1 // Copyright (c) 2012 The Chromium Authors. All rights reserved.
2 // Use of this source code is governed by a BSD-style license that can be
3 // found in the LICENSE file.
5 #include "net/quic/quic_connection.h"
7 #include "base/basictypes.h"
9 #include "base/memory/scoped_ptr.h"
10 #include "base/stl_util.h"
11 #include "net/base/net_errors.h"
12 #include "net/quic/congestion_control/loss_detection_interface.h"
13 #include "net/quic/congestion_control/send_algorithm_interface.h"
14 #include "net/quic/crypto/null_encrypter.h"
15 #include "net/quic/crypto/quic_decrypter.h"
16 #include "net/quic/crypto/quic_encrypter.h"
17 #include "net/quic/quic_ack_notifier.h"
18 #include "net/quic/quic_flags.h"
19 #include "net/quic/quic_protocol.h"
20 #include "net/quic/quic_utils.h"
21 #include "net/quic/test_tools/mock_clock.h"
22 #include "net/quic/test_tools/mock_random.h"
23 #include "net/quic/test_tools/quic_config_peer.h"
24 #include "net/quic/test_tools/quic_connection_peer.h"
25 #include "net/quic/test_tools/quic_framer_peer.h"
26 #include "net/quic/test_tools/quic_packet_creator_peer.h"
27 #include "net/quic/test_tools/quic_packet_generator_peer.h"
28 #include "net/quic/test_tools/quic_sent_packet_manager_peer.h"
29 #include "net/quic/test_tools/quic_test_utils.h"
30 #include "net/quic/test_tools/simple_quic_framer.h"
31 #include "net/test/gtest_util.h"
32 #include "testing/gmock/include/gmock/gmock.h"
33 #include "testing/gtest/include/gtest/gtest.h"
35 using base::StringPiece
;
39 using testing::AnyNumber
;
40 using testing::AtLeast
;
41 using testing::ContainerEq
;
42 using testing::Contains
;
44 using testing::InSequence
;
45 using testing::InvokeWithoutArgs
;
46 using testing::NiceMock
;
48 using testing::Return
;
49 using testing::SaveArg
;
50 using testing::StrictMock
;
57 const char data1
[] = "foo";
58 const char data2
[] = "bar";
60 const bool kFin
= true;
61 const bool kEntropyFlag
= true;
63 const QuicPacketEntropyHash kTestEntropyHash
= 76;
65 const int kDefaultRetransmissionTimeMs
= 500;
67 // TaggingEncrypter appends kTagSize bytes of |tag| to the end of each message.
68 class TaggingEncrypter
: public QuicEncrypter
{
70 explicit TaggingEncrypter(uint8 tag
)
74 ~TaggingEncrypter() override
{}
76 // QuicEncrypter interface.
77 bool SetKey(StringPiece key
) override
{ return true; }
79 bool SetNoncePrefix(StringPiece nonce_prefix
) override
{ return true; }
81 bool Encrypt(StringPiece nonce
,
82 StringPiece associated_data
,
83 StringPiece plaintext
,
84 unsigned char* output
) override
{
85 memcpy(output
, plaintext
.data(), plaintext
.size());
86 output
+= plaintext
.size();
87 memset(output
, tag_
, kTagSize
);
91 bool EncryptPacket(QuicPacketSequenceNumber sequence_number
,
92 StringPiece associated_data
,
93 StringPiece plaintext
,
95 size_t* output_length
,
96 size_t max_output_length
) override
{
97 const size_t len
= plaintext
.size() + kTagSize
;
98 if (max_output_length
< len
) {
101 Encrypt(StringPiece(), associated_data
, plaintext
,
102 reinterpret_cast<unsigned char*>(output
));
103 *output_length
= len
;
107 size_t GetKeySize() const override
{ return 0; }
108 size_t GetNoncePrefixSize() const override
{ return 0; }
110 size_t GetMaxPlaintextSize(size_t ciphertext_size
) const override
{
111 return ciphertext_size
- kTagSize
;
114 size_t GetCiphertextSize(size_t plaintext_size
) const override
{
115 return plaintext_size
+ kTagSize
;
118 StringPiece
GetKey() const override
{ return StringPiece(); }
120 StringPiece
GetNoncePrefix() const override
{ return StringPiece(); }
129 DISALLOW_COPY_AND_ASSIGN(TaggingEncrypter
);
132 // TaggingDecrypter ensures that the final kTagSize bytes of the message all
133 // have the same value and then removes them.
134 class TaggingDecrypter
: public QuicDecrypter
{
136 ~TaggingDecrypter() override
{}
138 // QuicDecrypter interface
139 bool SetKey(StringPiece key
) override
{ return true; }
141 bool SetNoncePrefix(StringPiece nonce_prefix
) override
{ return true; }
143 bool DecryptPacket(QuicPacketSequenceNumber sequence_number
,
144 const StringPiece
& associated_data
,
145 const StringPiece
& ciphertext
,
147 size_t* output_length
,
148 size_t max_output_length
) override
{
149 if (ciphertext
.size() < kTagSize
) {
152 if (!CheckTag(ciphertext
, GetTag(ciphertext
))) {
155 *output_length
= ciphertext
.size() - kTagSize
;
156 memcpy(output
, ciphertext
.data(), *output_length
);
160 StringPiece
GetKey() const override
{ return StringPiece(); }
161 StringPiece
GetNoncePrefix() const override
{ return StringPiece(); }
164 virtual uint8
GetTag(StringPiece ciphertext
) {
165 return ciphertext
.data()[ciphertext
.size()-1];
173 bool CheckTag(StringPiece ciphertext
, uint8 tag
) {
174 for (size_t i
= ciphertext
.size() - kTagSize
; i
< ciphertext
.size(); i
++) {
175 if (ciphertext
.data()[i
] != tag
) {
184 // StringTaggingDecrypter ensures that the final kTagSize bytes of the message
185 // match the expected value.
186 class StrictTaggingDecrypter
: public TaggingDecrypter
{
188 explicit StrictTaggingDecrypter(uint8 tag
) : tag_(tag
) {}
189 ~StrictTaggingDecrypter() override
{}
191 // TaggingQuicDecrypter
192 uint8
GetTag(StringPiece ciphertext
) override
{ return tag_
; }
198 class TestConnectionHelper
: public QuicConnectionHelperInterface
{
200 class TestAlarm
: public QuicAlarm
{
202 explicit TestAlarm(QuicAlarm::Delegate
* delegate
)
203 : QuicAlarm(delegate
) {
206 void SetImpl() override
{}
207 void CancelImpl() override
{}
208 using QuicAlarm::Fire
;
211 TestConnectionHelper(MockClock
* clock
, MockRandom
* random_generator
)
213 random_generator_(random_generator
) {
214 clock_
->AdvanceTime(QuicTime::Delta::FromSeconds(1));
217 // QuicConnectionHelperInterface
218 const QuicClock
* GetClock() const override
{ return clock_
; }
220 QuicRandom
* GetRandomGenerator() override
{ return random_generator_
; }
222 QuicAlarm
* CreateAlarm(QuicAlarm::Delegate
* delegate
) override
{
223 return new TestAlarm(delegate
);
228 MockRandom
* random_generator_
;
230 DISALLOW_COPY_AND_ASSIGN(TestConnectionHelper
);
233 class TestPacketWriter
: public QuicPacketWriter
{
235 TestPacketWriter(QuicVersion version
, MockClock
*clock
)
237 framer_(SupportedVersions(version_
)),
238 last_packet_size_(0),
239 write_blocked_(false),
240 block_on_next_write_(false),
241 is_write_blocked_data_buffered_(false),
242 final_bytes_of_last_packet_(0),
243 final_bytes_of_previous_packet_(0),
244 use_tagging_decrypter_(false),
245 packets_write_attempts_(0),
247 write_pause_time_delta_(QuicTime::Delta::Zero()) {
250 // QuicPacketWriter interface
251 WriteResult
WritePacket(const char* buffer
,
253 const IPAddressNumber
& self_address
,
254 const IPEndPoint
& peer_address
) override
{
255 QuicEncryptedPacket
packet(buffer
, buf_len
);
256 ++packets_write_attempts_
;
258 if (packet
.length() >= sizeof(final_bytes_of_last_packet_
)) {
259 final_bytes_of_previous_packet_
= final_bytes_of_last_packet_
;
260 memcpy(&final_bytes_of_last_packet_
, packet
.data() + packet
.length() - 4,
261 sizeof(final_bytes_of_last_packet_
));
264 if (use_tagging_decrypter_
) {
265 framer_
.framer()->SetDecrypter(new TaggingDecrypter
, ENCRYPTION_NONE
);
267 EXPECT_TRUE(framer_
.ProcessPacket(packet
));
268 if (block_on_next_write_
) {
269 write_blocked_
= true;
270 block_on_next_write_
= false;
272 if (IsWriteBlocked()) {
273 return WriteResult(WRITE_STATUS_BLOCKED
, -1);
275 last_packet_size_
= packet
.length();
277 if (!write_pause_time_delta_
.IsZero()) {
278 clock_
->AdvanceTime(write_pause_time_delta_
);
280 return WriteResult(WRITE_STATUS_OK
, last_packet_size_
);
283 bool IsWriteBlockedDataBuffered() const override
{
284 return is_write_blocked_data_buffered_
;
287 bool IsWriteBlocked() const override
{ return write_blocked_
; }
289 void SetWritable() override
{ write_blocked_
= false; }
291 void BlockOnNextWrite() { block_on_next_write_
= true; }
293 // Sets the amount of time that the writer should before the actual write.
294 void SetWritePauseTimeDelta(QuicTime::Delta delta
) {
295 write_pause_time_delta_
= delta
;
298 const QuicPacketHeader
& header() { return framer_
.header(); }
300 size_t frame_count() const { return framer_
.num_frames(); }
302 const vector
<QuicAckFrame
>& ack_frames() const {
303 return framer_
.ack_frames();
306 const vector
<QuicStopWaitingFrame
>& stop_waiting_frames() const {
307 return framer_
.stop_waiting_frames();
310 const vector
<QuicConnectionCloseFrame
>& connection_close_frames() const {
311 return framer_
.connection_close_frames();
314 const vector
<QuicRstStreamFrame
>& rst_stream_frames() const {
315 return framer_
.rst_stream_frames();
318 const vector
<QuicStreamFrame
>& stream_frames() const {
319 return framer_
.stream_frames();
322 const vector
<QuicPingFrame
>& ping_frames() const {
323 return framer_
.ping_frames();
326 size_t last_packet_size() {
327 return last_packet_size_
;
330 const QuicVersionNegotiationPacket
* version_negotiation_packet() {
331 return framer_
.version_negotiation_packet();
334 void set_is_write_blocked_data_buffered(bool buffered
) {
335 is_write_blocked_data_buffered_
= buffered
;
338 void set_perspective(Perspective perspective
) {
339 // We invert perspective here, because the framer needs to parse packets
341 perspective
= perspective
== Perspective::IS_CLIENT
342 ? Perspective::IS_SERVER
343 : Perspective::IS_CLIENT
;
344 QuicFramerPeer::SetPerspective(framer_
.framer(), perspective
);
347 // final_bytes_of_last_packet_ returns the last four bytes of the previous
348 // packet as a little-endian, uint32. This is intended to be used with a
349 // TaggingEncrypter so that tests can determine which encrypter was used for
351 uint32
final_bytes_of_last_packet() { return final_bytes_of_last_packet_
; }
353 // Returns the final bytes of the second to last packet.
354 uint32
final_bytes_of_previous_packet() {
355 return final_bytes_of_previous_packet_
;
358 void use_tagging_decrypter() {
359 use_tagging_decrypter_
= true;
362 uint32
packets_write_attempts() { return packets_write_attempts_
; }
364 void Reset() { framer_
.Reset(); }
366 void SetSupportedVersions(const QuicVersionVector
& versions
) {
367 framer_
.SetSupportedVersions(versions
);
371 QuicVersion version_
;
372 SimpleQuicFramer framer_
;
373 size_t last_packet_size_
;
375 bool block_on_next_write_
;
376 bool is_write_blocked_data_buffered_
;
377 uint32 final_bytes_of_last_packet_
;
378 uint32 final_bytes_of_previous_packet_
;
379 bool use_tagging_decrypter_
;
380 uint32 packets_write_attempts_
;
382 // If non-zero, the clock will pause during WritePacket for this amount of
384 QuicTime::Delta write_pause_time_delta_
;
386 DISALLOW_COPY_AND_ASSIGN(TestPacketWriter
);
389 class TestConnection
: public QuicConnection
{
391 TestConnection(QuicConnectionId connection_id
,
393 TestConnectionHelper
* helper
,
394 const PacketWriterFactory
& factory
,
395 Perspective perspective
,
397 : QuicConnection(connection_id
,
401 /* owns_writer= */ false,
403 /* is_secure= */ false,
404 SupportedVersions(version
)) {
405 // Disable tail loss probes for most tests.
406 QuicSentPacketManagerPeer::SetMaxTailLossProbes(
407 QuicConnectionPeer::GetSentPacketManager(this), 0);
408 writer()->set_perspective(perspective
);
412 QuicConnectionPeer::SendAck(this);
415 void SetSendAlgorithm(SendAlgorithmInterface
* send_algorithm
) {
416 QuicConnectionPeer::SetSendAlgorithm(this, send_algorithm
);
419 void SetLossAlgorithm(LossDetectionInterface
* loss_algorithm
) {
420 QuicSentPacketManagerPeer::SetLossAlgorithm(
421 QuicConnectionPeer::GetSentPacketManager(this), loss_algorithm
);
424 void SendPacket(EncryptionLevel level
,
425 QuicPacketSequenceNumber sequence_number
,
427 QuicPacketEntropyHash entropy_hash
,
428 HasRetransmittableData retransmittable
) {
429 RetransmittableFrames
* retransmittable_frames
=
430 retransmittable
== HAS_RETRANSMITTABLE_DATA
431 ? new RetransmittableFrames(ENCRYPTION_NONE
)
433 QuicEncryptedPacket
* encrypted
=
434 QuicConnectionPeer::GetFramer(this)
435 ->EncryptPacket(ENCRYPTION_NONE
, sequence_number
, *packet
);
437 OnSerializedPacket(SerializedPacket(sequence_number
,
438 PACKET_6BYTE_SEQUENCE_NUMBER
, encrypted
,
439 entropy_hash
, retransmittable_frames
));
442 QuicConsumedData
SendStreamDataWithString(
445 QuicStreamOffset offset
,
447 QuicAckNotifier::DelegateInterface
* delegate
) {
448 return SendStreamDataWithStringHelper(id
, data
, offset
, fin
,
449 MAY_FEC_PROTECT
, delegate
);
452 QuicConsumedData
SendStreamDataWithStringWithFec(
455 QuicStreamOffset offset
,
457 QuicAckNotifier::DelegateInterface
* delegate
) {
458 return SendStreamDataWithStringHelper(id
, data
, offset
, fin
,
459 MUST_FEC_PROTECT
, delegate
);
462 QuicConsumedData
SendStreamDataWithStringHelper(
465 QuicStreamOffset offset
,
467 FecProtection fec_protection
,
468 QuicAckNotifier::DelegateInterface
* delegate
) {
471 data_iov
.Append(const_cast<char*>(data
.data()), data
.size());
473 return QuicConnection::SendStreamData(id
, data_iov
, offset
, fin
,
474 fec_protection
, delegate
);
477 QuicConsumedData
SendStreamData3() {
478 return SendStreamDataWithString(kClientDataStreamId1
, "food", 0, !kFin
,
482 QuicConsumedData
SendStreamData3WithFec() {
483 return SendStreamDataWithStringWithFec(kClientDataStreamId1
, "food", 0,
487 QuicConsumedData
SendStreamData5() {
488 return SendStreamDataWithString(kClientDataStreamId2
, "food2", 0, !kFin
,
492 QuicConsumedData
SendStreamData5WithFec() {
493 return SendStreamDataWithStringWithFec(kClientDataStreamId2
, "food2", 0,
496 // Ensures the connection can write stream data before writing.
497 QuicConsumedData
EnsureWritableAndSendStreamData5() {
498 EXPECT_TRUE(CanWriteStreamData());
499 return SendStreamData5();
502 // The crypto stream has special semantics so that it is not blocked by a
503 // congestion window limitation, and also so that it gets put into a separate
504 // packet (so that it is easier to reason about a crypto frame not being
505 // split needlessly across packet boundaries). As a result, we have separate
506 // tests for some cases for this stream.
507 QuicConsumedData
SendCryptoStreamData() {
508 return SendStreamDataWithString(kCryptoStreamId
, "chlo", 0, !kFin
, nullptr);
511 void set_version(QuicVersion version
) {
512 QuicConnectionPeer::GetFramer(this)->set_version(version
);
515 void SetSupportedVersions(const QuicVersionVector
& versions
) {
516 QuicConnectionPeer::GetFramer(this)->SetSupportedVersions(versions
);
517 writer()->SetSupportedVersions(versions
);
520 void set_perspective(Perspective perspective
) {
521 writer()->set_perspective(perspective
);
522 QuicConnectionPeer::SetPerspective(this, perspective
);
525 TestConnectionHelper::TestAlarm
* GetAckAlarm() {
526 return reinterpret_cast<TestConnectionHelper::TestAlarm
*>(
527 QuicConnectionPeer::GetAckAlarm(this));
530 TestConnectionHelper::TestAlarm
* GetPingAlarm() {
531 return reinterpret_cast<TestConnectionHelper::TestAlarm
*>(
532 QuicConnectionPeer::GetPingAlarm(this));
535 TestConnectionHelper::TestAlarm
* GetFecAlarm() {
536 return reinterpret_cast<TestConnectionHelper::TestAlarm
*>(
537 QuicConnectionPeer::GetFecAlarm(this));
540 TestConnectionHelper::TestAlarm
* GetResumeWritesAlarm() {
541 return reinterpret_cast<TestConnectionHelper::TestAlarm
*>(
542 QuicConnectionPeer::GetResumeWritesAlarm(this));
545 TestConnectionHelper::TestAlarm
* GetRetransmissionAlarm() {
546 return reinterpret_cast<TestConnectionHelper::TestAlarm
*>(
547 QuicConnectionPeer::GetRetransmissionAlarm(this));
550 TestConnectionHelper::TestAlarm
* GetSendAlarm() {
551 return reinterpret_cast<TestConnectionHelper::TestAlarm
*>(
552 QuicConnectionPeer::GetSendAlarm(this));
555 TestConnectionHelper::TestAlarm
* GetTimeoutAlarm() {
556 return reinterpret_cast<TestConnectionHelper::TestAlarm
*>(
557 QuicConnectionPeer::GetTimeoutAlarm(this));
560 using QuicConnection::SelectMutualVersion
;
563 TestPacketWriter
* writer() {
564 return static_cast<TestPacketWriter
*>(QuicConnection::writer());
567 DISALLOW_COPY_AND_ASSIGN(TestConnection
);
570 // Used for testing packets revived from FEC packets.
571 class FecQuicConnectionDebugVisitor
572 : public QuicConnectionDebugVisitor
{
574 void OnRevivedPacket(const QuicPacketHeader
& header
,
575 StringPiece data
) override
{
576 revived_header_
= header
;
579 // Public accessor method.
580 QuicPacketHeader
revived_header() const {
581 return revived_header_
;
585 QuicPacketHeader revived_header_
;
588 class MockPacketWriterFactory
: public QuicConnection::PacketWriterFactory
{
590 explicit MockPacketWriterFactory(QuicPacketWriter
* writer
) {
591 ON_CALL(*this, Create(_
)).WillByDefault(Return(writer
));
593 ~MockPacketWriterFactory() override
{}
595 MOCK_CONST_METHOD1(Create
, QuicPacketWriter
*(QuicConnection
* connection
));
598 class QuicConnectionTest
: public ::testing::TestWithParam
<QuicVersion
> {
601 : connection_id_(42),
602 framer_(SupportedVersions(version()),
604 Perspective::IS_CLIENT
),
605 peer_creator_(connection_id_
, &framer_
, &random_generator_
),
606 send_algorithm_(new StrictMock
<MockSendAlgorithm
>),
607 loss_algorithm_(new MockLossAlgorithm()),
608 helper_(new TestConnectionHelper(&clock_
, &random_generator_
)),
609 writer_(new TestPacketWriter(version(), &clock_
)),
610 factory_(writer_
.get()),
611 connection_(connection_id_
,
615 Perspective::IS_CLIENT
,
617 creator_(QuicConnectionPeer::GetPacketCreator(&connection_
)),
618 generator_(QuicConnectionPeer::GetPacketGenerator(&connection_
)),
619 manager_(QuicConnectionPeer::GetSentPacketManager(&connection_
)),
620 frame1_(1, false, 0, MakeIOVector(data1
)),
621 frame2_(1, false, 3, MakeIOVector(data2
)),
622 sequence_number_length_(PACKET_6BYTE_SEQUENCE_NUMBER
),
623 connection_id_length_(PACKET_8BYTE_CONNECTION_ID
) {
624 connection_
.set_visitor(&visitor_
);
625 connection_
.SetSendAlgorithm(send_algorithm_
);
626 connection_
.SetLossAlgorithm(loss_algorithm_
);
627 framer_
.set_received_entropy_calculator(&entropy_calculator_
);
629 *send_algorithm_
, TimeUntilSend(_
, _
, _
)).WillRepeatedly(Return(
630 QuicTime::Delta::Zero()));
631 EXPECT_CALL(*send_algorithm_
, OnPacketSent(_
, _
, _
, _
, _
))
633 EXPECT_CALL(*send_algorithm_
, RetransmissionDelay()).WillRepeatedly(
634 Return(QuicTime::Delta::Zero()));
635 EXPECT_CALL(*send_algorithm_
, GetCongestionWindow()).WillRepeatedly(
636 Return(kMaxPacketSize
));
637 ON_CALL(*send_algorithm_
, OnPacketSent(_
, _
, _
, _
, _
))
638 .WillByDefault(Return(true));
639 EXPECT_CALL(*send_algorithm_
, HasReliableBandwidthEstimate())
641 EXPECT_CALL(*send_algorithm_
, BandwidthEstimate())
643 .WillRepeatedly(Return(QuicBandwidth::Zero()));
644 EXPECT_CALL(*send_algorithm_
, InSlowStart()).Times(AnyNumber());
645 EXPECT_CALL(*send_algorithm_
, InRecovery()).Times(AnyNumber());
646 EXPECT_CALL(visitor_
, WillingAndAbleToWrite()).Times(AnyNumber());
647 EXPECT_CALL(visitor_
, HasPendingHandshake()).Times(AnyNumber());
648 EXPECT_CALL(visitor_
, OnCanWrite()).Times(AnyNumber());
649 EXPECT_CALL(visitor_
, HasOpenDataStreams()).WillRepeatedly(Return(false));
650 EXPECT_CALL(visitor_
, OnCongestionWindowChange(_
)).Times(AnyNumber());
652 EXPECT_CALL(*loss_algorithm_
, GetLossTimeout())
653 .WillRepeatedly(Return(QuicTime::Zero()));
654 EXPECT_CALL(*loss_algorithm_
, DetectLostPackets(_
, _
, _
, _
))
655 .WillRepeatedly(Return(SequenceNumberSet()));
658 QuicVersion
version() {
662 QuicAckFrame
* outgoing_ack() {
663 QuicConnectionPeer::PopulateAckFrame(&connection_
, &ack_
);
667 QuicStopWaitingFrame
* stop_waiting() {
668 QuicConnectionPeer::PopulateStopWaitingFrame(&connection_
, &stop_waiting_
);
669 return &stop_waiting_
;
672 QuicPacketSequenceNumber
least_unacked() {
673 if (writer_
->stop_waiting_frames().empty()) {
676 return writer_
->stop_waiting_frames()[0].least_unacked
;
679 void use_tagging_decrypter() {
680 writer_
->use_tagging_decrypter();
683 void ProcessPacket(QuicPacketSequenceNumber number
) {
684 EXPECT_CALL(visitor_
, OnStreamFrames(_
)).Times(1);
685 ProcessDataPacket(number
, 0, !kEntropyFlag
);
688 QuicPacketEntropyHash
ProcessFramePacket(QuicFrame frame
) {
690 frames
.push_back(QuicFrame(frame
));
691 QuicPacketCreatorPeer::SetSendVersionInPacket(
692 &peer_creator_
, connection_
.perspective() == Perspective::IS_SERVER
);
694 SerializedPacket serialized_packet
=
695 peer_creator_
.SerializeAllFrames(frames
);
696 scoped_ptr
<QuicEncryptedPacket
> encrypted(serialized_packet
.packet
);
697 connection_
.ProcessUdpPacket(IPEndPoint(), IPEndPoint(), *encrypted
);
698 return serialized_packet
.entropy_hash
;
701 size_t ProcessDataPacket(QuicPacketSequenceNumber number
,
702 QuicFecGroupNumber fec_group
,
704 return ProcessDataPacketAtLevel(number
, fec_group
, entropy_flag
,
708 size_t ProcessDataPacketAtLevel(QuicPacketSequenceNumber number
,
709 QuicFecGroupNumber fec_group
,
711 EncryptionLevel level
) {
712 scoped_ptr
<QuicPacket
> packet(ConstructDataPacket(number
, fec_group
,
714 scoped_ptr
<QuicEncryptedPacket
> encrypted(framer_
.EncryptPacket(
715 level
, number
, *packet
));
716 connection_
.ProcessUdpPacket(IPEndPoint(), IPEndPoint(), *encrypted
);
717 return encrypted
->length();
720 void ProcessClosePacket(QuicPacketSequenceNumber number
,
721 QuicFecGroupNumber fec_group
) {
722 scoped_ptr
<QuicPacket
> packet(ConstructClosePacket(number
, fec_group
));
723 scoped_ptr
<QuicEncryptedPacket
> encrypted(framer_
.EncryptPacket(
724 ENCRYPTION_NONE
, number
, *packet
));
725 connection_
.ProcessUdpPacket(IPEndPoint(), IPEndPoint(), *encrypted
);
728 size_t ProcessFecProtectedPacket(QuicPacketSequenceNumber number
,
729 bool expect_revival
, bool entropy_flag
) {
730 if (expect_revival
) {
731 EXPECT_CALL(visitor_
, OnStreamFrames(_
)).Times(1);
733 EXPECT_CALL(visitor_
, OnStreamFrames(_
)).Times(1).
734 RetiresOnSaturation();
735 return ProcessDataPacket(number
, 1, entropy_flag
);
738 // Processes an FEC packet that covers the packets that would have been
740 size_t ProcessFecPacket(QuicPacketSequenceNumber number
,
741 QuicPacketSequenceNumber min_protected_packet
,
744 QuicPacket
* packet
) {
745 if (expect_revival
) {
746 EXPECT_CALL(visitor_
, OnStreamFrames(_
)).Times(1);
749 // Construct the decrypted data packet so we can compute the correct
750 // redundancy. If |packet| has been provided then use that, otherwise
751 // construct a default data packet.
752 scoped_ptr
<QuicPacket
> data_packet
;
754 data_packet
.reset(packet
);
756 data_packet
.reset(ConstructDataPacket(number
, 1, !kEntropyFlag
));
759 QuicPacketHeader header
;
760 header
.public_header
.connection_id
= connection_id_
;
761 header
.public_header
.sequence_number_length
= sequence_number_length_
;
762 header
.public_header
.connection_id_length
= connection_id_length_
;
763 header
.packet_sequence_number
= number
;
764 header
.entropy_flag
= entropy_flag
;
765 header
.fec_flag
= true;
766 header
.is_in_fec_group
= IN_FEC_GROUP
;
767 header
.fec_group
= min_protected_packet
;
768 QuicFecData fec_data
;
769 fec_data
.fec_group
= header
.fec_group
;
771 // Since all data packets in this test have the same payload, the
772 // redundancy is either equal to that payload or the xor of that payload
773 // with itself, depending on the number of packets.
