Enterprise policy: Ignore the deprecated ForceSafeSearch if ForceGoogleSafeSearch...
[chromium-blink-merge.git] / base / synchronization / waitable_event_posix.cc
blob696ffc7a02abe5a1c21e429032b217fd7f142c91
1 // Copyright (c) 2012 The Chromium Authors. All rights reserved.
2 // Use of this source code is governed by a BSD-style license that can be
3 // found in the LICENSE file.
5 #include <algorithm>
6 #include <vector>
8 #include "base/logging.h"
9 #include "base/synchronization/waitable_event.h"
10 #include "base/synchronization/condition_variable.h"
11 #include "base/synchronization/lock.h"
12 #include "base/threading/thread_restrictions.h"
14 // -----------------------------------------------------------------------------
15 // A WaitableEvent on POSIX is implemented as a wait-list. Currently we don't
16 // support cross-process events (where one process can signal an event which
17 // others are waiting on). Because of this, we can avoid having one thread per
18 // listener in several cases.
20 // The WaitableEvent maintains a list of waiters, protected by a lock. Each
21 // waiter is either an async wait, in which case we have a Task and the
22 // MessageLoop to run it on, or a blocking wait, in which case we have the
23 // condition variable to signal.
25 // Waiting involves grabbing the lock and adding oneself to the wait list. Async
26 // waits can be canceled, which means grabbing the lock and removing oneself
27 // from the list.
29 // Waiting on multiple events is handled by adding a single, synchronous wait to
30 // the wait-list of many events. An event passes a pointer to itself when
31 // firing a waiter and so we can store that pointer to find out which event
32 // triggered.
33 // -----------------------------------------------------------------------------
35 namespace base {
37 // -----------------------------------------------------------------------------
38 // This is just an abstract base class for waking the two types of waiters
39 // -----------------------------------------------------------------------------
40 WaitableEvent::WaitableEvent(bool manual_reset, bool initially_signaled)
41 : kernel_(new WaitableEventKernel(manual_reset, initially_signaled)) {
44 WaitableEvent::~WaitableEvent() {
47 void WaitableEvent::Reset() {
48 base::AutoLock locked(kernel_->lock_);
49 kernel_->signaled_ = false;
52 void WaitableEvent::Signal() {
53 base::AutoLock locked(kernel_->lock_);
55 if (kernel_->signaled_)
56 return;
58 if (kernel_->manual_reset_) {
59 SignalAll();
60 kernel_->signaled_ = true;
61 } else {
62 // In the case of auto reset, if no waiters were woken, we remain
63 // signaled.
64 if (!SignalOne())
65 kernel_->signaled_ = true;
69 bool WaitableEvent::IsSignaled() {
70 base::AutoLock locked(kernel_->lock_);
72 const bool result = kernel_->signaled_;
73 if (result && !kernel_->manual_reset_)
74 kernel_->signaled_ = false;
75 return result;
78 // -----------------------------------------------------------------------------
79 // Synchronous waits
81 // -----------------------------------------------------------------------------
82 // This is a synchronous waiter. The thread is waiting on the given condition
83 // variable and the fired flag in this object.
84 // -----------------------------------------------------------------------------
85 class SyncWaiter : public WaitableEvent::Waiter {
86 public:
87 SyncWaiter()
88 : fired_(false),
89 signaling_event_(NULL),
90 lock_(),
91 cv_(&lock_) {
94 bool Fire(WaitableEvent* signaling_event) override {
95 base::AutoLock locked(lock_);
97 if (fired_)
98 return false;
100 fired_ = true;
101 signaling_event_ = signaling_event;
103 cv_.Broadcast();
105 // Unlike AsyncWaiter objects, SyncWaiter objects are stack-allocated on
106 // the blocking thread's stack. There is no |delete this;| in Fire. The
107 // SyncWaiter object is destroyed when it goes out of scope.
109 return true;
112 WaitableEvent* signaling_event() const {
113 return signaling_event_;
116 // ---------------------------------------------------------------------------
117 // These waiters are always stack allocated and don't delete themselves. Thus
118 // there's no problem and the ABA tag is the same as the object pointer.
119 // ---------------------------------------------------------------------------
120 bool Compare(void* tag) override { return this == tag; }
122 // ---------------------------------------------------------------------------
123 // Called with lock held.
124 // ---------------------------------------------------------------------------
125 bool fired() const {
126 return fired_;
129 // ---------------------------------------------------------------------------
130 // During a TimedWait, we need a way to make sure that an auto-reset
131 // WaitableEvent doesn't think that this event has been signaled between
132 // unlocking it and removing it from the wait-list. Called with lock held.
