net: Remove the remaining use of GG_(U)INTn_C macros.
[chromium-blink-merge.git] / net / quic / quic_framer.cc
blob61da635de6596bc4957797f8cfe46a517851d1c4
1 // Copyright (c) 2012 The Chromium Authors. All rights reserved.
2 // Use of this source code is governed by a BSD-style license that can be
3 // found in the LICENSE file.
5 #include "net/quic/quic_framer.h"
7 #include <stdint.h>
9 #include "base/basictypes.h"
10 #include "base/logging.h"
11 #include "base/stl_util.h"
12 #include "net/quic/crypto/crypto_framer.h"
13 #include "net/quic/crypto/crypto_handshake_message.h"
14 #include "net/quic/crypto/crypto_protocol.h"
15 #include "net/quic/crypto/quic_decrypter.h"
16 #include "net/quic/crypto/quic_encrypter.h"
17 #include "net/quic/quic_data_reader.h"
18 #include "net/quic/quic_data_writer.h"
19 #include "net/quic/quic_flags.h"
20 #include "net/quic/quic_socket_address_coder.h"
21 #include "net/quic/quic_utils.h"
23 using base::StringPiece;
24 using std::map;
25 using std::max;
26 using std::min;
27 using std::numeric_limits;
28 using std::string;
30 namespace net {
32 namespace {
34 // Mask to select the lowest 48 bits of a sequence number.
35 const QuicPacketSequenceNumber k6ByteSequenceNumberMask =
36 UINT64_C(0x0000FFFFFFFFFFFF);
37 const QuicPacketSequenceNumber k4ByteSequenceNumberMask =
38 UINT64_C(0x00000000FFFFFFFF);
39 const QuicPacketSequenceNumber k2ByteSequenceNumberMask =
40 UINT64_C(0x000000000000FFFF);
41 const QuicPacketSequenceNumber k1ByteSequenceNumberMask =
42 UINT64_C(0x00000000000000FF);
44 const QuicConnectionId k1ByteConnectionIdMask = UINT64_C(0x00000000000000FF);
45 const QuicConnectionId k4ByteConnectionIdMask = UINT64_C(0x00000000FFFFFFFF);
47 // Number of bits the sequence number length bits are shifted from the right
48 // edge of the public header.
49 const uint8 kPublicHeaderSequenceNumberShift = 4;
51 // New Frame Types, QUIC v. >= 10:
52 // There are two interpretations for the Frame Type byte in the QUIC protocol,
53 // resulting in two Frame Types: Special Frame Types and Regular Frame Types.
55 // Regular Frame Types use the Frame Type byte simply. Currently defined
56 // Regular Frame Types are:
57 // Padding : 0b 00000000 (0x00)
58 // ResetStream : 0b 00000001 (0x01)
59 // ConnectionClose : 0b 00000010 (0x02)
60 // GoAway : 0b 00000011 (0x03)
61 // WindowUpdate : 0b 00000100 (0x04)
62 // Blocked : 0b 00000101 (0x05)
64 // Special Frame Types encode both a Frame Type and corresponding flags
65 // all in the Frame Type byte. Currently defined Special Frame Types are:
66 // Stream : 0b 1xxxxxxx
67 // Ack : 0b 01xxxxxx
69 // Semantics of the flag bits above (the x bits) depends on the frame type.
71 // Masks to determine if the frame type is a special use
72 // and for specific special frame types.
73 const uint8 kQuicFrameTypeSpecialMask = 0xE0; // 0b 11100000
74 const uint8 kQuicFrameTypeStreamMask = 0x80;
75 const uint8 kQuicFrameTypeAckMask = 0x40;
77 // Stream frame relative shifts and masks for interpreting the stream flags.
78 // StreamID may be 1, 2, 3, or 4 bytes.
79 const uint8 kQuicStreamIdShift = 2;
80 const uint8 kQuicStreamIDLengthMask = 0x03;
82 // Offset may be 0, 2, 3, 4, 5, 6, 7, 8 bytes.
83 const uint8 kQuicStreamOffsetShift = 3;
84 const uint8 kQuicStreamOffsetMask = 0x07;
86 // Data length may be 0 or 2 bytes.
87 const uint8 kQuicStreamDataLengthShift = 1;
88 const uint8 kQuicStreamDataLengthMask = 0x01;
90 // Fin bit may be set or not.
91 const uint8 kQuicStreamFinShift = 1;
92 const uint8 kQuicStreamFinMask = 0x01;
94 // Sequence number size shift used in AckFrames.
95 const uint8 kQuicSequenceNumberLengthShift = 2;
97 // Acks may be truncated.
98 const uint8 kQuicAckTruncatedShift = 1;
99 const uint8 kQuicAckTruncatedMask = 0x01;
101 // Acks may not have any nacks.
102 const uint8 kQuicHasNacksMask = 0x01;
104 // Returns the absolute value of the difference between |a| and |b|.
105 QuicPacketSequenceNumber Delta(QuicPacketSequenceNumber a,
106 QuicPacketSequenceNumber b) {
107 // Since these are unsigned numbers, we can't just return abs(a - b)
108 if (a < b) {
109 return b - a;
111 return a - b;
114 QuicPacketSequenceNumber ClosestTo(QuicPacketSequenceNumber target,
115 QuicPacketSequenceNumber a,
116 QuicPacketSequenceNumber b) {
117 return (Delta(target, a) < Delta(target, b)) ? a : b;
120 QuicSequenceNumberLength ReadSequenceNumberLength(uint8 flags) {
121 switch (flags & PACKET_FLAGS_6BYTE_SEQUENCE) {
122 case PACKET_FLAGS_6BYTE_SEQUENCE:
123 return PACKET_6BYTE_SEQUENCE_NUMBER;
124 case PACKET_FLAGS_4BYTE_SEQUENCE:
125 return PACKET_4BYTE_SEQUENCE_NUMBER;
126 case PACKET_FLAGS_2BYTE_SEQUENCE:
127 return PACKET_2BYTE_SEQUENCE_NUMBER;
128 case PACKET_FLAGS_1BYTE_SEQUENCE:
129 return PACKET_1BYTE_SEQUENCE_NUMBER;
130 default:
131 LOG(DFATAL) << "Unreachable case statement.";
132 return PACKET_6BYTE_SEQUENCE_NUMBER;
136 } // namespace
138 bool QuicFramerVisitorInterface::OnWindowUpdateFrame(
139 const QuicWindowUpdateFrame& frame) {
140 return true;
143 bool QuicFramerVisitorInterface::OnBlockedFrame(const QuicBlockedFrame& frame) {
144 return true;
147 QuicFramer::QuicFramer(const QuicVersionVector& supported_versions,
148 QuicTime creation_time,
149 Perspective perspective)
150 : visitor_(nullptr),
151 entropy_calculator_(nullptr),
152 error_(QUIC_NO_ERROR),
153 last_sequence_number_(0),
154 last_serialized_connection_id_(0),
155 supported_versions_(supported_versions),
156 decrypter_level_(ENCRYPTION_NONE),
157 alternative_decrypter_level_(ENCRYPTION_NONE),
158 alternative_decrypter_latch_(false),
159 perspective_(perspective),
160 validate_flags_(true),
161 creation_time_(creation_time),
162 last_timestamp_(QuicTime::Delta::Zero()) {
163 DCHECK(!supported_versions.empty());
164 quic_version_ = supported_versions_[0];
165 decrypter_.reset(QuicDecrypter::Create(kNULL));
166 encrypter_[ENCRYPTION_NONE].reset(QuicEncrypter::Create(kNULL));
169 QuicFramer::~QuicFramer() {}
171 // static
172 size_t QuicFramer::GetMinStreamFrameSize(QuicStreamId stream_id,
173 QuicStreamOffset offset,
174 bool last_frame_in_packet,
175 InFecGroup is_in_fec_group) {
176 bool no_stream_frame_length = last_frame_in_packet &&
177 is_in_fec_group == NOT_IN_FEC_GROUP;
178 return kQuicFrameTypeSize + GetStreamIdSize(stream_id) +
179 GetStreamOffsetSize(offset) +
180 (no_stream_frame_length ? 0 : kQuicStreamPayloadLengthSize);
183 // static
184 size_t QuicFramer::GetMinAckFrameSize(
185 QuicSequenceNumberLength sequence_number_length,
186 QuicSequenceNumberLength largest_observed_length) {
187 return kQuicFrameTypeSize + kQuicEntropyHashSize +
188 largest_observed_length + kQuicDeltaTimeLargestObservedSize;
191 // static
192 size_t QuicFramer::GetStopWaitingFrameSize(
193 QuicSequenceNumberLength sequence_number_length) {
194 return kQuicFrameTypeSize + kQuicEntropyHashSize +
195 sequence_number_length;
198 // static
199 size_t QuicFramer::GetMinRstStreamFrameSize() {
200 return kQuicFrameTypeSize + kQuicMaxStreamIdSize +
201 kQuicMaxStreamOffsetSize + kQuicErrorCodeSize +
202 kQuicErrorDetailsLengthSize;
205 // static
206 size_t QuicFramer::GetRstStreamFrameSize() {
207 return kQuicFrameTypeSize + kQuicMaxStreamIdSize + kQuicMaxStreamOffsetSize +
208 kQuicErrorCodeSize;
211 // static
212 size_t QuicFramer::GetMinConnectionCloseFrameSize() {
213 return kQuicFrameTypeSize + kQuicErrorCodeSize + kQuicErrorDetailsLengthSize;
216 // static
217 size_t QuicFramer::GetMinGoAwayFrameSize() {
218 return kQuicFrameTypeSize + kQuicErrorCodeSize + kQuicErrorDetailsLengthSize +
219 kQuicMaxStreamIdSize;
222 // static
223 size_t QuicFramer::GetWindowUpdateFrameSize() {
224 return kQuicFrameTypeSize + kQuicMaxStreamIdSize + kQuicMaxStreamOffsetSize;
227 // static
228 size_t QuicFramer::GetBlockedFrameSize() {
229 return kQuicFrameTypeSize + kQuicMaxStreamIdSize;
232 // static
233 size_t QuicFramer::GetStreamIdSize(QuicStreamId stream_id) {
234 // Sizes are 1 through 4 bytes.
235 for (int i = 1; i <= 4; ++i) {
236 stream_id >>= 8;
237 if (stream_id == 0) {
238 return i;
241 LOG(DFATAL) << "Failed to determine StreamIDSize.";
242 return 4;
245 // static
246 size_t QuicFramer::GetStreamOffsetSize(QuicStreamOffset offset) {
247 // 0 is a special case.
248 if (offset == 0) {
249 return 0;
251 // 2 through 8 are the remaining sizes.
