1 // Copyright 2012 The Chromium Authors. All rights reserved.
2 // Use of this source code is governed by a BSD-style license that can be
3 // found in the LICENSE file.
5 #include "cc/base/math_util.h"
11 #include "base/trace_event/trace_event_argument.h"
12 #include "base/values.h"
13 #include "ui/gfx/geometry/quad_f.h"
14 #include "ui/gfx/geometry/rect.h"
15 #include "ui/gfx/geometry/rect_conversions.h"
16 #include "ui/gfx/geometry/rect_f.h"
17 #include "ui/gfx/geometry/vector2d_f.h"
18 #include "ui/gfx/transform.h"
22 const double MathUtil::kPiDouble
= 3.14159265358979323846;
23 const float MathUtil::kPiFloat
= 3.14159265358979323846f
;
25 static HomogeneousCoordinate
ProjectHomogeneousPoint(
26 const gfx::Transform
& transform
,
27 const gfx::PointF
& p
) {
28 // In this case, the layer we are trying to project onto is perpendicular to
29 // ray (point p and z-axis direction) that we are trying to project. This
30 // happens when the layer is rotated so that it is infinitesimally thin, or
31 // when it is co-planar with the camera origin -- i.e. when the layer is
33 if (!transform
.matrix().get(2, 2))
34 return HomogeneousCoordinate(0.0, 0.0, 0.0, 1.0);
36 SkMScalar z
= -(transform
.matrix().get(2, 0) * p
.x() +
37 transform
.matrix().get(2, 1) * p
.y() +
38 transform
.matrix().get(2, 3)) /
39 transform
.matrix().get(2, 2);
40 HomogeneousCoordinate
result(p
.x(), p
.y(), z
, 1.0);
41 transform
.matrix().mapMScalars(result
.vec
, result
.vec
);
45 static HomogeneousCoordinate
ProjectHomogeneousPoint(
46 const gfx::Transform
& transform
,
49 HomogeneousCoordinate h
= ProjectHomogeneousPoint(transform
, p
);
50 *clipped
= h
.w() <= 0;
54 static HomogeneousCoordinate
MapHomogeneousPoint(
55 const gfx::Transform
& transform
,
56 const gfx::Point3F
& p
) {
57 HomogeneousCoordinate
result(p
.x(), p
.y(), p
.z(), 1.0);
58 transform
.matrix().mapMScalars(result
.vec
, result
.vec
);
62 static HomogeneousCoordinate
ComputeClippedPointForEdge(
63 const HomogeneousCoordinate
& h1
,
64 const HomogeneousCoordinate
& h2
) {
65 // Points h1 and h2 form a line in 4d, and any point on that line can be
66 // represented as an interpolation between h1 and h2:
67 // p = (1-t) h1 + (t) h2
69 // We want to compute point p such that p.w == epsilon, where epsilon is a
70 // small non-zero number. (but the smaller the number is, the higher the risk
72 // To do this, we solve for t in the following equation:
73 // p.w = epsilon = (1-t) * h1.w + (t) * h2.w
75 // Once paramter t is known, the rest of p can be computed via
76 // p = (1-t) h1 + (t) h2.
78 // Technically this is a special case of the following assertion, but its a
79 // good idea to keep it an explicit sanity check here.
80 DCHECK_NE(h2
.w(), h1
.w());
81 // Exactly one of h1 or h2 (but not both) must be on the negative side of the
82 // w plane when this is called.
