Add missing pnacl libraries and headers and tools.
[chromium-blink-merge.git] / base / time_win.cc
blob0f5c4010ea104f6ccef5cb687124614636b0501f
1 // Copyright (c) 2012 The Chromium Authors. All rights reserved.
2 // Use of this source code is governed by a BSD-style license that can be
3 // found in the LICENSE file.
6 // Windows Timer Primer
7 //
8 // A good article: http://www.ddj.com/windows/184416651
9 // A good mozilla bug: http://bugzilla.mozilla.org/show_bug.cgi?id=363258
11 // The default windows timer, GetSystemTimeAsFileTime is not very precise.
12 // It is only good to ~15.5ms.
14 // QueryPerformanceCounter is the logical choice for a high-precision timer.
15 // However, it is known to be buggy on some hardware. Specifically, it can
16 // sometimes "jump". On laptops, QPC can also be very expensive to call.
17 // It's 3-4x slower than timeGetTime() on desktops, but can be 10x slower
18 // on laptops. A unittest exists which will show the relative cost of various
19 // timers on any system.
21 // The next logical choice is timeGetTime(). timeGetTime has a precision of
22 // 1ms, but only if you call APIs (timeBeginPeriod()) which affect all other
23 // applications on the system. By default, precision is only 15.5ms.
24 // Unfortunately, we don't want to call timeBeginPeriod because we don't
25 // want to affect other applications. Further, on mobile platforms, use of
26 // faster multimedia timers can hurt battery life. See the intel
27 // article about this here:
28 // http://softwarecommunity.intel.com/articles/eng/1086.htm
30 // To work around all this, we're going to generally use timeGetTime(). We
31 // will only increase the system-wide timer if we're not running on battery
32 // power. Using timeBeginPeriod(1) is a requirement in order to make our
33 // message loop waits have the same resolution that our time measurements
34 // do. Otherwise, WaitForSingleObject(..., 1) will no less than 15ms when
35 // there is nothing else to waken the Wait.
37 #include "base/time.h"
39 #pragma comment(lib, "winmm.lib")
40 #include <windows.h>
41 #include <mmsystem.h>
43 #include "base/basictypes.h"
44 #include "base/logging.h"
45 #include "base/cpu.h"
46 #include "base/memory/singleton.h"
47 #include "base/synchronization/lock.h"
49 using base::Time;
50 using base::TimeDelta;
51 using base::TimeTicks;
53 namespace {
55 // From MSDN, FILETIME "Contains a 64-bit value representing the number of
56 // 100-nanosecond intervals since January 1, 1601 (UTC)."
57 int64 FileTimeToMicroseconds(const FILETIME& ft) {
58 // Need to bit_cast to fix alignment, then divide by 10 to convert
59 // 100-nanoseconds to milliseconds. This only works on little-endian
60 // machines.
61 return bit_cast<int64, FILETIME>(ft) / 10;
64 void MicrosecondsToFileTime(int64 us, FILETIME* ft) {
65 DCHECK_GE(us, 0LL) << "Time is less than 0, negative values are not "
66 "representable in FILETIME";
68 // Multiply by 10 to convert milliseconds to 100-nanoseconds. Bit_cast will
69 // handle alignment problems. This only works on little-endian machines.
70 *ft = bit_cast<FILETIME, int64>(us * 10);
73 int64 CurrentWallclockMicroseconds() {
74 FILETIME ft;
75 ::GetSystemTimeAsFileTime(&ft);
76 return FileTimeToMicroseconds(ft);
79 // Time between resampling the un-granular clock for this API. 60 seconds.
80 const int kMaxMillisecondsToAvoidDrift = 60 * Time::kMillisecondsPerSecond;
82 int64 initial_time = 0;
83 TimeTicks initial_ticks;
85 void InitializeClock() {
86 initial_ticks = TimeTicks::Now();
87 initial_time = CurrentWallclockMicroseconds();
90 } // namespace
92 // Time -----------------------------------------------------------------------
94 // The internal representation of Time uses FILETIME, whose epoch is 1601-01-01
95 // 00:00:00 UTC. ((1970-1601)*365+89)*24*60*60*1000*1000, where 89 is the
96 // number of leap year days between 1601 and 1970: (1970-1601)/4 excluding
97 // 1700, 1800, and 1900.
98 // static
99 const int64 Time::kTimeTToMicrosecondsOffset = GG_INT64_C(11644473600000000);
101 bool Time::high_resolution_timer_enabled_ = false;
102 int Time::high_resolution_timer_activated_ = 0;
104 // static
105 Time Time::Now() {
106 if (initial_time == 0)
107 InitializeClock();
109 // We implement time using the high-resolution timers so that we can get
110 // timeouts which are smaller than 10-15ms. If we just used
111 // CurrentWallclockMicroseconds(), we'd have the less-granular timer.
