1 // Copyright 2006 The RE2 Authors. All Rights Reserved.
2 // Use of this source code is governed by a BSD-style
3 // license that can be found in the LICENSE file.
7 // SparseArray<T>(m) is a map from integers in [0, m) to T values.
8 // It requires (sizeof(T)+sizeof(int))*m memory, but it provides
9 // fast iteration through the elements in the array and fast clearing
10 // of the array. The array has a concept of certain elements being
11 // uninitialized (having no value).
13 // Insertion and deletion are constant time operations.
15 // Allocating the array is a constant time operation
16 // when memory allocation is a constant time operation.
18 // Clearing the array is a constant time operation (unusual!).
20 // Iterating through the array is an O(n) operation, where n
21 // is the number of items in the array (not O(m)).
23 // The array iterator visits entries in the order they were first
24 // inserted into the array. It is safe to add items to the array while
25 // using an iterator: the iterator will visit indices added to the array
26 // during the iteration, but will not re-visit indices whose values
27 // change after visiting. Thus SparseArray can be a convenient
28 // implementation of a work queue.
30 // The SparseArray implementation is NOT thread-safe. It is up to the
31 // caller to make sure only one thread is accessing the array. (Typically
32 // these arrays are temporary values and used in situations where speed is
35 // The SparseArray interface does not present all the usual STL bells and
38 // Implemented with reference to Briggs & Torczon, An Efficient
39 // Representation for Sparse Sets, ACM Letters on Programming Languages
40 // and Systems, Volume 2, Issue 1-4 (March-Dec. 1993), pp. 59-69.
42 // Briggs & Torczon popularized this technique, but it had been known
43 // long before their paper. They point out that Aho, Hopcroft, and
44 // Ullman's 1974 Design and Analysis of Computer Algorithms and Bentley's
45 // 1986 Programming Pearls both hint at the technique in exercises to the
46 // reader (in Aho & Hopcroft, exercise 2.12; in Bentley, column 1
49 // Briggs & Torczon describe a sparse set implementation. I have
50 // trivially generalized it to create a sparse array (actually the original
51 // target of the AHU and Bentley exercises).
55 // SparseArray uses a vector dense_ and an array sparse_to_dense_, both of
56 // size max_size_. At any point, the number of elements in the sparse array is
59 // The vector dense_ contains the size_ elements in the sparse array (with
61 // in the order that the elements were first inserted. This array is dense:
62 // the size_ pairs are dense_[0] through dense_[size_-1].
64 // The array sparse_to_dense_ maps from indices in [0,m) to indices in
66 // For indices present in the array, dense_[sparse_to_dense_[i]].index_ == i.
67 // For indices not present in the array, sparse_to_dense_ can contain
68 // any value at all, perhaps outside the range [0, size_) but perhaps not.
70 // The lax requirement on sparse_to_dense_ values makes clearing
71 // the array very easy: set size_ to 0. Lookups are slightly more
72 // complicated. An index i has a value in the array if and only if:
73 // sparse_to_dense_[i] is in [0, size_) AND
74 // dense_[sparse_to_dense_[i]].index_ == i.
75 // If both these properties hold, only then it is safe to refer to
76 // dense_[sparse_to_dense_[i]].value_
77 // as the value associated with index i.
79 // To insert a new entry, set sparse_to_dense_[i] to size_,
80 // initialize dense_[size_], and then increment size_.
82 // Deletion of specific values from the array is implemented by
83 // swapping dense_[size_-1] and the dense_ being deleted and then
84 // updating the appropriate sparse_to_dense_ entries.
86 // To make the sparse array as efficient as possible for non-primitive types,
87 // elements may or may not be destroyed when they are deleted from the sparse
88 // array through a call to erase(), erase_existing() or resize(). They
89 // immediately become inaccessible, but they are only guaranteed to be
90 // destroyed when the SparseArray destructor is called.
92 #ifndef RE2_UTIL_SPARSE_ARRAY_H__
93 #define RE2_UTIL_SPARSE_ARRAY_H__
95 #include "util/util.h"
99 template<typename Value
>
103 SparseArray(int max_size
);
106 // IndexValue pairs: exposed in SparseArray::iterator.
109 typedef IndexValue value_type
;
110 typedef typename vector
<IndexValue
>::iterator iterator
;
111 typedef typename vector
<IndexValue
>::const_iterator const_iterator
;
113 inline const IndexValue
& iv(int i
) const;
115 // Return the number of entries in the array.
120 // Iterate over the array.
122 return dense_
.begin();
125 return dense_
.begin() + size_
;
128 const_iterator
begin() const {
129 return dense_
.begin();
131 const_iterator
end() const {
132 return dense_
.begin() + size_
;
135 // Change the maximum size of the array.
136 // Invalidates all iterators.
137 void resize(int max_size
);
139 // Return the maximum size of the array.
