Add a Notification Settings Button to all web notifications behind the web platform...
[chromium-blink-merge.git] / courgette / encoded_program.cc
blob02538943c729b52210e2c43af1c491cd7a431560
1 // Copyright (c) 2011 The Chromium Authors. All rights reserved.
2 // Use of this source code is governed by a BSD-style license that can be
3 // found in the LICENSE file.
5 #include "courgette/encoded_program.h"
7 #include <algorithm>
8 #include <map>
9 #include <string>
10 #include <vector>
12 #include "base/environment.h"
13 #include "base/logging.h"
14 #include "base/memory/scoped_ptr.h"
15 #include "base/numerics/safe_conversions.h"
16 #include "base/numerics/safe_math.h"
17 #include "base/strings/string_number_conversions.h"
18 #include "base/strings/string_util.h"
19 #include "courgette/courgette.h"
20 #include "courgette/disassembler_elf_32_arm.h"
21 #include "courgette/streams.h"
22 #include "courgette/types_elf.h"
24 namespace courgette {
26 // Constructor is here rather than in the header. Although the constructor
27 // appears to do nothing it is fact quite large because of the implicit calls to
28 // field constructors. Ditto for the destructor.
29 EncodedProgram::EncodedProgram() : image_base_(0) {}
30 EncodedProgram::~EncodedProgram() {}
32 // Serializes a vector of integral values using Varint32 coding.
33 template<typename V>
34 CheckBool WriteVector(const V& items, SinkStream* buffer) {
35 size_t count = items.size();
36 bool ok = buffer->WriteSizeVarint32(count);
37 for (size_t i = 0; ok && i < count; ++i) {
38 ok = buffer->WriteSizeVarint32(items[i]);
40 return ok;
43 template<typename V>
44 bool ReadVector(V* items, SourceStream* buffer) {
45 uint32 count;
46 if (!buffer->ReadVarint32(&count))
47 return false;
49 items->clear();
51 bool ok = items->reserve(count);
52 for (size_t i = 0; ok && i < count; ++i) {
53 uint32 item;
54 ok = buffer->ReadVarint32(&item);
55 if (ok)
56 ok = items->push_back(static_cast<typename V::value_type>(item));
59 return ok;
62 // Serializes a vector, using delta coding followed by Varint32Signed coding.
63 template<typename V>
64 CheckBool WriteSigned32Delta(const V& set, SinkStream* buffer) {
65 size_t count = set.size();
66 bool ok = buffer->WriteSizeVarint32(count);
67 uint32 prev = 0;
68 for (size_t i = 0; ok && i < count; ++i) {
69 uint32 current = set[i];
70 int32 delta = current - prev;
71 ok = buffer->WriteVarint32Signed(delta);
72 prev = current;
74 return ok;
77 template <typename V>
78 static CheckBool ReadSigned32Delta(V* set, SourceStream* buffer) {
79 uint32 count;
81 if (!buffer->ReadVarint32(&count))
82 return false;
84 set->clear();
85 bool ok = set->reserve(count);
86 uint32 prev = 0;
87 for (size_t i = 0; ok && i < count; ++i) {
88 int32 delta;
89 ok = buffer->ReadVarint32Signed(&delta);
90 if (ok) {
91 uint32 current = static_cast<uint32>(prev + delta);
92 ok = set->push_back(current);
93 prev = current;
96 return ok;
99 // Write a vector as the byte representation of the contents.
101 // (This only really makes sense for a type T that has sizeof(T)==1, otherwise
102 // serialized representation is not endian-agnostic. But it is useful to keep
103 // the possibility of a greater size for experiments comparing Varint32 encoding
104 // of a vector of larger integrals vs a plain form.)