252 offset >>= 8;
253 for (int i = 2; i <= 8; ++i) {
254 offset >>= 8;
255 if (offset == 0) {
256 return i;
259 LOG(DFATAL) << "Failed to determine StreamOffsetSize.";
260 return 8;
263 // static
264 size_t QuicFramer::GetVersionNegotiationPacketSize(size_t number_versions) {
265 return kPublicFlagsSize + PACKET_8BYTE_CONNECTION_ID +
266 number_versions * kQuicVersionSize;
269 bool QuicFramer::IsSupportedVersion(const QuicVersion version) const {
270 for (size_t i = 0; i < supported_versions_.size(); ++i) {
271 if (version == supported_versions_[i]) {
272 return true;
275 return false;
278 size_t QuicFramer::GetSerializedFrameLength(
279 const QuicFrame& frame,
280 size_t free_bytes,
281 bool first_frame,
282 bool last_frame,
283 InFecGroup is_in_fec_group,
284 QuicSequenceNumberLength sequence_number_length) {
285 // Prevent a rare crash reported in b/19458523.
286 if (frame.stream_frame == nullptr) {
287 LOG(DFATAL) << "Cannot compute the length of a null frame. "
288 << "type:" << frame.type << "free_bytes:" << free_bytes
289 << " first_frame:" << first_frame
290 << " last_frame:" << last_frame
291 << " is_in_fec:" << is_in_fec_group
292 << " seq num length:" << sequence_number_length;
293 set_error(QUIC_INTERNAL_ERROR);
294 visitor_->OnError(this);
295 return false;
297 if (frame.type == PADDING_FRAME) {
298 // PADDING implies end of packet.
299 return free_bytes;
301 size_t frame_len =
302 ComputeFrameLength(frame, last_frame, is_in_fec_group,
303 sequence_number_length);
304 if (frame_len <= free_bytes) {
305 // Frame fits within packet. Note that acks may be truncated.
306 return frame_len;
308 // Only truncate the first frame in a packet, so if subsequent ones go
309 // over, stop including more frames.
310 if (!first_frame) {
311 return 0;
313 bool can_truncate = frame.type == ACK_FRAME &&
314 free_bytes >= GetMinAckFrameSize(PACKET_6BYTE_SEQUENCE_NUMBER,
315 PACKET_6BYTE_SEQUENCE_NUMBER);
316 if (can_truncate) {
317 // Truncate the frame so the packet will not exceed kMaxPacketSize.
318 // Note that we may not use every byte of the writer in this case.
319 DVLOG(1) << "Truncating large frame, free bytes: " << free_bytes;
320 return free_bytes;
322 if (!FLAGS_quic_allow_oversized_packets_for_test) {
323 return 0;
325 LOG(DFATAL) << "Packet size too small to fit frame.";
326 return frame_len;
329 QuicFramer::AckFrameInfo::AckFrameInfo() : max_delta(0) {}
331 QuicFramer::AckFrameInfo::~AckFrameInfo() {}
333 // static
334 QuicPacketEntropyHash QuicFramer::GetPacketEntropyHash(
335 const QuicPacketHeader& header) {
336 return header.entropy_flag << (header.packet_sequence_number % 8);
339 QuicPacket* QuicFramer::BuildDataPacket(const QuicPacketHeader& header,
340 const QuicFrames& frames,
341 char* buffer,
342 size_t packet_length) {
343 QuicDataWriter writer(packet_length, buffer);
344 if (!AppendPacketHeader(header, &writer)) {
345 LOG(DFATAL) << "AppendPacketHeader failed";
346 return nullptr;
349 size_t i = 0;
350 for (const QuicFrame& frame : frames) {
351 // Determine if we should write stream frame length in header.
352 const bool no_stream_frame_length =
353 (header.is_in_fec_group == NOT_IN_FEC_GROUP) &&
354 (i == frames.size() - 1);
355 if (!AppendTypeByte(frame, no_stream_frame_length, &writer)) {
356 LOG(DFATAL) << "AppendTypeByte failed";
357 return nullptr;
360 switch (frame.type) {
361 case PADDING_FRAME:
362 writer.WritePadding();
363 break;
364 case STREAM_FRAME:
365 if (!AppendStreamFrame(
366 *frame.stream_frame, no_stream_frame_length, &writer)) {
367 LOG(DFATAL) << "AppendStreamFrame failed";
368 return nullptr;
370 break;
371 case ACK_FRAME:
372 if (!AppendAckFrameAndTypeByte(
373 header, *frame.ack_frame, &writer)) {
374 LOG(DFATAL) << "AppendAckFrameAndTypeByte failed";
375 return nullptr;
377 break;
378 case STOP_WAITING_FRAME:
379 if (!AppendStopWaitingFrame(
380 header, *frame.stop_waiting_frame, &writer)) {
381 LOG(DFATAL) << "AppendStopWaitingFrame failed";
382 return nullptr;
384 break;
385 case PING_FRAME:
386 // Ping has no payload.
387 break;
388 case RST_STREAM_FRAME:
389 if (!AppendRstStreamFrame(*frame.rst_stream_frame, &writer)) {
390 LOG(DFATAL) << "AppendRstStreamFrame failed";
391 return nullptr;
393 break;
394 case CONNECTION_CLOSE_FRAME:
395 if (!AppendConnectionCloseFrame(
396 *frame.connection_close_frame, &writer)) {
397 LOG(DFATAL) << "AppendConnectionCloseFrame failed";
398 return nullptr;
400 break;
401 case GOAWAY_FRAME:
402 if (!AppendGoAwayFrame(*frame.goaway_frame, &writer)) {
403 LOG(DFATAL) << "AppendGoAwayFrame failed";
404 return nullptr;
406 break;
407 case WINDOW_UPDATE_FRAME:
408 if (!AppendWindowUpdateFrame(*frame.window_update_frame, &writer)) {
409 LOG(DFATAL) << "AppendWindowUpdateFrame failed";
410 return nullptr;
412 break;
413 case BLOCKED_FRAME:
414 if (!AppendBlockedFrame(*frame.blocked_frame, &writer)) {
415 LOG(DFATAL) << "AppendBlockedFrame failed";
416 return nullptr;
418 break;
419 default:
420 RaiseError(QUIC_INVALID_FRAME_DATA);
421 LOG(DFATAL) << "QUIC_INVALID_FRAME_DATA";
422 return nullptr;
424 ++i;
427 QuicPacket* packet =
428 new QuicPacket(writer.data(), writer.length(), false,
429 header.public_header.connection_id_length,
430 header.public_header.version_flag,
431 header.public_header.sequence_number_length);
433 return packet;
436 QuicPacket* QuicFramer::BuildFecPacket(const QuicPacketHeader& header,
437 const QuicFecData& fec) {
438 DCHECK_EQ(IN_FEC_GROUP, header.is_in_fec_group);
439 DCHECK_NE(0u, header.fec_group);
440 size_t len = GetPacketHeaderSize(header);
441 len += fec.redundancy.length();
443 scoped_ptr<char[]> buffer(new char[len]);
444 QuicDataWriter writer(len, buffer.get());
445 if (!AppendPacketHeader(header, &writer)) {
446 LOG(DFATAL) << "AppendPacketHeader failed";
447 return nullptr;
450 if (!writer.WriteBytes(fec.redundancy.data(), fec.redundancy.length())) {
451 LOG(DFATAL) << "Failed to add FEC";
452 return nullptr;
455 return new QuicPacket(buffer.release(), len, true,
456 header.public_header.connection_id_length,
457 header.public_header.version_flag,
458 header.public_header.sequence_number_length);
461 // static
462 QuicEncryptedPacket* QuicFramer::BuildPublicResetPacket(
463 const QuicPublicResetPacket& packet) {
464 DCHECK(packet.public_header.reset_flag);
466 CryptoHandshakeMessage reset;
467 reset.set_tag(kPRST);
468 reset.SetValue(kRNON, packet.nonce_proof);
469 reset.SetValue(kRSEQ, packet.rejected_sequence_number);
470 if (!packet.client_address.address().empty()) {
471 // packet.client_address is non-empty.
472 QuicSocketAddressCoder address_coder(packet.client_address);
473 string serialized_address = address_coder.Encode();
474 if (serialized_address.empty()) {
475 return nullptr;
477 reset.SetStringPiece(kCADR, serialized_address);
479 const QuicData& reset_serialized = reset.GetSerialized();
481 size_t len =
482 kPublicFlagsSize + PACKET_8BYTE_CONNECTION_ID + reset_serialized.length();
483 scoped_ptr<char[]> buffer(new char[len]);
484 QuicDataWriter writer(len, buffer.get());
486 uint8 flags = static_cast<uint8>(PACKET_PUBLIC_FLAGS_RST |
487 PACKET_PUBLIC_FLAGS_8BYTE_CONNECTION_ID);
488 if (!writer.WriteUInt8(flags)) {
489 return nullptr;
492 if (!writer.WriteUInt64(packet.public_header.connection_id)) {
493 return nullptr;
496 if (!writer.WriteBytes(reset_serialized.data(), reset_serialized.length())) {
497 return nullptr;
500 return new QuicEncryptedPacket(buffer.release(), len, true);
503 QuicEncryptedPacket* QuicFramer::BuildVersionNegotiationPacket(
504 const QuicPacketPublicHeader& header,
505 const QuicVersionVector& supported_versions) {
506 DCHECK(header.version_flag);
507 size_t len = GetVersionNegotiationPacketSize(supported_versions.size());
508 scoped_ptr<char[]> buffer(new char[len]);
509 QuicDataWriter writer(len, buffer.get());
511 uint8 flags = static_cast<uint8>(PACKET_PUBLIC_FLAGS_VERSION |
512 PACKET_PUBLIC_FLAGS_8BYTE_CONNECTION_ID);
513 if (!writer.WriteUInt8(flags)) {
514 return nullptr;
517 if (!writer.WriteUInt64(header.connection_id)) {
518 return nullptr;
521 for (size_t i = 0; i < supported_versions.size(); ++i) {
522 if (!writer.WriteUInt32(QuicVersionToQuicTag(supported_versions[i]))) {
523 return nullptr;
527 return new QuicEncryptedPacket(buffer.release(), len, true);
530 bool QuicFramer::ProcessPacket(const QuicEncryptedPacket& packet) {
531 DCHECK(!reader_.get());
532 reader_.reset(new QuicDataReader(packet.data(), packet.length()));
534 visitor_->OnPacket();
536 // First parse the public header.
537 QuicPacketPublicHeader public_header;
538 if (!ProcessPublicHeader(&public_header)) {
539 DLOG(WARNING) << "Unable to process public header.";
540 DCHECK_NE("", detailed_error_);
541 return RaiseError(QUIC_INVALID_PACKET_HEADER);
544 if (!visitor_->OnUnauthenticatedPublicHeader(public_header)) {
545 // The visitor suppresses further processing of the packet.
