Supervised user whitelists: Cleanup
[chromium-blink-merge.git] / courgette / disassembler_win32_x86.cc
blobbb300d979273cc511a68a660323f36cbf83891ba
1 // Copyright (c) 2011 The Chromium Authors. All rights reserved.
2 // Use of this source code is governed by a BSD-style license that can be
3 // found in the LICENSE file.
5 #include "courgette/disassembler_win32_x86.h"
7 #include <algorithm>
8 #include <string>
9 #include <vector>
11 #include "base/basictypes.h"
12 #include "base/logging.h"
14 #include "courgette/assembly_program.h"
15 #include "courgette/courgette.h"
16 #include "courgette/encoded_program.h"
18 namespace courgette {
20 DisassemblerWin32X86::DisassemblerWin32X86(const void* start, size_t length)
21 : Disassembler(start, length),
22 incomplete_disassembly_(false),
23 is_PE32_plus_(false),
24 optional_header_(NULL),
25 size_of_optional_header_(0),
26 offset_of_data_directories_(0),
27 machine_type_(0),
28 number_of_sections_(0),
29 sections_(NULL),
30 has_text_section_(false),
31 size_of_code_(0),
32 size_of_initialized_data_(0),
33 size_of_uninitialized_data_(0),
34 base_of_code_(0),
35 base_of_data_(0),
36 image_base_(0),
37 size_of_image_(0),
38 number_of_data_directories_(0) {
41 // ParseHeader attempts to match up the buffer with the Windows data
42 // structures that exist within a Windows 'Portable Executable' format file.
43 // Returns 'true' if the buffer matches, and 'false' if the data looks
44 // suspicious. Rather than try to 'map' the buffer to the numerous windows
45 // structures, we extract the information we need into the courgette::PEInfo
46 // structure.
48 bool DisassemblerWin32X86::ParseHeader() {
49 if (length() < kOffsetOfFileAddressOfNewExeHeader + 4 /*size*/)
50 return Bad("Too small");
52 // Have 'MZ' magic for a DOS header?
53 if (start()[0] != 'M' || start()[1] != 'Z')
54 return Bad("Not MZ");
56 // offset from DOS header to PE header is stored in DOS header.
57 uint32 offset = ReadU32(start(),
58 kOffsetOfFileAddressOfNewExeHeader);
60 if (offset >= length())
61 return Bad("Bad offset to PE header");
63 const uint8* const pe_header = OffsetToPointer(offset);
64 const size_t kMinPEHeaderSize = 4 /*signature*/ + kSizeOfCoffHeader;
65 if (pe_header <= start() ||
66 pe_header >= end() - kMinPEHeaderSize)
67 return Bad("Bad offset to PE header");
69 if (offset % 8 != 0)
70 return Bad("Misaligned PE header");
72 // The 'PE' header is an IMAGE_NT_HEADERS structure as defined in WINNT.H.
73 // See http://msdn.microsoft.com/en-us/library/ms680336(VS.85).aspx
75 // The first field of the IMAGE_NT_HEADERS is the signature.
76 if (!(pe_header[0] == 'P' &&
77 pe_header[1] == 'E' &&
78 pe_header[2] == 0 &&
79 pe_header[3] == 0))
80 return Bad("no PE signature");
82 // The second field of the IMAGE_NT_HEADERS is the COFF header.
83 // The COFF header is also called an IMAGE_FILE_HEADER
84 // http://msdn.microsoft.com/en-us/library/ms680313(VS.85).aspx
85 const uint8* const coff_header = pe_header + 4;
86 machine_type_ = ReadU16(coff_header, 0);
87 number_of_sections_ = ReadU16(coff_header, 2);
88 size_of_optional_header_ = ReadU16(coff_header, 16);
90 // The rest of the IMAGE_NT_HEADERS is the IMAGE_OPTIONAL_HEADER(32|64)
91 const uint8* const optional_header = coff_header + kSizeOfCoffHeader;
92 optional_header_ = optional_header;
94 if (optional_header + size_of_optional_header_ >= end())
95 return Bad("optional header past end of file");
97 // Check we can read the magic.
