1 // Copyright (c) 2012 The Chromium Authors. All rights reserved.
2 // Use of this source code is governed by a BSD-style license that can be
3 // found in the LICENSE file.
5 // Scopers help you manage ownership of a pointer, helping you easily manage a
6 // pointer within a scope, and automatically destroying the pointer at the end
7 // of a scope. There are two main classes you will use, which correspond to the
8 // operators new/delete and new[]/delete[].
10 // Example usage (scoped_ptr<T>):
12 // scoped_ptr<Foo> foo(new Foo("wee"));
13 // } // foo goes out of scope, releasing the pointer with it.
16 // scoped_ptr<Foo> foo; // No pointer managed.
17 // foo.reset(new Foo("wee")); // Now a pointer is managed.
18 // foo.reset(new Foo("wee2")); // Foo("wee") was destroyed.
19 // foo.reset(new Foo("wee3")); // Foo("wee2") was destroyed.
20 // foo->Method(); // Foo::Method() called.
21 // foo.get()->Method(); // Foo::Method() called.
22 // SomeFunc(foo.release()); // SomeFunc takes ownership, foo no longer
23 // // manages a pointer.
24 // foo.reset(new Foo("wee4")); // foo manages a pointer again.
25 // foo.reset(); // Foo("wee4") destroyed, foo no longer
26 // // manages a pointer.
27 // } // foo wasn't managing a pointer, so nothing was destroyed.
29 // Example usage (scoped_ptr<T[]>):
31 // scoped_ptr<Foo[]> foo(new Foo[100]);
32 // foo.get()->Method(); // Foo::Method on the 0th element.
33 // foo[10].Method(); // Foo::Method on the 10th element.
36 // These scopers also implement part of the functionality of C++11 unique_ptr
37 // in that they are "movable but not copyable." You can use the scopers in
38 // the parameter and return types of functions to signify ownership transfer
39 // in to and out of a function. When calling a function that has a scoper
40 // as the argument type, it must be called with the result of an analogous
41 // scoper's Pass() function or another function that generates a temporary;
42 // passing by copy will NOT work. Here is an example using scoped_ptr:
44 // void TakesOwnership(scoped_ptr<Foo> arg) {
45 // // Do something with arg
47 // scoped_ptr<Foo> CreateFoo() {
48 // // No need for calling Pass() because we are constructing a temporary
49 // // for the return value.
50 // return scoped_ptr<Foo>(new Foo("new"));
52 // scoped_ptr<Foo> PassThru(scoped_ptr<Foo> arg) {
57 // scoped_ptr<Foo> ptr(new Foo("yay")); // ptr manages Foo("yay").
58 // TakesOwnership(ptr.Pass()); // ptr no longer owns Foo("yay").
59 // scoped_ptr<Foo> ptr2 = CreateFoo(); // ptr2 owns the return Foo.
60 // scoped_ptr<Foo> ptr3 = // ptr3 now owns what was in ptr2.
61 // PassThru(ptr2.Pass()); // ptr2 is correspondingly nullptr.
64 // Notice that if you do not call Pass() when returning from PassThru(), or
65 // when invoking TakesOwnership(), the code will not compile because scopers
66 // are not copyable; they only implement move semantics which require calling
67 // the Pass() function to signify a destructive transfer of state. CreateFoo()
68 // is different though because we are constructing a temporary on the return
69 // line and thus can avoid needing to call Pass().
71 // Pass() properly handles upcast in initialization, i.e. you can use a
72 // scoped_ptr<Child> to initialize a scoped_ptr<Parent>:
74 // scoped_ptr<Foo> foo(new Foo());
75 // scoped_ptr<FooParent> parent(foo.Pass());
77 #ifndef BASE_MEMORY_SCOPED_PTR_H_
78 #define BASE_MEMORY_SCOPED_PTR_H_
80 // This is an implementation designed to match the anticipated future TR2
81 // implementation of the scoped_ptr class.
