Reland "Non-SFI mode: Switch to newlib. (patchset #4 id:60001 of https://codereview...
[chromium-blink-merge.git] / gpu / command_buffer / client / fenced_allocator_test.cc
blob6b9f00f41a3e769ad72c59b3033d5eb188ae0891
1 // Copyright (c) 2012 The Chromium Authors. All rights reserved.
2 // Use of this source code is governed by a BSD-style license that can be
3 // found in the LICENSE file.
5 // This file contains the tests for the FencedAllocator class.
7 #include "base/bind.h"
8 #include "base/bind_helpers.h"
9 #include "base/memory/aligned_memory.h"
10 #include "gpu/command_buffer/client/cmd_buffer_helper.h"
11 #include "gpu/command_buffer/client/fenced_allocator.h"
12 #include "gpu/command_buffer/service/cmd_buffer_engine.h"
13 #include "gpu/command_buffer/service/command_buffer_service.h"
14 #include "gpu/command_buffer/service/gpu_scheduler.h"
15 #include "gpu/command_buffer/service/mocks.h"
16 #include "gpu/command_buffer/service/transfer_buffer_manager.h"
17 #include "testing/gtest/include/gtest/gtest.h"
19 namespace gpu {
21 using testing::Return;
22 using testing::Mock;
23 using testing::Truly;
24 using testing::Sequence;
25 using testing::DoAll;
26 using testing::Invoke;
27 using testing::InvokeWithoutArgs;
28 using testing::_;
30 class BaseFencedAllocatorTest : public testing::Test {
31 protected:
32 static const unsigned int kBufferSize = 1024;
33 static const int kAllocAlignment = 16;
35 void SetUp() override {
36 api_mock_.reset(new AsyncAPIMock(true));
37 // ignore noops in the mock - we don't want to inspect the internals of the
38 // helper.
39 EXPECT_CALL(*api_mock_, DoCommand(cmd::kNoop, 0, _))
40 .WillRepeatedly(Return(error::kNoError));
41 // Forward the SetToken calls to the engine
42 EXPECT_CALL(*api_mock_.get(), DoCommand(cmd::kSetToken, 1, _))
43 .WillRepeatedly(DoAll(Invoke(api_mock_.get(), &AsyncAPIMock::SetToken),
44 Return(error::kNoError)));
47 TransferBufferManager* manager = new TransferBufferManager();
48 transfer_buffer_manager_.reset(manager);
49 EXPECT_TRUE(manager->Initialize());
51 command_buffer_.reset(
52 new CommandBufferService(transfer_buffer_manager_.get()));
53 EXPECT_TRUE(command_buffer_->Initialize());
55 gpu_scheduler_.reset(new GpuScheduler(
56 command_buffer_.get(), api_mock_.get(), NULL));
57 command_buffer_->SetPutOffsetChangeCallback(base::Bind(
58 &GpuScheduler::PutChanged, base::Unretained(gpu_scheduler_.get())));
59 command_buffer_->SetGetBufferChangeCallback(base::Bind(
60 &GpuScheduler::SetGetBuffer, base::Unretained(gpu_scheduler_.get())));
62 api_mock_->set_engine(gpu_scheduler_.get());
64 helper_.reset(new CommandBufferHelper(command_buffer_.get()));
65 helper_->Initialize(kBufferSize);
68 int32 GetToken() {
69 return command_buffer_->GetLastState().token;
72 scoped_ptr<AsyncAPIMock> api_mock_;
73 scoped_ptr<TransferBufferManagerInterface> transfer_buffer_manager_;
74 scoped_ptr<CommandBufferService> command_buffer_;
75 scoped_ptr<GpuScheduler> gpu_scheduler_;
76 scoped_ptr<CommandBufferHelper> helper_;
79 #ifndef _MSC_VER
80 const unsigned int BaseFencedAllocatorTest::kBufferSize;
81 #endif
83 namespace {
84 void EmptyPoll() {
88 // Test fixture for FencedAllocator test - Creates a FencedAllocator, using a
89 // CommandBufferHelper with a mock AsyncAPIInterface for its interface (calling
90 // it directly, not through the RPC mechanism), making sure Noops are ignored
91 // and SetToken are properly forwarded to the engine.
