Ensure low-memory renderers retry failed loads correctly.
[chromium-blink-merge.git] / third_party / re2 / util / sparse_array.h
blob4ee5c949ca25687819646e266d1ca8c3f59fbdac
1 // Copyright 2006 The RE2 Authors. All Rights Reserved.
2 // Use of this source code is governed by a BSD-style
3 // license that can be found in the LICENSE file.
5 // DESCRIPTION
6 //
7 // SparseArray<T>(m) is a map from integers in [0, m) to T values.
8 // It requires (sizeof(T)+sizeof(int))*m memory, but it provides
9 // fast iteration through the elements in the array and fast clearing
10 // of the array. The array has a concept of certain elements being
11 // uninitialized (having no value).
12 //
13 // Insertion and deletion are constant time operations.
14 //
15 // Allocating the array is a constant time operation
16 // when memory allocation is a constant time operation.
17 //
18 // Clearing the array is a constant time operation (unusual!).
19 //
20 // Iterating through the array is an O(n) operation, where n
21 // is the number of items in the array (not O(m)).
23 // The array iterator visits entries in the order they were first
24 // inserted into the array. It is safe to add items to the array while
25 // using an iterator: the iterator will visit indices added to the array
26 // during the iteration, but will not re-visit indices whose values
27 // change after visiting. Thus SparseArray can be a convenient
28 // implementation of a work queue.
29 //
30 // The SparseArray implementation is NOT thread-safe. It is up to the
31 // caller to make sure only one thread is accessing the array. (Typically
32 // these arrays are temporary values and used in situations where speed is
33 // important.)
34 //
35 // The SparseArray interface does not present all the usual STL bells and
36 // whistles.
37 //
38 // Implemented with reference to Briggs & Torczon, An Efficient
39 // Representation for Sparse Sets, ACM Letters on Programming Languages
40 // and Systems, Volume 2, Issue 1-4 (March-Dec. 1993), pp. 59-69.
41 //
42 // Briggs & Torczon popularized this technique, but it had been known
43 // long before their paper. They point out that Aho, Hopcroft, and
44 // Ullman's 1974 Design and Analysis of Computer Algorithms and Bentley's
45 // 1986 Programming Pearls both hint at the technique in exercises to the
46 // reader (in Aho & Hopcroft, exercise 2.12; in Bentley, column 1
47 // exercise 8).
48 //
49 // Briggs & Torczon describe a sparse set implementation. I have
50 // trivially generalized it to create a sparse array (actually the original
51 // target of the AHU and Bentley exercises).
53 // IMPLEMENTATION
55 // SparseArray uses a vector dense_ and an array sparse_to_dense_, both of
56 // size max_size_. At any point, the number of elements in the sparse array is
57 // size_.
58 //
59 // The vector dense_ contains the size_ elements in the sparse array (with
60 // their indices),
61 // in the order that the elements were first inserted. This array is dense:
62 // the size_ pairs are dense_[0] through dense_[size_-1].
64 // The array sparse_to_dense_ maps from indices in [0,m) to indices in
65 // [0,size_).
66 // For indices present in the array, dense_[sparse_to_dense_[i]].index_ == i.
67 // For indices not present in the array, sparse_to_dense_ can contain
68 // any value at all, perhaps outside the range [0, size_) but perhaps not.
69 //
70 // The lax requirement on sparse_to_dense_ values makes clearing
71 // the array very easy: set size_ to 0. Lookups are slightly more
72 // complicated. An index i has a value in the array if and only if:
73 // sparse_to_dense_[i] is in [0, size_) AND
74 // dense_[sparse_to_dense_[i]].index_ == i.
75 // If both these properties hold, only then it is safe to refer to
76 // dense_[sparse_to_dense_[i]].value_
77 // as the value associated with index i.
79 // To insert a new entry, set sparse_to_dense_[i] to size_,
80 // initialize dense_[size_], and then increment size_.
