Relay events from all HostZoomMaps to Chrome's ZoomEventManager.
[chromium-blink-merge.git] / cc / base / math_util.cc
blob816f6fc2c6e673efe56a9dc28a1efe8eab8fcc26
1 // Copyright 2012 The Chromium Authors. All rights reserved.
2 // Use of this source code is governed by a BSD-style license that can be
3 // found in the LICENSE file.
5 #include "cc/base/math_util.h"
7 #include <algorithm>
8 #include <cmath>
9 #include <limits>
11 #include "base/debug/trace_event_argument.h"
12 #include "base/values.h"
13 #include "ui/gfx/geometry/quad_f.h"
14 #include "ui/gfx/geometry/rect.h"
15 #include "ui/gfx/geometry/rect_conversions.h"
16 #include "ui/gfx/geometry/rect_f.h"
17 #include "ui/gfx/geometry/vector2d_f.h"
18 #include "ui/gfx/transform.h"
20 namespace cc {
22 const double MathUtil::kPiDouble = 3.14159265358979323846;
23 const float MathUtil::kPiFloat = 3.14159265358979323846f;
25 static HomogeneousCoordinate ProjectHomogeneousPoint(
26 const gfx::Transform& transform,
27 const gfx::PointF& p) {
28 // In this case, the layer we are trying to project onto is perpendicular to
29 // ray (point p and z-axis direction) that we are trying to project. This
30 // happens when the layer is rotated so that it is infinitesimally thin, or
31 // when it is co-planar with the camera origin -- i.e. when the layer is
32 // invisible anyway.
33 if (!transform.matrix().get(2, 2))
34 return HomogeneousCoordinate(0.0, 0.0, 0.0, 1.0);
36 SkMScalar z = -(transform.matrix().get(2, 0) * p.x() +
37 transform.matrix().get(2, 1) * p.y() +
38 transform.matrix().get(2, 3)) /
39 transform.matrix().get(2, 2);
40 HomogeneousCoordinate result(p.x(), p.y(), z, 1.0);
41 transform.matrix().mapMScalars(result.vec, result.vec);
42 return result;
45 static HomogeneousCoordinate ProjectHomogeneousPoint(
46 const gfx::Transform& transform,
47 const gfx::PointF& p,
48 bool* clipped) {
49 HomogeneousCoordinate h = ProjectHomogeneousPoint(transform, p);
50 *clipped = h.w() <= 0;
51 return h;
54 static HomogeneousCoordinate MapHomogeneousPoint(
55 const gfx::Transform& transform,
56 const gfx::Point3F& p) {
57 HomogeneousCoordinate result(p.x(), p.y(), p.z(), 1.0);
58 transform.matrix().mapMScalars(result.vec, result.vec);
59 return result;
62 static HomogeneousCoordinate ComputeClippedPointForEdge(
63 const HomogeneousCoordinate& h1,
64 const HomogeneousCoordinate& h2) {
65 // Points h1 and h2 form a line in 4d, and any point on that line can be
66 // represented as an interpolation between h1 and h2:
67 // p = (1-t) h1 + (t) h2
69 // We want to compute point p such that p.w == epsilon, where epsilon is a
70 // small non-zero number. (but the smaller the number is, the higher the risk
71 // of overflow)
72 // To do this, we solve for t in the following equation:
73 // p.w = epsilon = (1-t) * h1.w + (t) * h2.w
75 // Once paramter t is known, the rest of p can be computed via
76 // p = (1-t) h1 + (t) h2.
78 // Technically this is a special case of the following assertion, but its a
79 // good idea to keep it an explicit sanity check here.
80 DCHECK_NE(h2.w(), h1.w());
81 // Exactly one of h1 or h2 (but not both) must be on the negative side of the
82 // w plane when this is called.
