1 // Copyright (c) 2011 The Chromium Authors. All rights reserved.
2 // Use of this source code is governed by a BSD-style license that can be
3 // found in the LICENSE file.
5 #ifndef BASE_MESSAGE_LOOP_H_
6 #define BASE_MESSAGE_LOOP_H_
12 #include "base/base_api.h"
13 #include "base/basictypes.h"
14 #include "base/memory/ref_counted.h"
15 #include "base/message_pump.h"
16 #include "base/observer_list.h"
17 #include "base/synchronization/lock.h"
18 #include "base/task.h"
21 // We need this to declare base::MessagePumpWin::Dispatcher, which we should
22 // really just eliminate.
23 #include "base/message_pump_win.h"
24 #elif defined(OS_POSIX)
25 #include "base/message_pump_libevent.h"
26 #if !defined(OS_MACOSX)
27 #include "base/message_pump_glib.h"
28 typedef struct _XDisplay Display
;
32 #include "base/message_pump_glib_x_dispatch.h"
39 // A MessageLoop is used to process events for a particular thread. There is
40 // at most one MessageLoop instance per thread.
42 // Events include at a minimum Task instances submitted to PostTask or those
43 // managed by TimerManager. Depending on the type of message pump used by the
44 // MessageLoop other events such as UI messages may be processed. On Windows
45 // APC calls (as time permits) and signals sent to a registered set of HANDLEs
46 // may also be processed.
48 // NOTE: Unless otherwise specified, a MessageLoop's methods may only be called
49 // on the thread where the MessageLoop's Run method executes.
51 // NOTE: MessageLoop has task reentrancy protection. This means that if a
52 // task is being processed, a second task cannot start until the first task is
53 // finished. Reentrancy can happen when processing a task, and an inner
54 // message pump is created. That inner pump then processes native messages
55 // which could implicitly start an inner task. Inner message pumps are created
56 // with dialogs (DialogBox), common dialogs (GetOpenFileName), OLE functions
57 // (DoDragDrop), printer functions (StartDoc) and *many* others.
59 // Sample workaround when inner task processing is needed:
60 // bool old_state = MessageLoop::current()->NestableTasksAllowed();
61 // MessageLoop::current()->SetNestableTasksAllowed(true);
62 // HRESULT hr = DoDragDrop(...); // Implicitly runs a modal message loop here.
63 // MessageLoop::current()->SetNestableTasksAllowed(old_state);
64 // // Process hr (the result returned by DoDragDrop().
66 // Please be SURE your task is reentrant (nestable) and all global variables
67 // are stable and accessible before calling SetNestableTasksAllowed(true).
69 class BASE_API MessageLoop
: public base::MessagePump::Delegate
{
72 typedef base::MessagePumpWin::Dispatcher Dispatcher
;
73 typedef base::MessagePumpForUI::Observer Observer
;
74 #elif !defined(OS_MACOSX)
76 typedef base::MessagePumpGlibXDispatcher Dispatcher
;
78 typedef base::MessagePumpForUI::Dispatcher Dispatcher
;
80 typedef base::MessagePumpForUI::Observer Observer
;
83 // A MessageLoop has a particular type, which indicates the set of
84 // asynchronous events it may process in addition to tasks and timers.
87 // This type of ML only supports tasks and timers.
90 // This type of ML also supports native UI events (e.g., Windows messages).
91 // See also MessageLoopForUI.
94 // This type of ML also supports asynchronous IO. See also
103 // Normally, it is not necessary to instantiate a MessageLoop. Instead, it
104 // is typical to make use of the current thread's MessageLoop instance.
105 explicit MessageLoop(Type type
= TYPE_DEFAULT
);
108 // Returns the MessageLoop object for the current thread, or null if none.
109 static MessageLoop
* current();
111 static void EnableHistogrammer(bool enable_histogrammer
);
113 // A DestructionObserver is notified when the current MessageLoop is being
114 // destroyed. These obsevers are notified prior to MessageLoop::current()
115 // being changed to return NULL. This gives interested parties the chance to
116 // do final cleanup that depends on the MessageLoop.
118 // NOTE: Any tasks posted to the MessageLoop during this notification will
119 // not be run. Instead, they will be deleted.
121 class BASE_API DestructionObserver
{
123 virtual void WillDestroyCurrentMessageLoop() = 0;
126 virtual ~DestructionObserver();
129 // Add a DestructionObserver, which will start receiving notifications
131 void AddDestructionObserver(DestructionObserver
* destruction_observer
);
133 // Remove a DestructionObserver. It is safe to call this method while a
134 // DestructionObserver is receiving a notification callback.
