Supervised user whitelists: Cleanup
[chromium-blink-merge.git] / net / quic / quic_framer.cc
blob2c8603f4299d54a3879bc683ad237eebe6c766a8
1 // Copyright (c) 2012 The Chromium Authors. All rights reserved.
2 // Use of this source code is governed by a BSD-style license that can be
3 // found in the LICENSE file.
5 #include "net/quic/quic_framer.h"
7 #include "base/basictypes.h"
8 #include "base/logging.h"
9 #include "base/stl_util.h"
10 #include "net/quic/crypto/crypto_framer.h"
11 #include "net/quic/crypto/crypto_handshake_message.h"
12 #include "net/quic/crypto/crypto_protocol.h"
13 #include "net/quic/crypto/quic_decrypter.h"
14 #include "net/quic/crypto/quic_encrypter.h"
15 #include "net/quic/quic_data_reader.h"
16 #include "net/quic/quic_data_writer.h"
17 #include "net/quic/quic_flags.h"
18 #include "net/quic/quic_socket_address_coder.h"
19 #include "net/quic/quic_utils.h"
21 using base::StringPiece;
22 using std::map;
23 using std::max;
24 using std::min;
25 using std::numeric_limits;
26 using std::string;
28 namespace net {
30 namespace {
32 // Mask to select the lowest 48 bits of a sequence number.
33 const QuicPacketSequenceNumber k6ByteSequenceNumberMask =
34 GG_UINT64_C(0x0000FFFFFFFFFFFF);
35 const QuicPacketSequenceNumber k4ByteSequenceNumberMask =
36 GG_UINT64_C(0x00000000FFFFFFFF);
37 const QuicPacketSequenceNumber k2ByteSequenceNumberMask =
38 GG_UINT64_C(0x000000000000FFFF);
39 const QuicPacketSequenceNumber k1ByteSequenceNumberMask =
40 GG_UINT64_C(0x00000000000000FF);
42 const QuicConnectionId k1ByteConnectionIdMask = GG_UINT64_C(0x00000000000000FF);
43 const QuicConnectionId k4ByteConnectionIdMask = GG_UINT64_C(0x00000000FFFFFFFF);
45 // Number of bits the sequence number length bits are shifted from the right
46 // edge of the public header.
47 const uint8 kPublicHeaderSequenceNumberShift = 4;
49 // New Frame Types, QUIC v. >= 10:
50 // There are two interpretations for the Frame Type byte in the QUIC protocol,
51 // resulting in two Frame Types: Special Frame Types and Regular Frame Types.
53 // Regular Frame Types use the Frame Type byte simply. Currently defined
54 // Regular Frame Types are:
55 // Padding : 0b 00000000 (0x00)
56 // ResetStream : 0b 00000001 (0x01)
57 // ConnectionClose : 0b 00000010 (0x02)
58 // GoAway : 0b 00000011 (0x03)
59 // WindowUpdate : 0b 00000100 (0x04)
60 // Blocked : 0b 00000101 (0x05)
62 // Special Frame Types encode both a Frame Type and corresponding flags
63 // all in the Frame Type byte. Currently defined Special Frame Types are:
64 // Stream : 0b 1xxxxxxx
65 // Ack : 0b 01xxxxxx
67 // Semantics of the flag bits above (the x bits) depends on the frame type.
69 // Masks to determine if the frame type is a special use
70 // and for specific special frame types.
71 const uint8 kQuicFrameTypeSpecialMask = 0xE0; // 0b 11100000
72 const uint8 kQuicFrameTypeStreamMask = 0x80;
73 const uint8 kQuicFrameTypeAckMask = 0x40;
75 // Stream frame relative shifts and masks for interpreting the stream flags.
76 // StreamID may be 1, 2, 3, or 4 bytes.
77 const uint8 kQuicStreamIdShift = 2;
78 const uint8 kQuicStreamIDLengthMask = 0x03;
80 // Offset may be 0, 2, 3, 4, 5, 6, 7, 8 bytes.
81 const uint8 kQuicStreamOffsetShift = 3;
82 const uint8 kQuicStreamOffsetMask = 0x07;
84 // Data length may be 0 or 2 bytes.
85 const uint8 kQuicStreamDataLengthShift = 1;
86 const uint8 kQuicStreamDataLengthMask = 0x01;
88 // Fin bit may be set or not.
89 const uint8 kQuicStreamFinShift = 1;
90 const uint8 kQuicStreamFinMask = 0x01;
92 // Sequence number size shift used in AckFrames.
93 const uint8 kQuicSequenceNumberLengthShift = 2;
95 // Acks may be truncated.
96 const uint8 kQuicAckTruncatedShift = 1;
97 const uint8 kQuicAckTruncatedMask = 0x01;
99 // Acks may not have any nacks.
100 const uint8 kQuicHasNacksMask = 0x01;
102 // Returns the absolute value of the difference between |a| and |b|.
103 QuicPacketSequenceNumber Delta(QuicPacketSequenceNumber a,
104 QuicPacketSequenceNumber b) {
105 // Since these are unsigned numbers, we can't just return abs(a - b)
106 if (a < b) {
107 return b - a;
109 return a - b;
112 QuicPacketSequenceNumber ClosestTo(QuicPacketSequenceNumber target,
113 QuicPacketSequenceNumber a,
114 QuicPacketSequenceNumber b) {
115 return (Delta(target, a) < Delta(target, b)) ? a : b;
118 QuicSequenceNumberLength ReadSequenceNumberLength(uint8 flags) {
119 switch (flags & PACKET_FLAGS_6BYTE_SEQUENCE) {
120 case PACKET_FLAGS_6BYTE_SEQUENCE:
121 return PACKET_6BYTE_SEQUENCE_NUMBER;
122 case PACKET_FLAGS_4BYTE_SEQUENCE:
123 return PACKET_4BYTE_SEQUENCE_NUMBER;
124 case PACKET_FLAGS_2BYTE_SEQUENCE:
125 return PACKET_2BYTE_SEQUENCE_NUMBER;
126 case PACKET_FLAGS_1BYTE_SEQUENCE:
127 return PACKET_1BYTE_SEQUENCE_NUMBER;
128 default:
129 LOG(DFATAL) << "Unreachable case statement.";
130 return PACKET_6BYTE_SEQUENCE_NUMBER;
134 } // namespace
136 bool QuicFramerVisitorInterface::OnWindowUpdateFrame(
137 const QuicWindowUpdateFrame& frame) {
138 return true;
141 bool QuicFramerVisitorInterface::OnBlockedFrame(const QuicBlockedFrame& frame) {
142 return true;
145 QuicFramer::QuicFramer(const QuicVersionVector& supported_versions,
146 QuicTime creation_time,
147 Perspective perspective)
148 : visitor_(nullptr),
149 entropy_calculator_(nullptr),
150 error_(QUIC_NO_ERROR),
151 last_sequence_number_(0),
152 last_serialized_connection_id_(0),
153 supported_versions_(supported_versions),
154 decrypter_level_(ENCRYPTION_NONE),
155 alternative_decrypter_level_(ENCRYPTION_NONE),
156 alternative_decrypter_latch_(false),
157 perspective_(perspective),
158 validate_flags_(true),
159 creation_time_(creation_time),
160 last_timestamp_(QuicTime::Delta::Zero()) {
161 DCHECK(!supported_versions.empty());
162 quic_version_ = supported_versions_[0];
163 decrypter_.reset(QuicDecrypter::Create(kNULL));
164 encrypter_[ENCRYPTION_NONE].reset(QuicEncrypter::Create(kNULL));
167 QuicFramer::~QuicFramer() {}
169 // static
170 size_t QuicFramer::GetMinStreamFrameSize(QuicStreamId stream_id,
171 QuicStreamOffset offset,
172 bool last_frame_in_packet,
173 InFecGroup is_in_fec_group) {
174 bool no_stream_frame_length = last_frame_in_packet &&
175 is_in_fec_group == NOT_IN_FEC_GROUP;
176 return kQuicFrameTypeSize + GetStreamIdSize(stream_id) +
177 GetStreamOffsetSize(offset) +
178 (no_stream_frame_length ? 0 : kQuicStreamPayloadLengthSize);
181 // static
182 size_t QuicFramer::GetMinAckFrameSize(
183 QuicSequenceNumberLength sequence_number_length,
184 QuicSequenceNumberLength largest_observed_length) {
185 return kQuicFrameTypeSize + kQuicEntropyHashSize +
186 largest_observed_length + kQuicDeltaTimeLargestObservedSize;
189 // static
190 size_t QuicFramer::GetStopWaitingFrameSize(
191 QuicSequenceNumberLength sequence_number_length) {
192 return kQuicFrameTypeSize + kQuicEntropyHashSize +
193 sequence_number_length;
196 // static
197 size_t QuicFramer::GetMinRstStreamFrameSize() {
198 return kQuicFrameTypeSize + kQuicMaxStreamIdSize +
199 kQuicMaxStreamOffsetSize + kQuicErrorCodeSize +
200 kQuicErrorDetailsLengthSize;
203 // static
204 size_t QuicFramer::GetRstStreamFrameSize() {
205 return kQuicFrameTypeSize + kQuicMaxStreamIdSize + kQuicMaxStreamOffsetSize +
206 kQuicErrorCodeSize;
209 // static
210 size_t QuicFramer::GetMinConnectionCloseFrameSize() {
211 return kQuicFrameTypeSize + kQuicErrorCodeSize + kQuicErrorDetailsLengthSize;
214 // static
215 size_t QuicFramer::GetMinGoAwayFrameSize() {
216 return kQuicFrameTypeSize + kQuicErrorCodeSize + kQuicErrorDetailsLengthSize +
217 kQuicMaxStreamIdSize;
220 // static
221 size_t QuicFramer::GetWindowUpdateFrameSize() {
222 return kQuicFrameTypeSize + kQuicMaxStreamIdSize + kQuicMaxStreamOffsetSize;
225 // static
226 size_t QuicFramer::GetBlockedFrameSize() {
227 return kQuicFrameTypeSize + kQuicMaxStreamIdSize;
230 // static
231 size_t QuicFramer::GetStreamIdSize(QuicStreamId stream_id) {
232 // Sizes are 1 through 4 bytes.
233 for (int i = 1; i <= 4; ++i) {
234 stream_id >>= 8;
235 if (stream_id == 0) {
236 return i;
239 LOG(DFATAL) << "Failed to determine StreamIDSize.";
240 return 4;
243 // static
244 size_t QuicFramer::GetStreamOffsetSize(QuicStreamOffset offset) {
245 // 0 is a special case.
246 if (offset == 0) {
247 return 0;
249 // 2 through 8 are the remaining sizes.