83 DCHECK(h1.ShouldBeClipped() ^ h2.ShouldBeClipped());
85 // ...or any positive non-zero small epsilon
86 SkMScalar w = 0.00001f;
87 SkMScalar t = (w - h1.w()) / (h2.w() - h1.w());
89 SkMScalar x = (SK_MScalar1 - t) * h1.x() + t * h2.x();
90 SkMScalar y = (SK_MScalar1 - t) * h1.y() + t * h2.y();
91 SkMScalar z = (SK_MScalar1 - t) * h1.z() + t * h2.z();
93 return HomogeneousCoordinate(x, y, z, w);
96 static inline void ExpandBoundsToIncludePoint(float* xmin,
97 float* xmax,
98 float* ymin,
99 float* ymax,
100 const gfx::PointF& p) {
101 *xmin = std::min(p.x(), *xmin);
102 *xmax = std::max(p.x(), *xmax);
103 *ymin = std::min(p.y(), *ymin);
104 *ymax = std::max(p.y(), *ymax);
107 static inline void AddVertexToClippedQuad(const gfx::PointF& new_vertex,
108 gfx::PointF clipped_quad[8],
109 int* num_vertices_in_clipped_quad) {
110 clipped_quad[*num_vertices_in_clipped_quad] = new_vertex;
111 (*num_vertices_in_clipped_quad)++;
114 static inline void AddVertexToClippedQuad3d(const gfx::Point3F& new_vertex,
115 gfx::Point3F clipped_quad[8],
116 int* num_vertices_in_clipped_quad) {
117 clipped_quad[*num_vertices_in_clipped_quad] = new_vertex;
118 (*num_vertices_in_clipped_quad)++;
121 gfx::Rect MathUtil::MapEnclosingClippedRect(const gfx::Transform& transform,
122 const gfx::Rect& src_rect) {
123 if (transform.IsIdentityOrIntegerTranslation()) {
124 gfx::Vector2d offset(static_cast<int>(transform.matrix().getFloat(0, 3)),
125 static_cast<int>(transform.matrix().getFloat(1, 3)));
126 return src_rect + offset;
128 return gfx::ToEnclosingRect(MapClippedRect(transform, gfx::RectF(src_rect)));
131 gfx::RectF MathUtil::MapClippedRect(const gfx::Transform& transform,
132 const gfx::RectF& src_rect) {
133 if (transform.IsIdentityOrTranslation()) {
134 gfx::Vector2dF offset(transform.matrix().getFloat(0, 3),
135 transform.matrix().getFloat(1, 3));
136 return src_rect + offset;
139 // Apply the transform, but retain the result in homogeneous coordinates.
141 SkMScalar quad[4 * 2]; // input: 4 x 2D points
142 quad[0] = src_rect.x();
143 quad[1] = src_rect.y();
144 quad[2] = src_rect.right();
145 quad[3] = src_rect.y();
146 quad[4] = src_rect.right();
147 quad[5] = src_rect.bottom();
148 quad[6] = src_rect.x();
149 quad[7] = src_rect.bottom();
151 SkMScalar result[4 * 4]; // output: 4 x 4D homogeneous points
152 transform.matrix().map2(quad, 4, result);
154 HomogeneousCoordinate hc0(result[0], result[1], result[2], result[3]);
155 HomogeneousCoordinate hc1(result[4], result[5], result[6], result[7]);
156 HomogeneousCoordinate hc2(result[8], result[9], result[10], result[11]);
157 HomogeneousCoordinate hc3(result[12], result[13], result[14], result[15]);
158 return ComputeEnclosingClippedRect(hc0, hc1, hc2, hc3);
161 gfx::Rect MathUtil::ProjectEnclosingClippedRect(const gfx::Transform& transform,
162 const gfx::Rect& src_rect) {
163 if (transform.IsIdentityOrIntegerTranslation()) {
164 gfx::Vector2d offset(static_cast<int>(transform.matrix().getFloat(0, 3)),
165 static_cast<int>(transform.matrix().getFloat(1, 3)));
166 return src_rect + offset;
168 return gfx::ToEnclosingRect(
169 ProjectClippedRect(transform, gfx::RectF(src_rect)));
172 gfx::RectF MathUtil::ProjectClippedRect(const gfx::Transform& transform,
173 const gfx::RectF& src_rect) {
174 if (transform.IsIdentityOrTranslation()) {
175 gfx::Vector2dF offset(transform.matrix().getFloat(0, 3),
176 transform.matrix().getFloat(1, 3));
177 return src_rect + offset;
180 // Perform the projection, but retain the result in homogeneous coordinates.