546 reader_.reset(nullptr);
547 return true;
550 if (perspective_ == Perspective::IS_SERVER && public_header.version_flag &&
551 public_header.versions[0] != quic_version_) {
552 if (!visitor_->OnProtocolVersionMismatch(public_header.versions[0])) {
553 reader_.reset(nullptr);
554 return true;
558 bool rv;
559 if (perspective_ == Perspective::IS_CLIENT && public_header.version_flag) {
560 rv = ProcessVersionNegotiationPacket(&public_header);
561 } else if (public_header.reset_flag) {
562 rv = ProcessPublicResetPacket(public_header);
563 } else if (packet.length() <= kMaxPacketSize) {
564 char buffer[kMaxPacketSize];
565 rv = ProcessDataPacket(public_header, packet, buffer, kMaxPacketSize);
566 } else {
567 scoped_ptr<char[]> large_buffer(new char[packet.length()]);
568 rv = ProcessDataPacket(public_header, packet, large_buffer.get(),
569 packet.length());
570 LOG_IF(DFATAL, rv) << "QUIC should never successfully process packets "
571 << "larger than kMaxPacketSize. packet size:"
572 << packet.length();
575 reader_.reset(nullptr);
576 return rv;
579 bool QuicFramer::ProcessVersionNegotiationPacket(
580 QuicPacketPublicHeader* public_header) {
581 DCHECK_EQ(Perspective::IS_CLIENT, perspective_);
582 // Try reading at least once to raise error if the packet is invalid.
583 do {
584 QuicTag version;
585 if (!reader_->ReadBytes(&version, kQuicVersionSize)) {
586 set_detailed_error("Unable to read supported version in negotiation.");
587 return RaiseError(QUIC_INVALID_VERSION_NEGOTIATION_PACKET);
589 public_header->versions.push_back(QuicTagToQuicVersion(version));
590 } while (!reader_->IsDoneReading());
592 visitor_->OnVersionNegotiationPacket(*public_header);
593 return true;
596 bool QuicFramer::ProcessDataPacket(const QuicPacketPublicHeader& public_header,
597 const QuicEncryptedPacket& packet,
598 char* decrypted_buffer,
599 size_t buffer_length) {
600 QuicPacketHeader header(public_header);
601 if (!ProcessPacketHeader(&header, packet, decrypted_buffer, buffer_length)) {
602 DLOG(WARNING) << "Unable to process packet header. Stopping parsing.";
603 return false;
606 if (!visitor_->OnPacketHeader(header)) {
607 // The visitor suppresses further processing of the packet.
608 return true;
611 if (packet.length() > kMaxPacketSize) {
612 DLOG(WARNING) << "Packet too large: " << packet.length();
613 return RaiseError(QUIC_PACKET_TOO_LARGE);
616 // Handle the payload.
617 if (!header.fec_flag) {
618 if (header.is_in_fec_group == IN_FEC_GROUP) {
619 StringPiece payload = reader_->PeekRemainingPayload();
620 visitor_->OnFecProtectedPayload(payload);
622 if (!ProcessFrameData(header)) {
623 DCHECK_NE(QUIC_NO_ERROR, error_); // ProcessFrameData sets the error.
624 DLOG(WARNING) << "Unable to process frame data.";
625 return false;
627 } else {
628 QuicFecData fec_data;
629 fec_data.fec_group = header.fec_group;
630 fec_data.redundancy = reader_->ReadRemainingPayload();
631 visitor_->OnFecData(fec_data);
634 visitor_->OnPacketComplete();
635 return true;
638 bool QuicFramer::ProcessPublicResetPacket(
639 const QuicPacketPublicHeader& public_header) {
640 QuicPublicResetPacket packet(public_header);
642 scoped_ptr<CryptoHandshakeMessage> reset(
643 CryptoFramer::ParseMessage(reader_->ReadRemainingPayload()));
644 if (!reset.get()) {
645 set_detailed_error("Unable to read reset message.");
646 return RaiseError(QUIC_INVALID_PUBLIC_RST_PACKET);
648 if (reset->tag() != kPRST) {
649 set_detailed_error("Incorrect message tag.");
650 return RaiseError(QUIC_INVALID_PUBLIC_RST_PACKET);
653 if (reset->GetUint64(kRNON, &packet.nonce_proof) != QUIC_NO_ERROR) {
654 set_detailed_error("Unable to read nonce proof.");
655 return RaiseError(QUIC_INVALID_PUBLIC_RST_PACKET);
657 // TODO(satyamshekhar): validate nonce to protect against DoS.
659 if (reset->GetUint64(kRSEQ, &packet.rejected_sequence_number) !=
660 QUIC_NO_ERROR) {
661 set_detailed_error("Unable to read rejected sequence number.");
662 return RaiseError(QUIC_INVALID_PUBLIC_RST_PACKET);
665 StringPiece address;
666 if (reset->GetStringPiece(kCADR, &address)) {
667 QuicSocketAddressCoder address_coder;
668 if (address_coder.Decode(address.data(), address.length())) {
669 packet.client_address = IPEndPoint(address_coder.ip(),
670 address_coder.port());
674 visitor_->OnPublicResetPacket(packet);
675 return true;
678 bool QuicFramer::ProcessRevivedPacket(QuicPacketHeader* header,
679 StringPiece payload) {
680 DCHECK(!reader_.get());
682 visitor_->OnRevivedPacket();
684 header->entropy_hash = GetPacketEntropyHash(*header);
686 if (!visitor_->OnPacketHeader(*header)) {
687 return true;
690 if (payload.length() > kMaxPacketSize) {
691 set_detailed_error("Revived packet too large.");
692 return RaiseError(QUIC_PACKET_TOO_LARGE);
695 reader_.reset(new QuicDataReader(payload.data(), payload.length()));
696 if (!ProcessFrameData(*header)) {
697 DCHECK_NE(QUIC_NO_ERROR, error_); // ProcessFrameData sets the error.
698 DLOG(WARNING) << "Unable to process frame data.";
699 return false;
702 visitor_->OnPacketComplete();
703 reader_.reset(nullptr);
704 return true;
707 bool QuicFramer::AppendPacketHeader(const QuicPacketHeader& header,
708 QuicDataWriter* writer) {
709 DVLOG(1) << "Appending header: " << header;
710 DCHECK(header.fec_group > 0 || header.is_in_fec_group == NOT_IN_FEC_GROUP);
711 uint8 public_flags = 0;
712 if (header.public_header.reset_flag) {
713 public_flags |= PACKET_PUBLIC_FLAGS_RST;
715 if (header.public_header.version_flag) {
716 public_flags |= PACKET_PUBLIC_FLAGS_VERSION;
719 public_flags |=
720 GetSequenceNumberFlags(header.public_header.sequence_number_length)
721 << kPublicHeaderSequenceNumberShift;
723 switch (header.public_header.connection_id_length) {
724 case PACKET_0BYTE_CONNECTION_ID:
725 if (!writer->WriteUInt8(
726 public_flags | PACKET_PUBLIC_FLAGS_0BYTE_CONNECTION_ID)) {
727 return false;
729 break;
730 case PACKET_1BYTE_CONNECTION_ID:
731 if (!writer->WriteUInt8(
732 public_flags | PACKET_PUBLIC_FLAGS_1BYTE_CONNECTION_ID)) {
733 return false;
735 if (!writer->WriteUInt8(
736 header.public_header.connection_id & k1ByteConnectionIdMask)) {
737 return false;
739 break;
740 case PACKET_4BYTE_CONNECTION_ID:
741 if (!writer->WriteUInt8(
742 public_flags | PACKET_PUBLIC_FLAGS_4BYTE_CONNECTION_ID)) {
743 return false;
745 if (!writer->WriteUInt32(
746 header.public_header.connection_id & k4ByteConnectionIdMask)) {
747 return false;
749 break;
750 case PACKET_8BYTE_CONNECTION_ID:
751 if (!writer->WriteUInt8(
752 public_flags | PACKET_PUBLIC_FLAGS_8BYTE_CONNECTION_ID)) {
753 return false;
755 if (!writer->WriteUInt64(header.public_header.connection_id)) {
756 return false;
758 break;
760 last_serialized_connection_id_ = header.public_header.connection_id;
762 if (header.public_header.version_flag) {
763 DCHECK_EQ(Perspective::IS_CLIENT, perspective_);
764 QuicTag tag = QuicVersionToQuicTag(quic_version_);
765 writer->WriteUInt32(tag);
766 DVLOG(1) << "version = " << quic_version_ << ", tag = '"
767 << QuicUtils::TagToString(tag) << "'";
770 if (!AppendPacketSequenceNumber(header.public_header.sequence_number_length,
771 header.packet_sequence_number, writer)) {
772 return false;
775 uint8 private_flags = 0;
776 if (header.entropy_flag) {
777 private_flags |= PACKET_PRIVATE_FLAGS_ENTROPY;
779 if (header.is_in_fec_group == IN_FEC_GROUP) {
780 private_flags |= PACKET_PRIVATE_FLAGS_FEC_GROUP;
782 if (header.fec_flag) {
783 private_flags |= PACKET_PRIVATE_FLAGS_FEC;
785 if (!writer->WriteUInt8(private_flags)) {
786 return false;
789 // The FEC group number is the sequence number of the first fec
790 // protected packet, or 0 if this packet is not protected.
791 if (header.is_in_fec_group == IN_FEC_GROUP) {
792 DCHECK_LE(header.fec_group, header.packet_sequence_number);
793 DCHECK_LT(header.packet_sequence_number - header.fec_group, 255u);
794 // Offset from the current packet sequence number to the first fec
795 // protected packet.
796 uint8 first_fec_protected_packet_offset =
797 static_cast<uint8>(header.packet_sequence_number - header.fec_group);
798 if (!writer->WriteBytes(&first_fec_protected_packet_offset, 1)) {
799 return false;
803 return true;
806 const QuicTime::Delta QuicFramer::CalculateTimestampFromWire(
807 uint32 time_delta_us) {
808 // The new time_delta might have wrapped to the next epoch, or it
809 // might have reverse wrapped to the previous epoch, or it might
810 // remain in the same epoch. Select the time closest to the previous
811 // time.
813 // epoch_delta is the delta between epochs. A delta is 4 bytes of
814 // microseconds.
815 const uint64 epoch_delta = UINT64_C(1) << 32;
816 uint64 epoch = last_timestamp_.ToMicroseconds() & ~(epoch_delta - 1);
817 // Wrapping is safe here because a wrapped value will not be ClosestTo below.
818 uint64 prev_epoch = epoch - epoch_delta;
819 uint64 next_epoch = epoch + epoch_delta;
821 uint64 time = ClosestTo(last_timestamp_.ToMicroseconds(),
822 epoch + time_delta_us,
823 ClosestTo(last_timestamp_.ToMicroseconds(),
824 prev_epoch + time_delta_us,
825 next_epoch + time_delta_us));
827 return QuicTime::Delta::FromMicroseconds(time);
830 QuicPacketSequenceNumber QuicFramer::CalculatePacketSequenceNumberFromWire(
831 QuicSequenceNumberLength sequence_number_length,
832 QuicPacketSequenceNumber packet_sequence_number) const {
833 // The new sequence number might have wrapped to the next epoch, or
834 // it might have reverse wrapped to the previous epoch, or it might
835 // remain in the same epoch. Select the sequence number closest to the
836 // next expected sequence number, the previous sequence number plus 1.
838 // epoch_delta is the delta between epochs the sequence number was serialized
839 // with, so the correct value is likely the same epoch as the last sequence
840 // number or an adjacent epoch.