87 #include <algorithm> // For std::swap().
89 #include "base/basictypes.h"
90 #include "base/compiler_specific.h"
91 #include "base/move.h"
92 #include "base/template_util.h"
98 class RefCountedThreadSafeBase
;
101 // Function object which deletes its parameter, which must be a pointer.
102 // If C is an array type, invokes 'delete[]' on the parameter; otherwise,
103 // invokes 'delete'. The default deleter for scoped_ptr<T>.
105 struct DefaultDeleter
{
107 template <typename U
> DefaultDeleter(const DefaultDeleter
<U
>& other
) {
108 // IMPLEMENTATION NOTE: C++11 20.7.1.1.2p2 only provides this constructor
109 // if U* is implicitly convertible to T* and U is not an array type.
111 // Correct implementation should use SFINAE to disable this
112 // constructor. However, since there are no other 1-argument constructors,
113 // using a COMPILE_ASSERT() based on is_convertible<> and requiring
114 // complete types is simpler and will cause compile failures for equivalent
117 // Note, the is_convertible<U*, T*> check also ensures that U is not an
118 // array. T is guaranteed to be a non-array, so any U* where U is an array
119 // cannot convert to T*.
120 enum { T_must_be_complete
= sizeof(T
) };
121 enum { U_must_be_complete
= sizeof(U
) };
122 COMPILE_ASSERT((base::is_convertible
<U
*, T
*>::value
),
123 U_ptr_must_implicitly_convert_to_T_ptr
);
125 inline void operator()(T
* ptr
) const {
126 enum { type_must_be_complete
= sizeof(T
) };
131 // Specialization of DefaultDeleter for array types.
133 struct DefaultDeleter
<T
[]> {
134 inline void operator()(T
* ptr
) const {
135 enum { type_must_be_complete
= sizeof(T
) };
140 // Disable this operator for any U != T because it is undefined to execute
141 // an array delete when the static type of the array mismatches the dynamic
145 // C++98 [expr.delete]p3
146 // http://cplusplus.github.com/LWG/lwg-defects.html#938
147 template <typename U
> void operator()(U
* array
) const;
150 template <class T
, int n
>
151 struct DefaultDeleter
<T
[n
]> {
152 // Never allow someone to declare something like scoped_ptr<int[10]>.
153 COMPILE_ASSERT(sizeof(T
) == -1, do_not_use_array_with_size_as_type
);
156 // Function object which invokes 'free' on its parameter, which must be
157 // a pointer. Can be used to store malloc-allocated pointers in scoped_ptr:
159 // scoped_ptr<int, base::FreeDeleter> foo_ptr(
160 // static_cast<int*>(malloc(sizeof(int))));
162 inline void operator()(void* ptr
) const {
169 template <typename T
> struct IsNotRefCounted
{
171 value
= !base::is_convertible
<T
*, base::subtle::RefCountedBase
*>::value
&&
172 !base::is_convertible
<T
*, base::subtle::RefCountedThreadSafeBase
*>::
177 template <typename T
>
178 struct ShouldAbortOnSelfReset
{
179 template <typename U
>
180 static NoType
Test(const typename
U::AllowSelfReset
*);
182 template <typename U
>
183 static YesType
Test(...);
185 static const bool value
= sizeof(Test
<T
>(0)) == sizeof(YesType
);
188 // Minimal implementation of the core logic of scoped_ptr, suitable for
189 // reuse in both scoped_ptr and its specializations.
190 template <class T
, class D
>
191 class scoped_ptr_impl
{
193 explicit scoped_ptr_impl(T
* p
) : data_(p
) {}
195 // Initializer for deleters that have data parameters.
