1 // Copyright 2012 The Chromium Authors. All rights reserved.
2 // Use of this source code is governed by a BSD-style license that can be
3 // found in the LICENSE file.
5 #include "cc/base/math_util.h"
11 #include "base/debug/trace_event_argument.h"
12 #include "base/values.h"
13 #include "ui/gfx/quad_f.h"
14 #include "ui/gfx/rect.h"
15 #include "ui/gfx/rect_conversions.h"
16 #include "ui/gfx/rect_f.h"
17 #include "ui/gfx/transform.h"
18 #include "ui/gfx/vector2d_f.h"
22 const double MathUtil::kPiDouble
= 3.14159265358979323846;
23 const float MathUtil::kPiFloat
= 3.14159265358979323846f
;
25 static HomogeneousCoordinate
ProjectHomogeneousPoint(
26 const gfx::Transform
& transform
,
27 const gfx::PointF
& p
) {
28 // In this case, the layer we are trying to project onto is perpendicular to
29 // ray (point p and z-axis direction) that we are trying to project. This
30 // happens when the layer is rotated so that it is infinitesimally thin, or
31 // when it is co-planar with the camera origin -- i.e. when the layer is
33 if (!transform
.matrix().get(2, 2))
34 return HomogeneousCoordinate(0.0, 0.0, 0.0, 1.0);
36 SkMScalar z
= -(transform
.matrix().get(2, 0) * p
.x() +
37 transform
.matrix().get(2, 1) * p
.y() +
38 transform
.matrix().get(2, 3)) /
39 transform
.matrix().get(2, 2);
40 HomogeneousCoordinate
result(p
.x(), p
.y(), z
, 1.0);
41 transform
.matrix().mapMScalars(result
.vec
, result
.vec
);
45 static HomogeneousCoordinate
ProjectHomogeneousPoint(
46 const gfx::Transform
& transform
,
49 HomogeneousCoordinate h
= ProjectHomogeneousPoint(transform
, p
);
50 *clipped
= h
.w() <= 0;
54 static HomogeneousCoordinate
MapHomogeneousPoint(
55 const gfx::Transform
& transform
,
56 const gfx::Point3F
& p
) {
57 HomogeneousCoordinate
result(p
.x(), p
.y(), p
.z(), 1.0);
58 transform
.matrix().mapMScalars(result
.vec
, result
.vec
);
62 static HomogeneousCoordinate
ComputeClippedPointForEdge(
63 const HomogeneousCoordinate
& h1
,
64 const HomogeneousCoordinate
& h2
) {
65 // Points h1 and h2 form a line in 4d, and any point on that line can be
66 // represented as an interpolation between h1 and h2:
67 // p = (1-t) h1 + (t) h2
69 // We want to compute point p such that p.w == epsilon, where epsilon is a
70 // small non-zero number. (but the smaller the number is, the higher the risk
72 // To do this, we solve for t in the following equation:
73 // p.w = epsilon = (1-t) * h1.w + (t) * h2.w
75 // Once paramter t is known, the rest of p can be computed via
76 // p = (1-t) h1 + (t) h2.
78 // Technically this is a special case of the following assertion, but its a
79 // good idea to keep it an explicit sanity check here.
80 DCHECK_NE(h2
.w(), h1
.w());
81 // Exactly one of h1 or h2 (but not both) must be on the negative side of the
82 // w plane when this is called.
