1 // Copyright 2012 Google Inc. All Rights Reserved.
3 // Use of this source code is governed by a BSD-style license
4 // that can be found in the COPYING file in the root of the source
5 // tree. An additional intellectual property rights grant can be found
6 // in the file PATENTS. All contributing project authors may
7 // be found in the AUTHORS file in the root of the source tree.
8 // -----------------------------------------------------------------------------
10 // Utilities for building and looking up Huffman trees.
12 // Author: Urvang Joshi (urvang@google.com)
17 #include "./huffman.h"
18 #include "../utils/utils.h"
19 #include "../webp/format_constants.h"
21 // Uncomment the following to use look-up table for ReverseBits()
22 // (might be faster on some platform)
23 // #define USE_LUT_REVERSE_BITS
25 #define NON_EXISTENT_SYMBOL (-1)
27 static void TreeNodeInit(HuffmanTreeNode
* const node
) {
28 node
->children_
= -1; // means: 'unassigned so far'
31 static int NodeIsEmpty(const HuffmanTreeNode
* const node
) {
32 return (node
->children_
< 0);
35 static int IsFull(const HuffmanTree
* const tree
) {
36 return (tree
->num_nodes_
== tree
->max_nodes_
);
39 static void AssignChildren(HuffmanTree
* const tree
,
40 HuffmanTreeNode
* const node
) {
41 HuffmanTreeNode
* const children
= tree
->root_
+ tree
->num_nodes_
;
42 node
->children_
= (int)(children
- node
);
43 assert(children
- node
== (int)(children
- node
));
44 tree
->num_nodes_
+= 2;
45 TreeNodeInit(children
+ 0);
46 TreeNodeInit(children
+ 1);
49 static int TreeInit(HuffmanTree
* const tree
, int num_leaves
) {
51 if (num_leaves
== 0) return 0;
52 // We allocate maximum possible nodes in the tree at once.
53 // Note that a Huffman tree is a full binary tree; and in a full binary tree
54 // with L leaves, the total number of nodes N = 2 * L - 1.
55 tree
->max_nodes_
= 2 * num_leaves
- 1;
56 assert(tree
->max_nodes_
< (1 << 16)); // limit for the lut_jump_ table
57 tree
->root_
= (HuffmanTreeNode
*)WebPSafeMalloc((uint64_t)tree
->max_nodes_
,
58 sizeof(*tree
->root_
));
59 if (tree
->root_
== NULL
) return 0;
60 TreeNodeInit(tree
->root_
); // Initialize root.
62 memset(tree
->lut_bits_
, 255, sizeof(tree
->lut_bits_
));
63 memset(tree
->lut_jump_
, 0, sizeof(tree
->lut_jump_
));
67 void HuffmanTreeRelease(HuffmanTree
* const tree
) {
76 int HuffmanCodeLengthsToCodes(const int* const code_lengths
,
77 int code_lengths_size
, int* const huff_codes
) {
80 int code_length_hist
[MAX_ALLOWED_CODE_LENGTH
+ 1] = { 0 };
82 int next_codes
[MAX_ALLOWED_CODE_LENGTH
+ 1] = { 0 };
83 int max_code_length
= 0;
85 assert(code_lengths
!= NULL
);
86 assert(code_lengths_size
> 0);
87 assert(huff_codes
!= NULL
);
89 // Calculate max code length.
90 for (symbol
= 0; symbol
< code_lengths_size
; ++symbol
) {
91 if (code_lengths
[symbol
] > max_code_length
) {
92 max_code_length
= code_lengths
[symbol
];
95 if (max_code_length
> MAX_ALLOWED_CODE_LENGTH
) return 0;
97 // Calculate code length histogram.
98 for (symbol
= 0; symbol
< code_lengths_size
; ++symbol
) {
99 ++code_length_hist
[code_lengths
[symbol
]];
101 code_length_hist
[0] = 0;
103 // Calculate the initial values of 'next_codes' for each code length.
104 // next_codes[code_len] denotes the code to be assigned to the next symbol
105 // of code length 'code_len'.
107 next_codes
[0] = -1; // Unused, as code length = 0 implies code doesn't exist.
108 for (code_len
= 1; code_len
<= max_code_length
; ++code_len
) {
109 curr_code
= (curr_code
+ code_length_hist
[code_len
- 1]) << 1;
110 next_codes
[code_len
] = curr_code
;
114 for (symbol
= 0; symbol
< code_lengths_size
; ++symbol
) {
115 if (code_lengths
[symbol
] > 0) {
116 huff_codes
[symbol
] = next_codes
[code_lengths
[symbol
]]++;
118 huff_codes
[symbol
] = NON_EXISTENT_SYMBOL
;
124 #ifndef USE_LUT_REVERSE_BITS
126 static int ReverseBitsShort(int bits
, int num_bits
) {
129 assert(num_bits
<= 8); // Not a hard requirement, just for coherency.
130 for (i
= 0; i
< num_bits
; ++i
) {
140 static const uint8_t kReversedBits
[16] = { // Pre-reversed 4-bit values.
