Supervised user whitelists: Cleanup
[chromium-blink-merge.git] / ui / events / latency_info.cc
blob24f12d4c02305ec1df5995f712fe201c4262f31b
1 // Copyright 2013 The Chromium Authors. All rights reserved.
2 // Use of this source code is governed by a BSD-style license that can be
3 // found in the LICENSE file.
5 #include "ui/events/latency_info.h"
7 #include <algorithm>
8 #include <string>
10 #include "base/json/json_writer.h"
11 #include "base/lazy_instance.h"
12 #include "base/memory/scoped_ptr.h"
13 #include "base/strings/stringprintf.h"
14 #include "base/trace_event/trace_event.h"
16 namespace {
18 const size_t kMaxLatencyInfoNumber = 100;
20 const char* GetComponentName(ui::LatencyComponentType type) {
21 #define CASE_TYPE(t) case ui::t: return #t
22 switch (type) {
23 CASE_TYPE(INPUT_EVENT_LATENCY_BEGIN_RWH_COMPONENT);
24 CASE_TYPE(INPUT_EVENT_LATENCY_BEGIN_PLUGIN_COMPONENT);
25 CASE_TYPE(LATENCY_BEGIN_SCROLL_LISTENER_UPDATE_MAIN_COMPONENT);
26 CASE_TYPE(INPUT_EVENT_LATENCY_SCROLL_UPDATE_ORIGINAL_COMPONENT);
27 CASE_TYPE(INPUT_EVENT_LATENCY_FIRST_SCROLL_UPDATE_ORIGINAL_COMPONENT);
28 CASE_TYPE(INPUT_EVENT_LATENCY_ORIGINAL_COMPONENT);
29 CASE_TYPE(INPUT_EVENT_LATENCY_UI_COMPONENT);
30 CASE_TYPE(INPUT_EVENT_LATENCY_RENDERING_SCHEDULED_MAIN_COMPONENT);
31 CASE_TYPE(INPUT_EVENT_LATENCY_RENDERING_SCHEDULED_IMPL_COMPONENT);
32 CASE_TYPE(INPUT_EVENT_LATENCY_FORWARD_SCROLL_UPDATE_TO_MAIN_COMPONENT);
33 CASE_TYPE(INPUT_EVENT_LATENCY_ACK_RWH_COMPONENT);
34 CASE_TYPE(WINDOW_SNAPSHOT_FRAME_NUMBER_COMPONENT);
35 CASE_TYPE(TAB_SHOW_COMPONENT);
36 CASE_TYPE(INPUT_EVENT_LATENCY_RENDERER_SWAP_COMPONENT);
37 CASE_TYPE(INPUT_EVENT_BROWSER_RECEIVED_RENDERER_SWAP_COMPONENT);
38 CASE_TYPE(INPUT_EVENT_GPU_SWAP_BUFFER_COMPONENT);
39 CASE_TYPE(INPUT_EVENT_LATENCY_TERMINATED_MOUSE_COMPONENT);
40 CASE_TYPE(INPUT_EVENT_LATENCY_TERMINATED_TOUCH_COMPONENT);
41 CASE_TYPE(INPUT_EVENT_LATENCY_TERMINATED_GESTURE_COMPONENT);
42 CASE_TYPE(INPUT_EVENT_LATENCY_TERMINATED_FRAME_SWAP_COMPONENT);
43 CASE_TYPE(INPUT_EVENT_LATENCY_TERMINATED_COMMIT_FAILED_COMPONENT);
44 CASE_TYPE(INPUT_EVENT_LATENCY_TERMINATED_COMMIT_NO_UPDATE_COMPONENT);
45 CASE_TYPE(INPUT_EVENT_LATENCY_TERMINATED_SWAP_FAILED_COMPONENT);
46 CASE_TYPE(INPUT_EVENT_LATENCY_TERMINATED_PLUGIN_COMPONENT);
47 default:
48 DLOG(WARNING) << "Unhandled LatencyComponentType.\n";
49 break;
51 #undef CASE_TYPE
52 return "unknown";
55 bool IsTerminalComponent(ui::LatencyComponentType type) {
56 switch (type) {
57 case ui::INPUT_EVENT_LATENCY_TERMINATED_MOUSE_COMPONENT:
58 case ui::INPUT_EVENT_LATENCY_TERMINATED_TOUCH_COMPONENT:
59 case ui::INPUT_EVENT_LATENCY_TERMINATED_GESTURE_COMPONENT:
60 case ui::INPUT_EVENT_LATENCY_TERMINATED_FRAME_SWAP_COMPONENT:
61 case ui::INPUT_EVENT_LATENCY_TERMINATED_COMMIT_FAILED_COMPONENT:
62 case ui::INPUT_EVENT_LATENCY_TERMINATED_COMMIT_NO_UPDATE_COMPONENT:
63 case ui::INPUT_EVENT_LATENCY_TERMINATED_SWAP_FAILED_COMPONENT:
64 case ui::INPUT_EVENT_LATENCY_TERMINATED_PLUGIN_COMPONENT:
65 return true;
66 default:
67 return false;
71 bool IsBeginComponent(ui::LatencyComponentType type) {