181 gfx::QuadF q = gfx::QuadF(src_rect);
182 HomogeneousCoordinate h1 = ProjectHomogeneousPoint(transform, q.p1());
183 HomogeneousCoordinate h2 = ProjectHomogeneousPoint(transform, q.p2());
184 HomogeneousCoordinate h3 = ProjectHomogeneousPoint(transform, q.p3());
185 HomogeneousCoordinate h4 = ProjectHomogeneousPoint(transform, q.p4());
187 return ComputeEnclosingClippedRect(h1, h2, h3, h4);
190 gfx::Rect MathUtil::MapEnclosedRectWith2dAxisAlignedTransform(
191 const gfx::Transform& transform,
192 const gfx::Rect& rect) {
193 DCHECK(transform.Preserves2dAxisAlignment());
195 if (transform.IsIdentityOrIntegerTranslation()) {
196 gfx::Vector2d offset(static_cast<int>(transform.matrix().getFloat(0, 3)),
197 static_cast<int>(transform.matrix().getFloat(1, 3)));
198 return rect + offset;
200 if (transform.IsIdentityOrTranslation()) {
201 gfx::Vector2dF offset(transform.matrix().getFloat(0, 3),
202 transform.matrix().getFloat(1, 3));
203 return gfx::ToEnclosedRect(rect + offset);
206 SkMScalar quad[2 * 2]; // input: 2 x 2D points
207 quad[0] = rect.x();
208 quad[1] = rect.y();
209 quad[2] = rect.right();
210 quad[3] = rect.bottom();
212 SkMScalar result[4 * 2]; // output: 2 x 4D homogeneous points
213 transform.matrix().map2(quad, 2, result);
215 HomogeneousCoordinate hc0(result[0], result[1], result[2], result[3]);
216 HomogeneousCoordinate hc1(result[4], result[5], result[6], result[7]);
217 DCHECK(!hc0.ShouldBeClipped());
218 DCHECK(!hc1.ShouldBeClipped());
220 gfx::PointF top_left(hc0.CartesianPoint2d());
221 gfx::PointF bottom_right(hc1.CartesianPoint2d());
222 return gfx::ToEnclosedRect(gfx::BoundingRect(top_left, bottom_right));
225 void MathUtil::MapClippedQuad(const gfx::Transform& transform,
226 const gfx::QuadF& src_quad,
227 gfx::PointF clipped_quad[8],
228 int* num_vertices_in_clipped_quad) {
229 HomogeneousCoordinate h1 =
230 MapHomogeneousPoint(transform, gfx::Point3F(src_quad.p1()));
231 HomogeneousCoordinate h2 =
232 MapHomogeneousPoint(transform, gfx::Point3F(src_quad.p2()));
233 HomogeneousCoordinate h3 =
234 MapHomogeneousPoint(transform, gfx::Point3F(src_quad.p3()));
235 HomogeneousCoordinate h4 =
236 MapHomogeneousPoint(transform, gfx::Point3F(src_quad.p4()));
238 // The order of adding the vertices to the array is chosen so that
239 // clockwise / counter-clockwise orientation is retained.
241 *num_vertices_in_clipped_quad = 0;
243 if (!h1.ShouldBeClipped()) {
244 AddVertexToClippedQuad(
245 h1.CartesianPoint2d(), clipped_quad, num_vertices_in_clipped_quad);
248 if (h1.ShouldBeClipped() ^ h2.ShouldBeClipped()) {
249 AddVertexToClippedQuad(
250 ComputeClippedPointForEdge(h1, h2).CartesianPoint2d(),
251 clipped_quad,
252 num_vertices_in_clipped_quad);
255 if (!h2.ShouldBeClipped()) {
256 AddVertexToClippedQuad(
257 h2.CartesianPoint2d(), clipped_quad, num_vertices_in_clipped_quad);
260 if (h2.ShouldBeClipped() ^ h3.ShouldBeClipped()) {
261 AddVertexToClippedQuad(
262 ComputeClippedPointForEdge(h2, h3).CartesianPoint2d(),
263 clipped_quad,
264 num_vertices_in_clipped_quad);
267 if (!h3.ShouldBeClipped()) {
268 AddVertexToClippedQuad(
269 h3.CartesianPoint2d(), clipped_quad, num_vertices_in_clipped_quad);
272 if (h3.ShouldBeClipped() ^ h4.ShouldBeClipped()) {
273 AddVertexToClippedQuad(
274 ComputeClippedPointForEdge(h3, h4).CartesianPoint2d(),
275 clipped_quad,
276 num_vertices_in_clipped_quad);
279 if (!h4.ShouldBeClipped()) {
280 AddVertexToClippedQuad(
281 h4.CartesianPoint2d(), clipped_quad, num_vertices_in_clipped_quad);
284 if (h4.ShouldBeClipped() ^ h1.ShouldBeClipped()) {
285 AddVertexToClippedQuad(
286 ComputeClippedPointForEdge(h4, h1).CartesianPoint2d(),
287 clipped_quad,
288 num_vertices_in_clipped_quad);
291 DCHECK_LE(*num_vertices_in_clipped_quad, 8);
294 bool MathUtil::MapClippedQuad3d(const gfx::Transform& transform,
295 const gfx::QuadF& src_quad,
296 gfx::Point3F clipped_quad[8],
297 int* num_vertices_in_clipped_quad) {
298 HomogeneousCoordinate h1 =
299 MapHomogeneousPoint(transform, gfx::Point3F(src_quad.p1()));
300 HomogeneousCoordinate h2 =
301 MapHomogeneousPoint(transform, gfx::Point3F(src_quad.p2()));
302 HomogeneousCoordinate h3 =
303 MapHomogeneousPoint(transform, gfx::Point3F(src_quad.p3()));
304 HomogeneousCoordinate h4 =
305 MapHomogeneousPoint(transform, gfx::Point3F(src_quad.p4()));
307 // The order of adding the vertices to the array is chosen so that
308 // clockwise / counter-clockwise orientation is retained.
