Extend the enterprise policy for SSL overrides to the "danger" command
[chromium-blink-merge.git] / third_party / qcms / src / transform_util.c
blob5eeafa22583ad3dea926b1c4cf26487410a2d3f3
1 // qcms
2 // Copyright (C) 2009 Mozilla Foundation
3 //
4 // Permission is hereby granted, free of charge, to any person obtaining
5 // a copy of this software and associated documentation files (the "Software"),
6 // to deal in the Software without restriction, including without limitation
7 // the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 // and/or sell copies of the Software, and to permit persons to whom the Software
9 // is furnished to do so, subject to the following conditions:
11 // The above copyright notice and this permission notice shall be included in
12 // all copies or substantial portions of the Software.
14 // THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
15 // EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO
16 // THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
17 // NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE
18 // LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION
19 // OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION
20 // WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
22 #define _ISOC99_SOURCE /* for INFINITY */
24 #include <math.h>
25 #include <assert.h>
26 #include <string.h> //memcpy
27 #include "qcmsint.h"
28 #include "transform_util.h"
29 #include "matrix.h"
31 #if !defined(INFINITY)
32 #define INFINITY HUGE_VAL
33 #endif
35 #define PARAMETRIC_CURVE_TYPE 0x70617261 //'para'
37 /* value must be a value between 0 and 1 */
38 //XXX: is the above a good restriction to have?
39 float lut_interp_linear(double value, uint16_t *table, size_t length)
41 int upper, lower;
42 value = value * (length - 1); // scale to length of the array
43 upper = ceil(value);
44 lower = floor(value);
45 //XXX: can we be more performant here?
46 value = table[upper]*(1. - (upper - value)) + table[lower]*(upper - value);
47 /* scale the value */
48 return value * (1./65535.);
51 /* same as above but takes and returns a uint16_t value representing a range from 0..1 */
52 uint16_t lut_interp_linear16(uint16_t input_value, uint16_t *table, size_t length)
54 /* Start scaling input_value to the length of the array: 65535*(length-1).
55 * We'll divide out the 65535 next */
56 uintptr_t value = (input_value * (length - 1));
57 uint32_t upper = (value + 65534) / 65535; /* equivalent to ceil(value/65535) */
58 uint32_t lower = value / 65535; /* equivalent to floor(value/65535) */
59 /* interp is the distance from upper to value scaled to 0..65535 */
60 uint32_t interp = value % 65535;
62 value = (table[upper]*(interp) + table[lower]*(65535 - interp))/65535; // 0..65535*65535
64 return value;
67 /* same as above but takes an input_value from 0..PRECACHE_OUTPUT_MAX
68 * and returns a uint8_t value representing a range from 0..1 */
69 static
70 uint8_t lut_interp_linear_precache_output(uint32_t input_value, uint16_t *table, size_t length)
72 /* Start scaling input_value to the length of the array: PRECACHE_OUTPUT_MAX*(length-1).
73 * We'll divide out the PRECACHE_OUTPUT_MAX next */
74 uintptr_t value = (input_value * (length - 1));
76 /* equivalent to ceil(value/PRECACHE_OUTPUT_MAX) */
77 uint32_t upper = (value + PRECACHE_OUTPUT_MAX-1) / PRECACHE_OUTPUT_MAX;
78 /* equivalent to floor(value/PRECACHE_OUTPUT_MAX) */
79 uint32_t lower = value / PRECACHE_OUTPUT_MAX;
80 /* interp is the distance from upper to value scaled to 0..PRECACHE_OUTPUT_MAX */
81 uint32_t interp = value % PRECACHE_OUTPUT_MAX;
83 /* the table values range from 0..65535 */
84 value = (table[upper]*(interp) + table[lower]*(PRECACHE_OUTPUT_MAX - interp)); // 0..(65535*PRECACHE_OUTPUT_MAX)
86 /* round and scale */
87 value += (PRECACHE_OUTPUT_MAX*65535/255)/2;
88 value /= (PRECACHE_OUTPUT_MAX*65535/255); // scale to 0..255
89 return value;
92 /* value must be a value between 0 and 1 */
93 //XXX: is the above a good restriction to have?