83 DCHECK(h1
.ShouldBeClipped() ^ h2
.ShouldBeClipped());
85 // ...or any positive non-zero small epsilon
86 SkMScalar w
= 0.00001f
;
87 SkMScalar t
= (w
- h1
.w()) / (h2
.w() - h1
.w());
89 SkMScalar x
= (SK_MScalar1
- t
) * h1
.x() + t
* h2
.x();
90 SkMScalar y
= (SK_MScalar1
- t
) * h1
.y() + t
* h2
.y();
91 SkMScalar z
= (SK_MScalar1
- t
) * h1
.z() + t
* h2
.z();
93 return HomogeneousCoordinate(x
, y
, z
, w
);
96 static inline void ExpandBoundsToIncludePoint(float* xmin
,
100 const gfx::PointF
& p
) {
101 *xmin
= std::min(p
.x(), *xmin
);
102 *xmax
= std::max(p
.x(), *xmax
);
103 *ymin
= std::min(p
.y(), *ymin
);
104 *ymax
= std::max(p
.y(), *ymax
);
107 static inline void AddVertexToClippedQuad(const gfx::PointF
& new_vertex
,
108 gfx::PointF clipped_quad
[8],
109 int* num_vertices_in_clipped_quad
) {
110 clipped_quad
[*num_vertices_in_clipped_quad
] = new_vertex
;
111 (*num_vertices_in_clipped_quad
)++;
114 static inline void AddVertexToClippedQuad3d(const gfx::Point3F
& new_vertex
,
115 gfx::Point3F clipped_quad
[8],
116 int* num_vertices_in_clipped_quad
) {
117 clipped_quad
[*num_vertices_in_clipped_quad
] = new_vertex
;
118 (*num_vertices_in_clipped_quad
)++;
121 gfx::Rect
MathUtil::MapEnclosingClippedRect(const gfx::Transform
& transform
,
122 const gfx::Rect
& src_rect
) {
123 if (transform
.IsIdentityOrIntegerTranslation()) {
124 gfx::Vector2d
offset(static_cast<int>(transform
.matrix().getFloat(0, 3)),
125 static_cast<int>(transform
.matrix().getFloat(1, 3)));
126 return src_rect
+ offset
;
128 return gfx::ToEnclosingRect(MapClippedRect(transform
, gfx::RectF(src_rect
)));
131 gfx::RectF
MathUtil::MapClippedRect(const gfx::Transform
& transform
,
132 const gfx::RectF
& src_rect
) {
133 if (transform
.IsIdentityOrTranslation()) {
134 gfx::Vector2dF
offset(transform
.matrix().getFloat(0, 3),
135 transform
.matrix().getFloat(1, 3));
136 return src_rect
+ offset
;
139 // Apply the transform, but retain the result in homogeneous coordinates.
141 SkMScalar quad
[4 * 2]; // input: 4 x 2D points
142 quad
[0] = src_rect
.x();
143 quad
[1] = src_rect
.y();
144 quad
[2] = src_rect
.right();
145 quad
[3] = src_rect
.y();
146 quad
[4] = src_rect
.right();
147 quad
[5] = src_rect
.bottom();
148 quad
[6] = src_rect
.x();
149 quad
[7] = src_rect
.bottom();
151 SkMScalar result
[4 * 4]; // output: 4 x 4D homogeneous points
152 transform
.matrix().map2(quad
, 4, result
);
154 HomogeneousCoordinate
hc0(result
[0], result
[1], result
[2], result
[3]);
155 HomogeneousCoordinate
hc1(result
[4], result
[5], result
[6], result
[7]);
156 HomogeneousCoordinate
hc2(result
[8], result
[9], result
[10], result
[11]);
157 HomogeneousCoordinate
hc3(result
[12], result
[13], result
[14], result
[15]);
158 return ComputeEnclosingClippedRect(hc0
, hc1
, hc2
, hc3
);
161 gfx::Rect
MathUtil::ProjectEnclosingClippedRect(const gfx::Transform
& transform
,
162 const gfx::Rect
& src_rect
) {
163 if (transform
.IsIdentityOrIntegerTranslation()) {
164 gfx::Vector2d
offset(static_cast<int>(transform
.matrix().getFloat(0, 3)),
165 static_cast<int>(transform
.matrix().getFloat(1, 3)));
166 return src_rect
+ offset
;
168 return gfx::ToEnclosingRect(
169 ProjectClippedRect(transform
, gfx::RectF(src_rect
)));
172 gfx::RectF
MathUtil::ProjectClippedRect(const gfx::Transform
& transform
,
173 const gfx::RectF
& src_rect
) {
174 if (transform
.IsIdentityOrTranslation()) {
175 gfx::Vector2dF
offset(transform
.matrix().getFloat(0, 3),
176 transform
.matrix().getFloat(1, 3));
177 return src_rect
+ offset
;
180 // Perform the projection, but retain the result in homogeneous coordinates.