310 *num_vertices_in_clipped_quad = 0;
312 if (!h1.ShouldBeClipped()) {
313 AddVertexToClippedQuad3d(
314 h1.CartesianPoint3d(), clipped_quad, num_vertices_in_clipped_quad);
317 if (h1.ShouldBeClipped() ^ h2.ShouldBeClipped()) {
318 AddVertexToClippedQuad3d(
319 ComputeClippedPointForEdge(h1, h2).CartesianPoint3d(),
320 clipped_quad,
321 num_vertices_in_clipped_quad);
324 if (!h2.ShouldBeClipped()) {
325 AddVertexToClippedQuad3d(
326 h2.CartesianPoint3d(), clipped_quad, num_vertices_in_clipped_quad);
329 if (h2.ShouldBeClipped() ^ h3.ShouldBeClipped()) {
330 AddVertexToClippedQuad3d(
331 ComputeClippedPointForEdge(h2, h3).CartesianPoint3d(),
332 clipped_quad,
333 num_vertices_in_clipped_quad);
336 if (!h3.ShouldBeClipped()) {
337 AddVertexToClippedQuad3d(
338 h3.CartesianPoint3d(), clipped_quad, num_vertices_in_clipped_quad);
341 if (h3.ShouldBeClipped() ^ h4.ShouldBeClipped()) {
342 AddVertexToClippedQuad3d(
343 ComputeClippedPointForEdge(h3, h4).CartesianPoint3d(),
344 clipped_quad,
345 num_vertices_in_clipped_quad);
348 if (!h4.ShouldBeClipped()) {
349 AddVertexToClippedQuad3d(
350 h4.CartesianPoint3d(), clipped_quad, num_vertices_in_clipped_quad);
353 if (h4.ShouldBeClipped() ^ h1.ShouldBeClipped()) {
354 AddVertexToClippedQuad3d(
355 ComputeClippedPointForEdge(h4, h1).CartesianPoint3d(),
356 clipped_quad,
357 num_vertices_in_clipped_quad);
360 DCHECK_LE(*num_vertices_in_clipped_quad, 8);
361 return (*num_vertices_in_clipped_quad >= 4);
364 gfx::RectF MathUtil::ComputeEnclosingRectOfVertices(
365 const gfx::PointF vertices[],
366 int num_vertices) {
367 if (num_vertices < 2)
368 return gfx::RectF();
370 float xmin = std::numeric_limits<float>::max();
371 float xmax = -std::numeric_limits<float>::max();
372 float ymin = std::numeric_limits<float>::max();
373 float ymax = -std::numeric_limits<float>::max();
375 for (int i = 0; i < num_vertices; ++i)
376 ExpandBoundsToIncludePoint(&xmin, &xmax, &ymin, &ymax, vertices[i]);
378 return gfx::RectF(gfx::PointF(xmin, ymin),
379 gfx::SizeF(xmax - xmin, ymax - ymin));
382 gfx::RectF MathUtil::ComputeEnclosingClippedRect(
383 const HomogeneousCoordinate& h1,
384 const HomogeneousCoordinate& h2,
385 const HomogeneousCoordinate& h3,
386 const HomogeneousCoordinate& h4) {
387 // This function performs clipping as necessary and computes the enclosing 2d
388 // gfx::RectF of the vertices. Doing these two steps simultaneously allows us
389 // to avoid the overhead of storing an unknown number of clipped vertices.
391 // If no vertices on the quad are clipped, then we can simply return the
392 // enclosing rect directly.