196 scoped_ptr_impl(T
* p
, const D
& d
) : data_(p
, d
) {}
198 // Templated constructor that destructively takes the value from another
200 template <typename U
, typename V
>
201 scoped_ptr_impl(scoped_ptr_impl
<U
, V
>* other
)
202 : data_(other
->release(), other
->get_deleter()) {
203 // We do not support move-only deleters. We could modify our move
204 // emulation to have base::subtle::move() and base::subtle::forward()
205 // functions that are imperfect emulations of their C++11 equivalents,
206 // but until there's a requirement, just assume deleters are copyable.
209 template <typename U
, typename V
>
210 void TakeState(scoped_ptr_impl
<U
, V
>* other
) {
211 // See comment in templated constructor above regarding lack of support
212 // for move-only deleters.
213 reset(other
->release());
214 get_deleter() = other
->get_deleter();
218 if (data_
.ptr
!= nullptr) {
219 // Not using get_deleter() saves one function call in non-optimized
221 static_cast<D
&>(data_
)(data_
.ptr
);
226 // This is a self-reset, which is no longer allowed for default deleters:
227 // https://crbug.com/162971
228 assert(!ShouldAbortOnSelfReset
<D
>::value
|| p
== nullptr || p
!= data_
.ptr
);
230 // Note that running data_.ptr = p can lead to undefined behavior if
231 // get_deleter()(get()) deletes this. In order to prevent this, reset()
232 // should update the stored pointer before deleting its old value.
234 // However, changing reset() to use that behavior may cause current code to
235 // break in unexpected ways. If the destruction of the owned object
236 // dereferences the scoped_ptr when it is destroyed by a call to reset(),
237 // then it will incorrectly dispatch calls to |p| rather than the original
238 // value of |data_.ptr|.
240 // During the transition period, set the stored pointer to nullptr while
241 // deleting the object. Eventually, this safety check will be removed to
242 // prevent the scenario initially described from occuring and
243 // http://crbug.com/176091 can be closed.
247 static_cast<D
&>(data_
)(old
);
251 T
* get() const { return data_
.ptr
; }
253 D
& get_deleter() { return data_
; }
254 const D
& get_deleter() const { return data_
; }
256 void swap(scoped_ptr_impl
& p2
) {
257 // Standard swap idiom: 'using std::swap' ensures that std::swap is
258 // present in the overload set, but we call swap unqualified so that
259 // any more-specific overloads can be used, if available.
261 swap(static_cast<D
&>(data_
), static_cast<D
&>(p2
.data_
));
262 swap(data_
.ptr
, p2
.data_
.ptr
);
266 T
* old_ptr
= data_
.ptr
;
272 // Needed to allow type-converting constructor.
273 template <typename U
, typename V
> friend class scoped_ptr_impl
;
275 // Use the empty base class optimization to allow us to have a D
276 // member, while avoiding any space overhead for it when D is an
277 // empty class. See e.g. http://www.cantrip.org/emptyopt.html for a good
278 // discussion of this technique.
279 struct Data
: public D
{
280 explicit Data(T
* ptr_in
) : ptr(ptr_in
) {}
281 Data(T
* ptr_in
, const D
& other
) : D(other
), ptr(ptr_in
) {}
287 DISALLOW_COPY_AND_ASSIGN(scoped_ptr_impl
);
290 } // namespace internal
294 // A scoped_ptr<T> is like a T*, except that the destructor of scoped_ptr<T>
295 // automatically deletes the pointer it holds (if any).
296 // That is, scoped_ptr<T> owns the T object that it points to.
297 // Like a T*, a scoped_ptr<T> may hold either nullptr or a pointer to a T
298 // object. Also like T*, scoped_ptr<T> is thread-compatible, and once you
299 // dereference it, you get the thread safety guarantees of T.
301 // The size of scoped_ptr is small. On most compilers, when using the
302 // DefaultDeleter, sizeof(scoped_ptr<T>) == sizeof(T*). Custom deleters will
303 // increase the size proportional to whatever state they need to have. See
304 // comments inside scoped_ptr_impl<> for details.