82 // Deletion of specific values from the array is implemented by
83 // swapping dense_[size_-1] and the dense_ being deleted and then
84 // updating the appropriate sparse_to_dense_ entries.
85 //
86 // To make the sparse array as efficient as possible for non-primitive types,
87 // elements may or may not be destroyed when they are deleted from the sparse
88 // array through a call to erase(), erase_existing() or resize(). They
89 // immediately become inaccessible, but they are only guaranteed to be
90 // destroyed when the SparseArray destructor is called.
92 #ifndef RE2_UTIL_SPARSE_ARRAY_H__
93 #define RE2_UTIL_SPARSE_ARRAY_H__
95 #include "util/util.h"
97 namespace re2 {
99 template<typename Value>
100 class SparseArray {
101 public:
102 SparseArray();
103 SparseArray(int max_size);
104 ~SparseArray();
106 // IndexValue pairs: exposed in SparseArray::iterator.
107 class IndexValue;
109 typedef IndexValue value_type;
110 typedef typename vector<IndexValue>::iterator iterator;
111 typedef typename vector<IndexValue>::const_iterator const_iterator;
113 inline const IndexValue& iv(int i) const;
115 // Return the number of entries in the array.
116 int size() const {
117 return size_;
120 // Iterate over the array.
121 iterator begin() {
122 return dense_.begin();
124 iterator end() {
125 return dense_.begin() + size_;
128 const_iterator begin() const {
129 return dense_.begin();
131 const_iterator end() const {
132 return dense_.begin() + size_;
135 // Change the maximum size of the array.
136 // Invalidates all iterators.
137 void resize(int max_size);
139 // Return the maximum size of the array.
140 // Indices can be in the range [0, max_size).
141 int max_size() const {
142 return max_size_;
145 // Clear the array.
146 void clear() {
147 size_ = 0;
150 // Check whether index i is in the array.
151 inline bool has_index(int i) const;
153 // Comparison function for sorting.
154 // Can sort the sparse array so that future iterations
155 // will visit indices in increasing order using
156 // sort(arr.begin(), arr.end(), arr.less);
157 static bool less(const IndexValue& a, const IndexValue& b);
159 public:
160 // Set the value at index i to v.
161 inline iterator set(int i, Value v);
163 pair<iterator, bool> insert(const value_type& new_value);
165 // Returns the value at index i
166 // or defaultv if index i is not initialized in the array.
167 inline Value get(int i, Value defaultv) const;
169 iterator find(int i);
171 const_iterator find(int i) const;
173 // Change the value at index i to v.
174 // Fast but unsafe: only use if has_index(i) is true.
175 inline iterator set_existing(int i, Value v);
177 // Set the value at the new index i to v.
178 // Fast but unsafe: only use if has_index(i) is false.
179 inline iterator set_new(int i, Value v);
181 // Get the value at index i from the array..
182 // Fast but unsafe: only use if has_index(i) is true.
183 inline Value get_existing(int i) const;
185 // Erasing items from the array during iteration is in general
186 // NOT safe. There is one special case, which is that the current
187 // index-value pair can be erased as long as the iterator is then
188 // checked for being at the end before being incremented.
189 // For example:
191 // for (i = m.begin(); i != m.end(); ++i) {
192 // if (ShouldErase(i->index(), i->value())) {
193 // m.erase(i->index());
194 // --i;
195 // }
196 // }
198 // Except in the specific case just described, elements must
199 // not be erased from the array (including clearing the array)
200 // while iterators are walking over the array. Otherwise,
201 // the iterators could walk past the end of the array.
203 // Erases the element at index i from the array.
204 inline void erase(int i);
206 // Erases the element at index i from the array.
207 // Fast but unsafe: only use if has_index(i) is true.
208 inline void erase_existing(int i);
210 private:
211 // Add the index i to the array.
212 // Only use if has_index(i) is known to be false.
