Supervised user whitelists: Cleanup
[chromium-blink-merge.git] / net / cert / cert_verify_proc_nss.cc
blob1236f41dda43036f5a76343710f1cc8938bafaaa
1 // Copyright (c) 2012 The Chromium Authors. All rights reserved.
2 // Use of this source code is governed by a BSD-style license that can be
3 // found in the LICENSE file.
5 #include "net/cert/cert_verify_proc_nss.h"
7 #include <string>
8 #include <vector>
10 #include <cert.h>
11 #include <nss.h>
12 #include <prerror.h>
13 #include <secerr.h>
14 #include <sechash.h>
15 #include <sslerr.h>
17 #include "base/logging.h"
18 #include "crypto/nss_util.h"
19 #include "crypto/scoped_nss_types.h"
20 #include "crypto/sha2.h"
21 #include "net/base/net_errors.h"
22 #include "net/cert/asn1_util.h"
23 #include "net/cert/cert_status_flags.h"
24 #include "net/cert/cert_verifier.h"
25 #include "net/cert/cert_verify_result.h"
26 #include "net/cert/crl_set.h"
27 #include "net/cert/ev_root_ca_metadata.h"
28 #include "net/cert/x509_certificate.h"
29 #include "net/cert/x509_util_nss.h"
31 #if defined(OS_IOS)
32 #include <CommonCrypto/CommonDigest.h>
33 #include "net/cert/x509_util_ios.h"
34 #endif // defined(OS_IOS)
36 namespace net {
38 namespace {
40 typedef scoped_ptr<
41 CERTCertificatePolicies,
42 crypto::NSSDestroyer<CERTCertificatePolicies,
43 CERT_DestroyCertificatePoliciesExtension> >
44 ScopedCERTCertificatePolicies;
46 typedef scoped_ptr<
47 CERTCertList,
48 crypto::NSSDestroyer<CERTCertList, CERT_DestroyCertList> >
49 ScopedCERTCertList;
51 // ScopedCERTValOutParam manages destruction of values in the CERTValOutParam
52 // array that cvout points to. cvout must be initialized as passed to
53 // CERT_PKIXVerifyCert, so that the array must be terminated with
54 // cert_po_end type.
55 // When it goes out of scope, it destroys values of cert_po_trustAnchor
56 // and cert_po_certList types, but doesn't release the array itself.
57 class ScopedCERTValOutParam {
58 public:
59 explicit ScopedCERTValOutParam(CERTValOutParam* cvout) : cvout_(cvout) {}
61 ~ScopedCERTValOutParam() {
62 Clear();
65 // Free the internal resources, but do not release the array itself.
66 void Clear() {
67 if (cvout_ == NULL)
68 return;
69 for (CERTValOutParam *p = cvout_; p->type != cert_po_end; p++) {
70 switch (p->type) {
71 case cert_po_trustAnchor:
72 if (p->value.pointer.cert) {
73 CERT_DestroyCertificate(p->value.pointer.cert);
74 p->value.pointer.cert = NULL;
76 break;
77 case cert_po_certList:
78 if (p->value.pointer.chain) {
79 CERT_DestroyCertList(p->value.pointer.chain);
80 p->value.pointer.chain = NULL;
82 break;
83 default:
84 break;
89 private:
90 CERTValOutParam* cvout_;
92 DISALLOW_COPY_AND_ASSIGN(ScopedCERTValOutParam);
95 // Map PORT_GetError() return values to our network error codes.
96 int MapSecurityError(int err) {
97 switch (err) {
98 case PR_DIRECTORY_LOOKUP_ERROR: // DNS lookup error.
99 return ERR_NAME_NOT_RESOLVED;
100 case SEC_ERROR_INVALID_ARGS:
101 return ERR_INVALID_ARGUMENT;
102 case SSL_ERROR_BAD_CERT_DOMAIN:
103 return ERR_CERT_COMMON_NAME_INVALID;
104 case SEC_ERROR_INVALID_TIME:
105 case SEC_ERROR_EXPIRED_CERTIFICATE:
106 case SEC_ERROR_EXPIRED_ISSUER_CERTIFICATE:
107 return ERR_CERT_DATE_INVALID;
108 case SEC_ERROR_UNKNOWN_ISSUER:
109 case SEC_ERROR_UNTRUSTED_ISSUER:
110 case SEC_ERROR_CA_CERT_INVALID:
111 case SEC_ERROR_APPLICATION_CALLBACK_ERROR: // Rejected by
112 // chain_verify_callback.
113 return ERR_CERT_AUTHORITY_INVALID;
114 // TODO(port): map ERR_CERT_NO_REVOCATION_MECHANISM.
115 case SEC_ERROR_OCSP_BAD_HTTP_RESPONSE:
116 case SEC_ERROR_OCSP_SERVER_ERROR:
117 return ERR_CERT_UNABLE_TO_CHECK_REVOCATION;
118 case SEC_ERROR_REVOKED_CERTIFICATE:
119 case SEC_ERROR_UNTRUSTED_CERT: // Treat as revoked.