774 if (((number
- min_protected_packet
) % 2) == 0) {
775 for (size_t i
= GetStartOfFecProtectedData(
776 header
.public_header
.connection_id_length
,
777 header
.public_header
.version_flag
,
778 header
.public_header
.sequence_number_length
);
779 i
< data_packet
->length(); ++i
) {
780 data_packet
->mutable_data()[i
] ^= data_packet
->data()[i
];
783 fec_data
.redundancy
= data_packet
->FecProtectedData();
785 scoped_ptr
<QuicPacket
> fec_packet(framer_
.BuildFecPacket(header
, fec_data
));
786 scoped_ptr
<QuicEncryptedPacket
> encrypted(
787 framer_
.EncryptPacket(ENCRYPTION_NONE
, number
, *fec_packet
));
789 connection_
.ProcessUdpPacket(IPEndPoint(), IPEndPoint(), *encrypted
);
790 return encrypted
->length();
793 QuicByteCount
SendStreamDataToPeer(QuicStreamId id
,
795 QuicStreamOffset offset
,
797 QuicPacketSequenceNumber
* last_packet
) {
798 QuicByteCount packet_size
;
799 EXPECT_CALL(*send_algorithm_
, OnPacketSent(_
, _
, _
, _
, _
))
800 .WillOnce(DoAll(SaveArg
<3>(&packet_size
), Return(true)));
801 connection_
.SendStreamDataWithString(id
, data
, offset
, fin
, nullptr);
802 if (last_packet
!= nullptr) {
803 *last_packet
= creator_
->sequence_number();
805 EXPECT_CALL(*send_algorithm_
, OnPacketSent(_
, _
, _
, _
, _
))
810 void SendAckPacketToPeer() {
811 EXPECT_CALL(*send_algorithm_
, OnPacketSent(_
, _
, _
, _
, _
)).Times(1);
812 connection_
.SendAck();
813 EXPECT_CALL(*send_algorithm_
, OnPacketSent(_
, _
, _
, _
, _
))
817 QuicPacketEntropyHash
ProcessAckPacket(QuicAckFrame
* frame
) {
818 return ProcessFramePacket(QuicFrame(frame
));
821 QuicPacketEntropyHash
ProcessStopWaitingPacket(QuicStopWaitingFrame
* frame
) {
822 return ProcessFramePacket(QuicFrame(frame
));
825 QuicPacketEntropyHash
ProcessGoAwayPacket(QuicGoAwayFrame
* frame
) {
826 return ProcessFramePacket(QuicFrame(frame
));
829 bool IsMissing(QuicPacketSequenceNumber number
) {
830 return IsAwaitingPacket(*outgoing_ack(), number
);
833 QuicPacket
* ConstructPacket(QuicPacketHeader header
, QuicFrames frames
) {
834 QuicPacket
* packet
= BuildUnsizedDataPacket(&framer_
, header
, frames
);
835 EXPECT_NE(nullptr, packet
);
839 QuicPacket
* ConstructDataPacket(QuicPacketSequenceNumber number
,
840 QuicFecGroupNumber fec_group
,
842 QuicPacketHeader header
;
843 header
.public_header
.connection_id
= connection_id_
;
844 header
.public_header
.sequence_number_length
= sequence_number_length_
;
845 header
.public_header
.connection_id_length
= connection_id_length_
;
846 header
.entropy_flag
= entropy_flag
;
847 header
.packet_sequence_number
= number
;
848 header
.is_in_fec_group
= fec_group
== 0u ? NOT_IN_FEC_GROUP
: IN_FEC_GROUP
;
849 header
.fec_group
= fec_group
;
852 frames
.push_back(QuicFrame(&frame1_
));
853 return ConstructPacket(header
, frames
);
856 QuicPacket
* ConstructClosePacket(QuicPacketSequenceNumber number
,
857 QuicFecGroupNumber fec_group
) {
858 QuicPacketHeader header
;
859 header
.public_header
.connection_id
= connection_id_
;
860 header
.packet_sequence_number
= number
;
861 header
.is_in_fec_group
= fec_group
== 0u ? NOT_IN_FEC_GROUP
: IN_FEC_GROUP
;
862 header
.fec_group
= fec_group
;
864 QuicConnectionCloseFrame qccf
;
865 qccf
.error_code
= QUIC_PEER_GOING_AWAY
;
868 frames
.push_back(QuicFrame(&qccf
));
869 return ConstructPacket(header
, frames
);
872 QuicTime::Delta
DefaultRetransmissionTime() {
873 return QuicTime::Delta::FromMilliseconds(kDefaultRetransmissionTimeMs
);
876 QuicTime::Delta
DefaultDelayedAckTime() {
877 return QuicTime::Delta::FromMilliseconds(kMaxDelayedAckTimeMs
);
880 // Initialize a frame acknowledging all packets up to largest_observed.
881 const QuicAckFrame
InitAckFrame(QuicPacketSequenceNumber largest_observed
) {
882 QuicAckFrame
frame(MakeAckFrame(largest_observed
));
883 if (largest_observed
> 0) {
885 QuicConnectionPeer::GetSentEntropyHash(&connection_
,
891 const QuicStopWaitingFrame
InitStopWaitingFrame(
892 QuicPacketSequenceNumber least_unacked
) {
893 QuicStopWaitingFrame frame
;
894 frame
.least_unacked
= least_unacked
;
898 // Explicitly nack a packet.
899 void NackPacket(QuicPacketSequenceNumber missing
, QuicAckFrame
* frame
) {
900 frame
->missing_packets
.insert(missing
);
901 frame
->entropy_hash
^=
902 QuicConnectionPeer::PacketEntropy(&connection_
, missing
);
905 // Undo nacking a packet within the frame.
906 void AckPacket(QuicPacketSequenceNumber arrived
, QuicAckFrame
* frame
) {
907 EXPECT_THAT(frame
->missing_packets
, Contains(arrived
));
908 frame
->missing_packets
.erase(arrived
);
909 frame
->entropy_hash
^=
910 QuicConnectionPeer::PacketEntropy(&connection_
, arrived
);
913 void TriggerConnectionClose() {
914 // Send an erroneous packet to close the connection.
915 EXPECT_CALL(visitor_
,
916 OnConnectionClosed(QUIC_INVALID_PACKET_HEADER
, false));
917 // Call ProcessDataPacket rather than ProcessPacket, as we should not get a
918 // packet call to the visitor.
919 ProcessDataPacket(6000, 0, !kEntropyFlag
);
920 EXPECT_FALSE(QuicConnectionPeer::GetConnectionClosePacket(&connection_
) ==
924 void BlockOnNextWrite() {
925 writer_
->BlockOnNextWrite();
926 EXPECT_CALL(visitor_
, OnWriteBlocked()).Times(AtLeast(1));
929 void SetWritePauseTimeDelta(QuicTime::Delta delta
) {
930 writer_
->SetWritePauseTimeDelta(delta
);
933 void CongestionBlockWrites() {
934 EXPECT_CALL(*send_algorithm_
,
935 TimeUntilSend(_
, _
, _
)).WillRepeatedly(
936 testing::Return(QuicTime::Delta::FromSeconds(1)));
939 void CongestionUnblockWrites() {
940 EXPECT_CALL(*send_algorithm_
,
941 TimeUntilSend(_
, _
, _
)).WillRepeatedly(
942 testing::Return(QuicTime::Delta::Zero()));
945 QuicConnectionId connection_id_
;
947 QuicPacketCreator peer_creator_
;
948 MockEntropyCalculator entropy_calculator_
;
950 MockSendAlgorithm
* send_algorithm_
;
951 MockLossAlgorithm
* loss_algorithm_
;
953 MockRandom random_generator_
;
954 scoped_ptr
<TestConnectionHelper
> helper_
;
955 scoped_ptr
<TestPacketWriter
> writer_
;
956 NiceMock
<MockPacketWriterFactory
> factory_
;
957 TestConnection connection_
;
958 QuicPacketCreator
* creator_
;
959 QuicPacketGenerator
* generator_
;
960 QuicSentPacketManager
* manager_
;
961 StrictMock
<MockConnectionVisitor
> visitor_
;
963 QuicStreamFrame frame1_
;
964 QuicStreamFrame frame2_
;
966 QuicStopWaitingFrame stop_waiting_
;
967 QuicSequenceNumberLength sequence_number_length_
;
968 QuicConnectionIdLength connection_id_length_
;
971 DISALLOW_COPY_AND_ASSIGN(QuicConnectionTest
);
974 // Run all end to end tests with all supported versions.
975 INSTANTIATE_TEST_CASE_P(SupportedVersion
,
977 ::testing::ValuesIn(QuicSupportedVersions()));
979 TEST_P(QuicConnectionTest
, MaxPacketSize
) {
980 EXPECT_EQ(Perspective::IS_CLIENT
, connection_
.perspective());
981 EXPECT_EQ(1350u, connection_
.max_packet_length());
984 TEST_P(QuicConnectionTest
, SmallerServerMaxPacketSize
) {
985 QuicConnectionId connection_id
= 42;
986 TestConnection
connection(connection_id
, IPEndPoint(), helper_
.get(),
987 factory_
, Perspective::IS_SERVER
, version());
988 EXPECT_EQ(Perspective::IS_SERVER
, connection
.perspective());
989 EXPECT_EQ(1000u, connection
.max_packet_length());
992 TEST_P(QuicConnectionTest
, IncreaseServerMaxPacketSize
) {
993 EXPECT_CALL(visitor_
, OnSuccessfulVersionNegotiation(_
));
995 connection_
.set_perspective(Perspective::IS_SERVER
);
996 connection_
.set_max_packet_length(1000);
998 QuicPacketHeader header
;
999 header
.public_header
.connection_id
= connection_id_
;
1000 header
.public_header
.version_flag
= true;
1001 header
.packet_sequence_number
= 1;
1004 QuicPaddingFrame padding
;
1005 frames
.push_back(QuicFrame(&frame1_
));
1006 frames
.push_back(QuicFrame(&padding
));
1007 scoped_ptr
<QuicPacket
> packet(ConstructPacket(header
, frames
));
1008 scoped_ptr
<QuicEncryptedPacket
> encrypted(
1009 framer_
.EncryptPacket(ENCRYPTION_NONE
, 12, *packet
));
1010 EXPECT_EQ(kMaxPacketSize
, encrypted
->length());
1012 framer_
.set_version(version());
1013 EXPECT_CALL(visitor_
, OnStreamFrames(_
)).Times(1);
1014 connection_
.ProcessUdpPacket(IPEndPoint(), IPEndPoint(), *encrypted
);
1016 EXPECT_EQ(kMaxPacketSize
, connection_
.max_packet_length());
1019 TEST_P(QuicConnectionTest
, PacketsInOrder
) {
1020 EXPECT_CALL(visitor_
, OnSuccessfulVersionNegotiation(_
));
1023 EXPECT_EQ(1u, outgoing_ack()->largest_observed
);
1024 EXPECT_EQ(0u, outgoing_ack()->missing_packets
.size());
1027 EXPECT_EQ(2u, outgoing_ack()->largest_observed
);
1028 EXPECT_EQ(0u, outgoing_ack()->missing_packets
.size());
1031 EXPECT_EQ(3u, outgoing_ack()->largest_observed
);
1032 EXPECT_EQ(0u, outgoing_ack()->missing_packets
.size());
1035 TEST_P(QuicConnectionTest
, PacketsOutOfOrder
) {
1036 EXPECT_CALL(visitor_
, OnSuccessfulVersionNegotiation(_
));
1039 EXPECT_EQ(3u, outgoing_ack()->largest_observed
);
1040 EXPECT_TRUE(IsMissing(2));
1041 EXPECT_TRUE(IsMissing(1));
1044 EXPECT_EQ(3u, outgoing_ack()->largest_observed
);
1045 EXPECT_FALSE(IsMissing(2));
1046 EXPECT_TRUE(IsMissing(1));
1049 EXPECT_EQ(3u, outgoing_ack()->largest_observed
);
1050 EXPECT_FALSE(IsMissing(2));
1051 EXPECT_FALSE(IsMissing(1));
1054 TEST_P(QuicConnectionTest
, DuplicatePacket
) {
1055 EXPECT_CALL(visitor_
, OnSuccessfulVersionNegotiation(_
));
1058 EXPECT_EQ(3u, outgoing_ack()->largest_observed
);
1059 EXPECT_TRUE(IsMissing(2));
1060 EXPECT_TRUE(IsMissing(1));
1062 // Send packet 3 again, but do not set the expectation that
1063 // the visitor OnStreamFrames() will be called.
1064 ProcessDataPacket(3, 0, !kEntropyFlag
);
1065 EXPECT_EQ(3u, outgoing_ack()->largest_observed
);
1066 EXPECT_TRUE(IsMissing(2));
1067 EXPECT_TRUE(IsMissing(1));
1070 TEST_P(QuicConnectionTest
, PacketsOutOfOrderWithAdditionsAndLeastAwaiting
) {
1071 EXPECT_CALL(visitor_
, OnSuccessfulVersionNegotiation(_
));
1074 EXPECT_EQ(3u, outgoing_ack()->largest_observed
);
1075 EXPECT_TRUE(IsMissing(2));
1076 EXPECT_TRUE(IsMissing(1));
1079 EXPECT_EQ(3u, outgoing_ack()->largest_observed
);
1080 EXPECT_TRUE(IsMissing(1));
1083 EXPECT_EQ(5u, outgoing_ack()->largest_observed
);
1084 EXPECT_TRUE(IsMissing(1));
1085 EXPECT_TRUE(IsMissing(4));
1087 // Pretend at this point the client has gotten acks for 2 and 3 and 1 is a
1088 // packet the peer will not retransmit. It indicates this by sending 'least
1089 // awaiting' is 4. The connection should then realize 1 will not be
1090 // retransmitted, and will remove it from the missing list.
1091 QuicPacketCreatorPeer::SetSequenceNumber(&peer_creator_
, 5);
1092 QuicAckFrame frame
= InitAckFrame(1);
1093 EXPECT_CALL(*send_algorithm_
, OnCongestionEvent(_
, _
, _
, _
));
1094 ProcessAckPacket(&frame
);
1096 // Force an ack to be sent.
1097 SendAckPacketToPeer();
1098 EXPECT_TRUE(IsMissing(4));
1101 TEST_P(QuicConnectionTest
, RejectPacketTooFarOut
) {
1102 EXPECT_CALL(visitor_
,
1103 OnConnectionClosed(QUIC_INVALID_PACKET_HEADER
, false));
1104 // Call ProcessDataPacket rather than ProcessPacket, as we should not get a
1105 // packet call to the visitor.
1106 ProcessDataPacket(6000, 0, !kEntropyFlag
);
1107 EXPECT_FALSE(QuicConnectionPeer::GetConnectionClosePacket(&connection_
) ==
1111 TEST_P(QuicConnectionTest
, RejectUnencryptedStreamData
) {
1112 // Process an unencrypted packet from the non-crypto stream.
1113 frame1_
.stream_id
= 3;
1114 EXPECT_CALL(visitor_
, OnSuccessfulVersionNegotiation(_
));
1115 EXPECT_CALL(visitor_
, OnConnectionClosed(QUIC_UNENCRYPTED_STREAM_DATA
,
1117 ProcessDataPacket(1, 0, !kEntropyFlag
);
1118 EXPECT_FALSE(QuicConnectionPeer::GetConnectionClosePacket(&connection_
) ==
1120 const vector
<QuicConnectionCloseFrame
>& connection_close_frames
=
1121 writer_
->connection_close_frames();
1122 EXPECT_EQ(1u, connection_close_frames
.size());
1123 EXPECT_EQ(QUIC_UNENCRYPTED_STREAM_DATA
,
1124 connection_close_frames
[0].error_code
);
1127 TEST_P(QuicConnectionTest
, TruncatedAck
) {
1128 EXPECT_CALL(visitor_
, OnSuccessfulVersionNegotiation(_
));
1129 QuicPacketSequenceNumber num_packets
= 256 * 2 + 1;
1130 for (QuicPacketSequenceNumber i
= 0; i
< num_packets
; ++i
) {
1131 SendStreamDataToPeer(3, "foo", i
* 3, !kFin
, nullptr);
1134 QuicAckFrame frame
= InitAckFrame(num_packets
);
1135 SequenceNumberSet lost_packets
;
1136 // Create an ack with 256 nacks, none adjacent to one another.
1137 for (QuicPacketSequenceNumber i
= 1; i
<= 256; ++i
) {
1138 NackPacket(i
* 2, &frame
);
1139 if (i
< 256) { // Last packet is nacked, but not lost.
1140 lost_packets
.insert(i
* 2);
1143 EXPECT_CALL(*loss_algorithm_
, DetectLostPackets(_
, _
, _
, _
))
1144 .WillOnce(Return(lost_packets
));
1145 EXPECT_CALL(entropy_calculator_
, EntropyHash(511))
1146 .WillOnce(Return(static_cast<QuicPacketEntropyHash
>(0)));
1147 EXPECT_CALL(*send_algorithm_
, OnCongestionEvent(true, _
, _
, _
));
1148 ProcessAckPacket(&frame
);
1150 // A truncated ack will not have the true largest observed.
1151 EXPECT_GT(num_packets
, manager_
->largest_observed());
1153 AckPacket(192, &frame
);
1155 // Removing one missing packet allows us to ack 192 and one more range, but
1156 // 192 has already been declared lost, so it doesn't register as an ack.
1157 EXPECT_CALL(*loss_algorithm_
, DetectLostPackets(_
, _
, _
, _
))
1158 .WillOnce(Return(SequenceNumberSet()));
1159 EXPECT_CALL(*send_algorithm_
, OnCongestionEvent(true, _
, _
, _
));
1160 ProcessAckPacket(&frame
);
1161 EXPECT_EQ(num_packets
, manager_
->largest_observed());
1164 TEST_P(QuicConnectionTest
, AckReceiptCausesAckSendBadEntropy
) {
1165 EXPECT_CALL(visitor_
, OnSuccessfulVersionNegotiation(_
));
1168 // Delay sending, then queue up an ack.
1169 EXPECT_CALL(*send_algorithm_
,
1170 TimeUntilSend(_
, _
, _
)).WillOnce(
1171 testing::Return(QuicTime::Delta::FromMicroseconds(1)));
1172 QuicConnectionPeer::SendAck(&connection_
);
1174 // Process an ack with a least unacked of the received ack.
1175 // This causes an ack to be sent when TimeUntilSend returns 0.
1176 EXPECT_CALL(*send_algorithm_
,
1177 TimeUntilSend(_
, _
, _
)).WillRepeatedly(
1178 testing::Return(QuicTime::Delta::Zero()));
1179 // Skip a packet and then record an ack.
1180 QuicPacketCreatorPeer::SetSequenceNumber(&peer_creator_
, 2);
1181 QuicAckFrame frame
= InitAckFrame(0);
1182 ProcessAckPacket(&frame
);
1185 TEST_P(QuicConnectionTest
, OutOfOrderReceiptCausesAckSend
) {
1186 EXPECT_CALL(visitor_
, OnSuccessfulVersionNegotiation(_
));
1189 // Should ack immediately since we have missing packets.
1190 EXPECT_EQ(1u, writer_
->packets_write_attempts());
1193 // Should ack immediately since we have missing packets.
1194 EXPECT_EQ(2u, writer_
->packets_write_attempts());
1197 // Should ack immediately, since this fills the last hole.
1198 EXPECT_EQ(3u, writer_
->packets_write_attempts());
1201 // Should not cause an ack.
1202 EXPECT_EQ(3u, writer_
->packets_write_attempts());
1205 TEST_P(QuicConnectionTest
, AckReceiptCausesAckSend
) {
1206 EXPECT_CALL(visitor_
, OnSuccessfulVersionNegotiation(_
));
1208 QuicPacketSequenceNumber original
;
1209 QuicByteCount packet_size
;
1210 EXPECT_CALL(*send_algorithm_
, OnPacketSent(_
, _
, _
, _
, _
))
1211 .WillOnce(DoAll(SaveArg
<2>(&original
), SaveArg
<3>(&packet_size
),
1213 connection_
.SendStreamDataWithString(3, "foo", 0, !kFin
, nullptr);
1214 QuicAckFrame frame
= InitAckFrame(original
);
1215 NackPacket(original
, &frame
);
1216 // First nack triggers early retransmit.
1217 SequenceNumberSet lost_packets
;
1218 lost_packets
.insert(1);
1219 EXPECT_CALL(*loss_algorithm_
, DetectLostPackets(_
, _
, _
, _
))
1220 .WillOnce(Return(lost_packets
));
1221 EXPECT_CALL(*send_algorithm_
, OnCongestionEvent(true, _
, _
, _
));
1222 QuicPacketSequenceNumber retransmission
;
1223 EXPECT_CALL(*send_algorithm_
,
1224 OnPacketSent(_
, _
, _
, packet_size
- kQuicVersionSize
, _
))
1225 .WillOnce(DoAll(SaveArg
<2>(&retransmission
), Return(true)));
1227 ProcessAckPacket(&frame
);
1229 QuicAckFrame frame2
= InitAckFrame(retransmission
);
1230 NackPacket(original
, &frame2
);
1231 EXPECT_CALL(*send_algorithm_
, OnCongestionEvent(true, _
, _
, _
));
1232 EXPECT_CALL(*loss_algorithm_
, DetectLostPackets(_
, _
, _
, _
))
1233 .WillOnce(Return(SequenceNumberSet()));
1234 ProcessAckPacket(&frame2
);
1236 // Now if the peer sends an ack which still reports the retransmitted packet
1237 // as missing, that will bundle an ack with data after two acks in a row
1238 // indicate the high water mark needs to be raised.
1239 EXPECT_CALL(*send_algorithm_
, OnPacketSent(_
, _
, _
, _
,
1240 HAS_RETRANSMITTABLE_DATA
));
1241 connection_
.SendStreamDataWithString(3, "foo", 3, !kFin
, nullptr);
1243 EXPECT_EQ(1u, writer_
->frame_count());
1244 EXPECT_EQ(1u, writer_
->stream_frames().size());
1246 // No more packet loss for the rest of the test.
1247 EXPECT_CALL(*loss_algorithm_
, DetectLostPackets(_
, _
, _
, _
))
1248 .WillRepeatedly(Return(SequenceNumberSet()));
1249 ProcessAckPacket(&frame2
);
1250 EXPECT_CALL(*send_algorithm_
, OnPacketSent(_
, _
, _
, _
,
1251 HAS_RETRANSMITTABLE_DATA
));
1252 connection_
.SendStreamDataWithString(3, "foo", 3, !kFin
, nullptr);
1254 EXPECT_EQ(3u, writer_
->frame_count());
1255 EXPECT_EQ(1u, writer_
->stream_frames().size());
1256 EXPECT_FALSE(writer_
->ack_frames().empty());
1258 // But an ack with no missing packets will not send an ack.
1259 AckPacket(original
, &frame2
);
1260 ProcessAckPacket(&frame2
);
1261 ProcessAckPacket(&frame2
);
1264 TEST_P(QuicConnectionTest
, 20AcksCausesAckSend
) {
1265 EXPECT_CALL(visitor_
, OnSuccessfulVersionNegotiation(_
));
1267 SendStreamDataToPeer(1, "foo", 0, !kFin
, nullptr);
1269 QuicAlarm
* ack_alarm
= QuicConnectionPeer::GetAckAlarm(&connection_
);
1270 // But an ack with no missing packets will not send an ack.
1271 QuicAckFrame frame
= InitAckFrame(1);
1272 EXPECT_CALL(*send_algorithm_
, OnCongestionEvent(true, _
, _
, _
));
1273 EXPECT_CALL(*loss_algorithm_
, DetectLostPackets(_
, _
, _
, _
))
1274 .WillRepeatedly(Return(SequenceNumberSet()));
1275 for (int i
= 0; i
< 20; ++i
) {
1276 EXPECT_FALSE(ack_alarm
->IsSet());
1277 ProcessAckPacket(&frame
);
1279 EXPECT_TRUE(ack_alarm
->IsSet());
1282 TEST_P(QuicConnectionTest
, LeastUnackedLower
) {
1283 EXPECT_CALL(visitor_
, OnSuccessfulVersionNegotiation(_
));
1285 SendStreamDataToPeer(1, "foo", 0, !kFin
, nullptr);
1286 SendStreamDataToPeer(1, "bar", 3, !kFin
, nullptr);
1287 SendStreamDataToPeer(1, "eep", 6, !kFin
, nullptr);
1289 // Start out saying the least unacked is 2.
1290 QuicPacketCreatorPeer::SetSequenceNumber(&peer_creator_
, 5);
1291 QuicStopWaitingFrame frame
= InitStopWaitingFrame(2);
1292 ProcessStopWaitingPacket(&frame
);
1294 // Change it to 1, but lower the sequence number to fake out-of-order packets.
1295 // This should be fine.
1296 QuicPacketCreatorPeer::SetSequenceNumber(&peer_creator_
, 1);
1297 // The scheduler will not process out of order acks, but all packet processing
1298 // causes the connection to try to write.
1299 EXPECT_CALL(visitor_
, OnCanWrite());
1300 QuicStopWaitingFrame frame2
= InitStopWaitingFrame(1);
1301 ProcessStopWaitingPacket(&frame2
);
1303 // Now claim it's one, but set the ordering so it was sent "after" the first
1304 // one. This should cause a connection error.
1305 EXPECT_CALL(*send_algorithm_
, OnPacketSent(_
, _
, _
, _
, _
));
1306 QuicPacketCreatorPeer::SetSequenceNumber(&peer_creator_
, 7);
1307 EXPECT_CALL(visitor_
,
1308 OnConnectionClosed(QUIC_INVALID_STOP_WAITING_DATA
, false));
1309 QuicStopWaitingFrame frame3
= InitStopWaitingFrame(1);
1310 ProcessStopWaitingPacket(&frame3
);
1313 TEST_P(QuicConnectionTest
, TooManySentPackets
) {
1314 EXPECT_CALL(visitor_
, OnSuccessfulVersionNegotiation(_
));
1316 for (int i
= 0; i
< 1100; ++i
) {
1317 SendStreamDataToPeer(1, "foo", 3 * i
, !kFin
, nullptr);
1320 // Ack packet 1, which leaves more than the limit outstanding.
1321 EXPECT_CALL(*send_algorithm_
, OnCongestionEvent(true, _
, _
, _
));
1322 EXPECT_CALL(visitor_
, OnConnectionClosed(
1323 QUIC_TOO_MANY_OUTSTANDING_SENT_PACKETS
, false));
1324 // We're receive buffer limited, so the connection won't try to write more.
1325 EXPECT_CALL(visitor_
, OnCanWrite()).Times(0);
1327 // Nack every packet except the last one, leaving a huge gap.
1328 QuicAckFrame frame1
= InitAckFrame(1100);
1329 for (QuicPacketSequenceNumber i
= 1; i
< 1100; ++i
) {
1330 NackPacket(i
, &frame1
);
1332 ProcessAckPacket(&frame1
);
1335 TEST_P(QuicConnectionTest
, TooManyReceivedPackets
) {
1336 EXPECT_CALL(visitor_
, OnSuccessfulVersionNegotiation(_
));
1337 EXPECT_CALL(visitor_
, OnConnectionClosed(
1338 QUIC_TOO_MANY_OUTSTANDING_RECEIVED_PACKETS
, false));
1340 // Miss every other packet for 1000 packets.
1341 for (QuicPacketSequenceNumber i
= 1; i
< 1000; ++i
) {
1342 ProcessPacket(i
* 2);
1343 if (!connection_
.connected()) {
1349 TEST_P(QuicConnectionTest
, LargestObservedLower
) {
1350 EXPECT_CALL(visitor_
, OnSuccessfulVersionNegotiation(_
));
1352 SendStreamDataToPeer(1, "foo", 0, !kFin
, nullptr);
1353 SendStreamDataToPeer(1, "bar", 3, !kFin
, nullptr);
1354 SendStreamDataToPeer(1, "eep", 6, !kFin
, nullptr);
1355 EXPECT_CALL(*send_algorithm_
, OnCongestionEvent(true, _
, _
, _
));
1357 // Start out saying the largest observed is 2.
1358 QuicAckFrame frame1
= InitAckFrame(1);
1359 QuicAckFrame frame2
= InitAckFrame(2);
1360 ProcessAckPacket(&frame2
);
1362 // Now change it to 1, and it should cause a connection error.
1363 EXPECT_CALL(visitor_
, OnConnectionClosed(QUIC_INVALID_ACK_DATA
, false));
1364 EXPECT_CALL(visitor_
, OnCanWrite()).Times(0);
1365 ProcessAckPacket(&frame1
);
1368 TEST_P(QuicConnectionTest
, AckUnsentData
) {
1369 // Ack a packet which has not been sent.