250 offset >>= 8;
251 for (int i = 2; i <= 8; ++i) {
252 offset >>= 8;
253 if (offset == 0) {
254 return i;
257 LOG(DFATAL) << "Failed to determine StreamOffsetSize.";
258 return 8;
261 // static
262 size_t QuicFramer::GetVersionNegotiationPacketSize(size_t number_versions) {
263 return kPublicFlagsSize + PACKET_8BYTE_CONNECTION_ID +
264 number_versions * kQuicVersionSize;
267 bool QuicFramer::IsSupportedVersion(const QuicVersion version) const {
268 for (size_t i = 0; i < supported_versions_.size(); ++i) {
269 if (version == supported_versions_[i]) {
270 return true;
273 return false;
276 size_t QuicFramer::GetSerializedFrameLength(
277 const QuicFrame& frame,
278 size_t free_bytes,
279 bool first_frame,
280 bool last_frame,
281 InFecGroup is_in_fec_group,
282 QuicSequenceNumberLength sequence_number_length) {
283 if (frame.type == PADDING_FRAME) {
284 // PADDING implies end of packet.
285 return free_bytes;
287 size_t frame_len =
288 ComputeFrameLength(frame, last_frame, is_in_fec_group,
289 sequence_number_length);
290 if (frame_len <= free_bytes) {
291 // Frame fits within packet. Note that acks may be truncated.
292 return frame_len;
294 // Only truncate the first frame in a packet, so if subsequent ones go
295 // over, stop including more frames.
296 if (!first_frame) {
297 return 0;
299 bool can_truncate = frame.type == ACK_FRAME &&
300 free_bytes >= GetMinAckFrameSize(PACKET_6BYTE_SEQUENCE_NUMBER,
301 PACKET_6BYTE_SEQUENCE_NUMBER);
302 if (can_truncate) {
303 // Truncate the frame so the packet will not exceed kMaxPacketSize.
304 // Note that we may not use every byte of the writer in this case.
305 DVLOG(1) << "Truncating large frame, free bytes: " << free_bytes;
306 return free_bytes;
308 if (!FLAGS_quic_allow_oversized_packets_for_test) {
309 return 0;
311 LOG(DFATAL) << "Packet size too small to fit frame.";
312 return frame_len;
315 QuicFramer::AckFrameInfo::AckFrameInfo() : max_delta(0) {}
317 QuicFramer::AckFrameInfo::~AckFrameInfo() {}
319 // static
320 QuicPacketEntropyHash QuicFramer::GetPacketEntropyHash(
321 const QuicPacketHeader& header) {
322 return header.entropy_flag << (header.packet_sequence_number % 8);
325 QuicPacket* QuicFramer::BuildDataPacket(const QuicPacketHeader& header,
326 const QuicFrames& frames,
327 char* buffer,
328 size_t packet_length) {
329 QuicDataWriter writer(packet_length, buffer);
330 if (!AppendPacketHeader(header, &writer)) {
331 LOG(DFATAL) << "AppendPacketHeader failed";
332 return nullptr;
335 size_t i = 0;
336 for (const QuicFrame& frame : frames) {
337 // Determine if we should write stream frame length in header.
338 const bool no_stream_frame_length =
339 (header.is_in_fec_group == NOT_IN_FEC_GROUP) &&
340 (i == frames.size() - 1);
341 if (!AppendTypeByte(frame, no_stream_frame_length, &writer)) {
342 LOG(DFATAL) << "AppendTypeByte failed";
343 return nullptr;
346 switch (frame.type) {
347 case PADDING_FRAME:
348 writer.WritePadding();
349 break;
350 case STREAM_FRAME:
351 if (!AppendStreamFrame(
352 *frame.stream_frame, no_stream_frame_length, &writer)) {
353 LOG(DFATAL) << "AppendStreamFrame failed";
354 return nullptr;
356 break;
357 case ACK_FRAME:
358 if (!AppendAckFrameAndTypeByte(
359 header, *frame.ack_frame, &writer)) {
360 LOG(DFATAL) << "AppendAckFrameAndTypeByte failed";
361 return nullptr;
363 break;
364 case STOP_WAITING_FRAME:
365 if (!AppendStopWaitingFrame(
366 header, *frame.stop_waiting_frame, &writer)) {
367 LOG(DFATAL) << "AppendStopWaitingFrame failed";
368 return nullptr;
370 break;
371 case PING_FRAME:
372 // Ping has no payload.
373 break;
374 case RST_STREAM_FRAME:
375 if (!AppendRstStreamFrame(*frame.rst_stream_frame, &writer)) {
376 LOG(DFATAL) << "AppendRstStreamFrame failed";
377 return nullptr;
379 break;
380 case CONNECTION_CLOSE_FRAME:
381 if (!AppendConnectionCloseFrame(
382 *frame.connection_close_frame, &writer)) {
383 LOG(DFATAL) << "AppendConnectionCloseFrame failed";
384 return nullptr;
386 break;
387 case GOAWAY_FRAME:
388 if (!AppendGoAwayFrame(*frame.goaway_frame, &writer)) {
389 LOG(DFATAL) << "AppendGoAwayFrame failed";
390 return nullptr;
392 break;
393 case WINDOW_UPDATE_FRAME:
394 if (!AppendWindowUpdateFrame(*frame.window_update_frame, &writer)) {
395 LOG(DFATAL) << "AppendWindowUpdateFrame failed";
396 return nullptr;
398 break;
399 case BLOCKED_FRAME:
400 if (!AppendBlockedFrame(*frame.blocked_frame, &writer)) {
401 LOG(DFATAL) << "AppendBlockedFrame failed";
402 return nullptr;
404 break;
405 default:
406 RaiseError(QUIC_INVALID_FRAME_DATA);
407 LOG(DFATAL) << "QUIC_INVALID_FRAME_DATA";
408 return nullptr;
410 ++i;
413 QuicPacket* packet =
414 new QuicPacket(writer.data(), writer.length(), false,
415 header.public_header.connection_id_length,
416 header.public_header.version_flag,
417 header.public_header.sequence_number_length);
419 return packet;
422 QuicPacket* QuicFramer::BuildFecPacket(const QuicPacketHeader& header,
423 const QuicFecData& fec) {
424 DCHECK_EQ(IN_FEC_GROUP, header.is_in_fec_group);
425 DCHECK_NE(0u, header.fec_group);
426 size_t len = GetPacketHeaderSize(header);
427 len += fec.redundancy.length();
429 scoped_ptr<char[]> buffer(new char[len]);
430 QuicDataWriter writer(len, buffer.get());
431 if (!AppendPacketHeader(header, &writer)) {
432 LOG(DFATAL) << "AppendPacketHeader failed";
433 return nullptr;
436 if (!writer.WriteBytes(fec.redundancy.data(), fec.redundancy.length())) {
437 LOG(DFATAL) << "Failed to add FEC";
438 return nullptr;
441 return new QuicPacket(buffer.release(), len, true,
442 header.public_header.connection_id_length,
443 header.public_header.version_flag,
444 header.public_header.sequence_number_length);
447 // static
448 QuicEncryptedPacket* QuicFramer::BuildPublicResetPacket(
449 const QuicPublicResetPacket& packet) {
450 DCHECK(packet.public_header.reset_flag);
452 CryptoHandshakeMessage reset;
453 reset.set_tag(kPRST);
454 reset.SetValue(kRNON, packet.nonce_proof);
455 reset.SetValue(kRSEQ, packet.rejected_sequence_number);
456 if (!packet.client_address.address().empty()) {
457 // packet.client_address is non-empty.
458 QuicSocketAddressCoder address_coder(packet.client_address);
459 string serialized_address = address_coder.Encode();
460 if (serialized_address.empty()) {
461 return nullptr;
463 reset.SetStringPiece(kCADR, serialized_address);
465 const QuicData& reset_serialized = reset.GetSerialized();
467 size_t len =
468 kPublicFlagsSize + PACKET_8BYTE_CONNECTION_ID + reset_serialized.length();
469 scoped_ptr<char[]> buffer(new char[len]);
470 QuicDataWriter writer(len, buffer.get());
472 uint8 flags = static_cast<uint8>(PACKET_PUBLIC_FLAGS_RST |
473 PACKET_PUBLIC_FLAGS_8BYTE_CONNECTION_ID);
474 if (!writer.WriteUInt8(flags)) {
475 return nullptr;
478 if (!writer.WriteUInt64(packet.public_header.connection_id)) {
479 return nullptr;
482 if (!writer.WriteBytes(reset_serialized.data(), reset_serialized.length())) {
483 return nullptr;
486 return new QuicEncryptedPacket(buffer.release(), len, true);
489 QuicEncryptedPacket* QuicFramer::BuildVersionNegotiationPacket(
490 const QuicPacketPublicHeader& header,
491 const QuicVersionVector& supported_versions) {
492 DCHECK(header.version_flag);
493 size_t len = GetVersionNegotiationPacketSize(supported_versions.size());
494 scoped_ptr<char[]> buffer(new char[len]);
495 QuicDataWriter writer(len, buffer.get());
497 uint8 flags = static_cast<uint8>(PACKET_PUBLIC_FLAGS_VERSION |
498 PACKET_PUBLIC_FLAGS_8BYTE_CONNECTION_ID);
499 if (!writer.WriteUInt8(flags)) {
500 return nullptr;
503 if (!writer.WriteUInt64(header.connection_id)) {
504 return nullptr;
507 for (size_t i = 0; i < supported_versions.size(); ++i) {
508 if (!writer.WriteUInt32(QuicVersionToQuicTag(supported_versions[i]))) {
509 return nullptr;
513 return new QuicEncryptedPacket(buffer.release(), len, true);
516 bool QuicFramer::ProcessPacket(const QuicEncryptedPacket& packet) {
517 DCHECK(!reader_.get());
518 reader_.reset(new QuicDataReader(packet.data(), packet.length()));
520 visitor_->OnPacket();
522 // First parse the public header.
523 QuicPacketPublicHeader public_header;
524 if (!ProcessPublicHeader(&public_header)) {
525 DLOG(WARNING) << "Unable to process public header.";
526 DCHECK_NE("", detailed_error_);
527 return RaiseError(QUIC_INVALID_PACKET_HEADER);
530 if (!visitor_->OnUnauthenticatedPublicHeader(public_header)) {
531 // The visitor suppresses further processing of the packet.
532 reader_.reset(nullptr);
533 return true;
536 if (perspective_ == Perspective::IS_SERVER && public_header.version_flag &&
537 public_header.versions[0] != quic_version_) {
538 if (!visitor_->OnProtocolVersionMismatch(public_header.versions[0])) {
539 reader_.reset(nullptr);
540 return true;
544 bool rv;
545 if (perspective_ == Perspective::IS_CLIENT && public_header.version_flag) {
546 rv = ProcessVersionNegotiationPacket(&public_header);
547 } else if (public_header.reset_flag) {
548 rv = ProcessPublicResetPacket(public_header);
549 } else if (packet.length() <= kMaxPacketSize) {
550 char buffer[kMaxPacketSize];
551 rv = ProcessDataPacket(public_header, packet, buffer, kMaxPacketSize);
552 } else {
553 scoped_ptr<char[]> large_buffer(new char[packet.length()]);
554 rv = ProcessDataPacket(public_header, packet, large_buffer.get(),
555 packet.length());
556 LOG_IF(DFATAL, rv) << "QUIC should never successfully process packets "
557 << "larger than kMaxPacketSize. packet size:"
558 << packet.length();
561 reader_.reset(nullptr);
562 return rv;
565 bool QuicFramer::ProcessVersionNegotiationPacket(
566 QuicPacketPublicHeader* public_header) {
567 DCHECK_EQ(Perspective::IS_CLIENT, perspective_);
568 // Try reading at least once to raise error if the packet is invalid.