181 gfx::QuadF q
= gfx::QuadF(src_rect
);
182 HomogeneousCoordinate h1
= ProjectHomogeneousPoint(transform
, q
.p1());
183 HomogeneousCoordinate h2
= ProjectHomogeneousPoint(transform
, q
.p2());
184 HomogeneousCoordinate h3
= ProjectHomogeneousPoint(transform
, q
.p3());
185 HomogeneousCoordinate h4
= ProjectHomogeneousPoint(transform
, q
.p4());
187 return ComputeEnclosingClippedRect(h1
, h2
, h3
, h4
);
190 gfx::Rect
MathUtil::MapEnclosedRectWith2dAxisAlignedTransform(
191 const gfx::Transform
& transform
,
192 const gfx::Rect
& rect
) {
193 DCHECK(transform
.Preserves2dAxisAlignment());
195 if (transform
.IsIdentityOrIntegerTranslation()) {
196 gfx::Vector2d
offset(static_cast<int>(transform
.matrix().getFloat(0, 3)),
197 static_cast<int>(transform
.matrix().getFloat(1, 3)));
198 return rect
+ offset
;
200 if (transform
.IsIdentityOrTranslation()) {
201 gfx::Vector2dF
offset(transform
.matrix().getFloat(0, 3),
202 transform
.matrix().getFloat(1, 3));
203 return gfx::ToEnclosedRect(rect
+ offset
);
206 SkMScalar quad
[2 * 2]; // input: 2 x 2D points
209 quad
[2] = rect
.right();
210 quad
[3] = rect
.bottom();
212 SkMScalar result
[4 * 2]; // output: 2 x 4D homogeneous points
213 transform
.matrix().map2(quad
, 2, result
);
215 HomogeneousCoordinate
hc0(result
[0], result
[1], result
[2], result
[3]);
216 HomogeneousCoordinate
hc1(result
[4], result
[5], result
[6], result
[7]);
217 DCHECK(!hc0
.ShouldBeClipped());
218 DCHECK(!hc1
.ShouldBeClipped());
220 gfx::PointF
top_left(hc0
.CartesianPoint2d());
221 gfx::PointF
bottom_right(hc1
.CartesianPoint2d());
222 return gfx::ToEnclosedRect(gfx::BoundingRect(top_left
, bottom_right
));
225 void MathUtil::MapClippedQuad(const gfx::Transform
& transform
,
226 const gfx::QuadF
& src_quad
,
227 gfx::PointF clipped_quad
[8],
228 int* num_vertices_in_clipped_quad
) {
229 HomogeneousCoordinate h1
=
230 MapHomogeneousPoint(transform
, gfx::Point3F(src_quad
.p1()));
231 HomogeneousCoordinate h2
=
232 MapHomogeneousPoint(transform
, gfx::Point3F(src_quad
.p2()));
233 HomogeneousCoordinate h3
=
234 MapHomogeneousPoint(transform
, gfx::Point3F(src_quad
.p3()));
235 HomogeneousCoordinate h4
=
236 MapHomogeneousPoint(transform
, gfx::Point3F(src_quad
.p4()));
238 // The order of adding the vertices to the array is chosen so that
239 // clockwise / counter-clockwise orientation is retained.
241 *num_vertices_in_clipped_quad
= 0;
243 if (!h1
.ShouldBeClipped()) {
244 AddVertexToClippedQuad(
245 h1
.CartesianPoint2d(), clipped_quad
, num_vertices_in_clipped_quad
);
248 if (h1
.ShouldBeClipped() ^ h2
.ShouldBeClipped()) {
249 AddVertexToClippedQuad(
250 ComputeClippedPointForEdge(h1
, h2
).CartesianPoint2d(),
252 num_vertices_in_clipped_quad
);
255 if (!h2
.ShouldBeClipped()) {
256 AddVertexToClippedQuad(
257 h2
.CartesianPoint2d(), clipped_quad
, num_vertices_in_clipped_quad
);
260 if (h2
.ShouldBeClipped() ^ h3
.ShouldBeClipped()) {
261 AddVertexToClippedQuad(
262 ComputeClippedPointForEdge(h2
, h3
).CartesianPoint2d(),
264 num_vertices_in_clipped_quad
);
267 if (!h3
.ShouldBeClipped()) {
268 AddVertexToClippedQuad(
269 h3
.CartesianPoint2d(), clipped_quad
, num_vertices_in_clipped_quad
);
272 if (h3
.ShouldBeClipped() ^ h4
.ShouldBeClipped()) {
273 AddVertexToClippedQuad(
274 ComputeClippedPointForEdge(h3
, h4
).CartesianPoint2d(),
276 num_vertices_in_clipped_quad
);
279 if (!h4
.ShouldBeClipped()) {
280 AddVertexToClippedQuad(
281 h4
.CartesianPoint2d(), clipped_quad
, num_vertices_in_clipped_quad
);
284 if (h4
.ShouldBeClipped() ^ h1
.ShouldBeClipped()) {
285 AddVertexToClippedQuad(
286 ComputeClippedPointForEdge(h4
, h1
).CartesianPoint2d(),
288 num_vertices_in_clipped_quad
);
291 DCHECK_LE(*num_vertices_in_clipped_quad
, 8);
294 bool MathUtil::MapClippedQuad3d(const gfx::Transform
& transform
,
295 const gfx::QuadF
& src_quad
,
296 gfx::Point3F clipped_quad
[8],
297 int* num_vertices_in_clipped_quad
) {
298 HomogeneousCoordinate h1
=
299 MapHomogeneousPoint(transform
, gfx::Point3F(src_quad
.p1()));
300 HomogeneousCoordinate h2
=
301 MapHomogeneousPoint(transform
, gfx::Point3F(src_quad
.p2()));
302 HomogeneousCoordinate h3
=
303 MapHomogeneousPoint(transform
, gfx::Point3F(src_quad
.p3()));
304 HomogeneousCoordinate h4
=
305 MapHomogeneousPoint(transform
, gfx::Point3F(src_quad
.p4()));
307 // The order of adding the vertices to the array is chosen so that
308 // clockwise / counter-clockwise orientation is retained.
