Clean up final uses of scoped_ptr<T>::PassAs() and remove it.
[chromium-blink-merge.git] / base / memory / scoped_ptr.h
blobae9eb0fee8bd202dcc5dda4ec6a64dec3b81d519
1 // Copyright (c) 2012 The Chromium Authors. All rights reserved.
2 // Use of this source code is governed by a BSD-style license that can be
3 // found in the LICENSE file.
5 // Scopers help you manage ownership of a pointer, helping you easily manage a
6 // pointer within a scope, and automatically destroying the pointer at the end
7 // of a scope. There are two main classes you will use, which correspond to the
8 // operators new/delete and new[]/delete[].
9 //
10 // Example usage (scoped_ptr<T>):
11 // {
12 // scoped_ptr<Foo> foo(new Foo("wee"));
13 // } // foo goes out of scope, releasing the pointer with it.
15 // {
16 // scoped_ptr<Foo> foo; // No pointer managed.
17 // foo.reset(new Foo("wee")); // Now a pointer is managed.
18 // foo.reset(new Foo("wee2")); // Foo("wee") was destroyed.
19 // foo.reset(new Foo("wee3")); // Foo("wee2") was destroyed.
20 // foo->Method(); // Foo::Method() called.
21 // foo.get()->Method(); // Foo::Method() called.
22 // SomeFunc(foo.release()); // SomeFunc takes ownership, foo no longer
23 // // manages a pointer.
24 // foo.reset(new Foo("wee4")); // foo manages a pointer again.
25 // foo.reset(); // Foo("wee4") destroyed, foo no longer
26 // // manages a pointer.
27 // } // foo wasn't managing a pointer, so nothing was destroyed.
29 // Example usage (scoped_ptr<T[]>):
30 // {
31 // scoped_ptr<Foo[]> foo(new Foo[100]);
32 // foo.get()->Method(); // Foo::Method on the 0th element.
33 // foo[10].Method(); // Foo::Method on the 10th element.
34 // }
36 // These scopers also implement part of the functionality of C++11 unique_ptr
37 // in that they are "movable but not copyable." You can use the scopers in
38 // the parameter and return types of functions to signify ownership transfer
39 // in to and out of a function. When calling a function that has a scoper
40 // as the argument type, it must be called with the result of an analogous
41 // scoper's Pass() function or another function that generates a temporary;
42 // passing by copy will NOT work. Here is an example using scoped_ptr:
44 // void TakesOwnership(scoped_ptr<Foo> arg) {
45 // // Do something with arg
46 // }
47 // scoped_ptr<Foo> CreateFoo() {
48 // // No need for calling Pass() because we are constructing a temporary
49 // // for the return value.
50 // return scoped_ptr<Foo>(new Foo("new"));
51 // }
52 // scoped_ptr<Foo> PassThru(scoped_ptr<Foo> arg) {
53 // return arg.Pass();
54 // }
56 // {
57 // scoped_ptr<Foo> ptr(new Foo("yay")); // ptr manages Foo("yay").
58 // TakesOwnership(ptr.Pass()); // ptr no longer owns Foo("yay").
59 // scoped_ptr<Foo> ptr2 = CreateFoo(); // ptr2 owns the return Foo.
60 // scoped_ptr<Foo> ptr3 = // ptr3 now owns what was in ptr2.
61 // PassThru(ptr2.Pass()); // ptr2 is correspondingly nullptr.
62 // }
64 // Notice that if you do not call Pass() when returning from PassThru(), or
65 // when invoking TakesOwnership(), the code will not compile because scopers
66 // are not copyable; they only implement move semantics which require calling
67 // the Pass() function to signify a destructive transfer of state. CreateFoo()
68 // is different though because we are constructing a temporary on the return
69 // line and thus can avoid needing to call Pass().