98 if (size_of_optional_header_ < 2)
99 return Bad("optional header no magic");
101 uint16 magic = ReadU16(optional_header, 0);
103 if (magic == kImageNtOptionalHdr32Magic) {
104 is_PE32_plus_ = false;
105 offset_of_data_directories_ =
106 kOffsetOfDataDirectoryFromImageOptionalHeader32;
107 } else if (magic == kImageNtOptionalHdr64Magic) {
108 is_PE32_plus_ = true;
109 offset_of_data_directories_ =
110 kOffsetOfDataDirectoryFromImageOptionalHeader64;
111 } else {
112 return Bad("unrecognized magic");
115 // Check that we can read the rest of the the fixed fields. Data directories
116 // directly follow the fixed fields of the IMAGE_OPTIONAL_HEADER.
117 if (size_of_optional_header_ < offset_of_data_directories_)
118 return Bad("optional header too short");
120 // The optional header is either an IMAGE_OPTIONAL_HEADER32 or
121 // IMAGE_OPTIONAL_HEADER64
122 // http://msdn.microsoft.com/en-us/library/ms680339(VS.85).aspx
124 // Copy the fields we care about.
125 size_of_code_ = ReadU32(optional_header, 4);
126 size_of_initialized_data_ = ReadU32(optional_header, 8);
127 size_of_uninitialized_data_ = ReadU32(optional_header, 12);
128 base_of_code_ = ReadU32(optional_header, 20);
129 if (is_PE32_plus_) {
130 base_of_data_ = 0;
131 image_base_ = ReadU64(optional_header, 24);
132 } else {
133 base_of_data_ = ReadU32(optional_header, 24);
134 image_base_ = ReadU32(optional_header, 28);
136 size_of_image_ = ReadU32(optional_header, 56);
137 number_of_data_directories_ =
138 ReadU32(optional_header, (is_PE32_plus_ ? 108 : 92));
140 if (size_of_code_ >= length() ||
141 size_of_initialized_data_ >= length() ||
142 size_of_code_ + size_of_initialized_data_ >= length()) {
143 // This validation fires on some perfectly fine executables.
144 // return Bad("code or initialized data too big");
147 // TODO(sra): we can probably get rid of most of the data directories.
148 bool b = true;
149 // 'b &= ...' could be short circuit 'b = b && ...' but it is not necessary
150 // for correctness and it compiles smaller this way.
151 b &= ReadDataDirectory(0, &export_table_);
152 b &= ReadDataDirectory(1, &import_table_);
153 b &= ReadDataDirectory(2, &resource_table_);
154 b &= ReadDataDirectory(3, &exception_table_);
155 b &= ReadDataDirectory(5, &base_relocation_table_);
156 b &= ReadDataDirectory(11, &bound_import_table_);
157 b &= ReadDataDirectory(12, &import_address_table_);
158 b &= ReadDataDirectory(13, &delay_import_descriptor_);
159 b &= ReadDataDirectory(14, &clr_runtime_header_);
160 if (!b) {
161 return Bad("malformed data directory");
164 // Sections follow the optional header.
165 sections_ =
166 reinterpret_cast<const Section*>(optional_header +
167 size_of_optional_header_);
168 size_t detected_length = 0;
170 for (int i = 0; i < number_of_sections_; ++i) {
171 const Section* section = &sections_[i];
173 // TODO(sra): consider using the 'characteristics' field of the section
174 // header to see if the section contains instructions.
175 if (memcmp(section->name, ".text", 6) == 0)
176 has_text_section_ = true;
178 uint32 section_end =
179 section->file_offset_of_raw_data + section->size_of_raw_data;
180 if (section_end > detected_length)
181 detected_length = section_end;
184 // Pretend our in-memory copy is only as long as our detected length.
185 ReduceLength(detected_length);
187 if (!is_32bit()) {
188 return Bad("64 bit executables are not supported by this disassembler");
191 if (!has_text_section()) {
192 return Bad("Resource-only executables are not yet supported");
195 return Good();
198 bool DisassemblerWin32X86::Disassemble(AssemblyProgram* target) {
199 if (!ok())
200 return false;
202 target->set_image_base(image_base());
204 if (!ParseAbs32Relocs())
205 return false;
207 ParseRel32RelocsFromSections();
209 if (!ParseFile(target))
210 return false;
212 target->DefaultAssignIndexes();
214 return true;
217 ////////////////////////////////////////////////////////////////////////////////
219 bool DisassemblerWin32X86::ParseRelocs(std::vector<RVA> *relocs) {
220 relocs->clear();
222 size_t relocs_size = base_relocation_table_.size_;
223 if (relocs_size == 0)
224 return true;
226 // The format of the base relocation table is a sequence of variable sized
227 // IMAGE_BASE_RELOCATION blocks. Search for
228 // "The format of the base relocation data is somewhat quirky"
229 // at http://msdn.microsoft.com/en-us/library/ms809762.aspx
231 const uint8* relocs_start = RVAToPointer(base_relocation_table_.address_);
232 const uint8* relocs_end = relocs_start + relocs_size;
234 // Make sure entire base relocation table is within the buffer.