92 class FencedAllocatorTest : public BaseFencedAllocatorTest {
93 protected:
94 void SetUp() override {
95 BaseFencedAllocatorTest::SetUp();
96 allocator_.reset(new FencedAllocator(kBufferSize,
97 helper_.get(),
98 base::Bind(&EmptyPoll)));
101 void TearDown() override {
102 // If the GpuScheduler posts any tasks, this forces them to run.
103 base::MessageLoop::current()->RunUntilIdle();
105 EXPECT_TRUE(allocator_->CheckConsistency());
107 BaseFencedAllocatorTest::TearDown();
110 scoped_ptr<FencedAllocator> allocator_;
113 // Checks basic alloc and free.
114 TEST_F(FencedAllocatorTest, TestBasic) {
115 allocator_->CheckConsistency();
116 EXPECT_FALSE(allocator_->InUse());
118 const unsigned int kSize = 16;
119 FencedAllocator::Offset offset = allocator_->Alloc(kSize);
120 EXPECT_TRUE(allocator_->InUse());
121 EXPECT_NE(FencedAllocator::kInvalidOffset, offset);
122 EXPECT_GE(kBufferSize, offset+kSize);
123 EXPECT_TRUE(allocator_->CheckConsistency());
125 allocator_->Free(offset);
126 EXPECT_FALSE(allocator_->InUse());
127 EXPECT_TRUE(allocator_->CheckConsistency());
130 // Test alloc 0 fails.
131 TEST_F(FencedAllocatorTest, TestAllocZero) {
132 FencedAllocator::Offset offset = allocator_->Alloc(0);
133 EXPECT_EQ(FencedAllocator::kInvalidOffset, offset);
134 EXPECT_FALSE(allocator_->InUse());
135 EXPECT_TRUE(allocator_->CheckConsistency());
138 // Checks out-of-memory condition.
139 TEST_F(FencedAllocatorTest, TestOutOfMemory) {
140 EXPECT_TRUE(allocator_->CheckConsistency());
142 const unsigned int kSize = 16;
143 const unsigned int kAllocCount = kBufferSize / kSize;
144 CHECK(kAllocCount * kSize == kBufferSize);
146 // Allocate several buffers to fill in the memory.
147 FencedAllocator::Offset offsets[kAllocCount];
148 for (unsigned int i = 0; i < kAllocCount; ++i) {
149 offsets[i] = allocator_->Alloc(kSize);
150 EXPECT_NE(FencedAllocator::kInvalidOffset, offsets[i]);
151 EXPECT_GE(kBufferSize, offsets[i]+kSize);
152 EXPECT_TRUE(allocator_->CheckConsistency());
155 // This allocation should fail.
156 FencedAllocator::Offset offset_failed = allocator_->Alloc(kSize);
157 EXPECT_EQ(FencedAllocator::kInvalidOffset, offset_failed);
158 EXPECT_TRUE(allocator_->CheckConsistency());
160 // Free one successful allocation, reallocate with half the size
161 allocator_->Free(offsets[0]);
162 EXPECT_TRUE(allocator_->CheckConsistency());
163 offsets[0] = allocator_->Alloc(kSize/2);
164 EXPECT_NE(FencedAllocator::kInvalidOffset, offsets[0]);
165 EXPECT_GE(kBufferSize, offsets[0]+kSize);
166 EXPECT_TRUE(allocator_->CheckConsistency());
168 // This allocation should fail as well.
169 offset_failed = allocator_->Alloc(kSize);
170 EXPECT_EQ(FencedAllocator::kInvalidOffset, offset_failed);
171 EXPECT_TRUE(allocator_->CheckConsistency());
173 // Free up everything.
174 for (unsigned int i = 0; i < kAllocCount; ++i) {
175 allocator_->Free(offsets[i]);
176 EXPECT_TRUE(allocator_->CheckConsistency());
180 // Checks the free-pending-token mechanism.
181 TEST_F(FencedAllocatorTest, TestFreePendingToken) {
182 EXPECT_TRUE(allocator_->CheckConsistency());
184 const unsigned int kSize = 16;
185 const unsigned int kAllocCount = kBufferSize / kSize;
186 CHECK(kAllocCount * kSize == kBufferSize);
188 // Allocate several buffers to fill in the memory.