393 bool something_clipped = h1.ShouldBeClipped() || h2.ShouldBeClipped() ||
394 h3.ShouldBeClipped() || h4.ShouldBeClipped();
395 if (!something_clipped) {
396 gfx::QuadF mapped_quad = gfx::QuadF(h1.CartesianPoint2d(),
397 h2.CartesianPoint2d(),
398 h3.CartesianPoint2d(),
399 h4.CartesianPoint2d());
400 return mapped_quad.BoundingBox();
403 bool everything_clipped = h1.ShouldBeClipped() && h2.ShouldBeClipped() &&
404 h3.ShouldBeClipped() && h4.ShouldBeClipped();
405 if (everything_clipped)
406 return gfx::RectF();
408 float xmin = std::numeric_limits<float>::max();
409 float xmax = -std::numeric_limits<float>::max();
410 float ymin = std::numeric_limits<float>::max();
411 float ymax = -std::numeric_limits<float>::max();
413 if (!h1.ShouldBeClipped())
414 ExpandBoundsToIncludePoint(&xmin, &xmax, &ymin, &ymax,
415 h1.CartesianPoint2d());
417 if (h1.ShouldBeClipped() ^ h2.ShouldBeClipped())
418 ExpandBoundsToIncludePoint(&xmin,
419 &xmax,
420 &ymin,
421 &ymax,
422 ComputeClippedPointForEdge(h1, h2)
423 .CartesianPoint2d());
425 if (!h2.ShouldBeClipped())
426 ExpandBoundsToIncludePoint(&xmin, &xmax, &ymin, &ymax,
427 h2.CartesianPoint2d());
429 if (h2.ShouldBeClipped() ^ h3.ShouldBeClipped())
430 ExpandBoundsToIncludePoint(&xmin,
431 &xmax,
432 &ymin,
433 &ymax,
434 ComputeClippedPointForEdge(h2, h3)
435 .CartesianPoint2d());
437 if (!h3.ShouldBeClipped())
438 ExpandBoundsToIncludePoint(&xmin, &xmax, &ymin, &ymax,
439 h3.CartesianPoint2d());
441 if (h3.ShouldBeClipped() ^ h4.ShouldBeClipped())
442 ExpandBoundsToIncludePoint(&xmin,
443 &xmax,
444 &ymin,
445 &ymax,
446 ComputeClippedPointForEdge(h3, h4)
447 .CartesianPoint2d());
449 if (!h4.ShouldBeClipped())
450 ExpandBoundsToIncludePoint(&xmin, &xmax, &ymin, &ymax,
451 h4.CartesianPoint2d());
453 if (h4.ShouldBeClipped() ^ h1.ShouldBeClipped())
454 ExpandBoundsToIncludePoint(&xmin,
455 &xmax,
456 &ymin,
457 &ymax,
458 ComputeClippedPointForEdge(h4, h1)
459 .CartesianPoint2d());
461 return gfx::RectF(gfx::PointF(xmin, ymin),
462 gfx::SizeF(xmax - xmin, ymax - ymin));
465 gfx::QuadF MathUtil::MapQuad(const gfx::Transform& transform,
466 const gfx::QuadF& q,
467 bool* clipped) {
468 if (transform.IsIdentityOrTranslation()) {
469 gfx::QuadF mapped_quad(q);
470 mapped_quad += gfx::Vector2dF(transform.matrix().getFloat(0, 3),
471 transform.matrix().getFloat(1, 3));
472 *clipped = false;
473 return mapped_quad;
476 HomogeneousCoordinate h1 =
477 MapHomogeneousPoint(transform, gfx::Point3F(q.p1()));
478 HomogeneousCoordinate h2 =
479 MapHomogeneousPoint(transform, gfx::Point3F(q.p2()));
480 HomogeneousCoordinate h3 =
481 MapHomogeneousPoint(transform, gfx::Point3F(q.p3()));
482 HomogeneousCoordinate h4 =
483 MapHomogeneousPoint(transform, gfx::Point3F(q.p4()));
485 *clipped = h1.ShouldBeClipped() || h2.ShouldBeClipped() ||
486 h3.ShouldBeClipped() || h4.ShouldBeClipped();
488 // Result will be invalid if clipped == true. But, compute it anyway just in
489 // case, to emulate existing behavior.