113 // To make this work, we initialize the clock (initial_time) and the
114 // counter (initial_ctr). To compute the initial time, we can check
115 // the number of ticks that have elapsed, and compute the delta.
117 // To avoid any drift, we periodically resync the counters to the system
118 // clock.
119 while (true) {
120 TimeTicks ticks = TimeTicks::Now();
122 // Calculate the time elapsed since we started our timer
123 TimeDelta elapsed = ticks - initial_ticks;
125 // Check if enough time has elapsed that we need to resync the clock.
126 if (elapsed.InMilliseconds() > kMaxMillisecondsToAvoidDrift) {
127 InitializeClock();
128 continue;
131 return Time(elapsed + Time(initial_time));
135 // static
136 Time Time::NowFromSystemTime() {
137 // Force resync.
138 InitializeClock();
139 return Time(initial_time);
142 // static
143 Time Time::FromFileTime(FILETIME ft) {
144 if (bit_cast<int64, FILETIME>(ft) == 0)
145 return Time();
146 if (ft.dwHighDateTime == std::numeric_limits<DWORD>::max() &&
147 ft.dwLowDateTime == std::numeric_limits<DWORD>::max())
148 return Max();
149 return Time(FileTimeToMicroseconds(ft));
152 FILETIME Time::ToFileTime() const {
153 if (is_null())
154 return bit_cast<FILETIME, int64>(0);
155 if (is_max()) {
156 FILETIME result;
157 result.dwHighDateTime = std::numeric_limits<DWORD>::max();
158 result.dwLowDateTime = std::numeric_limits<DWORD>::max();
159 return result;
161 FILETIME utc_ft;
162 MicrosecondsToFileTime(us_, &utc_ft);
163 return utc_ft;
166 // static
167 void Time::EnableHighResolutionTimer(bool enable) {
168 // Test for single-threaded access.
169 static PlatformThreadId my_thread = PlatformThread::CurrentId();
170 DCHECK(PlatformThread::CurrentId() == my_thread);
172 if (high_resolution_timer_enabled_ == enable)
173 return;
175 high_resolution_timer_enabled_ = enable;
178 // static
179 bool Time::ActivateHighResolutionTimer(bool activating) {
180 if (!high_resolution_timer_enabled_ && activating)
181 return false;
183 // Using anything other than 1ms makes timers granular
184 // to that interval.
185 const int kMinTimerIntervalMs = 1;
186 MMRESULT result;
187 if (activating) {
188 result = timeBeginPeriod(kMinTimerIntervalMs);
189 high_resolution_timer_activated_++;
190 } else {
191 result = timeEndPeriod(kMinTimerIntervalMs);
192 high_resolution_timer_activated_--;
194 return result == TIMERR_NOERROR;
197 // static
198 bool Time::IsHighResolutionTimerInUse() {
199 // Note: we should track the high_resolution_timer_activated_ value
200 // under a lock if we want it to be accurate in a system with multiple
201 // message loops. We don't do that - because we don't want to take the
202 // expense of a lock for this. We *only* track this value so that unit
203 // tests can see if the high resolution timer is on or off.
204 return high_resolution_timer_enabled_ &&
205 high_resolution_timer_activated_ > 0;
208 // static
209 Time Time::FromExploded(bool is_local, const Exploded& exploded) {
210 // Create the system struct representing our exploded time. It will either be
211 // in local time or UTC.
212 SYSTEMTIME st;
213 st.wYear = exploded.year;
214 st.wMonth = exploded.month;
215 st.wDayOfWeek = exploded.day_of_week;
216 st.wDay = exploded.day_of_month;
217 st.wHour = exploded.hour;
218 st.wMinute = exploded.minute;
219 st.wSecond = exploded.second;
220 st.wMilliseconds = exploded.millisecond;
222 FILETIME ft;
223 bool success = true;
224 // Ensure that it's in UTC.
225 if (is_local) {
226 SYSTEMTIME utc_st;
227 success = TzSpecificLocalTimeToSystemTime(NULL, &st, &utc_st) &&
228 SystemTimeToFileTime(&utc_st, &ft);
229 } else {
230 success = !!SystemTimeToFileTime(&st, &ft);
233 if (!success) {
234 NOTREACHED() << "Unable to convert time";
235 return Time(0);
237 return Time(FileTimeToMicroseconds(ft));
240 void Time::Explode(bool is_local, Exploded* exploded) const {
241 if (us_ < 0LL) {
242 // We are not able to convert it to FILETIME.