72 return (type == ui::INPUT_EVENT_LATENCY_BEGIN_RWH_COMPONENT ||
73 type == ui::INPUT_EVENT_LATENCY_BEGIN_PLUGIN_COMPONENT ||
74 type == ui::LATENCY_BEGIN_SCROLL_LISTENER_UPDATE_MAIN_COMPONENT);
77 bool IsInputLatencyBeginComponent(ui::LatencyComponentType type) {
78 return (type == ui::INPUT_EVENT_LATENCY_BEGIN_RWH_COMPONENT ||
79 type == ui::INPUT_EVENT_LATENCY_BEGIN_PLUGIN_COMPONENT);
82 // This class is for converting latency info to trace buffer friendly format.
83 class LatencyInfoTracedValue
84 : public base::trace_event::ConvertableToTraceFormat {
85 public:
86 static scoped_refptr<ConvertableToTraceFormat> FromValue(
87 scoped_ptr<base::Value> value);
89 void AppendAsTraceFormat(std::string* out) const override;
91 private:
92 explicit LatencyInfoTracedValue(base::Value* value);
93 ~LatencyInfoTracedValue() override;
95 scoped_ptr<base::Value> value_;
97 DISALLOW_COPY_AND_ASSIGN(LatencyInfoTracedValue);
100 scoped_refptr<base::trace_event::ConvertableToTraceFormat>
101 LatencyInfoTracedValue::FromValue(scoped_ptr<base::Value> value) {
102 return scoped_refptr<base::trace_event::ConvertableToTraceFormat>(
103 new LatencyInfoTracedValue(value.release()));
106 LatencyInfoTracedValue::~LatencyInfoTracedValue() {
109 void LatencyInfoTracedValue::AppendAsTraceFormat(std::string* out) const {
110 std::string tmp;
111 base::JSONWriter::Write(value_.get(), &tmp);
112 *out += tmp;
115 LatencyInfoTracedValue::LatencyInfoTracedValue(base::Value* value)
116 : value_(value) {
119 // Converts latencyinfo into format that can be dumped into trace buffer.
120 scoped_refptr<base::trace_event::ConvertableToTraceFormat> AsTraceableData(
121 const ui::LatencyInfo& latency) {
122 scoped_ptr<base::DictionaryValue> record_data(new base::DictionaryValue());
123 for (ui::LatencyInfo::LatencyMap::const_iterator it =
124 latency.latency_components.begin();
125 it != latency.latency_components.end(); ++it) {
126 base::DictionaryValue* component_info = new base::DictionaryValue();
127 component_info->SetDouble("comp_id", static_cast<double>(it->first.second));
128 component_info->SetDouble(
129 "time", static_cast<double>(it->second.event_time.ToInternalValue()));
130 component_info->SetDouble("count", it->second.event_count);
131 record_data->Set(GetComponentName(it->first.first), component_info);
133 record_data->SetDouble("trace_id", static_cast<double>(latency.trace_id));
135 scoped_ptr<base::ListValue> coordinates(new base::ListValue());
136 for (size_t i = 0; i < latency.input_coordinates_size; i++) {
137 scoped_ptr<base::DictionaryValue> coordinate_pair(
138 new base::DictionaryValue());
139 coordinate_pair->SetDouble("x", latency.input_coordinates[i].x);
140 coordinate_pair->SetDouble("y", latency.input_coordinates[i].y);
141 coordinates->Append(coordinate_pair.release());
143 record_data->Set("coordinates", coordinates.release());
144 return LatencyInfoTracedValue::FromValue(record_data.Pass());
147 struct BenchmarkEnabledInitializer {
148 BenchmarkEnabledInitializer() :
149 benchmark_enabled(TRACE_EVENT_API_GET_CATEGORY_GROUP_ENABLED(
150 "benchmark")) {
153 const unsigned char* benchmark_enabled;