490 return gfx::QuadF(h1.CartesianPoint2d(),
491 h2.CartesianPoint2d(),
492 h3.CartesianPoint2d(),
493 h4.CartesianPoint2d());
496 gfx::QuadF MathUtil::MapQuad3d(const gfx::Transform& transform,
497 const gfx::QuadF& q,
498 gfx::Point3F* p,
499 bool* clipped) {
500 if (transform.IsIdentityOrTranslation()) {
501 gfx::QuadF mapped_quad(q);
502 mapped_quad += gfx::Vector2dF(transform.matrix().getFloat(0, 3),
503 transform.matrix().getFloat(1, 3));
504 *clipped = false;
505 p[0] = gfx::Point3F(mapped_quad.p1().x(), mapped_quad.p1().y(), 0.0f);
506 p[1] = gfx::Point3F(mapped_quad.p2().x(), mapped_quad.p2().y(), 0.0f);
507 p[2] = gfx::Point3F(mapped_quad.p3().x(), mapped_quad.p3().y(), 0.0f);
508 p[3] = gfx::Point3F(mapped_quad.p4().x(), mapped_quad.p4().y(), 0.0f);
509 return mapped_quad;
512 HomogeneousCoordinate h1 =
513 MapHomogeneousPoint(transform, gfx::Point3F(q.p1()));
514 HomogeneousCoordinate h2 =
515 MapHomogeneousPoint(transform, gfx::Point3F(q.p2()));
516 HomogeneousCoordinate h3 =
517 MapHomogeneousPoint(transform, gfx::Point3F(q.p3()));
518 HomogeneousCoordinate h4 =
519 MapHomogeneousPoint(transform, gfx::Point3F(q.p4()));
521 *clipped = h1.ShouldBeClipped() || h2.ShouldBeClipped() ||
522 h3.ShouldBeClipped() || h4.ShouldBeClipped();
524 // Result will be invalid if clipped == true. But, compute it anyway just in
525 // case, to emulate existing behavior.
526 p[0] = h1.CartesianPoint3d();
527 p[1] = h2.CartesianPoint3d();
528 p[2] = h3.CartesianPoint3d();
529 p[3] = h4.CartesianPoint3d();
531 return gfx::QuadF(h1.CartesianPoint2d(),
532 h2.CartesianPoint2d(),
533 h3.CartesianPoint2d(),
534 h4.CartesianPoint2d());
537 gfx::PointF MathUtil::MapPoint(const gfx::Transform& transform,
538 const gfx::PointF& p,
539 bool* clipped) {
540 HomogeneousCoordinate h = MapHomogeneousPoint(transform, gfx::Point3F(p));
542 if (h.w() > 0) {
543 *clipped = false;
544 return h.CartesianPoint2d();
547 // The cartesian coordinates will be invalid after dividing by w.
548 *clipped = true;
550 // Avoid dividing by w if w == 0.
551 if (!h.w())
552 return gfx::PointF();
554 // This return value will be invalid because clipped == true, but (1) users of
555 // this code should be ignoring the return value when clipped == true anyway,
556 // and (2) this behavior is more consistent with existing behavior of WebKit
557 // transforms if the user really does not ignore the return value.
558 return h.CartesianPoint2d();
561 gfx::Point3F MathUtil::MapPoint(const gfx::Transform& transform,
562 const gfx::Point3F& p,
563 bool* clipped) {
564 HomogeneousCoordinate h = MapHomogeneousPoint(transform, p);
566 if (h.w() > 0) {
567 *clipped = false;
568 return h.CartesianPoint3d();
571 // The cartesian coordinates will be invalid after dividing by w.
572 *clipped = true;
574 // Avoid dividing by w if w == 0.
575 if (!h.w())
576 return gfx::Point3F();
578 // This return value will be invalid because clipped == true, but (1) users of
579 // this code should be ignoring the return value when clipped == true anyway,
580 // and (2) this behavior is more consistent with existing behavior of WebKit
581 // transforms if the user really does not ignore the return value.
582 return h.CartesianPoint3d();
585 gfx::QuadF MathUtil::ProjectQuad(const gfx::Transform& transform,
586 const gfx::QuadF& q,
587 bool* clipped) {
588 gfx::QuadF projected_quad;
589 bool clipped_point;
590 projected_quad.set_p1(ProjectPoint(transform, q.p1(), &clipped_point));
591 *clipped = clipped_point;
592 projected_quad.set_p2(ProjectPoint(transform, q.p2(), &clipped_point));
593 *clipped |= clipped_point;
594 projected_quad.set_p3(ProjectPoint(transform, q.p3(), &clipped_point));
595 *clipped |= clipped_point;
596 projected_quad.set_p4(ProjectPoint(transform, q.p4(), &clipped_point));
597 *clipped |= clipped_point;
599 return projected_quad;
602 gfx::PointF MathUtil::ProjectPoint(const gfx::Transform& transform,
603 const gfx::PointF& p,
604 bool* clipped) {
605 HomogeneousCoordinate h = ProjectHomogeneousPoint(transform, p, clipped);
606 // Avoid dividing by w if w == 0.
