1 // Copyright 2011 The Chromium Authors. All rights reserved.
2 // Use of this source code is governed by a BSD-style license that can be
3 // found in the LICENSE file.
5 #include "cc/trees/layer_tree_host_common.h"
9 #include "base/debug/trace_event.h"
10 #include "cc/base/math_util.h"
11 #include "cc/layers/heads_up_display_layer_impl.h"
12 #include "cc/layers/layer.h"
13 #include "cc/layers/layer_impl.h"
14 #include "cc/layers/layer_iterator.h"
15 #include "cc/layers/render_surface.h"
16 #include "cc/layers/render_surface_impl.h"
17 #include "cc/trees/layer_sorter.h"
18 #include "cc/trees/layer_tree_impl.h"
19 #include "ui/gfx/geometry/rect_conversions.h"
20 #include "ui/gfx/transform.h"
24 ScrollAndScaleSet::ScrollAndScaleSet()
25 : page_scale_delta(1.f
), top_controls_delta(0.f
) {
28 ScrollAndScaleSet::~ScrollAndScaleSet() {}
30 static void SortLayers(LayerList::iterator forst
,
31 LayerList::iterator end
,
36 static void SortLayers(LayerImplList::iterator first
,
37 LayerImplList::iterator end
,
38 LayerSorter
* layer_sorter
) {
40 TRACE_EVENT0("cc", "LayerTreeHostCommon::SortLayers");
41 layer_sorter
->Sort(first
, end
);
44 template <typename LayerType
>
45 static gfx::Vector2dF
GetEffectiveScrollDelta(LayerType
* layer
) {
46 gfx::Vector2dF scroll_delta
= layer
->ScrollDelta();
47 // The scroll parent's scroll delta is the amount we've scrolled on the
48 // compositor thread since the commit for this layer tree's source frame.
49 // we last reported to the main thread. I.e., it's the discrepancy between
50 // a scroll parent's scroll delta and offset, so we must add it here.
51 if (layer
->scroll_parent())
52 scroll_delta
+= layer
->scroll_parent()->ScrollDelta();
56 template <typename LayerType
>
57 static gfx::ScrollOffset
GetEffectiveTotalScrollOffset(LayerType
* layer
) {
58 gfx::ScrollOffset offset
= layer
->TotalScrollOffset();
59 // The scroll parent's total scroll offset (scroll offset + scroll delta)
60 // can't be used because its scroll offset has already been applied to the
61 // scroll children's positions by the main thread layer positioning code.
62 if (layer
->scroll_parent())
63 offset
+= gfx::ScrollOffset(layer
->scroll_parent()->ScrollDelta());
67 inline gfx::Rect
CalculateVisibleRectWithCachedLayerRect(
68 const gfx::Rect
& target_surface_rect
,
69 const gfx::Rect
& layer_bound_rect
,
70 const gfx::Rect
& layer_rect_in_target_space
,
71 const gfx::Transform
& transform
) {
72 if (layer_rect_in_target_space
.IsEmpty())
75 // Is this layer fully contained within the target surface?
76 if (target_surface_rect
.Contains(layer_rect_in_target_space
))
77 return layer_bound_rect
;
79 // If the layer doesn't fill up the entire surface, then find the part of
80 // the surface rect where the layer could be visible. This avoids trying to
81 // project surface rect points that are behind the projection point.
82 gfx::Rect minimal_surface_rect
= target_surface_rect
;
83 minimal_surface_rect
.Intersect(layer_rect_in_target_space
);
85 if (minimal_surface_rect
.IsEmpty())
88 // Project the corners of the target surface rect into the layer space.
89 // This bounding rectangle may be larger than it needs to be (being
90 // axis-aligned), but is a reasonable filter on the space to consider.
91 // Non-invertible transforms will create an empty rect here.
93 gfx::Transform
surface_to_layer(gfx::Transform::kSkipInitialization
);
94 if (!transform
.GetInverse(&surface_to_layer
)) {
95 // Because we cannot use the surface bounds to determine what portion of
96 // the layer is visible, we must conservatively assume the full layer is
98 return layer_bound_rect
;
101 gfx::Rect layer_rect
= MathUtil::ProjectEnclosingClippedRect(
102 surface_to_layer
, minimal_surface_rect
);
103 layer_rect
.Intersect(layer_bound_rect
);
107 gfx::Rect
LayerTreeHostCommon::CalculateVisibleRect(
108 const gfx::Rect
& target_surface_rect
,
109 const gfx::Rect
& layer_bound_rect
,
110 const gfx::Transform
& transform
) {
111 gfx::Rect layer_in_surface_space
=
112 MathUtil::MapEnclosingClippedRect(transform
, layer_bound_rect
);
113 return CalculateVisibleRectWithCachedLayerRect(
114 target_surface_rect
, layer_bound_rect
, layer_in_surface_space
, transform
);
117 template <typename LayerType
>
118 static LayerType
* NextTargetSurface(LayerType
* layer
) {
119 return layer
->parent() ? layer
->parent()->render_target() : 0;
122 // Given two layers, this function finds their respective render targets and,
123 // computes a change of basis translation. It does this by accumulating the
124 // translation components of the draw transforms of each target between the
125 // ancestor and descendant. These transforms must be 2D translations, and this
126 // requirement is enforced at every step.
127 template <typename LayerType
>
128 static gfx::Vector2dF
ComputeChangeOfBasisTranslation(
129 const LayerType
& ancestor_layer
,
130 const LayerType
& descendant_layer
) {
131 DCHECK(descendant_layer
.HasAncestor(&ancestor_layer
));
132 const LayerType
* descendant_target
= descendant_layer
.render_target();
133 DCHECK(descendant_target
);
134 const LayerType
* ancestor_target
= ancestor_layer
.render_target();
135 DCHECK(ancestor_target
);
137 gfx::Vector2dF translation
;
138 for (const LayerType
* target
= descendant_target
; target
!= ancestor_target
;
139 target
= NextTargetSurface(target
)) {
140 const gfx::Transform
& trans
= target
->render_surface()->draw_transform();
141 // Ensure that this translation is truly 2d.
142 DCHECK(trans
.IsIdentityOrTranslation());
143 DCHECK_EQ(0.f
, trans
.matrix().get(2, 3));
144 translation
+= trans
.To2dTranslation();
150 enum TranslateRectDirection
{
151 TranslateRectDirectionToAncestor
,
152 TranslateRectDirectionToDescendant
155 template <typename LayerType
>
156 static gfx::Rect
TranslateRectToTargetSpace(const LayerType
& ancestor_layer
,
157 const LayerType
& descendant_layer
,
158 const gfx::Rect
& rect
,
159 TranslateRectDirection direction
) {
160 gfx::Vector2dF translation
= ComputeChangeOfBasisTranslation
<LayerType
>(
161 ancestor_layer
, descendant_layer
);
162 if (direction
== TranslateRectDirectionToDescendant
)
163 translation
.Scale(-1.f
);
164 return gfx::ToEnclosingRect(
165 gfx::RectF(rect
.origin() + translation
, rect
.size()));
168 // Attempts to update the clip rects for the given layer. If the layer has a
169 // clip_parent, it may not inherit its immediate ancestor's clip.
170 template <typename LayerType
>
171 static void UpdateClipRectsForClipChild(
172 const LayerType
* layer
,
173 gfx::Rect
* clip_rect_in_parent_target_space
,
174 bool* subtree_should_be_clipped
) {
175 // If the layer has no clip_parent, or the ancestor is the same as its actual
176 // parent, then we don't need special clip rects. Bail now and leave the out
177 // parameters untouched.
178 const LayerType
* clip_parent
= layer
->scroll_parent();
181 clip_parent
= layer
->clip_parent();
183 if (!clip_parent
|| clip_parent
== layer
->parent())
186 // The root layer is never a clip child.
187 DCHECK(layer
->parent());
189 // Grab the cached values.
190 *clip_rect_in_parent_target_space
= clip_parent
->clip_rect();
191 *subtree_should_be_clipped
= clip_parent
->is_clipped();
193 // We may have to project the clip rect into our parent's target space. Note,
194 // it must be our parent's target space, not ours. For one, we haven't
195 // computed our transforms, so we couldn't put it in our space yet even if we
196 // wanted to. But more importantly, this matches the expectations of
197 // CalculateDrawPropertiesInternal. If we, say, create a render surface, these
198 // clip rects will want to be in its target space, not ours.
199 if (clip_parent
== layer
->clip_parent()) {
200 *clip_rect_in_parent_target_space
= TranslateRectToTargetSpace
<LayerType
>(
203 *clip_rect_in_parent_target_space
,
204 TranslateRectDirectionToDescendant
);
206 // If we're being clipped by our scroll parent, we must translate through
207 // our common ancestor. This happens to be our parent, so it is sufficent to
208 // translate from our clip parent's space to the space of its ancestor (our
210 *clip_rect_in_parent_target_space
=
211 TranslateRectToTargetSpace
<LayerType
>(*layer
->parent(),
213 *clip_rect_in_parent_target_space
,
214 TranslateRectDirectionToAncestor
);
218 // We collect an accumulated drawable content rect per render surface.
219 // Typically, a layer will contribute to only one surface, the surface
220 // associated with its render target. Clip children, however, may affect
221 // several surfaces since there may be several surfaces between the clip child
224 // NB: we accumulate the layer's *clipped* drawable content rect.
225 template <typename LayerType
>
226 struct AccumulatedSurfaceState
{
227 explicit AccumulatedSurfaceState(LayerType
* render_target
)
228 : render_target(render_target
) {}
230 // The accumulated drawable content rect for the surface associated with the
231 // given |render_target|.
232 gfx::Rect drawable_content_rect
;
234 // The target owning the surface. (We hang onto the target rather than the
235 // surface so that we can DCHECK that the surface's draw transform is simply
236 // a translation when |render_target| reports that it has no unclipped
238 LayerType
* render_target
;
241 template <typename LayerType
>
242 void UpdateAccumulatedSurfaceState(
244 const gfx::Rect
& drawable_content_rect
,
245 std::vector
<AccumulatedSurfaceState
<LayerType
>>*
246 accumulated_surface_state
) {
247 if (IsRootLayer(layer
))
250 // We will apply our drawable content rect to the accumulated rects for all
251 // surfaces between us and |render_target| (inclusive). This is either our
252 // clip parent's target if we are a clip child, or else simply our parent's
253 // target. We use our parent's target because we're either the owner of a
254 // render surface and we'll want to add our rect to our *surface's* target, or
255 // we're not and our target is the same as our parent's. In both cases, the
256 // parent's target gives us what we want.
257 LayerType
* render_target
= layer
->clip_parent()
258 ? layer
->clip_parent()->render_target()
259 : layer
->parent()->render_target();
261 // If the layer owns a surface, then the content rect is in the wrong space.
262 // Instead, we will use the surface's DrawableContentRect which is in target
263 // space as required.
264 gfx::Rect target_rect
= drawable_content_rect
;
265 if (layer
->render_surface()) {
267 gfx::ToEnclosedRect(layer
->render_surface()->DrawableContentRect());
270 if (render_target
->is_clipped()) {
271 gfx::Rect clip_rect
= render_target
->clip_rect();
272 // If the layer has a clip parent, the clip rect may be in the wrong space,
273 // so we'll need to transform it before it is applied.
274 if (layer
->clip_parent()) {
275 clip_rect
= TranslateRectToTargetSpace
<LayerType
>(
276 *layer
->clip_parent(),
279 TranslateRectDirectionToDescendant
);
281 target_rect
.Intersect(clip_rect
);
284 // We must have at least one entry in the vector for the root.
285 DCHECK_LT(0ul, accumulated_surface_state
->size());
287 typedef typename
std::vector
<AccumulatedSurfaceState
<LayerType
>>
288 AccumulatedSurfaceStateVector
;
289 typedef typename
AccumulatedSurfaceStateVector::reverse_iterator
290 AccumulatedSurfaceStateIterator
;
291 AccumulatedSurfaceStateIterator current_state
=
292 accumulated_surface_state
->rbegin();
294 // Add this rect to the accumulated content rect for all surfaces until we
295 // reach the target surface.
296 bool found_render_target
= false;
297 for (; current_state
!= accumulated_surface_state
->rend(); ++current_state
) {
298 current_state
->drawable_content_rect
.Union(target_rect
);
300 // If we've reached |render_target| our work is done and we can bail.
301 if (current_state
->render_target
== render_target
) {
302 found_render_target
= true;
306 // Transform rect from the current target's space to the next.
307 LayerType
* current_target
= current_state
->render_target
;
308 DCHECK(current_target
->render_surface());
309 const gfx::Transform
& current_draw_transform
=
310 current_target
->render_surface()->draw_transform();
312 // If we have unclipped descendants, the draw transform is a translation.
313 DCHECK(current_target
->num_unclipped_descendants() == 0 ||
314 current_draw_transform
.IsIdentityOrTranslation());
316 target_rect
= gfx::ToEnclosingRect(
317 MathUtil::MapClippedRect(current_draw_transform
, target_rect
));
320 // It is an error to not reach |render_target|. If this happens, it means that
321 // either the clip parent is not an ancestor of the clip child or the surface
322 // state vector is empty, both of which should be impossible.