306 // Current implementation targets having a strict subset of C++11's
307 // unique_ptr<> features. Known deficiencies include not supporting move-only
308 // deleteres, function pointers as deleters, and deleters with reference
310 template <class T
, class D
= base::DefaultDeleter
<T
> >
312 MOVE_ONLY_TYPE_WITH_MOVE_CONSTRUCTOR_FOR_CPP_03(scoped_ptr
)
314 COMPILE_ASSERT(base::internal::IsNotRefCounted
<T
>::value
,
315 T_is_refcounted_type_and_needs_scoped_refptr
);
318 // The element and deleter types.
319 typedef T element_type
;
320 typedef D deleter_type
;
322 // Constructor. Defaults to initializing with nullptr.
323 scoped_ptr() : impl_(nullptr) {}
325 // Constructor. Takes ownership of p.
326 explicit scoped_ptr(element_type
* p
) : impl_(p
) {}
328 // Constructor. Allows initialization of a stateful deleter.
329 scoped_ptr(element_type
* p
, const D
& d
) : impl_(p
, d
) {}
331 // Constructor. Allows construction from a nullptr.
332 scoped_ptr(decltype(nullptr)) : impl_(nullptr) {}
334 // Constructor. Allows construction from a scoped_ptr rvalue for a
335 // convertible type and deleter.
337 // IMPLEMENTATION NOTE: C++11 unique_ptr<> keeps this constructor distinct
338 // from the normal move constructor. By C++11 20.7.1.2.1.21, this constructor
339 // has different post-conditions if D is a reference type. Since this
340 // implementation does not support deleters with reference type,
341 // we do not need a separate move constructor allowing us to avoid one
342 // use of SFINAE. You only need to care about this if you modify the
343 // implementation of scoped_ptr.
344 template <typename U
, typename V
>
345 scoped_ptr(scoped_ptr
<U
, V
>&& other
)
346 : impl_(&other
.impl_
) {
347 COMPILE_ASSERT(!base::is_array
<U
>::value
, U_cannot_be_an_array
);
350 // operator=. Allows assignment from a scoped_ptr rvalue for a convertible
353 // IMPLEMENTATION NOTE: C++11 unique_ptr<> keeps this operator= distinct from
354 // the normal move assignment operator. By C++11 20.7.1.2.3.4, this templated
355 // form has different requirements on for move-only Deleters. Since this
356 // implementation does not support move-only Deleters, we do not need a
357 // separate move assignment operator allowing us to avoid one use of SFINAE.
358 // You only need to care about this if you modify the implementation of
360 template <typename U
, typename V
>
361 scoped_ptr
& operator=(scoped_ptr
<U
, V
>&& rhs
) {
362 COMPILE_ASSERT(!base::is_array
<U
>::value
, U_cannot_be_an_array
);
363 impl_
.TakeState(&rhs
.impl_
);
367 // operator=. Allows assignment from a nullptr. Deletes the currently owned
369 scoped_ptr
& operator=(decltype(nullptr)) {
374 // Reset. Deletes the currently owned object, if any.
375 // Then takes ownership of a new object, if given.
376 void reset(element_type
* p
= nullptr) { impl_
.reset(p
); }
378 // Accessors to get the owned object.
379 // operator* and operator-> will assert() if there is no current object.
380 element_type
& operator*() const {
381 assert(impl_
.get() != nullptr);
384 element_type
* operator->() const {
385 assert(impl_
.get() != nullptr);
388 element_type
* get() const { return impl_
.get(); }
390 // Access to the deleter.
391 deleter_type
& get_deleter() { return impl_
.get_deleter(); }
392 const deleter_type
& get_deleter() const { return impl_
.get_deleter(); }
394 // Allow scoped_ptr<element_type> to be used in boolean expressions, but not
395 // implicitly convertible to a real bool (which is dangerous).