120 return ERR_CERT_REVOKED;
121 case SEC_ERROR_CERT_NOT_IN_NAME_SPACE:
122 return ERR_CERT_NAME_CONSTRAINT_VIOLATION;
123 case SEC_ERROR_BAD_DER:
124 case SEC_ERROR_BAD_SIGNATURE:
125 case SEC_ERROR_CERT_NOT_VALID:
126 // TODO(port): add an ERR_CERT_WRONG_USAGE error code.
127 case SEC_ERROR_CERT_USAGES_INVALID:
128 case SEC_ERROR_INADEQUATE_KEY_USAGE: // Key usage.
129 case SEC_ERROR_INADEQUATE_CERT_TYPE: // Extended key usage and whether
130 // the certificate is a CA.
131 case SEC_ERROR_POLICY_VALIDATION_FAILED:
132 case SEC_ERROR_PATH_LEN_CONSTRAINT_INVALID:
133 case SEC_ERROR_UNKNOWN_CRITICAL_EXTENSION:
134 case SEC_ERROR_EXTENSION_VALUE_INVALID:
135 return ERR_CERT_INVALID;
136 case SEC_ERROR_CERT_SIGNATURE_ALGORITHM_DISABLED:
137 return ERR_CERT_WEAK_SIGNATURE_ALGORITHM;
138 default:
139 LOG(WARNING) << "Unknown error " << err << " mapped to net::ERR_FAILED";
140 return ERR_FAILED;
144 // Map PORT_GetError() return values to our cert status flags.
145 CertStatus MapCertErrorToCertStatus(int err) {
146 int net_error = MapSecurityError(err);
147 return MapNetErrorToCertStatus(net_error);
150 // Saves some information about the certificate chain cert_list in
151 // *verify_result. The caller MUST initialize *verify_result before calling
152 // this function.
153 // Note that cert_list[0] is the end entity certificate.
154 void GetCertChainInfo(CERTCertList* cert_list,
155 CERTCertificate* root_cert,
156 CertVerifyResult* verify_result) {
157 DCHECK(cert_list);
159 CERTCertificate* verified_cert = NULL;
160 std::vector<CERTCertificate*> verified_chain;
161 int i = 0;
162 for (CERTCertListNode* node = CERT_LIST_HEAD(cert_list);
163 !CERT_LIST_END(node, cert_list);
164 node = CERT_LIST_NEXT(node), ++i) {
165 if (i == 0) {
166 verified_cert = node->cert;
167 } else {
168 // Because of an NSS bug, CERT_PKIXVerifyCert may chain a self-signed
169 // certificate of a root CA to another certificate of the same root CA
170 // key. Detect that error and ignore the root CA certificate.
171 // See https://bugzilla.mozilla.org/show_bug.cgi?id=721288.
172 if (node->cert->isRoot) {
173 // NOTE: isRoot doesn't mean the certificate is a trust anchor. It
174 // means the certificate is self-signed. Here we assume isRoot only
175 // implies the certificate is self-issued.
176 CERTCertListNode* next_node = CERT_LIST_NEXT(node);
177 CERTCertificate* next_cert;
178 if (!CERT_LIST_END(next_node, cert_list)) {
179 next_cert = next_node->cert;
180 } else {
181 next_cert = root_cert;
183 // Test that |node->cert| is actually a self-signed certificate
184 // whose key is equal to |next_cert|, and not a self-issued
185 // certificate signed by another key of the same CA.
186 if (next_cert && SECITEM_ItemsAreEqual(&node->cert->derPublicKey,
187 &next_cert->derPublicKey)) {
188 continue;
191 verified_chain.push_back(node->cert);
194 SECAlgorithmID& signature = node->cert->signature;
195 SECOidTag oid_tag = SECOID_FindOIDTag(&signature.algorithm);
196 switch (oid_tag) {
197 case SEC_OID_PKCS1_MD5_WITH_RSA_ENCRYPTION:
198 verify_result->has_md5 = true;
199 break;
200 case SEC_OID_PKCS1_MD2_WITH_RSA_ENCRYPTION:
201 verify_result->has_md2 = true;
202 break;
203 case SEC_OID_PKCS1_MD4_WITH_RSA_ENCRYPTION:
204 verify_result->has_md4 = true;
205 break;
206 case SEC_OID_PKCS1_SHA1_WITH_RSA_ENCRYPTION:
207 case SEC_OID_ISO_SHA1_WITH_RSA_SIGNATURE:
208 case SEC_OID_ANSIX9_DSA_SIGNATURE_WITH_SHA1_DIGEST:
209 case SEC_OID_ANSIX962_ECDSA_SHA1_SIGNATURE:
210 verify_result->has_sha1 = true;
211 break;
212 default:
213 break;
217 if (root_cert)
218 verified_chain.push_back(root_cert);
219 #if defined(OS_IOS)
220 verify_result->verified_cert =
221 x509_util_ios::CreateCertFromNSSHandles(verified_cert, verified_chain);
222 #else
223 verify_result->verified_cert =
224 X509Certificate::CreateFromHandle(verified_cert, verified_chain);
225 #endif // defined(OS_IOS)
228 // IsKnownRoot returns true if the given certificate is one that we believe
229 // is a standard (as opposed to user-installed) root.
