Supervised user whitelists: Cleanup
[chromium-blink-merge.git] / skia / ext / recursive_gaussian_convolution_unittest.cc
blob9fe386b7c5647357ec12da49a56b789fdc6958b8
1 // Copyright (c) 2013 The Chromium Authors. All rights reserved.
2 // Use of this source code is governed by a BSD-style license that can be
3 // found in the LICENSE file.
5 #include <functional>
6 #include <numeric>
7 #include <vector>
9 #include "base/basictypes.h"
10 #include "base/files/file_path.h"
11 #include "base/files/file_util.h"
12 #include "base/logging.h"
13 #include "base/time/time.h"
14 #include "skia/ext/convolver.h"
15 #include "skia/ext/recursive_gaussian_convolution.h"
16 #include "testing/gtest/include/gtest/gtest.h"
17 #include "third_party/skia/include/core/SkPoint.h"
18 #include "third_party/skia/include/core/SkRect.h"
20 namespace {
22 int ComputeRowStride(int width, int channel_count, int stride_slack) {
23 return width * channel_count + stride_slack;
26 SkIPoint MakeImpulseImage(std::vector<unsigned char>* image,
27 int width,
28 int height,
29 int channel_index,
30 int channel_count,
31 int stride_slack) {
32 const int src_row_stride = ComputeRowStride(
33 width, channel_count, stride_slack);
34 const int src_byte_count = src_row_stride * height;
35 const int signal_x = width / 2;
36 const int signal_y = height / 2;
38 image->resize(src_byte_count, 0);
39 const int non_zero_pixel_index =
40 signal_y * src_row_stride + signal_x * channel_count + channel_index;
41 (*image)[non_zero_pixel_index] = 255;
42 return SkIPoint::Make(signal_x, signal_y);
45 SkIRect MakeBoxImage(std::vector<unsigned char>* image,
46 int width,
47 int height,
48 int channel_index,
49 int channel_count,
50 int stride_slack,
51 int box_width,
52 int box_height,
53 unsigned char value) {
54 const int src_row_stride = ComputeRowStride(
55 width, channel_count, stride_slack);
56 const int src_byte_count = src_row_stride * height;
57 const SkIRect box = SkIRect::MakeXYWH((width - box_width) / 2,
58 (height - box_height) / 2,
59 box_width, box_height);
61 image->resize(src_byte_count, 0);
62 for (int y = box.top(); y < box.bottom(); ++y) {
63 for (int x = box.left(); x < box.right(); ++x)
64 (*image)[y * src_row_stride + x * channel_count + channel_index] = value;
67 return box;
70 int ComputeBoxSum(const std::vector<unsigned char>& image,
71 const SkIRect& box,
72 int image_width) {
73 // Compute the sum of all pixels in the box. Assume byte stride 1 and row
74 // stride same as image_width.
75 int sum = 0;
76 for (int y = box.top(); y < box.bottom(); ++y) {
77 for (int x = box.left(); x < box.right(); ++x)
78 sum += image[y * image_width + x];
81 return sum;
84 } // namespace
86 namespace skia {
88 TEST(RecursiveGaussian, SmoothingMethodComparison) {
89 static const int kImgWidth = 512;
90 static const int kImgHeight = 220;
91 static const int kChannelIndex = 3;
92 static const int kChannelCount = 3;
93 static const int kStrideSlack = 22;
95 std::vector<unsigned char> input;
96 SkISize image_size = SkISize::Make(kImgWidth, kImgHeight);
97 MakeImpulseImage(
98 &input, kImgWidth, kImgHeight, kChannelIndex, kChannelCount,
99 kStrideSlack);
101 // Destination will be a single channel image with stide matching width.
102 const int dest_row_stride = kImgWidth;
103 const int dest_byte_count = dest_row_stride * kImgHeight;
104 std::vector<unsigned char> intermediate(dest_byte_count);
105 std::vector<unsigned char> intermediate2(dest_byte_count);
106 std::vector<unsigned char> control(dest_byte_count);
107 std::vector<unsigned char> output(dest_byte_count);
109 const int src_row_stride = ComputeRowStride(
110 kImgWidth, kChannelCount, kStrideSlack);
112 const float kernel_sigma = 2.5f;
113 ConvolutionFilter1D filter;
114 SetUpGaussianConvolutionKernel(&filter, kernel_sigma, false);
115 // Process the control image.