397 // Note that this trick is only safe when the == and != operators
398 // are declared explicitly, as otherwise "scoped_ptr1 ==
399 // scoped_ptr2" will compile but do the wrong thing (i.e., convert
400 // to Testable and then do the comparison).
402 typedef base::internal::scoped_ptr_impl
<element_type
, deleter_type
>
403 scoped_ptr::*Testable
;
406 operator Testable() const {
407 return impl_
.get() ? &scoped_ptr::impl_
: nullptr;
410 // Comparison operators.
411 // These return whether two scoped_ptr refer to the same object, not just to
412 // two different but equal objects.
413 bool operator==(const element_type
* p
) const { return impl_
.get() == p
; }
414 bool operator!=(const element_type
* p
) const { return impl_
.get() != p
; }
416 // Swap two scoped pointers.
417 void swap(scoped_ptr
& p2
) {
418 impl_
.swap(p2
.impl_
);
421 // Release a pointer.
422 // The return value is the current pointer held by this object. If this object
423 // holds a nullptr, the return value is nullptr. After this operation, this
424 // object will hold a nullptr, and will not own the object any more.
425 element_type
* release() WARN_UNUSED_RESULT
{
426 return impl_
.release();
430 // Needed to reach into |impl_| in the constructor.
431 template <typename U
, typename V
> friend class scoped_ptr
;
432 base::internal::scoped_ptr_impl
<element_type
, deleter_type
> impl_
;
434 // Forbidden for API compatibility with std::unique_ptr.
435 explicit scoped_ptr(int disallow_construction_from_null
);
437 // Forbid comparison of scoped_ptr types. If U != T, it totally
438 // doesn't make sense, and if U == T, it still doesn't make sense
439 // because you should never have the same object owned by two different
441 template <class U
> bool operator==(scoped_ptr
<U
> const& p2
) const;
442 template <class U
> bool operator!=(scoped_ptr
<U
> const& p2
) const;
445 template <class T
, class D
>
446 class scoped_ptr
<T
[], D
> {
447 MOVE_ONLY_TYPE_WITH_MOVE_CONSTRUCTOR_FOR_CPP_03(scoped_ptr
)
450 // The element and deleter types.
451 typedef T element_type
;
452 typedef D deleter_type
;
454 // Constructor. Defaults to initializing with nullptr.
455 scoped_ptr() : impl_(nullptr) {}
457 // Constructor. Stores the given array. Note that the argument's type
458 // must exactly match T*. In particular:
459 // - it cannot be a pointer to a type derived from T, because it is
460 // inherently unsafe in the general case to access an array through a
461 // pointer whose dynamic type does not match its static type (eg., if
462 // T and the derived types had different sizes access would be
463 // incorrectly calculated). Deletion is also always undefined
464 // (C++98 [expr.delete]p3). If you're doing this, fix your code.
465 // - it cannot be const-qualified differently from T per unique_ptr spec
466 // (http://cplusplus.github.com/LWG/lwg-active.html#2118). Users wanting
467 // to work around this may use implicit_cast<const T*>().
468 // However, because of the first bullet in this comment, users MUST
469 // NOT use implicit_cast<Base*>() to upcast the static type of the array.
470 explicit scoped_ptr(element_type
* array
) : impl_(array
) {}
472 // Constructor. Allows construction from a nullptr.
473 scoped_ptr(decltype(nullptr)) : impl_(nullptr) {}
475 // Constructor. Allows construction from a scoped_ptr rvalue.
476 scoped_ptr(scoped_ptr
&& other
) : impl_(&other
.impl_
) {}
478 // operator=. Allows assignment from a scoped_ptr rvalue.
479 scoped_ptr
& operator=(scoped_ptr
&& rhs
) {
480 impl_
.TakeState(&rhs
.impl_
);
484 // operator=. Allows assignment from a nullptr. Deletes the currently owned
486 scoped_ptr
& operator=(decltype(nullptr)) {
491 // Reset. Deletes the currently owned array, if any.