841 const QuicPacketSequenceNumber epoch_delta =
842 UINT64_C(1) << (8 * sequence_number_length);
843 QuicPacketSequenceNumber next_sequence_number = last_sequence_number_ + 1;
844 QuicPacketSequenceNumber epoch = last_sequence_number_ & ~(epoch_delta - 1);
845 QuicPacketSequenceNumber prev_epoch = epoch - epoch_delta;
846 QuicPacketSequenceNumber next_epoch = epoch + epoch_delta;
848 return ClosestTo(next_sequence_number,
849 epoch + packet_sequence_number,
850 ClosestTo(next_sequence_number,
851 prev_epoch + packet_sequence_number,
852 next_epoch + packet_sequence_number));
855 bool QuicFramer::ProcessPublicHeader(
856 QuicPacketPublicHeader* public_header) {
857 uint8 public_flags;
858 if (!reader_->ReadBytes(&public_flags, 1)) {
859 set_detailed_error("Unable to read public flags.");
860 return false;
863 public_header->reset_flag = (public_flags & PACKET_PUBLIC_FLAGS_RST) != 0;
864 public_header->version_flag =
865 (public_flags & PACKET_PUBLIC_FLAGS_VERSION) != 0;
867 if (validate_flags_ &&
868 !public_header->version_flag && public_flags > PACKET_PUBLIC_FLAGS_MAX) {
869 set_detailed_error("Illegal public flags value.");
870 return false;
873 if (public_header->reset_flag && public_header->version_flag) {
874 set_detailed_error("Got version flag in reset packet");
875 return false;
878 switch (public_flags & PACKET_PUBLIC_FLAGS_8BYTE_CONNECTION_ID) {
879 case PACKET_PUBLIC_FLAGS_8BYTE_CONNECTION_ID:
880 if (!reader_->ReadUInt64(&public_header->connection_id)) {
881 set_detailed_error("Unable to read ConnectionId.");
882 return false;
884 public_header->connection_id_length = PACKET_8BYTE_CONNECTION_ID;
885 break;
886 case PACKET_PUBLIC_FLAGS_4BYTE_CONNECTION_ID:
887 // If the connection_id is truncated, expect to read the last serialized
888 // connection_id.
889 if (!reader_->ReadBytes(&public_header->connection_id,
890 PACKET_4BYTE_CONNECTION_ID)) {
891 set_detailed_error("Unable to read ConnectionId.");
892 return false;
894 if (last_serialized_connection_id_ &&
895 (public_header->connection_id & k4ByteConnectionIdMask) !=
896 (last_serialized_connection_id_ & k4ByteConnectionIdMask)) {
897 set_detailed_error("Truncated 4 byte ConnectionId does not match "
898 "previous connection_id.");
899 return false;
901 public_header->connection_id_length = PACKET_4BYTE_CONNECTION_ID;
902 public_header->connection_id = last_serialized_connection_id_;
903 break;
904 case PACKET_PUBLIC_FLAGS_1BYTE_CONNECTION_ID:
905 if (!reader_->ReadBytes(&public_header->connection_id,
906 PACKET_1BYTE_CONNECTION_ID)) {
907 set_detailed_error("Unable to read ConnectionId.");
908 return false;
910 if (last_serialized_connection_id_ &&
911 (public_header->connection_id & k1ByteConnectionIdMask) !=
912 (last_serialized_connection_id_ & k1ByteConnectionIdMask)) {
913 set_detailed_error("Truncated 1 byte ConnectionId does not match "
914 "previous connection_id.");
915 return false;
917 public_header->connection_id_length = PACKET_1BYTE_CONNECTION_ID;
918 public_header->connection_id = last_serialized_connection_id_;
919 break;
920 case PACKET_PUBLIC_FLAGS_0BYTE_CONNECTION_ID:
921 public_header->connection_id_length = PACKET_0BYTE_CONNECTION_ID;
922 public_header->connection_id = last_serialized_connection_id_;
923 break;
926 public_header->sequence_number_length =
927 ReadSequenceNumberLength(
928 public_flags >> kPublicHeaderSequenceNumberShift);
930 // Read the version only if the packet is from the client.
931 // version flag from the server means version negotiation packet.
932 if (public_header->version_flag && perspective_ == Perspective::IS_SERVER) {
933 QuicTag version_tag;
934 if (!reader_->ReadUInt32(&version_tag)) {
935 set_detailed_error("Unable to read protocol version.");
936 return false;
939 // If the version from the new packet is the same as the version of this
940 // framer, then the public flags should be set to something we understand.
941 // If not, this raises an error.
942 QuicVersion version = QuicTagToQuicVersion(version_tag);
943 if (version == quic_version_ && public_flags > PACKET_PUBLIC_FLAGS_MAX) {
944 set_detailed_error("Illegal public flags value.");
945 return false;
947 public_header->versions.push_back(version);
949 return true;
952 // static
953 QuicSequenceNumberLength QuicFramer::GetMinSequenceNumberLength(
954 QuicPacketSequenceNumber sequence_number) {
955 if (sequence_number < 1 << (PACKET_1BYTE_SEQUENCE_NUMBER * 8)) {
956 return PACKET_1BYTE_SEQUENCE_NUMBER;
957 } else if (sequence_number < 1 << (PACKET_2BYTE_SEQUENCE_NUMBER * 8)) {
958 return PACKET_2BYTE_SEQUENCE_NUMBER;
959 } else if (sequence_number <
960 UINT64_C(1) << (PACKET_4BYTE_SEQUENCE_NUMBER * 8)) {
961 return PACKET_4BYTE_SEQUENCE_NUMBER;
962 } else {
963 return PACKET_6BYTE_SEQUENCE_NUMBER;
967 // static
968 uint8 QuicFramer::GetSequenceNumberFlags(
969 QuicSequenceNumberLength sequence_number_length) {
970 switch (sequence_number_length) {
971 case PACKET_1BYTE_SEQUENCE_NUMBER:
972 return PACKET_FLAGS_1BYTE_SEQUENCE;
973 case PACKET_2BYTE_SEQUENCE_NUMBER:
974 return PACKET_FLAGS_2BYTE_SEQUENCE;
975 case PACKET_4BYTE_SEQUENCE_NUMBER:
976 return PACKET_FLAGS_4BYTE_SEQUENCE;
977 case PACKET_6BYTE_SEQUENCE_NUMBER:
978 return PACKET_FLAGS_6BYTE_SEQUENCE;
979 default:
980 LOG(DFATAL) << "Unreachable case statement.";
981 return PACKET_FLAGS_6BYTE_SEQUENCE;
985 // static
986 QuicFramer::AckFrameInfo QuicFramer::GetAckFrameInfo(
987 const QuicAckFrame& frame) {
988 AckFrameInfo ack_info;
989 if (frame.missing_packets.empty()) {
990 return ack_info;
992 DCHECK_GE(frame.largest_observed, *frame.missing_packets.rbegin());
993 size_t cur_range_length = 0;
994 SequenceNumberSet::const_iterator iter = frame.missing_packets.begin();
995 QuicPacketSequenceNumber last_missing = *iter;
996 ++iter;
997 for (; iter != frame.missing_packets.end(); ++iter) {
998 if (cur_range_length < numeric_limits<uint8>::max() &&
999 *iter == (last_missing + 1)) {
1000 ++cur_range_length;
1001 } else {
1002 ack_info.nack_ranges[last_missing - cur_range_length] =
1003 static_cast<uint8>(cur_range_length);
1004 cur_range_length = 0;
1006 ack_info.max_delta = max(ack_info.max_delta, *iter - last_missing);
1007 last_missing = *iter;
1009 // Include the last nack range.
1010 ack_info.nack_ranges[last_missing - cur_range_length] =
1011 static_cast<uint8>(cur_range_length);
1012 // Include the range to the largest observed.
1013 ack_info.max_delta =
1014 max(ack_info.max_delta, frame.largest_observed - last_missing);
1015 return ack_info;
1018 bool QuicFramer::ProcessPacketHeader(QuicPacketHeader* header,
1019 const QuicEncryptedPacket& packet,
1020 char* decrypted_buffer,
1021 size_t buffer_length) {
1022 if (!ProcessPacketSequenceNumber(header->public_header.sequence_number_length,
1023 &header->packet_sequence_number)) {
1024 set_detailed_error("Unable to read sequence number.");
1025 return RaiseError(QUIC_INVALID_PACKET_HEADER);
1028 if (header->packet_sequence_number == 0u) {
1029 set_detailed_error("Packet sequence numbers cannot be 0.");
1030 return RaiseError(QUIC_INVALID_PACKET_HEADER);
1033 if (!visitor_->OnUnauthenticatedHeader(*header)) {
1034 return false;
1037 if (!DecryptPayload(*header, packet, decrypted_buffer, buffer_length)) {
1038 set_detailed_error("Unable to decrypt payload.");
1039 return RaiseError(QUIC_DECRYPTION_FAILURE);
1042 uint8 private_flags;
1043 if (!reader_->ReadBytes(&private_flags, 1)) {
1044 set_detailed_error("Unable to read private flags.");
1045 return RaiseError(QUIC_INVALID_PACKET_HEADER);
1048 if (private_flags > PACKET_PRIVATE_FLAGS_MAX) {
1049 set_detailed_error("Illegal private flags value.");
1050 return RaiseError(QUIC_INVALID_PACKET_HEADER);
1053 header->entropy_flag = (private_flags & PACKET_PRIVATE_FLAGS_ENTROPY) != 0;
1054 header->fec_flag = (private_flags & PACKET_PRIVATE_FLAGS_FEC) != 0;
1056 if ((private_flags & PACKET_PRIVATE_FLAGS_FEC_GROUP) != 0) {
1057 header->is_in_fec_group = IN_FEC_GROUP;
1058 uint8 first_fec_protected_packet_offset;
1059 if (!reader_->ReadBytes(&first_fec_protected_packet_offset, 1)) {
1060 set_detailed_error("Unable to read first fec protected packet offset.");
1061 return RaiseError(QUIC_INVALID_PACKET_HEADER);
1063 if (first_fec_protected_packet_offset >= header->packet_sequence_number) {
1064 set_detailed_error("First fec protected packet offset must be less "
1065 "than the sequence number.");
1066 return RaiseError(QUIC_INVALID_PACKET_HEADER);
1068 header->fec_group =
1069 header->packet_sequence_number - first_fec_protected_packet_offset;
1072 header->entropy_hash = GetPacketEntropyHash(*header);
1073 // Set the last sequence number after we have decrypted the packet
1074 // so we are confident is not attacker controlled.
1075 last_sequence_number_ = header->packet_sequence_number;
1076 return true;
1079 bool QuicFramer::ProcessPacketSequenceNumber(
1080 QuicSequenceNumberLength sequence_number_length,
1081 QuicPacketSequenceNumber* sequence_number) {
1082 QuicPacketSequenceNumber wire_sequence_number = 0u;
1083 if (!reader_->ReadBytes(&wire_sequence_number, sequence_number_length)) {
1084 return false;
1087 // TODO(ianswett): Explore the usefulness of trying multiple sequence numbers
1088 // in case the first guess is incorrect.
