Roll DEPS for libelf clang compilation fix.
[chromium-blink-merge.git] / third_party / libwebp / utils / huffman.c
blob8c5739f633d4377abf4ae629eca21630ecca0516
1 // Copyright 2012 Google Inc. All Rights Reserved.
2 //
3 // Use of this source code is governed by a BSD-style license
4 // that can be found in the COPYING file in the root of the source
5 // tree. An additional intellectual property rights grant can be found
6 // in the file PATENTS. All contributing project authors may
7 // be found in the AUTHORS file in the root of the source tree.
8 // -----------------------------------------------------------------------------
9 //
10 // Utilities for building and looking up Huffman trees.
12 // Author: Urvang Joshi (urvang@google.com)
14 #include <assert.h>
15 #include <stdlib.h>
16 #include <string.h>
17 #include "./huffman.h"
18 #include "../utils/utils.h"
19 #include "../webp/format_constants.h"
21 // Uncomment the following to use look-up table for ReverseBits()
22 // (might be faster on some platform)
23 // #define USE_LUT_REVERSE_BITS
25 #define NON_EXISTENT_SYMBOL (-1)
27 static void TreeNodeInit(HuffmanTreeNode* const node) {
28 node->children_ = -1; // means: 'unassigned so far'
31 static int NodeIsEmpty(const HuffmanTreeNode* const node) {
32 return (node->children_ < 0);
35 static int IsFull(const HuffmanTree* const tree) {
36 return (tree->num_nodes_ == tree->max_nodes_);
39 static void AssignChildren(HuffmanTree* const tree,
40 HuffmanTreeNode* const node) {
41 HuffmanTreeNode* const children = tree->root_ + tree->num_nodes_;
42 node->children_ = (int)(children - node);
43 assert(children - node == (int)(children - node));
44 tree->num_nodes_ += 2;
45 TreeNodeInit(children + 0);
46 TreeNodeInit(children + 1);
49 static int TreeInit(HuffmanTree* const tree, int num_leaves) {
50 assert(tree != NULL);
51 if (num_leaves == 0) return 0;
52 // We allocate maximum possible nodes in the tree at once.
53 // Note that a Huffman tree is a full binary tree; and in a full binary tree
54 // with L leaves, the total number of nodes N = 2 * L - 1.
55 tree->max_nodes_ = 2 * num_leaves - 1;
56 assert(tree->max_nodes_ < (1 << 16)); // limit for the lut_jump_ table
57 tree->root_ = (HuffmanTreeNode*)WebPSafeMalloc((uint64_t)tree->max_nodes_,
58 sizeof(*tree->root_));
59 if (tree->root_ == NULL) return 0;
60 TreeNodeInit(tree->root_); // Initialize root.
61 tree->num_nodes_ = 1;
62 memset(tree->lut_bits_, 255, sizeof(tree->lut_bits_));
63 memset(tree->lut_jump_, 0, sizeof(tree->lut_jump_));
64 return 1;
67 void HuffmanTreeRelease(HuffmanTree* const tree) {
68 if (tree != NULL) {
69 free(tree->root_);
70 tree->root_ = NULL;
71 tree->max_nodes_ = 0;
72 tree->num_nodes_ = 0;
76 int HuffmanCodeLengthsToCodes(const int* const code_lengths,
77 int code_lengths_size, int* const huff_codes) {
78 int symbol;
79 int code_len;
80 int code_length_hist[MAX_ALLOWED_CODE_LENGTH + 1] = { 0 };
81 int curr_code;
82 int next_codes[MAX_ALLOWED_CODE_LENGTH + 1] = { 0 };
83 int max_code_length = 0;
85 assert(code_lengths != NULL);
86 assert(code_lengths_size > 0);
87 assert(huff_codes != NULL);
89 // Calculate max code length.
90 for (symbol = 0; symbol < code_lengths_size; ++symbol) {
91 if (code_lengths[symbol] > max_code_length) {
92 max_code_length = code_lengths[symbol];
95 if (max_code_length > MAX_ALLOWED_CODE_LENGTH) return 0;
97 // Calculate code length histogram.
98 for (symbol = 0; symbol < code_lengths_size; ++symbol) {
99 ++code_length_hist[code_lengths[symbol]];
101 code_length_hist[0] = 0;
103 // Calculate the initial values of 'next_codes' for each code length.
104 // next_codes[code_len] denotes the code to be assigned to the next symbol
105 // of code length 'code_len'.
106 curr_code = 0;
107 next_codes[0] = -1; // Unused, as code length = 0 implies code doesn't exist.
108 for (code_len = 1; code_len <= max_code_length; ++code_len) {
109 curr_code = (curr_code + code_length_hist[code_len - 1]) << 1;
110 next_codes[code_len] = curr_code;
113 // Get symbols.
114 for (symbol = 0; symbol < code_lengths_size; ++symbol) {
115 if (code_lengths[symbol] > 0) {
116 huff_codes[symbol] = next_codes[code_lengths[symbol]]++;
117 } else {
118 huff_codes[symbol] = NON_EXISTENT_SYMBOL;
121 return 1;
124 #ifndef USE_LUT_REVERSE_BITS
126 static int ReverseBitsShort(int bits, int num_bits) {
127 int retval = 0;
128 int i;
129 assert(num_bits <= 8); // Not a hard requirement, just for coherency.