492 // Then takes ownership of a new object, if given.
493 void reset(element_type
* array
= nullptr) { impl_
.reset(array
); }
495 // Accessors to get the owned array.
496 element_type
& operator[](size_t i
) const {
497 assert(impl_
.get() != nullptr);
498 return impl_
.get()[i
];
500 element_type
* get() const { return impl_
.get(); }
502 // Access to the deleter.
503 deleter_type
& get_deleter() { return impl_
.get_deleter(); }
504 const deleter_type
& get_deleter() const { return impl_
.get_deleter(); }
506 // Allow scoped_ptr<element_type> to be used in boolean expressions, but not
507 // implicitly convertible to a real bool (which is dangerous).
509 typedef base::internal::scoped_ptr_impl
<element_type
, deleter_type
>
510 scoped_ptr::*Testable
;
513 operator Testable() const {
514 return impl_
.get() ? &scoped_ptr::impl_
: nullptr;
517 // Comparison operators.
518 // These return whether two scoped_ptr refer to the same object, not just to
519 // two different but equal objects.
520 bool operator==(element_type
* array
) const { return impl_
.get() == array
; }
521 bool operator!=(element_type
* array
) const { return impl_
.get() != array
; }
523 // Swap two scoped pointers.
524 void swap(scoped_ptr
& p2
) {
525 impl_
.swap(p2
.impl_
);
528 // Release a pointer.
529 // The return value is the current pointer held by this object. If this object
530 // holds a nullptr, the return value is nullptr. After this operation, this
531 // object will hold a nullptr, and will not own the object any more.
532 element_type
* release() WARN_UNUSED_RESULT
{
533 return impl_
.release();
537 // Force element_type to be a complete type.
538 enum { type_must_be_complete
= sizeof(element_type
) };
540 // Actually hold the data.
541 base::internal::scoped_ptr_impl
<element_type
, deleter_type
> impl_
;
543 // Disable initialization from any type other than element_type*, by
544 // providing a constructor that matches such an initialization, but is
545 // private and has no definition. This is disabled because it is not safe to
546 // call delete[] on an array whose static type does not match its dynamic
548 template <typename U
> explicit scoped_ptr(U
* array
);
549 explicit scoped_ptr(int disallow_construction_from_null
);
551 // Disable reset() from any type other than element_type*, for the same
552 // reasons as the constructor above.
553 template <typename U
> void reset(U
* array
);
554 void reset(int disallow_reset_from_null
);
556 // Forbid comparison of scoped_ptr types. If U != T, it totally
557 // doesn't make sense, and if U == T, it still doesn't make sense
558 // because you should never have the same object owned by two different
560 template <class U
> bool operator==(scoped_ptr
<U
> const& p2
) const;
561 template <class U
> bool operator!=(scoped_ptr
<U
> const& p2
) const;
565 template <class T
, class D
>
566 void swap(scoped_ptr
<T
, D
>& p1
, scoped_ptr
<T
, D
>& p2
) {
570 template <class T
, class D
>
571 bool operator==(T
* p1
, const scoped_ptr
<T
, D
>& p2
) {
572 return p1
== p2
.get();
575 template <class T
, class D
>
576 bool operator!=(T
* p1
, const scoped_ptr
<T
, D
>& p2
) {
577 return p1
!= p2
.get();
580 // A function to convert T* into scoped_ptr<T>
581 // Doing e.g. make_scoped_ptr(new FooBarBaz<type>(arg)) is a shorter notation
582 // for scoped_ptr<FooBarBaz<type> >(new FooBarBaz<type>(arg))
583 template <typename T
>
584 scoped_ptr
<T
> make_scoped_ptr(T
* ptr
) {
585 return scoped_ptr
<T
>(ptr
);
588 #endif // BASE_MEMORY_SCOPED_PTR_H_