156 static base::LazyInstance<BenchmarkEnabledInitializer>::Leaky
157 g_benchmark_enabled = LAZY_INSTANCE_INITIALIZER;
159 } // namespace
161 namespace ui {
163 LatencyInfo::InputCoordinate::InputCoordinate() : x(0), y(0) {
166 LatencyInfo::InputCoordinate::InputCoordinate(float x, float y) : x(x), y(y) {
169 LatencyInfo::LatencyInfo()
170 : input_coordinates_size(0), trace_id(-1), terminated(false) {
173 LatencyInfo::~LatencyInfo() {
176 bool LatencyInfo::Verify(const std::vector<LatencyInfo>& latency_info,
177 const char* referring_msg) {
178 if (latency_info.size() > kMaxLatencyInfoNumber) {
179 LOG(ERROR) << referring_msg << ", LatencyInfo vector size "
180 << latency_info.size() << " is too big.";
181 return false;
183 for (size_t i = 0; i < latency_info.size(); i++) {
184 if (latency_info[i].input_coordinates_size > kMaxInputCoordinates) {
185 LOG(ERROR) << referring_msg << ", coordinate vector size "
186 << latency_info[i].input_coordinates_size << " is too big.";
187 return false;
191 return true;
194 void LatencyInfo::CopyLatencyFrom(const LatencyInfo& other,
195 LatencyComponentType type) {
196 for (LatencyMap::const_iterator it = other.latency_components.begin();
197 it != other.latency_components.end();
198 ++it) {
199 if (it->first.first == type) {
200 AddLatencyNumberWithTimestamp(it->first.first,
201 it->first.second,
202 it->second.sequence_number,
203 it->second.event_time,
204 it->second.event_count);
209 void LatencyInfo::AddNewLatencyFrom(const LatencyInfo& other) {
210 for (LatencyMap::const_iterator it = other.latency_components.begin();
211 it != other.latency_components.end();
212 ++it) {
213 if (!FindLatency(it->first.first, it->first.second, NULL)) {
214 AddLatencyNumberWithTimestamp(it->first.first,
215 it->first.second,
216 it->second.sequence_number,
217 it->second.event_time,
218 it->second.event_count);
223 void LatencyInfo::AddLatencyNumber(LatencyComponentType component,
224 int64 id,
225 int64 component_sequence_number) {
226 AddLatencyNumberWithTimestampImpl(component, id, component_sequence_number,
227 base::TimeTicks::Now(), 1, nullptr);
230 void LatencyInfo::AddLatencyNumberWithTraceName(
231 LatencyComponentType component,
232 int64 id,
233 int64 component_sequence_number,
234 const char* trace_name_str) {
235 AddLatencyNumberWithTimestampImpl(component, id, component_sequence_number,
236 base::TimeTicks::Now(), 1, trace_name_str);
239 void LatencyInfo::AddLatencyNumberWithTimestamp(LatencyComponentType component,
240 int64 id,
241 int64 component_sequence_number,
242 base::TimeTicks time,
243 uint32 event_count) {
244 AddLatencyNumberWithTimestampImpl(component, id, component_sequence_number,
245 time, event_count, nullptr);
248 void LatencyInfo::AddLatencyNumberWithTimestampImpl(
249 LatencyComponentType component,
250 int64 id,
251 int64 component_sequence_number,
252 base::TimeTicks time,
253 uint32 event_count,
254 const char* trace_name_str) {
256 const unsigned char* benchmark_enabled =
257 g_benchmark_enabled.Get().benchmark_enabled;
259 if (IsBeginComponent(component)) {
260 // Should only ever add begin component once.