607 if (!h.w())
608 return gfx::PointF();
610 // This return value will be invalid if clipped == true, but (1) users of
611 // this code should be ignoring the return value when clipped == true anyway,
612 // and (2) this behavior is more consistent with existing behavior of WebKit
613 // transforms if the user really does not ignore the return value.
614 return h.CartesianPoint2d();
617 gfx::Point3F MathUtil::ProjectPoint3D(const gfx::Transform& transform,
618 const gfx::PointF& p,
619 bool* clipped) {
620 HomogeneousCoordinate h = ProjectHomogeneousPoint(transform, p, clipped);
621 if (!h.w())
622 return gfx::Point3F();
623 return h.CartesianPoint3d();
626 gfx::RectF MathUtil::ScaleRectProportional(const gfx::RectF& input_outer_rect,
627 const gfx::RectF& scale_outer_rect,
628 const gfx::RectF& scale_inner_rect) {
629 gfx::RectF output_inner_rect = input_outer_rect;
630 float scale_rect_to_input_scale_x =
631 scale_outer_rect.width() / input_outer_rect.width();
632 float scale_rect_to_input_scale_y =
633 scale_outer_rect.height() / input_outer_rect.height();
635 gfx::Vector2dF top_left_diff =
636 scale_inner_rect.origin() - scale_outer_rect.origin();
637 gfx::Vector2dF bottom_right_diff =
638 scale_inner_rect.bottom_right() - scale_outer_rect.bottom_right();
639 output_inner_rect.Inset(top_left_diff.x() / scale_rect_to_input_scale_x,
640 top_left_diff.y() / scale_rect_to_input_scale_y,
641 -bottom_right_diff.x() / scale_rect_to_input_scale_x,
642 -bottom_right_diff.y() / scale_rect_to_input_scale_y);
643 return output_inner_rect;
646 static inline bool NearlyZero(double value) {
647 return std::abs(value) < std::numeric_limits<double>::epsilon();
650 static inline float ScaleOnAxis(double a, double b, double c) {
651 if (NearlyZero(b) && NearlyZero(c))
652 return std::abs(a);
653 if (NearlyZero(a) && NearlyZero(c))
654 return std::abs(b);
655 if (NearlyZero(a) && NearlyZero(b))
656 return std::abs(c);
658 // Do the sqrt as a double to not lose precision.
659 return static_cast<float>(std::sqrt(a * a + b * b + c * c));
662 gfx::Vector2dF MathUtil::ComputeTransform2dScaleComponents(
663 const gfx::Transform& transform,
664 float fallback_value) {
665 if (transform.HasPerspective())
666 return gfx::Vector2dF(fallback_value, fallback_value);
667 float x_scale = ScaleOnAxis(transform.matrix().getDouble(0, 0),
668 transform.matrix().getDouble(1, 0),
669 transform.matrix().getDouble(2, 0));
670 float y_scale = ScaleOnAxis(transform.matrix().getDouble(0, 1),
671 transform.matrix().getDouble(1, 1),
672 transform.matrix().getDouble(2, 1));
673 return gfx::Vector2dF(x_scale, y_scale);
676 float MathUtil::SmallestAngleBetweenVectors(const gfx::Vector2dF& v1,
677 const gfx::Vector2dF& v2) {
678 double dot_product = gfx::DotProduct(v1, v2) / v1.Length() / v2.Length();
679 // Clamp to compensate for rounding errors.