116 SingleChannelConvolveX1D(&input[0], src_row_stride,
117 kChannelIndex, kChannelCount,
118 filter, image_size,
119 &intermediate[0], dest_row_stride, 0, 1, false);
120 SingleChannelConvolveY1D(&intermediate[0], dest_row_stride, 0, 1,
121 filter, image_size,
122 &control[0], dest_row_stride, 0, 1, false);
124 // Now try the same using the other method.
125 RecursiveFilter recursive_filter(kernel_sigma, RecursiveFilter::FUNCTION);
126 SingleChannelRecursiveGaussianY(&input[0], src_row_stride,
127 kChannelIndex, kChannelCount,
128 recursive_filter, image_size,
129 &intermediate2[0], dest_row_stride,
130 0, 1, false);
131 SingleChannelRecursiveGaussianX(&intermediate2[0], dest_row_stride, 0, 1,
132 recursive_filter, image_size,
133 &output[0], dest_row_stride, 0, 1, false);
135 // We cannot expect the results to be really the same. In particular,
136 // the standard implementation is computed in completely fixed-point, while
137 // recursive is done in floating point and squeezed back into char*. On top
138 // of that, its characteristics are a bit different (consult the paper).
139 EXPECT_NEAR(std::accumulate(intermediate.begin(), intermediate.end(), 0),
140 std::accumulate(intermediate2.begin(), intermediate2.end(), 0),
141 50);
142 int difference_count = 0;
143 std::vector<unsigned char>::const_iterator i1, i2;
144 for (i1 = control.begin(), i2 = output.begin();
145 i1 != control.end(); ++i1, ++i2) {
146 if ((*i1 != 0) != (*i2 != 0))
147 difference_count++;
150 EXPECT_LE(difference_count, 44); // 44 is 2 * PI * r (r == 7, spot size).
153 TEST(RecursiveGaussian, SmoothingImpulse) {
154 static const int kImgWidth = 200;
155 static const int kImgHeight = 300;
156 static const int kChannelIndex = 3;
157 static const int kChannelCount = 3;
158 static const int kStrideSlack = 22;
160 std::vector<unsigned char> input;
161 SkISize image_size = SkISize::Make(kImgWidth, kImgHeight);
162 const SkIPoint centre_point = MakeImpulseImage(
163 &input, kImgWidth, kImgHeight, kChannelIndex, kChannelCount,
164 kStrideSlack);
166 // Destination will be a single channel image with stide matching width.
167 const int dest_row_stride = kImgWidth;
168 const int dest_byte_count = dest_row_stride * kImgHeight;
169 std::vector<unsigned char> intermediate(dest_byte_count);
170 std::vector<unsigned char> output(dest_byte_count);
172 const int src_row_stride = ComputeRowStride(
173 kImgWidth, kChannelCount, kStrideSlack);
175 const float kernel_sigma = 5.0f;
176 RecursiveFilter recursive_filter(kernel_sigma, RecursiveFilter::FUNCTION);
177 SingleChannelRecursiveGaussianY(&input[0], src_row_stride,
178 kChannelIndex, kChannelCount,
179 recursive_filter, image_size,
180 &intermediate[0], dest_row_stride,
181 0, 1, false);
182 SingleChannelRecursiveGaussianX(&intermediate[0], dest_row_stride, 0, 1,
183 recursive_filter, image_size,
184 &output[0], dest_row_stride, 0, 1, false);
186 // Check we got the expected impulse response.
187 const int cx = centre_point.x();
188 const int cy = centre_point.y();
189 unsigned char value_x = output[dest_row_stride * cy + cx];
190 unsigned char value_y = value_x;
191 EXPECT_GT(value_x, 0);
192 for (int offset = 0;
193 offset < std::min(kImgWidth, kImgHeight) && (value_y > 0 || value_x > 0);
194 ++offset) {
195 // Symmetricity and monotonicity along X.
196 EXPECT_EQ(output[dest_row_stride * cy + cx - offset],
197 output[dest_row_stride * cy + cx + offset]);
198 EXPECT_LE(output[dest_row_stride * cy + cx - offset], value_x);
199 value_x = output[dest_row_stride * cy + cx - offset];
201 // Symmetricity and monotonicity along Y.