235 if (relocs_start < start() ||
236 relocs_start >= end() ||
237 relocs_end <= start() ||
238 relocs_end > end()) {
239 return Bad(".relocs outside image");
242 const uint8* block = relocs_start;
244 // Walk the variable sized blocks.
245 while (block + 8 < relocs_end) {
246 RVA page_rva = ReadU32(block, 0);
247 uint32 size = ReadU32(block, 4);
248 if (size < 8 || // Size includes header ...
249 size % 4 != 0) // ... and is word aligned.
250 return Bad("unreasonable relocs block");
252 const uint8* end_entries = block + size;
254 if (end_entries <= block ||
255 end_entries <= start() ||
256 end_entries > end())
257 return Bad(".relocs block outside image");
259 // Walk through the two-byte entries.
260 for (const uint8* p = block + 8; p < end_entries; p += 2) {
261 uint16 entry = ReadU16(p, 0);
262 int type = entry >> 12;
263 int offset = entry & 0xFFF;
265 RVA rva = page_rva + offset;
266 if (type == 3) { // IMAGE_REL_BASED_HIGHLOW
267 relocs->push_back(rva);
268 } else if (type == 0) { // IMAGE_REL_BASED_ABSOLUTE
269 // Ignore, used as padding.
270 } else {
271 // Does not occur in Windows x86 executables.
272 return Bad("unknown type of reloc");
276 block += size;
279 std::sort(relocs->begin(), relocs->end());
281 return true;
284 const Section* DisassemblerWin32X86::RVAToSection(RVA rva) const {
285 for (int i = 0; i < number_of_sections_; i++) {
286 const Section* section = &sections_[i];
287 uint32 offset = rva - section->virtual_address;
288 if (offset < section->virtual_size) {
289 return section;
292 return NULL;
295 int DisassemblerWin32X86::RVAToFileOffset(RVA rva) const {
296 const Section* section = RVAToSection(rva);
297 if (section) {
298 uint32 offset = rva - section->virtual_address;
299 if (offset < section->size_of_raw_data) {
300 return section->file_offset_of_raw_data + offset;
301 } else {
302 return kNoOffset; // In section but not in file (e.g. uninit data).
306 // Small RVA values point into the file header in the loaded image.
307 // RVA 0 is the module load address which Windows uses as the module handle.
308 // RVA 2 sometimes occurs, I'm not sure what it is, but it would map into the
309 // DOS header.
310 if (rva == 0 || rva == 2)
311 return rva;
313 NOTREACHED();
314 return kNoOffset;
317 const uint8* DisassemblerWin32X86::RVAToPointer(RVA rva) const {
318 int file_offset = RVAToFileOffset(rva);
319 if (file_offset == kNoOffset)
320 return NULL;
321 else
322 return OffsetToPointer(file_offset);
325 std::string DisassemblerWin32X86::SectionName(const Section* section) {
326 if (section == NULL)
327 return "<none>";
328 char name[9];
329 memcpy(name, section->name, 8);
330 name[8] = '\0'; // Ensure termination.
331 return name;
334 CheckBool DisassemblerWin32X86::ParseFile(AssemblyProgram* program) {
335 // Walk all the bytes in the file, whether or not in a section.
336 uint32 file_offset = 0;
337 while (file_offset < length()) {
338 const Section* section = FindNextSection(file_offset);
339 if (section == NULL) {
340 // No more sections. There should not be extra stuff following last
341 // section.
342 // ParseNonSectionFileRegion(file_offset, pe_info().length(), program);
343 break;
345 if (file_offset < section->file_offset_of_raw_data) {
346 uint32 section_start_offset = section->file_offset_of_raw_data;
347 if(!ParseNonSectionFileRegion(file_offset, section_start_offset,
348 program))
349 return false;
351 file_offset = section_start_offset;
353 uint32 end = file_offset + section->size_of_raw_data;
354 if (!ParseFileRegion(section, file_offset, end, program))
355 return false;
356 file_offset = end;
359 #if COURGETTE_HISTOGRAM_TARGETS
360 HistogramTargets("abs32 relocs", abs32_target_rvas_);
361 HistogramTargets("rel32 relocs", rel32_target_rvas_);
362 #endif
364 return true;
367 bool DisassemblerWin32X86::ParseAbs32Relocs() {
368 abs32_locations_.clear();
369 if (!ParseRelocs(&abs32_locations_))
370 return false;
372 std::sort(abs32_locations_.begin(), abs32_locations_.end());
374 #if COURGETTE_HISTOGRAM_TARGETS
375 for (size_t i = 0; i < abs32_locations_.size(); ++i) {
376 RVA rva = abs32_locations_[i];
377 // The 4 bytes at the relocation are a reference to some address.
