. This might cause the application to wait
110193 ** indefinitely for an unlock-notify callback that will never
110194 ** arrive.
110196 ** Instead, invoke the unlock-notify callback with the context
110197 ** array already accumulated. We can then clear the array and
110198 ** begin accumulating any further context pointers without
110199 ** requiring any dynamic allocation. This is sub-optimal because
110200 ** it means that instead of one callback with a large array of
110201 ** context pointers the application will receive two or more
110202 ** callbacks with smaller arrays of context pointers, which will
110203 ** reduce the applications ability to prioritize multiple
110204 ** connections. But it is the best that can be done under the
110205 ** circumstances.
110207 xUnlockNotify(aArg, nArg);
110208 nArg = 0;
110211 sqlite3EndBenignMalloc();
110213 aArg[nArg++] = p->pUnlockArg;
110214 xUnlockNotify = p->xUnlockNotify;
110215 p->pUnlockConnection = 0;
110216 p->xUnlockNotify = 0;
110217 p->pUnlockArg = 0;
110220 /* Step 3. */
110221 if( p->pBlockingConnection==0 && p->pUnlockConnection==0 ){
110222 /* Remove connection p from the blocked connections list. */
110223 *pp = p->pNextBlocked;
110224 p->pNextBlocked = 0;
110225 }else{
110226 pp = &p->pNextBlocked;
110230 if( nArg!=0 ){
110231 xUnlockNotify(aArg, nArg);
110233 sqlite3_free(aDyn);
110234 leaveMutex(); /* Leave STATIC_MASTER mutex */
110238 ** This is called when the database connection passed as an argument is
110239 ** being closed. The connection is removed from the blocked list.
110241 SQLITE_PRIVATE void sqlite3ConnectionClosed(sqlite3 *db){
110242 sqlite3ConnectionUnlocked(db);
110243 enterMutex();
110244 removeFromBlockedList(db);
110245 checkListProperties(db);
110246 leaveMutex();
110248 #endif
110250 /************** End of notify.c **********************************************/
110251 /************** Begin file recover.c *****************************************/
110253 ** 2012 Jan 11
110255 ** The author disclaims copyright to this source code. In place of
110256 ** a legal notice, here is a blessing:
110258 ** May you do good and not evil.
110259 ** May you find forgiveness for yourself and forgive others.
110260 ** May you share freely, never taking more than you give.
110262 /* TODO(shess): THIS MODULE IS STILL EXPERIMENTAL. DO NOT USE IT. */
110263 /* Implements a virtual table "recover" which can be used to recover
110264 * data from a corrupt table. The table is walked manually, with
110265 * corrupt items skipped. Additionally, any errors while reading will
110266 * be skipped.
110268 * Given a table with this definition:
110270 * CREATE TABLE Stuff (
110271 * name TEXT PRIMARY KEY,
110272 * value TEXT NOT NULL
110275 * to recover the data from teh table, you could do something like:
110277 * -- Attach another database, the original is not trustworthy.
110278 * ATTACH DATABASE '/tmp/db.db' AS rdb;
110279 * -- Create a new version of the table.
110280 * CREATE TABLE rdb.Stuff (
110281 * name TEXT PRIMARY KEY,
110282 * value TEXT NOT NULL
110284 * -- This will read the original table's data.
110285 * CREATE VIRTUAL TABLE temp.recover_Stuff using recover(
110286 * main.Stuff,
110287 * name TEXT STRICT NOT NULL, -- only real TEXT data allowed
110288 * value TEXT STRICT NOT NULL
110290 * -- Corruption means the UNIQUE constraint may no longer hold for
110291 * -- Stuff, so either OR REPLACE or OR IGNORE must be used.
110292 * INSERT OR REPLACE INTO rdb.Stuff (rowid, name, value )
110293 * SELECT rowid, name, value FROM temp.recover_Stuff;
110294 * DROP TABLE temp.recover_Stuff;
110295 * DETACH DATABASE rdb;
110296 * -- Move db.db to replace original db in filesystem.
110299 * Usage
110301 * Given the goal of dealing with corruption, it would not be safe to
110302 * create a recovery table in the database being recovered. So
110303 * recovery tables must be created in the temp database. They are not
110304 * appropriate to persist, in any case. [As a bonus, sqlite_master
110305 * tables can be recovered. Perhaps more cute than useful, though.]
110307 * The parameters are a specifier for the table to read, and a column
110308 * definition for each bit of data stored in that table. The named
110309 * table must be convertable to a root page number by reading the
110310 * sqlite_master table. Bare table names are assumed to be in
110311 * database 0 ("main"), other databases can be specified in db.table
110312 * fashion.
110314 * Column definitions are similar to BUT NOT THE SAME AS those
110315 * provided to CREATE statements:
110316 * column-def: column-name [type-name [STRICT] [NOT NULL]]
110317 * type-name: (ANY|ROWID|INTEGER|FLOAT|NUMERIC|TEXT|BLOB)
110319 * Only those exact type names are accepted, there is no type
110320 * intuition. The only constraints accepted are STRICT (see below)
110321 * and NOT NULL. Anything unexpected will cause the create to fail.
110323 * ANY is a convenience to indicate that manifest typing is desired.
110324 * It is equivalent to not specifying a type at all. The results for
110325 * such columns will have the type of the data's storage. The exposed
110326 * schema will contain no type for that column.
110328 * ROWID is used for columns representing aliases to the rowid
110329 * (INTEGER PRIMARY KEY, with or without AUTOINCREMENT), to make the
110330 * concept explicit. Such columns are actually stored as NULL, so
110331 * they cannot be simply ignored. The exposed schema will be INTEGER
110332 * for that column.
110334 * NOT NULL causes rows with a NULL in that column to be skipped. It
110335 * also adds NOT NULL to the column in the exposed schema. If the
110336 * table has ever had columns added using ALTER TABLE, then those
110337 * columns implicitly contain NULL for rows which have not been
110338 * updated. [Workaround using COALESCE() in your SELECT statement.]
110340 * The created table is read-only, with no indices. Any SELECT will
110341 * be a full-table scan, returning each valid row read from the
110342 * storage of the backing table. The rowid will be the rowid of the
110343 * row from the backing table. "Valid" means:
110344 * - The cell metadata for the row is well-formed. Mainly this means that
110345 * the cell header info describes a payload of the size indicated by
110346 * the cell's payload size.
110347 * - The cell does not run off the page.
110348 * - The cell does not overlap any other cell on the page.
110349 * - The cell contains doesn't contain too many columns.
110350 * - The types of the serialized data match the indicated types (see below).
110353 * Type affinity versus type storage.
110355 * http://www.sqlite.org/datatype3.html describes SQLite's type
110356 * affinity system. The system provides for automated coercion of
110357 * types in certain cases, transparently enough that many developers
110358 * do not realize that it is happening. Importantly, it implies that
110359 * the raw data stored in the database may not have the obvious type.
110361 * Differences between the stored data types and the expected data
110362 * types may be a signal of corruption. This module makes some
110363 * allowances for automatic coercion. It is important to be concious
110364 * of the difference between the schema exposed by the module, and the
110365 * data types read from storage. The following table describes how
110366 * the module interprets things:
110368 * type schema data STRICT
110369 * ---- ------ ---- ------
110370 * ANY <none> any any
110371 * ROWID INTEGER n/a n/a
110372 * INTEGER INTEGER integer integer
110373 * FLOAT FLOAT integer or float float
110374 * NUMERIC NUMERIC integer, float, or text integer or float
110375 * TEXT TEXT text or blob text
110376 * BLOB BLOB blob blob
110378 * type is the type provided to the recover module, schema is the
110379 * schema exposed by the module, data is the acceptable types of data
110380 * decoded from storage, and STRICT is a modification of that.
110382 * A very loose recovery system might use ANY for all columns, then
110383 * use the appropriate sqlite3_column_*() calls to coerce to expected
110384 * types. This doesn't provide much protection if a page from a
110385 * different table with the same column count is linked into an
110386 * inappropriate btree.
110388 * A very tight recovery system might use STRICT to enforce typing on
110389 * all columns, preferring to skip rows which are valid at the storage
110390 * level but don't contain the right types. Note that FLOAT STRICT is
110391 * almost certainly not appropriate, since integral values are
110392 * transparently stored as integers, when that is more efficient.
110394 * Another option is to use ANY for all columns and inspect each
110395 * result manually (using sqlite3_column_*). This should only be
110396 * necessary in cases where developers have used manifest typing (test
110397 * to make sure before you decide that you aren't using manifest
110398 * typing!).
110401 * Caveats
110403 * Leaf pages not referenced by interior nodes will not be found.
110405 * Leaf pages referenced from interior nodes of other tables will not
110406 * be resolved.
110408 * Rows referencing invalid overflow pages will be skipped.
110410 * SQlite rows have a header which describes how to interpret the rest
110411 * of the payload. The header can be valid in cases where the rest of
110412 * the record is actually corrupt (in the sense that the data is not
110413 * the intended data). This can especially happen WRT overflow pages,
110414 * as lack of atomic updates between pages is the primary form of
110415 * corruption I have seen in the wild.
110417 /* The implementation is via a series of cursors. The cursor
110418 * implementations follow the pattern:
110420 * // Creates the cursor using various initialization info.
110421 * int cursorCreate(...);
110423 * // Returns 1 if there is no more data, 0 otherwise.
110424 * int cursorEOF(Cursor *pCursor);
110426 * // Various accessors can be used if not at EOF.
110428 * // Move to the next item.
110429 * int cursorNext(Cursor *pCursor);
110431 * // Destroy the memory associated with the cursor.
110432 * void cursorDestroy(Cursor *pCursor);
110434 * References in the following are to sections at
110435 * http://www.sqlite.org/fileformat2.html .
110437 * RecoverLeafCursor iterates the records in a leaf table node
110438 * described in section 1.5 "B-tree Pages". When the node is
110439 * exhausted, an interior cursor is used to get the next leaf node,
110440 * and iteration continues there.
110442 * RecoverInteriorCursor iterates the child pages in an interior table
110443 * node described in section 1.5 "B-tree Pages". When the node is
110444 * exhausted, a parent interior cursor is used to get the next
110445 * interior node at the same level, and iteration continues there.
110447 * Together these record the path from the leaf level to the root of
110448 * the tree. Iteration happens from the leaves rather than the root
110449 * both for efficiency and putting the special case at the front of
110450 * the list is easier to implement.
110452 * RecoverCursor uses a RecoverLeafCursor to iterate the rows of a
110453 * table, returning results via the SQLite virtual table interface.
110455 /* TODO(shess): It might be useful to allow DEFAULT in types to
110456 * specify what to do for NULL when an ALTER TABLE case comes up.
110457 * Unfortunately, simply adding it to the exposed schema and using
110458 * sqlite3_result_null() does not cause the default to be generate.
110459 * Handling it ourselves seems hard, unfortunately.
110463 /* Internal SQLite things that are used:
110464 * u32, u64, i64 types.
110465 * Btree, Pager, and DbPage structs.
110466 * DbPage.pData, .pPager, and .pgno
110467 * sqlite3 struct.
110468 * sqlite3BtreePager() and sqlite3BtreeGetPageSize()
110469 * sqlite3PagerAcquire() and sqlite3PagerUnref()
110470 * getVarint().
110473 /* For debugging. */
110474 #if 0
110475 #define FNENTRY() fprintf(stderr, "In %s\n", __FUNCTION__)
110476 #else
110477 #define FNENTRY()
110478 #endif
110480 /* Generic constants and helper functions. */
110482 static const unsigned char kTableLeafPage = 0x0D;
110483 static const unsigned char kTableInteriorPage = 0x05;
110485 /* From section 1.5. */
110486 static const unsigned kiPageTypeOffset = 0;
110487 static const unsigned kiPageFreeBlockOffset = 1;
110488 static const unsigned kiPageCellCountOffset = 3;
110489 static const unsigned kiPageCellContentOffset = 5;
110490 static const unsigned kiPageFragmentedBytesOffset = 7;
110491 static const unsigned knPageLeafHeaderBytes = 8;
110492 /* Interior pages contain an additional field. */
110493 static const unsigned kiPageRightChildOffset = 8;
110494 static const unsigned kiPageInteriorHeaderBytes = 12;
110496 /* Accepted types are specified by a mask. */
110497 #define MASK_ROWID (1<<0)
110498 #define MASK_INTEGER (1<<1)
110499 #define MASK_FLOAT (1<<2)
110500 #define MASK_TEXT (1<<3)
110501 #define MASK_BLOB (1<<4)
110502 #define MASK_NULL (1<<5)
110504 /* Helpers to decode fixed-size fields. */
110505 static u32 decodeUnsigned16(const unsigned char *pData){
110506 return (pData[0]<<8) + pData[1];
110508 static u32 decodeUnsigned32(const unsigned char *pData){
110509 return (decodeUnsigned16(pData)<<16) + decodeUnsigned16(pData+2);
110511 static i64 decodeSigned(const unsigned char *pData, unsigned nBytes){
110512 i64 r = (char)(*pData);
110513 while( --nBytes ){
110514 r <<= 8;
110515 r += *(++pData);
110517 return r;
110519 /* Derived from vdbeaux.c, sqlite3VdbeSerialGet(), case 7. */
110520 /* TODO(shess): Determine if swapMixedEndianFloat() applies. */
110521 static double decodeFloat64(const unsigned char *pData){
110522 #if !defined(NDEBUG)
110523 static const u64 t1 = ((u64)0x3ff00000)<<32;
110524 static const double r1 = 1.0;
110525 u64 t2 = t1;
110526 assert( sizeof(r1)==sizeof(t2) && memcmp(&r1, &t2, sizeof(r1))==0 );
110527 #endif
110528 i64 x = decodeSigned(pData, 8);
110529 double d;
110530 memcpy(&d, &x, sizeof(x));
110531 return d;
110534 /* Return true if a varint can safely be read from pData/nData. */
110535 /* TODO(shess): DbPage points into the middle of a buffer which
110536 * contains the page data before DbPage. So code should always be
110537 * able to read a small number of varints safely. Consider whether to
110538 * trust that or not.
110540 static int checkVarint(const unsigned char *pData, unsigned nData){
110541 unsigned i;
110543 /* In the worst case the decoder takes all 8 bits of the 9th byte. */
110544 if( nData>=9 ){
110545 return 1;
110548 /* Look for a high-bit-clear byte in what's left. */
110549 for( i=0; i<nData; ++i ){
110550 if( !(pData[i]&0x80) ){
110551 return 1;
110555 /* Cannot decode in the space given. */
110556 return 0;
110559 /* Return 1 if n varints can be read from pData/nData. */
110560 static int checkVarints(const unsigned char *pData, unsigned nData,
110561 unsigned n){
110562 unsigned nCur = 0; /* Byte offset within current varint. */
110563 unsigned nFound = 0; /* Number of varints found. */
110564 unsigned i;
110566 /* In the worst case the decoder takes all 8 bits of the 9th byte. */
110567 if( nData>=9*n ){
110568 return 1;
110571 for( i=0; nFound<n && i<nData; ++i ){
110572 nCur++;
110573 if( nCur==9 || !(pData[i]&0x80) ){
110574 nFound++;
110575 nCur = 0;
110579 return nFound==n;
110582 /* ctype and str[n]casecmp() can be affected by locale (eg, tr_TR).
110583 * These versions consider only the ASCII space.
110585 /* TODO(shess): It may be reasonable to just remove the need for these
110586 * entirely. The module could require "TEXT STRICT NOT NULL", not
110587 * "Text Strict Not Null" or whatever the developer felt like typing
110588 * that day. Handling corrupt data is a PERFECT place to be pedantic.
110590 static int ascii_isspace(char c){
110591 /* From fts3_expr.c */
110592 return c==' ' || c=='\t' || c=='\n' || c=='\r' || c=='\v' || c=='\f';
110594 static int ascii_isalnum(int x){
110595 /* From fts3_tokenizer1.c */
110596 return (x>='0' && x<='9') || (x>='A' && x<='Z') || (x>='a' && x<='z');
110598 static int ascii_tolower(int x){
110599 /* From fts3_tokenizer1.c */
110600 return (x>='A' && x<='Z') ? x-'A'+'a' : x;
110602 /* TODO(shess): Consider sqlite3_strnicmp() */
110603 static int ascii_strncasecmp(const char *s1, const char *s2, size_t n){
110604 const unsigned char *us1 = (const unsigned char *)s1;
110605 const unsigned char *us2 = (const unsigned char *)s2;
110606 while( *us1 && *us2 && n && ascii_tolower(*us1)==ascii_tolower(*us2) ){
110607 us1++, us2++, n--;
110609 return n ? ascii_tolower(*us1)-ascii_tolower(*us2) : 0;
110611 static int ascii_strcasecmp(const char *s1, const char *s2){
110612 /* If s2 is equal through strlen(s1), will exit while() due to s1's
110613 * trailing NUL, and return NUL-s2[strlen(s1)].
110615 return ascii_strncasecmp(s1, s2, strlen(s1)+1);
110618 /* For some reason I kept making mistakes with offset calculations. */
110619 static const unsigned char *PageData(DbPage *pPage, unsigned iOffset){
110620 assert( iOffset<=pPage->nPageSize );
110621 return (unsigned char *)pPage->pData + iOffset;
110624 /* The first page in the file contains a file header in the first 100
110625 * bytes. The page's header information comes after that. Note that
110626 * the offsets in the page's header information are relative to the
110627 * beginning of the page, NOT the end of the page header.
110629 static const unsigned char *PageHeader(DbPage *pPage){
110630 if( pPage->pgno==1 ){
110631 const unsigned nDatabaseHeader = 100;
110632 return PageData(pPage, nDatabaseHeader);
110633 }else{
110634 return PageData(pPage, 0);
110638 /* Helper to fetch the pager and page size for the named database. */
110639 static int GetPager(sqlite3 *db, const char *zName,
110640 Pager **pPager, unsigned *pnPageSize){
110641 Btree *pBt = NULL;
110642 int i;
110643 for( i=0; i<db->nDb; ++i ){
110644 if( ascii_strcasecmp(db->aDb[i].zName, zName)==0 ){
110645 pBt = db->aDb[i].pBt;
110646 break;
110649 if( !pBt ){
110650 return SQLITE_ERROR;
110653 *pPager = sqlite3BtreePager(pBt);
110654 *pnPageSize = sqlite3BtreeGetPageSize(pBt) - sqlite3BtreeGetReserve(pBt);
110655 return SQLITE_OK;
110658 /* iSerialType is a type read from a record header. See "2.1 Record Format".
110661 /* Storage size of iSerialType in bytes. My interpretation of SQLite
110662 * documentation is that text and blob fields can have 32-bit length.
110663 * Values past 2^31-12 will need more than 32 bits to encode, which is
110664 * why iSerialType is u64.
110666 static u32 SerialTypeLength(u64 iSerialType){
110667 switch( iSerialType ){
110668 case 0 : return 0; /* NULL */
110669 case 1 : return 1; /* Various integers. */
110670 case 2 : return 2;
110671 case 3 : return 3;
110672 case 4 : return 4;
110673 case 5 : return 6;
110674 case 6 : return 8;
110675 case 7 : return 8; /* 64-bit float. */
110676 case 8 : return 0; /* Constant 0. */
110677 case 9 : return 0; /* Constant 1. */
110678 case 10 : case 11 : assert( !"RESERVED TYPE"); return 0;
110680 return (u32)((iSerialType>>1) - 6);
110683 /* True if iSerialType refers to a blob. */
110684 static int SerialTypeIsBlob(u64 iSerialType){
110685 assert( iSerialType>=12 );
110686 return (iSerialType%2)==0;
110689 /* Returns true if the serialized type represented by iSerialType is
110690 * compatible with the given type mask.
110692 static int SerialTypeIsCompatible(u64 iSerialType, unsigned char mask){
110693 switch( iSerialType ){
110694 case 0 : return (mask&MASK_NULL)!=0;
110695 case 1 : return (mask&MASK_INTEGER)!=0;
110696 case 2 : return (mask&MASK_INTEGER)!=0;
110697 case 3 : return (mask&MASK_INTEGER)!=0;
110698 case 4 : return (mask&MASK_INTEGER)!=0;
110699 case 5 : return (mask&MASK_INTEGER)!=0;
110700 case 6 : return (mask&MASK_INTEGER)!=0;
110701 case 7 : return (mask&MASK_FLOAT)!=0;
110702 case 8 : return (mask&MASK_INTEGER)!=0;
110703 case 9 : return (mask&MASK_INTEGER)!=0;
110704 case 10 : assert( !"RESERVED TYPE"); return 0;
110705 case 11 : assert( !"RESERVED TYPE"); return 0;
110707 return (mask&(SerialTypeIsBlob(iSerialType) ? MASK_BLOB : MASK_TEXT));
110710 /* Versions of strdup() with return values appropriate for
110711 * sqlite3_free(). malloc.c has sqlite3DbStrDup()/NDup(), but those
110712 * need sqlite3DbFree(), which seems intrusive.
110714 static char *sqlite3_strndup(const char *z, unsigned n){
110715 char *zNew;
110717 if( z==NULL ){
110718 return NULL;
110721 zNew = sqlite3_malloc(n+1);
110722 if( zNew!=NULL ){
110723 memcpy(zNew, z, n);
110724 zNew[n] = '\0';
110726 return zNew;
110728 static char *sqlite3_strdup(const char *z){
110729 if( z==NULL ){
110730 return NULL;
110732 return sqlite3_strndup(z, strlen(z));
110735 /* Fetch the page number of zTable in zDb from sqlite_master in zDb,
110736 * and put it in *piRootPage.
110738 static int getRootPage(sqlite3 *db, const char *zDb, const char *zTable,
110739 u32 *piRootPage){
110740 char *zSql; /* SQL selecting root page of named element. */
110741 sqlite3_stmt *pStmt;
110742 int rc;
110744 if( strcmp(zTable, "sqlite_master")==0 ){
110745 *piRootPage = 1;
110746 return SQLITE_OK;
110749 zSql = sqlite3_mprintf("SELECT rootpage FROM %s.sqlite_master "
110750 "WHERE type = 'table' AND tbl_name = %Q",
110751 zDb, zTable);
110752 if( !zSql ){
110753 return SQLITE_NOMEM;
110756 rc = sqlite3_prepare_v2(db, zSql, -1, &pStmt, 0);
110757 sqlite3_free(zSql);
110758 if( rc!=SQLITE_OK ){
110759 return rc;
110762 /* Require a result. */
110763 rc = sqlite3_step(pStmt);
110764 if( rc==SQLITE_DONE ){
110765 rc = SQLITE_CORRUPT;
110766 }else if( rc==SQLITE_ROW ){
110767 *piRootPage = sqlite3_column_int(pStmt, 0);
110769 /* Require only one result. */
110770 rc = sqlite3_step(pStmt);
110771 if( rc==SQLITE_DONE ){
110772 rc = SQLITE_OK;
110773 }else if( rc==SQLITE_ROW ){
110774 rc = SQLITE_CORRUPT;
110777 sqlite3_finalize(pStmt);
110778 return rc;
110781 static int getEncoding(sqlite3 *db, const char *zDb, int* piEncoding){
110782 sqlite3_stmt *pStmt;
110783 int rc;
110784 char *zSql = sqlite3_mprintf("PRAGMA %s.encoding", zDb);
110785 if( !zSql ){
110786 return SQLITE_NOMEM;
110789 rc = sqlite3_prepare_v2(db, zSql, -1, &pStmt, 0);
110790 sqlite3_free(zSql);
110791 if( rc!=SQLITE_OK ){
110792 return rc;
110795 /* Require a result. */
110796 rc = sqlite3_step(pStmt);
110797 if( rc==SQLITE_DONE ){
110798 /* This case should not be possible. */
110799 rc = SQLITE_CORRUPT;
110800 }else if( rc==SQLITE_ROW ){
110801 if( sqlite3_column_type(pStmt, 0)==SQLITE_TEXT ){
110802 const char* z = (const char *)sqlite3_column_text(pStmt, 0);
110803 /* These strings match the literals in pragma.c. */
110804 if( !strcmp(z, "UTF-16le") ){
110805 *piEncoding = SQLITE_UTF16LE;
110806 }else if( !strcmp(z, "UTF-16be") ){
110807 *piEncoding = SQLITE_UTF16BE;
110808 }else if( !strcmp(z, "UTF-8") ){
110809 *piEncoding = SQLITE_UTF8;
110810 }else{
110811 /* This case should not be possible. */
110812 *piEncoding = SQLITE_UTF8;
110814 }else{
110815 /* This case should not be possible. */
110816 *piEncoding = SQLITE_UTF8;
110819 /* Require only one result. */
110820 rc = sqlite3_step(pStmt);
110821 if( rc==SQLITE_DONE ){
110822 rc = SQLITE_OK;
110823 }else if( rc==SQLITE_ROW ){
110824 /* This case should not be possible. */
110825 rc = SQLITE_CORRUPT;
110828 sqlite3_finalize(pStmt);
110829 return rc;
110832 /* Cursor for iterating interior nodes. Interior page cells contain a
110833 * child page number and a rowid. The child page contains items left
110834 * of the rowid (less than). The rightmost page of the subtree is
110835 * stored in the page header.
110837 * interiorCursorDestroy - release all resources associated with the
110838 * cursor and any parent cursors.
110839 * interiorCursorCreate - create a cursor with the given parent and page.
110840 * interiorCursorEOF - returns true if neither the cursor nor the
110841 * parent cursors can return any more data.
110842 * interiorCursorNextPage - fetch the next child page from the cursor.
110844 * Logically, interiorCursorNextPage() returns the next child page
110845 * number from the page the cursor is currently reading, calling the
110846 * parent cursor as necessary to get new pages to read, until done.
110847 * SQLITE_ROW if a page is returned, SQLITE_DONE if out of pages,
110848 * error otherwise. Unfortunately, if the table is corrupted
110849 * unexpected pages can be returned. If any unexpected page is found,
110850 * leaf or otherwise, it is returned to the caller for processing,
110851 * with the interior cursor left empty. The next call to
110852 * interiorCursorNextPage() will recurse to the parent cursor until an
110853 * interior page to iterate is returned.
110855 * Note that while interiorCursorNextPage() will refuse to follow
110856 * loops, it does not keep track of pages returned for purposes of
110857 * preventing duplication.
110859 * Note that interiorCursorEOF() could return false (not at EOF), and
110860 * interiorCursorNextPage() could still return SQLITE_DONE. This
110861 * could happen if there are more cells to iterate in an interior
110862 * page, but those cells refer to invalid pages.
110864 typedef struct RecoverInteriorCursor RecoverInteriorCursor;
110865 struct RecoverInteriorCursor {
110866 RecoverInteriorCursor *pParent; /* Parent node to this node. */
110867 DbPage *pPage; /* Reference to leaf page. */
110868 unsigned nPageSize; /* Size of page. */
110869 unsigned nChildren; /* Number of children on the page. */
110870 unsigned iChild; /* Index of next child to return. */
110873 static void interiorCursorDestroy(RecoverInteriorCursor *pCursor){
110874 /* Destroy all the cursors to the root. */
110875 while( pCursor ){
110876 RecoverInteriorCursor *p = pCursor;
110877 pCursor = pCursor->pParent;
110879 if( p->pPage ){
110880 sqlite3PagerUnref(p->pPage);
110881 p->pPage = NULL;
110884 memset(p, 0xA5, sizeof(*p));
110885 sqlite3_free(p);
110889 /* Internal helper. Reset storage in preparation for iterating pPage. */
110890 static void interiorCursorSetPage(RecoverInteriorCursor *pCursor,
110891 DbPage *pPage){
110892 const unsigned knMinCellLength = 2 + 4 + 1;
110893 unsigned nMaxChildren;
110894 assert( PageHeader(pPage)[kiPageTypeOffset]==kTableInteriorPage );
110896 if( pCursor->pPage ){
110897 sqlite3PagerUnref(pCursor->pPage);
110898 pCursor->pPage = NULL;
110900 pCursor->pPage = pPage;
110901 pCursor->iChild = 0;
110903 /* A child for each cell, plus one in the header. */
110904 pCursor->nChildren = decodeUnsigned16(PageHeader(pPage) +
110905 kiPageCellCountOffset) + 1;
110907 /* The maximum possible value for nChildren is:
110908 * (nPageSize - kiPageInteriorHeaderBytes) /
110909 * (sizeof(uint16) + sizeof(uint32) + 1) + 1
110910 * Each child requires a 16-bit offset from an array after the header, and
110911 * each child contains a 32-bit page number and at least a varint (min size of
110912 * one byte). The final child page is in the header.
110914 nMaxChildren =
110915 (pCursor->nPageSize - kiPageInteriorHeaderBytes) / knMinCellLength + 1;
110916 if (pCursor->nChildren > nMaxChildren) {
110917 pCursor->nChildren = nMaxChildren;
110921 static int interiorCursorCreate(RecoverInteriorCursor *pParent,
110922 DbPage *pPage, int nPageSize,
110923 RecoverInteriorCursor **ppCursor){
110924 RecoverInteriorCursor *pCursor =
110925 sqlite3_malloc(sizeof(RecoverInteriorCursor));
110926 if( !pCursor ){
110927 return SQLITE_NOMEM;
110930 memset(pCursor, 0, sizeof(*pCursor));
110931 pCursor->pParent = pParent;
110932 pCursor->nPageSize = nPageSize;
110933 interiorCursorSetPage(pCursor, pPage);
110934 *ppCursor = pCursor;
110935 return SQLITE_OK;
110938 /* Internal helper. Return the child page number at iChild. */
110939 static unsigned interiorCursorChildPage(RecoverInteriorCursor *pCursor){
110940 const unsigned char *pPageHeader; /* Header of the current page. */
110941 const unsigned char *pCellOffsets; /* Offset to page's cell offsets. */
110942 unsigned iCellOffset; /* Offset of target cell. */
110944 assert( pCursor->iChild<pCursor->nChildren );
110946 /* Rightmost child is in the header. */
110947 pPageHeader = PageHeader(pCursor->pPage);
110948 if( pCursor->iChild==pCursor->nChildren-1 ){
110949 return decodeUnsigned32(pPageHeader + kiPageRightChildOffset);
110952 /* Each cell is a 4-byte integer page number and a varint rowid
110953 * which is greater than the rowid of items in that sub-tree (this
110954 * module ignores ordering). The offset is from the beginning of the
110955 * page, not from the page header.
110957 pCellOffsets = pPageHeader + kiPageInteriorHeaderBytes;
110958 iCellOffset = decodeUnsigned16(pCellOffsets + pCursor->iChild*2);
110959 if( iCellOffset<=pCursor->nPageSize-4 ){
110960 return decodeUnsigned32(PageData(pCursor->pPage, iCellOffset));
110963 /* TODO(shess): Check for cell overlaps? Cells require 4 bytes plus
110964 * a varint. Check could be identical to leaf check (or even a
110965 * shared helper testing for "Cells starting in this range"?).
110968 /* If the offset is broken, return an invalid page number. */
110969 return 0;
110972 static int interiorCursorEOF(RecoverInteriorCursor *pCursor){
110973 /* Find a parent with remaining children. EOF if none found. */
110974 while( pCursor && pCursor->iChild>=pCursor->nChildren ){
110975 pCursor = pCursor->pParent;
110977 return pCursor==NULL;
110980 /* Internal helper. Used to detect if iPage would cause a loop. */
110981 static int interiorCursorPageInUse(RecoverInteriorCursor *pCursor,
110982 unsigned iPage){
110983 /* Find any parent using the indicated page. */
110984 while( pCursor && pCursor->pPage->pgno!=iPage ){
110985 pCursor = pCursor->pParent;
110987 return pCursor!=NULL;
110990 /* Get the next page from the interior cursor at *ppCursor. Returns
110991 * SQLITE_ROW with the page in *ppPage, or SQLITE_DONE if out of
110992 * pages, or the error SQLite returned.
110994 * If the tree is uneven, then when the cursor attempts to get a new
110995 * interior page from the parent cursor, it may get a non-interior
110996 * page. In that case, the new page is returned, and *ppCursor is
110997 * updated to point to the parent cursor (this cursor is freed).
110999 /* TODO(shess): I've tried to avoid recursion in most of this code,
111000 * but this case is more challenging because the recursive call is in
111001 * the middle of operation. One option for converting it without
111002 * adding memory management would be to retain the head pointer and
111003 * use a helper to "back up" as needed. Another option would be to
111004 * reverse the list during traversal.
111006 static int interiorCursorNextPage(RecoverInteriorCursor **ppCursor,
111007 DbPage **ppPage){
111008 RecoverInteriorCursor *pCursor = *ppCursor;
111009 while( 1 ){
111010 int rc;
111011 const unsigned char *pPageHeader; /* Header of found page. */
111013 /* Find a valid child page which isn't on the stack. */
111014 while( pCursor->iChild<pCursor->nChildren ){
111015 const unsigned iPage = interiorCursorChildPage(pCursor);
111016 pCursor->iChild++;
111017 if( interiorCursorPageInUse(pCursor, iPage) ){
111018 fprintf(stderr, "Loop detected at %d\n", iPage);
111019 }else{
111020 int rc = sqlite3PagerAcquire(pCursor->pPage->pPager, iPage, ppPage, 0);
111021 if( rc==SQLITE_OK ){
111022 return SQLITE_ROW;
111027 /* This page has no more children. Get next page from parent. */
111028 if( !pCursor->pParent ){
111029 return SQLITE_DONE;
111031 rc = interiorCursorNextPage(&pCursor->pParent, ppPage);
111032 if( rc!=SQLITE_ROW ){
111033 return rc;
111036 /* If a non-interior page is received, that either means that the
111037 * tree is uneven, or that a child was re-used (say as an overflow
111038 * page). Remove this cursor and let the caller handle the page.
111040 pPageHeader = PageHeader(*ppPage);
111041 if( pPageHeader[kiPageTypeOffset]!=kTableInteriorPage ){
111042 *ppCursor = pCursor->pParent;
111043 pCursor->pParent = NULL;
111044 interiorCursorDestroy(pCursor);
111045 return SQLITE_ROW;
111048 /* Iterate the new page. */
111049 interiorCursorSetPage(pCursor, *ppPage);
111050 *ppPage = NULL;
111053 assert(NULL); /* NOTREACHED() */
111054 return SQLITE_CORRUPT;
111057 /* Large rows are spilled to overflow pages. The row's main page
111058 * stores the overflow page number after the local payload, with a
111059 * linked list forward from there as necessary. overflowMaybeCreate()
111060 * and overflowGetSegment() provide an abstraction for accessing such
111061 * data while centralizing the code.
111063 * overflowDestroy - releases all resources associated with the structure.
111064 * overflowMaybeCreate - create the overflow structure if it is needed
111065 * to represent the given record. See function comment.
111066 * overflowGetSegment - fetch a segment from the record, accounting
111067 * for overflow pages. Segments which are not
111068 * entirely contained with a page are constructed
111069 * into a buffer which is returned. See function comment.
111071 typedef struct RecoverOverflow RecoverOverflow;
111072 struct RecoverOverflow {
111073 RecoverOverflow *pNextOverflow;
111074 DbPage *pPage;
111075 unsigned nPageSize;
111078 static void overflowDestroy(RecoverOverflow *pOverflow){
111079 while( pOverflow ){
111080 RecoverOverflow *p = pOverflow;
111081 pOverflow = p->pNextOverflow;
111083 if( p->pPage ){
111084 sqlite3PagerUnref(p->pPage);
111085 p->pPage = NULL;
111088 memset(p, 0xA5, sizeof(*p));
111089 sqlite3_free(p);
111093 /* Internal helper. Used to detect if iPage would cause a loop. */
111094 static int overflowPageInUse(RecoverOverflow *pOverflow, unsigned iPage){
111095 while( pOverflow && pOverflow->pPage->pgno!=iPage ){
111096 pOverflow = pOverflow->pNextOverflow;
111098 return pOverflow!=NULL;
111101 /* Setup to access an nRecordBytes record beginning at iRecordOffset
111102 * in pPage. If nRecordBytes can be satisfied entirely from pPage,
111103 * then no overflow pages are needed an *pnLocalRecordBytes is set to
111104 * nRecordBytes. Otherwise, *ppOverflow is set to the head of a list
111105 * of overflow pages, and *pnLocalRecordBytes is set to the number of
111106 * bytes local to pPage.
111108 * overflowGetSegment() will do the right thing regardless of whether
111109 * those values are set to be in-page or not.
111111 static int overflowMaybeCreate(DbPage *pPage, unsigned nPageSize,
111112 unsigned iRecordOffset, unsigned nRecordBytes,
111113 unsigned *pnLocalRecordBytes,
111114 RecoverOverflow **ppOverflow){
111115 unsigned nLocalRecordBytes; /* Record bytes in the leaf page. */
111116 unsigned iNextPage; /* Next page number for record data. */
111117 unsigned nBytes; /* Maximum record bytes as of current page. */
111118 int rc;
111119 RecoverOverflow *pFirstOverflow; /* First in linked list of pages. */
111120 RecoverOverflow *pLastOverflow; /* End of linked list. */
111122 /* Calculations from the "Table B-Tree Leaf Cell" part of section
111123 * 1.5 of http://www.sqlite.org/fileformat2.html . maxLocal and
111124 * minLocal to match naming in btree.c.
111126 const unsigned maxLocal = nPageSize - 35;
111127 const unsigned minLocal = ((nPageSize-12)*32/255)-23; /* m */
111129 /* Always fit anything smaller than maxLocal. */
111130 if( nRecordBytes<=maxLocal ){
111131 *pnLocalRecordBytes = nRecordBytes;
111132 *ppOverflow = NULL;
111133 return SQLITE_OK;
111136 /* Calculate the remainder after accounting for minLocal on the leaf
111137 * page and what packs evenly into overflow pages. If the remainder
111138 * does not fit into maxLocal, then a partially-full overflow page
111139 * will be required in any case, so store as little as possible locally.
111141 nLocalRecordBytes = minLocal+((nRecordBytes-minLocal)%(nPageSize-4));
111142 if( maxLocal<nLocalRecordBytes ){
111143 nLocalRecordBytes = minLocal;
111146 /* Don't read off the end of the page. */
111147 if( iRecordOffset+nLocalRecordBytes+4>nPageSize ){
111148 return SQLITE_CORRUPT;
111151 /* First overflow page number is after the local bytes. */
111152 iNextPage =
111153 decodeUnsigned32(PageData(pPage, iRecordOffset + nLocalRecordBytes));
111154 nBytes = nLocalRecordBytes;
111156 /* While there are more pages to read, and more bytes are needed,
111157 * get another page.
111159 pFirstOverflow = pLastOverflow = NULL;
111160 rc = SQLITE_OK;
111161 while( iNextPage && nBytes<nRecordBytes ){
111162 RecoverOverflow *pOverflow; /* New overflow page for the list. */
111164 rc = sqlite3PagerAcquire(pPage->pPager, iNextPage, &pPage, 0);
111165 if( rc!=SQLITE_OK ){
111166 break;
111169 pOverflow = sqlite3_malloc(sizeof(RecoverOverflow));
111170 if( !pOverflow ){
111171 sqlite3PagerUnref(pPage);
111172 rc = SQLITE_NOMEM;
111173 break;
111175 memset(pOverflow, 0, sizeof(*pOverflow));
111176 pOverflow->pPage = pPage;
111177 pOverflow->nPageSize = nPageSize;
111179 if( !pFirstOverflow ){
111180 pFirstOverflow = pOverflow;
111181 }else{
111182 pLastOverflow->pNextOverflow = pOverflow;
111184 pLastOverflow = pOverflow;
111186 iNextPage = decodeUnsigned32(pPage->pData);
111187 nBytes += nPageSize-4;
111189 /* Avoid loops. */
111190 if( overflowPageInUse(pFirstOverflow, iNextPage) ){
111191 fprintf(stderr, "Overflow loop detected at %d\n", iNextPage);
111192 rc = SQLITE_CORRUPT;
111193 break;
111197 /* If there were not enough pages, or too many, things are corrupt.
111198 * Not having enough pages is an obvious problem, all the data
111199 * cannot be read. Too many pages means that the contents of the
111200 * row between the main page and the overflow page(s) is
111201 * inconsistent (most likely one or more of the overflow pages does
111202 * not really belong to this row).
111204 if( rc==SQLITE_OK && (nBytes<nRecordBytes || iNextPage) ){
111205 rc = SQLITE_CORRUPT;
111208 if( rc==SQLITE_OK ){
111209 *ppOverflow = pFirstOverflow;
111210 *pnLocalRecordBytes = nLocalRecordBytes;
111211 }else if( pFirstOverflow ){
111212 overflowDestroy(pFirstOverflow);
111214 return rc;
111217 /* Use in concert with overflowMaybeCreate() to efficiently read parts
111218 * of a potentially-overflowing record. pPage and iRecordOffset are
111219 * the values passed into overflowMaybeCreate(), nLocalRecordBytes and
111220 * pOverflow are the values returned by that call.
111222 * On SQLITE_OK, *ppBase points to nRequestBytes of data at
111223 * iRequestOffset within the record. If the data exists contiguously
111224 * in a page, a direct pointer is returned, otherwise a buffer from
111225 * sqlite3_malloc() is returned with the data. *pbFree is set true if
111226 * sqlite3_free() should be called on *ppBase.
111228 /* Operation of this function is subtle. At any time, pPage is the
111229 * current page, with iRecordOffset and nLocalRecordBytes being record
111230 * data within pPage, and pOverflow being the overflow page after
111231 * pPage. This allows the code to handle both the initial leaf page
111232 * and overflow pages consistently by adjusting the values
111233 * appropriately.
111235 static int overflowGetSegment(DbPage *pPage, unsigned iRecordOffset,
111236 unsigned nLocalRecordBytes,
111237 RecoverOverflow *pOverflow,
111238 unsigned iRequestOffset, unsigned nRequestBytes,
111239 unsigned char **ppBase, int *pbFree){
111240 unsigned nBase; /* Amount of data currently collected. */
111241 unsigned char *pBase; /* Buffer to collect record data into. */
111243 /* Skip to the page containing the start of the data. */
111244 while( iRequestOffset>=nLocalRecordBytes && pOverflow ){
111245 /* Factor out current page's contribution. */
111246 iRequestOffset -= nLocalRecordBytes;
111248 /* Move forward to the next page in the list. */
111249 pPage = pOverflow->pPage;
111250 iRecordOffset = 4;
111251 nLocalRecordBytes = pOverflow->nPageSize - iRecordOffset;
111252 pOverflow = pOverflow->pNextOverflow;
111255 /* If the requested data is entirely within this page, return a
111256 * pointer into the page.
111258 if( iRequestOffset+nRequestBytes<=nLocalRecordBytes ){
111259 /* TODO(shess): "assignment discards qualifiers from pointer target type"
111260 * Having ppBase be const makes sense, but sqlite3_free() takes non-const.
111262 *ppBase = (unsigned char *)PageData(pPage, iRecordOffset + iRequestOffset);
111263 *pbFree = 0;
111264 return SQLITE_OK;
111267 /* The data range would require additional pages. */
111268 if( !pOverflow ){
111269 /* Should never happen, the range is outside the nRecordBytes
111270 * passed to overflowMaybeCreate().
111272 assert(NULL); /* NOTREACHED */
111273 return SQLITE_ERROR;
111276 /* Get a buffer to construct into. */
111277 nBase = 0;
111278 pBase = sqlite3_malloc(nRequestBytes);
111279 if( !pBase ){
111280 return SQLITE_NOMEM;
111282 while( nBase<nRequestBytes ){
111283 /* Copy over data present on this page. */
111284 unsigned nCopyBytes = nRequestBytes - nBase;
111285 if( nLocalRecordBytes-iRequestOffset<nCopyBytes ){
111286 nCopyBytes = nLocalRecordBytes - iRequestOffset;
111288 memcpy(pBase + nBase, PageData(pPage, iRecordOffset + iRequestOffset),
111289 nCopyBytes);
111290 nBase += nCopyBytes;
111292 if( pOverflow ){
111293 /* Copy from start of record data in future pages. */
111294 iRequestOffset = 0;
111296 /* Move forward to the next page in the list. Should match
111297 * first while() loop.
111299 pPage = pOverflow->pPage;
111300 iRecordOffset = 4;
111301 nLocalRecordBytes = pOverflow->nPageSize - iRecordOffset;
111302 pOverflow = pOverflow->pNextOverflow;
111303 }else if( nBase<nRequestBytes ){
111304 /* Ran out of overflow pages with data left to deliver. Not
111305 * possible if the requested range fits within nRecordBytes
111306 * passed to overflowMaybeCreate() when creating pOverflow.
111308 assert(NULL); /* NOTREACHED */
111309 sqlite3_free(pBase);
111310 return SQLITE_ERROR;
111313 assert( nBase==nRequestBytes );
111314 *ppBase = pBase;
111315 *pbFree = 1;
111316 return SQLITE_OK;
111319 /* Primary structure for iterating the contents of a table.
111321 * leafCursorDestroy - release all resources associated with the cursor.
111322 * leafCursorCreate - create a cursor to iterate items from tree at
111323 * the provided root page.
111324 * leafCursorNextValidCell - get the cursor ready to access data from
111325 * the next valid cell in the table.
111326 * leafCursorCellRowid - get the current cell's rowid.
111327 * leafCursorCellColumns - get current cell's column count.
111328 * leafCursorCellColInfo - get type and data for a column in current cell.
111330 * leafCursorNextValidCell skips cells which fail simple integrity
111331 * checks, such as overlapping other cells, or being located at
111332 * impossible offsets, or where header data doesn't correctly describe
111333 * payload data. Returns SQLITE_ROW if a valid cell is found,
111334 * SQLITE_DONE if all pages in the tree were exhausted.
111336 * leafCursorCellColInfo() accounts for overflow pages in the style of
111337 * overflowGetSegment().
111339 typedef struct RecoverLeafCursor RecoverLeafCursor;
111340 struct RecoverLeafCursor {
111341 RecoverInteriorCursor *pParent; /* Parent node to this node. */
111342 DbPage *pPage; /* Reference to leaf page. */
111343 unsigned nPageSize; /* Size of pPage. */
111344 unsigned nCells; /* Number of cells in pPage. */
111345 unsigned iCell; /* Current cell. */
111347 /* Info parsed from data in iCell. */
111348 i64 iRowid; /* rowid parsed. */
111349 unsigned nRecordCols; /* how many items in the record. */
111350 u64 iRecordOffset; /* offset to record data. */
111351 /* TODO(shess): nRecordBytes and nRecordHeaderBytes are used in
111352 * leafCursorCellColInfo() to prevent buffer overruns.
111353 * leafCursorCellDecode() already verified that the cell is valid, so
111354 * those checks should be redundant.
111356 u64 nRecordBytes; /* Size of record data. */
111357 unsigned nLocalRecordBytes; /* Amount of record data in-page. */
111358 unsigned nRecordHeaderBytes; /* Size of record header data. */
111359 unsigned char *pRecordHeader; /* Pointer to record header data. */
111360 int bFreeRecordHeader; /* True if record header requires free. */
111361 RecoverOverflow *pOverflow; /* Cell overflow info, if needed. */
111364 /* Internal helper shared between next-page and create-cursor. If
111365 * pPage is a leaf page, it will be stored in the cursor and state
111366 * initialized for reading cells.
111368 * If pPage is an interior page, a new parent cursor is created and
111369 * injected on the stack. This is necessary to handle trees with
111370 * uneven depth, but also is used during initial setup.
111372 * If pPage is not a table page at all, it is discarded.
111374 * If SQLITE_OK is returned, the caller no longer owns pPage,
111375 * otherwise the caller is responsible for discarding it.
111377 static int leafCursorLoadPage(RecoverLeafCursor *pCursor, DbPage *pPage){
111378 const unsigned char *pPageHeader; /* Header of *pPage */
111380 /* Release the current page. */
111381 if( pCursor->pPage ){
111382 sqlite3PagerUnref(pCursor->pPage);
111383 pCursor->pPage = NULL;
111384 pCursor->iCell = pCursor->nCells = 0;
111387 /* If the page is an unexpected interior node, inject a new stack
111388 * layer and try again from there.
111390 pPageHeader = PageHeader(pPage);
111391 if( pPageHeader[kiPageTypeOffset]==kTableInteriorPage ){
111392 RecoverInteriorCursor *pParent;
111393 int rc = interiorCursorCreate(pCursor->pParent, pPage, pCursor->nPageSize,
111394 &pParent);
111395 if( rc!=SQLITE_OK ){
111396 return rc;
111398 pCursor->pParent = pParent;
111399 return SQLITE_OK;
111402 /* Not a leaf page, skip it. */
111403 if( pPageHeader[kiPageTypeOffset]!=kTableLeafPage ){
111404 sqlite3PagerUnref(pPage);
111405 return SQLITE_OK;
111408 /* Take ownership of the page and start decoding. */
111409 pCursor->pPage = pPage;
111410 pCursor->iCell = 0;
111411 pCursor->nCells = decodeUnsigned16(pPageHeader + kiPageCellCountOffset);
111412 return SQLITE_OK;
111415 /* Get the next leaf-level page in the tree. Returns SQLITE_ROW when
111416 * a leaf page is found, SQLITE_DONE when no more leaves exist, or any
111417 * error which occurred.
111419 static int leafCursorNextPage(RecoverLeafCursor *pCursor){
111420 if( !pCursor->pParent ){
111421 return SQLITE_DONE;
111424 /* Repeatedly load the parent's next child page until a leaf is found. */
111426 DbPage *pNextPage;
111427 int rc = interiorCursorNextPage(&pCursor->pParent, &pNextPage);
111428 if( rc!=SQLITE_ROW ){
111429 assert( rc==SQLITE_DONE );
111430 return rc;
111433 rc = leafCursorLoadPage(pCursor, pNextPage);
111434 if( rc!=SQLITE_OK ){
111435 sqlite3PagerUnref(pNextPage);
111436 return rc;
111438 } while( !pCursor->pPage );
111440 return SQLITE_ROW;
111443 static void leafCursorDestroyCellData(RecoverLeafCursor *pCursor){
111444 if( pCursor->bFreeRecordHeader ){
111445 sqlite3_free(pCursor->pRecordHeader);
111447 pCursor->bFreeRecordHeader = 0;
111448 pCursor->pRecordHeader = NULL;
111450 if( pCursor->pOverflow ){
111451 overflowDestroy(pCursor->pOverflow);
111452 pCursor->pOverflow = NULL;
111456 static void leafCursorDestroy(RecoverLeafCursor *pCursor){
111457 leafCursorDestroyCellData(pCursor);
111459 if( pCursor->pParent ){
111460 interiorCursorDestroy(pCursor->pParent);
111461 pCursor->pParent = NULL;
111464 if( pCursor->pPage ){
111465 sqlite3PagerUnref(pCursor->pPage);
111466 pCursor->pPage = NULL;
111469 memset(pCursor, 0xA5, sizeof(*pCursor));
111470 sqlite3_free(pCursor);
111473 /* Create a cursor to iterate the rows from the leaf pages of a table
111474 * rooted at iRootPage.
111476 /* TODO(shess): recoverOpen() calls this to setup the cursor, and I
111477 * think that recoverFilter() may make a hard assumption that the
111478 * cursor returned will turn up at least one valid cell.
111480 * The cases I can think of which break this assumption are:
111481 * - pPage is a valid leaf page with no valid cells.
111482 * - pPage is a valid interior page with no valid leaves.
111483 * - pPage is a valid interior page who's leaves contain no valid cells.
111484 * - pPage is not a valid leaf or interior page.
111486 static int leafCursorCreate(Pager *pPager, unsigned nPageSize,
111487 u32 iRootPage, RecoverLeafCursor **ppCursor){
111488 DbPage *pPage; /* Reference to page at iRootPage. */
111489 RecoverLeafCursor *pCursor; /* Leaf cursor being constructed. */
111490 int rc;
111492 /* Start out with the root page. */
111493 rc = sqlite3PagerAcquire(pPager, iRootPage, &pPage, 0);
111494 if( rc!=SQLITE_OK ){
111495 return rc;
111498 pCursor = sqlite3_malloc(sizeof(RecoverLeafCursor));
111499 if( !pCursor ){
111500 sqlite3PagerUnref(pPage);
111501 return SQLITE_NOMEM;
111503 memset(pCursor, 0, sizeof(*pCursor));
111505 pCursor->nPageSize = nPageSize;
111507 rc = leafCursorLoadPage(pCursor, pPage);
111508 if( rc!=SQLITE_OK ){
111509 sqlite3PagerUnref(pPage);
111510 leafCursorDestroy(pCursor);
111511 return rc;
111514 /* pPage wasn't a leaf page, find the next leaf page. */
111515 if( !pCursor->pPage ){
111516 rc = leafCursorNextPage(pCursor);
111517 if( rc!=SQLITE_DONE && rc!=SQLITE_ROW ){
111518 leafCursorDestroy(pCursor);
111519 return rc;
111523 *ppCursor = pCursor;
111524 return SQLITE_OK;
111527 /* Useful for setting breakpoints. */
111528 static int ValidateError(){
111529 return SQLITE_ERROR;
111532 /* Setup the cursor for reading the information from cell iCell. */
111533 static int leafCursorCellDecode(RecoverLeafCursor *pCursor){
111534 const unsigned char *pPageHeader; /* Header of current page. */
111535 const unsigned char *pPageEnd; /* Byte after end of current page. */
111536 const unsigned char *pCellOffsets; /* Pointer to page's cell offsets. */
111537 unsigned iCellOffset; /* Offset of current cell (iCell). */
111538 const unsigned char *pCell; /* Pointer to data at iCellOffset. */
111539 unsigned nCellMaxBytes; /* Maximum local size of iCell. */
111540 unsigned iEndOffset; /* End of iCell's in-page data. */
111541 u64 nRecordBytes; /* Expected size of cell, w/overflow. */
111542 u64 iRowid; /* iCell's rowid (in table). */
111543 unsigned nRead; /* Amount of cell read. */
111544 unsigned nRecordHeaderRead; /* Header data read. */
111545 u64 nRecordHeaderBytes; /* Header size expected. */
111546 unsigned nRecordCols; /* Columns read from header. */
111547 u64 nRecordColBytes; /* Bytes in payload for those columns. */
111548 unsigned i;
111549 int rc;
111551 assert( pCursor->iCell<pCursor->nCells );
111553 leafCursorDestroyCellData(pCursor);
111555 /* Find the offset to the row. */
111556 pPageHeader = PageHeader(pCursor->pPage);
111557 pCellOffsets = pPageHeader + knPageLeafHeaderBytes;
111558 pPageEnd = PageData(pCursor->pPage, pCursor->nPageSize);
111559 if( pCellOffsets + pCursor->iCell*2 + 2 > pPageEnd ){
111560 return ValidateError();
111562 iCellOffset = decodeUnsigned16(pCellOffsets + pCursor->iCell*2);
111563 if( iCellOffset>=pCursor->nPageSize ){
111564 return ValidateError();
111567 pCell = PageData(pCursor->pPage, iCellOffset);
111568 nCellMaxBytes = pCursor->nPageSize - iCellOffset;
111570 /* B-tree leaf cells lead with varint record size, varint rowid and
111571 * varint header size.
111573 /* TODO(shess): The smallest page size is 512 bytes, which has an m
111574 * of 39. Three varints need at most 27 bytes to encode. I think.
111576 if( !checkVarints(pCell, nCellMaxBytes, 3) ){
111577 return ValidateError();
111580 nRead = getVarint(pCell, &nRecordBytes);
111581 assert( iCellOffset+nRead<=pCursor->nPageSize );
111582 pCursor->nRecordBytes = nRecordBytes;
111584 nRead += getVarint(pCell + nRead, &iRowid);
111585 assert( iCellOffset+nRead<=pCursor->nPageSize );
111586 pCursor->iRowid = (i64)iRowid;
111588 pCursor->iRecordOffset = iCellOffset + nRead;
111590 /* Start overflow setup here because nLocalRecordBytes is needed to
111591 * check cell overlap.
111593 rc = overflowMaybeCreate(pCursor->pPage, pCursor->nPageSize,
111594 pCursor->iRecordOffset, pCursor->nRecordBytes,
111595 &pCursor->nLocalRecordBytes,
111596 &pCursor->pOverflow);
111597 if( rc!=SQLITE_OK ){
111598 return ValidateError();
111601 /* Check that no other cell starts within this cell. */
111602 iEndOffset = pCursor->iRecordOffset + pCursor->nLocalRecordBytes;
111603 for( i=0; i<pCursor->nCells && pCellOffsets + i*2 + 2 <= pPageEnd; ++i ){
111604 const unsigned iOtherOffset = decodeUnsigned16(pCellOffsets + i*2);
111605 if( iOtherOffset>iCellOffset && iOtherOffset<iEndOffset ){
111606 return ValidateError();
111610 nRecordHeaderRead = getVarint(pCell + nRead, &nRecordHeaderBytes);
111611 assert( nRecordHeaderBytes<=nRecordBytes );
111612 pCursor->nRecordHeaderBytes = nRecordHeaderBytes;
111614 /* Large headers could overflow if pages are small. */
111615 rc = overflowGetSegment(pCursor->pPage,
111616 pCursor->iRecordOffset, pCursor->nLocalRecordBytes,
111617 pCursor->pOverflow, 0, nRecordHeaderBytes,
111618 &pCursor->pRecordHeader, &pCursor->bFreeRecordHeader);
111619 if( rc!=SQLITE_OK ){
111620 return ValidateError();
111623 /* Tally up the column count and size of data. */
111624 nRecordCols = 0;
111625 nRecordColBytes = 0;
111626 while( nRecordHeaderRead<nRecordHeaderBytes ){
111627 u64 iSerialType; /* Type descriptor for current column. */
111628 if( !checkVarint(pCursor->pRecordHeader + nRecordHeaderRead,
111629 nRecordHeaderBytes - nRecordHeaderRead) ){
111630 return ValidateError();
111632 nRecordHeaderRead += getVarint(pCursor->pRecordHeader + nRecordHeaderRead,
111633 &iSerialType);
111634 if( iSerialType==10 || iSerialType==11 ){
111635 return ValidateError();
111637 nRecordColBytes += SerialTypeLength(iSerialType);
111638 nRecordCols++;
111640 pCursor->nRecordCols = nRecordCols;
111642 /* Parsing the header used as many bytes as expected. */
111643 if( nRecordHeaderRead!=nRecordHeaderBytes ){
111644 return ValidateError();
111647 /* Calculated record is size of expected record. */
111648 if( nRecordHeaderBytes+nRecordColBytes!=nRecordBytes ){
111649 return ValidateError();
111652 return SQLITE_OK;
111655 static i64 leafCursorCellRowid(RecoverLeafCursor *pCursor){
111656 return pCursor->iRowid;
111659 static unsigned leafCursorCellColumns(RecoverLeafCursor *pCursor){
111660 return pCursor->nRecordCols;
111663 /* Get the column info for the cell. Pass NULL for ppBase to prevent
111664 * retrieving the data segment. If *pbFree is true, *ppBase must be
111665 * freed by the caller using sqlite3_free().
111667 static int leafCursorCellColInfo(RecoverLeafCursor *pCursor,
111668 unsigned iCol, u64 *piColType,
111669 unsigned char **ppBase, int *pbFree){
111670 const unsigned char *pRecordHeader; /* Current cell's header. */
111671 u64 nRecordHeaderBytes; /* Bytes in pRecordHeader. */
111672 unsigned nRead; /* Bytes read from header. */
111673 u64 iColEndOffset; /* Offset to end of column in cell. */
111674 unsigned nColsSkipped; /* Count columns as procesed. */
111675 u64 iSerialType; /* Type descriptor for current column. */
111677 /* Implicit NULL for columns past the end. This case happens when
111678 * rows have not been updated since an ALTER TABLE added columns.
111679 * It is more convenient to address here than in callers.
111681 if( iCol>=pCursor->nRecordCols ){
111682 *piColType = 0;
111683 if( ppBase ){
111684 *ppBase = 0;
111685 *pbFree = 0;
111687 return SQLITE_OK;
111690 /* Must be able to decode header size. */
111691 pRecordHeader = pCursor->pRecordHeader;
111692 if( !checkVarint(pRecordHeader, pCursor->nRecordHeaderBytes) ){
111693 return SQLITE_CORRUPT;
111696 /* Rather than caching the header size and how many bytes it took,
111697 * decode it every time.
111699 nRead = getVarint(pRecordHeader, &nRecordHeaderBytes);
111700 assert( nRecordHeaderBytes==pCursor->nRecordHeaderBytes );
111702 /* Scan forward to the indicated column. Scans to _after_ column
111703 * for later range checking.
111705 /* TODO(shess): This could get expensive for very wide tables. An
111706 * array of iSerialType could be built in leafCursorCellDecode(), but
111707 * the number of columns is dynamic per row, so it would add memory
111708 * management complexity. Enough info to efficiently forward
111709 * iterate could be kept, if all clients forward iterate
111710 * (recoverColumn() may not).
111712 iColEndOffset = 0;
111713 nColsSkipped = 0;
111714 while( nColsSkipped<=iCol && nRead<nRecordHeaderBytes ){
111715 if( !checkVarint(pRecordHeader + nRead, nRecordHeaderBytes - nRead) ){
111716 return SQLITE_CORRUPT;
111718 nRead += getVarint(pRecordHeader + nRead, &iSerialType);
111719 iColEndOffset += SerialTypeLength(iSerialType);
111720 nColsSkipped++;
111723 /* Column's data extends past record's end. */
111724 if( nRecordHeaderBytes+iColEndOffset>pCursor->nRecordBytes ){
111725 return SQLITE_CORRUPT;
111728 *piColType = iSerialType;
111729 if( ppBase ){
111730 const u32 nColBytes = SerialTypeLength(iSerialType);
111732 /* Offset from start of record to beginning of column. */
111733 const unsigned iColOffset = nRecordHeaderBytes+iColEndOffset-nColBytes;
111735 return overflowGetSegment(pCursor->pPage, pCursor->iRecordOffset,
111736 pCursor->nLocalRecordBytes, pCursor->pOverflow,
111737 iColOffset, nColBytes, ppBase, pbFree);
111739 return SQLITE_OK;
111742 static int leafCursorNextValidCell(RecoverLeafCursor *pCursor){
111743 while( 1 ){
111744 int rc;
111746 /* Move to the next cell. */
111747 pCursor->iCell++;
111749 /* No more cells, get the next leaf. */
111750 if( pCursor->iCell>=pCursor->nCells ){
111751 rc = leafCursorNextPage(pCursor);
111752 if( rc!=SQLITE_ROW ){
111753 return rc;
111755 assert( pCursor->iCell==0 );
111758 /* If the cell is valid, indicate that a row is available. */
111759 rc = leafCursorCellDecode(pCursor);
111760 if( rc==SQLITE_OK ){
111761 return SQLITE_ROW;
111764 /* Iterate until done or a valid row is found. */
111765 /* TODO(shess): Remove debugging output. */
111766 fprintf(stderr, "Skipping invalid cell\n");
111768 return SQLITE_ERROR;
111771 typedef struct Recover Recover;
111772 struct Recover {
111773 sqlite3_vtab base;
111774 sqlite3 *db; /* Host database connection */
111775 char *zDb; /* Database containing target table */
111776 char *zTable; /* Target table */
111777 unsigned nCols; /* Number of columns in target table */
111778 unsigned char *pTypes; /* Types of columns in target table */
111781 /* Internal helper for deleting the module. */
111782 static void recoverRelease(Recover *pRecover){
111783 sqlite3_free(pRecover->zDb);
111784 sqlite3_free(pRecover->zTable);
111785 sqlite3_free(pRecover->pTypes);
111786 memset(pRecover, 0xA5, sizeof(*pRecover));
111787 sqlite3_free(pRecover);
111790 /* Helper function for initializing the module. Forward-declared so
111791 * recoverCreate() and recoverConnect() can see it.
111793 static int recoverInit(
111794 sqlite3 *, void *, int, const char *const*, sqlite3_vtab **, char **
111797 static int recoverCreate(
111798 sqlite3 *db,
111799 void *pAux,
111800 int argc, const char *const*argv,
111801 sqlite3_vtab **ppVtab,
111802 char **pzErr
111804 FNENTRY();
111805 return recoverInit(db, pAux, argc, argv, ppVtab, pzErr);
111808 /* This should never be called. */
111809 static int recoverConnect(
111810 sqlite3 *db,
111811 void *pAux,
111812 int argc, const char *const*argv,
111813 sqlite3_vtab **ppVtab,
111814 char **pzErr
111816 FNENTRY();
111817 return recoverInit(db, pAux, argc, argv, ppVtab, pzErr);
111820 /* No indices supported. */
111821 static int recoverBestIndex(sqlite3_vtab *tab, sqlite3_index_info *pIdxInfo){
111822 FNENTRY();
111823 return SQLITE_OK;
111826 /* Logically, this should never be called. */
111827 static int recoverDisconnect(sqlite3_vtab *pVtab){
111828 FNENTRY();
111829 recoverRelease((Recover*)pVtab);
111830 return SQLITE_OK;
111833 static int recoverDestroy(sqlite3_vtab *pVtab){
111834 FNENTRY();
111835 recoverRelease((Recover*)pVtab);
111836 return SQLITE_OK;
111839 typedef struct RecoverCursor RecoverCursor;
111840 struct RecoverCursor {
111841 sqlite3_vtab_cursor base;
111842 RecoverLeafCursor *pLeafCursor;
111843 int iEncoding;
111844 int bEOF;
111847 static int recoverOpen(sqlite3_vtab *pVTab, sqlite3_vtab_cursor **ppCursor){
111848 Recover *pRecover = (Recover*)pVTab;
111849 u32 iRootPage; /* Root page of the backing table. */
111850 int iEncoding; /* UTF encoding for backing database. */
111851 unsigned nPageSize; /* Size of pages in backing database. */
111852 Pager *pPager; /* Backing database pager. */
111853 RecoverLeafCursor *pLeafCursor; /* Cursor to read table's leaf pages. */
111854 RecoverCursor *pCursor; /* Cursor to read rows from leaves. */
111855 int rc;
111857 FNENTRY();
111859 iRootPage = 0;
111860 rc = getRootPage(pRecover->db, pRecover->zDb, pRecover->zTable,
111861 &iRootPage);
111862 if( rc!=SQLITE_OK ){
111863 return rc;
111866 iEncoding = 0;
111867 rc = getEncoding(pRecover->db, pRecover->zDb, &iEncoding);
111868 if( rc!=SQLITE_OK ){
111869 return rc;
111872 rc = GetPager(pRecover->db, pRecover->zDb, &pPager, &nPageSize);
111873 if( rc!=SQLITE_OK ){
111874 return rc;
111877 rc = leafCursorCreate(pPager, nPageSize, iRootPage, &pLeafCursor);
111878 if( rc!=SQLITE_OK ){
111879 return rc;
111882 pCursor = sqlite3_malloc(sizeof(RecoverCursor));
111883 if( !pCursor ){
111884 leafCursorDestroy(pLeafCursor);
111885 return SQLITE_NOMEM;
111887 memset(pCursor, 0, sizeof(*pCursor));
111888 pCursor->base.pVtab = pVTab;
111889 pCursor->pLeafCursor = pLeafCursor;
111890 pCursor->iEncoding = iEncoding;
111892 /* If no leaf pages were found, empty result set. */
111893 /* TODO(shess): leafCursorNextValidCell() would return SQLITE_ROW or
111894 * SQLITE_DONE to indicate whether there is further data to consider.
111896 pCursor->bEOF = (pLeafCursor->pPage==NULL);
111898 *ppCursor = (sqlite3_vtab_cursor*)pCursor;
111899 return SQLITE_OK;
111902 static int recoverClose(sqlite3_vtab_cursor *cur){
111903 RecoverCursor *pCursor = (RecoverCursor*)cur;
111904 FNENTRY();
111905 if( pCursor->pLeafCursor ){
111906 leafCursorDestroy(pCursor->pLeafCursor);
111907 pCursor->pLeafCursor = NULL;
111909 memset(pCursor, 0xA5, sizeof(*pCursor));
111910 sqlite3_free(cur);
111911 return SQLITE_OK;
111914 /* Helpful place to set a breakpoint. */
111915 static int RecoverInvalidCell(){
111916 return SQLITE_ERROR;
111919 /* Returns SQLITE_OK if the cell has an appropriate number of columns
111920 * with the appropriate types of data.
111922 static int recoverValidateLeafCell(Recover *pRecover, RecoverCursor *pCursor){
111923 unsigned i;
111925 /* If the row's storage has too many columns, skip it. */
111926 if( leafCursorCellColumns(pCursor->pLeafCursor)>pRecover->nCols ){
111927 return RecoverInvalidCell();
111930 /* Skip rows with unexpected types. */
111931 for( i=0; i<pRecover->nCols; ++i ){
111932 u64 iType; /* Storage type of column i. */
111933 int rc;
111935 /* ROWID alias. */
111936 if( (pRecover->pTypes[i]&MASK_ROWID) ){
111937 continue;
111940 rc = leafCursorCellColInfo(pCursor->pLeafCursor, i, &iType, NULL, NULL);
111941 assert( rc==SQLITE_OK );
111942 if( rc!=SQLITE_OK || !SerialTypeIsCompatible(iType, pRecover->pTypes[i]) ){
111943 return RecoverInvalidCell();
111947 return SQLITE_OK;
111950 static int recoverNext(sqlite3_vtab_cursor *pVtabCursor){
111951 RecoverCursor *pCursor = (RecoverCursor*)pVtabCursor;
111952 Recover *pRecover = (Recover*)pCursor->base.pVtab;
111953 int rc;
111955 FNENTRY();
111957 /* Scan forward to the next cell with valid storage, then check that
111958 * the stored data matches the schema.
111960 while( (rc = leafCursorNextValidCell(pCursor->pLeafCursor))==SQLITE_ROW ){
111961 if( recoverValidateLeafCell(pRecover, pCursor)==SQLITE_OK ){
111962 return SQLITE_OK;
111966 if( rc==SQLITE_DONE ){
111967 pCursor->bEOF = 1;
111968 return SQLITE_OK;
111971 assert( rc!=SQLITE_OK );
111972 return rc;
111975 static int recoverFilter(
111976 sqlite3_vtab_cursor *pVtabCursor,
111977 int idxNum, const char *idxStr,
111978 int argc, sqlite3_value **argv
111980 RecoverCursor *pCursor = (RecoverCursor*)pVtabCursor;
111981 Recover *pRecover = (Recover*)pCursor->base.pVtab;
111982 int rc;
111984 FNENTRY();
111986 /* There were no valid leaf pages in the table. */
111987 if( pCursor->bEOF ){
111988 return SQLITE_OK;
111991 /* Load the first cell, and iterate forward if it's not valid. If no cells at
111992 * all are valid, recoverNext() sets bEOF and returns appropriately.
111994 rc = leafCursorCellDecode(pCursor->pLeafCursor);
111995 if( rc!=SQLITE_OK || recoverValidateLeafCell(pRecover, pCursor)!=SQLITE_OK ){
111996 return recoverNext(pVtabCursor);
111999 return SQLITE_OK;
112002 static int recoverEof(sqlite3_vtab_cursor *pVtabCursor){
112003 RecoverCursor *pCursor = (RecoverCursor*)pVtabCursor;
112004 FNENTRY();
112005 return pCursor->bEOF;
112008 static int recoverColumn(sqlite3_vtab_cursor *cur, sqlite3_context *ctx, int i){
112009 RecoverCursor *pCursor = (RecoverCursor*)cur;
112010 Recover *pRecover = (Recover*)pCursor->base.pVtab;
112011 u64 iColType; /* Storage type of column i. */
112012 unsigned char *pColData; /* Column i's data. */
112013 int shouldFree; /* Non-zero if pColData should be freed. */
112014 int rc;
112016 FNENTRY();
112018 if( i>=pRecover->nCols ){
112019 return SQLITE_ERROR;
112022 /* ROWID alias. */
112023 if( (pRecover->pTypes[i]&MASK_ROWID) ){
112024 sqlite3_result_int64(ctx, leafCursorCellRowid(pCursor->pLeafCursor));
112025 return SQLITE_OK;
112028 pColData = NULL;
112029 shouldFree = 0;
112030 rc = leafCursorCellColInfo(pCursor->pLeafCursor, i, &iColType,
112031 &pColData, &shouldFree);
112032 if( rc!=SQLITE_OK ){
112033 return rc;
112035 /* recoverValidateLeafCell() should guarantee that this will never
112036 * occur.
112038 if( !SerialTypeIsCompatible(iColType, pRecover->pTypes[i]) ){
112039 if( shouldFree ){
112040 sqlite3_free(pColData);
112042 return SQLITE_ERROR;
112045 switch( iColType ){
112046 case 0 : sqlite3_result_null(ctx); break;
112047 case 1 : sqlite3_result_int64(ctx, decodeSigned(pColData, 1)); break;
112048 case 2 : sqlite3_result_int64(ctx, decodeSigned(pColData, 2)); break;
112049 case 3 : sqlite3_result_int64(ctx, decodeSigned(pColData, 3)); break;
112050 case 4 : sqlite3_result_int64(ctx, decodeSigned(pColData, 4)); break;
112051 case 5 : sqlite3_result_int64(ctx, decodeSigned(pColData, 6)); break;
112052 case 6 : sqlite3_result_int64(ctx, decodeSigned(pColData, 8)); break;
112053 case 7 : sqlite3_result_double(ctx, decodeFloat64(pColData)); break;
112054 case 8 : sqlite3_result_int(ctx, 0); break;
112055 case 9 : sqlite3_result_int(ctx, 1); break;
112056 case 10 : assert( iColType!=10 ); break;
112057 case 11 : assert( iColType!=11 ); break;
112059 default : {
112060 u32 l = SerialTypeLength(iColType);
112062 /* If pColData was already allocated, arrange to pass ownership. */
112063 sqlite3_destructor_type pFn = SQLITE_TRANSIENT;
112064 if( shouldFree ){
112065 pFn = sqlite3_free;
112066 shouldFree = 0;
112069 if( SerialTypeIsBlob(iColType) ){
112070 sqlite3_result_blob(ctx, pColData, l, pFn);
112071 }else{
112072 if( pCursor->iEncoding==SQLITE_UTF16LE ){
112073 sqlite3_result_text16le(ctx, (const void*)pColData, l, pFn);
112074 }else if( pCursor->iEncoding==SQLITE_UTF16BE ){
112075 sqlite3_result_text16be(ctx, (const void*)pColData, l, pFn);
112076 }else{
112077 sqlite3_result_text(ctx, (const char*)pColData, l, pFn);
112080 } break;
112082 if( shouldFree ){
112083 sqlite3_free(pColData);
112085 return SQLITE_OK;
112088 static int recoverRowid(sqlite3_vtab_cursor *pVtabCursor, sqlite_int64 *pRowid){
112089 RecoverCursor *pCursor = (RecoverCursor*)pVtabCursor;
112090 FNENTRY();
112091 *pRowid = leafCursorCellRowid(pCursor->pLeafCursor);
112092 return SQLITE_OK;
112095 static sqlite3_module recoverModule = {
112096 0, /* iVersion */
112097 recoverCreate, /* xCreate - create a table */
112098 recoverConnect, /* xConnect - connect to an existing table */
112099 recoverBestIndex, /* xBestIndex - Determine search strategy */
112100 recoverDisconnect, /* xDisconnect - Disconnect from a table */
112101 recoverDestroy, /* xDestroy - Drop a table */
112102 recoverOpen, /* xOpen - open a cursor */
112103 recoverClose, /* xClose - close a cursor */
112104 recoverFilter, /* xFilter - configure scan constraints */
112105 recoverNext, /* xNext - advance a cursor */
112106 recoverEof, /* xEof */
112107 recoverColumn, /* xColumn - read data */
112108 recoverRowid, /* xRowid - read data */
112109 0, /* xUpdate - write data */
112110 0, /* xBegin - begin transaction */
112111 0, /* xSync - sync transaction */
112112 0, /* xCommit - commit transaction */
112113 0, /* xRollback - rollback transaction */
112114 0, /* xFindFunction - function overloading */
112115 0, /* xRename - rename the table */
112118 int recoverVtableInit(sqlite3 *db){
112119 return sqlite3_create_module_v2(db, "recover", &recoverModule, NULL, 0);
112122 /* This section of code is for parsing the create input and
112123 * initializing the module.
112126 /* Find the next word in zText and place the endpoints in pzWord*.
112127 * Returns true if the word is non-empty. "Word" is defined as
112128 * ASCII alphanumeric plus '_' at this time.
112130 static int findWord(const char *zText,
112131 const char **pzWordStart, const char **pzWordEnd){
112132 int r;
112133 while( ascii_isspace(*zText) ){
112134 zText++;
112136 *pzWordStart = zText;
112137 while( ascii_isalnum(*zText) || *zText=='_' ){
112138 zText++;
112140 r = zText>*pzWordStart; /* In case pzWordStart==pzWordEnd */
112141 *pzWordEnd = zText;
112142 return r;
112145 /* Return true if the next word in zText is zWord, also setting
112146 * *pzContinue to the character after the word.
112148 static int expectWord(const char *zText, const char *zWord,
112149 const char **pzContinue){
112150 const char *zWordStart, *zWordEnd;
112151 if( findWord(zText, &zWordStart, &zWordEnd) &&
112152 ascii_strncasecmp(zWord, zWordStart, zWordEnd - zWordStart)==0 ){
112153 *pzContinue = zWordEnd;
112154 return 1;
112156 return 0;
112159 /* Parse the name and type information out of parameter. In case of
112160 * success, *pzNameStart/End contain the name of the column,
112161 * *pzTypeStart/End contain the top-level type, and *pTypeMask has the
112162 * type mask to use for the column.
112164 static int findNameAndType(const char *parameter,
112165 const char **pzNameStart, const char **pzNameEnd,
112166 const char **pzTypeStart, const char **pzTypeEnd,
112167 unsigned char *pTypeMask){
112168 unsigned nNameLen; /* Length of found name. */
112169 const char *zEnd; /* Current end of parsed column information. */
112170 int bNotNull; /* Non-zero if NULL is not allowed for name. */
112171 int bStrict; /* Non-zero if column requires exact type match. */
112172 const char *zDummy; /* Dummy parameter, result unused. */
112173 unsigned i;
112175 /* strictMask is used for STRICT, strictMask|otherMask if STRICT is
112176 * not supplied. zReplace provides an alternate type to expose to
112177 * the caller.
112179 static struct {
112180 const char *zName;
112181 unsigned char strictMask;
112182 unsigned char otherMask;
112183 const char *zReplace;
112184 } kTypeInfo[] = {
112185 { "ANY",
112186 MASK_INTEGER | MASK_FLOAT | MASK_BLOB | MASK_TEXT | MASK_NULL,
112187 0, "",
112189 { "ROWID", MASK_INTEGER | MASK_ROWID, 0, "INTEGER", },
112190 { "INTEGER", MASK_INTEGER | MASK_NULL, 0, NULL, },
112191 { "FLOAT", MASK_FLOAT | MASK_NULL, MASK_INTEGER, NULL, },
112192 { "NUMERIC", MASK_INTEGER | MASK_FLOAT | MASK_NULL, MASK_TEXT, NULL, },
112193 { "TEXT", MASK_TEXT | MASK_NULL, MASK_BLOB, NULL, },
112194 { "BLOB", MASK_BLOB | MASK_NULL, 0, NULL, },
112197 if( !findWord(parameter, pzNameStart, pzNameEnd) ){
112198 return SQLITE_MISUSE;
112201 /* Manifest typing, accept any storage type. */
112202 if( !findWord(*pzNameEnd, pzTypeStart, pzTypeEnd) ){
112203 *pzTypeEnd = *pzTypeStart = "";
112204 *pTypeMask = MASK_INTEGER | MASK_FLOAT | MASK_BLOB | MASK_TEXT | MASK_NULL;
112205 return SQLITE_OK;
112208 nNameLen = *pzTypeEnd - *pzTypeStart;
112209 for( i=0; i<ArraySize(kTypeInfo); ++i ){
112210 if( ascii_strncasecmp(kTypeInfo[i].zName, *pzTypeStart, nNameLen)==0 ){
112211 break;
112214 if( i==ArraySize(kTypeInfo) ){
112215 return SQLITE_MISUSE;
112218 zEnd = *pzTypeEnd;
112219 bStrict = 0;
112220 if( expectWord(zEnd, "STRICT", &zEnd) ){
112221 /* TODO(shess): Ick. But I don't want another single-purpose
112222 * flag, either.
112224 if( kTypeInfo[i].zReplace && !kTypeInfo[i].zReplace[0] ){
112225 return SQLITE_MISUSE;
112227 bStrict = 1;
112230 bNotNull = 0;
112231 if( expectWord(zEnd, "NOT", &zEnd) ){
112232 if( expectWord(zEnd, "NULL", &zEnd) ){
112233 bNotNull = 1;
112234 }else{
112235 /* Anything other than NULL after NOT is an error. */
112236 return SQLITE_MISUSE;
112240 /* Anything else is an error. */
112241 if( findWord(zEnd, &zDummy, &zDummy) ){
112242 return SQLITE_MISUSE;
112245 *pTypeMask = kTypeInfo[i].strictMask;
112246 if( !bStrict ){
112247 *pTypeMask |= kTypeInfo[i].otherMask;
112249 if( bNotNull ){
112250 *pTypeMask &= ~MASK_NULL;
112252 if( kTypeInfo[i].zReplace ){
112253 *pzTypeStart = kTypeInfo[i].zReplace;
112254 *pzTypeEnd = *pzTypeStart + strlen(*pzTypeStart);
112256 return SQLITE_OK;
112259 /* Parse the arguments, placing type masks in *pTypes and the exposed
112260 * schema in *pzCreateSql (for sqlite3_declare_vtab).
112262 static int ParseColumnsAndGenerateCreate(unsigned nCols,
112263 const char *const *pCols,
112264 char **pzCreateSql,
112265 unsigned char *pTypes,
112266 char **pzErr){
112267 unsigned i;
112268 char *zCreateSql = sqlite3_mprintf("CREATE TABLE x(");
112269 if( !zCreateSql ){
112270 return SQLITE_NOMEM;
112273 for( i=0; i<nCols; i++ ){
112274 const char *zSep = (i < nCols - 1 ? ", " : ")");
112275 const char *zNotNull = "";
112276 const char *zNameStart, *zNameEnd;
112277 const char *zTypeStart, *zTypeEnd;
112278 int rc = findNameAndType(pCols[i],
112279 &zNameStart, &zNameEnd,
112280 &zTypeStart, &zTypeEnd,
112281 &pTypes[i]);
112282 if( rc!=SQLITE_OK ){
112283 *pzErr = sqlite3_mprintf("unable to parse column %d", i);
112284 sqlite3_free(zCreateSql);
112285 return rc;
112288 if( !(pTypes[i]&MASK_NULL) ){
112289 zNotNull = " NOT NULL";
112292 /* Add name and type to the create statement. */
112293 zCreateSql = sqlite3_mprintf("%z%.*s %.*s%s%s",
112294 zCreateSql,
112295 zNameEnd - zNameStart, zNameStart,
112296 zTypeEnd - zTypeStart, zTypeStart,
112297 zNotNull, zSep);
112298 if( !zCreateSql ){
112299 return SQLITE_NOMEM;
112303 *pzCreateSql = zCreateSql;
112304 return SQLITE_OK;
112307 /* Helper function for initializing the module. */
112308 /* argv[0] module name
112309 * argv[1] db name for virtual table
112310 * argv[2] virtual table name
112311 * argv[3] backing table name
112312 * argv[4] columns
112314 /* TODO(shess): Since connect isn't supported, could inline into
112315 * recoverCreate().
112317 /* TODO(shess): Explore cases where it would make sense to set *pzErr. */
112318 static int recoverInit(
112319 sqlite3 *db, /* Database connection */
112320 void *pAux, /* unused */
112321 int argc, const char *const*argv, /* Parameters to CREATE TABLE statement */
112322 sqlite3_vtab **ppVtab, /* OUT: New virtual table */
112323 char **pzErr /* OUT: Error message, if any */
112325 const unsigned kTypeCol = 4; /* First argument with column type info. */
112326 Recover *pRecover; /* Virtual table structure being created. */
112327 char *zDot; /* Any dot found in "db.table" backing. */
112328 u32 iRootPage; /* Root page of backing table. */
112329 char *zCreateSql; /* Schema of created virtual table. */
112330 int rc;
112332 /* Require to be in the temp database. */
112333 if( ascii_strcasecmp(argv[1], "temp")!=0 ){
112334 *pzErr = sqlite3_mprintf("recover table must be in temp database");
112335 return SQLITE_MISUSE;
112338 /* Need the backing table and at least one column. */
112339 if( argc<=kTypeCol ){
112340 *pzErr = sqlite3_mprintf("no columns specified");
112341 return SQLITE_MISUSE;
112344 pRecover = sqlite3_malloc(sizeof(Recover));
112345 if( !pRecover ){
112346 return SQLITE_NOMEM;
112348 memset(pRecover, 0, sizeof(*pRecover));
112349 pRecover->base.pModule = &recoverModule;
112350 pRecover->db = db;
112352 /* Parse out db.table, assuming main if no dot. */
112353 zDot = strchr(argv[3], '.');
112354 if( !zDot ){
112355 pRecover->zDb = sqlite3_strdup(db->aDb[0].zName);
112356 pRecover->zTable = sqlite3_strdup(argv[3]);
112357 }else if( zDot>argv[3] && zDot[1]!='\0' ){
112358 pRecover->zDb = sqlite3_strndup(argv[3], zDot - argv[3]);
112359 pRecover->zTable = sqlite3_strdup(zDot + 1);
112360 }else{
112361 /* ".table" or "db." not allowed. */
112362 *pzErr = sqlite3_mprintf("ill-formed table specifier");
112363 recoverRelease(pRecover);
112364 return SQLITE_ERROR;
112367 pRecover->nCols = argc - kTypeCol;
112368 pRecover->pTypes = sqlite3_malloc(pRecover->nCols);
112369 if( !pRecover->zDb || !pRecover->zTable || !pRecover->pTypes ){
112370 recoverRelease(pRecover);
112371 return SQLITE_NOMEM;
112374 /* Require the backing table to exist. */
112375 /* TODO(shess): Be more pedantic about the form of the descriptor
112376 * string. This already fails for poorly-formed strings, simply
112377 * because there won't be a root page, but it would make more sense
112378 * to be explicit.
112380 rc = getRootPage(pRecover->db, pRecover->zDb, pRecover->zTable, &iRootPage);
112381 if( rc!=SQLITE_OK ){
112382 *pzErr = sqlite3_mprintf("unable to find backing table");
112383 recoverRelease(pRecover);
112384 return rc;
112387 /* Parse the column definitions. */
112388 rc = ParseColumnsAndGenerateCreate(pRecover->nCols, argv + kTypeCol,
112389 &zCreateSql, pRecover->pTypes, pzErr);
112390 if( rc!=SQLITE_OK ){
112391 recoverRelease(pRecover);
112392 return rc;
112395 rc = sqlite3_declare_vtab(db, zCreateSql);
112396 sqlite3_free(zCreateSql);
112397 if( rc!=SQLITE_OK ){
112398 recoverRelease(pRecover);
112399 return rc;
112402 *ppVtab = (sqlite3_vtab *)pRecover;
112403 return SQLITE_OK;
112406 /************** End of recover.c *********************************************/
112407 /************** Begin file fts3.c ********************************************/
112409 ** 2006 Oct 10
112411 ** The author disclaims copyright to this source code. In place of
112412 ** a legal notice, here is a blessing:
112414 ** May you do good and not evil.
112415 ** May you find forgiveness for yourself and forgive others.
112416 ** May you share freely, never taking more than you give.
112418 ******************************************************************************
112420 ** This is an SQLite module implementing full-text search.
112424 ** The code in this file is only compiled if:
112426 ** * The FTS3 module is being built as an extension
112427 ** (in which case SQLITE_CORE is not defined), or
112429 ** * The FTS3 module is being built into the core of
112430 ** SQLite (in which case SQLITE_ENABLE_FTS3 is defined).
112433 /* The full-text index is stored in a series of b+tree (-like)
112434 ** structures called segments which map terms to doclists. The
112435 ** structures are like b+trees in layout, but are constructed from the
112436 ** bottom up in optimal fashion and are not updatable. Since trees
112437 ** are built from the bottom up, things will be described from the
112438 ** bottom up.
112441 **** Varints ****
112442 ** The basic unit of encoding is a variable-length integer called a
112443 ** varint. We encode variable-length integers in little-endian order
112444 ** using seven bits * per byte as follows:
112446 ** KEY:
112447 ** A = 0xxxxxxx 7 bits of data and one flag bit
112448 ** B = 1xxxxxxx 7 bits of data and one flag bit
112450 ** 7 bits - A
112451 ** 14 bits - BA
112452 ** 21 bits - BBA
112453 ** and so on.
112455 ** This is similar in concept to how sqlite encodes "varints" but
112456 ** the encoding is not the same. SQLite varints are big-endian
112457 ** are are limited to 9 bytes in length whereas FTS3 varints are
112458 ** little-endian and can be up to 10 bytes in length (in theory).