310 *num_vertices_in_clipped_quad
= 0;
312 if (!h1
.ShouldBeClipped()) {
313 AddVertexToClippedQuad3d(
314 h1
.CartesianPoint3d(), clipped_quad
, num_vertices_in_clipped_quad
);
317 if (h1
.ShouldBeClipped() ^ h2
.ShouldBeClipped()) {
318 AddVertexToClippedQuad3d(
319 ComputeClippedPointForEdge(h1
, h2
).CartesianPoint3d(),
321 num_vertices_in_clipped_quad
);
324 if (!h2
.ShouldBeClipped()) {
325 AddVertexToClippedQuad3d(
326 h2
.CartesianPoint3d(), clipped_quad
, num_vertices_in_clipped_quad
);
329 if (h2
.ShouldBeClipped() ^ h3
.ShouldBeClipped()) {
330 AddVertexToClippedQuad3d(
331 ComputeClippedPointForEdge(h2
, h3
).CartesianPoint3d(),
333 num_vertices_in_clipped_quad
);
336 if (!h3
.ShouldBeClipped()) {
337 AddVertexToClippedQuad3d(
338 h3
.CartesianPoint3d(), clipped_quad
, num_vertices_in_clipped_quad
);
341 if (h3
.ShouldBeClipped() ^ h4
.ShouldBeClipped()) {
342 AddVertexToClippedQuad3d(
343 ComputeClippedPointForEdge(h3
, h4
).CartesianPoint3d(),
345 num_vertices_in_clipped_quad
);
348 if (!h4
.ShouldBeClipped()) {
349 AddVertexToClippedQuad3d(
350 h4
.CartesianPoint3d(), clipped_quad
, num_vertices_in_clipped_quad
);
353 if (h4
.ShouldBeClipped() ^ h1
.ShouldBeClipped()) {
354 AddVertexToClippedQuad3d(
355 ComputeClippedPointForEdge(h4
, h1
).CartesianPoint3d(),
357 num_vertices_in_clipped_quad
);
360 DCHECK_LE(*num_vertices_in_clipped_quad
, 8);
361 return (*num_vertices_in_clipped_quad
>= 4);
364 gfx::RectF
MathUtil::ComputeEnclosingRectOfVertices(
365 const gfx::PointF vertices
[],
367 if (num_vertices
< 2)
370 float xmin
= std::numeric_limits
<float>::max();
371 float xmax
= -std::numeric_limits
<float>::max();
372 float ymin
= std::numeric_limits
<float>::max();
373 float ymax
= -std::numeric_limits
<float>::max();
375 for (int i
= 0; i
< num_vertices
; ++i
)
376 ExpandBoundsToIncludePoint(&xmin
, &xmax
, &ymin
, &ymax
, vertices
[i
]);
378 return gfx::RectF(gfx::PointF(xmin
, ymin
),
379 gfx::SizeF(xmax
- xmin
, ymax
- ymin
));
382 gfx::RectF
MathUtil::ComputeEnclosingClippedRect(
383 const HomogeneousCoordinate
& h1
,
384 const HomogeneousCoordinate
& h2
,
385 const HomogeneousCoordinate
& h3
,
386 const HomogeneousCoordinate
& h4
) {
387 // This function performs clipping as necessary and computes the enclosing 2d
388 // gfx::RectF of the vertices. Doing these two steps simultaneously allows us
389 // to avoid the overhead of storing an unknown number of clipped vertices.
391 // If no vertices on the quad are clipped, then we can simply return the
392 // enclosing rect directly.