71 // Pass() properly handles upcast in initialization, i.e. you can use a
72 // scoped_ptr<Child> to initialize a scoped_ptr<Parent>:
74 // scoped_ptr<Foo> foo(new Foo());
75 // scoped_ptr<FooParent> parent(foo.Pass());
77 #ifndef BASE_MEMORY_SCOPED_PTR_H_
78 #define BASE_MEMORY_SCOPED_PTR_H_
80 // This is an implementation designed to match the anticipated future TR2
81 // implementation of the scoped_ptr class.
83 #include <assert.h>
84 #include <stddef.h>
85 #include <stdlib.h>
87 #include <algorithm> // For std::swap().
89 #include "base/basictypes.h"
90 #include "base/compiler_specific.h"
91 #include "base/move.h"
92 #include "base/template_util.h"
94 namespace base {
96 namespace subtle {
97 class RefCountedBase;
98 class RefCountedThreadSafeBase;
99 } // namespace subtle
101 // Function object which deletes its parameter, which must be a pointer.
102 // If C is an array type, invokes 'delete[]' on the parameter; otherwise,
103 // invokes 'delete'. The default deleter for scoped_ptr<T>.
104 template <class T>
105 struct DefaultDeleter {
106 DefaultDeleter() {}
107 template <typename U> DefaultDeleter(const DefaultDeleter<U>& other) {
108 // IMPLEMENTATION NOTE: C++11 20.7.1.1.2p2 only provides this constructor
109 // if U* is implicitly convertible to T* and U is not an array type.
111 // Correct implementation should use SFINAE to disable this
112 // constructor. However, since there are no other 1-argument constructors,
113 // using a COMPILE_ASSERT() based on is_convertible<> and requiring
114 // complete types is simpler and will cause compile failures for equivalent
115 // misuses.
117 // Note, the is_convertible<U*, T*> check also ensures that U is not an
118 // array. T is guaranteed to be a non-array, so any U* where U is an array
119 // cannot convert to T*.
120 enum { T_must_be_complete = sizeof(T) };
121 enum { U_must_be_complete = sizeof(U) };
122 COMPILE_ASSERT((base::is_convertible<U*, T*>::value),
123 U_ptr_must_implicitly_convert_to_T_ptr);
125 inline void operator()(T* ptr) const {
126 enum { type_must_be_complete = sizeof(T) };
127 delete ptr;
131 // Specialization of DefaultDeleter for array types.
132 template <class T>
133 struct DefaultDeleter<T[]> {
134 inline void operator()(T* ptr) const {
135 enum { type_must_be_complete = sizeof(T) };
136 delete[] ptr;
139 private:
140 // Disable this operator for any U != T because it is undefined to execute
141 // an array delete when the static type of the array mismatches the dynamic
142 // type.
144 // References:
145 // C++98 [expr.delete]p3
146 // http://cplusplus.github.com/LWG/lwg-defects.html#938
147 template <typename U> void operator()(U* array) const;
150 template <class T, int n>
151 struct DefaultDeleter<T[n]> {
152 // Never allow someone to declare something like scoped_ptr<int[10]>.
153 COMPILE_ASSERT(sizeof(T) == -1, do_not_use_array_with_size_as_type);
156 // Function object which invokes 'free' on its parameter, which must be
157 // a pointer. Can be used to store malloc-allocated pointers in scoped_ptr:
159 // scoped_ptr<int, base::FreeDeleter> foo_ptr(
160 // static_cast<int*>(malloc(sizeof(int))));
161 struct FreeDeleter {
162 inline void operator()(void* ptr) const {
163 free(ptr);
167 namespace internal {
169 template <typename T> struct IsNotRefCounted {
170 enum {
171 value = !base::is_convertible<T*, base::subtle::RefCountedBase*>::value &&
172 !base::is_convertible<T*, base::subtle::RefCountedThreadSafeBase*>::
173 value
177 template <typename T>
178 struct ShouldAbortOnSelfReset {
179 template <typename U>
180 static NoType Test(const typename U::AllowSelfReset*);
182 template <typename U>
183 static YesType Test(...);
185 static const bool value = sizeof(Test<T>(0)) == sizeof(YesType);
188 // Minimal implementation of the core logic of scoped_ptr, suitable for
189 // reuse in both scoped_ptr and its specializations.
