Update CrOS OOBE throbber to MD throbber; delete old asset
[chromium-blink-merge.git] / third_party / libwebp / utils / huffman.c
blobc4c16d9e6ce2bb4b7ec2e7afe875e9f19e2ed406
1 // Copyright 2012 Google Inc. All Rights Reserved.
2 //
3 // Use of this source code is governed by a BSD-style license
4 // that can be found in the COPYING file in the root of the source
5 // tree. An additional intellectual property rights grant can be found
6 // in the file PATENTS. All contributing project authors may
7 // be found in the AUTHORS file in the root of the source tree.
8 // -----------------------------------------------------------------------------
9 //
10 // Utilities for building and looking up Huffman trees.
12 // Author: Urvang Joshi (urvang@google.com)
14 #include <assert.h>
15 #include <stdlib.h>
16 #include <string.h>
17 #include "./huffman.h"
18 #include "../utils/utils.h"
19 #include "../webp/format_constants.h"
21 // Uncomment the following to use look-up table for ReverseBits()
22 // (might be faster on some platform)
23 // #define USE_LUT_REVERSE_BITS
25 // Huffman data read via DecodeImageStream is represented in two (red and green)
26 // bytes.
27 #define MAX_HTREE_GROUPS 0x10000
28 #define NON_EXISTENT_SYMBOL (-1)
30 static void TreeNodeInit(HuffmanTreeNode* const node) {
31 node->children_ = -1; // means: 'unassigned so far'
34 static int NodeIsEmpty(const HuffmanTreeNode* const node) {
35 return (node->children_ < 0);
38 static int IsFull(const HuffmanTree* const tree) {
39 return (tree->num_nodes_ == tree->max_nodes_);
42 static void AssignChildren(HuffmanTree* const tree,
43 HuffmanTreeNode* const node) {
44 HuffmanTreeNode* const children = tree->root_ + tree->num_nodes_;
45 node->children_ = (int)(children - node);
46 assert(children - node == (int)(children - node));
47 tree->num_nodes_ += 2;
48 TreeNodeInit(children + 0);
49 TreeNodeInit(children + 1);
52 // A Huffman tree is a full binary tree; and in a full binary tree with L
53 // leaves, the total number of nodes N = 2 * L - 1.
54 static int HuffmanTreeMaxNodes(int num_leaves) {
55 return (2 * num_leaves - 1);
58 static int HuffmanTreeAllocate(HuffmanTree* const tree, int num_nodes) {
59 assert(tree != NULL);
60 tree->root_ =
61 (HuffmanTreeNode*)WebPSafeMalloc(num_nodes, sizeof(*tree->root_));
62 return (tree->root_ != NULL);
65 static int TreeInit(HuffmanTree* const tree, int num_leaves) {
66 assert(tree != NULL);
67 if (num_leaves == 0) return 0;
68 tree->max_nodes_ = HuffmanTreeMaxNodes(num_leaves);
69 assert(tree->max_nodes_ < (1 << 16)); // limit for the lut_jump_ table
70 if (!HuffmanTreeAllocate(tree, tree->max_nodes_)) return 0;