189 FencedAllocator::Offset offsets[kAllocCount];
190 for (unsigned int i = 0; i < kAllocCount; ++i) {
191 offsets[i] = allocator_->Alloc(kSize);
192 EXPECT_NE(FencedAllocator::kInvalidOffset, offsets[i]);
193 EXPECT_GE(kBufferSize, offsets[i]+kSize);
194 EXPECT_TRUE(allocator_->CheckConsistency());
197 // This allocation should fail.
198 FencedAllocator::Offset offset_failed = allocator_->Alloc(kSize);
199 EXPECT_EQ(FencedAllocator::kInvalidOffset, offset_failed);
200 EXPECT_TRUE(allocator_->CheckConsistency());
202 // Free one successful allocation, pending fence.
203 int32 token = helper_.get()->InsertToken();
204 allocator_->FreePendingToken(offsets[0], token);
205 EXPECT_TRUE(allocator_->CheckConsistency());
207 // The way we hooked up the helper and engine, it won't process commands
208 // until it has to wait for something. Which means the token shouldn't have
209 // passed yet at this point.
210 EXPECT_GT(token, GetToken());
212 // This allocation will need to reclaim the space freed above, so that should
213 // process the commands until the token is passed.
214 offsets[0] = allocator_->Alloc(kSize);
215 EXPECT_NE(FencedAllocator::kInvalidOffset, offsets[0]);
216 EXPECT_GE(kBufferSize, offsets[0]+kSize);
217 EXPECT_TRUE(allocator_->CheckConsistency());
218 // Check that the token has indeed passed.
219 EXPECT_LE(token, GetToken());
221 // Free up everything.
222 for (unsigned int i = 0; i < kAllocCount; ++i) {
223 allocator_->Free(offsets[i]);
224 EXPECT_TRUE(allocator_->CheckConsistency());
228 // Checks the free-pending-token mechanism using FreeUnused
229 TEST_F(FencedAllocatorTest, FreeUnused) {
230 EXPECT_TRUE(allocator_->CheckConsistency());
232 const unsigned int kSize = 16;
233 const unsigned int kAllocCount = kBufferSize / kSize;
234 CHECK(kAllocCount * kSize == kBufferSize);
236 // Allocate several buffers to fill in the memory.
237 FencedAllocator::Offset offsets[kAllocCount];
238 for (unsigned int i = 0; i < kAllocCount; ++i) {
239 offsets[i] = allocator_->Alloc(kSize);
240 EXPECT_NE(FencedAllocator::kInvalidOffset, offsets[i]);
241 EXPECT_GE(kBufferSize, offsets[i]+kSize);
242 EXPECT_TRUE(allocator_->CheckConsistency());
244 EXPECT_TRUE(allocator_->InUse());
246 // No memory should be available.
247 EXPECT_EQ(0u, allocator_->GetLargestFreeSize());
249 // Free one successful allocation, pending fence.
250 int32 token = helper_.get()->InsertToken();
251 allocator_->FreePendingToken(offsets[0], token);
252 EXPECT_TRUE(allocator_->CheckConsistency());
254 // Force the command buffer to process the token.
255 helper_->Finish();
257 // Tell the allocator to update what's available based on the current token.
258 allocator_->FreeUnused();
260 // Check that the new largest free size takes into account the unused block.
261 EXPECT_EQ(kSize, allocator_->GetLargestFreeSize());
263 // Free two more.
264 token = helper_.get()->InsertToken();
265 allocator_->FreePendingToken(offsets[1], token);
266 token = helper_.get()->InsertToken();
267 allocator_->FreePendingToken(offsets[2], token);
268 EXPECT_TRUE(allocator_->CheckConsistency());
270 // Check that nothing has changed.
271 EXPECT_EQ(kSize, allocator_->GetLargestFreeSize());
273 // Force the command buffer to process the token.
274 helper_->Finish();
276 // Tell the allocator to update what's available based on the current token.
277 allocator_->FreeUnused();
279 // Check that the new largest free size takes into account the unused blocks.