135 void RemoveDestructionObserver(DestructionObserver
* destruction_observer
);
137 // The "PostTask" family of methods call the task's Run method asynchronously
138 // from within a message loop at some point in the future.
140 // With the PostTask variant, tasks are invoked in FIFO order, inter-mixed
141 // with normal UI or IO event processing. With the PostDelayedTask variant,
142 // tasks are called after at least approximately 'delay_ms' have elapsed.
144 // The NonNestable variants work similarly except that they promise never to
145 // dispatch the task from a nested invocation of MessageLoop::Run. Instead,
146 // such tasks get deferred until the top-most MessageLoop::Run is executing.
148 // The MessageLoop takes ownership of the Task, and deletes it after it has
151 // NOTE: These methods may be called on any thread. The Task will be invoked
152 // on the thread that executes MessageLoop::Run().
155 const tracked_objects::Location
& from_here
, Task
* task
);
157 void PostDelayedTask(
158 const tracked_objects::Location
& from_here
, Task
* task
, int64 delay_ms
);
160 void PostNonNestableTask(
161 const tracked_objects::Location
& from_here
, Task
* task
);
163 void PostNonNestableDelayedTask(
164 const tracked_objects::Location
& from_here
, Task
* task
, int64 delay_ms
);
166 // A variant on PostTask that deletes the given object. This is useful
167 // if the object needs to live until the next run of the MessageLoop (for
168 // example, deleting a RenderProcessHost from within an IPC callback is not
171 // NOTE: This method may be called on any thread. The object will be deleted
172 // on the thread that executes MessageLoop::Run(). If this is not the same
173 // as the thread that calls PostDelayedTask(FROM_HERE, ), then T MUST inherit
174 // from RefCountedThreadSafe<T>!
176 void DeleteSoon(const tracked_objects::Location
& from_here
, const T
* object
) {
177 PostNonNestableTask(from_here
, new DeleteTask
<T
>(object
));
180 // A variant on PostTask that releases the given reference counted object
181 // (by calling its Release method). This is useful if the object needs to
182 // live until the next run of the MessageLoop, or if the object needs to be
183 // released on a particular thread.
185 // NOTE: This method may be called on any thread. The object will be
186 // released (and thus possibly deleted) on the thread that executes
187 // MessageLoop::Run(). If this is not the same as the thread that calls
188 // PostDelayedTask(FROM_HERE, ), then T MUST inherit from
189 // RefCountedThreadSafe<T>!
191 void ReleaseSoon(const tracked_objects::Location
& from_here
,
193 PostNonNestableTask(from_here
, new ReleaseTask
<T
>(object
));
196 // Run the message loop.
199 // Process all pending tasks, windows messages, etc., but don't wait/sleep.
200 // Return as soon as all items that can be run are taken care of.
201 void RunAllPending();
203 // Signals the Run method to return after it is done processing all pending
204 // messages. This method may only be called on the same thread that called
205 // Run, and Run must still be on the call stack.
207 // Use QuitTask if you need to Quit another thread's MessageLoop, but note
208 // that doing so is fairly dangerous if the target thread makes nested calls
209 // to MessageLoop::Run. The problem being that you won't know which nested
210 // run loop you are quiting, so be careful!
214 // This method is a variant of Quit, that does not wait for pending messages
215 // to be processed before returning from Run.
218 // Invokes Quit on the current MessageLoop when run. Useful to schedule an
219 // arbitrary MessageLoop to Quit.
220 class QuitTask
: public Task
{
223 MessageLoop::current()->Quit();
227 // Returns the type passed to the constructor.
228 Type
type() const { return type_
; }
230 // Optional call to connect the thread name with this loop.
231 void set_thread_name(const std::string
& thread_name
) {
232 DCHECK(thread_name_
.empty()) << "Should not rename this thread!";
233 thread_name_
= thread_name
;
235 const std::string
& thread_name() const { return thread_name_
; }
237 // Enables or disables the recursive task processing. This happens in the case
238 // of recursive message loops. Some unwanted message loop may occurs when
239 // using common controls or printer functions. By default, recursive task
240 // processing is disabled.
242 // The specific case where tasks get queued is:
243 // - The thread is running a message loop.
244 // - It receives a task #1 and execute it.