261 CHECK_EQ(-1, trace_id);
262 trace_id = component_sequence_number;
264 if (*benchmark_enabled) {
265 // The timestamp for ASYNC_BEGIN trace event is used for drawing the
266 // beginning of the trace event in trace viewer. For better visualization,
267 // for an input event, we want to draw the beginning as when the event is
268 // originally created, e.g. the timestamp of its ORIGINAL/UI_COMPONENT,
269 // not when we actually issue the ASYNC_BEGIN trace event.
270 LatencyComponent begin_component;
271 int64 ts = 0;
272 if (FindLatency(INPUT_EVENT_LATENCY_ORIGINAL_COMPONENT,
274 &begin_component) ||
275 FindLatency(INPUT_EVENT_LATENCY_UI_COMPONENT,
277 &begin_component)) {
278 // The timestamp stored in ORIGINAL/UI_COMPONENT is using clock
279 // CLOCK_MONOTONIC while TRACE_EVENT_ASYNC_BEGIN_WITH_TIMESTAMP0
280 // expects timestamp using CLOCK_MONOTONIC or CLOCK_SYSTEM_TRACE (on
281 // CrOS). So we need to adjust the diff between in CLOCK_MONOTONIC and
282 // CLOCK_SYSTEM_TRACE. Note that the diff is drifting overtime so we
283 // can't use a static value.
284 int64 diff = base::TimeTicks::Now().ToInternalValue() -
285 base::TimeTicks::NowFromSystemTraceTime().ToInternalValue();
286 ts = begin_component.event_time.ToInternalValue() - diff;
287 } else {
288 ts = base::TimeTicks::NowFromSystemTraceTime().ToInternalValue();
291 if (trace_name_str) {
292 if (IsInputLatencyBeginComponent(component))
293 trace_name = std::string("InputLatency::") + trace_name_str;
294 else
295 trace_name = std::string("Latency::") + trace_name_str;
298 TRACE_EVENT_COPY_ASYNC_BEGIN_WITH_TIMESTAMP0(
299 "benchmark",
300 trace_name.c_str(),
301 TRACE_ID_DONT_MANGLE(trace_id),
302 ts);
305 TRACE_EVENT_FLOW_BEGIN0(
306 "input,benchmark", "LatencyInfo.Flow", TRACE_ID_DONT_MANGLE(trace_id));
309 LatencyMap::key_type key = std::make_pair(component, id);
310 LatencyMap::iterator it = latency_components.find(key);
311 if (it == latency_components.end()) {
312 LatencyComponent info = {component_sequence_number, time, event_count};
313 latency_components[key] = info;
314 } else {
315 it->second.sequence_number = std::max(component_sequence_number,
316 it->second.sequence_number);
317 uint32 new_count = event_count + it->second.event_count;
318 if (event_count > 0 && new_count != 0) {
319 // Do a weighted average, so that the new event_time is the average of
320 // the times of events currently in this structure with the time passed
321 // into this method.
322 it->second.event_time += (time - it->second.event_time) * event_count /
323 new_count;
324 it->second.event_count = new_count;
328 if (IsTerminalComponent(component) && trace_id != -1) {
329 // Should only ever add terminal component once.
330 CHECK(!terminated);
331 terminated = true;
333 if (*benchmark_enabled) {
334 TRACE_EVENT_COPY_ASYNC_END1("benchmark",
335 trace_name.c_str(),
336 TRACE_ID_DONT_MANGLE(trace_id),
337 "data", AsTraceableData(*this));
340 TRACE_EVENT_FLOW_END0(
341 "input,benchmark", "LatencyInfo.Flow", TRACE_ID_DONT_MANGLE(trace_id));
345 bool LatencyInfo::FindLatency(LatencyComponentType type,
346 int64 id,
347 LatencyComponent* output) const {
348 LatencyMap::const_iterator it = latency_components.find(
349 std::make_pair(type, id));
350 if (it == latency_components.end())
351 return false;
352 if (output)
353 *output = it->second;
354 return true;
357 void LatencyInfo::RemoveLatency(LatencyComponentType type) {
358 LatencyMap::iterator it = latency_components.begin();
359 while (it != latency_components.end()) {
360 if (it->first.first == type) {
361 LatencyMap::iterator tmp = it;
362 ++it;
363 latency_components.erase(tmp);
364 } else {
365 it++;
370 void LatencyInfo::Clear() {
371 latency_components.clear();
374 } // namespace ui