1370 EXPECT_CALL(visitor_
, OnConnectionClosed(QUIC_INVALID_ACK_DATA
, false));
1371 EXPECT_CALL(visitor_
, OnSuccessfulVersionNegotiation(_
));
1372 EXPECT_CALL(*send_algorithm_
, OnPacketSent(_
, _
, _
, _
, _
));
1373 QuicAckFrame
frame(MakeAckFrame(1));
1374 EXPECT_CALL(visitor_
, OnCanWrite()).Times(0);
1375 ProcessAckPacket(&frame
);
1378 TEST_P(QuicConnectionTest
, AckAll
) {
1379 EXPECT_CALL(visitor_
, OnSuccessfulVersionNegotiation(_
));
1382 QuicPacketCreatorPeer::SetSequenceNumber(&peer_creator_
, 1);
1383 QuicAckFrame frame1
= InitAckFrame(0);
1384 ProcessAckPacket(&frame1
);
1387 TEST_P(QuicConnectionTest
, SendingDifferentSequenceNumberLengthsBandwidth
) {
1388 QuicPacketSequenceNumber last_packet
;
1389 SendStreamDataToPeer(1, "foo", 0, !kFin
, &last_packet
);
1390 EXPECT_EQ(1u, last_packet
);
1391 EXPECT_EQ(PACKET_1BYTE_SEQUENCE_NUMBER
,
1392 QuicPacketCreatorPeer::NextSequenceNumberLength(creator_
));
1393 EXPECT_EQ(PACKET_1BYTE_SEQUENCE_NUMBER
,
1394 writer_
->header().public_header
.sequence_number_length
);
1396 EXPECT_CALL(*send_algorithm_
, GetCongestionWindow()).WillRepeatedly(
1397 Return(kMaxPacketSize
* 256));
1399 SendStreamDataToPeer(1, "bar", 3, !kFin
, &last_packet
);
1400 EXPECT_EQ(2u, last_packet
);
1401 EXPECT_EQ(PACKET_2BYTE_SEQUENCE_NUMBER
,
1402 QuicPacketCreatorPeer::NextSequenceNumberLength(creator_
));
1403 // The 1 packet lag is due to the sequence number length being recalculated in
1404 // QuicConnection after a packet is sent.
1405 EXPECT_EQ(PACKET_1BYTE_SEQUENCE_NUMBER
,
1406 writer_
->header().public_header
.sequence_number_length
);
1408 EXPECT_CALL(*send_algorithm_
, GetCongestionWindow()).WillRepeatedly(
1409 Return(kMaxPacketSize
* 256 * 256));
1411 SendStreamDataToPeer(1, "foo", 6, !kFin
, &last_packet
);
1412 EXPECT_EQ(3u, last_packet
);
1413 EXPECT_EQ(PACKET_4BYTE_SEQUENCE_NUMBER
,
1414 QuicPacketCreatorPeer::NextSequenceNumberLength(creator_
));
1415 EXPECT_EQ(PACKET_2BYTE_SEQUENCE_NUMBER
,
1416 writer_
->header().public_header
.sequence_number_length
);
1418 EXPECT_CALL(*send_algorithm_
, GetCongestionWindow()).WillRepeatedly(
1419 Return(kMaxPacketSize
* 256 * 256 * 256));
1421 SendStreamDataToPeer(1, "bar", 9, !kFin
, &last_packet
);
1422 EXPECT_EQ(4u, last_packet
);
1423 EXPECT_EQ(PACKET_4BYTE_SEQUENCE_NUMBER
,
1424 QuicPacketCreatorPeer::NextSequenceNumberLength(creator_
));
1425 EXPECT_EQ(PACKET_4BYTE_SEQUENCE_NUMBER
,
1426 writer_
->header().public_header
.sequence_number_length
);
1428 EXPECT_CALL(*send_algorithm_
, GetCongestionWindow()).WillRepeatedly(
1429 Return(kMaxPacketSize
* 256 * 256 * 256 * 256));
1431 SendStreamDataToPeer(1, "foo", 12, !kFin
, &last_packet
);
1432 EXPECT_EQ(5u, last_packet
);
1433 EXPECT_EQ(PACKET_6BYTE_SEQUENCE_NUMBER
,
1434 QuicPacketCreatorPeer::NextSequenceNumberLength(creator_
));
1435 EXPECT_EQ(PACKET_4BYTE_SEQUENCE_NUMBER
,
1436 writer_
->header().public_header
.sequence_number_length
);
1439 // TODO(ianswett): Re-enable this test by finding a good way to test different
1440 // sequence number lengths without sending packets with giant gaps.
1441 TEST_P(QuicConnectionTest
,
1442 DISABLED_SendingDifferentSequenceNumberLengthsUnackedDelta
) {
1443 QuicPacketSequenceNumber last_packet
;
1444 SendStreamDataToPeer(1, "foo", 0, !kFin
, &last_packet
);
1445 EXPECT_EQ(1u, last_packet
);
1446 EXPECT_EQ(PACKET_1BYTE_SEQUENCE_NUMBER
,
1447 QuicPacketCreatorPeer::NextSequenceNumberLength(creator_
));
1448 EXPECT_EQ(PACKET_1BYTE_SEQUENCE_NUMBER
,
1449 writer_
->header().public_header
.sequence_number_length
);
1451 QuicPacketCreatorPeer::SetSequenceNumber(&peer_creator_
, 100);
1453 SendStreamDataToPeer(1, "bar", 3, !kFin
, &last_packet
);
1454 EXPECT_EQ(PACKET_2BYTE_SEQUENCE_NUMBER
,
1455 QuicPacketCreatorPeer::NextSequenceNumberLength(creator_
));
1456 EXPECT_EQ(PACKET_1BYTE_SEQUENCE_NUMBER
,
1457 writer_
->header().public_header
.sequence_number_length
);
1459 QuicPacketCreatorPeer::SetSequenceNumber(&peer_creator_
, 100 * 256);
1461 SendStreamDataToPeer(1, "foo", 6, !kFin
, &last_packet
);
1462 EXPECT_EQ(PACKET_4BYTE_SEQUENCE_NUMBER
,
1463 QuicPacketCreatorPeer::NextSequenceNumberLength(creator_
));
1464 EXPECT_EQ(PACKET_2BYTE_SEQUENCE_NUMBER
,
1465 writer_
->header().public_header
.sequence_number_length
);
1467 QuicPacketCreatorPeer::SetSequenceNumber(&peer_creator_
, 100 * 256 * 256);
1469 SendStreamDataToPeer(1, "bar", 9, !kFin
, &last_packet
);
1470 EXPECT_EQ(PACKET_4BYTE_SEQUENCE_NUMBER
,
1471 QuicPacketCreatorPeer::NextSequenceNumberLength(creator_
));
1472 EXPECT_EQ(PACKET_4BYTE_SEQUENCE_NUMBER
,
1473 writer_
->header().public_header
.sequence_number_length
);
1475 QuicPacketCreatorPeer::SetSequenceNumber(&peer_creator_
,
1476 100 * 256 * 256 * 256);
1478 SendStreamDataToPeer(1, "foo", 12, !kFin
, &last_packet
);
1479 EXPECT_EQ(PACKET_6BYTE_SEQUENCE_NUMBER
,
1480 QuicPacketCreatorPeer::NextSequenceNumberLength(creator_
));
1481 EXPECT_EQ(PACKET_4BYTE_SEQUENCE_NUMBER
,
1482 writer_
->header().public_header
.sequence_number_length
);
1485 TEST_P(QuicConnectionTest
, BasicSending
) {
1486 EXPECT_CALL(visitor_
, OnSuccessfulVersionNegotiation(_
));
1487 QuicPacketSequenceNumber last_packet
;
1488 SendStreamDataToPeer(1, "foo", 0, !kFin
, &last_packet
); // Packet 1
1489 EXPECT_EQ(1u, last_packet
);
1490 SendAckPacketToPeer(); // Packet 2
1492 EXPECT_EQ(1u, least_unacked());
1494 SendAckPacketToPeer(); // Packet 3
1495 EXPECT_EQ(1u, least_unacked());
1497 SendStreamDataToPeer(1, "bar", 3, !kFin
, &last_packet
); // Packet 4
1498 EXPECT_EQ(4u, last_packet
);
1499 SendAckPacketToPeer(); // Packet 5
1500 EXPECT_EQ(1u, least_unacked());
1502 EXPECT_CALL(*send_algorithm_
, OnCongestionEvent(true, _
, _
, _
));
1504 // Peer acks up to packet 3.
1505 QuicAckFrame frame
= InitAckFrame(3);
1506 ProcessAckPacket(&frame
);
1507 SendAckPacketToPeer(); // Packet 6
1509 // As soon as we've acked one, we skip ack packets 2 and 3 and note lack of
1511 EXPECT_EQ(4u, least_unacked());
1513 EXPECT_CALL(*send_algorithm_
, OnCongestionEvent(true, _
, _
, _
));
1515 // Peer acks up to packet 4, the last packet.
1516 QuicAckFrame frame2
= InitAckFrame(6);
1517 ProcessAckPacket(&frame2
); // Acks don't instigate acks.
1519 // Verify that we did not send an ack.
1520 EXPECT_EQ(6u, writer_
->header().packet_sequence_number
);
1522 // So the last ack has not changed.
1523 EXPECT_EQ(4u, least_unacked());
1525 // If we force an ack, we shouldn't change our retransmit state.
1526 SendAckPacketToPeer(); // Packet 7
1527 EXPECT_EQ(7u, least_unacked());
1529 // But if we send more data it should.
1530 SendStreamDataToPeer(1, "eep", 6, !kFin
, &last_packet
); // Packet 8
1531 EXPECT_EQ(8u, last_packet
);
1532 SendAckPacketToPeer(); // Packet 9
1533 EXPECT_EQ(7u, least_unacked());
1536 // QuicConnection should record the the packet sent-time prior to sending the
1538 TEST_P(QuicConnectionTest
, RecordSentTimeBeforePacketSent
) {
1539 // We're using a MockClock for the tests, so we have complete control over the
1541 // Our recorded timestamp for the last packet sent time will be passed in to
1542 // the send_algorithm. Make sure that it is set to the correct value.
1543 QuicTime actual_recorded_send_time
= QuicTime::Zero();
1544 EXPECT_CALL(*send_algorithm_
, OnPacketSent(_
, _
, _
, _
, _
))
1545 .WillOnce(DoAll(SaveArg
<0>(&actual_recorded_send_time
), Return(true)));
1547 // First send without any pause and check the result.
1548 QuicTime expected_recorded_send_time
= clock_
.Now();
1549 connection_
.SendStreamDataWithString(1, "foo", 0, !kFin
, nullptr);
1550 EXPECT_EQ(expected_recorded_send_time
, actual_recorded_send_time
)
1551 << "Expected time = " << expected_recorded_send_time
.ToDebuggingValue()
1552 << ". Actual time = " << actual_recorded_send_time
.ToDebuggingValue();
1554 // Now pause during the write, and check the results.
1555 actual_recorded_send_time
= QuicTime::Zero();
1556 const QuicTime::Delta write_pause_time_delta
=
1557 QuicTime::Delta::FromMilliseconds(5000);
1558 SetWritePauseTimeDelta(write_pause_time_delta
);
1559 expected_recorded_send_time
= clock_
.Now();
1561 EXPECT_CALL(*send_algorithm_
, OnPacketSent(_
, _
, _
, _
, _
))
1562 .WillOnce(DoAll(SaveArg
<0>(&actual_recorded_send_time
), Return(true)));
1563 connection_
.SendStreamDataWithString(2, "baz", 0, !kFin
, nullptr);
1564 EXPECT_EQ(expected_recorded_send_time
, actual_recorded_send_time
)
1565 << "Expected time = " << expected_recorded_send_time
.ToDebuggingValue()
1566 << ". Actual time = " << actual_recorded_send_time
.ToDebuggingValue();
1569 TEST_P(QuicConnectionTest
, FECSending
) {
1570 // All packets carry version info till version is negotiated.
1571 size_t payload_length
;
1572 // GetPacketLengthForOneStream() assumes a stream offset of 0 in determining
1573 // packet length. The size of the offset field in a stream frame is 0 for
1574 // offset 0, and 2 for non-zero offsets up through 64K. Increase
1575 // max_packet_length by 2 so that subsequent packets containing subsequent
1576 // stream frames with non-zero offets will fit within the packet length.
1577 size_t length
= 2 + GetPacketLengthForOneStream(
1578 connection_
.version(), kIncludeVersion
,
1579 PACKET_8BYTE_CONNECTION_ID
, PACKET_1BYTE_SEQUENCE_NUMBER
,
1580 IN_FEC_GROUP
, &payload_length
);
1581 creator_
->SetMaxPacketLength(length
);
1583 // Send 4 protected data packets, which should also trigger 1 FEC packet.
1584 EXPECT_CALL(*send_algorithm_
,
1585 OnPacketSent(_
, _
, _
, _
, HAS_RETRANSMITTABLE_DATA
)).Times(5);
1586 // The first stream frame will have 2 fewer overhead bytes than the other 3.
1587 const string
payload(payload_length
* 4 + 2, 'a');
1588 connection_
.SendStreamDataWithStringWithFec(1, payload
, 0, !kFin
, nullptr);
1589 // Expect the FEC group to be closed after SendStreamDataWithString.
1590 EXPECT_FALSE(creator_
->IsFecGroupOpen());
1591 EXPECT_FALSE(creator_
->IsFecProtected());
1594 TEST_P(QuicConnectionTest
, FECQueueing
) {
1595 // All packets carry version info till version is negotiated.
1596 size_t payload_length
;
1597 size_t length
= GetPacketLengthForOneStream(
1598 connection_
.version(), kIncludeVersion
,
1599 PACKET_8BYTE_CONNECTION_ID
, PACKET_1BYTE_SEQUENCE_NUMBER
,
1600 IN_FEC_GROUP
, &payload_length
);
1601 creator_
->SetMaxPacketLength(length
);
1602 EXPECT_TRUE(creator_
->IsFecEnabled());
1604 EXPECT_EQ(0u, connection_
.NumQueuedPackets());
1606 const string
payload(payload_length
, 'a');
1607 connection_
.SendStreamDataWithStringWithFec(1, payload
, 0, !kFin
, nullptr);
1608 EXPECT_FALSE(creator_
->IsFecGroupOpen());
1609 EXPECT_FALSE(creator_
->IsFecProtected());
1610 // Expect the first data packet and the fec packet to be queued.
1611 EXPECT_EQ(2u, connection_
.NumQueuedPackets());
1614 TEST_P(QuicConnectionTest
, FECAlarmStoppedWhenFECPacketSent
) {
1615 EXPECT_TRUE(creator_
->IsFecEnabled());
1616 EXPECT_EQ(0u, QuicSentPacketManagerPeer::GetBytesInFlight(manager_
));
1617 EXPECT_FALSE(connection_
.GetFecAlarm()->IsSet());
1619 creator_
->set_max_packets_per_fec_group(2);
1621 // 1 Data packet. FEC alarm should be set.
1622 EXPECT_CALL(*send_algorithm_
,
1623 OnPacketSent(_
, _
, 1u, _
, HAS_RETRANSMITTABLE_DATA
)).Times(1);
1624 connection_
.SendStreamDataWithStringWithFec(3, "foo", 0, true, nullptr);
1625 EXPECT_TRUE(connection_
.GetFecAlarm()->IsSet());
1627 // Second data packet triggers FEC packet out. FEC alarm should not be set.
1628 EXPECT_CALL(*send_algorithm_
,
1629 OnPacketSent(_
, _
, _
, _
, HAS_RETRANSMITTABLE_DATA
)).Times(2);
1630 connection_
.SendStreamDataWithStringWithFec(5, "foo", 0, true, nullptr);
1631 EXPECT_TRUE(writer_
->header().fec_flag
);
1632 EXPECT_FALSE(connection_
.GetFecAlarm()->IsSet());
1635 TEST_P(QuicConnectionTest
, FECAlarmStoppedOnConnectionClose
) {
1636 EXPECT_TRUE(creator_
->IsFecEnabled());
1637 EXPECT_FALSE(connection_
.GetFecAlarm()->IsSet());
1638 creator_
->set_max_packets_per_fec_group(100);
1640 // 1 Data packet. FEC alarm should be set.
1641 EXPECT_CALL(*send_algorithm_
,
1642 OnPacketSent(_
, _
, 1u, _
, HAS_RETRANSMITTABLE_DATA
)).Times(1);
1643 connection_
.SendStreamDataWithStringWithFec(3, "foo", 0, kFin
, nullptr);
1644 EXPECT_TRUE(connection_
.GetFecAlarm()->IsSet());
1646 EXPECT_CALL(visitor_
, OnConnectionClosed(QUIC_NO_ERROR
, false));
1647 // Closing connection should stop the FEC alarm.
1648 connection_
.CloseConnection(QUIC_NO_ERROR
, /*from_peer=*/false);
1649 EXPECT_FALSE(connection_
.GetFecAlarm()->IsSet());
1652 TEST_P(QuicConnectionTest
, RemoveFECFromInflightOnRetransmissionTimeout
) {
1653 EXPECT_CALL(visitor_
, OnSuccessfulVersionNegotiation(_
));
1654 EXPECT_TRUE(creator_
->IsFecEnabled());
1655 EXPECT_EQ(0u, QuicSentPacketManagerPeer::GetBytesInFlight(manager_
));
1656 EXPECT_FALSE(connection_
.GetFecAlarm()->IsSet());
1658 // 1 Data packet. FEC alarm should be set.
1659 EXPECT_CALL(*send_algorithm_
,
1660 OnPacketSent(_
, _
, 1u, _
, HAS_RETRANSMITTABLE_DATA
)).Times(1);
1661 connection_
.SendStreamDataWithStringWithFec(3, "foo", 0, !kFin
, nullptr);
1662 EXPECT_TRUE(connection_
.GetFecAlarm()->IsSet());
1663 size_t protected_packet
=
1664 QuicSentPacketManagerPeer::GetBytesInFlight(manager_
);
1666 // Force FEC timeout to send FEC packet out.
1667 EXPECT_CALL(*send_algorithm_
,
1668 OnPacketSent(_
, _
, 2u, _
, HAS_RETRANSMITTABLE_DATA
)).Times(1);
1669 connection_
.GetFecAlarm()->Fire();
1670 EXPECT_TRUE(writer_
->header().fec_flag
);
1672 size_t fec_packet
= protected_packet
;
1673 EXPECT_EQ(protected_packet
+ fec_packet
,
1674 QuicSentPacketManagerPeer::GetBytesInFlight(manager_
));
1675 clock_
.AdvanceTime(DefaultRetransmissionTime());
1677 // On RTO, both data and FEC packets are removed from inflight, only the data
1678 // packet is retransmitted, and this retransmission (but not FEC) gets added
1679 // back into the inflight.
1680 EXPECT_CALL(*send_algorithm_
, OnRetransmissionTimeout(true));
1681 EXPECT_CALL(*send_algorithm_
, OnPacketSent(_
, _
, _
, _
, _
)).Times(1);
1682 connection_
.GetRetransmissionAlarm()->Fire();
1684 // The retransmission of packet 1 will be 3 bytes smaller than packet 1, since
1685 // the first transmission will have 1 byte for FEC group number and 2 bytes of
1686 // stream frame size, which are absent in the retransmission.
1687 size_t retransmitted_packet
= protected_packet
- 3;
1688 EXPECT_EQ(protected_packet
+ retransmitted_packet
,
1689 QuicSentPacketManagerPeer::GetBytesInFlight(manager_
));
1690 EXPECT_FALSE(connection_
.GetFecAlarm()->IsSet());
1692 // Receive ack for the retransmission. No data should be outstanding.
1693 QuicAckFrame ack
= InitAckFrame(3);
1694 NackPacket(1, &ack
);
1695 NackPacket(2, &ack
);
1696 SequenceNumberSet lost_packets
;
1697 lost_packets
.insert(1);
1698 EXPECT_CALL(*loss_algorithm_
, DetectLostPackets(_
, _
, _
, _
))
1699 .WillOnce(Return(lost_packets
));
1700 EXPECT_CALL(*send_algorithm_
, OnCongestionEvent(true, _
, _
, _
));
1701 ProcessAckPacket(&ack
);
1703 // Ensure the alarm is not set since all packets have been acked or abandoned.
1704 EXPECT_FALSE(connection_
.GetRetransmissionAlarm()->IsSet());
1705 EXPECT_EQ(0u, QuicSentPacketManagerPeer::GetBytesInFlight(manager_
));
1708 TEST_P(QuicConnectionTest
, RemoveFECFromInflightOnLossRetransmission
) {
1709 EXPECT_TRUE(creator_
->IsFecEnabled());
1710 EXPECT_FALSE(connection_
.GetFecAlarm()->IsSet());
1712 // 1 FEC-protected data packet. FEC alarm should be set.
1713 EXPECT_CALL(*send_algorithm_
,
1714 OnPacketSent(_
, _
, _
, _
, HAS_RETRANSMITTABLE_DATA
)).Times(1);
1715 connection_
.SendStreamDataWithStringWithFec(3, "foo", 0, kFin
, nullptr);
1716 EXPECT_TRUE(connection_
.GetFecAlarm()->IsSet());
1717 size_t protected_packet
=
1718 QuicSentPacketManagerPeer::GetBytesInFlight(manager_
);
1720 // Force FEC timeout to send FEC packet out.
1721 EXPECT_CALL(*send_algorithm_
,
1722 OnPacketSent(_
, _
, _
, _
, HAS_RETRANSMITTABLE_DATA
)).Times(1);
1723 connection_
.GetFecAlarm()->Fire();
1724 EXPECT_TRUE(writer_
->header().fec_flag
);
1725 size_t fec_packet
= protected_packet
;
1726 EXPECT_EQ(protected_packet
+ fec_packet
,
1727 QuicSentPacketManagerPeer::GetBytesInFlight(manager_
));
1729 // Send more data to trigger NACKs. Note that all data starts at stream offset
1730 // 0 to ensure the same packet size, for ease of testing.
1731 EXPECT_CALL(*send_algorithm_
,
1732 OnPacketSent(_
, _
, _
, _
, HAS_RETRANSMITTABLE_DATA
)).Times(4);
1733 connection_
.SendStreamDataWithString(5, "foo", 0, kFin
, nullptr);
1734 connection_
.SendStreamDataWithString(7, "foo", 0, kFin
, nullptr);
1735 connection_
.SendStreamDataWithString(9, "foo", 0, kFin
, nullptr);
1736 connection_
.SendStreamDataWithString(11, "foo", 0, kFin
, nullptr);
1738 // An unprotected packet will be 3 bytes smaller than an FEC-protected packet,
1739 // since the protected packet will have 1 byte for FEC group number and
1740 // 2 bytes of stream frame size, which are absent in the unprotected packet.
1741 size_t unprotected_packet
= protected_packet
- 3;
1742 EXPECT_EQ(protected_packet
+ fec_packet
+ 4 * unprotected_packet
,
1743 QuicSentPacketManagerPeer::GetBytesInFlight(manager_
));
1744 EXPECT_FALSE(connection_
.GetFecAlarm()->IsSet());
1746 // Ack data packets, and NACK FEC packet and one data packet. Triggers
1747 // NACK-based loss detection of both packets, but only data packet is
1748 // retransmitted and considered oustanding.
1749 QuicAckFrame ack
= InitAckFrame(6);
1750 NackPacket(2, &ack
);
1751 NackPacket(3, &ack
);
1752 SequenceNumberSet lost_packets
;
1753 lost_packets
.insert(2);
1754 lost_packets
.insert(3);
1755 EXPECT_CALL(*loss_algorithm_
, DetectLostPackets(_
, _
, _
, _
))
1756 .WillOnce(Return(lost_packets
));
1757 EXPECT_CALL(*send_algorithm_
, OnCongestionEvent(true, _
, _
, _
));
1758 EXPECT_CALL(*send_algorithm_
,
1759 OnPacketSent(_
, _
, _
, _
, HAS_RETRANSMITTABLE_DATA
)).Times(1);
1760 EXPECT_CALL(visitor_
, OnSuccessfulVersionNegotiation(_
));
1761 ProcessAckPacket(&ack
);
1762 // On receiving this ack from the server, the client will no longer send
1763 // version number in subsequent packets, including in this retransmission.
1764 size_t unprotected_packet_no_version
= unprotected_packet
- 4;
1765 EXPECT_EQ(unprotected_packet_no_version
,
1766 QuicSentPacketManagerPeer::GetBytesInFlight(manager_
));
1768 // Receive ack for the retransmission. No data should be outstanding.
1769 QuicAckFrame ack2
= InitAckFrame(7);
1770 NackPacket(2, &ack2
);
1771 NackPacket(3, &ack2
);
1772 SequenceNumberSet lost_packets2
;
1773 EXPECT_CALL(*loss_algorithm_
, DetectLostPackets(_
, _
, _
, _
))
1774 .WillOnce(Return(lost_packets2
));
1775 EXPECT_CALL(*send_algorithm_
, OnCongestionEvent(true, _
, _
, _
));
1776 ProcessAckPacket(&ack2
);
1777 EXPECT_EQ(0u, QuicSentPacketManagerPeer::GetBytesInFlight(manager_
));
1780 TEST_P(QuicConnectionTest
, FECRemainsInflightOnTLPOfEarlierData
) {
1781 // This test checks if TLP is sent correctly when a data and an FEC packet
1782 // are outstanding. TLP should be sent for the data packet when the
1783 // retransmission alarm fires.
1784 // Turn on TLP for this test.
1785 QuicSentPacketManagerPeer::SetMaxTailLossProbes(manager_
, 1);
1786 EXPECT_TRUE(creator_
->IsFecEnabled());
1787 EXPECT_EQ(0u, QuicSentPacketManagerPeer::GetBytesInFlight(manager_
));
1788 EXPECT_FALSE(connection_
.GetFecAlarm()->IsSet());
1790 // 1 Data packet. FEC alarm should be set.
1791 EXPECT_CALL(*send_algorithm_
,
1792 OnPacketSent(_
, _
, 1u, _
, HAS_RETRANSMITTABLE_DATA
)).Times(1);
1793 connection_
.SendStreamDataWithStringWithFec(3, "foo", 0, kFin
, nullptr);
1794 EXPECT_TRUE(connection_
.GetFecAlarm()->IsSet());
1795 size_t protected_packet
=
1796 QuicSentPacketManagerPeer::GetBytesInFlight(manager_
);
1797 EXPECT_LT(0u, protected_packet
);
1799 // Force FEC timeout to send FEC packet out.
1800 EXPECT_CALL(*send_algorithm_
,
1801 OnPacketSent(_
, _
, 2u, _
, HAS_RETRANSMITTABLE_DATA
)).Times(1);
1802 connection_
.GetFecAlarm()->Fire();
1803 EXPECT_TRUE(writer_
->header().fec_flag
);
1804 size_t fec_packet
= protected_packet
;
1805 EXPECT_EQ(protected_packet
+ fec_packet
,
1806 QuicSentPacketManagerPeer::GetBytesInFlight(manager_
));
1808 // TLP alarm should be set.
1809 QuicTime retransmission_time
=
1810 connection_
.GetRetransmissionAlarm()->deadline();
1811 EXPECT_NE(QuicTime::Zero(), retransmission_time
);
1812 // Simulate the retransmission alarm firing and sending a TLP, so send
1813 // algorithm's OnRetransmissionTimeout is not called.
1814 clock_
.AdvanceTime(retransmission_time
.Subtract(clock_
.Now()));
1815 EXPECT_CALL(*send_algorithm_
,
1816 OnPacketSent(_
, _
, 3u, _
, HAS_RETRANSMITTABLE_DATA
)).Times(1);
1817 connection_
.GetRetransmissionAlarm()->Fire();
1818 // The TLP retransmission of packet 1 will be 3 bytes smaller than packet 1,
1819 // since packet 1 will have 1 byte for FEC group number and 2 bytes of stream
1820 // frame size, which are absent in the the TLP retransmission.
1821 size_t tlp_packet
= protected_packet
- 3;
1822 EXPECT_EQ(protected_packet
+ fec_packet
+ tlp_packet
,
1823 QuicSentPacketManagerPeer::GetBytesInFlight(manager_
));
1826 TEST_P(QuicConnectionTest
, FECRemainsInflightOnTLPOfLaterData
) {
1827 // Tests if TLP is sent correctly when data packet 1 and an FEC packet are
1828 // sent followed by data packet 2, and data packet 1 is acked. TLP should be
1829 // sent for data packet 2 when the retransmission alarm fires. Turn on TLP for
1831 QuicSentPacketManagerPeer::SetMaxTailLossProbes(manager_
, 1);
1832 EXPECT_TRUE(creator_
->IsFecEnabled());
1833 EXPECT_EQ(0u, QuicSentPacketManagerPeer::GetBytesInFlight(manager_
));
1834 EXPECT_FALSE(connection_
.GetFecAlarm()->IsSet());
1836 // 1 Data packet. FEC alarm should be set.
1837 EXPECT_CALL(*send_algorithm_
,
1838 OnPacketSent(_
, _
, 1u, _
, HAS_RETRANSMITTABLE_DATA
)).Times(1);
1839 connection_
.SendStreamDataWithStringWithFec(3, "foo", 0, kFin
, nullptr);
1840 EXPECT_TRUE(connection_
.GetFecAlarm()->IsSet());
1841 size_t protected_packet
=
1842 QuicSentPacketManagerPeer::GetBytesInFlight(manager_
);
1843 EXPECT_LT(0u, protected_packet
);
1845 // Force FEC timeout to send FEC packet out.