112460 ** Example encodings:
112462 ** 1: 0x01
112463 ** 127: 0x7f
112464 ** 128: 0x81 0x00
112467 **** Document lists ****
112468 ** A doclist (document list) holds a docid-sorted list of hits for a
112469 ** given term. Doclists hold docids and associated token positions.
112470 ** A docid is the unique integer identifier for a single document.
112471 ** A position is the index of a word within the document. The first
112472 ** word of the document has a position of 0.
112474 ** FTS3 used to optionally store character offsets using a compile-time
112475 ** option. But that functionality is no longer supported.
112477 ** A doclist is stored like this:
112479 ** array {
112480 ** varint docid;
112481 ** array { (position list for column 0)
112482 ** varint position; (2 more than the delta from previous position)
112484 ** array {
112485 ** varint POS_COLUMN; (marks start of position list for new column)
112486 ** varint column; (index of new column)
112487 ** array {
112488 ** varint position; (2 more than the delta from previous position)
112491 ** varint POS_END; (marks end of positions for this document.
112494 ** Here, array { X } means zero or more occurrences of X, adjacent in
112495 ** memory. A "position" is an index of a token in the token stream
112496 ** generated by the tokenizer. Note that POS_END and POS_COLUMN occur
112497 ** in the same logical place as the position element, and act as sentinals
112498 ** ending a position list array. POS_END is 0. POS_COLUMN is 1.
112499 ** The positions numbers are not stored literally but rather as two more
112500 ** than the difference from the prior position, or the just the position plus
112501 ** 2 for the first position. Example:
112503 ** label: A B C D E F G H I J K
112504 ** value: 123 5 9 1 1 14 35 0 234 72 0
112506 ** The 123 value is the first docid. For column zero in this document
112507 ** there are two matches at positions 3 and 10 (5-2 and 9-2+3). The 1
112508 ** at D signals the start of a new column; the 1 at E indicates that the
112509 ** new column is column number 1. There are two positions at 12 and 45
112510 ** (14-2 and 35-2+12). The 0 at H indicate the end-of-document. The
112511 ** 234 at I is the next docid. It has one position 72 (72-2) and then
112512 ** terminates with the 0 at K.
112514 ** A "position-list" is the list of positions for multiple columns for
112515 ** a single docid. A "column-list" is the set of positions for a single
112516 ** column. Hence, a position-list consists of one or more column-lists,
112517 ** a document record consists of a docid followed by a position-list and
112518 ** a doclist consists of one or more document records.
112520 ** A bare doclist omits the position information, becoming an
112521 ** array of varint-encoded docids.
112523 **** Segment leaf nodes ****
112524 ** Segment leaf nodes store terms and doclists, ordered by term. Leaf
112525 ** nodes are written using LeafWriter, and read using LeafReader (to
112526 ** iterate through a single leaf node's data) and LeavesReader (to
112527 ** iterate through a segment's entire leaf layer). Leaf nodes have
112528 ** the format:
112530 ** varint iHeight; (height from leaf level, always 0)
112531 ** varint nTerm; (length of first term)
112532 ** char pTerm[nTerm]; (content of first term)
112533 ** varint nDoclist; (length of term's associated doclist)
112534 ** char pDoclist[nDoclist]; (content of doclist)
112535 ** array {
112536 ** (further terms are delta-encoded)
112537 ** varint nPrefix; (length of prefix shared with previous term)
112538 ** varint nSuffix; (length of unshared suffix)
112539 ** char pTermSuffix[nSuffix];(unshared suffix of next term)
112540 ** varint nDoclist; (length of term's associated doclist)
112541 ** char pDoclist[nDoclist]; (content of doclist)
112544 ** Here, array { X } means zero or more occurrences of X, adjacent in
112545 ** memory.
112547 ** Leaf nodes are broken into blocks which are stored contiguously in
112548 ** the %_segments table in sorted order. This means that when the end
112549 ** of a node is reached, the next term is in the node with the next
112550 ** greater node id.
112552 ** New data is spilled to a new leaf node when the current node
112553 ** exceeds LEAF_MAX bytes (default 2048). New data which itself is
112554 ** larger than STANDALONE_MIN (default 1024) is placed in a standalone
112555 ** node (a leaf node with a single term and doclist). The goal of
112556 ** these settings is to pack together groups of small doclists while
112557 ** making it efficient to directly access large doclists. The
112558 ** assumption is that large doclists represent terms which are more
112559 ** likely to be query targets.
112561 ** TODO(shess) It may be useful for blocking decisions to be more
112562 ** dynamic. For instance, it may make more sense to have a 2.5k leaf
112563 ** node rather than splitting into 2k and .5k nodes. My intuition is
112564 ** that this might extend through 2x or 4x the pagesize.
112567 **** Segment interior nodes ****
112568 ** Segment interior nodes store blockids for subtree nodes and terms
112569 ** to describe what data is stored by the each subtree. Interior
112570 ** nodes are written using InteriorWriter, and read using
112571 ** InteriorReader. InteriorWriters are created as needed when
112572 ** SegmentWriter creates new leaf nodes, or when an interior node
112573 ** itself grows too big and must be split. The format of interior
112574 ** nodes:
112576 ** varint iHeight; (height from leaf level, always >0)
112577 ** varint iBlockid; (block id of node's leftmost subtree)
112578 ** optional {
112579 ** varint nTerm; (length of first term)
112580 ** char pTerm[nTerm]; (content of first term)
112581 ** array {
112582 ** (further terms are delta-encoded)
112583 ** varint nPrefix; (length of shared prefix with previous term)
112584 ** varint nSuffix; (length of unshared suffix)
112585 ** char pTermSuffix[nSuffix]; (unshared suffix of next term)
112589 ** Here, optional { X } means an optional element, while array { X }
112590 ** means zero or more occurrences of X, adjacent in memory.
112592 ** An interior node encodes n terms separating n+1 subtrees. The
112593 ** subtree blocks are contiguous, so only the first subtree's blockid
112594 ** is encoded. The subtree at iBlockid will contain all terms less
112595 ** than the first term encoded (or all terms if no term is encoded).
112596 ** Otherwise, for terms greater than or equal to pTerm[i] but less
112597 ** than pTerm[i+1], the subtree for that term will be rooted at
112598 ** iBlockid+i. Interior nodes only store enough term data to
112599 ** distinguish adjacent children (if the rightmost term of the left
112600 ** child is "something", and the leftmost term of the right child is
112601 ** "wicked", only "w" is stored).
112603 ** New data is spilled to a new interior node at the same height when
112604 ** the current node exceeds INTERIOR_MAX bytes (default 2048).
112605 ** INTERIOR_MIN_TERMS (default 7) keeps large terms from monopolizing
112606 ** interior nodes and making the tree too skinny. The interior nodes
112607 ** at a given height are naturally tracked by interior nodes at
112608 ** height+1, and so on.
112611 **** Segment directory ****
112612 ** The segment directory in table %_segdir stores meta-information for
112613 ** merging and deleting segments, and also the root node of the
112614 ** segment's tree.
112616 ** The root node is the top node of the segment's tree after encoding
112617 ** the entire segment, restricted to ROOT_MAX bytes (default 1024).
112618 ** This could be either a leaf node or an interior node. If the top
112619 ** node requires more than ROOT_MAX bytes, it is flushed to %_segments
112620 ** and a new root interior node is generated (which should always fit
112621 ** within ROOT_MAX because it only needs space for 2 varints, the
112622 ** height and the blockid of the previous root).
112624 ** The meta-information in the segment directory is:
112625 ** level - segment level (see below)
112626 ** idx - index within level
112627 ** - (level,idx uniquely identify a segment)
112628 ** start_block - first leaf node
112629 ** leaves_end_block - last leaf node
112630 ** end_block - last block (including interior nodes)
112631 ** root - contents of root node
112633 ** If the root node is a leaf node, then start_block,
112634 ** leaves_end_block, and end_block are all 0.
112637 **** Segment merging ****
112638 ** To amortize update costs, segments are grouped into levels and
112639 ** merged in batches. Each increase in level represents exponentially
112640 ** more documents.
112642 ** New documents (actually, document updates) are tokenized and
112643 ** written individually (using LeafWriter) to a level 0 segment, with
112644 ** incrementing idx. When idx reaches MERGE_COUNT (default 16), all
112645 ** level 0 segments are merged into a single level 1 segment. Level 1
112646 ** is populated like level 0, and eventually MERGE_COUNT level 1
112647 ** segments are merged to a single level 2 segment (representing
112648 ** MERGE_COUNT^2 updates), and so on.
112650 ** A segment merge traverses all segments at a given level in
112651 ** parallel, performing a straightforward sorted merge. Since segment
112652 ** leaf nodes are written in to the %_segments table in order, this
112653 ** merge traverses the underlying sqlite disk structures efficiently.
112654 ** After the merge, all segment blocks from the merged level are
112655 ** deleted.
112657 ** MERGE_COUNT controls how often we merge segments. 16 seems to be
112658 ** somewhat of a sweet spot for insertion performance. 32 and 64 show
112659 ** very similar performance numbers to 16 on insertion, though they're
112660 ** a tiny bit slower (perhaps due to more overhead in merge-time
112661 ** sorting). 8 is about 20% slower than 16, 4 about 50% slower than
112662 ** 16, 2 about 66% slower than 16.
112664 ** At query time, high MERGE_COUNT increases the number of segments
112665 ** which need to be scanned and merged. For instance, with 100k docs
112666 ** inserted:
112668 ** MERGE_COUNT segments
112669 ** 16 25
112670 ** 8 12
112671 ** 4 10
112672 ** 2 6
112674 ** This appears to have only a moderate impact on queries for very
112675 ** frequent terms (which are somewhat dominated by segment merge
112676 ** costs), and infrequent and non-existent terms still seem to be fast
112677 ** even with many segments.
112679 ** TODO(shess) That said, it would be nice to have a better query-side
112680 ** argument for MERGE_COUNT of 16. Also, it is possible/likely that
112681 ** optimizations to things like doclist merging will swing the sweet
112682 ** spot around.
112686 **** Handling of deletions and updates ****
112687 ** Since we're using a segmented structure, with no docid-oriented
112688 ** index into the term index, we clearly cannot simply update the term
112689 ** index when a document is deleted or updated. For deletions, we
112690 ** write an empty doclist (varint(docid) varint(POS_END)), for updates
112691 ** we simply write the new doclist. Segment merges overwrite older
112692 ** data for a particular docid with newer data, so deletes or updates
112693 ** will eventually overtake the earlier data and knock it out. The
112694 ** query logic likewise merges doclists so that newer data knocks out
112695 ** older data.
112697 ** TODO(shess) Provide a VACUUM type operation to clear out all
112698 ** deletions and duplications. This would basically be a forced merge
112699 ** into a single segment.
112701 #define CHROMIUM_FTS3_CHANGES 1
112703 #if !defined(SQLITE_CORE) || defined(SQLITE_ENABLE_FTS3)
112705 #if defined(SQLITE_ENABLE_FTS3) && !defined(SQLITE_CORE)
112706 # define SQLITE_CORE 1
112707 #endif
112709 /************** Include fts3Int.h in the middle of fts3.c ********************/
112710 /************** Begin file fts3Int.h *****************************************/
112712 ** 2009 Nov 12
112714 ** The author disclaims copyright to this source code. In place of
112715 ** a legal notice, here is a blessing:
112717 ** May you do good and not evil.
112718 ** May you find forgiveness for yourself and forgive others.
112719 ** May you share freely, never taking more than you give.
112721 ******************************************************************************
112725 #ifndef _FTSINT_H
112726 #define _FTSINT_H
112728 #if !defined(NDEBUG) && !defined(SQLITE_DEBUG)
112729 # define NDEBUG 1
112730 #endif
112732 /************** Include fts3_tokenizer.h in the middle of fts3Int.h **********/
112733 /************** Begin file fts3_tokenizer.h **********************************/
112735 ** 2006 July 10
112737 ** The author disclaims copyright to this source code.
112739 *************************************************************************
112740 ** Defines the interface to tokenizers used by fulltext-search. There
112741 ** are three basic components:
112743 ** sqlite3_tokenizer_module is a singleton defining the tokenizer
112744 ** interface functions. This is essentially the class structure for
112745 ** tokenizers.
112747 ** sqlite3_tokenizer is used to define a particular tokenizer, perhaps
112748 ** including customization information defined at creation time.
112750 ** sqlite3_tokenizer_cursor is generated by a tokenizer to generate
112751 ** tokens from a particular input.
112753 #ifndef _FTS3_TOKENIZER_H_
112754 #define _FTS3_TOKENIZER_H_
112756 /* TODO(shess) Only used for SQLITE_OK and SQLITE_DONE at this time.
112757 ** If tokenizers are to be allowed to call sqlite3_*() functions, then
112758 ** we will need a way to register the API consistently.
112762 ** Structures used by the tokenizer interface. When a new tokenizer
112763 ** implementation is registered, the caller provides a pointer to
112764 ** an sqlite3_tokenizer_module containing pointers to the callback
112765 ** functions that make up an implementation.
112767 ** When an fts3 table is created, it passes any arguments passed to
112768 ** the tokenizer clause of the CREATE VIRTUAL TABLE statement to the
112769 ** sqlite3_tokenizer_module.xCreate() function of the requested tokenizer
112770 ** implementation. The xCreate() function in turn returns an
112771 ** sqlite3_tokenizer structure representing the specific tokenizer to
112772 ** be used for the fts3 table (customized by the tokenizer clause arguments).
112774 ** To tokenize an input buffer, the sqlite3_tokenizer_module.xOpen()
112775 ** method is called. It returns an sqlite3_tokenizer_cursor object
112776 ** that may be used to tokenize a specific input buffer based on
112777 ** the tokenization rules supplied by a specific sqlite3_tokenizer
112778 ** object.
112780 typedef struct sqlite3_tokenizer_module sqlite3_tokenizer_module;
112781 typedef struct sqlite3_tokenizer sqlite3_tokenizer;
112782 typedef struct sqlite3_tokenizer_cursor sqlite3_tokenizer_cursor;
112784 struct sqlite3_tokenizer_module {
112787 ** Structure version. Should always be set to 0.
112789 int iVersion;
112792 ** Create a new tokenizer. The values in the argv[] array are the
112793 ** arguments passed to the "tokenizer" clause of the CREATE VIRTUAL
112794 ** TABLE statement that created the fts3 table. For example, if
112795 ** the following SQL is executed:
112797 ** CREATE .. USING fts3( ... , tokenizer <tokenizer-name> arg1 arg2)
112799 ** then argc is set to 2, and the argv[] array contains pointers
112800 ** to the strings "arg1" and "arg2".
112802 ** This method should return either SQLITE_OK (0), or an SQLite error
112803 ** code. If SQLITE_OK is returned, then *ppTokenizer should be set
112804 ** to point at the newly created tokenizer structure. The generic
112805 ** sqlite3_tokenizer.pModule variable should not be initialised by
112806 ** this callback. The caller will do so.
112808 int (*xCreate)(
112809 int argc, /* Size of argv array */
112810 const char *const*argv, /* Tokenizer argument strings */
112811 sqlite3_tokenizer **ppTokenizer /* OUT: Created tokenizer */
112815 ** Destroy an existing tokenizer. The fts3 module calls this method
112816 ** exactly once for each successful call to xCreate().
112818 int (*xDestroy)(sqlite3_tokenizer *pTokenizer);
112821 ** Create a tokenizer cursor to tokenize an input buffer. The caller
112822 ** is responsible for ensuring that the input buffer remains valid
112823 ** until the cursor is closed (using the xClose() method).
112825 int (*xOpen)(
112826 sqlite3_tokenizer *pTokenizer, /* Tokenizer object */
112827 const char *pInput, int nBytes, /* Input buffer */
112828 sqlite3_tokenizer_cursor **ppCursor /* OUT: Created tokenizer cursor */
112832 ** Destroy an existing tokenizer cursor. The fts3 module calls this
112833 ** method exactly once for each successful call to xOpen().
112835 int (*xClose)(sqlite3_tokenizer_cursor *pCursor);
112838 ** Retrieve the next token from the tokenizer cursor pCursor. This
112839 ** method should either return SQLITE_OK and set the values of the
112840 ** "OUT" variables identified below, or SQLITE_DONE to indicate that
112841 ** the end of the buffer has been reached, or an SQLite error code.
112843 ** *ppToken should be set to point at a buffer containing the
112844 ** normalized version of the token (i.e. after any case-folding and/or
112845 ** stemming has been performed). *pnBytes should be set to the length
112846 ** of this buffer in bytes. The input text that generated the token is
112847 ** identified by the byte offsets returned in *piStartOffset and
112848 ** *piEndOffset. *piStartOffset should be set to the index of the first
112849 ** byte of the token in the input buffer. *piEndOffset should be set
112850 ** to the index of the first byte just past the end of the token in
112851 ** the input buffer.
112853 ** The buffer *ppToken is set to point at is managed by the tokenizer
112854 ** implementation. It is only required to be valid until the next call
112855 ** to xNext() or xClose().
112857 /* TODO(shess) current implementation requires pInput to be
112858 ** nul-terminated. This should either be fixed, or pInput/nBytes
112859 ** should be converted to zInput.
112861 int (*xNext)(
112862 sqlite3_tokenizer_cursor *pCursor, /* Tokenizer cursor */
112863 const char **ppToken, int *pnBytes, /* OUT: Normalized text for token */
112864 int *piStartOffset, /* OUT: Byte offset of token in input buffer */
112865 int *piEndOffset, /* OUT: Byte offset of end of token in input buffer */
112866 int *piPosition /* OUT: Number of tokens returned before this one */
112870 struct sqlite3_tokenizer {
112871 const sqlite3_tokenizer_module *pModule; /* The module for this tokenizer */
112872 /* Tokenizer implementations will typically add additional fields */
112875 struct sqlite3_tokenizer_cursor {
112876 sqlite3_tokenizer *pTokenizer; /* Tokenizer for this cursor. */
112877 /* Tokenizer implementations will typically add additional fields */
112880 int fts3_global_term_cnt(int iTerm, int iCol);
112881 int fts3_term_cnt(int iTerm, int iCol);
112884 #endif /* _FTS3_TOKENIZER_H_ */
112886 /************** End of fts3_tokenizer.h **************************************/
112887 /************** Continuing where we left off in fts3Int.h ********************/
112888 /************** Include fts3_hash.h in the middle of fts3Int.h ***************/
112889 /************** Begin file fts3_hash.h ***************************************/
112891 ** 2001 September 22
112893 ** The author disclaims copyright to this source code. In place of
112894 ** a legal notice, here is a blessing:
112896 ** May you do good and not evil.
112897 ** May you find forgiveness for yourself and forgive others.
112898 ** May you share freely, never taking more than you give.
112900 *************************************************************************
112901 ** This is the header file for the generic hash-table implemenation
112902 ** used in SQLite. We've modified it slightly to serve as a standalone
112903 ** hash table implementation for the full-text indexing module.
112906 #ifndef _FTS3_HASH_H_
112907 #define _FTS3_HASH_H_
112909 /* Forward declarations of structures. */
112910 typedef struct Fts3Hash Fts3Hash;
112911 typedef struct Fts3HashElem Fts3HashElem;
112913 /* A complete hash table is an instance of the following structure.
112914 ** The internals of this structure are intended to be opaque -- client
112915 ** code should not attempt to access or modify the fields of this structure
112916 ** directly. Change this structure only by using the routines below.
112917 ** However, many of the "procedures" and "functions" for modifying and
112918 ** accessing this structure are really macros, so we can't really make
112919 ** this structure opaque.
112921 struct Fts3Hash {
112922 char keyClass; /* HASH_INT, _POINTER, _STRING, _BINARY */
112923 char copyKey; /* True if copy of key made on insert */
112924 int count; /* Number of entries in this table */
112925 Fts3HashElem *first; /* The first element of the array */
112926 int htsize; /* Number of buckets in the hash table */
112927 struct _fts3ht { /* the hash table */
112928 int count; /* Number of entries with this hash */
112929 Fts3HashElem *chain; /* Pointer to first entry with this hash */
112930 } *ht;
112933 /* Each element in the hash table is an instance of the following
112934 ** structure. All elements are stored on a single doubly-linked list.
112936 ** Again, this structure is intended to be opaque, but it can't really
112937 ** be opaque because it is used by macros.
112939 struct Fts3HashElem {
112940 Fts3HashElem *next, *prev; /* Next and previous elements in the table */
112941 void *data; /* Data associated with this element */
112942 void *pKey; int nKey; /* Key associated with this element */
112946 ** There are 2 different modes of operation for a hash table:
112948 ** FTS3_HASH_STRING pKey points to a string that is nKey bytes long
112949 ** (including the null-terminator, if any). Case
112950 ** is respected in comparisons.
112952 ** FTS3_HASH_BINARY pKey points to binary data nKey bytes long.
112953 ** memcmp() is used to compare keys.
112955 ** A copy of the key is made if the copyKey parameter to fts3HashInit is 1.
112957 #define FTS3_HASH_STRING 1
112958 #define FTS3_HASH_BINARY 2
112961 ** Access routines. To delete, insert a NULL pointer.
112963 SQLITE_PRIVATE void sqlite3Fts3HashInit(Fts3Hash *pNew, char keyClass, char copyKey);
112964 SQLITE_PRIVATE void *sqlite3Fts3HashInsert(Fts3Hash*, const void *pKey, int nKey, void *pData);
112965 SQLITE_PRIVATE void *sqlite3Fts3HashFind(const Fts3Hash*, const void *pKey, int nKey);
112966 SQLITE_PRIVATE void sqlite3Fts3HashClear(Fts3Hash*);
112967 SQLITE_PRIVATE Fts3HashElem *sqlite3Fts3HashFindElem(const Fts3Hash *, const void *, int);
112970 ** Shorthand for the functions above
112972 #define fts3HashInit sqlite3Fts3HashInit
112973 #define fts3HashInsert sqlite3Fts3HashInsert
112974 #define fts3HashFind sqlite3Fts3HashFind
112975 #define fts3HashClear sqlite3Fts3HashClear
112976 #define fts3HashFindElem sqlite3Fts3HashFindElem
112979 ** Macros for looping over all elements of a hash table. The idiom is
112980 ** like this:
112982 ** Fts3Hash h;
112983 ** Fts3HashElem *p;
112984 ** ...
112985 ** for(p=fts3HashFirst(&h); p; p=fts3HashNext(p)){
112986 ** SomeStructure *pData = fts3HashData(p);
112987 ** // do something with pData
112990 #define fts3HashFirst(H) ((H)->first)
112991 #define fts3HashNext(E) ((E)->next)
112992 #define fts3HashData(E) ((E)->data)
112993 #define fts3HashKey(E) ((E)->pKey)
112994 #define fts3HashKeysize(E) ((E)->nKey)
112997 ** Number of entries in a hash table
112999 #define fts3HashCount(H) ((H)->count)
113001 #endif /* _FTS3_HASH_H_ */
113003 /************** End of fts3_hash.h *******************************************/
113004 /************** Continuing where we left off in fts3Int.h ********************/
113007 ** This constant controls how often segments are merged. Once there are
113008 ** FTS3_MERGE_COUNT segments of level N, they are merged into a single
113009 ** segment of level N+1.
113011 #define FTS3_MERGE_COUNT 16
113014 ** This is the maximum amount of data (in bytes) to store in the
113015 ** Fts3Table.pendingTerms hash table. Normally, the hash table is
113016 ** populated as documents are inserted/updated/deleted in a transaction
113017 ** and used to create a new segment when the transaction is committed.
113018 ** However if this limit is reached midway through a transaction, a new
113019 ** segment is created and the hash table cleared immediately.
113021 #define FTS3_MAX_PENDING_DATA (1*1024*1024)
113024 ** Macro to return the number of elements in an array. SQLite has a
113025 ** similar macro called ArraySize(). Use a different name to avoid
113026 ** a collision when building an amalgamation with built-in FTS3.
113028 #define SizeofArray(X) ((int)(sizeof(X)/sizeof(X[0])))
113031 ** Maximum length of a varint encoded integer. The varint format is different
113032 ** from that used by SQLite, so the maximum length is 10, not 9.
113034 #define FTS3_VARINT_MAX 10
113037 ** The testcase() macro is only used by the amalgamation. If undefined,
113038 ** make it a no-op.
113040 #ifndef testcase
113041 # define testcase(X)
113042 #endif
113045 ** Terminator values for position-lists and column-lists.
113047 #define POS_COLUMN (1) /* Column-list terminator */
113048 #define POS_END (0) /* Position-list terminator */
113051 ** This section provides definitions to allow the
113052 ** FTS3 extension to be compiled outside of the
113053 ** amalgamation.
113055 #ifndef SQLITE_AMALGAMATION
113057 ** Macros indicating that conditional expressions are always true or
113058 ** false.
113060 #ifdef SQLITE_COVERAGE_TEST
113061 # define ALWAYS(x) (1)
113062 # define NEVER(X) (0)
113063 #else
113064 # define ALWAYS(x) (x)
113065 # define NEVER(X) (x)
113066 #endif
113069 ** Internal types used by SQLite.
113071 typedef unsigned char u8; /* 1-byte (or larger) unsigned integer */
113072 typedef short int i16; /* 2-byte (or larger) signed integer */
113073 typedef unsigned int u32; /* 4-byte unsigned integer */
113074 typedef sqlite3_uint64 u64; /* 8-byte unsigned integer */
113076 ** Macro used to suppress compiler warnings for unused parameters.
113078 #define UNUSED_PARAMETER(x) (void)(x)
113079 #endif
113081 typedef struct Fts3Table Fts3Table;
113082 typedef struct Fts3Cursor Fts3Cursor;
113083 typedef struct Fts3Expr Fts3Expr;
113084 typedef struct Fts3Phrase Fts3Phrase;
113085 typedef struct Fts3PhraseToken Fts3PhraseToken;
113087 typedef struct Fts3SegFilter Fts3SegFilter;
113088 typedef struct Fts3DeferredToken Fts3DeferredToken;
113089 typedef struct Fts3SegReader Fts3SegReader;
113090 typedef struct Fts3SegReaderCursor Fts3SegReaderCursor;
113093 ** A connection to a fulltext index is an instance of the following
113094 ** structure. The xCreate and xConnect methods create an instance
113095 ** of this structure and xDestroy and xDisconnect free that instance.
113096 ** All other methods receive a pointer to the structure as one of their
113097 ** arguments.
113099 struct Fts3Table {
113100 sqlite3_vtab base; /* Base class used by SQLite core */
113101 sqlite3 *db; /* The database connection */
113102 const char *zDb; /* logical database name */
113103 const char *zName; /* virtual table name */
113104 int nColumn; /* number of named columns in virtual table */
113105 char **azColumn; /* column names. malloced */
113106 sqlite3_tokenizer *pTokenizer; /* tokenizer for inserts and queries */
113108 /* Precompiled statements used by the implementation. Each of these
113109 ** statements is run and reset within a single virtual table API call.
113111 sqlite3_stmt *aStmt[24];
113113 char *zReadExprlist;
113114 char *zWriteExprlist;
113116 int nNodeSize; /* Soft limit for node size */
113117 u8 bHasStat; /* True if %_stat table exists */
113118 u8 bHasDocsize; /* True if %_docsize table exists */
113119 int nPgsz; /* Page size for host database */
113120 char *zSegmentsTbl; /* Name of %_segments table */
113121 sqlite3_blob *pSegments; /* Blob handle open on %_segments table */
113123 /* The following hash table is used to buffer pending index updates during
113124 ** transactions. Variable nPendingData estimates the memory size of the
113125 ** pending data, including hash table overhead, but not malloc overhead.
113126 ** When nPendingData exceeds nMaxPendingData, the buffer is flushed
113127 ** automatically. Variable iPrevDocid is the docid of the most recently
113128 ** inserted record.
113130 int nMaxPendingData;
113131 int nPendingData;
113132 sqlite_int64 iPrevDocid;
113133 Fts3Hash pendingTerms;
113137 ** When the core wants to read from the virtual table, it creates a
113138 ** virtual table cursor (an instance of the following structure) using
113139 ** the xOpen method. Cursors are destroyed using the xClose method.
113141 struct Fts3Cursor {
113142 sqlite3_vtab_cursor base; /* Base class used by SQLite core */
113143 i16 eSearch; /* Search strategy (see below) */
113144 u8 isEof; /* True if at End Of Results */
113145 u8 isRequireSeek; /* True if must seek pStmt to %_content row */
113146 sqlite3_stmt *pStmt; /* Prepared statement in use by the cursor */
113147 Fts3Expr *pExpr; /* Parsed MATCH query string */
113148 int nPhrase; /* Number of matchable phrases in query */
113149 Fts3DeferredToken *pDeferred; /* Deferred search tokens, if any */
113150 sqlite3_int64 iPrevId; /* Previous id read from aDoclist */
113151 char *pNextId; /* Pointer into the body of aDoclist */
113152 char *aDoclist; /* List of docids for full-text queries */
113153 int nDoclist; /* Size of buffer at aDoclist */
113154 int eEvalmode; /* An FTS3_EVAL_XX constant */
113155 int nRowAvg; /* Average size of database rows, in pages */
113157 int isMatchinfoNeeded; /* True when aMatchinfo[] needs filling in */
113158 u32 *aMatchinfo; /* Information about most recent match */
113159 int nMatchinfo; /* Number of elements in aMatchinfo[] */
113160 char *zMatchinfo; /* Matchinfo specification */
113163 #define FTS3_EVAL_FILTER 0
113164 #define FTS3_EVAL_NEXT 1
113165 #define FTS3_EVAL_MATCHINFO 2
113168 ** The Fts3Cursor.eSearch member is always set to one of the following.
113169 ** Actualy, Fts3Cursor.eSearch can be greater than or equal to
113170 ** FTS3_FULLTEXT_SEARCH. If so, then Fts3Cursor.eSearch - 2 is the index
113171 ** of the column to be searched. For example, in
113173 ** CREATE VIRTUAL TABLE ex1 USING fts3(a,b,c,d);
113174 ** SELECT docid FROM ex1 WHERE b MATCH 'one two three';
113176 ** Because the LHS of the MATCH operator is 2nd column "b",
113177 ** Fts3Cursor.eSearch will be set to FTS3_FULLTEXT_SEARCH+1. (+0 for a,
113178 ** +1 for b, +2 for c, +3 for d.) If the LHS of MATCH were "ex1"
113179 ** indicating that all columns should be searched,
113180 ** then eSearch would be set to FTS3_FULLTEXT_SEARCH+4.
113182 #define FTS3_FULLSCAN_SEARCH 0 /* Linear scan of %_content table */
113183 #define FTS3_DOCID_SEARCH 1 /* Lookup by rowid on %_content table */
113184 #define FTS3_FULLTEXT_SEARCH 2 /* Full-text index search */
113187 ** A "phrase" is a sequence of one or more tokens that must match in
113188 ** sequence. A single token is the base case and the most common case.
113189 ** For a sequence of tokens contained in double-quotes (i.e. "one two three")
113190 ** nToken will be the number of tokens in the string.
113192 ** The nDocMatch and nMatch variables contain data that may be used by the
113193 ** matchinfo() function. They are populated when the full-text index is
113194 ** queried for hits on the phrase. If one or more tokens in the phrase
113195 ** are deferred, the nDocMatch and nMatch variables are populated based
113196 ** on the assumption that the
113198 struct Fts3PhraseToken {
113199 char *z; /* Text of the token */
113200 int n; /* Number of bytes in buffer z */
113201 int isPrefix; /* True if token ends with a "*" character */
113202 int bFulltext; /* True if full-text index was used */
113203 Fts3SegReaderCursor *pSegcsr; /* Segment-reader for this token */
113204 Fts3DeferredToken *pDeferred; /* Deferred token object for this token */
113207 struct Fts3Phrase {
113208 /* Variables populated by fts3_expr.c when parsing a MATCH expression */
113209 int nToken; /* Number of tokens in the phrase */
113210 int iColumn; /* Index of column this phrase must match */
113211 int isNot; /* Phrase prefixed by unary not (-) operator */
113212 Fts3PhraseToken aToken[1]; /* One entry for each token in the phrase */
113216 ** A tree of these objects forms the RHS of a MATCH operator.
113218 ** If Fts3Expr.eType is either FTSQUERY_NEAR or FTSQUERY_PHRASE and isLoaded
113219 ** is true, then aDoclist points to a malloced buffer, size nDoclist bytes,
113220 ** containing the results of the NEAR or phrase query in FTS3 doclist
113221 ** format. As usual, the initial "Length" field found in doclists stored
113222 ** on disk is omitted from this buffer.
113224 ** Variable pCurrent always points to the start of a docid field within
113225 ** aDoclist. Since the doclist is usually scanned in docid order, this can
113226 ** be used to accelerate seeking to the required docid within the doclist.
113228 struct Fts3Expr {
113229 int eType; /* One of the FTSQUERY_XXX values defined below */
113230 int nNear; /* Valid if eType==FTSQUERY_NEAR */
113231 Fts3Expr *pParent; /* pParent->pLeft==this or pParent->pRight==this */
113232 Fts3Expr *pLeft; /* Left operand */
113233 Fts3Expr *pRight; /* Right operand */
113234 Fts3Phrase *pPhrase; /* Valid if eType==FTSQUERY_PHRASE */
113236 int isLoaded; /* True if aDoclist/nDoclist are initialized. */
113237 char *aDoclist; /* Buffer containing doclist */
113238 int nDoclist; /* Size of aDoclist in bytes */
113240 sqlite3_int64 iCurrent;
113241 char *pCurrent;
113245 ** Candidate values for Fts3Query.eType. Note that the order of the first
113246 ** four values is in order of precedence when parsing expressions. For
113247 ** example, the following:
113249 ** "a OR b AND c NOT d NEAR e"
113251 ** is equivalent to:
113253 ** "a OR (b AND (c NOT (d NEAR e)))"
113255 #define FTSQUERY_NEAR 1
113256 #define FTSQUERY_NOT 2
113257 #define FTSQUERY_AND 3
113258 #define FTSQUERY_OR 4
113259 #define FTSQUERY_PHRASE 5
113262 /* fts3_write.c */
113263 SQLITE_PRIVATE int sqlite3Fts3UpdateMethod(sqlite3_vtab*,int,sqlite3_value**,sqlite3_int64*);
113264 SQLITE_PRIVATE int sqlite3Fts3PendingTermsFlush(Fts3Table *);
113265 SQLITE_PRIVATE void sqlite3Fts3PendingTermsClear(Fts3Table *);
113266 SQLITE_PRIVATE int sqlite3Fts3Optimize(Fts3Table *);
113267 SQLITE_PRIVATE int sqlite3Fts3SegReaderNew(int, sqlite3_int64,
113268 sqlite3_int64, sqlite3_int64, const char *, int, Fts3SegReader**);
113269 SQLITE_PRIVATE int sqlite3Fts3SegReaderPending(Fts3Table*,const char*,int,int,Fts3SegReader**);
113270 SQLITE_PRIVATE void sqlite3Fts3SegReaderFree(Fts3SegReader *);
113271 SQLITE_PRIVATE int sqlite3Fts3SegReaderCost(Fts3Cursor *, Fts3SegReader *, int *);
113272 SQLITE_PRIVATE int sqlite3Fts3AllSegdirs(Fts3Table*, int, sqlite3_stmt **);
113273 SQLITE_PRIVATE int sqlite3Fts3ReadLock(Fts3Table *);
113274 SQLITE_PRIVATE int sqlite3Fts3ReadBlock(Fts3Table*, sqlite3_int64, char **, int*);
113276 SQLITE_PRIVATE int sqlite3Fts3SelectDoctotal(Fts3Table *, sqlite3_stmt **);
113277 SQLITE_PRIVATE int sqlite3Fts3SelectDocsize(Fts3Table *, sqlite3_int64, sqlite3_stmt **);
113279 SQLITE_PRIVATE void sqlite3Fts3FreeDeferredTokens(Fts3Cursor *);
113280 SQLITE_PRIVATE int sqlite3Fts3DeferToken(Fts3Cursor *, Fts3PhraseToken *, int);
113281 SQLITE_PRIVATE int sqlite3Fts3CacheDeferredDoclists(Fts3Cursor *);
113282 SQLITE_PRIVATE void sqlite3Fts3FreeDeferredDoclists(Fts3Cursor *);
113283 SQLITE_PRIVATE char *sqlite3Fts3DeferredDoclist(Fts3DeferredToken *, int *);
113284 SQLITE_PRIVATE void sqlite3Fts3SegmentsClose(Fts3Table *);
113286 #define FTS3_SEGCURSOR_PENDING -1
113287 #define FTS3_SEGCURSOR_ALL -2
113289 SQLITE_PRIVATE int sqlite3Fts3SegReaderStart(Fts3Table*, Fts3SegReaderCursor*, Fts3SegFilter*);
113290 SQLITE_PRIVATE int sqlite3Fts3SegReaderStep(Fts3Table *, Fts3SegReaderCursor *);
113291 SQLITE_PRIVATE void sqlite3Fts3SegReaderFinish(Fts3SegReaderCursor *);
113292 SQLITE_PRIVATE int sqlite3Fts3SegReaderCursor(
113293 Fts3Table *, int, const char *, int, int, int, Fts3SegReaderCursor *);
113295 /* Flags allowed as part of the 4th argument to SegmentReaderIterate() */
113296 #define FTS3_SEGMENT_REQUIRE_POS 0x00000001
113297 #define FTS3_SEGMENT_IGNORE_EMPTY 0x00000002
113298 #define FTS3_SEGMENT_COLUMN_FILTER 0x00000004
113299 #define FTS3_SEGMENT_PREFIX 0x00000008
113300 #define FTS3_SEGMENT_SCAN 0x00000010
113302 /* Type passed as 4th argument to SegmentReaderIterate() */
113303 struct Fts3SegFilter {
113304 const char *zTerm;
113305 int nTerm;
113306 int iCol;
113307 int flags;
113310 struct Fts3SegReaderCursor {
113311 /* Used internally by sqlite3Fts3SegReaderXXX() calls */
113312 Fts3SegReader **apSegment; /* Array of Fts3SegReader objects */
113313 int nSegment; /* Size of apSegment array */
113314 int nAdvance; /* How many seg-readers to advance */
113315 Fts3SegFilter *pFilter; /* Pointer to filter object */
113316 char *aBuffer; /* Buffer to merge doclists in */
113317 int nBuffer; /* Allocated size of aBuffer[] in bytes */
113319 /* Cost of running this iterator. Used by fts3.c only. */
113320 int nCost;
113322 /* Output values. Valid only after Fts3SegReaderStep() returns SQLITE_ROW. */
113323 char *zTerm; /* Pointer to term buffer */
113324 int nTerm; /* Size of zTerm in bytes */
113325 char *aDoclist; /* Pointer to doclist buffer */
113326 int nDoclist; /* Size of aDoclist[] in bytes */
113329 /* fts3.c */
113330 SQLITE_PRIVATE int sqlite3Fts3PutVarint(char *, sqlite3_int64);
113331 SQLITE_PRIVATE int sqlite3Fts3GetVarint(const char *, sqlite_int64 *);
113332 SQLITE_PRIVATE int sqlite3Fts3GetVarint32(const char *, int *);
113333 SQLITE_PRIVATE int sqlite3Fts3VarintLen(sqlite3_uint64);
113334 SQLITE_PRIVATE void sqlite3Fts3Dequote(char *);
113336 SQLITE_PRIVATE char *sqlite3Fts3FindPositions(Fts3Expr *, sqlite3_int64, int);
113337 SQLITE_PRIVATE int sqlite3Fts3ExprLoadDoclist(Fts3Cursor *, Fts3Expr *);
113338 SQLITE_PRIVATE int sqlite3Fts3ExprLoadFtDoclist(Fts3Cursor *, Fts3Expr *, char **, int *);
113339 SQLITE_PRIVATE int sqlite3Fts3ExprNearTrim(Fts3Expr *, Fts3Expr *, int);
113341 /* fts3_tokenizer.c */
113342 SQLITE_PRIVATE const char *sqlite3Fts3NextToken(const char *, int *);
113343 SQLITE_PRIVATE int sqlite3Fts3InitHashTable(sqlite3 *, Fts3Hash *, const char *);
113344 SQLITE_PRIVATE int sqlite3Fts3InitTokenizer(Fts3Hash *pHash, const char *,
113345 sqlite3_tokenizer **, char **
113347 SQLITE_PRIVATE int sqlite3Fts3IsIdChar(char);
113349 /* fts3_snippet.c */
113350 SQLITE_PRIVATE void sqlite3Fts3Offsets(sqlite3_context*, Fts3Cursor*);
113351 SQLITE_PRIVATE void sqlite3Fts3Snippet(sqlite3_context *, Fts3Cursor *, const char *,
113352 const char *, const char *, int, int
113354 SQLITE_PRIVATE void sqlite3Fts3Matchinfo(sqlite3_context *, Fts3Cursor *, const char *);
113356 /* fts3_expr.c */
113357 SQLITE_PRIVATE int sqlite3Fts3ExprParse(sqlite3_tokenizer *,
113358 char **, int, int, const char *, int, Fts3Expr **
113360 SQLITE_PRIVATE void sqlite3Fts3ExprFree(Fts3Expr *);
113361 #ifdef SQLITE_TEST
113362 SQLITE_PRIVATE int sqlite3Fts3ExprInitTestInterface(sqlite3 *db);
113363 #endif
113365 /* fts3_aux.c */
113366 SQLITE_PRIVATE int sqlite3Fts3InitAux(sqlite3 *db);
113368 #endif /* _FTSINT_H */
113370 /************** End of fts3Int.h *********************************************/
113371 /************** Continuing where we left off in fts3.c ***********************/
113374 #ifndef SQLITE_CORE
113375 SQLITE_EXTENSION_INIT1
113376 #endif
113379 ** Write a 64-bit variable-length integer to memory starting at p[0].
113380 ** The length of data written will be between 1 and FTS3_VARINT_MAX bytes.
113381 ** The number of bytes written is returned.
113383 SQLITE_PRIVATE int sqlite3Fts3PutVarint(char *p, sqlite_int64 v){
113384 unsigned char *q = (unsigned char *) p;
113385 sqlite_uint64 vu = v;
113387 *q++ = (unsigned char) ((vu & 0x7f) | 0x80);
113388 vu >>= 7;
113389 }while( vu!=0 );
113390 q[-1] &= 0x7f; /* turn off high bit in final byte */
113391 assert( q - (unsigned char *)p <= FTS3_VARINT_MAX );
113392 return (int) (q - (unsigned char *)p);
113396 ** Read a 64-bit variable-length integer from memory starting at p[0].
113397 ** Return the number of bytes read, or 0 on error.
113398 ** The value is stored in *v.
113400 SQLITE_PRIVATE int sqlite3Fts3GetVarint(const char *p, sqlite_int64 *v){
113401 const unsigned char *q = (const unsigned char *) p;
113402 sqlite_uint64 x = 0, y = 1;
113403 while( (*q&0x80)==0x80 && q-(unsigned char *)p<FTS3_VARINT_MAX ){
113404 x += y * (*q++ & 0x7f);
113405 y <<= 7;
113407 x += y * (*q++);
113408 *v = (sqlite_int64) x;
113409 return (int) (q - (unsigned char *)p);
113413 ** Similar to sqlite3Fts3GetVarint(), except that the output is truncated to a
113414 ** 32-bit integer before it is returned.
113416 SQLITE_PRIVATE int sqlite3Fts3GetVarint32(const char *p, int *pi){
113417 sqlite_int64 i;
113418 int ret = sqlite3Fts3GetVarint(p, &i);
113419 *pi = (int) i;
113420 return ret;
113424 ** Return the number of bytes required to encode v as a varint
113426 SQLITE_PRIVATE int sqlite3Fts3VarintLen(sqlite3_uint64 v){
113427 int i = 0;
113430 v >>= 7;
113431 }while( v!=0 );
113432 return i;
113436 ** Convert an SQL-style quoted string into a normal string by removing
113437 ** the quote characters. The conversion is done in-place. If the
113438 ** input does not begin with a quote character, then this routine
113439 ** is a no-op.
113441 ** Examples:
113443 ** "abc" becomes abc
113444 ** 'xyz' becomes xyz
113445 ** [pqr] becomes pqr
113446 ** `mno` becomes mno
113449 SQLITE_PRIVATE void sqlite3Fts3Dequote(char *z){
113450 char quote; /* Quote character (if any ) */
113452 quote = z[0];
113453 if( quote=='[' || quote=='\'' || quote=='"' || quote=='`' ){
113454 int iIn = 1; /* Index of next byte to read from input */
113455 int iOut = 0; /* Index of next byte to write to output */
113457 /* If the first byte was a '[', then the close-quote character is a ']' */
113458 if( quote=='[' ) quote = ']';
113460 while( ALWAYS(z[iIn]) ){
113461 if( z[iIn]==quote ){
113462 if( z[iIn+1]!=quote ) break;
113463 z[iOut++] = quote;
113464 iIn += 2;
113465 }else{
113466 z[iOut++] = z[iIn++];
113469 z[iOut] = '\0';
113474 ** Read a single varint from the doclist at *pp and advance *pp to point
113475 ** to the first byte past the end of the varint. Add the value of the varint
113476 ** to *pVal.
113478 static void fts3GetDeltaVarint(char **pp, sqlite3_int64 *pVal){
113479 sqlite3_int64 iVal;
113480 *pp += sqlite3Fts3GetVarint(*pp, &iVal);
113481 *pVal += iVal;
113485 ** As long as *pp has not reached its end (pEnd), then do the same
113486 ** as fts3GetDeltaVarint(): read a single varint and add it to *pVal.
113487 ** But if we have reached the end of the varint, just set *pp=0 and
113488 ** leave *pVal unchanged.
113490 static void fts3GetDeltaVarint2(char **pp, char *pEnd, sqlite3_int64 *pVal){
113491 if( *pp>=pEnd ){
113492 *pp = 0;
113493 }else{
113494 fts3GetDeltaVarint(pp, pVal);
113499 ** The xDisconnect() virtual table method.
113501 static int fts3DisconnectMethod(sqlite3_vtab *pVtab){
113502 Fts3Table *p = (Fts3Table *)pVtab;
113503 int i;
113505 assert( p->nPendingData==0 );
113506 assert( p->pSegments==0 );
113508 /* Free any prepared statements held */
113509 for(i=0; i<SizeofArray(p->aStmt); i++){
113510 sqlite3_finalize(p->aStmt[i]);
113512 sqlite3_free(p->zSegmentsTbl);
113513 sqlite3_free(p->zReadExprlist);
113514 sqlite3_free(p->zWriteExprlist);
113516 /* Invoke the tokenizer destructor to free the tokenizer. */
113517 p->pTokenizer->pModule->xDestroy(p->pTokenizer);
113519 sqlite3_free(p);
113520 return SQLITE_OK;
113524 ** Construct one or more SQL statements from the format string given
113525 ** and then evaluate those statements. The success code is written
113526 ** into *pRc.
113528 ** If *pRc is initially non-zero then this routine is a no-op.
113530 static void fts3DbExec(
113531 int *pRc, /* Success code */
113532 sqlite3 *db, /* Database in which to run SQL */
113533 const char *zFormat, /* Format string for SQL */
113534 ... /* Arguments to the format string */
113536 va_list ap;
113537 char *zSql;
113538 if( *pRc ) return;
113539 va_start(ap, zFormat);
113540 zSql = sqlite3_vmprintf(zFormat, ap);
113541 va_end(ap);
113542 if( zSql==0 ){
113543 *pRc = SQLITE_NOMEM;
113544 }else{
113545 *pRc = sqlite3_exec(db, zSql, 0, 0, 0);
113546 sqlite3_free(zSql);
113551 ** The xDestroy() virtual table method.
113553 static int fts3DestroyMethod(sqlite3_vtab *pVtab){
113554 int rc = SQLITE_OK; /* Return code */
113555 Fts3Table *p = (Fts3Table *)pVtab;
113556 sqlite3 *db = p->db;
113558 /* Drop the shadow tables */
113559 fts3DbExec(&rc, db, "DROP TABLE IF EXISTS %Q.'%q_content'", p->zDb, p->zName);
113560 fts3DbExec(&rc, db, "DROP TABLE IF EXISTS %Q.'%q_segments'", p->zDb,p->zName);
113561 fts3DbExec(&rc, db, "DROP TABLE IF EXISTS %Q.'%q_segdir'", p->zDb, p->zName);
113562 fts3DbExec(&rc, db, "DROP TABLE IF EXISTS %Q.'%q_docsize'", p->zDb, p->zName);
113563 fts3DbExec(&rc, db, "DROP TABLE IF EXISTS %Q.'%q_stat'", p->zDb, p->zName);
113565 /* If everything has worked, invoke fts3DisconnectMethod() to free the
113566 ** memory associated with the Fts3Table structure and return SQLITE_OK.
113567 ** Otherwise, return an SQLite error code.
113569 return (rc==SQLITE_OK ? fts3DisconnectMethod(pVtab) : rc);
113574 ** Invoke sqlite3_declare_vtab() to declare the schema for the FTS3 table
113575 ** passed as the first argument. This is done as part of the xConnect()
113576 ** and xCreate() methods.
113578 ** If *pRc is non-zero when this function is called, it is a no-op.
113579 ** Otherwise, if an error occurs, an SQLite error code is stored in *pRc
113580 ** before returning.
113582 static void fts3DeclareVtab(int *pRc, Fts3Table *p){
113583 if( *pRc==SQLITE_OK ){
113584 int i; /* Iterator variable */
113585 int rc; /* Return code */
113586 char *zSql; /* SQL statement passed to declare_vtab() */
113587 char *zCols; /* List of user defined columns */
113589 /* Create a list of user columns for the virtual table */
113590 zCols = sqlite3_mprintf("%Q, ", p->azColumn[0]);
113591 for(i=1; zCols && i<p->nColumn; i++){
113592 zCols = sqlite3_mprintf("%z%Q, ", zCols, p->azColumn[i]);
113595 /* Create the whole "CREATE TABLE" statement to pass to SQLite */
113596 zSql = sqlite3_mprintf(
113597 "CREATE TABLE x(%s %Q HIDDEN, docid HIDDEN)", zCols, p->zName
113599 if( !zCols || !zSql ){
113600 rc = SQLITE_NOMEM;
113601 }else{
113602 rc = sqlite3_declare_vtab(p->db, zSql);
113605 sqlite3_free(zSql);
113606 sqlite3_free(zCols);
113607 *pRc = rc;
113612 ** Create the backing store tables (%_content, %_segments and %_segdir)
113613 ** required by the FTS3 table passed as the only argument. This is done
113614 ** as part of the vtab xCreate() method.
113616 ** If the p->bHasDocsize boolean is true (indicating that this is an
113617 ** FTS4 table, not an FTS3 table) then also create the %_docsize and
113618 ** %_stat tables required by FTS4.
113620 static int fts3CreateTables(Fts3Table *p){
113621 int rc = SQLITE_OK; /* Return code */
113622 int i; /* Iterator variable */
113623 char *zContentCols; /* Columns of %_content table */
113624 sqlite3 *db = p->db; /* The database connection */
113626 /* Create a list of user columns for the content table */
113627 zContentCols = sqlite3_mprintf("docid INTEGER PRIMARY KEY");
113628 for(i=0; zContentCols && i<p->nColumn; i++){
113629 char *z = p->azColumn[i];
113630 zContentCols = sqlite3_mprintf("%z, 'c%d%q'", zContentCols, i, z);
113632 if( zContentCols==0 ) rc = SQLITE_NOMEM;
113634 /* Create the content table */
113635 fts3DbExec(&rc, db,
113636 "CREATE TABLE %Q.'%q_content'(%s)",
113637 p->zDb, p->zName, zContentCols
113639 sqlite3_free(zContentCols);
113640 /* Create other tables */
113641 fts3DbExec(&rc, db,
113642 "CREATE TABLE %Q.'%q_segments'(blockid INTEGER PRIMARY KEY, block BLOB);",
113643 p->zDb, p->zName
113645 fts3DbExec(&rc, db,
113646 "CREATE TABLE %Q.'%q_segdir'("
113647 "level INTEGER,"
113648 "idx INTEGER,"
113649 "start_block INTEGER,"
113650 "leaves_end_block INTEGER,"
113651 "end_block INTEGER,"
113652 "root BLOB,"
113653 "PRIMARY KEY(level, idx)"
113654 ");",
113655 p->zDb, p->zName
113657 if( p->bHasDocsize ){
113658 fts3DbExec(&rc, db,
113659 "CREATE TABLE %Q.'%q_docsize'(docid INTEGER PRIMARY KEY, size BLOB);",
113660 p->zDb, p->zName
113663 if( p->bHasStat ){
113664 fts3DbExec(&rc, db,
113665 "CREATE TABLE %Q.'%q_stat'(id INTEGER PRIMARY KEY, value BLOB);",
113666 p->zDb, p->zName
113669 return rc;
113673 ** Store the current database page-size in bytes in p->nPgsz.
113675 ** If *pRc is non-zero when this function is called, it is a no-op.
113676 ** Otherwise, if an error occurs, an SQLite error code is stored in *pRc
113677 ** before returning.
113679 static void fts3DatabasePageSize(int *pRc, Fts3Table *p){
113680 if( *pRc==SQLITE_OK ){
113681 int rc; /* Return code */
113682 char *zSql; /* SQL text "PRAGMA %Q.page_size" */
113683 sqlite3_stmt *pStmt; /* Compiled "PRAGMA %Q.page_size" statement */
113685 zSql = sqlite3_mprintf("PRAGMA %Q.page_size", p->zDb);
113686 if( !zSql ){
113687 rc = SQLITE_NOMEM;
113688 }else{
113689 rc = sqlite3_prepare(p->db, zSql, -1, &pStmt, 0);
113690 if( rc==SQLITE_OK ){
113691 sqlite3_step(pStmt);
113692 p->nPgsz = sqlite3_column_int(pStmt, 0);
113693 rc = sqlite3_finalize(pStmt);
113694 }else if( rc==SQLITE_AUTH ){
113695 p->nPgsz = 1024;
113696 rc = SQLITE_OK;
113699 assert( p->nPgsz>0 || rc!=SQLITE_OK );
113700 sqlite3_free(zSql);
113701 *pRc = rc;
113706 ** "Special" FTS4 arguments are column specifications of the following form:
113708 ** <key> = <value>
113710 ** There may not be whitespace surrounding the "=" character. The <value>
113711 ** term may be quoted, but the <key> may not.
113713 static int fts3IsSpecialColumn(
113714 const char *z,
113715 int *pnKey,
113716 char **pzValue
113718 char *zValue;
113719 const char *zCsr = z;
113721 while( *zCsr!='=' ){
113722 if( *zCsr=='\0' ) return 0;
113723 zCsr++;
113726 *pnKey = (int)(zCsr-z);
113727 zValue = sqlite3_mprintf("%s", &zCsr[1]);
113728 if( zValue ){
113729 sqlite3Fts3Dequote(zValue);
113731 *pzValue = zValue;
113732 return 1;
113736 ** Append the output of a printf() style formatting to an existing string.
113738 static void fts3Appendf(
113739 int *pRc, /* IN/OUT: Error code */
113740 char **pz, /* IN/OUT: Pointer to string buffer */
113741 const char *zFormat, /* Printf format string to append */
113742 ... /* Arguments for printf format string */
113744 if( *pRc==SQLITE_OK ){
113745 va_list ap;
113746 char *z;
113747 va_start(ap, zFormat);
113748 z = sqlite3_vmprintf(zFormat, ap);
113749 if( z && *pz ){
113750 char *z2 = sqlite3_mprintf("%s%s", *pz, z);
113751 sqlite3_free(z);
113752 z = z2;
113754 if( z==0 ) *pRc = SQLITE_NOMEM;
113755 sqlite3_free(*pz);
113756 *pz = z;
113761 ** Return a copy of input string zInput enclosed in double-quotes (") and
113762 ** with all double quote characters escaped. For example:
113764 ** fts3QuoteId("un \"zip\"") -> "un \"\"zip\"\""
113766 ** The pointer returned points to memory obtained from sqlite3_malloc(). It
113767 ** is the callers responsibility to call sqlite3_free() to release this
113768 ** memory.
113770 static char *fts3QuoteId(char const *zInput){
113771 int nRet;
113772 char *zRet;
113773 nRet = 2 + strlen(zInput)*2 + 1;
113774 zRet = sqlite3_malloc(nRet);
113775 if( zRet ){
113776 int i;
113777 char *z = zRet;
113778 *(z++) = '"';
113779 for(i=0; zInput[i]; i++){
113780 if( zInput[i]=='"' ) *(z++) = '"';
113781 *(z++) = zInput[i];
113783 *(z++) = '"';
113784 *(z++) = '\0';
113786 return zRet;
113790 ** Return a list of comma separated SQL expressions that could be used
113791 ** in a SELECT statement such as the following:
113793 ** SELECT <list of expressions> FROM %_content AS x ...
113795 ** to return the docid, followed by each column of text data in order
113796 ** from left to write. If parameter zFunc is not NULL, then instead of
113797 ** being returned directly each column of text data is passed to an SQL
113798 ** function named zFunc first. For example, if zFunc is "unzip" and the
113799 ** table has the three user-defined columns "a", "b", and "c", the following
113800 ** string is returned:
113802 ** "docid, unzip(x.'a'), unzip(x.'b'), unzip(x.'c')"
113804 ** The pointer returned points to a buffer allocated by sqlite3_malloc(). It
113805 ** is the responsibility of the caller to eventually free it.
113807 ** If *pRc is not SQLITE_OK when this function is called, it is a no-op (and
113808 ** a NULL pointer is returned). Otherwise, if an OOM error is encountered
113809 ** by this function, NULL is returned and *pRc is set to SQLITE_NOMEM. If
113810 ** no error occurs, *pRc is left unmodified.
113812 static char *fts3ReadExprList(Fts3Table *p, const char *zFunc, int *pRc){
113813 char *zRet = 0;
113814 char *zFree = 0;
113815 char *zFunction;
113816 int i;
113818 if( !zFunc ){
113819 zFunction = "";
113820 }else{
113821 zFree = zFunction = fts3QuoteId(zFunc);
113823 fts3Appendf(pRc, &zRet, "docid");
113824 for(i=0; i<p->nColumn; i++){
113825 fts3Appendf(pRc, &zRet, ",%s(x.'c%d%q')", zFunction, i, p->azColumn[i]);
113827 sqlite3_free(zFree);
113828 return zRet;
113832 ** Return a list of N comma separated question marks, where N is the number
113833 ** of columns in the %_content table (one for the docid plus one for each
113834 ** user-defined text column).
113836 ** If argument zFunc is not NULL, then all but the first question mark
113837 ** is preceded by zFunc and an open bracket, and followed by a closed
113838 ** bracket. For example, if zFunc is "zip" and the FTS3 table has three
113839 ** user-defined text columns, the following string is returned:
113841 ** "?, zip(?), zip(?), zip(?)"
113843 ** The pointer returned points to a buffer allocated by sqlite3_malloc(). It
113844 ** is the responsibility of the caller to eventually free it.
113846 ** If *pRc is not SQLITE_OK when this function is called, it is a no-op (and
113847 ** a NULL pointer is returned). Otherwise, if an OOM error is encountered
113848 ** by this function, NULL is returned and *pRc is set to SQLITE_NOMEM. If
113849 ** no error occurs, *pRc is left unmodified.
113851 static char *fts3WriteExprList(Fts3Table *p, const char *zFunc, int *pRc){
113852 char *zRet = 0;
113853 char *zFree = 0;
113854 char *zFunction;
113855 int i;
113857 if( !zFunc ){
113858 zFunction = "";
113859 }else{
113860 zFree = zFunction = fts3QuoteId(zFunc);
113862 fts3Appendf(pRc, &zRet, "?");
113863 for(i=0; i<p->nColumn; i++){
113864 fts3Appendf(pRc, &zRet, ",%s(?)", zFunction);
113866 sqlite3_free(zFree);
113867 return zRet;
113871 ** This function is the implementation of both the xConnect and xCreate
113872 ** methods of the FTS3 virtual table.
113874 ** The argv[] array contains the following:
113876 ** argv[0] -> module name ("fts3" or "fts4")
113877 ** argv[1] -> database name
113878 ** argv[2] -> table name
113879 ** argv[...] -> "column name" and other module argument fields.
113881 static int fts3InitVtab(
113882 int isCreate, /* True for xCreate, false for xConnect */
113883 sqlite3 *db, /* The SQLite database connection */
113884 void *pAux, /* Hash table containing tokenizers */
113885 int argc, /* Number of elements in argv array */
113886 const char * const *argv, /* xCreate/xConnect argument array */
113887 sqlite3_vtab **ppVTab, /* Write the resulting vtab structure here */
113888 char **pzErr /* Write any error message here */
113890 Fts3Hash *pHash = (Fts3Hash *)pAux;
113891 Fts3Table *p = 0; /* Pointer to allocated vtab */
113892 int rc = SQLITE_OK; /* Return code */
113893 int i; /* Iterator variable */
113894 int nByte; /* Size of allocation used for *p */
113895 int iCol; /* Column index */
113896 int nString = 0; /* Bytes required to hold all column names */
113897 int nCol = 0; /* Number of columns in the FTS table */
113898 char *zCsr; /* Space for holding column names */
113899 int nDb; /* Bytes required to hold database name */
113900 int nName; /* Bytes required to hold table name */
113901 int isFts4 = (argv[0][3]=='4'); /* True for FTS4, false for FTS3 */
113902 int bNoDocsize = 0; /* True to omit %_docsize table */
113903 const char **aCol; /* Array of column names */
113904 sqlite3_tokenizer *pTokenizer = 0; /* Tokenizer for this table */
113906 char *zCompress = 0;
113907 char *zUncompress = 0;
113909 assert( strlen(argv[0])==4 );
113910 assert( (sqlite3_strnicmp(argv[0], "fts4", 4)==0 && isFts4)
113911 || (sqlite3_strnicmp(argv[0], "fts3", 4)==0 && !isFts4)
113914 nDb = (int)strlen(argv[1]) + 1;
113915 nName = (int)strlen(argv[2]) + 1;
113917 aCol = (const char **)sqlite3_malloc(sizeof(const char *) * (argc-2) );
113918 if( !aCol ) return SQLITE_NOMEM;
113919 memset((void *)aCol, 0, sizeof(const char *) * (argc-2));
113921 /* Loop through all of the arguments passed by the user to the FTS3/4
113922 ** module (i.e. all the column names and special arguments). This loop
113923 ** does the following:
113925 ** + Figures out the number of columns the FTSX table will have, and
113926 ** the number of bytes of space that must be allocated to store copies
113927 ** of the column names.
113929 ** + If there is a tokenizer specification included in the arguments,
113930 ** initializes the tokenizer pTokenizer.
113932 for(i=3; rc==SQLITE_OK && i<argc; i++){
113933 char const *z = argv[i];
113934 int nKey;
113935 char *zVal;
113937 /* Check if this is a tokenizer specification */
113938 if( !pTokenizer
113939 && strlen(z)>8
113940 && 0==sqlite3_strnicmp(z, "tokenize", 8)
113941 && 0==sqlite3Fts3IsIdChar(z[8])
113943 rc = sqlite3Fts3InitTokenizer(pHash, &z[9], &pTokenizer, pzErr);
113946 /* Check if it is an FTS4 special argument. */
113947 else if( isFts4 && fts3IsSpecialColumn(z, &nKey, &zVal) ){
113948 if( !zVal ){
113949 rc = SQLITE_NOMEM;
113950 goto fts3_init_out;
113952 if( nKey==9 && 0==sqlite3_strnicmp(z, "matchinfo", 9) ){
113953 if( strlen(zVal)==4 && 0==sqlite3_strnicmp(zVal, "fts3", 4) ){
113954 bNoDocsize = 1;
113955 }else{
113956 *pzErr = sqlite3_mprintf("unrecognized matchinfo: %s", zVal);
113957 rc = SQLITE_ERROR;
113959 }else if( nKey==8 && 0==sqlite3_strnicmp(z, "compress", 8) ){
113960 zCompress = zVal;
113961 zVal = 0;
113962 }else if( nKey==10 && 0==sqlite3_strnicmp(z, "uncompress", 10) ){
113963 zUncompress = zVal;
113964 zVal = 0;
113965 }else{
113966 *pzErr = sqlite3_mprintf("unrecognized parameter: %s", z);
113967 rc = SQLITE_ERROR;
113969 sqlite3_free(zVal);
113972 /* Otherwise, the argument is a column name. */
113973 else {
113974 nString += (int)(strlen(z) + 1);
113975 aCol[nCol++] = z;
113978 if( rc!=SQLITE_OK ) goto fts3_init_out;
113980 if( nCol==0 ){
113981 assert( nString==0 );
113982 aCol[0] = "content";
113983 nString = 8;
113984 nCol = 1;
113987 if( pTokenizer==0 ){
113988 rc = sqlite3Fts3InitTokenizer(pHash, "simple", &pTokenizer, pzErr);
113989 if( rc!=SQLITE_OK ) goto fts3_init_out;
113991 assert( pTokenizer );
113994 /* Allocate and populate the Fts3Table structure. */
113995 nByte = sizeof(Fts3Table) + /* Fts3Table */
113996 nCol * sizeof(char *) + /* azColumn */
113997 nName + /* zName */
113998 nDb + /* zDb */
113999 nString; /* Space for azColumn strings */
114000 p = (Fts3Table*)sqlite3_malloc(nByte);
114001 if( p==0 ){
114002 rc = SQLITE_NOMEM;
114003 goto fts3_init_out;
114005 memset(p, 0, nByte);
114006 p->db = db;
114007 p->nColumn = nCol;
114008 p->nPendingData = 0;
114009 p->azColumn = (char **)&p[1];
114010 p->pTokenizer = pTokenizer;
114011 p->nNodeSize = 1000;
114012 p->nMaxPendingData = FTS3_MAX_PENDING_DATA;
114013 p->bHasDocsize = (isFts4 && bNoDocsize==0);
114014 p->bHasStat = isFts4;
114015 fts3HashInit(&p->pendingTerms, FTS3_HASH_STRING, 1);
114017 /* Fill in the zName and zDb fields of the vtab structure. */
114018 zCsr = (char *)&p->azColumn[nCol];
114019 p->zName = zCsr;
114020 memcpy(zCsr, argv[2], nName);
114021 zCsr += nName;
114022 p->zDb = zCsr;
114023 memcpy(zCsr, argv[1], nDb);
114024 zCsr += nDb;
114026 /* Fill in the azColumn array */
114027 for(iCol=0; iCol<nCol; iCol++){
114028 char *z;
114029 int n;
114030 z = (char *)sqlite3Fts3NextToken(aCol[iCol], &n);
114031 memcpy(zCsr, z, n);
114032 zCsr[n] = '\0';
114033 sqlite3Fts3Dequote(zCsr);
114034 p->azColumn[iCol] = zCsr;
114035 zCsr += n+1;
114036 assert( zCsr <= &((char *)p)[nByte] );
114039 if( (zCompress==0)!=(zUncompress==0) ){
114040 char const *zMiss = (zCompress==0 ? "compress" : "uncompress");
114041 rc = SQLITE_ERROR;
114042 *pzErr = sqlite3_mprintf("missing %s parameter in fts4 constructor", zMiss);
114044 p->zReadExprlist = fts3ReadExprList(p, zUncompress, &rc);
114045 p->zWriteExprlist = fts3WriteExprList(p, zCompress, &rc);
114046 if( rc!=SQLITE_OK ) goto fts3_init_out;
114048 /* If this is an xCreate call, create the underlying tables in the
114049 ** database. TODO: For xConnect(), it could verify that said tables exist.
114051 if( isCreate ){
114052 rc = fts3CreateTables(p);
114055 /* Figure out the page-size for the database. This is required in order to
114056 ** estimate the cost of loading large doclists from the database (see
114057 ** function sqlite3Fts3SegReaderCost() for details).
114059 fts3DatabasePageSize(&rc, p);
114061 /* Declare the table schema to SQLite. */
114062 fts3DeclareVtab(&rc, p);
114064 fts3_init_out:
114065 sqlite3_free(zCompress);
114066 sqlite3_free(zUncompress);
114067 sqlite3_free((void *)aCol);
114068 if( rc!=SQLITE_OK ){
114069 if( p ){
114070 fts3DisconnectMethod((sqlite3_vtab *)p);
114071 }else if( pTokenizer ){
114072 pTokenizer->pModule->xDestroy(pTokenizer);
114074 }else{
114075 *ppVTab = &p->base;
114077 return rc;
114081 ** The xConnect() and xCreate() methods for the virtual table. All the
114082 ** work is done in function fts3InitVtab().
114084 static int fts3ConnectMethod(
114085 sqlite3 *db, /* Database connection */
114086 void *pAux, /* Pointer to tokenizer hash table */
114087 int argc, /* Number of elements in argv array */
114088 const char * const *argv, /* xCreate/xConnect argument array */
114089 sqlite3_vtab **ppVtab, /* OUT: New sqlite3_vtab object */
114090 char **pzErr /* OUT: sqlite3_malloc'd error message */
114092 return fts3InitVtab(0, db, pAux, argc, argv, ppVtab, pzErr);
114094 static int fts3CreateMethod(
114095 sqlite3 *db, /* Database connection */
114096 void *pAux, /* Pointer to tokenizer hash table */
114097 int argc, /* Number of elements in argv array */
114098 const char * const *argv, /* xCreate/xConnect argument array */
114099 sqlite3_vtab **ppVtab, /* OUT: New sqlite3_vtab object */
114100 char **pzErr /* OUT: sqlite3_malloc'd error message */
114102 return fts3InitVtab(1, db, pAux, argc, argv, ppVtab, pzErr);
114106 ** Implementation of the xBestIndex method for FTS3 tables. There
114107 ** are three possible strategies, in order of preference:
114109 ** 1. Direct lookup by rowid or docid.
114110 ** 2. Full-text search using a MATCH operator on a non-docid column.
114111 ** 3. Linear scan of %_content table.
114113 static int fts3BestIndexMethod(sqlite3_vtab *pVTab, sqlite3_index_info *pInfo){
114114 Fts3Table *p = (Fts3Table *)pVTab;
114115 int i; /* Iterator variable */
114116 int iCons = -1; /* Index of constraint to use */
114118 /* By default use a full table scan. This is an expensive option,
114119 ** so search through the constraints to see if a more efficient
114120 ** strategy is possible.
114122 pInfo->idxNum = FTS3_FULLSCAN_SEARCH;
114123 pInfo->estimatedCost = 500000;
114124 for(i=0; i<pInfo->nConstraint; i++){
114125 struct sqlite3_index_constraint *pCons = &pInfo->aConstraint[i];
114126 if( pCons->usable==0 ) continue;
114128 /* A direct lookup on the rowid or docid column. Assign a cost of 1.0. */
114129 if( pCons->op==SQLITE_INDEX_CONSTRAINT_EQ
114130 && (pCons->iColumn<0 || pCons->iColumn==p->nColumn+1 )
114132 pInfo->idxNum = FTS3_DOCID_SEARCH;
114133 pInfo->estimatedCost = 1.0;
114134 iCons = i;
114137 /* A MATCH constraint. Use a full-text search.
114139 ** If there is more than one MATCH constraint available, use the first
114140 ** one encountered. If there is both a MATCH constraint and a direct
114141 ** rowid/docid lookup, prefer the MATCH strategy. This is done even
114142 ** though the rowid/docid lookup is faster than a MATCH query, selecting
114143 ** it would lead to an "unable to use function MATCH in the requested
114144 ** context" error.
114146 if( pCons->op==SQLITE_INDEX_CONSTRAINT_MATCH
114147 && pCons->iColumn>=0 && pCons->iColumn<=p->nColumn
114149 pInfo->idxNum = FTS3_FULLTEXT_SEARCH + pCons->iColumn;
114150 pInfo->estimatedCost = 2.0;
114151 iCons = i;
114152 break;
114156 if( iCons>=0 ){
114157 pInfo->aConstraintUsage[iCons].argvIndex = 1;
114158 pInfo->aConstraintUsage[iCons].omit = 1;
114160 return SQLITE_OK;
114164 ** Implementation of xOpen method.
114166 static int fts3OpenMethod(sqlite3_vtab *pVTab, sqlite3_vtab_cursor **ppCsr){
114167 sqlite3_vtab_cursor *pCsr; /* Allocated cursor */
114169 UNUSED_PARAMETER(pVTab);
114171 /* Allocate a buffer large enough for an Fts3Cursor structure. If the
114172 ** allocation succeeds, zero it and return SQLITE_OK. Otherwise,
114173 ** if the allocation fails, return SQLITE_NOMEM.
114175 *ppCsr = pCsr = (sqlite3_vtab_cursor *)sqlite3_malloc(sizeof(Fts3Cursor));
114176 if( !pCsr ){
114177 return SQLITE_NOMEM;
114179 memset(pCsr, 0, sizeof(Fts3Cursor));
114180 return SQLITE_OK;
114184 ** Close the cursor. For additional information see the documentation
114185 ** on the xClose method of the virtual table interface.
114187 static int fts3CloseMethod(sqlite3_vtab_cursor *pCursor){
114188 Fts3Cursor *pCsr = (Fts3Cursor *)pCursor;
114189 assert( ((Fts3Table *)pCsr->base.pVtab)->pSegments==0 );
114190 sqlite3_finalize(pCsr->pStmt);
114191 sqlite3Fts3ExprFree(pCsr->pExpr);
114192 sqlite3Fts3FreeDeferredTokens(pCsr);
114193 sqlite3_free(pCsr->aDoclist);
114194 sqlite3_free(pCsr->aMatchinfo);
114195 sqlite3_free(pCsr);
114196 return SQLITE_OK;
114200 ** Position the pCsr->pStmt statement so that it is on the row
114201 ** of the %_content table that contains the last match. Return
114202 ** SQLITE_OK on success.
114204 static int fts3CursorSeek(sqlite3_context *pContext, Fts3Cursor *pCsr){
114205 if( pCsr->isRequireSeek ){
114206 pCsr->isRequireSeek = 0;
114207 sqlite3_bind_int64(pCsr->pStmt, 1, pCsr->iPrevId);
114208 if( SQLITE_ROW==sqlite3_step(pCsr->pStmt) ){
114209 return SQLITE_OK;
114210 }else{
114211 int rc = sqlite3_reset(pCsr->pStmt);
114212 if( rc==SQLITE_OK ){
114213 /* If no row was found and no error has occured, then the %_content
114214 ** table is missing a row that is present in the full-text index.
114215 ** The data structures are corrupt.
114217 rc = SQLITE_CORRUPT;
114219 pCsr->isEof = 1;
114220 if( pContext ){
114221 sqlite3_result_error_code(pContext, rc);
114223 return rc;
114225 }else{
114226 return SQLITE_OK;
114231 ** This function is used to process a single interior node when searching
114232 ** a b-tree for a term or term prefix. The node data is passed to this
114233 ** function via the zNode/nNode parameters. The term to search for is
114234 ** passed in zTerm/nTerm.
114236 ** If piFirst is not NULL, then this function sets *piFirst to the blockid
114237 ** of the child node that heads the sub-tree that may contain the term.
114239 ** If piLast is not NULL, then *piLast is set to the right-most child node
114240 ** that heads a sub-tree that may contain a term for which zTerm/nTerm is
114241 ** a prefix.
114243 ** If an OOM error occurs, SQLITE_NOMEM is returned. Otherwise, SQLITE_OK.
114245 static int fts3ScanInteriorNode(
114246 const char *zTerm, /* Term to select leaves for */
114247 int nTerm, /* Size of term zTerm in bytes */
114248 const char *zNode, /* Buffer containing segment interior node */
114249 int nNode, /* Size of buffer at zNode */
114250 sqlite3_int64 *piFirst, /* OUT: Selected child node */
114251 sqlite3_int64 *piLast /* OUT: Selected child node */
114253 int rc = SQLITE_OK; /* Return code */
114254 const char *zCsr = zNode; /* Cursor to iterate through node */
114255 const char *zEnd = &zCsr[nNode];/* End of interior node buffer */
114256 char *zBuffer = 0; /* Buffer to load terms into */
114257 int nAlloc = 0; /* Size of allocated buffer */
114258 int isFirstTerm = 1; /* True when processing first term on page */
114259 sqlite3_int64 iChild; /* Block id of child node to descend to */
114261 /* Skip over the 'height' varint that occurs at the start of every
114262 ** interior node. Then load the blockid of the left-child of the b-tree
114263 ** node into variable iChild.
114265 ** Even if the data structure on disk is corrupted, this (reading two
114266 ** varints from the buffer) does not risk an overread. If zNode is a
114267 ** root node, then the buffer comes from a SELECT statement. SQLite does
114268 ** not make this guarantee explicitly, but in practice there are always
114269 ** either more than 20 bytes of allocated space following the nNode bytes of
114270 ** contents, or two zero bytes. Or, if the node is read from the %_segments
114271 ** table, then there are always 20 bytes of zeroed padding following the
114272 ** nNode bytes of content (see sqlite3Fts3ReadBlock() for details).
114274 zCsr += sqlite3Fts3GetVarint(zCsr, &iChild);
114275 zCsr += sqlite3Fts3GetVarint(zCsr, &iChild);
114276 if( zCsr>zEnd ){
114277 return SQLITE_CORRUPT;
114280 while( zCsr<zEnd && (piFirst || piLast) ){
114281 int cmp; /* memcmp() result */
114282 int nSuffix; /* Size of term suffix */
114283 int nPrefix = 0; /* Size of term prefix */
114284 int nBuffer; /* Total term size */
114286 /* Load the next term on the node into zBuffer. Use realloc() to expand
114287 ** the size of zBuffer if required. */
114288 if( !isFirstTerm ){
114289 zCsr += sqlite3Fts3GetVarint32(zCsr, &nPrefix);
114291 isFirstTerm = 0;
114292 zCsr += sqlite3Fts3GetVarint32(zCsr, &nSuffix);
114294 /* NOTE(shess): Previous code checked for negative nPrefix and
114295 ** nSuffix and suffix overrunning zEnd. Additionally corrupt if
114296 ** the prefix is longer than the previous term, or if the suffix
114297 ** causes overflow.
114299 if( nPrefix<0 || nSuffix<0 /* || nPrefix>nBuffer */
114300 || &zCsr[nSuffix]<zCsr || &zCsr[nSuffix]>zEnd ){
114301 rc = SQLITE_CORRUPT;
114302 goto finish_scan;
114304 if( nPrefix+nSuffix>nAlloc ){
114305 char *zNew;
114306 nAlloc = (nPrefix+nSuffix) * 2;
114307 zNew = (char *)sqlite3_realloc(zBuffer, nAlloc);
114308 if( !zNew ){
114309 rc = SQLITE_NOMEM;
114310 goto finish_scan;
114312 zBuffer = zNew;
114314 memcpy(&zBuffer[nPrefix], zCsr, nSuffix);
114315 nBuffer = nPrefix + nSuffix;
114316 zCsr += nSuffix;
114318 /* Compare the term we are searching for with the term just loaded from
114319 ** the interior node. If the specified term is greater than or equal
114320 ** to the term from the interior node, then all terms on the sub-tree
114321 ** headed by node iChild are smaller than zTerm. No need to search
114322 ** iChild.
114324 ** If the interior node term is larger than the specified term, then
114325 ** the tree headed by iChild may contain the specified term.
114327 cmp = memcmp(zTerm, zBuffer, (nBuffer>nTerm ? nTerm : nBuffer));
114328 if( piFirst && (cmp<0 || (cmp==0 && nBuffer>nTerm)) ){
114329 *piFirst = iChild;
114330 piFirst = 0;
114333 if( piLast && cmp<0 ){
114334 *piLast = iChild;
114335 piLast = 0;
114338 iChild++;
114341 if( piFirst ) *piFirst = iChild;
114342 if( piLast ) *piLast = iChild;
114344 finish_scan:
114345 sqlite3_free(zBuffer);
114346 return rc;
114351 ** The buffer pointed to by argument zNode (size nNode bytes) contains an
114352 ** interior node of a b-tree segment. The zTerm buffer (size nTerm bytes)
114353 ** contains a term. This function searches the sub-tree headed by the zNode
114354 ** node for the range of leaf nodes that may contain the specified term
114355 ** or terms for which the specified term is a prefix.
114357 ** If piLeaf is not NULL, then *piLeaf is set to the blockid of the
114358 ** left-most leaf node in the tree that may contain the specified term.
114359 ** If piLeaf2 is not NULL, then *piLeaf2 is set to the blockid of the
114360 ** right-most leaf node that may contain a term for which the specified
114361 ** term is a prefix.
114363 ** It is possible that the range of returned leaf nodes does not contain
114364 ** the specified term or any terms for which it is a prefix. However, if the
114365 ** segment does contain any such terms, they are stored within the identified
114366 ** range. Because this function only inspects interior segment nodes (and
114367 ** never loads leaf nodes into memory), it is not possible to be sure.
114369 ** If an error occurs, an error code other than SQLITE_OK is returned.
114371 static int fts3SelectLeaf(
114372 Fts3Table *p, /* Virtual table handle */
114373 const char *zTerm, /* Term to select leaves for */
114374 int nTerm, /* Size of term zTerm in bytes */
114375 const char *zNode, /* Buffer containing segment interior node */
114376 int nNode, /* Size of buffer at zNode */
114377 sqlite3_int64 *piLeaf, /* Selected leaf node */
114378 sqlite3_int64 *piLeaf2 /* Selected leaf node */
114380 int rc; /* Return code */
114381 int iHeight; /* Height of this node in tree */
114383 assert( piLeaf || piLeaf2 );
114385 sqlite3Fts3GetVarint32(zNode, &iHeight);
114386 rc = fts3ScanInteriorNode(zTerm, nTerm, zNode, nNode, piLeaf, piLeaf2);
114387 assert( !piLeaf2 || !piLeaf || rc!=SQLITE_OK || (*piLeaf<=*piLeaf2) );
114389 if( rc==SQLITE_OK && iHeight>1 ){
114390 char *zBlob = 0; /* Blob read from %_segments table */
114391 int nBlob; /* Size of zBlob in bytes */
114393 if( piLeaf && piLeaf2 && (*piLeaf!=*piLeaf2) ){
114394 rc = sqlite3Fts3ReadBlock(p, *piLeaf, &zBlob, &nBlob);
114395 if( rc==SQLITE_OK ){
114396 rc = fts3SelectLeaf(p, zTerm, nTerm, zBlob, nBlob, piLeaf, 0);
114398 sqlite3_free(zBlob);
114399 piLeaf = 0;
114400 zBlob = 0;
114403 if( rc==SQLITE_OK ){
114404 rc = sqlite3Fts3ReadBlock(p, piLeaf ? *piLeaf : *piLeaf2, &zBlob, &nBlob);
114406 if( rc==SQLITE_OK ){
114407 rc = fts3SelectLeaf(p, zTerm, nTerm, zBlob, nBlob, piLeaf, piLeaf2);
114409 sqlite3_free(zBlob);
114412 return rc;
114416 ** This function is used to create delta-encoded serialized lists of FTS3
114417 ** varints. Each call to this function appends a single varint to a list.
114419 static void fts3PutDeltaVarint(
114420 char **pp, /* IN/OUT: Output pointer */
114421 sqlite3_int64 *piPrev, /* IN/OUT: Previous value written to list */
114422 sqlite3_int64 iVal /* Write this value to the list */
114424 assert( iVal-*piPrev > 0 || (*piPrev==0 && iVal==0) );
114425 *pp += sqlite3Fts3PutVarint(*pp, iVal-*piPrev);
114426 *piPrev = iVal;
114430 ** When this function is called, *ppPoslist is assumed to point to the
114431 ** start of a position-list. After it returns, *ppPoslist points to the
114432 ** first byte after the position-list.
114434 ** A position list is list of positions (delta encoded) and columns for
114435 ** a single document record of a doclist. So, in other words, this
114436 ** routine advances *ppPoslist so that it points to the next docid in
114437 ** the doclist, or to the first byte past the end of the doclist.
114439 ** If pp is not NULL, then the contents of the position list are copied
114440 ** to *pp. *pp is set to point to the first byte past the last byte copied
114441 ** before this function returns.
114443 static void fts3PoslistCopy(char **pp, char **ppPoslist){
114444 char *pEnd = *ppPoslist;
114445 char c = 0;
114447 /* The end of a position list is marked by a zero encoded as an FTS3
114448 ** varint. A single POS_END (0) byte. Except, if the 0 byte is preceded by
114449 ** a byte with the 0x80 bit set, then it is not a varint 0, but the tail
114450 ** of some other, multi-byte, value.
114452 ** The following while-loop moves pEnd to point to the first byte that is not
114453 ** immediately preceded by a byte with the 0x80 bit set. Then increments
114454 ** pEnd once more so that it points to the byte immediately following the
114455 ** last byte in the position-list.
114457 while( *pEnd | c ){
114458 c = *pEnd++ & 0x80;
114459 testcase( c!=0 && (*pEnd)==0 );
114461 pEnd++; /* Advance past the POS_END terminator byte */
114463 if( pp ){
114464 int n = (int)(pEnd - *ppPoslist);
114465 char *p = *pp;
114466 memcpy(p, *ppPoslist, n);
114467 p += n;
114468 *pp = p;
114470 *ppPoslist = pEnd;
114474 ** When this function is called, *ppPoslist is assumed to point to the
114475 ** start of a column-list. After it returns, *ppPoslist points to the
114476 ** to the terminator (POS_COLUMN or POS_END) byte of the column-list.
114478 ** A column-list is list of delta-encoded positions for a single column
114479 ** within a single document within a doclist.
114481 ** The column-list is terminated either by a POS_COLUMN varint (1) or
114482 ** a POS_END varint (0). This routine leaves *ppPoslist pointing to
114483 ** the POS_COLUMN or POS_END that terminates the column-list.
114485 ** If pp is not NULL, then the contents of the column-list are copied
114486 ** to *pp. *pp is set to point to the first byte past the last byte copied
114487 ** before this function returns. The POS_COLUMN or POS_END terminator
114488 ** is not copied into *pp.
114490 static void fts3ColumnlistCopy(char **pp, char **ppPoslist){
114491 char *pEnd = *ppPoslist;
114492 char c = 0;
114494 /* A column-list is terminated by either a 0x01 or 0x00 byte that is
114495 ** not part of a multi-byte varint.
114497 while( 0xFE & (*pEnd | c) ){
114498 c = *pEnd++ & 0x80;
114499 testcase( c!=0 && ((*pEnd)&0xfe)==0 );
114501 if( pp ){
114502 int n = (int)(pEnd - *ppPoslist);
114503 char *p = *pp;
114504 memcpy(p, *ppPoslist, n);
114505 p += n;
114506 *pp = p;
114508 *ppPoslist = pEnd;
114512 ** Value used to signify the end of an position-list. This is safe because
114513 ** it is not possible to have a document with 2^31 terms.
114515 #define POSITION_LIST_END 0x7fffffff
114518 ** This function is used to help parse position-lists. When this function is
114519 ** called, *pp may point to the start of the next varint in the position-list
114520 ** being parsed, or it may point to 1 byte past the end of the position-list
114521 ** (in which case **pp will be a terminator bytes POS_END (0) or
114522 ** (1)).
114524 ** If *pp points past the end of the current position-list, set *pi to
114525 ** POSITION_LIST_END and return. Otherwise, read the next varint from *pp,
114526 ** increment the current value of *pi by the value read, and set *pp to
114527 ** point to the next value before returning.
114529 ** Before calling this routine *pi must be initialized to the value of
114530 ** the previous position, or zero if we are reading the first position
114531 ** in the position-list. Because positions are delta-encoded, the value
114532 ** of the previous position is needed in order to compute the value of
114533 ** the next position.
114535 static void fts3ReadNextPos(
114536 char **pp, /* IN/OUT: Pointer into position-list buffer */
114537 sqlite3_int64 *pi /* IN/OUT: Value read from position-list */
114539 if( (**pp)&0xFE ){
114540 fts3GetDeltaVarint(pp, pi);
114541 *pi -= 2;
114542 }else{
114543 *pi = POSITION_LIST_END;
114548 ** If parameter iCol is not 0, write an POS_COLUMN (1) byte followed by
114549 ** the value of iCol encoded as a varint to *pp. This will start a new
114550 ** column list.
114552 ** Set *pp to point to the byte just after the last byte written before
114553 ** returning (do not modify it if iCol==0). Return the total number of bytes
114554 ** written (0 if iCol==0).
114556 static int fts3PutColNumber(char **pp, int iCol){
114557 int n = 0; /* Number of bytes written */
114558 if( iCol ){
114559 char *p = *pp; /* Output pointer */
114560 n = 1 + sqlite3Fts3PutVarint(&p[1], iCol);
114561 *p = 0x01;
114562 *pp = &p[n];
114564 return n;
114568 ** Compute the union of two position lists. The output written
114569 ** into *pp contains all positions of both *pp1 and *pp2 in sorted
114570 ** order and with any duplicates removed. All pointers are
114571 ** updated appropriately. The caller is responsible for insuring
114572 ** that there is enough space in *pp to hold the complete output.