202 EXPECT_EQ(output[dest_row_stride * (cy - offset) + cx],
203 output[dest_row_stride * (cy + offset) + cx]);
204 EXPECT_LE(output[dest_row_stride * (cy - offset) + cx], value_y);
205 value_y = output[dest_row_stride * (cy - offset) + cx];
207 // Symmetricity along X/Y (not really assured, but should be close).
208 EXPECT_NEAR(value_x, value_y, 1);
211 // Smooth the inverse now.
212 std::vector<unsigned char> output2(dest_byte_count);
213 std::transform(input.begin(), input.end(), input.begin(),
214 std::bind1st(std::minus<unsigned char>(), 255U));
215 SingleChannelRecursiveGaussianY(&input[0], src_row_stride,
216 kChannelIndex, kChannelCount,
217 recursive_filter, image_size,
218 &intermediate[0], dest_row_stride,
219 0, 1, false);
220 SingleChannelRecursiveGaussianX(&intermediate[0], dest_row_stride, 0, 1,
221 recursive_filter, image_size,
222 &output2[0], dest_row_stride, 0, 1, false);
223 // The image should be the reverse of output, but permitting for rounding
224 // we will only claim that wherever output is 0, output2 should be 255.
225 // There still can be differences at the edges of the object.
226 std::vector<unsigned char>::const_iterator i1, i2;
227 int difference_count = 0;
228 for (i1 = output.begin(), i2 = output2.begin();
229 i1 != output.end(); ++i1, ++i2) {
230 // The line below checks (*i1 == 0 <==> *i2 == 255).
231 if ((*i1 != 0 && *i2 == 255) && ! (*i1 == 0 && *i2 != 255))
232 ++difference_count;
234 EXPECT_LE(difference_count, 8);
237 TEST(RecursiveGaussian, FirstDerivative) {
238 static const int kImgWidth = 512;
239 static const int kImgHeight = 1024;
240 static const int kChannelIndex = 2;
241 static const int kChannelCount = 4;
242 static const int kStrideSlack = 22;
243 static const int kBoxSize = 400;
245 std::vector<unsigned char> input;
246 const SkISize image_size = SkISize::Make(kImgWidth, kImgHeight);
247 const SkIRect box = MakeBoxImage(
248 &input, kImgWidth, kImgHeight, kChannelIndex, kChannelCount,
249 kStrideSlack, kBoxSize, kBoxSize, 200);
251 // Destination will be a single channel image with stide matching width.
252 const int dest_row_stride = kImgWidth;
253 const int dest_byte_count = dest_row_stride * kImgHeight;
254 std::vector<unsigned char> output_x(dest_byte_count);
255 std::vector<unsigned char> output_y(dest_byte_count);
256 std::vector<unsigned char> output(dest_byte_count);
258 const int src_row_stride = ComputeRowStride(
259 kImgWidth, kChannelCount, kStrideSlack);
261 const float kernel_sigma = 3.0f;
262 const int spread = 4 * kernel_sigma;
263 RecursiveFilter recursive_filter(kernel_sigma,
264 RecursiveFilter::FIRST_DERIVATIVE);
265 SingleChannelRecursiveGaussianX(&input[0], src_row_stride,
266 kChannelIndex, kChannelCount,
267 recursive_filter, image_size,
268 &output_x[0], dest_row_stride,
269 0, 1, true);
270 SingleChannelRecursiveGaussianY(&input[0], src_row_stride,
271 kChannelIndex, kChannelCount,
272 recursive_filter, image_size,
273 &output_y[0], dest_row_stride,
274 0, 1, true);
276 // In test code we can assume adding the two up should do fine.
277 std::vector<unsigned char>::const_iterator ix, iy;
278 std::vector<unsigned char>::iterator target;
279 for (target = output.begin(), ix = output_x.begin(), iy = output_y.begin();
280 target < output.end(); ++target, ++ix, ++iy) {
281 *target = *ix + *iy;
284 SkIRect inflated_rect(box);
285 inflated_rect.outset(spread, spread);
286 SkIRect deflated_rect(box);
287 deflated_rect.inset(spread, spread);
289 int image_total = ComputeBoxSum(output,
290 SkIRect::MakeWH(kImgWidth, kImgHeight),
291 kImgWidth);
292 int box_inflated = ComputeBoxSum(output, inflated_rect, kImgWidth);
293 int box_deflated = ComputeBoxSum(output, deflated_rect, kImgWidth);
294 EXPECT_EQ(box_deflated, 0);
295 EXPECT_EQ(image_total, box_inflated);
297 // Try inverted image. Behaviour should be very similar (modulo rounding).