280 EXPECT_EQ(kSize * 3, allocator_->GetLargestFreeSize());
281 EXPECT_TRUE(allocator_->InUse());
283 // Free up everything.
284 for (unsigned int i = 3; i < kAllocCount; ++i) {
285 allocator_->Free(offsets[i]);
286 EXPECT_TRUE(allocator_->CheckConsistency());
288 EXPECT_FALSE(allocator_->InUse());
291 // Tests GetLargestFreeSize
292 TEST_F(FencedAllocatorTest, TestGetLargestFreeSize) {
293 EXPECT_TRUE(allocator_->CheckConsistency());
294 EXPECT_EQ(kBufferSize, allocator_->GetLargestFreeSize());
296 FencedAllocator::Offset offset = allocator_->Alloc(kBufferSize);
297 ASSERT_NE(FencedAllocator::kInvalidOffset, offset);
298 EXPECT_EQ(0u, allocator_->GetLargestFreeSize());
299 allocator_->Free(offset);
300 EXPECT_EQ(kBufferSize, allocator_->GetLargestFreeSize());
302 const unsigned int kSize = 16;
303 offset = allocator_->Alloc(kSize);
304 ASSERT_NE(FencedAllocator::kInvalidOffset, offset);
305 // The following checks that the buffer is allocated "smartly" - which is
306 // dependent on the implementation. But both first-fit or best-fit would
307 // ensure that.
308 EXPECT_EQ(kBufferSize - kSize, allocator_->GetLargestFreeSize());
310 // Allocate 2 more buffers (now 3), and then free the first two. This is to
311 // ensure a hole. Note that this is dependent on the first-fit current
312 // implementation.
313 FencedAllocator::Offset offset1 = allocator_->Alloc(kSize);
314 ASSERT_NE(FencedAllocator::kInvalidOffset, offset1);
315 FencedAllocator::Offset offset2 = allocator_->Alloc(kSize);
316 ASSERT_NE(FencedAllocator::kInvalidOffset, offset2);
317 allocator_->Free(offset);
318 allocator_->Free(offset1);
319 EXPECT_EQ(kBufferSize - 3 * kSize, allocator_->GetLargestFreeSize());
321 offset = allocator_->Alloc(kBufferSize - 3 * kSize);
322 ASSERT_NE(FencedAllocator::kInvalidOffset, offset);
323 EXPECT_EQ(2 * kSize, allocator_->GetLargestFreeSize());
325 offset1 = allocator_->Alloc(2 * kSize);
326 ASSERT_NE(FencedAllocator::kInvalidOffset, offset1);
327 EXPECT_EQ(0u, allocator_->GetLargestFreeSize());
329 allocator_->Free(offset);
330 allocator_->Free(offset1);
331 allocator_->Free(offset2);
334 // Tests GetLargestFreeOrPendingSize
335 TEST_F(FencedAllocatorTest, TestGetLargestFreeOrPendingSize) {
336 EXPECT_TRUE(allocator_->CheckConsistency());
337 EXPECT_EQ(kBufferSize, allocator_->GetLargestFreeOrPendingSize());
339 FencedAllocator::Offset offset = allocator_->Alloc(kBufferSize);
340 ASSERT_NE(FencedAllocator::kInvalidOffset, offset);
341 EXPECT_EQ(0u, allocator_->GetLargestFreeOrPendingSize());
342 allocator_->Free(offset);
343 EXPECT_EQ(kBufferSize, allocator_->GetLargestFreeOrPendingSize());
345 const unsigned int kSize = 16;
346 offset = allocator_->Alloc(kSize);
347 ASSERT_NE(FencedAllocator::kInvalidOffset, offset);
348 // The following checks that the buffer is allocates "smartly" - which is
349 // dependent on the implementation. But both first-fit or best-fit would
350 // ensure that.
351 EXPECT_EQ(kBufferSize - kSize, allocator_->GetLargestFreeOrPendingSize());
353 // Allocate 2 more buffers (now 3), and then free the first two. This is to
354 // ensure a hole. Note that this is dependent on the first-fit current
355 // implementation.