114574 static void fts3PoslistMerge(
114575 char **pp, /* Output buffer */
114576 char **pp1, /* Left input list */
114577 char **pp2 /* Right input list */
114579 char *p = *pp;
114580 char *p1 = *pp1;
114581 char *p2 = *pp2;
114583 while( *p1 || *p2 ){
114584 int iCol1; /* The current column index in pp1 */
114585 int iCol2; /* The current column index in pp2 */
114587 if( *p1==POS_COLUMN ) sqlite3Fts3GetVarint32(&p1[1], &iCol1);
114588 else if( *p1==POS_END ) iCol1 = POSITION_LIST_END;
114589 else iCol1 = 0;
114591 if( *p2==POS_COLUMN ) sqlite3Fts3GetVarint32(&p2[1], &iCol2);
114592 else if( *p2==POS_END ) iCol2 = POSITION_LIST_END;
114593 else iCol2 = 0;
114595 if( iCol1==iCol2 ){
114596 sqlite3_int64 i1 = 0; /* Last position from pp1 */
114597 sqlite3_int64 i2 = 0; /* Last position from pp2 */
114598 sqlite3_int64 iPrev = 0;
114599 int n = fts3PutColNumber(&p, iCol1);
114600 p1 += n;
114601 p2 += n;
114603 /* At this point, both p1 and p2 point to the start of column-lists
114604 ** for the same column (the column with index iCol1 and iCol2).
114605 ** A column-list is a list of non-negative delta-encoded varints, each
114606 ** incremented by 2 before being stored. Each list is terminated by a
114607 ** POS_END (0) or POS_COLUMN (1). The following block merges the two lists
114608 ** and writes the results to buffer p. p is left pointing to the byte
114609 ** after the list written. No terminator (POS_END or POS_COLUMN) is
114610 ** written to the output.
114612 fts3GetDeltaVarint(&p1, &i1);
114613 fts3GetDeltaVarint(&p2, &i2);
114615 fts3PutDeltaVarint(&p, &iPrev, (i1<i2) ? i1 : i2);
114616 iPrev -= 2;
114617 if( i1==i2 ){
114618 fts3ReadNextPos(&p1, &i1);
114619 fts3ReadNextPos(&p2, &i2);
114620 }else if( i1<i2 ){
114621 fts3ReadNextPos(&p1, &i1);
114622 }else{
114623 fts3ReadNextPos(&p2, &i2);
114625 }while( i1!=POSITION_LIST_END || i2!=POSITION_LIST_END );
114626 }else if( iCol1<iCol2 ){
114627 p1 += fts3PutColNumber(&p, iCol1);
114628 fts3ColumnlistCopy(&p, &p1);
114629 }else{
114630 p2 += fts3PutColNumber(&p, iCol2);
114631 fts3ColumnlistCopy(&p, &p2);
114635 *p++ = POS_END;
114636 *pp = p;
114637 *pp1 = p1 + 1;
114638 *pp2 = p2 + 1;
114642 ** nToken==1 searches for adjacent positions.
114644 ** This function is used to merge two position lists into one. When it is
114645 ** called, *pp1 and *pp2 must both point to position lists. A position-list is
114646 ** the part of a doclist that follows each document id. For example, if a row
114647 ** contains:
114649 ** 'a b c'|'x y z'|'a b b a'
114651 ** Then the position list for this row for token 'b' would consist of:
114653 ** 0x02 0x01 0x02 0x03 0x03 0x00
114655 ** When this function returns, both *pp1 and *pp2 are left pointing to the
114656 ** byte following the 0x00 terminator of their respective position lists.
114658 ** If isSaveLeft is 0, an entry is added to the output position list for
114659 ** each position in *pp2 for which there exists one or more positions in
114660 ** *pp1 so that (pos(*pp2)>pos(*pp1) && pos(*pp2)-pos(*pp1)<=nToken). i.e.
114661 ** when the *pp1 token appears before the *pp2 token, but not more than nToken
114662 ** slots before it.
114664 static int fts3PoslistPhraseMerge(
114665 char **pp, /* IN/OUT: Preallocated output buffer */
114666 int nToken, /* Maximum difference in token positions */
114667 int isSaveLeft, /* Save the left position */
114668 int isExact, /* If *pp1 is exactly nTokens before *pp2 */
114669 char **pp1, /* IN/OUT: Left input list */
114670 char **pp2 /* IN/OUT: Right input list */
114672 char *p = (pp ? *pp : 0);
114673 char *p1 = *pp1;
114674 char *p2 = *pp2;
114675 int iCol1 = 0;
114676 int iCol2 = 0;
114678 /* Never set both isSaveLeft and isExact for the same invocation. */
114679 assert( isSaveLeft==0 || isExact==0 );
114681 assert( *p1!=0 && *p2!=0 );
114682 if( *p1==POS_COLUMN ){
114683 p1++;
114684 p1 += sqlite3Fts3GetVarint32(p1, &iCol1);
114686 if( *p2==POS_COLUMN ){
114687 p2++;
114688 p2 += sqlite3Fts3GetVarint32(p2, &iCol2);
114691 while( 1 ){
114692 if( iCol1==iCol2 ){
114693 char *pSave = p;
114694 sqlite3_int64 iPrev = 0;
114695 sqlite3_int64 iPos1 = 0;
114696 sqlite3_int64 iPos2 = 0;
114698 if( pp && iCol1 ){
114699 *p++ = POS_COLUMN;
114700 p += sqlite3Fts3PutVarint(p, iCol1);
114703 assert( *p1!=POS_END && *p1!=POS_COLUMN );
114704 assert( *p2!=POS_END && *p2!=POS_COLUMN );
114705 fts3GetDeltaVarint(&p1, &iPos1); iPos1 -= 2;
114706 fts3GetDeltaVarint(&p2, &iPos2); iPos2 -= 2;
114708 while( 1 ){
114709 if( iPos2==iPos1+nToken
114710 || (isExact==0 && iPos2>iPos1 && iPos2<=iPos1+nToken)
114712 sqlite3_int64 iSave;
114713 if( !pp ){
114714 fts3PoslistCopy(0, &p2);
114715 fts3PoslistCopy(0, &p1);
114716 *pp1 = p1;
114717 *pp2 = p2;
114718 return 1;
114720 iSave = isSaveLeft ? iPos1 : iPos2;
114721 fts3PutDeltaVarint(&p, &iPrev, iSave+2); iPrev -= 2;
114722 pSave = 0;
114724 if( (!isSaveLeft && iPos2<=(iPos1+nToken)) || iPos2<=iPos1 ){
114725 if( (*p2&0xFE)==0 ) break;
114726 fts3GetDeltaVarint(&p2, &iPos2); iPos2 -= 2;
114727 }else{
114728 if( (*p1&0xFE)==0 ) break;
114729 fts3GetDeltaVarint(&p1, &iPos1); iPos1 -= 2;
114733 if( pSave ){
114734 assert( pp && p );
114735 p = pSave;
114738 fts3ColumnlistCopy(0, &p1);
114739 fts3ColumnlistCopy(0, &p2);
114740 assert( (*p1&0xFE)==0 && (*p2&0xFE)==0 );
114741 if( 0==*p1 || 0==*p2 ) break;
114743 p1++;
114744 p1 += sqlite3Fts3GetVarint32(p1, &iCol1);
114745 p2++;
114746 p2 += sqlite3Fts3GetVarint32(p2, &iCol2);
114749 /* Advance pointer p1 or p2 (whichever corresponds to the smaller of
114750 ** iCol1 and iCol2) so that it points to either the 0x00 that marks the
114751 ** end of the position list, or the 0x01 that precedes the next
114752 ** column-number in the position list.
114754 else if( iCol1<iCol2 ){
114755 fts3ColumnlistCopy(0, &p1);
114756 if( 0==*p1 ) break;
114757 p1++;
114758 p1 += sqlite3Fts3GetVarint32(p1, &iCol1);
114759 }else{
114760 fts3ColumnlistCopy(0, &p2);
114761 if( 0==*p2 ) break;
114762 p2++;
114763 p2 += sqlite3Fts3GetVarint32(p2, &iCol2);
114767 fts3PoslistCopy(0, &p2);
114768 fts3PoslistCopy(0, &p1);
114769 *pp1 = p1;
114770 *pp2 = p2;
114771 if( !pp || *pp==p ){
114772 return 0;
114774 *p++ = 0x00;
114775 *pp = p;
114776 return 1;
114780 ** Merge two position-lists as required by the NEAR operator.
114782 static int fts3PoslistNearMerge(
114783 char **pp, /* Output buffer */
114784 char *aTmp, /* Temporary buffer space */
114785 int nRight, /* Maximum difference in token positions */
114786 int nLeft, /* Maximum difference in token positions */
114787 char **pp1, /* IN/OUT: Left input list */
114788 char **pp2 /* IN/OUT: Right input list */
114790 char *p1 = *pp1;
114791 char *p2 = *pp2;
114793 if( !pp ){
114794 if( fts3PoslistPhraseMerge(0, nRight, 0, 0, pp1, pp2) ) return 1;
114795 *pp1 = p1;
114796 *pp2 = p2;
114797 return fts3PoslistPhraseMerge(0, nLeft, 0, 0, pp2, pp1);
114798 }else{
114799 char *pTmp1 = aTmp;
114800 char *pTmp2;
114801 char *aTmp2;
114802 int res = 1;
114804 fts3PoslistPhraseMerge(&pTmp1, nRight, 0, 0, pp1, pp2);
114805 aTmp2 = pTmp2 = pTmp1;
114806 *pp1 = p1;
114807 *pp2 = p2;
114808 fts3PoslistPhraseMerge(&pTmp2, nLeft, 1, 0, pp2, pp1);
114809 if( pTmp1!=aTmp && pTmp2!=aTmp2 ){
114810 fts3PoslistMerge(pp, &aTmp, &aTmp2);
114811 }else if( pTmp1!=aTmp ){
114812 fts3PoslistCopy(pp, &aTmp);
114813 }else if( pTmp2!=aTmp2 ){
114814 fts3PoslistCopy(pp, &aTmp2);
114815 }else{
114816 res = 0;
114819 return res;
114824 ** Values that may be used as the first parameter to fts3DoclistMerge().
114826 #define MERGE_NOT 2 /* D + D -> D */
114827 #define MERGE_AND 3 /* D + D -> D */
114828 #define MERGE_OR 4 /* D + D -> D */
114829 #define MERGE_POS_OR 5 /* P + P -> P */
114830 #define MERGE_PHRASE 6 /* P + P -> D */
114831 #define MERGE_POS_PHRASE 7 /* P + P -> P */
114832 #define MERGE_NEAR 8 /* P + P -> D */
114833 #define MERGE_POS_NEAR 9 /* P + P -> P */
114836 ** Merge the two doclists passed in buffer a1 (size n1 bytes) and a2
114837 ** (size n2 bytes). The output is written to pre-allocated buffer aBuffer,
114838 ** which is guaranteed to be large enough to hold the results. The number
114839 ** of bytes written to aBuffer is stored in *pnBuffer before returning.
114841 ** If successful, SQLITE_OK is returned. Otherwise, if a malloc error
114842 ** occurs while allocating a temporary buffer as part of the merge operation,
114843 ** SQLITE_NOMEM is returned.
114845 static int fts3DoclistMerge(
114846 int mergetype, /* One of the MERGE_XXX constants */
114847 int nParam1, /* Used by MERGE_NEAR and MERGE_POS_NEAR */
114848 int nParam2, /* Used by MERGE_NEAR and MERGE_POS_NEAR */
114849 char *aBuffer, /* Pre-allocated output buffer */
114850 int *pnBuffer, /* OUT: Bytes written to aBuffer */
114851 char *a1, /* Buffer containing first doclist */
114852 int n1, /* Size of buffer a1 */
114853 char *a2, /* Buffer containing second doclist */
114854 int n2, /* Size of buffer a2 */
114855 int *pnDoc /* OUT: Number of docids in output */
114857 sqlite3_int64 i1 = 0;
114858 sqlite3_int64 i2 = 0;
114859 sqlite3_int64 iPrev = 0;
114861 char *p = aBuffer;
114862 char *p1 = a1;
114863 char *p2 = a2;
114864 char *pEnd1 = &a1[n1];
114865 char *pEnd2 = &a2[n2];
114866 int nDoc = 0;
114868 assert( mergetype==MERGE_OR || mergetype==MERGE_POS_OR
114869 || mergetype==MERGE_AND || mergetype==MERGE_NOT
114870 || mergetype==MERGE_PHRASE || mergetype==MERGE_POS_PHRASE
114871 || mergetype==MERGE_NEAR || mergetype==MERGE_POS_NEAR
114874 if( !aBuffer ){
114875 *pnBuffer = 0;
114876 return SQLITE_NOMEM;
114879 /* Read the first docid from each doclist */
114880 fts3GetDeltaVarint2(&p1, pEnd1, &i1);
114881 fts3GetDeltaVarint2(&p2, pEnd2, &i2);
114883 switch( mergetype ){
114884 case MERGE_OR:
114885 case MERGE_POS_OR:
114886 while( p1 || p2 ){
114887 if( p2 && p1 && i1==i2 ){
114888 fts3PutDeltaVarint(&p, &iPrev, i1);
114889 if( mergetype==MERGE_POS_OR ) fts3PoslistMerge(&p, &p1, &p2);
114890 fts3GetDeltaVarint2(&p1, pEnd1, &i1);
114891 fts3GetDeltaVarint2(&p2, pEnd2, &i2);
114892 }else if( !p2 || (p1 && i1<i2) ){
114893 fts3PutDeltaVarint(&p, &iPrev, i1);
114894 if( mergetype==MERGE_POS_OR ) fts3PoslistCopy(&p, &p1);
114895 fts3GetDeltaVarint2(&p1, pEnd1, &i1);
114896 }else{
114897 fts3PutDeltaVarint(&p, &iPrev, i2);
114898 if( mergetype==MERGE_POS_OR ) fts3PoslistCopy(&p, &p2);
114899 fts3GetDeltaVarint2(&p2, pEnd2, &i2);
114902 break;
114904 case MERGE_AND:
114905 while( p1 && p2 ){
114906 if( i1==i2 ){
114907 fts3PutDeltaVarint(&p, &iPrev, i1);
114908 fts3GetDeltaVarint2(&p1, pEnd1, &i1);
114909 fts3GetDeltaVarint2(&p2, pEnd2, &i2);
114910 nDoc++;
114911 }else if( i1<i2 ){
114912 fts3GetDeltaVarint2(&p1, pEnd1, &i1);
114913 }else{
114914 fts3GetDeltaVarint2(&p2, pEnd2, &i2);
114917 break;
114919 case MERGE_NOT:
114920 while( p1 ){
114921 if( p2 && i1==i2 ){
114922 fts3GetDeltaVarint2(&p1, pEnd1, &i1);
114923 fts3GetDeltaVarint2(&p2, pEnd2, &i2);
114924 }else if( !p2 || i1<i2 ){
114925 fts3PutDeltaVarint(&p, &iPrev, i1);
114926 fts3GetDeltaVarint2(&p1, pEnd1, &i1);
114927 }else{
114928 fts3GetDeltaVarint2(&p2, pEnd2, &i2);
114931 break;
114933 case MERGE_POS_PHRASE:
114934 case MERGE_PHRASE: {
114935 char **ppPos = (mergetype==MERGE_PHRASE ? 0 : &p);
114936 while( p1 && p2 ){
114937 if( i1==i2 ){
114938 char *pSave = p;
114939 sqlite3_int64 iPrevSave = iPrev;
114940 fts3PutDeltaVarint(&p, &iPrev, i1);
114941 if( 0==fts3PoslistPhraseMerge(ppPos, nParam1, 0, 1, &p1, &p2) ){
114942 p = pSave;
114943 iPrev = iPrevSave;
114944 }else{
114945 nDoc++;
114947 fts3GetDeltaVarint2(&p1, pEnd1, &i1);
114948 fts3GetDeltaVarint2(&p2, pEnd2, &i2);
114949 }else if( i1<i2 ){
114950 fts3PoslistCopy(0, &p1);
114951 fts3GetDeltaVarint2(&p1, pEnd1, &i1);
114952 }else{
114953 fts3PoslistCopy(0, &p2);
114954 fts3GetDeltaVarint2(&p2, pEnd2, &i2);
114957 break;
114960 default: assert( mergetype==MERGE_POS_NEAR || mergetype==MERGE_NEAR ); {
114961 char *aTmp = 0;
114962 char **ppPos = 0;
114964 if( mergetype==MERGE_POS_NEAR ){
114965 ppPos = &p;
114966 aTmp = sqlite3_malloc(2*(n1+n2+1));
114967 if( !aTmp ){
114968 return SQLITE_NOMEM;
114972 while( p1 && p2 ){
114973 if( i1==i2 ){
114974 char *pSave = p;
114975 sqlite3_int64 iPrevSave = iPrev;
114976 fts3PutDeltaVarint(&p, &iPrev, i1);
114978 if( !fts3PoslistNearMerge(ppPos, aTmp, nParam1, nParam2, &p1, &p2) ){
114979 iPrev = iPrevSave;
114980 p = pSave;
114983 fts3GetDeltaVarint2(&p1, pEnd1, &i1);
114984 fts3GetDeltaVarint2(&p2, pEnd2, &i2);
114985 }else if( i1<i2 ){
114986 fts3PoslistCopy(0, &p1);
114987 fts3GetDeltaVarint2(&p1, pEnd1, &i1);
114988 }else{
114989 fts3PoslistCopy(0, &p2);
114990 fts3GetDeltaVarint2(&p2, pEnd2, &i2);
114993 sqlite3_free(aTmp);
114994 break;
114998 if( pnDoc ) *pnDoc = nDoc;
114999 *pnBuffer = (int)(p-aBuffer);
115000 return SQLITE_OK;
115004 ** A pointer to an instance of this structure is used as the context
115005 ** argument to sqlite3Fts3SegReaderIterate()
115007 typedef struct TermSelect TermSelect;
115008 struct TermSelect {
115009 int isReqPos;
115010 char *aaOutput[16]; /* Malloc'd output buffer */
115011 int anOutput[16]; /* Size of output in bytes */
115015 ** Merge all doclists in the TermSelect.aaOutput[] array into a single
115016 ** doclist stored in TermSelect.aaOutput[0]. If successful, delete all
115017 ** other doclists (except the aaOutput[0] one) and return SQLITE_OK.
115019 ** If an OOM error occurs, return SQLITE_NOMEM. In this case it is
115020 ** the responsibility of the caller to free any doclists left in the
115021 ** TermSelect.aaOutput[] array.
115023 static int fts3TermSelectMerge(TermSelect *pTS){
115024 int mergetype = (pTS->isReqPos ? MERGE_POS_OR : MERGE_OR);
115025 char *aOut = 0;
115026 int nOut = 0;
115027 int i;
115029 /* Loop through the doclists in the aaOutput[] array. Merge them all
115030 ** into a single doclist.
115032 for(i=0; i<SizeofArray(pTS->aaOutput); i++){
115033 if( pTS->aaOutput[i] ){
115034 if( !aOut ){
115035 aOut = pTS->aaOutput[i];
115036 nOut = pTS->anOutput[i];
115037 pTS->aaOutput[i] = 0;
115038 }else{
115039 int nNew = nOut + pTS->anOutput[i];
115040 char *aNew = sqlite3_malloc(nNew);
115041 if( !aNew ){
115042 sqlite3_free(aOut);
115043 return SQLITE_NOMEM;
115045 fts3DoclistMerge(mergetype, 0, 0,
115046 aNew, &nNew, pTS->aaOutput[i], pTS->anOutput[i], aOut, nOut, 0
115048 sqlite3_free(pTS->aaOutput[i]);
115049 sqlite3_free(aOut);
115050 pTS->aaOutput[i] = 0;
115051 aOut = aNew;
115052 nOut = nNew;
115057 pTS->aaOutput[0] = aOut;
115058 pTS->anOutput[0] = nOut;
115059 return SQLITE_OK;
115063 ** This function is used as the sqlite3Fts3SegReaderIterate() callback when
115064 ** querying the full-text index for a doclist associated with a term or
115065 ** term-prefix.
115067 static int fts3TermSelectCb(
115068 Fts3Table *p, /* Virtual table object */
115069 void *pContext, /* Pointer to TermSelect structure */
115070 char *zTerm,
115071 int nTerm,
115072 char *aDoclist,
115073 int nDoclist
115075 TermSelect *pTS = (TermSelect *)pContext;
115077 UNUSED_PARAMETER(p);
115078 UNUSED_PARAMETER(zTerm);
115079 UNUSED_PARAMETER(nTerm);
115081 if( pTS->aaOutput[0]==0 ){
115082 /* If this is the first term selected, copy the doclist to the output
115083 ** buffer using memcpy(). TODO: Add a way to transfer control of the
115084 ** aDoclist buffer from the caller so as to avoid the memcpy().
115086 pTS->aaOutput[0] = sqlite3_malloc(nDoclist);
115087 pTS->anOutput[0] = nDoclist;
115088 if( pTS->aaOutput[0] ){
115089 memcpy(pTS->aaOutput[0], aDoclist, nDoclist);
115090 }else{
115091 return SQLITE_NOMEM;
115093 }else{
115094 int mergetype = (pTS->isReqPos ? MERGE_POS_OR : MERGE_OR);
115095 char *aMerge = aDoclist;
115096 int nMerge = nDoclist;
115097 int iOut;
115099 for(iOut=0; iOut<SizeofArray(pTS->aaOutput); iOut++){
115100 char *aNew;
115101 int nNew;
115102 if( pTS->aaOutput[iOut]==0 ){
115103 assert( iOut>0 );
115104 pTS->aaOutput[iOut] = aMerge;
115105 pTS->anOutput[iOut] = nMerge;
115106 break;
115109 nNew = nMerge + pTS->anOutput[iOut];
115110 aNew = sqlite3_malloc(nNew);
115111 if( !aNew ){
115112 if( aMerge!=aDoclist ){
115113 sqlite3_free(aMerge);
115115 return SQLITE_NOMEM;
115117 fts3DoclistMerge(mergetype, 0, 0, aNew, &nNew,
115118 pTS->aaOutput[iOut], pTS->anOutput[iOut], aMerge, nMerge, 0
115121 if( iOut>0 ) sqlite3_free(aMerge);
115122 sqlite3_free(pTS->aaOutput[iOut]);
115123 pTS->aaOutput[iOut] = 0;
115125 aMerge = aNew;
115126 nMerge = nNew;
115127 if( (iOut+1)==SizeofArray(pTS->aaOutput) ){
115128 pTS->aaOutput[iOut] = aMerge;
115129 pTS->anOutput[iOut] = nMerge;
115133 return SQLITE_OK;
115136 static int fts3DeferredTermSelect(
115137 Fts3DeferredToken *pToken, /* Phrase token */
115138 int isTermPos, /* True to include positions */
115139 int *pnOut, /* OUT: Size of list */
115140 char **ppOut /* OUT: Body of list */
115142 char *aSource;
115143 int nSource;
115145 aSource = sqlite3Fts3DeferredDoclist(pToken, &nSource);
115146 if( !aSource ){
115147 *pnOut = 0;
115148 *ppOut = 0;
115149 }else if( isTermPos ){
115150 *ppOut = sqlite3_malloc(nSource);
115151 if( !*ppOut ) return SQLITE_NOMEM;
115152 memcpy(*ppOut, aSource, nSource);
115153 *pnOut = nSource;
115154 }else{
115155 sqlite3_int64 docid;
115156 *pnOut = sqlite3Fts3GetVarint(aSource, &docid);
115157 *ppOut = sqlite3_malloc(*pnOut);
115158 if( !*ppOut ) return SQLITE_NOMEM;
115159 sqlite3Fts3PutVarint(*ppOut, docid);
115162 return SQLITE_OK;
115165 SQLITE_PRIVATE int sqlite3Fts3SegReaderCursor(
115166 Fts3Table *p, /* FTS3 table handle */
115167 int iLevel, /* Level of segments to scan */
115168 const char *zTerm, /* Term to query for */
115169 int nTerm, /* Size of zTerm in bytes */
115170 int isPrefix, /* True for a prefix search */
115171 int isScan, /* True to scan from zTerm to EOF */
115172 Fts3SegReaderCursor *pCsr /* Cursor object to populate */
115174 int rc = SQLITE_OK;
115175 int rc2;
115176 int iAge = 0;
115177 sqlite3_stmt *pStmt = 0;
115178 Fts3SegReader *pPending = 0;
115180 assert( iLevel==FTS3_SEGCURSOR_ALL
115181 || iLevel==FTS3_SEGCURSOR_PENDING
115182 || iLevel>=0
115184 assert( FTS3_SEGCURSOR_PENDING<0 );
115185 assert( FTS3_SEGCURSOR_ALL<0 );
115186 assert( iLevel==FTS3_SEGCURSOR_ALL || (zTerm==0 && isPrefix==1) );
115187 assert( isPrefix==0 || isScan==0 );
115190 memset(pCsr, 0, sizeof(Fts3SegReaderCursor));
115192 /* If iLevel is less than 0, include a seg-reader for the pending-terms. */
115193 assert( isScan==0 || fts3HashCount(&p->pendingTerms)==0 );
115194 if( iLevel<0 && isScan==0 ){
115195 rc = sqlite3Fts3SegReaderPending(p, zTerm, nTerm, isPrefix, &pPending);
115196 if( rc==SQLITE_OK && pPending ){
115197 int nByte = (sizeof(Fts3SegReader *) * 16);
115198 pCsr->apSegment = (Fts3SegReader **)sqlite3_malloc(nByte);
115199 if( pCsr->apSegment==0 ){
115200 rc = SQLITE_NOMEM;
115201 }else{
115202 pCsr->apSegment[0] = pPending;
115203 pCsr->nSegment = 1;
115204 pPending = 0;
115209 if( iLevel!=FTS3_SEGCURSOR_PENDING ){
115210 if( rc==SQLITE_OK ){
115211 rc = sqlite3Fts3AllSegdirs(p, iLevel, &pStmt);
115213 while( rc==SQLITE_OK && SQLITE_ROW==(rc = sqlite3_step(pStmt)) ){
115215 /* Read the values returned by the SELECT into local variables. */
115216 sqlite3_int64 iStartBlock = sqlite3_column_int64(pStmt, 1);
115217 sqlite3_int64 iLeavesEndBlock = sqlite3_column_int64(pStmt, 2);
115218 sqlite3_int64 iEndBlock = sqlite3_column_int64(pStmt, 3);
115219 int nRoot = sqlite3_column_bytes(pStmt, 4);
115220 char const *zRoot = sqlite3_column_blob(pStmt, 4);
115222 /* If nSegment is a multiple of 16 the array needs to be extended. */
115223 if( (pCsr->nSegment%16)==0 ){
115224 Fts3SegReader **apNew;
115225 int nByte = (pCsr->nSegment + 16)*sizeof(Fts3SegReader*);
115226 apNew = (Fts3SegReader **)sqlite3_realloc(pCsr->apSegment, nByte);
115227 if( !apNew ){
115228 rc = SQLITE_NOMEM;
115229 goto finished;
115231 pCsr->apSegment = apNew;
115234 /* If zTerm is not NULL, and this segment is not stored entirely on its
115235 ** root node, the range of leaves scanned can be reduced. Do this. */
115236 if( iStartBlock && zTerm ){
115237 sqlite3_int64 *pi = (isPrefix ? &iLeavesEndBlock : 0);
115238 rc = fts3SelectLeaf(p, zTerm, nTerm, zRoot, nRoot, &iStartBlock, pi);
115239 if( rc!=SQLITE_OK ) goto finished;
115240 if( isPrefix==0 && isScan==0 ) iLeavesEndBlock = iStartBlock;
115243 rc = sqlite3Fts3SegReaderNew(iAge, iStartBlock, iLeavesEndBlock,
115244 iEndBlock, zRoot, nRoot, &pCsr->apSegment[pCsr->nSegment]
115246 if( rc!=SQLITE_OK ) goto finished;
115247 pCsr->nSegment++;
115248 iAge++;
115252 finished:
115253 rc2 = sqlite3_reset(pStmt);
115254 if( rc==SQLITE_DONE ) rc = rc2;
115255 sqlite3Fts3SegReaderFree(pPending);
115257 return rc;
115261 static int fts3TermSegReaderCursor(
115262 Fts3Cursor *pCsr, /* Virtual table cursor handle */
115263 const char *zTerm, /* Term to query for */
115264 int nTerm, /* Size of zTerm in bytes */
115265 int isPrefix, /* True for a prefix search */
115266 Fts3SegReaderCursor **ppSegcsr /* OUT: Allocated seg-reader cursor */
115268 Fts3SegReaderCursor *pSegcsr; /* Object to allocate and return */
115269 int rc = SQLITE_NOMEM; /* Return code */
115271 pSegcsr = sqlite3_malloc(sizeof(Fts3SegReaderCursor));
115272 if( pSegcsr ){
115273 Fts3Table *p = (Fts3Table *)pCsr->base.pVtab;
115274 int i;
115275 int nCost = 0;
115276 rc = sqlite3Fts3SegReaderCursor(
115277 p, FTS3_SEGCURSOR_ALL, zTerm, nTerm, isPrefix, 0, pSegcsr);
115279 for(i=0; rc==SQLITE_OK && i<pSegcsr->nSegment; i++){
115280 rc = sqlite3Fts3SegReaderCost(pCsr, pSegcsr->apSegment[i], &nCost);
115282 pSegcsr->nCost = nCost;
115285 *ppSegcsr = pSegcsr;
115286 return rc;
115289 static void fts3SegReaderCursorFree(Fts3SegReaderCursor *pSegcsr){
115290 sqlite3Fts3SegReaderFinish(pSegcsr);
115291 sqlite3_free(pSegcsr);
115295 ** This function retreives the doclist for the specified term (or term
115296 ** prefix) from the database.
115298 ** The returned doclist may be in one of two formats, depending on the
115299 ** value of parameter isReqPos. If isReqPos is zero, then the doclist is
115300 ** a sorted list of delta-compressed docids (a bare doclist). If isReqPos
115301 ** is non-zero, then the returned list is in the same format as is stored
115302 ** in the database without the found length specifier at the start of on-disk
115303 ** doclists.
115305 static int fts3TermSelect(
115306 Fts3Table *p, /* Virtual table handle */
115307 Fts3PhraseToken *pTok, /* Token to query for */
115308 int iColumn, /* Column to query (or -ve for all columns) */
115309 int isReqPos, /* True to include position lists in output */
115310 int *pnOut, /* OUT: Size of buffer at *ppOut */
115311 char **ppOut /* OUT: Malloced result buffer */
115313 int rc; /* Return code */
115314 Fts3SegReaderCursor *pSegcsr; /* Seg-reader cursor for this term */
115315 TermSelect tsc; /* Context object for fts3TermSelectCb() */
115316 Fts3SegFilter filter; /* Segment term filter configuration */
115318 pSegcsr = pTok->pSegcsr;
115319 memset(&tsc, 0, sizeof(TermSelect));
115320 tsc.isReqPos = isReqPos;
115322 filter.flags = FTS3_SEGMENT_IGNORE_EMPTY
115323 | (pTok->isPrefix ? FTS3_SEGMENT_PREFIX : 0)
115324 | (isReqPos ? FTS3_SEGMENT_REQUIRE_POS : 0)
115325 | (iColumn<p->nColumn ? FTS3_SEGMENT_COLUMN_FILTER : 0);
115326 filter.iCol = iColumn;
115327 filter.zTerm = pTok->z;
115328 filter.nTerm = pTok->n;
115330 rc = sqlite3Fts3SegReaderStart(p, pSegcsr, &filter);
115331 while( SQLITE_OK==rc
115332 && SQLITE_ROW==(rc = sqlite3Fts3SegReaderStep(p, pSegcsr))
115334 rc = fts3TermSelectCb(p, (void *)&tsc,
115335 pSegcsr->zTerm, pSegcsr->nTerm, pSegcsr->aDoclist, pSegcsr->nDoclist
115339 if( rc==SQLITE_OK ){
115340 rc = fts3TermSelectMerge(&tsc);
115342 if( rc==SQLITE_OK ){
115343 *ppOut = tsc.aaOutput[0];
115344 *pnOut = tsc.anOutput[0];
115345 }else{
115346 int i;
115347 for(i=0; i<SizeofArray(tsc.aaOutput); i++){
115348 sqlite3_free(tsc.aaOutput[i]);
115352 fts3SegReaderCursorFree(pSegcsr);
115353 pTok->pSegcsr = 0;
115354 return rc;
115358 ** This function counts the total number of docids in the doclist stored
115359 ** in buffer aList[], size nList bytes.
115361 ** If the isPoslist argument is true, then it is assumed that the doclist
115362 ** contains a position-list following each docid. Otherwise, it is assumed
115363 ** that the doclist is simply a list of docids stored as delta encoded
115364 ** varints.
115366 static int fts3DoclistCountDocids(int isPoslist, char *aList, int nList){
115367 int nDoc = 0; /* Return value */
115368 if( aList ){
115369 char *aEnd = &aList[nList]; /* Pointer to one byte after EOF */
115370 char *p = aList; /* Cursor */
115371 if( !isPoslist ){
115372 /* The number of docids in the list is the same as the number of
115373 ** varints. In FTS3 a varint consists of a single byte with the 0x80
115374 ** bit cleared and zero or more bytes with the 0x80 bit set. So to
115375 ** count the varints in the buffer, just count the number of bytes
115376 ** with the 0x80 bit clear. */
115377 while( p<aEnd ) nDoc += (((*p++)&0x80)==0);
115378 }else{
115379 while( p<aEnd ){
115380 nDoc++;
115381 while( (*p++)&0x80 ); /* Skip docid varint */
115382 fts3PoslistCopy(0, &p); /* Skip over position list */
115387 return nDoc;
115391 ** Call sqlite3Fts3DeferToken() for each token in the expression pExpr.
115393 static int fts3DeferExpression(Fts3Cursor *pCsr, Fts3Expr *pExpr){
115394 int rc = SQLITE_OK;
115395 if( pExpr ){
115396 rc = fts3DeferExpression(pCsr, pExpr->pLeft);
115397 if( rc==SQLITE_OK ){
115398 rc = fts3DeferExpression(pCsr, pExpr->pRight);
115400 if( pExpr->eType==FTSQUERY_PHRASE ){
115401 int iCol = pExpr->pPhrase->iColumn;
115402 int i;
115403 for(i=0; rc==SQLITE_OK && i<pExpr->pPhrase->nToken; i++){
115404 Fts3PhraseToken *pToken = &pExpr->pPhrase->aToken[i];
115405 if( pToken->pDeferred==0 ){
115406 rc = sqlite3Fts3DeferToken(pCsr, pToken, iCol);
115411 return rc;
115415 ** This function removes the position information from a doclist. When
115416 ** called, buffer aList (size *pnList bytes) contains a doclist that includes
115417 ** position information. This function removes the position information so
115418 ** that aList contains only docids, and adjusts *pnList to reflect the new
115419 ** (possibly reduced) size of the doclist.
115421 static void fts3DoclistStripPositions(
115422 char *aList, /* IN/OUT: Buffer containing doclist */
115423 int *pnList /* IN/OUT: Size of doclist in bytes */
115425 if( aList ){
115426 char *aEnd = &aList[*pnList]; /* Pointer to one byte after EOF */
115427 char *p = aList; /* Input cursor */
115428 char *pOut = aList; /* Output cursor */
115430 while( p<aEnd ){
115431 sqlite3_int64 delta;
115432 p += sqlite3Fts3GetVarint(p, &delta);
115433 fts3PoslistCopy(0, &p);
115434 pOut += sqlite3Fts3PutVarint(pOut, delta);
115437 *pnList = (int)(pOut - aList);
115442 ** Return a DocList corresponding to the phrase *pPhrase.
115444 ** If this function returns SQLITE_OK, but *pnOut is set to a negative value,
115445 ** then no tokens in the phrase were looked up in the full-text index. This
115446 ** is only possible when this function is called from within xFilter(). The
115447 ** caller should assume that all documents match the phrase. The actual
115448 ** filtering will take place in xNext().
115450 static int fts3PhraseSelect(
115451 Fts3Cursor *pCsr, /* Virtual table cursor handle */
115452 Fts3Phrase *pPhrase, /* Phrase to return a doclist for */
115453 int isReqPos, /* True if output should contain positions */
115454 char **paOut, /* OUT: Pointer to malloc'd result buffer */
115455 int *pnOut /* OUT: Size of buffer at *paOut */
115457 char *pOut = 0;
115458 int nOut = 0;
115459 int rc = SQLITE_OK;
115460 int ii;
115461 int iCol = pPhrase->iColumn;
115462 int isTermPos = (pPhrase->nToken>1 || isReqPos);
115463 Fts3Table *p = (Fts3Table *)pCsr->base.pVtab;
115464 int isFirst = 1;
115466 int iPrevTok = 0;
115467 int nDoc = 0;
115469 /* If this is an xFilter() evaluation, create a segment-reader for each
115470 ** phrase token. Or, if this is an xNext() or snippet/offsets/matchinfo
115471 ** evaluation, only create segment-readers if there are no Fts3DeferredToken
115472 ** objects attached to the phrase-tokens.
115474 for(ii=0; ii<pPhrase->nToken; ii++){
115475 Fts3PhraseToken *pTok = &pPhrase->aToken[ii];
115476 if( pTok->pSegcsr==0 ){
115477 if( (pCsr->eEvalmode==FTS3_EVAL_FILTER)
115478 || (pCsr->eEvalmode==FTS3_EVAL_NEXT && pCsr->pDeferred==0)
115479 || (pCsr->eEvalmode==FTS3_EVAL_MATCHINFO && pTok->bFulltext)
115481 rc = fts3TermSegReaderCursor(
115482 pCsr, pTok->z, pTok->n, pTok->isPrefix, &pTok->pSegcsr
115484 if( rc!=SQLITE_OK ) return rc;
115489 for(ii=0; ii<pPhrase->nToken; ii++){
115490 Fts3PhraseToken *pTok; /* Token to find doclist for */
115491 int iTok = 0; /* The token being queried this iteration */
115492 char *pList = 0; /* Pointer to token doclist */
115493 int nList = 0; /* Size of buffer at pList */
115495 /* Select a token to process. If this is an xFilter() call, then tokens
115496 ** are processed in order from least to most costly. Otherwise, tokens
115497 ** are processed in the order in which they occur in the phrase.
115499 if( pCsr->eEvalmode==FTS3_EVAL_MATCHINFO ){
115500 assert( isReqPos );
115501 iTok = ii;
115502 pTok = &pPhrase->aToken[iTok];
115503 if( pTok->bFulltext==0 ) continue;
115504 }else if( pCsr->eEvalmode==FTS3_EVAL_NEXT || isReqPos ){
115505 iTok = ii;
115506 pTok = &pPhrase->aToken[iTok];
115507 }else{
115508 int nMinCost = 0x7FFFFFFF;
115509 int jj;
115511 /* Find the remaining token with the lowest cost. */
115512 for(jj=0; jj<pPhrase->nToken; jj++){
115513 Fts3SegReaderCursor *pSegcsr = pPhrase->aToken[jj].pSegcsr;
115514 if( pSegcsr && pSegcsr->nCost<nMinCost ){
115515 iTok = jj;
115516 nMinCost = pSegcsr->nCost;
115519 pTok = &pPhrase->aToken[iTok];
115521 /* This branch is taken if it is determined that loading the doclist
115522 ** for the next token would require more IO than loading all documents
115523 ** currently identified by doclist pOut/nOut. No further doclists will
115524 ** be loaded from the full-text index for this phrase.
115526 if( nMinCost>nDoc && ii>0 ){
115527 rc = fts3DeferExpression(pCsr, pCsr->pExpr);
115528 break;
115532 if( pCsr->eEvalmode==FTS3_EVAL_NEXT && pTok->pDeferred ){
115533 rc = fts3DeferredTermSelect(pTok->pDeferred, isTermPos, &nList, &pList);
115534 }else{
115535 if( pTok->pSegcsr ){
115536 rc = fts3TermSelect(p, pTok, iCol, isTermPos, &nList, &pList);
115538 pTok->bFulltext = 1;
115540 assert( rc!=SQLITE_OK || pCsr->eEvalmode || pTok->pSegcsr==0 );
115541 if( rc!=SQLITE_OK ) break;
115543 if( isFirst ){
115544 pOut = pList;
115545 nOut = nList;
115546 if( pCsr->eEvalmode==FTS3_EVAL_FILTER && pPhrase->nToken>1 ){
115547 nDoc = fts3DoclistCountDocids(1, pOut, nOut);
115549 isFirst = 0;
115550 iPrevTok = iTok;
115551 }else{
115552 /* Merge the new term list and the current output. */
115553 char *aLeft, *aRight;
115554 int nLeft, nRight;
115555 int nDist;
115556 int mt;
115558 /* If this is the final token of the phrase, and positions were not
115559 ** requested by the caller, use MERGE_PHRASE instead of POS_PHRASE.
115560 ** This drops the position information from the output list.
115562 mt = MERGE_POS_PHRASE;
115563 if( ii==pPhrase->nToken-1 && !isReqPos ) mt = MERGE_PHRASE;
115565 assert( iPrevTok!=iTok );
115566 if( iPrevTok<iTok ){
115567 aLeft = pOut;
115568 nLeft = nOut;
115569 aRight = pList;
115570 nRight = nList;
115571 nDist = iTok-iPrevTok;
115572 iPrevTok = iTok;
115573 }else{
115574 aRight = pOut;
115575 nRight = nOut;
115576 aLeft = pList;
115577 nLeft = nList;
115578 nDist = iPrevTok-iTok;
115580 pOut = aRight;
115581 fts3DoclistMerge(
115582 mt, nDist, 0, pOut, &nOut, aLeft, nLeft, aRight, nRight, &nDoc
115584 sqlite3_free(aLeft);
115586 assert( nOut==0 || pOut!=0 );
115589 if( rc==SQLITE_OK ){
115590 if( ii!=pPhrase->nToken ){
115591 assert( pCsr->eEvalmode==FTS3_EVAL_FILTER && isReqPos==0 );
115592 fts3DoclistStripPositions(pOut, &nOut);
115594 *paOut = pOut;
115595 *pnOut = nOut;
115596 }else{
115597 sqlite3_free(pOut);
115599 return rc;
115603 ** This function merges two doclists according to the requirements of a
115604 ** NEAR operator.
115606 ** Both input doclists must include position information. The output doclist
115607 ** includes position information if the first argument to this function
115608 ** is MERGE_POS_NEAR, or does not if it is MERGE_NEAR.
115610 static int fts3NearMerge(
115611 int mergetype, /* MERGE_POS_NEAR or MERGE_NEAR */
115612 int nNear, /* Parameter to NEAR operator */
115613 int nTokenLeft, /* Number of tokens in LHS phrase arg */
115614 char *aLeft, /* Doclist for LHS (incl. positions) */
115615 int nLeft, /* Size of LHS doclist in bytes */
115616 int nTokenRight, /* As nTokenLeft */
115617 char *aRight, /* As aLeft */
115618 int nRight, /* As nRight */
115619 char **paOut, /* OUT: Results of merge (malloced) */
115620 int *pnOut /* OUT: Sized of output buffer */
115622 char *aOut; /* Buffer to write output doclist to */
115623 int rc; /* Return code */
115625 assert( mergetype==MERGE_POS_NEAR || MERGE_NEAR );
115627 aOut = sqlite3_malloc(nLeft+nRight+1);
115628 if( aOut==0 ){
115629 rc = SQLITE_NOMEM;
115630 }else{
115631 rc = fts3DoclistMerge(mergetype, nNear+nTokenRight, nNear+nTokenLeft,
115632 aOut, pnOut, aLeft, nLeft, aRight, nRight, 0
115634 if( rc!=SQLITE_OK ){
115635 sqlite3_free(aOut);
115636 aOut = 0;
115640 *paOut = aOut;
115641 return rc;
115645 ** This function is used as part of the processing for the snippet() and
115646 ** offsets() functions.
115648 ** Both pLeft and pRight are expression nodes of type FTSQUERY_PHRASE. Both
115649 ** have their respective doclists (including position information) loaded
115650 ** in Fts3Expr.aDoclist/nDoclist. This function removes all entries from
115651 ** each doclist that are not within nNear tokens of a corresponding entry
115652 ** in the other doclist.
115654 SQLITE_PRIVATE int sqlite3Fts3ExprNearTrim(Fts3Expr *pLeft, Fts3Expr *pRight, int nNear){
115655 int rc; /* Return code */
115657 assert( pLeft->eType==FTSQUERY_PHRASE );
115658 assert( pRight->eType==FTSQUERY_PHRASE );
115659 assert( pLeft->isLoaded && pRight->isLoaded );
115661 if( pLeft->aDoclist==0 || pRight->aDoclist==0 ){
115662 sqlite3_free(pLeft->aDoclist);
115663 sqlite3_free(pRight->aDoclist);
115664 pRight->aDoclist = 0;
115665 pLeft->aDoclist = 0;
115666 rc = SQLITE_OK;
115667 }else{
115668 char *aOut; /* Buffer in which to assemble new doclist */
115669 int nOut; /* Size of buffer aOut in bytes */
115671 rc = fts3NearMerge(MERGE_POS_NEAR, nNear,
115672 pLeft->pPhrase->nToken, pLeft->aDoclist, pLeft->nDoclist,
115673 pRight->pPhrase->nToken, pRight->aDoclist, pRight->nDoclist,
115674 &aOut, &nOut
115676 if( rc!=SQLITE_OK ) return rc;
115677 sqlite3_free(pRight->aDoclist);
115678 pRight->aDoclist = aOut;
115679 pRight->nDoclist = nOut;
115681 rc = fts3NearMerge(MERGE_POS_NEAR, nNear,
115682 pRight->pPhrase->nToken, pRight->aDoclist, pRight->nDoclist,
115683 pLeft->pPhrase->nToken, pLeft->aDoclist, pLeft->nDoclist,
115684 &aOut, &nOut
115686 sqlite3_free(pLeft->aDoclist);
115687 pLeft->aDoclist = aOut;
115688 pLeft->nDoclist = nOut;
115690 return rc;
115695 ** Allocate an Fts3SegReaderArray for each token in the expression pExpr.
115696 ** The allocated objects are stored in the Fts3PhraseToken.pArray member
115697 ** variables of each token structure.
115699 static int fts3ExprAllocateSegReaders(
115700 Fts3Cursor *pCsr, /* FTS3 table */
115701 Fts3Expr *pExpr, /* Expression to create seg-readers for */
115702 int *pnExpr /* OUT: Number of AND'd expressions */
115704 int rc = SQLITE_OK; /* Return code */
115706 assert( pCsr->eEvalmode==FTS3_EVAL_FILTER );
115707 if( pnExpr && pExpr->eType!=FTSQUERY_AND ){
115708 (*pnExpr)++;
115709 pnExpr = 0;
115712 if( pExpr->eType==FTSQUERY_PHRASE ){
115713 Fts3Phrase *pPhrase = pExpr->pPhrase;
115714 int ii;
115716 for(ii=0; rc==SQLITE_OK && ii<pPhrase->nToken; ii++){
115717 Fts3PhraseToken *pTok = &pPhrase->aToken[ii];
115718 if( pTok->pSegcsr==0 ){
115719 rc = fts3TermSegReaderCursor(
115720 pCsr, pTok->z, pTok->n, pTok->isPrefix, &pTok->pSegcsr
115724 }else{
115725 rc = fts3ExprAllocateSegReaders(pCsr, pExpr->pLeft, pnExpr);
115726 if( rc==SQLITE_OK ){
115727 rc = fts3ExprAllocateSegReaders(pCsr, pExpr->pRight, pnExpr);
115730 return rc;
115734 ** Free the Fts3SegReaderArray objects associated with each token in the
115735 ** expression pExpr. In other words, this function frees the resources
115736 ** allocated by fts3ExprAllocateSegReaders().
115738 static void fts3ExprFreeSegReaders(Fts3Expr *pExpr){
115739 if( pExpr ){
115740 Fts3Phrase *pPhrase = pExpr->pPhrase;
115741 if( pPhrase ){
115742 int kk;
115743 for(kk=0; kk<pPhrase->nToken; kk++){
115744 fts3SegReaderCursorFree(pPhrase->aToken[kk].pSegcsr);
115745 pPhrase->aToken[kk].pSegcsr = 0;
115748 fts3ExprFreeSegReaders(pExpr->pLeft);
115749 fts3ExprFreeSegReaders(pExpr->pRight);
115754 ** Return the sum of the costs of all tokens in the expression pExpr. This
115755 ** function must be called after Fts3SegReaderArrays have been allocated
115756 ** for all tokens using fts3ExprAllocateSegReaders().
115758 static int fts3ExprCost(Fts3Expr *pExpr){
115759 int nCost; /* Return value */
115760 if( pExpr->eType==FTSQUERY_PHRASE ){
115761 Fts3Phrase *pPhrase = pExpr->pPhrase;
115762 int ii;
115763 nCost = 0;
115764 for(ii=0; ii<pPhrase->nToken; ii++){
115765 Fts3SegReaderCursor *pSegcsr = pPhrase->aToken[ii].pSegcsr;
115766 if( pSegcsr ) nCost += pSegcsr->nCost;
115768 }else{
115769 nCost = fts3ExprCost(pExpr->pLeft) + fts3ExprCost(pExpr->pRight);
115771 return nCost;
115775 ** The following is a helper function (and type) for fts3EvalExpr(). It
115776 ** must be called after Fts3SegReaders have been allocated for every token
115777 ** in the expression. See the context it is called from in fts3EvalExpr()
115778 ** for further explanation.
115780 typedef struct ExprAndCost ExprAndCost;
115781 struct ExprAndCost {
115782 Fts3Expr *pExpr;
115783 int nCost;
115785 static void fts3ExprAssignCosts(
115786 Fts3Expr *pExpr, /* Expression to create seg-readers for */
115787 ExprAndCost **ppExprCost /* OUT: Write to *ppExprCost */
115789 if( pExpr->eType==FTSQUERY_AND ){
115790 fts3ExprAssignCosts(pExpr->pLeft, ppExprCost);
115791 fts3ExprAssignCosts(pExpr->pRight, ppExprCost);
115792 }else{
115793 (*ppExprCost)->pExpr = pExpr;
115794 (*ppExprCost)->nCost = fts3ExprCost(pExpr);
115795 (*ppExprCost)++;
115800 ** Evaluate the full-text expression pExpr against FTS3 table pTab. Store
115801 ** the resulting doclist in *paOut and *pnOut. This routine mallocs for
115802 ** the space needed to store the output. The caller is responsible for
115803 ** freeing the space when it has finished.
115805 ** This function is called in two distinct contexts:
115807 ** * From within the virtual table xFilter() method. In this case, the
115808 ** output doclist contains entries for all rows in the table, based on
115809 ** data read from the full-text index.
115811 ** In this case, if the query expression contains one or more tokens that
115812 ** are very common, then the returned doclist may contain a superset of
115813 ** the documents that actually match the expression.
115815 ** * From within the virtual table xNext() method. This call is only made
115816 ** if the call from within xFilter() found that there were very common
115817 ** tokens in the query expression and did return a superset of the
115818 ** matching documents. In this case the returned doclist contains only
115819 ** entries that correspond to the current row of the table. Instead of
115820 ** reading the data for each token from the full-text index, the data is
115821 ** already available in-memory in the Fts3PhraseToken.pDeferred structures.
115822 ** See fts3EvalDeferred() for how it gets there.
115824 ** In the first case above, Fts3Cursor.doDeferred==0. In the second (if it is
115825 ** required) Fts3Cursor.doDeferred==1.
115827 ** If the SQLite invokes the snippet(), offsets() or matchinfo() function
115828 ** as part of a SELECT on an FTS3 table, this function is called on each
115829 ** individual phrase expression in the query. If there were very common tokens
115830 ** found in the xFilter() call, then this function is called once for phrase
115831 ** for each row visited, and the returned doclist contains entries for the
115832 ** current row only. Otherwise, if there were no very common tokens, then this
115833 ** function is called once only for each phrase in the query and the returned
115834 ** doclist contains entries for all rows of the table.
115836 ** Fts3Cursor.doDeferred==1 when this function is called on phrases as a
115837 ** result of a snippet(), offsets() or matchinfo() invocation.
115839 static int fts3EvalExpr(
115840 Fts3Cursor *p, /* Virtual table cursor handle */
115841 Fts3Expr *pExpr, /* Parsed fts3 expression */
115842 char **paOut, /* OUT: Pointer to malloc'd result buffer */
115843 int *pnOut, /* OUT: Size of buffer at *paOut */
115844 int isReqPos /* Require positions in output buffer */
115846 int rc = SQLITE_OK; /* Return code */
115848 /* Zero the output parameters. */
115849 *paOut = 0;
115850 *pnOut = 0;
115852 if( pExpr ){
115853 assert( pExpr->eType==FTSQUERY_NEAR || pExpr->eType==FTSQUERY_OR
115854 || pExpr->eType==FTSQUERY_AND || pExpr->eType==FTSQUERY_NOT
115855 || pExpr->eType==FTSQUERY_PHRASE
115857 assert( pExpr->eType==FTSQUERY_PHRASE || isReqPos==0 );
115859 if( pExpr->eType==FTSQUERY_PHRASE ){
115860 rc = fts3PhraseSelect(p, pExpr->pPhrase,
115861 isReqPos || (pExpr->pParent && pExpr->pParent->eType==FTSQUERY_NEAR),
115862 paOut, pnOut
115864 fts3ExprFreeSegReaders(pExpr);
115865 }else if( p->eEvalmode==FTS3_EVAL_FILTER && pExpr->eType==FTSQUERY_AND ){
115866 ExprAndCost *aExpr = 0; /* Array of AND'd expressions and costs */
115867 int nExpr = 0; /* Size of aExpr[] */
115868 char *aRet = 0; /* Doclist to return to caller */
115869 int nRet = 0; /* Length of aRet[] in bytes */
115870 int nDoc = 0x7FFFFFFF;
115872 assert( !isReqPos );
115874 rc = fts3ExprAllocateSegReaders(p, pExpr, &nExpr);
115875 if( rc==SQLITE_OK ){
115876 assert( nExpr>1 );
115877 aExpr = sqlite3_malloc(sizeof(ExprAndCost) * nExpr);
115878 if( !aExpr ) rc = SQLITE_NOMEM;
115880 if( rc==SQLITE_OK ){
115881 int ii; /* Used to iterate through expressions */
115883 fts3ExprAssignCosts(pExpr, &aExpr);
115884 aExpr -= nExpr;
115885 for(ii=0; ii<nExpr; ii++){
115886 char *aNew;
115887 int nNew;
115888 int jj;
115889 ExprAndCost *pBest = 0;
115891 for(jj=0; jj<nExpr; jj++){
115892 ExprAndCost *pCand = &aExpr[jj];
115893 if( pCand->pExpr && (pBest==0 || pCand->nCost<pBest->nCost) ){
115894 pBest = pCand;
115898 if( pBest->nCost>nDoc ){
115899 rc = fts3DeferExpression(p, p->pExpr);
115900 break;
115901 }else{
115902 rc = fts3EvalExpr(p, pBest->pExpr, &aNew, &nNew, 0);
115903 if( rc!=SQLITE_OK ) break;
115904 pBest->pExpr = 0;
115905 if( ii==0 ){
115906 aRet = aNew;
115907 nRet = nNew;
115908 nDoc = fts3DoclistCountDocids(0, aRet, nRet);
115909 }else{
115910 fts3DoclistMerge(
115911 MERGE_AND, 0, 0, aRet, &nRet, aRet, nRet, aNew, nNew, &nDoc
115913 sqlite3_free(aNew);
115919 if( rc==SQLITE_OK ){
115920 *paOut = aRet;
115921 *pnOut = nRet;
115922 }else{
115923 assert( *paOut==0 );
115924 sqlite3_free(aRet);
115926 sqlite3_free(aExpr);
115927 fts3ExprFreeSegReaders(pExpr);
115929 }else{
115930 char *aLeft;
115931 char *aRight;
115932 int nLeft;
115933 int nRight;
115935 assert( pExpr->eType==FTSQUERY_NEAR
115936 || pExpr->eType==FTSQUERY_OR
115937 || pExpr->eType==FTSQUERY_NOT
115938 || (pExpr->eType==FTSQUERY_AND && p->eEvalmode==FTS3_EVAL_NEXT)
115941 if( 0==(rc = fts3EvalExpr(p, pExpr->pRight, &aRight, &nRight, isReqPos))
115942 && 0==(rc = fts3EvalExpr(p, pExpr->pLeft, &aLeft, &nLeft, isReqPos))
115944 switch( pExpr->eType ){
115945 case FTSQUERY_NEAR: {
115946 Fts3Expr *pLeft;
115947 Fts3Expr *pRight;
115948 int mergetype = MERGE_NEAR;
115949 if( pExpr->pParent && pExpr->pParent->eType==FTSQUERY_NEAR ){
115950 mergetype = MERGE_POS_NEAR;
115952 pLeft = pExpr->pLeft;
115953 while( pLeft->eType==FTSQUERY_NEAR ){
115954 pLeft=pLeft->pRight;
115956 pRight = pExpr->pRight;
115957 assert( pRight->eType==FTSQUERY_PHRASE );
115958 assert( pLeft->eType==FTSQUERY_PHRASE );
115960 rc = fts3NearMerge(mergetype, pExpr->nNear,
115961 pLeft->pPhrase->nToken, aLeft, nLeft,
115962 pRight->pPhrase->nToken, aRight, nRight,
115963 paOut, pnOut
115965 sqlite3_free(aLeft);
115966 break;
115969 case FTSQUERY_OR: {
115970 /* Allocate a buffer for the output. The maximum size is the
115971 ** sum of the sizes of the two input buffers. The +1 term is
115972 ** so that a buffer of zero bytes is never allocated - this can
115973 ** cause fts3DoclistMerge() to incorrectly return SQLITE_NOMEM.
115975 char *aBuffer = sqlite3_malloc(nRight+nLeft+1);
115976 rc = fts3DoclistMerge(MERGE_OR, 0, 0, aBuffer, pnOut,
115977 aLeft, nLeft, aRight, nRight, 0
115979 *paOut = aBuffer;
115980 sqlite3_free(aLeft);
115981 break;
115984 default: {
115985 assert( FTSQUERY_NOT==MERGE_NOT && FTSQUERY_AND==MERGE_AND );
115986 fts3DoclistMerge(pExpr->eType, 0, 0, aLeft, pnOut,
115987 aLeft, nLeft, aRight, nRight, 0
115989 *paOut = aLeft;
115990 break;
115994 sqlite3_free(aRight);
115998 assert( rc==SQLITE_OK || *paOut==0 );
115999 return rc;
116003 ** This function is called from within xNext() for each row visited by
116004 ** an FTS3 query. If evaluating the FTS3 query expression within xFilter()
116005 ** was able to determine the exact set of matching rows, this function sets
116006 ** *pbRes to true and returns SQLITE_IO immediately.
116008 ** Otherwise, if evaluating the query expression within xFilter() returned a
116009 ** superset of the matching documents instead of an exact set (this happens
116010 ** when the query includes very common tokens and it is deemed too expensive to
116011 ** load their doclists from disk), this function tests if the current row
116012 ** really does match the FTS3 query.
116014 ** If an error occurs, an SQLite error code is returned. Otherwise, SQLITE_OK
116015 ** is returned and *pbRes is set to true if the current row matches the
116016 ** FTS3 query (and should be included in the results returned to SQLite), or
116017 ** false otherwise.
116019 static int fts3EvalDeferred(
116020 Fts3Cursor *pCsr, /* FTS3 cursor pointing at row to test */
116021 int *pbRes /* OUT: Set to true if row is a match */
116023 int rc = SQLITE_OK;
116024 if( pCsr->pDeferred==0 ){
116025 *pbRes = 1;
116026 }else{
116027 rc = fts3CursorSeek(0, pCsr);
116028 if( rc==SQLITE_OK ){
116029 sqlite3Fts3FreeDeferredDoclists(pCsr);
116030 rc = sqlite3Fts3CacheDeferredDoclists(pCsr);
116032 if( rc==SQLITE_OK ){
116033 char *a = 0;
116034 int n = 0;
116035 rc = fts3EvalExpr(pCsr, pCsr->pExpr, &a, &n, 0);
116036 assert( n>=0 );
116037 *pbRes = (n>0);
116038 sqlite3_free(a);
116041 return rc;
116045 ** Advance the cursor to the next row in the %_content table that
116046 ** matches the search criteria. For a MATCH search, this will be
116047 ** the next row that matches. For a full-table scan, this will be
116048 ** simply the next row in the %_content table. For a docid lookup,
116049 ** this routine simply sets the EOF flag.
116051 ** Return SQLITE_OK if nothing goes wrong. SQLITE_OK is returned
116052 ** even if we reach end-of-file. The fts3EofMethod() will be called
116053 ** subsequently to determine whether or not an EOF was hit.
116055 static int fts3NextMethod(sqlite3_vtab_cursor *pCursor){
116056 int res;
116057 int rc = SQLITE_OK; /* Return code */
116058 Fts3Cursor *pCsr = (Fts3Cursor *)pCursor;
116060 pCsr->eEvalmode = FTS3_EVAL_NEXT;
116062 if( pCsr->aDoclist==0 ){
116063 if( SQLITE_ROW!=sqlite3_step(pCsr->pStmt) ){
116064 pCsr->isEof = 1;
116065 rc = sqlite3_reset(pCsr->pStmt);
116066 break;
116068 pCsr->iPrevId = sqlite3_column_int64(pCsr->pStmt, 0);
116069 }else{
116070 if( pCsr->pNextId>=&pCsr->aDoclist[pCsr->nDoclist] ){
116071 pCsr->isEof = 1;
116072 break;
116074 sqlite3_reset(pCsr->pStmt);
116075 fts3GetDeltaVarint(&pCsr->pNextId, &pCsr->iPrevId);
116076 pCsr->isRequireSeek = 1;
116077 pCsr->isMatchinfoNeeded = 1;
116079 }while( SQLITE_OK==(rc = fts3EvalDeferred(pCsr, &res)) && res==0 );
116081 return rc;
116085 ** This is the xFilter interface for the virtual table. See
116086 ** the virtual table xFilter method documentation for additional
116087 ** information.
116089 ** If idxNum==FTS3_FULLSCAN_SEARCH then do a full table scan against
116090 ** the %_content table.
116092 ** If idxNum==FTS3_DOCID_SEARCH then do a docid lookup for a single entry
116093 ** in the %_content table.
116095 ** If idxNum>=FTS3_FULLTEXT_SEARCH then use the full text index. The
116096 ** column on the left-hand side of the MATCH operator is column
116097 ** number idxNum-FTS3_FULLTEXT_SEARCH, 0 indexed. argv[0] is the right-hand
116098 ** side of the MATCH operator.
116100 static int fts3FilterMethod(
116101 sqlite3_vtab_cursor *pCursor, /* The cursor used for this query */
116102 int idxNum, /* Strategy index */
116103 const char *idxStr, /* Unused */
116104 int nVal, /* Number of elements in apVal */
116105 sqlite3_value **apVal /* Arguments for the indexing scheme */
116107 const char *azSql[] = {
116108 "SELECT %s FROM %Q.'%q_content' AS x WHERE docid = ?", /* non-full-scan */
116109 "SELECT %s FROM %Q.'%q_content' AS x ", /* full-scan */
116111 int rc; /* Return code */
116112 char *zSql; /* SQL statement used to access %_content */
116113 Fts3Table *p = (Fts3Table *)pCursor->pVtab;
116114 Fts3Cursor *pCsr = (Fts3Cursor *)pCursor;
116116 UNUSED_PARAMETER(idxStr);
116117 UNUSED_PARAMETER(nVal);
116119 assert( idxNum>=0 && idxNum<=(FTS3_FULLTEXT_SEARCH+p->nColumn) );
116120 assert( nVal==0 || nVal==1 );
116121 assert( (nVal==0)==(idxNum==FTS3_FULLSCAN_SEARCH) );
116122 assert( p->pSegments==0 );
116124 /* In case the cursor has been used before, clear it now. */
116125 sqlite3_finalize(pCsr->pStmt);
116126 sqlite3_free(pCsr->aDoclist);
116127 sqlite3Fts3ExprFree(pCsr->pExpr);
116128 memset(&pCursor[1], 0, sizeof(Fts3Cursor)-sizeof(sqlite3_vtab_cursor));
116130 if( idxNum!=FTS3_DOCID_SEARCH && idxNum!=FTS3_FULLSCAN_SEARCH ){
116131 int iCol = idxNum-FTS3_FULLTEXT_SEARCH;
116132 const char *zQuery = (const char *)sqlite3_value_text(apVal[0]);
116134 if( zQuery==0 && sqlite3_value_type(apVal[0])!=SQLITE_NULL ){
116135 return SQLITE_NOMEM;
116138 rc = sqlite3Fts3ExprParse(p->pTokenizer, p->azColumn, p->nColumn,
116139 iCol, zQuery, -1, &pCsr->pExpr
116141 if( rc!=SQLITE_OK ){
116142 if( rc==SQLITE_ERROR ){
116143 p->base.zErrMsg = sqlite3_mprintf("malformed MATCH expression: [%s]",
116144 zQuery);
116146 return rc;
116149 rc = sqlite3Fts3ReadLock(p);
116150 if( rc!=SQLITE_OK ) return rc;
116152 rc = fts3EvalExpr(pCsr, pCsr->pExpr, &pCsr->aDoclist, &pCsr->nDoclist, 0);
116153 sqlite3Fts3SegmentsClose(p);
116154 if( rc!=SQLITE_OK ) return rc;
116155 pCsr->pNextId = pCsr->aDoclist;
116156 pCsr->iPrevId = 0;
116159 /* Compile a SELECT statement for this cursor. For a full-table-scan, the
116160 ** statement loops through all rows of the %_content table. For a
116161 ** full-text query or docid lookup, the statement retrieves a single
116162 ** row by docid.
116164 zSql = (char *)azSql[idxNum==FTS3_FULLSCAN_SEARCH];
116165 zSql = sqlite3_mprintf(zSql, p->zReadExprlist, p->zDb, p->zName);
116166 if( !zSql ){
116167 rc = SQLITE_NOMEM;
116168 }else{
116169 rc = sqlite3_prepare_v2(p->db, zSql, -1, &pCsr->pStmt, 0);
116170 sqlite3_free(zSql);
116172 if( rc==SQLITE_OK && idxNum==FTS3_DOCID_SEARCH ){
116173 rc = sqlite3_bind_value(pCsr->pStmt, 1, apVal[0]);
116175 pCsr->eSearch = (i16)idxNum;
116177 if( rc!=SQLITE_OK ) return rc;
116178 return fts3NextMethod(pCursor);
116182 ** This is the xEof method of the virtual table. SQLite calls this
116183 ** routine to find out if it has reached the end of a result set.
116185 static int fts3EofMethod(sqlite3_vtab_cursor *pCursor){
116186 return ((Fts3Cursor *)pCursor)->isEof;
116190 ** This is the xRowid method. The SQLite core calls this routine to
116191 ** retrieve the rowid for the current row of the result set. fts3
116192 ** exposes %_content.docid as the rowid for the virtual table. The
116193 ** rowid should be written to *pRowid.
116195 static int fts3RowidMethod(sqlite3_vtab_cursor *pCursor, sqlite_int64 *pRowid){
116196 Fts3Cursor *pCsr = (Fts3Cursor *) pCursor;
116197 if( pCsr->aDoclist ){
116198 *pRowid = pCsr->iPrevId;
116199 }else{
116200 /* This branch runs if the query is implemented using a full-table scan
116201 ** (not using the full-text index). In this case grab the rowid from the
116202 ** SELECT statement.
116204 assert( pCsr->isRequireSeek==0 );
116205 *pRowid = sqlite3_column_int64(pCsr->pStmt, 0);
116207 return SQLITE_OK;
116211 ** This is the xColumn method, called by SQLite to request a value from
116212 ** the row that the supplied cursor currently points to.
116214 static int fts3ColumnMethod(
116215 sqlite3_vtab_cursor *pCursor, /* Cursor to retrieve value from */
116216 sqlite3_context *pContext, /* Context for sqlite3_result_xxx() calls */
116217 int iCol /* Index of column to read value from */
116219 int rc; /* Return Code */
116220 Fts3Cursor *pCsr = (Fts3Cursor *) pCursor;
116221 Fts3Table *p = (Fts3Table *)pCursor->pVtab;
116223 /* The column value supplied by SQLite must be in range. */
116224 assert( iCol>=0 && iCol<=p->nColumn+1 );
116226 if( iCol==p->nColumn+1 ){
116227 /* This call is a request for the "docid" column. Since "docid" is an
116228 ** alias for "rowid", use the xRowid() method to obtain the value.
116230 sqlite3_int64 iRowid;
116231 rc = fts3RowidMethod(pCursor, &iRowid);
116232 sqlite3_result_int64(pContext, iRowid);
116233 }else if( iCol==p->nColumn ){
116234 /* The extra column whose name is the same as the table.
116235 ** Return a blob which is a pointer to the cursor.
116237 sqlite3_result_blob(pContext, &pCsr, sizeof(pCsr), SQLITE_TRANSIENT);
116238 rc = SQLITE_OK;
116239 }else{
116240 rc = fts3CursorSeek(0, pCsr);
116241 if( rc==SQLITE_OK ){
116242 sqlite3_result_value(pContext, sqlite3_column_value(pCsr->pStmt, iCol+1));
116245 return rc;
116249 ** This function is the implementation of the xUpdate callback used by
116250 ** FTS3 virtual tables. It is invoked by SQLite each time a row is to be
116251 ** inserted, updated or deleted.
116253 static int fts3UpdateMethod(
116254 sqlite3_vtab *pVtab, /* Virtual table handle */
116255 int nArg, /* Size of argument array */
116256 sqlite3_value **apVal, /* Array of arguments */
116257 sqlite_int64 *pRowid /* OUT: The affected (or effected) rowid */
116259 return sqlite3Fts3UpdateMethod(pVtab, nArg, apVal, pRowid);
116263 ** Implementation of xSync() method. Flush the contents of the pending-terms
116264 ** hash-table to the database.
116266 static int fts3SyncMethod(sqlite3_vtab *pVtab){
116267 int rc = sqlite3Fts3PendingTermsFlush((Fts3Table *)pVtab);
116268 sqlite3Fts3SegmentsClose((Fts3Table *)pVtab);
116269 return rc;
116273 ** Implementation of xBegin() method. This is a no-op.
116275 static int fts3BeginMethod(sqlite3_vtab *pVtab){
116276 UNUSED_PARAMETER(pVtab);
116277 assert( ((Fts3Table *)pVtab)->nPendingData==0 );
116278 return SQLITE_OK;
116282 ** Implementation of xCommit() method. This is a no-op. The contents of
116283 ** the pending-terms hash-table have already been flushed into the database
116284 ** by fts3SyncMethod().
116286 static int fts3CommitMethod(sqlite3_vtab *pVtab){
116287 UNUSED_PARAMETER(pVtab);
116288 assert( ((Fts3Table *)pVtab)->nPendingData==0 );
116289 return SQLITE_OK;
116293 ** Implementation of xRollback(). Discard the contents of the pending-terms
116294 ** hash-table. Any changes made to the database are reverted by SQLite.
116296 static int fts3RollbackMethod(sqlite3_vtab *pVtab){
116297 sqlite3Fts3PendingTermsClear((Fts3Table *)pVtab);
116298 return SQLITE_OK;
116302 ** Load the doclist associated with expression pExpr to pExpr->aDoclist.
116303 ** The loaded doclist contains positions as well as the document ids.
116304 ** This is used by the matchinfo(), snippet() and offsets() auxillary
116305 ** functions.
116307 SQLITE_PRIVATE int sqlite3Fts3ExprLoadDoclist(Fts3Cursor *pCsr, Fts3Expr *pExpr){
116308 int rc;
116309 assert( pExpr->eType==FTSQUERY_PHRASE && pExpr->pPhrase );
116310 assert( pCsr->eEvalmode==FTS3_EVAL_NEXT );
116311 rc = fts3EvalExpr(pCsr, pExpr, &pExpr->aDoclist, &pExpr->nDoclist, 1);
116312 return rc;
116315 SQLITE_PRIVATE int sqlite3Fts3ExprLoadFtDoclist(
116316 Fts3Cursor *pCsr,
116317 Fts3Expr *pExpr,
116318 char **paDoclist,
116319 int *pnDoclist
116321 int rc;
116322 assert( pCsr->eEvalmode==FTS3_EVAL_NEXT );
116323 assert( pExpr->eType==FTSQUERY_PHRASE && pExpr->pPhrase );
116324 pCsr->eEvalmode = FTS3_EVAL_MATCHINFO;
116325 rc = fts3EvalExpr(pCsr, pExpr, paDoclist, pnDoclist, 1);
116326 pCsr->eEvalmode = FTS3_EVAL_NEXT;
116327 return rc;
116331 ** After ExprLoadDoclist() (see above) has been called, this function is
116332 ** used to iterate/search through the position lists that make up the doclist
116333 ** stored in pExpr->aDoclist.
116335 SQLITE_PRIVATE char *sqlite3Fts3FindPositions(
116336 Fts3Expr *pExpr, /* Access this expressions doclist */
116337 sqlite3_int64 iDocid, /* Docid associated with requested pos-list */
116338 int iCol /* Column of requested pos-list */
116340 assert( pExpr->isLoaded );
116341 if( pExpr->aDoclist ){
116342 char *pEnd = &pExpr->aDoclist[pExpr->nDoclist];
116343 char *pCsr;
116345 if( pExpr->pCurrent==0 ){
116346 pExpr->pCurrent = pExpr->aDoclist;
116347 pExpr->iCurrent = 0;
116348 pExpr->pCurrent += sqlite3Fts3GetVarint(pExpr->pCurrent,&pExpr->iCurrent);
116350 pCsr = pExpr->pCurrent;
116351 assert( pCsr );
116353 while( pCsr<pEnd ){
116354 if( pExpr->iCurrent<iDocid ){
116355 fts3PoslistCopy(0, &pCsr);
116356 if( pCsr<pEnd ){
116357 fts3GetDeltaVarint(&pCsr, &pExpr->iCurrent);
116359 pExpr->pCurrent = pCsr;
116360 }else{
116361 if( pExpr->iCurrent==iDocid ){
116362 int iThis = 0;
116363 if( iCol<0 ){
116364 /* If iCol is negative, return a pointer to the start of the
116365 ** position-list (instead of a pointer to the start of a list
116366 ** of offsets associated with a specific column).
116368 return pCsr;
116370 while( iThis<iCol ){
116371 fts3ColumnlistCopy(0, &pCsr);
116372 if( *pCsr==0x00 ) return 0;
116373 pCsr++;
116374 pCsr += sqlite3Fts3GetVarint32(pCsr, &iThis);
116376 if( iCol==iThis && (*pCsr&0xFE) ) return pCsr;
116378 return 0;
116383 return 0;
116387 ** Helper function used by the implementation of the overloaded snippet(),
116388 ** offsets() and optimize() SQL functions.
116390 ** If the value passed as the third argument is a blob of size
116391 ** sizeof(Fts3Cursor*), then the blob contents are copied to the
116392 ** output variable *ppCsr and SQLITE_OK is returned. Otherwise, an error
116393 ** message is written to context pContext and SQLITE_ERROR returned. The
116394 ** string passed via zFunc is used as part of the error message.
116396 static int fts3FunctionArg(
116397 sqlite3_context *pContext, /* SQL function call context */
116398 const char *zFunc, /* Function name */
116399 sqlite3_value *pVal, /* argv[0] passed to function */
116400 Fts3Cursor **ppCsr /* OUT: Store cursor handle here */
116402 Fts3Cursor *pRet;
116403 if( sqlite3_value_type(pVal)!=SQLITE_BLOB
116404 || sqlite3_value_bytes(pVal)!=sizeof(Fts3Cursor *)
116406 char *zErr = sqlite3_mprintf("illegal first argument to %s", zFunc);
116407 sqlite3_result_error(pContext, zErr, -1);
116408 sqlite3_free(zErr);
116409 return SQLITE_ERROR;
116411 memcpy(&pRet, sqlite3_value_blob(pVal), sizeof(Fts3Cursor *));
116412 *ppCsr = pRet;
116413 return SQLITE_OK;
116417 ** Implementation of the snippet() function for FTS3
116419 static void fts3SnippetFunc(
116420 sqlite3_context *pContext, /* SQLite function call context */
116421 int nVal, /* Size of apVal[] array */
116422 sqlite3_value **apVal /* Array of arguments */
116424 Fts3Cursor *pCsr; /* Cursor handle passed through apVal[0] */
116425 const char *zStart = "<b>";
116426 const char *zEnd = "</b>";
116427 const char *zEllipsis = "<b>...</b>";
116428 int iCol = -1;
116429 int nToken = 15; /* Default number of tokens in snippet */
116431 /* There must be at least one argument passed to this function (otherwise
116432 ** the non-overloaded version would have been called instead of this one).
116434 assert( nVal>=1 );
116436 if( nVal>6 ){
116437 sqlite3_result_error(pContext,
116438 "wrong number of arguments to function snippet()", -1);
116439 return;
116441 if( fts3FunctionArg(pContext, "snippet", apVal[0], &pCsr) ) return;
116443 switch( nVal ){
116444 case 6: nToken = sqlite3_value_int(apVal[5]);
116445 case 5: iCol = sqlite3_value_int(apVal[4]);
116446 case 4: zEllipsis = (const char*)sqlite3_value_text(apVal[3]);
116447 case 3: zEnd = (const char*)sqlite3_value_text(apVal[2]);
116448 case 2: zStart = (const char*)sqlite3_value_text(apVal[1]);
116450 if( !zEllipsis || !zEnd || !zStart ){
116451 sqlite3_result_error_nomem(pContext);
116452 }else if( SQLITE_OK==fts3CursorSeek(pContext, pCsr) ){
116453 sqlite3Fts3Snippet(pContext, pCsr, zStart, zEnd, zEllipsis, iCol, nToken);
116458 ** Implementation of the offsets() function for FTS3
116460 static void fts3OffsetsFunc(
116461 sqlite3_context *pContext, /* SQLite function call context */
116462 int nVal, /* Size of argument array */
116463 sqlite3_value **apVal /* Array of arguments */
116465 Fts3Cursor *pCsr; /* Cursor handle passed through apVal[0] */
116467 UNUSED_PARAMETER(nVal);
116469 assert( nVal==1 );
116470 if( fts3FunctionArg(pContext, "offsets", apVal[0], &pCsr) ) return;
116471 assert( pCsr );
116472 if( SQLITE_OK==fts3CursorSeek(pContext, pCsr) ){
116473 sqlite3Fts3Offsets(pContext, pCsr);
116478 ** Implementation of the special optimize() function for FTS3. This
116479 ** function merges all segments in the database to a single segment.
116480 ** Example usage is:
116482 ** SELECT optimize(t) FROM t LIMIT 1;
116484 ** where 't' is the name of an FTS3 table.
116486 static void fts3OptimizeFunc(
116487 sqlite3_context *pContext, /* SQLite function call context */
116488 int nVal, /* Size of argument array */
116489 sqlite3_value **apVal /* Array of arguments */
116491 int rc; /* Return code */
116492 Fts3Table *p; /* Virtual table handle */
116493 Fts3Cursor *pCursor; /* Cursor handle passed through apVal[0] */
116495 UNUSED_PARAMETER(nVal);
116497 assert( nVal==1 );
116498 if( fts3FunctionArg(pContext, "optimize", apVal[0], &pCursor) ) return;
116499 p = (Fts3Table *)pCursor->base.pVtab;
116500 assert( p );
116502 rc = sqlite3Fts3Optimize(p);
116504 switch( rc ){
116505 case SQLITE_OK:
116506 sqlite3_result_text(pContext, "Index optimized", -1, SQLITE_STATIC);
116507 break;
116508 case SQLITE_DONE:
116509 sqlite3_result_text(pContext, "Index already optimal", -1, SQLITE_STATIC);
116510 break;
116511 default:
116512 sqlite3_result_error_code(pContext, rc);
116513 break;
116518 ** Implementation of the matchinfo() function for FTS3
116520 static void fts3MatchinfoFunc(
116521 sqlite3_context *pContext, /* SQLite function call context */
116522 int nVal, /* Size of argument array */
116523 sqlite3_value **apVal /* Array of arguments */
116525 Fts3Cursor *pCsr; /* Cursor handle passed through apVal[0] */
116526 assert( nVal==1 || nVal==2 );
116527 if( SQLITE_OK==fts3FunctionArg(pContext, "matchinfo", apVal[0], &pCsr) ){
116528 const char *zArg = 0;
116529 if( nVal>1 ){
116530 zArg = (const char *)sqlite3_value_text(apVal[1]);
116532 sqlite3Fts3Matchinfo(pContext, pCsr, zArg);
116537 ** This routine implements the xFindFunction method for the FTS3
116538 ** virtual table.
116540 static int fts3FindFunctionMethod(
116541 sqlite3_vtab *pVtab, /* Virtual table handle */
116542 int nArg, /* Number of SQL function arguments */
116543 const char *zName, /* Name of SQL function */
116544 void (**pxFunc)(sqlite3_context*,int,sqlite3_value**), /* OUT: Result */
116545 void **ppArg /* Unused */
116547 struct Overloaded {
116548 const char *zName;
116549 void (*xFunc)(sqlite3_context*,int,sqlite3_value**);
116550 } aOverload[] = {
116551 { "snippet", fts3SnippetFunc },
116552 { "offsets", fts3OffsetsFunc },
116553 { "optimize", fts3OptimizeFunc },
116554 { "matchinfo", fts3MatchinfoFunc },
116556 int i; /* Iterator variable */
116558 UNUSED_PARAMETER(pVtab);
116559 UNUSED_PARAMETER(nArg);
116560 UNUSED_PARAMETER(ppArg);
116562 for(i=0; i<SizeofArray(aOverload); i++){
116563 if( strcmp(zName, aOverload[i].zName)==0 ){
116564 *pxFunc = aOverload[i].xFunc;
116565 return 1;
116569 /* No function of the specified name was found. Return 0. */
116570 return 0;
116574 ** Implementation of FTS3 xRename method. Rename an fts3 table.
116576 static int fts3RenameMethod(
116577 sqlite3_vtab *pVtab, /* Virtual table handle */
116578 const char *zName /* New name of table */
116580 Fts3Table *p = (Fts3Table *)pVtab;
116581 sqlite3 *db = p->db; /* Database connection */
116582 int rc; /* Return Code */
116584 rc = sqlite3Fts3PendingTermsFlush(p);
116585 if( rc!=SQLITE_OK ){
116586 return rc;
116589 fts3DbExec(&rc, db,
116590 "ALTER TABLE %Q.'%q_content' RENAME TO '%q_content';",
116591 p->zDb, p->zName, zName
116593 if( p->bHasDocsize ){
116594 fts3DbExec(&rc, db,
116595 "ALTER TABLE %Q.'%q_docsize' RENAME TO '%q_docsize';",
116596 p->zDb, p->zName, zName
116599 if( p->bHasStat ){
116600 fts3DbExec(&rc, db,
116601 "ALTER TABLE %Q.'%q_stat' RENAME TO '%q_stat';",
116602 p->zDb, p->zName, zName
116605 fts3DbExec(&rc, db,
116606 "ALTER TABLE %Q.'%q_segments' RENAME TO '%q_segments';",
116607 p->zDb, p->zName, zName
116609 fts3DbExec(&rc, db,
116610 "ALTER TABLE %Q.'%q_segdir' RENAME TO '%q_segdir';",
116611 p->zDb, p->zName, zName
116613 return rc;
116616 static const sqlite3_module fts3Module = {
116617 /* iVersion */ 0,
116618 /* xCreate */ fts3CreateMethod,
116619 /* xConnect */ fts3ConnectMethod,
116620 /* xBestIndex */ fts3BestIndexMethod,
116621 /* xDisconnect */ fts3DisconnectMethod,
116622 /* xDestroy */ fts3DestroyMethod,
116623 /* xOpen */ fts3OpenMethod,
116624 /* xClose */ fts3CloseMethod,
116625 /* xFilter */ fts3FilterMethod,
116626 /* xNext */ fts3NextMethod,
116627 /* xEof */ fts3EofMethod,
116628 /* xColumn */ fts3ColumnMethod,
116629 /* xRowid */ fts3RowidMethod,
116630 /* xUpdate */ fts3UpdateMethod,
116631 /* xBegin */ fts3BeginMethod,
116632 /* xSync */ fts3SyncMethod,
116633 /* xCommit */ fts3CommitMethod,
116634 /* xRollback */ fts3RollbackMethod,
116635 /* xFindFunction */ fts3FindFunctionMethod,
116636 /* xRename */ fts3RenameMethod,
116640 ** This function is registered as the module destructor (called when an
116641 ** FTS3 enabled database connection is closed). It frees the memory
116642 ** allocated for the tokenizer hash table.
116644 static void hashDestroy(void *p){
116645 Fts3Hash *pHash = (Fts3Hash *)p;
116646 sqlite3Fts3HashClear(pHash);
116647 sqlite3_free(pHash);
116651 ** The fts3 built-in tokenizers - "simple", "porter" and "icu"- are
116652 ** implemented in files fts3_tokenizer1.c, fts3_porter.c and fts3_icu.c
116653 ** respectively. The following three forward declarations are for functions
116654 ** declared in these files used to retrieve the respective implementations.
116656 ** Calling sqlite3Fts3SimpleTokenizerModule() sets the value pointed
116657 ** to by the argument to point to the "simple" tokenizer implementation.
116658 ** And so on.
116660 SQLITE_PRIVATE void sqlite3Fts3SimpleTokenizerModule(sqlite3_tokenizer_module const**ppModule);
116661 SQLITE_PRIVATE void sqlite3Fts3PorterTokenizerModule(sqlite3_tokenizer_module const**ppModule);
116662 #ifdef SQLITE_ENABLE_ICU
116663 SQLITE_PRIVATE void sqlite3Fts3IcuTokenizerModule(sqlite3_tokenizer_module const**ppModule);
116664 #endif
116667 ** Initialise the fts3 extension. If this extension is built as part
116668 ** of the sqlite library, then this function is called directly by
116669 ** SQLite. If fts3 is built as a dynamically loadable extension, this
116670 ** function is called by the sqlite3_extension_init() entry point.
116672 SQLITE_PRIVATE int sqlite3Fts3Init(sqlite3 *db){
116673 int rc = SQLITE_OK;
116674 Fts3Hash *pHash = 0;
116675 const sqlite3_tokenizer_module *pSimple = 0;
116676 const sqlite3_tokenizer_module *pPorter = 0;
116678 #ifdef SQLITE_ENABLE_ICU
116679 const sqlite3_tokenizer_module *pIcu = 0;
116680 sqlite3Fts3IcuTokenizerModule(&pIcu);
116681 #endif
116683 rc = sqlite3Fts3InitAux(db);
116684 if( rc!=SQLITE_OK ) return rc;
116686 sqlite3Fts3SimpleTokenizerModule(&pSimple);
116687 sqlite3Fts3PorterTokenizerModule(&pPorter);
116689 /* Allocate and initialise the hash-table used to store tokenizers. */
116690 pHash = sqlite3_malloc(sizeof(Fts3Hash));
116691 if( !pHash ){
116692 rc = SQLITE_NOMEM;
116693 }else{
116694 sqlite3Fts3HashInit(pHash, FTS3_HASH_STRING, 1);
116697 /* Load the built-in tokenizers into the hash table */
116698 if( rc==SQLITE_OK ){
116699 if( sqlite3Fts3HashInsert(pHash, "simple", 7, (void *)pSimple)
116700 || sqlite3Fts3HashInsert(pHash, "porter", 7, (void *)pPorter)
116701 #ifdef SQLITE_ENABLE_ICU
116702 || (pIcu && sqlite3Fts3HashInsert(pHash, "icu", 4, (void *)pIcu))
116703 #endif
116705 rc = SQLITE_NOMEM;
116709 #ifdef SQLITE_TEST
116710 if( rc==SQLITE_OK ){
116711 rc = sqlite3Fts3ExprInitTestInterface(db);
116713 #endif
116715 /* Create the virtual table wrapper around the hash-table and overload
116716 ** the two scalar functions. If this is successful, register the
116717 ** module with sqlite.