230 bool IsKnownRoot(CERTCertificate* root) {
231 if (!root || !root->slot)
232 return false;
234 // This magic name is taken from
235 // http://bonsai.mozilla.org/cvsblame.cgi?file=mozilla/security/nss/lib/ckfw/builtins/constants.c&rev=1.13&mark=86,89#79
236 return 0 == strcmp(PK11_GetSlotName(root->slot),
237 "NSS Builtin Objects");
240 // Returns true if the given certificate is one of the additional trust anchors.
241 bool IsAdditionalTrustAnchor(CERTCertList* additional_trust_anchors,
242 CERTCertificate* root) {
243 if (!additional_trust_anchors || !root)
244 return false;
245 for (CERTCertListNode* node = CERT_LIST_HEAD(additional_trust_anchors);
246 !CERT_LIST_END(node, additional_trust_anchors);
247 node = CERT_LIST_NEXT(node)) {
248 if (CERT_CompareCerts(node->cert, root))
249 return true;
251 return false;
254 enum CRLSetResult {
255 kCRLSetOk,
256 kCRLSetRevoked,
257 kCRLSetUnknown,
260 // CheckRevocationWithCRLSet attempts to check each element of |cert_list|
261 // against |crl_set|. It returns:
262 // kCRLSetRevoked: if any element of the chain is known to have been revoked.
263 // kCRLSetUnknown: if there is no fresh information about the leaf
264 // certificate in the chain or if the CRLSet has expired.
266 // Only the leaf certificate is considered for coverage because some
267 // intermediates have CRLs with no revocations (after filtering) and
268 // those CRLs are pruned from the CRLSet at generation time. This means
269 // that some EV sites would otherwise take the hit of an OCSP lookup for
270 // no reason.
271 // kCRLSetOk: otherwise.
272 CRLSetResult CheckRevocationWithCRLSet(CERTCertList* cert_list,
273 CERTCertificate* root,
274 CRLSet* crl_set) {
275 std::vector<CERTCertificate*> certs;
277 if (cert_list) {
278 for (CERTCertListNode* node = CERT_LIST_HEAD(cert_list);
279 !CERT_LIST_END(node, cert_list);
280 node = CERT_LIST_NEXT(node)) {
281 certs.push_back(node->cert);
284 if (root)
285 certs.push_back(root);
287 // error is set to true if any errors are found. It causes such chains to be
288 // considered as not covered.
289 bool error = false;
290 // last_covered is set to the coverage state of the previous certificate. The
291 // certificates are iterated over backwards thus, after the iteration,
292 // |last_covered| contains the coverage state of the leaf certificate.
293 bool last_covered = false;
295 // We iterate from the root certificate down to the leaf, keeping track of
296 // the issuer's SPKI at each step.
297 std::string issuer_spki_hash;
298 for (std::vector<CERTCertificate*>::reverse_iterator i = certs.rbegin();
299 i != certs.rend(); ++i) {
300 CERTCertificate* cert = *i;
302 base::StringPiece der(reinterpret_cast<char*>(cert->derCert.data),
303 cert->derCert.len);
305 base::StringPiece spki;
306 if (!asn1::ExtractSPKIFromDERCert(der, &spki)) {
307 NOTREACHED();
308 error = true;
309 continue;
311 const std::string spki_hash = crypto::SHA256HashString(spki);
313 base::StringPiece serial_number = base::StringPiece(
314 reinterpret_cast<char*>(cert->serialNumber.data),
315 cert->serialNumber.len);
317 CRLSet::Result result = crl_set->CheckSPKI(spki_hash);
319 if (result != CRLSet::REVOKED && !issuer_spki_hash.empty())
320 result = crl_set->CheckSerial(serial_number, issuer_spki_hash);
322 issuer_spki_hash = spki_hash;
324 switch (result) {
325 case CRLSet::REVOKED:
326 return kCRLSetRevoked;
327 case CRLSet::UNKNOWN:
328 last_covered = false;
329 continue;
330 case CRLSet::GOOD:
331 last_covered = true;
332 continue;
333 default:
334 NOTREACHED();
335 error = true;
336 continue;
340 if (error || !last_covered || crl_set->IsExpired())
341 return kCRLSetUnknown;
342 return kCRLSetOk;
345 // Forward declarations.
346 SECStatus RetryPKIXVerifyCertWithWorkarounds(
347 CERTCertificate* cert_handle, int num_policy_oids,
348 bool cert_io_enabled, std::vector<CERTValInParam>* cvin,
349 CERTValOutParam* cvout);
350 SECOidTag GetFirstCertPolicy(CERTCertificate* cert_handle);
352 // Call CERT_PKIXVerifyCert for the cert_handle.
353 // Verification results are stored in an array of CERTValOutParam.
354 // If |hard_fail| is true, and no policy_oids are supplied (eg: EV is NOT being
355 // checked), then the failure to obtain valid CRL/OCSP information for all
356 // certificates that contain CRL/OCSP URLs will cause the certificate to be
357 // treated as if it was revoked. Since failures may be caused by transient
358 // network failures or by malicious attackers, in general, hard_fail should be
359 // false.
360 // If policy_oids is not NULL and num_policy_oids is positive, policies
361 // are also checked.
362 // additional_trust_anchors is an optional list of certificates that can be
363 // trusted as anchors when building a certificate chain.
364 // Caller must initialize cvout before calling this function.