680 dot_product = std::max(-1.0, std::min(1.0, dot_product));
681 return static_cast<float>(Rad2Deg(std::acos(dot_product)));
684 gfx::Vector2dF MathUtil::ProjectVector(const gfx::Vector2dF& source,
685 const gfx::Vector2dF& destination) {
686 float projected_length =
687 gfx::DotProduct(source, destination) / destination.LengthSquared();
688 return gfx::Vector2dF(projected_length * destination.x(),
689 projected_length * destination.y());
692 scoped_ptr<base::Value> MathUtil::AsValue(const gfx::Size& s) {
693 scoped_ptr<base::DictionaryValue> res(new base::DictionaryValue());
694 res->SetDouble("width", s.width());
695 res->SetDouble("height", s.height());
696 return res.Pass();
699 scoped_ptr<base::Value> MathUtil::AsValue(const gfx::Rect& r) {
700 scoped_ptr<base::ListValue> res(new base::ListValue());
701 res->AppendInteger(r.x());
702 res->AppendInteger(r.y());
703 res->AppendInteger(r.width());
704 res->AppendInteger(r.height());
705 return res.Pass();
708 bool MathUtil::FromValue(const base::Value* raw_value, gfx::Rect* out_rect) {
709 const base::ListValue* value = nullptr;
710 if (!raw_value->GetAsList(&value))
711 return false;
713 if (value->GetSize() != 4)
714 return false;
716 int x, y, w, h;
717 bool ok = true;
718 ok &= value->GetInteger(0, &x);
719 ok &= value->GetInteger(1, &y);
720 ok &= value->GetInteger(2, &w);
721 ok &= value->GetInteger(3, &h);
722 if (!ok)
723 return false;
725 *out_rect = gfx::Rect(x, y, w, h);
726 return true;
729 scoped_ptr<base::Value> MathUtil::AsValue(const gfx::PointF& pt) {
730 scoped_ptr<base::ListValue> res(new base::ListValue());
731 res->AppendDouble(pt.x());
732 res->AppendDouble(pt.y());
733 return res.Pass();
736 void MathUtil::AddToTracedValue(const gfx::Size& s,
737 base::debug::TracedValue* res) {
738 res->SetDouble("width", s.width());
739 res->SetDouble("height", s.height());
742 void MathUtil::AddToTracedValue(const gfx::SizeF& s,
743 base::debug::TracedValue* res) {
744 res->SetDouble("width", s.width());
745 res->SetDouble("height", s.height());
748 void MathUtil::AddToTracedValue(const gfx::Rect& r,
749 base::debug::TracedValue* res) {
750 res->AppendInteger(r.x());
751 res->AppendInteger(r.y());
752 res->AppendInteger(r.width());
753 res->AppendInteger(r.height());
756 void MathUtil::AddToTracedValue(const gfx::PointF& pt,
757 base::debug::TracedValue* res) {
758 res->AppendDouble(pt.x());
759 res->AppendDouble(pt.y());
762 void MathUtil::AddToTracedValue(const gfx::Point3F& pt,
763 base::debug::TracedValue* res) {
764 res->AppendDouble(pt.x());
765 res->AppendDouble(pt.y());
766 res->AppendDouble(pt.z());
769 void MathUtil::AddToTracedValue(const gfx::Vector2d& v,
770 base::debug::TracedValue* res) {
771 res->AppendInteger(v.x());
772 res->AppendInteger(v.y());
775 void MathUtil::AddToTracedValue(const gfx::Vector2dF& v,
776 base::debug::TracedValue* res) {
777 res->AppendDouble(v.x());
778 res->AppendDouble(v.y());
781 void MathUtil::AddToTracedValue(const gfx::ScrollOffset& v,
782 base::debug::TracedValue* res) {
783 res->AppendDouble(v.x());
784 res->AppendDouble(v.y());
787 void MathUtil::AddToTracedValue(const gfx::QuadF& q,
788 base::debug::TracedValue* res) {
789 res->AppendDouble(q.p1().x());
790 res->AppendDouble(q.p1().y());
791 res->AppendDouble(q.p2().x());
792 res->AppendDouble(q.p2().y());
793 res->AppendDouble(q.p3().x());
794 res->AppendDouble(q.p3().y());
795 res->AppendDouble(q.p4().x());
796 res->AppendDouble(q.p4().y());
799 void MathUtil::AddToTracedValue(const gfx::RectF& rect,
800 base::debug::TracedValue* res) {
801 res->AppendDouble(rect.x());
802 res->AppendDouble(rect.y());
803 res->AppendDouble(rect.width());
804 res->AppendDouble(rect.height());
807 void MathUtil::AddToTracedValue(const gfx::Transform& transform,
808 base::debug::TracedValue* res) {
809 const SkMatrix44& m = transform.matrix();
810 for (int row = 0; row < 4; ++row) {
811 for (int col = 0; col < 4; ++col)
812 res->AppendDouble(m.getDouble(row, col));
816 void MathUtil::AddToTracedValue(const gfx::BoxF& box,
817 base::debug::TracedValue* res) {
818 res->AppendInteger(box.x());
819 res->AppendInteger(box.y());
820 res->AppendInteger(box.z());
821 res->AppendInteger(box.width());
822 res->AppendInteger(box.height());
823 res->AppendInteger(box.depth());
826 double MathUtil::AsDoubleSafely(double value) {
827 return std::min(value, std::numeric_limits<double>::max());
830 float MathUtil::AsFloatSafely(float value) {
831 return std::min(value, std::numeric_limits<float>::max());
834 } // namespace cc