569 do {
570 QuicTag version;
571 if (!reader_->ReadBytes(&version, kQuicVersionSize)) {
572 set_detailed_error("Unable to read supported version in negotiation.");
573 return RaiseError(QUIC_INVALID_VERSION_NEGOTIATION_PACKET);
575 public_header->versions.push_back(QuicTagToQuicVersion(version));
576 } while (!reader_->IsDoneReading());
578 visitor_->OnVersionNegotiationPacket(*public_header);
579 return true;
582 bool QuicFramer::ProcessDataPacket(const QuicPacketPublicHeader& public_header,
583 const QuicEncryptedPacket& packet,
584 char* decrypted_buffer,
585 size_t buffer_length) {
586 QuicPacketHeader header(public_header);
587 if (!ProcessPacketHeader(&header, packet, decrypted_buffer, buffer_length)) {
588 DLOG(WARNING) << "Unable to process data packet header.";
589 return false;
592 if (!visitor_->OnPacketHeader(header)) {
593 // The visitor suppresses further processing of the packet.
594 return true;
597 if (packet.length() > kMaxPacketSize) {
598 DLOG(WARNING) << "Packet too large: " << packet.length();
599 return RaiseError(QUIC_PACKET_TOO_LARGE);
602 // Handle the payload.
603 if (!header.fec_flag) {
604 if (header.is_in_fec_group == IN_FEC_GROUP) {
605 StringPiece payload = reader_->PeekRemainingPayload();
606 visitor_->OnFecProtectedPayload(payload);
608 if (!ProcessFrameData(header)) {
609 DCHECK_NE(QUIC_NO_ERROR, error_); // ProcessFrameData sets the error.
610 DLOG(WARNING) << "Unable to process frame data.";
611 return false;
613 } else {
614 QuicFecData fec_data;
615 fec_data.fec_group = header.fec_group;
616 fec_data.redundancy = reader_->ReadRemainingPayload();
617 visitor_->OnFecData(fec_data);
620 visitor_->OnPacketComplete();
621 return true;
624 bool QuicFramer::ProcessPublicResetPacket(
625 const QuicPacketPublicHeader& public_header) {
626 QuicPublicResetPacket packet(public_header);
628 scoped_ptr<CryptoHandshakeMessage> reset(
629 CryptoFramer::ParseMessage(reader_->ReadRemainingPayload()));
630 if (!reset.get()) {
631 set_detailed_error("Unable to read reset message.");
632 return RaiseError(QUIC_INVALID_PUBLIC_RST_PACKET);
634 if (reset->tag() != kPRST) {
635 set_detailed_error("Incorrect message tag.");
636 return RaiseError(QUIC_INVALID_PUBLIC_RST_PACKET);
639 if (reset->GetUint64(kRNON, &packet.nonce_proof) != QUIC_NO_ERROR) {
640 set_detailed_error("Unable to read nonce proof.");
641 return RaiseError(QUIC_INVALID_PUBLIC_RST_PACKET);
643 // TODO(satyamshekhar): validate nonce to protect against DoS.
645 if (reset->GetUint64(kRSEQ, &packet.rejected_sequence_number) !=
646 QUIC_NO_ERROR) {
647 set_detailed_error("Unable to read rejected sequence number.");
648 return RaiseError(QUIC_INVALID_PUBLIC_RST_PACKET);
651 StringPiece address;
652 if (reset->GetStringPiece(kCADR, &address)) {
653 QuicSocketAddressCoder address_coder;
654 if (address_coder.Decode(address.data(), address.length())) {
655 packet.client_address = IPEndPoint(address_coder.ip(),
656 address_coder.port());
660 visitor_->OnPublicResetPacket(packet);
661 return true;
664 bool QuicFramer::ProcessRevivedPacket(QuicPacketHeader* header,
665 StringPiece payload) {
666 DCHECK(!reader_.get());
668 visitor_->OnRevivedPacket();
670 header->entropy_hash = GetPacketEntropyHash(*header);
672 if (!visitor_->OnPacketHeader(*header)) {
673 return true;
676 if (payload.length() > kMaxPacketSize) {
677 set_detailed_error("Revived packet too large.");
678 return RaiseError(QUIC_PACKET_TOO_LARGE);
681 reader_.reset(new QuicDataReader(payload.data(), payload.length()));
682 if (!ProcessFrameData(*header)) {
683 DCHECK_NE(QUIC_NO_ERROR, error_); // ProcessFrameData sets the error.
684 DLOG(WARNING) << "Unable to process frame data.";
685 return false;
688 visitor_->OnPacketComplete();
689 reader_.reset(nullptr);
690 return true;
693 bool QuicFramer::AppendPacketHeader(const QuicPacketHeader& header,
694 QuicDataWriter* writer) {
695 DVLOG(1) << "Appending header: " << header;
696 DCHECK(header.fec_group > 0 || header.is_in_fec_group == NOT_IN_FEC_GROUP);
697 uint8 public_flags = 0;
698 if (header.public_header.reset_flag) {
699 public_flags |= PACKET_PUBLIC_FLAGS_RST;
701 if (header.public_header.version_flag) {
702 public_flags |= PACKET_PUBLIC_FLAGS_VERSION;
705 public_flags |=
706 GetSequenceNumberFlags(header.public_header.sequence_number_length)
707 << kPublicHeaderSequenceNumberShift;
709 switch (header.public_header.connection_id_length) {
710 case PACKET_0BYTE_CONNECTION_ID:
711 if (!writer->WriteUInt8(
712 public_flags | PACKET_PUBLIC_FLAGS_0BYTE_CONNECTION_ID)) {
713 return false;
715 break;
716 case PACKET_1BYTE_CONNECTION_ID:
717 if (!writer->WriteUInt8(
718 public_flags | PACKET_PUBLIC_FLAGS_1BYTE_CONNECTION_ID)) {
719 return false;
721 if (!writer->WriteUInt8(
722 header.public_header.connection_id & k1ByteConnectionIdMask)) {
723 return false;
725 break;
726 case PACKET_4BYTE_CONNECTION_ID:
727 if (!writer->WriteUInt8(
728 public_flags | PACKET_PUBLIC_FLAGS_4BYTE_CONNECTION_ID)) {
729 return false;
731 if (!writer->WriteUInt32(
732 header.public_header.connection_id & k4ByteConnectionIdMask)) {
733 return false;
735 break;
736 case PACKET_8BYTE_CONNECTION_ID:
737 if (!writer->WriteUInt8(
738 public_flags | PACKET_PUBLIC_FLAGS_8BYTE_CONNECTION_ID)) {
739 return false;
741 if (!writer->WriteUInt64(header.public_header.connection_id)) {
742 return false;
744 break;
746 last_serialized_connection_id_ = header.public_header.connection_id;
748 if (header.public_header.version_flag) {
749 DCHECK_EQ(Perspective::IS_CLIENT, perspective_);
750 QuicTag tag = QuicVersionToQuicTag(quic_version_);
751 writer->WriteUInt32(tag);
752 DVLOG(1) << "version = " << quic_version_ << ", tag = '"
753 << QuicUtils::TagToString(tag) << "'";
756 if (!AppendPacketSequenceNumber(header.public_header.sequence_number_length,
757 header.packet_sequence_number, writer)) {
758 return false;
761 uint8 private_flags = 0;
762 if (header.entropy_flag) {
763 private_flags |= PACKET_PRIVATE_FLAGS_ENTROPY;
765 if (header.is_in_fec_group == IN_FEC_GROUP) {
766 private_flags |= PACKET_PRIVATE_FLAGS_FEC_GROUP;
768 if (header.fec_flag) {
769 private_flags |= PACKET_PRIVATE_FLAGS_FEC;
771 if (!writer->WriteUInt8(private_flags)) {
772 return false;
775 // The FEC group number is the sequence number of the first fec
776 // protected packet, or 0 if this packet is not protected.
777 if (header.is_in_fec_group == IN_FEC_GROUP) {
778 DCHECK_LE(header.fec_group, header.packet_sequence_number);
779 DCHECK_LT(header.packet_sequence_number - header.fec_group, 255u);
780 // Offset from the current packet sequence number to the first fec
781 // protected packet.
782 uint8 first_fec_protected_packet_offset =
783 static_cast<uint8>(header.packet_sequence_number - header.fec_group);
784 if (!writer->WriteBytes(&first_fec_protected_packet_offset, 1)) {
785 return false;
789 return true;
792 const QuicTime::Delta QuicFramer::CalculateTimestampFromWire(
793 uint32 time_delta_us) {
794 // The new time_delta might have wrapped to the next epoch, or it
795 // might have reverse wrapped to the previous epoch, or it might
796 // remain in the same epoch. Select the time closest to the previous
797 // time.
799 // epoch_delta is the delta between epochs. A delta is 4 bytes of
800 // microseconds.
801 const uint64 epoch_delta = GG_UINT64_C(1) << 32;
802 uint64 epoch = last_timestamp_.ToMicroseconds() & ~(epoch_delta - 1);
803 // Wrapping is safe here because a wrapped value will not be ClosestTo below.
804 uint64 prev_epoch = epoch - epoch_delta;
805 uint64 next_epoch = epoch + epoch_delta;
807 uint64 time = ClosestTo(last_timestamp_.ToMicroseconds(),
808 epoch + time_delta_us,
809 ClosestTo(last_timestamp_.ToMicroseconds(),
810 prev_epoch + time_delta_us,
811 next_epoch + time_delta_us));
813 return QuicTime::Delta::FromMicroseconds(time);
816 QuicPacketSequenceNumber QuicFramer::CalculatePacketSequenceNumberFromWire(
817 QuicSequenceNumberLength sequence_number_length,
818 QuicPacketSequenceNumber packet_sequence_number) const {
819 // The new sequence number might have wrapped to the next epoch, or
820 // it might have reverse wrapped to the previous epoch, or it might
821 // remain in the same epoch. Select the sequence number closest to the
822 // next expected sequence number, the previous sequence number plus 1.
824 // epoch_delta is the delta between epochs the sequence number was serialized
825 // with, so the correct value is likely the same epoch as the last sequence
826 // number or an adjacent epoch.