365 SECStatus PKIXVerifyCert(CERTCertificate* cert_handle,
366 bool check_revocation,
367 bool hard_fail,
368 bool cert_io_enabled,
369 const SECOidTag* policy_oids,
370 int num_policy_oids,
371 CERTCertList* additional_trust_anchors,
372 CERTChainVerifyCallback* chain_verify_callback,
373 CERTValOutParam* cvout) {
374 bool use_crl = check_revocation;
375 bool use_ocsp = check_revocation;
377 PRUint64 revocation_method_flags =
378 CERT_REV_M_DO_NOT_TEST_USING_THIS_METHOD |
379 CERT_REV_M_ALLOW_NETWORK_FETCHING |
380 CERT_REV_M_IGNORE_IMPLICIT_DEFAULT_SOURCE |
381 CERT_REV_M_IGNORE_MISSING_FRESH_INFO |
382 CERT_REV_M_STOP_TESTING_ON_FRESH_INFO;
383 PRUint64 revocation_method_independent_flags =
384 CERT_REV_MI_TEST_ALL_LOCAL_INFORMATION_FIRST;
385 if (check_revocation && policy_oids && num_policy_oids > 0) {
386 // EV verification requires revocation checking. Consider the certificate
387 // revoked if we don't have revocation info.
388 // TODO(wtc): Add a bool parameter to expressly specify we're doing EV
389 // verification or we want strict revocation flags.
390 revocation_method_flags |= CERT_REV_M_REQUIRE_INFO_ON_MISSING_SOURCE;
391 revocation_method_independent_flags |=
392 CERT_REV_MI_REQUIRE_SOME_FRESH_INFO_AVAILABLE;
393 } else if (check_revocation && hard_fail) {
394 revocation_method_flags |= CERT_REV_M_FAIL_ON_MISSING_FRESH_INFO;
395 revocation_method_independent_flags |=
396 CERT_REV_MI_REQUIRE_SOME_FRESH_INFO_AVAILABLE;
397 } else {
398 revocation_method_flags |= CERT_REV_M_SKIP_TEST_ON_MISSING_SOURCE;
399 revocation_method_independent_flags |=
400 CERT_REV_MI_NO_OVERALL_INFO_REQUIREMENT;
402 PRUint64 method_flags[2];
403 method_flags[cert_revocation_method_crl] = revocation_method_flags;
404 method_flags[cert_revocation_method_ocsp] = revocation_method_flags;
406 if (use_crl) {
407 method_flags[cert_revocation_method_crl] |=
408 CERT_REV_M_TEST_USING_THIS_METHOD;
410 if (use_ocsp) {
411 method_flags[cert_revocation_method_ocsp] |=
412 CERT_REV_M_TEST_USING_THIS_METHOD;
415 CERTRevocationMethodIndex preferred_revocation_methods[1];
416 if (use_ocsp) {
417 preferred_revocation_methods[0] = cert_revocation_method_ocsp;
418 } else {
419 preferred_revocation_methods[0] = cert_revocation_method_crl;
422 CERTRevocationFlags revocation_flags;
423 revocation_flags.leafTests.number_of_defined_methods =
424 arraysize(method_flags);
425 revocation_flags.leafTests.cert_rev_flags_per_method = method_flags;
426 revocation_flags.leafTests.number_of_preferred_methods =
427 arraysize(preferred_revocation_methods);
428 revocation_flags.leafTests.preferred_methods = preferred_revocation_methods;
429 revocation_flags.leafTests.cert_rev_method_independent_flags =
430 revocation_method_independent_flags;
432 revocation_flags.chainTests.number_of_defined_methods =
433 arraysize(method_flags);
434 revocation_flags.chainTests.cert_rev_flags_per_method = method_flags;
435 revocation_flags.chainTests.number_of_preferred_methods =
436 arraysize(preferred_revocation_methods);
437 revocation_flags.chainTests.preferred_methods = preferred_revocation_methods;
438 revocation_flags.chainTests.cert_rev_method_independent_flags =
439 revocation_method_independent_flags;
442 std::vector<CERTValInParam> cvin;
443 cvin.reserve(7);
444 CERTValInParam in_param;
445 in_param.type = cert_pi_revocationFlags;
446 in_param.value.pointer.revocation = &revocation_flags;
447 cvin.push_back(in_param);
448 if (policy_oids && num_policy_oids > 0) {
449 in_param.type = cert_pi_policyOID;
450 in_param.value.arraySize = num_policy_oids;
451 in_param.value.array.oids = policy_oids;
452 cvin.push_back(in_param);
454 if (additional_trust_anchors) {
455 in_param.type = cert_pi_trustAnchors;
456 in_param.value.pointer.chain = additional_trust_anchors;
457 cvin.push_back(in_param);
458 in_param.type = cert_pi_useOnlyTrustAnchors;
459 in_param.value.scalar.b = PR_FALSE;
460 cvin.push_back(in_param);
462 if (chain_verify_callback) {
463 in_param.type = cert_pi_chainVerifyCallback;
464 in_param.value.pointer.chainVerifyCallback = chain_verify_callback;
465 cvin.push_back(in_param);
467 in_param.type = cert_pi_end;
468 cvin.push_back(in_param);
470 SECStatus rv = CERT_PKIXVerifyCert(cert_handle, certificateUsageSSLServer,
471 &cvin[0], cvout, NULL);
472 if (rv != SECSuccess) {
473 rv = RetryPKIXVerifyCertWithWorkarounds(cert_handle, num_policy_oids,
474 cert_io_enabled, &cvin, cvout);
476 return rv;
479 // PKIXVerifyCert calls this function to work around some bugs in
480 // CERT_PKIXVerifyCert. All the arguments of this function are either the
481 // arguments or local variables of PKIXVerifyCert.