245 // - The task #1 implicitly start a message loop, like a MessageBox in the
246 // unit test. This can also be StartDoc or GetSaveFileName.
247 // - The thread receives a task #2 before or while in this second message
249 // - With NestableTasksAllowed set to true, the task #2 will run right away.
250 // Otherwise, it will get executed right after task #1 completes at "thread
251 // message loop level".
252 void SetNestableTasksAllowed(bool allowed
);
253 bool NestableTasksAllowed() const;
255 // Enables nestable tasks on |loop| while in scope.
256 class ScopedNestableTaskAllower
{
258 explicit ScopedNestableTaskAllower(MessageLoop
* loop
)
260 old_state_(loop_
->NestableTasksAllowed()) {
261 loop_
->SetNestableTasksAllowed(true);
263 ~ScopedNestableTaskAllower() {
264 loop_
->SetNestableTasksAllowed(old_state_
);
272 // Enables or disables the restoration during an exception of the unhandled
273 // exception filter that was active when Run() was called. This can happen
274 // if some third party code call SetUnhandledExceptionFilter() and never
275 // restores the previous filter.
276 void set_exception_restoration(bool restore
) {
277 exception_restoration_
= restore
;
280 // Returns true if we are currently running a nested message loop.
283 // A TaskObserver is an object that receives task notifications from the
286 // NOTE: A TaskObserver implementation should be extremely fast!
287 class BASE_API TaskObserver
{
291 // This method is called before processing a task.
292 virtual void WillProcessTask(const Task
* task
) = 0;
294 // This method is called after processing a task.
295 virtual void DidProcessTask(const Task
* task
) = 0;
298 virtual ~TaskObserver();
301 // These functions can only be called on the same thread that |this| is
303 void AddTaskObserver(TaskObserver
* task_observer
);
304 void RemoveTaskObserver(TaskObserver
* task_observer
);
306 // Returns true if the message loop has high resolution timers enabled.
307 // Provided for testing.
308 bool high_resolution_timers_enabled() {
310 return !high_resolution_timer_expiration_
.is_null();
316 // When we go into high resolution timer mode, we will stay in hi-res mode
318 static const int kHighResolutionTimerModeLeaseTimeMs
= 1000;
320 // Asserts that the MessageLoop is "idle".
321 void AssertIdle() const;
324 void set_os_modal_loop(bool os_modal_loop
) {
325 os_modal_loop_
= os_modal_loop
;
328 bool os_modal_loop() const {
329 return os_modal_loop_
;
333 //----------------------------------------------------------------------------
336 // Used to count how many Run() invocations are on the stack.
339 // Used to record that Quit() was called, or that we should quit the pump
340 // once it becomes idle.
343 #if !defined(OS_MACOSX)
344 Dispatcher
* dispatcher
;
348 class AutoRunState
: RunState
{
350 explicit AutoRunState(MessageLoop
* loop
);
354 RunState
* previous_state_
;
357 // This structure is copied around by value.
359 PendingTask(Task
* task
, bool nestable
)
360 : task(task
), sequence_num(0), nestable(nestable
) {
363 // Used to support sorting.
364 bool operator<(const PendingTask
& other
) const;
366 Task
* task
; // The task to run.
367 base::TimeTicks delayed_run_time
; // The time when the task should be run.
368 int sequence_num
; // Secondary sort key for run time.
369 bool nestable
; // OK to dispatch from a nested loop.
372 class TaskQueue
: public std::queue
<PendingTask
> {
374 void Swap(TaskQueue
* queue
) {
375 c
.swap(queue
->c
); // Calls std::deque::swap
379 typedef std::priority_queue
<PendingTask
> DelayedTaskQueue
;
382 base::MessagePumpWin
* pump_win() {
383 return static_cast<base::MessagePumpWin
*>(pump_
.get());
385 #elif defined(OS_POSIX)
386 base::MessagePumpLibevent
* pump_libevent() {
387 return static_cast<base::MessagePumpLibevent
*>(pump_
.get());
391 // A function to encapsulate all the exception handling capability in the
392 // stacks around the running of a main message loop. It will run the message
393 // loop in a SEH try block or not depending on the set_SEH_restoration()
394 // flag invoking respectively RunInternalInSEHFrame() or RunInternal().
398 __declspec(noinline
) void RunInternalInSEHFrame();
401 // A surrounding stack frame around the running of the message loop that
402 // supports all saving and restoring of state, as is needed for any/all (ugly)
406 // Called to process any delayed non-nestable tasks.