190 template <class T, class D>
191 class scoped_ptr_impl {
192 public:
193 explicit scoped_ptr_impl(T* p) : data_(p) {}
195 // Initializer for deleters that have data parameters.
196 scoped_ptr_impl(T* p, const D& d) : data_(p, d) {}
198 // Templated constructor that destructively takes the value from another
199 // scoped_ptr_impl.
200 template <typename U, typename V>
201 scoped_ptr_impl(scoped_ptr_impl<U, V>* other)
202 : data_(other->release(), other->get_deleter()) {
203 // We do not support move-only deleters. We could modify our move
204 // emulation to have base::subtle::move() and base::subtle::forward()
205 // functions that are imperfect emulations of their C++11 equivalents,
206 // but until there's a requirement, just assume deleters are copyable.
209 template <typename U, typename V>
210 void TakeState(scoped_ptr_impl<U, V>* other) {
211 // See comment in templated constructor above regarding lack of support
212 // for move-only deleters.
213 reset(other->release());
214 get_deleter() = other->get_deleter();
217 ~scoped_ptr_impl() {
218 if (data_.ptr != nullptr) {
219 // Not using get_deleter() saves one function call in non-optimized
220 // builds.
221 static_cast<D&>(data_)(data_.ptr);
225 void reset(T* p) {
226 // This is a self-reset, which is no longer allowed for default deleters:
227 // https://crbug.com/162971
228 assert(!ShouldAbortOnSelfReset<D>::value || p == nullptr || p != data_.ptr);
230 // Note that running data_.ptr = p can lead to undefined behavior if
231 // get_deleter()(get()) deletes this. In order to prevent this, reset()
232 // should update the stored pointer before deleting its old value.
234 // However, changing reset() to use that behavior may cause current code to
235 // break in unexpected ways. If the destruction of the owned object
236 // dereferences the scoped_ptr when it is destroyed by a call to reset(),
237 // then it will incorrectly dispatch calls to |p| rather than the original
238 // value of |data_.ptr|.
240 // During the transition period, set the stored pointer to nullptr while
241 // deleting the object. Eventually, this safety check will be removed to
242 // prevent the scenario initially described from occuring and
243 // http://crbug.com/176091 can be closed.
244 T* old = data_.ptr;
245 data_.ptr = nullptr;
246 if (old != nullptr)
247 static_cast<D&>(data_)(old);
248 data_.ptr = p;
251 T* get() const { return data_.ptr; }
253 D& get_deleter() { return data_; }
254 const D& get_deleter() const { return data_; }
256 void swap(scoped_ptr_impl& p2) {
257 // Standard swap idiom: 'using std::swap' ensures that std::swap is
258 // present in the overload set, but we call swap unqualified so that
259 // any more-specific overloads can be used, if available.
260 using std::swap;
261 swap(static_cast<D&>(data_), static_cast<D&>(p2.data_));
262 swap(data_.ptr, p2.data_.ptr);
265 T* release() {
266 T* old_ptr = data_.ptr;
267 data_.ptr = nullptr;
268 return old_ptr;
271 private:
272 // Needed to allow type-converting constructor.
273 template <typename U, typename V> friend class scoped_ptr_impl;
275 // Use the empty base class optimization to allow us to have a D
276 // member, while avoiding any space overhead for it when D is an
277 // empty class. See e.g. http://www.cantrip.org/emptyopt.html for a good
278 // discussion of this technique.
279 struct Data : public D {
280 explicit Data(T* ptr_in) : ptr(ptr_in) {}
281 Data(T* ptr_in, const D& other) : D(other), ptr(ptr_in) {}
282 T* ptr;
285 Data data_;
287 DISALLOW_COPY_AND_ASSIGN(scoped_ptr_impl);
290 } // namespace internal
292 } // namespace base
294 // A scoped_ptr<T> is like a T*, except that the destructor of scoped_ptr<T>
295 // automatically deletes the pointer it holds (if any).
296 // That is, scoped_ptr<T> owns the T object that it points to.