213 // Since it doesn't set the value associated with i,
214 // this function is private, only intended as a helper
215 // for other methods.
216 inline void create_index(int i);
218 // In debug mode, verify that some invariant properties of the class
219 // are being maintained. This is called at the end of the constructor
220 // and at the beginning and end of all public non-const member functions.
221 inline void DebugCheckInvariants() const;
223 int size_;
224 int max_size_;
225 int* sparse_to_dense_;
226 vector<IndexValue> dense_;
227 bool valgrind_;
229 DISALLOW_EVIL_CONSTRUCTORS(SparseArray);
232 template<typename Value>
233 SparseArray<Value>::SparseArray()
234 : size_(0), max_size_(0), sparse_to_dense_(NULL), dense_(),
235 valgrind_(RunningOnValgrindOrMemorySanitizer()) {}
237 // IndexValue pairs: exposed in SparseArray::iterator.
238 template<typename Value>
239 class SparseArray<Value>::IndexValue {
240 friend class SparseArray;
241 public:
242 typedef int first_type;
243 typedef Value second_type;
245 IndexValue() {}
246 IndexValue(int index, const Value& value) : second(value), index_(index) {}
248 int index() const { return index_; }
249 Value value() const { return second; }
251 // Provide the data in the 'second' member so that the utilities
252 // in map-util work.
253 Value second;
255 private:
256 int index_;
259 template<typename Value>
260 const typename SparseArray<Value>::IndexValue&
261 SparseArray<Value>::iv(int i) const {
262 DCHECK_GE(i, 0);
263 DCHECK_LT(i, size_);
264 return dense_[i];
267 // Change the maximum size of the array.
268 // Invalidates all iterators.
269 template<typename Value>
270 void SparseArray<Value>::resize(int new_max_size) {
271 DebugCheckInvariants();
272 if (new_max_size > max_size_) {
273 int* a = new int[new_max_size];
274 if (sparse_to_dense_) {
275 memmove(a, sparse_to_dense_, max_size_*sizeof a[0]);
276 // Don't need to zero the memory but appease Valgrind.
277 if (valgrind_) {
278 for (int i = max_size_; i < new_max_size; i++)
279 a[i] = 0xababababU;
281 delete[] sparse_to_dense_;
283 sparse_to_dense_ = a;
285 dense_.resize(new_max_size);
287 max_size_ = new_max_size;
288 if (size_ > max_size_)
289 size_ = max_size_;
290 DebugCheckInvariants();
293 // Check whether index i is in the array.
294 template<typename Value>
295 bool SparseArray<Value>::has_index(int i) const {
296 DCHECK_GE(i, 0);
297 DCHECK_LT(i, max_size_);
298 if (static_cast<uint>(i) >= max_size_) {
299 return false;
301 // Unsigned comparison avoids checking sparse_to_dense_[i] < 0.
302 return (uint)sparse_to_dense_[i] < (uint)size_ &&
303 dense_[sparse_to_dense_[i]].index_ == i;
306 // Set the value at index i to v.
307 template<typename Value>
308 typename SparseArray<Value>::iterator SparseArray<Value>::set(int i, Value v) {
309 DebugCheckInvariants();
310 if (static_cast<uint>(i) >= max_size_) {
311 // Semantically, end() would be better here, but we already know
312 // the user did something stupid, so begin() insulates them from
313 // dereferencing an invalid pointer.