116719 if( SQLITE_OK==rc
116720 #if CHROMIUM_FTS3_CHANGES && !SQLITE_TEST
116721 /* fts3_tokenizer() disabled for security reasons. */
116722 #else
116723 && SQLITE_OK==(rc = sqlite3Fts3InitHashTable(db, pHash, "fts3_tokenizer"))
116724 #endif
116725 && SQLITE_OK==(rc = sqlite3_overload_function(db, "snippet", -1))
116726 && SQLITE_OK==(rc = sqlite3_overload_function(db, "offsets", 1))
116727 && SQLITE_OK==(rc = sqlite3_overload_function(db, "matchinfo", 1))
116728 && SQLITE_OK==(rc = sqlite3_overload_function(db, "matchinfo", 2))
116729 && SQLITE_OK==(rc = sqlite3_overload_function(db, "optimize", 1))
116731 rc = sqlite3_create_module_v2(
116732 db, "fts3", &fts3Module, (void *)pHash, hashDestroy
116734 #if CHROMIUM_FTS3_CHANGES && !SQLITE_TEST
116735 /* Disable fts4 pending review. */
116736 #else
116737 if( rc==SQLITE_OK ){
116738 rc = sqlite3_create_module_v2(
116739 db, "fts4", &fts3Module, (void *)pHash, 0
116742 #endif
116743 return rc;
116746 /* An error has occurred. Delete the hash table and return the error code. */
116747 assert( rc!=SQLITE_OK );
116748 if( pHash ){
116749 sqlite3Fts3HashClear(pHash);
116750 sqlite3_free(pHash);
116752 return rc;
116755 #if !SQLITE_CORE
116756 SQLITE_API int sqlite3_extension_init(
116757 sqlite3 *db,
116758 char **pzErrMsg,
116759 const sqlite3_api_routines *pApi
116761 SQLITE_EXTENSION_INIT2(pApi)
116762 return sqlite3Fts3Init(db);
116764 #endif
116766 #endif
116768 /************** End of fts3.c ************************************************/
116769 /************** Begin file fts3_aux.c ****************************************/
116771 ** 2011 Jan 27
116773 ** The author disclaims copyright to this source code. In place of
116774 ** a legal notice, here is a blessing:
116776 ** May you do good and not evil.
116777 ** May you find forgiveness for yourself and forgive others.
116778 ** May you share freely, never taking more than you give.
116780 ******************************************************************************
116784 #if !defined(SQLITE_CORE) || defined(SQLITE_ENABLE_FTS3)
116787 typedef struct Fts3auxTable Fts3auxTable;
116788 typedef struct Fts3auxCursor Fts3auxCursor;
116790 struct Fts3auxTable {
116791 sqlite3_vtab base; /* Base class used by SQLite core */
116792 Fts3Table *pFts3Tab;
116795 struct Fts3auxCursor {
116796 sqlite3_vtab_cursor base; /* Base class used by SQLite core */
116797 Fts3SegReaderCursor csr; /* Must be right after "base" */
116798 Fts3SegFilter filter;
116799 char *zStop;
116800 int nStop; /* Byte-length of string zStop */
116801 int isEof; /* True if cursor is at EOF */
116802 sqlite3_int64 iRowid; /* Current rowid */
116804 int iCol; /* Current value of 'col' column */
116805 int nStat; /* Size of aStat[] array */
116806 struct Fts3auxColstats {
116807 sqlite3_int64 nDoc; /* 'documents' values for current csr row */
116808 sqlite3_int64 nOcc; /* 'occurrences' values for current csr row */
116809 } *aStat;
116813 ** Schema of the terms table.
116815 #define FTS3_TERMS_SCHEMA "CREATE TABLE x(term, col, documents, occurrences)"
116818 ** This function does all the work for both the xConnect and xCreate methods.
116819 ** These tables have no persistent representation of their own, so xConnect
116820 ** and xCreate are identical operations.
116822 static int fts3auxConnectMethod(
116823 sqlite3 *db, /* Database connection */
116824 void *pUnused, /* Unused */
116825 int argc, /* Number of elements in argv array */
116826 const char * const *argv, /* xCreate/xConnect argument array */
116827 sqlite3_vtab **ppVtab, /* OUT: New sqlite3_vtab object */
116828 char **pzErr /* OUT: sqlite3_malloc'd error message */
116830 char const *zDb; /* Name of database (e.g. "main") */
116831 char const *zFts3; /* Name of fts3 table */
116832 int nDb; /* Result of strlen(zDb) */
116833 int nFts3; /* Result of strlen(zFts3) */
116834 int nByte; /* Bytes of space to allocate here */
116835 int rc; /* value returned by declare_vtab() */
116836 Fts3auxTable *p; /* Virtual table object to return */
116838 UNUSED_PARAMETER(pUnused);
116840 /* The user should specify a single argument - the name of an fts3 table. */
116841 if( argc!=4 ){
116842 *pzErr = sqlite3_mprintf(
116843 "wrong number of arguments to fts4aux constructor"
116845 return SQLITE_ERROR;
116848 zDb = argv[1];
116849 nDb = strlen(zDb);
116850 zFts3 = argv[3];
116851 nFts3 = strlen(zFts3);
116853 rc = sqlite3_declare_vtab(db, FTS3_TERMS_SCHEMA);
116854 if( rc!=SQLITE_OK ) return rc;
116856 nByte = sizeof(Fts3auxTable) + sizeof(Fts3Table) + nDb + nFts3 + 2;
116857 p = (Fts3auxTable *)sqlite3_malloc(nByte);
116858 if( !p ) return SQLITE_NOMEM;
116859 memset(p, 0, nByte);
116861 p->pFts3Tab = (Fts3Table *)&p[1];
116862 p->pFts3Tab->zDb = (char *)&p->pFts3Tab[1];
116863 p->pFts3Tab->zName = &p->pFts3Tab->zDb[nDb+1];
116864 p->pFts3Tab->db = db;
116866 memcpy((char *)p->pFts3Tab->zDb, zDb, nDb);
116867 memcpy((char *)p->pFts3Tab->zName, zFts3, nFts3);
116868 sqlite3Fts3Dequote((char *)p->pFts3Tab->zName);
116870 *ppVtab = (sqlite3_vtab *)p;
116871 return SQLITE_OK;
116875 ** This function does the work for both the xDisconnect and xDestroy methods.
116876 ** These tables have no persistent representation of their own, so xDisconnect
116877 ** and xDestroy are identical operations.
116879 static int fts3auxDisconnectMethod(sqlite3_vtab *pVtab){
116880 Fts3auxTable *p = (Fts3auxTable *)pVtab;
116881 Fts3Table *pFts3 = p->pFts3Tab;
116882 int i;
116884 /* Free any prepared statements held */
116885 for(i=0; i<SizeofArray(pFts3->aStmt); i++){
116886 sqlite3_finalize(pFts3->aStmt[i]);
116888 sqlite3_free(pFts3->zSegmentsTbl);
116889 sqlite3_free(p);
116890 return SQLITE_OK;
116893 #define FTS4AUX_EQ_CONSTRAINT 1
116894 #define FTS4AUX_GE_CONSTRAINT 2
116895 #define FTS4AUX_LE_CONSTRAINT 4
116898 ** xBestIndex - Analyze a WHERE and ORDER BY clause.
116900 static int fts3auxBestIndexMethod(
116901 sqlite3_vtab *pVTab,
116902 sqlite3_index_info *pInfo
116904 int i;
116905 int iEq = -1;
116906 int iGe = -1;
116907 int iLe = -1;
116909 UNUSED_PARAMETER(pVTab);
116911 /* This vtab delivers always results in "ORDER BY term ASC" order. */
116912 if( pInfo->nOrderBy==1
116913 && pInfo->aOrderBy[0].iColumn==0
116914 && pInfo->aOrderBy[0].desc==0
116916 pInfo->orderByConsumed = 1;
116919 /* Search for equality and range constraints on the "term" column. */
116920 for(i=0; i<pInfo->nConstraint; i++){
116921 if( pInfo->aConstraint[i].usable && pInfo->aConstraint[i].iColumn==0 ){
116922 int op = pInfo->aConstraint[i].op;
116923 if( op==SQLITE_INDEX_CONSTRAINT_EQ ) iEq = i;
116924 if( op==SQLITE_INDEX_CONSTRAINT_LT ) iLe = i;
116925 if( op==SQLITE_INDEX_CONSTRAINT_LE ) iLe = i;
116926 if( op==SQLITE_INDEX_CONSTRAINT_GT ) iGe = i;
116927 if( op==SQLITE_INDEX_CONSTRAINT_GE ) iGe = i;
116931 if( iEq>=0 ){
116932 pInfo->idxNum = FTS4AUX_EQ_CONSTRAINT;
116933 pInfo->aConstraintUsage[iEq].argvIndex = 1;
116934 pInfo->estimatedCost = 5;
116935 }else{
116936 pInfo->idxNum = 0;
116937 pInfo->estimatedCost = 20000;
116938 if( iGe>=0 ){
116939 pInfo->idxNum += FTS4AUX_GE_CONSTRAINT;
116940 pInfo->aConstraintUsage[iGe].argvIndex = 1;
116941 pInfo->estimatedCost /= 2;
116943 if( iLe>=0 ){
116944 pInfo->idxNum += FTS4AUX_LE_CONSTRAINT;
116945 pInfo->aConstraintUsage[iLe].argvIndex = 1 + (iGe>=0);
116946 pInfo->estimatedCost /= 2;
116950 return SQLITE_OK;
116954 ** xOpen - Open a cursor.
116956 static int fts3auxOpenMethod(sqlite3_vtab *pVTab, sqlite3_vtab_cursor **ppCsr){
116957 Fts3auxCursor *pCsr; /* Pointer to cursor object to return */
116959 UNUSED_PARAMETER(pVTab);
116961 pCsr = (Fts3auxCursor *)sqlite3_malloc(sizeof(Fts3auxCursor));
116962 if( !pCsr ) return SQLITE_NOMEM;
116963 memset(pCsr, 0, sizeof(Fts3auxCursor));
116965 *ppCsr = (sqlite3_vtab_cursor *)pCsr;
116966 return SQLITE_OK;
116970 ** xClose - Close a cursor.
116972 static int fts3auxCloseMethod(sqlite3_vtab_cursor *pCursor){
116973 Fts3Table *pFts3 = ((Fts3auxTable *)pCursor->pVtab)->pFts3Tab;
116974 Fts3auxCursor *pCsr = (Fts3auxCursor *)pCursor;
116976 sqlite3Fts3SegmentsClose(pFts3);
116977 sqlite3Fts3SegReaderFinish(&pCsr->csr);
116978 sqlite3_free((void *)pCsr->filter.zTerm);
116979 sqlite3_free(pCsr->zStop);
116980 sqlite3_free(pCsr->aStat);
116981 sqlite3_free(pCsr);
116982 return SQLITE_OK;
116985 static int fts3auxGrowStatArray(Fts3auxCursor *pCsr, int nSize){
116986 if( nSize>pCsr->nStat ){
116987 struct Fts3auxColstats *aNew;
116988 aNew = (struct Fts3auxColstats *)sqlite3_realloc(pCsr->aStat,
116989 sizeof(struct Fts3auxColstats) * nSize
116991 if( aNew==0 ) return SQLITE_NOMEM;
116992 memset(&aNew[pCsr->nStat], 0,
116993 sizeof(struct Fts3auxColstats) * (nSize - pCsr->nStat)
116995 pCsr->aStat = aNew;
116996 pCsr->nStat = nSize;
116998 return SQLITE_OK;
117002 ** xNext - Advance the cursor to the next row, if any.
117004 static int fts3auxNextMethod(sqlite3_vtab_cursor *pCursor){
117005 Fts3auxCursor *pCsr = (Fts3auxCursor *)pCursor;
117006 Fts3Table *pFts3 = ((Fts3auxTable *)pCursor->pVtab)->pFts3Tab;
117007 int rc;
117009 /* Increment our pretend rowid value. */
117010 pCsr->iRowid++;
117012 for(pCsr->iCol++; pCsr->iCol<pCsr->nStat; pCsr->iCol++){
117013 if( pCsr->aStat[pCsr->iCol].nDoc>0 ) return SQLITE_OK;
117016 rc = sqlite3Fts3SegReaderStep(pFts3, &pCsr->csr);
117017 if( rc==SQLITE_ROW ){
117018 int i = 0;
117019 int nDoclist = pCsr->csr.nDoclist;
117020 char *aDoclist = pCsr->csr.aDoclist;
117021 int iCol;
117023 int eState = 0;
117025 if( pCsr->zStop ){
117026 int n = (pCsr->nStop<pCsr->csr.nTerm) ? pCsr->nStop : pCsr->csr.nTerm;
117027 int mc = memcmp(pCsr->zStop, pCsr->csr.zTerm, n);
117028 if( mc<0 || (mc==0 && pCsr->csr.nTerm>pCsr->nStop) ){
117029 pCsr->isEof = 1;
117030 return SQLITE_OK;
117034 if( fts3auxGrowStatArray(pCsr, 2) ) return SQLITE_NOMEM;
117035 memset(pCsr->aStat, 0, sizeof(struct Fts3auxColstats) * pCsr->nStat);
117036 iCol = 0;
117038 while( i<nDoclist ){
117039 sqlite3_int64 v = 0;
117041 i += sqlite3Fts3GetVarint(&aDoclist[i], &v);
117042 switch( eState ){
117043 /* State 0. In this state the integer just read was a docid. */
117044 case 0:
117045 pCsr->aStat[0].nDoc++;
117046 eState = 1;
117047 iCol = 0;
117048 break;
117050 /* State 1. In this state we are expecting either a 1, indicating
117051 ** that the following integer will be a column number, or the
117052 ** start of a position list for column 0.
117054 ** The only difference between state 1 and state 2 is that if the
117055 ** integer encountered in state 1 is not 0 or 1, then we need to
117056 ** increment the column 0 "nDoc" count for this term.
117058 case 1:
117059 assert( iCol==0 );
117060 if( v>1 ){
117061 pCsr->aStat[1].nDoc++;
117063 eState = 2;
117064 /* fall through */
117066 case 2:
117067 if( v==0 ){ /* 0x00. Next integer will be a docid. */
117068 eState = 0;
117069 }else if( v==1 ){ /* 0x01. Next integer will be a column number. */
117070 eState = 3;
117071 }else{ /* 2 or greater. A position. */
117072 pCsr->aStat[iCol+1].nOcc++;
117073 pCsr->aStat[0].nOcc++;
117075 break;
117077 /* State 3. The integer just read is a column number. */
117078 default: assert( eState==3 );
117079 iCol = (int)v;
117080 if( fts3auxGrowStatArray(pCsr, iCol+2) ) return SQLITE_NOMEM;
117081 pCsr->aStat[iCol+1].nDoc++;
117082 eState = 2;
117083 break;
117087 pCsr->iCol = 0;
117088 rc = SQLITE_OK;
117089 }else{
117090 pCsr->isEof = 1;
117092 return rc;
117096 ** xFilter - Initialize a cursor to point at the start of its data.
117098 static int fts3auxFilterMethod(
117099 sqlite3_vtab_cursor *pCursor, /* The cursor used for this query */
117100 int idxNum, /* Strategy index */
117101 const char *idxStr, /* Unused */
117102 int nVal, /* Number of elements in apVal */
117103 sqlite3_value **apVal /* Arguments for the indexing scheme */
117105 Fts3auxCursor *pCsr = (Fts3auxCursor *)pCursor;
117106 Fts3Table *pFts3 = ((Fts3auxTable *)pCursor->pVtab)->pFts3Tab;
117107 int rc;
117108 int isScan;
117110 UNUSED_PARAMETER(nVal);
117112 assert( idxStr==0 );
117113 assert( idxNum==FTS4AUX_EQ_CONSTRAINT || idxNum==0
117114 || idxNum==FTS4AUX_LE_CONSTRAINT || idxNum==FTS4AUX_GE_CONSTRAINT
117115 || idxNum==(FTS4AUX_LE_CONSTRAINT|FTS4AUX_GE_CONSTRAINT)
117117 isScan = (idxNum!=FTS4AUX_EQ_CONSTRAINT);
117119 /* In case this cursor is being reused, close and zero it. */
117120 testcase(pCsr->filter.zTerm);
117121 sqlite3Fts3SegReaderFinish(&pCsr->csr);
117122 sqlite3_free((void *)pCsr->filter.zTerm);
117123 sqlite3_free(pCsr->aStat);
117124 memset(&pCsr->csr, 0, ((u8*)&pCsr[1]) - (u8*)&pCsr->csr);
117126 pCsr->filter.flags = FTS3_SEGMENT_REQUIRE_POS|FTS3_SEGMENT_IGNORE_EMPTY;
117127 if( isScan ) pCsr->filter.flags |= FTS3_SEGMENT_SCAN;
117129 if( idxNum&(FTS4AUX_EQ_CONSTRAINT|FTS4AUX_GE_CONSTRAINT) ){
117130 const unsigned char *zStr = sqlite3_value_text(apVal[0]);
117131 if( zStr ){
117132 pCsr->filter.zTerm = sqlite3_mprintf("%s", zStr);
117133 pCsr->filter.nTerm = sqlite3_value_bytes(apVal[0]);
117134 if( pCsr->filter.zTerm==0 ) return SQLITE_NOMEM;
117137 if( idxNum&FTS4AUX_LE_CONSTRAINT ){
117138 int iIdx = (idxNum&FTS4AUX_GE_CONSTRAINT) ? 1 : 0;
117139 pCsr->zStop = sqlite3_mprintf("%s", sqlite3_value_text(apVal[iIdx]));
117140 pCsr->nStop = sqlite3_value_bytes(apVal[iIdx]);
117141 if( pCsr->zStop==0 ) return SQLITE_NOMEM;
117144 rc = sqlite3Fts3SegReaderCursor(pFts3, FTS3_SEGCURSOR_ALL,
117145 pCsr->filter.zTerm, pCsr->filter.nTerm, 0, isScan, &pCsr->csr
117147 if( rc==SQLITE_OK ){
117148 rc = sqlite3Fts3SegReaderStart(pFts3, &pCsr->csr, &pCsr->filter);
117151 if( rc==SQLITE_OK ) rc = fts3auxNextMethod(pCursor);
117152 return rc;
117156 ** xEof - Return true if the cursor is at EOF, or false otherwise.
117158 static int fts3auxEofMethod(sqlite3_vtab_cursor *pCursor){
117159 Fts3auxCursor *pCsr = (Fts3auxCursor *)pCursor;
117160 return pCsr->isEof;
117164 ** xColumn - Return a column value.
117166 static int fts3auxColumnMethod(
117167 sqlite3_vtab_cursor *pCursor, /* Cursor to retrieve value from */
117168 sqlite3_context *pContext, /* Context for sqlite3_result_xxx() calls */
117169 int iCol /* Index of column to read value from */
117171 Fts3auxCursor *p = (Fts3auxCursor *)pCursor;
117173 assert( p->isEof==0 );
117174 if( iCol==0 ){ /* Column "term" */
117175 sqlite3_result_text(pContext, p->csr.zTerm, p->csr.nTerm, SQLITE_TRANSIENT);
117176 }else if( iCol==1 ){ /* Column "col" */
117177 if( p->iCol ){
117178 sqlite3_result_int(pContext, p->iCol-1);
117179 }else{
117180 sqlite3_result_text(pContext, "*", -1, SQLITE_STATIC);
117182 }else if( iCol==2 ){ /* Column "documents" */
117183 sqlite3_result_int64(pContext, p->aStat[p->iCol].nDoc);
117184 }else{ /* Column "occurrences" */
117185 sqlite3_result_int64(pContext, p->aStat[p->iCol].nOcc);
117188 return SQLITE_OK;
117192 ** xRowid - Return the current rowid for the cursor.
117194 static int fts3auxRowidMethod(
117195 sqlite3_vtab_cursor *pCursor, /* Cursor to retrieve value from */
117196 sqlite_int64 *pRowid /* OUT: Rowid value */
117198 Fts3auxCursor *pCsr = (Fts3auxCursor *)pCursor;
117199 *pRowid = pCsr->iRowid;
117200 return SQLITE_OK;
117204 ** Register the fts3aux module with database connection db. Return SQLITE_OK
117205 ** if successful or an error code if sqlite3_create_module() fails.
117207 SQLITE_PRIVATE int sqlite3Fts3InitAux(sqlite3 *db){
117208 static const sqlite3_module fts3aux_module = {
117209 0, /* iVersion */
117210 fts3auxConnectMethod, /* xCreate */
117211 fts3auxConnectMethod, /* xConnect */
117212 fts3auxBestIndexMethod, /* xBestIndex */
117213 fts3auxDisconnectMethod, /* xDisconnect */
117214 fts3auxDisconnectMethod, /* xDestroy */
117215 fts3auxOpenMethod, /* xOpen */
117216 fts3auxCloseMethod, /* xClose */
117217 fts3auxFilterMethod, /* xFilter */
117218 fts3auxNextMethod, /* xNext */
117219 fts3auxEofMethod, /* xEof */
117220 fts3auxColumnMethod, /* xColumn */
117221 fts3auxRowidMethod, /* xRowid */
117222 0, /* xUpdate */
117223 0, /* xBegin */
117224 0, /* xSync */
117225 0, /* xCommit */
117226 0, /* xRollback */
117227 0, /* xFindFunction */
117228 0 /* xRename */
117230 int rc; /* Return code */
117232 rc = sqlite3_create_module(db, "fts4aux", &fts3aux_module, 0);
117233 return rc;
117236 #endif /* !defined(SQLITE_CORE) || defined(SQLITE_ENABLE_FTS3) */
117238 /************** End of fts3_aux.c ********************************************/
117239 /************** Begin file fts3_expr.c ***************************************/
117241 ** 2008 Nov 28
117243 ** The author disclaims copyright to this source code. In place of
117244 ** a legal notice, here is a blessing:
117246 ** May you do good and not evil.
117247 ** May you find forgiveness for yourself and forgive others.
117248 ** May you share freely, never taking more than you give.
117250 ******************************************************************************
117252 ** This module contains code that implements a parser for fts3 query strings
117253 ** (the right-hand argument to the MATCH operator). Because the supported
117254 ** syntax is relatively simple, the whole tokenizer/parser system is
117255 ** hand-coded.
117257 #if !defined(SQLITE_CORE) || defined(SQLITE_ENABLE_FTS3)
117260 ** By default, this module parses the legacy syntax that has been
117261 ** traditionally used by fts3. Or, if SQLITE_ENABLE_FTS3_PARENTHESIS
117262 ** is defined, then it uses the new syntax. The differences between
117263 ** the new and the old syntaxes are:
117265 ** a) The new syntax supports parenthesis. The old does not.
117267 ** b) The new syntax supports the AND and NOT operators. The old does not.
117269 ** c) The old syntax supports the "-" token qualifier. This is not
117270 ** supported by the new syntax (it is replaced by the NOT operator).
117272 ** d) When using the old syntax, the OR operator has a greater precedence
117273 ** than an implicit AND. When using the new, both implicity and explicit
117274 ** AND operators have a higher precedence than OR.
117276 ** If compiled with SQLITE_TEST defined, then this module exports the
117277 ** symbol "int sqlite3_fts3_enable_parentheses". Setting this variable
117278 ** to zero causes the module to use the old syntax. If it is set to
117279 ** non-zero the new syntax is activated. This is so both syntaxes can
117280 ** be tested using a single build of testfixture.
117282 ** The following describes the syntax supported by the fts3 MATCH
117283 ** operator in a similar format to that used by the lemon parser
117284 ** generator. This module does not use actually lemon, it uses a
117285 ** custom parser.
117287 ** query ::= andexpr (OR andexpr)*.
117289 ** andexpr ::= notexpr (AND? notexpr)*.
117291 ** notexpr ::= nearexpr (NOT nearexpr|-TOKEN)*.
117292 ** notexpr ::= LP query RP.
117294 ** nearexpr ::= phrase (NEAR distance_opt nearexpr)*.
117296 ** distance_opt ::= .
117297 ** distance_opt ::= / INTEGER.
117299 ** phrase ::= TOKEN.
117300 ** phrase ::= COLUMN:TOKEN.
117301 ** phrase ::= "TOKEN TOKEN TOKEN...".
117304 #ifdef SQLITE_TEST
117305 SQLITE_API int sqlite3_fts3_enable_parentheses = 0;
117306 #else
117307 # ifdef SQLITE_ENABLE_FTS3_PARENTHESIS
117308 # define sqlite3_fts3_enable_parentheses 1
117309 # else
117310 # define sqlite3_fts3_enable_parentheses 0
117311 # endif
117312 #endif
117315 ** Default span for NEAR operators.
117317 #define SQLITE_FTS3_DEFAULT_NEAR_PARAM 10
117320 typedef struct ParseContext ParseContext;
117321 struct ParseContext {
117322 sqlite3_tokenizer *pTokenizer; /* Tokenizer module */
117323 const char **azCol; /* Array of column names for fts3 table */
117324 int nCol; /* Number of entries in azCol[] */
117325 int iDefaultCol; /* Default column to query */
117326 sqlite3_context *pCtx; /* Write error message here */
117327 int nNest; /* Number of nested brackets */
117331 ** This function is equivalent to the standard isspace() function.
117333 ** The standard isspace() can be awkward to use safely, because although it
117334 ** is defined to accept an argument of type int, its behaviour when passed
117335 ** an integer that falls outside of the range of the unsigned char type
117336 ** is undefined (and sometimes, "undefined" means segfault). This wrapper
117337 ** is defined to accept an argument of type char, and always returns 0 for
117338 ** any values that fall outside of the range of the unsigned char type (i.e.
117339 ** negative values).
117341 static int fts3isspace(char c){
117342 return c==' ' || c=='\t' || c=='\n' || c=='\r' || c=='\v' || c=='\f';
117346 ** Allocate nByte bytes of memory using sqlite3_malloc(). If successful,
117347 ** zero the memory before returning a pointer to it. If unsuccessful,
117348 ** return NULL.
117350 static void *fts3MallocZero(int nByte){
117351 void *pRet = sqlite3_malloc(nByte);
117352 if( pRet ) memset(pRet, 0, nByte);
117353 return pRet;
117358 ** Extract the next token from buffer z (length n) using the tokenizer
117359 ** and other information (column names etc.) in pParse. Create an Fts3Expr
117360 ** structure of type FTSQUERY_PHRASE containing a phrase consisting of this
117361 ** single token and set *ppExpr to point to it. If the end of the buffer is
117362 ** reached before a token is found, set *ppExpr to zero. It is the
117363 ** responsibility of the caller to eventually deallocate the allocated
117364 ** Fts3Expr structure (if any) by passing it to sqlite3_free().
117366 ** Return SQLITE_OK if successful, or SQLITE_NOMEM if a memory allocation
117367 ** fails.
117369 static int getNextToken(
117370 ParseContext *pParse, /* fts3 query parse context */
117371 int iCol, /* Value for Fts3Phrase.iColumn */
117372 const char *z, int n, /* Input string */
117373 Fts3Expr **ppExpr, /* OUT: expression */
117374 int *pnConsumed /* OUT: Number of bytes consumed */
117376 sqlite3_tokenizer *pTokenizer = pParse->pTokenizer;
117377 sqlite3_tokenizer_module const *pModule = pTokenizer->pModule;
117378 int rc;
117379 sqlite3_tokenizer_cursor *pCursor;
117380 Fts3Expr *pRet = 0;
117381 int nConsumed = 0;
117383 rc = pModule->xOpen(pTokenizer, z, n, &pCursor);
117384 if( rc==SQLITE_OK ){
117385 const char *zToken;
117386 int nToken, iStart, iEnd, iPosition;
117387 int nByte; /* total space to allocate */
117389 pCursor->pTokenizer = pTokenizer;
117390 rc = pModule->xNext(pCursor, &zToken, &nToken, &iStart, &iEnd, &iPosition);
117392 if( rc==SQLITE_OK ){
117393 nByte = sizeof(Fts3Expr) + sizeof(Fts3Phrase) + nToken;
117394 pRet = (Fts3Expr *)fts3MallocZero(nByte);
117395 if( !pRet ){
117396 rc = SQLITE_NOMEM;
117397 }else{
117398 pRet->eType = FTSQUERY_PHRASE;
117399 pRet->pPhrase = (Fts3Phrase *)&pRet[1];
117400 pRet->pPhrase->nToken = 1;
117401 pRet->pPhrase->iColumn = iCol;
117402 pRet->pPhrase->aToken[0].n = nToken;
117403 pRet->pPhrase->aToken[0].z = (char *)&pRet->pPhrase[1];
117404 memcpy(pRet->pPhrase->aToken[0].z, zToken, nToken);
117406 if( iEnd<n && z[iEnd]=='*' ){
117407 pRet->pPhrase->aToken[0].isPrefix = 1;
117408 iEnd++;
117410 if( !sqlite3_fts3_enable_parentheses && iStart>0 && z[iStart-1]=='-' ){
117411 pRet->pPhrase->isNot = 1;
117414 nConsumed = iEnd;
117417 pModule->xClose(pCursor);
117420 *pnConsumed = nConsumed;
117421 *ppExpr = pRet;
117422 return rc;
117427 ** Enlarge a memory allocation. If an out-of-memory allocation occurs,
117428 ** then free the old allocation.
117430 static void *fts3ReallocOrFree(void *pOrig, int nNew){
117431 void *pRet = sqlite3_realloc(pOrig, nNew);
117432 if( !pRet ){
117433 sqlite3_free(pOrig);
117435 return pRet;
117439 ** Buffer zInput, length nInput, contains the contents of a quoted string
117440 ** that appeared as part of an fts3 query expression. Neither quote character
117441 ** is included in the buffer. This function attempts to tokenize the entire
117442 ** input buffer and create an Fts3Expr structure of type FTSQUERY_PHRASE
117443 ** containing the results.
117445 ** If successful, SQLITE_OK is returned and *ppExpr set to point at the
117446 ** allocated Fts3Expr structure. Otherwise, either SQLITE_NOMEM (out of memory
117447 ** error) or SQLITE_ERROR (tokenization error) is returned and *ppExpr set
117448 ** to 0.
117450 static int getNextString(
117451 ParseContext *pParse, /* fts3 query parse context */
117452 const char *zInput, int nInput, /* Input string */
117453 Fts3Expr **ppExpr /* OUT: expression */
117455 sqlite3_tokenizer *pTokenizer = pParse->pTokenizer;
117456 sqlite3_tokenizer_module const *pModule = pTokenizer->pModule;
117457 int rc;
117458 Fts3Expr *p = 0;
117459 sqlite3_tokenizer_cursor *pCursor = 0;
117460 char *zTemp = 0;
117461 int nTemp = 0;
117463 rc = pModule->xOpen(pTokenizer, zInput, nInput, &pCursor);
117464 if( rc==SQLITE_OK ){
117465 int ii;
117466 pCursor->pTokenizer = pTokenizer;
117467 for(ii=0; rc==SQLITE_OK; ii++){
117468 const char *zToken;
117469 int nToken, iBegin, iEnd, iPos;
117470 rc = pModule->xNext(pCursor, &zToken, &nToken, &iBegin, &iEnd, &iPos);
117471 if( rc==SQLITE_OK ){
117472 int nByte = sizeof(Fts3Expr) + sizeof(Fts3Phrase);
117473 p = fts3ReallocOrFree(p, nByte+ii*sizeof(Fts3PhraseToken));
117474 zTemp = fts3ReallocOrFree(zTemp, nTemp + nToken);
117475 if( !p || !zTemp ){
117476 goto no_mem;
117478 if( ii==0 ){
117479 memset(p, 0, nByte);
117480 p->pPhrase = (Fts3Phrase *)&p[1];
117482 p->pPhrase = (Fts3Phrase *)&p[1];
117483 memset(&p->pPhrase->aToken[ii], 0, sizeof(Fts3PhraseToken));
117484 p->pPhrase->nToken = ii+1;
117485 p->pPhrase->aToken[ii].n = nToken;
117486 memcpy(&zTemp[nTemp], zToken, nToken);
117487 nTemp += nToken;
117488 if( iEnd<nInput && zInput[iEnd]=='*' ){
117489 p->pPhrase->aToken[ii].isPrefix = 1;
117490 }else{
117491 p->pPhrase->aToken[ii].isPrefix = 0;
117496 pModule->xClose(pCursor);
117497 pCursor = 0;
117500 if( rc==SQLITE_DONE ){
117501 int jj;
117502 char *zNew = NULL;
117503 int nNew = 0;
117504 int nByte = sizeof(Fts3Expr) + sizeof(Fts3Phrase);
117505 nByte += (p?(p->pPhrase->nToken-1):0) * sizeof(Fts3PhraseToken);
117506 p = fts3ReallocOrFree(p, nByte + nTemp);
117507 if( !p ){
117508 goto no_mem;
117510 if( zTemp ){
117511 zNew = &(((char *)p)[nByte]);
117512 memcpy(zNew, zTemp, nTemp);
117513 }else{
117514 memset(p, 0, nByte+nTemp);
117516 p->pPhrase = (Fts3Phrase *)&p[1];
117517 for(jj=0; jj<p->pPhrase->nToken; jj++){
117518 p->pPhrase->aToken[jj].z = &zNew[nNew];
117519 nNew += p->pPhrase->aToken[jj].n;
117521 sqlite3_free(zTemp);
117522 p->eType = FTSQUERY_PHRASE;
117523 p->pPhrase->iColumn = pParse->iDefaultCol;
117524 rc = SQLITE_OK;
117527 *ppExpr = p;
117528 return rc;
117529 no_mem:
117531 if( pCursor ){
117532 pModule->xClose(pCursor);
117534 sqlite3_free(zTemp);
117535 sqlite3_free(p);
117536 *ppExpr = 0;
117537 return SQLITE_NOMEM;
117541 ** Function getNextNode(), which is called by fts3ExprParse(), may itself
117542 ** call fts3ExprParse(). So this forward declaration is required.
117544 static int fts3ExprParse(ParseContext *, const char *, int, Fts3Expr **, int *);
117547 ** The output variable *ppExpr is populated with an allocated Fts3Expr
117548 ** structure, or set to 0 if the end of the input buffer is reached.
117550 ** Returns an SQLite error code. SQLITE_OK if everything works, SQLITE_NOMEM
117551 ** if a malloc failure occurs, or SQLITE_ERROR if a parse error is encountered.
117552 ** If SQLITE_ERROR is returned, pContext is populated with an error message.
117554 static int getNextNode(
117555 ParseContext *pParse, /* fts3 query parse context */
117556 const char *z, int n, /* Input string */
117557 Fts3Expr **ppExpr, /* OUT: expression */
117558 int *pnConsumed /* OUT: Number of bytes consumed */
117560 static const struct Fts3Keyword {
117561 char *z; /* Keyword text */
117562 unsigned char n; /* Length of the keyword */
117563 unsigned char parenOnly; /* Only valid in paren mode */
117564 unsigned char eType; /* Keyword code */
117565 } aKeyword[] = {
117566 { "OR" , 2, 0, FTSQUERY_OR },
117567 { "AND", 3, 1, FTSQUERY_AND },
117568 { "NOT", 3, 1, FTSQUERY_NOT },
117569 { "NEAR", 4, 0, FTSQUERY_NEAR }
117571 int ii;
117572 int iCol;
117573 int iColLen;
117574 int rc;
117575 Fts3Expr *pRet = 0;
117577 const char *zInput = z;
117578 int nInput = n;
117580 /* Skip over any whitespace before checking for a keyword, an open or
117581 ** close bracket, or a quoted string.
117583 while( nInput>0 && fts3isspace(*zInput) ){
117584 nInput--;
117585 zInput++;
117587 if( nInput==0 ){
117588 return SQLITE_DONE;
117591 /* See if we are dealing with a keyword. */
117592 for(ii=0; ii<(int)(sizeof(aKeyword)/sizeof(struct Fts3Keyword)); ii++){
117593 const struct Fts3Keyword *pKey = &aKeyword[ii];
117595 if( (pKey->parenOnly & ~sqlite3_fts3_enable_parentheses)!=0 ){
117596 continue;
117599 if( nInput>=pKey->n && 0==memcmp(zInput, pKey->z, pKey->n) ){
117600 int nNear = SQLITE_FTS3_DEFAULT_NEAR_PARAM;
117601 int nKey = pKey->n;
117602 char cNext;
117604 /* If this is a "NEAR" keyword, check for an explicit nearness. */
117605 if( pKey->eType==FTSQUERY_NEAR ){
117606 assert( nKey==4 );
117607 if( zInput[4]=='/' && zInput[5]>='0' && zInput[5]<='9' ){
117608 nNear = 0;
117609 for(nKey=5; zInput[nKey]>='0' && zInput[nKey]<='9'; nKey++){
117610 nNear = nNear * 10 + (zInput[nKey] - '0');
117615 /* At this point this is probably a keyword. But for that to be true,
117616 ** the next byte must contain either whitespace, an open or close
117617 ** parenthesis, a quote character, or EOF.
117619 cNext = zInput[nKey];
117620 if( fts3isspace(cNext)
117621 || cNext=='"' || cNext=='(' || cNext==')' || cNext==0
117623 pRet = (Fts3Expr *)fts3MallocZero(sizeof(Fts3Expr));
117624 if( !pRet ){
117625 return SQLITE_NOMEM;
117627 pRet->eType = pKey->eType;
117628 pRet->nNear = nNear;
117629 *ppExpr = pRet;
117630 *pnConsumed = (int)((zInput - z) + nKey);
117631 return SQLITE_OK;
117634 /* Turns out that wasn't a keyword after all. This happens if the
117635 ** user has supplied a token such as "ORacle". Continue.
117640 /* Check for an open bracket. */
117641 if( sqlite3_fts3_enable_parentheses ){
117642 if( *zInput=='(' ){
117643 int nConsumed;
117644 pParse->nNest++;
117645 rc = fts3ExprParse(pParse, &zInput[1], nInput-1, ppExpr, &nConsumed);
117646 if( rc==SQLITE_OK && !*ppExpr ){
117647 rc = SQLITE_DONE;
117649 *pnConsumed = (int)((zInput - z) + 1 + nConsumed);
117650 return rc;
117653 /* Check for a close bracket. */
117654 if( *zInput==')' ){
117655 pParse->nNest--;
117656 *pnConsumed = (int)((zInput - z) + 1);
117657 return SQLITE_DONE;
117661 /* See if we are dealing with a quoted phrase. If this is the case, then
117662 ** search for the closing quote and pass the whole string to getNextString()
117663 ** for processing. This is easy to do, as fts3 has no syntax for escaping
117664 ** a quote character embedded in a string.
117666 if( *zInput=='"' ){
117667 for(ii=1; ii<nInput && zInput[ii]!='"'; ii++);
117668 *pnConsumed = (int)((zInput - z) + ii + 1);
117669 if( ii==nInput ){
117670 return SQLITE_ERROR;
117672 return getNextString(pParse, &zInput[1], ii-1, ppExpr);
117676 /* If control flows to this point, this must be a regular token, or
117677 ** the end of the input. Read a regular token using the sqlite3_tokenizer
117678 ** interface. Before doing so, figure out if there is an explicit
117679 ** column specifier for the token.
117681 ** TODO: Strangely, it is not possible to associate a column specifier
117682 ** with a quoted phrase, only with a single token. Not sure if this was
117683 ** an implementation artifact or an intentional decision when fts3 was
117684 ** first implemented. Whichever it was, this module duplicates the
117685 ** limitation.
117687 iCol = pParse->iDefaultCol;
117688 iColLen = 0;
117689 for(ii=0; ii<pParse->nCol; ii++){
117690 const char *zStr = pParse->azCol[ii];
117691 int nStr = (int)strlen(zStr);
117692 if( nInput>nStr && zInput[nStr]==':'
117693 && sqlite3_strnicmp(zStr, zInput, nStr)==0
117695 iCol = ii;
117696 iColLen = (int)((zInput - z) + nStr + 1);
117697 break;
117700 rc = getNextToken(pParse, iCol, &z[iColLen], n-iColLen, ppExpr, pnConsumed);
117701 *pnConsumed += iColLen;
117702 return rc;
117706 ** The argument is an Fts3Expr structure for a binary operator (any type
117707 ** except an FTSQUERY_PHRASE). Return an integer value representing the
117708 ** precedence of the operator. Lower values have a higher precedence (i.e.
117709 ** group more tightly). For example, in the C language, the == operator
117710 ** groups more tightly than ||, and would therefore have a higher precedence.
117712 ** When using the new fts3 query syntax (when SQLITE_ENABLE_FTS3_PARENTHESIS
117713 ** is defined), the order of the operators in precedence from highest to
117714 ** lowest is:
117716 ** NEAR
117717 ** NOT
117718 ** AND (including implicit ANDs)
117719 ** OR
117721 ** Note that when using the old query syntax, the OR operator has a higher
117722 ** precedence than the AND operator.
117724 static int opPrecedence(Fts3Expr *p){
117725 assert( p->eType!=FTSQUERY_PHRASE );
117726 if( sqlite3_fts3_enable_parentheses ){
117727 return p->eType;
117728 }else if( p->eType==FTSQUERY_NEAR ){
117729 return 1;
117730 }else if( p->eType==FTSQUERY_OR ){
117731 return 2;
117733 assert( p->eType==FTSQUERY_AND );
117734 return 3;
117738 ** Argument ppHead contains a pointer to the current head of a query
117739 ** expression tree being parsed. pPrev is the expression node most recently
117740 ** inserted into the tree. This function adds pNew, which is always a binary
117741 ** operator node, into the expression tree based on the relative precedence
117742 ** of pNew and the existing nodes of the tree. This may result in the head
117743 ** of the tree changing, in which case *ppHead is set to the new root node.
117745 static void insertBinaryOperator(
117746 Fts3Expr **ppHead, /* Pointer to the root node of a tree */
117747 Fts3Expr *pPrev, /* Node most recently inserted into the tree */
117748 Fts3Expr *pNew /* New binary node to insert into expression tree */
117750 Fts3Expr *pSplit = pPrev;
117751 while( pSplit->pParent && opPrecedence(pSplit->pParent)<=opPrecedence(pNew) ){
117752 pSplit = pSplit->pParent;
117755 if( pSplit->pParent ){
117756 assert( pSplit->pParent->pRight==pSplit );
117757 pSplit->pParent->pRight = pNew;
117758 pNew->pParent = pSplit->pParent;
117759 }else{
117760 *ppHead = pNew;
117762 pNew->pLeft = pSplit;
117763 pSplit->pParent = pNew;
117767 ** Parse the fts3 query expression found in buffer z, length n. This function
117768 ** returns either when the end of the buffer is reached or an unmatched
117769 ** closing bracket - ')' - is encountered.
117771 ** If successful, SQLITE_OK is returned, *ppExpr is set to point to the
117772 ** parsed form of the expression and *pnConsumed is set to the number of
117773 ** bytes read from buffer z. Otherwise, *ppExpr is set to 0 and SQLITE_NOMEM
117774 ** (out of memory error) or SQLITE_ERROR (parse error) is returned.
117776 static int fts3ExprParse(
117777 ParseContext *pParse, /* fts3 query parse context */
117778 const char *z, int n, /* Text of MATCH query */
117779 Fts3Expr **ppExpr, /* OUT: Parsed query structure */
117780 int *pnConsumed /* OUT: Number of bytes consumed */
117782 Fts3Expr *pRet = 0;
117783 Fts3Expr *pPrev = 0;
117784 Fts3Expr *pNotBranch = 0; /* Only used in legacy parse mode */
117785 int nIn = n;
117786 const char *zIn = z;
117787 int rc = SQLITE_OK;
117788 int isRequirePhrase = 1;
117790 while( rc==SQLITE_OK ){
117791 Fts3Expr *p = 0;
117792 int nByte = 0;
117793 rc = getNextNode(pParse, zIn, nIn, &p, &nByte);
117794 if( rc==SQLITE_OK ){
117795 int isPhrase;
117797 if( !sqlite3_fts3_enable_parentheses
117798 && p->eType==FTSQUERY_PHRASE && p->pPhrase->isNot
117800 /* Create an implicit NOT operator. */
117801 Fts3Expr *pNot = fts3MallocZero(sizeof(Fts3Expr));
117802 if( !pNot ){
117803 sqlite3Fts3ExprFree(p);
117804 rc = SQLITE_NOMEM;
117805 goto exprparse_out;
117807 pNot->eType = FTSQUERY_NOT;
117808 pNot->pRight = p;
117809 if( pNotBranch ){
117810 pNot->pLeft = pNotBranch;
117812 pNotBranch = pNot;
117813 p = pPrev;
117814 }else{
117815 int eType = p->eType;
117816 assert( eType!=FTSQUERY_PHRASE || !p->pPhrase->isNot );
117817 isPhrase = (eType==FTSQUERY_PHRASE || p->pLeft);
117819 /* The isRequirePhrase variable is set to true if a phrase or
117820 ** an expression contained in parenthesis is required. If a
117821 ** binary operator (AND, OR, NOT or NEAR) is encounted when
117822 ** isRequirePhrase is set, this is a syntax error.
117824 if( !isPhrase && isRequirePhrase ){
117825 sqlite3Fts3ExprFree(p);
117826 rc = SQLITE_ERROR;
117827 goto exprparse_out;
117830 if( isPhrase && !isRequirePhrase ){
117831 /* Insert an implicit AND operator. */
117832 Fts3Expr *pAnd;
117833 assert( pRet && pPrev );
117834 pAnd = fts3MallocZero(sizeof(Fts3Expr));
117835 if( !pAnd ){
117836 sqlite3Fts3ExprFree(p);
117837 rc = SQLITE_NOMEM;
117838 goto exprparse_out;
117840 pAnd->eType = FTSQUERY_AND;
117841 insertBinaryOperator(&pRet, pPrev, pAnd);
117842 pPrev = pAnd;
117845 /* This test catches attempts to make either operand of a NEAR
117846 ** operator something other than a phrase. For example, either of
117847 ** the following:
117849 ** (bracketed expression) NEAR phrase
117850 ** phrase NEAR (bracketed expression)
117852 ** Return an error in either case.
117854 if( pPrev && (
117855 (eType==FTSQUERY_NEAR && !isPhrase && pPrev->eType!=FTSQUERY_PHRASE)
117856 || (eType!=FTSQUERY_PHRASE && isPhrase && pPrev->eType==FTSQUERY_NEAR)
117858 sqlite3Fts3ExprFree(p);
117859 rc = SQLITE_ERROR;
117860 goto exprparse_out;
117863 if( isPhrase ){
117864 if( pRet ){
117865 assert( pPrev && pPrev->pLeft && pPrev->pRight==0 );
117866 pPrev->pRight = p;
117867 p->pParent = pPrev;
117868 }else{
117869 pRet = p;
117871 }else{
117872 insertBinaryOperator(&pRet, pPrev, p);
117874 isRequirePhrase = !isPhrase;
117876 assert( nByte>0 );
117878 assert( rc!=SQLITE_OK || (nByte>0 && nByte<=nIn) );
117879 nIn -= nByte;
117880 zIn += nByte;
117881 pPrev = p;
117884 if( rc==SQLITE_DONE && pRet && isRequirePhrase ){
117885 rc = SQLITE_ERROR;
117888 if( rc==SQLITE_DONE ){
117889 rc = SQLITE_OK;
117890 if( !sqlite3_fts3_enable_parentheses && pNotBranch ){
117891 if( !pRet ){
117892 rc = SQLITE_ERROR;
117893 }else{
117894 Fts3Expr *pIter = pNotBranch;
117895 while( pIter->pLeft ){
117896 pIter = pIter->pLeft;
117898 pIter->pLeft = pRet;
117899 pRet = pNotBranch;
117903 *pnConsumed = n - nIn;
117905 exprparse_out:
117906 if( rc!=SQLITE_OK ){
117907 sqlite3Fts3ExprFree(pRet);
117908 sqlite3Fts3ExprFree(pNotBranch);
117909 pRet = 0;
117911 *ppExpr = pRet;
117912 return rc;
117916 ** Parameters z and n contain a pointer to and length of a buffer containing
117917 ** an fts3 query expression, respectively. This function attempts to parse the
117918 ** query expression and create a tree of Fts3Expr structures representing the
117919 ** parsed expression. If successful, *ppExpr is set to point to the head
117920 ** of the parsed expression tree and SQLITE_OK is returned. If an error
117921 ** occurs, either SQLITE_NOMEM (out-of-memory error) or SQLITE_ERROR (parse
117922 ** error) is returned and *ppExpr is set to 0.
117924 ** If parameter n is a negative number, then z is assumed to point to a
117925 ** nul-terminated string and the length is determined using strlen().
117927 ** The first parameter, pTokenizer, is passed the fts3 tokenizer module to
117928 ** use to normalize query tokens while parsing the expression. The azCol[]
117929 ** array, which is assumed to contain nCol entries, should contain the names
117930 ** of each column in the target fts3 table, in order from left to right.
117931 ** Column names must be nul-terminated strings.
117933 ** The iDefaultCol parameter should be passed the index of the table column
117934 ** that appears on the left-hand-side of the MATCH operator (the default
117935 ** column to match against for tokens for which a column name is not explicitly
117936 ** specified as part of the query string), or -1 if tokens may by default
117937 ** match any table column.
117939 SQLITE_PRIVATE int sqlite3Fts3ExprParse(
117940 sqlite3_tokenizer *pTokenizer, /* Tokenizer module */
117941 char **azCol, /* Array of column names for fts3 table */
117942 int nCol, /* Number of entries in azCol[] */
117943 int iDefaultCol, /* Default column to query */
117944 const char *z, int n, /* Text of MATCH query */
117945 Fts3Expr **ppExpr /* OUT: Parsed query structure */
117947 int nParsed;
117948 int rc;
117949 ParseContext sParse;
117950 sParse.pTokenizer = pTokenizer;
117951 sParse.azCol = (const char **)azCol;
117952 sParse.nCol = nCol;
117953 sParse.iDefaultCol = iDefaultCol;
117954 sParse.nNest = 0;
117955 if( z==0 ){
117956 *ppExpr = 0;
117957 return SQLITE_OK;
117959 if( n<0 ){
117960 n = (int)strlen(z);
117962 rc = fts3ExprParse(&sParse, z, n, ppExpr, &nParsed);
117964 /* Check for mismatched parenthesis */
117965 if( rc==SQLITE_OK && sParse.nNest ){
117966 rc = SQLITE_ERROR;
117967 sqlite3Fts3ExprFree(*ppExpr);
117968 *ppExpr = 0;
117971 return rc;
117975 ** Free a parsed fts3 query expression allocated by sqlite3Fts3ExprParse().
117977 SQLITE_PRIVATE void sqlite3Fts3ExprFree(Fts3Expr *p){
117978 if( p ){
117979 sqlite3Fts3ExprFree(p->pLeft);
117980 sqlite3Fts3ExprFree(p->pRight);
117981 sqlite3_free(p->aDoclist);
117982 sqlite3_free(p);
117986 /****************************************************************************
117987 *****************************************************************************
117988 ** Everything after this point is just test code.
117991 #ifdef SQLITE_TEST
117995 ** Function to query the hash-table of tokenizers (see README.tokenizers).
117997 static int queryTestTokenizer(
117998 sqlite3 *db,
117999 const char *zName,
118000 const sqlite3_tokenizer_module **pp
118002 int rc;
118003 sqlite3_stmt *pStmt;
118004 const char zSql[] = "SELECT fts3_tokenizer(?)";
118006 *pp = 0;
118007 rc = sqlite3_prepare_v2(db, zSql, -1, &pStmt, 0);
118008 if( rc!=SQLITE_OK ){
118009 return rc;
118012 sqlite3_bind_text(pStmt, 1, zName, -1, SQLITE_STATIC);
118013 if( SQLITE_ROW==sqlite3_step(pStmt) ){
118014 if( sqlite3_column_type(pStmt, 0)==SQLITE_BLOB ){
118015 memcpy((void *)pp, sqlite3_column_blob(pStmt, 0), sizeof(*pp));
118019 return sqlite3_finalize(pStmt);
118023 ** Return a pointer to a buffer containing a text representation of the
118024 ** expression passed as the first argument. The buffer is obtained from
118025 ** sqlite3_malloc(). It is the responsibility of the caller to use
118026 ** sqlite3_free() to release the memory. If an OOM condition is encountered,
118027 ** NULL is returned.
118029 ** If the second argument is not NULL, then its contents are prepended to
118030 ** the returned expression text and then freed using sqlite3_free().
118032 static char *exprToString(Fts3Expr *pExpr, char *zBuf){
118033 switch( pExpr->eType ){
118034 case FTSQUERY_PHRASE: {
118035 Fts3Phrase *pPhrase = pExpr->pPhrase;
118036 int i;
118037 zBuf = sqlite3_mprintf(
118038 "%zPHRASE %d %d", zBuf, pPhrase->iColumn, pPhrase->isNot);
118039 for(i=0; zBuf && i<pPhrase->nToken; i++){
118040 zBuf = sqlite3_mprintf("%z %.*s%s", zBuf,
118041 pPhrase->aToken[i].n, pPhrase->aToken[i].z,
118042 (pPhrase->aToken[i].isPrefix?"+":"")
118045 return zBuf;
118048 case FTSQUERY_NEAR:
118049 zBuf = sqlite3_mprintf("%zNEAR/%d ", zBuf, pExpr->nNear);
118050 break;
118051 case FTSQUERY_NOT:
118052 zBuf = sqlite3_mprintf("%zNOT ", zBuf);
118053 break;
118054 case FTSQUERY_AND:
118055 zBuf = sqlite3_mprintf("%zAND ", zBuf);
118056 break;
118057 case FTSQUERY_OR:
118058 zBuf = sqlite3_mprintf("%zOR ", zBuf);
118059 break;
118062 if( zBuf ) zBuf = sqlite3_mprintf("%z{", zBuf);
118063 if( zBuf ) zBuf = exprToString(pExpr->pLeft, zBuf);
118064 if( zBuf ) zBuf = sqlite3_mprintf("%z} {", zBuf);
118066 if( zBuf ) zBuf = exprToString(pExpr->pRight, zBuf);
118067 if( zBuf ) zBuf = sqlite3_mprintf("%z}", zBuf);
118069 return zBuf;
118073 ** This is the implementation of a scalar SQL function used to test the
118074 ** expression parser. It should be called as follows:
118076 ** fts3_exprtest(<tokenizer>, <expr>, <column 1>, ...);
118078 ** The first argument, <tokenizer>, is the name of the fts3 tokenizer used
118079 ** to parse the query expression (see README.tokenizers). The second argument
118080 ** is the query expression to parse. Each subsequent argument is the name
118081 ** of a column of the fts3 table that the query expression may refer to.
118082 ** For example:
118084 ** SELECT fts3_exprtest('simple', 'Bill col2:Bloggs', 'col1', 'col2');
118086 static void fts3ExprTest(
118087 sqlite3_context *context,
118088 int argc,
118089 sqlite3_value **argv
118091 sqlite3_tokenizer_module const *pModule = 0;
118092 sqlite3_tokenizer *pTokenizer = 0;
118093 int rc;
118094 char **azCol = 0;
118095 const char *zExpr;
118096 int nExpr;
118097 int nCol;
118098 int ii;
118099 Fts3Expr *pExpr;
118100 char *zBuf = 0;
118101 sqlite3 *db = sqlite3_context_db_handle(context);
118103 if( argc<3 ){
118104 sqlite3_result_error(context,
118105 "Usage: fts3_exprtest(tokenizer, expr, col1, ...", -1
118107 return;
118110 rc = queryTestTokenizer(db,
118111 (const char *)sqlite3_value_text(argv[0]), &pModule);
118112 if( rc==SQLITE_NOMEM ){
118113 sqlite3_result_error_nomem(context);
118114 goto exprtest_out;
118115 }else if( !pModule ){
118116 sqlite3_result_error(context, "No such tokenizer module", -1);
118117 goto exprtest_out;
118120 rc = pModule->xCreate(0, 0, &pTokenizer);
118121 assert( rc==SQLITE_NOMEM || rc==SQLITE_OK );
118122 if( rc==SQLITE_NOMEM ){
118123 sqlite3_result_error_nomem(context);
118124 goto exprtest_out;
118126 pTokenizer->pModule = pModule;
118128 zExpr = (const char *)sqlite3_value_text(argv[1]);
118129 nExpr = sqlite3_value_bytes(argv[1]);
118130 nCol = argc-2;
118131 azCol = (char **)sqlite3_malloc(nCol*sizeof(char *));
118132 if( !azCol ){
118133 sqlite3_result_error_nomem(context);
118134 goto exprtest_out;
118136 for(ii=0; ii<nCol; ii++){
118137 azCol[ii] = (char *)sqlite3_value_text(argv[ii+2]);
118140 rc = sqlite3Fts3ExprParse(
118141 pTokenizer, azCol, nCol, nCol, zExpr, nExpr, &pExpr
118143 if( rc!=SQLITE_OK && rc!=SQLITE_NOMEM ){
118144 sqlite3_result_error(context, "Error parsing expression", -1);
118145 }else if( rc==SQLITE_NOMEM || !(zBuf = exprToString(pExpr, 0)) ){
118146 sqlite3_result_error_nomem(context);
118147 }else{
118148 sqlite3_result_text(context, zBuf, -1, SQLITE_TRANSIENT);
118149 sqlite3_free(zBuf);
118152 sqlite3Fts3ExprFree(pExpr);
118154 exprtest_out:
118155 if( pModule && pTokenizer ){
118156 rc = pModule->xDestroy(pTokenizer);
118158 sqlite3_free(azCol);
118162 ** Register the query expression parser test function fts3_exprtest()
118163 ** with database connection db.
118165 SQLITE_PRIVATE int sqlite3Fts3ExprInitTestInterface(sqlite3* db){
118166 return sqlite3_create_function(
118167 db, "fts3_exprtest", -1, SQLITE_UTF8, 0, fts3ExprTest, 0, 0
118171 #endif
118172 #endif /* !defined(SQLITE_CORE) || defined(SQLITE_ENABLE_FTS3) */
118174 /************** End of fts3_expr.c *******************************************/
118175 /************** Begin file fts3_hash.c ***************************************/
118177 ** 2001 September 22
118179 ** The author disclaims copyright to this source code. In place of
118180 ** a legal notice, here is a blessing:
118182 ** May you do good and not evil.
118183 ** May you find forgiveness for yourself and forgive others.
118184 ** May you share freely, never taking more than you give.
118186 *************************************************************************
118187 ** This is the implementation of generic hash-tables used in SQLite.
118188 ** We've modified it slightly to serve as a standalone hash table
118189 ** implementation for the full-text indexing module.
118193 ** The code in this file is only compiled if:
118195 ** * The FTS3 module is being built as an extension
118196 ** (in which case SQLITE_CORE is not defined), or
118198 ** * The FTS3 module is being built into the core of
118199 ** SQLite (in which case SQLITE_ENABLE_FTS3 is defined).
118201 #if !defined(SQLITE_CORE) || defined(SQLITE_ENABLE_FTS3)
118206 ** Malloc and Free functions
118208 static void *fts3HashMalloc(int n){
118209 void *p = sqlite3_malloc(n);
118210 if( p ){
118211 memset(p, 0, n);
118213 return p;
118215 static void fts3HashFree(void *p){
118216 sqlite3_free(p);
118219 /* Turn bulk memory into a hash table object by initializing the
118220 ** fields of the Hash structure.
118222 ** "pNew" is a pointer to the hash table that is to be initialized.
118223 ** keyClass is one of the constants
118224 ** FTS3_HASH_BINARY or FTS3_HASH_STRING. The value of keyClass
118225 ** determines what kind of key the hash table will use. "copyKey" is
118226 ** true if the hash table should make its own private copy of keys and
118227 ** false if it should just use the supplied pointer.
118229 SQLITE_PRIVATE void sqlite3Fts3HashInit(Fts3Hash *pNew, char keyClass, char copyKey){
118230 assert( pNew!=0 );
118231 assert( keyClass>=FTS3_HASH_STRING && keyClass<=FTS3_HASH_BINARY );
118232 pNew->keyClass = keyClass;
118233 pNew->copyKey = copyKey;
118234 pNew->first = 0;
118235 pNew->count = 0;
118236 pNew->htsize = 0;
118237 pNew->ht = 0;
118240 /* Remove all entries from a hash table. Reclaim all memory.
118241 ** Call this routine to delete a hash table or to reset a hash table
118242 ** to the empty state.
118244 SQLITE_PRIVATE void sqlite3Fts3HashClear(Fts3Hash *pH){
118245 Fts3HashElem *elem; /* For looping over all elements of the table */
118247 assert( pH!=0 );
118248 elem = pH->first;
118249 pH->first = 0;
118250 fts3HashFree(pH->ht);
118251 pH->ht = 0;
118252 pH->htsize = 0;
118253 while( elem ){
118254 Fts3HashElem *next_elem = elem->next;
118255 if( pH->copyKey && elem->pKey ){
118256 fts3HashFree(elem->pKey);
118258 fts3HashFree(elem);
118259 elem = next_elem;
118261 pH->count = 0;
118265 ** Hash and comparison functions when the mode is FTS3_HASH_STRING
118267 static int fts3StrHash(const void *pKey, int nKey){
118268 const char *z = (const char *)pKey;
118269 int h = 0;
118270 if( nKey<=0 ) nKey = (int) strlen(z);
118271 while( nKey > 0 ){
118272 h = (h<<3) ^ h ^ *z++;
118273 nKey--;
118275 return h & 0x7fffffff;
118277 static int fts3StrCompare(const void *pKey1, int n1, const void *pKey2, int n2){
118278 if( n1!=n2 ) return 1;
118279 return strncmp((const char*)pKey1,(const char*)pKey2,n1);
118283 ** Hash and comparison functions when the mode is FTS3_HASH_BINARY
118285 static int fts3BinHash(const void *pKey, int nKey){
118286 int h = 0;
118287 const char *z = (const char *)pKey;
118288 while( nKey-- > 0 ){
118289 h = (h<<3) ^ h ^ *(z++);
118291 return h & 0x7fffffff;
118293 static int fts3BinCompare(const void *pKey1, int n1, const void *pKey2, int n2){
118294 if( n1!=n2 ) return 1;
118295 return memcmp(pKey1,pKey2,n1);
118299 ** Return a pointer to the appropriate hash function given the key class.
118301 ** The C syntax in this function definition may be unfamilar to some
118302 ** programmers, so we provide the following additional explanation:
118304 ** The name of the function is "ftsHashFunction". The function takes a
118305 ** single parameter "keyClass". The return value of ftsHashFunction()
118306 ** is a pointer to another function. Specifically, the return value
118307 ** of ftsHashFunction() is a pointer to a function that takes two parameters
118308 ** with types "const void*" and "int" and returns an "int".
118310 static int (*ftsHashFunction(int keyClass))(const void*,int){
118311 if( keyClass==FTS3_HASH_STRING ){
118312 return &fts3StrHash;
118313 }else{
118314 assert( keyClass==FTS3_HASH_BINARY );
118315 return &fts3BinHash;
118320 ** Return a pointer to the appropriate hash function given the key class.
118322 ** For help in interpreted the obscure C code in the function definition,
118323 ** see the header comment on the previous function.
118325 static int (*ftsCompareFunction(int keyClass))(const void*,int,const void*,int){
118326 if( keyClass==FTS3_HASH_STRING ){
118327 return &fts3StrCompare;
118328 }else{
118329 assert( keyClass==FTS3_HASH_BINARY );
118330 return &fts3BinCompare;
118334 /* Link an element into the hash table
118336 static void fts3HashInsertElement(
118337 Fts3Hash *pH, /* The complete hash table */
118338 struct _fts3ht *pEntry, /* The entry into which pNew is inserted */
118339 Fts3HashElem *pNew /* The element to be inserted */
118341 Fts3HashElem *pHead; /* First element already in pEntry */
118342 pHead = pEntry->chain;
118343 if( pHead ){
118344 pNew->next = pHead;
118345 pNew->prev = pHead->prev;
118346 if( pHead->prev ){ pHead->prev->next = pNew; }
118347 else { pH->first = pNew; }
118348 pHead->prev = pNew;
118349 }else{
118350 pNew->next = pH->first;
118351 if( pH->first ){ pH->first->prev = pNew; }
118352 pNew->prev = 0;
118353 pH->first = pNew;
118355 pEntry->count++;
118356 pEntry->chain = pNew;
118360 /* Resize the hash table so that it cantains "new_size" buckets.
118361 ** "new_size" must be a power of 2. The hash table might fail
118362 ** to resize if sqliteMalloc() fails.
118364 ** Return non-zero if a memory allocation error occurs.
118366 static int fts3Rehash(Fts3Hash *pH, int new_size){
118367 struct _fts3ht *new_ht; /* The new hash table */
118368 Fts3HashElem *elem, *next_elem; /* For looping over existing elements */
118369 int (*xHash)(const void*,int); /* The hash function */
118371 assert( (new_size & (new_size-1))==0 );
118372 new_ht = (struct _fts3ht *)fts3HashMalloc( new_size*sizeof(struct _fts3ht) );
118373 if( new_ht==0 ) return 1;
118374 fts3HashFree(pH->ht);
118375 pH->ht = new_ht;
118376 pH->htsize = new_size;
118377 xHash = ftsHashFunction(pH->keyClass);
118378 for(elem=pH->first, pH->first=0; elem; elem = next_elem){
118379 int h = (*xHash)(elem->pKey, elem->nKey) & (new_size-1);
118380 next_elem = elem->next;
118381 fts3HashInsertElement(pH, &new_ht[h], elem);
118383 return 0;
118386 /* This function (for internal use only) locates an element in an
118387 ** hash table that matches the given key. The hash for this key has
118388 ** already been computed and is passed as the 4th parameter.
118390 static Fts3HashElem *fts3FindElementByHash(
118391 const Fts3Hash *pH, /* The pH to be searched */
118392 const void *pKey, /* The key we are searching for */
118393 int nKey,
118394 int h /* The hash for this key. */
118396 Fts3HashElem *elem; /* Used to loop thru the element list */
118397 int count; /* Number of elements left to test */
118398 int (*xCompare)(const void*,int,const void*,int); /* comparison function */
118400 if( pH->ht ){
118401 struct _fts3ht *pEntry = &pH->ht[h];
118402 elem = pEntry->chain;
118403 count = pEntry->count;
118404 xCompare = ftsCompareFunction(pH->keyClass);
118405 while( count-- && elem ){
118406 if( (*xCompare)(elem->pKey,elem->nKey,pKey,nKey)==0 ){
118407 return elem;
118409 elem = elem->next;
118412 return 0;
118415 /* Remove a single entry from the hash table given a pointer to that
118416 ** element and a hash on the element's key.
118418 static void fts3RemoveElementByHash(
118419 Fts3Hash *pH, /* The pH containing "elem" */
118420 Fts3HashElem* elem, /* The element to be removed from the pH */
118421 int h /* Hash value for the element */
118423 struct _fts3ht *pEntry;
118424 if( elem->prev ){
118425 elem->prev->next = elem->next;
118426 }else{
118427 pH->first = elem->next;
118429 if( elem->next ){
118430 elem->next->prev = elem->prev;
118432 pEntry = &pH->ht[h];
118433 if( pEntry->chain==elem ){
118434 pEntry->chain = elem->next;
118436 pEntry->count--;
118437 if( pEntry->count<=0 ){
118438 pEntry->chain = 0;
118440 if( pH->copyKey && elem->pKey ){
118441 fts3HashFree(elem->pKey);
118443 fts3HashFree( elem );
118444 pH->count--;
118445 if( pH->count<=0 ){
118446 assert( pH->first==0 );
118447 assert( pH->count==0 );
118448 fts3HashClear(pH);
118452 SQLITE_PRIVATE Fts3HashElem *sqlite3Fts3HashFindElem(
118453 const Fts3Hash *pH,
118454 const void *pKey,
118455 int nKey
118457 int h; /* A hash on key */
118458 int (*xHash)(const void*,int); /* The hash function */
118460 if( pH==0 || pH->ht==0 ) return 0;
118461 xHash = ftsHashFunction(pH->keyClass);
118462 assert( xHash!=0 );
118463 h = (*xHash)(pKey,nKey);
118464 assert( (pH->htsize & (pH->htsize-1))==0 );
118465 return fts3FindElementByHash(pH,pKey,nKey, h & (pH->htsize-1));
118469 ** Attempt to locate an element of the hash table pH with a key
118470 ** that matches pKey,nKey. Return the data for this element if it is
118471 ** found, or NULL if there is no match.
118473 SQLITE_PRIVATE void *sqlite3Fts3HashFind(const Fts3Hash *pH, const void *pKey, int nKey){
118474 Fts3HashElem *pElem; /* The element that matches key (if any) */
118476 pElem = sqlite3Fts3HashFindElem(pH, pKey, nKey);
118477 return pElem ? pElem->data : 0;
118480 /* Insert an element into the hash table pH. The key is pKey,nKey
118481 ** and the data is "data".
118483 ** If no element exists with a matching key, then a new
118484 ** element is created. A copy of the key is made if the copyKey
118485 ** flag is set. NULL is returned.
118487 ** If another element already exists with the same key, then the
118488 ** new data replaces the old data and the old data is returned.
118489 ** The key is not copied in this instance. If a malloc fails, then
118490 ** the new data is returned and the hash table is unchanged.
118492 ** If the "data" parameter to this function is NULL, then the
118493 ** element corresponding to "key" is removed from the hash table.
118495 SQLITE_PRIVATE void *sqlite3Fts3HashInsert(
118496 Fts3Hash *pH, /* The hash table to insert into */
118497 const void *pKey, /* The key */
118498 int nKey, /* Number of bytes in the key */
118499 void *data /* The data */
118501 int hraw; /* Raw hash value of the key */
118502 int h; /* the hash of the key modulo hash table size */
118503 Fts3HashElem *elem; /* Used to loop thru the element list */
118504 Fts3HashElem *new_elem; /* New element added to the pH */
118505 int (*xHash)(const void*,int); /* The hash function */
118507 assert( pH!=0 );
118508 xHash = ftsHashFunction(pH->keyClass);
118509 assert( xHash!=0 );
118510 hraw = (*xHash)(pKey, nKey);
118511 assert( (pH->htsize & (pH->htsize-1))==0 );
118512 h = hraw & (pH->htsize-1);
118513 elem = fts3FindElementByHash(pH,pKey,nKey,h);
118514 if( elem ){
118515 void *old_data = elem->data;
118516 if( data==0 ){
118517 fts3RemoveElementByHash(pH,elem,h);
118518 }else{
118519 elem->data = data;
118521 return old_data;
118523 if( data==0 ) return 0;
118524 if( (pH->htsize==0 && fts3Rehash(pH,8))
118525 || (pH->count>=pH->htsize && fts3Rehash(pH, pH->htsize*2))
118527 pH->count = 0;
118528 return data;
118530 assert( pH->htsize>0 );
118531 new_elem = (Fts3HashElem*)fts3HashMalloc( sizeof(Fts3HashElem) );
118532 if( new_elem==0 ) return data;
118533 if( pH->copyKey && pKey!=0 ){
118534 new_elem->pKey = fts3HashMalloc( nKey );
118535 if( new_elem->pKey==0 ){
118536 fts3HashFree(new_elem);
118537 return data;
118539 memcpy((void*)new_elem->pKey, pKey, nKey);
118540 }else{
118541 new_elem->pKey = (void*)pKey;
118543 new_elem->nKey = nKey;
118544 pH->count++;
118545 assert( pH->htsize>0 );
118546 assert( (pH->htsize & (pH->htsize-1))==0 );
118547 h = hraw & (pH->htsize-1);
118548 fts3HashInsertElement(pH, &pH->ht[h], new_elem);
118549 new_elem->data = data;
118550 return 0;
118553 #endif /* !defined(SQLITE_CORE) || defined(SQLITE_ENABLE_FTS3) */
118555 /************** End of fts3_hash.c *******************************************/
118556 /************** Begin file fts3_porter.c *************************************/
118558 ** 2006 September 30
118560 ** The author disclaims copyright to this source code. In place of
118561 ** a legal notice, here is a blessing:
118563 ** May you do good and not evil.
118564 ** May you find forgiveness for yourself and forgive others.
118565 ** May you share freely, never taking more than you give.
118567 *************************************************************************
118568 ** Implementation of the full-text-search tokenizer that implements
118569 ** a Porter stemmer.
118573 ** The code in this file is only compiled if:
118575 ** * The FTS3 module is being built as an extension
118576 ** (in which case SQLITE_CORE is not defined), or
118578 ** * The FTS3 module is being built into the core of
118579 ** SQLite (in which case SQLITE_ENABLE_FTS3 is defined).
118581 #if !defined(SQLITE_CORE) || defined(SQLITE_ENABLE_FTS3)
118587 ** Class derived from sqlite3_tokenizer
118589 typedef struct porter_tokenizer {
118590 sqlite3_tokenizer base; /* Base class */
118591 } porter_tokenizer;
118594 ** Class derived from sqlit3_tokenizer_cursor
118596 typedef struct porter_tokenizer_cursor {
118597 sqlite3_tokenizer_cursor base;
118598 const char *zInput; /* input we are tokenizing */
118599 int nInput; /* size of the input */
118600 int iOffset; /* current position in zInput */
118601 int iToken; /* index of next token to be returned */
118602 char *zToken; /* storage for current token */
118603 int nAllocated; /* space allocated to zToken buffer */
118604 } porter_tokenizer_cursor;
118608 ** Create a new tokenizer instance.
118610 static int porterCreate(
118611 int argc, const char * const *argv,
118612 sqlite3_tokenizer **ppTokenizer
118614 porter_tokenizer *t;
118616 UNUSED_PARAMETER(argc);
118617 UNUSED_PARAMETER(argv);
118619 t = (porter_tokenizer *) sqlite3_malloc(sizeof(*t));
118620 if( t==NULL ) return SQLITE_NOMEM;
118621 memset(t, 0, sizeof(*t));
118622 *ppTokenizer = &t->base;
118623 return SQLITE_OK;
118627 ** Destroy a tokenizer
118629 static int porterDestroy(sqlite3_tokenizer *pTokenizer){
118630 sqlite3_free(pTokenizer);
118631 return SQLITE_OK;
118635 ** Prepare to begin tokenizing a particular string. The input
118636 ** string to be tokenized is zInput[0..nInput-1]. A cursor
118637 ** used to incrementally tokenize this string is returned in
118638 ** *ppCursor.
118640 static int porterOpen(
118641 sqlite3_tokenizer *pTokenizer, /* The tokenizer */
118642 const char *zInput, int nInput, /* String to be tokenized */
118643 sqlite3_tokenizer_cursor **ppCursor /* OUT: Tokenization cursor */
118645 porter_tokenizer_cursor *c;
118647 UNUSED_PARAMETER(pTokenizer);
118649 c = (porter_tokenizer_cursor *) sqlite3_malloc(sizeof(*c));
118650 if( c==NULL ) return SQLITE_NOMEM;
118652 c->zInput = zInput;
118653 if( zInput==0 ){
118654 c->nInput = 0;
118655 }else if( nInput<0 ){
118656 c->nInput = (int)strlen(zInput);
118657 }else{
118658 c->nInput = nInput;
118660 c->iOffset = 0; /* start tokenizing at the beginning */
118661 c->iToken = 0;
118662 c->zToken = NULL; /* no space allocated, yet. */
118663 c->nAllocated = 0;
118665 *ppCursor = &c->base;
118666 return SQLITE_OK;
118670 ** Close a tokenization cursor previously opened by a call to
118671 ** porterOpen() above.
118673 static int porterClose(sqlite3_tokenizer_cursor *pCursor){
118674 porter_tokenizer_cursor *c = (porter_tokenizer_cursor *) pCursor;
118675 sqlite3_free(c->zToken);
118676 sqlite3_free(c);
118677 return SQLITE_OK;
118680 ** Vowel or consonant
118682 static const char vOrCType[] = {
118683 0, 1, 1, 1, 0, 1, 1, 1, 0, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 0,
118684 1, 1, 1, 2, 1
118688 ** isConsonant() and isVowel() determine if their first character in
118689 ** the string they point to is a consonant or a vowel, according
118690 ** to Porter ruls.
118692 ** A consonate is any letter other than 'a', 'e', 'i', 'o', or 'u'.
118693 ** 'Y' is a consonant unless it follows another consonant,
118694 ** in which case it is a vowel.
118696 ** In these routine, the letters are in reverse order. So the 'y' rule
118697 ** is that 'y' is a consonant unless it is followed by another
118698 ** consonent.
118700 static int isVowel(const char*);
118701 static int isConsonant(const char *z){
118702 int j;
118703 char x = *z;
118704 if( x==0 ) return 0;
118705 assert( x>='a' && x<='z' );
118706 j = vOrCType[x-'a'];
118707 if( j<2 ) return j;
118708 return z[1]==0 || isVowel(z + 1);
118710 static int isVowel(const char *z){
118711 int j;
118712 char x = *z;
118713 if( x==0 ) return 0;
118714 assert( x>='a' && x<='z' );
118715 j = vOrCType[x-'a'];
118716 if( j<2 ) return 1-j;
118717 return isConsonant(z + 1);
118721 ** Let any sequence of one or more vowels be represented by V and let
118722 ** C be sequence of one or more consonants. Then every word can be
118723 ** represented as:
118725 ** [C] (VC){m} [V]
118727 ** In prose: A word is an optional consonant followed by zero or
118728 ** vowel-consonant pairs followed by an optional vowel. "m" is the
118729 ** number of vowel consonant pairs. This routine computes the value
118730 ** of m for the first i bytes of a word.
118732 ** Return true if the m-value for z is 1 or more. In other words,
118733 ** return true if z contains at least one vowel that is followed
118734 ** by a consonant.
118736 ** In this routine z[] is in reverse order. So we are really looking
118737 ** for an instance of of a consonant followed by a vowel.
118739 static int m_gt_0(const char *z){
118740 while( isVowel(z) ){ z++; }
118741 if( *z==0 ) return 0;
118742 while( isConsonant(z) ){ z++; }
118743 return *z!=0;
118746 /* Like mgt0 above except we are looking for a value of m which is
118747 ** exactly 1
118749 static int m_eq_1(const char *z){
118750 while( isVowel(z) ){ z++; }
118751 if( *z==0 ) return 0;
118752 while( isConsonant(z) ){ z++; }
118753 if( *z==0 ) return 0;
118754 while( isVowel(z) ){ z++; }
118755 if( *z==0 ) return 1;
118756 while( isConsonant(z) ){ z++; }
118757 return *z==0;
118760 /* Like mgt0 above except we are looking for a value of m>1 instead
118761 ** or m>0
118763 static int m_gt_1(const char *z){
118764 while( isVowel(z) ){ z++; }
118765 if( *z==0 ) return 0;
118766 while( isConsonant(z) ){ z++; }
118767 if( *z==0 ) return 0;
118768 while( isVowel(z) ){ z++; }
118769 if( *z==0 ) return 0;
118770 while( isConsonant(z) ){ z++; }
118771 return *z!=0;
118775 ** Return TRUE if there is a vowel anywhere within z[0..n-1]
118777 static int hasVowel(const char *z){
118778 while( isConsonant(z) ){ z++; }
118779 return *z!=0;
118783 ** Return TRUE if the word ends in a double consonant.
118785 ** The text is reversed here. So we are really looking at
118786 ** the first two characters of z[].
118788 static int doubleConsonant(const char *z){
118789 return isConsonant(z) && z[0]==z[1];
118793 ** Return TRUE if the word ends with three letters which
118794 ** are consonant-vowel-consonent and where the final consonant
118795 ** is not 'w', 'x', or 'y'.
118797 ** The word is reversed here. So we are really checking the
118798 ** first three letters and the first one cannot be in [wxy].
118800 static int star_oh(const char *z){
118801 return
118802 isConsonant(z) &&
118803 z[0]!='w' && z[0]!='x' && z[0]!='y' &&
118804 isVowel(z+1) &&
118805 isConsonant(z+2);
118809 ** If the word ends with zFrom and xCond() is true for the stem
118810 ** of the word that preceeds the zFrom ending, then change the
118811 ** ending to zTo.
118813 ** The input word *pz and zFrom are both in reverse order. zTo
118814 ** is in normal order.
118816 ** Return TRUE if zFrom matches. Return FALSE if zFrom does not
118817 ** match. Not that TRUE is returned even if xCond() fails and
118818 ** no substitution occurs.
118820 static int stem(
118821 char **pz, /* The word being stemmed (Reversed) */
118822 const char *zFrom, /* If the ending matches this... (Reversed) */
118823 const char *zTo, /* ... change the ending to this (not reversed) */
118824 int (*xCond)(const char*) /* Condition that must be true */
118826 char *z = *pz;
118827 while( *zFrom && *zFrom==*z ){ z++; zFrom++; }
118828 if( *zFrom!=0 ) return 0;
118829 if( xCond && !xCond(z) ) return 1;
118830 while( *zTo ){
118831 *(--z) = *(zTo++);
118833 *pz = z;
118834 return 1;
118838 ** This is the fallback stemmer used when the porter stemmer is
118839 ** inappropriate. The input word is copied into the output with
118840 ** US-ASCII case folding. If the input word is too long (more
118841 ** than 20 bytes if it contains no digits or more than 6 bytes if
118842 ** it contains digits) then word is truncated to 20 or 6 bytes
118843 ** by taking 10 or 3 bytes from the beginning and end.
118845 static void copy_stemmer(const char *zIn, int nIn, char *zOut, int *pnOut){
118846 int i, mx, j;
118847 int hasDigit = 0;
118848 for(i=0; i<nIn; i++){
118849 char c = zIn[i];
118850 if( c>='A' && c<='Z' ){
118851 zOut[i] = c - 'A' + 'a';
118852 }else{
118853 if( c>='0' && c<='9' ) hasDigit = 1;
118854 zOut[i] = c;
118857 mx = hasDigit ? 3 : 10;
118858 if( nIn>mx*2 ){
118859 for(j=mx, i=nIn-mx; i<nIn; i++, j++){
118860 zOut[j] = zOut[i];
118862 i = j;
118864 zOut[i] = 0;
118865 *pnOut = i;
118870 ** Stem the input word zIn[0..nIn-1]. Store the output in zOut.
118871 ** zOut is at least big enough to hold nIn bytes. Write the actual
118872 ** size of the output word (exclusive of the '\0' terminator) into *pnOut.
118874 ** Any upper-case characters in the US-ASCII character set ([A-Z])
118875 ** are converted to lower case. Upper-case UTF characters are
118876 ** unchanged.
118878 ** Words that are longer than about 20 bytes are stemmed by retaining
118879 ** a few bytes from the beginning and the end of the word. If the
118880 ** word contains digits, 3 bytes are taken from the beginning and
118881 ** 3 bytes from the end. For long words without digits, 10 bytes
118882 ** are taken from each end. US-ASCII case folding still applies.
118884 ** If the input word contains not digits but does characters not
118885 ** in [a-zA-Z] then no stemming is attempted and this routine just
118886 ** copies the input into the input into the output with US-ASCII
118887 ** case folding.
118889 ** Stemming never increases the length of the word. So there is
118890 ** no chance of overflowing the zOut buffer.
118892 static void porter_stemmer(const char *zIn, int nIn, char *zOut, int *pnOut){
118893 int i, j;
118894 char zReverse[28];
118895 char *z, *z2;
118896 if( nIn<3 || nIn>=(int)sizeof(zReverse)-7 ){
118897 /* The word is too big or too small for the porter stemmer.
118898 ** Fallback to the copy stemmer */
118899 copy_stemmer(zIn, nIn, zOut, pnOut);
118900 return;
118902 for(i=0, j=sizeof(zReverse)-6; i<nIn; i++, j--){
118903 char c = zIn[i];
118904 if( c>='A' && c<='Z' ){
118905 zReverse[j] = c + 'a' - 'A';
118906 }else if( c>='a' && c<='z' ){
118907 zReverse[j] = c;
118908 }else{
118909 /* The use of a character not in [a-zA-Z] means that we fallback
118910 ** to the copy stemmer */
118911 copy_stemmer(zIn, nIn, zOut, pnOut);
118912 return;
118915 memset(&zReverse[sizeof(zReverse)-5], 0, 5);
118916 z = &zReverse[j+1];
118919 /* Step 1a */
118920 if( z[0]=='s' ){
118922 !stem(&z, "sess", "ss", 0) &&
118923 !stem(&z, "sei", "i", 0) &&
118924 !stem(&z, "ss", "ss", 0)
118930 /* Step 1b */
118931 z2 = z;
118932 if( stem(&z, "dee", "ee", m_gt_0) ){
118933 /* Do nothing. The work was all in the test */
118934 }else if(
118935 (stem(&z, "gni", "", hasVowel) || stem(&z, "de", "", hasVowel))
118936 && z!=z2
118938 if( stem(&z, "ta", "ate", 0) ||
118939 stem(&z, "lb", "ble", 0) ||
118940 stem(&z, "zi", "ize", 0) ){
118941 /* Do nothing. The work was all in the test */
118942 }else if( doubleConsonant(z) && (*z!='l' && *z!='s' && *z!='z') ){
118944 }else if( m_eq_1(z) && star_oh(z) ){
118945 *(--z) = 'e';
118949 /* Step 1c */
118950 if( z[0]=='y' && hasVowel(z+1) ){
118951 z[0] = 'i';
118954 /* Step 2 */
118955 switch( z[1] ){
118956 case 'a':
118957 stem(&z, "lanoita", "ate", m_gt_0) ||
118958 stem(&z, "lanoit", "tion", m_gt_0);
118959 break;
118960 case 'c':
118961 stem(&z, "icne", "ence", m_gt_0) ||
118962 stem(&z, "icna", "ance", m_gt_0);
118963 break;
118964 case 'e':
118965 stem(&z, "rezi", "ize", m_gt_0);
118966 break;
118967 case 'g':
118968 stem(&z, "igol", "log", m_gt_0);
118969 break;
118970 case 'l':
118971 stem(&z, "ilb", "ble", m_gt_0) ||
118972 stem(&z, "illa", "al", m_gt_0) ||
118973 stem(&z, "iltne", "ent", m_gt_0) ||
118974 stem(&z, "ile", "e", m_gt_0) ||
118975 stem(&z, "ilsuo", "ous", m_gt_0);
118976 break;
118977 case 'o':
118978 stem(&z, "noitazi", "ize", m_gt_0) ||
118979 stem(&z, "noita", "ate", m_gt_0) ||
118980 stem(&z, "rota", "ate", m_gt_0);
118981 break;
118982 case 's':
118983 stem(&z, "msila", "al", m_gt_0) ||
118984 stem(&z, "ssenevi", "ive", m_gt_0) ||
118985 stem(&z, "ssenluf", "ful", m_gt_0) ||
118986 stem(&z, "ssensuo", "ous", m_gt_0);
118987 break;
118988 case 't':
118989 stem(&z, "itila", "al", m_gt_0) ||
118990 stem(&z, "itivi", "ive", m_gt_0) ||
118991 stem(&z, "itilib", "ble", m_gt_0);
118992 break;
118995 /* Step 3 */
118996 switch( z[0] ){
118997 case 'e':
118998 stem(&z, "etaci", "ic", m_gt_0) ||
118999 stem(&z, "evita", "", m_gt_0) ||
119000 stem(&z, "ezila", "al", m_gt_0);
119001 break;
119002 case 'i':
119003 stem(&z, "itici", "ic", m_gt_0);
119004 break;
119005 case 'l':
119006 stem(&z, "laci", "ic", m_gt_0) ||
119007 stem(&z, "luf", "", m_gt_0);
119008 break;
119009 case 's':
119010 stem(&z, "ssen", "", m_gt_0);
119011 break;
119014 /* Step 4 */
119015 switch( z[1] ){
119016 case 'a':
119017 if( z[0]=='l' && m_gt_1(z+2) ){
119018 z += 2;
119020 break;
119021 case 'c':
119022 if( z[0]=='e' && z[2]=='n' && (z[3]=='a' || z[3]=='e') && m_gt_1(z+4) ){
119023 z += 4;
119025 break;
119026 case 'e':
119027 if( z[0]=='r' && m_gt_1(z+2) ){
119028 z += 2;
119030 break;
119031 case 'i':
119032 if( z[0]=='c' && m_gt_1(z+2) ){
119033 z += 2;
119035 break;
119036 case 'l':
119037 if( z[0]=='e' && z[2]=='b' && (z[3]=='a' || z[3]=='i') && m_gt_1(z+4) ){
119038 z += 4;
119040 break;
119041 case 'n':
119042 if( z[0]=='t' ){
119043 if( z[2]=='a' ){
119044 if( m_gt_1(z+3) ){
119045 z += 3;
119047 }else if( z[2]=='e' ){
119048 stem(&z, "tneme", "", m_gt_1) ||
119049 stem(&z, "tnem", "", m_gt_1) ||
119050 stem(&z, "tne", "", m_gt_1);
119053 break;
119054 case 'o':
119055 if( z[0]=='u' ){
119056 if( m_gt_1(z+2) ){
119057 z += 2;
119059 }else if( z[3]=='s' || z[3]=='t' ){
119060 stem(&z, "noi", "", m_gt_1);
119062 break;
119063 case 's':
119064 if( z[0]=='m' && z[2]=='i' && m_gt_1(z+3) ){
119065 z += 3;
119067 break;
119068 case 't':
119069 stem(&z, "eta", "", m_gt_1) ||
119070 stem(&z, "iti", "", m_gt_1);
119071 break;
119072 case 'u':
119073 if( z[0]=='s' && z[2]=='o' && m_gt_1(z+3) ){
119074 z += 3;
119076 break;
119077 case 'v':
119078 case 'z':
119079 if( z[0]=='e' && z[2]=='i' && m_gt_1(z+3) ){
119080 z += 3;
119082 break;
119085 /* Step 5a */
119086 if( z[0]=='e' ){
119087 if( m_gt_1(z+1) ){
119089 }else if( m_eq_1(z+1) && !star_oh(z+1) ){
119094 /* Step 5b */
119095 if( m_gt_1(z) && z[0]=='l' && z[1]=='l' ){
119099 /* z[] is now the stemmed word in reverse order. Flip it back
119100 ** around into forward order and return.