393 bool something_clipped
= h1
.ShouldBeClipped() || h2
.ShouldBeClipped() ||
394 h3
.ShouldBeClipped() || h4
.ShouldBeClipped();
395 if (!something_clipped
) {
396 gfx::QuadF mapped_quad
= gfx::QuadF(h1
.CartesianPoint2d(),
397 h2
.CartesianPoint2d(),
398 h3
.CartesianPoint2d(),
399 h4
.CartesianPoint2d());
400 return mapped_quad
.BoundingBox();
403 bool everything_clipped
= h1
.ShouldBeClipped() && h2
.ShouldBeClipped() &&
404 h3
.ShouldBeClipped() && h4
.ShouldBeClipped();
405 if (everything_clipped
)
408 float xmin
= std::numeric_limits
<float>::max();
409 float xmax
= -std::numeric_limits
<float>::max();
410 float ymin
= std::numeric_limits
<float>::max();
411 float ymax
= -std::numeric_limits
<float>::max();
413 if (!h1
.ShouldBeClipped())
414 ExpandBoundsToIncludePoint(&xmin
, &xmax
, &ymin
, &ymax
,
415 h1
.CartesianPoint2d());
417 if (h1
.ShouldBeClipped() ^ h2
.ShouldBeClipped())
418 ExpandBoundsToIncludePoint(&xmin
,
422 ComputeClippedPointForEdge(h1
, h2
)
423 .CartesianPoint2d());
425 if (!h2
.ShouldBeClipped())
426 ExpandBoundsToIncludePoint(&xmin
, &xmax
, &ymin
, &ymax
,
427 h2
.CartesianPoint2d());
429 if (h2
.ShouldBeClipped() ^ h3
.ShouldBeClipped())
430 ExpandBoundsToIncludePoint(&xmin
,
434 ComputeClippedPointForEdge(h2
, h3
)
435 .CartesianPoint2d());
437 if (!h3
.ShouldBeClipped())
438 ExpandBoundsToIncludePoint(&xmin
, &xmax
, &ymin
, &ymax
,
439 h3
.CartesianPoint2d());
441 if (h3
.ShouldBeClipped() ^ h4
.ShouldBeClipped())
442 ExpandBoundsToIncludePoint(&xmin
,
446 ComputeClippedPointForEdge(h3
, h4
)
447 .CartesianPoint2d());
449 if (!h4
.ShouldBeClipped())
450 ExpandBoundsToIncludePoint(&xmin
, &xmax
, &ymin
, &ymax
,
451 h4
.CartesianPoint2d());
453 if (h4
.ShouldBeClipped() ^ h1
.ShouldBeClipped())
454 ExpandBoundsToIncludePoint(&xmin
,
458 ComputeClippedPointForEdge(h4
, h1
)
459 .CartesianPoint2d());
461 return gfx::RectF(gfx::PointF(xmin
, ymin
),
462 gfx::SizeF(xmax
- xmin
, ymax
- ymin
));
465 gfx::QuadF
MathUtil::MapQuad(const gfx::Transform
& transform
,
468 if (transform
.IsIdentityOrTranslation()) {
469 gfx::QuadF
mapped_quad(q
);
470 mapped_quad
+= gfx::Vector2dF(transform
.matrix().getFloat(0, 3),
471 transform
.matrix().getFloat(1, 3));
476 HomogeneousCoordinate h1
=
477 MapHomogeneousPoint(transform
, gfx::Point3F(q
.p1()));
478 HomogeneousCoordinate h2
=
479 MapHomogeneousPoint(transform
, gfx::Point3F(q
.p2()));
480 HomogeneousCoordinate h3
=
481 MapHomogeneousPoint(transform
, gfx::Point3F(q
.p3()));
482 HomogeneousCoordinate h4
=
483 MapHomogeneousPoint(transform
, gfx::Point3F(q
.p4()));
485 *clipped
= h1
.ShouldBeClipped() || h2
.ShouldBeClipped() ||
486 h3
.ShouldBeClipped() || h4
.ShouldBeClipped();
488 // Result will be invalid if clipped == true. But, compute it anyway just in
489 // case, to emulate existing behavior.
490 return gfx::QuadF(h1
.CartesianPoint2d(),
491 h2
.CartesianPoint2d(),
492 h3
.CartesianPoint2d(),
493 h4
.CartesianPoint2d());
496 gfx::QuadF
MathUtil::MapQuad3d(const gfx::Transform
& transform
,
500 if (transform
.IsIdentityOrTranslation()) {
501 gfx::QuadF
mapped_quad(q
);
502 mapped_quad
+= gfx::Vector2dF(transform
.matrix().getFloat(0, 3),
503 transform
.matrix().getFloat(1, 3));
505 p
[0] = gfx::Point3F(mapped_quad
.p1().x(), mapped_quad
.p1().y(), 0.0f
);
506 p
[1] = gfx::Point3F(mapped_quad
.p2().x(), mapped_quad
.p2().y(), 0.0f
);
507 p
[2] = gfx::Point3F(mapped_quad
.p3().x(), mapped_quad
.p3().y(), 0.0f
);
508 p
[3] = gfx::Point3F(mapped_quad
.p4().x(), mapped_quad
.p4().y(), 0.0f
);
512 HomogeneousCoordinate h1
=
513 MapHomogeneousPoint(transform
, gfx::Point3F(q
.p1()));
514 HomogeneousCoordinate h2
=
515 MapHomogeneousPoint(transform
, gfx::Point3F(q
.p2()));
516 HomogeneousCoordinate h3
=
517 MapHomogeneousPoint(transform
, gfx::Point3F(q
.p3()));
518 HomogeneousCoordinate h4
=
519 MapHomogeneousPoint(transform
, gfx::Point3F(q
.p4()));
521 *clipped
= h1
.ShouldBeClipped() || h2
.ShouldBeClipped() ||
522 h3
.ShouldBeClipped() || h4
.ShouldBeClipped();
524 // Result will be invalid if clipped == true. But, compute it anyway just in
525 // case, to emulate existing behavior.