133 // ---------------------------------------------------------------------------
134 void Disable() {
135 fired_ = true;
138 base::Lock* lock() {
139 return &lock_;
142 base::ConditionVariable* cv() {
143 return &cv_;
146 private:
147 bool fired_;
148 WaitableEvent* signaling_event_; // The WaitableEvent which woke us
149 base::Lock lock_;
150 base::ConditionVariable cv_;
153 void WaitableEvent::Wait() {
154 bool result = TimedWait(TimeDelta::FromSeconds(-1));
155 DCHECK(result) << "TimedWait() should never fail with infinite timeout";
158 bool WaitableEvent::TimedWait(const TimeDelta& max_time) {
159 base::ThreadRestrictions::AssertWaitAllowed();
160 const TimeTicks end_time(TimeTicks::Now() + max_time);
161 const bool finite_time = max_time.ToInternalValue() >= 0;
163 kernel_->lock_.Acquire();
164 if (kernel_->signaled_) {
165 if (!kernel_->manual_reset_) {
166 // In this case we were signaled when we had no waiters. Now that
167 // someone has waited upon us, we can automatically reset.
168 kernel_->signaled_ = false;
171 kernel_->lock_.Release();
172 return true;
175 SyncWaiter sw;
176 sw.lock()->Acquire();
178 Enqueue(&sw);
179 kernel_->lock_.Release();
180 // We are violating locking order here by holding the SyncWaiter lock but not
181 // the WaitableEvent lock. However, this is safe because we don't lock @lock_
182 // again before unlocking it.
184 for (;;) {
185 const TimeTicks current_time(TimeTicks::Now());
187 if (sw.fired() || (finite_time && current_time >= end_time)) {
188 const bool return_value = sw.fired();
190 // We can't acquire @lock_ before releasing the SyncWaiter lock (because
191 // of locking order), however, in between the two a signal could be fired
192 // and @sw would accept it, however we will still return false, so the
193 // signal would be lost on an auto-reset WaitableEvent. Thus we call
194 // Disable which makes sw::Fire return false.
195 sw.Disable();
196 sw.lock()->Release();
198 // This is a bug that has been enshrined in the interface of
199 // WaitableEvent now: |Dequeue| is called even when |sw.fired()| is true,
200 // even though it'll always return false in that case. However, taking
201 // the lock ensures that |Signal| has completed before we return and
202 // means that a WaitableEvent can synchronise its own destruction.
203 kernel_->lock_.Acquire();
204 kernel_->Dequeue(&sw, &sw);
205 kernel_->lock_.Release();
207 return return_value;
210 if (finite_time) {
211 const TimeDelta max_wait(end_time - current_time);
212 sw.cv()->TimedWait(max_wait);
213 } else {
214 sw.cv()->Wait();
219 // -----------------------------------------------------------------------------
220 // Synchronous waiting on multiple objects.
222 static bool // StrictWeakOrdering
223 cmp_fst_addr(const std::pair<WaitableEvent*, unsigned> &a,
224 const std::pair<WaitableEvent*, unsigned> &b) {
225 return a.first < b.first;
228 // static
229 size_t WaitableEvent::WaitMany(WaitableEvent** raw_waitables,
230 size_t count) {
231 base::ThreadRestrictions::AssertWaitAllowed();
232 DCHECK(count) << "Cannot wait on no events";
234 // We need to acquire the locks in a globally consistent order. Thus we sort
235 // the array of waitables by address. We actually sort a pairs so that we can
236 // map back to the original index values later.
237 std::vector<std::pair<WaitableEvent*, size_t> > waitables;
238 waitables.reserve(count);
239 for (size_t i = 0; i < count; ++i)
240 waitables.push_back(std::make_pair(raw_waitables[i], i));
242 DCHECK_EQ(count, waitables.size());
244 sort(waitables.begin(), waitables.end(), cmp_fst_addr);
246 // The set of waitables must be distinct. Since we have just sorted by
247 // address, we can check this cheaply by comparing pairs of consecutive
248 // elements.
249 for (size_t i = 0; i < waitables.size() - 1; ++i) {
250 DCHECK(waitables[i].first != waitables[i+1].first);
253 SyncWaiter sw;
255 const size_t r = EnqueueMany(&waitables[0], count, &sw);
256 if (r) {
257 // One of the events is already signaled. The SyncWaiter has not been
258 // enqueued anywhere. EnqueueMany returns the count of remaining waitables
259 // when the signaled one was seen, so the index of the signaled event is
260 // @count - @r.
261 return waitables[count - r].second;
264 // At this point, we hold the locks on all the WaitableEvents and we have
265 // enqueued our waiter in them all.
266 sw.lock()->Acquire();
267 // Release the WaitableEvent locks in the reverse order
268 for (size_t i = 0; i < count; ++i) {
269 waitables[count - (1 + i)].first->kernel_->lock_.Release();
272 for (;;) {
273 if (sw.fired())
274 break;
276 sw.cv()->Wait();
278 sw.lock()->Release();
280 // The address of the WaitableEvent which fired is stored in the SyncWaiter.