83 DCHECK(h1
.ShouldBeClipped() ^ h2
.ShouldBeClipped());
85 // ...or any positive non-zero small epsilon
86 SkMScalar w
= 0.00001f
;
87 SkMScalar t
= (w
- h1
.w()) / (h2
.w() - h1
.w());
89 SkMScalar x
= (SK_MScalar1
- t
) * h1
.x() + t
* h2
.x();
90 SkMScalar y
= (SK_MScalar1
- t
) * h1
.y() + t
* h2
.y();
91 SkMScalar z
= (SK_MScalar1
- t
) * h1
.z() + t
* h2
.z();
93 return HomogeneousCoordinate(x
, y
, z
, w
);
96 static inline void ExpandBoundsToIncludePoint(float* xmin
,
100 const gfx::PointF
& p
) {
101 *xmin
= std::min(p
.x(), *xmin
);
102 *xmax
= std::max(p
.x(), *xmax
);
103 *ymin
= std::min(p
.y(), *ymin
);
104 *ymax
= std::max(p
.y(), *ymax
);
107 static inline void AddVertexToClippedQuad(const gfx::PointF
& new_vertex
,
108 gfx::PointF clipped_quad
[8],
109 int* num_vertices_in_clipped_quad
) {
110 clipped_quad
[*num_vertices_in_clipped_quad
] = new_vertex
;
111 (*num_vertices_in_clipped_quad
)++;
114 static inline void AddVertexToClippedQuad3d(const gfx::Point3F
& new_vertex
,
115 gfx::Point3F clipped_quad
[8],
116 int* num_vertices_in_clipped_quad
) {
117 clipped_quad
[*num_vertices_in_clipped_quad
] = new_vertex
;
118 (*num_vertices_in_clipped_quad
)++;
121 gfx::Rect
MathUtil::MapEnclosingClippedRect(const gfx::Transform
& transform
,
122 const gfx::Rect
& src_rect
) {
123 if (transform
.IsIdentityOrIntegerTranslation()) {
126 static_cast<int>(SkMScalarToFloat(transform
.matrix().get(0, 3))),
128 SkMScalarToFloat(transform
.matrix().get(1, 3))));
130 return gfx::ToEnclosingRect(MapClippedRect(transform
, gfx::RectF(src_rect
)));
133 gfx::RectF
MathUtil::MapClippedRect(const gfx::Transform
& transform
,
134 const gfx::RectF
& src_rect
) {
135 if (transform
.IsIdentityOrTranslation()) {
137 gfx::Vector2dF(SkMScalarToFloat(transform
.matrix().get(0, 3)),
138 SkMScalarToFloat(transform
.matrix().get(1, 3)));
141 // Apply the transform, but retain the result in homogeneous coordinates.
143 SkMScalar quad
[4 * 2]; // input: 4 x 2D points
144 quad
[0] = src_rect
.x();
145 quad
[1] = src_rect
.y();
146 quad
[2] = src_rect
.right();
147 quad
[3] = src_rect
.y();
148 quad
[4] = src_rect
.right();
149 quad
[5] = src_rect
.bottom();
150 quad
[6] = src_rect
.x();
151 quad
[7] = src_rect
.bottom();
153 SkMScalar result
[4 * 4]; // output: 4 x 4D homogeneous points
154 transform
.matrix().map2(quad
, 4, result
);
156 HomogeneousCoordinate
hc0(result
[0], result
[1], result
[2], result
[3]);
157 HomogeneousCoordinate
hc1(result
[4], result
[5], result
[6], result
[7]);
158 HomogeneousCoordinate
hc2(result
[8], result
[9], result
[10], result
[11]);
159 HomogeneousCoordinate
hc3(result
[12], result
[13], result
[14], result
[15]);
160 return ComputeEnclosingClippedRect(hc0
, hc1
, hc2
, hc3
);
163 gfx::Rect
MathUtil::ProjectEnclosingClippedRect(const gfx::Transform
& transform
,
164 const gfx::Rect
& src_rect
) {
165 if (transform
.IsIdentityOrIntegerTranslation()) {
168 static_cast<int>(SkMScalarToFloat(transform
.matrix().get(0, 3))),
170 SkMScalarToFloat(transform
.matrix().get(1, 3))));
172 return gfx::ToEnclosingRect(
173 ProjectClippedRect(transform
, gfx::RectF(src_rect
)));
176 gfx::RectF
MathUtil::ProjectClippedRect(const gfx::Transform
& transform
,
177 const gfx::RectF
& src_rect
) {
178 if (transform
.IsIdentityOrTranslation()) {
180 gfx::Vector2dF(SkMScalarToFloat(transform
.matrix().get(0, 3)),
181 SkMScalarToFloat(transform
.matrix().get(1, 3)));
184 // Perform the projection, but retain the result in homogeneous coordinates.