1089 *sequence_number =
1090 CalculatePacketSequenceNumberFromWire(sequence_number_length,
1091 wire_sequence_number);
1092 return true;
1095 bool QuicFramer::ProcessFrameData(const QuicPacketHeader& header) {
1096 if (reader_->IsDoneReading()) {
1097 set_detailed_error("Packet has no frames.");
1098 return RaiseError(QUIC_MISSING_PAYLOAD);
1100 while (!reader_->IsDoneReading()) {
1101 uint8 frame_type;
1102 if (!reader_->ReadBytes(&frame_type, 1)) {
1103 set_detailed_error("Unable to read frame type.");
1104 return RaiseError(QUIC_INVALID_FRAME_DATA);
1107 if (frame_type & kQuicFrameTypeSpecialMask) {
1108 // Stream Frame
1109 if (frame_type & kQuicFrameTypeStreamMask) {
1110 QuicStreamFrame frame;
1111 if (!ProcessStreamFrame(frame_type, &frame)) {
1112 return RaiseError(QUIC_INVALID_STREAM_DATA);
1114 if (!visitor_->OnStreamFrame(frame)) {
1115 DVLOG(1) << "Visitor asked to stop further processing.";
1116 // Returning true since there was no parsing error.
1117 return true;
1119 continue;
1122 // Ack Frame
1123 if (frame_type & kQuicFrameTypeAckMask) {
1124 QuicAckFrame frame;
1125 if (!ProcessAckFrame(frame_type, &frame)) {
1126 return RaiseError(QUIC_INVALID_ACK_DATA);
1128 if (!visitor_->OnAckFrame(frame)) {
1129 DVLOG(1) << "Visitor asked to stop further processing.";
1130 // Returning true since there was no parsing error.
1131 return true;
1133 continue;
1136 // This was a special frame type that did not match any
1137 // of the known ones. Error.
1138 set_detailed_error("Illegal frame type.");
1139 DLOG(WARNING) << "Illegal frame type: "
1140 << static_cast<int>(frame_type);
1141 return RaiseError(QUIC_INVALID_FRAME_DATA);
1144 switch (frame_type) {
1145 case PADDING_FRAME:
1146 // We're done with the packet.
1147 return true;
1149 case RST_STREAM_FRAME: {
1150 QuicRstStreamFrame frame;
1151 if (!ProcessRstStreamFrame(&frame)) {
1152 return RaiseError(QUIC_INVALID_RST_STREAM_DATA);
1154 if (!visitor_->OnRstStreamFrame(frame)) {
1155 DVLOG(1) << "Visitor asked to stop further processing.";
1156 // Returning true since there was no parsing error.
1157 return true;
1159 continue;
1162 case CONNECTION_CLOSE_FRAME: {
1163 QuicConnectionCloseFrame frame;
1164 if (!ProcessConnectionCloseFrame(&frame)) {
1165 return RaiseError(QUIC_INVALID_CONNECTION_CLOSE_DATA);
1168 if (!visitor_->OnConnectionCloseFrame(frame)) {
1169 DVLOG(1) << "Visitor asked to stop further processing.";
1170 // Returning true since there was no parsing error.
1171 return true;
1173 continue;
1176 case GOAWAY_FRAME: {
1177 QuicGoAwayFrame goaway_frame;
1178 if (!ProcessGoAwayFrame(&goaway_frame)) {
1179 return RaiseError(QUIC_INVALID_GOAWAY_DATA);
1181 if (!visitor_->OnGoAwayFrame(goaway_frame)) {
1182 DVLOG(1) << "Visitor asked to stop further processing.";
1183 // Returning true since there was no parsing error.
1184 return true;
1186 continue;
1189 case WINDOW_UPDATE_FRAME: {
1190 QuicWindowUpdateFrame window_update_frame;
1191 if (!ProcessWindowUpdateFrame(&window_update_frame)) {
1192 return RaiseError(QUIC_INVALID_WINDOW_UPDATE_DATA);
1194 if (!visitor_->OnWindowUpdateFrame(window_update_frame)) {
1195 DVLOG(1) << "Visitor asked to stop further processing.";
1196 // Returning true since there was no parsing error.
1197 return true;
1199 continue;
1202 case BLOCKED_FRAME: {
1203 QuicBlockedFrame blocked_frame;
1204 if (!ProcessBlockedFrame(&blocked_frame)) {
1205 return RaiseError(QUIC_INVALID_BLOCKED_DATA);
1207 if (!visitor_->OnBlockedFrame(blocked_frame)) {
1208 DVLOG(1) << "Visitor asked to stop further processing.";
1209 // Returning true since there was no parsing error.
1210 return true;
1212 continue;
1215 case STOP_WAITING_FRAME: {
1216 QuicStopWaitingFrame stop_waiting_frame;
1217 if (!ProcessStopWaitingFrame(header, &stop_waiting_frame)) {
1218 return RaiseError(QUIC_INVALID_STOP_WAITING_DATA);
1220 if (!visitor_->OnStopWaitingFrame(stop_waiting_frame)) {
1221 DVLOG(1) << "Visitor asked to stop further processing.";
1222 // Returning true since there was no parsing error.
1223 return true;
1225 continue;
1227 case PING_FRAME: {
1228 // Ping has no payload.
1229 QuicPingFrame ping_frame;
1230 if (!visitor_->OnPingFrame(ping_frame)) {
1231 DVLOG(1) << "Visitor asked to stop further processing.";
1232 // Returning true since there was no parsing error.
1233 return true;
1235 continue;
1238 default:
1239 set_detailed_error("Illegal frame type.");
1240 DLOG(WARNING) << "Illegal frame type: "
1241 << static_cast<int>(frame_type);
1242 return RaiseError(QUIC_INVALID_FRAME_DATA);
1246 return true;
1249 bool QuicFramer::ProcessStreamFrame(uint8 frame_type,
1250 QuicStreamFrame* frame) {
1251 uint8 stream_flags = frame_type;
1253 stream_flags &= ~kQuicFrameTypeStreamMask;
1255 // Read from right to left: StreamID, Offset, Data Length, Fin.
1256 const uint8 stream_id_length = (stream_flags & kQuicStreamIDLengthMask) + 1;
1257 stream_flags >>= kQuicStreamIdShift;
1259 uint8 offset_length = (stream_flags & kQuicStreamOffsetMask);
1260 // There is no encoding for 1 byte, only 0 and 2 through 8.
1261 if (offset_length > 0) {
1262 offset_length += 1;
1264 stream_flags >>= kQuicStreamOffsetShift;
1266 bool has_data_length =
1267 (stream_flags & kQuicStreamDataLengthMask) == kQuicStreamDataLengthMask;
1268 stream_flags >>= kQuicStreamDataLengthShift;
1270 frame->fin = (stream_flags & kQuicStreamFinMask) == kQuicStreamFinShift;
1272 frame->stream_id = 0;
1273 if (!reader_->ReadBytes(&frame->stream_id, stream_id_length)) {
1274 set_detailed_error("Unable to read stream_id.");
1275 return false;
1278 frame->offset = 0;
1279 if (!reader_->ReadBytes(&frame->offset, offset_length)) {
1280 set_detailed_error("Unable to read offset.");
1281 return false;
1284 StringPiece frame_data;
1285 if (has_data_length) {
1286 if (!reader_->ReadStringPiece16(&frame_data)) {
1287 set_detailed_error("Unable to read frame data.");
1288 return false;
1290 } else {
1291 if (!reader_->ReadStringPiece(&frame_data, reader_->BytesRemaining())) {
1292 set_detailed_error("Unable to read frame data.");
1293 return false;
1296 // Point frame to the right data.
1297 frame->data.Clear();
1298 if (!frame_data.empty()) {
1299 frame->data.Append(const_cast<char*>(frame_data.data()), frame_data.size());
1302 return true;
1305 bool QuicFramer::ProcessAckFrame(uint8 frame_type, QuicAckFrame* ack_frame) {
1306 // Determine the three lengths from the frame type: largest observed length,
1307 // missing sequence number length, and missing range length.
1308 const QuicSequenceNumberLength missing_sequence_number_length =
1309 ReadSequenceNumberLength(frame_type);
1310 frame_type >>= kQuicSequenceNumberLengthShift;
1311 const QuicSequenceNumberLength largest_observed_sequence_number_length =
1312 ReadSequenceNumberLength(frame_type);
1313 frame_type >>= kQuicSequenceNumberLengthShift;
1314 ack_frame->is_truncated = frame_type & kQuicAckTruncatedMask;
1315 frame_type >>= kQuicAckTruncatedShift;
1316 bool has_nacks = frame_type & kQuicHasNacksMask;
1318 if (!reader_->ReadBytes(&ack_frame->entropy_hash, 1)) {
1319 set_detailed_error("Unable to read entropy hash for received packets.");
1320 return false;
1323 if (!reader_->ReadBytes(&ack_frame->largest_observed,
1324 largest_observed_sequence_number_length)) {
1325 set_detailed_error("Unable to read largest observed.");
1326 return false;
1329 uint64 delta_time_largest_observed_us;
1330 if (!reader_->ReadUFloat16(&delta_time_largest_observed_us)) {
1331 set_detailed_error("Unable to read delta time largest observed.");
1332 return false;
1335 if (delta_time_largest_observed_us == kUFloat16MaxValue) {
1336 ack_frame->delta_time_largest_observed = QuicTime::Delta::Infinite();
1337 } else {
1338 ack_frame->delta_time_largest_observed =
1339 QuicTime::Delta::FromMicroseconds(delta_time_largest_observed_us);
1342 if (!ProcessTimestampsInAckFrame(ack_frame)) {
1343 return false;
1346 if (!has_nacks) {
1347 return true;
1350 uint8 num_missing_ranges;
1351 if (!reader_->ReadBytes(&num_missing_ranges, 1)) {
1352 set_detailed_error("Unable to read num missing packet ranges.");
1353 return false;
1356 QuicPacketSequenceNumber last_sequence_number = ack_frame->largest_observed;
1357 for (size_t i = 0; i < num_missing_ranges; ++i) {
1358 QuicPacketSequenceNumber missing_delta = 0;
1359 if (!reader_->ReadBytes(&missing_delta, missing_sequence_number_length)) {
1360 set_detailed_error("Unable to read missing sequence number delta.");
1361 return false;
1363 last_sequence_number -= missing_delta;
1364 QuicPacketSequenceNumber range_length = 0;
1365 if (!reader_->ReadBytes(&range_length, PACKET_1BYTE_SEQUENCE_NUMBER)) {
1366 set_detailed_error("Unable to read missing sequence number range.");
1367 return false;
1369 for (size_t j = 0; j <= range_length; ++j) {
1370 ack_frame->missing_packets.insert(last_sequence_number - j);
1372 // Subtract an extra 1 to ensure ranges are represented efficiently and
1373 // can't overlap by 1 sequence number. This allows a missing_delta of 0
1374 // to represent an adjacent nack range.
1375 last_sequence_number -= (range_length + 1);
1378 // Parse the revived packets list.