119102 *pnOut = i = (int)strlen(z);
119103 zOut[i] = 0;
119104 while( *z ){
119105 zOut[--i] = *(z++);
119110 ** Characters that can be part of a token. We assume any character
119111 ** whose value is greater than 0x80 (any UTF character) can be
119112 ** part of a token. In other words, delimiters all must have
119113 ** values of 0x7f or lower.
119115 static const char porterIdChar[] = {
119116 /* x0 x1 x2 x3 x4 x5 x6 x7 x8 x9 xA xB xC xD xE xF */
119117 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, /* 3x */
119118 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, /* 4x */
119119 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 1, /* 5x */
119120 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, /* 6x */
119121 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, /* 7x */
119123 #define isDelim(C) (((ch=C)&0x80)==0 && (ch<0x30 || !porterIdChar[ch-0x30]))
119126 ** Extract the next token from a tokenization cursor. The cursor must
119127 ** have been opened by a prior call to porterOpen().
119129 static int porterNext(
119130 sqlite3_tokenizer_cursor *pCursor, /* Cursor returned by porterOpen */
119131 const char **pzToken, /* OUT: *pzToken is the token text */
119132 int *pnBytes, /* OUT: Number of bytes in token */
119133 int *piStartOffset, /* OUT: Starting offset of token */
119134 int *piEndOffset, /* OUT: Ending offset of token */
119135 int *piPosition /* OUT: Position integer of token */
119137 porter_tokenizer_cursor *c = (porter_tokenizer_cursor *) pCursor;
119138 const char *z = c->zInput;
119140 while( c->iOffset<c->nInput ){
119141 int iStartOffset, ch;
119143 /* Scan past delimiter characters */
119144 while( c->iOffset<c->nInput && isDelim(z[c->iOffset]) ){
119145 c->iOffset++;
119148 /* Count non-delimiter characters. */
119149 iStartOffset = c->iOffset;
119150 while( c->iOffset<c->nInput && !isDelim(z[c->iOffset]) ){
119151 c->iOffset++;
119154 if( c->iOffset>iStartOffset ){
119155 int n = c->iOffset-iStartOffset;
119156 if( n>c->nAllocated ){
119157 char *pNew;
119158 c->nAllocated = n+20;
119159 pNew = sqlite3_realloc(c->zToken, c->nAllocated);
119160 if( !pNew ) return SQLITE_NOMEM;
119161 c->zToken = pNew;
119163 porter_stemmer(&z[iStartOffset], n, c->zToken, pnBytes);
119164 *pzToken = c->zToken;
119165 *piStartOffset = iStartOffset;
119166 *piEndOffset = c->iOffset;
119167 *piPosition = c->iToken++;
119168 return SQLITE_OK;
119171 return SQLITE_DONE;
119175 ** The set of routines that implement the porter-stemmer tokenizer
119177 static const sqlite3_tokenizer_module porterTokenizerModule = {
119179 porterCreate,
119180 porterDestroy,
119181 porterOpen,
119182 porterClose,
119183 porterNext,
119187 ** Allocate a new porter tokenizer. Return a pointer to the new
119188 ** tokenizer in *ppModule
119190 SQLITE_PRIVATE void sqlite3Fts3PorterTokenizerModule(
119191 sqlite3_tokenizer_module const**ppModule
119193 *ppModule = &porterTokenizerModule;
119196 #endif /* !defined(SQLITE_CORE) || defined(SQLITE_ENABLE_FTS3) */
119198 /************** End of fts3_porter.c *****************************************/
119199 /************** Begin file fts3_tokenizer.c **********************************/
119201 ** 2007 June 22
119203 ** The author disclaims copyright to this source code. In place of
119204 ** a legal notice, here is a blessing:
119206 ** May you do good and not evil.
119207 ** May you find forgiveness for yourself and forgive others.
119208 ** May you share freely, never taking more than you give.
119210 ******************************************************************************
119212 ** This is part of an SQLite module implementing full-text search.
119213 ** This particular file implements the generic tokenizer interface.
119217 ** The code in this file is only compiled if:
119219 ** * The FTS3 module is being built as an extension
119220 ** (in which case SQLITE_CORE is not defined), or
119222 ** * The FTS3 module is being built into the core of
119223 ** SQLite (in which case SQLITE_ENABLE_FTS3 is defined).
119225 #if !defined(SQLITE_CORE) || defined(SQLITE_ENABLE_FTS3)
119227 #ifndef SQLITE_CORE
119228 SQLITE_EXTENSION_INIT1
119229 #endif
119233 ** Implementation of the SQL scalar function for accessing the underlying
119234 ** hash table. This function may be called as follows:
119236 ** SELECT <function-name>(<key-name>);
119237 ** SELECT <function-name>(<key-name>, <pointer>);
119239 ** where <function-name> is the name passed as the second argument
119240 ** to the sqlite3Fts3InitHashTable() function (e.g. 'fts3_tokenizer').
119242 ** If the <pointer> argument is specified, it must be a blob value
119243 ** containing a pointer to be stored as the hash data corresponding
119244 ** to the string <key-name>. If <pointer> is not specified, then
119245 ** the string <key-name> must already exist in the has table. Otherwise,
119246 ** an error is returned.
119248 ** Whether or not the <pointer> argument is specified, the value returned
119249 ** is a blob containing the pointer stored as the hash data corresponding
119250 ** to string <key-name> (after the hash-table is updated, if applicable).
119252 static void scalarFunc(
119253 sqlite3_context *context,
119254 int argc,
119255 sqlite3_value **argv
119257 Fts3Hash *pHash;
119258 void *pPtr = 0;
119259 const unsigned char *zName;
119260 int nName;
119262 assert( argc==1 || argc==2 );
119264 pHash = (Fts3Hash *)sqlite3_user_data(context);
119266 zName = sqlite3_value_text(argv[0]);
119267 nName = sqlite3_value_bytes(argv[0])+1;
119269 if( argc==2 ){
119270 void *pOld;
119271 int n = sqlite3_value_bytes(argv[1]);
119272 if( n!=sizeof(pPtr) ){
119273 sqlite3_result_error(context, "argument type mismatch", -1);
119274 return;
119276 pPtr = *(void **)sqlite3_value_blob(argv[1]);
119277 pOld = sqlite3Fts3HashInsert(pHash, (void *)zName, nName, pPtr);
119278 if( pOld==pPtr ){
119279 sqlite3_result_error(context, "out of memory", -1);
119280 return;
119282 }else{
119283 pPtr = sqlite3Fts3HashFind(pHash, zName, nName);
119284 if( !pPtr ){
119285 char *zErr = sqlite3_mprintf("unknown tokenizer: %s", zName);
119286 sqlite3_result_error(context, zErr, -1);
119287 sqlite3_free(zErr);
119288 return;
119292 sqlite3_result_blob(context, (void *)&pPtr, sizeof(pPtr), SQLITE_TRANSIENT);
119295 SQLITE_PRIVATE int sqlite3Fts3IsIdChar(char c){
119296 static const char isFtsIdChar[] = {
119297 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, /* 0x */
119298 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, /* 1x */
119299 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, /* 2x */
119300 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, /* 3x */
119301 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, /* 4x */
119302 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 1, /* 5x */
119303 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, /* 6x */
119304 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, /* 7x */
119306 return (c&0x80 || isFtsIdChar[(int)(c)]);
119309 SQLITE_PRIVATE const char *sqlite3Fts3NextToken(const char *zStr, int *pn){
119310 const char *z1;
119311 const char *z2 = 0;
119313 /* Find the start of the next token. */
119314 z1 = zStr;
119315 while( z2==0 ){
119316 char c = *z1;
119317 switch( c ){
119318 case '\0': return 0; /* No more tokens here */
119319 case '\'':
119320 case '"':
119321 case '`': {
119322 z2 = z1;
119323 while( *++z2 && (*z2!=c || *++z2==c) );
119324 break;
119326 case '[':
119327 z2 = &z1[1];
119328 while( *z2 && z2[0]!=']' ) z2++;
119329 if( *z2 ) z2++;
119330 break;
119332 default:
119333 if( sqlite3Fts3IsIdChar(*z1) ){
119334 z2 = &z1[1];
119335 while( sqlite3Fts3IsIdChar(*z2) ) z2++;
119336 }else{
119337 z1++;
119342 *pn = (int)(z2-z1);
119343 return z1;
119346 SQLITE_PRIVATE int sqlite3Fts3InitTokenizer(
119347 Fts3Hash *pHash, /* Tokenizer hash table */
119348 const char *zArg, /* Tokenizer name */
119349 sqlite3_tokenizer **ppTok, /* OUT: Tokenizer (if applicable) */
119350 char **pzErr /* OUT: Set to malloced error message */
119352 int rc;
119353 char *z = (char *)zArg;
119354 int n;
119355 char *zCopy;
119356 char *zEnd; /* Pointer to nul-term of zCopy */
119357 sqlite3_tokenizer_module *m;
119359 zCopy = sqlite3_mprintf("%s", zArg);
119360 if( !zCopy ) return SQLITE_NOMEM;
119361 zEnd = &zCopy[strlen(zCopy)];
119363 z = (char *)sqlite3Fts3NextToken(zCopy, &n);
119364 z[n] = '\0';
119365 sqlite3Fts3Dequote(z);
119367 m = (sqlite3_tokenizer_module *)sqlite3Fts3HashFind(pHash,z,(int)strlen(z)+1);
119368 if( !m ){
119369 *pzErr = sqlite3_mprintf("unknown tokenizer: %s", z);
119370 rc = SQLITE_ERROR;
119371 }else{
119372 char const **aArg = 0;
119373 int iArg = 0;
119374 z = &z[n+1];
119375 while( z<zEnd && (NULL!=(z = (char *)sqlite3Fts3NextToken(z, &n))) ){
119376 int nNew = sizeof(char *)*(iArg+1);
119377 char const **aNew = (const char **)sqlite3_realloc((void *)aArg, nNew);
119378 if( !aNew ){
119379 sqlite3_free(zCopy);
119380 sqlite3_free((void *)aArg);
119381 return SQLITE_NOMEM;
119383 aArg = aNew;
119384 aArg[iArg++] = z;
119385 z[n] = '\0';
119386 sqlite3Fts3Dequote(z);
119387 z = &z[n+1];
119389 rc = m->xCreate(iArg, aArg, ppTok);
119390 assert( rc!=SQLITE_OK || *ppTok );
119391 if( rc!=SQLITE_OK ){
119392 *pzErr = sqlite3_mprintf("unknown tokenizer");
119393 }else{
119394 (*ppTok)->pModule = m;
119396 sqlite3_free((void *)aArg);
119399 sqlite3_free(zCopy);
119400 return rc;
119404 #ifdef SQLITE_TEST
119408 ** Implementation of a special SQL scalar function for testing tokenizers
119409 ** designed to be used in concert with the Tcl testing framework. This
119410 ** function must be called with two arguments:
119412 ** SELECT <function-name>(<key-name>, <input-string>);
119413 ** SELECT <function-name>(<key-name>, <pointer>);
119415 ** where <function-name> is the name passed as the second argument
119416 ** to the sqlite3Fts3InitHashTable() function (e.g. 'fts3_tokenizer')
119417 ** concatenated with the string '_test' (e.g. 'fts3_tokenizer_test').
119419 ** The return value is a string that may be interpreted as a Tcl
119420 ** list. For each token in the <input-string>, three elements are
119421 ** added to the returned list. The first is the token position, the
119422 ** second is the token text (folded, stemmed, etc.) and the third is the
119423 ** substring of <input-string> associated with the token. For example,
119424 ** using the built-in "simple" tokenizer:
119426 ** SELECT fts_tokenizer_test('simple', 'I don't see how');
119428 ** will return the string:
119430 ** "{0 i I 1 dont don't 2 see see 3 how how}"
119433 static void testFunc(
119434 sqlite3_context *context,
119435 int argc,
119436 sqlite3_value **argv
119438 Fts3Hash *pHash;
119439 sqlite3_tokenizer_module *p;
119440 sqlite3_tokenizer *pTokenizer = 0;
119441 sqlite3_tokenizer_cursor *pCsr = 0;
119443 const char *zErr = 0;
119445 const char *zName;
119446 int nName;
119447 const char *zInput;
119448 int nInput;
119450 const char *zArg = 0;
119452 const char *zToken;
119453 int nToken;
119454 int iStart;
119455 int iEnd;
119456 int iPos;
119458 Tcl_Obj *pRet;
119460 assert( argc==2 || argc==3 );
119462 nName = sqlite3_value_bytes(argv[0]);
119463 zName = (const char *)sqlite3_value_text(argv[0]);
119464 nInput = sqlite3_value_bytes(argv[argc-1]);
119465 zInput = (const char *)sqlite3_value_text(argv[argc-1]);
119467 if( argc==3 ){
119468 zArg = (const char *)sqlite3_value_text(argv[1]);
119471 pHash = (Fts3Hash *)sqlite3_user_data(context);
119472 p = (sqlite3_tokenizer_module *)sqlite3Fts3HashFind(pHash, zName, nName+1);
119474 if( !p ){
119475 char *zErr = sqlite3_mprintf("unknown tokenizer: %s", zName);
119476 sqlite3_result_error(context, zErr, -1);
119477 sqlite3_free(zErr);
119478 return;
119481 pRet = Tcl_NewObj();
119482 Tcl_IncrRefCount(pRet);
119484 if( SQLITE_OK!=p->xCreate(zArg ? 1 : 0, &zArg, &pTokenizer) ){
119485 zErr = "error in xCreate()";
119486 goto finish;
119488 pTokenizer->pModule = p;
119489 if( SQLITE_OK!=p->xOpen(pTokenizer, zInput, nInput, &pCsr) ){
119490 zErr = "error in xOpen()";
119491 goto finish;
119493 pCsr->pTokenizer = pTokenizer;
119495 while( SQLITE_OK==p->xNext(pCsr, &zToken, &nToken, &iStart, &iEnd, &iPos) ){
119496 Tcl_ListObjAppendElement(0, pRet, Tcl_NewIntObj(iPos));
119497 Tcl_ListObjAppendElement(0, pRet, Tcl_NewStringObj(zToken, nToken));
119498 zToken = &zInput[iStart];
119499 nToken = iEnd-iStart;
119500 Tcl_ListObjAppendElement(0, pRet, Tcl_NewStringObj(zToken, nToken));
119503 if( SQLITE_OK!=p->xClose(pCsr) ){
119504 zErr = "error in xClose()";
119505 goto finish;
119507 if( SQLITE_OK!=p->xDestroy(pTokenizer) ){
119508 zErr = "error in xDestroy()";
119509 goto finish;
119512 finish:
119513 if( zErr ){
119514 sqlite3_result_error(context, zErr, -1);
119515 }else{
119516 sqlite3_result_text(context, Tcl_GetString(pRet), -1, SQLITE_TRANSIENT);
119518 Tcl_DecrRefCount(pRet);
119521 static
119522 int registerTokenizer(
119523 sqlite3 *db,
119524 char *zName,
119525 const sqlite3_tokenizer_module *p
119527 int rc;
119528 sqlite3_stmt *pStmt;
119529 const char zSql[] = "SELECT fts3_tokenizer(?, ?)";
119531 rc = sqlite3_prepare_v2(db, zSql, -1, &pStmt, 0);
119532 if( rc!=SQLITE_OK ){
119533 return rc;
119536 sqlite3_bind_text(pStmt, 1, zName, -1, SQLITE_STATIC);
119537 sqlite3_bind_blob(pStmt, 2, &p, sizeof(p), SQLITE_STATIC);
119538 sqlite3_step(pStmt);
119540 return sqlite3_finalize(pStmt);
119543 static
119544 int queryTokenizer(
119545 sqlite3 *db,
119546 char *zName,
119547 const sqlite3_tokenizer_module **pp
119549 int rc;
119550 sqlite3_stmt *pStmt;
119551 const char zSql[] = "SELECT fts3_tokenizer(?)";
119553 *pp = 0;
119554 rc = sqlite3_prepare_v2(db, zSql, -1, &pStmt, 0);
119555 if( rc!=SQLITE_OK ){
119556 return rc;
119559 sqlite3_bind_text(pStmt, 1, zName, -1, SQLITE_STATIC);
119560 if( SQLITE_ROW==sqlite3_step(pStmt) ){
119561 if( sqlite3_column_type(pStmt, 0)==SQLITE_BLOB ){
119562 memcpy((void *)pp, sqlite3_column_blob(pStmt, 0), sizeof(*pp));
119566 return sqlite3_finalize(pStmt);
119569 SQLITE_PRIVATE void sqlite3Fts3SimpleTokenizerModule(sqlite3_tokenizer_module const**ppModule);
119572 ** Implementation of the scalar function fts3_tokenizer_internal_test().
119573 ** This function is used for testing only, it is not included in the
119574 ** build unless SQLITE_TEST is defined.
119576 ** The purpose of this is to test that the fts3_tokenizer() function
119577 ** can be used as designed by the C-code in the queryTokenizer and
119578 ** registerTokenizer() functions above. These two functions are repeated
119579 ** in the README.tokenizer file as an example, so it is important to
119580 ** test them.
119582 ** To run the tests, evaluate the fts3_tokenizer_internal_test() scalar
119583 ** function with no arguments. An assert() will fail if a problem is
119584 ** detected. i.e.:
119586 ** SELECT fts3_tokenizer_internal_test();
119589 static void intTestFunc(
119590 sqlite3_context *context,
119591 int argc,
119592 sqlite3_value **argv
119594 int rc;
119595 const sqlite3_tokenizer_module *p1;
119596 const sqlite3_tokenizer_module *p2;
119597 sqlite3 *db = (sqlite3 *)sqlite3_user_data(context);
119599 UNUSED_PARAMETER(argc);
119600 UNUSED_PARAMETER(argv);
119602 /* Test the query function */
119603 sqlite3Fts3SimpleTokenizerModule(&p1);
119604 rc = queryTokenizer(db, "simple", &p2);
119605 assert( rc==SQLITE_OK );
119606 assert( p1==p2 );
119607 rc = queryTokenizer(db, "nosuchtokenizer", &p2);
119608 assert( rc==SQLITE_ERROR );
119609 assert( p2==0 );
119610 assert( 0==strcmp(sqlite3_errmsg(db), "unknown tokenizer: nosuchtokenizer") );
119612 /* Test the storage function */
119613 rc = registerTokenizer(db, "nosuchtokenizer", p1);
119614 assert( rc==SQLITE_OK );
119615 rc = queryTokenizer(db, "nosuchtokenizer", &p2);
119616 assert( rc==SQLITE_OK );
119617 assert( p2==p1 );
119619 sqlite3_result_text(context, "ok", -1, SQLITE_STATIC);
119622 #endif
119625 ** Set up SQL objects in database db used to access the contents of
119626 ** the hash table pointed to by argument pHash. The hash table must
119627 ** been initialised to use string keys, and to take a private copy
119628 ** of the key when a value is inserted. i.e. by a call similar to:
119630 ** sqlite3Fts3HashInit(pHash, FTS3_HASH_STRING, 1);
119632 ** This function adds a scalar function (see header comment above
119633 ** scalarFunc() in this file for details) and, if ENABLE_TABLE is
119634 ** defined at compilation time, a temporary virtual table (see header
119635 ** comment above struct HashTableVtab) to the database schema. Both
119636 ** provide read/write access to the contents of *pHash.
119638 ** The third argument to this function, zName, is used as the name
119639 ** of both the scalar and, if created, the virtual table.
119641 SQLITE_PRIVATE int sqlite3Fts3InitHashTable(
119642 sqlite3 *db,
119643 Fts3Hash *pHash,
119644 const char *zName
119646 int rc = SQLITE_OK;
119647 void *p = (void *)pHash;
119648 const int any = SQLITE_ANY;
119650 #ifdef SQLITE_TEST
119651 char *zTest = 0;
119652 char *zTest2 = 0;
119653 void *pdb = (void *)db;
119654 zTest = sqlite3_mprintf("%s_test", zName);
119655 zTest2 = sqlite3_mprintf("%s_internal_test", zName);
119656 if( !zTest || !zTest2 ){
119657 rc = SQLITE_NOMEM;
119659 #endif
119661 if( SQLITE_OK==rc ){
119662 rc = sqlite3_create_function(db, zName, 1, any, p, scalarFunc, 0, 0);
119664 if( SQLITE_OK==rc ){
119665 rc = sqlite3_create_function(db, zName, 2, any, p, scalarFunc, 0, 0);
119667 #ifdef SQLITE_TEST
119668 if( SQLITE_OK==rc ){
119669 rc = sqlite3_create_function(db, zTest, 2, any, p, testFunc, 0, 0);
119671 if( SQLITE_OK==rc ){
119672 rc = sqlite3_create_function(db, zTest, 3, any, p, testFunc, 0, 0);
119674 if( SQLITE_OK==rc ){
119675 rc = sqlite3_create_function(db, zTest2, 0, any, pdb, intTestFunc, 0, 0);
119677 #endif
119679 #ifdef SQLITE_TEST
119680 sqlite3_free(zTest);
119681 sqlite3_free(zTest2);
119682 #endif
119684 return rc;
119687 #endif /* !defined(SQLITE_CORE) || defined(SQLITE_ENABLE_FTS3) */
119689 /************** End of fts3_tokenizer.c **************************************/
119690 /************** Begin file fts3_tokenizer1.c *********************************/
119692 ** 2006 Oct 10
119694 ** The author disclaims copyright to this source code. In place of
119695 ** a legal notice, here is a blessing:
119697 ** May you do good and not evil.
119698 ** May you find forgiveness for yourself and forgive others.
119699 ** May you share freely, never taking more than you give.
119701 ******************************************************************************
119703 ** Implementation of the "simple" full-text-search tokenizer.
119707 ** The code in this file is only compiled if:
119709 ** * The FTS3 module is being built as an extension
119710 ** (in which case SQLITE_CORE is not defined), or
119712 ** * The FTS3 module is being built into the core of
119713 ** SQLite (in which case SQLITE_ENABLE_FTS3 is defined).
119715 #if !defined(SQLITE_CORE) || defined(SQLITE_ENABLE_FTS3)
119720 typedef struct simple_tokenizer {
119721 sqlite3_tokenizer base;
119722 char delim[128]; /* flag ASCII delimiters */
119723 } simple_tokenizer;
119725 typedef struct simple_tokenizer_cursor {
119726 sqlite3_tokenizer_cursor base;
119727 const char *pInput; /* input we are tokenizing */
119728 int nBytes; /* size of the input */
119729 int iOffset; /* current position in pInput */
119730 int iToken; /* index of next token to be returned */
119731 char *pToken; /* storage for current token */
119732 int nTokenAllocated; /* space allocated to zToken buffer */
119733 } simple_tokenizer_cursor;
119736 static int simpleDelim(simple_tokenizer *t, unsigned char c){
119737 return c<0x80 && t->delim[c];
119739 static int fts3_isalnum(int x){
119740 return (x>='0' && x<='9') || (x>='A' && x<='Z') || (x>='a' && x<='z');
119744 ** Create a new tokenizer instance.
119746 static int simpleCreate(
119747 int argc, const char * const *argv,
119748 sqlite3_tokenizer **ppTokenizer
119750 simple_tokenizer *t;
119752 t = (simple_tokenizer *) sqlite3_malloc(sizeof(*t));
119753 if( t==NULL ) return SQLITE_NOMEM;
119754 memset(t, 0, sizeof(*t));
119756 /* TODO(shess) Delimiters need to remain the same from run to run,
119757 ** else we need to reindex. One solution would be a meta-table to
119758 ** track such information in the database, then we'd only want this
119759 ** information on the initial create.
119761 if( argc>1 ){
119762 int i, n = (int)strlen(argv[1]);
119763 for(i=0; i<n; i++){
119764 unsigned char ch = argv[1][i];
119765 /* We explicitly don't support UTF-8 delimiters for now. */
119766 if( ch>=0x80 ){
119767 sqlite3_free(t);
119768 return SQLITE_ERROR;
119770 t->delim[ch] = 1;
119772 } else {
119773 /* Mark non-alphanumeric ASCII characters as delimiters */
119774 int i;
119775 for(i=1; i<0x80; i++){
119776 t->delim[i] = !fts3_isalnum(i) ? -1 : 0;
119780 *ppTokenizer = &t->base;
119781 return SQLITE_OK;
119785 ** Destroy a tokenizer
119787 static int simpleDestroy(sqlite3_tokenizer *pTokenizer){
119788 sqlite3_free(pTokenizer);
119789 return SQLITE_OK;
119793 ** Prepare to begin tokenizing a particular string. The input
119794 ** string to be tokenized is pInput[0..nBytes-1]. A cursor
119795 ** used to incrementally tokenize this string is returned in
119796 ** *ppCursor.
119798 static int simpleOpen(
119799 sqlite3_tokenizer *pTokenizer, /* The tokenizer */
119800 const char *pInput, int nBytes, /* String to be tokenized */
119801 sqlite3_tokenizer_cursor **ppCursor /* OUT: Tokenization cursor */
119803 simple_tokenizer_cursor *c;
119805 UNUSED_PARAMETER(pTokenizer);
119807 c = (simple_tokenizer_cursor *) sqlite3_malloc(sizeof(*c));
119808 if( c==NULL ) return SQLITE_NOMEM;
119810 c->pInput = pInput;
119811 if( pInput==0 ){
119812 c->nBytes = 0;
119813 }else if( nBytes<0 ){
119814 c->nBytes = (int)strlen(pInput);
119815 }else{
119816 c->nBytes = nBytes;
119818 c->iOffset = 0; /* start tokenizing at the beginning */
119819 c->iToken = 0;
119820 c->pToken = NULL; /* no space allocated, yet. */
119821 c->nTokenAllocated = 0;
119823 *ppCursor = &c->base;
119824 return SQLITE_OK;
119828 ** Close a tokenization cursor previously opened by a call to
119829 ** simpleOpen() above.
119831 static int simpleClose(sqlite3_tokenizer_cursor *pCursor){
119832 simple_tokenizer_cursor *c = (simple_tokenizer_cursor *) pCursor;
119833 sqlite3_free(c->pToken);
119834 sqlite3_free(c);
119835 return SQLITE_OK;
119839 ** Extract the next token from a tokenization cursor. The cursor must
119840 ** have been opened by a prior call to simpleOpen().
119842 static int simpleNext(
119843 sqlite3_tokenizer_cursor *pCursor, /* Cursor returned by simpleOpen */
119844 const char **ppToken, /* OUT: *ppToken is the token text */
119845 int *pnBytes, /* OUT: Number of bytes in token */
119846 int *piStartOffset, /* OUT: Starting offset of token */
119847 int *piEndOffset, /* OUT: Ending offset of token */
119848 int *piPosition /* OUT: Position integer of token */
119850 simple_tokenizer_cursor *c = (simple_tokenizer_cursor *) pCursor;
119851 simple_tokenizer *t = (simple_tokenizer *) pCursor->pTokenizer;
119852 unsigned char *p = (unsigned char *)c->pInput;
119854 while( c->iOffset<c->nBytes ){
119855 int iStartOffset;
119857 /* Scan past delimiter characters */
119858 while( c->iOffset<c->nBytes && simpleDelim(t, p[c->iOffset]) ){
119859 c->iOffset++;
119862 /* Count non-delimiter characters. */
119863 iStartOffset = c->iOffset;
119864 while( c->iOffset<c->nBytes && !simpleDelim(t, p[c->iOffset]) ){
119865 c->iOffset++;
119868 if( c->iOffset>iStartOffset ){
119869 int i, n = c->iOffset-iStartOffset;
119870 if( n>c->nTokenAllocated ){
119871 char *pNew;
119872 c->nTokenAllocated = n+20;
119873 pNew = sqlite3_realloc(c->pToken, c->nTokenAllocated);
119874 if( !pNew ) return SQLITE_NOMEM;
119875 c->pToken = pNew;
119877 for(i=0; i<n; i++){
119878 /* TODO(shess) This needs expansion to handle UTF-8
119879 ** case-insensitivity.
119881 unsigned char ch = p[iStartOffset+i];
119882 c->pToken[i] = (char)((ch>='A' && ch<='Z') ? ch-'A'+'a' : ch);
119884 *ppToken = c->pToken;
119885 *pnBytes = n;
119886 *piStartOffset = iStartOffset;
119887 *piEndOffset = c->iOffset;
119888 *piPosition = c->iToken++;
119890 return SQLITE_OK;
119893 return SQLITE_DONE;
119897 ** The set of routines that implement the simple tokenizer
119899 static const sqlite3_tokenizer_module simpleTokenizerModule = {
119901 simpleCreate,
119902 simpleDestroy,
119903 simpleOpen,
119904 simpleClose,
119905 simpleNext,
119909 ** Allocate a new simple tokenizer. Return a pointer to the new
119910 ** tokenizer in *ppModule
119912 SQLITE_PRIVATE void sqlite3Fts3SimpleTokenizerModule(
119913 sqlite3_tokenizer_module const**ppModule
119915 *ppModule = &simpleTokenizerModule;
119918 #endif /* !defined(SQLITE_CORE) || defined(SQLITE_ENABLE_FTS3) */
119920 /************** End of fts3_tokenizer1.c *************************************/
119921 /************** Begin file fts3_write.c **************************************/
119923 ** 2009 Oct 23
119925 ** The author disclaims copyright to this source code. In place of
119926 ** a legal notice, here is a blessing:
119928 ** May you do good and not evil.
119929 ** May you find forgiveness for yourself and forgive others.
119930 ** May you share freely, never taking more than you give.
119932 ******************************************************************************
119934 ** This file is part of the SQLite FTS3 extension module. Specifically,
119935 ** this file contains code to insert, update and delete rows from FTS3
119936 ** tables. It also contains code to merge FTS3 b-tree segments. Some
119937 ** of the sub-routines used to merge segments are also used by the query
119938 ** code in fts3.c.
119941 #if !defined(SQLITE_CORE) || defined(SQLITE_ENABLE_FTS3)
119945 ** When full-text index nodes are loaded from disk, the buffer that they
119946 ** are loaded into has the following number of bytes of padding at the end
119947 ** of it. i.e. if a full-text index node is 900 bytes in size, then a buffer
119948 ** of 920 bytes is allocated for it.
119950 ** This means that if we have a pointer into a buffer containing node data,
119951 ** it is always safe to read up to two varints from it without risking an
119952 ** overread, even if the node data is corrupted.
119954 #define FTS3_NODE_PADDING (FTS3_VARINT_MAX*2)
119956 typedef struct PendingList PendingList;
119957 typedef struct SegmentNode SegmentNode;
119958 typedef struct SegmentWriter SegmentWriter;
119961 ** Data structure used while accumulating terms in the pending-terms hash
119962 ** table. The hash table entry maps from term (a string) to a malloc'd
119963 ** instance of this structure.
119965 struct PendingList {
119966 int nData;
119967 char *aData;
119968 int nSpace;
119969 sqlite3_int64 iLastDocid;
119970 sqlite3_int64 iLastCol;
119971 sqlite3_int64 iLastPos;
119976 ** Each cursor has a (possibly empty) linked list of the following objects.
119978 struct Fts3DeferredToken {
119979 Fts3PhraseToken *pToken; /* Pointer to corresponding expr token */
119980 int iCol; /* Column token must occur in */
119981 Fts3DeferredToken *pNext; /* Next in list of deferred tokens */
119982 PendingList *pList; /* Doclist is assembled here */
119986 ** An instance of this structure is used to iterate through the terms on
119987 ** a contiguous set of segment b-tree leaf nodes. Although the details of
119988 ** this structure are only manipulated by code in this file, opaque handles
119989 ** of type Fts3SegReader* are also used by code in fts3.c to iterate through
119990 ** terms when querying the full-text index. See functions:
119992 ** sqlite3Fts3SegReaderNew()
119993 ** sqlite3Fts3SegReaderFree()
119994 ** sqlite3Fts3SegReaderCost()
119995 ** sqlite3Fts3SegReaderIterate()
119997 ** Methods used to manipulate Fts3SegReader structures:
119999 ** fts3SegReaderNext()
120000 ** fts3SegReaderFirstDocid()
120001 ** fts3SegReaderNextDocid()
120003 struct Fts3SegReader {
120004 int iIdx; /* Index within level, or 0x7FFFFFFF for PT */
120006 sqlite3_int64 iStartBlock; /* Rowid of first leaf block to traverse */
120007 sqlite3_int64 iLeafEndBlock; /* Rowid of final leaf block to traverse */
120008 sqlite3_int64 iEndBlock; /* Rowid of final block in segment (or 0) */
120009 sqlite3_int64 iCurrentBlock; /* Current leaf block (or 0) */
120011 char *aNode; /* Pointer to node data (or NULL) */
120012 int nNode; /* Size of buffer at aNode (or 0) */
120013 Fts3HashElem **ppNextElem;
120015 /* Variables set by fts3SegReaderNext(). These may be read directly
120016 ** by the caller. They are valid from the time SegmentReaderNew() returns
120017 ** until SegmentReaderNext() returns something other than SQLITE_OK
120018 ** (i.e. SQLITE_DONE).
120020 int nTerm; /* Number of bytes in current term */
120021 char *zTerm; /* Pointer to current term */
120022 int nTermAlloc; /* Allocated size of zTerm buffer */
120023 char *aDoclist; /* Pointer to doclist of current entry */
120024 int nDoclist; /* Size of doclist in current entry */
120026 /* The following variables are used to iterate through the current doclist */
120027 char *pOffsetList;
120028 sqlite3_int64 iDocid;
120031 #define fts3SegReaderIsPending(p) ((p)->ppNextElem!=0)
120032 #define fts3SegReaderIsRootOnly(p) ((p)->aNode==(char *)&(p)[1])
120035 ** An instance of this structure is used to create a segment b-tree in the
120036 ** database. The internal details of this type are only accessed by the
120037 ** following functions:
120039 ** fts3SegWriterAdd()
120040 ** fts3SegWriterFlush()
120041 ** fts3SegWriterFree()
120043 struct SegmentWriter {
120044 SegmentNode *pTree; /* Pointer to interior tree structure */
120045 sqlite3_int64 iFirst; /* First slot in %_segments written */
120046 sqlite3_int64 iFree; /* Next free slot in %_segments */
120047 char *zTerm; /* Pointer to previous term buffer */
120048 int nTerm; /* Number of bytes in zTerm */
120049 int nMalloc; /* Size of malloc'd buffer at zMalloc */
120050 char *zMalloc; /* Malloc'd space (possibly) used for zTerm */
120051 int nSize; /* Size of allocation at aData */
120052 int nData; /* Bytes of data in aData */
120053 char *aData; /* Pointer to block from malloc() */
120057 ** Type SegmentNode is used by the following three functions to create
120058 ** the interior part of the segment b+-tree structures (everything except
120059 ** the leaf nodes). These functions and type are only ever used by code
120060 ** within the fts3SegWriterXXX() family of functions described above.
120062 ** fts3NodeAddTerm()
120063 ** fts3NodeWrite()
120064 ** fts3NodeFree()
120066 struct SegmentNode {
120067 SegmentNode *pParent; /* Parent node (or NULL for root node) */
120068 SegmentNode *pRight; /* Pointer to right-sibling */
120069 SegmentNode *pLeftmost; /* Pointer to left-most node of this depth */
120070 int nEntry; /* Number of terms written to node so far */
120071 char *zTerm; /* Pointer to previous term buffer */
120072 int nTerm; /* Number of bytes in zTerm */
120073 int nMalloc; /* Size of malloc'd buffer at zMalloc */
120074 char *zMalloc; /* Malloc'd space (possibly) used for zTerm */
120075 int nData; /* Bytes of valid data so far */
120076 char *aData; /* Node data */
120080 ** Valid values for the second argument to fts3SqlStmt().
120082 #define SQL_DELETE_CONTENT 0
120083 #define SQL_IS_EMPTY 1
120084 #define SQL_DELETE_ALL_CONTENT 2
120085 #define SQL_DELETE_ALL_SEGMENTS 3
120086 #define SQL_DELETE_ALL_SEGDIR 4
120087 #define SQL_DELETE_ALL_DOCSIZE 5
120088 #define SQL_DELETE_ALL_STAT 6
120089 #define SQL_SELECT_CONTENT_BY_ROWID 7
120090 #define SQL_NEXT_SEGMENT_INDEX 8
120091 #define SQL_INSERT_SEGMENTS 9
120092 #define SQL_NEXT_SEGMENTS_ID 10
120093 #define SQL_INSERT_SEGDIR 11
120094 #define SQL_SELECT_LEVEL 12
120095 #define SQL_SELECT_ALL_LEVEL 13
120096 #define SQL_SELECT_LEVEL_COUNT 14
120097 #define SQL_SELECT_SEGDIR_COUNT_MAX 15
120098 #define SQL_DELETE_SEGDIR_BY_LEVEL 16
120099 #define SQL_DELETE_SEGMENTS_RANGE 17
120100 #define SQL_CONTENT_INSERT 18
120101 #define SQL_DELETE_DOCSIZE 19
120102 #define SQL_REPLACE_DOCSIZE 20
120103 #define SQL_SELECT_DOCSIZE 21
120104 #define SQL_SELECT_DOCTOTAL 22
120105 #define SQL_REPLACE_DOCTOTAL 23
120108 ** This function is used to obtain an SQLite prepared statement handle
120109 ** for the statement identified by the second argument. If successful,
120110 ** *pp is set to the requested statement handle and SQLITE_OK returned.
120111 ** Otherwise, an SQLite error code is returned and *pp is set to 0.
120113 ** If argument apVal is not NULL, then it must point to an array with
120114 ** at least as many entries as the requested statement has bound
120115 ** parameters. The values are bound to the statements parameters before
120116 ** returning.
120118 static int fts3SqlStmt(
120119 Fts3Table *p, /* Virtual table handle */
120120 int eStmt, /* One of the SQL_XXX constants above */
120121 sqlite3_stmt **pp, /* OUT: Statement handle */
120122 sqlite3_value **apVal /* Values to bind to statement */
120124 const char *azSql[] = {
120125 /* 0 */ "DELETE FROM %Q.'%q_content' WHERE rowid = ?",
120126 /* 1 */ "SELECT NOT EXISTS(SELECT docid FROM %Q.'%q_content' WHERE rowid!=?)",
120127 /* 2 */ "DELETE FROM %Q.'%q_content'",
120128 /* 3 */ "DELETE FROM %Q.'%q_segments'",
120129 /* 4 */ "DELETE FROM %Q.'%q_segdir'",
120130 /* 5 */ "DELETE FROM %Q.'%q_docsize'",
120131 /* 6 */ "DELETE FROM %Q.'%q_stat'",
120132 /* 7 */ "SELECT %s FROM %Q.'%q_content' AS x WHERE rowid=?",
120133 /* 8 */ "SELECT (SELECT max(idx) FROM %Q.'%q_segdir' WHERE level = ?) + 1",
120134 /* 9 */ "INSERT INTO %Q.'%q_segments'(blockid, block) VALUES(?, ?)",
120135 /* 10 */ "SELECT coalesce((SELECT max(blockid) FROM %Q.'%q_segments') + 1, 1)",
120136 /* 11 */ "INSERT INTO %Q.'%q_segdir' VALUES(?,?,?,?,?,?)",
120138 /* Return segments in order from oldest to newest.*/
120139 /* 12 */ "SELECT idx, start_block, leaves_end_block, end_block, root "
120140 "FROM %Q.'%q_segdir' WHERE level = ? ORDER BY idx ASC",
120141 /* 13 */ "SELECT idx, start_block, leaves_end_block, end_block, root "
120142 "FROM %Q.'%q_segdir' ORDER BY level DESC, idx ASC",
120144 /* 14 */ "SELECT count(*) FROM %Q.'%q_segdir' WHERE level = ?",
120145 /* 15 */ "SELECT count(*), max(level) FROM %Q.'%q_segdir'",
120147 /* 16 */ "DELETE FROM %Q.'%q_segdir' WHERE level = ?",
120148 /* 17 */ "DELETE FROM %Q.'%q_segments' WHERE blockid BETWEEN ? AND ?",
120149 /* 18 */ "INSERT INTO %Q.'%q_content' VALUES(%s)",
120150 /* 19 */ "DELETE FROM %Q.'%q_docsize' WHERE docid = ?",
120151 /* 20 */ "REPLACE INTO %Q.'%q_docsize' VALUES(?,?)",
120152 /* 21 */ "SELECT size FROM %Q.'%q_docsize' WHERE docid=?",
120153 /* 22 */ "SELECT value FROM %Q.'%q_stat' WHERE id=0",
120154 /* 23 */ "REPLACE INTO %Q.'%q_stat' VALUES(0,?)",
120156 int rc = SQLITE_OK;
120157 sqlite3_stmt *pStmt;
120159 assert( SizeofArray(azSql)==SizeofArray(p->aStmt) );
120160 assert( eStmt<SizeofArray(azSql) && eStmt>=0 );
120162 pStmt = p->aStmt[eStmt];
120163 if( !pStmt ){
120164 char *zSql;
120165 if( eStmt==SQL_CONTENT_INSERT ){
120166 zSql = sqlite3_mprintf(azSql[eStmt], p->zDb, p->zName, p->zWriteExprlist);
120167 }else if( eStmt==SQL_SELECT_CONTENT_BY_ROWID ){
120168 zSql = sqlite3_mprintf(azSql[eStmt], p->zReadExprlist, p->zDb, p->zName);
120169 }else{
120170 zSql = sqlite3_mprintf(azSql[eStmt], p->zDb, p->zName);
120172 if( !zSql ){
120173 rc = SQLITE_NOMEM;
120174 }else{
120175 rc = sqlite3_prepare_v2(p->db, zSql, -1, &pStmt, NULL);
120176 sqlite3_free(zSql);
120177 assert( rc==SQLITE_OK || pStmt==0 );
120178 p->aStmt[eStmt] = pStmt;
120181 if( apVal ){
120182 int i;
120183 int nParam = sqlite3_bind_parameter_count(pStmt);
120184 for(i=0; rc==SQLITE_OK && i<nParam; i++){
120185 rc = sqlite3_bind_value(pStmt, i+1, apVal[i]);
120188 *pp = pStmt;
120189 return rc;
120192 static int fts3SelectDocsize(
120193 Fts3Table *pTab, /* FTS3 table handle */
120194 int eStmt, /* Either SQL_SELECT_DOCSIZE or DOCTOTAL */
120195 sqlite3_int64 iDocid, /* Docid to bind for SQL_SELECT_DOCSIZE */
120196 sqlite3_stmt **ppStmt /* OUT: Statement handle */
120198 sqlite3_stmt *pStmt = 0; /* Statement requested from fts3SqlStmt() */
120199 int rc; /* Return code */
120201 assert( eStmt==SQL_SELECT_DOCSIZE || eStmt==SQL_SELECT_DOCTOTAL );
120203 rc = fts3SqlStmt(pTab, eStmt, &pStmt, 0);
120204 if( rc==SQLITE_OK ){
120205 if( eStmt==SQL_SELECT_DOCSIZE ){
120206 sqlite3_bind_int64(pStmt, 1, iDocid);
120208 rc = sqlite3_step(pStmt);
120209 if( rc!=SQLITE_ROW || sqlite3_column_type(pStmt, 0)!=SQLITE_BLOB ){
120210 rc = sqlite3_reset(pStmt);
120211 if( rc==SQLITE_OK ) rc = SQLITE_CORRUPT;
120212 pStmt = 0;
120213 }else{
120214 rc = SQLITE_OK;
120218 *ppStmt = pStmt;
120219 return rc;
120222 SQLITE_PRIVATE int sqlite3Fts3SelectDoctotal(
120223 Fts3Table *pTab, /* Fts3 table handle */
120224 sqlite3_stmt **ppStmt /* OUT: Statement handle */
120226 return fts3SelectDocsize(pTab, SQL_SELECT_DOCTOTAL, 0, ppStmt);
120229 SQLITE_PRIVATE int sqlite3Fts3SelectDocsize(
120230 Fts3Table *pTab, /* Fts3 table handle */
120231 sqlite3_int64 iDocid, /* Docid to read size data for */
120232 sqlite3_stmt **ppStmt /* OUT: Statement handle */
120234 return fts3SelectDocsize(pTab, SQL_SELECT_DOCSIZE, iDocid, ppStmt);
120238 ** Similar to fts3SqlStmt(). Except, after binding the parameters in
120239 ** array apVal[] to the SQL statement identified by eStmt, the statement
120240 ** is executed.
120242 ** Returns SQLITE_OK if the statement is successfully executed, or an
120243 ** SQLite error code otherwise.
120245 static void fts3SqlExec(
120246 int *pRC, /* Result code */
120247 Fts3Table *p, /* The FTS3 table */
120248 int eStmt, /* Index of statement to evaluate */
120249 sqlite3_value **apVal /* Parameters to bind */
120251 sqlite3_stmt *pStmt;
120252 int rc;
120253 if( *pRC ) return;
120254 rc = fts3SqlStmt(p, eStmt, &pStmt, apVal);
120255 if( rc==SQLITE_OK ){
120256 sqlite3_step(pStmt);
120257 rc = sqlite3_reset(pStmt);
120259 *pRC = rc;
120264 ** This function ensures that the caller has obtained a shared-cache
120265 ** table-lock on the %_content table. This is required before reading
120266 ** data from the fts3 table. If this lock is not acquired first, then
120267 ** the caller may end up holding read-locks on the %_segments and %_segdir
120268 ** tables, but no read-lock on the %_content table. If this happens
120269 ** a second connection will be able to write to the fts3 table, but
120270 ** attempting to commit those writes might return SQLITE_LOCKED or
120271 ** SQLITE_LOCKED_SHAREDCACHE (because the commit attempts to obtain
120272 ** write-locks on the %_segments and %_segdir ** tables).
120274 ** We try to avoid this because if FTS3 returns any error when committing
120275 ** a transaction, the whole transaction will be rolled back. And this is
120276 ** not what users expect when they get SQLITE_LOCKED_SHAREDCACHE. It can
120277 ** still happen if the user reads data directly from the %_segments or
120278 ** %_segdir tables instead of going through FTS3 though.
120280 SQLITE_PRIVATE int sqlite3Fts3ReadLock(Fts3Table *p){
120281 int rc; /* Return code */
120282 sqlite3_stmt *pStmt; /* Statement used to obtain lock */
120284 rc = fts3SqlStmt(p, SQL_SELECT_CONTENT_BY_ROWID, &pStmt, 0);
120285 if( rc==SQLITE_OK ){
120286 sqlite3_bind_null(pStmt, 1);
120287 sqlite3_step(pStmt);
120288 rc = sqlite3_reset(pStmt);
120290 return rc;
120294 ** Set *ppStmt to a statement handle that may be used to iterate through
120295 ** all rows in the %_segdir table, from oldest to newest. If successful,
120296 ** return SQLITE_OK. If an error occurs while preparing the statement,
120297 ** return an SQLite error code.
120299 ** There is only ever one instance of this SQL statement compiled for
120300 ** each FTS3 table.
120302 ** The statement returns the following columns from the %_segdir table:
120304 ** 0: idx
120305 ** 1: start_block
120306 ** 2: leaves_end_block
120307 ** 3: end_block
120308 ** 4: root
120310 SQLITE_PRIVATE int sqlite3Fts3AllSegdirs(Fts3Table *p, int iLevel, sqlite3_stmt **ppStmt){
120311 int rc;
120312 sqlite3_stmt *pStmt = 0;
120313 if( iLevel<0 ){
120314 rc = fts3SqlStmt(p, SQL_SELECT_ALL_LEVEL, &pStmt, 0);
120315 }else{
120316 rc = fts3SqlStmt(p, SQL_SELECT_LEVEL, &pStmt, 0);
120317 if( rc==SQLITE_OK ) sqlite3_bind_int(pStmt, 1, iLevel);
120319 *ppStmt = pStmt;
120320 return rc;
120325 ** Append a single varint to a PendingList buffer. SQLITE_OK is returned
120326 ** if successful, or an SQLite error code otherwise.
120328 ** This function also serves to allocate the PendingList structure itself.
120329 ** For example, to create a new PendingList structure containing two
120330 ** varints:
120332 ** PendingList *p = 0;
120333 ** fts3PendingListAppendVarint(&p, 1);
120334 ** fts3PendingListAppendVarint(&p, 2);
120336 static int fts3PendingListAppendVarint(
120337 PendingList **pp, /* IN/OUT: Pointer to PendingList struct */
120338 sqlite3_int64 i /* Value to append to data */
120340 PendingList *p = *pp;
120342 /* Allocate or grow the PendingList as required. */
120343 if( !p ){
120344 p = sqlite3_malloc(sizeof(*p) + 100);
120345 if( !p ){
120346 return SQLITE_NOMEM;
120348 p->nSpace = 100;
120349 p->aData = (char *)&p[1];
120350 p->nData = 0;
120352 else if( p->nData+FTS3_VARINT_MAX+1>p->nSpace ){
120353 int nNew = p->nSpace * 2;
120354 p = sqlite3_realloc(p, sizeof(*p) + nNew);
120355 if( !p ){
120356 sqlite3_free(*pp);
120357 *pp = 0;
120358 return SQLITE_NOMEM;
120360 p->nSpace = nNew;
120361 p->aData = (char *)&p[1];
120364 /* Append the new serialized varint to the end of the list. */
120365 p->nData += sqlite3Fts3PutVarint(&p->aData[p->nData], i);
120366 p->aData[p->nData] = '\0';
120367 *pp = p;
120368 return SQLITE_OK;
120372 ** Add a docid/column/position entry to a PendingList structure. Non-zero
120373 ** is returned if the structure is sqlite3_realloced as part of adding
120374 ** the entry. Otherwise, zero.
120376 ** If an OOM error occurs, *pRc is set to SQLITE_NOMEM before returning.
120377 ** Zero is always returned in this case. Otherwise, if no OOM error occurs,
120378 ** it is set to SQLITE_OK.
120380 static int fts3PendingListAppend(
120381 PendingList **pp, /* IN/OUT: PendingList structure */
120382 sqlite3_int64 iDocid, /* Docid for entry to add */
120383 sqlite3_int64 iCol, /* Column for entry to add */
120384 sqlite3_int64 iPos, /* Position of term for entry to add */
120385 int *pRc /* OUT: Return code */
120387 PendingList *p = *pp;
120388 int rc = SQLITE_OK;
120390 assert( !p || p->iLastDocid<=iDocid );
120392 if( !p || p->iLastDocid!=iDocid ){
120393 sqlite3_int64 iDelta = iDocid - (p ? p->iLastDocid : 0);
120394 if( p ){
120395 assert( p->nData<p->nSpace );
120396 assert( p->aData[p->nData]==0 );
120397 p->nData++;
120399 if( SQLITE_OK!=(rc = fts3PendingListAppendVarint(&p, iDelta)) ){
120400 goto pendinglistappend_out;
120402 p->iLastCol = -1;
120403 p->iLastPos = 0;
120404 p->iLastDocid = iDocid;
120406 if( iCol>0 && p->iLastCol!=iCol ){
120407 if( SQLITE_OK!=(rc = fts3PendingListAppendVarint(&p, 1))
120408 || SQLITE_OK!=(rc = fts3PendingListAppendVarint(&p, iCol))
120410 goto pendinglistappend_out;
120412 p->iLastCol = iCol;
120413 p->iLastPos = 0;
120415 if( iCol>=0 ){
120416 assert( iPos>p->iLastPos || (iPos==0 && p->iLastPos==0) );
120417 rc = fts3PendingListAppendVarint(&p, 2+iPos-p->iLastPos);
120418 if( rc==SQLITE_OK ){
120419 p->iLastPos = iPos;
120423 pendinglistappend_out:
120424 *pRc = rc;
120425 if( p!=*pp ){
120426 *pp = p;
120427 return 1;
120429 return 0;
120433 ** Tokenize the nul-terminated string zText and add all tokens to the
120434 ** pending-terms hash-table. The docid used is that currently stored in
120435 ** p->iPrevDocid, and the column is specified by argument iCol.
120437 ** If successful, SQLITE_OK is returned. Otherwise, an SQLite error code.
120439 static int fts3PendingTermsAdd(
120440 Fts3Table *p, /* Table into which text will be inserted */
120441 const char *zText, /* Text of document to be inserted */
120442 int iCol, /* Column into which text is being inserted */
120443 u32 *pnWord /* OUT: Number of tokens inserted */
120445 int rc;
120446 int iStart;
120447 int iEnd;
120448 int iPos;
120449 int nWord = 0;
120451 char const *zToken;
120452 int nToken;
120454 sqlite3_tokenizer *pTokenizer = p->pTokenizer;
120455 sqlite3_tokenizer_module const *pModule = pTokenizer->pModule;
120456 sqlite3_tokenizer_cursor *pCsr;
120457 int (*xNext)(sqlite3_tokenizer_cursor *pCursor,
120458 const char**,int*,int*,int*,int*);
120460 assert( pTokenizer && pModule );
120462 rc = pModule->xOpen(pTokenizer, zText, -1, &pCsr);
120463 if( rc!=SQLITE_OK ){
120464 return rc;
120466 pCsr->pTokenizer = pTokenizer;
120468 xNext = pModule->xNext;
120469 while( SQLITE_OK==rc
120470 && SQLITE_OK==(rc = xNext(pCsr, &zToken, &nToken, &iStart, &iEnd, &iPos))
120472 PendingList *pList;
120474 if( iPos>=nWord ) nWord = iPos+1;
120476 /* Positions cannot be negative; we use -1 as a terminator internally.
120477 ** Tokens must have a non-zero length.
120479 if( iPos<0 || !zToken || nToken<=0 ){
120480 rc = SQLITE_ERROR;
120481 break;
120484 pList = (PendingList *)fts3HashFind(&p->pendingTerms, zToken, nToken);
120485 if( pList ){
120486 p->nPendingData -= (pList->nData + nToken + sizeof(Fts3HashElem));
120488 if( fts3PendingListAppend(&pList, p->iPrevDocid, iCol, iPos, &rc) ){
120489 if( pList==fts3HashInsert(&p->pendingTerms, zToken, nToken, pList) ){
120490 /* Malloc failed while inserting the new entry. This can only
120491 ** happen if there was no previous entry for this token.
120493 assert( 0==fts3HashFind(&p->pendingTerms, zToken, nToken) );
120494 sqlite3_free(pList);
120495 rc = SQLITE_NOMEM;
120498 if( rc==SQLITE_OK ){
120499 p->nPendingData += (pList->nData + nToken + sizeof(Fts3HashElem));
120503 pModule->xClose(pCsr);
120504 *pnWord = nWord;
120505 return (rc==SQLITE_DONE ? SQLITE_OK : rc);
120509 ** Calling this function indicates that subsequent calls to
120510 ** fts3PendingTermsAdd() are to add term/position-list pairs for the
120511 ** contents of the document with docid iDocid.
120513 static int fts3PendingTermsDocid(Fts3Table *p, sqlite_int64 iDocid){
120514 /* TODO(shess) Explore whether partially flushing the buffer on
120515 ** forced-flush would provide better performance. I suspect that if
120516 ** we ordered the doclists by size and flushed the largest until the
120517 ** buffer was half empty, that would let the less frequent terms
120518 ** generate longer doclists.
120520 if( iDocid<=p->iPrevDocid || p->nPendingData>p->nMaxPendingData ){
120521 int rc = sqlite3Fts3PendingTermsFlush(p);
120522 if( rc!=SQLITE_OK ) return rc;
120524 p->iPrevDocid = iDocid;
120525 return SQLITE_OK;
120529 ** Discard the contents of the pending-terms hash table.
120531 SQLITE_PRIVATE void sqlite3Fts3PendingTermsClear(Fts3Table *p){
120532 Fts3HashElem *pElem;
120533 for(pElem=fts3HashFirst(&p->pendingTerms); pElem; pElem=fts3HashNext(pElem)){
120534 sqlite3_free(fts3HashData(pElem));
120536 fts3HashClear(&p->pendingTerms);
120537 p->nPendingData = 0;
120541 ** This function is called by the xUpdate() method as part of an INSERT
120542 ** operation. It adds entries for each term in the new record to the
120543 ** pendingTerms hash table.
120545 ** Argument apVal is the same as the similarly named argument passed to
120546 ** fts3InsertData(). Parameter iDocid is the docid of the new row.
120548 static int fts3InsertTerms(Fts3Table *p, sqlite3_value **apVal, u32 *aSz){
120549 int i; /* Iterator variable */
120550 for(i=2; i<p->nColumn+2; i++){
120551 const char *zText = (const char *)sqlite3_value_text(apVal[i]);
120552 if( zText ){
120553 int rc = fts3PendingTermsAdd(p, zText, i-2, &aSz[i-2]);
120554 if( rc!=SQLITE_OK ){
120555 return rc;
120558 aSz[p->nColumn] += sqlite3_value_bytes(apVal[i]);
120560 return SQLITE_OK;
120564 ** This function is called by the xUpdate() method for an INSERT operation.
120565 ** The apVal parameter is passed a copy of the apVal argument passed by
120566 ** SQLite to the xUpdate() method. i.e:
120568 ** apVal[0] Not used for INSERT.
120569 ** apVal[1] rowid
120570 ** apVal[2] Left-most user-defined column
120571 ** ...
120572 ** apVal[p->nColumn+1] Right-most user-defined column
120573 ** apVal[p->nColumn+2] Hidden column with same name as table
120574 ** apVal[p->nColumn+3] Hidden "docid" column (alias for rowid)
120576 static int fts3InsertData(
120577 Fts3Table *p, /* Full-text table */
120578 sqlite3_value **apVal, /* Array of values to insert */
120579 sqlite3_int64 *piDocid /* OUT: Docid for row just inserted */
120581 int rc; /* Return code */
120582 sqlite3_stmt *pContentInsert; /* INSERT INTO %_content VALUES(...) */
120584 /* Locate the statement handle used to insert data into the %_content
120585 ** table. The SQL for this statement is:
120587 ** INSERT INTO %_content VALUES(?, ?, ?, ...)
120589 ** The statement features N '?' variables, where N is the number of user
120590 ** defined columns in the FTS3 table, plus one for the docid field.
120592 rc = fts3SqlStmt(p, SQL_CONTENT_INSERT, &pContentInsert, &apVal[1]);
120593 if( rc!=SQLITE_OK ){
120594 return rc;
120597 /* There is a quirk here. The users INSERT statement may have specified
120598 ** a value for the "rowid" field, for the "docid" field, or for both.
120599 ** Which is a problem, since "rowid" and "docid" are aliases for the
120600 ** same value. For example:
120602 ** INSERT INTO fts3tbl(rowid, docid) VALUES(1, 2);
120604 ** In FTS3, this is an error. It is an error to specify non-NULL values
120605 ** for both docid and some other rowid alias.
120607 if( SQLITE_NULL!=sqlite3_value_type(apVal[3+p->nColumn]) ){
120608 if( SQLITE_NULL==sqlite3_value_type(apVal[0])
120609 && SQLITE_NULL!=sqlite3_value_type(apVal[1])
120611 /* A rowid/docid conflict. */
120612 return SQLITE_ERROR;
120614 rc = sqlite3_bind_value(pContentInsert, 1, apVal[3+p->nColumn]);
120615 if( rc!=SQLITE_OK ) return rc;
120618 /* Execute the statement to insert the record. Set *piDocid to the
120619 ** new docid value.
120621 sqlite3_step(pContentInsert);
120622 rc = sqlite3_reset(pContentInsert);
120624 *piDocid = sqlite3_last_insert_rowid(p->db);
120625 return rc;
120631 ** Remove all data from the FTS3 table. Clear the hash table containing
120632 ** pending terms.
120634 static int fts3DeleteAll(Fts3Table *p){
120635 int rc = SQLITE_OK; /* Return code */
120637 /* Discard the contents of the pending-terms hash table. */
120638 sqlite3Fts3PendingTermsClear(p);
120640 /* Delete everything from the %_content, %_segments and %_segdir tables. */
120641 fts3SqlExec(&rc, p, SQL_DELETE_ALL_CONTENT, 0);
120642 fts3SqlExec(&rc, p, SQL_DELETE_ALL_SEGMENTS, 0);
120643 fts3SqlExec(&rc, p, SQL_DELETE_ALL_SEGDIR, 0);
120644 if( p->bHasDocsize ){
120645 fts3SqlExec(&rc, p, SQL_DELETE_ALL_DOCSIZE, 0);
120647 if( p->bHasStat ){
120648 fts3SqlExec(&rc, p, SQL_DELETE_ALL_STAT, 0);
120650 return rc;
120654 ** The first element in the apVal[] array is assumed to contain the docid
120655 ** (an integer) of a row about to be deleted. Remove all terms from the
120656 ** full-text index.
120658 static void fts3DeleteTerms(
120659 int *pRC, /* Result code */
120660 Fts3Table *p, /* The FTS table to delete from */
120661 sqlite3_value **apVal, /* apVal[] contains the docid to be deleted */
120662 u32 *aSz /* Sizes of deleted document written here */
120664 int rc;
120665 sqlite3_stmt *pSelect;
120667 if( *pRC ) return;
120668 rc = fts3SqlStmt(p, SQL_SELECT_CONTENT_BY_ROWID, &pSelect, apVal);
120669 if( rc==SQLITE_OK ){
120670 if( SQLITE_ROW==sqlite3_step(pSelect) ){
120671 int i;
120672 for(i=1; i<=p->nColumn; i++){
120673 const char *zText = (const char *)sqlite3_column_text(pSelect, i);
120674 rc = fts3PendingTermsAdd(p, zText, -1, &aSz[i-1]);
120675 if( rc!=SQLITE_OK ){
120676 sqlite3_reset(pSelect);
120677 *pRC = rc;
120678 return;
120680 aSz[p->nColumn] += sqlite3_column_bytes(pSelect, i);
120683 rc = sqlite3_reset(pSelect);
120684 }else{
120685 sqlite3_reset(pSelect);
120687 *pRC = rc;
120691 ** Forward declaration to account for the circular dependency between
120692 ** functions fts3SegmentMerge() and fts3AllocateSegdirIdx().
120694 static int fts3SegmentMerge(Fts3Table *, int);
120697 ** This function allocates a new level iLevel index in the segdir table.
120698 ** Usually, indexes are allocated within a level sequentially starting
120699 ** with 0, so the allocated index is one greater than the value returned
120700 ** by:
120702 ** SELECT max(idx) FROM %_segdir WHERE level = :iLevel
120704 ** However, if there are already FTS3_MERGE_COUNT indexes at the requested
120705 ** level, they are merged into a single level (iLevel+1) segment and the
120706 ** allocated index is 0.
120708 ** If successful, *piIdx is set to the allocated index slot and SQLITE_OK
120709 ** returned. Otherwise, an SQLite error code is returned.
120711 static int fts3AllocateSegdirIdx(Fts3Table *p, int iLevel, int *piIdx){
120712 int rc; /* Return Code */
120713 sqlite3_stmt *pNextIdx; /* Query for next idx at level iLevel */
120714 int iNext = 0; /* Result of query pNextIdx */
120716 /* Set variable iNext to the next available segdir index at level iLevel. */
120717 rc = fts3SqlStmt(p, SQL_NEXT_SEGMENT_INDEX, &pNextIdx, 0);
120718 if( rc==SQLITE_OK ){
120719 sqlite3_bind_int(pNextIdx, 1, iLevel);
120720 if( SQLITE_ROW==sqlite3_step(pNextIdx) ){
120721 iNext = sqlite3_column_int(pNextIdx, 0);
120723 rc = sqlite3_reset(pNextIdx);
120726 if( rc==SQLITE_OK ){
120727 /* If iNext is FTS3_MERGE_COUNT, indicating that level iLevel is already
120728 ** full, merge all segments in level iLevel into a single iLevel+1
120729 ** segment and allocate (newly freed) index 0 at level iLevel. Otherwise,
120730 ** if iNext is less than FTS3_MERGE_COUNT, allocate index iNext.
120732 if( iNext>=FTS3_MERGE_COUNT ){
120733 rc = fts3SegmentMerge(p, iLevel);
120734 *piIdx = 0;
120735 }else{
120736 *piIdx = iNext;
120740 return rc;
120744 ** The %_segments table is declared as follows:
120746 ** CREATE TABLE %_segments(blockid INTEGER PRIMARY KEY, block BLOB)
120748 ** This function reads data from a single row of the %_segments table. The
120749 ** specific row is identified by the iBlockid parameter. If paBlob is not
120750 ** NULL, then a buffer is allocated using sqlite3_malloc() and populated
120751 ** with the contents of the blob stored in the "block" column of the
120752 ** identified table row is. Whether or not paBlob is NULL, *pnBlob is set
120753 ** to the size of the blob in bytes before returning.
120755 ** If an error occurs, or the table does not contain the specified row,
120756 ** an SQLite error code is returned. Otherwise, SQLITE_OK is returned. If
120757 ** paBlob is non-NULL, then it is the responsibility of the caller to
120758 ** eventually free the returned buffer.
120760 ** This function may leave an open sqlite3_blob* handle in the
120761 ** Fts3Table.pSegments variable. This handle is reused by subsequent calls
120762 ** to this function. The handle may be closed by calling the
120763 ** sqlite3Fts3SegmentsClose() function. Reusing a blob handle is a handy
120764 ** performance improvement, but the blob handle should always be closed
120765 ** before control is returned to the user (to prevent a lock being held
120766 ** on the database file for longer than necessary). Thus, any virtual table
120767 ** method (xFilter etc.) that may directly or indirectly call this function
120768 ** must call sqlite3Fts3SegmentsClose() before returning.
120770 SQLITE_PRIVATE int sqlite3Fts3ReadBlock(
120771 Fts3Table *p, /* FTS3 table handle */
120772 sqlite3_int64 iBlockid, /* Access the row with blockid=$iBlockid */
120773 char **paBlob, /* OUT: Blob data in malloc'd buffer */
120774 int *pnBlob /* OUT: Size of blob data */
120776 int rc; /* Return code */
120778 /* pnBlob must be non-NULL. paBlob may be NULL or non-NULL. */
120779 assert( pnBlob);
120781 if( p->pSegments ){
120782 rc = sqlite3_blob_reopen(p->pSegments, iBlockid);
120783 }else{
120784 if( 0==p->zSegmentsTbl ){
120785 p->zSegmentsTbl = sqlite3_mprintf("%s_segments", p->zName);
120786 if( 0==p->zSegmentsTbl ) return SQLITE_NOMEM;
120788 rc = sqlite3_blob_open(
120789 p->db, p->zDb, p->zSegmentsTbl, "block", iBlockid, 0, &p->pSegments
120793 if( rc==SQLITE_OK ){
120794 int nByte = sqlite3_blob_bytes(p->pSegments);
120795 if( paBlob ){
120796 char *aByte = sqlite3_malloc(nByte + FTS3_NODE_PADDING);
120797 if( !aByte ){
120798 rc = SQLITE_NOMEM;
120799 }else{
120800 rc = sqlite3_blob_read(p->pSegments, aByte, nByte, 0);
120801 memset(&aByte[nByte], 0, FTS3_NODE_PADDING);
120802 if( rc!=SQLITE_OK ){
120803 sqlite3_free(aByte);
120804 aByte = 0;
120807 *paBlob = aByte;
120809 *pnBlob = nByte;
120812 return rc;
120816 ** Close the blob handle at p->pSegments, if it is open. See comments above
120817 ** the sqlite3Fts3ReadBlock() function for details.
120819 SQLITE_PRIVATE void sqlite3Fts3SegmentsClose(Fts3Table *p){
120820 sqlite3_blob_close(p->pSegments);
120821 p->pSegments = 0;
120825 ** Move the iterator passed as the first argument to the next term in the
120826 ** segment. If successful, SQLITE_OK is returned. If there is no next term,
120827 ** SQLITE_DONE. Otherwise, an SQLite error code.
120829 static int fts3SegReaderNext(Fts3Table *p, Fts3SegReader *pReader){
120830 char *pNext; /* Cursor variable */
120831 int nPrefix; /* Number of bytes in term prefix */
120832 int nSuffix; /* Number of bytes in term suffix */
120834 if( !pReader->aDoclist ){
120835 pNext = pReader->aNode;
120836 }else{
120837 pNext = &pReader->aDoclist[pReader->nDoclist];
120840 if( !pNext || pNext>=&pReader->aNode[pReader->nNode] ){
120841 int rc; /* Return code from Fts3ReadBlock() */
120843 if( fts3SegReaderIsPending(pReader) ){
120844 Fts3HashElem *pElem = *(pReader->ppNextElem);
120845 if( pElem==0 ){
120846 pReader->aNode = 0;
120847 }else{
120848 PendingList *pList = (PendingList *)fts3HashData(pElem);
120849 pReader->zTerm = (char *)fts3HashKey(pElem);
120850 pReader->nTerm = fts3HashKeysize(pElem);
120851 pReader->nNode = pReader->nDoclist = pList->nData + 1;
120852 pReader->aNode = pReader->aDoclist = pList->aData;
120853 pReader->ppNextElem++;
120854 assert( pReader->aNode );
120856 return SQLITE_OK;
120859 if( !fts3SegReaderIsRootOnly(pReader) ){
120860 sqlite3_free(pReader->aNode);
120862 pReader->aNode = 0;
120864 /* If iCurrentBlock>=iLeafEndBlock, this is an EOF condition. All leaf
120865 ** blocks have already been traversed. */
120866 assert( pReader->iCurrentBlock<=pReader->iLeafEndBlock );
120867 if( pReader->iCurrentBlock>=pReader->iLeafEndBlock ){
120868 return SQLITE_OK;
120871 rc = sqlite3Fts3ReadBlock(
120872 p, ++pReader->iCurrentBlock, &pReader->aNode, &pReader->nNode
120874 if( rc!=SQLITE_OK ) return rc;
120875 pNext = pReader->aNode;
120878 /* Because of the FTS3_NODE_PADDING bytes of padding, the following is
120879 ** safe (no risk of overread) even if the node data is corrupted.
120881 pNext += sqlite3Fts3GetVarint32(pNext, &nPrefix);
120882 pNext += sqlite3Fts3GetVarint32(pNext, &nSuffix);
120883 if( nPrefix<0 || nSuffix<=0
120884 || &pNext[nSuffix]>&pReader->aNode[pReader->nNode]
120886 return SQLITE_CORRUPT;
120889 if( nPrefix+nSuffix>pReader->nTermAlloc ){
120890 int nNew = (nPrefix+nSuffix)*2;
120891 char *zNew = sqlite3_realloc(pReader->zTerm, nNew);
120892 if( !zNew ){
120893 return SQLITE_NOMEM;
120895 pReader->zTerm = zNew;
120896 pReader->nTermAlloc = nNew;
120898 memcpy(&pReader->zTerm[nPrefix], pNext, nSuffix);
120899 pReader->nTerm = nPrefix+nSuffix;
120900 pNext += nSuffix;
120901 pNext += sqlite3Fts3GetVarint32(pNext, &pReader->nDoclist);
120902 pReader->aDoclist = pNext;
120903 pReader->pOffsetList = 0;
120905 /* Check that the doclist does not appear to extend past the end of the
120906 ** b-tree node. And that the final byte of the doclist is 0x00. If either
120907 ** of these statements is untrue, then the data structure is corrupt.
120909 if( &pReader->aDoclist[pReader->nDoclist]>&pReader->aNode[pReader->nNode]
120910 || pReader->aDoclist[pReader->nDoclist-1]
120912 return SQLITE_CORRUPT;
120914 return SQLITE_OK;
120918 ** Set the SegReader to point to the first docid in the doclist associated
120919 ** with the current term.
120921 static void fts3SegReaderFirstDocid(Fts3SegReader *pReader){
120922 int n;
120923 assert( pReader->aDoclist );
120924 assert( !pReader->pOffsetList );
120925 n = sqlite3Fts3GetVarint(pReader->aDoclist, &pReader->iDocid);
120926 pReader->pOffsetList = &pReader->aDoclist[n];
120930 ** Advance the SegReader to point to the next docid in the doclist
120931 ** associated with the current term.
120933 ** If arguments ppOffsetList and pnOffsetList are not NULL, then
120934 ** *ppOffsetList is set to point to the first column-offset list
120935 ** in the doclist entry (i.e. immediately past the docid varint).
120936 ** *pnOffsetList is set to the length of the set of column-offset
120937 ** lists, not including the nul-terminator byte. For example:
120939 static void fts3SegReaderNextDocid(
120940 Fts3SegReader *pReader,
120941 char **ppOffsetList,
120942 int *pnOffsetList
120944 char *p = pReader->pOffsetList;
120945 char c = 0;
120947 /* Pointer p currently points at the first byte of an offset list. The
120948 ** following two lines advance it to point one byte past the end of
120949 ** the same offset list.
120951 while( *p | c ) c = *p++ & 0x80;
120954 /* If required, populate the output variables with a pointer to and the
120955 ** size of the previous offset-list.
120957 if( ppOffsetList ){
120958 *ppOffsetList = pReader->pOffsetList;
120959 *pnOffsetList = (int)(p - pReader->pOffsetList - 1);
120962 /* If there are no more entries in the doclist, set pOffsetList to
120963 ** NULL. Otherwise, set Fts3SegReader.iDocid to the next docid and
120964 ** Fts3SegReader.pOffsetList to point to the next offset list before
120965 ** returning.
120967 if( p>=&pReader->aDoclist[pReader->nDoclist] ){
120968 pReader->pOffsetList = 0;
120969 }else{
120970 sqlite3_int64 iDelta;
120971 pReader->pOffsetList = p + sqlite3Fts3GetVarint(p, &iDelta);
120972 pReader->iDocid += iDelta;
120977 ** This function is called to estimate the amount of data that will be
120978 ** loaded from the disk If SegReaderIterate() is called on this seg-reader,
120979 ** in units of average document size.
120981 ** This can be used as follows: If the caller has a small doclist that
120982 ** contains references to N documents, and is considering merging it with
120983 ** a large doclist (size X "average documents"), it may opt not to load
120984 ** the large doclist if X>N.
120986 SQLITE_PRIVATE int sqlite3Fts3SegReaderCost(
120987 Fts3Cursor *pCsr, /* FTS3 cursor handle */
120988 Fts3SegReader *pReader, /* Segment-reader handle */
120989 int *pnCost /* IN/OUT: Number of bytes read */
120991 Fts3Table *p = (Fts3Table*)pCsr->base.pVtab;
120992 int rc = SQLITE_OK; /* Return code */
120993 int nCost = 0; /* Cost in bytes to return */
120994 int pgsz = p->nPgsz; /* Database page size */
120996 /* If this seg-reader is reading the pending-terms table, or if all data
120997 ** for the segment is stored on the root page of the b-tree, then the cost
120998 ** is zero. In this case all required data is already in main memory.
121000 if( p->bHasStat
121001 && !fts3SegReaderIsPending(pReader)
121002 && !fts3SegReaderIsRootOnly(pReader)
121004 int nBlob = 0;
121005 sqlite3_int64 iBlock;
121007 if( pCsr->nRowAvg==0 ){
121008 /* The average document size, which is required to calculate the cost
121009 ** of each doclist, has not yet been determined. Read the required
121010 ** data from the %_stat table to calculate it.
121012 ** Entry 0 of the %_stat table is a blob containing (nCol+1) FTS3
121013 ** varints, where nCol is the number of columns in the FTS3 table.
121014 ** The first varint is the number of documents currently stored in
121015 ** the table. The following nCol varints contain the total amount of
121016 ** data stored in all rows of each column of the table, from left
121017 ** to right.
121019 sqlite3_stmt *pStmt;
121020 sqlite3_int64 nDoc = 0;
121021 sqlite3_int64 nByte = 0;
121022 const char *pEnd;
121023 const char *a;
121025 rc = sqlite3Fts3SelectDoctotal(p, &pStmt);
121026 if( rc!=SQLITE_OK ) return rc;
121027 a = sqlite3_column_blob(pStmt, 0);
121028 assert( a );
121030 pEnd = &a[sqlite3_column_bytes(pStmt, 0)];
121031 a += sqlite3Fts3GetVarint(a, &nDoc);
121032 while( a<pEnd ){
121033 a += sqlite3Fts3GetVarint(a, &nByte);
121035 if( nDoc==0 || nByte==0 ){
121036 sqlite3_reset(pStmt);
121037 return SQLITE_CORRUPT;
121040 pCsr->nRowAvg = (int)(((nByte / nDoc) + pgsz) / pgsz);
121041 assert( pCsr->nRowAvg>0 );
121042 rc = sqlite3_reset(pStmt);
121043 if( rc!=SQLITE_OK ) return rc;
121046 /* Assume that a blob flows over onto overflow pages if it is larger
121047 ** than (pgsz-35) bytes in size (the file-format documentation
121048 ** confirms this).
121050 for(iBlock=pReader->iStartBlock; iBlock<=pReader->iLeafEndBlock; iBlock++){
121051 rc = sqlite3Fts3ReadBlock(p, iBlock, 0, &nBlob);
121052 if( rc!=SQLITE_OK ) break;
121053 if( (nBlob+35)>pgsz ){
121054 int nOvfl = (nBlob + 34)/pgsz;
121055 nCost += ((nOvfl + pCsr->nRowAvg - 1)/pCsr->nRowAvg);
121060 *pnCost += nCost;
121061 return rc;
121065 ** Free all allocations associated with the iterator passed as the
121066 ** second argument.
121068 SQLITE_PRIVATE void sqlite3Fts3SegReaderFree(Fts3SegReader *pReader){
121069 if( pReader && !fts3SegReaderIsPending(pReader) ){
121070 sqlite3_free(pReader->zTerm);
121071 if( !fts3SegReaderIsRootOnly(pReader) ){
121072 sqlite3_free(pReader->aNode);
121075 sqlite3_free(pReader);
121079 ** Allocate a new SegReader object.
121081 SQLITE_PRIVATE int sqlite3Fts3SegReaderNew(
121082 int iAge, /* Segment "age". */
121083 sqlite3_int64 iStartLeaf, /* First leaf to traverse */
121084 sqlite3_int64 iEndLeaf, /* Final leaf to traverse */
121085 sqlite3_int64 iEndBlock, /* Final block of segment */
121086 const char *zRoot, /* Buffer containing root node */
121087 int nRoot, /* Size of buffer containing root node */
121088 Fts3SegReader **ppReader /* OUT: Allocated Fts3SegReader */
121090 int rc = SQLITE_OK; /* Return code */
121091 Fts3SegReader *pReader; /* Newly allocated SegReader object */
121092 int nExtra = 0; /* Bytes to allocate segment root node */
121094 assert( iStartLeaf<=iEndLeaf );
121095 if( iStartLeaf==0 ){
121096 nExtra = nRoot + FTS3_NODE_PADDING;
121099 pReader = (Fts3SegReader *)sqlite3_malloc(sizeof(Fts3SegReader) + nExtra);
121100 if( !pReader ){
121101 return SQLITE_NOMEM;
121103 memset(pReader, 0, sizeof(Fts3SegReader));
121104 pReader->iIdx = iAge;
121105 pReader->iStartBlock = iStartLeaf;
121106 pReader->iLeafEndBlock = iEndLeaf;
121107 pReader->iEndBlock = iEndBlock;
121109 if( nExtra ){
121110 /* The entire segment is stored in the root node. */
121111 pReader->aNode = (char *)&pReader[1];
121112 pReader->nNode = nRoot;
121113 memcpy(pReader->aNode, zRoot, nRoot);
121114 memset(&pReader->aNode[nRoot], 0, FTS3_NODE_PADDING);
121115 }else{
121116 pReader->iCurrentBlock = iStartLeaf-1;
121119 if( rc==SQLITE_OK ){
121120 *ppReader = pReader;
121121 }else{
121122 sqlite3Fts3SegReaderFree(pReader);
121124 return rc;
121128 ** This is a comparison function used as a qsort() callback when sorting
121129 ** an array of pending terms by term. This occurs as part of flushing
121130 ** the contents of the pending-terms hash table to the database.
121132 static int fts3CompareElemByTerm(const void *lhs, const void *rhs){
121133 char *z1 = fts3HashKey(*(Fts3HashElem **)lhs);
121134 char *z2 = fts3HashKey(*(Fts3HashElem **)rhs);
121135 int n1 = fts3HashKeysize(*(Fts3HashElem **)lhs);
121136 int n2 = fts3HashKeysize(*(Fts3HashElem **)rhs);
121138 int n = (n1<n2 ? n1 : n2);
121139 int c = memcmp(z1, z2, n);
121140 if( c==0 ){
121141 c = n1 - n2;
121143 return c;
121147 ** This function is used to allocate an Fts3SegReader that iterates through
121148 ** a subset of the terms stored in the Fts3Table.pendingTerms array.
121150 SQLITE_PRIVATE int sqlite3Fts3SegReaderPending(
121151 Fts3Table *p, /* Virtual table handle */
121152 const char *zTerm, /* Term to search for */
121153 int nTerm, /* Size of buffer zTerm */
121154 int isPrefix, /* True for a term-prefix query */
121155 Fts3SegReader **ppReader /* OUT: SegReader for pending-terms */
121157 Fts3SegReader *pReader = 0; /* Fts3SegReader object to return */
121158 Fts3HashElem *pE; /* Iterator variable */
121159 Fts3HashElem **aElem = 0; /* Array of term hash entries to scan */
121160 int nElem = 0; /* Size of array at aElem */
121161 int rc = SQLITE_OK; /* Return Code */
121163 if( isPrefix ){
121164 int nAlloc = 0; /* Size of allocated array at aElem */
121166 for(pE=fts3HashFirst(&p->pendingTerms); pE; pE=fts3HashNext(pE)){
121167 char *zKey = (char *)fts3HashKey(pE);
121168 int nKey = fts3HashKeysize(pE);
121169 if( nTerm==0 || (nKey>=nTerm && 0==memcmp(zKey, zTerm, nTerm)) ){
121170 if( nElem==nAlloc ){
121171 Fts3HashElem **aElem2;
121172 nAlloc += 16;
121173 aElem2 = (Fts3HashElem **)sqlite3_realloc(
121174 aElem, nAlloc*sizeof(Fts3HashElem *)
121176 if( !aElem2 ){
121177 rc = SQLITE_NOMEM;
121178 nElem = 0;
121179 break;
121181 aElem = aElem2;
121183 aElem[nElem++] = pE;
121187 /* If more than one term matches the prefix, sort the Fts3HashElem
121188 ** objects in term order using qsort(). This uses the same comparison
121189 ** callback as is used when flushing terms to disk.
121191 if( nElem>1 ){
121192 qsort(aElem, nElem, sizeof(Fts3HashElem *), fts3CompareElemByTerm);
121195 }else{
121196 pE = fts3HashFindElem(&p->pendingTerms, zTerm, nTerm);
121197 if( pE ){
121198 aElem = &pE;
121199 nElem = 1;
121203 if( nElem>0 ){
121204 int nByte = sizeof(Fts3SegReader) + (nElem+1)*sizeof(Fts3HashElem *);
121205 pReader = (Fts3SegReader *)sqlite3_malloc(nByte);
121206 if( !pReader ){
121207 rc = SQLITE_NOMEM;
121208 }else{
121209 memset(pReader, 0, nByte);
121210 pReader->iIdx = 0x7FFFFFFF;
121211 pReader->ppNextElem = (Fts3HashElem **)&pReader[1];
121212 memcpy(pReader->ppNextElem, aElem, nElem*sizeof(Fts3HashElem *));
121216 if( isPrefix ){
121217 sqlite3_free(aElem);
121219 *ppReader = pReader;
121220 return rc;
121224 ** Compare the entries pointed to by two Fts3SegReader structures.
121225 ** Comparison is as follows:
121227 ** 1) EOF is greater than not EOF.
121229 ** 2) The current terms (if any) are compared using memcmp(). If one
121230 ** term is a prefix of another, the longer term is considered the
121231 ** larger.
121233 ** 3) By segment age. An older segment is considered larger.
121235 static int fts3SegReaderCmp(Fts3SegReader *pLhs, Fts3SegReader *pRhs){
121236 int rc;
121237 if( pLhs->aNode && pRhs->aNode ){
121238 int rc2 = pLhs->nTerm - pRhs->nTerm;
121239 if( rc2<0 ){
121240 rc = memcmp(pLhs->zTerm, pRhs->zTerm, pLhs->nTerm);
121241 }else{
121242 rc = memcmp(pLhs->zTerm, pRhs->zTerm, pRhs->nTerm);
121244 if( rc==0 ){
121245 rc = rc2;
121247 }else{
121248 rc = (pLhs->aNode==0) - (pRhs->aNode==0);
121250 if( rc==0 ){
121251 rc = pRhs->iIdx - pLhs->iIdx;
121253 assert( rc!=0 );
121254 return rc;
121258 ** A different comparison function for SegReader structures. In this
121259 ** version, it is assumed that each SegReader points to an entry in
121260 ** a doclist for identical terms. Comparison is made as follows:
121262 ** 1) EOF (end of doclist in this case) is greater than not EOF.
121264 ** 2) By current docid.
121266 ** 3) By segment age. An older segment is considered larger.
121268 static int fts3SegReaderDoclistCmp(Fts3SegReader *pLhs, Fts3SegReader *pRhs){
121269 int rc = (pLhs->pOffsetList==0)-(pRhs->pOffsetList==0);
121270 if( rc==0 ){
121271 if( pLhs->iDocid==pRhs->iDocid ){
121272 rc = pRhs->iIdx - pLhs->iIdx;
121273 }else{
121274 rc = (pLhs->iDocid > pRhs->iDocid) ? 1 : -1;
121277 assert( pLhs->aNode && pRhs->aNode );
121278 return rc;
121282 ** Compare the term that the Fts3SegReader object passed as the first argument
121283 ** points to with the term specified by arguments zTerm and nTerm.
121285 ** If the pSeg iterator is already at EOF, return 0. Otherwise, return
121286 ** -ve if the pSeg term is less than zTerm/nTerm, 0 if the two terms are
121287 ** equal, or +ve if the pSeg term is greater than zTerm/nTerm.
121289 static int fts3SegReaderTermCmp(
121290 Fts3SegReader *pSeg, /* Segment reader object */
121291 const char *zTerm, /* Term to compare to */
121292 int nTerm /* Size of term zTerm in bytes */
121294 int res = 0;
121295 if( pSeg->aNode ){
121296 if( pSeg->nTerm>nTerm ){
121297 res = memcmp(pSeg->zTerm, zTerm, nTerm);
121298 }else{
121299 res = memcmp(pSeg->zTerm, zTerm, pSeg->nTerm);
121301 if( res==0 ){
121302 res = pSeg->nTerm-nTerm;
121305 return res;
121309 ** Argument apSegment is an array of nSegment elements. It is known that
121310 ** the final (nSegment-nSuspect) members are already in sorted order
121311 ** (according to the comparison function provided). This function shuffles
121312 ** the array around until all entries are in sorted order.
121314 static void fts3SegReaderSort(
121315 Fts3SegReader **apSegment, /* Array to sort entries of */
121316 int nSegment, /* Size of apSegment array */
121317 int nSuspect, /* Unsorted entry count */
121318 int (*xCmp)(Fts3SegReader *, Fts3SegReader *) /* Comparison function */
121320 int i; /* Iterator variable */
121322 assert( nSuspect<=nSegment );
121324 if( nSuspect==nSegment ) nSuspect--;
121325 for(i=nSuspect-1; i>=0; i--){
121326 int j;
121327 for(j=i; j<(nSegment-1); j++){
121328 Fts3SegReader *pTmp;
121329 if( xCmp(apSegment[j], apSegment[j+1])<0 ) break;
121330 pTmp = apSegment[j+1];
121331 apSegment[j+1] = apSegment[j];
121332 apSegment[j] = pTmp;
121336 #ifndef NDEBUG
121337 /* Check that the list really is sorted now. */
121338 for(i=0; i<(nSuspect-1); i++){
121339 assert( xCmp(apSegment[i], apSegment[i+1])<0 );
121341 #endif
121345 ** Insert a record into the %_segments table.
121347 static int fts3WriteSegment(
121348 Fts3Table *p, /* Virtual table handle */
121349 sqlite3_int64 iBlock, /* Block id for new block */
121350 char *z, /* Pointer to buffer containing block data */
121351 int n /* Size of buffer z in bytes */
121353 sqlite3_stmt *pStmt;
121354 int rc = fts3SqlStmt(p, SQL_INSERT_SEGMENTS, &pStmt, 0);
121355 if( rc==SQLITE_OK ){
121356 sqlite3_bind_int64(pStmt, 1, iBlock);
121357 sqlite3_bind_blob(pStmt, 2, z, n, SQLITE_STATIC);
121358 sqlite3_step(pStmt);
121359 rc = sqlite3_reset(pStmt);
121361 return rc;
121365 ** Insert a record into the %_segdir table.