185 gfx::QuadF q
= gfx::QuadF(src_rect
);
186 HomogeneousCoordinate h1
= ProjectHomogeneousPoint(transform
, q
.p1());
187 HomogeneousCoordinate h2
= ProjectHomogeneousPoint(transform
, q
.p2());
188 HomogeneousCoordinate h3
= ProjectHomogeneousPoint(transform
, q
.p3());
189 HomogeneousCoordinate h4
= ProjectHomogeneousPoint(transform
, q
.p4());
191 return ComputeEnclosingClippedRect(h1
, h2
, h3
, h4
);
194 void MathUtil::MapClippedQuad(const gfx::Transform
& transform
,
195 const gfx::QuadF
& src_quad
,
196 gfx::PointF clipped_quad
[8],
197 int* num_vertices_in_clipped_quad
) {
198 HomogeneousCoordinate h1
=
199 MapHomogeneousPoint(transform
, gfx::Point3F(src_quad
.p1()));
200 HomogeneousCoordinate h2
=
201 MapHomogeneousPoint(transform
, gfx::Point3F(src_quad
.p2()));
202 HomogeneousCoordinate h3
=
203 MapHomogeneousPoint(transform
, gfx::Point3F(src_quad
.p3()));
204 HomogeneousCoordinate h4
=
205 MapHomogeneousPoint(transform
, gfx::Point3F(src_quad
.p4()));
207 // The order of adding the vertices to the array is chosen so that
208 // clockwise / counter-clockwise orientation is retained.
210 *num_vertices_in_clipped_quad
= 0;
212 if (!h1
.ShouldBeClipped()) {
213 AddVertexToClippedQuad(
214 h1
.CartesianPoint2d(), clipped_quad
, num_vertices_in_clipped_quad
);
217 if (h1
.ShouldBeClipped() ^ h2
.ShouldBeClipped()) {
218 AddVertexToClippedQuad(
219 ComputeClippedPointForEdge(h1
, h2
).CartesianPoint2d(),
221 num_vertices_in_clipped_quad
);
224 if (!h2
.ShouldBeClipped()) {
225 AddVertexToClippedQuad(
226 h2
.CartesianPoint2d(), clipped_quad
, num_vertices_in_clipped_quad
);
229 if (h2
.ShouldBeClipped() ^ h3
.ShouldBeClipped()) {
230 AddVertexToClippedQuad(
231 ComputeClippedPointForEdge(h2
, h3
).CartesianPoint2d(),
233 num_vertices_in_clipped_quad
);
236 if (!h3
.ShouldBeClipped()) {
237 AddVertexToClippedQuad(
238 h3
.CartesianPoint2d(), clipped_quad
, num_vertices_in_clipped_quad
);
241 if (h3
.ShouldBeClipped() ^ h4
.ShouldBeClipped()) {
242 AddVertexToClippedQuad(
243 ComputeClippedPointForEdge(h3
, h4
).CartesianPoint2d(),
245 num_vertices_in_clipped_quad
);
248 if (!h4
.ShouldBeClipped()) {
249 AddVertexToClippedQuad(
250 h4
.CartesianPoint2d(), clipped_quad
, num_vertices_in_clipped_quad
);
253 if (h4
.ShouldBeClipped() ^ h1
.ShouldBeClipped()) {
254 AddVertexToClippedQuad(
255 ComputeClippedPointForEdge(h4
, h1
).CartesianPoint2d(),
257 num_vertices_in_clipped_quad
);
260 DCHECK_LE(*num_vertices_in_clipped_quad
, 8);
263 bool MathUtil::MapClippedQuad3d(const gfx::Transform
& transform
,
264 const gfx::QuadF
& src_quad
,
265 gfx::Point3F clipped_quad
[8],
266 int* num_vertices_in_clipped_quad
) {
267 HomogeneousCoordinate h1
=
268 MapHomogeneousPoint(transform
, gfx::Point3F(src_quad
.p1()));
269 HomogeneousCoordinate h2
=
270 MapHomogeneousPoint(transform
, gfx::Point3F(src_quad
.p2()));
271 HomogeneousCoordinate h3
=
272 MapHomogeneousPoint(transform
, gfx::Point3F(src_quad
.p3()));
273 HomogeneousCoordinate h4
=
274 MapHomogeneousPoint(transform
, gfx::Point3F(src_quad
.p4()));
276 // The order of adding the vertices to the array is chosen so that
277 // clockwise / counter-clockwise orientation is retained.