140 // Indices can be in the range [0, max_size).
141 int max_size() const {
150 // Check whether index i is in the array.
151 inline bool has_index(int i
) const;
153 // Comparison function for sorting.
154 // Can sort the sparse array so that future iterations
155 // will visit indices in increasing order using
156 // sort(arr.begin(), arr.end(), arr.less);
157 static bool less(const IndexValue
& a
, const IndexValue
& b
);
160 // Set the value at index i to v.
161 inline iterator
set(int i
, Value v
);
163 pair
<iterator
, bool> insert(const value_type
& new_value
);
165 // Returns the value at index i
166 // or defaultv if index i is not initialized in the array.
167 inline Value
get(int i
, Value defaultv
) const;
169 iterator
find(int i
);
171 const_iterator
find(int i
) const;
173 // Change the value at index i to v.
174 // Fast but unsafe: only use if has_index(i) is true.
175 inline iterator
set_existing(int i
, Value v
);
177 // Set the value at the new index i to v.
178 // Fast but unsafe: only use if has_index(i) is false.
179 inline iterator
set_new(int i
, Value v
);
181 // Get the value at index i from the array..
182 // Fast but unsafe: only use if has_index(i) is true.
183 inline Value
get_existing(int i
) const;
185 // Erasing items from the array during iteration is in general
186 // NOT safe. There is one special case, which is that the current
187 // index-value pair can be erased as long as the iterator is then
188 // checked for being at the end before being incremented.
191 // for (i = m.begin(); i != m.end(); ++i) {
192 // if (ShouldErase(i->index(), i->value())) {
193 // m.erase(i->index());
198 // Except in the specific case just described, elements must
199 // not be erased from the array (including clearing the array)
200 // while iterators are walking over the array. Otherwise,
201 // the iterators could walk past the end of the array.
203 // Erases the element at index i from the array.
204 inline void erase(int i
);
206 // Erases the element at index i from the array.
207 // Fast but unsafe: only use if has_index(i) is true.
208 inline void erase_existing(int i
);
211 // Add the index i to the array.
212 // Only use if has_index(i) is known to be false.
213 // Since it doesn't set the value associated with i,
214 // this function is private, only intended as a helper
215 // for other methods.
216 inline void create_index(int i
);
218 // In debug mode, verify that some invariant properties of the class
219 // are being maintained. This is called at the end of the constructor
220 // and at the beginning and end of all public non-const member functions.
221 inline void DebugCheckInvariants() const;
225 int* sparse_to_dense_
;
226 vector
<IndexValue
> dense_
;
229 DISALLOW_EVIL_CONSTRUCTORS(SparseArray
);
232 template<typename Value
>
233 SparseArray
<Value
>::SparseArray()
234 : size_(0), max_size_(0), sparse_to_dense_(NULL
), dense_(),
235 valgrind_(RunningOnValgrindOrMemorySanitizer()) {}
237 // IndexValue pairs: exposed in SparseArray::iterator.
238 template<typename Value
>
239 class SparseArray
<Value
>::IndexValue
{
240 friend class SparseArray
;
242 typedef int first_type
;
243 typedef Value second_type
;
246 IndexValue(int index
, const Value
& value
) : second(value
), index_(index
) {}
248 int index() const { return index_
; }
249 Value
value() const { return second
; }
251 // Provide the data in the 'second' member so that the utilities
259 template<typename Value
>
260 const typename SparseArray
<Value
>::IndexValue
&
261 SparseArray
<Value
>::iv(int i
) const {
267 // Change the maximum size of the array.
268 // Invalidates all iterators.
269 template<typename Value
>
270 void SparseArray
<Value
>::resize(int new_max_size
) {
271 DebugCheckInvariants();
272 if (new_max_size
> max_size_
) {
273 int* a
= new int[new_max_size
];
274 if (sparse_to_dense_
) {
275 memmove(a
, sparse_to_dense_
, max_size_
*sizeof a
[0]);
276 // Don't need to zero the memory but appease Valgrind.
278 for (int i
= max_size_
; i
< new_max_size
; i
++)
281 delete[] sparse_to_dense_
;
283 sparse_to_dense_
= a
;
285 dense_
.resize(new_max_size
);
287 max_size_
= new_max_size
;
288 if (size_
> max_size_
)
290 DebugCheckInvariants();
293 // Check whether index i is in the array.
294 template<typename Value
>
295 bool SparseArray
<Value
>::has_index(int i
) const {
297 DCHECK_LT(i
, max_size_
);
298 if (static_cast<uint
>(i
) >= max_size_
) {
301 // Unsigned comparison avoids checking sparse_to_dense_[i] < 0.
302 return (uint
)sparse_to_dense_
[i
] < (uint
)size_
&&
303 dense_
[sparse_to_dense_
[i
]].index_
== i
;
306 // Set the value at index i to v.