121367 static int fts3WriteSegdir(
121368 Fts3Table *p, /* Virtual table handle */
121369 int iLevel, /* Value for "level" field */
121370 int iIdx, /* Value for "idx" field */
121371 sqlite3_int64 iStartBlock, /* Value for "start_block" field */
121372 sqlite3_int64 iLeafEndBlock, /* Value for "leaves_end_block" field */
121373 sqlite3_int64 iEndBlock, /* Value for "end_block" field */
121374 char *zRoot, /* Blob value for "root" field */
121375 int nRoot /* Number of bytes in buffer zRoot */
121377 sqlite3_stmt *pStmt;
121378 int rc = fts3SqlStmt(p, SQL_INSERT_SEGDIR, &pStmt, 0);
121379 if( rc==SQLITE_OK ){
121380 sqlite3_bind_int(pStmt, 1, iLevel);
121381 sqlite3_bind_int(pStmt, 2, iIdx);
121382 sqlite3_bind_int64(pStmt, 3, iStartBlock);
121383 sqlite3_bind_int64(pStmt, 4, iLeafEndBlock);
121384 sqlite3_bind_int64(pStmt, 5, iEndBlock);
121385 sqlite3_bind_blob(pStmt, 6, zRoot, nRoot, SQLITE_STATIC);
121386 sqlite3_step(pStmt);
121387 rc = sqlite3_reset(pStmt);
121389 return rc;
121393 ** Return the size of the common prefix (if any) shared by zPrev and
121394 ** zNext, in bytes. For example,
121396 ** fts3PrefixCompress("abc", 3, "abcdef", 6) // returns 3
121397 ** fts3PrefixCompress("abX", 3, "abcdef", 6) // returns 2
121398 ** fts3PrefixCompress("abX", 3, "Xbcdef", 6) // returns 0
121400 static int fts3PrefixCompress(
121401 const char *zPrev, /* Buffer containing previous term */
121402 int nPrev, /* Size of buffer zPrev in bytes */
121403 const char *zNext, /* Buffer containing next term */
121404 int nNext /* Size of buffer zNext in bytes */
121406 int n;
121407 UNUSED_PARAMETER(nNext);
121408 for(n=0; n<nPrev && zPrev[n]==zNext[n]; n++);
121409 return n;
121413 ** Add term zTerm to the SegmentNode. It is guaranteed that zTerm is larger
121414 ** (according to memcmp) than the previous term.
121416 static int fts3NodeAddTerm(
121417 Fts3Table *p, /* Virtual table handle */
121418 SegmentNode **ppTree, /* IN/OUT: SegmentNode handle */
121419 int isCopyTerm, /* True if zTerm/nTerm is transient */
121420 const char *zTerm, /* Pointer to buffer containing term */
121421 int nTerm /* Size of term in bytes */
121423 SegmentNode *pTree = *ppTree;
121424 int rc;
121425 SegmentNode *pNew;
121427 /* First try to append the term to the current node. Return early if
121428 ** this is possible.
121430 if( pTree ){
121431 int nData = pTree->nData; /* Current size of node in bytes */
121432 int nReq = nData; /* Required space after adding zTerm */
121433 int nPrefix; /* Number of bytes of prefix compression */
121434 int nSuffix; /* Suffix length */
121436 nPrefix = fts3PrefixCompress(pTree->zTerm, pTree->nTerm, zTerm, nTerm);
121437 nSuffix = nTerm-nPrefix;
121439 nReq += sqlite3Fts3VarintLen(nPrefix)+sqlite3Fts3VarintLen(nSuffix)+nSuffix;
121440 if( nReq<=p->nNodeSize || !pTree->zTerm ){
121442 if( nReq>p->nNodeSize ){
121443 /* An unusual case: this is the first term to be added to the node
121444 ** and the static node buffer (p->nNodeSize bytes) is not large
121445 ** enough. Use a separately malloced buffer instead This wastes
121446 ** p->nNodeSize bytes, but since this scenario only comes about when
121447 ** the database contain two terms that share a prefix of almost 2KB,
121448 ** this is not expected to be a serious problem.
121450 assert( pTree->aData==(char *)&pTree[1] );
121451 pTree->aData = (char *)sqlite3_malloc(nReq);
121452 if( !pTree->aData ){
121453 return SQLITE_NOMEM;
121457 if( pTree->zTerm ){
121458 /* There is no prefix-length field for first term in a node */
121459 nData += sqlite3Fts3PutVarint(&pTree->aData[nData], nPrefix);
121462 nData += sqlite3Fts3PutVarint(&pTree->aData[nData], nSuffix);
121463 memcpy(&pTree->aData[nData], &zTerm[nPrefix], nSuffix);
121464 pTree->nData = nData + nSuffix;
121465 pTree->nEntry++;
121467 if( isCopyTerm ){
121468 if( pTree->nMalloc<nTerm ){
121469 char *zNew = sqlite3_realloc(pTree->zMalloc, nTerm*2);
121470 if( !zNew ){
121471 return SQLITE_NOMEM;
121473 pTree->nMalloc = nTerm*2;
121474 pTree->zMalloc = zNew;
121476 pTree->zTerm = pTree->zMalloc;
121477 memcpy(pTree->zTerm, zTerm, nTerm);
121478 pTree->nTerm = nTerm;
121479 }else{
121480 pTree->zTerm = (char *)zTerm;
121481 pTree->nTerm = nTerm;
121483 return SQLITE_OK;
121487 /* If control flows to here, it was not possible to append zTerm to the
121488 ** current node. Create a new node (a right-sibling of the current node).
121489 ** If this is the first node in the tree, the term is added to it.
121491 ** Otherwise, the term is not added to the new node, it is left empty for
121492 ** now. Instead, the term is inserted into the parent of pTree. If pTree
121493 ** has no parent, one is created here.
121495 pNew = (SegmentNode *)sqlite3_malloc(sizeof(SegmentNode) + p->nNodeSize);
121496 if( !pNew ){
121497 return SQLITE_NOMEM;
121499 memset(pNew, 0, sizeof(SegmentNode));
121500 pNew->nData = 1 + FTS3_VARINT_MAX;
121501 pNew->aData = (char *)&pNew[1];
121503 if( pTree ){
121504 SegmentNode *pParent = pTree->pParent;
121505 rc = fts3NodeAddTerm(p, &pParent, isCopyTerm, zTerm, nTerm);
121506 if( pTree->pParent==0 ){
121507 pTree->pParent = pParent;
121509 pTree->pRight = pNew;
121510 pNew->pLeftmost = pTree->pLeftmost;
121511 pNew->pParent = pParent;
121512 pNew->zMalloc = pTree->zMalloc;
121513 pNew->nMalloc = pTree->nMalloc;
121514 pTree->zMalloc = 0;
121515 }else{
121516 pNew->pLeftmost = pNew;
121517 rc = fts3NodeAddTerm(p, &pNew, isCopyTerm, zTerm, nTerm);
121520 *ppTree = pNew;
121521 return rc;
121525 ** Helper function for fts3NodeWrite().
121527 static int fts3TreeFinishNode(
121528 SegmentNode *pTree,
121529 int iHeight,
121530 sqlite3_int64 iLeftChild
121532 int nStart;
121533 assert( iHeight>=1 && iHeight<128 );
121534 nStart = FTS3_VARINT_MAX - sqlite3Fts3VarintLen(iLeftChild);
121535 pTree->aData[nStart] = (char)iHeight;
121536 sqlite3Fts3PutVarint(&pTree->aData[nStart+1], iLeftChild);
121537 return nStart;
121541 ** Write the buffer for the segment node pTree and all of its peers to the
121542 ** database. Then call this function recursively to write the parent of
121543 ** pTree and its peers to the database.
121545 ** Except, if pTree is a root node, do not write it to the database. Instead,
121546 ** set output variables *paRoot and *pnRoot to contain the root node.
121548 ** If successful, SQLITE_OK is returned and output variable *piLast is
121549 ** set to the largest blockid written to the database (or zero if no
121550 ** blocks were written to the db). Otherwise, an SQLite error code is
121551 ** returned.
121553 static int fts3NodeWrite(
121554 Fts3Table *p, /* Virtual table handle */
121555 SegmentNode *pTree, /* SegmentNode handle */
121556 int iHeight, /* Height of this node in tree */
121557 sqlite3_int64 iLeaf, /* Block id of first leaf node */
121558 sqlite3_int64 iFree, /* Block id of next free slot in %_segments */
121559 sqlite3_int64 *piLast, /* OUT: Block id of last entry written */
121560 char **paRoot, /* OUT: Data for root node */
121561 int *pnRoot /* OUT: Size of root node in bytes */
121563 int rc = SQLITE_OK;
121565 if( !pTree->pParent ){
121566 /* Root node of the tree. */
121567 int nStart = fts3TreeFinishNode(pTree, iHeight, iLeaf);
121568 *piLast = iFree-1;
121569 *pnRoot = pTree->nData - nStart;
121570 *paRoot = &pTree->aData[nStart];
121571 }else{
121572 SegmentNode *pIter;
121573 sqlite3_int64 iNextFree = iFree;
121574 sqlite3_int64 iNextLeaf = iLeaf;
121575 for(pIter=pTree->pLeftmost; pIter && rc==SQLITE_OK; pIter=pIter->pRight){
121576 int nStart = fts3TreeFinishNode(pIter, iHeight, iNextLeaf);
121577 int nWrite = pIter->nData - nStart;
121579 rc = fts3WriteSegment(p, iNextFree, &pIter->aData[nStart], nWrite);
121580 iNextFree++;
121581 iNextLeaf += (pIter->nEntry+1);
121583 if( rc==SQLITE_OK ){
121584 assert( iNextLeaf==iFree );
121585 rc = fts3NodeWrite(
121586 p, pTree->pParent, iHeight+1, iFree, iNextFree, piLast, paRoot, pnRoot
121591 return rc;
121595 ** Free all memory allocations associated with the tree pTree.
121597 static void fts3NodeFree(SegmentNode *pTree){
121598 if( pTree ){
121599 SegmentNode *p = pTree->pLeftmost;
121600 fts3NodeFree(p->pParent);
121601 while( p ){
121602 SegmentNode *pRight = p->pRight;
121603 if( p->aData!=(char *)&p[1] ){
121604 sqlite3_free(p->aData);
121606 assert( pRight==0 || p->zMalloc==0 );
121607 sqlite3_free(p->zMalloc);
121608 sqlite3_free(p);
121609 p = pRight;
121615 ** Add a term to the segment being constructed by the SegmentWriter object
121616 ** *ppWriter. When adding the first term to a segment, *ppWriter should
121617 ** be passed NULL. This function will allocate a new SegmentWriter object
121618 ** and return it via the input/output variable *ppWriter in this case.
121620 ** If successful, SQLITE_OK is returned. Otherwise, an SQLite error code.
121622 static int fts3SegWriterAdd(
121623 Fts3Table *p, /* Virtual table handle */
121624 SegmentWriter **ppWriter, /* IN/OUT: SegmentWriter handle */
121625 int isCopyTerm, /* True if buffer zTerm must be copied */
121626 const char *zTerm, /* Pointer to buffer containing term */
121627 int nTerm, /* Size of term in bytes */
121628 const char *aDoclist, /* Pointer to buffer containing doclist */
121629 int nDoclist /* Size of doclist in bytes */
121631 int nPrefix; /* Size of term prefix in bytes */
121632 int nSuffix; /* Size of term suffix in bytes */
121633 int nReq; /* Number of bytes required on leaf page */
121634 int nData;
121635 SegmentWriter *pWriter = *ppWriter;
121637 if( !pWriter ){
121638 int rc;
121639 sqlite3_stmt *pStmt;
121641 /* Allocate the SegmentWriter structure */
121642 pWriter = (SegmentWriter *)sqlite3_malloc(sizeof(SegmentWriter));
121643 if( !pWriter ) return SQLITE_NOMEM;
121644 memset(pWriter, 0, sizeof(SegmentWriter));
121645 *ppWriter = pWriter;
121647 /* Allocate a buffer in which to accumulate data */
121648 pWriter->aData = (char *)sqlite3_malloc(p->nNodeSize);
121649 if( !pWriter->aData ) return SQLITE_NOMEM;
121650 pWriter->nSize = p->nNodeSize;
121652 /* Find the next free blockid in the %_segments table */
121653 rc = fts3SqlStmt(p, SQL_NEXT_SEGMENTS_ID, &pStmt, 0);
121654 if( rc!=SQLITE_OK ) return rc;
121655 if( SQLITE_ROW==sqlite3_step(pStmt) ){
121656 pWriter->iFree = sqlite3_column_int64(pStmt, 0);
121657 pWriter->iFirst = pWriter->iFree;
121659 rc = sqlite3_reset(pStmt);
121660 if( rc!=SQLITE_OK ) return rc;
121662 nData = pWriter->nData;
121664 nPrefix = fts3PrefixCompress(pWriter->zTerm, pWriter->nTerm, zTerm, nTerm);
121665 nSuffix = nTerm-nPrefix;
121667 /* Figure out how many bytes are required by this new entry */
121668 nReq = sqlite3Fts3VarintLen(nPrefix) + /* varint containing prefix size */
121669 sqlite3Fts3VarintLen(nSuffix) + /* varint containing suffix size */
121670 nSuffix + /* Term suffix */
121671 sqlite3Fts3VarintLen(nDoclist) + /* Size of doclist */
121672 nDoclist; /* Doclist data */
121674 if( nData>0 && nData+nReq>p->nNodeSize ){
121675 int rc;
121677 /* The current leaf node is full. Write it out to the database. */
121678 rc = fts3WriteSegment(p, pWriter->iFree++, pWriter->aData, nData);
121679 if( rc!=SQLITE_OK ) return rc;
121681 /* Add the current term to the interior node tree. The term added to
121682 ** the interior tree must:
121684 ** a) be greater than the largest term on the leaf node just written
121685 ** to the database (still available in pWriter->zTerm), and
121687 ** b) be less than or equal to the term about to be added to the new
121688 ** leaf node (zTerm/nTerm).
121690 ** In other words, it must be the prefix of zTerm 1 byte longer than
121691 ** the common prefix (if any) of zTerm and pWriter->zTerm.
121693 assert( nPrefix<nTerm );
121694 rc = fts3NodeAddTerm(p, &pWriter->pTree, isCopyTerm, zTerm, nPrefix+1);
121695 if( rc!=SQLITE_OK ) return rc;
121697 nData = 0;
121698 pWriter->nTerm = 0;
121700 nPrefix = 0;
121701 nSuffix = nTerm;
121702 nReq = 1 + /* varint containing prefix size */
121703 sqlite3Fts3VarintLen(nTerm) + /* varint containing suffix size */
121704 nTerm + /* Term suffix */
121705 sqlite3Fts3VarintLen(nDoclist) + /* Size of doclist */
121706 nDoclist; /* Doclist data */
121709 /* If the buffer currently allocated is too small for this entry, realloc
121710 ** the buffer to make it large enough.
121712 if( nReq>pWriter->nSize ){
121713 char *aNew = sqlite3_realloc(pWriter->aData, nReq);
121714 if( !aNew ) return SQLITE_NOMEM;
121715 pWriter->aData = aNew;
121716 pWriter->nSize = nReq;
121718 assert( nData+nReq<=pWriter->nSize );
121720 /* Append the prefix-compressed term and doclist to the buffer. */
121721 nData += sqlite3Fts3PutVarint(&pWriter->aData[nData], nPrefix);
121722 nData += sqlite3Fts3PutVarint(&pWriter->aData[nData], nSuffix);
121723 memcpy(&pWriter->aData[nData], &zTerm[nPrefix], nSuffix);
121724 nData += nSuffix;
121725 nData += sqlite3Fts3PutVarint(&pWriter->aData[nData], nDoclist);
121726 memcpy(&pWriter->aData[nData], aDoclist, nDoclist);
121727 pWriter->nData = nData + nDoclist;
121729 /* Save the current term so that it can be used to prefix-compress the next.
121730 ** If the isCopyTerm parameter is true, then the buffer pointed to by
121731 ** zTerm is transient, so take a copy of the term data. Otherwise, just
121732 ** store a copy of the pointer.
121734 if( isCopyTerm ){
121735 if( nTerm>pWriter->nMalloc ){
121736 char *zNew = sqlite3_realloc(pWriter->zMalloc, nTerm*2);
121737 if( !zNew ){
121738 return SQLITE_NOMEM;
121740 pWriter->nMalloc = nTerm*2;
121741 pWriter->zMalloc = zNew;
121742 pWriter->zTerm = zNew;
121744 assert( pWriter->zTerm==pWriter->zMalloc );
121745 memcpy(pWriter->zTerm, zTerm, nTerm);
121746 }else{
121747 pWriter->zTerm = (char *)zTerm;
121749 pWriter->nTerm = nTerm;
121751 return SQLITE_OK;
121755 ** Flush all data associated with the SegmentWriter object pWriter to the
121756 ** database. This function must be called after all terms have been added
121757 ** to the segment using fts3SegWriterAdd(). If successful, SQLITE_OK is
121758 ** returned. Otherwise, an SQLite error code.
121760 static int fts3SegWriterFlush(
121761 Fts3Table *p, /* Virtual table handle */
121762 SegmentWriter *pWriter, /* SegmentWriter to flush to the db */
121763 int iLevel, /* Value for 'level' column of %_segdir */
121764 int iIdx /* Value for 'idx' column of %_segdir */
121766 int rc; /* Return code */
121767 if( pWriter->pTree ){
121768 sqlite3_int64 iLast = 0; /* Largest block id written to database */
121769 sqlite3_int64 iLastLeaf; /* Largest leaf block id written to db */
121770 char *zRoot = NULL; /* Pointer to buffer containing root node */
121771 int nRoot = 0; /* Size of buffer zRoot */
121773 iLastLeaf = pWriter->iFree;
121774 rc = fts3WriteSegment(p, pWriter->iFree++, pWriter->aData, pWriter->nData);
121775 if( rc==SQLITE_OK ){
121776 rc = fts3NodeWrite(p, pWriter->pTree, 1,
121777 pWriter->iFirst, pWriter->iFree, &iLast, &zRoot, &nRoot);
121779 if( rc==SQLITE_OK ){
121780 rc = fts3WriteSegdir(
121781 p, iLevel, iIdx, pWriter->iFirst, iLastLeaf, iLast, zRoot, nRoot);
121783 }else{
121784 /* The entire tree fits on the root node. Write it to the segdir table. */
121785 rc = fts3WriteSegdir(
121786 p, iLevel, iIdx, 0, 0, 0, pWriter->aData, pWriter->nData);
121788 return rc;
121792 ** Release all memory held by the SegmentWriter object passed as the
121793 ** first argument.
121795 static void fts3SegWriterFree(SegmentWriter *pWriter){
121796 if( pWriter ){
121797 sqlite3_free(pWriter->aData);
121798 sqlite3_free(pWriter->zMalloc);
121799 fts3NodeFree(pWriter->pTree);
121800 sqlite3_free(pWriter);
121805 ** The first value in the apVal[] array is assumed to contain an integer.
121806 ** This function tests if there exist any documents with docid values that
121807 ** are different from that integer. i.e. if deleting the document with docid
121808 ** apVal[0] would mean the FTS3 table were empty.
121810 ** If successful, *pisEmpty is set to true if the table is empty except for
121811 ** document apVal[0], or false otherwise, and SQLITE_OK is returned. If an
121812 ** error occurs, an SQLite error code is returned.
121814 static int fts3IsEmpty(Fts3Table *p, sqlite3_value **apVal, int *pisEmpty){
121815 sqlite3_stmt *pStmt;
121816 int rc;
121817 rc = fts3SqlStmt(p, SQL_IS_EMPTY, &pStmt, apVal);
121818 if( rc==SQLITE_OK ){
121819 if( SQLITE_ROW==sqlite3_step(pStmt) ){
121820 *pisEmpty = sqlite3_column_int(pStmt, 0);
121822 rc = sqlite3_reset(pStmt);
121824 return rc;
121828 ** Set *pnSegment to the total number of segments in the database. Set
121829 ** *pnMax to the largest segment level in the database (segment levels
121830 ** are stored in the 'level' column of the %_segdir table).
121832 ** Return SQLITE_OK if successful, or an SQLite error code if not.
121834 static int fts3SegmentCountMax(Fts3Table *p, int *pnSegment, int *pnMax){
121835 sqlite3_stmt *pStmt;
121836 int rc;
121838 rc = fts3SqlStmt(p, SQL_SELECT_SEGDIR_COUNT_MAX, &pStmt, 0);
121839 if( rc!=SQLITE_OK ) return rc;
121840 if( SQLITE_ROW==sqlite3_step(pStmt) ){
121841 *pnSegment = sqlite3_column_int(pStmt, 0);
121842 *pnMax = sqlite3_column_int(pStmt, 1);
121844 return sqlite3_reset(pStmt);
121848 ** This function is used after merging multiple segments into a single large
121849 ** segment to delete the old, now redundant, segment b-trees. Specifically,
121850 ** it:
121852 ** 1) Deletes all %_segments entries for the segments associated with
121853 ** each of the SegReader objects in the array passed as the third
121854 ** argument, and
121856 ** 2) deletes all %_segdir entries with level iLevel, or all %_segdir
121857 ** entries regardless of level if (iLevel<0).
121859 ** SQLITE_OK is returned if successful, otherwise an SQLite error code.
121861 static int fts3DeleteSegdir(
121862 Fts3Table *p, /* Virtual table handle */
121863 int iLevel, /* Level of %_segdir entries to delete */
121864 Fts3SegReader **apSegment, /* Array of SegReader objects */
121865 int nReader /* Size of array apSegment */
121867 int rc; /* Return Code */
121868 int i; /* Iterator variable */
121869 sqlite3_stmt *pDelete; /* SQL statement to delete rows */
121871 rc = fts3SqlStmt(p, SQL_DELETE_SEGMENTS_RANGE, &pDelete, 0);
121872 for(i=0; rc==SQLITE_OK && i<nReader; i++){
121873 Fts3SegReader *pSegment = apSegment[i];
121874 if( pSegment->iStartBlock ){
121875 sqlite3_bind_int64(pDelete, 1, pSegment->iStartBlock);
121876 sqlite3_bind_int64(pDelete, 2, pSegment->iEndBlock);
121877 sqlite3_step(pDelete);
121878 rc = sqlite3_reset(pDelete);
121881 if( rc!=SQLITE_OK ){
121882 return rc;
121885 if( iLevel==FTS3_SEGCURSOR_ALL ){
121886 fts3SqlExec(&rc, p, SQL_DELETE_ALL_SEGDIR, 0);
121887 }else if( iLevel==FTS3_SEGCURSOR_PENDING ){
121888 sqlite3Fts3PendingTermsClear(p);
121889 }else{
121890 assert( iLevel>=0 );
121891 rc = fts3SqlStmt(p, SQL_DELETE_SEGDIR_BY_LEVEL, &pDelete, 0);
121892 if( rc==SQLITE_OK ){
121893 sqlite3_bind_int(pDelete, 1, iLevel);
121894 sqlite3_step(pDelete);
121895 rc = sqlite3_reset(pDelete);
121899 return rc;
121903 ** When this function is called, buffer *ppList (size *pnList bytes) contains
121904 ** a position list that may (or may not) feature multiple columns. This
121905 ** function adjusts the pointer *ppList and the length *pnList so that they
121906 ** identify the subset of the position list that corresponds to column iCol.
121908 ** If there are no entries in the input position list for column iCol, then
121909 ** *pnList is set to zero before returning.
121911 static void fts3ColumnFilter(
121912 int iCol, /* Column to filter on */
121913 char **ppList, /* IN/OUT: Pointer to position list */
121914 int *pnList /* IN/OUT: Size of buffer *ppList in bytes */
121916 char *pList = *ppList;
121917 int nList = *pnList;
121918 char *pEnd = &pList[nList];
121919 int iCurrent = 0;
121920 char *p = pList;
121922 assert( iCol>=0 );
121923 while( 1 ){
121924 char c = 0;
121925 while( p<pEnd && (c | *p)&0xFE ) c = *p++ & 0x80;
121927 if( iCol==iCurrent ){
121928 nList = (int)(p - pList);
121929 break;
121932 nList -= (int)(p - pList);
121933 pList = p;
121934 if( nList==0 ){
121935 break;
121937 p = &pList[1];
121938 p += sqlite3Fts3GetVarint32(p, &iCurrent);
121941 *ppList = pList;
121942 *pnList = nList;
121945 SQLITE_PRIVATE int sqlite3Fts3SegReaderStart(
121946 Fts3Table *p, /* Virtual table handle */
121947 Fts3SegReaderCursor *pCsr, /* Cursor object */
121948 Fts3SegFilter *pFilter /* Restrictions on range of iteration */
121950 int i;
121952 /* Initialize the cursor object */
121953 pCsr->pFilter = pFilter;
121955 /* If the Fts3SegFilter defines a specific term (or term prefix) to search
121956 ** for, then advance each segment iterator until it points to a term of
121957 ** equal or greater value than the specified term. This prevents many
121958 ** unnecessary merge/sort operations for the case where single segment
121959 ** b-tree leaf nodes contain more than one term.
121961 for(i=0; i<pCsr->nSegment; i++){
121962 int nTerm = pFilter->nTerm;
121963 const char *zTerm = pFilter->zTerm;
121964 Fts3SegReader *pSeg = pCsr->apSegment[i];
121966 int rc = fts3SegReaderNext(p, pSeg);
121967 if( rc!=SQLITE_OK ) return rc;
121968 }while( zTerm && fts3SegReaderTermCmp(pSeg, zTerm, nTerm)<0 );
121970 fts3SegReaderSort(
121971 pCsr->apSegment, pCsr->nSegment, pCsr->nSegment, fts3SegReaderCmp);
121973 return SQLITE_OK;
121976 SQLITE_PRIVATE int sqlite3Fts3SegReaderStep(
121977 Fts3Table *p, /* Virtual table handle */
121978 Fts3SegReaderCursor *pCsr /* Cursor object */
121980 int rc = SQLITE_OK;
121982 int isIgnoreEmpty = (pCsr->pFilter->flags & FTS3_SEGMENT_IGNORE_EMPTY);
121983 int isRequirePos = (pCsr->pFilter->flags & FTS3_SEGMENT_REQUIRE_POS);
121984 int isColFilter = (pCsr->pFilter->flags & FTS3_SEGMENT_COLUMN_FILTER);
121985 int isPrefix = (pCsr->pFilter->flags & FTS3_SEGMENT_PREFIX);
121986 int isScan = (pCsr->pFilter->flags & FTS3_SEGMENT_SCAN);
121988 Fts3SegReader **apSegment = pCsr->apSegment;
121989 int nSegment = pCsr->nSegment;
121990 Fts3SegFilter *pFilter = pCsr->pFilter;
121992 if( pCsr->nSegment==0 ) return SQLITE_OK;
121995 int nMerge;
121996 int i;
121998 /* Advance the first pCsr->nAdvance entries in the apSegment[] array
121999 ** forward. Then sort the list in order of current term again.
122001 for(i=0; i<pCsr->nAdvance; i++){
122002 rc = fts3SegReaderNext(p, apSegment[i]);
122003 if( rc!=SQLITE_OK ) return rc;
122005 fts3SegReaderSort(apSegment, nSegment, pCsr->nAdvance, fts3SegReaderCmp);
122006 pCsr->nAdvance = 0;
122008 /* If all the seg-readers are at EOF, we're finished. return SQLITE_OK. */
122009 assert( rc==SQLITE_OK );
122010 if( apSegment[0]->aNode==0 ) break;
122012 pCsr->nTerm = apSegment[0]->nTerm;
122013 pCsr->zTerm = apSegment[0]->zTerm;
122015 /* If this is a prefix-search, and if the term that apSegment[0] points
122016 ** to does not share a suffix with pFilter->zTerm/nTerm, then all
122017 ** required callbacks have been made. In this case exit early.
122019 ** Similarly, if this is a search for an exact match, and the first term
122020 ** of segment apSegment[0] is not a match, exit early.
122022 if( pFilter->zTerm && !isScan ){
122023 if( pCsr->nTerm<pFilter->nTerm
122024 || (!isPrefix && pCsr->nTerm>pFilter->nTerm)
122025 || memcmp(pCsr->zTerm, pFilter->zTerm, pFilter->nTerm)
122027 break;
122031 nMerge = 1;
122032 while( nMerge<nSegment
122033 && apSegment[nMerge]->aNode
122034 && apSegment[nMerge]->nTerm==pCsr->nTerm
122035 && 0==memcmp(pCsr->zTerm, apSegment[nMerge]->zTerm, pCsr->nTerm)
122037 nMerge++;
122040 assert( isIgnoreEmpty || (isRequirePos && !isColFilter) );
122041 if( nMerge==1 && !isIgnoreEmpty ){
122042 pCsr->aDoclist = apSegment[0]->aDoclist;
122043 pCsr->nDoclist = apSegment[0]->nDoclist;
122044 rc = SQLITE_ROW;
122045 }else{
122046 int nDoclist = 0; /* Size of doclist */
122047 sqlite3_int64 iPrev = 0; /* Previous docid stored in doclist */
122049 /* The current term of the first nMerge entries in the array
122050 ** of Fts3SegReader objects is the same. The doclists must be merged
122051 ** and a single term returned with the merged doclist.
122053 for(i=0; i<nMerge; i++){
122054 fts3SegReaderFirstDocid(apSegment[i]);
122056 fts3SegReaderSort(apSegment, nMerge, nMerge, fts3SegReaderDoclistCmp);
122057 while( apSegment[0]->pOffsetList ){
122058 int j; /* Number of segments that share a docid */
122059 char *pList;
122060 int nList;
122061 int nByte;
122062 sqlite3_int64 iDocid = apSegment[0]->iDocid;
122063 fts3SegReaderNextDocid(apSegment[0], &pList, &nList);
122064 j = 1;
122065 while( j<nMerge
122066 && apSegment[j]->pOffsetList
122067 && apSegment[j]->iDocid==iDocid
122069 fts3SegReaderNextDocid(apSegment[j], 0, 0);
122073 if( isColFilter ){
122074 fts3ColumnFilter(pFilter->iCol, &pList, &nList);
122077 if( !isIgnoreEmpty || nList>0 ){
122078 nByte = sqlite3Fts3VarintLen(iDocid-iPrev) + (isRequirePos?nList+1:0);
122079 if( nDoclist+nByte>pCsr->nBuffer ){
122080 char *aNew;
122081 pCsr->nBuffer = (nDoclist+nByte)*2;
122082 aNew = sqlite3_realloc(pCsr->aBuffer, pCsr->nBuffer);
122083 if( !aNew ){
122084 return SQLITE_NOMEM;
122086 pCsr->aBuffer = aNew;
122088 nDoclist += sqlite3Fts3PutVarint(
122089 &pCsr->aBuffer[nDoclist], iDocid-iPrev
122091 iPrev = iDocid;
122092 if( isRequirePos ){
122093 memcpy(&pCsr->aBuffer[nDoclist], pList, nList);
122094 nDoclist += nList;
122095 pCsr->aBuffer[nDoclist++] = '\0';
122099 fts3SegReaderSort(apSegment, nMerge, j, fts3SegReaderDoclistCmp);
122101 if( nDoclist>0 ){
122102 pCsr->aDoclist = pCsr->aBuffer;
122103 pCsr->nDoclist = nDoclist;
122104 rc = SQLITE_ROW;
122107 pCsr->nAdvance = nMerge;
122108 }while( rc==SQLITE_OK );
122110 return rc;
122113 SQLITE_PRIVATE void sqlite3Fts3SegReaderFinish(
122114 Fts3SegReaderCursor *pCsr /* Cursor object */
122116 if( pCsr ){
122117 int i;
122118 for(i=0; i<pCsr->nSegment; i++){
122119 sqlite3Fts3SegReaderFree(pCsr->apSegment[i]);
122121 sqlite3_free(pCsr->apSegment);
122122 sqlite3_free(pCsr->aBuffer);
122124 pCsr->nSegment = 0;
122125 pCsr->apSegment = 0;
122126 pCsr->aBuffer = 0;
122131 ** Merge all level iLevel segments in the database into a single
122132 ** iLevel+1 segment. Or, if iLevel<0, merge all segments into a
122133 ** single segment with a level equal to the numerically largest level
122134 ** currently present in the database.
122136 ** If this function is called with iLevel<0, but there is only one
122137 ** segment in the database, SQLITE_DONE is returned immediately.
122138 ** Otherwise, if successful, SQLITE_OK is returned. If an error occurs,
122139 ** an SQLite error code is returned.
122141 static int fts3SegmentMerge(Fts3Table *p, int iLevel){
122142 int rc; /* Return code */
122143 int iIdx = 0; /* Index of new segment */
122144 int iNewLevel = 0; /* Level to create new segment at */
122145 SegmentWriter *pWriter = 0; /* Used to write the new, merged, segment */
122146 Fts3SegFilter filter; /* Segment term filter condition */
122147 Fts3SegReaderCursor csr; /* Cursor to iterate through level(s) */
122149 rc = sqlite3Fts3SegReaderCursor(p, iLevel, 0, 0, 1, 0, &csr);
122150 if( rc!=SQLITE_OK || csr.nSegment==0 ) goto finished;
122152 if( iLevel==FTS3_SEGCURSOR_ALL ){
122153 /* This call is to merge all segments in the database to a single
122154 ** segment. The level of the new segment is equal to the the numerically
122155 ** greatest segment level currently present in the database. The index
122156 ** of the new segment is always 0. */
122157 int nDummy; /* TODO: Remove this */
122158 if( csr.nSegment==1 ){
122159 rc = SQLITE_DONE;
122160 goto finished;
122162 rc = fts3SegmentCountMax(p, &nDummy, &iNewLevel);
122163 }else{
122164 /* This call is to merge all segments at level iLevel. Find the next
122165 ** available segment index at level iLevel+1. The call to
122166 ** fts3AllocateSegdirIdx() will merge the segments at level iLevel+1 to
122167 ** a single iLevel+2 segment if necessary. */
122168 iNewLevel = iLevel+1;
122169 rc = fts3AllocateSegdirIdx(p, iNewLevel, &iIdx);
122171 if( rc!=SQLITE_OK ) goto finished;
122172 assert( csr.nSegment>0 );
122173 assert( iNewLevel>=0 );
122175 memset(&filter, 0, sizeof(Fts3SegFilter));
122176 filter.flags = FTS3_SEGMENT_REQUIRE_POS;
122177 filter.flags |= (iLevel==FTS3_SEGCURSOR_ALL ? FTS3_SEGMENT_IGNORE_EMPTY : 0);
122179 rc = sqlite3Fts3SegReaderStart(p, &csr, &filter);
122180 while( SQLITE_OK==rc ){
122181 rc = sqlite3Fts3SegReaderStep(p, &csr);
122182 if( rc!=SQLITE_ROW ) break;
122183 rc = fts3SegWriterAdd(p, &pWriter, 1,
122184 csr.zTerm, csr.nTerm, csr.aDoclist, csr.nDoclist);
122186 if( rc!=SQLITE_OK ) goto finished;
122187 assert( pWriter );
122189 rc = fts3DeleteSegdir(p, iLevel, csr.apSegment, csr.nSegment);
122190 if( rc!=SQLITE_OK ) goto finished;
122191 rc = fts3SegWriterFlush(p, pWriter, iNewLevel, iIdx);
122193 finished:
122194 fts3SegWriterFree(pWriter);
122195 sqlite3Fts3SegReaderFinish(&csr);
122196 return rc;
122201 ** Flush the contents of pendingTerms to a level 0 segment.
122203 SQLITE_PRIVATE int sqlite3Fts3PendingTermsFlush(Fts3Table *p){
122204 return fts3SegmentMerge(p, FTS3_SEGCURSOR_PENDING);
122208 ** Encode N integers as varints into a blob.
122210 static void fts3EncodeIntArray(
122211 int N, /* The number of integers to encode */
122212 u32 *a, /* The integer values */
122213 char *zBuf, /* Write the BLOB here */
122214 int *pNBuf /* Write number of bytes if zBuf[] used here */
122216 int i, j;
122217 for(i=j=0; i<N; i++){
122218 j += sqlite3Fts3PutVarint(&zBuf[j], (sqlite3_int64)a[i]);
122220 *pNBuf = j;
122224 ** Decode a blob of varints into N integers
122226 static void fts3DecodeIntArray(
122227 int N, /* The number of integers to decode */
122228 u32 *a, /* Write the integer values */
122229 const char *zBuf, /* The BLOB containing the varints */
122230 int nBuf /* size of the BLOB */
122232 int i, j;
122233 UNUSED_PARAMETER(nBuf);
122234 for(i=j=0; i<N; i++){
122235 sqlite3_int64 x;
122236 j += sqlite3Fts3GetVarint(&zBuf[j], &x);
122237 assert(j<=nBuf);
122238 a[i] = (u32)(x & 0xffffffff);
122243 ** Insert the sizes (in tokens) for each column of the document
122244 ** with docid equal to p->iPrevDocid. The sizes are encoded as
122245 ** a blob of varints.
122247 static void fts3InsertDocsize(
122248 int *pRC, /* Result code */
122249 Fts3Table *p, /* Table into which to insert */
122250 u32 *aSz /* Sizes of each column */
122252 char *pBlob; /* The BLOB encoding of the document size */
122253 int nBlob; /* Number of bytes in the BLOB */
122254 sqlite3_stmt *pStmt; /* Statement used to insert the encoding */
122255 int rc; /* Result code from subfunctions */
122257 if( *pRC ) return;
122258 pBlob = sqlite3_malloc( 10*p->nColumn );
122259 if( pBlob==0 ){
122260 *pRC = SQLITE_NOMEM;
122261 return;
122263 fts3EncodeIntArray(p->nColumn, aSz, pBlob, &nBlob);
122264 rc = fts3SqlStmt(p, SQL_REPLACE_DOCSIZE, &pStmt, 0);
122265 if( rc ){
122266 sqlite3_free(pBlob);
122267 *pRC = rc;
122268 return;
122270 sqlite3_bind_int64(pStmt, 1, p->iPrevDocid);
122271 sqlite3_bind_blob(pStmt, 2, pBlob, nBlob, sqlite3_free);
122272 sqlite3_step(pStmt);
122273 *pRC = sqlite3_reset(pStmt);
122277 ** Record 0 of the %_stat table contains a blob consisting of N varints,
122278 ** where N is the number of user defined columns in the fts3 table plus
122279 ** two. If nCol is the number of user defined columns, then values of the
122280 ** varints are set as follows:
122282 ** Varint 0: Total number of rows in the table.
122284 ** Varint 1..nCol: For each column, the total number of tokens stored in
122285 ** the column for all rows of the table.
122287 ** Varint 1+nCol: The total size, in bytes, of all text values in all
122288 ** columns of all rows of the table.
122291 static void fts3UpdateDocTotals(
122292 int *pRC, /* The result code */
122293 Fts3Table *p, /* Table being updated */
122294 u32 *aSzIns, /* Size increases */
122295 u32 *aSzDel, /* Size decreases */
122296 int nChng /* Change in the number of documents */
122298 char *pBlob; /* Storage for BLOB written into %_stat */
122299 int nBlob; /* Size of BLOB written into %_stat */
122300 u32 *a; /* Array of integers that becomes the BLOB */
122301 sqlite3_stmt *pStmt; /* Statement for reading and writing */
122302 int i; /* Loop counter */
122303 int rc; /* Result code from subfunctions */
122305 const int nStat = p->nColumn+2;
122307 if( *pRC ) return;
122308 a = sqlite3_malloc( (sizeof(u32)+10)*nStat );
122309 if( a==0 ){
122310 *pRC = SQLITE_NOMEM;
122311 return;
122313 pBlob = (char*)&a[nStat];
122314 rc = fts3SqlStmt(p, SQL_SELECT_DOCTOTAL, &pStmt, 0);
122315 if( rc ){
122316 sqlite3_free(a);
122317 *pRC = rc;
122318 return;
122320 if( sqlite3_step(pStmt)==SQLITE_ROW ){
122321 fts3DecodeIntArray(nStat, a,
122322 sqlite3_column_blob(pStmt, 0),
122323 sqlite3_column_bytes(pStmt, 0));
122324 }else{
122325 memset(a, 0, sizeof(u32)*(nStat) );
122327 sqlite3_reset(pStmt);
122328 if( nChng<0 && a[0]<(u32)(-nChng) ){
122329 a[0] = 0;
122330 }else{
122331 a[0] += nChng;
122333 for(i=0; i<p->nColumn+1; i++){
122334 u32 x = a[i+1];
122335 if( x+aSzIns[i] < aSzDel[i] ){
122336 x = 0;
122337 }else{
122338 x = x + aSzIns[i] - aSzDel[i];
122340 a[i+1] = x;
122342 fts3EncodeIntArray(nStat, a, pBlob, &nBlob);
122343 rc = fts3SqlStmt(p, SQL_REPLACE_DOCTOTAL, &pStmt, 0);
122344 if( rc ){
122345 sqlite3_free(a);
122346 *pRC = rc;
122347 return;
122349 sqlite3_bind_blob(pStmt, 1, pBlob, nBlob, SQLITE_STATIC);
122350 sqlite3_step(pStmt);
122351 *pRC = sqlite3_reset(pStmt);
122352 sqlite3_free(a);
122356 ** Handle a 'special' INSERT of the form:
122358 ** "INSERT INTO tbl(tbl) VALUES(<expr>)"
122360 ** Argument pVal contains the result of <expr>. Currently the only
122361 ** meaningful value to insert is the text 'optimize'.
122363 static int fts3SpecialInsert(Fts3Table *p, sqlite3_value *pVal){
122364 int rc; /* Return Code */
122365 const char *zVal = (const char *)sqlite3_value_text(pVal);
122366 int nVal = sqlite3_value_bytes(pVal);
122368 if( !zVal ){
122369 return SQLITE_NOMEM;
122370 }else if( nVal==8 && 0==sqlite3_strnicmp(zVal, "optimize", 8) ){
122371 rc = fts3SegmentMerge(p, FTS3_SEGCURSOR_ALL);
122372 if( rc==SQLITE_DONE ){
122373 rc = SQLITE_OK;
122374 }else{
122375 sqlite3Fts3PendingTermsClear(p);
122377 #ifdef SQLITE_TEST
122378 }else if( nVal>9 && 0==sqlite3_strnicmp(zVal, "nodesize=", 9) ){
122379 p->nNodeSize = atoi(&zVal[9]);
122380 rc = SQLITE_OK;
122381 }else if( nVal>11 && 0==sqlite3_strnicmp(zVal, "maxpending=", 9) ){
122382 p->nMaxPendingData = atoi(&zVal[11]);
122383 rc = SQLITE_OK;
122384 #endif
122385 }else{
122386 rc = SQLITE_ERROR;
122389 sqlite3Fts3SegmentsClose(p);
122390 return rc;
122394 ** Return the deferred doclist associated with deferred token pDeferred.
122395 ** This function assumes that sqlite3Fts3CacheDeferredDoclists() has already
122396 ** been called to allocate and populate the doclist.
122398 SQLITE_PRIVATE char *sqlite3Fts3DeferredDoclist(Fts3DeferredToken *pDeferred, int *pnByte){
122399 if( pDeferred->pList ){
122400 *pnByte = pDeferred->pList->nData;
122401 return pDeferred->pList->aData;
122403 *pnByte = 0;
122404 return 0;
122408 ** Helper fucntion for FreeDeferredDoclists(). This function removes all
122409 ** references to deferred doclists from within the tree of Fts3Expr
122410 ** structures headed by
122412 static void fts3DeferredDoclistClear(Fts3Expr *pExpr){
122413 if( pExpr ){
122414 fts3DeferredDoclistClear(pExpr->pLeft);
122415 fts3DeferredDoclistClear(pExpr->pRight);
122416 if( pExpr->isLoaded ){
122417 sqlite3_free(pExpr->aDoclist);
122418 pExpr->isLoaded = 0;
122419 pExpr->aDoclist = 0;
122420 pExpr->nDoclist = 0;
122421 pExpr->pCurrent = 0;
122422 pExpr->iCurrent = 0;
122428 ** Delete all cached deferred doclists. Deferred doclists are cached
122429 ** (allocated) by the sqlite3Fts3CacheDeferredDoclists() function.
122431 SQLITE_PRIVATE void sqlite3Fts3FreeDeferredDoclists(Fts3Cursor *pCsr){
122432 Fts3DeferredToken *pDef;
122433 for(pDef=pCsr->pDeferred; pDef; pDef=pDef->pNext){
122434 sqlite3_free(pDef->pList);
122435 pDef->pList = 0;
122437 if( pCsr->pDeferred ){
122438 fts3DeferredDoclistClear(pCsr->pExpr);
122443 ** Free all entries in the pCsr->pDeffered list. Entries are added to
122444 ** this list using sqlite3Fts3DeferToken().
122446 SQLITE_PRIVATE void sqlite3Fts3FreeDeferredTokens(Fts3Cursor *pCsr){
122447 Fts3DeferredToken *pDef;
122448 Fts3DeferredToken *pNext;
122449 for(pDef=pCsr->pDeferred; pDef; pDef=pNext){
122450 pNext = pDef->pNext;
122451 sqlite3_free(pDef->pList);
122452 sqlite3_free(pDef);
122454 pCsr->pDeferred = 0;
122458 ** Generate deferred-doclists for all tokens in the pCsr->pDeferred list
122459 ** based on the row that pCsr currently points to.
122461 ** A deferred-doclist is like any other doclist with position information
122462 ** included, except that it only contains entries for a single row of the
122463 ** table, not for all rows.
122465 SQLITE_PRIVATE int sqlite3Fts3CacheDeferredDoclists(Fts3Cursor *pCsr){
122466 int rc = SQLITE_OK; /* Return code */
122467 if( pCsr->pDeferred ){
122468 int i; /* Used to iterate through table columns */
122469 sqlite3_int64 iDocid; /* Docid of the row pCsr points to */
122470 Fts3DeferredToken *pDef; /* Used to iterate through deferred tokens */
122472 Fts3Table *p = (Fts3Table *)pCsr->base.pVtab;
122473 sqlite3_tokenizer *pT = p->pTokenizer;
122474 sqlite3_tokenizer_module const *pModule = pT->pModule;
122476 assert( pCsr->isRequireSeek==0 );
122477 iDocid = sqlite3_column_int64(pCsr->pStmt, 0);
122479 for(i=0; i<p->nColumn && rc==SQLITE_OK; i++){
122480 const char *zText = (const char *)sqlite3_column_text(pCsr->pStmt, i+1);
122481 sqlite3_tokenizer_cursor *pTC = 0;
122483 rc = pModule->xOpen(pT, zText, -1, &pTC);
122484 while( rc==SQLITE_OK ){
122485 char const *zToken; /* Buffer containing token */
122486 int nToken; /* Number of bytes in token */
122487 int iDum1, iDum2; /* Dummy variables */
122488 int iPos; /* Position of token in zText */
122490 pTC->pTokenizer = pT;
122491 rc = pModule->xNext(pTC, &zToken, &nToken, &iDum1, &iDum2, &iPos);
122492 for(pDef=pCsr->pDeferred; pDef && rc==SQLITE_OK; pDef=pDef->pNext){
122493 Fts3PhraseToken *pPT = pDef->pToken;
122494 if( (pDef->iCol>=p->nColumn || pDef->iCol==i)
122495 && (pPT->n==nToken || (pPT->isPrefix && pPT->n<nToken))
122496 && (0==memcmp(zToken, pPT->z, pPT->n))
122498 fts3PendingListAppend(&pDef->pList, iDocid, i, iPos, &rc);
122502 if( pTC ) pModule->xClose(pTC);
122503 if( rc==SQLITE_DONE ) rc = SQLITE_OK;
122506 for(pDef=pCsr->pDeferred; pDef && rc==SQLITE_OK; pDef=pDef->pNext){
122507 if( pDef->pList ){
122508 rc = fts3PendingListAppendVarint(&pDef->pList, 0);
122513 return rc;
122517 ** Add an entry for token pToken to the pCsr->pDeferred list.
122519 SQLITE_PRIVATE int sqlite3Fts3DeferToken(
122520 Fts3Cursor *pCsr, /* Fts3 table cursor */
122521 Fts3PhraseToken *pToken, /* Token to defer */
122522 int iCol /* Column that token must appear in (or -1) */
122524 Fts3DeferredToken *pDeferred;
122525 pDeferred = sqlite3_malloc(sizeof(*pDeferred));
122526 if( !pDeferred ){
122527 return SQLITE_NOMEM;
122529 memset(pDeferred, 0, sizeof(*pDeferred));
122530 pDeferred->pToken = pToken;
122531 pDeferred->pNext = pCsr->pDeferred;
122532 pDeferred->iCol = iCol;
122533 pCsr->pDeferred = pDeferred;
122535 assert( pToken->pDeferred==0 );
122536 pToken->pDeferred = pDeferred;
122538 return SQLITE_OK;
122543 ** This function does the work for the xUpdate method of FTS3 virtual
122544 ** tables.
122546 SQLITE_PRIVATE int sqlite3Fts3UpdateMethod(
122547 sqlite3_vtab *pVtab, /* FTS3 vtab object */
122548 int nArg, /* Size of argument array */
122549 sqlite3_value **apVal, /* Array of arguments */
122550 sqlite_int64 *pRowid /* OUT: The affected (or effected) rowid */
122552 Fts3Table *p = (Fts3Table *)pVtab;
122553 int rc = SQLITE_OK; /* Return Code */
122554 int isRemove = 0; /* True for an UPDATE or DELETE */
122555 sqlite3_int64 iRemove = 0; /* Rowid removed by UPDATE or DELETE */
122556 u32 *aSzIns; /* Sizes of inserted documents */
122557 u32 *aSzDel; /* Sizes of deleted documents */
122558 int nChng = 0; /* Net change in number of documents */
122560 assert( p->pSegments==0 );
122562 /* Allocate space to hold the change in document sizes */
122563 aSzIns = sqlite3_malloc( sizeof(aSzIns[0])*(p->nColumn+1)*2 );
122564 if( aSzIns==0 ) return SQLITE_NOMEM;
122565 aSzDel = &aSzIns[p->nColumn+1];
122566 memset(aSzIns, 0, sizeof(aSzIns[0])*(p->nColumn+1)*2);
122568 /* If this is a DELETE or UPDATE operation, remove the old record. */
122569 if( sqlite3_value_type(apVal[0])!=SQLITE_NULL ){
122570 int isEmpty = 0;
122571 rc = fts3IsEmpty(p, apVal, &isEmpty);
122572 if( rc==SQLITE_OK ){
122573 if( isEmpty ){
122574 /* Deleting this row means the whole table is empty. In this case
122575 ** delete the contents of all three tables and throw away any
122576 ** data in the pendingTerms hash table.
122578 rc = fts3DeleteAll(p);
122579 }else{
122580 isRemove = 1;
122581 iRemove = sqlite3_value_int64(apVal[0]);
122582 rc = fts3PendingTermsDocid(p, iRemove);
122583 fts3DeleteTerms(&rc, p, apVal, aSzDel);
122584 fts3SqlExec(&rc, p, SQL_DELETE_CONTENT, apVal);
122585 if( p->bHasDocsize ){
122586 fts3SqlExec(&rc, p, SQL_DELETE_DOCSIZE, apVal);
122588 nChng--;
122591 }else if( sqlite3_value_type(apVal[p->nColumn+2])!=SQLITE_NULL ){
122592 sqlite3_free(aSzIns);
122593 return fts3SpecialInsert(p, apVal[p->nColumn+2]);
122596 /* If this is an INSERT or UPDATE operation, insert the new record. */
122597 if( nArg>1 && rc==SQLITE_OK ){
122598 rc = fts3InsertData(p, apVal, pRowid);
122599 if( rc==SQLITE_OK && (!isRemove || *pRowid!=iRemove) ){
122600 rc = fts3PendingTermsDocid(p, *pRowid);
122602 if( rc==SQLITE_OK ){
122603 rc = fts3InsertTerms(p, apVal, aSzIns);
122605 if( p->bHasDocsize ){
122606 fts3InsertDocsize(&rc, p, aSzIns);
122608 nChng++;
122611 if( p->bHasStat ){
122612 fts3UpdateDocTotals(&rc, p, aSzIns, aSzDel, nChng);
122615 sqlite3_free(aSzIns);
122616 sqlite3Fts3SegmentsClose(p);
122617 return rc;
122621 ** Flush any data in the pending-terms hash table to disk. If successful,
122622 ** merge all segments in the database (including the new segment, if
122623 ** there was any data to flush) into a single segment.
122625 SQLITE_PRIVATE int sqlite3Fts3Optimize(Fts3Table *p){
122626 int rc;
122627 rc = sqlite3_exec(p->db, "SAVEPOINT fts3", 0, 0, 0);
122628 if( rc==SQLITE_OK ){
122629 rc = fts3SegmentMerge(p, FTS3_SEGCURSOR_ALL);
122630 if( rc==SQLITE_OK ){
122631 rc = sqlite3_exec(p->db, "RELEASE fts3", 0, 0, 0);
122632 if( rc==SQLITE_OK ){
122633 sqlite3Fts3PendingTermsClear(p);
122635 }else{
122636 sqlite3_exec(p->db, "ROLLBACK TO fts3", 0, 0, 0);
122637 sqlite3_exec(p->db, "RELEASE fts3", 0, 0, 0);
122640 sqlite3Fts3SegmentsClose(p);
122641 return rc;
122644 #endif
122646 /************** End of fts3_write.c ******************************************/
122647 /************** Begin file fts3_snippet.c ************************************/
122649 ** 2009 Oct 23
122651 ** The author disclaims copyright to this source code. In place of
122652 ** a legal notice, here is a blessing:
122654 ** May you do good and not evil.
122655 ** May you find forgiveness for yourself and forgive others.
122656 ** May you share freely, never taking more than you give.
122658 ******************************************************************************
122661 #if !defined(SQLITE_CORE) || defined(SQLITE_ENABLE_FTS3)
122665 ** Characters that may appear in the second argument to matchinfo().
122667 #define FTS3_MATCHINFO_NPHRASE 'p' /* 1 value */
122668 #define FTS3_MATCHINFO_NCOL 'c' /* 1 value */
122669 #define FTS3_MATCHINFO_NDOC 'n' /* 1 value */
122670 #define FTS3_MATCHINFO_AVGLENGTH 'a' /* nCol values */
122671 #define FTS3_MATCHINFO_LENGTH 'l' /* nCol values */
122672 #define FTS3_MATCHINFO_LCS 's' /* nCol values */
122673 #define FTS3_MATCHINFO_HITS 'x' /* 3*nCol*nPhrase values */
122676 ** The default value for the second argument to matchinfo().
122678 #define FTS3_MATCHINFO_DEFAULT "pcx"
122682 ** Used as an fts3ExprIterate() context when loading phrase doclists to
122683 ** Fts3Expr.aDoclist[]/nDoclist.
122685 typedef struct LoadDoclistCtx LoadDoclistCtx;
122686 struct LoadDoclistCtx {
122687 Fts3Cursor *pCsr; /* FTS3 Cursor */
122688 int nPhrase; /* Number of phrases seen so far */
122689 int nToken; /* Number of tokens seen so far */
122693 ** The following types are used as part of the implementation of the
122694 ** fts3BestSnippet() routine.
122696 typedef struct SnippetIter SnippetIter;
122697 typedef struct SnippetPhrase SnippetPhrase;
122698 typedef struct SnippetFragment SnippetFragment;
122700 struct SnippetIter {
122701 Fts3Cursor *pCsr; /* Cursor snippet is being generated from */
122702 int iCol; /* Extract snippet from this column */
122703 int nSnippet; /* Requested snippet length (in tokens) */
122704 int nPhrase; /* Number of phrases in query */
122705 SnippetPhrase *aPhrase; /* Array of size nPhrase */
122706 int iCurrent; /* First token of current snippet */
122709 struct SnippetPhrase {
122710 int nToken; /* Number of tokens in phrase */
122711 char *pList; /* Pointer to start of phrase position list */
122712 int iHead; /* Next value in position list */
122713 char *pHead; /* Position list data following iHead */
122714 int iTail; /* Next value in trailing position list */
122715 char *pTail; /* Position list data following iTail */
122718 struct SnippetFragment {
122719 int iCol; /* Column snippet is extracted from */
122720 int iPos; /* Index of first token in snippet */
122721 u64 covered; /* Mask of query phrases covered */
122722 u64 hlmask; /* Mask of snippet terms to highlight */
122726 ** This type is used as an fts3ExprIterate() context object while
122727 ** accumulating the data returned by the matchinfo() function.
122729 typedef struct MatchInfo MatchInfo;
122730 struct MatchInfo {
122731 Fts3Cursor *pCursor; /* FTS3 Cursor */
122732 int nCol; /* Number of columns in table */
122733 int nPhrase; /* Number of matchable phrases in query */
122734 sqlite3_int64 nDoc; /* Number of docs in database */
122735 u32 *aMatchinfo; /* Pre-allocated buffer */
122741 ** The snippet() and offsets() functions both return text values. An instance
122742 ** of the following structure is used to accumulate those values while the
122743 ** functions are running. See fts3StringAppend() for details.
122745 typedef struct StrBuffer StrBuffer;
122746 struct StrBuffer {
122747 char *z; /* Pointer to buffer containing string */
122748 int n; /* Length of z in bytes (excl. nul-term) */
122749 int nAlloc; /* Allocated size of buffer z in bytes */
122754 ** This function is used to help iterate through a position-list. A position
122755 ** list is a list of unique integers, sorted from smallest to largest. Each
122756 ** element of the list is represented by an FTS3 varint that takes the value
122757 ** of the difference between the current element and the previous one plus
122758 ** two. For example, to store the position-list:
122760 ** 4 9 113
122762 ** the three varints:
122764 ** 6 7 106
122766 ** are encoded.
122768 ** When this function is called, *pp points to the start of an element of
122769 ** the list. *piPos contains the value of the previous entry in the list.
122770 ** After it returns, *piPos contains the value of the next element of the
122771 ** list and *pp is advanced to the following varint.
122773 static void fts3GetDeltaPosition(char **pp, int *piPos){
122774 int iVal;
122775 *pp += sqlite3Fts3GetVarint32(*pp, &iVal);
122776 *piPos += (iVal-2);
122780 ** Helper function for fts3ExprIterate() (see below).
122782 static int fts3ExprIterate2(
122783 Fts3Expr *pExpr, /* Expression to iterate phrases of */
122784 int *piPhrase, /* Pointer to phrase counter */
122785 int (*x)(Fts3Expr*,int,void*), /* Callback function to invoke for phrases */
122786 void *pCtx /* Second argument to pass to callback */
122788 int rc; /* Return code */
122789 int eType = pExpr->eType; /* Type of expression node pExpr */
122791 if( eType!=FTSQUERY_PHRASE ){
122792 assert( pExpr->pLeft && pExpr->pRight );
122793 rc = fts3ExprIterate2(pExpr->pLeft, piPhrase, x, pCtx);
122794 if( rc==SQLITE_OK && eType!=FTSQUERY_NOT ){
122795 rc = fts3ExprIterate2(pExpr->pRight, piPhrase, x, pCtx);
122797 }else{
122798 rc = x(pExpr, *piPhrase, pCtx);
122799 (*piPhrase)++;
122801 return rc;
122805 ** Iterate through all phrase nodes in an FTS3 query, except those that
122806 ** are part of a sub-tree that is the right-hand-side of a NOT operator.
122807 ** For each phrase node found, the supplied callback function is invoked.
122809 ** If the callback function returns anything other than SQLITE_OK,
122810 ** the iteration is abandoned and the error code returned immediately.
122811 ** Otherwise, SQLITE_OK is returned after a callback has been made for
122812 ** all eligible phrase nodes.
122814 static int fts3ExprIterate(
122815 Fts3Expr *pExpr, /* Expression to iterate phrases of */
122816 int (*x)(Fts3Expr*,int,void*), /* Callback function to invoke for phrases */
122817 void *pCtx /* Second argument to pass to callback */
122819 int iPhrase = 0; /* Variable used as the phrase counter */
122820 return fts3ExprIterate2(pExpr, &iPhrase, x, pCtx);
122824 ** The argument to this function is always a phrase node. Its doclist
122825 ** (Fts3Expr.aDoclist[]) and the doclists associated with all phrase nodes
122826 ** to the left of this one in the query tree have already been loaded.
122828 ** If this phrase node is part of a series of phrase nodes joined by
122829 ** NEAR operators (and is not the left-most of said series), then elements are
122830 ** removed from the phrases doclist consistent with the NEAR restriction. If
122831 ** required, elements may be removed from the doclists of phrases to the
122832 ** left of this one that are part of the same series of NEAR operator
122833 ** connected phrases.
122835 ** If an OOM error occurs, SQLITE_NOMEM is returned. Otherwise, SQLITE_OK.
122837 static int fts3ExprNearTrim(Fts3Expr *pExpr){
122838 int rc = SQLITE_OK;
122839 Fts3Expr *pParent = pExpr->pParent;
122841 assert( pExpr->eType==FTSQUERY_PHRASE );
122842 while( rc==SQLITE_OK
122843 && pParent
122844 && pParent->eType==FTSQUERY_NEAR
122845 && pParent->pRight==pExpr
122847 /* This expression (pExpr) is the right-hand-side of a NEAR operator.
122848 ** Find the expression to the left of the same operator.
122850 int nNear = pParent->nNear;
122851 Fts3Expr *pLeft = pParent->pLeft;
122853 if( pLeft->eType!=FTSQUERY_PHRASE ){
122854 assert( pLeft->eType==FTSQUERY_NEAR );
122855 assert( pLeft->pRight->eType==FTSQUERY_PHRASE );
122856 pLeft = pLeft->pRight;
122859 rc = sqlite3Fts3ExprNearTrim(pLeft, pExpr, nNear);
122861 pExpr = pLeft;
122862 pParent = pExpr->pParent;
122865 return rc;
122869 ** This is an fts3ExprIterate() callback used while loading the doclists
122870 ** for each phrase into Fts3Expr.aDoclist[]/nDoclist. See also
122871 ** fts3ExprLoadDoclists().
122873 static int fts3ExprLoadDoclistsCb(Fts3Expr *pExpr, int iPhrase, void *ctx){
122874 int rc = SQLITE_OK;
122875 LoadDoclistCtx *p = (LoadDoclistCtx *)ctx;
122877 UNUSED_PARAMETER(iPhrase);
122879 p->nPhrase++;
122880 p->nToken += pExpr->pPhrase->nToken;
122882 if( pExpr->isLoaded==0 ){
122883 rc = sqlite3Fts3ExprLoadDoclist(p->pCsr, pExpr);
122884 pExpr->isLoaded = 1;
122885 if( rc==SQLITE_OK ){
122886 rc = fts3ExprNearTrim(pExpr);
122890 return rc;
122894 ** Load the doclists for each phrase in the query associated with FTS3 cursor
122895 ** pCsr.
122897 ** If pnPhrase is not NULL, then *pnPhrase is set to the number of matchable
122898 ** phrases in the expression (all phrases except those directly or
122899 ** indirectly descended from the right-hand-side of a NOT operator). If
122900 ** pnToken is not NULL, then it is set to the number of tokens in all
122901 ** matchable phrases of the expression.
122903 static int fts3ExprLoadDoclists(
122904 Fts3Cursor *pCsr, /* Fts3 cursor for current query */
122905 int *pnPhrase, /* OUT: Number of phrases in query */
122906 int *pnToken /* OUT: Number of tokens in query */
122908 int rc; /* Return Code */
122909 LoadDoclistCtx sCtx = {0,0,0}; /* Context for fts3ExprIterate() */
122910 sCtx.pCsr = pCsr;
122911 rc = fts3ExprIterate(pCsr->pExpr, fts3ExprLoadDoclistsCb, (void *)&sCtx);
122912 if( pnPhrase ) *pnPhrase = sCtx.nPhrase;
122913 if( pnToken ) *pnToken = sCtx.nToken;
122914 return rc;
122917 static int fts3ExprPhraseCountCb(Fts3Expr *pExpr, int iPhrase, void *ctx){
122918 (*(int *)ctx)++;
122919 UNUSED_PARAMETER(pExpr);
122920 UNUSED_PARAMETER(iPhrase);
122921 return SQLITE_OK;
122923 static int fts3ExprPhraseCount(Fts3Expr *pExpr){
122924 int nPhrase = 0;
122925 (void)fts3ExprIterate(pExpr, fts3ExprPhraseCountCb, (void *)&nPhrase);
122926 return nPhrase;
122930 ** Advance the position list iterator specified by the first two
122931 ** arguments so that it points to the first element with a value greater
122932 ** than or equal to parameter iNext.
122934 static void fts3SnippetAdvance(char **ppIter, int *piIter, int iNext){
122935 char *pIter = *ppIter;
122936 if( pIter ){
122937 int iIter = *piIter;
122939 while( iIter<iNext ){
122940 if( 0==(*pIter & 0xFE) ){
122941 iIter = -1;
122942 pIter = 0;
122943 break;
122945 fts3GetDeltaPosition(&pIter, &iIter);
122948 *piIter = iIter;
122949 *ppIter = pIter;
122954 ** Advance the snippet iterator to the next candidate snippet.
122956 static int fts3SnippetNextCandidate(SnippetIter *pIter){
122957 int i; /* Loop counter */
122959 if( pIter->iCurrent<0 ){
122960 /* The SnippetIter object has just been initialized. The first snippet
122961 ** candidate always starts at offset 0 (even if this candidate has a
122962 ** score of 0.0).
122964 pIter->iCurrent = 0;
122966 /* Advance the 'head' iterator of each phrase to the first offset that
122967 ** is greater than or equal to (iNext+nSnippet).
122969 for(i=0; i<pIter->nPhrase; i++){
122970 SnippetPhrase *pPhrase = &pIter->aPhrase[i];
122971 fts3SnippetAdvance(&pPhrase->pHead, &pPhrase->iHead, pIter->nSnippet);
122973 }else{
122974 int iStart;
122975 int iEnd = 0x7FFFFFFF;
122977 for(i=0; i<pIter->nPhrase; i++){
122978 SnippetPhrase *pPhrase = &pIter->aPhrase[i];
122979 if( pPhrase->pHead && pPhrase->iHead<iEnd ){
122980 iEnd = pPhrase->iHead;
122983 if( iEnd==0x7FFFFFFF ){
122984 return 1;
122987 pIter->iCurrent = iStart = iEnd - pIter->nSnippet + 1;
122988 for(i=0; i<pIter->nPhrase; i++){
122989 SnippetPhrase *pPhrase = &pIter->aPhrase[i];
122990 fts3SnippetAdvance(&pPhrase->pHead, &pPhrase->iHead, iEnd+1);
122991 fts3SnippetAdvance(&pPhrase->pTail, &pPhrase->iTail, iStart);
122995 return 0;
122999 ** Retrieve information about the current candidate snippet of snippet
123000 ** iterator pIter.
123002 static void fts3SnippetDetails(
123003 SnippetIter *pIter, /* Snippet iterator */
123004 u64 mCovered, /* Bitmask of phrases already covered */
123005 int *piToken, /* OUT: First token of proposed snippet */
123006 int *piScore, /* OUT: "Score" for this snippet */
123007 u64 *pmCover, /* OUT: Bitmask of phrases covered */
123008 u64 *pmHighlight /* OUT: Bitmask of terms to highlight */
123010 int iStart = pIter->iCurrent; /* First token of snippet */
123011 int iScore = 0; /* Score of this snippet */
123012 int i; /* Loop counter */
123013 u64 mCover = 0; /* Mask of phrases covered by this snippet */
123014 u64 mHighlight = 0; /* Mask of tokens to highlight in snippet */
123016 for(i=0; i<pIter->nPhrase; i++){
123017 SnippetPhrase *pPhrase = &pIter->aPhrase[i];
123018 if( pPhrase->pTail ){
123019 char *pCsr = pPhrase->pTail;
123020 int iCsr = pPhrase->iTail;
123022 while( iCsr<(iStart+pIter->nSnippet) ){
123023 int j;
123024 u64 mPhrase = (u64)1 << i;
123025 u64 mPos = (u64)1 << (iCsr - iStart);
123026 assert( iCsr>=iStart );
123027 if( (mCover|mCovered)&mPhrase ){
123028 iScore++;
123029 }else{
123030 iScore += 1000;
123032 mCover |= mPhrase;
123034 for(j=0; j<pPhrase->nToken; j++){
123035 mHighlight |= (mPos>>j);
123038 if( 0==(*pCsr & 0x0FE) ) break;
123039 fts3GetDeltaPosition(&pCsr, &iCsr);
123044 /* Set the output variables before returning. */
123045 *piToken = iStart;
123046 *piScore = iScore;
123047 *pmCover = mCover;
123048 *pmHighlight = mHighlight;
123052 ** This function is an fts3ExprIterate() callback used by fts3BestSnippet().
123053 ** Each invocation populates an element of the SnippetIter.aPhrase[] array.
123055 static int fts3SnippetFindPositions(Fts3Expr *pExpr, int iPhrase, void *ctx){
123056 SnippetIter *p = (SnippetIter *)ctx;
123057 SnippetPhrase *pPhrase = &p->aPhrase[iPhrase];
123058 char *pCsr;
123060 pPhrase->nToken = pExpr->pPhrase->nToken;
123062 pCsr = sqlite3Fts3FindPositions(pExpr, p->pCsr->iPrevId, p->iCol);
123063 if( pCsr ){
123064 int iFirst = 0;
123065 pPhrase->pList = pCsr;
123066 fts3GetDeltaPosition(&pCsr, &iFirst);
123067 pPhrase->pHead = pCsr;
123068 pPhrase->pTail = pCsr;
123069 pPhrase->iHead = iFirst;
123070 pPhrase->iTail = iFirst;
123071 }else{
123072 assert( pPhrase->pList==0 && pPhrase->pHead==0 && pPhrase->pTail==0 );
123075 return SQLITE_OK;
123079 ** Select the fragment of text consisting of nFragment contiguous tokens
123080 ** from column iCol that represent the "best" snippet. The best snippet
123081 ** is the snippet with the highest score, where scores are calculated
123082 ** by adding:
123084 ** (a) +1 point for each occurence of a matchable phrase in the snippet.
123086 ** (b) +1000 points for the first occurence of each matchable phrase in
123087 ** the snippet for which the corresponding mCovered bit is not set.
123089 ** The selected snippet parameters are stored in structure *pFragment before
123090 ** returning. The score of the selected snippet is stored in *piScore
123091 ** before returning.
123093 static int fts3BestSnippet(
123094 int nSnippet, /* Desired snippet length */
123095 Fts3Cursor *pCsr, /* Cursor to create snippet for */
123096 int iCol, /* Index of column to create snippet from */
123097 u64 mCovered, /* Mask of phrases already covered */
123098 u64 *pmSeen, /* IN/OUT: Mask of phrases seen */
123099 SnippetFragment *pFragment, /* OUT: Best snippet found */
123100 int *piScore /* OUT: Score of snippet pFragment */
123102 int rc; /* Return Code */
123103 int nList; /* Number of phrases in expression */
123104 SnippetIter sIter; /* Iterates through snippet candidates */
123105 int nByte; /* Number of bytes of space to allocate */
123106 int iBestScore = -1; /* Best snippet score found so far */
123107 int i; /* Loop counter */
123109 memset(&sIter, 0, sizeof(sIter));
123111 /* Iterate through the phrases in the expression to count them. The same
123112 ** callback makes sure the doclists are loaded for each phrase.
123114 rc = fts3ExprLoadDoclists(pCsr, &nList, 0);
123115 if( rc!=SQLITE_OK ){
123116 return rc;
123119 /* Now that it is known how many phrases there are, allocate and zero
123120 ** the required space using malloc().
123122 nByte = sizeof(SnippetPhrase) * nList;
123123 sIter.aPhrase = (SnippetPhrase *)sqlite3_malloc(nByte);
123124 if( !sIter.aPhrase ){
123125 return SQLITE_NOMEM;
123127 memset(sIter.aPhrase, 0, nByte);
123129 /* Initialize the contents of the SnippetIter object. Then iterate through
123130 ** the set of phrases in the expression to populate the aPhrase[] array.
123132 sIter.pCsr = pCsr;
123133 sIter.iCol = iCol;
123134 sIter.nSnippet = nSnippet;
123135 sIter.nPhrase = nList;
123136 sIter.iCurrent = -1;
123137 (void)fts3ExprIterate(pCsr->pExpr, fts3SnippetFindPositions, (void *)&sIter);
123139 /* Set the *pmSeen output variable. */
123140 for(i=0; i<nList; i++){
123141 if( sIter.aPhrase[i].pHead ){
123142 *pmSeen |= (u64)1 << i;
123146 /* Loop through all candidate snippets. Store the best snippet in
123147 ** *pFragment. Store its associated 'score' in iBestScore.
123149 pFragment->iCol = iCol;
123150 while( !fts3SnippetNextCandidate(&sIter) ){
123151 int iPos;
123152 int iScore;
123153 u64 mCover;
123154 u64 mHighlight;
123155 fts3SnippetDetails(&sIter, mCovered, &iPos, &iScore, &mCover, &mHighlight);
123156 assert( iScore>=0 );
123157 if( iScore>iBestScore ){
123158 pFragment->iPos = iPos;
123159 pFragment->hlmask = mHighlight;
123160 pFragment->covered = mCover;
123161 iBestScore = iScore;
123165 sqlite3_free(sIter.aPhrase);
123166 *piScore = iBestScore;
123167 return SQLITE_OK;
123172 ** Append a string to the string-buffer passed as the first argument.
123174 ** If nAppend is negative, then the length of the string zAppend is
123175 ** determined using strlen().
123177 static int fts3StringAppend(
123178 StrBuffer *pStr, /* Buffer to append to */
123179 const char *zAppend, /* Pointer to data to append to buffer */
123180 int nAppend /* Size of zAppend in bytes (or -1) */
123182 if( nAppend<0 ){
123183 nAppend = (int)strlen(zAppend);
123186 /* If there is insufficient space allocated at StrBuffer.z, use realloc()
123187 ** to grow the buffer until so that it is big enough to accomadate the
123188 ** appended data.
123190 if( pStr->n+nAppend+1>=pStr->nAlloc ){
123191 int nAlloc = pStr->nAlloc+nAppend+100;
123192 char *zNew = sqlite3_realloc(pStr->z, nAlloc);
123193 if( !zNew ){
123194 return SQLITE_NOMEM;
123196 pStr->z = zNew;
123197 pStr->nAlloc = nAlloc;
123200 /* Append the data to the string buffer. */
123201 memcpy(&pStr->z[pStr->n], zAppend, nAppend);
123202 pStr->n += nAppend;
123203 pStr->z[pStr->n] = '\0';
123205 return SQLITE_OK;
123209 ** The fts3BestSnippet() function often selects snippets that end with a
123210 ** query term. That is, the final term of the snippet is always a term
123211 ** that requires highlighting. For example, if 'X' is a highlighted term
123212 ** and '.' is a non-highlighted term, BestSnippet() may select:
123214 ** ........X.....X
123216 ** This function "shifts" the beginning of the snippet forward in the
123217 ** document so that there are approximately the same number of
123218 ** non-highlighted terms to the right of the final highlighted term as there
123219 ** are to the left of the first highlighted term. For example, to this:
123221 ** ....X.....X....
123223 ** This is done as part of extracting the snippet text, not when selecting
123224 ** the snippet. Snippet selection is done based on doclists only, so there
123225 ** is no way for fts3BestSnippet() to know whether or not the document
123226 ** actually contains terms that follow the final highlighted term.
123228 static int fts3SnippetShift(
123229 Fts3Table *pTab, /* FTS3 table snippet comes from */
123230 int nSnippet, /* Number of tokens desired for snippet */
123231 const char *zDoc, /* Document text to extract snippet from */
123232 int nDoc, /* Size of buffer zDoc in bytes */
123233 int *piPos, /* IN/OUT: First token of snippet */
123234 u64 *pHlmask /* IN/OUT: Mask of tokens to highlight */
123236 u64 hlmask = *pHlmask; /* Local copy of initial highlight-mask */
123238 if( hlmask ){
123239 int nLeft; /* Tokens to the left of first highlight */
123240 int nRight; /* Tokens to the right of last highlight */
123241 int nDesired; /* Ideal number of tokens to shift forward */
123243 for(nLeft=0; !(hlmask & ((u64)1 << nLeft)); nLeft++);
123244 for(nRight=0; !(hlmask & ((u64)1 << (nSnippet-1-nRight))); nRight++);
123245 nDesired = (nLeft-nRight)/2;
123247 /* Ideally, the start of the snippet should be pushed forward in the
123248 ** document nDesired tokens. This block checks if there are actually
123249 ** nDesired tokens to the right of the snippet. If so, *piPos and
123250 ** *pHlMask are updated to shift the snippet nDesired tokens to the
123251 ** right. Otherwise, the snippet is shifted by the number of tokens
123252 ** available.
123254 if( nDesired>0 ){
123255 int nShift; /* Number of tokens to shift snippet by */
123256 int iCurrent = 0; /* Token counter */
123257 int rc; /* Return Code */
123258 sqlite3_tokenizer_module *pMod;
123259 sqlite3_tokenizer_cursor *pC;
123260 pMod = (sqlite3_tokenizer_module *)pTab->pTokenizer->pModule;
123262 /* Open a cursor on zDoc/nDoc. Check if there are (nSnippet+nDesired)
123263 ** or more tokens in zDoc/nDoc.
123265 rc = pMod->xOpen(pTab->pTokenizer, zDoc, nDoc, &pC);
123266 if( rc!=SQLITE_OK ){
123267 return rc;
123269 pC->pTokenizer = pTab->pTokenizer;
123270 while( rc==SQLITE_OK && iCurrent<(nSnippet+nDesired) ){
123271 const char *ZDUMMY; int DUMMY1, DUMMY2, DUMMY3;
123272 rc = pMod->xNext(pC, &ZDUMMY, &DUMMY1, &DUMMY2, &DUMMY3, &iCurrent);
123274 pMod->xClose(pC);
123275 if( rc!=SQLITE_OK && rc!=SQLITE_DONE ){ return rc; }
123277 nShift = (rc==SQLITE_DONE)+iCurrent-nSnippet;
123278 assert( nShift<=nDesired );
123279 if( nShift>0 ){
123280 *piPos += nShift;
123281 *pHlmask = hlmask >> nShift;
123285 return SQLITE_OK;
123289 ** Extract the snippet text for fragment pFragment from cursor pCsr and
123290 ** append it to string buffer pOut.
123292 static int fts3SnippetText(
123293 Fts3Cursor *pCsr, /* FTS3 Cursor */
123294 SnippetFragment *pFragment, /* Snippet to extract */
123295 int iFragment, /* Fragment number */
123296 int isLast, /* True for final fragment in snippet */
123297 int nSnippet, /* Number of tokens in extracted snippet */
123298 const char *zOpen, /* String inserted before highlighted term */
123299 const char *zClose, /* String inserted after highlighted term */
123300 const char *zEllipsis, /* String inserted between snippets */
123301 StrBuffer *pOut /* Write output here */
123303 Fts3Table *pTab = (Fts3Table *)pCsr->base.pVtab;
123304 int rc; /* Return code */
123305 const char *zDoc; /* Document text to extract snippet from */
123306 int nDoc; /* Size of zDoc in bytes */
123307 int iCurrent = 0; /* Current token number of document */
123308 int iEnd = 0; /* Byte offset of end of current token */
123309 int isShiftDone = 0; /* True after snippet is shifted */
123310 int iPos = pFragment->iPos; /* First token of snippet */
123311 u64 hlmask = pFragment->hlmask; /* Highlight-mask for snippet */
123312 int iCol = pFragment->iCol+1; /* Query column to extract text from */
123313 sqlite3_tokenizer_module *pMod; /* Tokenizer module methods object */
123314 sqlite3_tokenizer_cursor *pC; /* Tokenizer cursor open on zDoc/nDoc */
123315 const char *ZDUMMY; /* Dummy argument used with tokenizer */
123316 int DUMMY1; /* Dummy argument used with tokenizer */
123318 zDoc = (const char *)sqlite3_column_text(pCsr->pStmt, iCol);
123319 if( zDoc==0 ){
123320 if( sqlite3_column_type(pCsr->pStmt, iCol)!=SQLITE_NULL ){
123321 return SQLITE_NOMEM;
123323 return SQLITE_OK;
123325 nDoc = sqlite3_column_bytes(pCsr->pStmt, iCol);
123327 /* Open a token cursor on the document. */
123328 pMod = (sqlite3_tokenizer_module *)pTab->pTokenizer->pModule;
123329 rc = pMod->xOpen(pTab->pTokenizer, zDoc, nDoc, &pC);
123330 if( rc!=SQLITE_OK ){
123331 return rc;
123333 pC->pTokenizer = pTab->pTokenizer;
123335 while( rc==SQLITE_OK ){
123336 int iBegin; /* Offset in zDoc of start of token */
123337 int iFin; /* Offset in zDoc of end of token */
123338 int isHighlight; /* True for highlighted terms */
123340 rc = pMod->xNext(pC, &ZDUMMY, &DUMMY1, &iBegin, &iFin, &iCurrent);
123341 if( rc!=SQLITE_OK ){
123342 if( rc==SQLITE_DONE ){
123343 /* Special case - the last token of the snippet is also the last token
123344 ** of the column. Append any punctuation that occurred between the end
123345 ** of the previous token and the end of the document to the output.
123346 ** Then break out of the loop. */
123347 rc = fts3StringAppend(pOut, &zDoc[iEnd], -1);
123349 break;
123351 if( iCurrent<iPos ){ continue; }
123353 if( !isShiftDone ){
123354 int n = nDoc - iBegin;
123355 rc = fts3SnippetShift(pTab, nSnippet, &zDoc[iBegin], n, &iPos, &hlmask);
123356 isShiftDone = 1;
123358 /* Now that the shift has been done, check if the initial "..." are
123359 ** required. They are required if (a) this is not the first fragment,
123360 ** or (b) this fragment does not begin at position 0 of its column.
123362 if( rc==SQLITE_OK && (iPos>0 || iFragment>0) ){
123363 rc = fts3StringAppend(pOut, zEllipsis, -1);
123365 if( rc!=SQLITE_OK || iCurrent<iPos ) continue;
123368 if( iCurrent>=(iPos+nSnippet) ){
123369 if( isLast ){
123370 rc = fts3StringAppend(pOut, zEllipsis, -1);
123372 break;
123375 /* Set isHighlight to true if this term should be highlighted. */
123376 isHighlight = (hlmask & ((u64)1 << (iCurrent-iPos)))!=0;
123378 if( iCurrent>iPos ) rc = fts3StringAppend(pOut, &zDoc[iEnd], iBegin-iEnd);
123379 if( rc==SQLITE_OK && isHighlight ) rc = fts3StringAppend(pOut, zOpen, -1);
123380 if( rc==SQLITE_OK ) rc = fts3StringAppend(pOut, &zDoc[iBegin], iFin-iBegin);
123381 if( rc==SQLITE_OK && isHighlight ) rc = fts3StringAppend(pOut, zClose, -1);
123383 iEnd = iFin;
123386 pMod->xClose(pC);
123387 return rc;
123392 ** This function is used to count the entries in a column-list (a
123393 ** delta-encoded list of term offsets within a single column of a single
123394 ** row). When this function is called, *ppCollist should point to the
123395 ** beginning of the first varint in the column-list (the varint that
123396 ** contains the position of the first matching term in the column data).
123397 ** Before returning, *ppCollist is set to point to the first byte after
123398 ** the last varint in the column-list (either the 0x00 signifying the end
123399 ** of the position-list, or the 0x01 that precedes the column number of
123400 ** the next column in the position-list).
123402 ** The number of elements in the column-list is returned.
123404 static int fts3ColumnlistCount(char **ppCollist){
123405 char *pEnd = *ppCollist;
123406 char c = 0;
123407 int nEntry = 0;
123409 /* A column-list is terminated by either a 0x01 or 0x00. */
123410 while( 0xFE & (*pEnd | c) ){
123411 c = *pEnd++ & 0x80;
123412 if( !c ) nEntry++;
123415 *ppCollist = pEnd;
123416 return nEntry;
123419 static void fts3LoadColumnlistCounts(char **pp, u32 *aOut, int isGlobal){
123420 char *pCsr = *pp;
123421 while( *pCsr ){
123422 int nHit;
123423 sqlite3_int64 iCol = 0;
123424 if( *pCsr==0x01 ){
123425 pCsr++;
123426 pCsr += sqlite3Fts3GetVarint(pCsr, &iCol);
123428 nHit = fts3ColumnlistCount(&pCsr);
123429 assert( nHit>0 );
123430 if( isGlobal ){
123431 aOut[iCol*3+1]++;
123433 aOut[iCol*3] += nHit;
123435 pCsr++;
123436 *pp = pCsr;
123440 ** fts3ExprIterate() callback used to collect the "global" matchinfo stats
123441 ** for a single query.
123443 ** fts3ExprIterate() callback to load the 'global' elements of a
123444 ** FTS3_MATCHINFO_HITS matchinfo array. The global stats are those elements
123445 ** of the matchinfo array that are constant for all rows returned by the
123446 ** current query.
123448 ** Argument pCtx is actually a pointer to a struct of type MatchInfo. This
123449 ** function populates Matchinfo.aMatchinfo[] as follows:
123451 ** for(iCol=0; iCol<nCol; iCol++){
123452 ** aMatchinfo[3*iPhrase*nCol + 3*iCol + 1] = X;
123453 ** aMatchinfo[3*iPhrase*nCol + 3*iCol + 2] = Y;
123456 ** where X is the number of matches for phrase iPhrase is column iCol of all
123457 ** rows of the table. Y is the number of rows for which column iCol contains
123458 ** at least one instance of phrase iPhrase.
123460 ** If the phrase pExpr consists entirely of deferred tokens, then all X and
123461 ** Y values are set to nDoc, where nDoc is the number of documents in the
123462 ** file system. This is done because the full-text index doclist is required
123463 ** to calculate these values properly, and the full-text index doclist is
123464 ** not available for deferred tokens.
123466 static int fts3ExprGlobalHitsCb(
123467 Fts3Expr *pExpr, /* Phrase expression node */
123468 int iPhrase, /* Phrase number (numbered from zero) */
123469 void *pCtx /* Pointer to MatchInfo structure */
123471 MatchInfo *p = (MatchInfo *)pCtx;
123472 Fts3Cursor *pCsr = p->pCursor;
123473 char *pIter;
123474 char *pEnd;
123475 char *pFree = 0;
123476 u32 *aOut = &p->aMatchinfo[3*iPhrase*p->nCol];
123478 assert( pExpr->isLoaded );
123479 assert( pExpr->eType==FTSQUERY_PHRASE );
123481 if( pCsr->pDeferred ){
123482 Fts3Phrase *pPhrase = pExpr->pPhrase;
123483 int ii;
123484 for(ii=0; ii<pPhrase->nToken; ii++){
123485 if( pPhrase->aToken[ii].bFulltext ) break;
123487 if( ii<pPhrase->nToken ){
123488 int nFree = 0;
123489 int rc = sqlite3Fts3ExprLoadFtDoclist(pCsr, pExpr, &pFree, &nFree);
123490 if( rc!=SQLITE_OK ) return rc;
123491 pIter = pFree;
123492 pEnd = &pFree[nFree];
123493 }else{
123494 int iCol; /* Column index */
123495 for(iCol=0; iCol<p->nCol; iCol++){
123496 aOut[iCol*3 + 1] = (u32)p->nDoc;
123497 aOut[iCol*3 + 2] = (u32)p->nDoc;
123499 return SQLITE_OK;
123501 }else{
123502 pIter = pExpr->aDoclist;
123503 pEnd = &pExpr->aDoclist[pExpr->nDoclist];
123506 /* Fill in the global hit count matrix row for this phrase. */
123507 while( pIter<pEnd ){
123508 while( *pIter++ & 0x80 ); /* Skip past docid. */
123509 fts3LoadColumnlistCounts(&pIter, &aOut[1], 1);
123512 sqlite3_free(pFree);
123513 return SQLITE_OK;
123517 ** fts3ExprIterate() callback used to collect the "local" part of the
123518 ** FTS3_MATCHINFO_HITS array. The local stats are those elements of the
123519 ** array that are different for each row returned by the query.