130 for (i = 0; i < num_bits; ++i) {
131 retval <<= 1;
132 retval |= bits & 1;
133 bits >>= 1;
135 return retval;
138 #else
140 static const uint8_t kReversedBits[16] = { // Pre-reversed 4-bit values.
141 0x0, 0x8, 0x4, 0xc, 0x2, 0xa, 0x6, 0xe,
142 0x1, 0x9, 0x5, 0xd, 0x3, 0xb, 0x7, 0xf
145 static int ReverseBitsShort(int bits, int num_bits) {
146 const uint8_t v = (kReversedBits[bits & 0xf] << 4) | kReversedBits[bits >> 4];
147 assert(num_bits <= 8);
148 return v >> (8 - num_bits);
151 #endif
153 static int TreeAddSymbol(HuffmanTree* const tree,
154 int symbol, int code, int code_length) {
155 int step = HUFF_LUT_BITS;
156 int base_code;
157 HuffmanTreeNode* node = tree->root_;
158 const HuffmanTreeNode* const max_node = tree->root_ + tree->max_nodes_;
159 assert(symbol == (int16_t)symbol);
160 if (code_length <= HUFF_LUT_BITS) {
161 int i;
162 base_code = ReverseBitsShort(code, code_length);
163 for (i = 0; i < (1 << (HUFF_LUT_BITS - code_length)); ++i) {
164 const int idx = base_code | (i << code_length);
165 tree->lut_symbol_[idx] = (int16_t)symbol;
166 tree->lut_bits_[idx] = code_length;
168 } else {
169 base_code = ReverseBitsShort((code >> (code_length - HUFF_LUT_BITS)),
170 HUFF_LUT_BITS);
172 while (code_length-- > 0) {
173 if (node >= max_node) {
174 return 0;
176 if (NodeIsEmpty(node)) {
177 if (IsFull(tree)) return 0; // error: too many symbols.
178 AssignChildren(tree, node);
179 } else if (!HuffmanTreeNodeIsNotLeaf(node)) {
180 return 0; // leaf is already occupied.
182 node += node->children_ + ((code >> code_length) & 1);
183 if (--step == 0) {
184 tree->lut_jump_[base_code] = (int16_t)(node - tree->root_);
187 if (NodeIsEmpty(node)) {
188 node->children_ = 0; // turn newly created node into a leaf.
189 } else if (HuffmanTreeNodeIsNotLeaf(node)) {
190 return 0; // trying to assign a symbol to already used code.
192 node->symbol_ = symbol; // Add symbol in this node.
193 return 1;
196 int HuffmanTreeBuildImplicit(HuffmanTree* const tree,
197 const int* const code_lengths,
198 int code_lengths_size) {
199 int symbol;
200 int num_symbols = 0;
201 int root_symbol = 0;
203 assert(tree != NULL);
204 assert(code_lengths != NULL);
206 // Find out number of symbols and the root symbol.
207 for (symbol = 0; symbol < code_lengths_size; ++symbol) {
208 if (code_lengths[symbol] > 0) {
209 // Note: code length = 0 indicates non-existent symbol.
210 ++num_symbols;
211 root_symbol = symbol;
215 // Initialize the tree. Will fail for num_symbols = 0
216 if (!TreeInit(tree, num_symbols)) return 0;
218 // Build tree.
219 if (num_symbols == 1) { // Trivial case.
220 const int max_symbol = code_lengths_size;
221 if (root_symbol < 0 || root_symbol >= max_symbol) {
222 HuffmanTreeRelease(tree);
223 return 0;
225 return TreeAddSymbol(tree, root_symbol, 0, 0);
226 } else { // Normal case.
227 int ok = 0;
229 // Get Huffman codes from the code lengths.
230 int* const codes =
231 (int*)WebPSafeMalloc((uint64_t)code_lengths_size, sizeof(*codes));
232 if (codes == NULL) goto End;
234 if (!HuffmanCodeLengthsToCodes(code_lengths, code_lengths_size, codes)) {
235 goto End;
238 // Add symbols one-by-one.
239 for (symbol = 0; symbol < code_lengths_size; ++symbol) {
240 if (code_lengths[symbol] > 0) {
241 if (!TreeAddSymbol(tree, symbol, codes[symbol], code_lengths[symbol])) {
242 goto End;
246 ok = 1;
247 End:
248 free(codes);
249 ok = ok && IsFull(tree);
250 if (!ok) HuffmanTreeRelease(tree);
251 return ok;
255 int HuffmanTreeBuildExplicit(HuffmanTree* const tree,
256 const int* const code_lengths,
257 const int* const codes,
258 const int* const symbols, int max_symbol,
259 int num_symbols) {
260 int ok = 0;
261 int i;
263 assert(tree != NULL);
264 assert(code_lengths != NULL);
265 assert(codes != NULL);
266 assert(symbols != NULL);
268 // Initialize the tree. Will fail if num_symbols = 0.
269 if (!TreeInit(tree, num_symbols)) return 0;
271 // Add symbols one-by-one.
272 for (i = 0; i < num_symbols; ++i) {
273 if (codes[i] != NON_EXISTENT_SYMBOL) {
274 if (symbols[i] < 0 || symbols[i] >= max_symbol) {
275 goto End;
277 if (!TreeAddSymbol(tree, symbols[i], codes[i], code_lengths[i])) {
278 goto End;
282 ok = 1;
283 End:
284 ok = ok && IsFull(tree);
285 if (!ok) HuffmanTreeRelease(tree);
286 return ok;