106 template<typename V>
107 CheckBool WriteVectorU8(const V& items, SinkStream* buffer) {
108 size_t count = items.size();
109 bool ok = buffer->WriteSizeVarint32(count);
110 if (count != 0 && ok) {
111 size_t byte_count = count * sizeof(typename V::value_type);
112 ok = buffer->Write(static_cast<const void*>(&items[0]), byte_count);
114 return ok;
117 template<typename V>
118 bool ReadVectorU8(V* items, SourceStream* buffer) {
119 uint32 count;
120 if (!buffer->ReadVarint32(&count))
121 return false;
123 items->clear();
124 bool ok = items->resize(count, 0);
125 if (ok && count != 0) {
126 size_t byte_count = count * sizeof(typename V::value_type);
127 return buffer->Read(static_cast<void*>(&((*items)[0])), byte_count);
129 return ok;
132 ////////////////////////////////////////////////////////////////////////////////
134 CheckBool EncodedProgram::DefineRel32Label(int index, RVA value) {
135 return DefineLabelCommon(&rel32_rva_, index, value);
138 CheckBool EncodedProgram::DefineAbs32Label(int index, RVA value) {
139 return DefineLabelCommon(&abs32_rva_, index, value);
142 static const RVA kUnassignedRVA = static_cast<RVA>(-1);
144 CheckBool EncodedProgram::DefineLabelCommon(RvaVector* rvas,
145 int index,
146 RVA rva) {
147 bool ok = true;
148 if (static_cast<int>(rvas->size()) <= index)
149 ok = rvas->resize(index + 1, kUnassignedRVA);
151 if (ok) {
152 DCHECK_EQ((*rvas)[index], kUnassignedRVA)
153 << "DefineLabel double assigned " << index;
154 (*rvas)[index] = rva;
157 return ok;
160 void EncodedProgram::EndLabels() {
161 FinishLabelsCommon(&abs32_rva_);
162 FinishLabelsCommon(&rel32_rva_);
165 void EncodedProgram::FinishLabelsCommon(RvaVector* rvas) {
166 // Replace all unassigned slots with the value at the previous index so they
167 // delta-encode to zero. (There might be better values than zero. The way to
168 // get that is have the higher level assembly program assign the unassigned
169 // slots.)
170 RVA previous = 0;
171 size_t size = rvas->size();
172 for (size_t i = 0; i < size; ++i) {
173 if ((*rvas)[i] == kUnassignedRVA)
174 (*rvas)[i] = previous;
175 else
176 previous = (*rvas)[i];
180 CheckBool EncodedProgram::AddOrigin(RVA origin) {
181 return ops_.push_back(ORIGIN) && origins_.push_back(origin);
184 CheckBool EncodedProgram::AddCopy(size_t count, const void* bytes) {
185 const uint8* source = static_cast<const uint8*>(bytes);
187 bool ok = true;
189 // Fold adjacent COPY instructions into one. This nearly halves the size of
190 // an EncodedProgram with only COPY1 instructions since there are approx plain
191 // 16 bytes per reloc. This has a working-set benefit during decompression.
192 // For compression of files with large differences this makes a small (4%)
193 // improvement in size. For files with small differences this degrades the
194 // compressed size by 1.3%
195 if (!ops_.empty()) {
196 if (ops_.back() == COPY1) {
197 ops_.back() = COPY;
198 ok = copy_counts_.push_back(1);
200 if (ok && ops_.back() == COPY) {
201 copy_counts_.back() += count;
202 for (size_t i = 0; ok && i < count; ++i) {
203 ok = copy_bytes_.push_back(source[i]);
205 return ok;
209 if (ok) {
210 if (count == 1) {
211 ok = ops_.push_back(COPY1) && copy_bytes_.push_back(source[0]);
212 } else {
213 ok = ops_.push_back(COPY) && copy_counts_.push_back(count);
214 for (size_t i = 0; ok && i < count; ++i) {
215 ok = copy_bytes_.push_back(source[i]);
220 return ok;
223 CheckBool EncodedProgram::AddAbs32(int label_index) {
224 return ops_.push_back(ABS32) && abs32_ix_.push_back(label_index);
227 CheckBool EncodedProgram::AddAbs64(int label_index) {