323 DCHECK(found_render_target
);
326 template <typename LayerType
> static inline bool IsRootLayer(LayerType
* layer
) {
327 return !layer
->parent();
330 template <typename LayerType
>
331 static inline bool LayerIsInExisting3DRenderingContext(LayerType
* layer
) {
332 return layer
->Is3dSorted() && layer
->parent() &&
333 layer
->parent()->Is3dSorted();
336 template <typename LayerType
>
337 static bool IsRootLayerOfNewRenderingContext(LayerType
* layer
) {
339 return !layer
->parent()->Is3dSorted() && layer
->Is3dSorted();
341 return layer
->Is3dSorted();
344 template <typename LayerType
>
345 static bool IsLayerBackFaceVisible(LayerType
* layer
) {
346 // The current W3C spec on CSS transforms says that backface visibility should
347 // be determined differently depending on whether the layer is in a "3d
348 // rendering context" or not. For Chromium code, we can determine whether we
349 // are in a 3d rendering context by checking if the parent preserves 3d.
351 if (LayerIsInExisting3DRenderingContext(layer
))
352 return layer
->draw_transform().IsBackFaceVisible();
354 // In this case, either the layer establishes a new 3d rendering context, or
355 // is not in a 3d rendering context at all.
356 return layer
->transform().IsBackFaceVisible();
359 template <typename LayerType
>
360 static bool IsSurfaceBackFaceVisible(LayerType
* layer
,
361 const gfx::Transform
& draw_transform
) {
362 if (LayerIsInExisting3DRenderingContext(layer
))
363 return draw_transform
.IsBackFaceVisible();
365 if (IsRootLayerOfNewRenderingContext(layer
))
366 return layer
->transform().IsBackFaceVisible();
368 // If the render_surface is not part of a new or existing rendering context,
369 // then the layers that contribute to this surface will decide back-face
370 // visibility for themselves.
374 template <typename LayerType
>
375 static inline bool LayerClipsSubtree(LayerType
* layer
) {
376 return layer
->masks_to_bounds() || layer
->mask_layer();
379 template <typename LayerType
>
380 static gfx::Rect
CalculateVisibleContentRect(
382 const gfx::Rect
& clip_rect_of_target_surface_in_target_space
,
383 const gfx::Rect
& layer_rect_in_target_space
) {
384 DCHECK(layer
->render_target());
386 // Nothing is visible if the layer bounds are empty.
387 if (!layer
->DrawsContent() || layer
->content_bounds().IsEmpty() ||
388 layer
->drawable_content_rect().IsEmpty())
391 // Compute visible bounds in target surface space.
392 gfx::Rect visible_rect_in_target_surface_space
=
393 layer
->drawable_content_rect();
395 if (!layer
->render_target()->render_surface()->clip_rect().IsEmpty()) {
396 // The |layer| L has a target T which owns a surface Ts. The surface Ts
399 // In this case the target surface Ts does clip the layer L that contributes
400 // to it. So, we have to convert the clip rect of Ts from the target space
401 // of Ts (that is the space of TsT), to the current render target's space
402 // (that is the space of T). This conversion is done outside this function
403 // so that it can be cached instead of computing it redundantly for every
405 visible_rect_in_target_surface_space
.Intersect(
406 clip_rect_of_target_surface_in_target_space
);
409 if (visible_rect_in_target_surface_space
.IsEmpty())
412 return CalculateVisibleRectWithCachedLayerRect(
413 visible_rect_in_target_surface_space
,
414 gfx::Rect(layer
->content_bounds()),
415 layer_rect_in_target_space
,
416 layer
->draw_transform());
419 static inline bool TransformToParentIsKnown(LayerImpl
* layer
) { return true; }
421 static inline bool TransformToParentIsKnown(Layer
* layer
) {
422 return !layer
->TransformIsAnimating();
425 static inline bool TransformToScreenIsKnown(LayerImpl
* layer
) { return true; }
427 static inline bool TransformToScreenIsKnown(Layer
* layer
) {
428 return !layer
->screen_space_transform_is_animating();
431 template <typename LayerType
>
432 static bool LayerShouldBeSkipped(LayerType
* layer
, bool layer_is_drawn
) {
433 // Layers can be skipped if any of these conditions are met.
434 // - is not drawn due to it or one of its ancestors being hidden (or having
435 // no copy requests).
436 // - does not draw content.
438 // - has empty bounds
439 // - the layer is not double-sided, but its back face is visible.
441 // Some additional conditions need to be computed at a later point after the
442 // recursion is finished.
443 // - the intersection of render_surface content and layer clip_rect is empty
444 // - the visible_content_rect is empty
446 // Note, if the layer should not have been drawn due to being fully
447 // transparent, we would have skipped the entire subtree and never made it
448 // into this function, so it is safe to omit this check here.
453 if (!layer
->DrawsContent() || layer
->bounds().IsEmpty())
456 LayerType
* backface_test_layer
= layer
;
457 if (layer
->use_parent_backface_visibility()) {
458 DCHECK(layer
->parent());
459 DCHECK(!layer
->parent()->use_parent_backface_visibility());
460 backface_test_layer
= layer
->parent();
463 // The layer should not be drawn if (1) it is not double-sided and (2) the
464 // back of the layer is known to be facing the screen.
465 if (!backface_test_layer
->double_sided() &&
466 TransformToScreenIsKnown(backface_test_layer
) &&
467 IsLayerBackFaceVisible(backface_test_layer
))
473 template <typename LayerType
>
474 static bool HasInvertibleOrAnimatedTransform(LayerType
* layer
) {
475 return layer
->transform_is_invertible() || layer
->TransformIsAnimating();
478 static inline bool SubtreeShouldBeSkipped(LayerImpl
* layer
,
479 bool layer_is_drawn
) {
480 // If the layer transform is not invertible, it should not be drawn.
481 // TODO(ajuma): Correctly process subtrees with singular transform for the
482 // case where we may animate to a non-singular transform and wish to
484 if (!HasInvertibleOrAnimatedTransform(layer
))
487 // When we need to do a readback/copy of a layer's output, we can not skip
488 // it or any of its ancestors.
489 if (layer
->draw_properties().layer_or_descendant_has_copy_request
)
492 // We cannot skip the the subtree if a descendant has a wheel or touch handler
493 // or the hit testing code will break (it requires fresh transforms, etc).
494 if (layer
->draw_properties().layer_or_descendant_has_input_handler
)
497 // If the layer is not drawn, then skip it and its subtree.
501 // If layer is on the pending tree and opacity is being animated then
502 // this subtree can't be skipped as we need to create, prioritize and
503 // include tiles for this layer when deciding if tree can be activated.
504 if (layer
->layer_tree_impl()->IsPendingTree() && layer
->OpacityIsAnimating())
507 // The opacity of a layer always applies to its children (either implicitly
508 // via a render surface or explicitly if the parent preserves 3D), so the
509 // entire subtree can be skipped if this layer is fully transparent.
510 return !layer
->opacity();
513 static inline bool SubtreeShouldBeSkipped(Layer
* layer
, bool layer_is_drawn
) {
514 // If the layer transform is not invertible, it should not be drawn.
515 if (!layer
->transform_is_invertible() && !layer
->TransformIsAnimating())
518 // When we need to do a readback/copy of a layer's output, we can not skip
519 // it or any of its ancestors.
520 if (layer
->draw_properties().layer_or_descendant_has_copy_request
)
523 // We cannot skip the the subtree if a descendant has a wheel or touch handler
524 // or the hit testing code will break (it requires fresh transforms, etc).
525 if (layer
->draw_properties().layer_or_descendant_has_input_handler
)
528 // If the layer is not drawn, then skip it and its subtree.
532 // If the opacity is being animated then the opacity on the main thread is
533 // unreliable (since the impl thread may be using a different opacity), so it
534 // should not be trusted.
535 // In particular, it should not cause the subtree to be skipped.
536 // Similarly, for layers that might animate opacity using an impl-only
537 // animation, their subtree should also not be skipped.
538 return !layer
->opacity() && !layer
->OpacityIsAnimating() &&
539 !layer
->OpacityCanAnimateOnImplThread();
542 static inline void SavePaintPropertiesLayer(LayerImpl
* layer
) {}
544 static inline void SavePaintPropertiesLayer(Layer
* layer
) {
545 layer
->SavePaintProperties();
547 if (layer
->mask_layer())
548 layer
->mask_layer()->SavePaintProperties();
549 if (layer
->replica_layer() && layer
->replica_layer()->mask_layer())
550 layer
->replica_layer()->mask_layer()->SavePaintProperties();
553 template <typename LayerType
>
554 static bool SubtreeShouldRenderToSeparateSurface(
556 bool axis_aligned_with_respect_to_parent
) {
558 // A layer and its descendants should render onto a new RenderSurfaceImpl if
559 // any of these rules hold:
562 // The root layer owns a render surface, but it never acts as a contributing
563 // surface to another render target. Compositor features that are applied via
564 // a contributing surface can not be applied to the root layer. In order to
565 // use these effects, another child of the root would need to be introduced
566 // in order to act as a contributing surface to the root layer's surface.
567 bool is_root
= IsRootLayer(layer
);
569 // If the layer uses a mask.
570 if (layer
->mask_layer()) {
575 // If the layer has a reflection.
576 if (layer
->replica_layer()) {
581 // If the layer uses a CSS filter.
582 if (!layer
->filters().IsEmpty() || !layer
->background_filters().IsEmpty()) {
587 int num_descendants_that_draw_content
=
588 layer
->NumDescendantsThatDrawContent();
590 // If the layer flattens its subtree, but it is treated as a 3D object by its
591 // parent (i.e. parent participates in a 3D rendering context).
592 if (LayerIsInExisting3DRenderingContext(layer
) &&
593 layer
->should_flatten_transform() &&
594 num_descendants_that_draw_content
> 0) {
595 TRACE_EVENT_INSTANT0(
597 "LayerTreeHostCommon::SubtreeShouldRenderToSeparateSurface flattening",
598 TRACE_EVENT_SCOPE_THREAD
);
603 // If the layer has blending.
604 // TODO(rosca): this is temporary, until blending is implemented for other
605 // types of quads than RenderPassDrawQuad. Layers having descendants that draw
606 // content will still create a separate rendering surface.
607 if (!layer
->uses_default_blend_mode()) {
608 TRACE_EVENT_INSTANT0(
610 "LayerTreeHostCommon::SubtreeShouldRenderToSeparateSurface blending",
611 TRACE_EVENT_SCOPE_THREAD
);
616 // If the layer clips its descendants but it is not axis-aligned with respect
618 bool layer_clips_external_content
=
619 LayerClipsSubtree(layer
) || layer
->HasDelegatedContent();
620 if (layer_clips_external_content
&& !axis_aligned_with_respect_to_parent
&&
621 num_descendants_that_draw_content
> 0) {
622 TRACE_EVENT_INSTANT0(
624 "LayerTreeHostCommon::SubtreeShouldRenderToSeparateSurface clipping",
625 TRACE_EVENT_SCOPE_THREAD
);
630 // If the layer has some translucency and does not have a preserves-3d
631 // transform style. This condition only needs a render surface if two or more
632 // layers in the subtree overlap. But checking layer overlaps is unnecessarily
633 // costly so instead we conservatively create a surface whenever at least two
634 // layers draw content for this subtree.
635 bool at_least_two_layers_in_subtree_draw_content
=
636 num_descendants_that_draw_content
> 0 &&
637 (layer
->DrawsContent() || num_descendants_that_draw_content
> 1);
639 if (layer
->opacity() != 1.f
&& layer
->should_flatten_transform() &&
640 at_least_two_layers_in_subtree_draw_content
) {
641 TRACE_EVENT_INSTANT0(
643 "LayerTreeHostCommon::SubtreeShouldRenderToSeparateSurface opacity",
644 TRACE_EVENT_SCOPE_THREAD
);
649 // The root layer should always have a render_surface.
654 // These are allowed on the root surface, as they don't require the surface to
655 // be used as a contributing surface in order to apply correctly.
658 // If the layer has isolation.
659 // TODO(rosca): to be optimized - create separate rendering surface only when
660 // the blending descendants might have access to the content behind this layer
661 // (layer has transparent background or descendants overflow).
662 // https://code.google.com/p/chromium/issues/detail?id=301738
663 if (layer
->is_root_for_isolated_group()) {
664 TRACE_EVENT_INSTANT0(
666 "LayerTreeHostCommon::SubtreeShouldRenderToSeparateSurface isolation",
667 TRACE_EVENT_SCOPE_THREAD
);
672 if (layer
->force_render_surface())
675 // If we'll make a copy of the layer's contents.
676 if (layer
->HasCopyRequest())
682 // This function returns a translation matrix that can be applied on a vector
683 // that's in the layer's target surface coordinate, while the position offset is
684 // specified in some ancestor layer's coordinate.