1846 EXPECT_CALL(*send_algorithm_
,
1847 OnPacketSent(_
, _
, 2u, _
, HAS_RETRANSMITTABLE_DATA
)).Times(1);
1848 connection_
.GetFecAlarm()->Fire();
1849 EXPECT_TRUE(writer_
->header().fec_flag
);
1850 // Protected data packet and FEC packet oustanding.
1851 size_t fec_packet
= protected_packet
;
1852 EXPECT_EQ(protected_packet
+ fec_packet
,
1853 QuicSentPacketManagerPeer::GetBytesInFlight(manager_
));
1855 // Send 1 unprotected data packet. No FEC alarm should be set.
1856 EXPECT_CALL(*send_algorithm_
,
1857 OnPacketSent(_
, _
, 3u, _
, HAS_RETRANSMITTABLE_DATA
)).Times(1);
1858 connection_
.SendStreamDataWithString(5, "foo", 0, kFin
, nullptr);
1859 EXPECT_FALSE(connection_
.GetFecAlarm()->IsSet());
1860 // Protected data packet, FEC packet, and unprotected data packet oustanding.
1861 // An unprotected packet will be 3 bytes smaller than an FEC-protected packet,
1862 // since the protected packet will have 1 byte for FEC group number and
1863 // 2 bytes of stream frame size, which are absent in the unprotected packet.
1864 size_t unprotected_packet
= protected_packet
- 3;
1865 EXPECT_EQ(protected_packet
+ fec_packet
+ unprotected_packet
,
1866 QuicSentPacketManagerPeer::GetBytesInFlight(manager_
));
1868 // Receive ack for first data packet. FEC and second data packet are still
1870 QuicAckFrame ack
= InitAckFrame(1);
1871 EXPECT_CALL(*send_algorithm_
, OnCongestionEvent(true, _
, _
, _
));
1872 EXPECT_CALL(visitor_
, OnSuccessfulVersionNegotiation(_
));
1873 ProcessAckPacket(&ack
);
1874 // FEC packet and unprotected data packet oustanding.
1875 EXPECT_EQ(fec_packet
+ unprotected_packet
,
1876 QuicSentPacketManagerPeer::GetBytesInFlight(manager_
));
1878 // TLP alarm should be set.
1879 QuicTime retransmission_time
=
1880 connection_
.GetRetransmissionAlarm()->deadline();
1881 EXPECT_NE(QuicTime::Zero(), retransmission_time
);
1882 // Simulate the retransmission alarm firing and sending a TLP, so send
1883 // algorithm's OnRetransmissionTimeout is not called.
1884 clock_
.AdvanceTime(retransmission_time
.Subtract(clock_
.Now()));
1885 EXPECT_CALL(*send_algorithm_
,
1886 OnPacketSent(_
, _
, 4u, _
, HAS_RETRANSMITTABLE_DATA
)).Times(1);
1887 connection_
.GetRetransmissionAlarm()->Fire();
1889 // Having received an ack from the server, the client will no longer send
1890 // version number in subsequent packets, including in this retransmission.
1891 size_t tlp_packet_no_version
= unprotected_packet
- 4;
1892 EXPECT_EQ(fec_packet
+ unprotected_packet
+ tlp_packet_no_version
,
1893 QuicSentPacketManagerPeer::GetBytesInFlight(manager_
));
1896 TEST_P(QuicConnectionTest
, NoTLPForFECPacket
) {
1897 // Turn on TLP for this test.
1898 QuicSentPacketManagerPeer::SetMaxTailLossProbes(manager_
, 1);
1899 EXPECT_TRUE(creator_
->IsFecEnabled());
1900 EXPECT_CALL(visitor_
, OnSuccessfulVersionNegotiation(_
));
1902 // Send 1 FEC-protected data packet. FEC alarm should be set.
1903 EXPECT_CALL(*send_algorithm_
,
1904 OnPacketSent(_
, _
, _
, _
, HAS_RETRANSMITTABLE_DATA
)).Times(1);
1905 connection_
.SendStreamDataWithStringWithFec(3, "foo", 0, !kFin
, nullptr);
1906 EXPECT_TRUE(connection_
.GetFecAlarm()->IsSet());
1907 // Force FEC timeout to send FEC packet out.
1908 EXPECT_CALL(*send_algorithm_
,
1909 OnPacketSent(_
, _
, _
, _
, HAS_RETRANSMITTABLE_DATA
)).Times(1);
1910 connection_
.GetFecAlarm()->Fire();
1911 EXPECT_TRUE(writer_
->header().fec_flag
);
1913 // Ack data packet, but not FEC packet.
1914 QuicAckFrame ack
= InitAckFrame(1);
1915 EXPECT_CALL(*send_algorithm_
, OnCongestionEvent(true, _
, _
, _
));
1916 ProcessAckPacket(&ack
);
1918 // No TLP alarm for FEC, but retransmission alarm should be set for an RTO.
1919 EXPECT_LT(0u, QuicSentPacketManagerPeer::GetBytesInFlight(manager_
));
1920 EXPECT_TRUE(connection_
.GetRetransmissionAlarm()->IsSet());
1921 QuicTime rto_time
= connection_
.GetRetransmissionAlarm()->deadline();
1922 EXPECT_NE(QuicTime::Zero(), rto_time
);
1924 // Simulate the retransmission alarm firing. FEC packet is no longer
1926 clock_
.AdvanceTime(rto_time
.Subtract(clock_
.Now()));
1927 connection_
.GetRetransmissionAlarm()->Fire();
1929 EXPECT_FALSE(connection_
.GetRetransmissionAlarm()->IsSet());
1930 EXPECT_EQ(0u, QuicSentPacketManagerPeer::GetBytesInFlight(manager_
));
1933 TEST_P(QuicConnectionTest
, FramePacking
) {
1934 CongestionBlockWrites();
1936 // Send an ack and two stream frames in 1 packet by queueing them.
1937 connection_
.SendAck();
1938 EXPECT_CALL(visitor_
, OnCanWrite()).WillOnce(DoAll(
1939 IgnoreResult(InvokeWithoutArgs(&connection_
,
1940 &TestConnection::SendStreamData3
)),
1941 IgnoreResult(InvokeWithoutArgs(&connection_
,
1942 &TestConnection::SendStreamData5
))));
1944 EXPECT_CALL(*send_algorithm_
, OnPacketSent(_
, _
, _
, _
, _
)).Times(1);
1945 CongestionUnblockWrites();
1946 connection_
.GetSendAlarm()->Fire();
1947 EXPECT_EQ(0u, connection_
.NumQueuedPackets());
1948 EXPECT_FALSE(connection_
.HasQueuedData());
1950 // Parse the last packet and ensure it's an ack and two stream frames from
1951 // two different streams.
1952 EXPECT_EQ(4u, writer_
->frame_count());
1953 EXPECT_FALSE(writer_
->stop_waiting_frames().empty());
1954 EXPECT_FALSE(writer_
->ack_frames().empty());
1955 ASSERT_EQ(2u, writer_
->stream_frames().size());
1956 EXPECT_EQ(kClientDataStreamId1
, writer_
->stream_frames()[0].stream_id
);
1957 EXPECT_EQ(kClientDataStreamId2
, writer_
->stream_frames()[1].stream_id
);
1960 TEST_P(QuicConnectionTest
, FramePackingNonCryptoThenCrypto
) {
1961 CongestionBlockWrites();
1963 // Send an ack and two stream frames (one non-crypto, then one crypto) in 2
1964 // packets by queueing them.
1965 connection_
.SendAck();
1966 EXPECT_CALL(visitor_
, OnCanWrite()).WillOnce(DoAll(
1967 IgnoreResult(InvokeWithoutArgs(&connection_
,
1968 &TestConnection::SendStreamData3
)),
1969 IgnoreResult(InvokeWithoutArgs(&connection_
,
1970 &TestConnection::SendCryptoStreamData
))));
1972 EXPECT_CALL(*send_algorithm_
, OnPacketSent(_
, _
, _
, _
, _
)).Times(2);
1973 CongestionUnblockWrites();
1974 connection_
.GetSendAlarm()->Fire();
1975 EXPECT_EQ(0u, connection_
.NumQueuedPackets());
1976 EXPECT_FALSE(connection_
.HasQueuedData());
1978 // Parse the last packet and ensure it's the crypto stream frame.
1979 EXPECT_EQ(1u, writer_
->frame_count());
1980 ASSERT_EQ(1u, writer_
->stream_frames().size());
1981 EXPECT_EQ(kCryptoStreamId
, writer_
->stream_frames()[0].stream_id
);
1984 TEST_P(QuicConnectionTest
, FramePackingCryptoThenNonCrypto
) {
1985 CongestionBlockWrites();
1987 // Send an ack and two stream frames (one crypto, then one non-crypto) in 2
1988 // packets by queueing them.
1989 connection_
.SendAck();
1990 EXPECT_CALL(visitor_
, OnCanWrite()).WillOnce(DoAll(
1991 IgnoreResult(InvokeWithoutArgs(&connection_
,
1992 &TestConnection::SendCryptoStreamData
)),
1993 IgnoreResult(InvokeWithoutArgs(&connection_
,
1994 &TestConnection::SendStreamData3
))));
1996 EXPECT_CALL(*send_algorithm_
, OnPacketSent(_
, _
, _
, _
, _
)).Times(2);
1997 CongestionUnblockWrites();
1998 connection_
.GetSendAlarm()->Fire();
1999 EXPECT_EQ(0u, connection_
.NumQueuedPackets());
2000 EXPECT_FALSE(connection_
.HasQueuedData());
2002 // Parse the last packet and ensure it's the stream frame from stream 3.
2003 EXPECT_EQ(1u, writer_
->frame_count());
2004 ASSERT_EQ(1u, writer_
->stream_frames().size());
2005 EXPECT_EQ(kClientDataStreamId1
, writer_
->stream_frames()[0].stream_id
);
2008 TEST_P(QuicConnectionTest
, FramePackingFEC
) {
2009 EXPECT_TRUE(creator_
->IsFecEnabled());
2011 CongestionBlockWrites();
2013 // Queue an ack and two stream frames. Ack gets flushed when FEC is turned on
2014 // for sending protected data; two stream frames are packed in 1 packet.
2015 EXPECT_CALL(visitor_
, OnCanWrite()).WillOnce(DoAll(
2016 IgnoreResult(InvokeWithoutArgs(
2017 &connection_
, &TestConnection::SendStreamData3WithFec
)),
2018 IgnoreResult(InvokeWithoutArgs(
2019 &connection_
, &TestConnection::SendStreamData5WithFec
))));
2020 connection_
.SendAck();
2022 EXPECT_CALL(*send_algorithm_
, OnPacketSent(_
, _
, _
, _
, _
)).Times(2);
2023 CongestionUnblockWrites();
2024 connection_
.GetSendAlarm()->Fire();
2025 EXPECT_EQ(0u, connection_
.NumQueuedPackets());
2026 EXPECT_FALSE(connection_
.HasQueuedData());
2028 // Parse the last packet and ensure it's in an fec group.
2029 EXPECT_EQ(2u, writer_
->header().fec_group
);
2030 EXPECT_EQ(2u, writer_
->frame_count());
2032 // FEC alarm should be set.
2033 EXPECT_TRUE(connection_
.GetFecAlarm()->IsSet());
2036 TEST_P(QuicConnectionTest
, FramePackingAckResponse
) {
2037 EXPECT_CALL(visitor_
, OnSuccessfulVersionNegotiation(_
));
2038 // Process a data packet to queue up a pending ack.
2039 EXPECT_CALL(visitor_
, OnStreamFrames(_
)).Times(1);
2040 ProcessDataPacket(1, 1, kEntropyFlag
);
2042 EXPECT_CALL(visitor_
, OnCanWrite()).WillOnce(DoAll(
2043 IgnoreResult(InvokeWithoutArgs(&connection_
,
2044 &TestConnection::SendStreamData3
)),
2045 IgnoreResult(InvokeWithoutArgs(&connection_
,
2046 &TestConnection::SendStreamData5
))));
2048 EXPECT_CALL(*send_algorithm_
, OnPacketSent(_
, _
, _
, _
, _
)).Times(1);
2050 // Process an ack to cause the visitor's OnCanWrite to be invoked.
2051 QuicPacketCreatorPeer::SetSequenceNumber(&peer_creator_
, 2);
2052 QuicAckFrame ack_one
= InitAckFrame(0);
2053 ProcessAckPacket(&ack_one
);
2055 EXPECT_EQ(0u, connection_
.NumQueuedPackets());
2056 EXPECT_FALSE(connection_
.HasQueuedData());
2058 // Parse the last packet and ensure it's an ack and two stream frames from
2059 // two different streams.
2060 EXPECT_EQ(4u, writer_
->frame_count());
2061 EXPECT_FALSE(writer_
->stop_waiting_frames().empty());
2062 EXPECT_FALSE(writer_
->ack_frames().empty());
2063 ASSERT_EQ(2u, writer_
->stream_frames().size());
2064 EXPECT_EQ(kClientDataStreamId1
, writer_
->stream_frames()[0].stream_id
);
2065 EXPECT_EQ(kClientDataStreamId2
, writer_
->stream_frames()[1].stream_id
);
2068 TEST_P(QuicConnectionTest
, FramePackingSendv
) {
2069 // Send data in 1 packet by writing multiple blocks in a single iovector
2071 EXPECT_CALL(*send_algorithm_
, OnPacketSent(_
, _
, _
, _
, _
));
2073 char data
[] = "ABCD";
2075 data_iov
.AppendNoCoalesce(data
, 2);
2076 data_iov
.AppendNoCoalesce(data
+ 2, 2);
2077 connection_
.SendStreamData(1, data_iov
, 0, !kFin
, MAY_FEC_PROTECT
, nullptr);
2079 EXPECT_EQ(0u, connection_
.NumQueuedPackets());
2080 EXPECT_FALSE(connection_
.HasQueuedData());
2082 // Parse the last packet and ensure multiple iovector blocks have
2083 // been packed into a single stream frame from one stream.
2084 EXPECT_EQ(1u, writer_
->frame_count());
2085 EXPECT_EQ(1u, writer_
->stream_frames().size());
2086 QuicStreamFrame frame
= writer_
->stream_frames()[0];
2087 EXPECT_EQ(1u, frame
.stream_id
);
2088 EXPECT_EQ("ABCD", string(static_cast<char*>
2089 (frame
.data
.iovec()[0].iov_base
),
2090 (frame
.data
.iovec()[0].iov_len
)));
2093 TEST_P(QuicConnectionTest
, FramePackingSendvQueued
) {
2094 // Try to send two stream frames in 1 packet by using writev.
2095 EXPECT_CALL(*send_algorithm_
, OnPacketSent(_
, _
, _
, _
, _
));
2098 char data
[] = "ABCD";
2100 data_iov
.AppendNoCoalesce(data
, 2);
2101 data_iov
.AppendNoCoalesce(data
+ 2, 2);
2102 connection_
.SendStreamData(1, data_iov
, 0, !kFin
, MAY_FEC_PROTECT
, nullptr);
2104 EXPECT_EQ(1u, connection_
.NumQueuedPackets());
2105 EXPECT_TRUE(connection_
.HasQueuedData());
2107 // Unblock the writes and actually send.
2108 writer_
->SetWritable();
2109 connection_
.OnCanWrite();
2110 EXPECT_EQ(0u, connection_
.NumQueuedPackets());
2112 // Parse the last packet and ensure it's one stream frame from one stream.
2113 EXPECT_EQ(1u, writer_
->frame_count());
2114 EXPECT_EQ(1u, writer_
->stream_frames().size());
2115 EXPECT_EQ(1u, writer_
->stream_frames()[0].stream_id
);
2118 TEST_P(QuicConnectionTest
, SendingZeroBytes
) {
2119 // Send a zero byte write with a fin using writev.
2120 EXPECT_CALL(*send_algorithm_
, OnPacketSent(_
, _
, _
, _
, _
));
2122 connection_
.SendStreamData(1, empty_iov
, 0, kFin
, MAY_FEC_PROTECT
, nullptr);
2124 EXPECT_EQ(0u, connection_
.NumQueuedPackets());
2125 EXPECT_FALSE(connection_
.HasQueuedData());
2127 // Parse the last packet and ensure it's one stream frame from one stream.
2128 EXPECT_EQ(1u, writer_
->frame_count());
2129 EXPECT_EQ(1u, writer_
->stream_frames().size());
2130 EXPECT_EQ(1u, writer_
->stream_frames()[0].stream_id
);
2131 EXPECT_TRUE(writer_
->stream_frames()[0].fin
);
2134 TEST_P(QuicConnectionTest
, OnCanWrite
) {
2135 // Visitor's OnCanWrite will send data, but will have more pending writes.
2136 EXPECT_CALL(visitor_
, OnCanWrite()).WillOnce(DoAll(
2137 IgnoreResult(InvokeWithoutArgs(&connection_
,
2138 &TestConnection::SendStreamData3
)),
2139 IgnoreResult(InvokeWithoutArgs(&connection_
,
2140 &TestConnection::SendStreamData5
))));
2141 EXPECT_CALL(visitor_
, WillingAndAbleToWrite()).WillOnce(Return(true));
2142 EXPECT_CALL(*send_algorithm_
,
2143 TimeUntilSend(_
, _
, _
)).WillRepeatedly(
2144 testing::Return(QuicTime::Delta::Zero()));
2146 connection_
.OnCanWrite();
2148 // Parse the last packet and ensure it's the two stream frames from
2149 // two different streams.
2150 EXPECT_EQ(2u, writer_
->frame_count());
2151 EXPECT_EQ(2u, writer_
->stream_frames().size());
2152 EXPECT_EQ(kClientDataStreamId1
, writer_
->stream_frames()[0].stream_id
);
2153 EXPECT_EQ(kClientDataStreamId2
, writer_
->stream_frames()[1].stream_id
);
2156 TEST_P(QuicConnectionTest
, RetransmitOnNack
) {
2157 QuicPacketSequenceNumber last_packet
;
2158 QuicByteCount second_packet_size
;
2159 SendStreamDataToPeer(3, "foo", 0, !kFin
, &last_packet
); // Packet 1
2160 second_packet_size
=
2161 SendStreamDataToPeer(3, "foos", 3, !kFin
, &last_packet
); // Packet 2
2162 SendStreamDataToPeer(3, "fooos", 7, !kFin
, &last_packet
); // Packet 3
2164 EXPECT_CALL(visitor_
, OnSuccessfulVersionNegotiation(_
));
2166 // Don't lose a packet on an ack, and nothing is retransmitted.
2167 EXPECT_CALL(*send_algorithm_
, OnCongestionEvent(true, _
, _
, _
));
2168 QuicAckFrame ack_one
= InitAckFrame(1);
2169 ProcessAckPacket(&ack_one
);
2171 // Lose a packet and ensure it triggers retransmission.
2172 QuicAckFrame nack_two
= InitAckFrame(3);
2173 NackPacket(2, &nack_two
);
2174 SequenceNumberSet lost_packets
;
2175 lost_packets
.insert(2);
2176 EXPECT_CALL(*loss_algorithm_
, DetectLostPackets(_
, _
, _
, _
))
2177 .WillOnce(Return(lost_packets
));
2178 EXPECT_CALL(*send_algorithm_
, OnCongestionEvent(true, _
, _
, _
));
2179 EXPECT_CALL(*send_algorithm_
,
2180 OnPacketSent(_
, _
, _
, second_packet_size
- kQuicVersionSize
, _
)).
2182 ProcessAckPacket(&nack_two
);
2185 TEST_P(QuicConnectionTest
, DoNotSendQueuedPacketForResetStream
) {
2186 ValueRestore
<bool> old_flag(&FLAGS_quic_do_not_retransmit_for_reset_streams
,
2189 // Block the connection to queue the packet.
2192 QuicStreamId stream_id
= 2;
2193 connection_
.SendStreamDataWithString(stream_id
, "foo", 0, !kFin
, nullptr);
2195 // Now that there is a queued packet, reset the stream.
2196 connection_
.SendRstStream(stream_id
, QUIC_STREAM_NO_ERROR
, 14);
2198 // Unblock the connection and verify that only the RST_STREAM is sent.
2199 EXPECT_CALL(*send_algorithm_
, OnPacketSent(_
, _
, _
, _
, _
)).Times(1);
2200 writer_
->SetWritable();
2201 connection_
.OnCanWrite();
2202 EXPECT_EQ(1u, writer_
->frame_count());
2203 EXPECT_EQ(1u, writer_
->rst_stream_frames().size());
2206 TEST_P(QuicConnectionTest
, DoNotRetransmitForResetStreamOnNack
) {
2207 ValueRestore
<bool> old_flag(&FLAGS_quic_do_not_retransmit_for_reset_streams
,
2210 QuicStreamId stream_id
= 2;
2211 QuicPacketSequenceNumber last_packet
;
2212 SendStreamDataToPeer(stream_id
, "foo", 0, !kFin
, &last_packet
);
2213 SendStreamDataToPeer(stream_id
, "foos", 3, !kFin
, &last_packet
);
2214 SendStreamDataToPeer(stream_id
, "fooos", 7, !kFin
, &last_packet
);
2216 EXPECT_CALL(*send_algorithm_
, OnPacketSent(_
, _
, _
, _
, _
)).Times(1);
2217 connection_
.SendRstStream(stream_id
, QUIC_STREAM_NO_ERROR
, 14);
2219 // Lose a packet and ensure it does not trigger retransmission.
2220 QuicAckFrame nack_two
= InitAckFrame(last_packet
);
2221 NackPacket(last_packet
- 1, &nack_two
);
2222 SequenceNumberSet lost_packets
;
2223 lost_packets
.insert(last_packet
- 1);
2224 EXPECT_CALL(visitor_
, OnSuccessfulVersionNegotiation(_
));
2225 EXPECT_CALL(*loss_algorithm_
, DetectLostPackets(_
, _
, _
, _
))
2226 .WillOnce(Return(lost_packets
));
2227 EXPECT_CALL(*send_algorithm_
, OnCongestionEvent(true, _
, _
, _
));
2228 EXPECT_CALL(*send_algorithm_
, OnPacketSent(_
, _
, _
, _
, _
)).Times(0);
2229 ProcessAckPacket(&nack_two
);
2232 TEST_P(QuicConnectionTest
, DoNotRetransmitForResetStreamOnRTO
) {
2233 ValueRestore
<bool> old_flag(&FLAGS_quic_do_not_retransmit_for_reset_streams
,
2236 QuicStreamId stream_id
= 2;
2237 QuicPacketSequenceNumber last_packet
;
2238 SendStreamDataToPeer(stream_id
, "foo", 0, !kFin
, &last_packet
);
2240 EXPECT_CALL(*send_algorithm_
, OnPacketSent(_
, _
, _
, _
, _
)).Times(1);
2241 connection_
.SendRstStream(stream_id
, QUIC_STREAM_NO_ERROR
, 14);
2243 // Fire the RTO and verify that the RST_STREAM is resent, not stream data.
2244 EXPECT_CALL(*send_algorithm_
, OnPacketSent(_
, _
, _
, _
, _
)).Times(1);
2245 clock_
.AdvanceTime(DefaultRetransmissionTime());
2246 connection_
.GetRetransmissionAlarm()->Fire();
2247 EXPECT_EQ(1u, writer_
->frame_count());
2248 EXPECT_EQ(1u, writer_
->rst_stream_frames().size());
2249 EXPECT_EQ(stream_id
, writer_
->rst_stream_frames().front().stream_id
);
2252 TEST_P(QuicConnectionTest
, DoNotSendPendingRetransmissionForResetStream
) {
2253 ValueRestore
<bool> old_flag(&FLAGS_quic_do_not_retransmit_for_reset_streams
,
2256 QuicStreamId stream_id
= 2;
2257 QuicPacketSequenceNumber last_packet
;
2258 SendStreamDataToPeer(stream_id
, "foo", 0, !kFin
, &last_packet
);
2259 SendStreamDataToPeer(stream_id
, "foos", 3, !kFin
, &last_packet
);
2261 connection_
.SendStreamDataWithString(stream_id
, "fooos", 7, !kFin
, nullptr);
2263 // Lose a packet which will trigger a pending retransmission.
2264 QuicAckFrame ack
= InitAckFrame(last_packet
);
2265 NackPacket(last_packet
- 1, &ack
);
2266 SequenceNumberSet lost_packets
;
2267 lost_packets
.insert(last_packet
- 1);
2268 EXPECT_CALL(visitor_
, OnSuccessfulVersionNegotiation(_
));
2269 EXPECT_CALL(*loss_algorithm_
, DetectLostPackets(_
, _
, _
, _
))
2270 .WillOnce(Return(lost_packets
));
2271 EXPECT_CALL(*send_algorithm_
, OnCongestionEvent(true, _
, _
, _
));
2272 EXPECT_CALL(*send_algorithm_
, OnPacketSent(_
, _
, _
, _
, _
)).Times(0);
2273 ProcessAckPacket(&ack
);
2275 connection_
.SendRstStream(stream_id
, QUIC_STREAM_NO_ERROR
, 14);
2277 // Unblock the connection and verify that the RST_STREAM is sent but not the
2278 // second data packet nor a retransmit.
2279 EXPECT_CALL(*send_algorithm_
, OnPacketSent(_
, _
, _
, _
, _
)).Times(1);
2280 writer_
->SetWritable();
2281 connection_
.OnCanWrite();
2282 EXPECT_EQ(1u, writer_
->frame_count());
2283 EXPECT_EQ(1u, writer_
->rst_stream_frames().size());
2284 EXPECT_EQ(stream_id
, writer_
->rst_stream_frames().front().stream_id
);
2287 TEST_P(QuicConnectionTest
, DiscardRetransmit
) {
2288 QuicPacketSequenceNumber last_packet
;
2289 SendStreamDataToPeer(1, "foo", 0, !kFin
, &last_packet
); // Packet 1
2290 SendStreamDataToPeer(1, "foos", 3, !kFin
, &last_packet
); // Packet 2
2291 SendStreamDataToPeer(1, "fooos", 7, !kFin
, &last_packet
); // Packet 3
2293 EXPECT_CALL(visitor_
, OnSuccessfulVersionNegotiation(_
));
2295 // Instigate a loss with an ack.
2296 QuicAckFrame nack_two
= InitAckFrame(3);
2297 NackPacket(2, &nack_two
);
2298 // The first nack should trigger a fast retransmission, but we'll be
2299 // write blocked, so the packet will be queued.
2301 SequenceNumberSet lost_packets
;
2302 lost_packets
.insert(2);
2303 EXPECT_CALL(*loss_algorithm_
, DetectLostPackets(_
, _
, _
, _
))
2304 .WillOnce(Return(lost_packets
));
2305 EXPECT_CALL(*send_algorithm_
, OnCongestionEvent(true, _
, _
, _
));
2306 ProcessAckPacket(&nack_two
);
2307 EXPECT_EQ(1u, connection_
.NumQueuedPackets());
2309 // Now, ack the previous transmission.
2310 EXPECT_CALL(*loss_algorithm_
, DetectLostPackets(_
, _
, _
, _
))
2311 .WillOnce(Return(SequenceNumberSet()));
2312 QuicAckFrame ack_all
= InitAckFrame(3);
2313 ProcessAckPacket(&ack_all
);
2315 // Unblock the socket and attempt to send the queued packets. However,
2316 // since the previous transmission has been acked, we will not
2317 // send the retransmission.
2318 EXPECT_CALL(*send_algorithm_
,
2319 OnPacketSent(_
, _
, _
, _
, _
)).Times(0);
2321 writer_
->SetWritable();
2322 connection_
.OnCanWrite();
2324 EXPECT_EQ(0u, connection_
.NumQueuedPackets());
2327 TEST_P(QuicConnectionTest
, RetransmitNackedLargestObserved
) {
2328 EXPECT_CALL(visitor_
, OnSuccessfulVersionNegotiation(_
));
2329 QuicPacketSequenceNumber largest_observed
;
2330 QuicByteCount packet_size
;
2331 EXPECT_CALL(*send_algorithm_
, OnPacketSent(_
, _
, _
, _
, _
))
2332 .WillOnce(DoAll(SaveArg
<2>(&largest_observed
), SaveArg
<3>(&packet_size
),
2334 connection_
.SendStreamDataWithString(3, "foo", 0, !kFin
, nullptr);
2336 QuicAckFrame frame
= InitAckFrame(1);
2337 NackPacket(largest_observed
, &frame
);
2338 // The first nack should retransmit the largest observed packet.