281 WaitableEvent *const signaled_event = sw.signaling_event();
282 // This will store the index of the raw_waitables which fired.
283 size_t signaled_index = 0;
285 // Take the locks of each WaitableEvent in turn (except the signaled one) and
286 // remove our SyncWaiter from the wait-list
287 for (size_t i = 0; i < count; ++i) {
288 if (raw_waitables[i] != signaled_event) {
289 raw_waitables[i]->kernel_->lock_.Acquire();
290 // There's no possible ABA issue with the address of the SyncWaiter here
291 // because it lives on the stack. Thus the tag value is just the pointer
292 // value again.
293 raw_waitables[i]->kernel_->Dequeue(&sw, &sw);
294 raw_waitables[i]->kernel_->lock_.Release();
295 } else {
296 // By taking this lock here we ensure that |Signal| has completed by the
297 // time we return, because |Signal| holds this lock. This matches the
298 // behaviour of |Wait| and |TimedWait|.
299 raw_waitables[i]->kernel_->lock_.Acquire();
300 raw_waitables[i]->kernel_->lock_.Release();
301 signaled_index = i;
305 return signaled_index;
308 // -----------------------------------------------------------------------------
309 // If return value == 0:
310 // The locks of the WaitableEvents have been taken in order and the Waiter has
311 // been enqueued in the wait-list of each. None of the WaitableEvents are
312 // currently signaled
313 // else:
314 // None of the WaitableEvent locks are held. The Waiter has not been enqueued
315 // in any of them and the return value is the index of the first WaitableEvent
316 // which was signaled, from the end of the array.
317 // -----------------------------------------------------------------------------
318 // static
319 size_t WaitableEvent::EnqueueMany
320 (std::pair<WaitableEvent*, size_t>* waitables,
321 size_t count, Waiter* waiter) {
322 if (!count)
323 return 0;
325 waitables[0].first->kernel_->lock_.Acquire();
326 if (waitables[0].first->kernel_->signaled_) {
327 if (!waitables[0].first->kernel_->manual_reset_)
328 waitables[0].first->kernel_->signaled_ = false;
329 waitables[0].first->kernel_->lock_.Release();
330 return count;
333 const size_t r = EnqueueMany(waitables + 1, count - 1, waiter);
334 if (r) {
335 waitables[0].first->kernel_->lock_.Release();
336 } else {
337 waitables[0].first->Enqueue(waiter);
340 return r;
343 // -----------------------------------------------------------------------------
346 // -----------------------------------------------------------------------------
347 // Private functions...
349 WaitableEvent::WaitableEventKernel::WaitableEventKernel(bool manual_reset,
350 bool initially_signaled)
351 : manual_reset_(manual_reset),
352 signaled_(initially_signaled) {
355 WaitableEvent::WaitableEventKernel::~WaitableEventKernel() {
358 // -----------------------------------------------------------------------------
359 // Wake all waiting waiters. Called with lock held.
360 // -----------------------------------------------------------------------------
361 bool WaitableEvent::SignalAll() {
362 bool signaled_at_least_one = false;
364 for (std::list<Waiter*>::iterator
365 i = kernel_->waiters_.begin(); i != kernel_->waiters_.end(); ++i) {
366 if ((*i)->Fire(this))
367 signaled_at_least_one = true;
370 kernel_->waiters_.clear();
371 return signaled_at_least_one;
374 // ---------------------------------------------------------------------------
375 // Try to wake a single waiter. Return true if one was woken. Called with lock
376 // held.
377 // ---------------------------------------------------------------------------
378 bool WaitableEvent::SignalOne() {
379 for (;;) {
380 if (kernel_->waiters_.empty())
381 return false;
383 const bool r = (*kernel_->waiters_.begin())->Fire(this);
384 kernel_->waiters_.pop_front();
385 if (r)
386 return true;
390 // -----------------------------------------------------------------------------
391 // Add a waiter to the list of those waiting. Called with lock held.
392 // -----------------------------------------------------------------------------
393 void WaitableEvent::Enqueue(Waiter* waiter) {
394 kernel_->waiters_.push_back(waiter);
397 // -----------------------------------------------------------------------------
398 // Remove a waiter from the list of those waiting. Return true if the waiter was
399 // actually removed. Called with lock held.
400 // -----------------------------------------------------------------------------
401 bool WaitableEvent::WaitableEventKernel::Dequeue(Waiter* waiter, void* tag) {
402 for (std::list<Waiter*>::iterator
403 i = waiters_.begin(); i != waiters_.end(); ++i) {
404 if (*i == waiter && (*i)->Compare(tag)) {
405 waiters_.erase(i);
406 return true;
410 return false;
413 // -----------------------------------------------------------------------------
415 } // namespace base