228 return ops_.push_back(ABS64) && abs32_ix_.push_back(label_index);
231 CheckBool EncodedProgram::AddRel32(int label_index) {
232 return ops_.push_back(REL32) && rel32_ix_.push_back(label_index);
235 CheckBool EncodedProgram::AddRel32ARM(uint16 op, int label_index) {
236 return ops_.push_back(static_cast<OP>(op)) &&
237 rel32_ix_.push_back(label_index);
240 CheckBool EncodedProgram::AddPeMakeRelocs(ExecutableType kind) {
241 if (kind == EXE_WIN_32_X86)
242 return ops_.push_back(MAKE_PE_RELOCATION_TABLE);
243 return ops_.push_back(MAKE_PE64_RELOCATION_TABLE);
246 CheckBool EncodedProgram::AddElfMakeRelocs() {
247 return ops_.push_back(MAKE_ELF_RELOCATION_TABLE);
250 CheckBool EncodedProgram::AddElfARMMakeRelocs() {
251 return ops_.push_back(MAKE_ELF_ARM_RELOCATION_TABLE);
254 void EncodedProgram::DebuggingSummary() {
255 VLOG(1) << "EncodedProgram Summary"
256 << "\n image base " << image_base_
257 << "\n abs32 rvas " << abs32_rva_.size()
258 << "\n rel32 rvas " << rel32_rva_.size()
259 << "\n ops " << ops_.size()
260 << "\n origins " << origins_.size()
261 << "\n copy_counts " << copy_counts_.size()
262 << "\n copy_bytes " << copy_bytes_.size()
263 << "\n abs32_ix " << abs32_ix_.size()
264 << "\n rel32_ix " << rel32_ix_.size();
267 ////////////////////////////////////////////////////////////////////////////////
269 // For algorithm refinement purposes it is useful to write subsets of the file
270 // format. This gives us the ability to estimate the entropy of the
271 // differential compression of the individual streams, which can provide
272 // invaluable insights. The default, of course, is to include all the streams.
274 enum FieldSelect {
275 INCLUDE_ABS32_ADDRESSES = 0x0001,
276 INCLUDE_REL32_ADDRESSES = 0x0002,
277 INCLUDE_ABS32_INDEXES = 0x0010,
278 INCLUDE_REL32_INDEXES = 0x0020,
279 INCLUDE_OPS = 0x0100,
280 INCLUDE_BYTES = 0x0200,
281 INCLUDE_COPY_COUNTS = 0x0400,
282 INCLUDE_MISC = 0x1000
285 static FieldSelect GetFieldSelect() {
286 // TODO(sra): Use better configuration.
287 scoped_ptr<base::Environment> env(base::Environment::Create());
288 std::string s;
289 env->GetVar("A_FIELDS", &s);
290 uint64 fields;
291 if (!base::StringToUint64(s, &fields))
292 return static_cast<FieldSelect>(~0);
293 return static_cast<FieldSelect>(fields);
296 CheckBool EncodedProgram::WriteTo(SinkStreamSet* streams) {
297 FieldSelect select = GetFieldSelect();
299 // The order of fields must be consistent in WriteTo and ReadFrom, regardless
300 // of the streams used. The code can be configured with all kStreamXXX
301 // constants the same.
303 // If we change the code to pipeline reading with assembly (to avoid temporary
304 // storage vectors by consuming operands directly from the stream) then we
305 // need to read the base address and the random access address tables first,
306 // the rest can be interleaved.
308 if (select & INCLUDE_MISC) {
309 uint32 high = static_cast<uint32>(image_base_ >> 32);
310 uint32 low = static_cast<uint32>(image_base_ & 0xffffffffU);
312 if (!streams->stream(kStreamMisc)->WriteVarint32(high) ||
313 !streams->stream(kStreamMisc)->WriteVarint32(low)) {
314 return false;
318 bool success = true;
320 if (select & INCLUDE_ABS32_ADDRESSES) {
321 success &= WriteSigned32Delta(abs32_rva_,
322 streams->stream(kStreamAbs32Addresses));
325 if (select & INCLUDE_REL32_ADDRESSES) {
326 success &= WriteSigned32Delta(rel32_rva_,
327 streams->stream(kStreamRel32Addresses));
330 if (select & INCLUDE_MISC)
331 success &= WriteVector(origins_, streams->stream(kStreamOriginAddresses));
333 if (select & INCLUDE_OPS) {
334 // 5 for length.