243 ZeroMemory(exploded, sizeof(*exploded));
244 return;
247 // FILETIME in UTC.
248 FILETIME utc_ft;
249 MicrosecondsToFileTime(us_, &utc_ft);
251 // FILETIME in local time if necessary.
252 bool success = true;
253 // FILETIME in SYSTEMTIME (exploded).
254 SYSTEMTIME st;
255 if (is_local) {
256 SYSTEMTIME utc_st;
257 // We don't use FileTimeToLocalFileTime here, since it uses the current
258 // settings for the time zone and daylight saving time. Therefore, if it is
259 // daylight saving time, it will take daylight saving time into account,
260 // even if the time you are converting is in standard time.
261 success = FileTimeToSystemTime(&utc_ft, &utc_st) &&
262 SystemTimeToTzSpecificLocalTime(NULL, &utc_st, &st);
263 } else {
264 success = !!FileTimeToSystemTime(&utc_ft, &st);
267 if (!success) {
268 NOTREACHED() << "Unable to convert time, don't know why";
269 ZeroMemory(exploded, sizeof(*exploded));
270 return;
273 exploded->year = st.wYear;
274 exploded->month = st.wMonth;
275 exploded->day_of_week = st.wDayOfWeek;
276 exploded->day_of_month = st.wDay;
277 exploded->hour = st.wHour;
278 exploded->minute = st.wMinute;
279 exploded->second = st.wSecond;
280 exploded->millisecond = st.wMilliseconds;
283 // TimeTicks ------------------------------------------------------------------
284 namespace {
286 // We define a wrapper to adapt between the __stdcall and __cdecl call of the
287 // mock function, and to avoid a static constructor. Assigning an import to a
288 // function pointer directly would require setup code to fetch from the IAT.
289 DWORD timeGetTimeWrapper() {
290 return timeGetTime();
293 DWORD (*tick_function)(void) = &timeGetTimeWrapper;
295 // Accumulation of time lost due to rollover (in milliseconds).
296 int64 rollover_ms = 0;
298 // The last timeGetTime value we saw, to detect rollover.
299 DWORD last_seen_now = 0;
301 // Lock protecting rollover_ms and last_seen_now.
302 // Note: this is a global object, and we usually avoid these. However, the time
303 // code is low-level, and we don't want to use Singletons here (it would be too
304 // easy to use a Singleton without even knowing it, and that may lead to many
305 // gotchas). Its impact on startup time should be negligible due to low-level
306 // nature of time code.
307 base::Lock rollover_lock;
309 // We use timeGetTime() to implement TimeTicks::Now(). This can be problematic
310 // because it returns the number of milliseconds since Windows has started,
311 // which will roll over the 32-bit value every ~49 days. We try to track
312 // rollover ourselves, which works if TimeTicks::Now() is called at least every
313 // 49 days.
314 TimeDelta RolloverProtectedNow() {
315 base::AutoLock locked(rollover_lock);
316 // We should hold the lock while calling tick_function to make sure that
317 // we keep last_seen_now stay correctly in sync.
318 DWORD now = tick_function();
319 if (now < last_seen_now)
320 rollover_ms += 0x100000000I64; // ~49.7 days.
321 last_seen_now = now;
322 return TimeDelta::FromMilliseconds(now + rollover_ms);
325 // Overview of time counters:
326 // (1) CPU cycle counter. (Retrieved via RDTSC)
327 // The CPU counter provides the highest resolution time stamp and is the least
328 // expensive to retrieve. However, the CPU counter is unreliable and should not
329 // be used in production. Its biggest issue is that it is per processor and it
330 // is not synchronized between processors. Also, on some computers, the counters
331 // will change frequency due to thermal and power changes, and stop in some
332 // states.
334 // (2) QueryPerformanceCounter (QPC). The QPC counter provides a high-
335 // resolution (100 nanoseconds) time stamp but is comparatively more expensive
336 // to retrieve. What QueryPerformanceCounter actually does is up to the HAL.
337 // (with some help from ACPI).
338 // According to http://blogs.msdn.com/oldnewthing/archive/2005/09/02/459952.aspx
339 // in the worst case, it gets the counter from the rollover interrupt on the
340 // programmable interrupt timer. In best cases, the HAL may conclude that the
341 // RDTSC counter runs at a constant frequency, then it uses that instead. On
342 // multiprocessor machines, it will try to verify the values returned from
343 // RDTSC on each processor are consistent with each other, and apply a handful
344 // of workarounds for known buggy hardware. In other words, QPC is supposed to
345 // give consistent result on a multiprocessor computer, but it is unreliable in
346 // reality due to bugs in BIOS or HAL on some, especially old computers.
347 // With recent updates on HAL and newer BIOS, QPC is getting more reliable but
348 // it should be used with caution.