123521 static int fts3ExprLocalHitsCb(
123522 Fts3Expr *pExpr, /* Phrase expression node */
123523 int iPhrase, /* Phrase number */
123524 void *pCtx /* Pointer to MatchInfo structure */
123526 MatchInfo *p = (MatchInfo *)pCtx;
123527 int iStart = iPhrase * p->nCol * 3;
123528 int i;
123530 for(i=0; i<p->nCol; i++) p->aMatchinfo[iStart+i*3] = 0;
123532 if( pExpr->aDoclist ){
123533 char *pCsr;
123535 pCsr = sqlite3Fts3FindPositions(pExpr, p->pCursor->iPrevId, -1);
123536 if( pCsr ){
123537 fts3LoadColumnlistCounts(&pCsr, &p->aMatchinfo[iStart], 0);
123541 return SQLITE_OK;
123544 static int fts3MatchinfoCheck(
123545 Fts3Table *pTab,
123546 char cArg,
123547 char **pzErr
123549 if( (cArg==FTS3_MATCHINFO_NPHRASE)
123550 || (cArg==FTS3_MATCHINFO_NCOL)
123551 || (cArg==FTS3_MATCHINFO_NDOC && pTab->bHasStat)
123552 || (cArg==FTS3_MATCHINFO_AVGLENGTH && pTab->bHasStat)
123553 || (cArg==FTS3_MATCHINFO_LENGTH && pTab->bHasDocsize)
123554 || (cArg==FTS3_MATCHINFO_LCS)
123555 || (cArg==FTS3_MATCHINFO_HITS)
123557 return SQLITE_OK;
123559 *pzErr = sqlite3_mprintf("unrecognized matchinfo request: %c", cArg);
123560 return SQLITE_ERROR;
123563 static int fts3MatchinfoSize(MatchInfo *pInfo, char cArg){
123564 int nVal; /* Number of integers output by cArg */
123566 switch( cArg ){
123567 case FTS3_MATCHINFO_NDOC:
123568 case FTS3_MATCHINFO_NPHRASE:
123569 case FTS3_MATCHINFO_NCOL:
123570 nVal = 1;
123571 break;
123573 case FTS3_MATCHINFO_AVGLENGTH:
123574 case FTS3_MATCHINFO_LENGTH:
123575 case FTS3_MATCHINFO_LCS:
123576 nVal = pInfo->nCol;
123577 break;
123579 default:
123580 assert( cArg==FTS3_MATCHINFO_HITS );
123581 nVal = pInfo->nCol * pInfo->nPhrase * 3;
123582 break;
123585 return nVal;
123588 static int fts3MatchinfoSelectDoctotal(
123589 Fts3Table *pTab,
123590 sqlite3_stmt **ppStmt,
123591 sqlite3_int64 *pnDoc,
123592 const char **paLen
123594 sqlite3_stmt *pStmt;
123595 const char *a;
123596 sqlite3_int64 nDoc;
123598 if( !*ppStmt ){
123599 int rc = sqlite3Fts3SelectDoctotal(pTab, ppStmt);
123600 if( rc!=SQLITE_OK ) return rc;
123602 pStmt = *ppStmt;
123603 assert( sqlite3_data_count(pStmt)==1 );
123605 a = sqlite3_column_blob(pStmt, 0);
123606 a += sqlite3Fts3GetVarint(a, &nDoc);
123607 if( nDoc==0 ) return SQLITE_CORRUPT;
123608 *pnDoc = (u32)nDoc;
123610 if( paLen ) *paLen = a;
123611 return SQLITE_OK;
123615 ** An instance of the following structure is used to store state while
123616 ** iterating through a multi-column position-list corresponding to the
123617 ** hits for a single phrase on a single row in order to calculate the
123618 ** values for a matchinfo() FTS3_MATCHINFO_LCS request.
123620 typedef struct LcsIterator LcsIterator;
123621 struct LcsIterator {
123622 Fts3Expr *pExpr; /* Pointer to phrase expression */
123623 char *pRead; /* Cursor used to iterate through aDoclist */
123624 int iPosOffset; /* Tokens count up to end of this phrase */
123625 int iCol; /* Current column number */
123626 int iPos; /* Current position */
123630 ** If LcsIterator.iCol is set to the following value, the iterator has
123631 ** finished iterating through all offsets for all columns.
123633 #define LCS_ITERATOR_FINISHED 0x7FFFFFFF;
123635 static int fts3MatchinfoLcsCb(
123636 Fts3Expr *pExpr, /* Phrase expression node */
123637 int iPhrase, /* Phrase number (numbered from zero) */
123638 void *pCtx /* Pointer to MatchInfo structure */
123640 LcsIterator *aIter = (LcsIterator *)pCtx;
123641 aIter[iPhrase].pExpr = pExpr;
123642 return SQLITE_OK;
123646 ** Advance the iterator passed as an argument to the next position. Return
123647 ** 1 if the iterator is at EOF or if it now points to the start of the
123648 ** position list for the next column.
123650 static int fts3LcsIteratorAdvance(LcsIterator *pIter){
123651 char *pRead = pIter->pRead;
123652 sqlite3_int64 iRead;
123653 int rc = 0;
123655 pRead += sqlite3Fts3GetVarint(pRead, &iRead);
123656 if( iRead==0 ){
123657 pIter->iCol = LCS_ITERATOR_FINISHED;
123658 rc = 1;
123659 }else{
123660 if( iRead==1 ){
123661 pRead += sqlite3Fts3GetVarint(pRead, &iRead);
123662 pIter->iCol = (int)iRead;
123663 pIter->iPos = pIter->iPosOffset;
123664 pRead += sqlite3Fts3GetVarint(pRead, &iRead);
123665 rc = 1;
123667 pIter->iPos += (int)(iRead-2);
123670 pIter->pRead = pRead;
123671 return rc;
123675 ** This function implements the FTS3_MATCHINFO_LCS matchinfo() flag.
123677 ** If the call is successful, the longest-common-substring lengths for each
123678 ** column are written into the first nCol elements of the pInfo->aMatchinfo[]
123679 ** array before returning. SQLITE_OK is returned in this case.
123681 ** Otherwise, if an error occurs, an SQLite error code is returned and the
123682 ** data written to the first nCol elements of pInfo->aMatchinfo[] is
123683 ** undefined.
123685 static int fts3MatchinfoLcs(Fts3Cursor *pCsr, MatchInfo *pInfo){
123686 LcsIterator *aIter;
123687 int i;
123688 int iCol;
123689 int nToken = 0;
123691 /* Allocate and populate the array of LcsIterator objects. The array
123692 ** contains one element for each matchable phrase in the query.
123694 aIter = sqlite3_malloc(sizeof(LcsIterator) * pCsr->nPhrase);
123695 if( !aIter ) return SQLITE_NOMEM;
123696 memset(aIter, 0, sizeof(LcsIterator) * pCsr->nPhrase);
123697 (void)fts3ExprIterate(pCsr->pExpr, fts3MatchinfoLcsCb, (void*)aIter);
123698 for(i=0; i<pInfo->nPhrase; i++){
123699 LcsIterator *pIter = &aIter[i];
123700 nToken -= pIter->pExpr->pPhrase->nToken;
123701 pIter->iPosOffset = nToken;
123702 pIter->pRead = sqlite3Fts3FindPositions(pIter->pExpr, pCsr->iPrevId, -1);
123703 if( pIter->pRead ){
123704 pIter->iPos = pIter->iPosOffset;
123705 fts3LcsIteratorAdvance(&aIter[i]);
123706 }else{
123707 pIter->iCol = LCS_ITERATOR_FINISHED;
123711 for(iCol=0; iCol<pInfo->nCol; iCol++){
123712 int nLcs = 0; /* LCS value for this column */
123713 int nLive = 0; /* Number of iterators in aIter not at EOF */
123715 /* Loop through the iterators in aIter[]. Set nLive to the number of
123716 ** iterators that point to a position-list corresponding to column iCol.
123718 for(i=0; i<pInfo->nPhrase; i++){
123719 assert( aIter[i].iCol>=iCol );
123720 if( aIter[i].iCol==iCol ) nLive++;
123723 /* The following loop runs until all iterators in aIter[] have finished
123724 ** iterating through positions in column iCol. Exactly one of the
123725 ** iterators is advanced each time the body of the loop is run.
123727 while( nLive>0 ){
123728 LcsIterator *pAdv = 0; /* The iterator to advance by one position */
123729 int nThisLcs = 0; /* LCS for the current iterator positions */
123731 for(i=0; i<pInfo->nPhrase; i++){
123732 LcsIterator *pIter = &aIter[i];
123733 if( iCol!=pIter->iCol ){
123734 /* This iterator is already at EOF for this column. */
123735 nThisLcs = 0;
123736 }else{
123737 if( pAdv==0 || pIter->iPos<pAdv->iPos ){
123738 pAdv = pIter;
123740 if( nThisLcs==0 || pIter->iPos==pIter[-1].iPos ){
123741 nThisLcs++;
123742 }else{
123743 nThisLcs = 1;
123745 if( nThisLcs>nLcs ) nLcs = nThisLcs;
123748 if( fts3LcsIteratorAdvance(pAdv) ) nLive--;
123751 pInfo->aMatchinfo[iCol] = nLcs;
123754 sqlite3_free(aIter);
123755 return SQLITE_OK;
123759 ** Populate the buffer pInfo->aMatchinfo[] with an array of integers to
123760 ** be returned by the matchinfo() function. Argument zArg contains the
123761 ** format string passed as the second argument to matchinfo (or the
123762 ** default value "pcx" if no second argument was specified). The format
123763 ** string has already been validated and the pInfo->aMatchinfo[] array
123764 ** is guaranteed to be large enough for the output.
123766 ** If bGlobal is true, then populate all fields of the matchinfo() output.
123767 ** If it is false, then assume that those fields that do not change between
123768 ** rows (i.e. FTS3_MATCHINFO_NPHRASE, NCOL, NDOC, AVGLENGTH and part of HITS)
123769 ** have already been populated.
123771 ** Return SQLITE_OK if successful, or an SQLite error code if an error
123772 ** occurs. If a value other than SQLITE_OK is returned, the state the
123773 ** pInfo->aMatchinfo[] buffer is left in is undefined.
123775 static int fts3MatchinfoValues(
123776 Fts3Cursor *pCsr, /* FTS3 cursor object */
123777 int bGlobal, /* True to grab the global stats */
123778 MatchInfo *pInfo, /* Matchinfo context object */
123779 const char *zArg /* Matchinfo format string */
123781 int rc = SQLITE_OK;
123782 int i;
123783 Fts3Table *pTab = (Fts3Table *)pCsr->base.pVtab;
123784 sqlite3_stmt *pSelect = 0;
123786 for(i=0; rc==SQLITE_OK && zArg[i]; i++){
123788 switch( zArg[i] ){
123789 case FTS3_MATCHINFO_NPHRASE:
123790 if( bGlobal ) pInfo->aMatchinfo[0] = pInfo->nPhrase;
123791 break;
123793 case FTS3_MATCHINFO_NCOL:
123794 if( bGlobal ) pInfo->aMatchinfo[0] = pInfo->nCol;
123795 break;
123797 case FTS3_MATCHINFO_NDOC:
123798 if( bGlobal ){
123799 sqlite3_int64 nDoc;
123800 rc = fts3MatchinfoSelectDoctotal(pTab, &pSelect, &nDoc, 0);
123801 pInfo->aMatchinfo[0] = (u32)nDoc;
123803 break;
123805 case FTS3_MATCHINFO_AVGLENGTH:
123806 if( bGlobal ){
123807 sqlite3_int64 nDoc; /* Number of rows in table */
123808 const char *a; /* Aggregate column length array */
123810 rc = fts3MatchinfoSelectDoctotal(pTab, &pSelect, &nDoc, &a);
123811 if( rc==SQLITE_OK ){
123812 int iCol;
123813 for(iCol=0; iCol<pInfo->nCol; iCol++){
123814 u32 iVal;
123815 sqlite3_int64 nToken;
123816 a += sqlite3Fts3GetVarint(a, &nToken);
123817 iVal = (u32)(((u32)(nToken&0xffffffff)+nDoc/2)/nDoc);
123818 pInfo->aMatchinfo[iCol] = iVal;
123822 break;
123824 case FTS3_MATCHINFO_LENGTH: {
123825 sqlite3_stmt *pSelectDocsize = 0;
123826 rc = sqlite3Fts3SelectDocsize(pTab, pCsr->iPrevId, &pSelectDocsize);
123827 if( rc==SQLITE_OK ){
123828 int iCol;
123829 const char *a = sqlite3_column_blob(pSelectDocsize, 0);
123830 for(iCol=0; iCol<pInfo->nCol; iCol++){
123831 sqlite3_int64 nToken;
123832 a += sqlite3Fts3GetVarint(a, &nToken);
123833 pInfo->aMatchinfo[iCol] = (u32)nToken;
123836 sqlite3_reset(pSelectDocsize);
123837 break;
123840 case FTS3_MATCHINFO_LCS:
123841 rc = fts3ExprLoadDoclists(pCsr, 0, 0);
123842 if( rc==SQLITE_OK ){
123843 rc = fts3MatchinfoLcs(pCsr, pInfo);
123845 break;
123847 default: {
123848 Fts3Expr *pExpr;
123849 assert( zArg[i]==FTS3_MATCHINFO_HITS );
123850 pExpr = pCsr->pExpr;
123851 rc = fts3ExprLoadDoclists(pCsr, 0, 0);
123852 if( rc!=SQLITE_OK ) break;
123853 if( bGlobal ){
123854 if( pCsr->pDeferred ){
123855 rc = fts3MatchinfoSelectDoctotal(pTab, &pSelect, &pInfo->nDoc, 0);
123856 if( rc!=SQLITE_OK ) break;
123858 rc = fts3ExprIterate(pExpr, fts3ExprGlobalHitsCb,(void*)pInfo);
123859 if( rc!=SQLITE_OK ) break;
123861 (void)fts3ExprIterate(pExpr, fts3ExprLocalHitsCb,(void*)pInfo);
123862 break;
123866 pInfo->aMatchinfo += fts3MatchinfoSize(pInfo, zArg[i]);
123869 sqlite3_reset(pSelect);
123870 return rc;
123875 ** Populate pCsr->aMatchinfo[] with data for the current row. The
123876 ** 'matchinfo' data is an array of 32-bit unsigned integers (C type u32).
123878 static int fts3GetMatchinfo(
123879 Fts3Cursor *pCsr, /* FTS3 Cursor object */
123880 const char *zArg /* Second argument to matchinfo() function */
123882 MatchInfo sInfo;
123883 Fts3Table *pTab = (Fts3Table *)pCsr->base.pVtab;
123884 int rc = SQLITE_OK;
123885 int bGlobal = 0; /* Collect 'global' stats as well as local */
123887 memset(&sInfo, 0, sizeof(MatchInfo));
123888 sInfo.pCursor = pCsr;
123889 sInfo.nCol = pTab->nColumn;
123891 /* If there is cached matchinfo() data, but the format string for the
123892 ** cache does not match the format string for this request, discard
123893 ** the cached data. */
123894 if( pCsr->zMatchinfo && strcmp(pCsr->zMatchinfo, zArg) ){
123895 assert( pCsr->aMatchinfo );
123896 sqlite3_free(pCsr->aMatchinfo);
123897 pCsr->zMatchinfo = 0;
123898 pCsr->aMatchinfo = 0;
123901 /* If Fts3Cursor.aMatchinfo[] is NULL, then this is the first time the
123902 ** matchinfo function has been called for this query. In this case
123903 ** allocate the array used to accumulate the matchinfo data and
123904 ** initialize those elements that are constant for every row.
123906 if( pCsr->aMatchinfo==0 ){
123907 int nMatchinfo = 0; /* Number of u32 elements in match-info */
123908 int nArg; /* Bytes in zArg */
123909 int i; /* Used to iterate through zArg */
123911 /* Determine the number of phrases in the query */
123912 pCsr->nPhrase = fts3ExprPhraseCount(pCsr->pExpr);
123913 sInfo.nPhrase = pCsr->nPhrase;
123915 /* Determine the number of integers in the buffer returned by this call. */
123916 for(i=0; zArg[i]; i++){
123917 nMatchinfo += fts3MatchinfoSize(&sInfo, zArg[i]);
123920 /* Allocate space for Fts3Cursor.aMatchinfo[] and Fts3Cursor.zMatchinfo. */
123921 nArg = (int)strlen(zArg);
123922 pCsr->aMatchinfo = (u32 *)sqlite3_malloc(sizeof(u32)*nMatchinfo + nArg + 1);
123923 if( !pCsr->aMatchinfo ) return SQLITE_NOMEM;
123925 pCsr->zMatchinfo = (char *)&pCsr->aMatchinfo[nMatchinfo];
123926 pCsr->nMatchinfo = nMatchinfo;
123927 memcpy(pCsr->zMatchinfo, zArg, nArg+1);
123928 memset(pCsr->aMatchinfo, 0, sizeof(u32)*nMatchinfo);
123929 pCsr->isMatchinfoNeeded = 1;
123930 bGlobal = 1;
123933 sInfo.aMatchinfo = pCsr->aMatchinfo;
123934 sInfo.nPhrase = pCsr->nPhrase;
123935 if( pCsr->isMatchinfoNeeded ){
123936 rc = fts3MatchinfoValues(pCsr, bGlobal, &sInfo, zArg);
123937 pCsr->isMatchinfoNeeded = 0;
123940 return rc;
123944 ** Implementation of snippet() function.
123946 SQLITE_PRIVATE void sqlite3Fts3Snippet(
123947 sqlite3_context *pCtx, /* SQLite function call context */
123948 Fts3Cursor *pCsr, /* Cursor object */
123949 const char *zStart, /* Snippet start text - "<b>" */
123950 const char *zEnd, /* Snippet end text - "</b>" */
123951 const char *zEllipsis, /* Snippet ellipsis text - "<b>...</b>" */
123952 int iCol, /* Extract snippet from this column */
123953 int nToken /* Approximate number of tokens in snippet */
123955 Fts3Table *pTab = (Fts3Table *)pCsr->base.pVtab;
123956 int rc = SQLITE_OK;
123957 int i;
123958 StrBuffer res = {0, 0, 0};
123960 /* The returned text includes up to four fragments of text extracted from
123961 ** the data in the current row. The first iteration of the for(...) loop
123962 ** below attempts to locate a single fragment of text nToken tokens in
123963 ** size that contains at least one instance of all phrases in the query
123964 ** expression that appear in the current row. If such a fragment of text
123965 ** cannot be found, the second iteration of the loop attempts to locate
123966 ** a pair of fragments, and so on.
123968 int nSnippet = 0; /* Number of fragments in this snippet */
123969 SnippetFragment aSnippet[4]; /* Maximum of 4 fragments per snippet */
123970 int nFToken = -1; /* Number of tokens in each fragment */
123972 if( !pCsr->pExpr ){
123973 sqlite3_result_text(pCtx, "", 0, SQLITE_STATIC);
123974 return;
123977 for(nSnippet=1; 1; nSnippet++){
123979 int iSnip; /* Loop counter 0..nSnippet-1 */
123980 u64 mCovered = 0; /* Bitmask of phrases covered by snippet */
123981 u64 mSeen = 0; /* Bitmask of phrases seen by BestSnippet() */
123983 if( nToken>=0 ){
123984 nFToken = (nToken+nSnippet-1) / nSnippet;
123985 }else{
123986 nFToken = -1 * nToken;
123989 for(iSnip=0; iSnip<nSnippet; iSnip++){
123990 int iBestScore = -1; /* Best score of columns checked so far */
123991 int iRead; /* Used to iterate through columns */
123992 SnippetFragment *pFragment = &aSnippet[iSnip];
123994 memset(pFragment, 0, sizeof(*pFragment));
123996 /* Loop through all columns of the table being considered for snippets.
123997 ** If the iCol argument to this function was negative, this means all
123998 ** columns of the FTS3 table. Otherwise, only column iCol is considered.
124000 for(iRead=0; iRead<pTab->nColumn; iRead++){
124001 SnippetFragment sF = {0, 0, 0, 0};
124002 int iS;
124003 if( iCol>=0 && iRead!=iCol ) continue;
124005 /* Find the best snippet of nFToken tokens in column iRead. */
124006 rc = fts3BestSnippet(nFToken, pCsr, iRead, mCovered, &mSeen, &sF, &iS);
124007 if( rc!=SQLITE_OK ){
124008 goto snippet_out;
124010 if( iS>iBestScore ){
124011 *pFragment = sF;
124012 iBestScore = iS;
124016 mCovered |= pFragment->covered;
124019 /* If all query phrases seen by fts3BestSnippet() are present in at least
124020 ** one of the nSnippet snippet fragments, break out of the loop.
124022 assert( (mCovered&mSeen)==mCovered );
124023 if( mSeen==mCovered || nSnippet==SizeofArray(aSnippet) ) break;
124026 assert( nFToken>0 );
124028 for(i=0; i<nSnippet && rc==SQLITE_OK; i++){
124029 rc = fts3SnippetText(pCsr, &aSnippet[i],
124030 i, (i==nSnippet-1), nFToken, zStart, zEnd, zEllipsis, &res
124034 snippet_out:
124035 sqlite3Fts3SegmentsClose(pTab);
124036 if( rc!=SQLITE_OK ){
124037 sqlite3_result_error_code(pCtx, rc);
124038 sqlite3_free(res.z);
124039 }else{
124040 sqlite3_result_text(pCtx, res.z, -1, sqlite3_free);
124045 typedef struct TermOffset TermOffset;
124046 typedef struct TermOffsetCtx TermOffsetCtx;
124048 struct TermOffset {
124049 char *pList; /* Position-list */
124050 int iPos; /* Position just read from pList */
124051 int iOff; /* Offset of this term from read positions */
124054 struct TermOffsetCtx {
124055 int iCol; /* Column of table to populate aTerm for */
124056 int iTerm;
124057 sqlite3_int64 iDocid;
124058 TermOffset *aTerm;
124062 ** This function is an fts3ExprIterate() callback used by sqlite3Fts3Offsets().
124064 static int fts3ExprTermOffsetInit(Fts3Expr *pExpr, int iPhrase, void *ctx){
124065 TermOffsetCtx *p = (TermOffsetCtx *)ctx;
124066 int nTerm; /* Number of tokens in phrase */
124067 int iTerm; /* For looping through nTerm phrase terms */
124068 char *pList; /* Pointer to position list for phrase */
124069 int iPos = 0; /* First position in position-list */
124071 UNUSED_PARAMETER(iPhrase);
124072 pList = sqlite3Fts3FindPositions(pExpr, p->iDocid, p->iCol);
124073 nTerm = pExpr->pPhrase->nToken;
124074 if( pList ){
124075 fts3GetDeltaPosition(&pList, &iPos);
124076 assert( iPos>=0 );
124079 for(iTerm=0; iTerm<nTerm; iTerm++){
124080 TermOffset *pT = &p->aTerm[p->iTerm++];
124081 pT->iOff = nTerm-iTerm-1;
124082 pT->pList = pList;
124083 pT->iPos = iPos;
124086 return SQLITE_OK;
124090 ** Implementation of offsets() function.
124092 SQLITE_PRIVATE void sqlite3Fts3Offsets(
124093 sqlite3_context *pCtx, /* SQLite function call context */
124094 Fts3Cursor *pCsr /* Cursor object */
124096 Fts3Table *pTab = (Fts3Table *)pCsr->base.pVtab;
124097 sqlite3_tokenizer_module const *pMod = pTab->pTokenizer->pModule;
124098 const char *ZDUMMY; /* Dummy argument used with xNext() */
124099 int NDUMMY; /* Dummy argument used with xNext() */
124100 int rc; /* Return Code */
124101 int nToken; /* Number of tokens in query */
124102 int iCol; /* Column currently being processed */
124103 StrBuffer res = {0, 0, 0}; /* Result string */
124104 TermOffsetCtx sCtx; /* Context for fts3ExprTermOffsetInit() */
124106 if( !pCsr->pExpr ){
124107 sqlite3_result_text(pCtx, "", 0, SQLITE_STATIC);
124108 return;
124111 memset(&sCtx, 0, sizeof(sCtx));
124112 assert( pCsr->isRequireSeek==0 );
124114 /* Count the number of terms in the query */
124115 rc = fts3ExprLoadDoclists(pCsr, 0, &nToken);
124116 if( rc!=SQLITE_OK ) goto offsets_out;
124118 /* Allocate the array of TermOffset iterators. */
124119 sCtx.aTerm = (TermOffset *)sqlite3_malloc(sizeof(TermOffset)*nToken);
124120 if( 0==sCtx.aTerm ){
124121 rc = SQLITE_NOMEM;
124122 goto offsets_out;
124124 sCtx.iDocid = pCsr->iPrevId;
124126 /* Loop through the table columns, appending offset information to
124127 ** string-buffer res for each column.
124129 for(iCol=0; iCol<pTab->nColumn; iCol++){
124130 sqlite3_tokenizer_cursor *pC; /* Tokenizer cursor */
124131 int iStart;
124132 int iEnd;
124133 int iCurrent;
124134 const char *zDoc;
124135 int nDoc;
124137 /* Initialize the contents of sCtx.aTerm[] for column iCol. There is
124138 ** no way that this operation can fail, so the return code from
124139 ** fts3ExprIterate() can be discarded.
124141 sCtx.iCol = iCol;
124142 sCtx.iTerm = 0;
124143 (void)fts3ExprIterate(pCsr->pExpr, fts3ExprTermOffsetInit, (void *)&sCtx);
124145 /* Retreive the text stored in column iCol. If an SQL NULL is stored
124146 ** in column iCol, jump immediately to the next iteration of the loop.
124147 ** If an OOM occurs while retrieving the data (this can happen if SQLite
124148 ** needs to transform the data from utf-16 to utf-8), return SQLITE_NOMEM
124149 ** to the caller.
124151 zDoc = (const char *)sqlite3_column_text(pCsr->pStmt, iCol+1);
124152 nDoc = sqlite3_column_bytes(pCsr->pStmt, iCol+1);
124153 if( zDoc==0 ){
124154 if( sqlite3_column_type(pCsr->pStmt, iCol+1)==SQLITE_NULL ){
124155 continue;
124157 rc = SQLITE_NOMEM;
124158 goto offsets_out;
124161 /* Initialize a tokenizer iterator to iterate through column iCol. */
124162 rc = pMod->xOpen(pTab->pTokenizer, zDoc, nDoc, &pC);
124163 if( rc!=SQLITE_OK ) goto offsets_out;
124164 pC->pTokenizer = pTab->pTokenizer;
124166 rc = pMod->xNext(pC, &ZDUMMY, &NDUMMY, &iStart, &iEnd, &iCurrent);
124167 while( rc==SQLITE_OK ){
124168 int i; /* Used to loop through terms */
124169 int iMinPos = 0x7FFFFFFF; /* Position of next token */
124170 TermOffset *pTerm = 0; /* TermOffset associated with next token */
124172 for(i=0; i<nToken; i++){
124173 TermOffset *pT = &sCtx.aTerm[i];
124174 if( pT->pList && (pT->iPos-pT->iOff)<iMinPos ){
124175 iMinPos = pT->iPos-pT->iOff;
124176 pTerm = pT;
124180 if( !pTerm ){
124181 /* All offsets for this column have been gathered. */
124182 break;
124183 }else{
124184 assert( iCurrent<=iMinPos );
124185 if( 0==(0xFE&*pTerm->pList) ){
124186 pTerm->pList = 0;
124187 }else{
124188 fts3GetDeltaPosition(&pTerm->pList, &pTerm->iPos);
124190 while( rc==SQLITE_OK && iCurrent<iMinPos ){
124191 rc = pMod->xNext(pC, &ZDUMMY, &NDUMMY, &iStart, &iEnd, &iCurrent);
124193 if( rc==SQLITE_OK ){
124194 char aBuffer[64];
124195 sqlite3_snprintf(sizeof(aBuffer), aBuffer,
124196 "%d %d %d %d ", iCol, pTerm-sCtx.aTerm, iStart, iEnd-iStart
124198 rc = fts3StringAppend(&res, aBuffer, -1);
124199 }else if( rc==SQLITE_DONE ){
124200 rc = SQLITE_CORRUPT;
124204 if( rc==SQLITE_DONE ){
124205 rc = SQLITE_OK;
124208 pMod->xClose(pC);
124209 if( rc!=SQLITE_OK ) goto offsets_out;
124212 offsets_out:
124213 sqlite3_free(sCtx.aTerm);
124214 assert( rc!=SQLITE_DONE );
124215 sqlite3Fts3SegmentsClose(pTab);
124216 if( rc!=SQLITE_OK ){
124217 sqlite3_result_error_code(pCtx, rc);
124218 sqlite3_free(res.z);
124219 }else{
124220 sqlite3_result_text(pCtx, res.z, res.n-1, sqlite3_free);
124222 return;
124226 ** Implementation of matchinfo() function.
124228 SQLITE_PRIVATE void sqlite3Fts3Matchinfo(
124229 sqlite3_context *pContext, /* Function call context */
124230 Fts3Cursor *pCsr, /* FTS3 table cursor */
124231 const char *zArg /* Second arg to matchinfo() function */
124233 Fts3Table *pTab = (Fts3Table *)pCsr->base.pVtab;
124234 int rc;
124235 int i;
124236 const char *zFormat;
124238 if( zArg ){
124239 for(i=0; zArg[i]; i++){
124240 char *zErr = 0;
124241 if( fts3MatchinfoCheck(pTab, zArg[i], &zErr) ){
124242 sqlite3_result_error(pContext, zErr, -1);
124243 sqlite3_free(zErr);
124244 return;
124247 zFormat = zArg;
124248 }else{
124249 zFormat = FTS3_MATCHINFO_DEFAULT;
124252 if( !pCsr->pExpr ){
124253 sqlite3_result_blob(pContext, "", 0, SQLITE_STATIC);
124254 return;
124257 /* Retrieve matchinfo() data. */
124258 rc = fts3GetMatchinfo(pCsr, zFormat);
124259 sqlite3Fts3SegmentsClose(pTab);
124261 if( rc!=SQLITE_OK ){
124262 sqlite3_result_error_code(pContext, rc);
124263 }else{
124264 int n = pCsr->nMatchinfo * sizeof(u32);
124265 sqlite3_result_blob(pContext, pCsr->aMatchinfo, n, SQLITE_TRANSIENT);
124269 #endif
124271 /************** End of fts3_snippet.c ****************************************/
124272 /************** Begin file rtree.c *******************************************/
124274 ** 2001 September 15
124276 ** The author disclaims copyright to this source code. In place of
124277 ** a legal notice, here is a blessing:
124279 ** May you do good and not evil.
124280 ** May you find forgiveness for yourself and forgive others.
124281 ** May you share freely, never taking more than you give.
124283 *************************************************************************
124284 ** This file contains code for implementations of the r-tree and r*-tree
124285 ** algorithms packaged as an SQLite virtual table module.
124289 ** Database Format of R-Tree Tables
124290 ** --------------------------------
124292 ** The data structure for a single virtual r-tree table is stored in three
124293 ** native SQLite tables declared as follows. In each case, the '%' character
124294 ** in the table name is replaced with the user-supplied name of the r-tree
124295 ** table.
124297 ** CREATE TABLE %_node(nodeno INTEGER PRIMARY KEY, data BLOB)
124298 ** CREATE TABLE %_parent(nodeno INTEGER PRIMARY KEY, parentnode INTEGER)
124299 ** CREATE TABLE %_rowid(rowid INTEGER PRIMARY KEY, nodeno INTEGER)
124301 ** The data for each node of the r-tree structure is stored in the %_node
124302 ** table. For each node that is not the root node of the r-tree, there is
124303 ** an entry in the %_parent table associating the node with its parent.
124304 ** And for each row of data in the table, there is an entry in the %_rowid
124305 ** table that maps from the entries rowid to the id of the node that it
124306 ** is stored on.
124308 ** The root node of an r-tree always exists, even if the r-tree table is
124309 ** empty. The nodeno of the root node is always 1. All other nodes in the
124310 ** table must be the same size as the root node. The content of each node
124311 ** is formatted as follows:
124313 ** 1. If the node is the root node (node 1), then the first 2 bytes
124314 ** of the node contain the tree depth as a big-endian integer.
124315 ** For non-root nodes, the first 2 bytes are left unused.
124317 ** 2. The next 2 bytes contain the number of entries currently
124318 ** stored in the node.
124320 ** 3. The remainder of the node contains the node entries. Each entry
124321 ** consists of a single 8-byte integer followed by an even number
124322 ** of 4-byte coordinates. For leaf nodes the integer is the rowid
124323 ** of a record. For internal nodes it is the node number of a
124324 ** child page.
124327 #if !defined(SQLITE_CORE) || defined(SQLITE_ENABLE_RTREE)
124330 ** This file contains an implementation of a couple of different variants
124331 ** of the r-tree algorithm. See the README file for further details. The
124332 ** same data-structure is used for all, but the algorithms for insert and
124333 ** delete operations vary. The variants used are selected at compile time
124334 ** by defining the following symbols:
124337 /* Either, both or none of the following may be set to activate
124338 ** r*tree variant algorithms.
124340 #define VARIANT_RSTARTREE_CHOOSESUBTREE 0
124341 #define VARIANT_RSTARTREE_REINSERT 1
124344 ** Exactly one of the following must be set to 1.
124346 #define VARIANT_GUTTMAN_QUADRATIC_SPLIT 0
124347 #define VARIANT_GUTTMAN_LINEAR_SPLIT 0
124348 #define VARIANT_RSTARTREE_SPLIT 1
124350 #define VARIANT_GUTTMAN_SPLIT \
124351 (VARIANT_GUTTMAN_LINEAR_SPLIT||VARIANT_GUTTMAN_QUADRATIC_SPLIT)
124353 #if VARIANT_GUTTMAN_QUADRATIC_SPLIT
124354 #define PickNext QuadraticPickNext
124355 #define PickSeeds QuadraticPickSeeds
124356 #define AssignCells splitNodeGuttman
124357 #endif
124358 #if VARIANT_GUTTMAN_LINEAR_SPLIT
124359 #define PickNext LinearPickNext
124360 #define PickSeeds LinearPickSeeds
124361 #define AssignCells splitNodeGuttman
124362 #endif
124363 #if VARIANT_RSTARTREE_SPLIT
124364 #define AssignCells splitNodeStartree
124365 #endif
124367 #if !defined(NDEBUG) && !defined(SQLITE_DEBUG)
124368 # define NDEBUG 1
124369 #endif
124371 #ifndef SQLITE_CORE
124372 SQLITE_EXTENSION_INIT1
124373 #else
124374 #endif
124377 #ifndef SQLITE_AMALGAMATION
124378 #include "sqlite3rtree.h"
124379 typedef sqlite3_int64 i64;
124380 typedef unsigned char u8;
124381 typedef unsigned int u32;
124382 #endif
124384 /* The following macro is used to suppress compiler warnings.
124386 #ifndef UNUSED_PARAMETER
124387 # define UNUSED_PARAMETER(x) (void)(x)
124388 #endif
124390 typedef struct Rtree Rtree;
124391 typedef struct RtreeCursor RtreeCursor;
124392 typedef struct RtreeNode RtreeNode;
124393 typedef struct RtreeCell RtreeCell;
124394 typedef struct RtreeConstraint RtreeConstraint;
124395 typedef struct RtreeMatchArg RtreeMatchArg;
124396 typedef struct RtreeGeomCallback RtreeGeomCallback;
124397 typedef union RtreeCoord RtreeCoord;
124399 /* The rtree may have between 1 and RTREE_MAX_DIMENSIONS dimensions. */
124400 #define RTREE_MAX_DIMENSIONS 5
124402 /* Size of hash table Rtree.aHash. This hash table is not expected to
124403 ** ever contain very many entries, so a fixed number of buckets is
124404 ** used.
124406 #define HASHSIZE 128
124409 ** An rtree virtual-table object.
124411 struct Rtree {
124412 sqlite3_vtab base;
124413 sqlite3 *db; /* Host database connection */
124414 int iNodeSize; /* Size in bytes of each node in the node table */
124415 int nDim; /* Number of dimensions */
124416 int nBytesPerCell; /* Bytes consumed per cell */
124417 int iDepth; /* Current depth of the r-tree structure */
124418 char *zDb; /* Name of database containing r-tree table */
124419 char *zName; /* Name of r-tree table */
124420 RtreeNode *aHash[HASHSIZE]; /* Hash table of in-memory nodes. */
124421 int nBusy; /* Current number of users of this structure */
124423 /* List of nodes removed during a CondenseTree operation. List is
124424 ** linked together via the pointer normally used for hash chains -
124425 ** RtreeNode.pNext. RtreeNode.iNode stores the depth of the sub-tree
124426 ** headed by the node (leaf nodes have RtreeNode.iNode==0).
124428 RtreeNode *pDeleted;
124429 int iReinsertHeight; /* Height of sub-trees Reinsert() has run on */
124431 /* Statements to read/write/delete a record from xxx_node */
124432 sqlite3_stmt *pReadNode;
124433 sqlite3_stmt *pWriteNode;
124434 sqlite3_stmt *pDeleteNode;
124436 /* Statements to read/write/delete a record from xxx_rowid */
124437 sqlite3_stmt *pReadRowid;
124438 sqlite3_stmt *pWriteRowid;
124439 sqlite3_stmt *pDeleteRowid;
124441 /* Statements to read/write/delete a record from xxx_parent */
124442 sqlite3_stmt *pReadParent;
124443 sqlite3_stmt *pWriteParent;
124444 sqlite3_stmt *pDeleteParent;
124446 int eCoordType;
124449 /* Possible values for eCoordType: */
124450 #define RTREE_COORD_REAL32 0
124451 #define RTREE_COORD_INT32 1
124454 ** The minimum number of cells allowed for a node is a third of the
124455 ** maximum. In Gutman's notation:
124457 ** m = M/3
124459 ** If an R*-tree "Reinsert" operation is required, the same number of
124460 ** cells are removed from the overfull node and reinserted into the tree.
124462 #define RTREE_MINCELLS(p) ((((p)->iNodeSize-4)/(p)->nBytesPerCell)/3)
124463 #define RTREE_REINSERT(p) RTREE_MINCELLS(p)
124464 #define RTREE_MAXCELLS 51
124467 ** The smallest possible node-size is (512-64)==448 bytes. And the largest
124468 ** supported cell size is 48 bytes (8 byte rowid + ten 4 byte coordinates).
124469 ** Therefore all non-root nodes must contain at least 3 entries. Since
124470 ** 2^40 is greater than 2^64, an r-tree structure always has a depth of
124471 ** 40 or less.
124473 #define RTREE_MAX_DEPTH 40
124476 ** An rtree cursor object.
124478 struct RtreeCursor {
124479 sqlite3_vtab_cursor base;
124480 RtreeNode *pNode; /* Node cursor is currently pointing at */
124481 int iCell; /* Index of current cell in pNode */
124482 int iStrategy; /* Copy of idxNum search parameter */
124483 int nConstraint; /* Number of entries in aConstraint */
124484 RtreeConstraint *aConstraint; /* Search constraints. */
124487 union RtreeCoord {
124488 float f;
124489 int i;
124493 ** The argument is an RtreeCoord. Return the value stored within the RtreeCoord
124494 ** formatted as a double. This macro assumes that local variable pRtree points
124495 ** to the Rtree structure associated with the RtreeCoord.
124497 #define DCOORD(coord) ( \
124498 (pRtree->eCoordType==RTREE_COORD_REAL32) ? \
124499 ((double)coord.f) : \
124500 ((double)coord.i) \
124504 ** A search constraint.
124506 struct RtreeConstraint {
124507 int iCoord; /* Index of constrained coordinate */
124508 int op; /* Constraining operation */
124509 double rValue; /* Constraint value. */
124510 int (*xGeom)(sqlite3_rtree_geometry *, int, double *, int *);
124511 sqlite3_rtree_geometry *pGeom; /* Constraint callback argument for a MATCH */
124514 /* Possible values for RtreeConstraint.op */
124515 #define RTREE_EQ 0x41
124516 #define RTREE_LE 0x42
124517 #define RTREE_LT 0x43
124518 #define RTREE_GE 0x44
124519 #define RTREE_GT 0x45
124520 #define RTREE_MATCH 0x46
124523 ** An rtree structure node.
124525 struct RtreeNode {
124526 RtreeNode *pParent; /* Parent node */
124527 i64 iNode;
124528 int nRef;
124529 int isDirty;
124530 u8 *zData;
124531 RtreeNode *pNext; /* Next node in this hash chain */
124533 #define NCELL(pNode) readInt16(&(pNode)->zData[2])
124536 ** Structure to store a deserialized rtree record.
124538 struct RtreeCell {
124539 i64 iRowid;
124540 RtreeCoord aCoord[RTREE_MAX_DIMENSIONS*2];
124545 ** Value for the first field of every RtreeMatchArg object. The MATCH
124546 ** operator tests that the first field of a blob operand matches this
124547 ** value to avoid operating on invalid blobs (which could cause a segfault).
124549 #define RTREE_GEOMETRY_MAGIC 0x891245AB
124552 ** An instance of this structure must be supplied as a blob argument to
124553 ** the right-hand-side of an SQL MATCH operator used to constrain an
124554 ** r-tree query.
124556 struct RtreeMatchArg {
124557 u32 magic; /* Always RTREE_GEOMETRY_MAGIC */
124558 int (*xGeom)(sqlite3_rtree_geometry *, int, double *, int *);
124559 void *pContext;
124560 int nParam;
124561 double aParam[1];
124565 ** When a geometry callback is created (see sqlite3_rtree_geometry_callback),
124566 ** a single instance of the following structure is allocated. It is used
124567 ** as the context for the user-function created by by s_r_g_c(). The object
124568 ** is eventually deleted by the destructor mechanism provided by
124569 ** sqlite3_create_function_v2() (which is called by s_r_g_c() to create
124570 ** the geometry callback function).
124572 struct RtreeGeomCallback {
124573 int (*xGeom)(sqlite3_rtree_geometry *, int, double *, int *);
124574 void *pContext;
124577 #ifndef MAX
124578 # define MAX(x,y) ((x) < (y) ? (y) : (x))
124579 #endif
124580 #ifndef MIN
124581 # define MIN(x,y) ((x) > (y) ? (y) : (x))
124582 #endif
124585 ** Functions to deserialize a 16 bit integer, 32 bit real number and
124586 ** 64 bit integer. The deserialized value is returned.
124588 static int readInt16(u8 *p){
124589 return (p[0]<<8) + p[1];
124591 static void readCoord(u8 *p, RtreeCoord *pCoord){
124592 u32 i = (
124593 (((u32)p[0]) << 24) +
124594 (((u32)p[1]) << 16) +
124595 (((u32)p[2]) << 8) +
124596 (((u32)p[3]) << 0)
124598 *(u32 *)pCoord = i;
124600 static i64 readInt64(u8 *p){
124601 return (
124602 (((i64)p[0]) << 56) +
124603 (((i64)p[1]) << 48) +
124604 (((i64)p[2]) << 40) +
124605 (((i64)p[3]) << 32) +
124606 (((i64)p[4]) << 24) +
124607 (((i64)p[5]) << 16) +
124608 (((i64)p[6]) << 8) +
124609 (((i64)p[7]) << 0)
124614 ** Functions to serialize a 16 bit integer, 32 bit real number and
124615 ** 64 bit integer. The value returned is the number of bytes written
124616 ** to the argument buffer (always 2, 4 and 8 respectively).
124618 static int writeInt16(u8 *p, int i){
124619 p[0] = (i>> 8)&0xFF;
124620 p[1] = (i>> 0)&0xFF;
124621 return 2;
124623 static int writeCoord(u8 *p, RtreeCoord *pCoord){
124624 u32 i;
124625 assert( sizeof(RtreeCoord)==4 );
124626 assert( sizeof(u32)==4 );
124627 i = *(u32 *)pCoord;
124628 p[0] = (i>>24)&0xFF;
124629 p[1] = (i>>16)&0xFF;
124630 p[2] = (i>> 8)&0xFF;
124631 p[3] = (i>> 0)&0xFF;
124632 return 4;
124634 static int writeInt64(u8 *p, i64 i){
124635 p[0] = (i>>56)&0xFF;
124636 p[1] = (i>>48)&0xFF;
124637 p[2] = (i>>40)&0xFF;
124638 p[3] = (i>>32)&0xFF;
124639 p[4] = (i>>24)&0xFF;
124640 p[5] = (i>>16)&0xFF;
124641 p[6] = (i>> 8)&0xFF;
124642 p[7] = (i>> 0)&0xFF;
124643 return 8;
124647 ** Increment the reference count of node p.
124649 static void nodeReference(RtreeNode *p){
124650 if( p ){
124651 p->nRef++;
124656 ** Clear the content of node p (set all bytes to 0x00).
124658 static void nodeZero(Rtree *pRtree, RtreeNode *p){
124659 memset(&p->zData[2], 0, pRtree->iNodeSize-2);
124660 p->isDirty = 1;
124664 ** Given a node number iNode, return the corresponding key to use
124665 ** in the Rtree.aHash table.
124667 static int nodeHash(i64 iNode){
124668 return (
124669 (iNode>>56) ^ (iNode>>48) ^ (iNode>>40) ^ (iNode>>32) ^
124670 (iNode>>24) ^ (iNode>>16) ^ (iNode>> 8) ^ (iNode>> 0)
124671 ) % HASHSIZE;
124675 ** Search the node hash table for node iNode. If found, return a pointer
124676 ** to it. Otherwise, return 0.
124678 static RtreeNode *nodeHashLookup(Rtree *pRtree, i64 iNode){
124679 RtreeNode *p;
124680 for(p=pRtree->aHash[nodeHash(iNode)]; p && p->iNode!=iNode; p=p->pNext);
124681 return p;
124685 ** Add node pNode to the node hash table.
124687 static void nodeHashInsert(Rtree *pRtree, RtreeNode *pNode){
124688 int iHash;
124689 assert( pNode->pNext==0 );
124690 iHash = nodeHash(pNode->iNode);
124691 pNode->pNext = pRtree->aHash[iHash];
124692 pRtree->aHash[iHash] = pNode;
124696 ** Remove node pNode from the node hash table.
124698 static void nodeHashDelete(Rtree *pRtree, RtreeNode *pNode){
124699 RtreeNode **pp;
124700 if( pNode->iNode!=0 ){
124701 pp = &pRtree->aHash[nodeHash(pNode->iNode)];
124702 for( ; (*pp)!=pNode; pp = &(*pp)->pNext){ assert(*pp); }
124703 *pp = pNode->pNext;
124704 pNode->pNext = 0;
124709 ** Allocate and return new r-tree node. Initially, (RtreeNode.iNode==0),
124710 ** indicating that node has not yet been assigned a node number. It is
124711 ** assigned a node number when nodeWrite() is called to write the
124712 ** node contents out to the database.
124714 static RtreeNode *nodeNew(Rtree *pRtree, RtreeNode *pParent){
124715 RtreeNode *pNode;
124716 pNode = (RtreeNode *)sqlite3_malloc(sizeof(RtreeNode) + pRtree->iNodeSize);
124717 if( pNode ){
124718 memset(pNode, 0, sizeof(RtreeNode) + pRtree->iNodeSize);
124719 pNode->zData = (u8 *)&pNode[1];
124720 pNode->nRef = 1;
124721 pNode->pParent = pParent;
124722 pNode->isDirty = 1;
124723 nodeReference(pParent);
124725 return pNode;
124729 ** Obtain a reference to an r-tree node.
124731 static int
124732 nodeAcquire(
124733 Rtree *pRtree, /* R-tree structure */
124734 i64 iNode, /* Node number to load */
124735 RtreeNode *pParent, /* Either the parent node or NULL */
124736 RtreeNode **ppNode /* OUT: Acquired node */
124738 int rc;
124739 int rc2 = SQLITE_OK;
124740 RtreeNode *pNode;
124742 /* Check if the requested node is already in the hash table. If so,
124743 ** increase its reference count and return it.
124745 if( (pNode = nodeHashLookup(pRtree, iNode)) ){
124746 assert( !pParent || !pNode->pParent || pNode->pParent==pParent );
124747 if( pParent && !pNode->pParent ){
124748 nodeReference(pParent);
124749 pNode->pParent = pParent;
124751 pNode->nRef++;
124752 *ppNode = pNode;
124753 return SQLITE_OK;
124756 sqlite3_bind_int64(pRtree->pReadNode, 1, iNode);
124757 rc = sqlite3_step(pRtree->pReadNode);
124758 if( rc==SQLITE_ROW ){
124759 const u8 *zBlob = sqlite3_column_blob(pRtree->pReadNode, 0);
124760 if( pRtree->iNodeSize==sqlite3_column_bytes(pRtree->pReadNode, 0) ){
124761 pNode = (RtreeNode *)sqlite3_malloc(sizeof(RtreeNode)+pRtree->iNodeSize);
124762 if( !pNode ){
124763 rc2 = SQLITE_NOMEM;
124764 }else{
124765 pNode->pParent = pParent;
124766 pNode->zData = (u8 *)&pNode[1];
124767 pNode->nRef = 1;
124768 pNode->iNode = iNode;
124769 pNode->isDirty = 0;
124770 pNode->pNext = 0;
124771 memcpy(pNode->zData, zBlob, pRtree->iNodeSize);
124772 nodeReference(pParent);
124776 rc = sqlite3_reset(pRtree->pReadNode);
124777 if( rc==SQLITE_OK ) rc = rc2;
124779 /* If the root node was just loaded, set pRtree->iDepth to the height
124780 ** of the r-tree structure. A height of zero means all data is stored on
124781 ** the root node. A height of one means the children of the root node
124782 ** are the leaves, and so on. If the depth as specified on the root node
124783 ** is greater than RTREE_MAX_DEPTH, the r-tree structure must be corrupt.
124785 if( pNode && iNode==1 ){
124786 pRtree->iDepth = readInt16(pNode->zData);
124787 if( pRtree->iDepth>RTREE_MAX_DEPTH ){
124788 rc = SQLITE_CORRUPT;
124792 /* If no error has occurred so far, check if the "number of entries"
124793 ** field on the node is too large. If so, set the return code to
124794 ** SQLITE_CORRUPT.
124796 if( pNode && rc==SQLITE_OK ){
124797 if( NCELL(pNode)>((pRtree->iNodeSize-4)/pRtree->nBytesPerCell) ){
124798 rc = SQLITE_CORRUPT;
124802 if( rc==SQLITE_OK ){
124803 if( pNode!=0 ){
124804 nodeHashInsert(pRtree, pNode);
124805 }else{
124806 rc = SQLITE_CORRUPT;
124808 *ppNode = pNode;
124809 }else{
124810 sqlite3_free(pNode);
124811 *ppNode = 0;
124814 return rc;
124818 ** Overwrite cell iCell of node pNode with the contents of pCell.
124820 static void nodeOverwriteCell(
124821 Rtree *pRtree,
124822 RtreeNode *pNode,
124823 RtreeCell *pCell,
124824 int iCell
124826 int ii;
124827 u8 *p = &pNode->zData[4 + pRtree->nBytesPerCell*iCell];
124828 p += writeInt64(p, pCell->iRowid);
124829 for(ii=0; ii<(pRtree->nDim*2); ii++){
124830 p += writeCoord(p, &pCell->aCoord[ii]);
124832 pNode->isDirty = 1;
124836 ** Remove cell the cell with index iCell from node pNode.
124838 static void nodeDeleteCell(Rtree *pRtree, RtreeNode *pNode, int iCell){
124839 u8 *pDst = &pNode->zData[4 + pRtree->nBytesPerCell*iCell];
124840 u8 *pSrc = &pDst[pRtree->nBytesPerCell];
124841 int nByte = (NCELL(pNode) - iCell - 1) * pRtree->nBytesPerCell;
124842 memmove(pDst, pSrc, nByte);
124843 writeInt16(&pNode->zData[2], NCELL(pNode)-1);
124844 pNode->isDirty = 1;
124848 ** Insert the contents of cell pCell into node pNode. If the insert
124849 ** is successful, return SQLITE_OK.
124851 ** If there is not enough free space in pNode, return SQLITE_FULL.
124853 static int
124854 nodeInsertCell(
124855 Rtree *pRtree,
124856 RtreeNode *pNode,
124857 RtreeCell *pCell
124859 int nCell; /* Current number of cells in pNode */
124860 int nMaxCell; /* Maximum number of cells for pNode */
124862 nMaxCell = (pRtree->iNodeSize-4)/pRtree->nBytesPerCell;
124863 nCell = NCELL(pNode);
124865 assert( nCell<=nMaxCell );
124866 if( nCell<nMaxCell ){
124867 nodeOverwriteCell(pRtree, pNode, pCell, nCell);
124868 writeInt16(&pNode->zData[2], nCell+1);
124869 pNode->isDirty = 1;
124872 return (nCell==nMaxCell);
124876 ** If the node is dirty, write it out to the database.
124878 static int
124879 nodeWrite(Rtree *pRtree, RtreeNode *pNode){
124880 int rc = SQLITE_OK;
124881 if( pNode->isDirty ){
124882 sqlite3_stmt *p = pRtree->pWriteNode;
124883 if( pNode->iNode ){
124884 sqlite3_bind_int64(p, 1, pNode->iNode);
124885 }else{
124886 sqlite3_bind_null(p, 1);
124888 sqlite3_bind_blob(p, 2, pNode->zData, pRtree->iNodeSize, SQLITE_STATIC);
124889 sqlite3_step(p);
124890 pNode->isDirty = 0;
124891 rc = sqlite3_reset(p);
124892 if( pNode->iNode==0 && rc==SQLITE_OK ){
124893 pNode->iNode = sqlite3_last_insert_rowid(pRtree->db);
124894 nodeHashInsert(pRtree, pNode);
124897 return rc;
124901 ** Release a reference to a node. If the node is dirty and the reference
124902 ** count drops to zero, the node data is written to the database.
124904 static int
124905 nodeRelease(Rtree *pRtree, RtreeNode *pNode){
124906 int rc = SQLITE_OK;
124907 if( pNode ){
124908 assert( pNode->nRef>0 );
124909 pNode->nRef--;
124910 if( pNode->nRef==0 ){
124911 if( pNode->iNode==1 ){
124912 pRtree->iDepth = -1;
124914 if( pNode->pParent ){
124915 rc = nodeRelease(pRtree, pNode->pParent);
124917 if( rc==SQLITE_OK ){
124918 rc = nodeWrite(pRtree, pNode);
124920 nodeHashDelete(pRtree, pNode);
124921 sqlite3_free(pNode);
124924 return rc;
124928 ** Return the 64-bit integer value associated with cell iCell of
124929 ** node pNode. If pNode is a leaf node, this is a rowid. If it is
124930 ** an internal node, then the 64-bit integer is a child page number.
124932 static i64 nodeGetRowid(
124933 Rtree *pRtree,
124934 RtreeNode *pNode,
124935 int iCell
124937 assert( iCell<NCELL(pNode) );
124938 return readInt64(&pNode->zData[4 + pRtree->nBytesPerCell*iCell]);
124942 ** Return coordinate iCoord from cell iCell in node pNode.
124944 static void nodeGetCoord(
124945 Rtree *pRtree,
124946 RtreeNode *pNode,
124947 int iCell,
124948 int iCoord,
124949 RtreeCoord *pCoord /* Space to write result to */
124951 readCoord(&pNode->zData[12 + pRtree->nBytesPerCell*iCell + 4*iCoord], pCoord);
124955 ** Deserialize cell iCell of node pNode. Populate the structure pointed
124956 ** to by pCell with the results.
124958 static void nodeGetCell(
124959 Rtree *pRtree,
124960 RtreeNode *pNode,
124961 int iCell,
124962 RtreeCell *pCell
124964 int ii;
124965 pCell->iRowid = nodeGetRowid(pRtree, pNode, iCell);
124966 for(ii=0; ii<pRtree->nDim*2; ii++){
124967 nodeGetCoord(pRtree, pNode, iCell, ii, &pCell->aCoord[ii]);
124972 /* Forward declaration for the function that does the work of
124973 ** the virtual table module xCreate() and xConnect() methods.
124975 static int rtreeInit(
124976 sqlite3 *, void *, int, const char *const*, sqlite3_vtab **, char **, int
124980 ** Rtree virtual table module xCreate method.
124982 static int rtreeCreate(
124983 sqlite3 *db,
124984 void *pAux,
124985 int argc, const char *const*argv,
124986 sqlite3_vtab **ppVtab,
124987 char **pzErr
124989 return rtreeInit(db, pAux, argc, argv, ppVtab, pzErr, 1);
124993 ** Rtree virtual table module xConnect method.
124995 static int rtreeConnect(
124996 sqlite3 *db,
124997 void *pAux,
124998 int argc, const char *const*argv,
124999 sqlite3_vtab **ppVtab,
125000 char **pzErr
125002 return rtreeInit(db, pAux, argc, argv, ppVtab, pzErr, 0);
125006 ** Increment the r-tree reference count.
125008 static void rtreeReference(Rtree *pRtree){
125009 pRtree->nBusy++;
125013 ** Decrement the r-tree reference count. When the reference count reaches
125014 ** zero the structure is deleted.
125016 static void rtreeRelease(Rtree *pRtree){
125017 pRtree->nBusy--;
125018 if( pRtree->nBusy==0 ){
125019 sqlite3_finalize(pRtree->pReadNode);
125020 sqlite3_finalize(pRtree->pWriteNode);
125021 sqlite3_finalize(pRtree->pDeleteNode);
125022 sqlite3_finalize(pRtree->pReadRowid);
125023 sqlite3_finalize(pRtree->pWriteRowid);
125024 sqlite3_finalize(pRtree->pDeleteRowid);
125025 sqlite3_finalize(pRtree->pReadParent);
125026 sqlite3_finalize(pRtree->pWriteParent);
125027 sqlite3_finalize(pRtree->pDeleteParent);
125028 sqlite3_free(pRtree);
125033 ** Rtree virtual table module xDisconnect method.
125035 static int rtreeDisconnect(sqlite3_vtab *pVtab){
125036 rtreeRelease((Rtree *)pVtab);
125037 return SQLITE_OK;
125041 ** Rtree virtual table module xDestroy method.
125043 static int rtreeDestroy(sqlite3_vtab *pVtab){
125044 Rtree *pRtree = (Rtree *)pVtab;
125045 int rc;
125046 char *zCreate = sqlite3_mprintf(
125047 "DROP TABLE '%q'.'%q_node';"
125048 "DROP TABLE '%q'.'%q_rowid';"
125049 "DROP TABLE '%q'.'%q_parent';",
125050 pRtree->zDb, pRtree->zName,
125051 pRtree->zDb, pRtree->zName,
125052 pRtree->zDb, pRtree->zName
125054 if( !zCreate ){
125055 rc = SQLITE_NOMEM;
125056 }else{
125057 rc = sqlite3_exec(pRtree->db, zCreate, 0, 0, 0);
125058 sqlite3_free(zCreate);
125060 if( rc==SQLITE_OK ){
125061 rtreeRelease(pRtree);
125064 return rc;
125068 ** Rtree virtual table module xOpen method.
125070 static int rtreeOpen(sqlite3_vtab *pVTab, sqlite3_vtab_cursor **ppCursor){
125071 int rc = SQLITE_NOMEM;
125072 RtreeCursor *pCsr;
125074 pCsr = (RtreeCursor *)sqlite3_malloc(sizeof(RtreeCursor));
125075 if( pCsr ){
125076 memset(pCsr, 0, sizeof(RtreeCursor));
125077 pCsr->base.pVtab = pVTab;
125078 rc = SQLITE_OK;
125080 *ppCursor = (sqlite3_vtab_cursor *)pCsr;
125082 return rc;
125087 ** Free the RtreeCursor.aConstraint[] array and its contents.
125089 static void freeCursorConstraints(RtreeCursor *pCsr){
125090 if( pCsr->aConstraint ){
125091 int i; /* Used to iterate through constraint array */
125092 for(i=0; i<pCsr->nConstraint; i++){
125093 sqlite3_rtree_geometry *pGeom = pCsr->aConstraint[i].pGeom;
125094 if( pGeom ){
125095 if( pGeom->xDelUser ) pGeom->xDelUser(pGeom->pUser);
125096 sqlite3_free(pGeom);
125099 sqlite3_free(pCsr->aConstraint);
125100 pCsr->aConstraint = 0;
125105 ** Rtree virtual table module xClose method.
125107 static int rtreeClose(sqlite3_vtab_cursor *cur){
125108 Rtree *pRtree = (Rtree *)(cur->pVtab);
125109 int rc;
125110 RtreeCursor *pCsr = (RtreeCursor *)cur;
125111 freeCursorConstraints(pCsr);
125112 rc = nodeRelease(pRtree, pCsr->pNode);
125113 sqlite3_free(pCsr);
125114 return rc;
125118 ** Rtree virtual table module xEof method.
125120 ** Return non-zero if the cursor does not currently point to a valid
125121 ** record (i.e if the scan has finished), or zero otherwise.
125123 static int rtreeEof(sqlite3_vtab_cursor *cur){
125124 RtreeCursor *pCsr = (RtreeCursor *)cur;
125125 return (pCsr->pNode==0);
125129 ** The r-tree constraint passed as the second argument to this function is
125130 ** guaranteed to be a MATCH constraint.
125132 static int testRtreeGeom(
125133 Rtree *pRtree, /* R-Tree object */
125134 RtreeConstraint *pConstraint, /* MATCH constraint to test */
125135 RtreeCell *pCell, /* Cell to test */
125136 int *pbRes /* OUT: Test result */
125138 int i;
125139 double aCoord[RTREE_MAX_DIMENSIONS*2];
125140 int nCoord = pRtree->nDim*2;
125142 assert( pConstraint->op==RTREE_MATCH );
125143 assert( pConstraint->pGeom );
125145 for(i=0; i<nCoord; i++){
125146 aCoord[i] = DCOORD(pCell->aCoord[i]);
125148 return pConstraint->xGeom(pConstraint->pGeom, nCoord, aCoord, pbRes);
125152 ** Cursor pCursor currently points to a cell in a non-leaf page.
125153 ** Set *pbEof to true if the sub-tree headed by the cell is filtered
125154 ** (excluded) by the constraints in the pCursor->aConstraint[]
125155 ** array, or false otherwise.
125157 ** Return SQLITE_OK if successful or an SQLite error code if an error
125158 ** occurs within a geometry callback.
125160 static int testRtreeCell(Rtree *pRtree, RtreeCursor *pCursor, int *pbEof){
125161 RtreeCell cell;
125162 int ii;
125163 int bRes = 0;
125164 int rc = SQLITE_OK;
125166 nodeGetCell(pRtree, pCursor->pNode, pCursor->iCell, &cell);
125167 for(ii=0; bRes==0 && ii<pCursor->nConstraint; ii++){
125168 RtreeConstraint *p = &pCursor->aConstraint[ii];
125169 double cell_min = DCOORD(cell.aCoord[(p->iCoord>>1)*2]);
125170 double cell_max = DCOORD(cell.aCoord[(p->iCoord>>1)*2+1]);
125172 assert(p->op==RTREE_LE || p->op==RTREE_LT || p->op==RTREE_GE
125173 || p->op==RTREE_GT || p->op==RTREE_EQ || p->op==RTREE_MATCH
125176 switch( p->op ){
125177 case RTREE_LE: case RTREE_LT:
125178 bRes = p->rValue<cell_min;
125179 break;
125181 case RTREE_GE: case RTREE_GT:
125182 bRes = p->rValue>cell_max;
125183 break;
125185 case RTREE_EQ:
125186 bRes = (p->rValue>cell_max || p->rValue<cell_min);
125187 break;
125189 default: {
125190 assert( p->op==RTREE_MATCH );
125191 rc = testRtreeGeom(pRtree, p, &cell, &bRes);
125192 bRes = !bRes;
125193 break;
125198 *pbEof = bRes;
125199 return rc;
125203 ** Test if the cell that cursor pCursor currently points to
125204 ** would be filtered (excluded) by the constraints in the
125205 ** pCursor->aConstraint[] array. If so, set *pbEof to true before
125206 ** returning. If the cell is not filtered (excluded) by the constraints,
125207 ** set pbEof to zero.
125209 ** Return SQLITE_OK if successful or an SQLite error code if an error
125210 ** occurs within a geometry callback.
125212 ** This function assumes that the cell is part of a leaf node.
125214 static int testRtreeEntry(Rtree *pRtree, RtreeCursor *pCursor, int *pbEof){
125215 RtreeCell cell;
125216 int ii;
125217 *pbEof = 0;
125219 nodeGetCell(pRtree, pCursor->pNode, pCursor->iCell, &cell);
125220 for(ii=0; ii<pCursor->nConstraint; ii++){
125221 RtreeConstraint *p = &pCursor->aConstraint[ii];
125222 double coord = DCOORD(cell.aCoord[p->iCoord]);
125223 int res;
125224 assert(p->op==RTREE_LE || p->op==RTREE_LT || p->op==RTREE_GE
125225 || p->op==RTREE_GT || p->op==RTREE_EQ || p->op==RTREE_MATCH
125227 switch( p->op ){
125228 case RTREE_LE: res = (coord<=p->rValue); break;
125229 case RTREE_LT: res = (coord<p->rValue); break;
125230 case RTREE_GE: res = (coord>=p->rValue); break;
125231 case RTREE_GT: res = (coord>p->rValue); break;
125232 case RTREE_EQ: res = (coord==p->rValue); break;
125233 default: {
125234 int rc;
125235 assert( p->op==RTREE_MATCH );
125236 rc = testRtreeGeom(pRtree, p, &cell, &res);
125237 if( rc!=SQLITE_OK ){
125238 return rc;
125240 break;
125244 if( !res ){
125245 *pbEof = 1;
125246 return SQLITE_OK;
125250 return SQLITE_OK;
125254 ** Cursor pCursor currently points at a node that heads a sub-tree of
125255 ** height iHeight (if iHeight==0, then the node is a leaf). Descend
125256 ** to point to the left-most cell of the sub-tree that matches the
125257 ** configured constraints.
125259 static int descendToCell(
125260 Rtree *pRtree,
125261 RtreeCursor *pCursor,
125262 int iHeight,
125263 int *pEof /* OUT: Set to true if cannot descend */
125265 int isEof;
125266 int rc;
125267 int ii;
125268 RtreeNode *pChild;
125269 sqlite3_int64 iRowid;
125271 RtreeNode *pSavedNode = pCursor->pNode;
125272 int iSavedCell = pCursor->iCell;
125274 assert( iHeight>=0 );
125276 if( iHeight==0 ){
125277 rc = testRtreeEntry(pRtree, pCursor, &isEof);
125278 }else{
125279 rc = testRtreeCell(pRtree, pCursor, &isEof);
125281 if( rc!=SQLITE_OK || isEof || iHeight==0 ){
125282 goto descend_to_cell_out;
125285 iRowid = nodeGetRowid(pRtree, pCursor->pNode, pCursor->iCell);
125286 rc = nodeAcquire(pRtree, iRowid, pCursor->pNode, &pChild);
125287 if( rc!=SQLITE_OK ){
125288 goto descend_to_cell_out;
125291 nodeRelease(pRtree, pCursor->pNode);
125292 pCursor->pNode = pChild;
125293 isEof = 1;
125294 for(ii=0; isEof && ii<NCELL(pChild); ii++){
125295 pCursor->iCell = ii;
125296 rc = descendToCell(pRtree, pCursor, iHeight-1, &isEof);
125297 if( rc!=SQLITE_OK ){
125298 goto descend_to_cell_out;
125302 if( isEof ){
125303 assert( pCursor->pNode==pChild );
125304 nodeReference(pSavedNode);
125305 nodeRelease(pRtree, pChild);
125306 pCursor->pNode = pSavedNode;
125307 pCursor->iCell = iSavedCell;
125310 descend_to_cell_out:
125311 *pEof = isEof;
125312 return rc;
125316 ** One of the cells in node pNode is guaranteed to have a 64-bit
125317 ** integer value equal to iRowid. Return the index of this cell.
125319 static int nodeRowidIndex(
125320 Rtree *pRtree,
125321 RtreeNode *pNode,
125322 i64 iRowid,
125323 int *piIndex
125325 int ii;
125326 int nCell = NCELL(pNode);
125327 for(ii=0; ii<nCell; ii++){
125328 if( nodeGetRowid(pRtree, pNode, ii)==iRowid ){
125329 *piIndex = ii;
125330 return SQLITE_OK;
125333 return SQLITE_CORRUPT;
125337 ** Return the index of the cell containing a pointer to node pNode
125338 ** in its parent. If pNode is the root node, return -1.
125340 static int nodeParentIndex(Rtree *pRtree, RtreeNode *pNode, int *piIndex){
125341 RtreeNode *pParent = pNode->pParent;
125342 if( pParent ){
125343 return nodeRowidIndex(pRtree, pParent, pNode->iNode, piIndex);
125345 *piIndex = -1;
125346 return SQLITE_OK;
125350 ** Rtree virtual table module xNext method.
125352 static int rtreeNext(sqlite3_vtab_cursor *pVtabCursor){
125353 Rtree *pRtree = (Rtree *)(pVtabCursor->pVtab);
125354 RtreeCursor *pCsr = (RtreeCursor *)pVtabCursor;
125355 int rc = SQLITE_OK;
125357 /* RtreeCursor.pNode must not be NULL. If is is NULL, then this cursor is
125358 ** already at EOF. It is against the rules to call the xNext() method of
125359 ** a cursor that has already reached EOF.
125361 assert( pCsr->pNode );
125363 if( pCsr->iStrategy==1 ){
125364 /* This "scan" is a direct lookup by rowid. There is no next entry. */
125365 nodeRelease(pRtree, pCsr->pNode);
125366 pCsr->pNode = 0;
125367 }else{
125368 /* Move to the next entry that matches the configured constraints. */
125369 int iHeight = 0;
125370 while( pCsr->pNode ){
125371 RtreeNode *pNode = pCsr->pNode;
125372 int nCell = NCELL(pNode);
125373 for(pCsr->iCell++; pCsr->iCell<nCell; pCsr->iCell++){
125374 int isEof;
125375 rc = descendToCell(pRtree, pCsr, iHeight, &isEof);
125376 if( rc!=SQLITE_OK || !isEof ){
125377 return rc;
125380 pCsr->pNode = pNode->pParent;
125381 rc = nodeParentIndex(pRtree, pNode, &pCsr->iCell);
125382 if( rc!=SQLITE_OK ){
125383 return rc;
125385 nodeReference(pCsr->pNode);
125386 nodeRelease(pRtree, pNode);
125387 iHeight++;
125391 return rc;
125395 ** Rtree virtual table module xRowid method.
125397 static int rtreeRowid(sqlite3_vtab_cursor *pVtabCursor, sqlite_int64 *pRowid){
125398 Rtree *pRtree = (Rtree *)pVtabCursor->pVtab;
125399 RtreeCursor *pCsr = (RtreeCursor *)pVtabCursor;
125401 assert(pCsr->pNode);
125402 *pRowid = nodeGetRowid(pRtree, pCsr->pNode, pCsr->iCell);
125404 return SQLITE_OK;
125408 ** Rtree virtual table module xColumn method.
125410 static int rtreeColumn(sqlite3_vtab_cursor *cur, sqlite3_context *ctx, int i){
125411 Rtree *pRtree = (Rtree *)cur->pVtab;
125412 RtreeCursor *pCsr = (RtreeCursor *)cur;
125414 if( i==0 ){
125415 i64 iRowid = nodeGetRowid(pRtree, pCsr->pNode, pCsr->iCell);
125416 sqlite3_result_int64(ctx, iRowid);
125417 }else{
125418 RtreeCoord c;
125419 nodeGetCoord(pRtree, pCsr->pNode, pCsr->iCell, i-1, &c);
125420 if( pRtree->eCoordType==RTREE_COORD_REAL32 ){
125421 sqlite3_result_double(ctx, c.f);
125422 }else{
125423 assert( pRtree->eCoordType==RTREE_COORD_INT32 );
125424 sqlite3_result_int(ctx, c.i);
125428 return SQLITE_OK;
125432 ** Use nodeAcquire() to obtain the leaf node containing the record with
125433 ** rowid iRowid. If successful, set *ppLeaf to point to the node and
125434 ** return SQLITE_OK. If there is no such record in the table, set
125435 ** *ppLeaf to 0 and return SQLITE_OK. If an error occurs, set *ppLeaf
125436 ** to zero and return an SQLite error code.
125438 static int findLeafNode(Rtree *pRtree, i64 iRowid, RtreeNode **ppLeaf){
125439 int rc;
125440 *ppLeaf = 0;
125441 sqlite3_bind_int64(pRtree->pReadRowid, 1, iRowid);
125442 if( sqlite3_step(pRtree->pReadRowid)==SQLITE_ROW ){
125443 i64 iNode = sqlite3_column_int64(pRtree->pReadRowid, 0);
125444 rc = nodeAcquire(pRtree, iNode, 0, ppLeaf);
125445 sqlite3_reset(pRtree->pReadRowid);
125446 }else{
125447 rc = sqlite3_reset(pRtree->pReadRowid);
125449 return rc;
125453 ** This function is called to configure the RtreeConstraint object passed
125454 ** as the second argument for a MATCH constraint. The value passed as the
125455 ** first argument to this function is the right-hand operand to the MATCH
125456 ** operator.
125458 static int deserializeGeometry(sqlite3_value *pValue, RtreeConstraint *pCons){
125459 RtreeMatchArg *p;
125460 sqlite3_rtree_geometry *pGeom;
125461 int nBlob;
125463 /* Check that value is actually a blob. */
125464 if( !sqlite3_value_type(pValue)==SQLITE_BLOB ) return SQLITE_ERROR;
125466 /* Check that the blob is roughly the right size. */
125467 nBlob = sqlite3_value_bytes(pValue);
125468 if( nBlob<(int)sizeof(RtreeMatchArg)
125469 || ((nBlob-sizeof(RtreeMatchArg))%sizeof(double))!=0
125471 return SQLITE_ERROR;
125474 pGeom = (sqlite3_rtree_geometry *)sqlite3_malloc(
125475 sizeof(sqlite3_rtree_geometry) + nBlob
125477 if( !pGeom ) return SQLITE_NOMEM;
125478 memset(pGeom, 0, sizeof(sqlite3_rtree_geometry));
125479 p = (RtreeMatchArg *)&pGeom[1];
125481 memcpy(p, sqlite3_value_blob(pValue), nBlob);
125482 if( p->magic!=RTREE_GEOMETRY_MAGIC
125483 || nBlob!=(int)(sizeof(RtreeMatchArg) + (p->nParam-1)*sizeof(double))
125485 sqlite3_free(pGeom);
125486 return SQLITE_ERROR;
125489 pGeom->pContext = p->pContext;
125490 pGeom->nParam = p->nParam;
125491 pGeom->aParam = p->aParam;
125493 pCons->xGeom = p->xGeom;
125494 pCons->pGeom = pGeom;
125495 return SQLITE_OK;
125499 ** Rtree virtual table module xFilter method.
125501 static int rtreeFilter(
125502 sqlite3_vtab_cursor *pVtabCursor,
125503 int idxNum, const char *idxStr,
125504 int argc, sqlite3_value **argv
125506 Rtree *pRtree = (Rtree *)pVtabCursor->pVtab;
125507 RtreeCursor *pCsr = (RtreeCursor *)pVtabCursor;
125509 RtreeNode *pRoot = 0;
125510 int ii;
125511 int rc = SQLITE_OK;
125513 rtreeReference(pRtree);
125515 freeCursorConstraints(pCsr);
125516 pCsr->iStrategy = idxNum;
125518 if( idxNum==1 ){
125519 /* Special case - lookup by rowid. */
125520 RtreeNode *pLeaf; /* Leaf on which the required cell resides */
125521 i64 iRowid = sqlite3_value_int64(argv[0]);
125522 rc = findLeafNode(pRtree, iRowid, &pLeaf);
125523 pCsr->pNode = pLeaf;
125524 if( pLeaf ){
125525 assert( rc==SQLITE_OK );
125526 rc = nodeRowidIndex(pRtree, pLeaf, iRowid, &pCsr->iCell);
125528 }else{
125529 /* Normal case - r-tree scan. Set up the RtreeCursor.aConstraint array
125530 ** with the configured constraints.
125532 if( argc>0 ){
125533 pCsr->aConstraint = sqlite3_malloc(sizeof(RtreeConstraint)*argc);
125534 pCsr->nConstraint = argc;
125535 if( !pCsr->aConstraint ){
125536 rc = SQLITE_NOMEM;
125537 }else{
125538 memset(pCsr->aConstraint, 0, sizeof(RtreeConstraint)*argc);
125539 assert( (idxStr==0 && argc==0) || (int)strlen(idxStr)==argc*2 );
125540 for(ii=0; ii<argc; ii++){
125541 RtreeConstraint *p = &pCsr->aConstraint[ii];
125542 p->op = idxStr[ii*2];
125543 p->iCoord = idxStr[ii*2+1]-'a';
125544 if( p->op==RTREE_MATCH ){
125545 /* A MATCH operator. The right-hand-side must be a blob that
125546 ** can be cast into an RtreeMatchArg object. One created using
125547 ** an sqlite3_rtree_geometry_callback() SQL user function.
125549 rc = deserializeGeometry(argv[ii], p);
125550 if( rc!=SQLITE_OK ){
125551 break;
125553 }else{
125554 p->rValue = sqlite3_value_double(argv[ii]);
125560 if( rc==SQLITE_OK ){
125561 pCsr->pNode = 0;
125562 rc = nodeAcquire(pRtree, 1, 0, &pRoot);
125564 if( rc==SQLITE_OK ){
125565 int isEof = 1;
125566 int nCell = NCELL(pRoot);
125567 pCsr->pNode = pRoot;
125568 for(pCsr->iCell=0; rc==SQLITE_OK && pCsr->iCell<nCell; pCsr->iCell++){
125569 assert( pCsr->pNode==pRoot );
125570 rc = descendToCell(pRtree, pCsr, pRtree->iDepth, &isEof);
125571 if( !isEof ){
125572 break;
125575 if( rc==SQLITE_OK && isEof ){
125576 assert( pCsr->pNode==pRoot );
125577 nodeRelease(pRtree, pRoot);
125578 pCsr->pNode = 0;
125580 assert( rc!=SQLITE_OK || !pCsr->pNode || pCsr->iCell<NCELL(pCsr->pNode) );
125584 rtreeRelease(pRtree);
125585 return rc;
125589 ** Rtree virtual table module xBestIndex method. There are three
125590 ** table scan strategies to choose from (in order from most to
125591 ** least desirable):
125593 ** idxNum idxStr Strategy
125594 ** ------------------------------------------------
125595 ** 1 Unused Direct lookup by rowid.
125596 ** 2 See below R-tree query or full-table scan.
125597 ** ------------------------------------------------
125599 ** If strategy 1 is used, then idxStr is not meaningful. If strategy
125600 ** 2 is used, idxStr is formatted to contain 2 bytes for each
125601 ** constraint used. The first two bytes of idxStr correspond to
125602 ** the constraint in sqlite3_index_info.aConstraintUsage[] with
125603 ** (argvIndex==1) etc.
125605 ** The first of each pair of bytes in idxStr identifies the constraint
125606 ** operator as follows:
125608 ** Operator Byte Value
125609 ** ----------------------
125610 ** = 0x41 ('A')
125611 ** <= 0x42 ('B')
125612 ** < 0x43 ('C')
125613 ** >= 0x44 ('D')
125614 ** > 0x45 ('E')
125615 ** MATCH 0x46 ('F')
125616 ** ----------------------
125618 ** The second of each pair of bytes identifies the coordinate column
125619 ** to which the constraint applies. The leftmost coordinate column
125620 ** is 'a', the second from the left 'b' etc.
125622 static int rtreeBestIndex(sqlite3_vtab *tab, sqlite3_index_info *pIdxInfo){
125623 int rc = SQLITE_OK;
125624 int ii;
125626 int iIdx = 0;
125627 char zIdxStr[RTREE_MAX_DIMENSIONS*8+1];
125628 memset(zIdxStr, 0, sizeof(zIdxStr));
125629 UNUSED_PARAMETER(tab);
125631 assert( pIdxInfo->idxStr==0 );
125632 for(ii=0; ii<pIdxInfo->nConstraint && iIdx<(int)(sizeof(zIdxStr)-1); ii++){
125633 struct sqlite3_index_constraint *p = &pIdxInfo->aConstraint[ii];
125635 if( p->usable && p->iColumn==0 && p->op==SQLITE_INDEX_CONSTRAINT_EQ ){
125636 /* We have an equality constraint on the rowid. Use strategy 1. */
125637 int jj;
125638 for(jj=0; jj<ii; jj++){
125639 pIdxInfo->aConstraintUsage[jj].argvIndex = 0;
125640 pIdxInfo->aConstraintUsage[jj].omit = 0;
125642 pIdxInfo->idxNum = 1;
125643 pIdxInfo->aConstraintUsage[ii].argvIndex = 1;
125644 pIdxInfo->aConstraintUsage[jj].omit = 1;
125646 /* This strategy involves a two rowid lookups on an B-Tree structures
125647 ** and then a linear search of an R-Tree node. This should be
125648 ** considered almost as quick as a direct rowid lookup (for which
125649 ** sqlite uses an internal cost of 0.0).
125651 pIdxInfo->estimatedCost = 10.0;
125652 return SQLITE_OK;
125655 if( p->usable && (p->iColumn>0 || p->op==SQLITE_INDEX_CONSTRAINT_MATCH) ){
125656 u8 op;
125657 switch( p->op ){
125658 case SQLITE_INDEX_CONSTRAINT_EQ: op = RTREE_EQ; break;
125659 case SQLITE_INDEX_CONSTRAINT_GT: op = RTREE_GT; break;
125660 case SQLITE_INDEX_CONSTRAINT_LE: op = RTREE_LE; break;
125661 case SQLITE_INDEX_CONSTRAINT_LT: op = RTREE_LT; break;
125662 case SQLITE_INDEX_CONSTRAINT_GE: op = RTREE_GE; break;
125663 default:
125664 assert( p->op==SQLITE_INDEX_CONSTRAINT_MATCH );
125665 op = RTREE_MATCH;
125666 break;
125668 zIdxStr[iIdx++] = op;
125669 zIdxStr[iIdx++] = p->iColumn - 1 + 'a';
125670 pIdxInfo->aConstraintUsage[ii].argvIndex = (iIdx/2);
125671 pIdxInfo->aConstraintUsage[ii].omit = 1;
125675 pIdxInfo->idxNum = 2;
125676 pIdxInfo->needToFreeIdxStr = 1;
125677 if( iIdx>0 && 0==(pIdxInfo->idxStr = sqlite3_mprintf("%s", zIdxStr)) ){
125678 return SQLITE_NOMEM;
125680 assert( iIdx>=0 );
125681 pIdxInfo->estimatedCost = (2000000.0 / (double)(iIdx + 1));
125682 return rc;
125686 ** Return the N-dimensional volumn of the cell stored in *p.
125688 static float cellArea(Rtree *pRtree, RtreeCell *p){
125689 float area = 1.0;
125690 int ii;
125691 for(ii=0; ii<(pRtree->nDim*2); ii+=2){
125692 area = area * (DCOORD(p->aCoord[ii+1]) - DCOORD(p->aCoord[ii]));
125694 return area;
125698 ** Return the margin length of cell p. The margin length is the sum
125699 ** of the objects size in each dimension.
125701 static float cellMargin(Rtree *pRtree, RtreeCell *p){
125702 float margin = 0.0;
125703 int ii;
125704 for(ii=0; ii<(pRtree->nDim*2); ii+=2){
125705 margin += (DCOORD(p->aCoord[ii+1]) - DCOORD(p->aCoord[ii]));
125707 return margin;
125711 ** Store the union of cells p1 and p2 in p1.
125713 static void cellUnion(Rtree *pRtree, RtreeCell *p1, RtreeCell *p2){
125714 int ii;
125715 if( pRtree->eCoordType==RTREE_COORD_REAL32 ){
125716 for(ii=0; ii<(pRtree->nDim*2); ii+=2){
125717 p1->aCoord[ii].f = MIN(p1->aCoord[ii].f, p2->aCoord[ii].f);
125718 p1->aCoord[ii+1].f = MAX(p1->aCoord[ii+1].f, p2->aCoord[ii+1].f);
125720 }else{
125721 for(ii=0; ii<(pRtree->nDim*2); ii+=2){
125722 p1->aCoord[ii].i = MIN(p1->aCoord[ii].i, p2->aCoord[ii].i);
125723 p1->aCoord[ii+1].i = MAX(p1->aCoord[ii+1].i, p2->aCoord[ii+1].i);
125729 ** Return true if the area covered by p2 is a subset of the area covered
125730 ** by p1. False otherwise.
125732 static int cellContains(Rtree *pRtree, RtreeCell *p1, RtreeCell *p2){
125733 int ii;
125734 int isInt = (pRtree->eCoordType==RTREE_COORD_INT32);
125735 for(ii=0; ii<(pRtree->nDim*2); ii+=2){
125736 RtreeCoord *a1 = &p1->aCoord[ii];
125737 RtreeCoord *a2 = &p2->aCoord[ii];
125738 if( (!isInt && (a2[0].f<a1[0].f || a2[1].f>a1[1].f))
125739 || ( isInt && (a2[0].i<a1[0].i || a2[1].i>a1[1].i))
125741 return 0;
125744 return 1;
125748 ** Return the amount cell p would grow by if it were unioned with pCell.
125750 static float cellGrowth(Rtree *pRtree, RtreeCell *p, RtreeCell *pCell){
125751 float area;
125752 RtreeCell cell;
125753 memcpy(&cell, p, sizeof(RtreeCell));
125754 area = cellArea(pRtree, &cell);
125755 cellUnion(pRtree, &cell, pCell);
125756 return (cellArea(pRtree, &cell)-area);
125759 #if VARIANT_RSTARTREE_CHOOSESUBTREE || VARIANT_RSTARTREE_SPLIT
125760 static float cellOverlap(
125761 Rtree *pRtree,
125762 RtreeCell *p,
125763 RtreeCell *aCell,
125764 int nCell,
125765 int iExclude
125767 int ii;
125768 float overlap = 0.0;
125769 for(ii=0; ii<nCell; ii++){
125770 #if VARIANT_RSTARTREE_CHOOSESUBTREE
125771 if( ii!=iExclude )
125772 #else
125773 assert( iExclude==-1 );
125774 UNUSED_PARAMETER(iExclude);
125775 #endif
125777 int jj;
125778 float o = 1.0;
125779 for(jj=0; jj<(pRtree->nDim*2); jj+=2){
125780 double x1;
125781 double x2;
125783 x1 = MAX(DCOORD(p->aCoord[jj]), DCOORD(aCell[ii].aCoord[jj]));
125784 x2 = MIN(DCOORD(p->aCoord[jj+1]), DCOORD(aCell[ii].aCoord[jj+1]));
125786 if( x2<x1 ){
125787 o = 0.0;
125788 break;
125789 }else{
125790 o = o * (x2-x1);
125793 overlap += o;
125796 return overlap;
125798 #endif
125800 #if VARIANT_RSTARTREE_CHOOSESUBTREE
125801 static float cellOverlapEnlargement(
125802 Rtree *pRtree,
125803 RtreeCell *p,
125804 RtreeCell *pInsert,
125805 RtreeCell *aCell,
125806 int nCell,
125807 int iExclude
125809 float before;
125810 float after;
125811 before = cellOverlap(pRtree, p, aCell, nCell, iExclude);
125812 cellUnion(pRtree, p, pInsert);
125813 after = cellOverlap(pRtree, p, aCell, nCell, iExclude);
125814 return after-before;
125816 #endif
125820 ** This function implements the ChooseLeaf algorithm from Gutman[84].
125821 ** ChooseSubTree in r*tree terminology.
125823 static int ChooseLeaf(
125824 Rtree *pRtree, /* Rtree table */
125825 RtreeCell *pCell, /* Cell to insert into rtree */
125826 int iHeight, /* Height of sub-tree rooted at pCell */
125827 RtreeNode **ppLeaf /* OUT: Selected leaf page */
125829 int rc;
125830 int ii;
125831 RtreeNode *pNode;
125832 rc = nodeAcquire(pRtree, 1, 0, &pNode);
125834 for(ii=0; rc==SQLITE_OK && ii<(pRtree->iDepth-iHeight); ii++){
125835 int iCell;
125836 sqlite3_int64 iBest;
125838 float fMinGrowth;
125839 float fMinArea;
125840 float fMinOverlap;
125842 int nCell = NCELL(pNode);
125843 RtreeCell cell;
125844 RtreeNode *pChild;
125846 RtreeCell *aCell = 0;
125848 #if VARIANT_RSTARTREE_CHOOSESUBTREE
125849 if( ii==(pRtree->iDepth-1) ){
125850 int jj;
125851 aCell = sqlite3_malloc(sizeof(RtreeCell)*nCell);
125852 if( !aCell ){
125853 rc = SQLITE_NOMEM;
125854 nodeRelease(pRtree, pNode);
125855 pNode = 0;
125856 continue;
125858 for(jj=0; jj<nCell; jj++){
125859 nodeGetCell(pRtree, pNode, jj, &aCell[jj]);
125862 #endif
125864 /* Select the child node which will be enlarged the least if pCell
125865 ** is inserted into it. Resolve ties by choosing the entry with
125866 ** the smallest area.