141 0x0, 0x8, 0x4, 0xc, 0x2, 0xa, 0x6, 0xe,
142 0x1, 0x9, 0x5, 0xd, 0x3, 0xb, 0x7, 0xf
145 static int ReverseBitsShort(int bits
, int num_bits
) {
146 const uint8_t v
= (kReversedBits
[bits
& 0xf] << 4) | kReversedBits
[bits
>> 4];
147 assert(num_bits
<= 8);
148 return v
>> (8 - num_bits
);
153 static int TreeAddSymbol(HuffmanTree
* const tree
,
154 int symbol
, int code
, int code_length
) {
155 int step
= HUFF_LUT_BITS
;
157 HuffmanTreeNode
* node
= tree
->root_
;
158 const HuffmanTreeNode
* const max_node
= tree
->root_
+ tree
->max_nodes_
;
159 assert(symbol
== (int16_t)symbol
);
160 if (code_length
<= HUFF_LUT_BITS
) {
162 base_code
= ReverseBitsShort(code
, code_length
);
163 for (i
= 0; i
< (1 << (HUFF_LUT_BITS
- code_length
)); ++i
) {
164 const int idx
= base_code
| (i
<< code_length
);
165 tree
->lut_symbol_
[idx
] = (int16_t)symbol
;
166 tree
->lut_bits_
[idx
] = code_length
;
169 base_code
= ReverseBitsShort((code
>> (code_length
- HUFF_LUT_BITS
)),
172 while (code_length
-- > 0) {
173 if (node
>= max_node
) {
176 if (NodeIsEmpty(node
)) {
177 if (IsFull(tree
)) return 0; // error: too many symbols.
178 AssignChildren(tree
, node
);
179 } else if (!HuffmanTreeNodeIsNotLeaf(node
)) {
180 return 0; // leaf is already occupied.
182 node
+= node
->children_
+ ((code
>> code_length
) & 1);
184 tree
->lut_jump_
[base_code
] = (int16_t)(node
- tree
->root_
);
187 if (NodeIsEmpty(node
)) {
188 node
->children_
= 0; // turn newly created node into a leaf.
189 } else if (HuffmanTreeNodeIsNotLeaf(node
)) {
190 return 0; // trying to assign a symbol to already used code.
192 node
->symbol_
= symbol
; // Add symbol in this node.
196 int HuffmanTreeBuildImplicit(HuffmanTree
* const tree
,
197 const int* const code_lengths
,
198 int code_lengths_size
) {
203 assert(tree
!= NULL
);
204 assert(code_lengths
!= NULL
);
206 // Find out number of symbols and the root symbol.
207 for (symbol
= 0; symbol
< code_lengths_size
; ++symbol
) {
208 if (code_lengths
[symbol
] > 0) {
209 // Note: code length = 0 indicates non-existent symbol.
211 root_symbol
= symbol
;
215 // Initialize the tree. Will fail for num_symbols = 0
216 if (!TreeInit(tree
, num_symbols
)) return 0;
219 if (num_symbols
== 1) { // Trivial case.
220 const int max_symbol
= code_lengths_size
;
221 if (root_symbol
< 0 || root_symbol
>= max_symbol
) {
222 HuffmanTreeRelease(tree
);
225 return TreeAddSymbol(tree
, root_symbol
, 0, 0);
226 } else { // Normal case.
229 // Get Huffman codes from the code lengths.
231 (int*)WebPSafeMalloc((uint64_t)code_lengths_size
, sizeof(*codes
));
232 if (codes
== NULL
) goto End
;
234 if (!HuffmanCodeLengthsToCodes(code_lengths
, code_lengths_size
, codes
)) {
238 // Add symbols one-by-one.
239 for (symbol
= 0; symbol
< code_lengths_size
; ++symbol
) {
240 if (code_lengths
[symbol
] > 0) {
241 if (!TreeAddSymbol(tree
, symbol
, codes
[symbol
], code_lengths
[symbol
])) {
249 ok
= ok
&& IsFull(tree
);
250 if (!ok
) HuffmanTreeRelease(tree
);
255 int HuffmanTreeBuildExplicit(HuffmanTree
* const tree
,
256 const int* const code_lengths
,
257 const int* const codes
,
258 const int* const symbols
, int max_symbol
,
263 assert(tree
!= NULL
);
264 assert(code_lengths
!= NULL
);
265 assert(codes
!= NULL
);
266 assert(symbols
!= NULL
);
268 // Initialize the tree. Will fail if num_symbols = 0.
269 if (!TreeInit(tree
, num_symbols
)) return 0;
271 // Add symbols one-by-one.
272 for (i
= 0; i
< num_symbols
; ++i
) {
273 if (codes
[i
] != NON_EXISTENT_SYMBOL
) {
274 if (symbols
[i
] < 0 || symbols
[i
] >= max_symbol
) {
277 if (!TreeAddSymbol(tree
, symbols
[i
], codes
[i
], code_lengths
[i
])) {
284 ok
= ok
&& IsFull(tree
);
285 if (!ok
) HuffmanTreeRelease(tree
);