526 p
[0] = h1
.CartesianPoint3d();
527 p
[1] = h2
.CartesianPoint3d();
528 p
[2] = h3
.CartesianPoint3d();
529 p
[3] = h4
.CartesianPoint3d();
531 return gfx::QuadF(h1
.CartesianPoint2d(),
532 h2
.CartesianPoint2d(),
533 h3
.CartesianPoint2d(),
534 h4
.CartesianPoint2d());
537 gfx::PointF
MathUtil::MapPoint(const gfx::Transform
& transform
,
538 const gfx::PointF
& p
,
540 HomogeneousCoordinate h
= MapHomogeneousPoint(transform
, gfx::Point3F(p
));
544 return h
.CartesianPoint2d();
547 // The cartesian coordinates will be invalid after dividing by w.
550 // Avoid dividing by w if w == 0.
552 return gfx::PointF();
554 // This return value will be invalid because clipped == true, but (1) users of
555 // this code should be ignoring the return value when clipped == true anyway,
556 // and (2) this behavior is more consistent with existing behavior of WebKit
557 // transforms if the user really does not ignore the return value.
558 return h
.CartesianPoint2d();
561 gfx::Point3F
MathUtil::MapPoint(const gfx::Transform
& transform
,
562 const gfx::Point3F
& p
,
564 HomogeneousCoordinate h
= MapHomogeneousPoint(transform
, p
);
568 return h
.CartesianPoint3d();
571 // The cartesian coordinates will be invalid after dividing by w.
574 // Avoid dividing by w if w == 0.
576 return gfx::Point3F();
578 // This return value will be invalid because clipped == true, but (1) users of
579 // this code should be ignoring the return value when clipped == true anyway,
580 // and (2) this behavior is more consistent with existing behavior of WebKit
581 // transforms if the user really does not ignore the return value.
582 return h
.CartesianPoint3d();
585 gfx::QuadF
MathUtil::ProjectQuad(const gfx::Transform
& transform
,
588 gfx::QuadF projected_quad
;
590 projected_quad
.set_p1(ProjectPoint(transform
, q
.p1(), &clipped_point
));
591 *clipped
= clipped_point
;
592 projected_quad
.set_p2(ProjectPoint(transform
, q
.p2(), &clipped_point
));
593 *clipped
|= clipped_point
;
594 projected_quad
.set_p3(ProjectPoint(transform
, q
.p3(), &clipped_point
));
595 *clipped
|= clipped_point
;
596 projected_quad
.set_p4(ProjectPoint(transform
, q
.p4(), &clipped_point
));
597 *clipped
|= clipped_point
;
599 return projected_quad
;
602 gfx::PointF
MathUtil::ProjectPoint(const gfx::Transform
& transform
,
603 const gfx::PointF
& p
,
605 HomogeneousCoordinate h
= ProjectHomogeneousPoint(transform
, p
, clipped
);
606 // Avoid dividing by w if w == 0.
608 return gfx::PointF();
610 // This return value will be invalid if clipped == true, but (1) users of
611 // this code should be ignoring the return value when clipped == true anyway,
612 // and (2) this behavior is more consistent with existing behavior of WebKit
613 // transforms if the user really does not ignore the return value.