685 gfx::Transform
ComputeSizeDeltaCompensation(
687 LayerImpl
* container
,
688 const gfx::Vector2dF
& position_offset
) {
689 gfx::Transform result_transform
;
691 // To apply a translate in the container's layer space,
692 // the following steps need to be done:
693 // Step 1a. transform from target surface space to the container's target
695 // Step 1b. transform from container's target surface space to the
696 // container's layer space
697 // Step 2. apply the compensation
698 // Step 3. transform back to target surface space
700 gfx::Transform target_surface_space_to_container_layer_space
;
702 LayerImpl
* container_target_surface
= container
->render_target();
703 for (LayerImpl
* current_target_surface
= NextTargetSurface(layer
);
704 current_target_surface
&&
705 current_target_surface
!= container_target_surface
;
706 current_target_surface
= NextTargetSurface(current_target_surface
)) {
707 // Note: Concat is used here to convert the result coordinate space from
708 // current render surface to the next render surface.
709 target_surface_space_to_container_layer_space
.ConcatTransform(
710 current_target_surface
->render_surface()->draw_transform());
713 gfx::Transform container_layer_space_to_container_target_surface_space
=
714 container
->draw_transform();
715 container_layer_space_to_container_target_surface_space
.Scale(
716 container
->contents_scale_x(), container
->contents_scale_y());
718 gfx::Transform container_target_surface_space_to_container_layer_space
;
719 if (container_layer_space_to_container_target_surface_space
.GetInverse(
720 &container_target_surface_space_to_container_layer_space
)) {
721 // Note: Again, Concat is used to conver the result coordinate space from
722 // the container render surface to the container layer.
723 target_surface_space_to_container_layer_space
.ConcatTransform(
724 container_target_surface_space_to_container_layer_space
);
728 gfx::Transform container_layer_space_to_target_surface_space
;
729 if (target_surface_space_to_container_layer_space
.GetInverse(
730 &container_layer_space_to_target_surface_space
)) {
731 result_transform
.PreconcatTransform(
732 container_layer_space_to_target_surface_space
);
734 // TODO(shawnsingh): A non-invertible matrix could still make meaningful
735 // projection. For example ScaleZ(0) is non-invertible but the layer is
737 return gfx::Transform();
741 result_transform
.Translate(position_offset
.x(), position_offset
.y());
744 result_transform
.PreconcatTransform(
745 target_surface_space_to_container_layer_space
);
747 return result_transform
;
750 void ApplyPositionAdjustment(
753 const gfx::Transform
& scroll_compensation
,
754 gfx::Transform
* combined_transform
) {}
755 void ApplyPositionAdjustment(
757 LayerImpl
* container
,
758 const gfx::Transform
& scroll_compensation
,
759 gfx::Transform
* combined_transform
) {
760 if (!layer
->position_constraint().is_fixed_position())
763 // Special case: this layer is a composited fixed-position layer; we need to
764 // explicitly compensate for all ancestors' nonzero scroll_deltas to keep
765 // this layer fixed correctly.
766 // Note carefully: this is Concat, not Preconcat
767 // (current_scroll_compensation * combined_transform).
768 combined_transform
->ConcatTransform(scroll_compensation
);
770 // For right-edge or bottom-edge anchored fixed position layers,
771 // the layer should relocate itself if the container changes its size.
772 bool fixed_to_right_edge
=
773 layer
->position_constraint().is_fixed_to_right_edge();
774 bool fixed_to_bottom_edge
=
775 layer
->position_constraint().is_fixed_to_bottom_edge();
776 gfx::Vector2dF position_offset
= container
->FixedContainerSizeDelta();
777 position_offset
.set_x(fixed_to_right_edge
? position_offset
.x() : 0);
778 position_offset
.set_y(fixed_to_bottom_edge
? position_offset
.y() : 0);
779 if (position_offset
.IsZero())
782 // Note: Again, this is Concat. The compensation matrix will be applied on
783 // the vector in target surface space.
784 combined_transform
->ConcatTransform(
785 ComputeSizeDeltaCompensation(layer
, container
, position_offset
));
788 gfx::Transform
ComputeScrollCompensationForThisLayer(
789 LayerImpl
* scrolling_layer
,
790 const gfx::Transform
& parent_matrix
,
791 const gfx::Vector2dF
& scroll_delta
) {
792 // For every layer that has non-zero scroll_delta, we have to compute a
793 // transform that can undo the scroll_delta translation. In particular, we
794 // want this matrix to premultiply a fixed-position layer's parent_matrix, so
795 // we design this transform in three steps as follows. The steps described
796 // here apply from right-to-left, so Step 1 would be the right-most matrix:
798 // Step 1. transform from target surface space to the exact space where
799 // scroll_delta is actually applied.
800 // -- this is inverse of parent_matrix
801 // Step 2. undo the scroll_delta
802 // -- this is just a translation by scroll_delta.
803 // Step 3. transform back to target surface space.
804 // -- this transform is the parent_matrix
806 // These steps create a matrix that both start and end in target surface
807 // space. So this matrix can pre-multiply any fixed-position layer's
808 // draw_transform to undo the scroll_deltas -- as long as that fixed position
809 // layer is fixed onto the same render_target as this scrolling_layer.
812 gfx::Transform scroll_compensation_for_this_layer
= parent_matrix
; // Step 3
813 scroll_compensation_for_this_layer
.Translate(
815 scroll_delta
.y()); // Step 2
817 gfx::Transform
inverse_parent_matrix(gfx::Transform::kSkipInitialization
);
818 if (!parent_matrix
.GetInverse(&inverse_parent_matrix
)) {
819 // TODO(shawnsingh): Either we need to handle uninvertible transforms
820 // here, or DCHECK that the transform is invertible.
822 scroll_compensation_for_this_layer
.PreconcatTransform(
823 inverse_parent_matrix
); // Step 1
824 return scroll_compensation_for_this_layer
;
827 gfx::Transform
ComputeScrollCompensationMatrixForChildren(
828 Layer
* current_layer
,
829 const gfx::Transform
& current_parent_matrix
,
830 const gfx::Transform
& current_scroll_compensation
,
831 const gfx::Vector2dF
& scroll_delta
) {
832 // The main thread (i.e. Layer) does not need to worry about scroll
833 // compensation. So we can just return an identity matrix here.
834 return gfx::Transform();
837 gfx::Transform
ComputeScrollCompensationMatrixForChildren(
839 const gfx::Transform
& parent_matrix
,
840 const gfx::Transform
& current_scroll_compensation_matrix
,
841 const gfx::Vector2dF
& scroll_delta
) {
842 // "Total scroll compensation" is the transform needed to cancel out all
843 // scroll_delta translations that occurred since the nearest container layer,
844 // even if there are render_surfaces in-between.
846 // There are some edge cases to be aware of, that are not explicit in the
848 // - A layer that is both a fixed-position and container should not be its
849 // own container, instead, that means it is fixed to an ancestor, and is a
850 // container for any fixed-position descendants.
851 // - A layer that is a fixed-position container and has a render_surface
852 // should behave the same as a container without a render_surface, the
853 // render_surface is irrelevant in that case.
854 // - A layer that does not have an explicit container is simply fixed to the
855 // viewport. (i.e. the root render_surface.)
856 // - If the fixed-position layer has its own render_surface, then the
857 // render_surface is the one who gets fixed.
859 // This function needs to be called AFTER layers create their own
863 // Scroll compensation restarts from identity under two possible conditions:
864 // - the current layer is a container for fixed-position descendants
865 // - the current layer is fixed-position itself, so any fixed-position
866 // descendants are positioned with respect to this layer. Thus, any
867 // fixed position descendants only need to compensate for scrollDeltas
868 // that occur below this layer.
869 bool current_layer_resets_scroll_compensation_for_descendants
=
870 layer
->IsContainerForFixedPositionLayers() ||
871 layer
->position_constraint().is_fixed_position();
873 // Avoid the overheads (including stack allocation and matrix
874 // initialization/copy) if we know that the scroll compensation doesn't need
875 // to be reset or adjusted.
876 if (!current_layer_resets_scroll_compensation_for_descendants
&&
877 scroll_delta
.IsZero() && !layer
->render_surface())
878 return current_scroll_compensation_matrix
;
880 // Start as identity matrix.
881 gfx::Transform next_scroll_compensation_matrix
;
883 // If this layer does not reset scroll compensation, then it inherits the
884 // existing scroll compensations.
885 if (!current_layer_resets_scroll_compensation_for_descendants
)
886 next_scroll_compensation_matrix
= current_scroll_compensation_matrix
;
888 // If the current layer has a non-zero scroll_delta, then we should compute
889 // its local scroll compensation and accumulate it to the
890 // next_scroll_compensation_matrix.
891 if (!scroll_delta
.IsZero()) {
892 gfx::Transform scroll_compensation_for_this_layer
=
893 ComputeScrollCompensationForThisLayer(
894 layer
, parent_matrix
, scroll_delta
);
895 next_scroll_compensation_matrix
.PreconcatTransform(
896 scroll_compensation_for_this_layer
);
899 // If the layer created its own render_surface, we have to adjust
900 // next_scroll_compensation_matrix. The adjustment allows us to continue
901 // using the scroll compensation on the next surface.
902 // Step 1 (right-most in the math): transform from the new surface to the
903 // original ancestor surface
904 // Step 2: apply the scroll compensation
905 // Step 3: transform back to the new surface.
906 if (layer
->render_surface() &&
907 !next_scroll_compensation_matrix
.IsIdentity()) {
908 gfx::Transform
inverse_surface_draw_transform(
909 gfx::Transform::kSkipInitialization
);
910 if (!layer
->render_surface()->draw_transform().GetInverse(
911 &inverse_surface_draw_transform
)) {
912 // TODO(shawnsingh): Either we need to handle uninvertible transforms
913 // here, or DCHECK that the transform is invertible.
915 next_scroll_compensation_matrix
=
916 inverse_surface_draw_transform
* next_scroll_compensation_matrix
*
917 layer
->render_surface()->draw_transform();
920 return next_scroll_compensation_matrix
;
923 template <typename LayerType
>
924 static inline void UpdateLayerScaleDrawProperties(
926 float ideal_contents_scale
,
927 float maximum_animation_contents_scale
,
928 float page_scale_factor
,
929 float device_scale_factor
) {
930 layer
->draw_properties().ideal_contents_scale
= ideal_contents_scale
;
931 layer
->draw_properties().maximum_animation_contents_scale
=
932 maximum_animation_contents_scale
;
933 layer
->draw_properties().page_scale_factor
= page_scale_factor
;
934 layer
->draw_properties().device_scale_factor
= device_scale_factor
;
937 static inline void CalculateContentsScale(LayerImpl
* layer
,
938 float contents_scale
) {
939 // LayerImpl has all of its content scales and bounds pushed from the Main
940 // thread during commit and just uses those values as-is.
943 static inline void CalculateContentsScale(Layer
* layer
, float contents_scale
) {
944 layer
->CalculateContentsScale(contents_scale
,
945 &layer
->draw_properties().contents_scale_x
,
946 &layer
->draw_properties().contents_scale_y
,
947 &layer
->draw_properties().content_bounds
);
949 Layer
* mask_layer
= layer
->mask_layer();
951 mask_layer
->CalculateContentsScale(
953 &mask_layer
->draw_properties().contents_scale_x
,
954 &mask_layer
->draw_properties().contents_scale_y
,
955 &mask_layer
->draw_properties().content_bounds
);
958 Layer
* replica_mask_layer
=
959 layer
->replica_layer() ? layer
->replica_layer()->mask_layer() : NULL
;
960 if (replica_mask_layer
) {
961 replica_mask_layer
->CalculateContentsScale(
963 &replica_mask_layer
->draw_properties().contents_scale_x
,
964 &replica_mask_layer
->draw_properties().contents_scale_y
,
965 &replica_mask_layer
->draw_properties().content_bounds
);
969 static inline void UpdateLayerContentsScale(
971 bool can_adjust_raster_scale
,
972 float ideal_contents_scale
,
973 float device_scale_factor
,
974 float page_scale_factor
,
975 bool animating_transform_to_screen
) {
976 CalculateContentsScale(layer
, ideal_contents_scale
);
979 static inline void UpdateLayerContentsScale(
981 bool can_adjust_raster_scale
,
982 float ideal_contents_scale
,
983 float device_scale_factor
,
984 float page_scale_factor
,
985 bool animating_transform_to_screen
) {
986 if (can_adjust_raster_scale
) {
987 float ideal_raster_scale
=
988 ideal_contents_scale
/ (device_scale_factor
* page_scale_factor
);
990 bool need_to_set_raster_scale
= layer
->raster_scale_is_unknown();
992 // If we've previously saved a raster_scale but the ideal changes, things
993 // are unpredictable and we should just use 1.