71 TreeNodeInit(tree->root_); // Initialize root.
72 tree->num_nodes_ = 1;
73 memset(tree->lut_bits_, 255, sizeof(tree->lut_bits_));
74 memset(tree->lut_jump_, 0, sizeof(tree->lut_jump_));
75 return 1;
78 void VP8LHuffmanTreeFree(HuffmanTree* const tree) {
79 if (tree != NULL) {
80 WebPSafeFree(tree->root_);
81 tree->root_ = NULL;
82 tree->max_nodes_ = 0;
83 tree->num_nodes_ = 0;
87 HTreeGroup* VP8LHtreeGroupsNew(int num_htree_groups) {
88 HTreeGroup* const htree_groups =
89 (HTreeGroup*)WebPSafeCalloc(num_htree_groups, sizeof(*htree_groups));
90 assert(num_htree_groups <= MAX_HTREE_GROUPS);
91 if (htree_groups == NULL) {
92 return NULL;
94 return htree_groups;
97 void VP8LHtreeGroupsFree(HTreeGroup* htree_groups, int num_htree_groups) {
98 if (htree_groups != NULL) {
99 int i, j;
100 for (i = 0; i < num_htree_groups; ++i) {
101 HuffmanTree* const htrees = htree_groups[i].htrees_;
102 for (j = 0; j < HUFFMAN_CODES_PER_META_CODE; ++j) {
103 VP8LHuffmanTreeFree(&htrees[j]);
106 WebPSafeFree(htree_groups);
110 int VP8LHuffmanCodeLengthsToCodes(
111 const int* const code_lengths, int code_lengths_size,
112 int* const huff_codes) {
113 int symbol;
114 int code_len;
115 int code_length_hist[MAX_ALLOWED_CODE_LENGTH + 1] = { 0 };
116 int curr_code;
117 int next_codes[MAX_ALLOWED_CODE_LENGTH + 1] = { 0 };
118 int max_code_length = 0;
120 assert(code_lengths != NULL);
121 assert(code_lengths_size > 0);
122 assert(huff_codes != NULL);
124 // Calculate max code length.
125 for (symbol = 0; symbol < code_lengths_size; ++symbol) {
126 if (code_lengths[symbol] > max_code_length) {
127 max_code_length = code_lengths[symbol];
130 if (max_code_length > MAX_ALLOWED_CODE_LENGTH) return 0;
132 // Calculate code length histogram.
133 for (symbol = 0; symbol < code_lengths_size; ++symbol) {
134 ++code_length_hist[code_lengths[symbol]];
136 code_length_hist[0] = 0;
138 // Calculate the initial values of 'next_codes' for each code length.
139 // next_codes[code_len] denotes the code to be assigned to the next symbol
140 // of code length 'code_len'.
141 curr_code = 0;
142 next_codes[0] = -1; // Unused, as code length = 0 implies code doesn't exist.
143 for (code_len = 1; code_len <= max_code_length; ++code_len) {
144 curr_code = (curr_code + code_length_hist[code_len - 1]) << 1;
145 next_codes[code_len] = curr_code;
148 // Get symbols.
149 for (symbol = 0; symbol < code_lengths_size; ++symbol) {
150 if (code_lengths[symbol] > 0) {
151 huff_codes[symbol] = next_codes[code_lengths[symbol]]++;
152 } else {
153 huff_codes[symbol] = NON_EXISTENT_SYMBOL;
156 return 1;
159 #ifndef USE_LUT_REVERSE_BITS
161 static int ReverseBitsShort(int bits, int num_bits) {
162 int retval = 0;
163 int i;
164 assert(num_bits <= 8); // Not a hard requirement, just for coherency.
165 for (i = 0; i < num_bits; ++i) {
166 retval <<= 1;
167 retval |= bits & 1;
168 bits >>= 1;
170 return retval;
173 #else
175 static const uint8_t kReversedBits[16] = { // Pre-reversed 4-bit values.
176 0x0, 0x8, 0x4, 0xc, 0x2, 0xa, 0x6, 0xe,
177 0x1, 0x9, 0x5, 0xd, 0x3, 0xb, 0x7, 0xf
180 static int ReverseBitsShort(int bits, int num_bits) {
181 const uint8_t v = (kReversedBits[bits & 0xf] << 4) | kReversedBits[bits >> 4];
182 assert(num_bits <= 8);
183 return v >> (8 - num_bits);
186 #endif
188 static int TreeAddSymbol(HuffmanTree* const tree,
189 int symbol, int code, int code_length) {
190 int step = HUFF_LUT_BITS;
191 int base_code;
192 HuffmanTreeNode* node = tree->root_;
193 const HuffmanTreeNode* const max_node = tree->root_ + tree->max_nodes_;
194 assert(symbol == (int16_t)symbol);
195 if (code_length <= HUFF_LUT_BITS) {
196 int i;
197 base_code = ReverseBitsShort(code, code_length);
198 for (i = 0; i < (1 << (HUFF_LUT_BITS - code_length)); ++i) {
199 const int idx = base_code | (i << code_length);
200 tree->lut_symbol_[idx] = (int16_t)symbol;
201 tree->lut_bits_[idx] = code_length;
203 } else {
204 base_code = ReverseBitsShort((code >> (code_length - HUFF_LUT_BITS)),
205 HUFF_LUT_BITS);
207 while (code_length-- > 0) {
208 if (node >= max_node) {
209 return 0;
211 if (NodeIsEmpty(node)) {
212 if (IsFull(tree)) return 0; // error: too many symbols.