1379 uint8 num_revived_packets;
1380 if (!reader_->ReadBytes(&num_revived_packets, 1)) {
1381 set_detailed_error("Unable to read num revived packets.");
1382 return false;
1385 for (size_t i = 0; i < num_revived_packets; ++i) {
1386 QuicPacketSequenceNumber revived_packet = 0;
1387 if (!reader_->ReadBytes(&revived_packet,
1388 largest_observed_sequence_number_length)) {
1389 set_detailed_error("Unable to read revived packet.");
1390 return false;
1393 ack_frame->revived_packets.insert(revived_packet);
1396 return true;
1399 bool QuicFramer::ProcessTimestampsInAckFrame(QuicAckFrame* ack_frame) {
1400 if (ack_frame->is_truncated) {
1401 return true;
1403 uint8 num_received_packets;
1404 if (!reader_->ReadBytes(&num_received_packets, 1)) {
1405 set_detailed_error("Unable to read num received packets.");
1406 return false;
1409 if (num_received_packets > 0) {
1410 uint8 delta_from_largest_observed;
1411 if (!reader_->ReadBytes(&delta_from_largest_observed,
1412 PACKET_1BYTE_SEQUENCE_NUMBER)) {
1413 set_detailed_error("Unable to read sequence delta in received packets.");
1414 return false;
1416 QuicPacketSequenceNumber seq_num =
1417 ack_frame->largest_observed - delta_from_largest_observed;
1419 // Time delta from the framer creation.
1420 uint32 time_delta_us;
1421 if (!reader_->ReadBytes(&time_delta_us, sizeof(time_delta_us))) {
1422 set_detailed_error("Unable to read time delta in received packets.");
1423 return false;
1426 last_timestamp_ = CalculateTimestampFromWire(time_delta_us);
1428 ack_frame->received_packet_times.push_back(
1429 std::make_pair(seq_num, creation_time_.Add(last_timestamp_)));
1431 for (uint8 i = 1; i < num_received_packets; ++i) {
1432 if (!reader_->ReadBytes(&delta_from_largest_observed,
1433 PACKET_1BYTE_SEQUENCE_NUMBER)) {
1434 set_detailed_error(
1435 "Unable to read sequence delta in received packets.");
1436 return false;
1438 seq_num = ack_frame->largest_observed - delta_from_largest_observed;
1440 // Time delta from the previous timestamp.
1441 uint64 incremental_time_delta_us;
1442 if (!reader_->ReadUFloat16(&incremental_time_delta_us)) {
1443 set_detailed_error(
1444 "Unable to read incremental time delta in received packets.");
1445 return false;
1448 last_timestamp_ = last_timestamp_.Add(
1449 QuicTime::Delta::FromMicroseconds(incremental_time_delta_us));
1450 ack_frame->received_packet_times.push_back(
1451 std::make_pair(seq_num, creation_time_.Add(last_timestamp_)));
1454 return true;
1457 bool QuicFramer::ProcessStopWaitingFrame(const QuicPacketHeader& header,
1458 QuicStopWaitingFrame* stop_waiting) {
1459 if (!reader_->ReadBytes(&stop_waiting->entropy_hash, 1)) {
1460 set_detailed_error("Unable to read entropy hash for sent packets.");
1461 return false;
1464 QuicPacketSequenceNumber least_unacked_delta = 0;
1465 if (!reader_->ReadBytes(&least_unacked_delta,
1466 header.public_header.sequence_number_length)) {
1467 set_detailed_error("Unable to read least unacked delta.");
1468 return false;
1470 DCHECK_GE(header.packet_sequence_number, least_unacked_delta);
1471 stop_waiting->least_unacked =
1472 header.packet_sequence_number - least_unacked_delta;
1474 return true;
1477 bool QuicFramer::ProcessRstStreamFrame(QuicRstStreamFrame* frame) {
1478 if (!reader_->ReadUInt32(&frame->stream_id)) {
1479 set_detailed_error("Unable to read stream_id.");
1480 return false;
1483 if (!reader_->ReadUInt64(&frame->byte_offset)) {
1484 set_detailed_error("Unable to read rst stream sent byte offset.");
1485 return false;
1488 uint32 error_code;
1489 if (!reader_->ReadUInt32(&error_code)) {
1490 set_detailed_error("Unable to read rst stream error code.");
1491 return false;
1494 if (error_code >= QUIC_STREAM_LAST_ERROR) {
1495 set_detailed_error("Invalid rst stream error code.");
1496 return false;
1499 frame->error_code = static_cast<QuicRstStreamErrorCode>(error_code);
1500 if (quic_version_ <= QUIC_VERSION_24) {
1501 StringPiece error_details;
1502 if (!reader_->ReadStringPiece16(&error_details)) {
1503 set_detailed_error("Unable to read rst stream error details.");
1504 return false;
1506 frame->error_details = error_details.as_string();
1509 return true;
1512 bool QuicFramer::ProcessConnectionCloseFrame(QuicConnectionCloseFrame* frame) {
1513 uint32 error_code;
1514 if (!reader_->ReadUInt32(&error_code)) {
1515 set_detailed_error("Unable to read connection close error code.");
1516 return false;
1519 if (error_code >= QUIC_LAST_ERROR) {
1520 set_detailed_error("Invalid error code.");
1521 return false;
1524 frame->error_code = static_cast<QuicErrorCode>(error_code);
1526 StringPiece error_details;
1527 if (!reader_->ReadStringPiece16(&error_details)) {
1528 set_detailed_error("Unable to read connection close error details.");
1529 return false;
1531 frame->error_details = error_details.as_string();
1533 return true;
1536 bool QuicFramer::ProcessGoAwayFrame(QuicGoAwayFrame* frame) {
1537 uint32 error_code;
1538 if (!reader_->ReadUInt32(&error_code)) {
1539 set_detailed_error("Unable to read go away error code.");
1540 return false;
1542 frame->error_code = static_cast<QuicErrorCode>(error_code);
1544 if (error_code >= QUIC_LAST_ERROR) {
1545 set_detailed_error("Invalid error code.");
1546 return false;
1549 uint32 stream_id;
1550 if (!reader_->ReadUInt32(&stream_id)) {
1551 set_detailed_error("Unable to read last good stream id.");
1552 return false;
1554 frame->last_good_stream_id = static_cast<QuicStreamId>(stream_id);
1556 StringPiece reason_phrase;
1557 if (!reader_->ReadStringPiece16(&reason_phrase)) {
1558 set_detailed_error("Unable to read goaway reason.");
1559 return false;
1561 frame->reason_phrase = reason_phrase.as_string();
1563 return true;
1566 bool QuicFramer::ProcessWindowUpdateFrame(QuicWindowUpdateFrame* frame) {
1567 if (!reader_->ReadUInt32(&frame->stream_id)) {
1568 set_detailed_error("Unable to read stream_id.");
1569 return false;
1572 if (!reader_->ReadUInt64(&frame->byte_offset)) {
1573 set_detailed_error("Unable to read window byte_offset.");
1574 return false;
1577 return true;
1580 bool QuicFramer::ProcessBlockedFrame(QuicBlockedFrame* frame) {
1581 if (!reader_->ReadUInt32(&frame->stream_id)) {
1582 set_detailed_error("Unable to read stream_id.");
1583 return false;
1586 return true;
1589 // static
1590 StringPiece QuicFramer::GetAssociatedDataFromEncryptedPacket(
1591 const QuicEncryptedPacket& encrypted,
1592 QuicConnectionIdLength connection_id_length,
1593 bool includes_version,
1594 QuicSequenceNumberLength sequence_number_length) {
1595 return StringPiece(
1596 encrypted.data() + kStartOfHashData, GetStartOfEncryptedData(
1597 connection_id_length, includes_version, sequence_number_length)
1598 - kStartOfHashData);
1601 void QuicFramer::SetDecrypter(QuicDecrypter* decrypter,
1602 EncryptionLevel level) {
1603 DCHECK(alternative_decrypter_.get() == nullptr);
1604 DCHECK_GE(level, decrypter_level_);
1605 decrypter_.reset(decrypter);
1606 decrypter_level_ = level;
1609 void QuicFramer::SetAlternativeDecrypter(QuicDecrypter* decrypter,
1610 EncryptionLevel level,
1611 bool latch_once_used) {
1612 alternative_decrypter_.reset(decrypter);
1613 alternative_decrypter_level_ = level;
1614 alternative_decrypter_latch_ = latch_once_used;
1617 const QuicDecrypter* QuicFramer::decrypter() const {
1618 return decrypter_.get();
1621 const QuicDecrypter* QuicFramer::alternative_decrypter() const {
1622 return alternative_decrypter_.get();
1625 void QuicFramer::SetEncrypter(EncryptionLevel level,
1626 QuicEncrypter* encrypter) {
1627 DCHECK_GE(level, 0);
1628 DCHECK_LT(level, NUM_ENCRYPTION_LEVELS);
1629 encrypter_[level].reset(encrypter);
1632 QuicEncryptedPacket* QuicFramer::EncryptPacket(
1633 EncryptionLevel level,
1634 QuicPacketSequenceNumber packet_sequence_number,
1635 const QuicPacket& packet,
1636 char* buffer,
1637 size_t buffer_len) {
1638 DCHECK(encrypter_[level].get() != nullptr);
1640 const size_t encrypted_len =
1641 encrypter_[level]->GetCiphertextSize(packet.Plaintext().length());
1642 StringPiece header_data = packet.BeforePlaintext();
1643 const size_t total_len = header_data.length() + encrypted_len;
1645 char* encryption_buffer = buffer;
1646 // Allocate a large enough buffer for the header and the encrypted data.
1647 const bool is_new_buffer = total_len > buffer_len;
1648 if (is_new_buffer) {
1649 if (!FLAGS_quic_allow_oversized_packets_for_test) {
1650 LOG(DFATAL) << "Buffer of length:" << buffer_len
1651 << " is not large enough to encrypt length " << total_len;
1652 return nullptr;
1654 encryption_buffer = new char[total_len];
1656 // Copy in the header, because the encrypter only populates the encrypted
1657 // plaintext content.
1658 memcpy(encryption_buffer, header_data.data(), header_data.length());
1659 // Encrypt the plaintext into the buffer.
1660 size_t output_length = 0;
1661 if (!encrypter_[level]->EncryptPacket(
1662 packet_sequence_number, packet.AssociatedData(), packet.Plaintext(),
1663 encryption_buffer + header_data.length(), &output_length,
1664 encrypted_len)) {
1665 RaiseError(QUIC_ENCRYPTION_FAILURE);
1666 return nullptr;
1669 return new QuicEncryptedPacket(
1670 encryption_buffer, header_data.length() + output_length, is_new_buffer);
1673 size_t QuicFramer::GetMaxPlaintextSize(size_t ciphertext_size) {
1674 // In order to keep the code simple, we don't have the current encryption
1675 // level to hand. Both the NullEncrypter and AES-GCM have a tag length of 12.