994 if (!need_to_set_raster_scale
&& layer
->raster_scale() != 1.f
&&
995 ideal_raster_scale
!= layer
->raster_scale()) {
996 ideal_raster_scale
= 1.f
;
997 need_to_set_raster_scale
= true;
1000 if (need_to_set_raster_scale
) {
1001 bool use_and_save_ideal_scale
=
1002 ideal_raster_scale
>= 1.f
&& !animating_transform_to_screen
;
1003 if (use_and_save_ideal_scale
)
1004 layer
->set_raster_scale(ideal_raster_scale
);
1008 float raster_scale
= 1.f
;
1009 if (!layer
->raster_scale_is_unknown())
1010 raster_scale
= layer
->raster_scale();
1012 gfx::Size old_content_bounds
= layer
->content_bounds();
1013 float old_contents_scale_x
= layer
->contents_scale_x();
1014 float old_contents_scale_y
= layer
->contents_scale_y();
1016 float contents_scale
= raster_scale
* device_scale_factor
* page_scale_factor
;
1017 CalculateContentsScale(layer
, contents_scale
);
1019 if (layer
->content_bounds() != old_content_bounds
||
1020 layer
->contents_scale_x() != old_contents_scale_x
||
1021 layer
->contents_scale_y() != old_contents_scale_y
)
1022 layer
->SetNeedsPushProperties();
1025 static inline void CalculateAnimationContentsScale(
1027 bool ancestor_is_animating_scale
,
1028 float ancestor_maximum_animation_contents_scale
,
1029 const gfx::Transform
& parent_transform
,
1030 const gfx::Transform
& combined_transform
,
1031 bool* combined_is_animating_scale
,
1032 float* combined_maximum_animation_contents_scale
) {
1033 *combined_is_animating_scale
= false;
1034 *combined_maximum_animation_contents_scale
= 0.f
;
1037 static inline void CalculateAnimationContentsScale(
1039 bool ancestor_is_animating_scale
,
1040 float ancestor_maximum_animation_contents_scale
,
1041 const gfx::Transform
& ancestor_transform
,
1042 const gfx::Transform
& combined_transform
,
1043 bool* combined_is_animating_scale
,
1044 float* combined_maximum_animation_contents_scale
) {
1045 if (ancestor_is_animating_scale
&&
1046 ancestor_maximum_animation_contents_scale
== 0.f
) {
1047 // We've already failed to compute a maximum animated scale at an
1048 // ancestor, so we'll continue to fail.
1049 *combined_maximum_animation_contents_scale
= 0.f
;
1050 *combined_is_animating_scale
= true;
1054 if (!combined_transform
.IsScaleOrTranslation()) {
1055 // Computing maximum animated scale in the presence of
1056 // non-scale/translation transforms isn't supported.
1057 *combined_maximum_animation_contents_scale
= 0.f
;
1058 *combined_is_animating_scale
= true;
1062 // We currently only support computing maximum scale for combinations of
1063 // scales and translations. We treat all non-translations as potentially
1064 // affecting scale. Animations that include non-translation/scale components
1065 // will cause the computation of MaximumScale below to fail.
1066 bool layer_is_animating_scale
=
1067 !layer
->layer_animation_controller()->HasOnlyTranslationTransforms();
1069 if (!layer_is_animating_scale
&& !ancestor_is_animating_scale
) {
1070 *combined_maximum_animation_contents_scale
= 0.f
;
1071 *combined_is_animating_scale
= false;
1075 // We don't attempt to accumulate animation scale from multiple nodes,
1076 // because of the risk of significant overestimation. For example, one node
1077 // may be increasing scale from 1 to 10 at the same time as a descendant is
1078 // decreasing scale from 10 to 1. Naively combining these scales would produce
1080 if (layer_is_animating_scale
&& ancestor_is_animating_scale
) {
1081 *combined_maximum_animation_contents_scale
= 0.f
;
1082 *combined_is_animating_scale
= true;
1086 // At this point, we know either the layer or an ancestor, but not both,
1087 // is animating scale.
1088 *combined_is_animating_scale
= true;
1089 if (!layer_is_animating_scale
) {
1090 gfx::Vector2dF layer_transform_scales
=
1091 MathUtil::ComputeTransform2dScaleComponents(layer
->transform(), 0.f
);
1092 *combined_maximum_animation_contents_scale
=
1093 ancestor_maximum_animation_contents_scale
*
1094 std::max(layer_transform_scales
.x(), layer_transform_scales
.y());
1098 float layer_maximum_animated_scale
= 0.f
;
1099 if (!layer
->layer_animation_controller()->MaximumTargetScale(
1100 &layer_maximum_animated_scale
)) {
1101 *combined_maximum_animation_contents_scale
= 0.f
;
1104 gfx::Vector2dF ancestor_transform_scales
=
1105 MathUtil::ComputeTransform2dScaleComponents(ancestor_transform
, 0.f
);
1106 *combined_maximum_animation_contents_scale
=
1107 layer_maximum_animated_scale
*
1108 std::max(ancestor_transform_scales
.x(), ancestor_transform_scales
.y());
1111 template <typename LayerType
>
1112 static inline typename
LayerType::RenderSurfaceType
* CreateOrReuseRenderSurface(
1114 if (!layer
->render_surface()) {
1115 layer
->CreateRenderSurface();
1116 return layer
->render_surface();
1119 layer
->render_surface()->ClearLayerLists();
1120 return layer
->render_surface();
1123 template <typename LayerTypePtr
>
1124 static inline void MarkLayerWithRenderSurfaceLayerListId(
1126 int current_render_surface_layer_list_id
) {
1127 layer
->draw_properties().last_drawn_render_surface_layer_list_id
=
1128 current_render_surface_layer_list_id
;
1131 template <typename LayerTypePtr
>
1132 static inline void MarkMasksWithRenderSurfaceLayerListId(
1134 int current_render_surface_layer_list_id
) {
1135 if (layer
->mask_layer()) {
1136 MarkLayerWithRenderSurfaceLayerListId(layer
->mask_layer(),
1137 current_render_surface_layer_list_id
);
1139 if (layer
->replica_layer() && layer
->replica_layer()->mask_layer()) {
1140 MarkLayerWithRenderSurfaceLayerListId(layer
->replica_layer()->mask_layer(),
1141 current_render_surface_layer_list_id
);
1145 template <typename LayerListType
>
1146 static inline void MarkLayerListWithRenderSurfaceLayerListId(
1147 LayerListType
* layer_list
,
1148 int current_render_surface_layer_list_id
) {
1149 for (typename
LayerListType::iterator it
= layer_list
->begin();
1150 it
!= layer_list
->end();
1152 MarkLayerWithRenderSurfaceLayerListId(*it
,
1153 current_render_surface_layer_list_id
);
1154 MarkMasksWithRenderSurfaceLayerListId(*it
,
1155 current_render_surface_layer_list_id
);
1159 template <typename LayerType
>
1160 static inline void RemoveSurfaceForEarlyExit(
1161 LayerType
* layer_to_remove
,
1162 typename
LayerType::RenderSurfaceListType
* render_surface_layer_list
) {
1163 DCHECK(layer_to_remove
->render_surface());
1164 // Technically, we know that the layer we want to remove should be
1165 // at the back of the render_surface_layer_list. However, we have had
1166 // bugs before that added unnecessary layers here
1167 // (https://bugs.webkit.org/show_bug.cgi?id=74147), but that causes
1168 // things to crash. So here we proactively remove any additional
1169 // layers from the end of the list.
1170 while (render_surface_layer_list
->back() != layer_to_remove
) {
1171 MarkLayerListWithRenderSurfaceLayerListId(
1172 &render_surface_layer_list
->back()->render_surface()->layer_list(), 0);
1173 MarkLayerWithRenderSurfaceLayerListId(render_surface_layer_list
->back(), 0);
1175 render_surface_layer_list
->back()->ClearRenderSurfaceLayerList();
1176 render_surface_layer_list
->pop_back();
1178 DCHECK_EQ(render_surface_layer_list
->back(), layer_to_remove
);
1179 MarkLayerListWithRenderSurfaceLayerListId(
1180 &layer_to_remove
->render_surface()->layer_list(), 0);
1181 MarkLayerWithRenderSurfaceLayerListId(layer_to_remove
, 0);
1182 render_surface_layer_list
->pop_back();
1183 layer_to_remove
->ClearRenderSurfaceLayerList();
1186 struct PreCalculateMetaInformationRecursiveData
{
1187 bool layer_or_descendant_has_copy_request
;
1188 bool layer_or_descendant_has_input_handler
;
1189 int num_unclipped_descendants
;
1191 PreCalculateMetaInformationRecursiveData()
1192 : layer_or_descendant_has_copy_request(false),
1193 layer_or_descendant_has_input_handler(false),
1194 num_unclipped_descendants(0) {}
1196 void Merge(const PreCalculateMetaInformationRecursiveData
& data
) {
1197 layer_or_descendant_has_copy_request
|=
1198 data
.layer_or_descendant_has_copy_request
;
1199 layer_or_descendant_has_input_handler
|=
1200 data
.layer_or_descendant_has_input_handler
;
1201 num_unclipped_descendants
+=
1202 data
.num_unclipped_descendants
;
1206 // Recursively walks the layer tree to compute any information that is needed
1207 // before doing the main recursion.
1208 template <typename LayerType
>
1209 static void PreCalculateMetaInformation(
1211 PreCalculateMetaInformationRecursiveData
* recursive_data
) {
1213 layer
->draw_properties().sorted_for_recursion
= false;
1214 layer
->draw_properties().has_child_with_a_scroll_parent
= false;
1216 if (!HasInvertibleOrAnimatedTransform(layer
)) {
1217 // Layers with singular transforms should not be drawn, the whole subtree
1222 if (layer
->clip_parent())
1223 recursive_data
->num_unclipped_descendants
++;
1225 for (size_t i
= 0; i
< layer
->children().size(); ++i
) {
1226 LayerType
* child_layer
=
1227 LayerTreeHostCommon::get_layer_as_raw_ptr(layer
->children(), i
);
1229 PreCalculateMetaInformationRecursiveData data_for_child
;
1230 PreCalculateMetaInformation(child_layer
, &data_for_child
);
1232 if (child_layer
->scroll_parent())
1233 layer
->draw_properties().has_child_with_a_scroll_parent
= true;
1234 recursive_data
->Merge(data_for_child
);
1237 if (layer
->clip_children()) {
1238 int num_clip_children
= layer
->clip_children()->size();
1239 DCHECK_GE(recursive_data
->num_unclipped_descendants
, num_clip_children
);
1240 recursive_data
->num_unclipped_descendants
-= num_clip_children
;
1243 if (layer
->HasCopyRequest())
1244 recursive_data
->layer_or_descendant_has_copy_request
= true;
1246 if (!layer
->touch_event_handler_region().IsEmpty() ||
1247 layer
->have_wheel_event_handlers())
1248 recursive_data
->layer_or_descendant_has_input_handler
= true;
1250 layer
->draw_properties().num_unclipped_descendants
=
1251 recursive_data
->num_unclipped_descendants
;
1252 layer
->draw_properties().layer_or_descendant_has_copy_request
=
1253 recursive_data
->layer_or_descendant_has_copy_request
;
1254 layer
->draw_properties().layer_or_descendant_has_input_handler
=
1255 recursive_data
->layer_or_descendant_has_input_handler
;
1258 static void RoundTranslationComponents(gfx::Transform
* transform
) {
1259 transform
->matrix().set(0, 3, MathUtil::Round(transform
->matrix().get(0, 3)));
1260 transform
->matrix().set(1, 3, MathUtil::Round(transform
->matrix().get(1, 3)));
1263 template <typename LayerType
>
1264 struct SubtreeGlobals
{
1265 LayerSorter
* layer_sorter
;
1266 int max_texture_size
;
1267 float device_scale_factor
;
1268 float page_scale_factor
;
1269 const LayerType
* page_scale_application_layer
;
1270 bool can_adjust_raster_scales
;
1271 bool can_render_to_separate_surface
;
1274 template<typename LayerType
>
1275 struct DataForRecursion
{
1276 // The accumulated sequence of transforms a layer will use to determine its
1277 // own draw transform.
1278 gfx::Transform parent_matrix
;
1280 // The accumulated sequence of transforms a layer will use to determine its
1281 // own screen-space transform.
1282 gfx::Transform full_hierarchy_matrix
;
1284 // The transform that removes all scrolling that may have occurred between a
1285 // fixed-position layer and its container, so that the layer actually does
1287 gfx::Transform scroll_compensation_matrix
;
1289 // The ancestor that would be the container for any fixed-position / sticky
1291 LayerType
* fixed_container
;
1293 // This is the normal clip rect that is propagated from parent to child.
1294 gfx::Rect clip_rect_in_target_space
;
1296 // When the layer's children want to compute their visible content rect, they
1297 // want to know what their target surface's clip rect will be. BUT - they
1298 // want to know this clip rect represented in their own target space. This
1299 // requires inverse-projecting the surface's clip rect from the surface's
1300 // render target space down to the surface's own space. Instead of computing
1301 // this value redundantly for each child layer, it is computed only once
1302 // while dealing with the parent layer, and then this precomputed value is
1303 // passed down the recursion to the children that actually use it.
1304 gfx::Rect clip_rect_of_target_surface_in_target_space
;
1306 // The maximum amount by which this layer will be scaled during the lifetime
1307 // of currently running animations.