407 bool ProcessNextDelayedNonNestableTask();
409 // Runs the specified task and deletes it.
410 void RunTask(Task
* task
);
412 // Calls RunTask or queues the pending_task on the deferred task list if it
413 // cannot be run right now. Returns true if the task was run.
414 bool DeferOrRunPendingTask(const PendingTask
& pending_task
);
416 // Adds the pending task to delayed_work_queue_.
417 void AddToDelayedWorkQueue(const PendingTask
& pending_task
);
419 // Load tasks from the incoming_queue_ into work_queue_ if the latter is
420 // empty. The former requires a lock to access, while the latter is directly
421 // accessible on this thread.
422 void ReloadWorkQueue();
424 // Delete tasks that haven't run yet without running them. Used in the
425 // destructor to make sure all the task's destructors get called. Returns
426 // true if some work was done.
427 bool DeletePendingTasks();
429 // Post a task to our incomming queue.
430 void PostTask_Helper(const tracked_objects::Location
& from_here
, Task
* task
,
431 int64 delay_ms
, bool nestable
);
433 // Start recording histogram info about events and action IF it was enabled
434 // and IF the statistics recorder can accept a registration of our histogram.
435 void StartHistogrammer();
437 // Add occurence of event to our histogram, so that we can see what is being
438 // done in a specific MessageLoop instance (i.e., specific thread).
439 // If message_histogram_ is NULL, this is a no-op.
440 void HistogramEvent(int event
);
442 // base::MessagePump::Delegate methods:
443 virtual bool DoWork();
444 virtual bool DoDelayedWork(base::TimeTicks
* next_delayed_work_time
);
445 virtual bool DoIdleWork();
449 // A list of tasks that need to be processed by this instance. Note that
450 // this queue is only accessed (push/pop) by our current thread.
451 TaskQueue work_queue_
;
453 // Contains delayed tasks, sorted by their 'delayed_run_time' property.
454 DelayedTaskQueue delayed_work_queue_
;
456 // A recent snapshot of Time::Now(), used to check delayed_work_queue_.
457 base::TimeTicks recent_time_
;
459 // A queue of non-nestable tasks that we had to defer because when it came
460 // time to execute them we were in a nested message loop. They will execute
461 // once we're out of nested message loops.
462 TaskQueue deferred_non_nestable_work_queue_
;
464 scoped_refptr
<base::MessagePump
> pump_
;
466 ObserverList
<DestructionObserver
> destruction_observers_
;
468 // A recursion block that prevents accidentally running additonal tasks when
469 // insider a (accidentally induced?) nested message pump.
470 bool nestable_tasks_allowed_
;
472 bool exception_restoration_
;
474 std::string thread_name_
;
475 // A profiling histogram showing the counts of various messages and events.
476 base::Histogram
* message_histogram_
;
478 // A null terminated list which creates an incoming_queue of tasks that are
479 // acquired under a mutex for processing on this instance's thread. These
480 // tasks have not yet been sorted out into items for our work_queue_ vs
481 // items that will be handled by the TimerManager.
482 TaskQueue incoming_queue_
;
483 // Protect access to incoming_queue_.
484 mutable base::Lock incoming_queue_lock_
;
489 base::TimeTicks high_resolution_timer_expiration_
;
490 // Should be set to true before calling Windows APIs like TrackPopupMenu, etc
491 // which enter a modal message loop.
495 // The next sequence number to use for delayed tasks.
496 int next_sequence_num_
;
498 ObserverList
<TaskObserver
> task_observers_
;
501 DISALLOW_COPY_AND_ASSIGN(MessageLoop
);
504 //-----------------------------------------------------------------------------
505 // MessageLoopForUI extends MessageLoop with methods that are particular to a
506 // MessageLoop instantiated with TYPE_UI.
508 // This class is typically used like so:
509 // MessageLoopForUI::current()->...call some method...
511 class BASE_API MessageLoopForUI
: public MessageLoop
{
513 MessageLoopForUI() : MessageLoop(TYPE_UI
) {
516 // Returns the MessageLoopForUI of the current thread.
517 static MessageLoopForUI
* current() {
518 MessageLoop
* loop
= MessageLoop::current();
519 DCHECK_EQ(MessageLoop::TYPE_UI
, loop
->type());
520 return static_cast<MessageLoopForUI
*>(loop
);
524 void DidProcessMessage(const MSG
& message
);
525 #endif // defined(OS_WIN)
528 // Returns the Xlib Display that backs the MessagePump for this MessageLoop.