1676 size_t min_plaintext_size = ciphertext_size;
1678 for (int i = ENCRYPTION_NONE; i < NUM_ENCRYPTION_LEVELS; i++) {
1679 if (encrypter_[i].get() != nullptr) {
1680 size_t size = encrypter_[i]->GetMaxPlaintextSize(ciphertext_size);
1681 if (size < min_plaintext_size) {
1682 min_plaintext_size = size;
1687 return min_plaintext_size;
1690 bool QuicFramer::DecryptPayload(const QuicPacketHeader& header,
1691 const QuicEncryptedPacket& packet,
1692 char* decrypted_buffer,
1693 size_t buffer_length) {
1694 StringPiece encrypted = reader_->ReadRemainingPayload();
1695 DCHECK(decrypter_.get() != nullptr);
1696 const StringPiece& associated_data = GetAssociatedDataFromEncryptedPacket(
1697 packet, header.public_header.connection_id_length,
1698 header.public_header.version_flag,
1699 header.public_header.sequence_number_length);
1700 size_t decrypted_length = 0;
1701 bool success = decrypter_->DecryptPacket(
1702 header.packet_sequence_number, associated_data, encrypted,
1703 decrypted_buffer, &decrypted_length, buffer_length);
1704 if (success) {
1705 visitor_->OnDecryptedPacket(decrypter_level_);
1706 } else if (alternative_decrypter_.get() != nullptr) {
1707 success = alternative_decrypter_->DecryptPacket(
1708 header.packet_sequence_number, associated_data, encrypted,
1709 decrypted_buffer, &decrypted_length, buffer_length);
1710 if (success) {
1711 visitor_->OnDecryptedPacket(alternative_decrypter_level_);
1712 if (alternative_decrypter_latch_) {
1713 // Switch to the alternative decrypter and latch so that we cannot
1714 // switch back.
1715 decrypter_.reset(alternative_decrypter_.release());
1716 decrypter_level_ = alternative_decrypter_level_;
1717 alternative_decrypter_level_ = ENCRYPTION_NONE;
1718 } else {
1719 // Switch the alternative decrypter so that we use it first next time.
1720 decrypter_.swap(alternative_decrypter_);
1721 EncryptionLevel level = alternative_decrypter_level_;
1722 alternative_decrypter_level_ = decrypter_level_;
1723 decrypter_level_ = level;
1728 if (!success) {
1729 DLOG(WARNING) << "DecryptPacket failed for sequence_number:"
1730 << header.packet_sequence_number;
1731 return false;
1734 reader_.reset(new QuicDataReader(decrypted_buffer, decrypted_length));
1735 return true;
1738 size_t QuicFramer::GetAckFrameSize(
1739 const QuicAckFrame& ack,
1740 QuicSequenceNumberLength sequence_number_length) {
1741 AckFrameInfo ack_info = GetAckFrameInfo(ack);
1742 QuicSequenceNumberLength largest_observed_length =
1743 GetMinSequenceNumberLength(ack.largest_observed);
1744 QuicSequenceNumberLength missing_sequence_number_length =
1745 GetMinSequenceNumberLength(ack_info.max_delta);
1747 size_t ack_size = GetMinAckFrameSize(sequence_number_length,
1748 largest_observed_length);
1749 if (!ack_info.nack_ranges.empty()) {
1750 ack_size += kNumberOfNackRangesSize + kNumberOfRevivedPacketsSize;
1751 ack_size += min(ack_info.nack_ranges.size(), kMaxNackRanges) *
1752 (missing_sequence_number_length + PACKET_1BYTE_SEQUENCE_NUMBER);
1753 ack_size += min(ack.revived_packets.size(),
1754 kMaxRevivedPackets) * largest_observed_length;
1757 // In version 23, if the ack will be truncated due to too many nack ranges,
1758 // then do not include the number of timestamps (1 byte).
1759 if (ack_info.nack_ranges.size() <= kMaxNackRanges) {
1760 // 1 byte for the number of timestamps.
1761 ack_size += 1;
1762 if (ack.received_packet_times.size() > 0) {
1763 // 1 byte for sequence number, 4 bytes for timestamp for the first
1764 // packet.
1765 ack_size += 5;
1767 // 1 byte for sequence number, 2 bytes for timestamp for the other
1768 // packets.
1769 ack_size += 3 * (ack.received_packet_times.size() - 1);
1773 return ack_size;
1776 size_t QuicFramer::ComputeFrameLength(
1777 const QuicFrame& frame,
1778 bool last_frame_in_packet,
1779 InFecGroup is_in_fec_group,
1780 QuicSequenceNumberLength sequence_number_length) {
1781 switch (frame.type) {
1782 case STREAM_FRAME:
1783 return GetMinStreamFrameSize(frame.stream_frame->stream_id,
1784 frame.stream_frame->offset,
1785 last_frame_in_packet,
1786 is_in_fec_group) +
1787 frame.stream_frame->data.TotalBufferSize();
1788 case ACK_FRAME: {
1789 return GetAckFrameSize(*frame.ack_frame, sequence_number_length);
1791 case STOP_WAITING_FRAME:
1792 return GetStopWaitingFrameSize(sequence_number_length);
1793 case PING_FRAME:
1794 // Ping has no payload.
1795 return kQuicFrameTypeSize;
1796 case RST_STREAM_FRAME:
1797 if (quic_version_ <= QUIC_VERSION_24) {
1798 return GetMinRstStreamFrameSize() +
1799 frame.rst_stream_frame->error_details.size();
1801 return GetRstStreamFrameSize();
1802 case CONNECTION_CLOSE_FRAME:
1803 return GetMinConnectionCloseFrameSize() +
1804 frame.connection_close_frame->error_details.size();
1805 case GOAWAY_FRAME:
1806 return GetMinGoAwayFrameSize() + frame.goaway_frame->reason_phrase.size();
1807 case WINDOW_UPDATE_FRAME:
1808 return GetWindowUpdateFrameSize();
1809 case BLOCKED_FRAME:
1810 return GetBlockedFrameSize();
1811 case PADDING_FRAME:
1812 DCHECK(false);
1813 return 0;
1814 case NUM_FRAME_TYPES:
1815 DCHECK(false);
1816 return 0;
1819 // Not reachable, but some Chrome compilers can't figure that out. *sigh*
1820 DCHECK(false);
1821 return 0;
1824 bool QuicFramer::AppendTypeByte(const QuicFrame& frame,
1825 bool no_stream_frame_length,
1826 QuicDataWriter* writer) {
1827 uint8 type_byte = 0;
1828 switch (frame.type) {
1829 case STREAM_FRAME: {
1830 if (frame.stream_frame == nullptr) {
1831 LOG(DFATAL) << "Failed to append STREAM frame with no stream_frame.";
1833 // Fin bit.
1834 type_byte |= frame.stream_frame->fin ? kQuicStreamFinMask : 0;
1836 // Data Length bit.
1837 type_byte <<= kQuicStreamDataLengthShift;
1838 type_byte |= no_stream_frame_length ? 0: kQuicStreamDataLengthMask;
1840 // Offset 3 bits.
1841 type_byte <<= kQuicStreamOffsetShift;
1842 const size_t offset_len = GetStreamOffsetSize(frame.stream_frame->offset);
1843 if (offset_len > 0) {
1844 type_byte |= offset_len - 1;
1847 // stream id 2 bits.
1848 type_byte <<= kQuicStreamIdShift;
1849 type_byte |= GetStreamIdSize(frame.stream_frame->stream_id) - 1;
1850 type_byte |= kQuicFrameTypeStreamMask; // Set Stream Frame Type to 1.
1851 break;
1853 case ACK_FRAME:
1854 return true;
1855 default:
1856 type_byte = static_cast<uint8>(frame.type);
1857 break;
1860 return writer->WriteUInt8(type_byte);
1863 // static
1864 bool QuicFramer::AppendPacketSequenceNumber(
1865 QuicSequenceNumberLength sequence_number_length,
1866 QuicPacketSequenceNumber packet_sequence_number,
1867 QuicDataWriter* writer) {
1868 // Ensure the entire sequence number can be written.
1869 if (writer->capacity() - writer->length() <
1870 static_cast<size_t>(sequence_number_length)) {
1871 return false;
1873 switch (sequence_number_length) {
1874 case PACKET_1BYTE_SEQUENCE_NUMBER:
1875 return writer->WriteUInt8(
1876 packet_sequence_number & k1ByteSequenceNumberMask);
1877 break;
1878 case PACKET_2BYTE_SEQUENCE_NUMBER:
1879 return writer->WriteUInt16(
1880 packet_sequence_number & k2ByteSequenceNumberMask);
1881 break;
1882 case PACKET_4BYTE_SEQUENCE_NUMBER:
1883 return writer->WriteUInt32(
1884 packet_sequence_number & k4ByteSequenceNumberMask);
1885 break;
1886 case PACKET_6BYTE_SEQUENCE_NUMBER:
1887 return writer->WriteUInt48(
1888 packet_sequence_number & k6ByteSequenceNumberMask);
1889 break;
1890 default:
1891 DCHECK(false) << "sequence_number_length: " << sequence_number_length;
1892 return false;
1896 bool QuicFramer::AppendStreamFrame(
1897 const QuicStreamFrame& frame,
1898 bool no_stream_frame_length,
1899 QuicDataWriter* writer) {
1900 if (!writer->WriteBytes(&frame.stream_id, GetStreamIdSize(frame.stream_id))) {
1901 LOG(DFATAL) << "Writing stream id size failed.";
1902 return false;
1904 if (!writer->WriteBytes(&frame.offset, GetStreamOffsetSize(frame.offset))) {
1905 LOG(DFATAL) << "Writing offset size failed.";
1906 return false;
1908 if (!no_stream_frame_length) {
1909 if ((frame.data.TotalBufferSize() > numeric_limits<uint16>::max()) ||
1910 !writer->WriteUInt16(
1911 static_cast<uint16>(frame.data.TotalBufferSize()))) {
1912 LOG(DFATAL) << "Writing stream frame length failed";
1913 return false;
1917 if (!writer->WriteIOVector(frame.data)) {
1918 LOG(DFATAL) << "Writing frame data failed.";
1919 return false;
1921 return true;
1924 void QuicFramer::set_version(const QuicVersion version) {
1925 DCHECK(IsSupportedVersion(version)) << QuicVersionToString(version);
1926 quic_version_ = version;
1929 bool QuicFramer::AppendAckFrameAndTypeByte(
1930 const QuicPacketHeader& header,
1931 const QuicAckFrame& frame,
1932 QuicDataWriter* writer) {
1933 AckFrameInfo ack_info = GetAckFrameInfo(frame);
1934 QuicPacketSequenceNumber ack_largest_observed = frame.largest_observed;
1935 QuicSequenceNumberLength largest_observed_length =
1936 GetMinSequenceNumberLength(ack_largest_observed);
1937 QuicSequenceNumberLength missing_sequence_number_length =
1938 GetMinSequenceNumberLength(ack_info.max_delta);
1939 // Determine whether we need to truncate ranges.
1940 size_t available_range_bytes = writer->capacity() - writer->length() -
1941 kNumberOfRevivedPacketsSize - kNumberOfNackRangesSize -
1942 GetMinAckFrameSize(header.public_header.sequence_number_length,
1943 largest_observed_length);
1944 size_t max_num_ranges = available_range_bytes /
1945 (missing_sequence_number_length + PACKET_1BYTE_SEQUENCE_NUMBER);
1946 max_num_ranges = min(kMaxNackRanges, max_num_ranges);
1947 bool truncated = ack_info.nack_ranges.size() > max_num_ranges;
1948 DVLOG_IF(1, truncated) << "Truncating ack from "
1949 << ack_info.nack_ranges.size() << " ranges to "
1950 << max_num_ranges;
1951 // Write out the type byte by setting the low order bits and doing shifts
1952 // to make room for the next bit flags to be set.