1308 float maximum_animation_contents_scale
;
1310 bool ancestor_is_animating_scale
;
1311 bool ancestor_clips_subtree
;
1312 typename
LayerType::RenderSurfaceType
*
1313 nearest_occlusion_immune_ancestor_surface
;
1314 bool in_subtree_of_page_scale_application_layer
;
1315 bool subtree_can_use_lcd_text
;
1316 bool subtree_is_visible_from_ancestor
;
1319 template <typename LayerType
>
1320 static LayerType
* GetChildContainingLayer(const LayerType
& parent
,
1322 for (LayerType
* ancestor
= layer
; ancestor
; ancestor
= ancestor
->parent()) {
1323 if (ancestor
->parent() == &parent
)
1330 template <typename LayerType
>
1331 static void AddScrollParentChain(std::vector
<LayerType
*>* out
,
1332 const LayerType
& parent
,
1334 // At a high level, this function walks up the chain of scroll parents
1335 // recursively, and once we reach the end of the chain, we add the child
1336 // of |parent| containing each scroll ancestor as we unwind. The result is
1337 // an ordering of parent's children that ensures that scroll parents are
1338 // visited before their descendants.
1339 // Take for example this layer tree:
1341 // + stacking_context
1342 // + scroll_child (1)
1343 // + scroll_parent_graphics_layer (*)
1344 // | + scroll_parent_scrolling_layer
1345 // | + scroll_parent_scrolling_content_layer (2)
1346 // + scroll_grandparent_graphics_layer (**)
1347 // + scroll_grandparent_scrolling_layer
1348 // + scroll_grandparent_scrolling_content_layer (3)
1350 // The scroll child is (1), its scroll parent is (2) and its scroll
1351 // grandparent is (3). Note, this doesn't mean that (2)'s scroll parent is
1352 // (3), it means that (*)'s scroll parent is (3). We don't want our list to
1353 // look like [ (3), (2), (1) ], even though that does have the ancestor chain
1354 // in the right order. Instead, we want [ (**), (*), (1) ]. That is, only want
1355 // (1)'s siblings in the list, but we want them to appear in such an order
1356 // that the scroll ancestors get visited in the correct order.
1358 // So our first task at this step of the recursion is to determine the layer
1359 // that we will potentionally add to the list. That is, the child of parent
1360 // containing |layer|.
1361 LayerType
* child
= GetChildContainingLayer(parent
, layer
);
1362 if (child
->draw_properties().sorted_for_recursion
)
1365 if (LayerType
* scroll_parent
= child
->scroll_parent())
1366 AddScrollParentChain(out
, parent
, scroll_parent
);
1368 out
->push_back(child
);
1369 child
->draw_properties().sorted_for_recursion
= true;
1372 template <typename LayerType
>
1373 static bool SortChildrenForRecursion(std::vector
<LayerType
*>* out
,
1374 const LayerType
& parent
) {
1375 out
->reserve(parent
.children().size());
1376 bool order_changed
= false;
1377 for (size_t i
= 0; i
< parent
.children().size(); ++i
) {
1378 LayerType
* current
=
1379 LayerTreeHostCommon::get_layer_as_raw_ptr(parent
.children(), i
);
1381 if (current
->draw_properties().sorted_for_recursion
) {
1382 order_changed
= true;
1386 AddScrollParentChain(out
, parent
, current
);
1389 DCHECK_EQ(parent
.children().size(), out
->size());
1390 return order_changed
;
1393 template <typename LayerType
>
1394 static void GetNewDescendantsStartIndexAndCount(LayerType
* layer
,
1395 size_t* start_index
,
1397 *start_index
= layer
->draw_properties().index_of_first_descendants_addition
;
1398 *count
= layer
->draw_properties().num_descendants_added
;
1401 template <typename LayerType
>
1402 static void GetNewRenderSurfacesStartIndexAndCount(LayerType
* layer
,
1403 size_t* start_index
,
1405 *start_index
= layer
->draw_properties()
1406 .index_of_first_render_surface_layer_list_addition
;
1407 *count
= layer
->draw_properties().num_render_surfaces_added
;
1410 // We need to extract a list from the the two flavors of RenderSurfaceListType
1411 // for use in the sorting function below.
1412 static LayerList
* GetLayerListForSorting(RenderSurfaceLayerList
* rsll
) {
1413 return &rsll
->AsLayerList();
1416 static LayerImplList
* GetLayerListForSorting(LayerImplList
* layer_list
) {
1420 template <typename LayerType
, typename GetIndexAndCountType
>
1421 static void SortLayerListContributions(
1422 const LayerType
& parent
,
1423 typename
LayerType::LayerListType
* unsorted
,
1424 size_t start_index_for_all_contributions
,
1425 GetIndexAndCountType get_index_and_count
) {
1426 typename
LayerType::LayerListType buffer
;
1427 for (size_t i
= 0; i
< parent
.children().size(); ++i
) {
1429 LayerTreeHostCommon::get_layer_as_raw_ptr(parent
.children(), i
);
1431 size_t start_index
= 0;
1433 get_index_and_count(child
, &start_index
, &count
);
1434 for (size_t j
= start_index
; j
< start_index
+ count
; ++j
)
1435 buffer
.push_back(unsorted
->at(j
));
1438 DCHECK_EQ(buffer
.size(),
1439 unsorted
->size() - start_index_for_all_contributions
);
1441 for (size_t i
= 0; i
< buffer
.size(); ++i
)
1442 (*unsorted
)[i
+ start_index_for_all_contributions
] = buffer
[i
];
1445 // Recursively walks the layer tree starting at the given node and computes all
1446 // the necessary transformations, clip rects, render surfaces, etc.
1447 template <typename LayerType
>
1448 static void CalculateDrawPropertiesInternal(
1450 const SubtreeGlobals
<LayerType
>& globals
,
1451 const DataForRecursion
<LayerType
>& data_from_ancestor
,
1452 typename
LayerType::RenderSurfaceListType
* render_surface_layer_list
,
1453 typename
LayerType::LayerListType
* layer_list
,
1454 std::vector
<AccumulatedSurfaceState
<LayerType
>>* accumulated_surface_state
,
1455 int current_render_surface_layer_list_id
) {
1456 // This function computes the new matrix transformations recursively for this
1457 // layer and all its descendants. It also computes the appropriate render
1459 // Some important points to remember:
1461 // 0. Here, transforms are notated in Matrix x Vector order, and in words we
1462 // describe what the transform does from left to right.
1464 // 1. In our terminology, the "layer origin" refers to the top-left corner of
1465 // a layer, and the positive Y-axis points downwards. This interpretation is
1466 // valid because the orthographic projection applied at draw time flips the Y
1467 // axis appropriately.
1469 // 2. The anchor point, when given as a PointF object, is specified in "unit
1470 // layer space", where the bounds of the layer map to [0, 1]. However, as a
1471 // Transform object, the transform to the anchor point is specified in "layer
1472 // space", where the bounds of the layer map to [bounds.width(),
1473 // bounds.height()].
1475 // 3. Definition of various transforms used:
1476 // M[parent] is the parent matrix, with respect to the nearest render
1477 // surface, passed down recursively.
1479 // M[root] is the full hierarchy, with respect to the root, passed down
1482 // Tr[origin] is the translation matrix from the parent's origin to
1483 // this layer's origin.
1485 // Tr[origin2anchor] is the translation from the layer's origin to its
1488 // Tr[origin2center] is the translation from the layer's origin to its
1491 // M[layer] is the layer's matrix (applied at the anchor point)
1493 // S[layer2content] is the ratio of a layer's content_bounds() to its
1496 // Some composite transforms can help in understanding the sequence of
1498 // composite_layer_transform = Tr[origin2anchor] * M[layer] *
1499 // Tr[origin2anchor].inverse()
1501 // 4. When a layer (or render surface) is drawn, it is drawn into a "target
1502 // render surface". Therefore the draw transform does not necessarily
1503 // transform from screen space to local layer space. Instead, the draw
1504 // transform is the transform between the "target render surface space" and
1505 // local layer space. Note that render surfaces, except for the root, also
1506 // draw themselves into a different target render surface, and so their draw
1507 // transform and origin transforms are also described with respect to the
1510 // Using these definitions, then:
1512 // The draw transform for the layer is:
1513 // M[draw] = M[parent] * Tr[origin] * composite_layer_transform *
1514 // S[layer2content] = M[parent] * Tr[layer->position() + anchor] *
1515 // M[layer] * Tr[anchor2origin] * S[layer2content]
1517 // Interpreting the math left-to-right, this transforms from the
1518 // layer's render surface to the origin of the layer in content space.
1520 // The screen space transform is:
1521 // M[screenspace] = M[root] * Tr[origin] * composite_layer_transform *
1523 // = M[root] * Tr[layer->position() + anchor] * M[layer]
1524 // * Tr[anchor2origin] * S[layer2content]
1526 // Interpreting the math left-to-right, this transforms from the root
1527 // render surface's content space to the origin of the layer in content
1530 // The transform hierarchy that is passed on to children (i.e. the child's
1531 // parent_matrix) is:
1532 // M[parent]_for_child = M[parent] * Tr[origin] *
1533 // composite_layer_transform
1534 // = M[parent] * Tr[layer->position() + anchor] *
1535 // M[layer] * Tr[anchor2origin]
1537 // and a similar matrix for the full hierarchy with respect to the
1540 // Finally, note that the final matrix used by the shader for the layer is P *
1541 // M[draw] * S . This final product is computed in drawTexturedQuad(), where:
1542 // P is the projection matrix
1543 // S is the scale adjustment (to scale up a canonical quad to the
1546 // When a render surface has a replica layer, that layer's transform is used
1547 // to draw a second copy of the surface. gfx::Transforms named here are
1548 // relative to the surface, unless they specify they are relative to the
1551 // We will denote a scale by device scale S[deviceScale]
1553 // The render surface draw transform to its target surface origin is:
1554 // M[surfaceDraw] = M[owningLayer->Draw]
1556 // The render surface origin transform to its the root (screen space) origin
1558 // M[surface2root] = M[owningLayer->screenspace] *
1559 // S[deviceScale].inverse()
1561 // The replica draw transform to its target surface origin is:
1562 // M[replicaDraw] = S[deviceScale] * M[surfaceDraw] *
1563 // Tr[replica->position() + replica->anchor()] * Tr[replica] *
1564 // Tr[origin2anchor].inverse() * S[contents_scale].inverse()
1566 // The replica draw transform to the root (screen space) origin is:
1567 // M[replica2root] = M[surface2root] * Tr[replica->position()] *
1568 // Tr[replica] * Tr[origin2anchor].inverse()
1571 // It makes no sense to have a non-unit page_scale_factor without specifying
1572 // which layer roots the subtree the scale is applied to.
1573 DCHECK(globals
.page_scale_application_layer
||
1574 (globals
.page_scale_factor
== 1.f
));
1576 DataForRecursion
<LayerType
> data_for_children
;
1577 typename
LayerType::RenderSurfaceType
*
1578 nearest_occlusion_immune_ancestor_surface
=
1579 data_from_ancestor
.nearest_occlusion_immune_ancestor_surface
;
1580 data_for_children
.in_subtree_of_page_scale_application_layer
=
1581 data_from_ancestor
.in_subtree_of_page_scale_application_layer
;
1582 data_for_children
.subtree_can_use_lcd_text
=
1583 data_from_ancestor
.subtree_can_use_lcd_text
;
1585 // Layers that are marked as hidden will hide themselves and their subtree.
1586 // Exception: Layers with copy requests, whether hidden or not, must be drawn
1587 // anyway. In this case, we will inform their subtree they are visible to get
1588 // the right results.
1589 const bool layer_is_visible
=
1590 data_from_ancestor
.subtree_is_visible_from_ancestor
&&
1591 !layer
->hide_layer_and_subtree();
1592 const bool layer_is_drawn
= layer_is_visible
|| layer
->HasCopyRequest();
1594 // The root layer cannot skip CalcDrawProperties.
1595 if (!IsRootLayer(layer
) && SubtreeShouldBeSkipped(layer
, layer_is_drawn
)) {
1596 if (layer
->render_surface())
1597 layer
->ClearRenderSurfaceLayerList();
1601 // We need to circumvent the normal recursive flow of information for clip
1602 // children (they don't inherit their direct ancestor's clip information).
1603 // This is unfortunate, and would be unnecessary if we were to formally
1604 // separate the clipping hierarchy from the layer hierarchy.
1605 bool ancestor_clips_subtree
= data_from_ancestor
.ancestor_clips_subtree
;
1606 gfx::Rect ancestor_clip_rect_in_target_space
=
1607 data_from_ancestor
.clip_rect_in_target_space
;
1609 // Update our clipping state. If we have a clip parent we will need to pull
1610 // from the clip state cache rather than using the clip state passed from our
1611 // immediate ancestor.