827 const QuicPacketSequenceNumber epoch_delta =
828 GG_UINT64_C(1) << (8 * sequence_number_length);
829 QuicPacketSequenceNumber next_sequence_number = last_sequence_number_ + 1;
830 QuicPacketSequenceNumber epoch = last_sequence_number_ & ~(epoch_delta - 1);
831 QuicPacketSequenceNumber prev_epoch = epoch - epoch_delta;
832 QuicPacketSequenceNumber next_epoch = epoch + epoch_delta;
834 return ClosestTo(next_sequence_number,
835 epoch + packet_sequence_number,
836 ClosestTo(next_sequence_number,
837 prev_epoch + packet_sequence_number,
838 next_epoch + packet_sequence_number));
841 bool QuicFramer::ProcessPublicHeader(
842 QuicPacketPublicHeader* public_header) {
843 uint8 public_flags;
844 if (!reader_->ReadBytes(&public_flags, 1)) {
845 set_detailed_error("Unable to read public flags.");
846 return false;
849 public_header->reset_flag = (public_flags & PACKET_PUBLIC_FLAGS_RST) != 0;
850 public_header->version_flag =
851 (public_flags & PACKET_PUBLIC_FLAGS_VERSION) != 0;
853 if (validate_flags_ &&
854 !public_header->version_flag && public_flags > PACKET_PUBLIC_FLAGS_MAX) {
855 set_detailed_error("Illegal public flags value.");
856 return false;
859 if (public_header->reset_flag && public_header->version_flag) {
860 set_detailed_error("Got version flag in reset packet");
861 return false;
864 switch (public_flags & PACKET_PUBLIC_FLAGS_8BYTE_CONNECTION_ID) {
865 case PACKET_PUBLIC_FLAGS_8BYTE_CONNECTION_ID:
866 if (!reader_->ReadUInt64(&public_header->connection_id)) {
867 set_detailed_error("Unable to read ConnectionId.");
868 return false;
870 public_header->connection_id_length = PACKET_8BYTE_CONNECTION_ID;
871 break;
872 case PACKET_PUBLIC_FLAGS_4BYTE_CONNECTION_ID:
873 // If the connection_id is truncated, expect to read the last serialized
874 // connection_id.
875 if (!reader_->ReadBytes(&public_header->connection_id,
876 PACKET_4BYTE_CONNECTION_ID)) {
877 set_detailed_error("Unable to read ConnectionId.");
878 return false;
880 if (last_serialized_connection_id_ &&
881 (public_header->connection_id & k4ByteConnectionIdMask) !=
882 (last_serialized_connection_id_ & k4ByteConnectionIdMask)) {
883 set_detailed_error("Truncated 4 byte ConnectionId does not match "
884 "previous connection_id.");
885 return false;
887 public_header->connection_id_length = PACKET_4BYTE_CONNECTION_ID;
888 public_header->connection_id = last_serialized_connection_id_;
889 break;
890 case PACKET_PUBLIC_FLAGS_1BYTE_CONNECTION_ID:
891 if (!reader_->ReadBytes(&public_header->connection_id,
892 PACKET_1BYTE_CONNECTION_ID)) {
893 set_detailed_error("Unable to read ConnectionId.");
894 return false;
896 if (last_serialized_connection_id_ &&
897 (public_header->connection_id & k1ByteConnectionIdMask) !=
898 (last_serialized_connection_id_ & k1ByteConnectionIdMask)) {
899 set_detailed_error("Truncated 1 byte ConnectionId does not match "
900 "previous connection_id.");
901 return false;
903 public_header->connection_id_length = PACKET_1BYTE_CONNECTION_ID;
904 public_header->connection_id = last_serialized_connection_id_;
905 break;
906 case PACKET_PUBLIC_FLAGS_0BYTE_CONNECTION_ID:
907 public_header->connection_id_length = PACKET_0BYTE_CONNECTION_ID;
908 public_header->connection_id = last_serialized_connection_id_;
909 break;
912 public_header->sequence_number_length =
913 ReadSequenceNumberLength(
914 public_flags >> kPublicHeaderSequenceNumberShift);
916 // Read the version only if the packet is from the client.
917 // version flag from the server means version negotiation packet.
918 if (public_header->version_flag && perspective_ == Perspective::IS_SERVER) {
919 QuicTag version_tag;
920 if (!reader_->ReadUInt32(&version_tag)) {
921 set_detailed_error("Unable to read protocol version.");
922 return false;
925 // If the version from the new packet is the same as the version of this
926 // framer, then the public flags should be set to something we understand.
927 // If not, this raises an error.
928 QuicVersion version = QuicTagToQuicVersion(version_tag);
929 if (version == quic_version_ && public_flags > PACKET_PUBLIC_FLAGS_MAX) {
930 set_detailed_error("Illegal public flags value.");
931 return false;
933 public_header->versions.push_back(version);
935 return true;
938 // static
939 QuicSequenceNumberLength QuicFramer::GetMinSequenceNumberLength(
940 QuicPacketSequenceNumber sequence_number) {
941 if (sequence_number < 1 << (PACKET_1BYTE_SEQUENCE_NUMBER * 8)) {
942 return PACKET_1BYTE_SEQUENCE_NUMBER;
943 } else if (sequence_number < 1 << (PACKET_2BYTE_SEQUENCE_NUMBER * 8)) {
944 return PACKET_2BYTE_SEQUENCE_NUMBER;
945 } else if (sequence_number <
946 GG_UINT64_C(1) << (PACKET_4BYTE_SEQUENCE_NUMBER * 8)) {
947 return PACKET_4BYTE_SEQUENCE_NUMBER;
948 } else {
949 return PACKET_6BYTE_SEQUENCE_NUMBER;
953 // static
954 uint8 QuicFramer::GetSequenceNumberFlags(
955 QuicSequenceNumberLength sequence_number_length) {
956 switch (sequence_number_length) {
957 case PACKET_1BYTE_SEQUENCE_NUMBER:
958 return PACKET_FLAGS_1BYTE_SEQUENCE;
959 case PACKET_2BYTE_SEQUENCE_NUMBER:
960 return PACKET_FLAGS_2BYTE_SEQUENCE;
961 case PACKET_4BYTE_SEQUENCE_NUMBER:
962 return PACKET_FLAGS_4BYTE_SEQUENCE;
963 case PACKET_6BYTE_SEQUENCE_NUMBER:
964 return PACKET_FLAGS_6BYTE_SEQUENCE;
965 default:
966 LOG(DFATAL) << "Unreachable case statement.";
967 return PACKET_FLAGS_6BYTE_SEQUENCE;
971 // static
972 QuicFramer::AckFrameInfo QuicFramer::GetAckFrameInfo(
973 const QuicAckFrame& frame) {
974 AckFrameInfo ack_info;
975 if (frame.missing_packets.empty()) {
976 return ack_info;
978 DCHECK_GE(frame.largest_observed, *frame.missing_packets.rbegin());
979 size_t cur_range_length = 0;
980 SequenceNumberSet::const_iterator iter = frame.missing_packets.begin();
981 QuicPacketSequenceNumber last_missing = *iter;
982 ++iter;
983 for (; iter != frame.missing_packets.end(); ++iter) {
984 if (cur_range_length < numeric_limits<uint8>::max() &&
985 *iter == (last_missing + 1)) {
986 ++cur_range_length;
987 } else {
988 ack_info.nack_ranges[last_missing - cur_range_length] =
989 static_cast<uint8>(cur_range_length);
990 cur_range_length = 0;
992 ack_info.max_delta = max(ack_info.max_delta, *iter - last_missing);
993 last_missing = *iter;
995 // Include the last nack range.
996 ack_info.nack_ranges[last_missing - cur_range_length] =
997 static_cast<uint8>(cur_range_length);
998 // Include the range to the largest observed.
999 ack_info.max_delta =
1000 max(ack_info.max_delta, frame.largest_observed - last_missing);
1001 return ack_info;
1004 bool QuicFramer::ProcessPacketHeader(QuicPacketHeader* header,
1005 const QuicEncryptedPacket& packet,
1006 char* decrypted_buffer,
1007 size_t buffer_length) {
1008 if (!ProcessPacketSequenceNumber(header->public_header.sequence_number_length,
1009 &header->packet_sequence_number)) {
1010 set_detailed_error("Unable to read sequence number.");
1011 return RaiseError(QUIC_INVALID_PACKET_HEADER);
1014 if (header->packet_sequence_number == 0u) {
1015 set_detailed_error("Packet sequence numbers cannot be 0.");
1016 return RaiseError(QUIC_INVALID_PACKET_HEADER);
1019 if (!visitor_->OnUnauthenticatedHeader(*header)) {
1020 return false;
1023 if (!DecryptPayload(*header, packet, decrypted_buffer, buffer_length)) {
1024 set_detailed_error("Unable to decrypt payload.");
1025 return RaiseError(QUIC_DECRYPTION_FAILURE);
1028 uint8 private_flags;
1029 if (!reader_->ReadBytes(&private_flags, 1)) {
1030 set_detailed_error("Unable to read private flags.");
1031 return RaiseError(QUIC_INVALID_PACKET_HEADER);
1034 if (private_flags > PACKET_PRIVATE_FLAGS_MAX) {
1035 set_detailed_error("Illegal private flags value.");
1036 return RaiseError(QUIC_INVALID_PACKET_HEADER);
1039 header->entropy_flag = (private_flags & PACKET_PRIVATE_FLAGS_ENTROPY) != 0;
1040 header->fec_flag = (private_flags & PACKET_PRIVATE_FLAGS_FEC) != 0;
1042 if ((private_flags & PACKET_PRIVATE_FLAGS_FEC_GROUP) != 0) {
1043 header->is_in_fec_group = IN_FEC_GROUP;
1044 uint8 first_fec_protected_packet_offset;
1045 if (!reader_->ReadBytes(&first_fec_protected_packet_offset, 1)) {
1046 set_detailed_error("Unable to read first fec protected packet offset.");
1047 return RaiseError(QUIC_INVALID_PACKET_HEADER);
1049 if (first_fec_protected_packet_offset >= header->packet_sequence_number) {
1050 set_detailed_error("First fec protected packet offset must be less "
1051 "than the sequence number.");
1052 return RaiseError(QUIC_INVALID_PACKET_HEADER);
1054 header->fec_group =
1055 header->packet_sequence_number - first_fec_protected_packet_offset;
1058 header->entropy_hash = GetPacketEntropyHash(*header);
1059 // Set the last sequence number after we have decrypted the packet
1060 // so we are confident is not attacker controlled.
1061 last_sequence_number_ = header->packet_sequence_number;
1062 return true;
1065 bool QuicFramer::ProcessPacketSequenceNumber(
1066 QuicSequenceNumberLength sequence_number_length,
1067 QuicPacketSequenceNumber* sequence_number) {
1068 QuicPacketSequenceNumber wire_sequence_number = 0u;
1069 if (!reader_->ReadBytes(&wire_sequence_number, sequence_number_length)) {
1070 return false;
1073 // TODO(ianswett): Explore the usefulness of trying multiple sequence numbers
1074 // in case the first guess is incorrect.
