Supervised user whitelists: Cleanup
[chromium-blink-merge.git] / net / quic / congestion_control / cubic.cc
blobfd5ec934a13ffbde58f64568d72610e1f67c3879
1 // Copyright (c) 2012 The Chromium Authors. All rights reserved.
2 // Use of this source code is governed by a BSD-style license that can be
3 // found in the LICENSE file.
5 #include "net/quic/congestion_control/cubic.h"
7 #include <algorithm>
8 #include <cmath>
10 #include "base/basictypes.h"
11 #include "base/logging.h"
12 #include "net/quic/quic_flags.h"
13 #include "net/quic/quic_protocol.h"
14 #include "net/quic/quic_time.h"
16 using std::max;
18 namespace net {
20 namespace {
22 // Constants based on TCP defaults.
23 // The following constants are in 2^10 fractions of a second instead of ms to
24 // allow a 10 shift right to divide.
25 const int kCubeScale = 40; // 1024*1024^3 (first 1024 is from 0.100^3)
26 // where 0.100 is 100 ms which is the scaling
27 // round trip time.
28 const int kCubeCongestionWindowScale = 410;
29 const uint64 kCubeFactor = (GG_UINT64_C(1) << kCubeScale) /
30 kCubeCongestionWindowScale;
32 const uint32 kDefaultNumConnections = 2;
33 const float kBeta = 0.7f; // Default Cubic backoff factor.
34 // Additional backoff factor when loss occurs in the concave part of the Cubic
35 // curve. This additional backoff factor is expected to give up bandwidth to
36 // new concurrent flows and speed up convergence.
37 const float kBetaLastMax = 0.85f;
39 } // namespace
41 Cubic::Cubic(const QuicClock* clock)
42 : clock_(clock),
43 num_connections_(kDefaultNumConnections),
44 epoch_(QuicTime::Zero()),
45 last_update_time_(QuicTime::Zero()) {
46 Reset();
49 void Cubic::SetNumConnections(int num_connections) {
50 num_connections_ = num_connections;
53 float Cubic::Alpha() const {
54 // TCPFriendly alpha is described in Section 3.3 of the CUBIC paper. Note that
55 // beta here is a cwnd multiplier, and is equal to 1-beta from the paper.
56 // We derive the equivalent alpha for an N-connection emulation as:
57 const float beta = Beta();
58 return 3 * num_connections_ * num_connections_ * (1 - beta) / (1 + beta);
61 float Cubic::Beta() const {
62 // kNConnectionBeta is the backoff factor after loss for our N-connection
63 // emulation, which emulates the effective backoff of an ensemble of N
64 // TCP-Reno connections on a single loss event. The effective multiplier is
65 // computed as:
66 return (num_connections_ - 1 + kBeta) / num_connections_;
69 void Cubic::Reset() {
70 epoch_ = QuicTime::Zero(); // Reset time.
71 last_update_time_ = QuicTime::Zero(); // Reset time.
72 last_congestion_window_ = 0;
73 last_max_congestion_window_ = 0;
74 acked_packets_count_ = 0;
75 estimated_tcp_congestion_window_ = 0;
76 origin_point_congestion_window_ = 0;
77 time_to_origin_point_ = 0;
78 last_target_congestion_window_ = 0;
81 QuicPacketCount Cubic::CongestionWindowAfterPacketLoss(
82 QuicPacketCount current_congestion_window) {
83 if (current_congestion_window < last_max_congestion_window_) {
84 // We never reached the old max, so assume we are competing with another
85 // flow. Use our extra back off factor to allow the other flow to go up.
86 last_max_congestion_window_ =
87 static_cast<int>(kBetaLastMax * current_congestion_window);
88 } else {
89 last_max_congestion_window_ = current_congestion_window;
91 epoch_ = QuicTime::Zero(); // Reset time.
92 return static_cast<int>(current_congestion_window * Beta());
95 QuicPacketCount Cubic::CongestionWindowAfterAck(
96 QuicPacketCount current_congestion_window,
97 QuicTime::Delta delay_min) {
98 acked_packets_count_ += 1; // Packets acked.
99 QuicTime current_time = clock_->ApproximateNow();
101 // Cubic is "independent" of RTT, the update is limited by the time elapsed.
102 if (last_congestion_window_ == current_congestion_window &&
103 (current_time.Subtract(last_update_time_) <= MaxCubicTimeInterval())) {
104 return max(last_target_congestion_window_,
105 estimated_tcp_congestion_window_);
107 last_congestion_window_ = current_congestion_window;
108 last_update_time_ = current_time;
110 if (!epoch_.IsInitialized()) {
111 // First ACK after a loss event.
112 DVLOG(1) << "Start of epoch";
113 epoch_ = current_time; // Start of epoch.
114 acked_packets_count_ = 1; // Reset count.
115 // Reset estimated_tcp_congestion_window_ to be in sync with cubic.
116 estimated_tcp_congestion_window_ = current_congestion_window;
117 if (last_max_congestion_window_ <= current_congestion_window) {
118 time_to_origin_point_ = 0;
119 origin_point_congestion_window_ = current_congestion_window;
120 } else {
121 time_to_origin_point_ =
122 static_cast<uint32>(cbrt(kCubeFactor * (last_max_congestion_window_ -
123 current_congestion_window)));
124 origin_point_congestion_window_ =
125 last_max_congestion_window_;
128 // Change the time unit from microseconds to 2^10 fractions per second. Take
129 // the round trip time in account. This is done to allow us to use shift as a
130 // divide operator.
131 int64 elapsed_time =
132 (current_time.Add(delay_min).Subtract(epoch_).ToMicroseconds() << 10) /
133 kNumMicrosPerSecond;
135 int64 offset = time_to_origin_point_ - elapsed_time;
136 QuicPacketCount delta_congestion_window = (kCubeCongestionWindowScale
137 * offset * offset * offset) >> kCubeScale;
139 QuicPacketCount target_congestion_window =
140 origin_point_congestion_window_ - delta_congestion_window;
142 DCHECK_LT(0u, estimated_tcp_congestion_window_);
143 // With dynamic beta/alpha based on number of active streams, it is possible
144 // for the required_ack_count to become much lower than acked_packets_count_
145 // suddenly, leading to more than one iteration through the following loop.
146 while (true) {
147 // Update estimated TCP congestion_window.
148 QuicPacketCount required_ack_count = static_cast<QuicPacketCount>(
149 estimated_tcp_congestion_window_ / Alpha());
150 if (acked_packets_count_ < required_ack_count) {
151 break;
153 acked_packets_count_ -= required_ack_count;
154 estimated_tcp_congestion_window_++;
157 // We have a new cubic congestion window.
158 last_target_congestion_window_ = target_congestion_window;
160 // Compute target congestion_window based on cubic target and estimated TCP
161 // congestion_window, use highest (fastest).
162 if (target_congestion_window < estimated_tcp_congestion_window_) {
163 target_congestion_window = estimated_tcp_congestion_window_;
166 DVLOG(1) << "Target congestion_window: " << target_congestion_window;
167 return target_congestion_window;
170 } // namespace net