356 FencedAllocator::Offset offset1 = allocator_->Alloc(kSize);
357 ASSERT_NE(FencedAllocator::kInvalidOffset, offset1);
358 FencedAllocator::Offset offset2 = allocator_->Alloc(kSize);
359 ASSERT_NE(FencedAllocator::kInvalidOffset, offset2);
360 allocator_->Free(offset);
361 allocator_->Free(offset1);
362 EXPECT_EQ(kBufferSize - 3 * kSize,
363 allocator_->GetLargestFreeOrPendingSize());
365 // Free the last one, pending a token.
366 int32 token = helper_.get()->InsertToken();
367 allocator_->FreePendingToken(offset2, token);
369 // Now all the buffers have been freed...
370 EXPECT_EQ(kBufferSize, allocator_->GetLargestFreeOrPendingSize());
371 // .. but one is still waiting for the token.
372 EXPECT_EQ(kBufferSize - 3 * kSize,
373 allocator_->GetLargestFreeSize());
375 // The way we hooked up the helper and engine, it won't process commands
376 // until it has to wait for something. Which means the token shouldn't have
377 // passed yet at this point.
378 EXPECT_GT(token, GetToken());
379 // This allocation will need to reclaim the space freed above, so that should
380 // process the commands until the token is passed, but it will succeed.
381 offset = allocator_->Alloc(kBufferSize);
382 ASSERT_NE(FencedAllocator::kInvalidOffset, offset);
383 // Check that the token has indeed passed.
384 EXPECT_LE(token, GetToken());
385 allocator_->Free(offset);
387 // Everything now has been freed...
388 EXPECT_EQ(kBufferSize, allocator_->GetLargestFreeOrPendingSize());
389 // ... for real.
390 EXPECT_EQ(kBufferSize, allocator_->GetLargestFreeSize());
393 class FencedAllocatorPollTest : public BaseFencedAllocatorTest {
394 public:
395 static const unsigned int kAllocSize = 128;
397 MOCK_METHOD0(MockedPoll, void());
399 protected:
400 virtual void TearDown() {
401 // If the GpuScheduler posts any tasks, this forces them to run.
402 base::MessageLoop::current()->RunUntilIdle();
404 BaseFencedAllocatorTest::TearDown();
408 TEST_F(FencedAllocatorPollTest, TestPoll) {
409 scoped_ptr<FencedAllocator> allocator(
410 new FencedAllocator(kBufferSize,
411 helper_.get(),
412 base::Bind(&FencedAllocatorPollTest::MockedPoll,
413 base::Unretained(this))));
415 FencedAllocator::Offset mem1 = allocator->Alloc(kAllocSize);
416 FencedAllocator::Offset mem2 = allocator->Alloc(kAllocSize);
417 EXPECT_NE(mem1, FencedAllocator::kInvalidOffset);
418 EXPECT_NE(mem2, FencedAllocator::kInvalidOffset);
419 EXPECT_TRUE(allocator->CheckConsistency());
420 EXPECT_EQ(allocator->bytes_in_use(), kAllocSize * 2);
422 // Check that no-op Poll doesn't affect the state.
423 EXPECT_CALL(*this, MockedPoll()).RetiresOnSaturation();
424 allocator->FreeUnused();
425 EXPECT_TRUE(allocator->CheckConsistency());
426 EXPECT_EQ(allocator->bytes_in_use(), kAllocSize * 2);
428 // Check that freeing in Poll works.
429 base::Closure free_mem1_closure =
430 base::Bind(&FencedAllocator::Free,
431 base::Unretained(allocator.get()),
432 mem1);
433 EXPECT_CALL(*this, MockedPoll())
434 .WillOnce(InvokeWithoutArgs(&free_mem1_closure, &base::Closure::Run))
435 .RetiresOnSaturation();
436 allocator->FreeUnused();
437 EXPECT_TRUE(allocator->CheckConsistency());
438 EXPECT_EQ(allocator->bytes_in_use(), kAllocSize * 1);
440 // Check that freeing still works.