614 return h
.CartesianPoint2d();
617 gfx::Point3F
MathUtil::ProjectPoint3D(const gfx::Transform
& transform
,
618 const gfx::PointF
& p
,
620 HomogeneousCoordinate h
= ProjectHomogeneousPoint(transform
, p
, clipped
);
622 return gfx::Point3F();
623 return h
.CartesianPoint3d();
626 gfx::RectF
MathUtil::ScaleRectProportional(const gfx::RectF
& input_outer_rect
,
627 const gfx::RectF
& scale_outer_rect
,
628 const gfx::RectF
& scale_inner_rect
) {
629 gfx::RectF output_inner_rect
= input_outer_rect
;
630 float scale_rect_to_input_scale_x
=
631 scale_outer_rect
.width() / input_outer_rect
.width();
632 float scale_rect_to_input_scale_y
=
633 scale_outer_rect
.height() / input_outer_rect
.height();
635 gfx::Vector2dF top_left_diff
=
636 scale_inner_rect
.origin() - scale_outer_rect
.origin();
637 gfx::Vector2dF bottom_right_diff
=
638 scale_inner_rect
.bottom_right() - scale_outer_rect
.bottom_right();
639 output_inner_rect
.Inset(top_left_diff
.x() / scale_rect_to_input_scale_x
,
640 top_left_diff
.y() / scale_rect_to_input_scale_y
,
641 -bottom_right_diff
.x() / scale_rect_to_input_scale_x
,
642 -bottom_right_diff
.y() / scale_rect_to_input_scale_y
);
643 return output_inner_rect
;
646 static inline bool NearlyZero(double value
) {
647 return std::abs(value
) < std::numeric_limits
<double>::epsilon();
650 static inline float ScaleOnAxis(double a
, double b
, double c
) {
651 if (NearlyZero(b
) && NearlyZero(c
))
653 if (NearlyZero(a
) && NearlyZero(c
))
655 if (NearlyZero(a
) && NearlyZero(b
))
658 // Do the sqrt as a double to not lose precision.
659 return static_cast<float>(std::sqrt(a
* a
+ b
* b
+ c
* c
));
662 gfx::Vector2dF
MathUtil::ComputeTransform2dScaleComponents(
663 const gfx::Transform
& transform
,
664 float fallback_value
) {
665 if (transform
.HasPerspective())
666 return gfx::Vector2dF(fallback_value
, fallback_value
);
667 float x_scale
= ScaleOnAxis(transform
.matrix().getDouble(0, 0),
668 transform
.matrix().getDouble(1, 0),
669 transform
.matrix().getDouble(2, 0));
670 float y_scale
= ScaleOnAxis(transform
.matrix().getDouble(0, 1),
671 transform
.matrix().getDouble(1, 1),
672 transform
.matrix().getDouble(2, 1));
673 return gfx::Vector2dF(x_scale
, y_scale
);
676 float MathUtil::SmallestAngleBetweenVectors(const gfx::Vector2dF
& v1
,
677 const gfx::Vector2dF
& v2
) {
678 double dot_product
= gfx::DotProduct(v1
, v2
) / v1
.Length() / v2
.Length();
679 // Clamp to compensate for rounding errors.
680 dot_product
= std::max(-1.0, std::min(1.0, dot_product
));
681 return static_cast<float>(Rad2Deg(std::acos(dot_product
)));
684 gfx::Vector2dF
MathUtil::ProjectVector(const gfx::Vector2dF
& source
,
685 const gfx::Vector2dF
& destination
) {
686 float projected_length
=
687 gfx::DotProduct(source
, destination
) / destination
.LengthSquared();
688 return gfx::Vector2dF(projected_length
* destination
.x(),
689 projected_length
* destination
.y());
692 scoped_ptr
<base::Value
> MathUtil::AsValue(const gfx::Size
& s
) {
693 scoped_ptr
<base::DictionaryValue
> res(new base::DictionaryValue());
694 res
->SetDouble("width", s
.width());
695 res
->SetDouble("height", s
.height());
699 scoped_ptr
<base::Value
> MathUtil::AsValue(const gfx::Rect
& r
) {
700 scoped_ptr
<base::ListValue
> res(new base::ListValue());
701 res
->AppendInteger(r
.x());
702 res
->AppendInteger(r
.y());
703 res
->AppendInteger(r
.width());
704 res
->AppendInteger(r
.height());
708 bool MathUtil::FromValue(const base::Value
* raw_value
, gfx::Rect
* out_rect
) {
709 const base::ListValue
* value
= nullptr;
710 if (!raw_value
->GetAsList(&value
))
713 if (value
->GetSize() != 4)
718 ok
&= value
->GetInteger(0, &x
);
719 ok
&= value
->GetInteger(1, &y
);
720 ok
&= value
->GetInteger(2, &w
);
721 ok
&= value
->GetInteger(3, &h
);
725 *out_rect
= gfx::Rect(x
, y
, w
, h