2339 SequenceNumberSet lost_packets
;
2340 lost_packets
.insert(1);
2341 EXPECT_CALL(*loss_algorithm_
, DetectLostPackets(_
, _
, _
, _
))
2342 .WillOnce(Return(lost_packets
));
2343 EXPECT_CALL(*send_algorithm_
, OnCongestionEvent(true, _
, _
, _
));
2344 EXPECT_CALL(*send_algorithm_
,
2345 OnPacketSent(_
, _
, _
, packet_size
- kQuicVersionSize
, _
));
2346 ProcessAckPacket(&frame
);
2349 TEST_P(QuicConnectionTest
, QueueAfterTwoRTOs
) {
2350 for (int i
= 0; i
< 10; ++i
) {
2351 EXPECT_CALL(*send_algorithm_
, OnPacketSent(_
, _
, _
, _
, _
)).Times(1);
2352 connection_
.SendStreamDataWithString(3, "foo", i
* 3, !kFin
, nullptr);
2355 // Block the writer and ensure they're queued.
2357 clock_
.AdvanceTime(DefaultRetransmissionTime());
2358 // Only one packet should be retransmitted.
2359 connection_
.GetRetransmissionAlarm()->Fire();
2360 EXPECT_TRUE(connection_
.HasQueuedData());
2362 // Unblock the writer.
2363 writer_
->SetWritable();
2364 clock_
.AdvanceTime(QuicTime::Delta::FromMicroseconds(
2365 2 * DefaultRetransmissionTime().ToMicroseconds()));
2366 // Retransmit already retransmitted packets event though the sequence number
2367 // greater than the largest observed.
2368 EXPECT_CALL(*send_algorithm_
, OnPacketSent(_
, _
, _
, _
, _
)).Times(2);
2369 connection_
.GetRetransmissionAlarm()->Fire();
2370 connection_
.OnCanWrite();
2373 TEST_P(QuicConnectionTest
, WriteBlockedThenSent
) {
2375 writer_
->set_is_write_blocked_data_buffered(true);
2376 EXPECT_CALL(*send_algorithm_
, OnPacketSent(_
, _
, _
, _
, _
)).Times(1);
2377 connection_
.SendStreamDataWithString(1, "foo", 0, !kFin
, nullptr);
2378 EXPECT_TRUE(connection_
.GetRetransmissionAlarm()->IsSet());
2380 writer_
->SetWritable();
2381 connection_
.OnCanWrite();
2382 EXPECT_TRUE(connection_
.GetRetransmissionAlarm()->IsSet());
2385 TEST_P(QuicConnectionTest
, RetransmitWriteBlockedAckedOriginalThenSent
) {
2386 EXPECT_CALL(visitor_
, OnSuccessfulVersionNegotiation(_
));
2387 connection_
.SendStreamDataWithString(3, "foo", 0, !kFin
, nullptr);
2388 EXPECT_TRUE(connection_
.GetRetransmissionAlarm()->IsSet());
2391 writer_
->set_is_write_blocked_data_buffered(true);
2392 // Simulate the retransmission alarm firing.
2393 clock_
.AdvanceTime(DefaultRetransmissionTime());
2394 connection_
.GetRetransmissionAlarm()->Fire();
2396 // Ack the sent packet before the callback returns, which happens in
2397 // rare circumstances with write blocked sockets.
2398 QuicAckFrame ack
= InitAckFrame(1);
2399 EXPECT_CALL(*send_algorithm_
, OnCongestionEvent(true, _
, _
, _
));
2400 ProcessAckPacket(&ack
);
2402 writer_
->SetWritable();
2403 connection_
.OnCanWrite();
2404 // There is now a pending packet, but with no retransmittable frames.
2405 EXPECT_TRUE(connection_
.GetRetransmissionAlarm()->IsSet());
2406 EXPECT_FALSE(connection_
.sent_packet_manager().HasRetransmittableFrames(2));
2409 TEST_P(QuicConnectionTest
, AlarmsWhenWriteBlocked
) {
2410 // Block the connection.
2412 connection_
.SendStreamDataWithString(3, "foo", 0, !kFin
, nullptr);
2413 EXPECT_EQ(1u, writer_
->packets_write_attempts());
2414 EXPECT_TRUE(writer_
->IsWriteBlocked());
2416 // Set the send and resumption alarms. Fire the alarms and ensure they don't
2417 // attempt to write.
2418 connection_
.GetResumeWritesAlarm()->Set(clock_
.ApproximateNow());
2419 connection_
.GetSendAlarm()->Set(clock_
.ApproximateNow());
2420 connection_
.GetResumeWritesAlarm()->Fire();
2421 connection_
.GetSendAlarm()->Fire();
2422 EXPECT_TRUE(writer_
->IsWriteBlocked());
2423 EXPECT_EQ(1u, writer_
->packets_write_attempts());
2426 TEST_P(QuicConnectionTest
, NoLimitPacketsPerNack
) {
2427 EXPECT_CALL(visitor_
, OnSuccessfulVersionNegotiation(_
));
2429 // Send packets 1 to 15.
2430 for (int i
= 0; i
< 15; ++i
) {
2431 SendStreamDataToPeer(1, "foo", offset
, !kFin
, nullptr);
2435 // Ack 15, nack 1-14.
2436 SequenceNumberSet lost_packets
;
2437 QuicAckFrame nack
= InitAckFrame(15);
2438 for (int i
= 1; i
< 15; ++i
) {
2439 NackPacket(i
, &nack
);
2440 lost_packets
.insert(i
);
2443 // 14 packets have been NACK'd and lost. In TCP cubic, PRR limits
2444 // the retransmission rate in the case of burst losses.
2445 EXPECT_CALL(*loss_algorithm_
, DetectLostPackets(_
, _
, _
, _
))
2446 .WillOnce(Return(lost_packets
));
2447 EXPECT_CALL(*send_algorithm_
, OnCongestionEvent(true, _
, _
, _
));
2448 EXPECT_CALL(*send_algorithm_
, OnPacketSent(_
, _
, _
, _
, _
)).Times(14);
2449 ProcessAckPacket(&nack
);
2452 // Test sending multiple acks from the connection to the session.
2453 TEST_P(QuicConnectionTest
, MultipleAcks
) {
2454 QuicPacketSequenceNumber last_packet
;
2455 SendStreamDataToPeer(1, "foo", 0, !kFin
, &last_packet
); // Packet 1
2456 EXPECT_EQ(1u, last_packet
);
2457 SendStreamDataToPeer(3, "foo", 0, !kFin
, &last_packet
); // Packet 2
2458 EXPECT_EQ(2u, last_packet
);
2459 SendAckPacketToPeer(); // Packet 3
2460 SendStreamDataToPeer(5, "foo", 0, !kFin
, &last_packet
); // Packet 4
2461 EXPECT_EQ(4u, last_packet
);
2462 SendStreamDataToPeer(1, "foo", 3, !kFin
, &last_packet
); // Packet 5
2463 EXPECT_EQ(5u, last_packet
);
2464 SendStreamDataToPeer(3, "foo", 3, !kFin
, &last_packet
); // Packet 6
2465 EXPECT_EQ(6u, last_packet
);
2467 // Client will ack packets 1, 2, [!3], 4, 5.
2468 EXPECT_CALL(*send_algorithm_
, OnCongestionEvent(true, _
, _
, _
));
2469 QuicAckFrame frame1
= InitAckFrame(5);
2470 NackPacket(3, &frame1
);
2471 EXPECT_CALL(visitor_
, OnSuccessfulVersionNegotiation(_
));
2472 ProcessAckPacket(&frame1
);
2474 // Now the client implicitly acks 3, and explicitly acks 6.
2475 EXPECT_CALL(*send_algorithm_
, OnCongestionEvent(true, _
, _
, _
));
2476 QuicAckFrame frame2
= InitAckFrame(6);
2477 ProcessAckPacket(&frame2
);
2480 TEST_P(QuicConnectionTest
, DontLatchUnackedPacket
) {
2481 SendStreamDataToPeer(1, "foo", 0, !kFin
, nullptr); // Packet 1;
2482 // From now on, we send acks, so the send algorithm won't mark them pending.
2483 ON_CALL(*send_algorithm_
, OnPacketSent(_
, _
, _
, _
, _
))
2484 .WillByDefault(Return(false));
2485 SendAckPacketToPeer(); // Packet 2
2487 EXPECT_CALL(visitor_
, OnSuccessfulVersionNegotiation(_
));
2488 EXPECT_CALL(*send_algorithm_
, OnCongestionEvent(true, _
, _
, _
));
2489 QuicAckFrame frame
= InitAckFrame(1);
2490 ProcessAckPacket(&frame
);
2492 // Verify that our internal state has least-unacked as 2, because we're still
2493 // waiting for a potential ack for 2.
2495 EXPECT_EQ(2u, stop_waiting()->least_unacked
);
2497 EXPECT_CALL(*send_algorithm_
, OnCongestionEvent(true, _
, _
, _
));
2498 frame
= InitAckFrame(2);
2499 ProcessAckPacket(&frame
);
2500 EXPECT_EQ(3u, stop_waiting()->least_unacked
);
2502 // When we send an ack, we make sure our least-unacked makes sense. In this
2503 // case since we're not waiting on an ack for 2 and all packets are acked, we
2505 SendAckPacketToPeer(); // Packet 3
2506 // Least_unacked remains at 3 until another ack is received.
2507 EXPECT_EQ(3u, stop_waiting()->least_unacked
);
2508 // Check that the outgoing ack had its sequence number as least_unacked.
2509 EXPECT_EQ(3u, least_unacked());
2511 // Ack the ack, which updates the rtt and raises the least unacked.
2512 EXPECT_CALL(*send_algorithm_
, OnCongestionEvent(true, _
, _
, _
));
2513 frame
= InitAckFrame(3);
2514 ProcessAckPacket(&frame
);
2516 ON_CALL(*send_algorithm_
, OnPacketSent(_
, _
, _
, _
, _
))
2517 .WillByDefault(Return(true));
2518 SendStreamDataToPeer(1, "bar", 3, false, nullptr); // Packet 4
2519 EXPECT_EQ(4u, stop_waiting()->least_unacked
);
2520 ON_CALL(*send_algorithm_
, OnPacketSent(_
, _
, _
, _
, _
))
2521 .WillByDefault(Return(false));
2522 SendAckPacketToPeer(); // Packet 5
2523 EXPECT_EQ(4u, least_unacked());
2525 // Send two data packets at the end, and ensure if the last one is acked,
2526 // the least unacked is raised above the ack packets.
2527 ON_CALL(*send_algorithm_
, OnPacketSent(_
, _
, _
, _
, _
))
2528 .WillByDefault(Return(true));
2529 SendStreamDataToPeer(1, "bar", 6, false, nullptr); // Packet 6
2530 SendStreamDataToPeer(1, "bar", 9, false, nullptr); // Packet 7
2532 EXPECT_CALL(*send_algorithm_
, OnCongestionEvent(true, _
, _
, _
));
2533 frame
= InitAckFrame(7);
2534 NackPacket(5, &frame
);
2535 NackPacket(6, &frame
);
2536 ProcessAckPacket(&frame
);
2538 EXPECT_EQ(6u, stop_waiting()->least_unacked
);
2541 TEST_P(QuicConnectionTest
, ReviveMissingPacketAfterFecPacket
) {
2542 EXPECT_CALL(visitor_
, OnSuccessfulVersionNegotiation(_
));
2544 // Don't send missing packet 1.
2545 ProcessFecPacket(2, 1, true, !kEntropyFlag
, nullptr);
2546 // Entropy flag should be false, so entropy should be 0.
2547 EXPECT_EQ(0u, QuicConnectionPeer::ReceivedEntropyHash(&connection_
, 2));
2550 TEST_P(QuicConnectionTest
, ReviveMissingPacketWithVaryingSeqNumLengths
) {
2551 EXPECT_CALL(visitor_
, OnSuccessfulVersionNegotiation(_
));
2553 // Set up a debug visitor to the connection.
2554 scoped_ptr
<FecQuicConnectionDebugVisitor
> fec_visitor(
2555 new FecQuicConnectionDebugVisitor());
2556 connection_
.set_debug_visitor(fec_visitor
.get());
2558 QuicPacketSequenceNumber fec_packet
= 0;
2559 QuicSequenceNumberLength lengths
[] = {PACKET_6BYTE_SEQUENCE_NUMBER
,
2560 PACKET_4BYTE_SEQUENCE_NUMBER
,
2561 PACKET_2BYTE_SEQUENCE_NUMBER
,
2562 PACKET_1BYTE_SEQUENCE_NUMBER
};
2563 // For each sequence number length size, revive a packet and check sequence
2564 // number length in the revived packet.
2565 for (size_t i
= 0; i
< arraysize(lengths
); ++i
) {
2566 // Set sequence_number_length_ (for data and FEC packets).
2567 sequence_number_length_
= lengths
[i
];
2569 // Don't send missing packet, but send fec packet right after it.
2570 ProcessFecPacket(fec_packet
, fec_packet
- 1, true, !kEntropyFlag
, nullptr);
2571 // Sequence number length in the revived header should be the same as
2572 // in the original data/fec packet headers.
2573 EXPECT_EQ(sequence_number_length_
, fec_visitor
->revived_header().
2574 public_header
.sequence_number_length
);
2578 TEST_P(QuicConnectionTest
, ReviveMissingPacketWithVaryingConnectionIdLengths
) {
2579 EXPECT_CALL(visitor_
, OnSuccessfulVersionNegotiation(_
));
2581 // Set up a debug visitor to the connection.
2582 scoped_ptr
<FecQuicConnectionDebugVisitor
> fec_visitor(
2583 new FecQuicConnectionDebugVisitor());
2584 connection_
.set_debug_visitor(fec_visitor
.get());
2586 QuicPacketSequenceNumber fec_packet
= 0;
2587 QuicConnectionIdLength lengths
[] = {PACKET_8BYTE_CONNECTION_ID
,
2588 PACKET_4BYTE_CONNECTION_ID
,
2589 PACKET_1BYTE_CONNECTION_ID
,
2590 PACKET_0BYTE_CONNECTION_ID
};
2591 // For each connection id length size, revive a packet and check connection
2592 // id length in the revived packet.
2593 for (size_t i
= 0; i
< arraysize(lengths
); ++i
) {
2594 // Set connection id length (for data and FEC packets).
2595 connection_id_length_
= lengths
[i
];
2597 // Don't send missing packet, but send fec packet right after it.
2598 ProcessFecPacket(fec_packet
, fec_packet
- 1, true, !kEntropyFlag
, nullptr);
2599 // Connection id length in the revived header should be the same as
2600 // in the original data/fec packet headers.
2601 EXPECT_EQ(connection_id_length_
,
2602 fec_visitor
->revived_header().public_header
.connection_id_length
);
2606 TEST_P(QuicConnectionTest
, ReviveMissingPacketAfterDataPacketThenFecPacket
) {
2607 EXPECT_CALL(visitor_
, OnSuccessfulVersionNegotiation(_
));
2609 ProcessFecProtectedPacket(1, false, kEntropyFlag
);
2610 // Don't send missing packet 2.
2611 ProcessFecPacket(3, 1, true, !kEntropyFlag
, nullptr);
2612 // Entropy flag should be true, so entropy should not be 0.
2613 EXPECT_NE(0u, QuicConnectionPeer::ReceivedEntropyHash(&connection_
, 2));
2616 TEST_P(QuicConnectionTest
, ReviveMissingPacketAfterDataPacketsThenFecPacket
) {
2617 EXPECT_CALL(visitor_
, OnSuccessfulVersionNegotiation(_
));
2619 ProcessFecProtectedPacket(1, false, !kEntropyFlag
);
2620 // Don't send missing packet 2.
2621 ProcessFecProtectedPacket(3, false, !kEntropyFlag
);
2622 ProcessFecPacket(4, 1, true, kEntropyFlag
, nullptr);
2623 // Ensure QUIC no longer revives entropy for lost packets.
2624 EXPECT_EQ(0u, QuicConnectionPeer::ReceivedEntropyHash(&connection_
, 2));
2625 EXPECT_NE(0u, QuicConnectionPeer::ReceivedEntropyHash(&connection_
, 4));
2628 TEST_P(QuicConnectionTest
, ReviveMissingPacketAfterDataPacket
) {
2629 EXPECT_CALL(visitor_
, OnSuccessfulVersionNegotiation(_
));
2631 // Don't send missing packet 1.
2632 ProcessFecPacket(3, 1, false, !kEntropyFlag
, nullptr);
2634 ProcessFecProtectedPacket(2, true, !kEntropyFlag
);
2635 // Entropy flag should be false, so entropy should be 0.
2636 EXPECT_EQ(0u, QuicConnectionPeer::ReceivedEntropyHash(&connection_
, 2));
2639 TEST_P(QuicConnectionTest
, ReviveMissingPacketAfterDataPackets
) {
2640 EXPECT_CALL(visitor_
, OnSuccessfulVersionNegotiation(_
));
2642 ProcessFecProtectedPacket(1, false, !kEntropyFlag
);
2643 // Don't send missing packet 2.
2644 ProcessFecPacket(6, 1, false, kEntropyFlag
, nullptr);
2645 ProcessFecProtectedPacket(3, false, kEntropyFlag
);
2646 ProcessFecProtectedPacket(4, false, kEntropyFlag
);
2647 ProcessFecProtectedPacket(5, true, !kEntropyFlag
);
2648 // Ensure entropy is not revived for the missing packet.
2649 EXPECT_EQ(0u, QuicConnectionPeer::ReceivedEntropyHash(&connection_
, 2));
2650 EXPECT_NE(0u, QuicConnectionPeer::ReceivedEntropyHash(&connection_
, 3));
2653 TEST_P(QuicConnectionTest
, TLP
) {
2654 QuicSentPacketManagerPeer::SetMaxTailLossProbes(manager_
, 1);
2656 SendStreamDataToPeer(3, "foo", 0, !kFin
, nullptr);
2657 EXPECT_EQ(1u, stop_waiting()->least_unacked
);
2658 QuicTime retransmission_time
=
2659 connection_
.GetRetransmissionAlarm()->deadline();
2660 EXPECT_NE(QuicTime::Zero(), retransmission_time
);
2662 EXPECT_EQ(1u, writer_
->header().packet_sequence_number
);
2663 // Simulate the retransmission alarm firing and sending a tlp,
2664 // so send algorithm's OnRetransmissionTimeout is not called.
2665 clock_
.AdvanceTime(retransmission_time
.Subtract(clock_
.Now()));
2666 EXPECT_CALL(*send_algorithm_
, OnPacketSent(_
, _
, 2u, _
, _
));
2667 connection_
.GetRetransmissionAlarm()->Fire();
2668 EXPECT_EQ(2u, writer_
->header().packet_sequence_number
);
2669 // We do not raise the high water mark yet.
2670 EXPECT_EQ(1u, stop_waiting()->least_unacked
);
2673 TEST_P(QuicConnectionTest
, RTO
) {
2674 QuicTime default_retransmission_time
= clock_
.ApproximateNow().Add(
2675 DefaultRetransmissionTime());
2676 SendStreamDataToPeer(3, "foo", 0, !kFin
, nullptr);
2677 EXPECT_EQ(1u, stop_waiting()->least_unacked
);
2679 EXPECT_EQ(1u, writer_
->header().packet_sequence_number
);
2680 EXPECT_EQ(default_retransmission_time
,
2681 connection_
.GetRetransmissionAlarm()->deadline());
2682 // Simulate the retransmission alarm firing.
2683 clock_
.AdvanceTime(DefaultRetransmissionTime());
2684 EXPECT_CALL(*send_algorithm_
, OnPacketSent(_
, _
, 2u, _
, _
));
2685 connection_
.GetRetransmissionAlarm()->Fire();
2686 EXPECT_EQ(2u, writer_
->header().packet_sequence_number
);
2687 // We do not raise the high water mark yet.
2688 EXPECT_EQ(1u, stop_waiting()->least_unacked
);
2691 TEST_P(QuicConnectionTest
, RTOWithSameEncryptionLevel
) {
2692 QuicTime default_retransmission_time
= clock_
.ApproximateNow().Add(
2693 DefaultRetransmissionTime());
2694 use_tagging_decrypter();
2696 // A TaggingEncrypter puts kTagSize copies of the given byte (0x01 here) at
2697 // the end of the packet. We can test this to check which encrypter was used.
2698 connection_
.SetEncrypter(ENCRYPTION_NONE
, new TaggingEncrypter(0x01));
2699 SendStreamDataToPeer(3, "foo", 0, !kFin
, nullptr);
2700 EXPECT_EQ(0x01010101u
, writer_
->final_bytes_of_last_packet());
2702 connection_
.SetEncrypter(ENCRYPTION_INITIAL
, new TaggingEncrypter(0x02));
2703 connection_
.SetDefaultEncryptionLevel(ENCRYPTION_INITIAL
);
2704 SendStreamDataToPeer(3, "foo", 0, !kFin
, nullptr);
2705 EXPECT_EQ(0x02020202u
, writer_
->final_bytes_of_last_packet());
2707 EXPECT_EQ(default_retransmission_time
,
2708 connection_
.GetRetransmissionAlarm()->deadline());
2711 EXPECT_CALL(*send_algorithm_
, OnPacketSent(_
, _
, 3, _
, _
));
2712 EXPECT_CALL(*send_algorithm_
, OnPacketSent(_
, _
, 4, _
, _
));
2715 // Simulate the retransmission alarm firing.
2716 clock_
.AdvanceTime(DefaultRetransmissionTime());
2717 connection_
.GetRetransmissionAlarm()->Fire();
2719 // Packet should have been sent with ENCRYPTION_NONE.
2720 EXPECT_EQ(0x01010101u
, writer_
->final_bytes_of_previous_packet());
2722 // Packet should have been sent with ENCRYPTION_INITIAL.
2723 EXPECT_EQ(0x02020202u
, writer_
->final_bytes_of_last_packet());
2726 TEST_P(QuicConnectionTest
, SendHandshakeMessages
) {
2727 use_tagging_decrypter();
2728 // A TaggingEncrypter puts kTagSize copies of the given byte (0x01 here) at
2729 // the end of the packet. We can test this to check which encrypter was used.
2730 connection_
.SetEncrypter(ENCRYPTION_NONE
, new TaggingEncrypter(0x01));
2732 // Attempt to send a handshake message and have the socket block.
2733 EXPECT_CALL(*send_algorithm_
,
2734 TimeUntilSend(_
, _
, _
)).WillRepeatedly(
2735 testing::Return(QuicTime::Delta::Zero()));
2737 connection_
.SendStreamDataWithString(1, "foo", 0, !kFin
, nullptr);
2738 // The packet should be serialized, but not queued.
2739 EXPECT_EQ(1u, connection_
.NumQueuedPackets());
2741 // Switch to the new encrypter.
2742 connection_
.SetEncrypter(ENCRYPTION_INITIAL
, new TaggingEncrypter(0x02));
2743 connection_
.SetDefaultEncryptionLevel(ENCRYPTION_INITIAL
);
2745 // Now become writeable and flush the packets.
2746 writer_
->SetWritable();
2747 EXPECT_CALL(visitor_
, OnCanWrite());
2748 connection_
.OnCanWrite();
2749 EXPECT_EQ(0u, connection_
.NumQueuedPackets());
2751 // Verify that the handshake packet went out at the null encryption.
2752 EXPECT_EQ(0x01010101u
, writer_
->final_bytes_of_last_packet());
2755 TEST_P(QuicConnectionTest
,
2756 DropRetransmitsForNullEncryptedPacketAfterForwardSecure
) {
2757 use_tagging_decrypter();
2758 connection_
.SetEncrypter(ENCRYPTION_NONE
, new TaggingEncrypter(0x01));
2759 QuicPacketSequenceNumber sequence_number
;
2760 SendStreamDataToPeer(3, "foo", 0, !kFin
, &sequence_number
);
2762 // Simulate the retransmission alarm firing and the socket blocking.
2764 clock_
.AdvanceTime(DefaultRetransmissionTime());
2765 connection_
.GetRetransmissionAlarm()->Fire();
2767 // Go forward secure.
2768 connection_
.SetEncrypter(ENCRYPTION_FORWARD_SECURE
,
2769 new TaggingEncrypter(0x02));
2770 connection_
.SetDefaultEncryptionLevel(ENCRYPTION_FORWARD_SECURE
);
2771 connection_
.NeuterUnencryptedPackets();
2773 EXPECT_EQ(QuicTime::Zero(),
2774 connection_
.GetRetransmissionAlarm()->deadline());
2775 // Unblock the socket and ensure that no packets are sent.
2776 EXPECT_CALL(*send_algorithm_
, OnPacketSent(_
, _
, _
, _
, _
)).Times(0);
2777 writer_
->SetWritable();
2778 connection_
.OnCanWrite();
2781 TEST_P(QuicConnectionTest
, RetransmitPacketsWithInitialEncryption
) {
2782 use_tagging_decrypter();
2783 connection_
.SetEncrypter(ENCRYPTION_NONE
, new TaggingEncrypter(0x01));
2784 connection_
.SetDefaultEncryptionLevel(ENCRYPTION_NONE
);
2786 SendStreamDataToPeer(1, "foo", 0, !kFin
, nullptr);
2788 connection_
.SetEncrypter(ENCRYPTION_INITIAL
, new TaggingEncrypter(0x02));
2789 connection_
.SetDefaultEncryptionLevel(ENCRYPTION_INITIAL
);
2791 SendStreamDataToPeer(2, "bar", 0, !kFin
, nullptr);
2792 EXPECT_CALL(*send_algorithm_
, OnPacketSent(_
, _
, _
, _
, _
)).Times(1);
2794 connection_
.RetransmitUnackedPackets(ALL_INITIAL_RETRANSMISSION
);
2797 TEST_P(QuicConnectionTest
, DelayForwardSecureEncryptionUntilClientIsReady
) {
2798 // A TaggingEncrypter puts kTagSize copies of the given byte (0x02 here) at
2799 // the end of the packet. We can test this to check which encrypter was used.
2800 use_tagging_decrypter();
2801 connection_
.SetEncrypter(ENCRYPTION_INITIAL
, new TaggingEncrypter(0x02));
2802 connection_
.SetDefaultEncryptionLevel(ENCRYPTION_INITIAL
);
2803 SendAckPacketToPeer();
2804 EXPECT_EQ(0x02020202u
, writer_
->final_bytes_of_last_packet());
2806 // Set a forward-secure encrypter but do not make it the default, and verify
2807 // that it is not yet used.
2808 connection_
.SetEncrypter(ENCRYPTION_FORWARD_SECURE
,
2809 new TaggingEncrypter(0x03));
2810 SendAckPacketToPeer();
2811 EXPECT_EQ(0x02020202u
, writer_
->final_bytes_of_last_packet());
2813 // Now simulate receipt of a forward-secure packet and verify that the
2814 // forward-secure encrypter is now used.
2815 connection_
.OnDecryptedPacket(ENCRYPTION_FORWARD_SECURE
);
2816 SendAckPacketToPeer();
2817 EXPECT_EQ(0x03030303u
, writer_
->final_bytes_of_last_packet());
2820 TEST_P(QuicConnectionTest
, DelayForwardSecureEncryptionUntilManyPacketSent
) {
2821 // Set a congestion window of 10 packets.
2822 QuicPacketCount congestion_window
= 10;
2823 EXPECT_CALL(*send_algorithm_
, GetCongestionWindow()).WillRepeatedly(
2824 Return(congestion_window
* kDefaultMaxPacketSize
));
2826 // A TaggingEncrypter puts kTagSize copies of the given byte (0x02 here) at
2827 // the end of the packet. We can test this to check which encrypter was used.
2828 use_tagging_decrypter();
2829 connection_
.SetEncrypter(ENCRYPTION_INITIAL
, new TaggingEncrypter(0x02));
2830 connection_
.SetDefaultEncryptionLevel(ENCRYPTION_INITIAL
);
2831 SendAckPacketToPeer();
2832 EXPECT_EQ(0x02020202u
, writer_
->final_bytes_of_last_packet());
2834 // Set a forward-secure encrypter but do not make it the default, and
2835 // verify that it is not yet used.
2836 connection_
.SetEncrypter(ENCRYPTION_FORWARD_SECURE
,
2837 new TaggingEncrypter(0x03));
2838 SendAckPacketToPeer();
2839 EXPECT_EQ(0x02020202u
, writer_
->final_bytes_of_last_packet());
2841 // Now send a packet "Far enough" after the encrypter was set and verify that
2842 // the forward-secure encrypter is now used.