482 SECStatus RetryPKIXVerifyCertWithWorkarounds(
483 CERTCertificate* cert_handle, int num_policy_oids,
484 bool cert_io_enabled, std::vector<CERTValInParam>* cvin,
485 CERTValOutParam* cvout) {
486 // We call this function when the first CERT_PKIXVerifyCert call in
487 // PKIXVerifyCert failed, so we initialize |rv| to SECFailure.
488 SECStatus rv = SECFailure;
489 int nss_error = PORT_GetError();
490 CERTValInParam in_param;
492 // If we get SEC_ERROR_UNKNOWN_ISSUER, we may be missing an intermediate
493 // CA certificate, so we retry with cert_pi_useAIACertFetch.
494 // cert_pi_useAIACertFetch has several bugs in its error handling and
495 // error reporting (NSS bug 528743), so we don't use it by default.
496 // Note: When building a certificate chain, CERT_PKIXVerifyCert may
497 // incorrectly pick a CA certificate with the same subject name as the
498 // missing intermediate CA certificate, and fail with the
499 // SEC_ERROR_BAD_SIGNATURE error (NSS bug 524013), so we also retry with
500 // cert_pi_useAIACertFetch on SEC_ERROR_BAD_SIGNATURE.
501 if (cert_io_enabled &&
502 (nss_error == SEC_ERROR_UNKNOWN_ISSUER ||
503 nss_error == SEC_ERROR_BAD_SIGNATURE)) {
504 DCHECK_EQ(cvin->back().type, cert_pi_end);
505 cvin->pop_back();
506 in_param.type = cert_pi_useAIACertFetch;
507 in_param.value.scalar.b = PR_TRUE;
508 cvin->push_back(in_param);
509 in_param.type = cert_pi_end;
510 cvin->push_back(in_param);
511 rv = CERT_PKIXVerifyCert(cert_handle, certificateUsageSSLServer,
512 &(*cvin)[0], cvout, NULL);
513 if (rv == SECSuccess)
514 return rv;
515 int new_nss_error = PORT_GetError();
516 if (new_nss_error == SEC_ERROR_INVALID_ARGS ||
517 new_nss_error == SEC_ERROR_UNKNOWN_AIA_LOCATION_TYPE ||
518 new_nss_error == SEC_ERROR_BAD_INFO_ACCESS_LOCATION ||
519 new_nss_error == SEC_ERROR_BAD_HTTP_RESPONSE ||
520 new_nss_error == SEC_ERROR_BAD_LDAP_RESPONSE ||
521 !IS_SEC_ERROR(new_nss_error)) {
522 // Use the original error code because of cert_pi_useAIACertFetch's
523 // bad error reporting.
524 PORT_SetError(nss_error);
525 return rv;
527 nss_error = new_nss_error;
530 // If an intermediate CA certificate has requireExplicitPolicy in its
531 // policyConstraints extension, CERT_PKIXVerifyCert fails with
532 // SEC_ERROR_POLICY_VALIDATION_FAILED because we didn't specify any
533 // certificate policy (NSS bug 552775). So we retry with the certificate
534 // policy found in the server certificate.
535 if (nss_error == SEC_ERROR_POLICY_VALIDATION_FAILED &&
536 num_policy_oids == 0) {
537 SECOidTag policy = GetFirstCertPolicy(cert_handle);
538 if (policy != SEC_OID_UNKNOWN) {
539 DCHECK_EQ(cvin->back().type, cert_pi_end);
540 cvin->pop_back();
541 in_param.type = cert_pi_policyOID;
542 in_param.value.arraySize = 1;
543 in_param.value.array.oids = &policy;
544 cvin->push_back(in_param);
545 in_param.type = cert_pi_end;
546 cvin->push_back(in_param);
547 rv = CERT_PKIXVerifyCert(cert_handle, certificateUsageSSLServer,
548 &(*cvin)[0], cvout, NULL);
549 if (rv != SECSuccess) {
550 // Use the original error code.
551 PORT_SetError(nss_error);
556 return rv;
559 // Decodes the certificatePolicies extension of the certificate. Returns
560 // NULL if the certificate doesn't have the extension or the extension can't
561 // be decoded. The returned value must be freed with a
562 // CERT_DestroyCertificatePoliciesExtension call.
563 CERTCertificatePolicies* DecodeCertPolicies(
564 CERTCertificate* cert_handle) {
565 SECItem policy_ext;
566 SECStatus rv = CERT_FindCertExtension(cert_handle,
567 SEC_OID_X509_CERTIFICATE_POLICIES,
568 &policy_ext);
569 if (rv != SECSuccess)
570 return NULL;
571 CERTCertificatePolicies* policies =
572 CERT_DecodeCertificatePoliciesExtension(&policy_ext);
573 SECITEM_FreeItem(&policy_ext, PR_FALSE);
574 return policies;
577 // Returns the OID tag for the first certificate policy in the certificate's
578 // certificatePolicies extension. Returns SEC_OID_UNKNOWN if the certificate
579 // has no certificate policy.