1075 *sequence_number =
1076 CalculatePacketSequenceNumberFromWire(sequence_number_length,
1077 wire_sequence_number);
1078 return true;
1081 bool QuicFramer::ProcessFrameData(const QuicPacketHeader& header) {
1082 if (reader_->IsDoneReading()) {
1083 set_detailed_error("Packet has no frames.");
1084 return RaiseError(QUIC_MISSING_PAYLOAD);
1086 while (!reader_->IsDoneReading()) {
1087 uint8 frame_type;
1088 if (!reader_->ReadBytes(&frame_type, 1)) {
1089 set_detailed_error("Unable to read frame type.");
1090 return RaiseError(QUIC_INVALID_FRAME_DATA);
1093 if (frame_type & kQuicFrameTypeSpecialMask) {
1094 // Stream Frame
1095 if (frame_type & kQuicFrameTypeStreamMask) {
1096 QuicStreamFrame frame;
1097 if (!ProcessStreamFrame(frame_type, &frame)) {
1098 return RaiseError(QUIC_INVALID_STREAM_DATA);
1100 if (!visitor_->OnStreamFrame(frame)) {
1101 DVLOG(1) << "Visitor asked to stop further processing.";
1102 // Returning true since there was no parsing error.
1103 return true;
1105 continue;
1108 // Ack Frame
1109 if (frame_type & kQuicFrameTypeAckMask) {
1110 QuicAckFrame frame;
1111 if (!ProcessAckFrame(frame_type, &frame)) {
1112 return RaiseError(QUIC_INVALID_ACK_DATA);
1114 if (!visitor_->OnAckFrame(frame)) {
1115 DVLOG(1) << "Visitor asked to stop further processing.";
1116 // Returning true since there was no parsing error.
1117 return true;
1119 continue;
1122 // This was a special frame type that did not match any
1123 // of the known ones. Error.
1124 set_detailed_error("Illegal frame type.");
1125 DLOG(WARNING) << "Illegal frame type: "
1126 << static_cast<int>(frame_type);
1127 return RaiseError(QUIC_INVALID_FRAME_DATA);
1130 switch (frame_type) {
1131 case PADDING_FRAME:
1132 // We're done with the packet.
1133 return true;
1135 case RST_STREAM_FRAME: {
1136 QuicRstStreamFrame frame;
1137 if (!ProcessRstStreamFrame(&frame)) {
1138 return RaiseError(QUIC_INVALID_RST_STREAM_DATA);
1140 if (!visitor_->OnRstStreamFrame(frame)) {
1141 DVLOG(1) << "Visitor asked to stop further processing.";
1142 // Returning true since there was no parsing error.
1143 return true;
1145 continue;
1148 case CONNECTION_CLOSE_FRAME: {
1149 QuicConnectionCloseFrame frame;
1150 if (!ProcessConnectionCloseFrame(&frame)) {
1151 return RaiseError(QUIC_INVALID_CONNECTION_CLOSE_DATA);
1154 if (!visitor_->OnConnectionCloseFrame(frame)) {
1155 DVLOG(1) << "Visitor asked to stop further processing.";
1156 // Returning true since there was no parsing error.
1157 return true;
1159 continue;
1162 case GOAWAY_FRAME: {
1163 QuicGoAwayFrame goaway_frame;
1164 if (!ProcessGoAwayFrame(&goaway_frame)) {
1165 return RaiseError(QUIC_INVALID_GOAWAY_DATA);
1167 if (!visitor_->OnGoAwayFrame(goaway_frame)) {
1168 DVLOG(1) << "Visitor asked to stop further processing.";
1169 // Returning true since there was no parsing error.
1170 return true;
1172 continue;
1175 case WINDOW_UPDATE_FRAME: {
1176 QuicWindowUpdateFrame window_update_frame;
1177 if (!ProcessWindowUpdateFrame(&window_update_frame)) {
1178 return RaiseError(QUIC_INVALID_WINDOW_UPDATE_DATA);
1180 if (!visitor_->OnWindowUpdateFrame(window_update_frame)) {
1181 DVLOG(1) << "Visitor asked to stop further processing.";
1182 // Returning true since there was no parsing error.
1183 return true;
1185 continue;
1188 case BLOCKED_FRAME: {
1189 QuicBlockedFrame blocked_frame;
1190 if (!ProcessBlockedFrame(&blocked_frame)) {
1191 return RaiseError(QUIC_INVALID_BLOCKED_DATA);
1193 if (!visitor_->OnBlockedFrame(blocked_frame)) {
1194 DVLOG(1) << "Visitor asked to stop further processing.";
1195 // Returning true since there was no parsing error.
1196 return true;
1198 continue;
1201 case STOP_WAITING_FRAME: {
1202 QuicStopWaitingFrame stop_waiting_frame;
1203 if (!ProcessStopWaitingFrame(header, &stop_waiting_frame)) {
1204 return RaiseError(QUIC_INVALID_STOP_WAITING_DATA);
1206 if (!visitor_->OnStopWaitingFrame(stop_waiting_frame)) {
1207 DVLOG(1) << "Visitor asked to stop further processing.";
1208 // Returning true since there was no parsing error.
1209 return true;
1211 continue;
1213 case PING_FRAME: {
1214 // Ping has no payload.
1215 QuicPingFrame ping_frame;
1216 if (!visitor_->OnPingFrame(ping_frame)) {
1217 DVLOG(1) << "Visitor asked to stop further processing.";
1218 // Returning true since there was no parsing error.
1219 return true;
1221 continue;
1224 default:
1225 set_detailed_error("Illegal frame type.");
1226 DLOG(WARNING) << "Illegal frame type: "
1227 << static_cast<int>(frame_type);
1228 return RaiseError(QUIC_INVALID_FRAME_DATA);
1232 return true;
1235 bool QuicFramer::ProcessStreamFrame(uint8 frame_type,
1236 QuicStreamFrame* frame) {
1237 uint8 stream_flags = frame_type;
1239 stream_flags &= ~kQuicFrameTypeStreamMask;
1241 // Read from right to left: StreamID, Offset, Data Length, Fin.
1242 const uint8 stream_id_length = (stream_flags & kQuicStreamIDLengthMask) + 1;
1243 stream_flags >>= kQuicStreamIdShift;
1245 uint8 offset_length = (stream_flags & kQuicStreamOffsetMask);
1246 // There is no encoding for 1 byte, only 0 and 2 through 8.
1247 if (offset_length > 0) {
1248 offset_length += 1;
1250 stream_flags >>= kQuicStreamOffsetShift;
1252 bool has_data_length =
1253 (stream_flags & kQuicStreamDataLengthMask) == kQuicStreamDataLengthMask;
1254 stream_flags >>= kQuicStreamDataLengthShift;
1256 frame->fin = (stream_flags & kQuicStreamFinMask) == kQuicStreamFinShift;
1258 frame->stream_id = 0;
1259 if (!reader_->ReadBytes(&frame->stream_id, stream_id_length)) {
1260 set_detailed_error("Unable to read stream_id.");
1261 return false;
1264 frame->offset = 0;
1265 if (!reader_->ReadBytes(&frame->offset, offset_length)) {
1266 set_detailed_error("Unable to read offset.");
1267 return false;
1270 StringPiece frame_data;
1271 if (has_data_length) {
1272 if (!reader_->ReadStringPiece16(&frame_data)) {
1273 set_detailed_error("Unable to read frame data.");
1274 return false;
1276 } else {
1277 if (!reader_->ReadStringPiece(&frame_data, reader_->BytesRemaining())) {
1278 set_detailed_error("Unable to read frame data.");
1279 return false;
1282 // Point frame to the right data.
1283 frame->data.Clear();
1284 if (!frame_data.empty()) {
1285 frame->data.Append(const_cast<char*>(frame_data.data()), frame_data.size());
1288 return true;
1291 bool QuicFramer::ProcessAckFrame(uint8 frame_type, QuicAckFrame* ack_frame) {
1292 // Determine the three lengths from the frame type: largest observed length,
1293 // missing sequence number length, and missing range length.
1294 const QuicSequenceNumberLength missing_sequence_number_length =
1295 ReadSequenceNumberLength(frame_type);
1296 frame_type >>= kQuicSequenceNumberLengthShift;
1297 const QuicSequenceNumberLength largest_observed_sequence_number_length =
1298 ReadSequenceNumberLength(frame_type);
1299 frame_type >>= kQuicSequenceNumberLengthShift;
1300 ack_frame->is_truncated = frame_type & kQuicAckTruncatedMask;
1301 frame_type >>= kQuicAckTruncatedShift;
1302 bool has_nacks = frame_type & kQuicHasNacksMask;
1304 if (!reader_->ReadBytes(&ack_frame->entropy_hash, 1)) {
1305 set_detailed_error("Unable to read entropy hash for received packets.");
1306 return false;
1309 if (!reader_->ReadBytes(&ack_frame->largest_observed,
1310 largest_observed_sequence_number_length)) {
1311 set_detailed_error("Unable to read largest observed.");
1312 return false;
1315 uint64 delta_time_largest_observed_us;
1316 if (!reader_->ReadUFloat16(&delta_time_largest_observed_us)) {
1317 set_detailed_error("Unable to read delta time largest observed.");
1318 return false;
1321 if (delta_time_largest_observed_us == kUFloat16MaxValue) {
1322 ack_frame->delta_time_largest_observed = QuicTime::Delta::Infinite();
1323 } else {
1324 ack_frame->delta_time_largest_observed =
1325 QuicTime::Delta::FromMicroseconds(delta_time_largest_observed_us);
1328 if (!ProcessTimestampsInAckFrame(ack_frame)) {
1329 return false;
1332 if (!has_nacks) {
1333 return true;
1336 uint8 num_missing_ranges;
1337 if (!reader_->ReadBytes(&num_missing_ranges, 1)) {
1338 set_detailed_error("Unable to read num missing packet ranges.");
1339 return false;
1342 QuicPacketSequenceNumber last_sequence_number = ack_frame->largest_observed;
1343 for (size_t i = 0; i < num_missing_ranges; ++i) {
1344 QuicPacketSequenceNumber missing_delta = 0;
1345 if (!reader_->ReadBytes(&missing_delta, missing_sequence_number_length)) {
1346 set_detailed_error("Unable to read missing sequence number delta.");
1347 return false;
1349 last_sequence_number -= missing_delta;
1350 QuicPacketSequenceNumber range_length = 0;
1351 if (!reader_->ReadBytes(&range_length, PACKET_1BYTE_SEQUENCE_NUMBER)) {
1352 set_detailed_error("Unable to read missing sequence number range.");
1353 return false;
1355 for (size_t j = 0; j <= range_length; ++j) {
1356 ack_frame->missing_packets.insert(last_sequence_number - j);
1358 // Subtract an extra 1 to ensure ranges are represented efficiently and
1359 // can't overlap by 1 sequence number. This allows a missing_delta of 0
1360 // to represent an adjacent nack range.
1361 last_sequence_number -= (range_length + 1);
1364 // Parse the revived packets list.