2843 for (uint64 i
= 0; i
< 3 * congestion_window
- 1; ++i
) {
2844 EXPECT_EQ(0x02020202u
, writer_
->final_bytes_of_last_packet());
2845 SendAckPacketToPeer();
2847 EXPECT_EQ(0x03030303u
, writer_
->final_bytes_of_last_packet());
2850 TEST_P(QuicConnectionTest
, BufferNonDecryptablePackets
) {
2851 // SetFromConfig is always called after construction from InitializeSession.
2852 EXPECT_CALL(*send_algorithm_
, SetFromConfig(_
, _
));
2854 connection_
.SetFromConfig(config
);
2855 EXPECT_CALL(visitor_
, OnSuccessfulVersionNegotiation(_
));
2856 use_tagging_decrypter();
2858 const uint8 tag
= 0x07;
2859 framer_
.SetEncrypter(ENCRYPTION_INITIAL
, new TaggingEncrypter(tag
));
2861 // Process an encrypted packet which can not yet be decrypted which should
2862 // result in the packet being buffered.
2863 ProcessDataPacketAtLevel(1, 0, kEntropyFlag
, ENCRYPTION_INITIAL
);
2865 // Transition to the new encryption state and process another encrypted packet
2866 // which should result in the original packet being processed.
2867 connection_
.SetDecrypter(new StrictTaggingDecrypter(tag
),
2868 ENCRYPTION_INITIAL
);
2869 connection_
.SetDefaultEncryptionLevel(ENCRYPTION_INITIAL
);
2870 connection_
.SetEncrypter(ENCRYPTION_INITIAL
, new TaggingEncrypter(tag
));
2871 EXPECT_CALL(visitor_
, OnStreamFrames(_
)).Times(2);
2872 ProcessDataPacketAtLevel(2, 0, kEntropyFlag
, ENCRYPTION_INITIAL
);
2874 // Finally, process a third packet and note that we do not reprocess the
2876 EXPECT_CALL(visitor_
, OnStreamFrames(_
)).Times(1);
2877 ProcessDataPacketAtLevel(3, 0, kEntropyFlag
, ENCRYPTION_INITIAL
);
2880 TEST_P(QuicConnectionTest
, Buffer100NonDecryptablePackets
) {
2881 // SetFromConfig is always called after construction from InitializeSession.
2882 EXPECT_CALL(*send_algorithm_
, SetFromConfig(_
, _
));
2884 config
.set_max_undecryptable_packets(100);
2885 connection_
.SetFromConfig(config
);
2886 EXPECT_CALL(visitor_
, OnSuccessfulVersionNegotiation(_
));
2887 use_tagging_decrypter();
2889 const uint8 tag
= 0x07;
2890 framer_
.SetEncrypter(ENCRYPTION_INITIAL
, new TaggingEncrypter(tag
));
2892 // Process an encrypted packet which can not yet be decrypted which should
2893 // result in the packet being buffered.
2894 for (QuicPacketSequenceNumber i
= 1; i
<= 100; ++i
) {
2895 ProcessDataPacketAtLevel(i
, 0, kEntropyFlag
, ENCRYPTION_INITIAL
);
2898 // Transition to the new encryption state and process another encrypted packet
2899 // which should result in the original packets being processed.
2900 connection_
.SetDecrypter(new StrictTaggingDecrypter(tag
), ENCRYPTION_INITIAL
);
2901 connection_
.SetDefaultEncryptionLevel(ENCRYPTION_INITIAL
);
2902 connection_
.SetEncrypter(ENCRYPTION_INITIAL
, new TaggingEncrypter(tag
));
2903 EXPECT_CALL(visitor_
, OnStreamFrames(_
)).Times(101);
2904 ProcessDataPacketAtLevel(101, 0, kEntropyFlag
, ENCRYPTION_INITIAL
);
2906 // Finally, process a third packet and note that we do not reprocess the
2908 EXPECT_CALL(visitor_
, OnStreamFrames(_
)).Times(1);
2909 ProcessDataPacketAtLevel(102, 0, kEntropyFlag
, ENCRYPTION_INITIAL
);
2912 TEST_P(QuicConnectionTest
, TestRetransmitOrder
) {
2913 QuicByteCount first_packet_size
;
2914 EXPECT_CALL(*send_algorithm_
, OnPacketSent(_
, _
, _
, _
, _
)).WillOnce(
2915 DoAll(SaveArg
<3>(&first_packet_size
), Return(true)));
2917 connection_
.SendStreamDataWithString(3, "first_packet", 0, !kFin
, nullptr);
2918 QuicByteCount second_packet_size
;
2919 EXPECT_CALL(*send_algorithm_
, OnPacketSent(_
, _
, _
, _
, _
)).WillOnce(
2920 DoAll(SaveArg
<3>(&second_packet_size
), Return(true)));
2921 connection_
.SendStreamDataWithString(3, "second_packet", 12, !kFin
, nullptr);
2922 EXPECT_NE(first_packet_size
, second_packet_size
);
2923 // Advance the clock by huge time to make sure packets will be retransmitted.
2924 clock_
.AdvanceTime(QuicTime::Delta::FromSeconds(10));
2927 EXPECT_CALL(*send_algorithm_
,
2928 OnPacketSent(_
, _
, _
, first_packet_size
, _
));
2929 EXPECT_CALL(*send_algorithm_
,
2930 OnPacketSent(_
, _
, _
, second_packet_size
, _
));
2932 connection_
.GetRetransmissionAlarm()->Fire();
2934 // Advance again and expect the packets to be sent again in the same order.
2935 clock_
.AdvanceTime(QuicTime::Delta::FromSeconds(20));
2938 EXPECT_CALL(*send_algorithm_
,
2939 OnPacketSent(_
, _
, _
, first_packet_size
, _
));
2940 EXPECT_CALL(*send_algorithm_
,
2941 OnPacketSent(_
, _
, _
, second_packet_size
, _
));
2943 connection_
.GetRetransmissionAlarm()->Fire();
2946 TEST_P(QuicConnectionTest
, SetRTOAfterWritingToSocket
) {
2948 connection_
.SendStreamDataWithString(1, "foo", 0, !kFin
, nullptr);
2949 // Make sure that RTO is not started when the packet is queued.
2950 EXPECT_FALSE(connection_
.GetRetransmissionAlarm()->IsSet());
2952 // Test that RTO is started once we write to the socket.
2953 writer_
->SetWritable();
2954 connection_
.OnCanWrite();
2955 EXPECT_TRUE(connection_
.GetRetransmissionAlarm()->IsSet());
2958 TEST_P(QuicConnectionTest
, DelayRTOWithAckReceipt
) {
2959 EXPECT_CALL(visitor_
, OnSuccessfulVersionNegotiation(_
));
2960 EXPECT_CALL(*send_algorithm_
, OnPacketSent(_
, _
, _
, _
, _
))
2962 connection_
.SendStreamDataWithString(2, "foo", 0, !kFin
, nullptr);
2963 connection_
.SendStreamDataWithString(3, "bar", 0, !kFin
, nullptr);
2964 QuicAlarm
* retransmission_alarm
= connection_
.GetRetransmissionAlarm();
2965 EXPECT_TRUE(retransmission_alarm
->IsSet());
2966 EXPECT_EQ(clock_
.Now().Add(DefaultRetransmissionTime()),
2967 retransmission_alarm
->deadline());
2969 // Advance the time right before the RTO, then receive an ack for the first
2970 // packet to delay the RTO.
2971 clock_
.AdvanceTime(DefaultRetransmissionTime());
2972 EXPECT_CALL(*send_algorithm_
, OnCongestionEvent(true, _
, _
, _
));
2973 QuicAckFrame ack
= InitAckFrame(1);
2974 ProcessAckPacket(&ack
);
2975 EXPECT_TRUE(retransmission_alarm
->IsSet());
2976 EXPECT_GT(retransmission_alarm
->deadline(), clock_
.Now());
2978 // Move forward past the original RTO and ensure the RTO is still pending.
2979 clock_
.AdvanceTime(DefaultRetransmissionTime().Multiply(2));
2981 // Ensure the second packet gets retransmitted when it finally fires.
2982 EXPECT_TRUE(retransmission_alarm
->IsSet());
2983 EXPECT_LT(retransmission_alarm
->deadline(), clock_
.ApproximateNow());
2984 EXPECT_CALL(*send_algorithm_
, OnPacketSent(_
, _
, _
, _
, _
));
2985 // Manually cancel the alarm to simulate a real test.
2986 connection_
.GetRetransmissionAlarm()->Fire();
2988 // The new retransmitted sequence number should set the RTO to a larger value
2990 EXPECT_TRUE(retransmission_alarm
->IsSet());
2991 QuicTime next_rto_time
= retransmission_alarm
->deadline();
2992 QuicTime expected_rto_time
=
2993 connection_
.sent_packet_manager().GetRetransmissionTime();
2994 EXPECT_EQ(next_rto_time
, expected_rto_time
);
2997 TEST_P(QuicConnectionTest
, TestQueued
) {
2998 EXPECT_EQ(0u, connection_
.NumQueuedPackets());
3000 connection_
.SendStreamDataWithString(1, "foo", 0, !kFin
, nullptr);
3001 EXPECT_EQ(1u, connection_
.NumQueuedPackets());
3003 // Unblock the writes and actually send.
3004 writer_
->SetWritable();
3005 connection_
.OnCanWrite();
3006 EXPECT_EQ(0u, connection_
.NumQueuedPackets());
3009 TEST_P(QuicConnectionTest
, CloseFecGroup
) {
3010 EXPECT_CALL(visitor_
, OnSuccessfulVersionNegotiation(_
));
3011 // Don't send missing packet 1.
3012 // Don't send missing packet 2.
3013 ProcessFecProtectedPacket(3, false, !kEntropyFlag
);
3014 // Don't send missing FEC packet 3.
3015 ASSERT_EQ(1u, connection_
.NumFecGroups());
3017 // Now send non-fec protected ack packet and close the group.
3018 QuicPacketCreatorPeer::SetSequenceNumber(&peer_creator_
, 4);
3019 QuicStopWaitingFrame frame
= InitStopWaitingFrame(5);
3020 ProcessStopWaitingPacket(&frame
);
3021 ASSERT_EQ(0u, connection_
.NumFecGroups());
3024 TEST_P(QuicConnectionTest
, InitialTimeout
) {
3025 EXPECT_TRUE(connection_
.connected());
3026 EXPECT_CALL(*send_algorithm_
, OnPacketSent(_
, _
, _
, _
, _
)).Times(AnyNumber());
3027 EXPECT_FALSE(connection_
.GetTimeoutAlarm()->IsSet());
3029 // SetFromConfig sets the initial timeouts before negotiation.
3030 EXPECT_CALL(*send_algorithm_
, SetFromConfig(_
, _
));
3032 connection_
.SetFromConfig(config
);
3033 // Subtract a second from the idle timeout on the client side.
3034 QuicTime default_timeout
= clock_
.ApproximateNow().Add(
3035 QuicTime::Delta::FromSeconds(kInitialIdleTimeoutSecs
- 1));
3036 EXPECT_EQ(default_timeout
, connection_
.GetTimeoutAlarm()->deadline());
3038 EXPECT_CALL(visitor_
, OnConnectionClosed(QUIC_CONNECTION_TIMED_OUT
, false));
3039 // Simulate the timeout alarm firing.
3041 QuicTime::Delta::FromSeconds(kInitialIdleTimeoutSecs
- 1));
3042 connection_
.GetTimeoutAlarm()->Fire();
3044 EXPECT_FALSE(connection_
.GetTimeoutAlarm()->IsSet());
3045 EXPECT_FALSE(connection_
.connected());
3047 EXPECT_FALSE(connection_
.GetAckAlarm()->IsSet());
3048 EXPECT_FALSE(connection_
.GetPingAlarm()->IsSet());
3049 EXPECT_FALSE(connection_
.GetFecAlarm()->IsSet());
3050 EXPECT_FALSE(connection_
.GetResumeWritesAlarm()->IsSet());
3051 EXPECT_FALSE(connection_
.GetRetransmissionAlarm()->IsSet());
3052 EXPECT_FALSE(connection_
.GetSendAlarm()->IsSet());
3055 TEST_P(QuicConnectionTest
, OverallTimeout
) {
3056 // Use a shorter overall connection timeout than idle timeout for this test.
3057 const QuicTime::Delta timeout
= QuicTime::Delta::FromSeconds(5);
3058 connection_
.SetNetworkTimeouts(timeout
, timeout
);
3059 EXPECT_TRUE(connection_
.connected());
3060 EXPECT_CALL(*send_algorithm_
, OnPacketSent(_
, _
, _
, _
, _
)).Times(AnyNumber());
3062 QuicTime overall_timeout
= clock_
.ApproximateNow().Add(timeout
).Subtract(
3063 QuicTime::Delta::FromSeconds(1));
3064 EXPECT_EQ(overall_timeout
, connection_
.GetTimeoutAlarm()->deadline());
3065 EXPECT_TRUE(connection_
.connected());
3067 // Send and ack new data 3 seconds later to lengthen the idle timeout.
3068 SendStreamDataToPeer(1, "GET /", 0, kFin
, nullptr);
3069 clock_
.AdvanceTime(QuicTime::Delta::FromSeconds(3));
3070 QuicAckFrame frame
= InitAckFrame(1);
3071 EXPECT_CALL(visitor_
, OnSuccessfulVersionNegotiation(_
));
3072 EXPECT_CALL(*send_algorithm_
, OnCongestionEvent(true, _
, _
, _
));
3073 ProcessAckPacket(&frame
);
3075 // Fire early to verify it wouldn't timeout yet.
3076 connection_
.GetTimeoutAlarm()->Fire();
3077 EXPECT_TRUE(connection_
.GetTimeoutAlarm()->IsSet());
3078 EXPECT_TRUE(connection_
.connected());
3080 clock_
.AdvanceTime(timeout
.Subtract(QuicTime::Delta::FromSeconds(2)));
3082 EXPECT_CALL(visitor_
,
3083 OnConnectionClosed(QUIC_CONNECTION_OVERALL_TIMED_OUT
, false));
3084 // Simulate the timeout alarm firing.
3085 connection_
.GetTimeoutAlarm()->Fire();
3087 EXPECT_FALSE(connection_
.GetTimeoutAlarm()->IsSet());
3088 EXPECT_FALSE(connection_
.connected());
3090 EXPECT_FALSE(connection_
.GetAckAlarm()->IsSet());
3091 EXPECT_FALSE(connection_
.GetPingAlarm()->IsSet());
3092 EXPECT_FALSE(connection_
.GetFecAlarm()->IsSet());
3093 EXPECT_FALSE(connection_
.GetResumeWritesAlarm()->IsSet());
3094 EXPECT_FALSE(connection_
.GetRetransmissionAlarm()->IsSet());
3095 EXPECT_FALSE(connection_
.GetSendAlarm()->IsSet());
3098 TEST_P(QuicConnectionTest
, PingAfterSend
) {
3099 EXPECT_TRUE(connection_
.connected());
3100 EXPECT_CALL(visitor_
, HasOpenDataStreams()).WillRepeatedly(Return(true));
3101 EXPECT_FALSE(connection_
.GetPingAlarm()->IsSet());
3103 // Advance to 5ms, and send a packet to the peer, which will set
3105 clock_
.AdvanceTime(QuicTime::Delta::FromMilliseconds(5));
3106 EXPECT_FALSE(connection_
.GetRetransmissionAlarm()->IsSet());
3107 SendStreamDataToPeer(1, "GET /", 0, kFin
, nullptr);
3108 EXPECT_TRUE(connection_
.GetPingAlarm()->IsSet());
3109 EXPECT_EQ(clock_
.ApproximateNow().Add(QuicTime::Delta::FromSeconds(15)),
3110 connection_
.GetPingAlarm()->deadline());
3112 // Now recevie and ACK of the previous packet, which will move the
3113 // ping alarm forward.
3114 clock_
.AdvanceTime(QuicTime::Delta::FromMilliseconds(5));
3115 QuicAckFrame frame
= InitAckFrame(1);
3116 EXPECT_CALL(visitor_
, OnSuccessfulVersionNegotiation(_
));
3117 EXPECT_CALL(*send_algorithm_
, OnCongestionEvent(true, _
, _
, _
));
3118 ProcessAckPacket(&frame
);
3119 EXPECT_TRUE(connection_
.GetPingAlarm()->IsSet());
3120 // The ping timer is set slightly less than 15 seconds in the future, because
3121 // of the 1s ping timer alarm granularity.
3122 EXPECT_EQ(clock_
.ApproximateNow().Add(QuicTime::Delta::FromSeconds(15))
3123 .Subtract(QuicTime::Delta::FromMilliseconds(5)),
3124 connection_
.GetPingAlarm()->deadline());
3127 clock_
.AdvanceTime(QuicTime::Delta::FromSeconds(15));
3128 connection_
.GetPingAlarm()->Fire();
3129 EXPECT_EQ(1u, writer_
->frame_count());
3130 ASSERT_EQ(1u, writer_
->ping_frames().size());
3133 EXPECT_CALL(visitor_
, HasOpenDataStreams()).WillRepeatedly(Return(false));
3134 clock_
.AdvanceTime(QuicTime::Delta::FromMilliseconds(5));
3135 SendAckPacketToPeer();
3137 EXPECT_FALSE(connection_
.GetPingAlarm()->IsSet());
3140 TEST_P(QuicConnectionTest
, TimeoutAfterSend
) {
3141 EXPECT_TRUE(connection_
.connected());
3142 EXPECT_CALL(*send_algorithm_
, SetFromConfig(_
, _
));
3144 connection_
.SetFromConfig(config
);
3145 EXPECT_FALSE(QuicConnectionPeer::IsSilentCloseEnabled(&connection_
));
3147 const QuicTime::Delta initial_idle_timeout
=
3148 QuicTime::Delta::FromSeconds(kInitialIdleTimeoutSecs
- 1);
3149 const QuicTime::Delta five_ms
= QuicTime::Delta::FromMilliseconds(5);
3150 QuicTime default_timeout
= clock_
.ApproximateNow().Add(initial_idle_timeout
);
3152 // When we send a packet, the timeout will change to 5ms +
3153 // kInitialIdleTimeoutSecs.
3154 clock_
.AdvanceTime(five_ms
);
3156 // Send an ack so we don't set the retransmission alarm.
3157 SendAckPacketToPeer();
3158 EXPECT_EQ(default_timeout
, connection_
.GetTimeoutAlarm()->deadline());
3160 // The original alarm will fire. We should not time out because we had a
3161 // network event at t=5ms. The alarm will reregister.
3162 clock_
.AdvanceTime(initial_idle_timeout
.Subtract(five_ms
));
3163 EXPECT_EQ(default_timeout
, clock_
.ApproximateNow());
3164 connection_
.GetTimeoutAlarm()->Fire();
3165 EXPECT_TRUE(connection_
.GetTimeoutAlarm()->IsSet());
3166 EXPECT_TRUE(connection_
.connected());
3167 EXPECT_EQ(default_timeout
.Add(five_ms
),
3168 connection_
.GetTimeoutAlarm()->deadline());
3170 // This time, we should time out.
3171 EXPECT_CALL(visitor_
, OnConnectionClosed(QUIC_CONNECTION_TIMED_OUT
, false));
3172 EXPECT_CALL(*send_algorithm_
, OnPacketSent(_
, _
, _
, _
, _
));
3173 clock_
.AdvanceTime(five_ms
);
3174 EXPECT_EQ(default_timeout
.Add(five_ms
), clock_
.ApproximateNow());
3175 connection_
.GetTimeoutAlarm()->Fire();
3176 EXPECT_FALSE(connection_
.GetTimeoutAlarm()->IsSet());
3177 EXPECT_FALSE(connection_
.connected());
3180 TEST_P(QuicConnectionTest
, TimeoutAfterSendSilentClose
) {
3181 // Same test as above, but complete a handshake which enables silent close,
3182 // causing no connection close packet to be sent.
3183 EXPECT_TRUE(connection_
.connected());
3184 EXPECT_CALL(*send_algorithm_
, SetFromConfig(_
, _
));
3187 // Create a handshake message that also enables silent close.
3188 CryptoHandshakeMessage msg
;
3189 string error_details
;
3190 QuicConfig client_config
;
3191 client_config
.SetInitialStreamFlowControlWindowToSend(
3192 kInitialStreamFlowControlWindowForTest
);
3193 client_config
.SetInitialSessionFlowControlWindowToSend(
3194 kInitialSessionFlowControlWindowForTest
);
3195 client_config
.SetIdleConnectionStateLifetime(
3196 QuicTime::Delta::FromSeconds(kDefaultIdleTimeoutSecs
),
3197 QuicTime::Delta::FromSeconds(kDefaultIdleTimeoutSecs
));
3198 client_config
.ToHandshakeMessage(&msg
);
3199 const QuicErrorCode error
=
3200 config
.ProcessPeerHello(msg
, CLIENT
, &error_details
);
3201 EXPECT_EQ(QUIC_NO_ERROR
, error
);
3203 connection_
.SetFromConfig(config
);
3204 EXPECT_TRUE(QuicConnectionPeer::IsSilentCloseEnabled(&connection_
));
3206 const QuicTime::Delta default_idle_timeout
=
3207 QuicTime::Delta::FromSeconds(kDefaultIdleTimeoutSecs
- 1);
3208 const QuicTime::Delta five_ms
= QuicTime::Delta::FromMilliseconds(5);
3209 QuicTime default_timeout
= clock_
.ApproximateNow().Add(default_idle_timeout
);
3211 // When we send a packet, the timeout will change to 5ms +
3212 // kInitialIdleTimeoutSecs.
3213 clock_
.AdvanceTime(five_ms
);
3215 // Send an ack so we don't set the retransmission alarm.
3216 SendAckPacketToPeer();
3217 EXPECT_EQ(default_timeout
, connection_
.GetTimeoutAlarm()->deadline());
3219 // The original alarm will fire. We should not time out because we had a
3220 // network event at t=5ms. The alarm will reregister.
3221 clock_
.AdvanceTime(default_idle_timeout
.Subtract(five_ms
));
3222 EXPECT_EQ(default_timeout
, clock_
.ApproximateNow());
3223 connection_
.GetTimeoutAlarm()->Fire();
3224 EXPECT_TRUE(connection_
.GetTimeoutAlarm()->IsSet());
3225 EXPECT_TRUE(connection_
.connected());
3226 EXPECT_EQ(default_timeout
.Add(five_ms
),
3227 connection_
.GetTimeoutAlarm()->deadline());
3229 // This time, we should time out.
3230 EXPECT_CALL(visitor_
, OnConnectionClosed(QUIC_CONNECTION_TIMED_OUT
, false));
3231 clock_
.AdvanceTime(five_ms
);
3232 EXPECT_EQ(default_timeout
.Add(five_ms
), clock_
.ApproximateNow());
3233 connection_
.GetTimeoutAlarm()->Fire();
3234 EXPECT_FALSE(connection_
.GetTimeoutAlarm()->IsSet());
3235 EXPECT_FALSE(connection_
.connected());
3238 TEST_P(QuicConnectionTest
, SendScheduler
) {
3239 // Test that if we send a packet without delay, it is not queued.
3240 QuicPacket
* packet
= ConstructDataPacket(1, 0, !kEntropyFlag
);
3241 EXPECT_CALL(*send_algorithm_
, OnPacketSent(_
, _
, _
, _
, _
));
3242 connection_
.SendPacket(
3243 ENCRYPTION_NONE
, 1, packet
, kTestEntropyHash
, HAS_RETRANSMITTABLE_DATA
);
3244 EXPECT_EQ(0u, connection_
.NumQueuedPackets());
3247 TEST_P(QuicConnectionTest
, SendSchedulerEAGAIN
) {
3248 QuicPacket
* packet
= ConstructDataPacket(1, 0, !kEntropyFlag
);
3250 EXPECT_CALL(*send_algorithm_
, OnPacketSent(_
, _
, 1, _
, _
)).Times(0);
3251 connection_
.SendPacket(
3252 ENCRYPTION_NONE
, 1, packet
, kTestEntropyHash
, HAS_RETRANSMITTABLE_DATA
);
3253 EXPECT_EQ(1u, connection_
.NumQueuedPackets());
3256 TEST_P(QuicConnectionTest
, TestQueueLimitsOnSendStreamData
) {
3257 // All packets carry version info till version is negotiated.
3258 size_t payload_length
;
3259 size_t length
= GetPacketLengthForOneStream(
3260 connection_
.version(), kIncludeVersion
,
3261 PACKET_8BYTE_CONNECTION_ID
, PACKET_1BYTE_SEQUENCE_NUMBER
,
3262 NOT_IN_FEC_GROUP
, &payload_length
);
3263 creator_
->SetMaxPacketLength(length
);
3265 // Queue the first packet.
3266 EXPECT_CALL(*send_algorithm_
,
3267 TimeUntilSend(_
, _
, _
)).WillOnce(
3268 testing::Return(QuicTime::Delta::FromMicroseconds(10)));
3269 const string
payload(payload_length
, 'a');
3270 EXPECT_EQ(0u, connection_
.SendStreamDataWithString(3, payload
, 0, !kFin
,
3271 nullptr).bytes_consumed
);
3272 EXPECT_EQ(0u, connection_
.NumQueuedPackets());
3275 TEST_P(QuicConnectionTest
, LoopThroughSendingPackets
) {
3276 // All packets carry version info till version is negotiated.
3277 size_t payload_length
;
3278 // GetPacketLengthForOneStream() assumes a stream offset of 0 in determining
3279 // packet length. The size of the offset field in a stream frame is 0 for
3280 // offset 0, and 2 for non-zero offsets up through 16K. Increase
3281 // max_packet_length by 2 so that subsequent packets containing subsequent
3282 // stream frames with non-zero offets will fit within the packet length.
3283 size_t length
= 2 + GetPacketLengthForOneStream(
3284 connection_
.version(), kIncludeVersion
,
3285 PACKET_8BYTE_CONNECTION_ID
, PACKET_1BYTE_SEQUENCE_NUMBER
,
3286 NOT_IN_FEC_GROUP
, &payload_length
);
3287 creator_
->SetMaxPacketLength(length
);
3289 // Queue the first packet.
3290 EXPECT_CALL(*send_algorithm_
, OnPacketSent(_
, _
, _
, _
, _
)).Times(7);
3291 // The first stream frame will have 2 fewer overhead bytes than the other six.
3292 const string
payload(payload_length
* 7 + 2, 'a');
3293 EXPECT_EQ(payload
.size(),
3294 connection_
.SendStreamDataWithString(1, payload
, 0, !kFin
, nullptr)
3298 TEST_P(QuicConnectionTest
, LoopThroughSendingPacketsWithTruncation
) {
3299 // Set up a larger payload than will fit in one packet.
3300 const string
payload(connection_
.max_packet_length(), 'a');
3301 EXPECT_CALL(*send_algorithm_
, SetFromConfig(_
, _
)).Times(AnyNumber());
3303 // Now send some packets with no truncation.
3304 EXPECT_CALL(*send_algorithm_
, OnPacketSent(_
, _
, _
, _
, _
)).Times(2);
3305 EXPECT_EQ(payload
.size(),
3306 connection_
.SendStreamDataWithString(
3307 3, payload
, 0, !kFin
, nullptr).bytes_consumed
);
3308 // Track the size of the second packet here. The overhead will be the largest
3309 // we see in this test, due to the non-truncated connection id.
3310 size_t non_truncated_packet_size
= writer_
->last_packet_size();
3312 // Change to a 4 byte connection id.
3314 QuicConfigPeer::SetReceivedBytesForConnectionId(&config
, 4);
3315 connection_
.SetFromConfig(config
);
3316 EXPECT_CALL(*send_algorithm_
, OnPacketSent(_
, _
, _
, _
, _
)).Times(2);
3317 EXPECT_EQ(payload
.size(),
3318 connection_
.SendStreamDataWithString(
3319 3, payload
, 0, !kFin
, nullptr).bytes_consumed
);
3320 // Verify that we have 8 fewer bytes than in the non-truncated case. The
3321 // first packet got 4 bytes of extra payload due to the truncation, and the
3322 // headers here are also 4 byte smaller.
3323 EXPECT_EQ(non_truncated_packet_size
, writer_
->last_packet_size() + 8);
3325 // Change to a 1 byte connection id.
3326 QuicConfigPeer::SetReceivedBytesForConnectionId(&config
, 1);
3327 connection_
.SetFromConfig(config
);
3328 EXPECT_CALL(*send_algorithm_
, OnPacketSent(_
, _
, _
, _
, _
)).Times(2);
3329 EXPECT_EQ(payload
.size(),
3330 connection_
.SendStreamDataWithString(
3331 3, payload
, 0, !kFin
, nullptr).bytes_consumed
);
3332 // Just like above, we save 7 bytes on payload, and 7 on truncation.