441 EXPECT_CALL(*this, MockedPoll()).RetiresOnSaturation();
442 allocator->Free(mem2);
443 allocator->FreeUnused();
444 EXPECT_TRUE(allocator->CheckConsistency());
445 EXPECT_EQ(allocator->bytes_in_use(), 0u);
447 allocator.reset();
450 // Test fixture for FencedAllocatorWrapper test - Creates a
451 // FencedAllocatorWrapper, using a CommandBufferHelper with a mock
452 // AsyncAPIInterface for its interface (calling it directly, not through the
453 // RPC mechanism), making sure Noops are ignored and SetToken are properly
454 // forwarded to the engine.
455 class FencedAllocatorWrapperTest : public BaseFencedAllocatorTest {
456 protected:
457 void SetUp() override {
458 BaseFencedAllocatorTest::SetUp();
460 // Though allocating this buffer isn't strictly necessary, it makes
461 // allocations point to valid addresses, so they could be used for
462 // something.
463 buffer_.reset(static_cast<char*>(base::AlignedAlloc(
464 kBufferSize, kAllocAlignment)));
465 allocator_.reset(new FencedAllocatorWrapper(kBufferSize,
466 helper_.get(),
467 base::Bind(&EmptyPoll),
468 buffer_.get()));
471 void TearDown() override {
472 // If the GpuScheduler posts any tasks, this forces them to run.
473 base::MessageLoop::current()->RunUntilIdle();
475 EXPECT_TRUE(allocator_->CheckConsistency());
477 BaseFencedAllocatorTest::TearDown();
480 scoped_ptr<FencedAllocatorWrapper> allocator_;
481 scoped_ptr<char, base::AlignedFreeDeleter> buffer_;
484 // Checks basic alloc and free.
485 TEST_F(FencedAllocatorWrapperTest, TestBasic) {
486 allocator_->CheckConsistency();
488 const unsigned int kSize = 16;
489 void *pointer = allocator_->Alloc(kSize);
490 ASSERT_TRUE(pointer);
491 EXPECT_LE(buffer_.get(), static_cast<char *>(pointer));
492 EXPECT_GE(kBufferSize, static_cast<char *>(pointer) - buffer_.get() + kSize);
493 EXPECT_TRUE(allocator_->CheckConsistency());
495 allocator_->Free(pointer);
496 EXPECT_TRUE(allocator_->CheckConsistency());
498 char *pointer_char = allocator_->AllocTyped<char>(kSize);
499 ASSERT_TRUE(pointer_char);
500 EXPECT_LE(buffer_.get(), pointer_char);
501 EXPECT_GE(buffer_.get() + kBufferSize, pointer_char + kSize);
502 allocator_->Free(pointer_char);
503 EXPECT_TRUE(allocator_->CheckConsistency());
505 unsigned int *pointer_uint = allocator_->AllocTyped<unsigned int>(kSize);
506 ASSERT_TRUE(pointer_uint);
507 EXPECT_LE(buffer_.get(), reinterpret_cast<char *>(pointer_uint));
508 EXPECT_GE(buffer_.get() + kBufferSize,
509 reinterpret_cast<char *>(pointer_uint + kSize));
511 // Check that it did allocate kSize * sizeof(unsigned int). We can't tell
512 // directly, except from the remaining size.
513 EXPECT_EQ(kBufferSize - kSize * sizeof(*pointer_uint),
514 allocator_->GetLargestFreeSize());
515 allocator_->Free(pointer_uint);
518 // Test alloc 0 fails.
519 TEST_F(FencedAllocatorWrapperTest, TestAllocZero) {
520 allocator_->CheckConsistency();
522 void *pointer = allocator_->Alloc(0);
523 ASSERT_FALSE(pointer);
524 EXPECT_TRUE(allocator_->CheckConsistency());
527 // Checks that allocation offsets are aligned to multiples of 16 bytes.