297 // Like a T*, a scoped_ptr<T> may hold either nullptr or a pointer to a T
298 // object. Also like T*, scoped_ptr<T> is thread-compatible, and once you
299 // dereference it, you get the thread safety guarantees of T.
301 // The size of scoped_ptr is small. On most compilers, when using the
302 // DefaultDeleter, sizeof(scoped_ptr<T>) == sizeof(T*). Custom deleters will
303 // increase the size proportional to whatever state they need to have. See
304 // comments inside scoped_ptr_impl<> for details.
306 // Current implementation targets having a strict subset of C++11's
307 // unique_ptr<> features. Known deficiencies include not supporting move-only
308 // deleteres, function pointers as deleters, and deleters with reference
309 // types.
310 template <class T, class D = base::DefaultDeleter<T> >
311 class scoped_ptr {
312 MOVE_ONLY_TYPE_WITH_MOVE_CONSTRUCTOR_FOR_CPP_03(scoped_ptr)
314 COMPILE_ASSERT(base::internal::IsNotRefCounted<T>::value,
315 T_is_refcounted_type_and_needs_scoped_refptr);
317 public:
318 // The element and deleter types.
319 typedef T element_type;
320 typedef D deleter_type;
322 // Constructor. Defaults to initializing with nullptr.
323 scoped_ptr() : impl_(nullptr) {}
325 // Constructor. Takes ownership of p.
326 explicit scoped_ptr(element_type* p) : impl_(p) {}
328 // Constructor. Allows initialization of a stateful deleter.
329 scoped_ptr(element_type* p, const D& d) : impl_(p, d) {}
331 // Constructor. Allows construction from a nullptr.
332 scoped_ptr(decltype(nullptr)) : impl_(nullptr) {}
334 // Constructor. Allows construction from a scoped_ptr rvalue for a
335 // convertible type and deleter.
337 // IMPLEMENTATION NOTE: C++11 unique_ptr<> keeps this constructor distinct
338 // from the normal move constructor. By C++11 20.7.1.2.1.21, this constructor
339 // has different post-conditions if D is a reference type. Since this
340 // implementation does not support deleters with reference type,
341 // we do not need a separate move constructor allowing us to avoid one
342 // use of SFINAE. You only need to care about this if you modify the
343 // implementation of scoped_ptr.
344 template <typename U, typename V>
345 scoped_ptr(scoped_ptr<U, V>&& other)
346 : impl_(&other.impl_) {
347 COMPILE_ASSERT(!base::is_array<U>::value, U_cannot_be_an_array);
350 // operator=. Allows assignment from a scoped_ptr rvalue for a convertible
351 // type and deleter.
353 // IMPLEMENTATION NOTE: C++11 unique_ptr<> keeps this operator= distinct from
354 // the normal move assignment operator. By C++11 20.7.1.2.3.4, this templated
355 // form has different requirements on for move-only Deleters. Since this
356 // implementation does not support move-only Deleters, we do not need a
357 // separate move assignment operator allowing us to avoid one use of SFINAE.
358 // You only need to care about this if you modify the implementation of
359 // scoped_ptr.
360 template <typename U, typename V>
361 scoped_ptr& operator=(scoped_ptr<U, V>&& rhs) {
362 COMPILE_ASSERT(!base::is_array<U>::value, U_cannot_be_an_array);
363 impl_.TakeState(&rhs.impl_);
364 return *this;
367 // operator=. Allows assignment from a nullptr. Deletes the currently owned
368 // object, if any.
369 scoped_ptr& operator=(decltype(nullptr)) {
370 reset();
371 return *this;
374 // Reset. Deletes the currently owned object, if any.
375 // Then takes ownership of a new object, if given.
376 void reset(element_type* p = nullptr) { impl_.reset(p); }
378 // Accessors to get the owned object.
379 // operator* and operator-> will assert() if there is no current object.
380 element_type& operator*() const {
381 assert(impl_.get() != nullptr);
382 return *impl_.get();
384 element_type* operator->() const {
385 assert(impl_.get() != nullptr);
386 return impl_.get();
388 element_type* get() const { return impl_.get(); }
390 // Access to the deleter.