3333 EXPECT_EQ(non_truncated_packet_size
, writer_
->last_packet_size() + 7 * 2);
3335 // Change to a 0 byte connection id.
3336 QuicConfigPeer::SetReceivedBytesForConnectionId(&config
, 0);
3337 connection_
.SetFromConfig(config
);
3338 EXPECT_CALL(*send_algorithm_
, OnPacketSent(_
, _
, _
, _
, _
)).Times(2);
3339 EXPECT_EQ(payload
.size(),
3340 connection_
.SendStreamDataWithString(
3341 3, payload
, 0, !kFin
, nullptr).bytes_consumed
);
3342 // Just like above, we save 8 bytes on payload, and 8 on truncation.
3343 EXPECT_EQ(non_truncated_packet_size
, writer_
->last_packet_size() + 8 * 2);
3346 TEST_P(QuicConnectionTest
, SendDelayedAck
) {
3347 QuicTime ack_time
= clock_
.ApproximateNow().Add(DefaultDelayedAckTime());
3348 EXPECT_CALL(visitor_
, OnSuccessfulVersionNegotiation(_
));
3349 EXPECT_FALSE(connection_
.GetAckAlarm()->IsSet());
3350 const uint8 tag
= 0x07;
3351 connection_
.SetDecrypter(new StrictTaggingDecrypter(tag
),
3352 ENCRYPTION_INITIAL
);
3353 framer_
.SetEncrypter(ENCRYPTION_INITIAL
, new TaggingEncrypter(tag
));
3354 // Process a packet from the non-crypto stream.
3355 frame1_
.stream_id
= 3;
3357 // The same as ProcessPacket(1) except that ENCRYPTION_INITIAL is used
3358 // instead of ENCRYPTION_NONE.
3359 EXPECT_CALL(visitor_
, OnStreamFrames(_
)).Times(1);
3360 ProcessDataPacketAtLevel(1, 0, !kEntropyFlag
, ENCRYPTION_INITIAL
);
3362 // Check if delayed ack timer is running for the expected interval.
3363 EXPECT_TRUE(connection_
.GetAckAlarm()->IsSet());
3364 EXPECT_EQ(ack_time
, connection_
.GetAckAlarm()->deadline());
3365 // Simulate delayed ack alarm firing.
3366 connection_
.GetAckAlarm()->Fire();
3367 // Check that ack is sent and that delayed ack alarm is reset.
3368 EXPECT_EQ(2u, writer_
->frame_count());
3369 EXPECT_FALSE(writer_
->stop_waiting_frames().empty());
3370 EXPECT_FALSE(writer_
->ack_frames().empty());
3371 EXPECT_FALSE(connection_
.GetAckAlarm()->IsSet());
3374 TEST_P(QuicConnectionTest
, SendDelayedAckOnHandshakeConfirmed
) {
3375 EXPECT_CALL(visitor_
, OnSuccessfulVersionNegotiation(_
));
3377 // Check that ack is sent and that delayed ack alarm is set.
3378 EXPECT_TRUE(connection_
.GetAckAlarm()->IsSet());
3379 QuicTime ack_time
= clock_
.ApproximateNow().Add(DefaultDelayedAckTime());
3380 EXPECT_EQ(ack_time
, connection_
.GetAckAlarm()->deadline());
3382 // Completing the handshake as the server does nothing.
3383 QuicConnectionPeer::SetPerspective(&connection_
, Perspective::IS_SERVER
);
3384 connection_
.OnHandshakeComplete();
3385 EXPECT_TRUE(connection_
.GetAckAlarm()->IsSet());
3386 EXPECT_EQ(ack_time
, connection_
.GetAckAlarm()->deadline());
3388 // Complete the handshake as the client decreases the delayed ack time to 0ms.
3389 QuicConnectionPeer::SetPerspective(&connection_
, Perspective::IS_CLIENT
);
3390 connection_
.OnHandshakeComplete();
3391 EXPECT_TRUE(connection_
.GetAckAlarm()->IsSet());
3392 EXPECT_EQ(clock_
.ApproximateNow(), connection_
.GetAckAlarm()->deadline());
3395 TEST_P(QuicConnectionTest
, SendDelayedAckOnSecondPacket
) {
3396 EXPECT_CALL(visitor_
, OnSuccessfulVersionNegotiation(_
));
3399 // Check that ack is sent and that delayed ack alarm is reset.
3400 EXPECT_EQ(2u, writer_
->frame_count());
3401 EXPECT_FALSE(writer_
->stop_waiting_frames().empty());
3402 EXPECT_FALSE(writer_
->ack_frames().empty());
3403 EXPECT_FALSE(connection_
.GetAckAlarm()->IsSet());
3406 TEST_P(QuicConnectionTest
, NoAckOnOldNacks
) {
3407 EXPECT_CALL(visitor_
, OnSuccessfulVersionNegotiation(_
));
3408 // Drop one packet, triggering a sequence of acks.
3410 size_t frames_per_ack
= 2;
3411 EXPECT_EQ(frames_per_ack
, writer_
->frame_count());
3412 EXPECT_FALSE(writer_
->ack_frames().empty());
3415 EXPECT_EQ(frames_per_ack
, writer_
->frame_count());
3416 EXPECT_FALSE(writer_
->ack_frames().empty());
3419 EXPECT_EQ(frames_per_ack
, writer_
->frame_count());
3420 EXPECT_FALSE(writer_
->ack_frames().empty());
3423 EXPECT_EQ(frames_per_ack
, writer_
->frame_count());
3424 EXPECT_FALSE(writer_
->ack_frames().empty());
3426 // Now only set the timer on the 6th packet, instead of sending another ack.
3428 EXPECT_EQ(0u, writer_
->frame_count());
3429 EXPECT_TRUE(connection_
.GetAckAlarm()->IsSet());
3432 TEST_P(QuicConnectionTest
, SendDelayedAckOnOutgoingPacket
) {
3433 EXPECT_CALL(visitor_
, OnSuccessfulVersionNegotiation(_
));
3435 connection_
.SendStreamDataWithString(kClientDataStreamId1
, "foo", 0, !kFin
,
3437 // Check that ack is bundled with outgoing data and that delayed ack
3439 EXPECT_EQ(3u, writer_
->frame_count());
3440 EXPECT_FALSE(writer_
->stop_waiting_frames().empty());
3441 EXPECT_FALSE(writer_
->ack_frames().empty());
3442 EXPECT_FALSE(connection_
.GetAckAlarm()->IsSet());
3445 TEST_P(QuicConnectionTest
, SendDelayedAckOnOutgoingCryptoPacket
) {
3446 EXPECT_CALL(visitor_
, OnSuccessfulVersionNegotiation(_
));
3448 connection_
.SendStreamDataWithString(kCryptoStreamId
, "foo", 0, !kFin
,
3450 // Check that ack is bundled with outgoing crypto data.
3451 EXPECT_EQ(3u, writer_
->frame_count());
3452 EXPECT_FALSE(writer_
->ack_frames().empty());
3453 EXPECT_FALSE(connection_
.GetAckAlarm()->IsSet());
3456 TEST_P(QuicConnectionTest
, BlockAndBufferOnFirstCHLOPacketOfTwo
) {
3457 EXPECT_CALL(visitor_
, OnSuccessfulVersionNegotiation(_
));
3460 writer_
->set_is_write_blocked_data_buffered(true);
3461 connection_
.SendStreamDataWithString(kCryptoStreamId
, "foo", 0, !kFin
,
3463 EXPECT_TRUE(writer_
->IsWriteBlocked());
3464 EXPECT_FALSE(connection_
.HasQueuedData());
3465 connection_
.SendStreamDataWithString(kCryptoStreamId
, "bar", 3, !kFin
,
3467 EXPECT_TRUE(writer_
->IsWriteBlocked());
3468 EXPECT_TRUE(connection_
.HasQueuedData());
3471 TEST_P(QuicConnectionTest
, BundleAckForSecondCHLO
) {
3472 EXPECT_CALL(visitor_
, OnSuccessfulVersionNegotiation(_
));
3473 EXPECT_FALSE(connection_
.GetAckAlarm()->IsSet());
3474 EXPECT_CALL(visitor_
, OnCanWrite()).WillOnce(
3475 IgnoreResult(InvokeWithoutArgs(&connection_
,
3476 &TestConnection::SendCryptoStreamData
)));
3477 // Process a packet from the crypto stream, which is frame1_'s default.
3478 // Receiving the CHLO as packet 2 first will cause the connection to
3479 // immediately send an ack, due to the packet gap.
3481 // Check that ack is sent and that delayed ack alarm is reset.
3482 EXPECT_EQ(3u, writer_
->frame_count());
3483 EXPECT_FALSE(writer_
->stop_waiting_frames().empty());
3484 EXPECT_EQ(1u, writer_
->stream_frames().size());
3485 EXPECT_FALSE(writer_
->ack_frames().empty());
3486 EXPECT_FALSE(connection_
.GetAckAlarm()->IsSet());
3489 TEST_P(QuicConnectionTest
, BundleAckWithDataOnIncomingAck
) {
3490 EXPECT_CALL(visitor_
, OnSuccessfulVersionNegotiation(_
));
3491 connection_
.SendStreamDataWithString(kClientDataStreamId1
, "foo", 0, !kFin
,
3493 connection_
.SendStreamDataWithString(kClientDataStreamId1
, "foo", 3, !kFin
,
3495 // Ack the second packet, which will retransmit the first packet.
3496 QuicAckFrame ack
= InitAckFrame(2);
3497 NackPacket(1, &ack
);
3498 SequenceNumberSet lost_packets
;
3499 lost_packets
.insert(1);
3500 EXPECT_CALL(*loss_algorithm_
, DetectLostPackets(_
, _
, _
, _
))
3501 .WillOnce(Return(lost_packets
));
3502 EXPECT_CALL(*send_algorithm_
, OnCongestionEvent(true, _
, _
, _
));
3503 ProcessAckPacket(&ack
);
3504 EXPECT_EQ(1u, writer_
->frame_count());
3505 EXPECT_EQ(1u, writer_
->stream_frames().size());
3508 // Now ack the retransmission, which will both raise the high water mark
3509 // and see if there is more data to send.
3510 ack
= InitAckFrame(3);
3511 NackPacket(1, &ack
);
3512 EXPECT_CALL(*loss_algorithm_
, DetectLostPackets(_
, _
, _
, _
))
3513 .WillOnce(Return(SequenceNumberSet()));
3514 EXPECT_CALL(*send_algorithm_
, OnCongestionEvent(true, _
, _
, _
));
3515 ProcessAckPacket(&ack
);
3517 // Check that no packet is sent and the ack alarm isn't set.
3518 EXPECT_EQ(0u, writer_
->frame_count());
3519 EXPECT_FALSE(connection_
.GetAckAlarm()->IsSet());
3522 // Send the same ack, but send both data and an ack together.
3523 ack
= InitAckFrame(3);
3524 NackPacket(1, &ack
);
3525 EXPECT_CALL(*loss_algorithm_
, DetectLostPackets(_
, _
, _
, _
))
3526 .WillOnce(Return(SequenceNumberSet()));
3527 EXPECT_CALL(visitor_
, OnCanWrite()).WillOnce(
3528 IgnoreResult(InvokeWithoutArgs(
3530 &TestConnection::EnsureWritableAndSendStreamData5
)));
3531 ProcessAckPacket(&ack
);
3533 // Check that ack is bundled with outgoing data and the delayed ack
3535 EXPECT_EQ(3u, writer_
->frame_count());
3536 EXPECT_FALSE(writer_
->stop_waiting_frames().empty());
3537 EXPECT_FALSE(writer_
->ack_frames().empty());
3538 EXPECT_EQ(1u, writer_
->stream_frames().size());
3539 EXPECT_FALSE(connection_
.GetAckAlarm()->IsSet());
3542 TEST_P(QuicConnectionTest
, NoAckSentForClose
) {
3543 EXPECT_CALL(visitor_
, OnSuccessfulVersionNegotiation(_
));
3545 EXPECT_CALL(visitor_
, OnConnectionClosed(QUIC_PEER_GOING_AWAY
, true));
3546 EXPECT_CALL(*send_algorithm_
, OnPacketSent(_
, _
, _
, _
, _
)).Times(0);
3547 ProcessClosePacket(2, 0);
3550 TEST_P(QuicConnectionTest
, SendWhenDisconnected
) {
3551 EXPECT_TRUE(connection_
.connected());
3552 EXPECT_CALL(visitor_
, OnConnectionClosed(QUIC_PEER_GOING_AWAY
, false));
3553 connection_
.CloseConnection(QUIC_PEER_GOING_AWAY
, false);
3554 EXPECT_FALSE(connection_
.connected());
3555 EXPECT_FALSE(connection_
.CanWriteStreamData());
3556 QuicPacket
* packet
= ConstructDataPacket(1, 0, !kEntropyFlag
);
3557 EXPECT_CALL(*send_algorithm_
, OnPacketSent(_
, _
, 1, _
, _
)).Times(0);
3558 connection_
.SendPacket(
3559 ENCRYPTION_NONE
, 1, packet
, kTestEntropyHash
, HAS_RETRANSMITTABLE_DATA
);
3562 TEST_P(QuicConnectionTest
, PublicReset
) {
3563 QuicPublicResetPacket header
;
3564 header
.public_header
.connection_id
= connection_id_
;
3565 header
.public_header
.reset_flag
= true;
3566 header
.public_header
.version_flag
= false;
3567 header
.rejected_sequence_number
= 10101;
3568 scoped_ptr
<QuicEncryptedPacket
> packet(
3569 framer_
.BuildPublicResetPacket(header
));
3570 EXPECT_CALL(visitor_
, OnConnectionClosed(QUIC_PUBLIC_RESET
, true));
3571 connection_
.ProcessUdpPacket(IPEndPoint(), IPEndPoint(), *packet
);
3574 TEST_P(QuicConnectionTest
, GoAway
) {
3575 EXPECT_CALL(visitor_
, OnSuccessfulVersionNegotiation(_
));
3577 QuicGoAwayFrame goaway
;
3578 goaway
.last_good_stream_id
= 1;
3579 goaway
.error_code
= QUIC_PEER_GOING_AWAY
;
3580 goaway
.reason_phrase
= "Going away.";
3581 EXPECT_CALL(visitor_
, OnGoAway(_
));
3582 ProcessGoAwayPacket(&goaway
);
3585 TEST_P(QuicConnectionTest
, WindowUpdate
) {
3586 EXPECT_CALL(visitor_
, OnSuccessfulVersionNegotiation(_
));
3588 QuicWindowUpdateFrame window_update
;
3589 window_update
.stream_id
= 3;
3590 window_update
.byte_offset
= 1234;
3591 EXPECT_CALL(visitor_
, OnWindowUpdateFrames(_
));
3592 ProcessFramePacket(QuicFrame(&window_update
));
3595 TEST_P(QuicConnectionTest
, Blocked
) {
3596 EXPECT_CALL(visitor_
, OnSuccessfulVersionNegotiation(_
));
3598 QuicBlockedFrame blocked
;
3599 blocked
.stream_id
= 3;
3600 EXPECT_CALL(visitor_
, OnBlockedFrames(_
));
3601 ProcessFramePacket(QuicFrame(&blocked
));
3604 TEST_P(QuicConnectionTest
, ZeroBytePacket
) {
3605 // Don't close the connection for zero byte packets.
3606 EXPECT_CALL(visitor_
, OnConnectionClosed(_
, _
)).Times(0);
3607 QuicEncryptedPacket
encrypted(nullptr, 0);
3608 connection_
.ProcessUdpPacket(IPEndPoint(), IPEndPoint(), encrypted
);
3611 TEST_P(QuicConnectionTest
, MissingPacketsBeforeLeastUnacked
) {
3612 // Set the sequence number of the ack packet to be least unacked (4).
3613 QuicPacketCreatorPeer::SetSequenceNumber(&peer_creator_
, 3);
3614 EXPECT_CALL(visitor_
, OnSuccessfulVersionNegotiation(_
));
3615 QuicStopWaitingFrame frame
= InitStopWaitingFrame(4);
3616 ProcessStopWaitingPacket(&frame
);
3617 EXPECT_TRUE(outgoing_ack()->missing_packets
.empty());
3620 TEST_P(QuicConnectionTest
, ReceivedEntropyHashCalculation
) {
3621 EXPECT_CALL(visitor_
, OnStreamFrames(_
)).Times(AtLeast(1));
3622 EXPECT_CALL(visitor_
, OnSuccessfulVersionNegotiation(_
));
3623 ProcessDataPacket(1, 1, kEntropyFlag
);
3624 ProcessDataPacket(4, 1, kEntropyFlag
);
3625 ProcessDataPacket(3, 1, !kEntropyFlag
);
3626 ProcessDataPacket(7, 1, kEntropyFlag
);
3627 EXPECT_EQ(146u, outgoing_ack()->entropy_hash
);
3630 TEST_P(QuicConnectionTest
, ReceivedEntropyHashCalculationHalfFEC
) {
3631 // FEC packets should not change the entropy hash calculation.
3632 EXPECT_CALL(visitor_
, OnStreamFrames(_
)).Times(AtLeast(1));
3633 EXPECT_CALL(visitor_
, OnSuccessfulVersionNegotiation(_
));
3634 ProcessDataPacket(1, 1, kEntropyFlag
);
3635 ProcessFecPacket(4, 1, false, kEntropyFlag
, nullptr);
3636 ProcessDataPacket(3, 3, !kEntropyFlag
);
3637 ProcessFecPacket(7, 3, false, kEntropyFlag
, nullptr);
3638 EXPECT_EQ(146u, outgoing_ack()->entropy_hash
);
3641 TEST_P(QuicConnectionTest
, UpdateEntropyForReceivedPackets
) {
3642 EXPECT_CALL(visitor_
, OnStreamFrames(_
)).Times(AtLeast(1));
3643 EXPECT_CALL(visitor_
, OnSuccessfulVersionNegotiation(_
));
3644 ProcessDataPacket(1, 1, kEntropyFlag
);
3645 ProcessDataPacket(5, 1, kEntropyFlag
);
3646 ProcessDataPacket(4, 1, !kEntropyFlag
);
3647 EXPECT_EQ(34u, outgoing_ack()->entropy_hash
);
3648 // Make 4th packet my least unacked, and update entropy for 2, 3 packets.
3649 QuicPacketCreatorPeer::SetSequenceNumber(&peer_creator_
, 5);
3650 QuicPacketEntropyHash six_packet_entropy_hash
= 0;
3651 QuicPacketEntropyHash random_entropy_hash
= 129u;
3652 QuicStopWaitingFrame frame
= InitStopWaitingFrame(4);
3653 frame
.entropy_hash
= random_entropy_hash
;
3654 if (ProcessStopWaitingPacket(&frame
)) {
3655 six_packet_entropy_hash
= 1 << 6;
3658 EXPECT_EQ((random_entropy_hash
+ (1 << 5) + six_packet_entropy_hash
),
3659 outgoing_ack()->entropy_hash
);
3662 TEST_P(QuicConnectionTest
, UpdateEntropyHashUptoCurrentPacket
) {
3663 EXPECT_CALL(visitor_
, OnStreamFrames(_
)).Times(AtLeast(1));
3664 EXPECT_CALL(visitor_
, OnSuccessfulVersionNegotiation(_
));
3665 ProcessDataPacket(1, 1, kEntropyFlag
);
3666 ProcessDataPacket(5, 1, !kEntropyFlag
);
3667 ProcessDataPacket(22, 1, kEntropyFlag
);
3668 EXPECT_EQ(66u, outgoing_ack()->entropy_hash
);
3669 QuicPacketCreatorPeer::SetSequenceNumber(&peer_creator_
, 22);
3670 QuicPacketEntropyHash random_entropy_hash
= 85u;
3671 // Current packet is the least unacked packet.
3672 QuicPacketEntropyHash ack_entropy_hash
;
3673 QuicStopWaitingFrame frame
= InitStopWaitingFrame(23);
3674 frame
.entropy_hash
= random_entropy_hash
;
3675 ack_entropy_hash
= ProcessStopWaitingPacket(&frame
);
3676 EXPECT_EQ((random_entropy_hash
+ ack_entropy_hash
),
3677 outgoing_ack()->entropy_hash
);
3678 ProcessDataPacket(25, 1, kEntropyFlag
);
3679 EXPECT_EQ((random_entropy_hash
+ ack_entropy_hash
+ (1 << (25 % 8))),
3680 outgoing_ack()->entropy_hash
);
3683 TEST_P(QuicConnectionTest
, EntropyCalculationForTruncatedAck
) {
3684 EXPECT_CALL(visitor_
, OnStreamFrames(_
)).Times(AtLeast(1));
3685 EXPECT_CALL(visitor_
, OnSuccessfulVersionNegotiation(_
));
3686 QuicPacketEntropyHash entropy
[51];
3688 for (int i
= 1; i
< 51; ++i
) {
3689 bool should_send
= i
% 10 != 1;
3690 bool entropy_flag
= (i
& (i
- 1)) != 0;
3692 entropy
[i
] = entropy
[i
- 1];
3696 entropy
[i
] = entropy
[i
- 1] ^ (1 << (i
% 8));
3698 entropy
[i
] = entropy
[i
- 1];
3700 ProcessDataPacket(i
, 1, entropy_flag
);
3702 for (int i
= 1; i
< 50; ++i
) {
3703 EXPECT_EQ(entropy
[i
], QuicConnectionPeer::ReceivedEntropyHash(
3708 TEST_P(QuicConnectionTest
, ServerSendsVersionNegotiationPacket
) {
3709 connection_
.SetSupportedVersions(QuicSupportedVersions());
3710 framer_
.set_version_for_tests(QUIC_VERSION_UNSUPPORTED
);
3712 QuicPacketHeader header
;
3713 header
.public_header
.connection_id
= connection_id_
;
3714 header
.public_header
.version_flag
= true;
3715 header
.packet_sequence_number
= 12;
3718 frames
.push_back(QuicFrame(&frame1_
));
3719 scoped_ptr
<QuicPacket
> packet(ConstructPacket(header
, frames
));
3720 scoped_ptr
<QuicEncryptedPacket
> encrypted(
3721 framer_
.EncryptPacket(ENCRYPTION_NONE
, 12, *packet
));
3723 framer_
.set_version(version());
3724 connection_
.set_perspective(Perspective::IS_SERVER
);
3725 connection_
.ProcessUdpPacket(IPEndPoint(), IPEndPoint(), *encrypted
);
3726 EXPECT_TRUE(writer_
->version_negotiation_packet() != nullptr);
3728 size_t num_versions
= arraysize(kSupportedQuicVersions
);
3729 ASSERT_EQ(num_versions
,
3730 writer_
->version_negotiation_packet()->versions
.size());
3732 // We expect all versions in kSupportedQuicVersions to be
3733 // included in the packet.
3734 for (size_t i
= 0; i
< num_versions
; ++i
) {
3735 EXPECT_EQ(kSupportedQuicVersions
[i
],
3736 writer_
->version_negotiation_packet()->versions
[i
]);
3740 TEST_P(QuicConnectionTest
, ServerSendsVersionNegotiationPacketSocketBlocked
) {
3741 connection_
.SetSupportedVersions(QuicSupportedVersions());
3742 framer_
.set_version_for_tests(QUIC_VERSION_UNSUPPORTED
);
3744 QuicPacketHeader header
;
3745 header
.public_header
.connection_id
= connection_id_
;
3746 header
.public_header
.version_flag
= true;
3747 header
.packet_sequence_number
= 12;
3750 frames
.push_back(QuicFrame(&frame1_
));
3751 scoped_ptr
<QuicPacket
> packet(ConstructPacket(header
, frames
));
3752 scoped_ptr
<QuicEncryptedPacket
> encrypted(
3753 framer_
.EncryptPacket(ENCRYPTION_NONE
, 12, *packet
));
3755 framer_
.set_version(version());
3756 connection_
.set_perspective(Perspective::IS_SERVER
);
3758 connection_
.ProcessUdpPacket(IPEndPoint(), IPEndPoint(), *encrypted
);
3759 EXPECT_EQ(0u, writer_
->last_packet_size());
3760 EXPECT_TRUE(connection_
.HasQueuedData());
3762 writer_
->SetWritable();
3763 connection_
.OnCanWrite();
3764 EXPECT_TRUE(writer_
->version_negotiation_packet() != nullptr);
3766 size_t num_versions
= arraysize(kSupportedQuicVersions
);
3767 ASSERT_EQ(num_versions
,
3768 writer_
->version_negotiation_packet()->versions
.size());
3770 // We expect all versions in kSupportedQuicVersions to be
3771 // included in the packet.
3772 for (size_t i
= 0; i
< num_versions
; ++i
) {
3773 EXPECT_EQ(kSupportedQuicVersions
[i
],
3774 writer_
->version_negotiation_packet()->versions
[i
]);
3778 TEST_P(QuicConnectionTest
,
3779 ServerSendsVersionNegotiationPacketSocketBlockedDataBuffered
) {
3780 connection_
.SetSupportedVersions(QuicSupportedVersions());
3781 framer_
.set_version_for_tests(QUIC_VERSION_UNSUPPORTED
);
3783 QuicPacketHeader header
;
3784 header
.public_header
.connection_id
= connection_id_
;
3785 header
.public_header
.version_flag
= true;
3786 header
.packet_sequence_number
= 12;
3789 frames
.push_back(QuicFrame(&frame1_
));
3790 scoped_ptr
<QuicPacket
> packet(ConstructPacket(header
, frames
));
3791 scoped_ptr
<QuicEncryptedPacket
> encrypted(
3792 framer_
.EncryptPacket(ENCRYPTION_NONE
, 12, *packet
));
3794 framer_
.set_version(version());
3795 connection_
.set_perspective(Perspective::IS_SERVER
);
3797 writer_
->set_is_write_blocked_data_buffered(true);
3798 connection_
.ProcessUdpPacket(IPEndPoint(), IPEndPoint(), *encrypted
);
3799 EXPECT_EQ(0u, writer_
->last_packet_size());
3800 EXPECT_FALSE(connection_
.HasQueuedData());
3803 TEST_P(QuicConnectionTest
, ClientHandlesVersionNegotiation
) {
3804 // Start out with some unsupported version.
3805 QuicConnectionPeer::GetFramer(&connection_
)->set_version_for_tests(
3806 QUIC_VERSION_UNSUPPORTED
);
3808 QuicPacketHeader header
;
3809 header
.public_header
.connection_id
= connection_id_
;
3810 header
.public_header
.version_flag
= true;
3811 header
.packet_sequence_number
= 12;
3813 QuicVersionVector supported_versions
;
3814 for (size_t i
= 0; i
< arraysize(kSupportedQuicVersions
); ++i
) {
3815 supported_versions
.push_back(kSupportedQuicVersions
[i
]);
3818 // Send a version negotiation packet.
3819 scoped_ptr
<QuicEncryptedPacket
> encrypted(
3820 framer_
.BuildVersionNegotiationPacket(
3821 header
.public_header
, supported_versions
));
3822 connection_
.ProcessUdpPacket(IPEndPoint(), IPEndPoint(), *encrypted
);
3824 // Now force another packet. The connection should transition into
3825 // NEGOTIATED_VERSION state and tell the packet creator to StopSendingVersion.
3826 header
.public_header
.version_flag
= false;
3828 frames
.push_back(QuicFrame(&frame1_
));
3829 scoped_ptr
<QuicPacket
> packet(ConstructPacket(header
, frames
));
3830 encrypted
.reset(framer_
.EncryptPacket(ENCRYPTION_NONE
, 12, *packet
));
3831 EXPECT_CALL(visitor_
, OnStreamFrames(_
)).Times(1);
3832 EXPECT_CALL(visitor_
, OnSuccessfulVersionNegotiation(_
));
3833 connection_
.ProcessUdpPacket(IPEndPoint(), IPEndPoint(), *encrypted
);
3835 ASSERT_FALSE(QuicPacketCreatorPeer::SendVersionInPacket(creator_
));
3838 TEST_P(QuicConnectionTest
, BadVersionNegotiation
) {
3839 QuicPacketHeader header
;
3840 header
.public_header
.connection_id
= connection_id_
;
3841 header
.public_header
.version_flag
= true;
3842 header
.packet_sequence_number
= 12;
3844 QuicVersionVector supported_versions
;
3845 for (size_t i
= 0; i
< arraysize(kSupportedQuicVersions
); ++i
) {
3846 supported_versions
.push_back(kSupportedQuicVersions
[i
]);
3849 // Send a version negotiation packet with the version the client started with.
3850 // It should be rejected.