1365 uint8 num_revived_packets;
1366 if (!reader_->ReadBytes(&num_revived_packets, 1)) {
1367 set_detailed_error("Unable to read num revived packets.");
1368 return false;
1371 for (size_t i = 0; i < num_revived_packets; ++i) {
1372 QuicPacketSequenceNumber revived_packet = 0;
1373 if (!reader_->ReadBytes(&revived_packet,
1374 largest_observed_sequence_number_length)) {
1375 set_detailed_error("Unable to read revived packet.");
1376 return false;
1379 ack_frame->revived_packets.insert(revived_packet);
1382 return true;
1385 bool QuicFramer::ProcessTimestampsInAckFrame(QuicAckFrame* ack_frame) {
1386 if (!ack_frame->is_truncated) {
1387 uint8 num_received_packets;
1388 if (!reader_->ReadBytes(&num_received_packets, 1)) {
1389 set_detailed_error("Unable to read num received packets.");
1390 return false;
1393 if (num_received_packets > 0) {
1394 uint8 delta_from_largest_observed;
1395 if (!reader_->ReadBytes(&delta_from_largest_observed,
1396 PACKET_1BYTE_SEQUENCE_NUMBER)) {
1397 set_detailed_error(
1398 "Unable to read sequence delta in received packets.");
1399 return false;
1401 QuicPacketSequenceNumber seq_num = ack_frame->largest_observed -
1402 delta_from_largest_observed;
1404 // Time delta from the framer creation.
1405 uint32 time_delta_us;
1406 if (!reader_->ReadBytes(&time_delta_us, sizeof(time_delta_us))) {
1407 set_detailed_error("Unable to read time delta in received packets.");
1408 return false;
1411 last_timestamp_ = CalculateTimestampFromWire(time_delta_us);
1413 ack_frame->received_packet_times.push_back(
1414 std::make_pair(seq_num, creation_time_.Add(last_timestamp_)));
1416 for (uint8 i = 1; i < num_received_packets; ++i) {
1417 if (!reader_->ReadBytes(&delta_from_largest_observed,
1418 PACKET_1BYTE_SEQUENCE_NUMBER)) {
1419 set_detailed_error(
1420 "Unable to read sequence delta in received packets.");
1421 return false;
1423 seq_num = ack_frame->largest_observed - delta_from_largest_observed;
1425 // Time delta from the previous timestamp.
1426 uint64 incremental_time_delta_us;
1427 if (!reader_->ReadUFloat16(&incremental_time_delta_us)) {
1428 set_detailed_error(
1429 "Unable to read incremental time delta in received packets.");
1430 return false;
1433 last_timestamp_ = last_timestamp_.Add(
1434 QuicTime::Delta::FromMicroseconds(incremental_time_delta_us));
1435 ack_frame->received_packet_times.push_back(
1436 std::make_pair(seq_num, creation_time_.Add(last_timestamp_)));
1440 return true;
1443 bool QuicFramer::ProcessStopWaitingFrame(const QuicPacketHeader& header,
1444 QuicStopWaitingFrame* stop_waiting) {
1445 if (!reader_->ReadBytes(&stop_waiting->entropy_hash, 1)) {
1446 set_detailed_error("Unable to read entropy hash for sent packets.");
1447 return false;
1450 QuicPacketSequenceNumber least_unacked_delta = 0;
1451 if (!reader_->ReadBytes(&least_unacked_delta,
1452 header.public_header.sequence_number_length)) {
1453 set_detailed_error("Unable to read least unacked delta.");
1454 return false;
1456 DCHECK_GE(header.packet_sequence_number, least_unacked_delta);
1457 stop_waiting->least_unacked =
1458 header.packet_sequence_number - least_unacked_delta;
1460 return true;
1463 bool QuicFramer::ProcessRstStreamFrame(QuicRstStreamFrame* frame) {
1464 if (!reader_->ReadUInt32(&frame->stream_id)) {
1465 set_detailed_error("Unable to read stream_id.");
1466 return false;
1469 if (!reader_->ReadUInt64(&frame->byte_offset)) {
1470 set_detailed_error("Unable to read rst stream sent byte offset.");
1471 return false;
1474 uint32 error_code;
1475 if (!reader_->ReadUInt32(&error_code)) {
1476 set_detailed_error("Unable to read rst stream error code.");
1477 return false;
1480 if (error_code >= QUIC_STREAM_LAST_ERROR) {
1481 set_detailed_error("Invalid rst stream error code.");
1482 return false;
1485 frame->error_code = static_cast<QuicRstStreamErrorCode>(error_code);
1486 if (quic_version_ <= QUIC_VERSION_24) {
1487 StringPiece error_details;
1488 if (!reader_->ReadStringPiece16(&error_details)) {
1489 set_detailed_error("Unable to read rst stream error details.");
1490 return false;
1492 frame->error_details = error_details.as_string();
1495 return true;
1498 bool QuicFramer::ProcessConnectionCloseFrame(QuicConnectionCloseFrame* frame) {
1499 uint32 error_code;
1500 if (!reader_->ReadUInt32(&error_code)) {
1501 set_detailed_error("Unable to read connection close error code.");
1502 return false;
1505 if (error_code >= QUIC_LAST_ERROR) {
1506 set_detailed_error("Invalid error code.");
1507 return false;
1510 frame->error_code = static_cast<QuicErrorCode>(error_code);
1512 StringPiece error_details;
1513 if (!reader_->ReadStringPiece16(&error_details)) {
1514 set_detailed_error("Unable to read connection close error details.");
1515 return false;
1517 frame->error_details = error_details.as_string();
1519 return true;
1522 bool QuicFramer::ProcessGoAwayFrame(QuicGoAwayFrame* frame) {
1523 uint32 error_code;
1524 if (!reader_->ReadUInt32(&error_code)) {
1525 set_detailed_error("Unable to read go away error code.");
1526 return false;
1528 frame->error_code = static_cast<QuicErrorCode>(error_code);
1530 if (error_code >= QUIC_LAST_ERROR) {
1531 set_detailed_error("Invalid error code.");
1532 return false;
1535 uint32 stream_id;
1536 if (!reader_->ReadUInt32(&stream_id)) {
1537 set_detailed_error("Unable to read last good stream id.");
1538 return false;
1540 frame->last_good_stream_id = static_cast<QuicStreamId>(stream_id);
1542 StringPiece reason_phrase;
1543 if (!reader_->ReadStringPiece16(&reason_phrase)) {
1544 set_detailed_error("Unable to read goaway reason.");
1545 return false;
1547 frame->reason_phrase = reason_phrase.as_string();
1549 return true;
1552 bool QuicFramer::ProcessWindowUpdateFrame(QuicWindowUpdateFrame* frame) {
1553 if (!reader_->ReadUInt32(&frame->stream_id)) {
1554 set_detailed_error("Unable to read stream_id.");
1555 return false;
1558 if (!reader_->ReadUInt64(&frame->byte_offset)) {
1559 set_detailed_error("Unable to read window byte_offset.");
1560 return false;
1563 return true;
1566 bool QuicFramer::ProcessBlockedFrame(QuicBlockedFrame* frame) {
1567 if (!reader_->ReadUInt32(&frame->stream_id)) {
1568 set_detailed_error("Unable to read stream_id.");
1569 return false;
1572 return true;
1575 // static
1576 StringPiece QuicFramer::GetAssociatedDataFromEncryptedPacket(
1577 const QuicEncryptedPacket& encrypted,
1578 QuicConnectionIdLength connection_id_length,
1579 bool includes_version,
1580 QuicSequenceNumberLength sequence_number_length) {
1581 return StringPiece(
1582 encrypted.data() + kStartOfHashData, GetStartOfEncryptedData(
1583 connection_id_length, includes_version, sequence_number_length)
1584 - kStartOfHashData);
1587 void QuicFramer::SetDecrypter(QuicDecrypter* decrypter,
1588 EncryptionLevel level) {
1589 DCHECK(alternative_decrypter_.get() == nullptr);
1590 DCHECK_GE(level, decrypter_level_);
1591 decrypter_.reset(decrypter);
1592 decrypter_level_ = level;
1595 void QuicFramer::SetAlternativeDecrypter(QuicDecrypter* decrypter,
1596 EncryptionLevel level,
1597 bool latch_once_used) {
1598 alternative_decrypter_.reset(decrypter);
1599 alternative_decrypter_level_ = level;
1600 alternative_decrypter_latch_ = latch_once_used;
1603 const QuicDecrypter* QuicFramer::decrypter() const {
1604 return decrypter_.get();
1607 const QuicDecrypter* QuicFramer::alternative_decrypter() const {
1608 return alternative_decrypter_.get();
1611 void QuicFramer::SetEncrypter(EncryptionLevel level,
1612 QuicEncrypter* encrypter) {
1613 DCHECK_GE(level, 0);
1614 DCHECK_LT(level, NUM_ENCRYPTION_LEVELS);
1615 encrypter_[level].reset(encrypter);
1618 QuicEncryptedPacket* QuicFramer::EncryptPacket(
1619 EncryptionLevel level,
1620 QuicPacketSequenceNumber packet_sequence_number,
1621 const QuicPacket& packet) {
1622 DCHECK(encrypter_[level].get() != nullptr);
1624 // Allocate a large enough buffer for the header and the encrypted data.
1625 const size_t encrypted_len =
1626 encrypter_[level]->GetCiphertextSize(packet.Plaintext().length());
1627 StringPiece header_data = packet.BeforePlaintext();
1628 const size_t len = header_data.length() + encrypted_len;
1629 // TODO(ianswett): Consider allocating this on the stack in the typical case.
1630 char* buffer = new char[len];
1631 // Copy in the header, because the encrypter only populates the encrypted
1632 // plaintext content.
1633 memcpy(buffer, header_data.data(), header_data.length());
1634 // Encrypt the plaintext into the buffer.
1635 size_t output_length = 0;
1636 if (!encrypter_[level]->EncryptPacket(
1637 packet_sequence_number, packet.AssociatedData(), packet.Plaintext(),
1638 buffer + header_data.length(), &output_length, encrypted_len)) {
1639 RaiseError(QUIC_ENCRYPTION_FAILURE);
1640 return nullptr;
1643 return new QuicEncryptedPacket(buffer, header_data.length() + output_length,
1644 true);
1647 size_t QuicFramer::GetMaxPlaintextSize(size_t ciphertext_size) {
1648 // In order to keep the code simple, we don't have the current encryption
1649 // level to hand. Both the NullEncrypter and AES-GCM have a tag length of 12.