391 deleter_type& get_deleter() { return impl_.get_deleter(); }
392 const deleter_type& get_deleter() const { return impl_.get_deleter(); }
394 // Allow scoped_ptr<element_type> to be used in boolean expressions, but not
395 // implicitly convertible to a real bool (which is dangerous).
397 // Note that this trick is only safe when the == and != operators
398 // are declared explicitly, as otherwise "scoped_ptr1 ==
399 // scoped_ptr2" will compile but do the wrong thing (i.e., convert
400 // to Testable and then do the comparison).
401 private:
402 typedef base::internal::scoped_ptr_impl<element_type, deleter_type>
403 scoped_ptr::*Testable;
405 public:
406 operator Testable() const {
407 return impl_.get() ? &scoped_ptr::impl_ : nullptr;
410 // Comparison operators.
411 // These return whether two scoped_ptr refer to the same object, not just to
412 // two different but equal objects.
413 bool operator==(const element_type* p) const { return impl_.get() == p; }
414 bool operator!=(const element_type* p) const { return impl_.get() != p; }
416 // Swap two scoped pointers.
417 void swap(scoped_ptr& p2) {
418 impl_.swap(p2.impl_);
421 // Release a pointer.
422 // The return value is the current pointer held by this object. If this object
423 // holds a nullptr, the return value is nullptr. After this operation, this
424 // object will hold a nullptr, and will not own the object any more.
425 element_type* release() WARN_UNUSED_RESULT {
426 return impl_.release();
429 private:
430 // Needed to reach into |impl_| in the constructor.
431 template <typename U, typename V> friend class scoped_ptr;
432 base::internal::scoped_ptr_impl<element_type, deleter_type> impl_;
434 // Forbidden for API compatibility with std::unique_ptr.
435 explicit scoped_ptr(int disallow_construction_from_null);
437 // Forbid comparison of scoped_ptr types. If U != T, it totally
438 // doesn't make sense, and if U == T, it still doesn't make sense
439 // because you should never have the same object owned by two different
440 // scoped_ptrs.
441 template <class U> bool operator==(scoped_ptr<U> const& p2) const;
442 template <class U> bool operator!=(scoped_ptr<U> const& p2) const;
445 template <class T, class D>
446 class scoped_ptr<T[], D> {
447 MOVE_ONLY_TYPE_WITH_MOVE_CONSTRUCTOR_FOR_CPP_03(scoped_ptr)
449 public:
450 // The element and deleter types.
451 typedef T element_type;
452 typedef D deleter_type;
454 // Constructor. Defaults to initializing with nullptr.
455 scoped_ptr() : impl_(nullptr) {}
457 // Constructor. Stores the given array. Note that the argument's type
458 // must exactly match T*. In particular:
459 // - it cannot be a pointer to a type derived from T, because it is
460 // inherently unsafe in the general case to access an array through a
461 // pointer whose dynamic type does not match its static type (eg., if
462 // T and the derived types had different sizes access would be
463 // incorrectly calculated). Deletion is also always undefined
464 // (C++98 [expr.delete]p3). If you're doing this, fix your code.
465 // - it cannot be const-qualified differently from T per unique_ptr spec
466 // (http://cplusplus.github.com/LWG/lwg-active.html#2118). Users wanting
467 // to work around this may use implicit_cast<const T*>().
468 // However, because of the first bullet in this comment, users MUST
469 // NOT use implicit_cast<Base*>() to upcast the static type of the array.
470 explicit scoped_ptr(element_type* array) : impl_(array) {}
472 // Constructor. Allows construction from a nullptr.
473 scoped_ptr(decltype(nullptr)) : impl_(nullptr) {}
475 // Constructor. Allows construction from a scoped_ptr rvalue.
476 scoped_ptr(scoped_ptr&& other) : impl_(&other.impl_) {}
478 // operator=. Allows assignment from a scoped_ptr rvalue.