298 std::transform(input.begin(), input.end(), input.begin(),
299 std::bind1st(std::minus<unsigned char>(), 255U));
300 SingleChannelRecursiveGaussianX(&input[0], src_row_stride,
301 kChannelIndex, kChannelCount,
302 recursive_filter, image_size,
303 &output_x[0], dest_row_stride,
304 0, 1, true);
305 SingleChannelRecursiveGaussianY(&input[0], src_row_stride,
306 kChannelIndex, kChannelCount,
307 recursive_filter, image_size,
308 &output_y[0], dest_row_stride,
309 0, 1, true);
311 for (target = output.begin(), ix = output_x.begin(), iy = output_y.begin();
312 target < output.end(); ++target, ++ix, ++iy) {
313 *target = *ix + *iy;
316 image_total = ComputeBoxSum(output,
317 SkIRect::MakeWH(kImgWidth, kImgHeight),
318 kImgWidth);
319 box_inflated = ComputeBoxSum(output, inflated_rect, kImgWidth);
320 box_deflated = ComputeBoxSum(output, deflated_rect, kImgWidth);
322 EXPECT_EQ(box_deflated, 0);
323 EXPECT_EQ(image_total, box_inflated);
326 TEST(RecursiveGaussian, SecondDerivative) {
327 static const int kImgWidth = 700;
328 static const int kImgHeight = 500;
329 static const int kChannelIndex = 0;
330 static const int kChannelCount = 2;
331 static const int kStrideSlack = 42;
332 static const int kBoxSize = 200;
334 std::vector<unsigned char> input;
335 SkISize image_size = SkISize::Make(kImgWidth, kImgHeight);
336 const SkIRect box = MakeBoxImage(
337 &input, kImgWidth, kImgHeight, kChannelIndex, kChannelCount,
338 kStrideSlack, kBoxSize, kBoxSize, 200);
340 // Destination will be a single channel image with stide matching width.
341 const int dest_row_stride = kImgWidth;
342 const int dest_byte_count = dest_row_stride * kImgHeight;
343 std::vector<unsigned char> output_x(dest_byte_count);
344 std::vector<unsigned char> output_y(dest_byte_count);
345 std::vector<unsigned char> output(dest_byte_count);
347 const int src_row_stride = ComputeRowStride(
348 kImgWidth, kChannelCount, kStrideSlack);
350 const float kernel_sigma = 5.0f;
351 const int spread = 8 * kernel_sigma;
352 RecursiveFilter recursive_filter(kernel_sigma,
353 RecursiveFilter::SECOND_DERIVATIVE);
354 SingleChannelRecursiveGaussianX(&input[0], src_row_stride,
355 kChannelIndex, kChannelCount,
356 recursive_filter, image_size,
357 &output_x[0], dest_row_stride,
358 0, 1, true);
359 SingleChannelRecursiveGaussianY(&input[0], src_row_stride,
360 kChannelIndex, kChannelCount,
361 recursive_filter, image_size,
362 &output_y[0], dest_row_stride,
363 0, 1, true);
365 // In test code we can assume adding the two up should do fine.
366 std::vector<unsigned char>::const_iterator ix, iy;
367 std::vector<unsigned char>::iterator target;
368 for (target = output.begin(),ix = output_x.begin(), iy = output_y.begin();
369 target < output.end(); ++target, ++ix, ++iy) {
370 *target = *ix + *iy;
373 int image_total = ComputeBoxSum(output,
374 SkIRect::MakeWH(kImgWidth, kImgHeight),
375 kImgWidth);
376 int box_inflated = ComputeBoxSum(output,
377 SkIRect::MakeLTRB(box.left() - spread,
378 box.top() - spread,
379 box.right() + spread,
380 box.bottom() + spread),
381 kImgWidth);
382 int box_deflated = ComputeBoxSum(output,
383 SkIRect::MakeLTRB(box.left() + spread,
384 box.top() + spread,
385 box.right() - spread,
386 box.bottom() - spread),
387 kImgWidth);
388 // Since second derivative is not really used and implemented mostly
389 // for the sake of completeness, we do not verify the detail (that dip
390 // in the middle). But it is there.
391 EXPECT_EQ(box_deflated, 0);
392 EXPECT_EQ(image_total, box_inflated);
395 } // namespace skia