335 success &= streams->stream(kStreamOps)->Reserve(ops_.size() + 5);
336 success &= WriteVector(ops_, streams->stream(kStreamOps));
339 if (select & INCLUDE_COPY_COUNTS)
340 success &= WriteVector(copy_counts_, streams->stream(kStreamCopyCounts));
342 if (select & INCLUDE_BYTES)
343 success &= WriteVectorU8(copy_bytes_, streams->stream(kStreamBytes));
345 if (select & INCLUDE_ABS32_INDEXES)
346 success &= WriteVector(abs32_ix_, streams->stream(kStreamAbs32Indexes));
348 if (select & INCLUDE_REL32_INDEXES)
349 success &= WriteVector(rel32_ix_, streams->stream(kStreamRel32Indexes));
351 return success;
354 bool EncodedProgram::ReadFrom(SourceStreamSet* streams) {
355 uint32 high;
356 uint32 low;
358 if (!streams->stream(kStreamMisc)->ReadVarint32(&high) ||
359 !streams->stream(kStreamMisc)->ReadVarint32(&low)) {
360 return false;
362 image_base_ = (static_cast<uint64>(high) << 32) | low;
364 if (!ReadSigned32Delta(&abs32_rva_, streams->stream(kStreamAbs32Addresses)))
365 return false;
366 if (!ReadSigned32Delta(&rel32_rva_, streams->stream(kStreamRel32Addresses)))
367 return false;
368 if (!ReadVector(&origins_, streams->stream(kStreamOriginAddresses)))
369 return false;
370 if (!ReadVector(&ops_, streams->stream(kStreamOps)))
371 return false;
372 if (!ReadVector(&copy_counts_, streams->stream(kStreamCopyCounts)))
373 return false;
374 if (!ReadVectorU8(&copy_bytes_, streams->stream(kStreamBytes)))
375 return false;
376 if (!ReadVector(&abs32_ix_, streams->stream(kStreamAbs32Indexes)))
377 return false;
378 if (!ReadVector(&rel32_ix_, streams->stream(kStreamRel32Indexes)))
379 return false;
381 // Check that streams have been completely consumed.
382 for (int i = 0; i < kStreamLimit; ++i) {
383 if (streams->stream(i)->Remaining() > 0)
384 return false;
387 return true;
390 // Safe, non-throwing version of std::vector::at(). Returns 'true' for success,
391 // 'false' for out-of-bounds index error.
392 template<typename V, typename T>
393 bool VectorAt(const V& v, size_t index, T* output) {
394 if (index >= v.size())
395 return false;
396 *output = v[index];
397 return true;
400 CheckBool EncodedProgram::EvaluateRel32ARM(OP op,
401 size_t& ix_rel32_ix,
402 RVA& current_rva,
403 SinkStream* output) {
404 switch (op & 0x0000F000) {
405 case REL32ARM8: {
406 uint32 index;
407 if (!VectorAt(rel32_ix_, ix_rel32_ix, &index))
408 return false;
409 ++ix_rel32_ix;
410 RVA rva;
411 if (!VectorAt(rel32_rva_, index, &rva))
412 return false;
413 uint32 decompressed_op;
414 if (!DisassemblerElf32ARM::Decompress(ARM_OFF8,
415 static_cast<uint16>(op),
416 static_cast<uint32>(rva -
417 current_rva),
418 &decompressed_op)) {
419 return false;
421 uint16 op16 = static_cast<uint16>(decompressed_op);
422 if (!output->Write(&op16, 2))
423 return false;
424 current_rva += 2;
425 break;
427 case REL32ARM11: {
428 uint32 index;
429 if (!VectorAt(rel32_ix_, ix_rel32_ix, &index))
430 return false;
431 ++ix_rel32_ix;
432 RVA rva;
433 if (!VectorAt(rel32_rva_, index, &rva))
434 return false;
435 uint32 decompressed_op;
436 if (!DisassemblerElf32ARM::Decompress(ARM_OFF11, (uint16) op,
437 (uint32) (rva - current_rva),
438 &decompressed_op)) {
439 return false;
441 uint16 op16 = static_cast<uint16>(decompressed_op);