213 AssignChildren(tree, node);
214 } else if (!HuffmanTreeNodeIsNotLeaf(node)) {
215 return 0; // leaf is already occupied.
217 node += node->children_ + ((code >> code_length) & 1);
218 if (--step == 0) {
219 tree->lut_jump_[base_code] = (int16_t)(node - tree->root_);
222 if (NodeIsEmpty(node)) {
223 node->children_ = 0; // turn newly created node into a leaf.
224 } else if (HuffmanTreeNodeIsNotLeaf(node)) {
225 return 0; // trying to assign a symbol to already used code.
227 node->symbol_ = symbol; // Add symbol in this node.
228 return 1;
231 int VP8LHuffmanTreeBuildImplicit(HuffmanTree* const tree,
232 const int* const code_lengths,
233 int* const codes,
234 int code_lengths_size) {
235 int symbol;
236 int num_symbols = 0;
237 int root_symbol = 0;
239 assert(tree != NULL);
240 assert(code_lengths != NULL);
242 // Find out number of symbols and the root symbol.
243 for (symbol = 0; symbol < code_lengths_size; ++symbol) {
244 if (code_lengths[symbol] > 0) {
245 // Note: code length = 0 indicates non-existent symbol.
246 ++num_symbols;
247 root_symbol = symbol;
251 // Initialize the tree. Will fail for num_symbols = 0
252 if (!TreeInit(tree, num_symbols)) return 0;
254 // Build tree.
255 if (num_symbols == 1) { // Trivial case.
256 const int max_symbol = code_lengths_size;
257 if (root_symbol < 0 || root_symbol >= max_symbol) {
258 VP8LHuffmanTreeFree(tree);
259 return 0;
261 return TreeAddSymbol(tree, root_symbol, 0, 0);
262 } else { // Normal case.
263 int ok = 0;
264 memset(codes, 0, code_lengths_size * sizeof(*codes));
266 if (!VP8LHuffmanCodeLengthsToCodes(code_lengths, code_lengths_size,
267 codes)) {
268 goto End;
271 // Add symbols one-by-one.
272 for (symbol = 0; symbol < code_lengths_size; ++symbol) {
273 if (code_lengths[symbol] > 0) {
274 if (!TreeAddSymbol(tree, symbol, codes[symbol],
275 code_lengths[symbol])) {
276 goto End;
280 ok = 1;
281 End:
282 ok = ok && IsFull(tree);
283 if (!ok) VP8LHuffmanTreeFree(tree);
284 return ok;
288 int VP8LHuffmanTreeBuildExplicit(HuffmanTree* const tree,
289 const int* const code_lengths,
290 const int* const codes,
291 const int* const symbols, int max_symbol,
292 int num_symbols) {
293 int ok = 0;
294 int i;
295 assert(tree != NULL);
296 assert(code_lengths != NULL);
297 assert(codes != NULL);
298 assert(symbols != NULL);
300 // Initialize the tree. Will fail if num_symbols = 0.
301 if (!TreeInit(tree, num_symbols)) return 0;
303 // Add symbols one-by-one.
304 for (i = 0; i < num_symbols; ++i) {
305 if (codes[i] != NON_EXISTENT_SYMBOL) {
306 if (symbols[i] < 0 || symbols[i] >= max_symbol) {
307 goto End;
309 if (!TreeAddSymbol(tree, symbols[i], codes[i], code_lengths[i])) {
310 goto End;
314 ok = 1;
315 End:
316 ok = ok && IsFull(tree);
317 if (!ok) VP8LHuffmanTreeFree(tree);
318 return ok;