479 scoped_ptr& operator=(scoped_ptr&& rhs) {
480 impl_.TakeState(&rhs.impl_);
481 return *this;
484 // operator=. Allows assignment from a nullptr. Deletes the currently owned
485 // array, if any.
486 scoped_ptr& operator=(decltype(nullptr)) {
487 reset();
488 return *this;
491 // Reset. Deletes the currently owned array, if any.
492 // Then takes ownership of a new object, if given.
493 void reset(element_type* array = nullptr) { impl_.reset(array); }
495 // Accessors to get the owned array.
496 element_type& operator[](size_t i) const {
497 assert(impl_.get() != nullptr);
498 return impl_.get()[i];
500 element_type* get() const { return impl_.get(); }
502 // Access to the deleter.
503 deleter_type& get_deleter() { return impl_.get_deleter(); }
504 const deleter_type& get_deleter() const { return impl_.get_deleter(); }
506 // Allow scoped_ptr<element_type> to be used in boolean expressions, but not
507 // implicitly convertible to a real bool (which is dangerous).
508 private:
509 typedef base::internal::scoped_ptr_impl<element_type, deleter_type>
510 scoped_ptr::*Testable;
512 public:
513 operator Testable() const {
514 return impl_.get() ? &scoped_ptr::impl_ : nullptr;
517 // Comparison operators.
518 // These return whether two scoped_ptr refer to the same object, not just to
519 // two different but equal objects.
520 bool operator==(element_type* array) const { return impl_.get() == array; }
521 bool operator!=(element_type* array) const { return impl_.get() != array; }
523 // Swap two scoped pointers.
524 void swap(scoped_ptr& p2) {
525 impl_.swap(p2.impl_);
528 // Release a pointer.
529 // The return value is the current pointer held by this object. If this object
530 // holds a nullptr, the return value is nullptr. After this operation, this
531 // object will hold a nullptr, and will not own the object any more.
532 element_type* release() WARN_UNUSED_RESULT {
533 return impl_.release();
536 private:
537 // Force element_type to be a complete type.
538 enum { type_must_be_complete = sizeof(element_type) };
540 // Actually hold the data.
541 base::internal::scoped_ptr_impl<element_type, deleter_type> impl_;
543 // Disable initialization from any type other than element_type*, by
544 // providing a constructor that matches such an initialization, but is
545 // private and has no definition. This is disabled because it is not safe to
546 // call delete[] on an array whose static type does not match its dynamic
547 // type.
548 template <typename U> explicit scoped_ptr(U* array);
549 explicit scoped_ptr(int disallow_construction_from_null);
551 // Disable reset() from any type other than element_type*, for the same
552 // reasons as the constructor above.
553 template <typename U> void reset(U* array);
554 void reset(int disallow_reset_from_null);
556 // Forbid comparison of scoped_ptr types. If U != T, it totally
557 // doesn't make sense, and if U == T, it still doesn't make sense
558 // because you should never have the same object owned by two different
559 // scoped_ptrs.
560 template <class U> bool operator==(scoped_ptr<U> const& p2) const;
561 template <class U> bool operator!=(scoped_ptr<U> const& p2) const;
564 // Free functions
565 template <class T, class D>
566 void swap(scoped_ptr<T, D>& p1, scoped_ptr<T, D>& p2) {
567 p1.swap(p2);
570 template <class T, class D>
571 bool operator==(T* p1, const scoped_ptr<T, D>& p2) {
572 return p1 == p2.get();
575 template <class T, class D>
576 bool operator!=(T* p1, const scoped_ptr<T, D>& p2) {
577 return p1 != p2.get();
580 // A function to convert T* into scoped_ptr<T>
581 // Doing e.g. make_scoped_ptr(new FooBarBaz<type>(arg)) is a shorter notation
582 // for scoped_ptr<FooBarBaz<type> >(new FooBarBaz<type>(arg))
583 template <typename T>
584 scoped_ptr<T> make_scoped_ptr(T* ptr) {
585 return scoped_ptr<T>(ptr);
588 #endif // BASE_MEMORY_SCOPED_PTR_H_