1650 size_t min_plaintext_size = ciphertext_size;
1652 for (int i = ENCRYPTION_NONE; i < NUM_ENCRYPTION_LEVELS; i++) {
1653 if (encrypter_[i].get() != nullptr) {
1654 size_t size = encrypter_[i]->GetMaxPlaintextSize(ciphertext_size);
1655 if (size < min_plaintext_size) {
1656 min_plaintext_size = size;
1661 return min_plaintext_size;
1664 bool QuicFramer::DecryptPayload(const QuicPacketHeader& header,
1665 const QuicEncryptedPacket& packet,
1666 char* decrypted_buffer,
1667 size_t buffer_length) {
1668 StringPiece encrypted = reader_->ReadRemainingPayload();
1669 DCHECK(decrypter_.get() != nullptr);
1670 const StringPiece& associated_data = GetAssociatedDataFromEncryptedPacket(
1671 packet, header.public_header.connection_id_length,
1672 header.public_header.version_flag,
1673 header.public_header.sequence_number_length);
1674 size_t decrypted_length = 0;
1675 bool success = decrypter_->DecryptPacket(
1676 header.packet_sequence_number, associated_data, encrypted,
1677 decrypted_buffer, &decrypted_length, buffer_length);
1678 if (success) {
1679 visitor_->OnDecryptedPacket(decrypter_level_);
1680 } else if (alternative_decrypter_.get() != nullptr) {
1681 success = alternative_decrypter_->DecryptPacket(
1682 header.packet_sequence_number, associated_data, encrypted,
1683 decrypted_buffer, &decrypted_length, buffer_length);
1684 if (success) {
1685 visitor_->OnDecryptedPacket(alternative_decrypter_level_);
1686 if (alternative_decrypter_latch_) {
1687 // Switch to the alternative decrypter and latch so that we cannot
1688 // switch back.
1689 decrypter_.reset(alternative_decrypter_.release());
1690 decrypter_level_ = alternative_decrypter_level_;
1691 alternative_decrypter_level_ = ENCRYPTION_NONE;
1692 } else {
1693 // Switch the alternative decrypter so that we use it first next time.
1694 decrypter_.swap(alternative_decrypter_);
1695 EncryptionLevel level = alternative_decrypter_level_;
1696 alternative_decrypter_level_ = decrypter_level_;
1697 decrypter_level_ = level;
1702 if (!success) {
1703 DLOG(WARNING) << "DecryptPacket failed for sequence_number:"
1704 << header.packet_sequence_number;
1705 return false;
1708 reader_.reset(new QuicDataReader(decrypted_buffer, decrypted_length));
1709 return true;
1712 size_t QuicFramer::GetAckFrameSize(
1713 const QuicAckFrame& ack,
1714 QuicSequenceNumberLength sequence_number_length) {
1715 AckFrameInfo ack_info = GetAckFrameInfo(ack);
1716 QuicSequenceNumberLength largest_observed_length =
1717 GetMinSequenceNumberLength(ack.largest_observed);
1718 QuicSequenceNumberLength missing_sequence_number_length =
1719 GetMinSequenceNumberLength(ack_info.max_delta);
1721 size_t ack_size = GetMinAckFrameSize(sequence_number_length,
1722 largest_observed_length);
1723 if (!ack_info.nack_ranges.empty()) {
1724 ack_size += kNumberOfNackRangesSize + kNumberOfRevivedPacketsSize;
1725 ack_size += min(ack_info.nack_ranges.size(), kMaxNackRanges) *
1726 (missing_sequence_number_length + PACKET_1BYTE_SEQUENCE_NUMBER);
1727 ack_size += min(ack.revived_packets.size(),
1728 kMaxRevivedPackets) * largest_observed_length;
1731 // In version 23, if the ack will be truncated due to too many nack ranges,
1732 // then do not include the number of timestamps (1 byte).
1733 if (ack_info.nack_ranges.size() <= kMaxNackRanges) {
1734 // 1 byte for the number of timestamps.
1735 ack_size += 1;
1736 if (ack.received_packet_times.size() > 0) {
1737 // 1 byte for sequence number, 4 bytes for timestamp for the first
1738 // packet.
1739 ack_size += 5;
1741 // 1 byte for sequence number, 2 bytes for timestamp for the other
1742 // packets.
1743 ack_size += 3 * (ack.received_packet_times.size() - 1);
1747 return ack_size;
1750 size_t QuicFramer::ComputeFrameLength(
1751 const QuicFrame& frame,
1752 bool last_frame_in_packet,
1753 InFecGroup is_in_fec_group,
1754 QuicSequenceNumberLength sequence_number_length) {
1755 switch (frame.type) {
1756 case STREAM_FRAME:
1757 return GetMinStreamFrameSize(frame.stream_frame->stream_id,
1758 frame.stream_frame->offset,
1759 last_frame_in_packet,
1760 is_in_fec_group) +
1761 frame.stream_frame->data.TotalBufferSize();
1762 case ACK_FRAME: {
1763 return GetAckFrameSize(*frame.ack_frame, sequence_number_length);
1765 case STOP_WAITING_FRAME:
1766 return GetStopWaitingFrameSize(sequence_number_length);
1767 case PING_FRAME:
1768 // Ping has no payload.
1769 return kQuicFrameTypeSize;
1770 case RST_STREAM_FRAME:
1771 if (quic_version_ <= QUIC_VERSION_24) {
1772 return GetMinRstStreamFrameSize() +
1773 frame.rst_stream_frame->error_details.size();
1775 return GetRstStreamFrameSize();
1776 case CONNECTION_CLOSE_FRAME:
1777 return GetMinConnectionCloseFrameSize() +
1778 frame.connection_close_frame->error_details.size();
1779 case GOAWAY_FRAME:
1780 return GetMinGoAwayFrameSize() + frame.goaway_frame->reason_phrase.size();
1781 case WINDOW_UPDATE_FRAME:
1782 return GetWindowUpdateFrameSize();
1783 case BLOCKED_FRAME:
1784 return GetBlockedFrameSize();
1785 case PADDING_FRAME:
1786 DCHECK(false);
1787 return 0;
1788 case NUM_FRAME_TYPES:
1789 DCHECK(false);
1790 return 0;
1793 // Not reachable, but some Chrome compilers can't figure that out. *sigh*
1794 DCHECK(false);
1795 return 0;
1798 bool QuicFramer::AppendTypeByte(const QuicFrame& frame,
1799 bool no_stream_frame_length,
1800 QuicDataWriter* writer) {
1801 uint8 type_byte = 0;
1802 switch (frame.type) {
1803 case STREAM_FRAME: {
1804 if (frame.stream_frame == nullptr) {
1805 LOG(DFATAL) << "Failed to append STREAM frame with no stream_frame.";
1807 // Fin bit.
1808 type_byte |= frame.stream_frame->fin ? kQuicStreamFinMask : 0;
1810 // Data Length bit.
1811 type_byte <<= kQuicStreamDataLengthShift;
1812 type_byte |= no_stream_frame_length ? 0: kQuicStreamDataLengthMask;
1814 // Offset 3 bits.
1815 type_byte <<= kQuicStreamOffsetShift;
1816 const size_t offset_len = GetStreamOffsetSize(frame.stream_frame->offset);
1817 if (offset_len > 0) {
1818 type_byte |= offset_len - 1;
1821 // stream id 2 bits.
1822 type_byte <<= kQuicStreamIdShift;
1823 type_byte |= GetStreamIdSize(frame.stream_frame->stream_id) - 1;
1824 type_byte |= kQuicFrameTypeStreamMask; // Set Stream Frame Type to 1.
1825 break;
1827 case ACK_FRAME:
1828 return true;
1829 default:
1830 type_byte = static_cast<uint8>(frame.type);
1831 break;
1834 return writer->WriteUInt8(type_byte);
1837 // static
1838 bool QuicFramer::AppendPacketSequenceNumber(
1839 QuicSequenceNumberLength sequence_number_length,
1840 QuicPacketSequenceNumber packet_sequence_number,
1841 QuicDataWriter* writer) {
1842 // Ensure the entire sequence number can be written.
1843 if (writer->capacity() - writer->length() <
1844 static_cast<size_t>(sequence_number_length)) {
1845 return false;
1847 switch (sequence_number_length) {
1848 case PACKET_1BYTE_SEQUENCE_NUMBER:
1849 return writer->WriteUInt8(
1850 packet_sequence_number & k1ByteSequenceNumberMask);
1851 break;
1852 case PACKET_2BYTE_SEQUENCE_NUMBER:
1853 return writer->WriteUInt16(
1854 packet_sequence_number & k2ByteSequenceNumberMask);
1855 break;
1856 case PACKET_4BYTE_SEQUENCE_NUMBER:
1857 return writer->WriteUInt32(
1858 packet_sequence_number & k4ByteSequenceNumberMask);
1859 break;
1860 case PACKET_6BYTE_SEQUENCE_NUMBER:
1861 return writer->WriteUInt48(
1862 packet_sequence_number & k6ByteSequenceNumberMask);
1863 break;
1864 default:
1865 DCHECK(false) << "sequence_number_length: " << sequence_number_length;
1866 return false;
1870 bool QuicFramer::AppendStreamFrame(
1871 const QuicStreamFrame& frame,
1872 bool no_stream_frame_length,
1873 QuicDataWriter* writer) {
1874 if (!writer->WriteBytes(&frame.stream_id, GetStreamIdSize(frame.stream_id))) {
1875 LOG(DFATAL) << "Writing stream id size failed.";
1876 return false;
1878 if (!writer->WriteBytes(&frame.offset, GetStreamOffsetSize(frame.offset))) {
1879 LOG(DFATAL) << "Writing offset size failed.";
1880 return false;
1882 if (!no_stream_frame_length) {
1883 if ((frame.data.TotalBufferSize() > numeric_limits<uint16>::max()) ||
1884 !writer->WriteUInt16(
1885 static_cast<uint16>(frame.data.TotalBufferSize()))) {
1886 LOG(DFATAL) << "Writing stream frame length failed";
1887 return false;
1891 if (!writer->WriteIOVector(frame.data)) {
1892 LOG(DFATAL) << "Writing frame data failed.";
1893 return false;
1895 return true;
1898 void QuicFramer::set_version(const QuicVersion version) {
1899 DCHECK(IsSupportedVersion(version)) << QuicVersionToString(version);
1900 quic_version_ = version;
1903 bool QuicFramer::AppendAckFrameAndTypeByte(
1904 const QuicPacketHeader& header,
1905 const QuicAckFrame& frame,
1906 QuicDataWriter* writer) {
1907 AckFrameInfo ack_info = GetAckFrameInfo(frame);
1908 QuicPacketSequenceNumber ack_largest_observed = frame.largest_observed;
1909 QuicSequenceNumberLength largest_observed_length =
1910 GetMinSequenceNumberLength(ack_largest_observed);
1911 QuicSequenceNumberLength missing_sequence_number_length =
1912 GetMinSequenceNumberLength(ack_info.max_delta);
1913 // Determine whether we need to truncate ranges.
1914 size_t available_range_bytes = writer->capacity() - writer->length() -
1915 kNumberOfRevivedPacketsSize - kNumberOfNackRangesSize -
1916 GetMinAckFrameSize(header.public_header.sequence_number_length,
1917 largest_observed_length);
1918 size_t max_num_ranges = available_range_bytes /
1919 (missing_sequence_number_length + PACKET_1BYTE_SEQUENCE_NUMBER);
1920 max_num_ranges = min(kMaxNackRanges, max_num_ranges);
1921 bool truncated = ack_info.nack_ranges.size() > max_num_ranges;
1922 DVLOG_IF(1, truncated) << "Truncating ack from "
1923 << ack_info.nack_ranges.size() << " ranges to "
1924 << max_num_ranges;
1925 // Write out the type byte by setting the low order bits and doing shifts
1926 // to make room for the next bit flags to be set.