1953 // Whether there are any nacks.
1954 uint8 type_byte = ack_info.nack_ranges.empty() ? 0 : kQuicHasNacksMask;
1956 // truncating bit.
1957 type_byte <<= kQuicAckTruncatedShift;
1958 type_byte |= truncated ? kQuicAckTruncatedMask : 0;
1960 // Largest observed sequence number length.
1961 type_byte <<= kQuicSequenceNumberLengthShift;
1962 type_byte |= GetSequenceNumberFlags(largest_observed_length);
1964 // Missing sequence number length.
1965 type_byte <<= kQuicSequenceNumberLengthShift;
1966 type_byte |= GetSequenceNumberFlags(missing_sequence_number_length);
1968 type_byte |= kQuicFrameTypeAckMask;
1970 if (!writer->WriteUInt8(type_byte)) {
1971 return false;
1974 QuicPacketEntropyHash ack_entropy_hash = frame.entropy_hash;
1975 NackRangeMap::reverse_iterator ack_iter = ack_info.nack_ranges.rbegin();
1976 if (truncated) {
1977 // Skip the nack ranges which the truncated ack won't include and set
1978 // a correct largest observed for the truncated ack.
1979 for (size_t i = 1; i < (ack_info.nack_ranges.size() - max_num_ranges);
1980 ++i) {
1981 ++ack_iter;
1983 // If the last range is followed by acks, include them.
1984 // If the last range is followed by another range, specify the end of the
1985 // range as the largest_observed.
1986 ack_largest_observed = ack_iter->first - 1;
1987 // Also update the entropy so it matches the largest observed.
1988 ack_entropy_hash = entropy_calculator_->EntropyHash(ack_largest_observed);
1989 ++ack_iter;
1992 if (!writer->WriteUInt8(ack_entropy_hash)) {
1993 return false;
1996 if (!AppendPacketSequenceNumber(largest_observed_length,
1997 ack_largest_observed, writer)) {
1998 return false;
2001 uint64 delta_time_largest_observed_us = kUFloat16MaxValue;
2002 if (!frame.delta_time_largest_observed.IsInfinite()) {
2003 DCHECK_LE(0u, frame.delta_time_largest_observed.ToMicroseconds());
2004 delta_time_largest_observed_us =
2005 frame.delta_time_largest_observed.ToMicroseconds();
2008 if (!writer->WriteUFloat16(delta_time_largest_observed_us)) {
2009 return false;
2012 // Timestamp goes at the end of the required fields.
2013 if (!truncated) {
2014 if (!AppendTimestampToAckFrame(frame, writer)) {
2015 return false;
2019 if (ack_info.nack_ranges.empty()) {
2020 return true;
2023 const uint8 num_missing_ranges =
2024 static_cast<uint8>(min(ack_info.nack_ranges.size(), max_num_ranges));
2025 if (!writer->WriteBytes(&num_missing_ranges, 1)) {
2026 return false;
2029 int num_ranges_written = 0;
2030 QuicPacketSequenceNumber last_sequence_written = ack_largest_observed;
2031 for (; ack_iter != ack_info.nack_ranges.rend(); ++ack_iter) {
2032 // Calculate the delta to the last number in the range.
2033 QuicPacketSequenceNumber missing_delta =
2034 last_sequence_written - (ack_iter->first + ack_iter->second);
2035 if (!AppendPacketSequenceNumber(missing_sequence_number_length,
2036 missing_delta, writer)) {
2037 return false;
2039 if (!AppendPacketSequenceNumber(PACKET_1BYTE_SEQUENCE_NUMBER,
2040 ack_iter->second, writer)) {
2041 return false;
2043 // Subtract 1 so a missing_delta of 0 means an adjacent range.
2044 last_sequence_written = ack_iter->first - 1;
2045 ++num_ranges_written;
2047 DCHECK_EQ(num_missing_ranges, num_ranges_written);
2049 // Append revived packets.
2050 // If not all the revived packets fit, only mention the ones that do.
2051 uint8 num_revived_packets =
2052 static_cast<uint8>(min(frame.revived_packets.size(), kMaxRevivedPackets));
2053 num_revived_packets = static_cast<uint8>(min(
2054 static_cast<size_t>(num_revived_packets),
2055 (writer->capacity() - writer->length()) / largest_observed_length));
2056 if (!writer->WriteBytes(&num_revived_packets, 1)) {
2057 return false;
2060 SequenceNumberSet::const_iterator iter = frame.revived_packets.begin();
2061 for (int i = 0; i < num_revived_packets; ++i, ++iter) {
2062 LOG_IF(DFATAL, !ContainsKey(frame.missing_packets, *iter));
2063 if (!AppendPacketSequenceNumber(largest_observed_length,
2064 *iter, writer)) {
2065 return false;
2069 return true;
2072 bool QuicFramer::AppendTimestampToAckFrame(const QuicAckFrame& frame,
2073 QuicDataWriter* writer) {
2074 DCHECK_GE(numeric_limits<uint8>::max(), frame.received_packet_times.size());
2075 // num_received_packets is only 1 byte.
2076 if (frame.received_packet_times.size() > numeric_limits<uint8>::max()) {
2077 return false;
2080 uint8 num_received_packets = frame.received_packet_times.size();
2082 if (!writer->WriteBytes(&num_received_packets, 1)) {
2083 return false;
2085 if (num_received_packets == 0) {
2086 return true;
2089 PacketTimeList::const_iterator it = frame.received_packet_times.begin();
2090 QuicPacketSequenceNumber sequence_number = it->first;
2091 QuicPacketSequenceNumber delta_from_largest_observed =
2092 frame.largest_observed - sequence_number;
2094 DCHECK_GE(numeric_limits<uint8>::max(), delta_from_largest_observed);
2095 if (delta_from_largest_observed > numeric_limits<uint8>::max()) {
2096 return false;
2099 if (!writer->WriteUInt8(
2100 delta_from_largest_observed & k1ByteSequenceNumberMask)) {
2101 return false;
2104 // Use the lowest 4 bytes of the time delta from the creation_time_.
2105 const uint64 time_epoch_delta_us = UINT64_C(1) << 32;
2106 uint32 time_delta_us =
2107 static_cast<uint32>(it->second.Subtract(creation_time_).ToMicroseconds()
2108 & (time_epoch_delta_us - 1));
2109 if (!writer->WriteBytes(&time_delta_us, sizeof(time_delta_us))) {
2110 return false;
2113 QuicTime prev_time = it->second;
2115 for (++it; it != frame.received_packet_times.end(); ++it) {
2116 sequence_number = it->first;
2117 delta_from_largest_observed = frame.largest_observed - sequence_number;
2119 if (delta_from_largest_observed > numeric_limits<uint8>::max()) {
2120 return false;
2123 if (!writer->WriteUInt8(
2124 delta_from_largest_observed & k1ByteSequenceNumberMask)) {
2125 return false;
2128 uint64 frame_time_delta_us =
2129 it->second.Subtract(prev_time).ToMicroseconds();
2130 prev_time = it->second;
2131 if (!writer->WriteUFloat16(frame_time_delta_us)) {
2132 return false;
2135 return true;
2138 bool QuicFramer::AppendStopWaitingFrame(
2139 const QuicPacketHeader& header,
2140 const QuicStopWaitingFrame& frame,
2141 QuicDataWriter* writer) {
2142 DCHECK_GE(header.packet_sequence_number, frame.least_unacked);
2143 const QuicPacketSequenceNumber least_unacked_delta =
2144 header.packet_sequence_number - frame.least_unacked;
2145 const QuicPacketSequenceNumber length_shift =
2146 header.public_header.sequence_number_length * 8;
2147 if (!writer->WriteUInt8(frame.entropy_hash)) {
2148 LOG(DFATAL) << " hash failed";
2149 return false;
2152 if (least_unacked_delta >> length_shift > 0) {
2153 LOG(DFATAL) << "sequence_number_length "
2154 << header.public_header.sequence_number_length
2155 << " is too small for least_unacked_delta: "
2156 << least_unacked_delta;
2157 return false;
2159 if (!AppendPacketSequenceNumber(header.public_header.sequence_number_length,
2160 least_unacked_delta, writer)) {
2161 LOG(DFATAL) << " seq failed: "
2162 << header.public_header.sequence_number_length;
2163 return false;
2166 return true;
2169 bool QuicFramer::AppendRstStreamFrame(const QuicRstStreamFrame& frame,
2170 QuicDataWriter* writer) {
2171 if (!writer->WriteUInt32(frame.stream_id)) {
2172 return false;
2175 if (!writer->WriteUInt64(frame.byte_offset)) {
2176 return false;
2179 uint32 error_code = static_cast<uint32>(frame.error_code);
2180 if (!writer->WriteUInt32(error_code)) {
2181 return false;
2184 if (quic_version_ <= QUIC_VERSION_24) {
2185 if (!writer->WriteStringPiece16(frame.error_details)) {
2186 return false;
2189 return true;
2192 bool QuicFramer::AppendConnectionCloseFrame(
2193 const QuicConnectionCloseFrame& frame,
2194 QuicDataWriter* writer) {
2195 uint32 error_code = static_cast<uint32>(frame.error_code);
2196 if (!writer->WriteUInt32(error_code)) {
2197 return false;
2199 if (!writer->WriteStringPiece16(frame.error_details)) {
2200 return false;
2202 return true;
2205 bool QuicFramer::AppendGoAwayFrame(const QuicGoAwayFrame& frame,
2206 QuicDataWriter* writer) {
2207 uint32 error_code = static_cast<uint32>(frame.error_code);
2208 if (!writer->WriteUInt32(error_code)) {
2209 return false;
2211 uint32 stream_id = static_cast<uint32>(frame.last_good_stream_id);
2212 if (!writer->WriteUInt32(stream_id)) {
2213 return false;
2215 if (!writer->WriteStringPiece16(frame.reason_phrase)) {
2216 return false;
2218 return true;
2221 bool QuicFramer::AppendWindowUpdateFrame(const QuicWindowUpdateFrame& frame,
2222 QuicDataWriter* writer) {
2223 uint32 stream_id = static_cast<uint32>(frame.stream_id);
2224 if (!writer->WriteUInt32(stream_id)) {
2225 return false;
2227 if (!writer->WriteUInt64(frame.byte_offset)) {
2228 return false;
2230 return true;
2233 bool QuicFramer::AppendBlockedFrame(const QuicBlockedFrame& frame,
2234 QuicDataWriter* writer) {
2235 uint32 stream_id = static_cast<uint32>(frame.stream_id);
2236 if (!writer->WriteUInt32(stream_id)) {
2237 return false;
2239 return true;
2242 bool QuicFramer::RaiseError(QuicErrorCode error) {
2243 DVLOG(1) << "Error: " << QuicUtils::ErrorToString(error)
2244 << " detail: " << detailed_error_;
2245 set_error(error);
2246 visitor_->OnError(this);
2247 reader_.reset(nullptr);
2248 return false;
2251 } // namespace net