279 *num_vertices_in_clipped_quad
= 0;
281 if (!h1
.ShouldBeClipped()) {
282 AddVertexToClippedQuad3d(
283 h1
.CartesianPoint3d(), clipped_quad
, num_vertices_in_clipped_quad
);
286 if (h1
.ShouldBeClipped() ^ h2
.ShouldBeClipped()) {
287 AddVertexToClippedQuad3d(
288 ComputeClippedPointForEdge(h1
, h2
).CartesianPoint3d(),
290 num_vertices_in_clipped_quad
);
293 if (!h2
.ShouldBeClipped()) {
294 AddVertexToClippedQuad3d(
295 h2
.CartesianPoint3d(), clipped_quad
, num_vertices_in_clipped_quad
);
298 if (h2
.ShouldBeClipped() ^ h3
.ShouldBeClipped()) {
299 AddVertexToClippedQuad3d(
300 ComputeClippedPointForEdge(h2
, h3
).CartesianPoint3d(),
302 num_vertices_in_clipped_quad
);
305 if (!h3
.ShouldBeClipped()) {
306 AddVertexToClippedQuad3d(
307 h3
.CartesianPoint3d(), clipped_quad
, num_vertices_in_clipped_quad
);
310 if (h3
.ShouldBeClipped() ^ h4
.ShouldBeClipped()) {
311 AddVertexToClippedQuad3d(
312 ComputeClippedPointForEdge(h3
, h4
).CartesianPoint3d(),
314 num_vertices_in_clipped_quad
);
317 if (!h4
.ShouldBeClipped()) {
318 AddVertexToClippedQuad3d(
319 h4
.CartesianPoint3d(), clipped_quad
, num_vertices_in_clipped_quad
);
322 if (h4
.ShouldBeClipped() ^ h1
.ShouldBeClipped()) {
323 AddVertexToClippedQuad3d(
324 ComputeClippedPointForEdge(h4
, h1
).CartesianPoint3d(),
326 num_vertices_in_clipped_quad
);
329 DCHECK_LE(*num_vertices_in_clipped_quad
, 8);
330 return (*num_vertices_in_clipped_quad
>= 4);
333 gfx::RectF
MathUtil::ComputeEnclosingRectOfVertices(
334 const gfx::PointF vertices
[],
336 if (num_vertices
< 2)
339 float xmin
= std::numeric_limits
<float>::max();
340 float xmax
= -std::numeric_limits
<float>::max();
341 float ymin
= std::numeric_limits
<float>::max();
342 float ymax
= -std::numeric_limits
<float>::max();
344 for (int i
= 0; i
< num_vertices
; ++i
)
345 ExpandBoundsToIncludePoint(&xmin
, &xmax
, &ymin
, &ymax
, vertices
[i
]);
347 return gfx::RectF(gfx::PointF(xmin
, ymin
),
348 gfx::SizeF(xmax
- xmin
, ymax
- ymin
));
351 gfx::RectF
MathUtil::ComputeEnclosingClippedRect(
352 const HomogeneousCoordinate
& h1
,
353 const HomogeneousCoordinate
& h2
,
354 const HomogeneousCoordinate
& h3
,
355 const HomogeneousCoordinate
& h4
) {
356 // This function performs clipping as necessary and computes the enclosing 2d
357 // gfx::RectF of the vertices. Doing these two steps simultaneously allows us
358 // to avoid the overhead of storing an unknown number of clipped vertices.