528 TEST_F(FencedAllocatorWrapperTest, TestAlignment) {
529 allocator_->CheckConsistency();
531 const unsigned int kSize1 = 75;
532 void *pointer1 = allocator_->Alloc(kSize1);
533 ASSERT_TRUE(pointer1);
534 EXPECT_EQ(reinterpret_cast<intptr_t>(pointer1) & (kAllocAlignment - 1), 0);
535 EXPECT_TRUE(allocator_->CheckConsistency());
537 const unsigned int kSize2 = 43;
538 void *pointer2 = allocator_->Alloc(kSize2);
539 ASSERT_TRUE(pointer2);
540 EXPECT_EQ(reinterpret_cast<intptr_t>(pointer2) & (kAllocAlignment - 1), 0);
541 EXPECT_TRUE(allocator_->CheckConsistency());
543 allocator_->Free(pointer2);
544 EXPECT_TRUE(allocator_->CheckConsistency());
546 allocator_->Free(pointer1);
547 EXPECT_TRUE(allocator_->CheckConsistency());
550 // Checks out-of-memory condition.
551 TEST_F(FencedAllocatorWrapperTest, TestOutOfMemory) {
552 allocator_->CheckConsistency();
554 const unsigned int kSize = 16;
555 const unsigned int kAllocCount = kBufferSize / kSize;
556 CHECK(kAllocCount * kSize == kBufferSize);
558 // Allocate several buffers to fill in the memory.
559 void *pointers[kAllocCount];
560 for (unsigned int i = 0; i < kAllocCount; ++i) {
561 pointers[i] = allocator_->Alloc(kSize);
562 EXPECT_TRUE(pointers[i]);
563 EXPECT_TRUE(allocator_->CheckConsistency());
566 // This allocation should fail.
567 void *pointer_failed = allocator_->Alloc(kSize);
568 EXPECT_FALSE(pointer_failed);
569 EXPECT_TRUE(allocator_->CheckConsistency());
571 // Free one successful allocation, reallocate with half the size
572 allocator_->Free(pointers[0]);
573 EXPECT_TRUE(allocator_->CheckConsistency());
574 pointers[0] = allocator_->Alloc(kSize/2);
575 EXPECT_TRUE(pointers[0]);
576 EXPECT_TRUE(allocator_->CheckConsistency());
578 // This allocation should fail as well.
579 pointer_failed = allocator_->Alloc(kSize);
580 EXPECT_FALSE(pointer_failed);
581 EXPECT_TRUE(allocator_->CheckConsistency());
583 // Free up everything.
584 for (unsigned int i = 0; i < kAllocCount; ++i) {
585 allocator_->Free(pointers[i]);
586 EXPECT_TRUE(allocator_->CheckConsistency());
590 // Checks the free-pending-token mechanism.
591 TEST_F(FencedAllocatorWrapperTest, TestFreePendingToken) {
592 allocator_->CheckConsistency();
594 const unsigned int kSize = 16;
595 const unsigned int kAllocCount = kBufferSize / kSize;
596 CHECK(kAllocCount * kSize == kBufferSize);
598 // Allocate several buffers to fill in the memory.
599 void *pointers[kAllocCount];
600 for (unsigned int i = 0; i < kAllocCount; ++i) {
601 pointers[i] = allocator_->Alloc(kSize);
602 EXPECT_TRUE(pointers[i]);
603 EXPECT_TRUE(allocator_->CheckConsistency());
606 // This allocation should fail.
607 void *pointer_failed = allocator_->Alloc(kSize);
608 EXPECT_FALSE(pointer_failed);
609 EXPECT_TRUE(allocator_->CheckConsistency());
611 // Free one successful allocation, pending fence.
612 int32 token = helper_.get()->InsertToken();
613 allocator_->FreePendingToken(pointers[0], token);
614 EXPECT_TRUE(allocator_->CheckConsistency());
616 // The way we hooked up the helper and engine, it won't process commands
617 // until it has to wait for something. Which means the token shouldn't have
618 // passed yet at this point.
619 EXPECT_GT(token, GetToken());
621 // This allocation will need to reclaim the space freed above, so that should
622 // process the commands until the token is passed.
623 pointers[0] = allocator_->Alloc(kSize);
624 EXPECT_TRUE(pointers[0]);
625 EXPECT_TRUE(allocator_->CheckConsistency());
626 // Check that the token has indeed passed.
627 EXPECT_LE(token, GetToken());
629 // Free up everything.
630 for (unsigned int i = 0; i < kAllocCount; ++i) {
631 allocator_->Free(pointers[i]);
632 EXPECT_TRUE(allocator_->CheckConsistency());
636 } // namespace gpu