94 float lut_interp_linear_float(float value, float *table, size_t length)
96 int upper, lower;
97 value = value * (length - 1);
98 upper = ceil(value);
99 lower = floor(value);
100 //XXX: can we be more performant here?
101 value = table[upper]*(1. - (upper - value)) + table[lower]*(upper - value);
102 /* scale the value */
103 return value;
106 #if 0
107 /* if we use a different representation i.e. one that goes from 0 to 0x1000 we can be more efficient
108 * because we can avoid the divisions and use a shifting instead */
109 /* same as above but takes and returns a uint16_t value representing a range from 0..1 */
110 uint16_t lut_interp_linear16(uint16_t input_value, uint16_t *table, int length)
112 uint32_t value = (input_value * (length - 1));
113 uint32_t upper = (value + 4095) / 4096; /* equivalent to ceil(value/4096) */
114 uint32_t lower = value / 4096; /* equivalent to floor(value/4096) */
115 uint32_t interp = value % 4096;
117 value = (table[upper]*(interp) + table[lower]*(4096 - interp))/4096; // 0..4096*4096
119 return value;
121 #endif
123 void compute_curve_gamma_table_type1(float gamma_table[256], double gamma)
125 unsigned int i;
126 for (i = 0; i < 256; i++) {
127 gamma_table[i] = pow(i/255., gamma);
131 void compute_curve_gamma_table_type2(float gamma_table[256], uint16_t *table, int length)
133 unsigned int i;
134 for (i = 0; i < 256; i++) {
135 gamma_table[i] = lut_interp_linear(i/255., table, length);
139 void compute_curve_gamma_table_type_parametric(float gamma_table[256], float parameter[7], int count)
141 size_t X;
142 float interval;
143 float a, b, c, e, f;
144 float y = parameter[0];
145 if (count == 0) {
146 a = 1;
147 b = 0;
148 c = 0;
149 e = 0;
150 f = 0;
151 interval = -INFINITY;
152 } else if(count == 1) {
153 a = parameter[1];
154 b = parameter[2];
155 c = 0;
156 e = 0;
157 f = 0;
158 interval = -1 * parameter[2] / parameter[1];
159 } else if(count == 2) {
160 a = parameter[1];
161 b = parameter[2];
162 c = 0;
163 e = parameter[3];
164 f = parameter[3];
165 interval = -1 * parameter[2] / parameter[1];
166 } else if(count == 3) {
167 a = parameter[1];
168 b = parameter[2];
169 c = parameter[3];
170 e = -c;
171 f = 0;
172 interval = parameter[4];
173 } else if(count == 4) {
174 a = parameter[1];
175 b = parameter[2];
176 c = parameter[3];
177 e = parameter[5] - c;
178 f = parameter[6];
179 interval = parameter[4];
180 } else {
181 assert(0 && "invalid parametric function type.");
182 a = 1;
183 b = 0;
184 c = 0;
185 e = 0;
186 f = 0;
187 interval = -INFINITY;
189 for (X = 0; X < 256; X++) {
190 if (X >= interval) {
191 // XXX The equations are not exactly as definied in the spec but are
192 // algebraic equivilent.
193 // TODO Should division by 255 be for the whole expression.
194 gamma_table[X] = pow(a * X / 255. + b, y) + c + e;
195 } else {
196 gamma_table[X] = c * X / 255. + f;
201 void compute_curve_gamma_table_type0(float gamma_table[256])
203 unsigned int i;
204 for (i = 0; i < 256; i++) {
205 gamma_table[i] = i/255.;
210 float clamp_float(float a)
212 if (a > 1.)
213 return 1.;
214 else if (a < 0)
215 return 0;
216 else
217 return a;
220 unsigned char clamp_u8(float v)
222 if (v > 255.)
223 return 255;
224 else if (v < 0)
225 return 0;
226 else
227 return floor(v+.5);
230 float u8Fixed8Number_to_float(uint16_t x)
232 // 0x0000 = 0.
233 // 0x0100 = 1.