580 SECOidTag GetFirstCertPolicy(CERTCertificate* cert_handle) {
581 ScopedCERTCertificatePolicies policies(DecodeCertPolicies(cert_handle));
582 if (!policies.get())
583 return SEC_OID_UNKNOWN;
585 CERTPolicyInfo* policy_info = policies->policyInfos[0];
586 if (!policy_info)
587 return SEC_OID_UNKNOWN;
588 if (policy_info->oid != SEC_OID_UNKNOWN)
589 return policy_info->oid;
591 // The certificate policy is unknown to NSS. We need to create a dynamic
592 // OID tag for the policy.
593 SECOidData od;
594 od.oid.len = policy_info->policyID.len;
595 od.oid.data = policy_info->policyID.data;
596 od.offset = SEC_OID_UNKNOWN;
597 // NSS doesn't allow us to pass an empty description, so I use a hardcoded,
598 // default description here. The description doesn't need to be unique for
599 // each OID.
600 od.desc = "a certificate policy";
601 od.mechanism = CKM_INVALID_MECHANISM;
602 od.supportedExtension = INVALID_CERT_EXTENSION;
603 return SECOID_AddEntry(&od);
606 HashValue CertPublicKeyHashSHA1(CERTCertificate* cert) {
607 HashValue hash(HASH_VALUE_SHA1);
608 #if defined(OS_IOS)
609 CC_SHA1(cert->derPublicKey.data, cert->derPublicKey.len, hash.data());
610 #else
611 SECStatus rv = HASH_HashBuf(HASH_AlgSHA1, hash.data(),
612 cert->derPublicKey.data, cert->derPublicKey.len);
613 DCHECK_EQ(SECSuccess, rv);
614 #endif
615 return hash;
618 HashValue CertPublicKeyHashSHA256(CERTCertificate* cert) {
619 HashValue hash(HASH_VALUE_SHA256);
620 #if defined(OS_IOS)
621 CC_SHA256(cert->derPublicKey.data, cert->derPublicKey.len, hash.data());
622 #else
623 SECStatus rv = HASH_HashBuf(HASH_AlgSHA256, hash.data(),
624 cert->derPublicKey.data, cert->derPublicKey.len);
625 DCHECK_EQ(rv, SECSuccess);
626 #endif
627 return hash;
630 void AppendPublicKeyHashes(CERTCertList* cert_list,
631 CERTCertificate* root_cert,
632 HashValueVector* hashes) {
633 for (CERTCertListNode* node = CERT_LIST_HEAD(cert_list);
634 !CERT_LIST_END(node, cert_list);
635 node = CERT_LIST_NEXT(node)) {
636 hashes->push_back(CertPublicKeyHashSHA1(node->cert));
637 hashes->push_back(CertPublicKeyHashSHA256(node->cert));
639 if (root_cert) {
640 hashes->push_back(CertPublicKeyHashSHA1(root_cert));
641 hashes->push_back(CertPublicKeyHashSHA256(root_cert));
645 // Returns true if |cert_handle| contains a policy OID that is an EV policy
646 // OID according to |metadata|, storing the resulting policy OID in
647 // |*ev_policy_oid|. A true return is not sufficient to establish that a
648 // certificate is EV, but a false return is sufficient to establish the
649 // certificate cannot be EV.
650 bool IsEVCandidate(EVRootCAMetadata* metadata,
651 CERTCertificate* cert_handle,
652 SECOidTag* ev_policy_oid) {
653 DCHECK(cert_handle);
654 ScopedCERTCertificatePolicies policies(DecodeCertPolicies(cert_handle));
655 if (!policies.get())
656 return false;
658 CERTPolicyInfo** policy_infos = policies->policyInfos;
659 while (*policy_infos != NULL) {
660 CERTPolicyInfo* policy_info = *policy_infos++;
661 // If the Policy OID is unknown, that implicitly means it has not been
662 // registered as an EV policy.
663 if (policy_info->oid == SEC_OID_UNKNOWN)
664 continue;
665 if (metadata->IsEVPolicyOID(policy_info->oid)) {
666 *ev_policy_oid = policy_info->oid;
667 return true;
671 return false;
674 // Studied Mozilla's code (esp. security/manager/ssl/src/nsIdentityChecking.cpp
675 // and nsNSSCertHelper.cpp) to learn how to verify EV certificate.
676 // TODO(wtc): A possible optimization is that we get the trust anchor from
677 // the first PKIXVerifyCert call. We look up the EV policy for the trust
678 // anchor. If the trust anchor has no EV policy, we know the cert isn't EV.
679 // Otherwise, we pass just that EV policy (as opposed to all the EV policies)
680 // to the second PKIXVerifyCert call.