307 template<typename Value
>
308 typename SparseArray
<Value
>::iterator SparseArray
<Value
>::set(int i
, Value v
) {
309 DebugCheckInvariants();
310 if (static_cast<uint
>(i
) >= max_size_
) {
311 // Semantically, end() would be better here, but we already know
312 // the user did something stupid, so begin() insulates them from
313 // dereferencing an invalid pointer.
318 return set_existing(i
, v
);
321 template<typename Value
>
322 pair
<typename SparseArray
<Value
>::iterator
, bool> SparseArray
<Value
>::insert(
323 const value_type
& new_value
) {
324 DebugCheckInvariants();
325 pair
<typename SparseArray
<Value
>::iterator
, bool> p
;
326 if (has_index(new_value
.index_
)) {
327 p
= make_pair(dense_
.begin() + sparse_to_dense_
[new_value
.index_
], false);
329 p
= make_pair(set_new(new_value
.index_
, new_value
.second
), true);
331 DebugCheckInvariants();
335 template<typename Value
>
336 Value SparseArray
<Value
>::get(int i
, Value defaultv
) const {
339 return get_existing(i
);
342 template<typename Value
>
343 typename SparseArray
<Value
>::iterator SparseArray
<Value
>::find(int i
) {
345 return dense_
.begin() + sparse_to_dense_
[i
];
349 template<typename Value
>
350 typename SparseArray
<Value
>::const_iterator
351 SparseArray
<Value
>::find(int i
) const {
353 return dense_
.begin() + sparse_to_dense_
[i
];
358 template<typename Value
>
359 typename SparseArray
<Value
>::iterator
360 SparseArray
<Value
>::set_existing(int i
, Value v
) {
361 DebugCheckInvariants();
362 DCHECK(has_index(i
));
363 dense_
[sparse_to_dense_
[i
]].second
= v
;
364 DebugCheckInvariants();
365 return dense_
.begin() + sparse_to_dense_
[i
];
368 template<typename Value
>
369 typename SparseArray
<Value
>::iterator
370 SparseArray
<Value
>::set_new(int i
, Value v
) {
371 DebugCheckInvariants();
372 if (static_cast<uint
>(i
) >= max_size_
) {
373 // Semantically, end() would be better here, but we already know
374 // the user did something stupid, so begin() insulates them from
375 // dereferencing an invalid pointer.
378 DCHECK(!has_index(i
));
380 return set_existing(i
, v
);
383 template<typename Value
>
384 Value SparseArray
<Value
>::get_existing(int i
) const {
385 DCHECK(has_index(i
));
386 return dense_
[sparse_to_dense_
[i
]].second
;
389 template<typename Value
>
390 void SparseArray
<Value
>::erase(int i
) {
391 DebugCheckInvariants();
394 DebugCheckInvariants();
397 template<typename Value
>
398 void SparseArray
<Value
>::erase_existing(int i
) {
399 DebugCheckInvariants();
400 DCHECK(has_index(i
));
401 int di
= sparse_to_dense_
[i
];
402 if (di
< size_
- 1) {
403 dense_
[di
] = dense_
[size_
- 1];
404 sparse_to_dense_
[dense_
[di
].index_
] = di
;
407 DebugCheckInvariants();
410 template<typename Value
>
411 void SparseArray
<Value
>::create_index(int i
) {
412 DCHECK(!has_index(i
));
413 DCHECK_LT(size_
, max_size_
);
414 sparse_to_dense_
[i
] = size_
;
415 dense_
[size_
].index_
= i
;
419 template<typename Value
> SparseArray
<Value
>::SparseArray(int max_size
) {
420 max_size_
= max_size
;
421 sparse_to_dense_
= new int[max_size
];
422 valgrind_
= RunningOnValgrindOrMemorySanitizer();
423 dense_
.resize(max_size
);
424 // Don't need to zero the new memory, but appease Valgrind.
426 for (int i
= 0; i
< max_size
; i
++) {
427 sparse_to_dense_
[i
] = 0xababababU
;
428 dense_
[i
].index_
= 0xababababU
;
432 DebugCheckInvariants();
435 template<typename Value
> SparseArray
<Value
>::~SparseArray() {
436 DebugCheckInvariants();
437 delete[] sparse_to_dense_
;
440 template<typename Value
> void SparseArray
<Value
>::DebugCheckInvariants() const {
442 DCHECK_LE(size_
, max_size_
);
443 DCHECK(size_
== 0 || sparse_to_dense_
!= NULL
);
446 // Comparison function for sorting.
447 template<typename Value
> bool SparseArray
<Value
>::less(const IndexValue
& a
,
448 const IndexValue
& b
) {
449 return a
.index_
< b
.index_
;
454 #endif // RE2_UTIL_SPARSE_ARRAY_H__