378 uint32 target_address = Read32LittleEndian(RVAToPointer(rva));
379 ++abs32_target_rvas_[target_address - image_base()];
381 #endif
382 return true;
385 void DisassemblerWin32X86::ParseRel32RelocsFromSections() {
386 uint32 file_offset = 0;
387 while (file_offset < length()) {
388 const Section* section = FindNextSection(file_offset);
389 if (section == NULL)
390 break;
391 if (file_offset < section->file_offset_of_raw_data)
392 file_offset = section->file_offset_of_raw_data;
393 ParseRel32RelocsFromSection(section);
394 file_offset += section->size_of_raw_data;
396 std::sort(rel32_locations_.begin(), rel32_locations_.end());
398 #if COURGETTE_HISTOGRAM_TARGETS
399 VLOG(1) << "abs32_locations_ " << abs32_locations_.size()
400 << "\nrel32_locations_ " << rel32_locations_.size()
401 << "\nabs32_target_rvas_ " << abs32_target_rvas_.size()
402 << "\nrel32_target_rvas_ " << rel32_target_rvas_.size();
404 int common = 0;
405 std::map<RVA, int>::iterator abs32_iter = abs32_target_rvas_.begin();
406 std::map<RVA, int>::iterator rel32_iter = rel32_target_rvas_.begin();
407 while (abs32_iter != abs32_target_rvas_.end() &&
408 rel32_iter != rel32_target_rvas_.end()) {
409 if (abs32_iter->first < rel32_iter->first)
410 ++abs32_iter;
411 else if (rel32_iter->first < abs32_iter->first)
412 ++rel32_iter;
413 else {
414 ++common;
415 ++abs32_iter;
416 ++rel32_iter;
419 VLOG(1) << "common " << common;
420 #endif
423 void DisassemblerWin32X86::ParseRel32RelocsFromSection(const Section* section) {
424 // TODO(sra): use characteristic.
425 bool isCode = strcmp(section->name, ".text") == 0;
426 if (!isCode)
427 return;
429 uint32 start_file_offset = section->file_offset_of_raw_data;
430 uint32 end_file_offset = start_file_offset + section->size_of_raw_data;
431 RVA relocs_start_rva = base_relocation_table().address_;
433 const uint8* start_pointer = OffsetToPointer(start_file_offset);
434 const uint8* end_pointer = OffsetToPointer(end_file_offset);
436 RVA start_rva = FileOffsetToRVA(start_file_offset);
437 RVA end_rva = start_rva + section->virtual_size;
439 // Quick way to convert from Pointer to RVA within a single Section is to
440 // subtract 'pointer_to_rva'.
441 const uint8* const adjust_pointer_to_rva = start_pointer - start_rva;
443 std::vector<RVA>::iterator abs32_pos = abs32_locations_.begin();
445 // Find the rel32 relocations.
446 const uint8* p = start_pointer;
447 while (p < end_pointer) {
448 RVA current_rva = static_cast<RVA>(p - adjust_pointer_to_rva);
449 if (current_rva == relocs_start_rva) {
450 uint32 relocs_size = base_relocation_table().size_;
451 if (relocs_size) {
452 p += relocs_size;
453 continue;
457 //while (abs32_pos != abs32_locations_.end() && *abs32_pos < current_rva)
458 // ++abs32_pos;
460 // Heuristic discovery of rel32 locations in instruction stream: are the
461 // next few bytes the start of an instruction containing a rel32
462 // addressing mode?
463 const uint8* rel32 = NULL;
465 if (p + 5 <= end_pointer) {
466 if (*p == 0xE8 || *p == 0xE9) { // jmp rel32 and call rel32
467 rel32 = p + 1;
470 if (p + 6 <= end_pointer) {
471 if (*p == 0x0F && (*(p+1) & 0xF0) == 0x80) { // Jcc long form
472 if (p[1] != 0x8A && p[1] != 0x8B) // JPE/JPO unlikely
473 rel32 = p + 2;
476 if (rel32) {
477 RVA rel32_rva = static_cast<RVA>(rel32 - adjust_pointer_to_rva);
479 // Is there an abs32 reloc overlapping the candidate?