234 // 0xffff = 255 + 255/256
235 return x/256.;
238 /* The SSE2 code uses min & max which let NaNs pass through.
239 We want to try to prevent that here by ensuring that
240 gamma table is within expected values. */
241 void validate_gamma_table(float gamma_table[256])
243 int i;
244 for (i = 0; i < 256; i++) {
245 // Note: we check that the gamma is not in range
246 // instead of out of range so that we catch NaNs
247 if (!(gamma_table[i] >= 0.f && gamma_table[i] <= 1.f)) {
248 gamma_table[i] = 0.f;
253 float *build_input_gamma_table(struct curveType *TRC)
255 float *gamma_table;
257 if (!TRC) return NULL;
258 gamma_table = malloc(sizeof(float)*256);
259 if (gamma_table) {
260 if (TRC->type == PARAMETRIC_CURVE_TYPE) {
261 compute_curve_gamma_table_type_parametric(gamma_table, TRC->parameter, TRC->count);
262 } else {
263 if (TRC->count == 0) {
264 compute_curve_gamma_table_type0(gamma_table);
265 } else if (TRC->count == 1) {
266 compute_curve_gamma_table_type1(gamma_table, u8Fixed8Number_to_float(TRC->data[0]));
267 } else {
268 compute_curve_gamma_table_type2(gamma_table, TRC->data, TRC->count);
273 validate_gamma_table(gamma_table);
275 return gamma_table;
278 struct matrix build_colorant_matrix(qcms_profile *p)
280 struct matrix result;
281 result.m[0][0] = s15Fixed16Number_to_float(p->redColorant.X);
282 result.m[0][1] = s15Fixed16Number_to_float(p->greenColorant.X);
283 result.m[0][2] = s15Fixed16Number_to_float(p->blueColorant.X);
284 result.m[1][0] = s15Fixed16Number_to_float(p->redColorant.Y);
285 result.m[1][1] = s15Fixed16Number_to_float(p->greenColorant.Y);
286 result.m[1][2] = s15Fixed16Number_to_float(p->blueColorant.Y);
287 result.m[2][0] = s15Fixed16Number_to_float(p->redColorant.Z);
288 result.m[2][1] = s15Fixed16Number_to_float(p->greenColorant.Z);
289 result.m[2][2] = s15Fixed16Number_to_float(p->blueColorant.Z);
290 result.invalid = false;
291 return result;
294 /* The following code is copied nearly directly from lcms.
295 * I think it could be much better. For example, Argyll seems to have better code in
296 * icmTable_lookup_bwd and icmTable_setup_bwd. However, for now this is a quick way
297 * to a working solution and allows for easy comparing with lcms. */
298 uint16_fract_t lut_inverse_interp16(uint16_t Value, uint16_t LutTable[], int length)
300 int l = 1;
301 int r = 0x10000;
302 int x = 0, res; // 'int' Give spacing for negative values
303 int NumZeroes, NumPoles;
304 int cell0, cell1;
305 double val2;
306 double y0, y1, x0, x1;
307 double a, b, f;
309 // July/27 2001 - Expanded to handle degenerated curves with an arbitrary
310 // number of elements containing 0 at the begining of the table (Zeroes)
311 // and another arbitrary number of poles (FFFFh) at the end.
312 // First the zero and pole extents are computed, then value is compared.
314 NumZeroes = 0;
315 while (LutTable[NumZeroes] == 0 && NumZeroes < length-1)
316 NumZeroes++;
318 // There are no zeros at the beginning and we are trying to find a zero, so
319 // return anything. It seems zero would be the less destructive choice
320 /* I'm not sure that this makes sense, but oh well... */
321 if (NumZeroes == 0 && Value == 0)
322 return 0;
324 NumPoles = 0;
325 while (LutTable[length-1- NumPoles] == 0xFFFF && NumPoles < length-1)
326 NumPoles++;
328 // Does the curve belong to this case?