);
729 scoped_ptr
<base::Value
> MathUtil::AsValue(const gfx::PointF
& pt
) {
730 scoped_ptr
<base::ListValue
> res(new base::ListValue());
731 res
->AppendDouble(pt
.x());
732 res
->AppendDouble(pt
.y());
736 void MathUtil::AddToTracedValue(const char* name
,
738 base::trace_event::TracedValue
* res
) {
739 res
->BeginDictionary(name
);
740 res
->SetDouble("width", s
.width());
741 res
->SetDouble("height", s
.height());
742 res
->EndDictionary();
745 void MathUtil::AddToTracedValue(const char* name
,
747 base::trace_event::TracedValue
* res
) {
748 res
->BeginDictionary(name
);
749 res
->SetDouble("width", s
.width());
750 res
->SetDouble("height", s
.height());
751 res
->EndDictionary();
754 void MathUtil::AddToTracedValue(const char* name
,
756 base::trace_event::TracedValue
* res
) {
757 res
->BeginArray(name
);
758 res
->AppendInteger(r
.x());
759 res
->AppendInteger(r
.y());
760 res
->AppendInteger(r
.width());
761 res
->AppendInteger(r
.height());
765 void MathUtil::AddToTracedValue(const char* name
,
766 const gfx::PointF
& pt
,
767 base::trace_event::TracedValue
* res
) {
768 res
->BeginArray(name
);
769 res
->AppendDouble(pt
.x());
770 res
->AppendDouble(pt
.y());
774 void MathUtil::AddToTracedValue(const char* name
,
775 const gfx::Point3F
& pt
,
776 base::trace_event::TracedValue
* res
) {
777 res
->BeginArray(name
);
778 res
->AppendDouble(pt
.x());
779 res
->AppendDouble(pt
.y());
780 res
->AppendDouble(pt
.z());
784 void MathUtil::AddToTracedValue(const char* name
,
785 const gfx::Vector2d
& v
,
786 base::trace_event::TracedValue
* res
) {
787 res
->BeginArray(name
);
788 res
->AppendInteger(v
.x());
789 res
->AppendInteger(v
.y());
793 void MathUtil::AddToTracedValue(const char* name
,
794 const gfx::Vector2dF
& v
,
795 base::trace_event::TracedValue
* res
) {
796 res
->BeginArray(name
);
797 res
->AppendDouble(v
.x());
798 res
->AppendDouble(v
.y());
802 void MathUtil::AddToTracedValue(const char* name
,
803 const gfx::ScrollOffset
& v
,
804 base::trace_event::TracedValue
* res
) {
805 res
->BeginArray(name
);
806 res
->AppendDouble(v
.x());
807 res
->AppendDouble(v
.y());
811 void MathUtil::AddToTracedValue(const char* name
,
813 base::trace_event::TracedValue
* res
) {
814 res
->BeginArray(name
);
815 res
->AppendDouble(q
.p1().x());
816 res
->AppendDouble(q
.p1().y());
817 res
->AppendDouble(q
.p2().x());
818 res
->AppendDouble(q
.p2().y());
819 res
->AppendDouble(q
.p3().x());
820 res
->AppendDouble(q
.p3().y());
821 res
->AppendDouble(q
.p4().x());
822 res
->AppendDouble(q
.p4().y());
826 void MathUtil::AddToTracedValue(const char* name
,
827 const gfx::RectF
& rect
,
828 base::trace_event::TracedValue
* res
) {
829 res
->BeginArray(name
);
830 res
->AppendDouble(rect
.x());
831 res
->AppendDouble(rect
.y());
832 res
->AppendDouble(rect
.width());
833 res
->AppendDouble(rect
.height());
837 void MathUtil::AddToTracedValue(const char* name
,
838 const gfx::Transform
& transform
,
839 base::trace_event::TracedValue
* res
) {
840 res
->BeginArray(name
);
841 const SkMatrix44
& m
= transform
.matrix();
842 for (int row
= 0; row
< 4; ++row
) {
843 for (int col
= 0; col
< 4; ++col
)
844 res
->AppendDouble(m
.getDouble(row
, col
));
849 void MathUtil::AddToTracedValue(const char* name
,
850 const gfx::BoxF
& box
,
851 base::trace_event::TracedValue
* res
) {
852 res
->BeginArray(name
);
853 res
->AppendInteger(box
.x());
854 res
->AppendInteger(box
.y());
855 res
->AppendInteger(box
.z());
856 res
->AppendInteger(box
.width());
857 res
->AppendInteger(box
.height());
858 res
->AppendInteger(box
.depth());
862 double MathUtil::AsDoubleSafely(double value
) {
863 return std::min(value
, std::numeric_limits
<double>::max());
866 float MathUtil::AsFloatSafely(float value
) {
867 return std::min(value
, std::numeric_limits
<float>::max());