681 bool VerifyEV(CERTCertificate* cert_handle,
682 int flags,
683 CRLSet* crl_set,
684 bool rev_checking_enabled,
685 EVRootCAMetadata* metadata,
686 SECOidTag ev_policy_oid,
687 CERTCertList* additional_trust_anchors,
688 CERTChainVerifyCallback* chain_verify_callback) {
689 CERTValOutParam cvout[3];
690 int cvout_index = 0;
691 cvout[cvout_index].type = cert_po_certList;
692 cvout[cvout_index].value.pointer.chain = NULL;
693 int cvout_cert_list_index = cvout_index;
694 cvout_index++;
695 cvout[cvout_index].type = cert_po_trustAnchor;
696 cvout[cvout_index].value.pointer.cert = NULL;
697 int cvout_trust_anchor_index = cvout_index;
698 cvout_index++;
699 cvout[cvout_index].type = cert_po_end;
700 ScopedCERTValOutParam scoped_cvout(cvout);
702 SECStatus status = PKIXVerifyCert(
703 cert_handle,
704 rev_checking_enabled,
705 true, /* hard fail is implied in EV. */
706 flags & CertVerifier::VERIFY_CERT_IO_ENABLED,
707 &ev_policy_oid,
709 additional_trust_anchors,
710 chain_verify_callback,
711 cvout);
712 if (status != SECSuccess)
713 return false;
715 CERTCertificate* root_ca =
716 cvout[cvout_trust_anchor_index].value.pointer.cert;
717 if (root_ca == NULL)
718 return false;
720 // This second PKIXVerifyCert call could have found a different certification
721 // path and one or more of the certificates on this new path, that weren't on
722 // the old path, might have been revoked.
723 if (crl_set) {
724 CRLSetResult crl_set_result = CheckRevocationWithCRLSet(
725 cvout[cvout_cert_list_index].value.pointer.chain,
726 cvout[cvout_trust_anchor_index].value.pointer.cert,
727 crl_set);
728 if (crl_set_result == kCRLSetRevoked)
729 return false;
732 #if defined(OS_IOS)
733 SHA1HashValue fingerprint = x509_util_ios::CalculateFingerprintNSS(root_ca);
734 #else
735 SHA1HashValue fingerprint =
736 X509Certificate::CalculateFingerprint(root_ca);
737 #endif
738 return metadata->HasEVPolicyOID(fingerprint, ev_policy_oid);
741 CERTCertList* CertificateListToCERTCertList(const CertificateList& list) {
742 CERTCertList* result = CERT_NewCertList();
743 for (size_t i = 0; i < list.size(); ++i) {
744 #if defined(OS_IOS)
745 // X509Certificate::os_cert_handle() on iOS is a SecCertificateRef; convert
746 // it to an NSS CERTCertificate.
747 CERTCertificate* cert = x509_util_ios::CreateNSSCertHandleFromOSHandle(
748 list[i]->os_cert_handle());
749 #else
750 CERTCertificate* cert = list[i]->os_cert_handle();
751 #endif
752 CERT_AddCertToListTail(result, CERT_DupCertificate(cert));
754 return result;
757 } // namespace
759 CertVerifyProcNSS::CertVerifyProcNSS() {}
761 CertVerifyProcNSS::~CertVerifyProcNSS() {}
763 bool CertVerifyProcNSS::SupportsAdditionalTrustAnchors() const {
764 return true;
767 int CertVerifyProcNSS::VerifyInternalImpl(
768 X509Certificate* cert,
769 const std::string& hostname,
770 int flags,
771 CRLSet* crl_set,
772 const CertificateList& additional_trust_anchors,
773 CERTChainVerifyCallback* chain_verify_callback,
774 CertVerifyResult* verify_result) {
775 #if defined(OS_IOS)
776 // For iOS, the entire chain must be loaded into NSS's in-memory certificate
777 // store.
778 x509_util_ios::NSSCertChain scoped_chain(cert);
779 CERTCertificate* cert_handle = scoped_chain.cert_handle();
780 #else
781 CERTCertificate* cert_handle = cert->os_cert_handle();
782 #endif // defined(OS_IOS)
784 if (!cert->VerifyNameMatch(hostname,
785 &verify_result->common_name_fallback_used)) {
786 verify_result->cert_status |= CERT_STATUS_COMMON_NAME_INVALID;
789 // Make sure that the cert is valid now.