1612 UpdateClipRectsForClipChild
<LayerType
>(
1613 layer
, &ancestor_clip_rect_in_target_space
, &ancestor_clips_subtree
);
1615 // As this function proceeds, these are the properties for the current
1616 // layer that actually get computed. To avoid unnecessary copies
1617 // (particularly for matrices), we do computations directly on these values
1619 DrawProperties
<LayerType
>& layer_draw_properties
= layer
->draw_properties();
1621 gfx::Rect clip_rect_in_target_space
;
1622 bool layer_or_ancestor_clips_descendants
= false;
1624 // This value is cached on the stack so that we don't have to inverse-project
1625 // the surface's clip rect redundantly for every layer. This value is the
1626 // same as the target surface's clip rect, except that instead of being
1627 // described in the target surface's target's space, it is described in the
1628 // current render target's space.
1629 gfx::Rect clip_rect_of_target_surface_in_target_space
;
1631 float accumulated_draw_opacity
= layer
->opacity();
1632 bool animating_opacity_to_target
= layer
->OpacityIsAnimating();
1633 bool animating_opacity_to_screen
= animating_opacity_to_target
;
1634 if (layer
->parent()) {
1635 accumulated_draw_opacity
*= layer
->parent()->draw_opacity();
1636 animating_opacity_to_target
|= layer
->parent()->draw_opacity_is_animating();
1637 animating_opacity_to_screen
|=
1638 layer
->parent()->screen_space_opacity_is_animating();
1641 bool animating_transform_to_target
= layer
->TransformIsAnimating();
1642 bool animating_transform_to_screen
= animating_transform_to_target
;
1643 if (layer
->parent()) {
1644 animating_transform_to_target
|=
1645 layer
->parent()->draw_transform_is_animating();
1646 animating_transform_to_screen
|=
1647 layer
->parent()->screen_space_transform_is_animating();
1649 gfx::Point3F transform_origin
= layer
->transform_origin();
1650 gfx::ScrollOffset scroll_offset
= GetEffectiveTotalScrollOffset(layer
);
1651 gfx::PointF position
=
1652 layer
->position() - ScrollOffsetToVector2dF(scroll_offset
);
1653 gfx::Transform combined_transform
= data_from_ancestor
.parent_matrix
;
1654 if (!layer
->transform().IsIdentity()) {
1655 // LT = Tr[origin] * Tr[origin2transformOrigin]
1656 combined_transform
.Translate3d(position
.x() + transform_origin
.x(),
1657 position
.y() + transform_origin
.y(),
1658 transform_origin
.z());
1659 // LT = Tr[origin] * Tr[origin2origin] * M[layer]
1660 combined_transform
.PreconcatTransform(layer
->transform());
1661 // LT = Tr[origin] * Tr[origin2origin] * M[layer] *
1662 // Tr[transformOrigin2origin]
1663 combined_transform
.Translate3d(
1664 -transform_origin
.x(), -transform_origin
.y(), -transform_origin
.z());
1666 combined_transform
.Translate(position
.x(), position
.y());
1669 gfx::Vector2dF effective_scroll_delta
= GetEffectiveScrollDelta(layer
);
1670 if (!animating_transform_to_target
&& layer
->scrollable() &&
1671 combined_transform
.IsScaleOrTranslation()) {
1672 // Align the scrollable layer's position to screen space pixels to avoid
1673 // blurriness. To avoid side-effects, do this only if the transform is
1675 gfx::Vector2dF previous_translation
= combined_transform
.To2dTranslation();
1676 RoundTranslationComponents(&combined_transform
);
1677 gfx::Vector2dF current_translation
= combined_transform
.To2dTranslation();
1679 // This rounding changes the scroll delta, and so must be included
1680 // in the scroll compensation matrix. The scaling converts from physical
1681 // coordinates to the scroll delta's CSS coordinates (using the parent
1682 // matrix instead of combined transform since scrolling is applied before
1683 // the layer's transform). For example, if we have a total scale factor of
1684 // 3.0, then 1 physical pixel is only 1/3 of a CSS pixel.
1685 gfx::Vector2dF parent_scales
= MathUtil::ComputeTransform2dScaleComponents(
1686 data_from_ancestor
.parent_matrix
, 1.f
);
1687 effective_scroll_delta
-=
1688 gfx::ScaleVector2d(current_translation
- previous_translation
,
1689 1.f
/ parent_scales
.x(),
1690 1.f
/ parent_scales
.y());
1693 // Apply adjustment from position constraints.
1694 ApplyPositionAdjustment(layer
, data_from_ancestor
.fixed_container
,
1695 data_from_ancestor
.scroll_compensation_matrix
, &combined_transform
);
1697 bool combined_is_animating_scale
= false;
1698 float combined_maximum_animation_contents_scale
= 0.f
;
1699 if (globals
.can_adjust_raster_scales
) {
1700 CalculateAnimationContentsScale(
1702 data_from_ancestor
.ancestor_is_animating_scale
,
1703 data_from_ancestor
.maximum_animation_contents_scale
,
1704 data_from_ancestor
.parent_matrix
,
1706 &combined_is_animating_scale
,
1707 &combined_maximum_animation_contents_scale
);
1709 data_for_children
.ancestor_is_animating_scale
= combined_is_animating_scale
;
1710 data_for_children
.maximum_animation_contents_scale
=
1711 combined_maximum_animation_contents_scale
;
1713 // Compute the 2d scale components of the transform hierarchy up to the target
1714 // surface. From there, we can decide on a contents scale for the layer.
1715 float layer_scale_factors
= globals
.device_scale_factor
;
1716 if (data_from_ancestor
.in_subtree_of_page_scale_application_layer
)
1717 layer_scale_factors
*= globals
.page_scale_factor
;
1718 gfx::Vector2dF combined_transform_scales
=
1719 MathUtil::ComputeTransform2dScaleComponents(
1721 layer_scale_factors
);
1723 float ideal_contents_scale
=
1724 globals
.can_adjust_raster_scales
1725 ? std::max(combined_transform_scales
.x(),
1726 combined_transform_scales
.y())
1727 : layer_scale_factors
;
1728 UpdateLayerContentsScale(
1730 globals
.can_adjust_raster_scales
,
1731 ideal_contents_scale
,
1732 globals
.device_scale_factor
,
1733 data_from_ancestor
.in_subtree_of_page_scale_application_layer
1734 ? globals
.page_scale_factor
1736 animating_transform_to_screen
);
1738 UpdateLayerScaleDrawProperties(
1740 ideal_contents_scale
,
1741 combined_maximum_animation_contents_scale
,
1742 data_from_ancestor
.in_subtree_of_page_scale_application_layer
1743 ? globals
.page_scale_factor
1745 globals
.device_scale_factor
);
1747 LayerType
* mask_layer
= layer
->mask_layer();
1749 UpdateLayerScaleDrawProperties(
1751 ideal_contents_scale
,
1752 combined_maximum_animation_contents_scale
,
1753 data_from_ancestor
.in_subtree_of_page_scale_application_layer
1754 ? globals
.page_scale_factor
1756 globals
.device_scale_factor
);
1759 LayerType
* replica_mask_layer
=
1760 layer
->replica_layer() ? layer
->replica_layer()->mask_layer() : NULL
;
1761 if (replica_mask_layer
) {
1762 UpdateLayerScaleDrawProperties(
1764 ideal_contents_scale
,
1765 combined_maximum_animation_contents_scale
,
1766 data_from_ancestor
.in_subtree_of_page_scale_application_layer
1767 ? globals
.page_scale_factor
1769 globals
.device_scale_factor
);
1772 // The draw_transform that gets computed below is effectively the layer's
1773 // draw_transform, unless the layer itself creates a render_surface. In that
1774 // case, the render_surface re-parents the transforms.
1775 layer_draw_properties
.target_space_transform
= combined_transform
;
1776 // M[draw] = M[parent] * LT * S[layer2content]
1777 layer_draw_properties
.target_space_transform
.Scale(
1778 SK_MScalar1
/ layer
->contents_scale_x(),
1779 SK_MScalar1
/ layer
->contents_scale_y());
1781 // The layer's screen_space_transform represents the transform between root
1782 // layer's "screen space" and local content space.
1783 layer_draw_properties
.screen_space_transform
=
1784 data_from_ancestor
.full_hierarchy_matrix
;
1785 if (layer
->should_flatten_transform())
1786 layer_draw_properties
.screen_space_transform
.FlattenTo2d();
1787 layer_draw_properties
.screen_space_transform
.PreconcatTransform
1788 (layer_draw_properties
.target_space_transform
);
1790 // Adjusting text AA method during animation may cause repaints, which in-turn
1792 bool adjust_text_aa
=
1793 !animating_opacity_to_screen
&& !animating_transform_to_screen
;
1794 // To avoid color fringing, LCD text should only be used on opaque layers with
1795 // just integral translation.
1796 bool layer_can_use_lcd_text
=
1797 data_from_ancestor
.subtree_can_use_lcd_text
&&
1798 accumulated_draw_opacity
== 1.f
&&
1799 layer_draw_properties
.target_space_transform
.
1800 IsIdentityOrIntegerTranslation();
1802 gfx::Rect
content_rect(layer
->content_bounds());
1804 // full_hierarchy_matrix is the matrix that transforms objects between screen
1805 // space (except projection matrix) and the most recent RenderSurfaceImpl's
1806 // space. next_hierarchy_matrix will only change if this layer uses a new
1807 // RenderSurfaceImpl, otherwise remains the same.
1808 data_for_children
.full_hierarchy_matrix
=
1809 data_from_ancestor
.full_hierarchy_matrix
;
1811 // If the subtree will scale layer contents by the transform hierarchy, then
1812 // we should scale things into the render surface by the transform hierarchy
1813 // to take advantage of that.
1814 gfx::Vector2dF render_surface_sublayer_scale
=
1815 globals
.can_adjust_raster_scales
1816 ? combined_transform_scales
1817 : gfx::Vector2dF(layer_scale_factors
, layer_scale_factors
);
1819 bool render_to_separate_surface
;
1820 if (globals
.can_render_to_separate_surface
) {
1821 render_to_separate_surface
= SubtreeShouldRenderToSeparateSurface(
1822 layer
, combined_transform
.Preserves2dAxisAlignment());
1824 render_to_separate_surface
= IsRootLayer(layer
);
1826 if (render_to_separate_surface
) {
1827 // Check back-face visibility before continuing with this surface and its
1829 if (!layer
->double_sided() && TransformToParentIsKnown(layer
) &&
1830 IsSurfaceBackFaceVisible(layer
, combined_transform
)) {
1831 layer
->ClearRenderSurfaceLayerList();
1835 typename
LayerType::RenderSurfaceType
* render_surface
=
1836 CreateOrReuseRenderSurface(layer
);
1838 if (IsRootLayer(layer
)) {
1839 // The root layer's render surface size is predetermined and so the root
1840 // layer can't directly support non-identity transforms. It should just
1841 // forward top-level transforms to the rest of the tree.
1842 data_for_children
.parent_matrix
= combined_transform
;
1844 // The root surface does not contribute to any other surface, it has no
1846 layer
->render_surface()->set_contributes_to_drawn_surface(false);
1848 // The owning layer's draw transform has a scale from content to layer
1849 // space which we do not want; so here we use the combined_transform
1850 // instead of the draw_transform. However, we do need to add a different
1851 // scale factor that accounts for the surface's pixel dimensions.
1852 combined_transform
.Scale(1.0 / render_surface_sublayer_scale
.x(),
1853 1.0 / render_surface_sublayer_scale
.y());
1854 render_surface
->SetDrawTransform(combined_transform
);
1856 // The owning layer's transform was re-parented by the surface, so the
1857 // layer's new draw_transform only needs to scale the layer to surface
1859 layer_draw_properties
.target_space_transform
.MakeIdentity();
1860 layer_draw_properties
.target_space_transform
.
1861 Scale(render_surface_sublayer_scale
.x() / layer
->contents_scale_x(),
1862 render_surface_sublayer_scale
.y() / layer
->contents_scale_y());
1864 // Inside the surface's subtree, we scale everything to the owning layer's
1865 // scale. The sublayer matrix transforms layer rects into target surface
1866 // content space. Conceptually, all layers in the subtree inherit the
1867 // scale at the point of the render surface in the transform hierarchy,
1868 // but we apply it explicitly to the owning layer and the remainder of the
1869 // subtree independently.
1870 DCHECK(data_for_children
.parent_matrix
.IsIdentity());
1871 data_for_children
.parent_matrix
.Scale(render_surface_sublayer_scale
.x(),
1872 render_surface_sublayer_scale
.y());
1874 // Even if the |layer_is_drawn|, it only contributes to a drawn surface
1875 // when the |layer_is_visible|.
1876 layer
->render_surface()->set_contributes_to_drawn_surface(
1880 // The opacity value is moved from the layer to its surface, so that the
1881 // entire subtree properly inherits opacity.