442 if (!output->Write(&op16, 2))
443 return false;
444 current_rva += 2;
445 break;
447 case REL32ARM24: {
448 uint32 index;
449 if (!VectorAt(rel32_ix_, ix_rel32_ix, &index))
450 return false;
451 ++ix_rel32_ix;
452 RVA rva;
453 if (!VectorAt(rel32_rva_, index, &rva))
454 return false;
455 uint32 decompressed_op;
456 if (!DisassemblerElf32ARM::Decompress(ARM_OFF24, (uint16) op,
457 (uint32) (rva - current_rva),
458 &decompressed_op)) {
459 return false;
461 if (!output->Write(&decompressed_op, 4))
462 return false;
463 current_rva += 4;
464 break;
466 case REL32ARM25: {
467 uint32 index;
468 if (!VectorAt(rel32_ix_, ix_rel32_ix, &index))
469 return false;
470 ++ix_rel32_ix;
471 RVA rva;
472 if (!VectorAt(rel32_rva_, index, &rva))
473 return false;
474 uint32 decompressed_op;
475 if (!DisassemblerElf32ARM::Decompress(ARM_OFF25, (uint16) op,
476 (uint32) (rva - current_rva),
477 &decompressed_op)) {
478 return false;
480 uint32 words = (decompressed_op << 16) | (decompressed_op >> 16);
481 if (!output->Write(&words, 4))
482 return false;
483 current_rva += 4;
484 break;
486 case REL32ARM21: {
487 uint32 index;
488 if (!VectorAt(rel32_ix_, ix_rel32_ix, &index))
489 return false;
490 ++ix_rel32_ix;
491 RVA rva;
492 if (!VectorAt(rel32_rva_, index, &rva))
493 return false;
494 uint32 decompressed_op;
495 if (!DisassemblerElf32ARM::Decompress(ARM_OFF21, (uint16) op,
496 (uint32) (rva - current_rva),
497 &decompressed_op)) {
498 return false;
500 uint32 words = (decompressed_op << 16) | (decompressed_op >> 16);
501 if (!output->Write(&words, 4))
502 return false;
503 current_rva += 4;
504 break;
506 default:
507 return false;
510 return true;
513 CheckBool EncodedProgram::AssembleTo(SinkStream* final_buffer) {
514 // For the most part, the assembly process walks the various tables.
515 // ix_mumble is the index into the mumble table.
516 size_t ix_origins = 0;
517 size_t ix_copy_counts = 0;
518 size_t ix_copy_bytes = 0;
519 size_t ix_abs32_ix = 0;
520 size_t ix_rel32_ix = 0;
522 RVA current_rva = 0;
524 bool pending_pe_relocation_table = false;
525 uint8 pending_pe_relocation_table_type = 0x03; // IMAGE_REL_BASED_HIGHLOW
526 Elf32_Word pending_elf_relocation_table_type = 0;
527 SinkStream bytes_following_relocation_table;
529 SinkStream* output = final_buffer;
531 for (size_t ix_ops = 0; ix_ops < ops_.size(); ++ix_ops) {
532 OP op = ops_[ix_ops];
534 switch (op) {
535 default:
536 if (!EvaluateRel32ARM(op, ix_rel32_ix, current_rva, output))
537 return false;
538 break;
540 case ORIGIN: {
541 RVA section_rva;
542 if (!VectorAt(origins_, ix_origins, &section_rva))
543 return false;
544 ++ix_origins;
545 current_rva = section_rva;
546 break;
549 case COPY: {
550 size_t count;
551 if (!VectorAt(copy_counts_, ix_copy_counts, &count))
552 return false;
553 ++ix_copy_counts;
554 for (size_t i = 0; i < count; ++i) {
555 uint8 b;
556 if (!VectorAt(copy_bytes_, ix_copy_bytes, &b))
557 return false;
558 ++ix_copy_bytes;
559 if (!output->Write(&b, 1))
560 return false;
562 current_rva += static_cast<RVA>(count);
563 break;
566 case COPY1: {
567 uint8 b;
568 if (!VectorAt(copy_bytes_, ix_copy_bytes, &b))
569 return false;
570 ++ix_copy_bytes;
571 if (!output->Write(&b, 1))