314 return begin();
316 if (!has_index(i))
317 create_index(i);
318 return set_existing(i, v);
321 template<typename Value>
322 pair<typename SparseArray<Value>::iterator, bool> SparseArray<Value>::insert(
323 const value_type& new_value) {
324 DebugCheckInvariants();
325 pair<typename SparseArray<Value>::iterator, bool> p;
326 if (has_index(new_value.index_)) {
327 p = make_pair(dense_.begin() + sparse_to_dense_[new_value.index_], false);
328 } else {
329 p = make_pair(set_new(new_value.index_, new_value.second), true);
331 DebugCheckInvariants();
332 return p;
335 template<typename Value>
336 Value SparseArray<Value>::get(int i, Value defaultv) const {
337 if (!has_index(i))
338 return defaultv;
339 return get_existing(i);
342 template<typename Value>
343 typename SparseArray<Value>::iterator SparseArray<Value>::find(int i) {
344 if (has_index(i))
345 return dense_.begin() + sparse_to_dense_[i];
346 return end();
349 template<typename Value>
350 typename SparseArray<Value>::const_iterator
351 SparseArray<Value>::find(int i) const {
352 if (has_index(i)) {
353 return dense_.begin() + sparse_to_dense_[i];
355 return end();
358 template<typename Value>
359 typename SparseArray<Value>::iterator
360 SparseArray<Value>::set_existing(int i, Value v) {
361 DebugCheckInvariants();
362 DCHECK(has_index(i));
363 dense_[sparse_to_dense_[i]].second = v;
364 DebugCheckInvariants();
365 return dense_.begin() + sparse_to_dense_[i];
368 template<typename Value>
369 typename SparseArray<Value>::iterator
370 SparseArray<Value>::set_new(int i, Value v) {
371 DebugCheckInvariants();
372 if (static_cast<uint>(i) >= max_size_) {
373 // Semantically, end() would be better here, but we already know
374 // the user did something stupid, so begin() insulates them from
375 // dereferencing an invalid pointer.
376 return begin();
378 DCHECK(!has_index(i));
379 create_index(i);
380 return set_existing(i, v);
383 template<typename Value>
384 Value SparseArray<Value>::get_existing(int i) const {
385 DCHECK(has_index(i));
386 return dense_[sparse_to_dense_[i]].second;
389 template<typename Value>
390 void SparseArray<Value>::erase(int i) {
391 DebugCheckInvariants();
392 if (has_index(i))
393 erase_existing(i);
394 DebugCheckInvariants();
397 template<typename Value>
398 void SparseArray<Value>::erase_existing(int i) {
399 DebugCheckInvariants();
400 DCHECK(has_index(i));
401 int di = sparse_to_dense_[i];
402 if (di < size_ - 1) {
403 dense_[di] = dense_[size_ - 1];
404 sparse_to_dense_[dense_[di].index_] = di;
406 size_--;
407 DebugCheckInvariants();
410 template<typename Value>
411 void SparseArray<Value>::create_index(int i) {
412 DCHECK(!has_index(i));
413 DCHECK_LT(size_, max_size_);
414 sparse_to_dense_[i] = size_;
415 dense_[size_].index_ = i;
416 size_++;
419 template<typename Value> SparseArray<Value>::SparseArray(int max_size) {
420 max_size_ = max_size;
421 sparse_to_dense_ = new int[max_size];
422 valgrind_ = RunningOnValgrindOrMemorySanitizer();
423 dense_.resize(max_size);
424 // Don't need to zero the new memory, but appease Valgrind.
425 if (valgrind_) {
426 for (int i = 0; i < max_size; i++) {
427 sparse_to_dense_[i] = 0xababababU;
428 dense_[i].index_ = 0xababababU;
431 size_ = 0;
432 DebugCheckInvariants();
435 template<typename Value> SparseArray<Value>::~SparseArray() {
436 DebugCheckInvariants();
437 delete[] sparse_to_dense_;
440 template<typename Value> void SparseArray<Value>::DebugCheckInvariants() const {
441 DCHECK_LE(0, size_);
442 DCHECK_LE(size_, max_size_);
443 DCHECK(size_ == 0 || sparse_to_dense_ != NULL);
446 // Comparison function for sorting.
447 template<typename Value> bool SparseArray<Value>::less(const IndexValue& a,
448 const IndexValue& b) {
449 return a.index_ < b.index_;
452 } // namespace re2
454 #endif // RE2_UTIL_SPARSE_ARRAY_H__