1882 render_surface
->SetDrawOpacity(accumulated_draw_opacity
);
1883 render_surface
->SetDrawOpacityIsAnimating(animating_opacity_to_target
);
1884 animating_opacity_to_target
= false;
1885 layer_draw_properties
.opacity
= 1.f
;
1886 layer_draw_properties
.opacity_is_animating
= animating_opacity_to_target
;
1887 layer_draw_properties
.screen_space_opacity_is_animating
=
1888 animating_opacity_to_screen
;
1890 render_surface
->SetTargetSurfaceTransformsAreAnimating(
1891 animating_transform_to_target
);
1892 render_surface
->SetScreenSpaceTransformsAreAnimating(
1893 animating_transform_to_screen
);
1894 animating_transform_to_target
= false;
1895 layer_draw_properties
.target_space_transform_is_animating
=
1896 animating_transform_to_target
;
1897 layer_draw_properties
.screen_space_transform_is_animating
=
1898 animating_transform_to_screen
;
1900 // Update the aggregate hierarchy matrix to include the transform of the
1901 // newly created RenderSurfaceImpl.
1902 data_for_children
.full_hierarchy_matrix
.PreconcatTransform(
1903 render_surface
->draw_transform());
1905 if (layer
->mask_layer()) {
1906 DrawProperties
<LayerType
>& mask_layer_draw_properties
=
1907 layer
->mask_layer()->draw_properties();
1908 mask_layer_draw_properties
.render_target
= layer
;
1909 mask_layer_draw_properties
.visible_content_rect
=
1910 gfx::Rect(layer
->content_bounds());
1913 if (layer
->replica_layer() && layer
->replica_layer()->mask_layer()) {
1914 DrawProperties
<LayerType
>& replica_mask_draw_properties
=
1915 layer
->replica_layer()->mask_layer()->draw_properties();
1916 replica_mask_draw_properties
.render_target
= layer
;
1917 replica_mask_draw_properties
.visible_content_rect
=
1918 gfx::Rect(layer
->content_bounds());
1921 // Ignore occlusion from outside the surface when surface contents need to
1922 // be fully drawn. Layers with copy-request need to be complete.
1923 // We could be smarter about layers with replica and exclude regions
1924 // where both layer and the replica are occluded, but this seems like an
1925 // overkill. The same is true for layers with filters that move pixels.
1926 // TODO(senorblanco): make this smarter for the SkImageFilter case (check
1927 // for pixel-moving filters)
1928 if (layer
->HasCopyRequest() ||
1929 layer
->has_replica() ||
1930 layer
->filters().HasReferenceFilter() ||
1931 layer
->filters().HasFilterThatMovesPixels()) {
1932 nearest_occlusion_immune_ancestor_surface
= render_surface
;
1934 render_surface
->SetNearestOcclusionImmuneAncestor(
1935 nearest_occlusion_immune_ancestor_surface
);
1937 layer_or_ancestor_clips_descendants
= false;
1938 bool subtree_is_clipped_by_surface_bounds
= false;
1939 if (ancestor_clips_subtree
) {
1940 // It may be the layer or the surface doing the clipping of the subtree,
1941 // but in either case, we'll be clipping to the projected clip rect of our
1943 gfx::Transform
inverse_surface_draw_transform(
1944 gfx::Transform::kSkipInitialization
);
1945 if (!render_surface
->draw_transform().GetInverse(
1946 &inverse_surface_draw_transform
)) {
1947 // TODO(shawnsingh): Either we need to handle uninvertible transforms
1948 // here, or DCHECK that the transform is invertible.
1951 gfx::Rect surface_clip_rect_in_target_space
= gfx::IntersectRects(
1952 data_from_ancestor
.clip_rect_of_target_surface_in_target_space
,
1953 ancestor_clip_rect_in_target_space
);
1954 gfx::Rect projected_surface_rect
= MathUtil::ProjectEnclosingClippedRect(
1955 inverse_surface_draw_transform
, surface_clip_rect_in_target_space
);
1957 if (layer_draw_properties
.num_unclipped_descendants
> 0) {
1958 // If we have unclipped descendants, we cannot count on the render
1959 // surface's bounds clipping our subtree: the unclipped descendants
1960 // could cause us to expand our bounds. In this case, we must rely on
1961 // layer clipping for correctess. NB: since we can only encounter
1962 // translations between a clip child and its clip parent, clipping is
1963 // guaranteed to be exact in this case.
1964 layer_or_ancestor_clips_descendants
= true;
1965 clip_rect_in_target_space
= projected_surface_rect
;
1967 // The new render_surface here will correctly clip the entire subtree.
1968 // So, we do not need to continue propagating the clipping state further
1969 // down the tree. This way, we can avoid transforming clip rects from
1970 // ancestor target surface space to current target surface space that
1971 // could cause more w < 0 headaches. The render surface clip rect is
1972 // expressed in the space where this surface draws, i.e. the same space
1973 // as clip_rect_from_ancestor_in_ancestor_target_space.
1974 render_surface
->SetClipRect(ancestor_clip_rect_in_target_space
);
1975 clip_rect_of_target_surface_in_target_space
= projected_surface_rect
;
1976 subtree_is_clipped_by_surface_bounds
= true;
1980 DCHECK(layer
->render_surface());
1981 DCHECK(!layer
->parent() || layer
->parent()->render_target() ==
1982 accumulated_surface_state
->back().render_target
);
1984 accumulated_surface_state
->push_back(
1985 AccumulatedSurfaceState
<LayerType
>(layer
));
1987 render_surface
->SetIsClipped(subtree_is_clipped_by_surface_bounds
);
1988 if (!subtree_is_clipped_by_surface_bounds
) {
1989 render_surface
->SetClipRect(gfx::Rect());
1990 clip_rect_of_target_surface_in_target_space
=
1991 data_from_ancestor
.clip_rect_of_target_surface_in_target_space
;
1994 // If the new render surface is drawn translucent or with a non-integral
1995 // translation then the subtree that gets drawn on this render surface
1996 // cannot use LCD text.
1997 data_for_children
.subtree_can_use_lcd_text
= layer_can_use_lcd_text
;
1999 render_surface_layer_list
->push_back(layer
);
2001 DCHECK(layer
->parent());
2003 // Note: layer_draw_properties.target_space_transform is computed above,
2004 // before this if-else statement.
2005 layer_draw_properties
.target_space_transform_is_animating
=
2006 animating_transform_to_target
;
2007 layer_draw_properties
.screen_space_transform_is_animating
=
2008 animating_transform_to_screen
;
2009 layer_draw_properties
.opacity
= accumulated_draw_opacity
;
2010 layer_draw_properties
.opacity_is_animating
= animating_opacity_to_target
;
2011 layer_draw_properties
.screen_space_opacity_is_animating
=
2012 animating_opacity_to_screen
;
2013 data_for_children
.parent_matrix
= combined_transform
;
2015 layer
->ClearRenderSurface();
2017 // Layers without render_surfaces directly inherit the ancestor's clip
2019 layer_or_ancestor_clips_descendants
= ancestor_clips_subtree
;
2020 if (ancestor_clips_subtree
) {
2021 clip_rect_in_target_space
=
2022 ancestor_clip_rect_in_target_space
;
2025 // The surface's cached clip rect value propagates regardless of what
2026 // clipping goes on between layers here.
2027 clip_rect_of_target_surface_in_target_space
=
2028 data_from_ancestor
.clip_rect_of_target_surface_in_target_space
;
2030 // Layers that are not their own render_target will render into the target
2031 // of their nearest ancestor.
2032 layer_draw_properties
.render_target
= layer
->parent()->render_target();
2036 layer_draw_properties
.can_use_lcd_text
= layer_can_use_lcd_text
;
2038 gfx::Rect rect_in_target_space
=
2039 MathUtil::MapEnclosingClippedRect(layer
->draw_transform(), content_rect
);
2041 if (LayerClipsSubtree(layer
)) {
2042 layer_or_ancestor_clips_descendants
= true;
2043 if (ancestor_clips_subtree
&& !layer
->render_surface()) {
2044 // A layer without render surface shares the same target as its ancestor.
2045 clip_rect_in_target_space
=
2046 ancestor_clip_rect_in_target_space
;
2047 clip_rect_in_target_space
.Intersect(rect_in_target_space
);
2049 clip_rect_in_target_space
= rect_in_target_space
;
2053 // Tell the layer the rect that it's clipped by. In theory we could use a
2054 // tighter clip rect here (drawable_content_rect), but that actually does not
2055 // reduce how much would be drawn, and instead it would create unnecessary
2056 // changes to scissor state affecting GPU performance. Our clip information
2057 // is used in the recursion below, so we must set it beforehand.
2058 layer_draw_properties
.is_clipped
= layer_or_ancestor_clips_descendants
;
2059 if (layer_or_ancestor_clips_descendants
) {
2060 layer_draw_properties
.clip_rect
= clip_rect_in_target_space
;
2062 // Initialize the clip rect to a safe value that will not clip the
2063 // layer, just in case clipping is still accidentally used.
2064 layer_draw_properties
.clip_rect
= rect_in_target_space
;
2067 typename
LayerType::LayerListType
& descendants
=
2068 (layer
->render_surface() ? layer
->render_surface()->layer_list()
2071 // Any layers that are appended after this point are in the layer's subtree
2072 // and should be included in the sorting process.
2073 size_t sorting_start_index
= descendants
.size();
2075 if (!LayerShouldBeSkipped(layer
, layer_is_drawn
)) {
2076 MarkLayerWithRenderSurfaceLayerListId(layer
,
2077 current_render_surface_layer_list_id
);
2078 descendants
.push_back(layer
);
2081 // Any layers that are appended after this point may need to be sorted if we
2082 // visit the children out of order.
2083 size_t render_surface_layer_list_child_sorting_start_index
=
2084 render_surface_layer_list
->size();
2085 size_t layer_list_child_sorting_start_index
= descendants
.size();
2087 if (!layer
->children().empty()) {
2088 if (layer
== globals
.page_scale_application_layer
) {
2089 data_for_children
.parent_matrix
.Scale(
2090 globals
.page_scale_factor
,
2091 globals
.page_scale_factor
);
2092 data_for_children
.in_subtree_of_page_scale_application_layer
= true;
2095 // Flatten to 2D if the layer doesn't preserve 3D.
2096 if (layer
->should_flatten_transform())
2097 data_for_children
.parent_matrix
.FlattenTo2d();
2099 data_for_children
.scroll_compensation_matrix
=
2100 ComputeScrollCompensationMatrixForChildren(
2102 data_from_ancestor
.parent_matrix
,
2103 data_from_ancestor
.scroll_compensation_matrix
,
2104 effective_scroll_delta
);
2105 data_for_children
.fixed_container
=
2106 layer
->IsContainerForFixedPositionLayers() ?
2107 layer
: data_from_ancestor
.fixed_container
;
2109 data_for_children
.clip_rect_in_target_space
= clip_rect_in_target_space
;
2110 data_for_children
.clip_rect_of_target_surface_in_target_space
=
2111 clip_rect_of_target_surface_in_target_space
;
2112 data_for_children
.ancestor_clips_subtree
=
2113 layer_or_ancestor_clips_descendants
;
2114 data_for_children
.nearest_occlusion_immune_ancestor_surface
=
2115 nearest_occlusion_immune_ancestor_surface
;
2116 data_for_children
.subtree_is_visible_from_ancestor
= layer_is_drawn
;
2119 std::vector
<LayerType
*> sorted_children
;
2120 bool child_order_changed
= false;
2121 if (layer_draw_properties
.has_child_with_a_scroll_parent
)
2122 child_order_changed
= SortChildrenForRecursion(&sorted_children
, *layer
);
2124 for (size_t i
= 0; i
< layer
->children().size(); ++i
) {
2125 // If one of layer's children has a scroll parent, then we may have to
2126 // visit the children out of order. The new order is stored in
2127 // sorted_children. Otherwise, we'll grab the child directly from the
2128 // layer's list of children.
2130 layer_draw_properties
.has_child_with_a_scroll_parent
2131 ? sorted_children
[i
]
2132 : LayerTreeHostCommon::get_layer_as_raw_ptr(layer
->children(), i
);
2134 child
->draw_properties().index_of_first_descendants_addition
=
2136 child
->draw_properties().index_of_first_render_surface_layer_list_addition
=
2137 render_surface_layer_list
->size();
2139 CalculateDrawPropertiesInternal
<LayerType
>(
2143 render_surface_layer_list
,
2145 accumulated_surface_state
,
2146 current_render_surface_layer_list_id
);
2147 if (child
->render_surface() &&
2148 !child
->render_surface()->layer_list().empty() &&
2149 !child
->render_surface()->content_rect().IsEmpty()) {
2150 // This child will contribute its render surface, which means
2151 // we need to mark just the mask layer (and replica mask layer)
2153 MarkMasksWithRenderSurfaceLayerListId(
2154 child
, current_render_surface_layer_list_id
);
2155 descendants
.push_back(child
);
2158 child
->draw_properties().num_descendants_added
=
2159 descendants
.size() -
2160 child
->draw_properties().index_of_first_descendants_addition
;
2161 child
->draw_properties().num_render_surfaces_added
=
2162 render_surface_layer_list
->size() -
2163 child
->draw_properties()
2164 .index_of_first_render_surface_layer_list_addition
;
2167 // Add the unsorted layer list contributions, if necessary.