125868 for(iCell=0; iCell<nCell; iCell++){
125869 int bBest = 0;
125870 float growth;
125871 float area;
125872 float overlap = 0.0;
125873 nodeGetCell(pRtree, pNode, iCell, &cell);
125874 growth = cellGrowth(pRtree, &cell, pCell);
125875 area = cellArea(pRtree, &cell);
125877 #if VARIANT_RSTARTREE_CHOOSESUBTREE
125878 if( ii==(pRtree->iDepth-1) ){
125879 overlap = cellOverlapEnlargement(pRtree,&cell,pCell,aCell,nCell,iCell);
125881 if( (iCell==0)
125882 || (overlap<fMinOverlap)
125883 || (overlap==fMinOverlap && growth<fMinGrowth)
125884 || (overlap==fMinOverlap && growth==fMinGrowth && area<fMinArea)
125886 bBest = 1;
125888 #else
125889 if( iCell==0||growth<fMinGrowth||(growth==fMinGrowth && area<fMinArea) ){
125890 bBest = 1;
125892 #endif
125893 if( bBest ){
125894 fMinOverlap = overlap;
125895 fMinGrowth = growth;
125896 fMinArea = area;
125897 iBest = cell.iRowid;
125901 sqlite3_free(aCell);
125902 rc = nodeAcquire(pRtree, iBest, pNode, &pChild);
125903 nodeRelease(pRtree, pNode);
125904 pNode = pChild;
125907 *ppLeaf = pNode;
125908 return rc;
125912 ** A cell with the same content as pCell has just been inserted into
125913 ** the node pNode. This function updates the bounding box cells in
125914 ** all ancestor elements.
125916 static int AdjustTree(
125917 Rtree *pRtree, /* Rtree table */
125918 RtreeNode *pNode, /* Adjust ancestry of this node. */
125919 RtreeCell *pCell /* This cell was just inserted */
125921 RtreeNode *p = pNode;
125922 while( p->pParent ){
125923 RtreeNode *pParent = p->pParent;
125924 RtreeCell cell;
125925 int iCell;
125927 if( nodeParentIndex(pRtree, p, &iCell) ){
125928 return SQLITE_CORRUPT;
125931 nodeGetCell(pRtree, pParent, iCell, &cell);
125932 if( !cellContains(pRtree, &cell, pCell) ){
125933 cellUnion(pRtree, &cell, pCell);
125934 nodeOverwriteCell(pRtree, pParent, &cell, iCell);
125937 p = pParent;
125939 return SQLITE_OK;
125943 ** Write mapping (iRowid->iNode) to the <rtree>_rowid table.
125945 static int rowidWrite(Rtree *pRtree, sqlite3_int64 iRowid, sqlite3_int64 iNode){
125946 sqlite3_bind_int64(pRtree->pWriteRowid, 1, iRowid);
125947 sqlite3_bind_int64(pRtree->pWriteRowid, 2, iNode);
125948 sqlite3_step(pRtree->pWriteRowid);
125949 return sqlite3_reset(pRtree->pWriteRowid);
125953 ** Write mapping (iNode->iPar) to the <rtree>_parent table.
125955 static int parentWrite(Rtree *pRtree, sqlite3_int64 iNode, sqlite3_int64 iPar){
125956 sqlite3_bind_int64(pRtree->pWriteParent, 1, iNode);
125957 sqlite3_bind_int64(pRtree->pWriteParent, 2, iPar);
125958 sqlite3_step(pRtree->pWriteParent);
125959 return sqlite3_reset(pRtree->pWriteParent);
125962 static int rtreeInsertCell(Rtree *, RtreeNode *, RtreeCell *, int);
125964 #if VARIANT_GUTTMAN_LINEAR_SPLIT
125966 ** Implementation of the linear variant of the PickNext() function from
125967 ** Guttman[84].
125969 static RtreeCell *LinearPickNext(
125970 Rtree *pRtree,
125971 RtreeCell *aCell,
125972 int nCell,
125973 RtreeCell *pLeftBox,
125974 RtreeCell *pRightBox,
125975 int *aiUsed
125977 int ii;
125978 for(ii=0; aiUsed[ii]; ii++);
125979 aiUsed[ii] = 1;
125980 return &aCell[ii];
125984 ** Implementation of the linear variant of the PickSeeds() function from
125985 ** Guttman[84].
125987 static void LinearPickSeeds(
125988 Rtree *pRtree,
125989 RtreeCell *aCell,
125990 int nCell,
125991 int *piLeftSeed,
125992 int *piRightSeed
125994 int i;
125995 int iLeftSeed = 0;
125996 int iRightSeed = 1;
125997 float maxNormalInnerWidth = 0.0;
125999 /* Pick two "seed" cells from the array of cells. The algorithm used
126000 ** here is the LinearPickSeeds algorithm from Gutman[1984]. The
126001 ** indices of the two seed cells in the array are stored in local
126002 ** variables iLeftSeek and iRightSeed.
126004 for(i=0; i<pRtree->nDim; i++){
126005 float x1 = DCOORD(aCell[0].aCoord[i*2]);
126006 float x2 = DCOORD(aCell[0].aCoord[i*2+1]);
126007 float x3 = x1;
126008 float x4 = x2;
126009 int jj;
126011 int iCellLeft = 0;
126012 int iCellRight = 0;
126014 for(jj=1; jj<nCell; jj++){
126015 float left = DCOORD(aCell[jj].aCoord[i*2]);
126016 float right = DCOORD(aCell[jj].aCoord[i*2+1]);
126018 if( left<x1 ) x1 = left;
126019 if( right>x4 ) x4 = right;
126020 if( left>x3 ){
126021 x3 = left;
126022 iCellRight = jj;
126024 if( right<x2 ){
126025 x2 = right;
126026 iCellLeft = jj;
126030 if( x4!=x1 ){
126031 float normalwidth = (x3 - x2) / (x4 - x1);
126032 if( normalwidth>maxNormalInnerWidth ){
126033 iLeftSeed = iCellLeft;
126034 iRightSeed = iCellRight;
126039 *piLeftSeed = iLeftSeed;
126040 *piRightSeed = iRightSeed;
126042 #endif /* VARIANT_GUTTMAN_LINEAR_SPLIT */
126044 #if VARIANT_GUTTMAN_QUADRATIC_SPLIT
126046 ** Implementation of the quadratic variant of the PickNext() function from
126047 ** Guttman[84].
126049 static RtreeCell *QuadraticPickNext(
126050 Rtree *pRtree,
126051 RtreeCell *aCell,
126052 int nCell,
126053 RtreeCell *pLeftBox,
126054 RtreeCell *pRightBox,
126055 int *aiUsed
126057 #define FABS(a) ((a)<0.0?-1.0*(a):(a))
126059 int iSelect = -1;
126060 float fDiff;
126061 int ii;
126062 for(ii=0; ii<nCell; ii++){
126063 if( aiUsed[ii]==0 ){
126064 float left = cellGrowth(pRtree, pLeftBox, &aCell[ii]);
126065 float right = cellGrowth(pRtree, pLeftBox, &aCell[ii]);
126066 float diff = FABS(right-left);
126067 if( iSelect<0 || diff>fDiff ){
126068 fDiff = diff;
126069 iSelect = ii;
126073 aiUsed[iSelect] = 1;
126074 return &aCell[iSelect];
126078 ** Implementation of the quadratic variant of the PickSeeds() function from
126079 ** Guttman[84].
126081 static void QuadraticPickSeeds(
126082 Rtree *pRtree,
126083 RtreeCell *aCell,
126084 int nCell,
126085 int *piLeftSeed,
126086 int *piRightSeed
126088 int ii;
126089 int jj;
126091 int iLeftSeed = 0;
126092 int iRightSeed = 1;
126093 float fWaste = 0.0;
126095 for(ii=0; ii<nCell; ii++){
126096 for(jj=ii+1; jj<nCell; jj++){
126097 float right = cellArea(pRtree, &aCell[jj]);
126098 float growth = cellGrowth(pRtree, &aCell[ii], &aCell[jj]);
126099 float waste = growth - right;
126101 if( waste>fWaste ){
126102 iLeftSeed = ii;
126103 iRightSeed = jj;
126104 fWaste = waste;
126109 *piLeftSeed = iLeftSeed;
126110 *piRightSeed = iRightSeed;
126112 #endif /* VARIANT_GUTTMAN_QUADRATIC_SPLIT */
126115 ** Arguments aIdx, aDistance and aSpare all point to arrays of size
126116 ** nIdx. The aIdx array contains the set of integers from 0 to
126117 ** (nIdx-1) in no particular order. This function sorts the values
126118 ** in aIdx according to the indexed values in aDistance. For
126119 ** example, assuming the inputs:
126121 ** aIdx = { 0, 1, 2, 3 }
126122 ** aDistance = { 5.0, 2.0, 7.0, 6.0 }
126124 ** this function sets the aIdx array to contain:
126126 ** aIdx = { 0, 1, 2, 3 }
126128 ** The aSpare array is used as temporary working space by the
126129 ** sorting algorithm.
126131 static void SortByDistance(
126132 int *aIdx,
126133 int nIdx,
126134 float *aDistance,
126135 int *aSpare
126137 if( nIdx>1 ){
126138 int iLeft = 0;
126139 int iRight = 0;
126141 int nLeft = nIdx/2;
126142 int nRight = nIdx-nLeft;
126143 int *aLeft = aIdx;
126144 int *aRight = &aIdx[nLeft];
126146 SortByDistance(aLeft, nLeft, aDistance, aSpare);
126147 SortByDistance(aRight, nRight, aDistance, aSpare);
126149 memcpy(aSpare, aLeft, sizeof(int)*nLeft);
126150 aLeft = aSpare;
126152 while( iLeft<nLeft || iRight<nRight ){
126153 if( iLeft==nLeft ){
126154 aIdx[iLeft+iRight] = aRight[iRight];
126155 iRight++;
126156 }else if( iRight==nRight ){
126157 aIdx[iLeft+iRight] = aLeft[iLeft];
126158 iLeft++;
126159 }else{
126160 float fLeft = aDistance[aLeft[iLeft]];
126161 float fRight = aDistance[aRight[iRight]];
126162 if( fLeft<fRight ){
126163 aIdx[iLeft+iRight] = aLeft[iLeft];
126164 iLeft++;
126165 }else{
126166 aIdx[iLeft+iRight] = aRight[iRight];
126167 iRight++;
126172 #if 0
126173 /* Check that the sort worked */
126175 int jj;
126176 for(jj=1; jj<nIdx; jj++){
126177 float left = aDistance[aIdx[jj-1]];
126178 float right = aDistance[aIdx[jj]];
126179 assert( left<=right );
126182 #endif
126187 ** Arguments aIdx, aCell and aSpare all point to arrays of size
126188 ** nIdx. The aIdx array contains the set of integers from 0 to
126189 ** (nIdx-1) in no particular order. This function sorts the values
126190 ** in aIdx according to dimension iDim of the cells in aCell. The
126191 ** minimum value of dimension iDim is considered first, the
126192 ** maximum used to break ties.
126194 ** The aSpare array is used as temporary working space by the
126195 ** sorting algorithm.
126197 static void SortByDimension(
126198 Rtree *pRtree,
126199 int *aIdx,
126200 int nIdx,
126201 int iDim,
126202 RtreeCell *aCell,
126203 int *aSpare
126205 if( nIdx>1 ){
126207 int iLeft = 0;
126208 int iRight = 0;
126210 int nLeft = nIdx/2;
126211 int nRight = nIdx-nLeft;
126212 int *aLeft = aIdx;
126213 int *aRight = &aIdx[nLeft];
126215 SortByDimension(pRtree, aLeft, nLeft, iDim, aCell, aSpare);
126216 SortByDimension(pRtree, aRight, nRight, iDim, aCell, aSpare);
126218 memcpy(aSpare, aLeft, sizeof(int)*nLeft);
126219 aLeft = aSpare;
126220 while( iLeft<nLeft || iRight<nRight ){
126221 double xleft1 = DCOORD(aCell[aLeft[iLeft]].aCoord[iDim*2]);
126222 double xleft2 = DCOORD(aCell[aLeft[iLeft]].aCoord[iDim*2+1]);
126223 double xright1 = DCOORD(aCell[aRight[iRight]].aCoord[iDim*2]);
126224 double xright2 = DCOORD(aCell[aRight[iRight]].aCoord[iDim*2+1]);
126225 if( (iLeft!=nLeft) && ((iRight==nRight)
126226 || (xleft1<xright1)
126227 || (xleft1==xright1 && xleft2<xright2)
126229 aIdx[iLeft+iRight] = aLeft[iLeft];
126230 iLeft++;
126231 }else{
126232 aIdx[iLeft+iRight] = aRight[iRight];
126233 iRight++;
126237 #if 0
126238 /* Check that the sort worked */
126240 int jj;
126241 for(jj=1; jj<nIdx; jj++){
126242 float xleft1 = aCell[aIdx[jj-1]].aCoord[iDim*2];
126243 float xleft2 = aCell[aIdx[jj-1]].aCoord[iDim*2+1];
126244 float xright1 = aCell[aIdx[jj]].aCoord[iDim*2];
126245 float xright2 = aCell[aIdx[jj]].aCoord[iDim*2+1];
126246 assert( xleft1<=xright1 && (xleft1<xright1 || xleft2<=xright2) );
126249 #endif
126253 #if VARIANT_RSTARTREE_SPLIT
126255 ** Implementation of the R*-tree variant of SplitNode from Beckman[1990].
126257 static int splitNodeStartree(
126258 Rtree *pRtree,
126259 RtreeCell *aCell,
126260 int nCell,
126261 RtreeNode *pLeft,
126262 RtreeNode *pRight,
126263 RtreeCell *pBboxLeft,
126264 RtreeCell *pBboxRight
126266 int **aaSorted;
126267 int *aSpare;
126268 int ii;
126270 int iBestDim;
126271 int iBestSplit;
126272 float fBestMargin;
126274 int nByte = (pRtree->nDim+1)*(sizeof(int*)+nCell*sizeof(int));
126276 aaSorted = (int **)sqlite3_malloc(nByte);
126277 if( !aaSorted ){
126278 return SQLITE_NOMEM;
126281 aSpare = &((int *)&aaSorted[pRtree->nDim])[pRtree->nDim*nCell];
126282 memset(aaSorted, 0, nByte);
126283 for(ii=0; ii<pRtree->nDim; ii++){
126284 int jj;
126285 aaSorted[ii] = &((int *)&aaSorted[pRtree->nDim])[ii*nCell];
126286 for(jj=0; jj<nCell; jj++){
126287 aaSorted[ii][jj] = jj;
126289 SortByDimension(pRtree, aaSorted[ii], nCell, ii, aCell, aSpare);
126292 for(ii=0; ii<pRtree->nDim; ii++){
126293 float margin = 0.0;
126294 float fBestOverlap;
126295 float fBestArea;
126296 int iBestLeft;
126297 int nLeft;
126300 nLeft=RTREE_MINCELLS(pRtree);
126301 nLeft<=(nCell-RTREE_MINCELLS(pRtree));
126302 nLeft++
126304 RtreeCell left;
126305 RtreeCell right;
126306 int kk;
126307 float overlap;
126308 float area;
126310 memcpy(&left, &aCell[aaSorted[ii][0]], sizeof(RtreeCell));
126311 memcpy(&right, &aCell[aaSorted[ii][nCell-1]], sizeof(RtreeCell));
126312 for(kk=1; kk<(nCell-1); kk++){
126313 if( kk<nLeft ){
126314 cellUnion(pRtree, &left, &aCell[aaSorted[ii][kk]]);
126315 }else{
126316 cellUnion(pRtree, &right, &aCell[aaSorted[ii][kk]]);
126319 margin += cellMargin(pRtree, &left);
126320 margin += cellMargin(pRtree, &right);
126321 overlap = cellOverlap(pRtree, &left, &right, 1, -1);
126322 area = cellArea(pRtree, &left) + cellArea(pRtree, &right);
126323 if( (nLeft==RTREE_MINCELLS(pRtree))
126324 || (overlap<fBestOverlap)
126325 || (overlap==fBestOverlap && area<fBestArea)
126327 iBestLeft = nLeft;
126328 fBestOverlap = overlap;
126329 fBestArea = area;
126333 if( ii==0 || margin<fBestMargin ){
126334 iBestDim = ii;
126335 fBestMargin = margin;
126336 iBestSplit = iBestLeft;
126340 memcpy(pBboxLeft, &aCell[aaSorted[iBestDim][0]], sizeof(RtreeCell));
126341 memcpy(pBboxRight, &aCell[aaSorted[iBestDim][iBestSplit]], sizeof(RtreeCell));
126342 for(ii=0; ii<nCell; ii++){
126343 RtreeNode *pTarget = (ii<iBestSplit)?pLeft:pRight;
126344 RtreeCell *pBbox = (ii<iBestSplit)?pBboxLeft:pBboxRight;
126345 RtreeCell *pCell = &aCell[aaSorted[iBestDim][ii]];
126346 nodeInsertCell(pRtree, pTarget, pCell);
126347 cellUnion(pRtree, pBbox, pCell);
126350 sqlite3_free(aaSorted);
126351 return SQLITE_OK;
126353 #endif
126355 #if VARIANT_GUTTMAN_SPLIT
126357 ** Implementation of the regular R-tree SplitNode from Guttman[1984].
126359 static int splitNodeGuttman(
126360 Rtree *pRtree,
126361 RtreeCell *aCell,
126362 int nCell,
126363 RtreeNode *pLeft,
126364 RtreeNode *pRight,
126365 RtreeCell *pBboxLeft,
126366 RtreeCell *pBboxRight
126368 int iLeftSeed = 0;
126369 int iRightSeed = 1;
126370 int *aiUsed;
126371 int i;
126373 aiUsed = sqlite3_malloc(sizeof(int)*nCell);
126374 if( !aiUsed ){
126375 return SQLITE_NOMEM;
126377 memset(aiUsed, 0, sizeof(int)*nCell);
126379 PickSeeds(pRtree, aCell, nCell, &iLeftSeed, &iRightSeed);
126381 memcpy(pBboxLeft, &aCell[iLeftSeed], sizeof(RtreeCell));
126382 memcpy(pBboxRight, &aCell[iRightSeed], sizeof(RtreeCell));
126383 nodeInsertCell(pRtree, pLeft, &aCell[iLeftSeed]);
126384 nodeInsertCell(pRtree, pRight, &aCell[iRightSeed]);
126385 aiUsed[iLeftSeed] = 1;
126386 aiUsed[iRightSeed] = 1;
126388 for(i=nCell-2; i>0; i--){
126389 RtreeCell *pNext;
126390 pNext = PickNext(pRtree, aCell, nCell, pBboxLeft, pBboxRight, aiUsed);
126391 float diff =
126392 cellGrowth(pRtree, pBboxLeft, pNext) -
126393 cellGrowth(pRtree, pBboxRight, pNext)
126395 if( (RTREE_MINCELLS(pRtree)-NCELL(pRight)==i)
126396 || (diff>0.0 && (RTREE_MINCELLS(pRtree)-NCELL(pLeft)!=i))
126398 nodeInsertCell(pRtree, pRight, pNext);
126399 cellUnion(pRtree, pBboxRight, pNext);
126400 }else{
126401 nodeInsertCell(pRtree, pLeft, pNext);
126402 cellUnion(pRtree, pBboxLeft, pNext);
126406 sqlite3_free(aiUsed);
126407 return SQLITE_OK;
126409 #endif
126411 static int updateMapping(
126412 Rtree *pRtree,
126413 i64 iRowid,
126414 RtreeNode *pNode,
126415 int iHeight
126417 int (*xSetMapping)(Rtree *, sqlite3_int64, sqlite3_int64);
126418 xSetMapping = ((iHeight==0)?rowidWrite:parentWrite);
126419 if( iHeight>0 ){
126420 RtreeNode *pChild = nodeHashLookup(pRtree, iRowid);
126421 if( pChild ){
126422 nodeRelease(pRtree, pChild->pParent);
126423 nodeReference(pNode);
126424 pChild->pParent = pNode;
126427 return xSetMapping(pRtree, iRowid, pNode->iNode);
126430 static int SplitNode(
126431 Rtree *pRtree,
126432 RtreeNode *pNode,
126433 RtreeCell *pCell,
126434 int iHeight
126436 int i;
126437 int newCellIsRight = 0;
126439 int rc = SQLITE_OK;
126440 int nCell = NCELL(pNode);
126441 RtreeCell *aCell;
126442 int *aiUsed;
126444 RtreeNode *pLeft = 0;
126445 RtreeNode *pRight = 0;
126447 RtreeCell leftbbox;
126448 RtreeCell rightbbox;
126450 /* Allocate an array and populate it with a copy of pCell and
126451 ** all cells from node pLeft. Then zero the original node.
126453 aCell = sqlite3_malloc((sizeof(RtreeCell)+sizeof(int))*(nCell+1));
126454 if( !aCell ){
126455 rc = SQLITE_NOMEM;
126456 goto splitnode_out;
126458 aiUsed = (int *)&aCell[nCell+1];
126459 memset(aiUsed, 0, sizeof(int)*(nCell+1));
126460 for(i=0; i<nCell; i++){
126461 nodeGetCell(pRtree, pNode, i, &aCell[i]);
126463 nodeZero(pRtree, pNode);
126464 memcpy(&aCell[nCell], pCell, sizeof(RtreeCell));
126465 nCell++;
126467 if( pNode->iNode==1 ){
126468 pRight = nodeNew(pRtree, pNode);
126469 pLeft = nodeNew(pRtree, pNode);
126470 pRtree->iDepth++;
126471 pNode->isDirty = 1;
126472 writeInt16(pNode->zData, pRtree->iDepth);
126473 }else{
126474 pLeft = pNode;
126475 pRight = nodeNew(pRtree, pLeft->pParent);
126476 nodeReference(pLeft);
126479 if( !pLeft || !pRight ){
126480 rc = SQLITE_NOMEM;
126481 goto splitnode_out;
126484 memset(pLeft->zData, 0, pRtree->iNodeSize);
126485 memset(pRight->zData, 0, pRtree->iNodeSize);
126487 rc = AssignCells(pRtree, aCell, nCell, pLeft, pRight, &leftbbox, &rightbbox);
126488 if( rc!=SQLITE_OK ){
126489 goto splitnode_out;
126492 /* Ensure both child nodes have node numbers assigned to them by calling
126493 ** nodeWrite(). Node pRight always needs a node number, as it was created
126494 ** by nodeNew() above. But node pLeft sometimes already has a node number.
126495 ** In this case avoid the all to nodeWrite().
126497 if( SQLITE_OK!=(rc = nodeWrite(pRtree, pRight))
126498 || (0==pLeft->iNode && SQLITE_OK!=(rc = nodeWrite(pRtree, pLeft)))
126500 goto splitnode_out;
126503 rightbbox.iRowid = pRight->iNode;
126504 leftbbox.iRowid = pLeft->iNode;
126506 if( pNode->iNode==1 ){
126507 rc = rtreeInsertCell(pRtree, pLeft->pParent, &leftbbox, iHeight+1);
126508 if( rc!=SQLITE_OK ){
126509 goto splitnode_out;
126511 }else{
126512 RtreeNode *pParent = pLeft->pParent;
126513 int iCell;
126514 rc = nodeParentIndex(pRtree, pLeft, &iCell);
126515 if( rc==SQLITE_OK ){
126516 nodeOverwriteCell(pRtree, pParent, &leftbbox, iCell);
126517 rc = AdjustTree(pRtree, pParent, &leftbbox);
126519 if( rc!=SQLITE_OK ){
126520 goto splitnode_out;
126523 if( (rc = rtreeInsertCell(pRtree, pRight->pParent, &rightbbox, iHeight+1)) ){
126524 goto splitnode_out;
126527 for(i=0; i<NCELL(pRight); i++){
126528 i64 iRowid = nodeGetRowid(pRtree, pRight, i);
126529 rc = updateMapping(pRtree, iRowid, pRight, iHeight);
126530 if( iRowid==pCell->iRowid ){
126531 newCellIsRight = 1;
126533 if( rc!=SQLITE_OK ){
126534 goto splitnode_out;
126537 if( pNode->iNode==1 ){
126538 for(i=0; i<NCELL(pLeft); i++){
126539 i64 iRowid = nodeGetRowid(pRtree, pLeft, i);
126540 rc = updateMapping(pRtree, iRowid, pLeft, iHeight);
126541 if( rc!=SQLITE_OK ){
126542 goto splitnode_out;
126545 }else if( newCellIsRight==0 ){
126546 rc = updateMapping(pRtree, pCell->iRowid, pLeft, iHeight);
126549 if( rc==SQLITE_OK ){
126550 rc = nodeRelease(pRtree, pRight);
126551 pRight = 0;
126553 if( rc==SQLITE_OK ){
126554 rc = nodeRelease(pRtree, pLeft);
126555 pLeft = 0;
126558 splitnode_out:
126559 nodeRelease(pRtree, pRight);
126560 nodeRelease(pRtree, pLeft);
126561 sqlite3_free(aCell);
126562 return rc;
126566 ** If node pLeaf is not the root of the r-tree and its pParent pointer is
126567 ** still NULL, load all ancestor nodes of pLeaf into memory and populate
126568 ** the pLeaf->pParent chain all the way up to the root node.
126570 ** This operation is required when a row is deleted (or updated - an update
126571 ** is implemented as a delete followed by an insert). SQLite provides the
126572 ** rowid of the row to delete, which can be used to find the leaf on which
126573 ** the entry resides (argument pLeaf). Once the leaf is located, this
126574 ** function is called to determine its ancestry.
126576 static int fixLeafParent(Rtree *pRtree, RtreeNode *pLeaf){
126577 int rc = SQLITE_OK;
126578 RtreeNode *pChild = pLeaf;
126579 while( rc==SQLITE_OK && pChild->iNode!=1 && pChild->pParent==0 ){
126580 int rc2 = SQLITE_OK; /* sqlite3_reset() return code */
126581 sqlite3_bind_int64(pRtree->pReadParent, 1, pChild->iNode);
126582 rc = sqlite3_step(pRtree->pReadParent);
126583 if( rc==SQLITE_ROW ){
126584 RtreeNode *pTest; /* Used to test for reference loops */
126585 i64 iNode; /* Node number of parent node */
126587 /* Before setting pChild->pParent, test that we are not creating a
126588 ** loop of references (as we would if, say, pChild==pParent). We don't
126589 ** want to do this as it leads to a memory leak when trying to delete
126590 ** the referenced counted node structures.
126592 iNode = sqlite3_column_int64(pRtree->pReadParent, 0);
126593 for(pTest=pLeaf; pTest && pTest->iNode!=iNode; pTest=pTest->pParent);
126594 if( !pTest ){
126595 rc2 = nodeAcquire(pRtree, iNode, 0, &pChild->pParent);
126598 rc = sqlite3_reset(pRtree->pReadParent);
126599 if( rc==SQLITE_OK ) rc = rc2;
126600 if( rc==SQLITE_OK && !pChild->pParent ) rc = SQLITE_CORRUPT;
126601 pChild = pChild->pParent;
126603 return rc;
126606 static int deleteCell(Rtree *, RtreeNode *, int, int);
126608 static int removeNode(Rtree *pRtree, RtreeNode *pNode, int iHeight){
126609 int rc;
126610 int rc2;
126611 RtreeNode *pParent;
126612 int iCell;
126614 assert( pNode->nRef==1 );
126616 /* Remove the entry in the parent cell. */
126617 rc = nodeParentIndex(pRtree, pNode, &iCell);
126618 if( rc==SQLITE_OK ){
126619 pParent = pNode->pParent;
126620 pNode->pParent = 0;
126621 rc = deleteCell(pRtree, pParent, iCell, iHeight+1);
126623 rc2 = nodeRelease(pRtree, pParent);
126624 if( rc==SQLITE_OK ){
126625 rc = rc2;
126627 if( rc!=SQLITE_OK ){
126628 return rc;
126631 /* Remove the xxx_node entry. */
126632 sqlite3_bind_int64(pRtree->pDeleteNode, 1, pNode->iNode);
126633 sqlite3_step(pRtree->pDeleteNode);
126634 if( SQLITE_OK!=(rc = sqlite3_reset(pRtree->pDeleteNode)) ){
126635 return rc;
126638 /* Remove the xxx_parent entry. */
126639 sqlite3_bind_int64(pRtree->pDeleteParent, 1, pNode->iNode);
126640 sqlite3_step(pRtree->pDeleteParent);
126641 if( SQLITE_OK!=(rc = sqlite3_reset(pRtree->pDeleteParent)) ){
126642 return rc;
126645 /* Remove the node from the in-memory hash table and link it into
126646 ** the Rtree.pDeleted list. Its contents will be re-inserted later on.
126648 nodeHashDelete(pRtree, pNode);
126649 pNode->iNode = iHeight;
126650 pNode->pNext = pRtree->pDeleted;
126651 pNode->nRef++;
126652 pRtree->pDeleted = pNode;
126654 return SQLITE_OK;
126657 static int fixBoundingBox(Rtree *pRtree, RtreeNode *pNode){
126658 RtreeNode *pParent = pNode->pParent;
126659 int rc = SQLITE_OK;
126660 if( pParent ){
126661 int ii;
126662 int nCell = NCELL(pNode);
126663 RtreeCell box; /* Bounding box for pNode */
126664 nodeGetCell(pRtree, pNode, 0, &box);
126665 for(ii=1; ii<nCell; ii++){
126666 RtreeCell cell;
126667 nodeGetCell(pRtree, pNode, ii, &cell);
126668 cellUnion(pRtree, &box, &cell);
126670 box.iRowid = pNode->iNode;
126671 rc = nodeParentIndex(pRtree, pNode, &ii);
126672 if( rc==SQLITE_OK ){
126673 nodeOverwriteCell(pRtree, pParent, &box, ii);
126674 rc = fixBoundingBox(pRtree, pParent);
126677 return rc;
126681 ** Delete the cell at index iCell of node pNode. After removing the
126682 ** cell, adjust the r-tree data structure if required.
126684 static int deleteCell(Rtree *pRtree, RtreeNode *pNode, int iCell, int iHeight){
126685 RtreeNode *pParent;
126686 int rc;
126688 if( SQLITE_OK!=(rc = fixLeafParent(pRtree, pNode)) ){
126689 return rc;
126692 /* Remove the cell from the node. This call just moves bytes around
126693 ** the in-memory node image, so it cannot fail.
126695 nodeDeleteCell(pRtree, pNode, iCell);
126697 /* If the node is not the tree root and now has less than the minimum
126698 ** number of cells, remove it from the tree. Otherwise, update the
126699 ** cell in the parent node so that it tightly contains the updated
126700 ** node.
126702 pParent = pNode->pParent;
126703 assert( pParent || pNode->iNode==1 );
126704 if( pParent ){
126705 if( NCELL(pNode)<RTREE_MINCELLS(pRtree) ){
126706 rc = removeNode(pRtree, pNode, iHeight);
126707 }else{
126708 rc = fixBoundingBox(pRtree, pNode);
126712 return rc;
126715 static int Reinsert(
126716 Rtree *pRtree,
126717 RtreeNode *pNode,
126718 RtreeCell *pCell,
126719 int iHeight
126721 int *aOrder;
126722 int *aSpare;
126723 RtreeCell *aCell;
126724 float *aDistance;
126725 int nCell;
126726 float aCenterCoord[RTREE_MAX_DIMENSIONS];
126727 int iDim;
126728 int ii;
126729 int rc = SQLITE_OK;
126731 memset(aCenterCoord, 0, sizeof(float)*RTREE_MAX_DIMENSIONS);
126733 nCell = NCELL(pNode)+1;
126735 /* Allocate the buffers used by this operation. The allocation is
126736 ** relinquished before this function returns.
126738 aCell = (RtreeCell *)sqlite3_malloc(nCell * (
126739 sizeof(RtreeCell) + /* aCell array */
126740 sizeof(int) + /* aOrder array */
126741 sizeof(int) + /* aSpare array */
126742 sizeof(float) /* aDistance array */
126744 if( !aCell ){
126745 return SQLITE_NOMEM;
126747 aOrder = (int *)&aCell[nCell];
126748 aSpare = (int *)&aOrder[nCell];
126749 aDistance = (float *)&aSpare[nCell];
126751 for(ii=0; ii<nCell; ii++){
126752 if( ii==(nCell-1) ){
126753 memcpy(&aCell[ii], pCell, sizeof(RtreeCell));
126754 }else{
126755 nodeGetCell(pRtree, pNode, ii, &aCell[ii]);
126757 aOrder[ii] = ii;
126758 for(iDim=0; iDim<pRtree->nDim; iDim++){
126759 aCenterCoord[iDim] += DCOORD(aCell[ii].aCoord[iDim*2]);
126760 aCenterCoord[iDim] += DCOORD(aCell[ii].aCoord[iDim*2+1]);
126763 for(iDim=0; iDim<pRtree->nDim; iDim++){
126764 aCenterCoord[iDim] = aCenterCoord[iDim]/((float)nCell*2.0);
126767 for(ii=0; ii<nCell; ii++){
126768 aDistance[ii] = 0.0;
126769 for(iDim=0; iDim<pRtree->nDim; iDim++){
126770 float coord = DCOORD(aCell[ii].aCoord[iDim*2+1]) -
126771 DCOORD(aCell[ii].aCoord[iDim*2]);
126772 aDistance[ii] += (coord-aCenterCoord[iDim])*(coord-aCenterCoord[iDim]);
126776 SortByDistance(aOrder, nCell, aDistance, aSpare);
126777 nodeZero(pRtree, pNode);
126779 for(ii=0; rc==SQLITE_OK && ii<(nCell-(RTREE_MINCELLS(pRtree)+1)); ii++){
126780 RtreeCell *p = &aCell[aOrder[ii]];
126781 nodeInsertCell(pRtree, pNode, p);
126782 if( p->iRowid==pCell->iRowid ){
126783 if( iHeight==0 ){
126784 rc = rowidWrite(pRtree, p->iRowid, pNode->iNode);
126785 }else{
126786 rc = parentWrite(pRtree, p->iRowid, pNode->iNode);
126790 if( rc==SQLITE_OK ){
126791 rc = fixBoundingBox(pRtree, pNode);
126793 for(; rc==SQLITE_OK && ii<nCell; ii++){
126794 /* Find a node to store this cell in. pNode->iNode currently contains
126795 ** the height of the sub-tree headed by the cell.
126797 RtreeNode *pInsert;
126798 RtreeCell *p = &aCell[aOrder[ii]];
126799 rc = ChooseLeaf(pRtree, p, iHeight, &pInsert);
126800 if( rc==SQLITE_OK ){
126801 int rc2;
126802 rc = rtreeInsertCell(pRtree, pInsert, p, iHeight);
126803 rc2 = nodeRelease(pRtree, pInsert);
126804 if( rc==SQLITE_OK ){
126805 rc = rc2;
126810 sqlite3_free(aCell);
126811 return rc;
126815 ** Insert cell pCell into node pNode. Node pNode is the head of a
126816 ** subtree iHeight high (leaf nodes have iHeight==0).
126818 static int rtreeInsertCell(
126819 Rtree *pRtree,
126820 RtreeNode *pNode,
126821 RtreeCell *pCell,
126822 int iHeight
126824 int rc = SQLITE_OK;
126825 if( iHeight>0 ){
126826 RtreeNode *pChild = nodeHashLookup(pRtree, pCell->iRowid);
126827 if( pChild ){
126828 nodeRelease(pRtree, pChild->pParent);
126829 nodeReference(pNode);
126830 pChild->pParent = pNode;
126833 if( nodeInsertCell(pRtree, pNode, pCell) ){
126834 #if VARIANT_RSTARTREE_REINSERT
126835 if( iHeight<=pRtree->iReinsertHeight || pNode->iNode==1){
126836 rc = SplitNode(pRtree, pNode, pCell, iHeight);
126837 }else{
126838 pRtree->iReinsertHeight = iHeight;
126839 rc = Reinsert(pRtree, pNode, pCell, iHeight);
126841 #else
126842 rc = SplitNode(pRtree, pNode, pCell, iHeight);
126843 #endif
126844 }else{
126845 rc = AdjustTree(pRtree, pNode, pCell);
126846 if( rc==SQLITE_OK ){
126847 if( iHeight==0 ){
126848 rc = rowidWrite(pRtree, pCell->iRowid, pNode->iNode);
126849 }else{
126850 rc = parentWrite(pRtree, pCell->iRowid, pNode->iNode);
126854 return rc;
126857 static int reinsertNodeContent(Rtree *pRtree, RtreeNode *pNode){
126858 int ii;
126859 int rc = SQLITE_OK;
126860 int nCell = NCELL(pNode);
126862 for(ii=0; rc==SQLITE_OK && ii<nCell; ii++){
126863 RtreeNode *pInsert;
126864 RtreeCell cell;
126865 nodeGetCell(pRtree, pNode, ii, &cell);
126867 /* Find a node to store this cell in. pNode->iNode currently contains
126868 ** the height of the sub-tree headed by the cell.
126870 rc = ChooseLeaf(pRtree, &cell, pNode->iNode, &pInsert);
126871 if( rc==SQLITE_OK ){
126872 int rc2;
126873 rc = rtreeInsertCell(pRtree, pInsert, &cell, pNode->iNode);
126874 rc2 = nodeRelease(pRtree, pInsert);
126875 if( rc==SQLITE_OK ){
126876 rc = rc2;
126880 return rc;
126884 ** Select a currently unused rowid for a new r-tree record.
126886 static int newRowid(Rtree *pRtree, i64 *piRowid){
126887 int rc;
126888 sqlite3_bind_null(pRtree->pWriteRowid, 1);
126889 sqlite3_bind_null(pRtree->pWriteRowid, 2);
126890 sqlite3_step(pRtree->pWriteRowid);
126891 rc = sqlite3_reset(pRtree->pWriteRowid);
126892 *piRowid = sqlite3_last_insert_rowid(pRtree->db);
126893 return rc;
126897 ** The xUpdate method for rtree module virtual tables.
126899 static int rtreeUpdate(
126900 sqlite3_vtab *pVtab,
126901 int nData,
126902 sqlite3_value **azData,
126903 sqlite_int64 *pRowid
126905 Rtree *pRtree = (Rtree *)pVtab;
126906 int rc = SQLITE_OK;
126908 rtreeReference(pRtree);
126910 assert(nData>=1);
126912 /* If azData[0] is not an SQL NULL value, it is the rowid of a
126913 ** record to delete from the r-tree table. The following block does
126914 ** just that.
126916 if( sqlite3_value_type(azData[0])!=SQLITE_NULL ){
126917 i64 iDelete; /* The rowid to delete */
126918 RtreeNode *pLeaf; /* Leaf node containing record iDelete */
126919 int iCell; /* Index of iDelete cell in pLeaf */
126920 RtreeNode *pRoot;
126922 /* Obtain a reference to the root node to initialise Rtree.iDepth */
126923 rc = nodeAcquire(pRtree, 1, 0, &pRoot);
126925 /* Obtain a reference to the leaf node that contains the entry
126926 ** about to be deleted.
126928 if( rc==SQLITE_OK ){
126929 iDelete = sqlite3_value_int64(azData[0]);
126930 rc = findLeafNode(pRtree, iDelete, &pLeaf);
126933 /* Delete the cell in question from the leaf node. */
126934 if( rc==SQLITE_OK ){
126935 int rc2;
126936 rc = nodeRowidIndex(pRtree, pLeaf, iDelete, &iCell);
126937 if( rc==SQLITE_OK ){
126938 rc = deleteCell(pRtree, pLeaf, iCell, 0);
126940 rc2 = nodeRelease(pRtree, pLeaf);
126941 if( rc==SQLITE_OK ){
126942 rc = rc2;
126946 /* Delete the corresponding entry in the <rtree>_rowid table. */
126947 if( rc==SQLITE_OK ){
126948 sqlite3_bind_int64(pRtree->pDeleteRowid, 1, iDelete);
126949 sqlite3_step(pRtree->pDeleteRowid);
126950 rc = sqlite3_reset(pRtree->pDeleteRowid);
126953 /* Check if the root node now has exactly one child. If so, remove
126954 ** it, schedule the contents of the child for reinsertion and
126955 ** reduce the tree height by one.
126957 ** This is equivalent to copying the contents of the child into
126958 ** the root node (the operation that Gutman's paper says to perform
126959 ** in this scenario).
126961 if( rc==SQLITE_OK && pRtree->iDepth>0 && NCELL(pRoot)==1 ){
126962 int rc2;
126963 RtreeNode *pChild;
126964 i64 iChild = nodeGetRowid(pRtree, pRoot, 0);
126965 rc = nodeAcquire(pRtree, iChild, pRoot, &pChild);
126966 if( rc==SQLITE_OK ){
126967 rc = removeNode(pRtree, pChild, pRtree->iDepth-1);
126969 rc2 = nodeRelease(pRtree, pChild);
126970 if( rc==SQLITE_OK ) rc = rc2;
126971 if( rc==SQLITE_OK ){
126972 pRtree->iDepth--;
126973 writeInt16(pRoot->zData, pRtree->iDepth);
126974 pRoot->isDirty = 1;
126978 /* Re-insert the contents of any underfull nodes removed from the tree. */
126979 for(pLeaf=pRtree->pDeleted; pLeaf; pLeaf=pRtree->pDeleted){
126980 if( rc==SQLITE_OK ){
126981 rc = reinsertNodeContent(pRtree, pLeaf);
126983 pRtree->pDeleted = pLeaf->pNext;
126984 sqlite3_free(pLeaf);
126987 /* Release the reference to the root node. */
126988 if( rc==SQLITE_OK ){
126989 rc = nodeRelease(pRtree, pRoot);
126990 }else{
126991 nodeRelease(pRtree, pRoot);
126995 /* If the azData[] array contains more than one element, elements
126996 ** (azData[2]..azData[argc-1]) contain a new record to insert into
126997 ** the r-tree structure.
126999 if( rc==SQLITE_OK && nData>1 ){
127000 /* Insert a new record into the r-tree */
127001 RtreeCell cell;
127002 int ii;
127003 RtreeNode *pLeaf;
127005 /* Populate the cell.aCoord[] array. The first coordinate is azData[3]. */
127006 assert( nData==(pRtree->nDim*2 + 3) );
127007 if( pRtree->eCoordType==RTREE_COORD_REAL32 ){
127008 for(ii=0; ii<(pRtree->nDim*2); ii+=2){
127009 cell.aCoord[ii].f = (float)sqlite3_value_double(azData[ii+3]);
127010 cell.aCoord[ii+1].f = (float)sqlite3_value_double(azData[ii+4]);
127011 if( cell.aCoord[ii].f>cell.aCoord[ii+1].f ){
127012 rc = SQLITE_CONSTRAINT;
127013 goto constraint;
127016 }else{
127017 for(ii=0; ii<(pRtree->nDim*2); ii+=2){
127018 cell.aCoord[ii].i = sqlite3_value_int(azData[ii+3]);
127019 cell.aCoord[ii+1].i = sqlite3_value_int(azData[ii+4]);
127020 if( cell.aCoord[ii].i>cell.aCoord[ii+1].i ){
127021 rc = SQLITE_CONSTRAINT;
127022 goto constraint;
127027 /* Figure out the rowid of the new row. */
127028 if( sqlite3_value_type(azData[2])==SQLITE_NULL ){
127029 rc = newRowid(pRtree, &cell.iRowid);
127030 }else{
127031 cell.iRowid = sqlite3_value_int64(azData[2]);
127032 sqlite3_bind_int64(pRtree->pReadRowid, 1, cell.iRowid);
127033 if( SQLITE_ROW==sqlite3_step(pRtree->pReadRowid) ){
127034 sqlite3_reset(pRtree->pReadRowid);
127035 rc = SQLITE_CONSTRAINT;
127036 goto constraint;
127038 rc = sqlite3_reset(pRtree->pReadRowid);
127040 *pRowid = cell.iRowid;
127042 if( rc==SQLITE_OK ){
127043 rc = ChooseLeaf(pRtree, &cell, 0, &pLeaf);
127045 if( rc==SQLITE_OK ){
127046 int rc2;
127047 pRtree->iReinsertHeight = -1;
127048 rc = rtreeInsertCell(pRtree, pLeaf, &cell, 0);
127049 rc2 = nodeRelease(pRtree, pLeaf);
127050 if( rc==SQLITE_OK ){
127051 rc = rc2;
127056 constraint:
127057 rtreeRelease(pRtree);
127058 return rc;
127062 ** The xRename method for rtree module virtual tables.
127064 static int rtreeRename(sqlite3_vtab *pVtab, const char *zNewName){
127065 Rtree *pRtree = (Rtree *)pVtab;
127066 int rc = SQLITE_NOMEM;
127067 char *zSql = sqlite3_mprintf(
127068 "ALTER TABLE %Q.'%q_node' RENAME TO \"%w_node\";"
127069 "ALTER TABLE %Q.'%q_parent' RENAME TO \"%w_parent\";"
127070 "ALTER TABLE %Q.'%q_rowid' RENAME TO \"%w_rowid\";"
127071 , pRtree->zDb, pRtree->zName, zNewName
127072 , pRtree->zDb, pRtree->zName, zNewName
127073 , pRtree->zDb, pRtree->zName, zNewName
127075 if( zSql ){
127076 rc = sqlite3_exec(pRtree->db, zSql, 0, 0, 0);
127077 sqlite3_free(zSql);
127079 return rc;
127082 static sqlite3_module rtreeModule = {
127083 0, /* iVersion */
127084 rtreeCreate, /* xCreate - create a table */
127085 rtreeConnect, /* xConnect - connect to an existing table */
127086 rtreeBestIndex, /* xBestIndex - Determine search strategy */
127087 rtreeDisconnect, /* xDisconnect - Disconnect from a table */
127088 rtreeDestroy, /* xDestroy - Drop a table */
127089 rtreeOpen, /* xOpen - open a cursor */
127090 rtreeClose, /* xClose - close a cursor */
127091 rtreeFilter, /* xFilter - configure scan constraints */
127092 rtreeNext, /* xNext - advance a cursor */
127093 rtreeEof, /* xEof */
127094 rtreeColumn, /* xColumn - read data */
127095 rtreeRowid, /* xRowid - read data */
127096 rtreeUpdate, /* xUpdate - write data */
127097 0, /* xBegin - begin transaction */
127098 0, /* xSync - sync transaction */
127099 0, /* xCommit - commit transaction */
127100 0, /* xRollback - rollback transaction */
127101 0, /* xFindFunction - function overloading */
127102 rtreeRename /* xRename - rename the table */
127105 static int rtreeSqlInit(
127106 Rtree *pRtree,
127107 sqlite3 *db,
127108 const char *zDb,
127109 const char *zPrefix,
127110 int isCreate
127112 int rc = SQLITE_OK;
127114 #define N_STATEMENT 9
127115 static const char *azSql[N_STATEMENT] = {
127116 /* Read and write the xxx_node table */
127117 "SELECT data FROM '%q'.'%q_node' WHERE nodeno = :1",
127118 "INSERT OR REPLACE INTO '%q'.'%q_node' VALUES(:1, :2)",
127119 "DELETE FROM '%q'.'%q_node' WHERE nodeno = :1",
127121 /* Read and write the xxx_rowid table */
127122 "SELECT nodeno FROM '%q'.'%q_rowid' WHERE rowid = :1",
127123 "INSERT OR REPLACE INTO '%q'.'%q_rowid' VALUES(:1, :2)",
127124 "DELETE FROM '%q'.'%q_rowid' WHERE rowid = :1",
127126 /* Read and write the xxx_parent table */
127127 "SELECT parentnode FROM '%q'.'%q_parent' WHERE nodeno = :1",
127128 "INSERT OR REPLACE INTO '%q'.'%q_parent' VALUES(:1, :2)",
127129 "DELETE FROM '%q'.'%q_parent' WHERE nodeno = :1"
127131 sqlite3_stmt **appStmt[N_STATEMENT];
127132 int i;
127134 pRtree->db = db;
127136 if( isCreate ){
127137 char *zCreate = sqlite3_mprintf(
127138 "CREATE TABLE \"%w\".\"%w_node\"(nodeno INTEGER PRIMARY KEY, data BLOB);"
127139 "CREATE TABLE \"%w\".\"%w_rowid\"(rowid INTEGER PRIMARY KEY, nodeno INTEGER);"
127140 "CREATE TABLE \"%w\".\"%w_parent\"(nodeno INTEGER PRIMARY KEY, parentnode INTEGER);"
127141 "INSERT INTO '%q'.'%q_node' VALUES(1, zeroblob(%d))",
127142 zDb, zPrefix, zDb, zPrefix, zDb, zPrefix, zDb, zPrefix, pRtree->iNodeSize
127144 if( !zCreate ){
127145 return SQLITE_NOMEM;
127147 rc = sqlite3_exec(db, zCreate, 0, 0, 0);
127148 sqlite3_free(zCreate);
127149 if( rc!=SQLITE_OK ){
127150 return rc;
127154 appStmt[0] = &pRtree->pReadNode;
127155 appStmt[1] = &pRtree->pWriteNode;
127156 appStmt[2] = &pRtree->pDeleteNode;
127157 appStmt[3] = &pRtree->pReadRowid;
127158 appStmt[4] = &pRtree->pWriteRowid;
127159 appStmt[5] = &pRtree->pDeleteRowid;
127160 appStmt[6] = &pRtree->pReadParent;
127161 appStmt[7] = &pRtree->pWriteParent;
127162 appStmt[8] = &pRtree->pDeleteParent;
127164 for(i=0; i<N_STATEMENT && rc==SQLITE_OK; i++){
127165 char *zSql = sqlite3_mprintf(azSql[i], zDb, zPrefix);
127166 if( zSql ){
127167 rc = sqlite3_prepare_v2(db, zSql, -1, appStmt[i], 0);
127168 }else{
127169 rc = SQLITE_NOMEM;
127171 sqlite3_free(zSql);
127174 return rc;
127178 ** The second argument to this function contains the text of an SQL statement
127179 ** that returns a single integer value. The statement is compiled and executed
127180 ** using database connection db. If successful, the integer value returned
127181 ** is written to *piVal and SQLITE_OK returned. Otherwise, an SQLite error
127182 ** code is returned and the value of *piVal after returning is not defined.
127184 static int getIntFromStmt(sqlite3 *db, const char *zSql, int *piVal){
127185 int rc = SQLITE_NOMEM;
127186 if( zSql ){
127187 sqlite3_stmt *pStmt = 0;
127188 rc = sqlite3_prepare_v2(db, zSql, -1, &pStmt, 0);
127189 if( rc==SQLITE_OK ){
127190 if( SQLITE_ROW==sqlite3_step(pStmt) ){
127191 *piVal = sqlite3_column_int(pStmt, 0);
127193 rc = sqlite3_finalize(pStmt);
127196 return rc;
127200 ** This function is called from within the xConnect() or xCreate() method to
127201 ** determine the node-size used by the rtree table being created or connected
127202 ** to. If successful, pRtree->iNodeSize is populated and SQLITE_OK returned.
127203 ** Otherwise, an SQLite error code is returned.
127205 ** If this function is being called as part of an xConnect(), then the rtree
127206 ** table already exists. In this case the node-size is determined by inspecting
127207 ** the root node of the tree.
127209 ** Otherwise, for an xCreate(), use 64 bytes less than the database page-size.
127210 ** This ensures that each node is stored on a single database page. If the
127211 ** database page-size is so large that more than RTREE_MAXCELLS entries
127212 ** would fit in a single node, use a smaller node-size.
127214 static int getNodeSize(
127215 sqlite3 *db, /* Database handle */
127216 Rtree *pRtree, /* Rtree handle */
127217 int isCreate /* True for xCreate, false for xConnect */
127219 int rc;
127220 char *zSql;
127221 if( isCreate ){
127222 int iPageSize;
127223 zSql = sqlite3_mprintf("PRAGMA %Q.page_size", pRtree->zDb);
127224 rc = getIntFromStmt(db, zSql, &iPageSize);
127225 if( rc==SQLITE_OK ){
127226 pRtree->iNodeSize = iPageSize-64;
127227 if( (4+pRtree->nBytesPerCell*RTREE_MAXCELLS)<pRtree->iNodeSize ){
127228 pRtree->iNodeSize = 4+pRtree->nBytesPerCell*RTREE_MAXCELLS;
127231 }else{
127232 zSql = sqlite3_mprintf(
127233 "SELECT length(data) FROM '%q'.'%q_node' WHERE nodeno = 1",
127234 pRtree->zDb, pRtree->zName
127236 rc = getIntFromStmt(db, zSql, &pRtree->iNodeSize);
127239 sqlite3_free(zSql);
127240 return rc;
127244 ** This function is the implementation of both the xConnect and xCreate
127245 ** methods of the r-tree virtual table.
127247 ** argv[0] -> module name
127248 ** argv[1] -> database name
127249 ** argv[2] -> table name
127250 ** argv[...] -> column names...
127252 static int rtreeInit(
127253 sqlite3 *db, /* Database connection */
127254 void *pAux, /* One of the RTREE_COORD_* constants */
127255 int argc, const char *const*argv, /* Parameters to CREATE TABLE statement */
127256 sqlite3_vtab **ppVtab, /* OUT: New virtual table */
127257 char **pzErr, /* OUT: Error message, if any */
127258 int isCreate /* True for xCreate, false for xConnect */
127260 int rc = SQLITE_OK;
127261 Rtree *pRtree;
127262 int nDb; /* Length of string argv[1] */
127263 int nName; /* Length of string argv[2] */
127264 int eCoordType = (pAux ? RTREE_COORD_INT32 : RTREE_COORD_REAL32);
127266 const char *aErrMsg[] = {
127267 0, /* 0 */
127268 "Wrong number of columns for an rtree table", /* 1 */
127269 "Too few columns for an rtree table", /* 2 */
127270 "Too many columns for an rtree table" /* 3 */
127273 int iErr = (argc<6) ? 2 : argc>(RTREE_MAX_DIMENSIONS*2+4) ? 3 : argc%2;
127274 if( aErrMsg[iErr] ){
127275 *pzErr = sqlite3_mprintf("%s", aErrMsg[iErr]);
127276 return SQLITE_ERROR;
127279 /* Allocate the sqlite3_vtab structure */
127280 nDb = strlen(argv[1]);
127281 nName = strlen(argv[2]);
127282 pRtree = (Rtree *)sqlite3_malloc(sizeof(Rtree)+nDb+nName+2);
127283 if( !pRtree ){
127284 return SQLITE_NOMEM;
127286 memset(pRtree, 0, sizeof(Rtree)+nDb+nName+2);
127287 pRtree->nBusy = 1;
127288 pRtree->base.pModule = &rtreeModule;
127289 pRtree->zDb = (char *)&pRtree[1];
127290 pRtree->zName = &pRtree->zDb[nDb+1];
127291 pRtree->nDim = (argc-4)/2;
127292 pRtree->nBytesPerCell = 8 + pRtree->nDim*4*2;
127293 pRtree->eCoordType = eCoordType;
127294 memcpy(pRtree->zDb, argv[1], nDb);
127295 memcpy(pRtree->zName, argv[2], nName);
127297 /* Figure out the node size to use. */
127298 rc = getNodeSize(db, pRtree, isCreate);
127300 /* Create/Connect to the underlying relational database schema. If
127301 ** that is successful, call sqlite3_declare_vtab() to configure
127302 ** the r-tree table schema.
127304 if( rc==SQLITE_OK ){
127305 if( (rc = rtreeSqlInit(pRtree, db, argv[1], argv[2], isCreate)) ){
127306 *pzErr = sqlite3_mprintf("%s", sqlite3_errmsg(db));
127307 }else{
127308 char *zSql = sqlite3_mprintf("CREATE TABLE x(%s", argv[3]);
127309 char *zTmp;
127310 int ii;
127311 for(ii=4; zSql && ii<argc; ii++){
127312 zTmp = zSql;
127313 zSql = sqlite3_mprintf("%s, %s", zTmp, argv[ii]);
127314 sqlite3_free(zTmp);
127316 if( zSql ){
127317 zTmp = zSql;
127318 zSql = sqlite3_mprintf("%s);", zTmp);
127319 sqlite3_free(zTmp);
127321 if( !zSql ){
127322 rc = SQLITE_NOMEM;
127323 }else if( SQLITE_OK!=(rc = sqlite3_declare_vtab(db, zSql)) ){
127324 *pzErr = sqlite3_mprintf("%s", sqlite3_errmsg(db));
127326 sqlite3_free(zSql);
127330 if( rc==SQLITE_OK ){
127331 *ppVtab = (sqlite3_vtab *)pRtree;
127332 }else{
127333 rtreeRelease(pRtree);
127335 return rc;
127340 ** Implementation of a scalar function that decodes r-tree nodes to
127341 ** human readable strings. This can be used for debugging and analysis.
127343 ** The scalar function takes two arguments, a blob of data containing
127344 ** an r-tree node, and the number of dimensions the r-tree indexes.
127345 ** For a two-dimensional r-tree structure called "rt", to deserialize
127346 ** all nodes, a statement like:
127348 ** SELECT rtreenode(2, data) FROM rt_node;
127350 ** The human readable string takes the form of a Tcl list with one
127351 ** entry for each cell in the r-tree node. Each entry is itself a
127352 ** list, containing the 8-byte rowid/pageno followed by the
127353 ** <num-dimension>*2 coordinates.
127355 static void rtreenode(sqlite3_context *ctx, int nArg, sqlite3_value **apArg){
127356 char *zText = 0;
127357 RtreeNode node;
127358 Rtree tree;
127359 int ii;
127361 UNUSED_PARAMETER(nArg);
127362 memset(&node, 0, sizeof(RtreeNode));
127363 memset(&tree, 0, sizeof(Rtree));
127364 tree.nDim = sqlite3_value_int(apArg[0]);
127365 tree.nBytesPerCell = 8 + 8 * tree.nDim;
127366 node.zData = (u8 *)sqlite3_value_blob(apArg[1]);
127368 for(ii=0; ii<NCELL(&node); ii++){
127369 char zCell[512];
127370 int nCell = 0;
127371 RtreeCell cell;
127372 int jj;
127374 nodeGetCell(&tree, &node, ii, &cell);
127375 sqlite3_snprintf(512-nCell,&zCell[nCell],"%lld", cell.iRowid);
127376 nCell = strlen(zCell);
127377 for(jj=0; jj<tree.nDim*2; jj++){
127378 sqlite3_snprintf(512-nCell,&zCell[nCell]," %f",(double)cell.aCoord[jj].f);
127379 nCell = strlen(zCell);
127382 if( zText ){
127383 char *zTextNew = sqlite3_mprintf("%s {%s}", zText, zCell);
127384 sqlite3_free(zText);
127385 zText = zTextNew;
127386 }else{
127387 zText = sqlite3_mprintf("{%s}", zCell);
127391 sqlite3_result_text(ctx, zText, -1, sqlite3_free);
127394 static void rtreedepth(sqlite3_context *ctx, int nArg, sqlite3_value **apArg){
127395 UNUSED_PARAMETER(nArg);
127396 if( sqlite3_value_type(apArg[0])!=SQLITE_BLOB
127397 || sqlite3_value_bytes(apArg[0])<2
127399 sqlite3_result_error(ctx, "Invalid argument to rtreedepth()", -1);
127400 }else{
127401 u8 *zBlob = (u8 *)sqlite3_value_blob(apArg[0]);
127402 sqlite3_result_int(ctx, readInt16(zBlob));
127407 ** Register the r-tree module with database handle db. This creates the
127408 ** virtual table module "rtree" and the debugging/analysis scalar
127409 ** function "rtreenode".
127411 SQLITE_PRIVATE int sqlite3RtreeInit(sqlite3 *db){
127412 const int utf8 = SQLITE_UTF8;
127413 int rc;
127415 rc = sqlite3_create_function(db, "rtreenode", 2, utf8, 0, rtreenode, 0, 0);
127416 if( rc==SQLITE_OK ){
127417 rc = sqlite3_create_function(db, "rtreedepth", 1, utf8, 0,rtreedepth, 0, 0);
127419 if( rc==SQLITE_OK ){
127420 void *c = (void *)RTREE_COORD_REAL32;
127421 rc = sqlite3_create_module_v2(db, "rtree", &rtreeModule, c, 0);
127423 if( rc==SQLITE_OK ){
127424 void *c = (void *)RTREE_COORD_INT32;
127425 rc = sqlite3_create_module_v2(db, "rtree_i32", &rtreeModule, c, 0);
127428 return rc;
127432 ** A version of sqlite3_free() that can be used as a callback. This is used
127433 ** in two places - as the destructor for the blob value returned by the
127434 ** invocation of a geometry function, and as the destructor for the geometry
127435 ** functions themselves.
127437 static void doSqlite3Free(void *p){
127438 sqlite3_free(p);
127442 ** Each call to sqlite3_rtree_geometry_callback() creates an ordinary SQLite
127443 ** scalar user function. This C function is the callback used for all such
127444 ** registered SQL functions.
127446 ** The scalar user functions return a blob that is interpreted by r-tree
127447 ** table MATCH operators.
127449 static void geomCallback(sqlite3_context *ctx, int nArg, sqlite3_value **aArg){
127450 RtreeGeomCallback *pGeomCtx = (RtreeGeomCallback *)sqlite3_user_data(ctx);
127451 RtreeMatchArg *pBlob;
127452 int nBlob;
127454 nBlob = sizeof(RtreeMatchArg) + (nArg-1)*sizeof(double);
127455 pBlob = (RtreeMatchArg *)sqlite3_malloc(nBlob);
127456 if( !pBlob ){
127457 sqlite3_result_error_nomem(ctx);
127458 }else{
127459 int i;
127460 pBlob->magic = RTREE_GEOMETRY_MAGIC;
127461 pBlob->xGeom = pGeomCtx->xGeom;
127462 pBlob->pContext = pGeomCtx->pContext;
127463 pBlob->nParam = nArg;
127464 for(i=0; i<nArg; i++){
127465 pBlob->aParam[i] = sqlite3_value_double(aArg[i]);
127467 sqlite3_result_blob(ctx, pBlob, nBlob, doSqlite3Free);
127472 ** Register a new geometry function for use with the r-tree MATCH operator.
127474 SQLITE_API int sqlite3_rtree_geometry_callback(
127475 sqlite3 *db,
127476 const char *zGeom,
127477 int (*xGeom)(sqlite3_rtree_geometry *, int, double *, int *),
127478 void *pContext
127480 RtreeGeomCallback *pGeomCtx; /* Context object for new user-function */
127482 /* Allocate and populate the context object. */
127483 pGeomCtx = (RtreeGeomCallback *)sqlite3_malloc(sizeof(RtreeGeomCallback));
127484 if( !pGeomCtx ) return SQLITE_NOMEM;
127485 pGeomCtx->xGeom = xGeom;
127486 pGeomCtx->pContext = pContext;
127488 /* Create the new user-function. Register a destructor function to delete
127489 ** the context object when it is no longer required. */
127490 return sqlite3_create_function_v2(db, zGeom, -1, SQLITE_ANY,
127491 (void *)pGeomCtx, geomCallback, 0, 0, doSqlite3Free
127495 #if !SQLITE_CORE
127496 SQLITE_API int sqlite3_extension_init(
127497 sqlite3 *db,
127498 char **pzErrMsg,
127499 const sqlite3_api_routines *pApi
127501 SQLITE_EXTENSION_INIT2(pApi)
127502 return sqlite3RtreeInit(db);
127504 #endif
127506 #endif
127508 /************** End of rtree.c ***********************************************/
127509 /************** Begin file icu.c *********************************************/
127511 ** 2007 May 6
127513 ** The author disclaims copyright to this source code. In place of
127514 ** a legal notice, here is a blessing:
127516 ** May you do good and not evil.
127517 ** May you find forgiveness for yourself and forgive others.
127518 ** May you share freely, never taking more than you give.
127520 *************************************************************************
127521 ** $Id: icu.c,v 1.7 2007/12/13 21:54:11 drh Exp $
127523 ** This file implements an integration between the ICU library
127524 ** ("International Components for Unicode", an open-source library
127525 ** for handling unicode data) and SQLite. The integration uses
127526 ** ICU to provide the following to SQLite:
127528 ** * An implementation of the SQL regexp() function (and hence REGEXP
127529 ** operator) using the ICU uregex_XX() APIs.
127531 ** * Implementations of the SQL scalar upper() and lower() functions
127532 ** for case mapping.
127534 ** * Integration of ICU and SQLite collation seqences.
127536 ** * An implementation of the LIKE operator that uses ICU to
127537 ** provide case-independent matching.
127540 #if !defined(SQLITE_CORE) || defined(SQLITE_ENABLE_ICU)
127542 /* Include ICU headers */
127543 #include <unicode/utypes.h>
127544 #include <unicode/uregex.h>
127545 #include <unicode/ustring.h>
127546 #include <unicode/ucol.h>
127549 #ifndef SQLITE_CORE
127550 SQLITE_EXTENSION_INIT1
127551 #else
127552 #endif
127555 ** Maximum length (in bytes) of the pattern in a LIKE or GLOB
127556 ** operator.
127558 #ifndef SQLITE_MAX_LIKE_PATTERN_LENGTH
127559 # define SQLITE_MAX_LIKE_PATTERN_LENGTH 50000
127560 #endif
127563 ** Version of sqlite3_free() that is always a function, never a macro.
127565 static void xFree(void *p){
127566 sqlite3_free(p);
127570 ** Compare two UTF-8 strings for equality where the first string is
127571 ** a "LIKE" expression. Return true (1) if they are the same and
127572 ** false (0) if they are different.
127574 static int icuLikeCompare(
127575 const uint8_t *zPattern, /* LIKE pattern */
127576 const uint8_t *zString, /* The UTF-8 string to compare against */
127577 const UChar32 uEsc /* The escape character */
127579 static const int MATCH_ONE = (UChar32)'_';
127580 static const int MATCH_ALL = (UChar32)'%';
127582 int iPattern = 0; /* Current byte index in zPattern */
127583 int iString = 0; /* Current byte index in zString */
127585 int prevEscape = 0; /* True if the previous character was uEsc */
127587 while( zPattern[iPattern]!=0 ){
127589 /* Read (and consume) the next character from the input pattern. */
127590 UChar32 uPattern;
127591 U8_NEXT_UNSAFE(zPattern, iPattern, uPattern);
127592 assert(uPattern!=0);
127594 /* There are now 4 possibilities:
127596 ** 1. uPattern is an unescaped match-all character "%",
127597 ** 2. uPattern is an unescaped match-one character "_",
127598 ** 3. uPattern is an unescaped escape character, or
127599 ** 4. uPattern is to be handled as an ordinary character
127601 if( !prevEscape && uPattern==MATCH_ALL ){
127602 /* Case 1. */
127603 uint8_t c;
127605 /* Skip any MATCH_ALL or MATCH_ONE characters that follow a
127606 ** MATCH_ALL. For each MATCH_ONE, skip one character in the
127607 ** test string.
127609 while( (c=zPattern[iPattern]) == MATCH_ALL || c == MATCH_ONE ){
127610 if( c==MATCH_ONE ){
127611 if( zString[iString]==0 ) return 0;
127612 U8_FWD_1_UNSAFE(zString, iString);
127614 iPattern++;
127617 if( zPattern[iPattern]==0 ) return 1;
127619 while( zString[iString] ){
127620 if( icuLikeCompare(&zPattern[iPattern], &zString[iString], uEsc) ){
127621 return 1;
127623 U8_FWD_1_UNSAFE(zString, iString);
127625 return 0;
127627 }else if( !prevEscape && uPattern==MATCH_ONE ){
127628 /* Case 2. */
127629 if( zString[iString]==0 ) return 0;
127630 U8_FWD_1_UNSAFE(zString, iString);
127632 }else if( !prevEscape && uPattern==uEsc){
127633 /* Case 3. */
127634 prevEscape = 1;
127636 }else{
127637 /* Case 4. */
127638 UChar32 uString;
127639 U8_NEXT_UNSAFE(zString, iString, uString);
127640 uString = u_foldCase(uString, U_FOLD_CASE_DEFAULT);
127641 uPattern = u_foldCase(uPattern, U_FOLD_CASE_DEFAULT);
127642 if( uString!=uPattern ){
127643 return 0;
127645 prevEscape = 0;
127649 return zString[iString]==0;
127653 ** Implementation of the like() SQL function. This function implements
127654 ** the build-in LIKE operator. The first argument to the function is the
127655 ** pattern and the second argument is the string. So, the SQL statements:
127657 ** A LIKE B
127659 ** is implemented as like(B, A). If there is an escape character E,
127661 ** A LIKE B ESCAPE E
127663 ** is mapped to like(B, A, E).
127665 static void icuLikeFunc(
127666 sqlite3_context *context,
127667 int argc,
127668 sqlite3_value **argv
127670 const unsigned char *zA = sqlite3_value_text(argv[0]);
127671 const unsigned char *zB = sqlite3_value_text(argv[1]);
127672 UChar32 uEsc = 0;
127674 /* Limit the length of the LIKE or GLOB pattern to avoid problems
127675 ** of deep recursion and N*N behavior in patternCompare().
127677 if( sqlite3_value_bytes(argv[0])>SQLITE_MAX_LIKE_PATTERN_LENGTH ){
127678 sqlite3_result_error(context, "LIKE or GLOB pattern too complex", -1);
127679 return;
127683 if( argc==3 ){
127684 /* The escape character string must consist of a single UTF-8 character.
127685 ** Otherwise, return an error.
127687 int nE= sqlite3_value_bytes(argv[2]);
127688 const unsigned char *zE = sqlite3_value_text(argv[2]);
127689 int i = 0;
127690 if( zE==0 ) return;
127691 U8_NEXT(zE, i, nE, uEsc);
127692 if( i!=nE){
127693 sqlite3_result_error(context,
127694 "ESCAPE expression must be a single character", -1);
127695 return;
127699 if( zA && zB ){
127700 sqlite3_result_int(context, icuLikeCompare(zA, zB, uEsc));
127705 ** This function is called when an ICU function called from within
127706 ** the implementation of an SQL scalar function returns an error.
127708 ** The scalar function context passed as the first argument is
127709 ** loaded with an error message based on the following two args.
127711 static void icuFunctionError(
127712 sqlite3_context *pCtx, /* SQLite scalar function context */
127713 const char *zName, /* Name of ICU function that failed */
127714 UErrorCode e /* Error code returned by ICU function */
127716 char zBuf[128];
127717 sqlite3_snprintf(128, zBuf, "ICU error: %s(): %s", zName, u_errorName(e));
127718 zBuf[127] = '\0';
127719 sqlite3_result_error(pCtx, zBuf, -1);
127723 ** Function to delete compiled regexp objects. Registered as
127724 ** a destructor function with sqlite3_set_auxdata().
127726 static void icuRegexpDelete(void *p){
127727 URegularExpression *pExpr = (URegularExpression *)p;
127728 uregex_close(pExpr);
127732 ** Implementation of SQLite REGEXP operator. This scalar function takes
127733 ** two arguments. The first is a regular expression pattern to compile
127734 ** the second is a string to match against that pattern. If either
127735 ** argument is an SQL NULL, then NULL Is returned. Otherwise, the result
127736 ** is 1 if the string matches the pattern, or 0 otherwise.
127738 ** SQLite maps the regexp() function to the regexp() operator such
127739 ** that the following two are equivalent:
127741 ** zString REGEXP zPattern
127742 ** regexp(zPattern, zString)
127744 ** Uses the following ICU regexp APIs:
127746 ** uregex_open()
127747 ** uregex_matches()
127748 ** uregex_close()
127750 static void icuRegexpFunc(sqlite3_context *p, int nArg, sqlite3_value **apArg){
127751 UErrorCode status = U_ZERO_ERROR;
127752 URegularExpression *pExpr;
127753 UBool res;
127754 const UChar *zString = sqlite3_value_text16(apArg[1]);
127756 (void)nArg; /* Unused parameter */
127758 /* If the left hand side of the regexp operator is NULL,
127759 ** then the result is also NULL.
127761 if( !zString ){
127762 return;
127765 pExpr = sqlite3_get_auxdata(p, 0);
127766 if( !pExpr ){
127767 const UChar *zPattern = sqlite3_value_text16(apArg[0]);
127768 if( !zPattern ){
127769 return;
127771 pExpr = uregex_open(zPattern, -1, 0, 0, &status);
127773 if( U_SUCCESS(status) ){
127774 sqlite3_set_auxdata(p, 0, pExpr, icuRegexpDelete);
127775 }else{
127776 assert(!pExpr);
127777 icuFunctionError(p, "uregex_open", status);
127778 return;
127782 /* Configure the text that the regular expression operates on. */
127783 uregex_setText(pExpr, zString, -1, &status);
127784 if( !U_SUCCESS(status) ){
127785 icuFunctionError(p, "uregex_setText", status);
127786 return;
127789 /* Attempt the match */
127790 res = uregex_matches(pExpr, 0, &status);
127791 if( !U_SUCCESS(status) ){
127792 icuFunctionError(p, "uregex_matches", status);
127793 return;
127796 /* Set the text that the regular expression operates on to a NULL
127797 ** pointer. This is not really necessary, but it is tidier than
127798 ** leaving the regular expression object configured with an invalid
127799 ** pointer after this function returns.
127801 uregex_setText(pExpr, 0, 0, &status);
127803 /* Return 1 or 0. */
127804 sqlite3_result_int(p, res ? 1 : 0);
127808 ** Implementations of scalar functions for case mapping - upper() and
127809 ** lower(). Function upper() converts its input to upper-case (ABC).
127810 ** Function lower() converts to lower-case (abc).
127812 ** ICU provides two types of case mapping, "general" case mapping and
127813 ** "language specific". Refer to ICU documentation for the differences
127814 ** between the two.
127816 ** To utilise "general" case mapping, the upper() or lower() scalar
127817 ** functions are invoked with one argument:
127819 ** upper('ABC') -> 'abc'
127820 ** lower('abc') -> 'ABC'
127822 ** To access ICU "language specific" case mapping, upper() or lower()
127823 ** should be invoked with two arguments. The second argument is the name
127824 ** of the locale to use. Passing an empty string ("") or SQL NULL value
127825 ** as the second argument is the same as invoking the 1 argument version
127826 ** of upper() or lower().
127828 ** lower('I', 'en_us') -> 'i'
127829 ** lower('I', 'tr_tr') -> 'ı' (small dotless i)
127831 ** http://www.icu-project.org/userguide/posix.html#case_mappings
127833 static void icuCaseFunc16(sqlite3_context *p, int nArg, sqlite3_value **apArg){
127834 const UChar *zInput;
127835 UChar *zOutput;
127836 int nInput;
127837 int nOutput;
127839 UErrorCode status = U_ZERO_ERROR;
127840 const char *zLocale = 0;
127842 assert(nArg==1 || nArg==2);
127843 if( nArg==2 ){
127844 zLocale = (const char *)sqlite3_value_text(apArg[1]);
127847 zInput = sqlite3_value_text16(apArg[0]);
127848 if( !zInput ){
127849 return;
127851 nInput = sqlite3_value_bytes16(apArg[0]);
127853 nOutput = nInput * 2 + 2;
127854 zOutput = sqlite3_malloc(nOutput);
127855 if( !zOutput ){
127856 return;
127859 if( sqlite3_user_data(p) ){
127860 u_strToUpper(zOutput, nOutput/2, zInput, nInput/2, zLocale, &status);
127861 }else{
127862 u_strToLower(zOutput, nOutput/2, zInput, nInput/2, zLocale, &status);
127865 if( !U_SUCCESS(status) ){
127866 icuFunctionError(p, "u_strToLower()/u_strToUpper", status);
127867 return;
127870 sqlite3_result_text16(p, zOutput, -1, xFree);
127874 ** Collation sequence destructor function. The pCtx argument points to
127875 ** a UCollator structure previously allocated using ucol_open().
127877 static void icuCollationDel(void *pCtx){
127878 UCollator *p = (UCollator *)pCtx;
127879 ucol_close(p);
127883 ** Collation sequence comparison function. The pCtx argument points to
127884 ** a UCollator structure previously allocated using ucol_open().
127886 static int icuCollationColl(
127887 void *pCtx,
127888 int nLeft,
127889 const void *zLeft,
127890 int nRight,
127891 const void *zRight
127893 UCollationResult res;
127894 UCollator *p = (UCollator *)pCtx;
127895 res = ucol_strcoll(p, (UChar *)zLeft, nLeft/2, (UChar *)zRight, nRight/2);
127896 switch( res ){
127897 case UCOL_LESS: return -1;
127898 case UCOL_GREATER: return +1;
127899 case UCOL_EQUAL: return 0;
127901 assert(!"Unexpected return value from ucol_strcoll()");
127902 return 0;
127906 ** Implementation of the scalar function icu_load_collation().
127908 ** This scalar function is used to add ICU collation based collation
127909 ** types to an SQLite database connection. It is intended to be called
127910 ** as follows:
127912 ** SELECT icu_load_collation(<locale>, <collation-name>);
127914 ** Where <locale> is a string containing an ICU locale identifier (i.e.
127915 ** "en_AU", "tr_TR" etc.) and <collation-name> is the name of the
127916 ** collation sequence to create.
127918 static void icuLoadCollation(
127919 sqlite3_context *p,
127920 int nArg,
127921 sqlite3_value **apArg
127923 sqlite3 *db = (sqlite3 *)sqlite3_user_data(p);
127924 UErrorCode status = U_ZERO_ERROR;
127925 const char *zLocale; /* Locale identifier - (eg. "jp_JP") */
127926 const char *zName; /* SQL Collation sequence name (eg. "japanese") */
127927 UCollator *pUCollator; /* ICU library collation object */
127928 int rc; /* Return code from sqlite3_create_collation_x() */
127930 assert(nArg==2);
127931 zLocale = (const char *)sqlite3_value_text(apArg[0]);
127932 zName = (const char *)sqlite3_value_text(apArg[1]);
127934 if( !zLocale || !zName ){
127935 return;
127938 pUCollator = ucol_open(zLocale, &status);
127939 if( !U_SUCCESS(status) ){
127940 icuFunctionError(p, "ucol_open", status);
127941 return;
127943 assert(p);
127945 rc = sqlite3_create_collation_v2(db, zName, SQLITE_UTF16, (void *)pUCollator,
127946 icuCollationColl, icuCollationDel
127948 if( rc!=SQLITE_OK ){
127949 ucol_close(pUCollator);
127950 sqlite3_result_error(p, "Error registering collation function", -1);
127955 ** Register the ICU extension functions with database db.
127957 SQLITE_PRIVATE int sqlite3IcuInit(sqlite3 *db){
127958 struct IcuScalar {
127959 const char *zName; /* Function name */
127960 int nArg; /* Number of arguments */
127961 int enc; /* Optimal text encoding */
127962 void *pContext; /* sqlite3_user_data() context */
127963 void (*xFunc)(sqlite3_context*,int,sqlite3_value**);
127964 } scalars[] = {
127965 {"regexp", 2, SQLITE_ANY, 0, icuRegexpFunc},
127967 {"lower", 1, SQLITE_UTF16, 0, icuCaseFunc16},
127968 {"lower", 2, SQLITE_UTF16, 0, icuCaseFunc16},
127969 {"upper", 1, SQLITE_UTF16, (void*)1, icuCaseFunc16},
127970 {"upper", 2, SQLITE_UTF16, (void*)1, icuCaseFunc16},
127972 {"lower", 1, SQLITE_UTF8, 0, icuCaseFunc16},
127973 {"lower", 2, SQLITE_UTF8, 0, icuCaseFunc16},
127974 {"upper", 1, SQLITE_UTF8, (void*)1, icuCaseFunc16},
127975 {"upper", 2, SQLITE_UTF8, (void*)1, icuCaseFunc16},
127977 {"like", 2, SQLITE_UTF8, 0, icuLikeFunc},
127978 {"like", 3, SQLITE_UTF8, 0, icuLikeFunc},
127980 {"icu_load_collation", 2, SQLITE_UTF8, (void*)db, icuLoadCollation},
127983 int rc = SQLITE_OK;
127984 int i;
127986 for(i=0; rc==SQLITE_OK && i<(int)(sizeof(scalars)/sizeof(scalars[0])); i++){
127987 struct IcuScalar *p = &scalars[i];
127988 rc = sqlite3_create_function(
127989 db, p->zName, p->nArg, p->enc, p->pContext, p->xFunc, 0, 0
127993 return rc;
127996 #if !SQLITE_CORE
127997 SQLITE_API int sqlite3_extension_init(
127998 sqlite3 *db,
127999 char **pzErrMsg,
128000 const sqlite3_api_routines *pApi
128002 SQLITE_EXTENSION_INIT2(pApi)
128003 return sqlite3IcuInit(db);
128005 #endif
128007 #endif
128009 /************** End of icu.c *************************************************/
128010 /************** Begin file fts3_icu.c ****************************************/
128012 ** 2007 June 22
128014 ** The author disclaims copyright to this source code. In place of
128015 ** a legal notice, here is a blessing:
128017 ** May you do good and not evil.
128018 ** May you find forgiveness for yourself and forgive others.
128019 ** May you share freely, never taking more than you give.
128021 *************************************************************************
128022 ** This file implements a tokenizer for fts3 based on the ICU library.
128024 ** $Id: fts3_icu.c,v 1.3 2008/09/01 18:34:20 danielk1977 Exp $
128027 #if !defined(SQLITE_CORE) || defined(SQLITE_ENABLE_FTS3)
128028 #ifdef SQLITE_ENABLE_ICU
128031 #include <unicode/ubrk.h>
128032 #include <unicode/utf16.h>
128034 typedef struct IcuTokenizer IcuTokenizer;
128035 typedef struct IcuCursor IcuCursor;
128037 struct IcuTokenizer {
128038 sqlite3_tokenizer base;
128039 char *zLocale;
128042 struct IcuCursor {
128043 sqlite3_tokenizer_cursor base;
128045 UBreakIterator *pIter; /* ICU break-iterator object */
128046 int nChar; /* Number of UChar elements in pInput */
128047 UChar *aChar; /* Copy of input using utf-16 encoding */
128048 int *aOffset; /* Offsets of each character in utf-8 input */
128050 int nBuffer;
128051 char *zBuffer;
128053 int iToken;
128057 ** Create a new tokenizer instance.
128059 static int icuCreate(
128060 int argc, /* Number of entries in argv[] */
128061 const char * const *argv, /* Tokenizer creation arguments */
128062 sqlite3_tokenizer **ppTokenizer /* OUT: Created tokenizer */
128064 IcuTokenizer *p;
128065 int n = 0;
128067 if( argc>0 ){
128068 n = strlen(argv[0])+1;
128070 p = (IcuTokenizer *)sqlite3_malloc(sizeof(IcuTokenizer)+n);
128071 if( !p ){
128072 return SQLITE_NOMEM;
128074 memset(p, 0, sizeof(IcuTokenizer));
128076 if( n ){
128077 p->zLocale = (char *)&p[1];
128078 memcpy(p->zLocale, argv[0], n);
128081 *ppTokenizer = (sqlite3_tokenizer *)p;
128083 return SQLITE_OK;
128087 ** Destroy a tokenizer
128089 static int icuDestroy(sqlite3_tokenizer *pTokenizer){
128090 IcuTokenizer *p = (IcuTokenizer *)pTokenizer;
128091 sqlite3_free(p);
128092 return SQLITE_OK;
128096 ** Prepare to begin tokenizing a particular string. The input
128097 ** string to be tokenized is pInput[0..nBytes-1]. A cursor
128098 ** used to incrementally tokenize this string is returned in
128099 ** *ppCursor.
128101 static int icuOpen(
128102 sqlite3_tokenizer *pTokenizer, /* The tokenizer */
128103 const char *zInput, /* Input string */
128104 int nInput, /* Length of zInput in bytes */
128105 sqlite3_tokenizer_cursor **ppCursor /* OUT: Tokenization cursor */
128107 IcuTokenizer *p = (IcuTokenizer *)pTokenizer;
128108 IcuCursor *pCsr;
128110 const int32_t opt = U_FOLD_CASE_DEFAULT;
128111 UErrorCode status = U_ZERO_ERROR;
128112 int nChar;
128114 UChar32 c;
128115 int iInput = 0;
128116 int iOut = 0;
128118 *ppCursor = 0;
128120 if( nInput<0 ){
128121 nInput = strlen(zInput);
128123 nChar = nInput+1;
128124 pCsr = (IcuCursor *)sqlite3_malloc(
128125 sizeof(IcuCursor) + /* IcuCursor */
128126 (nChar+1) * sizeof(int) + /* IcuCursor.aOffset[] */
128127 nChar * sizeof(UChar) /* IcuCursor.aChar[] */
128129 if( !pCsr ){
128130 return SQLITE_NOMEM;
128132 memset(pCsr, 0, sizeof(IcuCursor));
128133 pCsr->aOffset = (int *)&pCsr[1];
128134 pCsr->aChar = (UChar *)&pCsr->aOffset[nChar+1];
128136 pCsr->aOffset[iOut] = iInput;
128137 U8_NEXT(zInput, iInput, nInput, c);
128138 while( c>0 ){
128139 int isError = 0;
128140 c = u_foldCase(c, opt);
128141 U16_APPEND(pCsr->aChar, iOut, nChar, c, isError);
128142 if( isError ){
128143 sqlite3_free(pCsr);
128144 return SQLITE_ERROR;
128146 pCsr->aOffset[iOut] = iInput;
128148 if( iInput<nInput ){
128149 U8_NEXT(zInput, iInput, nInput, c);
128150 }else{
128151 c = 0;
128155 pCsr->pIter = ubrk_open(UBRK_WORD, p->zLocale, pCsr->aChar, iOut, &status);
128156 if( !U_SUCCESS(status) ){
128157 sqlite3_free(pCsr);
128158 return SQLITE_ERROR;
128160 pCsr->nChar = iOut;
128162 ubrk_first(pCsr->pIter);
128163 *ppCursor = (sqlite3_tokenizer_cursor *)pCsr;
128164 return SQLITE_OK;
128168 ** Close a tokenization cursor previously opened by a call to icuOpen().
128170 static int icuClose(sqlite3_tokenizer_cursor *pCursor){
128171 IcuCursor *pCsr = (IcuCursor *)pCursor;
128172 ubrk_close(pCsr->pIter);
128173 sqlite3_free(pCsr->zBuffer);
128174 sqlite3_free(pCsr);
128175 return SQLITE_OK;
128179 ** Extract the next token from a tokenization cursor.
128181 static int icuNext(
128182 sqlite3_tokenizer_cursor *pCursor, /* Cursor returned by simpleOpen */
128183 const char **ppToken, /* OUT: *ppToken is the token text */
128184 int *pnBytes, /* OUT: Number of bytes in token */
128185 int *piStartOffset, /* OUT: Starting offset of token */
128186 int *piEndOffset, /* OUT: Ending offset of token */
128187 int *piPosition /* OUT: Position integer of token */
128189 IcuCursor *pCsr = (IcuCursor *)pCursor;
128191 int iStart = 0;
128192 int iEnd = 0;
128193 int nByte = 0;
128195 while( iStart==iEnd ){
128196 UChar32 c;
128198 iStart = ubrk_current(pCsr->pIter);
128199 iEnd = ubrk_next(pCsr->pIter);
128200 if( iEnd==UBRK_DONE ){
128201 return SQLITE_DONE;
128204 while( iStart<iEnd ){
128205 int iWhite = iStart;
128206 U16_NEXT(pCsr->aChar, iWhite, pCsr->nChar, c);
128207 if( u_isspace(c) ){
128208 iStart = iWhite;
128209 }else{
128210 break;
128213 assert(iStart<=iEnd);
128217 UErrorCode status = U_ZERO_ERROR;
128218 if( nByte ){
128219 char *zNew = sqlite3_realloc(pCsr->zBuffer, nByte);
128220 if( !zNew ){
128221 return SQLITE_NOMEM;
128223 pCsr->zBuffer = zNew;
128224 pCsr->nBuffer = nByte;
128227 u_strToUTF8(
128228 pCsr->zBuffer, pCsr->nBuffer, &nByte, /* Output vars */
128229 &pCsr->aChar[iStart], iEnd-iStart, /* Input vars */
128230 &status /* Output success/failure */
128232 } while( nByte>pCsr->nBuffer );
128234 *ppToken = pCsr->zBuffer;
128235 *pnBytes = nByte;
128236 *piStartOffset = pCsr->aOffset[iStart];
128237 *piEndOffset = pCsr->aOffset[iEnd];
128238 *piPosition = pCsr->iToken++;
128240 return SQLITE_OK;
128244 ** The set of routines that implement the simple tokenizer
128246 static const sqlite3_tokenizer_module icuTokenizerModule = {
128247 0, /* iVersion */
128248 icuCreate, /* xCreate */
128249 icuDestroy, /* xCreate */
128250 icuOpen, /* xOpen */
128251 icuClose, /* xClose */
128252 icuNext, /* xNext */
128256 ** Set *ppModule to point at the implementation of the ICU tokenizer.
128258 SQLITE_PRIVATE void sqlite3Fts3IcuTokenizerModule(
128259 sqlite3_tokenizer_module const**ppModule
128261 *ppModule = &icuTokenizerModule;
128264 #endif /* defined(SQLITE_ENABLE_ICU) */
128265 #endif /* !defined(SQLITE_CORE) || defined(SQLITE_ENABLE_FTS3) */
128267 /************** End of fts3_icu.c ********************************************/