480 while (abs32_pos != abs32_locations_.end() && *abs32_pos < rel32_rva - 3)
481 ++abs32_pos;
482 // Now: (*abs32_pos > rel32_rva - 4) i.e. the lowest addressed 4-byte
483 // region that could overlap rel32_rva.
484 if (abs32_pos != abs32_locations_.end()) {
485 if (*abs32_pos < rel32_rva + 4) {
486 // Beginning of abs32 reloc is before end of rel32 reloc so they
487 // overlap. Skip four bytes past the abs32 reloc.
488 p += (*abs32_pos + 4) - current_rva;
489 continue;
493 RVA target_rva = rel32_rva + 4 + Read32LittleEndian(rel32);
494 // To be valid, rel32 target must be within image, and within this
495 // section.
496 if (IsValidRVA(target_rva) &&
497 start_rva <= target_rva && target_rva < end_rva) {
498 rel32_locations_.push_back(rel32_rva);
499 #if COURGETTE_HISTOGRAM_TARGETS
500 ++rel32_target_rvas_[target_rva];
501 #endif
502 p = rel32 + 4;
503 continue;
506 p += 1;
510 CheckBool DisassemblerWin32X86::ParseNonSectionFileRegion(
511 uint32 start_file_offset,
512 uint32 end_file_offset,
513 AssemblyProgram* program) {
514 if (incomplete_disassembly_)
515 return true;
517 if (end_file_offset > start_file_offset) {
518 if (!program->EmitBytesInstruction(OffsetToPointer(start_file_offset),
519 end_file_offset - start_file_offset)) {
520 return false;
524 return true;
527 CheckBool DisassemblerWin32X86::ParseFileRegion(
528 const Section* section,
529 uint32 start_file_offset, uint32 end_file_offset,
530 AssemblyProgram* program) {
531 RVA relocs_start_rva = base_relocation_table().address_;
533 const uint8* start_pointer = OffsetToPointer(start_file_offset);
534 const uint8* end_pointer = OffsetToPointer(end_file_offset);
536 RVA start_rva = FileOffsetToRVA(start_file_offset);
537 RVA end_rva = start_rva + section->virtual_size;
539 // Quick way to convert from Pointer to RVA within a single Section is to
540 // subtract 'pointer_to_rva'.
541 const uint8* const adjust_pointer_to_rva = start_pointer - start_rva;
543 std::vector<RVA>::iterator rel32_pos = rel32_locations_.begin();
544 std::vector<RVA>::iterator abs32_pos = abs32_locations_.begin();
546 if (!program->EmitOriginInstruction(start_rva))
547 return false;
549 const uint8* p = start_pointer;
551 while (p < end_pointer) {
552 RVA current_rva = static_cast<RVA>(p - adjust_pointer_to_rva);
554 // The base relocation table is usually in the .relocs section, but it could
555 // actually be anywhere. Make sure we skip it because we will regenerate it
556 // during assembly.
557 if (current_rva == relocs_start_rva) {
558 if (!program->EmitPeRelocsInstruction())
559 return false;
560 uint32 relocs_size = base_relocation_table().size_;
561 if (relocs_size) {
562 p += relocs_size;
563 continue;
567 while (abs32_pos != abs32_locations_.end() && *abs32_pos < current_rva)
568 ++abs32_pos;
570 if (abs32_pos != abs32_locations_.end() && *abs32_pos == current_rva) {
571 uint32 target_address = Read32LittleEndian(p);
572 RVA target_rva = target_address - image_base();
573 // TODO(sra): target could be Label+offset. It is not clear how to guess
574 // which it might be. We assume offset==0.
575 if (!program->EmitAbs32(program->FindOrMakeAbs32Label(target_rva)))
576 return false;
577 p += 4;
578 continue;
581 while (rel32_pos != rel32_locations_.end() && *rel32_pos < current_rva)
582 ++rel32_pos;
584 if (rel32_pos != rel32_locations_.end() && *rel32_pos == current_rva) {
585 RVA target_rva = current_rva + 4 + Read32LittleEndian(p);
586 if (!program->EmitRel32(program->FindOrMakeRel32Label(target_rva)))
587 return false;
588 p += 4;
589 continue;
592 if (incomplete_disassembly_) {
593 if ((abs32_pos == abs32_locations_.end() || end_rva <= *abs32_pos) &&
594 (rel32_pos == rel32_locations_.end() || end_rva <= *rel32_pos) &&
595 (end_rva <= relocs_start_rva || current_rva >= relocs_start_rva)) {
596 // No more relocs in this section, don't bother encoding bytes.