572 return false;
573 current_rva += 1;
574 break;
577 case REL32: {
578 uint32 index;
579 if (!VectorAt(rel32_ix_, ix_rel32_ix, &index))
580 return false;
581 ++ix_rel32_ix;
582 RVA rva;
583 if (!VectorAt(rel32_rva_, index, &rva))
584 return false;
585 uint32 offset = (rva - (current_rva + 4));
586 if (!output->Write(&offset, 4))
587 return false;
588 current_rva += 4;
589 break;
592 case ABS32:
593 case ABS64: {
594 uint32 index;
595 if (!VectorAt(abs32_ix_, ix_abs32_ix, &index))
596 return false;
597 ++ix_abs32_ix;
598 RVA rva;
599 if (!VectorAt(abs32_rva_, index, &rva))
600 return false;
601 if (op == ABS32) {
602 base::CheckedNumeric<uint32> abs32 = image_base_;
603 abs32 += rva;
604 uint32 safe_abs32 = abs32.ValueOrDie();
605 if (!abs32_relocs_.push_back(current_rva) ||
606 !output->Write(&safe_abs32, 4)) {
607 return false;
609 current_rva += 4;
610 } else {
611 base::CheckedNumeric<uint64> abs64 = image_base_;
612 abs64 += rva;
613 uint64 safe_abs64 = abs64.ValueOrDie();
614 if (!abs32_relocs_.push_back(current_rva) ||
615 !output->Write(&safe_abs64, 8)) {
616 return false;
618 current_rva += 8;
620 break;
623 case MAKE_PE_RELOCATION_TABLE: {
624 // We can see the base relocation anywhere, but we only have the
625 // information to generate it at the very end. So we divert the bytes
626 // we are generating to a temporary stream.
627 if (pending_pe_relocation_table)
628 return false; // Can't have two base relocation tables.
630 pending_pe_relocation_table = true;
631 output = &bytes_following_relocation_table;
632 break;
633 // There is a potential problem *if* the instruction stream contains
634 // some REL32 relocations following the base relocation and in the same
635 // section. We don't know the size of the table, so 'current_rva' will
636 // be wrong, causing REL32 offsets to be miscalculated. This never
637 // happens; the base relocation table is usually in a section of its
638 // own, a data-only section, and following everything else in the
639 // executable except some padding zero bytes. We could fix this by
640 // emitting an ORIGIN after the MAKE_BASE_RELOCATION_TABLE.
643 case MAKE_PE64_RELOCATION_TABLE: {
644 if (pending_pe_relocation_table)
645 return false; // Can't have two base relocation tables.
647 pending_pe_relocation_table = true;
648 pending_pe_relocation_table_type = 0x0A; // IMAGE_REL_BASED_DIR64
649 output = &bytes_following_relocation_table;
650 break;
653 case MAKE_ELF_ARM_RELOCATION_TABLE: {
654 // We can see the base relocation anywhere, but we only have the
655 // information to generate it at the very end. So we divert the bytes
656 // we are generating to a temporary stream.
657 if (pending_elf_relocation_table_type)
658 return false; // Can't have two base relocation tables.
660 pending_elf_relocation_table_type = R_ARM_RELATIVE;
661 output = &bytes_following_relocation_table;
662 break;
665 case MAKE_ELF_RELOCATION_TABLE: {
666 // We can see the base relocation anywhere, but we only have the
667 // information to generate it at the very end. So we divert the bytes
668 // we are generating to a temporary stream.
669 if (pending_elf_relocation_table_type)
670 return false; // Can't have two base relocation tables.