790 SECCertTimeValidity validity = CERT_CheckCertValidTimes(
791 cert_handle, PR_Now(), PR_TRUE);
792 if (validity != secCertTimeValid)
793 verify_result->cert_status |= CERT_STATUS_DATE_INVALID;
795 CERTValOutParam cvout[3];
796 int cvout_index = 0;
797 cvout[cvout_index].type = cert_po_certList;
798 cvout[cvout_index].value.pointer.chain = NULL;
799 int cvout_cert_list_index = cvout_index;
800 cvout_index++;
801 cvout[cvout_index].type = cert_po_trustAnchor;
802 cvout[cvout_index].value.pointer.cert = NULL;
803 int cvout_trust_anchor_index = cvout_index;
804 cvout_index++;
805 cvout[cvout_index].type = cert_po_end;
806 ScopedCERTValOutParam scoped_cvout(cvout);
808 EVRootCAMetadata* metadata = EVRootCAMetadata::GetInstance();
809 SECOidTag ev_policy_oid = SEC_OID_UNKNOWN;
810 bool is_ev_candidate =
811 (flags & CertVerifier::VERIFY_EV_CERT) &&
812 IsEVCandidate(metadata, cert_handle, &ev_policy_oid);
813 bool cert_io_enabled = flags & CertVerifier::VERIFY_CERT_IO_ENABLED;
814 bool check_revocation =
815 cert_io_enabled &&
816 (flags & CertVerifier::VERIFY_REV_CHECKING_ENABLED);
817 if (check_revocation)
818 verify_result->cert_status |= CERT_STATUS_REV_CHECKING_ENABLED;
820 ScopedCERTCertList trust_anchors;
821 if (!additional_trust_anchors.empty()) {
822 trust_anchors.reset(
823 CertificateListToCERTCertList(additional_trust_anchors));
826 SECStatus status = PKIXVerifyCert(cert_handle,
827 check_revocation,
828 false,
829 cert_io_enabled,
830 NULL,
832 trust_anchors.get(),
833 chain_verify_callback,
834 cvout);
836 if (status == SECSuccess &&
837 (flags & CertVerifier::VERIFY_REV_CHECKING_REQUIRED_LOCAL_ANCHORS) &&
838 !IsKnownRoot(cvout[cvout_trust_anchor_index].value.pointer.cert)) {
839 // TODO(rsleevi): Optimize this by supplying the constructed chain to
840 // libpkix via cvin. Omitting for now, due to lack of coverage in upstream
841 // NSS tests for that feature.
842 scoped_cvout.Clear();
843 verify_result->cert_status |= CERT_STATUS_REV_CHECKING_ENABLED;
844 status = PKIXVerifyCert(cert_handle,
845 true,
846 true,
847 cert_io_enabled,
848 NULL,
850 trust_anchors.get(),
851 chain_verify_callback,
852 cvout);
855 if (status == SECSuccess) {
856 AppendPublicKeyHashes(cvout[cvout_cert_list_index].value.pointer.chain,
857 cvout[cvout_trust_anchor_index].value.pointer.cert,
858 &verify_result->public_key_hashes);
860 verify_result->is_issued_by_known_root =
861 IsKnownRoot(cvout[cvout_trust_anchor_index].value.pointer.cert);
862 verify_result->is_issued_by_additional_trust_anchor =
863 IsAdditionalTrustAnchor(
864 trust_anchors.get(),
865 cvout[cvout_trust_anchor_index].value.pointer.cert);
867 GetCertChainInfo(cvout[cvout_cert_list_index].value.pointer.chain,
868 cvout[cvout_trust_anchor_index].value.pointer.cert,
869 verify_result);
872 CRLSetResult crl_set_result = kCRLSetUnknown;
873 if (crl_set) {
874 crl_set_result = CheckRevocationWithCRLSet(
875 cvout[cvout_cert_list_index].value.pointer.chain,
876 cvout[cvout_trust_anchor_index].value.pointer.cert,
877 crl_set);
878 if (crl_set_result == kCRLSetRevoked) {
879 PORT_SetError(SEC_ERROR_REVOKED_CERTIFICATE);
880 status = SECFailure;
884 if (status != SECSuccess) {
885 int err = PORT_GetError();
886 LOG(ERROR) << "CERT_PKIXVerifyCert for " << hostname
887 << " failed err=" << err;
888 // CERT_PKIXVerifyCert rerports the wrong error code for
889 // expired certificates (NSS bug 491174)
890 if (err == SEC_ERROR_CERT_NOT_VALID &&
891 (verify_result->cert_status & CERT_STATUS_DATE_INVALID))
892 err = SEC_ERROR_EXPIRED_CERTIFICATE;
893 CertStatus cert_status = MapCertErrorToCertStatus(err);
894 if (cert_status) {
895 verify_result->cert_status |= cert_status;
896 return MapCertStatusToNetError(verify_result->cert_status);
898 // |err| is not a certificate error.
899 return MapSecurityError(err);
902 if (IsCertStatusError(verify_result->cert_status))
903 return MapCertStatusToNetError(verify_result->cert_status);
905 if ((flags & CertVerifier::VERIFY_EV_CERT) && is_ev_candidate) {
906 check_revocation |=
907 crl_set_result != kCRLSetOk &&
908 cert_io_enabled &&
909 (flags & CertVerifier::VERIFY_REV_CHECKING_ENABLED_EV_ONLY);
910 if (check_revocation)
911 verify_result->cert_status |= CERT_STATUS_REV_CHECKING_ENABLED;
913 if (VerifyEV(cert_handle,
914 flags,
915 crl_set,
916 check_revocation,
917 metadata,
918 ev_policy_oid,
919 trust_anchors.get(),
920 chain_verify_callback)) {
921 verify_result->cert_status |= CERT_STATUS_IS_EV;
925 return OK;
928 int CertVerifyProcNSS::VerifyInternal(
929 X509Certificate* cert,
930 const std::string& hostname,
931 int flags,
932 CRLSet* crl_set,
933 const CertificateList& additional_trust_anchors,
934 CertVerifyResult* verify_result) {
935 return VerifyInternalImpl(cert,
936 hostname,
937 flags,
938 crl_set,
939 additional_trust_anchors,
940 NULL, // chain_verify_callback
941 verify_result);
944 } // namespace net