350 // (3) System time. The system time provides a low-resolution (typically 10ms
351 // to 55 milliseconds) time stamp but is comparatively less expensive to
352 // retrieve and more reliable.
353 class HighResNowSingleton {
354 public:
355 static HighResNowSingleton* GetInstance() {
356 return Singleton<HighResNowSingleton>::get();
359 bool IsUsingHighResClock() {
360 return ticks_per_second_ != 0.0;
363 void DisableHighResClock() {
364 ticks_per_second_ = 0.0;
367 TimeDelta Now() {
368 if (IsUsingHighResClock())
369 return TimeDelta::FromMicroseconds(UnreliableNow());
371 // Just fallback to the slower clock.
372 return RolloverProtectedNow();
375 int64 GetQPCDriftMicroseconds() {
376 if (!IsUsingHighResClock())
377 return 0;
378 return abs((UnreliableNow() - ReliableNow()) - skew_);
381 int64 QPCValueToMicroseconds(LONGLONG qpc_value) {
382 if (!ticks_per_second_)
383 return 0;
385 // Intentionally calculate microseconds in a round about manner to avoid
386 // overflow and precision issues. Think twice before simplifying!
387 int64 whole_seconds = qpc_value / ticks_per_second_;
388 int64 leftover_ticks = qpc_value % ticks_per_second_;
389 int64 microseconds = (whole_seconds * Time::kMicrosecondsPerSecond) +
390 ((leftover_ticks * Time::kMicrosecondsPerSecond) /
391 ticks_per_second_);
392 return microseconds;
395 private:
396 HighResNowSingleton()
397 : ticks_per_second_(0),
398 skew_(0) {
399 InitializeClock();
401 // On Athlon X2 CPUs (e.g. model 15) QueryPerformanceCounter is
402 // unreliable. Fallback to low-res clock.
403 base::CPU cpu;
404 if (cpu.vendor_name() == "AuthenticAMD" && cpu.family() == 15)
405 DisableHighResClock();
408 // Synchronize the QPC clock with GetSystemTimeAsFileTime.
409 void InitializeClock() {
410 LARGE_INTEGER ticks_per_sec = {0};
411 if (!QueryPerformanceFrequency(&ticks_per_sec))
412 return; // Broken, we don't guarantee this function works.
413 ticks_per_second_ = ticks_per_sec.QuadPart;
415 skew_ = UnreliableNow() - ReliableNow();
418 // Get the number of microseconds since boot in an unreliable fashion.
419 int64 UnreliableNow() {
420 LARGE_INTEGER now;
421 QueryPerformanceCounter(&now);
422 return QPCValueToMicroseconds(now.QuadPart);
425 // Get the number of microseconds since boot in a reliable fashion.
426 int64 ReliableNow() {
427 return RolloverProtectedNow().InMicroseconds();
430 int64 ticks_per_second_; // 0 indicates QPF failed and we're broken.
431 int64 skew_; // Skew between lo-res and hi-res clocks (for debugging).
433 friend struct DefaultSingletonTraits<HighResNowSingleton>;
436 } // namespace
438 // static
439 TimeTicks::TickFunctionType TimeTicks::SetMockTickFunction(
440 TickFunctionType ticker) {
441 base::AutoLock locked(rollover_lock);
442 TickFunctionType old = tick_function;
443 tick_function = ticker;
444 rollover_ms = 0;
445 last_seen_now = 0;
446 return old;
449 // static
450 TimeTicks TimeTicks::Now() {
451 return TimeTicks() + RolloverProtectedNow();
454 // static
455 TimeTicks TimeTicks::HighResNow() {
456 return TimeTicks() + HighResNowSingleton::GetInstance()->Now();
459 // static
460 TimeTicks TimeTicks::NowFromSystemTraceTime() {
461 return HighResNow();
464 // static
465 int64 TimeTicks::GetQPCDriftMicroseconds() {
466 return HighResNowSingleton::GetInstance()->GetQPCDriftMicroseconds();
469 // static
470 TimeTicks TimeTicks::FromQPCValue(LONGLONG qpc_value) {
471 return TimeTicks(
472 HighResNowSingleton::GetInstance()->QPCValueToMicroseconds(qpc_value));
475 // static
476 bool TimeTicks::IsHighResClockWorking() {
477 return HighResNowSingleton::GetInstance()->IsUsingHighResClock();
480 // TimeDelta ------------------------------------------------------------------
482 // static
483 TimeDelta TimeDelta::FromQPCValue(LONGLONG qpc_value) {
484 return TimeDelta(
485 HighResNowSingleton::GetInstance()->QPCValueToMicroseconds(qpc_value));