597 break;
601 if (!program->EmitByteInstruction(*p))
602 return false;
603 p += 1;
606 return true;
609 #if COURGETTE_HISTOGRAM_TARGETS
610 // Histogram is printed to std::cout. It is purely for debugging the algorithm
611 // and is only enabled manually in 'exploration' builds. I don't want to add
612 // command-line configuration for this feature because this code has to be
613 // small, which means compiled-out.
614 void DisassemblerWin32X86::HistogramTargets(const char* kind,
615 const std::map<RVA, int>& map) {
616 int total = 0;
617 std::map<int, std::vector<RVA> > h;
618 for (std::map<RVA, int>::const_iterator p = map.begin();
619 p != map.end();
620 ++p) {
621 h[p->second].push_back(p->first);
622 total += p->second;
625 std::cout << total << " " << kind << " to "
626 << map.size() << " unique targets" << std::endl;
628 std::cout << "indegree: #targets-with-indegree (example)" << std::endl;
629 const int kFirstN = 15;
630 bool someSkipped = false;
631 int index = 0;
632 for (std::map<int, std::vector<RVA> >::reverse_iterator p = h.rbegin();
633 p != h.rend();
634 ++p) {
635 ++index;
636 if (index <= kFirstN || p->first <= 3) {
637 if (someSkipped) {
638 std::cout << "..." << std::endl;
640 size_t count = p->second.size();
641 std::cout << std::dec << p->first << ": " << count;
642 if (count <= 2) {
643 for (size_t i = 0; i < count; ++i)
644 std::cout << " " << DescribeRVA(p->second[i]);
646 std::cout << std::endl;
647 someSkipped = false;
648 } else {
649 someSkipped = true;
653 #endif // COURGETTE_HISTOGRAM_TARGETS
656 // DescribeRVA is for debugging only. I would put it under #ifdef DEBUG except
657 // that during development I'm finding I need to call it when compiled in
658 // Release mode. Hence:
659 // TODO(sra): make this compile only for debug mode.
660 std::string DisassemblerWin32X86::DescribeRVA(RVA rva) const {
661 const Section* section = RVAToSection(rva);
662 std::ostringstream s;
663 s << std::hex << rva;
664 if (section) {
665 s << " (";
666 s << SectionName(section) << "+"
667 << std::hex << (rva - section->virtual_address)
668 << ")";
670 return s.str();
673 const Section* DisassemblerWin32X86::FindNextSection(uint32 fileOffset) const {
674 const Section* best = 0;
675 for (int i = 0; i < number_of_sections_; i++) {
676 const Section* section = &sections_[i];
677 if (section->size_of_raw_data > 0) { // i.e. has data in file.
678 if (fileOffset <= section->file_offset_of_raw_data) {
679 if (best == 0 ||
680 section->file_offset_of_raw_data < best->file_offset_of_raw_data) {
681 best = section;
686 return best;
689 RVA DisassemblerWin32X86::FileOffsetToRVA(uint32 file_offset) const {
690 for (int i = 0; i < number_of_sections_; i++) {
691 const Section* section = &sections_[i];
692 uint32 offset = file_offset - section->file_offset_of_raw_data;
693 if (offset < section->size_of_raw_data) {
694 return section->virtual_address + offset;
697 return 0;
700 bool DisassemblerWin32X86::ReadDataDirectory(
701 int index,
702 ImageDataDirectory* directory) {
704 if (index < number_of_data_directories_) {
705 size_t offset = index * 8 + offset_of_data_directories_;
706 if (offset >= size_of_optional_header_)
707 return Bad("number of data directories inconsistent");
708 const uint8* data_directory = optional_header_ + offset;
709 if (data_directory < start() ||
710 data_directory + 8 >= end())
711 return Bad("data directory outside image");
712 RVA rva = ReadU32(data_directory, 0);
713 size_t size = ReadU32(data_directory, 4);
714 if (size > size_of_image_)
715 return Bad("data directory size too big");
717 // TODO(sra): validate RVA.
718 directory->address_ = rva;
719 directory->size_ = static_cast<uint32>(size);
720 return true;
721 } else {
722 directory->address_ = 0;
723 directory->size_ = 0;
724 return true;
728 } // namespace courgette