530 // This allows for raw access to the X11 server in situations where our
531 // abstractions do not provide enough power.
533 // Be careful how this is used. The MessagePump in general expects
534 // exclusive access to the Display. Calling things like XNextEvent() will
535 // likely break things in subtle, hard to detect, ways.
536 Display
* GetDisplay();
537 #endif // defined(OS_X11)
539 #if !defined(OS_MACOSX)
540 // Please see message_pump_win/message_pump_glib for definitions of these
542 void AddObserver(Observer
* observer
);
543 void RemoveObserver(Observer
* observer
);
544 void Run(Dispatcher
* dispatcher
);
547 // TODO(rvargas): Make this platform independent.
548 base::MessagePumpForUI
* pump_ui() {
549 return static_cast<base::MessagePumpForUI
*>(pump_
.get());
551 #endif // !defined(OS_MACOSX)
554 // Do not add any member variables to MessageLoopForUI! This is important b/c
555 // MessageLoopForUI is often allocated via MessageLoop(TYPE_UI). Any extra
556 // data that you need should be stored on the MessageLoop's pump_ instance.
557 COMPILE_ASSERT(sizeof(MessageLoop
) == sizeof(MessageLoopForUI
),
558 MessageLoopForUI_should_not_have_extra_member_variables
);
560 //-----------------------------------------------------------------------------
561 // MessageLoopForIO extends MessageLoop with methods that are particular to a
562 // MessageLoop instantiated with TYPE_IO.
564 // This class is typically used like so:
565 // MessageLoopForIO::current()->...call some method...
567 class BASE_API MessageLoopForIO
: public MessageLoop
{
570 typedef base::MessagePumpForIO::IOHandler IOHandler
;
571 typedef base::MessagePumpForIO::IOContext IOContext
;
572 typedef base::MessagePumpForIO::IOObserver IOObserver
;
573 #elif defined(OS_POSIX)
574 typedef base::MessagePumpLibevent::Watcher Watcher
;
575 typedef base::MessagePumpLibevent::FileDescriptorWatcher
576 FileDescriptorWatcher
;
577 typedef base::MessagePumpLibevent::IOObserver IOObserver
;
580 WATCH_READ
= base::MessagePumpLibevent::WATCH_READ
,
581 WATCH_WRITE
= base::MessagePumpLibevent::WATCH_WRITE
,
582 WATCH_READ_WRITE
= base::MessagePumpLibevent::WATCH_READ_WRITE
587 MessageLoopForIO() : MessageLoop(TYPE_IO
) {
590 // Returns the MessageLoopForIO of the current thread.
591 static MessageLoopForIO
* current() {
592 MessageLoop
* loop
= MessageLoop::current();
593 DCHECK_EQ(MessageLoop::TYPE_IO
, loop
->type());
594 return static_cast<MessageLoopForIO
*>(loop
);
597 void AddIOObserver(IOObserver
* io_observer
) {
598 pump_io()->AddIOObserver(io_observer
);
601 void RemoveIOObserver(IOObserver
* io_observer
) {
602 pump_io()->RemoveIOObserver(io_observer
);
606 // Please see MessagePumpWin for definitions of these methods.
607 void RegisterIOHandler(HANDLE file_handle
, IOHandler
* handler
);
608 bool WaitForIOCompletion(DWORD timeout
, IOHandler
* filter
);
611 // TODO(rvargas): Make this platform independent.
612 base::MessagePumpForIO
* pump_io() {
613 return static_cast<base::MessagePumpForIO
*>(pump_
.get());
616 #elif defined(OS_POSIX)
617 // Please see MessagePumpLibevent for definition.
618 bool WatchFileDescriptor(int fd
,
621 FileDescriptorWatcher
*controller
,
625 base::MessagePumpLibevent
* pump_io() {
626 return static_cast<base::MessagePumpLibevent
*>(pump_
.get());
628 #endif // defined(OS_POSIX)
631 // Do not add any member variables to MessageLoopForIO! This is important b/c
632 // MessageLoopForIO is often allocated via MessageLoop(TYPE_IO). Any extra
633 // data that you need should be stored on the MessageLoop's pump_ instance.
634 COMPILE_ASSERT(sizeof(MessageLoop
) == sizeof(MessageLoopForIO
),
635 MessageLoopForIO_should_not_have_extra_member_variables
);
637 #endif // BASE_MESSAGE_LOOP_H_