2168 if (child_order_changed
) {
2169 SortLayerListContributions(
2171 GetLayerListForSorting(render_surface_layer_list
),
2172 render_surface_layer_list_child_sorting_start_index
,
2173 &GetNewRenderSurfacesStartIndexAndCount
<LayerType
>);
2175 SortLayerListContributions(
2178 layer_list_child_sorting_start_index
,
2179 &GetNewDescendantsStartIndexAndCount
<LayerType
>);
2182 // Compute the total drawable_content_rect for this subtree (the rect is in
2183 // target surface space).
2184 gfx::Rect local_drawable_content_rect_of_subtree
=
2185 accumulated_surface_state
->back().drawable_content_rect
;
2186 if (layer
->render_surface()) {
2187 DCHECK(accumulated_surface_state
->back().render_target
== layer
);
2188 accumulated_surface_state
->pop_back();
2191 if (layer
->render_surface() && !IsRootLayer(layer
) &&
2192 layer
->render_surface()->layer_list().empty()) {
2193 RemoveSurfaceForEarlyExit(layer
, render_surface_layer_list
);
2197 // Compute the layer's drawable content rect (the rect is in target surface
2199 layer_draw_properties
.drawable_content_rect
= rect_in_target_space
;
2200 if (layer_or_ancestor_clips_descendants
) {
2201 layer_draw_properties
.drawable_content_rect
.Intersect(
2202 clip_rect_in_target_space
);
2204 if (layer
->DrawsContent()) {
2205 local_drawable_content_rect_of_subtree
.Union(
2206 layer_draw_properties
.drawable_content_rect
);
2209 // Compute the layer's visible content rect (the rect is in content space).
2210 layer_draw_properties
.visible_content_rect
= CalculateVisibleContentRect(
2211 layer
, clip_rect_of_target_surface_in_target_space
, rect_in_target_space
);
2213 // Compute the remaining properties for the render surface, if the layer has
2215 if (IsRootLayer(layer
)) {
2216 // The root layer's surface's content_rect is always the entire viewport.
2217 DCHECK(layer
->render_surface());
2218 layer
->render_surface()->SetContentRect(
2219 ancestor_clip_rect_in_target_space
);
2220 } else if (layer
->render_surface()) {
2221 typename
LayerType::RenderSurfaceType
* render_surface
=
2222 layer
->render_surface();
2223 gfx::Rect clipped_content_rect
= local_drawable_content_rect_of_subtree
;
2225 // Don't clip if the layer is reflected as the reflection shouldn't be
2226 // clipped. If the layer is animating, then the surface's transform to
2227 // its target is not known on the main thread, and we should not use it
2229 if (!layer
->replica_layer() && TransformToParentIsKnown(layer
)) {
2230 // Note, it is correct to use data_from_ancestor.ancestor_clips_subtree
2231 // here, because we are looking at this layer's render_surface, not the
2233 if (render_surface
->is_clipped() && !clipped_content_rect
.IsEmpty()) {
2234 gfx::Rect surface_clip_rect
= LayerTreeHostCommon::CalculateVisibleRect(
2235 render_surface
->clip_rect(),
2236 clipped_content_rect
,
2237 render_surface
->draw_transform());
2238 clipped_content_rect
.Intersect(surface_clip_rect
);
2242 // The RenderSurfaceImpl backing texture cannot exceed the maximum supported
2244 clipped_content_rect
.set_width(
2245 std::min(clipped_content_rect
.width(), globals
.max_texture_size
));
2246 clipped_content_rect
.set_height(
2247 std::min(clipped_content_rect
.height(), globals
.max_texture_size
));
2249 if (clipped_content_rect
.IsEmpty()) {
2250 RemoveSurfaceForEarlyExit(layer
, render_surface_layer_list
);
2254 // Layers having a non-default blend mode will blend with the content
2255 // inside its parent's render target. This render target should be
2256 // either root_for_isolated_group, or the root of the layer tree.
2257 // Otherwise, this layer will use an incomplete backdrop, limited to its
2258 // render target and the blending result will be incorrect.
2259 DCHECK(layer
->uses_default_blend_mode() || IsRootLayer(layer
) ||
2260 !layer
->parent()->render_target() ||
2261 IsRootLayer(layer
->parent()->render_target()) ||
2262 layer
->parent()->render_target()->is_root_for_isolated_group());
2264 render_surface
->SetContentRect(clipped_content_rect
);
2266 // The owning layer's screen_space_transform has a scale from content to
2267 // layer space which we need to undo and replace with a scale from the
2268 // surface's subtree into layer space.
2269 gfx::Transform screen_space_transform
= layer
->screen_space_transform();
2270 screen_space_transform
.Scale(
2271 layer
->contents_scale_x() / render_surface_sublayer_scale
.x(),
2272 layer
->contents_scale_y() / render_surface_sublayer_scale
.y());
2273 render_surface
->SetScreenSpaceTransform(screen_space_transform
);
2275 if (layer
->replica_layer()) {
2276 gfx::Transform surface_origin_to_replica_origin_transform
;
2277 surface_origin_to_replica_origin_transform
.Scale(
2278 render_surface_sublayer_scale
.x(), render_surface_sublayer_scale
.y());
2279 surface_origin_to_replica_origin_transform
.Translate(
2280 layer
->replica_layer()->position().x() +
2281 layer
->replica_layer()->transform_origin().x(),
2282 layer
->replica_layer()->position().y() +
2283 layer
->replica_layer()->transform_origin().y());
2284 surface_origin_to_replica_origin_transform
.PreconcatTransform(
2285 layer
->replica_layer()->transform());
2286 surface_origin_to_replica_origin_transform
.Translate(
2287 -layer
->replica_layer()->transform_origin().x(),
2288 -layer
->replica_layer()->transform_origin().y());
2289 surface_origin_to_replica_origin_transform
.Scale(
2290 1.0 / render_surface_sublayer_scale
.x(),
2291 1.0 / render_surface_sublayer_scale
.y());
2293 // Compute the replica's "originTransform" that maps from the replica's
2294 // origin space to the target surface origin space.
2295 gfx::Transform replica_origin_transform
=
2296 layer
->render_surface()->draw_transform() *
2297 surface_origin_to_replica_origin_transform
;
2298 render_surface
->SetReplicaDrawTransform(replica_origin_transform
);
2300 // Compute the replica's "screen_space_transform" that maps from the
2301 // replica's origin space to the screen's origin space.
2302 gfx::Transform replica_screen_space_transform
=
2303 layer
->render_surface()->screen_space_transform() *
2304 surface_origin_to_replica_origin_transform
;
2305 render_surface
->SetReplicaScreenSpaceTransform(
2306 replica_screen_space_transform
);
2310 SavePaintPropertiesLayer(layer
);
2312 // If neither this layer nor any of its children were added, early out.
2313 if (sorting_start_index
== descendants
.size()) {
2314 DCHECK(!layer
->render_surface() || IsRootLayer(layer
));
2318 // If preserves-3d then sort all the descendants in 3D so that they can be
2319 // drawn from back to front. If the preserves-3d property is also set on the
2320 // parent then skip the sorting as the parent will sort all the descendants
2322 if (globals
.layer_sorter
&& descendants
.size() && layer
->Is3dSorted() &&
2323 !LayerIsInExisting3DRenderingContext(layer
)) {
2324 SortLayers(descendants
.begin() + sorting_start_index
,
2326 globals
.layer_sorter
);
2329 UpdateAccumulatedSurfaceState
<LayerType
>(
2330 layer
, local_drawable_content_rect_of_subtree
, accumulated_surface_state
);
2332 if (layer
->HasContributingDelegatedRenderPasses()) {
2333 layer
->render_target()->render_surface()->
2334 AddContributingDelegatedRenderPassLayer(layer
);
2336 } // NOLINT(readability/fn_size)
2338 template <typename LayerType
, typename RenderSurfaceLayerListType
>
2339 static void ProcessCalcDrawPropsInputs(
2340 const LayerTreeHostCommon::CalcDrawPropsInputs
<LayerType
,
2341 RenderSurfaceLayerListType
>&
2343 SubtreeGlobals
<LayerType
>* globals
,
2344 DataForRecursion
<LayerType
>* data_for_recursion
) {
2345 DCHECK(inputs
.root_layer
);
2346 DCHECK(IsRootLayer(inputs
.root_layer
));
2347 DCHECK(inputs
.render_surface_layer_list
);
2349 gfx::Transform identity_matrix
;
2351 // The root layer's render_surface should receive the device viewport as the
2352 // initial clip rect.
2353 gfx::Rect
device_viewport_rect(inputs
.device_viewport_size
);
2355 gfx::Vector2dF device_transform_scale_components
=
2356 MathUtil::ComputeTransform2dScaleComponents(inputs
.device_transform
, 1.f
);
2357 // Not handling the rare case of different x and y device scale.
2358 float device_transform_scale
=
2359 std::max(device_transform_scale_components
.x(),
2360 device_transform_scale_components
.y());
2362 gfx::Transform scaled_device_transform
= inputs
.device_transform
;
2363 scaled_device_transform
.Scale(inputs
.device_scale_factor
,
2364 inputs
.device_scale_factor
);
2366 globals
->layer_sorter
= NULL
;
2367 globals
->max_texture_size
= inputs
.max_texture_size
;
2368 globals
->device_scale_factor
=
2369 inputs
.device_scale_factor
* device_transform_scale
;
2370 globals
->page_scale_factor
= inputs
.page_scale_factor
;
2371 globals
->page_scale_application_layer
= inputs
.page_scale_application_layer
;
2372 globals
->can_render_to_separate_surface
=
2373 inputs
.can_render_to_separate_surface
;
2374 globals
->can_adjust_raster_scales
= inputs
.can_adjust_raster_scales
;
2376 data_for_recursion
->parent_matrix
= scaled_device_transform
;
2377 data_for_recursion
->full_hierarchy_matrix
= identity_matrix
;
2378 data_for_recursion
->scroll_compensation_matrix
= identity_matrix
;
2379 data_for_recursion
->fixed_container
= inputs
.root_layer
;
2380 data_for_recursion
->clip_rect_in_target_space
= device_viewport_rect
;
2381 data_for_recursion
->clip_rect_of_target_surface_in_target_space
=
2382 device_viewport_rect
;
2383 data_for_recursion
->maximum_animation_contents_scale
= 0.f
;
2384 data_for_recursion
->ancestor_is_animating_scale
= false;
2385 data_for_recursion
->ancestor_clips_subtree
= true;
2386 data_for_recursion
->nearest_occlusion_immune_ancestor_surface
= NULL
;
2387 data_for_recursion
->in_subtree_of_page_scale_application_layer
= false;
2388 data_for_recursion
->subtree_can_use_lcd_text
= inputs
.can_use_lcd_text
;
2389 data_for_recursion
->subtree_is_visible_from_ancestor
= true;
2392 void LayerTreeHostCommon::CalculateDrawProperties(
2393 CalcDrawPropsMainInputs
* inputs
) {
2394 LayerList dummy_layer_list
;
2395 SubtreeGlobals
<Layer
> globals
;
2396 DataForRecursion
<Layer
> data_for_recursion
;
2397 ProcessCalcDrawPropsInputs(*inputs
, &globals
, &data_for_recursion
);
2399 PreCalculateMetaInformationRecursiveData recursive_data
;
2400 PreCalculateMetaInformation(inputs
->root_layer
, &recursive_data
);
2401 std::vector
<AccumulatedSurfaceState
<Layer
>> accumulated_surface_state
;
2402 CalculateDrawPropertiesInternal
<Layer
>(
2406 inputs
->render_surface_layer_list
,
2408 &accumulated_surface_state
,
2409 inputs
->current_render_surface_layer_list_id
);
2411 // The dummy layer list should not have been used.
2412 DCHECK_EQ(0u, dummy_layer_list
.size());
2413 // A root layer render_surface should always exist after
2414 // CalculateDrawProperties.
2415 DCHECK(inputs
->root_layer
->render_surface());
2418 void LayerTreeHostCommon::CalculateDrawProperties(
2419 CalcDrawPropsImplInputs
* inputs
) {
2420 LayerImplList dummy_layer_list
;
2421 SubtreeGlobals
<LayerImpl
> globals
;
2422 DataForRecursion
<LayerImpl
> data_for_recursion
;
2423 ProcessCalcDrawPropsInputs(*inputs
, &globals
, &data_for_recursion
);
2425 LayerSorter layer_sorter
;
2426 globals
.layer_sorter
= &layer_sorter
;
2428 PreCalculateMetaInformationRecursiveData recursive_data
;
2429 PreCalculateMetaInformation(inputs
->root_layer
, &recursive_data
);
2430 std::vector
<AccumulatedSurfaceState
<LayerImpl
>> accumulated_surface_state
;
2431 CalculateDrawPropertiesInternal
<LayerImpl
>(
2435 inputs
->render_surface_layer_list
,
2437 &accumulated_surface_state
,
2438 inputs
->current_render_surface_layer_list_id
);
2440 // The dummy layer list should not have been used.
2441 DCHECK_EQ(0u, dummy_layer_list
.size());
2442 // A root layer render_surface should always exist after
2443 // CalculateDrawProperties.
2444 DCHECK(inputs
->root_layer
->render_surface());