672 pending_elf_relocation_table_type = R_386_RELATIVE;
673 output = &bytes_following_relocation_table;
674 break;
679 if (pending_pe_relocation_table) {
680 if (!GeneratePeRelocations(final_buffer,
681 pending_pe_relocation_table_type) ||
682 !final_buffer->Append(&bytes_following_relocation_table))
683 return false;
686 if (pending_elf_relocation_table_type) {
687 if (!GenerateElfRelocations(pending_elf_relocation_table_type,
688 final_buffer) ||
689 !final_buffer->Append(&bytes_following_relocation_table))
690 return false;
693 // Final verification check: did we consume all lists?
694 if (ix_copy_counts != copy_counts_.size())
695 return false;
696 if (ix_copy_bytes != copy_bytes_.size())
697 return false;
698 if (ix_abs32_ix != abs32_ix_.size())
699 return false;
700 if (ix_rel32_ix != rel32_ix_.size())
701 return false;
703 return true;
706 // RelocBlock has the layout of a block of relocations in the base relocation
707 // table file format.
709 struct RelocBlockPOD {
710 uint32 page_rva;
711 uint32 block_size;
712 uint16 relocs[4096]; // Allow up to one relocation per byte of a 4k page.
715 static_assert(offsetof(RelocBlockPOD, relocs) == 8, "reloc block header size");
717 class RelocBlock {
718 public:
719 RelocBlock() {
720 pod.page_rva = 0xFFFFFFFF;
721 pod.block_size = 8;
724 void Add(uint16 item) {
725 pod.relocs[(pod.block_size-8)/2] = item;
726 pod.block_size += 2;
729 CheckBool Flush(SinkStream* buffer) WARN_UNUSED_RESULT {
730 bool ok = true;
731 if (pod.block_size != 8) {
732 if (pod.block_size % 4 != 0) { // Pad to make size multiple of 4 bytes.
733 Add(0);
735 ok = buffer->Write(&pod, pod.block_size);
736 pod.block_size = 8;
738 return ok;
740 RelocBlockPOD pod;
743 CheckBool EncodedProgram::GeneratePeRelocations(SinkStream* buffer,
744 uint8 type) {
745 std::sort(abs32_relocs_.begin(), abs32_relocs_.end());
747 RelocBlock block;
749 bool ok = true;
750 for (size_t i = 0; ok && i < abs32_relocs_.size(); ++i) {
751 uint32 rva = abs32_relocs_[i];
752 uint32 page_rva = rva & ~0xFFF;
753 if (page_rva != block.pod.page_rva) {
754 ok &= block.Flush(buffer);
755 block.pod.page_rva = page_rva;
757 if (ok)
758 block.Add(((static_cast<uint16>(type)) << 12) | (rva & 0xFFF));
760 ok &= block.Flush(buffer);
761 return ok;
764 CheckBool EncodedProgram::GenerateElfRelocations(Elf32_Word r_info,
765 SinkStream* buffer) {
766 std::sort(abs32_relocs_.begin(), abs32_relocs_.end());
768 Elf32_Rel relocation_block;
770 relocation_block.r_info = r_info;
772 bool ok = true;
773 for (size_t i = 0; ok && i < abs32_relocs_.size(); ++i) {
774 relocation_block.r_offset = abs32_relocs_[i];
775 ok = buffer->Write(&relocation_block, sizeof(Elf32_Rel));
778 return ok;
780 ////////////////////////////////////////////////////////////////////////////////
782 Status WriteEncodedProgram(EncodedProgram* encoded, SinkStreamSet* sink) {
783 if (!encoded->WriteTo(sink))
784 return C_STREAM_ERROR;
785 return C_OK;
788 Status ReadEncodedProgram(SourceStreamSet* streams, EncodedProgram** output) {
789 EncodedProgram* encoded = new EncodedProgram();
790 if (encoded->ReadFrom(streams)) {
791 *output = encoded;
792 return C_OK;
794 delete encoded;
795 return C_DESERIALIZATION_FAILED;
798 Status Assemble(EncodedProgram* encoded, SinkStream* buffer) {
799 bool assembled = encoded->AssembleTo(buffer);
800 if (assembled)
801 return C_OK;
802 return C_ASSEMBLY_FAILED;
805 void DeleteEncodedProgram(EncodedProgram* encoded) {
806 delete encoded;
809 } // namespace courgette