1927 // Whether there are any nacks.
1928 uint8 type_byte = ack_info.nack_ranges.empty() ? 0 : kQuicHasNacksMask;
1930 // truncating bit.
1931 type_byte <<= kQuicAckTruncatedShift;
1932 type_byte |= truncated ? kQuicAckTruncatedMask : 0;
1934 // Largest observed sequence number length.
1935 type_byte <<= kQuicSequenceNumberLengthShift;
1936 type_byte |= GetSequenceNumberFlags(largest_observed_length);
1938 // Missing sequence number length.
1939 type_byte <<= kQuicSequenceNumberLengthShift;
1940 type_byte |= GetSequenceNumberFlags(missing_sequence_number_length);
1942 type_byte |= kQuicFrameTypeAckMask;
1944 if (!writer->WriteUInt8(type_byte)) {
1945 return false;
1948 QuicPacketEntropyHash ack_entropy_hash = frame.entropy_hash;
1949 NackRangeMap::reverse_iterator ack_iter = ack_info.nack_ranges.rbegin();
1950 if (truncated) {
1951 // Skip the nack ranges which the truncated ack won't include and set
1952 // a correct largest observed for the truncated ack.
1953 for (size_t i = 1; i < (ack_info.nack_ranges.size() - max_num_ranges);
1954 ++i) {
1955 ++ack_iter;
1957 // If the last range is followed by acks, include them.
1958 // If the last range is followed by another range, specify the end of the
1959 // range as the largest_observed.
1960 ack_largest_observed = ack_iter->first - 1;
1961 // Also update the entropy so it matches the largest observed.
1962 ack_entropy_hash = entropy_calculator_->EntropyHash(ack_largest_observed);
1963 ++ack_iter;
1966 if (!writer->WriteUInt8(ack_entropy_hash)) {
1967 return false;
1970 if (!AppendPacketSequenceNumber(largest_observed_length,
1971 ack_largest_observed, writer)) {
1972 return false;
1975 uint64 delta_time_largest_observed_us = kUFloat16MaxValue;
1976 if (!frame.delta_time_largest_observed.IsInfinite()) {
1977 DCHECK_LE(0u, frame.delta_time_largest_observed.ToMicroseconds());
1978 delta_time_largest_observed_us =
1979 frame.delta_time_largest_observed.ToMicroseconds();
1982 if (!writer->WriteUFloat16(delta_time_largest_observed_us)) {
1983 return false;
1986 // Timestamp goes at the end of the required fields.
1987 if (!truncated) {
1988 if (!AppendTimestampToAckFrame(frame, writer)) {
1989 return false;
1993 if (ack_info.nack_ranges.empty()) {
1994 return true;
1997 const uint8 num_missing_ranges =
1998 static_cast<uint8>(min(ack_info.nack_ranges.size(), max_num_ranges));
1999 if (!writer->WriteBytes(&num_missing_ranges, 1)) {
2000 return false;
2003 int num_ranges_written = 0;
2004 QuicPacketSequenceNumber last_sequence_written = ack_largest_observed;
2005 for (; ack_iter != ack_info.nack_ranges.rend(); ++ack_iter) {
2006 // Calculate the delta to the last number in the range.
2007 QuicPacketSequenceNumber missing_delta =
2008 last_sequence_written - (ack_iter->first + ack_iter->second);
2009 if (!AppendPacketSequenceNumber(missing_sequence_number_length,
2010 missing_delta, writer)) {
2011 return false;
2013 if (!AppendPacketSequenceNumber(PACKET_1BYTE_SEQUENCE_NUMBER,
2014 ack_iter->second, writer)) {
2015 return false;
2017 // Subtract 1 so a missing_delta of 0 means an adjacent range.
2018 last_sequence_written = ack_iter->first - 1;
2019 ++num_ranges_written;
2021 DCHECK_EQ(num_missing_ranges, num_ranges_written);
2023 // Append revived packets.
2024 // If not all the revived packets fit, only mention the ones that do.
2025 uint8 num_revived_packets =
2026 static_cast<uint8>(min(frame.revived_packets.size(), kMaxRevivedPackets));
2027 num_revived_packets = static_cast<uint8>(min(
2028 static_cast<size_t>(num_revived_packets),
2029 (writer->capacity() - writer->length()) / largest_observed_length));
2030 if (!writer->WriteBytes(&num_revived_packets, 1)) {
2031 return false;
2034 SequenceNumberSet::const_iterator iter = frame.revived_packets.begin();
2035 for (int i = 0; i < num_revived_packets; ++i, ++iter) {
2036 LOG_IF(DFATAL, !ContainsKey(frame.missing_packets, *iter));
2037 if (!AppendPacketSequenceNumber(largest_observed_length,
2038 *iter, writer)) {
2039 return false;
2043 return true;
2046 bool QuicFramer::AppendTimestampToAckFrame(const QuicAckFrame& frame,
2047 QuicDataWriter* writer) {
2048 DCHECK_GE(version(), QUIC_VERSION_23);
2049 DCHECK_GE(numeric_limits<uint8>::max(), frame.received_packet_times.size());
2050 // num_received_packets is only 1 byte.
2051 if (frame.received_packet_times.size() > numeric_limits<uint8>::max()) {
2052 return false;
2055 uint8 num_received_packets = frame.received_packet_times.size();
2057 if (!writer->WriteBytes(&num_received_packets, 1)) {
2058 return false;
2060 if (num_received_packets == 0) {
2061 return true;
2064 PacketTimeList::const_iterator it = frame.received_packet_times.begin();
2065 QuicPacketSequenceNumber sequence_number = it->first;
2066 QuicPacketSequenceNumber delta_from_largest_observed =
2067 frame.largest_observed - sequence_number;
2069 DCHECK_GE(numeric_limits<uint8>::max(), delta_from_largest_observed);
2070 if (delta_from_largest_observed > numeric_limits<uint8>::max()) {
2071 return false;
2074 if (!writer->WriteUInt8(
2075 delta_from_largest_observed & k1ByteSequenceNumberMask)) {
2076 return false;
2079 // Use the lowest 4 bytes of the time delta from the creation_time_.
2080 const uint64 time_epoch_delta_us = GG_UINT64_C(1) << 32;
2081 uint32 time_delta_us =
2082 static_cast<uint32>(it->second.Subtract(creation_time_).ToMicroseconds()
2083 & (time_epoch_delta_us - 1));
2084 if (!writer->WriteBytes(&time_delta_us, sizeof(time_delta_us))) {
2085 return false;
2088 QuicTime prev_time = it->second;
2090 for (++it; it != frame.received_packet_times.end(); ++it) {
2091 sequence_number = it->first;
2092 delta_from_largest_observed = frame.largest_observed - sequence_number;
2094 if (delta_from_largest_observed > numeric_limits<uint8>::max()) {
2095 return false;
2098 if (!writer->WriteUInt8(
2099 delta_from_largest_observed & k1ByteSequenceNumberMask)) {
2100 return false;
2103 uint64 frame_time_delta_us =
2104 it->second.Subtract(prev_time).ToMicroseconds();
2105 prev_time = it->second;
2106 if (!writer->WriteUFloat16(frame_time_delta_us)) {
2107 return false;
2110 return true;
2113 bool QuicFramer::AppendStopWaitingFrame(
2114 const QuicPacketHeader& header,
2115 const QuicStopWaitingFrame& frame,
2116 QuicDataWriter* writer) {
2117 DCHECK_GE(header.packet_sequence_number, frame.least_unacked);
2118 const QuicPacketSequenceNumber least_unacked_delta =
2119 header.packet_sequence_number - frame.least_unacked;
2120 const QuicPacketSequenceNumber length_shift =
2121 header.public_header.sequence_number_length * 8;
2122 if (!writer->WriteUInt8(frame.entropy_hash)) {
2123 LOG(DFATAL) << " hash failed";
2124 return false;
2127 if (least_unacked_delta >> length_shift > 0) {
2128 LOG(DFATAL) << "sequence_number_length "
2129 << header.public_header.sequence_number_length
2130 << " is too small for least_unacked_delta: "
2131 << least_unacked_delta;
2132 return false;
2134 if (!AppendPacketSequenceNumber(header.public_header.sequence_number_length,
2135 least_unacked_delta, writer)) {
2136 LOG(DFATAL) << " seq failed: "
2137 << header.public_header.sequence_number_length;
2138 return false;
2141 return true;
2144 bool QuicFramer::AppendRstStreamFrame(const QuicRstStreamFrame& frame,
2145 QuicDataWriter* writer) {
2146 if (!writer->WriteUInt32(frame.stream_id)) {
2147 return false;
2150 if (!writer->WriteUInt64(frame.byte_offset)) {
2151 return false;
2154 uint32 error_code = static_cast<uint32>(frame.error_code);
2155 if (!writer->WriteUInt32(error_code)) {
2156 return false;
2159 if (quic_version_ <= QUIC_VERSION_24) {
2160 if (!writer->WriteStringPiece16(frame.error_details)) {
2161 return false;
2164 return true;
2167 bool QuicFramer::AppendConnectionCloseFrame(
2168 const QuicConnectionCloseFrame& frame,
2169 QuicDataWriter* writer) {
2170 uint32 error_code = static_cast<uint32>(frame.error_code);
2171 if (!writer->WriteUInt32(error_code)) {
2172 return false;
2174 if (!writer->WriteStringPiece16(frame.error_details)) {
2175 return false;
2177 return true;
2180 bool QuicFramer::AppendGoAwayFrame(const QuicGoAwayFrame& frame,
2181 QuicDataWriter* writer) {
2182 uint32 error_code = static_cast<uint32>(frame.error_code);
2183 if (!writer->WriteUInt32(error_code)) {
2184 return false;
2186 uint32 stream_id = static_cast<uint32>(frame.last_good_stream_id);
2187 if (!writer->WriteUInt32(stream_id)) {
2188 return false;
2190 if (!writer->WriteStringPiece16(frame.reason_phrase)) {
2191 return false;
2193 return true;
2196 bool QuicFramer::AppendWindowUpdateFrame(const QuicWindowUpdateFrame& frame,
2197 QuicDataWriter* writer) {
2198 uint32 stream_id = static_cast<uint32>(frame.stream_id);
2199 if (!writer->WriteUInt32(stream_id)) {
2200 return false;
2202 if (!writer->WriteUInt64(frame.byte_offset)) {
2203 return false;
2205 return true;
2208 bool QuicFramer::AppendBlockedFrame(const QuicBlockedFrame& frame,
2209 QuicDataWriter* writer) {
2210 uint32 stream_id = static_cast<uint32>(frame.stream_id);
2211 if (!writer->WriteUInt32(stream_id)) {
2212 return false;
2214 return true;
2217 bool QuicFramer::RaiseError(QuicErrorCode error) {
2218 DVLOG(1) << "Error: " << QuicUtils::ErrorToString(error)
2219 << " detail: " << detailed_error_;
2220 set_error(error);
2221 visitor_->OnError(this);
2222 reader_.reset(nullptr);
2223 return false;
2226 } // namespace net