329 if (NumZeroes > 1 || NumPoles > 1)
331 int a, b, sample;
333 // Identify if value fall downto 0 or FFFF zone
334 if (Value == 0) return 0;
335 // if (Value == 0xFFFF) return 0xFFFF;
336 sample = (length-1) * ((double) Value * (1./65535.));
337 if (LutTable[sample] == 0)
338 return 0;
339 if (LutTable[sample] == 0xffff)
340 return 0xffff;
342 // else restrict to valid zone
344 a = ((NumZeroes-1) * 0xFFFF) / (length-1);
345 b = ((length-1 - NumPoles) * 0xFFFF) / (length-1);
347 l = a - 1;
348 r = b + 1;
350 // Ensure a valid binary search range
352 if (l < 1)
353 l = 1;
354 if (r > 0x10000)
355 r = 0x10000;
358 // Seems not a degenerated case... apply binary search
360 while (r > l) {
362 x = (l + r) / 2;
364 res = (int) lut_interp_linear16((uint16_fract_t) (x-1), LutTable, length);
366 if (res == Value) {
368 // Found exact match.
370 return (uint16_fract_t) (x - 1);
373 if (res > Value) r = x - 1;
374 else l = x + 1;
377 // Not found, should we interpolate?
380 // Get surrounding nodes
382 val2 = (length-1) * ((double) (x - 1) / 65535.0);
384 cell0 = (int) floor(val2);
385 cell1 = (int) ceil(val2);
387 if (cell0 == cell1) return (uint16_fract_t) x;
389 y0 = LutTable[cell0] ;
390 x0 = (65535.0 * cell0) / (length-1);
392 y1 = LutTable[cell1] ;
393 x1 = (65535.0 * cell1) / (length-1);
395 a = (y1 - y0) / (x1 - x0);
396 b = y0 - a * x0;
398 if (fabs(a) < 0.01) return (uint16_fract_t) x;
400 f = ((Value - b) / a);
402 if (f < 0.0) return (uint16_fract_t) 0;
403 if (f >= 65535.0) return (uint16_fract_t) 0xFFFF;
405 return (uint16_fract_t) floor(f + 0.5);
409 The number of entries needed to invert a lookup table should not
410 necessarily be the same as the original number of entries. This is
411 especially true of lookup tables that have a small number of entries.
413 For example:
414 Using a table like:
415 {0, 3104, 14263, 34802, 65535}
416 invert_lut will produce an inverse of:
417 {3, 34459, 47529, 56801, 65535}
418 which has an maximum error of about 9855 (pixel difference of ~38.346)
420 For now, we punt the decision of output size to the caller. */
421 static uint16_t *invert_lut(uint16_t *table, int length, size_t out_length)
423 int i;
424 /* for now we invert the lut by creating a lut of size out_length
425 * and attempting to lookup a value for each entry using lut_inverse_interp16 */
426 uint16_t *output = malloc(sizeof(uint16_t)*out_length);
427 if (!output)
428 return NULL;
430 for (i = 0; i < out_length; i++) {
431 double x = ((double) i * 65535.) / (double) (out_length - 1);
432 uint16_fract_t input = floor(x + .5);
433 output[i] = lut_inverse_interp16(input, table, length);
435 return output;
438 static void compute_precache_pow(uint8_t *output, float gamma)
440 uint32_t v = 0;
441 for (v = 0; v < PRECACHE_OUTPUT_SIZE; v++) {
442 //XXX: don't do integer/float conversion... and round?
443 output[v] = 255. * pow(v/(double)PRECACHE_OUTPUT_MAX, gamma);
447 void compute_precache_lut(uint8_t *output, uint16_t *table, int length)
449 uint32_t v = 0;
450 for (v = 0; v < PRECACHE_OUTPUT_SIZE; v++) {
451 output[v] = lut_interp_linear_precache_output(v, table, length);
455 void compute_precache_linear(uint8_t *output)
457 uint32_t v = 0;
458 for (v = 0; v < PRECACHE_OUTPUT_SIZE; v++) {
459 //XXX: round?