3851 EXPECT_CALL(visitor_
,
3852 OnConnectionClosed(QUIC_INVALID_VERSION_NEGOTIATION_PACKET
,
3854 scoped_ptr
<QuicEncryptedPacket
> encrypted(
3855 framer_
.BuildVersionNegotiationPacket(
3856 header
.public_header
, supported_versions
));
3857 connection_
.ProcessUdpPacket(IPEndPoint(), IPEndPoint(), *encrypted
);
3860 TEST_P(QuicConnectionTest
, CheckSendStats
) {
3861 EXPECT_CALL(*send_algorithm_
, OnPacketSent(_
, _
, _
, _
, _
));
3862 connection_
.SendStreamDataWithString(3, "first", 0, !kFin
, nullptr);
3863 size_t first_packet_size
= writer_
->last_packet_size();
3865 EXPECT_CALL(*send_algorithm_
, OnPacketSent(_
, _
, _
, _
, _
));
3866 connection_
.SendStreamDataWithString(5, "second", 0, !kFin
, nullptr);
3867 size_t second_packet_size
= writer_
->last_packet_size();
3869 // 2 retransmissions due to rto, 1 due to explicit nack.
3870 EXPECT_CALL(*send_algorithm_
, OnRetransmissionTimeout(true));
3871 EXPECT_CALL(*send_algorithm_
, OnPacketSent(_
, _
, _
, _
, _
)).Times(3);
3873 // Retransmit due to RTO.
3874 clock_
.AdvanceTime(QuicTime::Delta::FromSeconds(10));
3875 connection_
.GetRetransmissionAlarm()->Fire();
3877 // Retransmit due to explicit nacks.
3878 QuicAckFrame nack_three
= InitAckFrame(4);
3879 NackPacket(3, &nack_three
);
3880 NackPacket(1, &nack_three
);
3881 SequenceNumberSet lost_packets
;
3882 lost_packets
.insert(1);
3883 lost_packets
.insert(3);
3884 EXPECT_CALL(*loss_algorithm_
, DetectLostPackets(_
, _
, _
, _
))
3885 .WillOnce(Return(lost_packets
));
3886 EXPECT_CALL(*send_algorithm_
, OnCongestionEvent(true, _
, _
, _
));
3887 EXPECT_CALL(visitor_
, OnCanWrite()).Times(2);
3888 EXPECT_CALL(visitor_
, OnSuccessfulVersionNegotiation(_
));
3889 ProcessAckPacket(&nack_three
);
3891 EXPECT_CALL(*send_algorithm_
, BandwidthEstimate()).WillOnce(
3892 Return(QuicBandwidth::Zero()));
3894 const QuicConnectionStats
& stats
= connection_
.GetStats();
3895 EXPECT_EQ(3 * first_packet_size
+ 2 * second_packet_size
- kQuicVersionSize
,
3897 EXPECT_EQ(5u, stats
.packets_sent
);
3898 EXPECT_EQ(2 * first_packet_size
+ second_packet_size
- kQuicVersionSize
,
3899 stats
.bytes_retransmitted
);
3900 EXPECT_EQ(3u, stats
.packets_retransmitted
);
3901 EXPECT_EQ(1u, stats
.rto_count
);
3902 EXPECT_EQ(kDefaultMaxPacketSize
, stats
.max_packet_size
);
3905 TEST_P(QuicConnectionTest
, CheckReceiveStats
) {
3906 EXPECT_CALL(visitor_
, OnSuccessfulVersionNegotiation(_
));
3908 size_t received_bytes
= 0;
3909 received_bytes
+= ProcessFecProtectedPacket(1, false, !kEntropyFlag
);
3910 received_bytes
+= ProcessFecProtectedPacket(3, false, !kEntropyFlag
);
3911 // Should be counted against dropped packets.
3912 received_bytes
+= ProcessDataPacket(3, 1, !kEntropyFlag
);
3913 received_bytes
+= ProcessFecPacket(4, 1, true, !kEntropyFlag
, nullptr);
3915 EXPECT_CALL(*send_algorithm_
, BandwidthEstimate()).WillOnce(
3916 Return(QuicBandwidth::Zero()));
3918 const QuicConnectionStats
& stats
= connection_
.GetStats();
3919 EXPECT_EQ(received_bytes
, stats
.bytes_received
);
3920 EXPECT_EQ(4u, stats
.packets_received
);
3922 EXPECT_EQ(1u, stats
.packets_revived
);
3923 EXPECT_EQ(1u, stats
.packets_dropped
);
3926 TEST_P(QuicConnectionTest
, TestFecGroupLimits
) {
3927 // Create and return a group for 1.
3928 ASSERT_TRUE(QuicConnectionPeer::GetFecGroup(&connection_
, 1) != nullptr);
3930 // Create and return a group for 2.
3931 ASSERT_TRUE(QuicConnectionPeer::GetFecGroup(&connection_
, 2) != nullptr);
3933 // Create and return a group for 4. This should remove 1 but not 2.
3934 ASSERT_TRUE(QuicConnectionPeer::GetFecGroup(&connection_
, 4) != nullptr);
3935 ASSERT_TRUE(QuicConnectionPeer::GetFecGroup(&connection_
, 1) == nullptr);
3936 ASSERT_TRUE(QuicConnectionPeer::GetFecGroup(&connection_
, 2) != nullptr);
3938 // Create and return a group for 3. This will kill off 2.
3939 ASSERT_TRUE(QuicConnectionPeer::GetFecGroup(&connection_
, 3) != nullptr);
3940 ASSERT_TRUE(QuicConnectionPeer::GetFecGroup(&connection_
, 2) == nullptr);
3942 // Verify that adding 5 kills off 3, despite 4 being created before 3.
3943 ASSERT_TRUE(QuicConnectionPeer::GetFecGroup(&connection_
, 5) != nullptr);
3944 ASSERT_TRUE(QuicConnectionPeer::GetFecGroup(&connection_
, 4) != nullptr);
3945 ASSERT_TRUE(QuicConnectionPeer::GetFecGroup(&connection_
, 3) == nullptr);
3948 TEST_P(QuicConnectionTest
, ProcessFramesIfPacketClosedConnection
) {
3949 // Construct a packet with stream frame and connection close frame.
3950 QuicPacketHeader header
;
3951 header
.public_header
.connection_id
= connection_id_
;
3952 header
.packet_sequence_number
= 1;
3953 header
.public_header
.version_flag
= false;
3955 QuicConnectionCloseFrame qccf
;
3956 qccf
.error_code
= QUIC_PEER_GOING_AWAY
;
3959 frames
.push_back(QuicFrame(&frame1_
));
3960 frames
.push_back(QuicFrame(&qccf
));
3961 scoped_ptr
<QuicPacket
> packet(ConstructPacket(header
, frames
));
3962 EXPECT_TRUE(nullptr != packet
.get());
3963 scoped_ptr
<QuicEncryptedPacket
> encrypted(framer_
.EncryptPacket(
3964 ENCRYPTION_NONE
, 1, *packet
));
3966 EXPECT_CALL(visitor_
, OnConnectionClosed(QUIC_PEER_GOING_AWAY
, true));
3967 EXPECT_CALL(visitor_
, OnStreamFrames(_
)).Times(1);
3968 EXPECT_CALL(visitor_
, OnSuccessfulVersionNegotiation(_
));
3970 connection_
.ProcessUdpPacket(IPEndPoint(), IPEndPoint(), *encrypted
);
3973 TEST_P(QuicConnectionTest
, SelectMutualVersion
) {
3974 connection_
.SetSupportedVersions(QuicSupportedVersions());
3975 // Set the connection to speak the lowest quic version.
3976 connection_
.set_version(QuicVersionMin());
3977 EXPECT_EQ(QuicVersionMin(), connection_
.version());
3979 // Pass in available versions which includes a higher mutually supported
3980 // version. The higher mutually supported version should be selected.
3981 QuicVersionVector supported_versions
;
3982 for (size_t i
= 0; i
< arraysize(kSupportedQuicVersions
); ++i
) {
3983 supported_versions
.push_back(kSupportedQuicVersions
[i
]);
3985 EXPECT_TRUE(connection_
.SelectMutualVersion(supported_versions
));
3986 EXPECT_EQ(QuicVersionMax(), connection_
.version());
3988 // Expect that the lowest version is selected.
3989 // Ensure the lowest supported version is less than the max, unless they're
3991 EXPECT_LE(QuicVersionMin(), QuicVersionMax());
3992 QuicVersionVector lowest_version_vector
;
3993 lowest_version_vector
.push_back(QuicVersionMin());
3994 EXPECT_TRUE(connection_
.SelectMutualVersion(lowest_version_vector
));
3995 EXPECT_EQ(QuicVersionMin(), connection_
.version());
3997 // Shouldn't be able to find a mutually supported version.
3998 QuicVersionVector unsupported_version
;
3999 unsupported_version
.push_back(QUIC_VERSION_UNSUPPORTED
);
4000 EXPECT_FALSE(connection_
.SelectMutualVersion(unsupported_version
));
4003 TEST_P(QuicConnectionTest
, ConnectionCloseWhenWritable
) {
4004 EXPECT_FALSE(writer_
->IsWriteBlocked());
4007 connection_
.SendStreamDataWithString(1, "foo", 0, !kFin
, nullptr);
4008 EXPECT_EQ(0u, connection_
.NumQueuedPackets());
4009 EXPECT_EQ(1u, writer_
->packets_write_attempts());
4011 TriggerConnectionClose();
4012 EXPECT_EQ(2u, writer_
->packets_write_attempts());
4015 TEST_P(QuicConnectionTest
, ConnectionCloseGettingWriteBlocked
) {
4017 TriggerConnectionClose();
4018 EXPECT_EQ(1u, writer_
->packets_write_attempts());
4019 EXPECT_TRUE(writer_
->IsWriteBlocked());
4022 TEST_P(QuicConnectionTest
, ConnectionCloseWhenWriteBlocked
) {
4024 connection_
.SendStreamDataWithString(1, "foo", 0, !kFin
, nullptr);
4025 EXPECT_EQ(1u, connection_
.NumQueuedPackets());
4026 EXPECT_EQ(1u, writer_
->packets_write_attempts());
4027 EXPECT_TRUE(writer_
->IsWriteBlocked());
4028 TriggerConnectionClose();
4029 EXPECT_EQ(1u, writer_
->packets_write_attempts());
4032 TEST_P(QuicConnectionTest
, AckNotifierTriggerCallback
) {
4033 EXPECT_CALL(visitor_
, OnSuccessfulVersionNegotiation(_
));
4035 // Create a delegate which we expect to be called.
4036 scoped_refptr
<MockAckNotifierDelegate
> delegate(new MockAckNotifierDelegate
);
4037 EXPECT_CALL(*delegate
.get(), OnAckNotification(_
, _
, _
)).Times(1);
4039 // Send some data, which will register the delegate to be notified.
4040 connection_
.SendStreamDataWithString(1, "foo", 0, !kFin
, delegate
.get());
4042 // Process an ACK from the server which should trigger the callback.
4043 EXPECT_CALL(*send_algorithm_
, OnCongestionEvent(true, _
, _
, _
));
4044 QuicAckFrame frame
= InitAckFrame(1);
4045 ProcessAckPacket(&frame
);
4048 TEST_P(QuicConnectionTest
, AckNotifierFailToTriggerCallback
) {
4049 EXPECT_CALL(visitor_
, OnSuccessfulVersionNegotiation(_
));
4051 // Create a delegate which we don't expect to be called.
4052 scoped_refptr
<MockAckNotifierDelegate
> delegate(new MockAckNotifierDelegate
);
4053 EXPECT_CALL(*delegate
.get(), OnAckNotification(_
, _
, _
)).Times(0);
4055 // Send some data, which will register the delegate to be notified. This will
4056 // not be ACKed and so the delegate should never be called.
4057 connection_
.SendStreamDataWithString(1, "foo", 0, !kFin
, delegate
.get());
4059 // Send some other data which we will ACK.
4060 connection_
.SendStreamDataWithString(1, "foo", 0, !kFin
, nullptr);
4061 connection_
.SendStreamDataWithString(1, "bar", 0, !kFin
, nullptr);
4063 // Now we receive ACK for packets 2 and 3, but importantly missing packet 1
4064 // which we registered to be notified about.
4065 QuicAckFrame frame
= InitAckFrame(3);
4066 NackPacket(1, &frame
);
4067 SequenceNumberSet lost_packets
;
4068 lost_packets
.insert(1);
4069 EXPECT_CALL(*loss_algorithm_
, DetectLostPackets(_
, _
, _
, _
))
4070 .WillOnce(Return(lost_packets
));
4071 EXPECT_CALL(*send_algorithm_
, OnCongestionEvent(true, _
, _
, _
));
4072 ProcessAckPacket(&frame
);
4075 TEST_P(QuicConnectionTest
, AckNotifierCallbackAfterRetransmission
) {
4076 EXPECT_CALL(visitor_
, OnSuccessfulVersionNegotiation(_
));
4078 // Create a delegate which we expect to be called.
4079 scoped_refptr
<MockAckNotifierDelegate
> delegate(new MockAckNotifierDelegate
);
4080 EXPECT_CALL(*delegate
.get(), OnAckNotification(_
, _
, _
)).Times(1);
4082 // Send four packets, and register to be notified on ACK of packet 2.
4083 connection_
.SendStreamDataWithString(3, "foo", 0, !kFin
, nullptr);
4084 connection_
.SendStreamDataWithString(3, "bar", 0, !kFin
, delegate
.get());
4085 connection_
.SendStreamDataWithString(3, "baz", 0, !kFin
, nullptr);
4086 connection_
.SendStreamDataWithString(3, "qux", 0, !kFin
, nullptr);
4088 // Now we receive ACK for packets 1, 3, and 4 and lose 2.
4089 QuicAckFrame frame
= InitAckFrame(4);
4090 NackPacket(2, &frame
);
4091 SequenceNumberSet lost_packets
;
4092 lost_packets
.insert(2);
4093 EXPECT_CALL(*loss_algorithm_
, DetectLostPackets(_
, _
, _
, _
))
4094 .WillOnce(Return(lost_packets
));
4095 EXPECT_CALL(*send_algorithm_
, OnCongestionEvent(true, _
, _
, _
));
4096 EXPECT_CALL(*send_algorithm_
, OnPacketSent(_
, _
, _
, _
, _
));
4097 ProcessAckPacket(&frame
);
4099 // Now we get an ACK for packet 5 (retransmitted packet 2), which should
4100 // trigger the callback.
4101 EXPECT_CALL(*loss_algorithm_
, DetectLostPackets(_
, _
, _
, _
))
4102 .WillRepeatedly(Return(SequenceNumberSet()));
4103 EXPECT_CALL(*send_algorithm_
, OnCongestionEvent(true, _
, _
, _
));
4104 QuicAckFrame second_ack_frame
= InitAckFrame(5);
4105 ProcessAckPacket(&second_ack_frame
);
4108 // AckNotifierCallback is triggered by the ack of a packet that timed
4109 // out and was retransmitted, even though the retransmission has a
4110 // different sequence number.
4111 TEST_P(QuicConnectionTest
, AckNotifierCallbackForAckAfterRTO
) {
4114 // Create a delegate which we expect to be called.
4115 scoped_refptr
<MockAckNotifierDelegate
> delegate(
4116 new StrictMock
<MockAckNotifierDelegate
>);
4118 QuicTime default_retransmission_time
= clock_
.ApproximateNow().Add(
4119 DefaultRetransmissionTime());
4120 connection_
.SendStreamDataWithString(3, "foo", 0, !kFin
, delegate
.get());
4121 EXPECT_EQ(1u, stop_waiting()->least_unacked
);
4123 EXPECT_EQ(1u, writer_
->header().packet_sequence_number
);
4124 EXPECT_EQ(default_retransmission_time
,
4125 connection_
.GetRetransmissionAlarm()->deadline());
4126 // Simulate the retransmission alarm firing.
4127 clock_
.AdvanceTime(DefaultRetransmissionTime());
4128 EXPECT_CALL(*send_algorithm_
, OnPacketSent(_
, _
, 2u, _
, _
));
4129 connection_
.GetRetransmissionAlarm()->Fire();
4130 EXPECT_EQ(2u, writer_
->header().packet_sequence_number
);
4131 // We do not raise the high water mark yet.
4132 EXPECT_EQ(1u, stop_waiting()->least_unacked
);
4134 // Ack the original packet, which will revert the RTO.
4135 EXPECT_CALL(visitor_
, OnSuccessfulVersionNegotiation(_
));
4136 EXPECT_CALL(*delegate
, OnAckNotification(1, _
, _
));
4137 EXPECT_CALL(*send_algorithm_
, OnCongestionEvent(true, _
, _
, _
));
4138 QuicAckFrame ack_frame
= InitAckFrame(1);
4139 ProcessAckPacket(&ack_frame
);
4141 // Delegate is not notified again when the retransmit is acked.
4142 EXPECT_CALL(*send_algorithm_
, OnCongestionEvent(true, _
, _
, _
));
4143 QuicAckFrame second_ack_frame
= InitAckFrame(2);
4144 ProcessAckPacket(&second_ack_frame
);
4147 // AckNotifierCallback is triggered by the ack of a packet that was
4148 // previously nacked, even though the retransmission has a different
4150 TEST_P(QuicConnectionTest
, AckNotifierCallbackForAckOfNackedPacket
) {
4153 // Create a delegate which we expect to be called.
4154 scoped_refptr
<MockAckNotifierDelegate
> delegate(
4155 new StrictMock
<MockAckNotifierDelegate
>);
4157 // Send four packets, and register to be notified on ACK of packet 2.
4158 connection_
.SendStreamDataWithString(3, "foo", 0, !kFin
, nullptr);
4159 connection_
.SendStreamDataWithString(3, "bar", 0, !kFin
, delegate
.get());
4160 connection_
.SendStreamDataWithString(3, "baz", 0, !kFin
, nullptr);
4161 connection_
.SendStreamDataWithString(3, "qux", 0, !kFin
, nullptr);
4163 // Now we receive ACK for packets 1, 3, and 4 and lose 2.
4164 QuicAckFrame frame
= InitAckFrame(4);
4165 NackPacket(2, &frame
);
4166 SequenceNumberSet lost_packets
;
4167 lost_packets
.insert(2);
4168 EXPECT_CALL(visitor_
, OnSuccessfulVersionNegotiation(_
));
4169 EXPECT_CALL(*loss_algorithm_
, DetectLostPackets(_
, _
, _
, _
))
4170 .WillOnce(Return(lost_packets
));
4171 EXPECT_CALL(*send_algorithm_
, OnCongestionEvent(true, _
, _
, _
));
4172 EXPECT_CALL(*send_algorithm_
, OnPacketSent(_
, _
, _
, _
, _
));
4173 ProcessAckPacket(&frame
);
4175 // Now we get an ACK for packet 2, which was previously nacked.
4176 SequenceNumberSet no_lost_packets
;
4177 EXPECT_CALL(*delegate
.get(), OnAckNotification(1, _
, _
));
4178 EXPECT_CALL(*loss_algorithm_
, DetectLostPackets(_
, _
, _
, _
))
4179 .WillOnce(Return(no_lost_packets
));
4180 QuicAckFrame second_ack_frame
= InitAckFrame(4);
4181 ProcessAckPacket(&second_ack_frame
);
4183 // Verify that the delegate is not notified again when the
4184 // retransmit is acked.
4185 EXPECT_CALL(*loss_algorithm_
, DetectLostPackets(_
, _
, _
, _
))
4186 .WillOnce(Return(no_lost_packets
));
4187 EXPECT_CALL(*send_algorithm_
, OnCongestionEvent(true, _
, _
, _
));
4188 QuicAckFrame third_ack_frame
= InitAckFrame(5);
4189 ProcessAckPacket(&third_ack_frame
);
4192 TEST_P(QuicConnectionTest
, AckNotifierFECTriggerCallback
) {
4193 EXPECT_CALL(visitor_
, OnSuccessfulVersionNegotiation(_
));
4195 // Create a delegate which we expect to be called.
4196 scoped_refptr
<MockAckNotifierDelegate
> delegate(
4197 new MockAckNotifierDelegate
);
4198 EXPECT_CALL(*delegate
.get(), OnAckNotification(_
, _
, _
)).Times(1);
4200 // Send some data, which will register the delegate to be notified.
4201 connection_
.SendStreamDataWithString(1, "foo", 0, !kFin
, delegate
.get());
4202 connection_
.SendStreamDataWithString(2, "bar", 0, !kFin
, nullptr);
4204 // Process an ACK from the server with a revived packet, which should trigger
4206 EXPECT_CALL(*send_algorithm_
, OnCongestionEvent(true, _
, _
, _
));
4207 QuicAckFrame frame
= InitAckFrame(2);
4208 NackPacket(1, &frame
);
4209 frame
.revived_packets
.insert(1);
4210 ProcessAckPacket(&frame
);
4211 // If the ack is processed again, the notifier should not be called again.
4212 ProcessAckPacket(&frame
);
4215 TEST_P(QuicConnectionTest
, AckNotifierCallbackAfterFECRecovery
) {
4216 EXPECT_CALL(visitor_
, OnSuccessfulVersionNegotiation(_
));
4217 EXPECT_CALL(visitor_
, OnCanWrite());
4219 // Create a delegate which we expect to be called.
4220 scoped_refptr
<MockAckNotifierDelegate
> delegate(new MockAckNotifierDelegate
);
4221 EXPECT_CALL(*delegate
.get(), OnAckNotification(_
, _
, _
)).Times(1);
4223 // Expect ACKs for 1 packet.
4224 EXPECT_CALL(*send_algorithm_
, OnCongestionEvent(true, _
, _
, _
));
4226 // Send one packet, and register to be notified on ACK.
4227 connection_
.SendStreamDataWithString(1, "foo", 0, !kFin
, delegate
.get());
4229 // Ack packet gets dropped, but we receive an FEC packet that covers it.
4230 // Should recover the Ack packet and trigger the notification callback.
4233 QuicAckFrame ack_frame
= InitAckFrame(1);
4234 frames
.push_back(QuicFrame(&ack_frame
));
4236 // Dummy stream frame to satisfy expectations set elsewhere.
4237 frames
.push_back(QuicFrame(&frame1_
));
4239 QuicPacketHeader ack_header
;
4240 ack_header
.public_header
.connection_id
= connection_id_
;
4241 ack_header
.public_header
.reset_flag
= false;
4242 ack_header
.public_header
.version_flag
= false;
4243 ack_header
.entropy_flag
= !kEntropyFlag
;
4244 ack_header
.fec_flag
= true;
4245 ack_header
.packet_sequence_number
= 1;
4246 ack_header
.is_in_fec_group
= IN_FEC_GROUP
;
4247 ack_header
.fec_group
= 1;
4249 QuicPacket
* packet
= BuildUnsizedDataPacket(&framer_
, ack_header
, frames
);
4251 // Take the packet which contains the ACK frame, and construct and deliver an
4252 // FEC packet which allows the ACK packet to be recovered.
4253 ProcessFecPacket(2, 1, true, !kEntropyFlag
, packet
);
4256 TEST_P(QuicConnectionTest
, NetworkChangeVisitorCwndCallbackChangesFecState
) {
4257 size_t max_packets_per_fec_group
= creator_
->max_packets_per_fec_group();
4259 QuicSentPacketManager::NetworkChangeVisitor
* visitor
=
4260 QuicSentPacketManagerPeer::GetNetworkChangeVisitor(manager_
);
4261 EXPECT_TRUE(visitor
);
4263 // Increase FEC group size by increasing congestion window to a large number.
4264 EXPECT_CALL(*send_algorithm_
, GetCongestionWindow()).WillRepeatedly(
4265 Return(1000 * kDefaultTCPMSS
));
4266 visitor
->OnCongestionWindowChange();
4267 EXPECT_LT(max_packets_per_fec_group
, creator_
->max_packets_per_fec_group());
4270 TEST_P(QuicConnectionTest
, NetworkChangeVisitorConfigCallbackChangesFecState
) {
4271 QuicSentPacketManager::NetworkChangeVisitor
* visitor
=
4272 QuicSentPacketManagerPeer::GetNetworkChangeVisitor(manager_
);
4273 EXPECT_TRUE(visitor
);
4274 EXPECT_EQ(QuicTime::Delta::Zero(),
4275 QuicPacketGeneratorPeer::GetFecTimeout(generator_
));
4277 // Verify that sending a config with a new initial rtt changes fec timeout.
4278 // Create and process a config with a non-zero initial RTT.
4279 EXPECT_CALL(*send_algorithm_
, SetFromConfig(_
, _
));
4281 config
.SetInitialRoundTripTimeUsToSend(300000);
4282 connection_
.SetFromConfig(config
);
4283 EXPECT_LT(QuicTime::Delta::Zero(),
4284 QuicPacketGeneratorPeer::GetFecTimeout(generator_
));
4287 TEST_P(QuicConnectionTest
, NetworkChangeVisitorRttCallbackChangesFecState
) {
4288 // Verify that sending a config with a new initial rtt changes fec timeout.
4289 QuicSentPacketManager::NetworkChangeVisitor
* visitor
=
4290 QuicSentPacketManagerPeer::GetNetworkChangeVisitor(manager_
);
4291 EXPECT_TRUE(visitor
);
4292 EXPECT_EQ(QuicTime::Delta::Zero(),
4293 QuicPacketGeneratorPeer::GetFecTimeout(generator_
));
4295 // Increase FEC timeout by increasing RTT.
4296 RttStats
* rtt_stats
= QuicSentPacketManagerPeer::GetRttStats(manager_
);
4297 rtt_stats
->UpdateRtt(QuicTime::Delta::FromMilliseconds(300),
4298 QuicTime::Delta::Zero(), QuicTime::Zero());
4299 visitor
->OnRttChange();
4300 EXPECT_LT(QuicTime::Delta::Zero(),
4301 QuicPacketGeneratorPeer::GetFecTimeout(generator_
));
4304 TEST_P(QuicConnectionTest
, OnPacketHeaderDebugVisitor
) {
4305 QuicPacketHeader header
;
4307 scoped_ptr
<MockQuicConnectionDebugVisitor
> debug_visitor(
4308 new MockQuicConnectionDebugVisitor());
4309 connection_
.set_debug_visitor(debug_visitor
.get());
4310 EXPECT_CALL(*debug_visitor
, OnPacketHeader(Ref(header
))).Times(1);
4311 connection_
.OnPacketHeader(header
);
4314 TEST_P(QuicConnectionTest
, Pacing
) {
4315 TestConnection
server(connection_id_
, IPEndPoint(), helper_
.get(), factory_
,
4316 Perspective::IS_SERVER
, version());
4317 TestConnection
client(connection_id_
, IPEndPoint(), helper_
.get(), factory_
,
4318 Perspective::IS_CLIENT
, version());
4319 EXPECT_FALSE(client
.sent_packet_manager().using_pacing());
4320 EXPECT_FALSE(server
.sent_packet_manager().using_pacing());
4323 TEST_P(QuicConnectionTest
, ControlFramesInstigateAcks
) {
4324 EXPECT_CALL(visitor_
, OnSuccessfulVersionNegotiation(_
));
4326 // Send a WINDOW_UPDATE frame.
4327 QuicWindowUpdateFrame window_update
;
4328 window_update
.stream_id
= 3;
4329 window_update
.byte_offset
= 1234;
4330 EXPECT_CALL(visitor_
, OnWindowUpdateFrames(_
));
4331 ProcessFramePacket(QuicFrame(&window_update
));
4333 // Ensure that this has caused the ACK alarm to be set.
4334 QuicAlarm
* ack_alarm
= QuicConnectionPeer::GetAckAlarm(&connection_
);
4335 EXPECT_TRUE(ack_alarm
->IsSet());
4337 // Cancel alarm, and try again with BLOCKED frame.
4338 ack_alarm
->Cancel();
4339 QuicBlockedFrame blocked
;
4340 blocked
.stream_id
= 3;
4341 EXPECT_CALL(visitor_
, OnBlockedFrames(_
));
4342 ProcessFramePacket(QuicFrame(&blocked
));
4343 EXPECT_TRUE(ack_alarm
->IsSet());
4346 TEST_P(QuicConnectionTest
, NoDataNoFin
) {
4347 // Make sure that a call to SendStreamWithData, with no data and no FIN, does
4348 // not result in a QuicAckNotifier being used-after-free (fail under ASAN).
4349 // Regression test for b/18594622
4350 scoped_refptr
<MockAckNotifierDelegate
> delegate(new MockAckNotifierDelegate
);
4352 connection_
.SendStreamDataWithString(3, "", 0, !kFin
, delegate
.get()),
4353 "Attempt to send empty stream frame");