460 output[v] = v / (PRECACHE_OUTPUT_SIZE/256);
464 qcms_bool compute_precache(struct curveType *trc, uint8_t *output)
467 if (trc->type == PARAMETRIC_CURVE_TYPE) {
468 float gamma_table[256];
469 uint16_t gamma_table_uint[256];
470 uint16_t i;
471 uint16_t *inverted;
472 int inverted_size = 256;
474 compute_curve_gamma_table_type_parametric(gamma_table, trc->parameter, trc->count);
475 for(i = 0; i < 256; i++) {
476 gamma_table_uint[i] = (uint16_t)(gamma_table[i] * 65535);
479 //XXX: the choice of a minimum of 256 here is not backed by any theory,
480 // measurement or data, howeve r it is what lcms uses.
481 // the maximum number we would need is 65535 because that's the
482 // accuracy used for computing the pre cache table
483 if (inverted_size < 256)
484 inverted_size = 256;
486 inverted = invert_lut(gamma_table_uint, 256, inverted_size);
487 if (!inverted)
488 return false;
489 compute_precache_lut(output, inverted, inverted_size);
490 free(inverted);
491 } else {
492 if (trc->count == 0) {
493 compute_precache_linear(output);
494 } else if (trc->count == 1) {
495 compute_precache_pow(output, 1./u8Fixed8Number_to_float(trc->data[0]));
496 } else {
497 uint16_t *inverted;
498 int inverted_size = trc->count;
499 //XXX: the choice of a minimum of 256 here is not backed by any theory,
500 // measurement or data, howeve r it is what lcms uses.
501 // the maximum number we would need is 65535 because that's the
502 // accuracy used for computing the pre cache table
503 if (inverted_size < 256)
504 inverted_size = 256;
506 inverted = invert_lut(trc->data, trc->count, inverted_size);
507 if (!inverted)
508 return false;
509 compute_precache_lut(output, inverted, inverted_size);
510 free(inverted);
513 return true;
517 static uint16_t *build_linear_table(int length)
519 int i;
520 uint16_t *output = malloc(sizeof(uint16_t)*length);
521 if (!output)
522 return NULL;
524 for (i = 0; i < length; i++) {
525 double x = ((double) i * 65535.) / (double) (length - 1);
526 uint16_fract_t input = floor(x + .5);
527 output[i] = input;
529 return output;
532 static uint16_t *build_pow_table(float gamma, int length)
534 int i;
535 uint16_t *output = malloc(sizeof(uint16_t)*length);
536 if (!output)
537 return NULL;
539 for (i = 0; i < length; i++) {
540 uint16_fract_t result;
541 double x = ((double) i) / (double) (length - 1);
542 x = pow(x, gamma); //XXX turn this conversion into a function
543 result = floor(x*65535. + .5);
544 output[i] = result;
546 return output;
549 void build_output_lut(struct curveType *trc,
550 uint16_t **output_gamma_lut, size_t *output_gamma_lut_length)
552 if (trc->type == PARAMETRIC_CURVE_TYPE) {
553 float gamma_table[256];
554 uint16_t i;
555 uint16_t *output = malloc(sizeof(uint16_t)*256);
557 if (!output) {
558 *output_gamma_lut = NULL;
559 return;
562 compute_curve_gamma_table_type_parametric(gamma_table, trc->parameter, trc->count);
563 *output_gamma_lut_length = 256;
564 for(i = 0; i < 256; i++) {
565 output[i] = (uint16_t)(gamma_table[i] * 65535);
567 *output_gamma_lut = output;
568 } else {
569 if (trc->count == 0) {
570 *output_gamma_lut = build_linear_table(4096);
571 *output_gamma_lut_length = 4096;
572 } else if (trc->count == 1) {
573 float gamma = 1./u8Fixed8Number_to_float(trc->data[0]);
574 *output_gamma_lut = build_pow_table(gamma, 4096);
575 *output_gamma_lut_length = 4096;
576 } else {
577 //XXX: the choice of a minimum of 256 here is not backed by any theory,
578 // measurement or data, however it is what lcms uses.
579 *output_gamma_lut_length = trc->count;
580 if (*output_gamma_lut_length < 256)
581 *output_gamma_lut_length = 256;
583 *output_gamma_lut = invert_lut(trc->data, trc->count, *output_gamma_lut_length);