360 // If no vertices on the quad are clipped, then we can simply return the
361 // enclosing rect directly.
362 bool something_clipped
= h1
.ShouldBeClipped() || h2
.ShouldBeClipped() ||
363 h3
.ShouldBeClipped() || h4
.ShouldBeClipped();
364 if (!something_clipped
) {
365 gfx::QuadF mapped_quad
= gfx::QuadF(h1
.CartesianPoint2d(),
366 h2
.CartesianPoint2d(),
367 h3
.CartesianPoint2d(),
368 h4
.CartesianPoint2d());
369 return mapped_quad
.BoundingBox();
372 bool everything_clipped
= h1
.ShouldBeClipped() && h2
.ShouldBeClipped() &&
373 h3
.ShouldBeClipped() && h4
.ShouldBeClipped();
374 if (everything_clipped
)
377 float xmin
= std::numeric_limits
<float>::max();
378 float xmax
= -std::numeric_limits
<float>::max();
379 float ymin
= std::numeric_limits
<float>::max();
380 float ymax
= -std::numeric_limits
<float>::max();
382 if (!h1
.ShouldBeClipped())
383 ExpandBoundsToIncludePoint(&xmin
, &xmax
, &ymin
, &ymax
,
384 h1
.CartesianPoint2d());
386 if (h1
.ShouldBeClipped() ^ h2
.ShouldBeClipped())
387 ExpandBoundsToIncludePoint(&xmin
,
391 ComputeClippedPointForEdge(h1
, h2
)
392 .CartesianPoint2d());
394 if (!h2
.ShouldBeClipped())
395 ExpandBoundsToIncludePoint(&xmin
, &xmax
, &ymin
, &ymax
,
396 h2
.CartesianPoint2d());
398 if (h2
.ShouldBeClipped() ^ h3
.ShouldBeClipped())
399 ExpandBoundsToIncludePoint(&xmin
,
403 ComputeClippedPointForEdge(h2
, h3
)
404 .CartesianPoint2d());
406 if (!h3
.ShouldBeClipped())
407 ExpandBoundsToIncludePoint(&xmin
, &xmax
, &ymin
, &ymax
,
408 h3
.CartesianPoint2d());
410 if (h3
.ShouldBeClipped() ^ h4
.ShouldBeClipped())
411 ExpandBoundsToIncludePoint(&xmin
,
415 ComputeClippedPointForEdge(h3
, h4
)
416 .CartesianPoint2d());
418 if (!h4
.ShouldBeClipped())
419 ExpandBoundsToIncludePoint(&xmin
, &xmax
, &ymin
, &ymax
,
420 h4
.CartesianPoint2d());
422 if (h4
.ShouldBeClipped() ^ h1
.ShouldBeClipped())
423 ExpandBoundsToIncludePoint(&xmin
,
427 ComputeClippedPointForEdge(h4
, h1
)
428 .CartesianPoint2d());
430 return gfx::RectF(gfx::PointF(xmin
, ymin
),
431 gfx::SizeF(xmax
- xmin
, ymax
- ymin
));
434 gfx::QuadF
MathUtil::MapQuad(const gfx::Transform
& transform
,
437 if (transform
.IsIdentityOrTranslation()) {
438 gfx::QuadF
mapped_quad(q
);
440 gfx::Vector2dF(SkMScalarToFloat(transform
.matrix().get(0, 3)),
441 SkMScalarToFloat(transform
.matrix().get(1, 3)));
446 HomogeneousCoordinate h1
=
447 MapHomogeneousPoint(transform
, gfx::Point3F(q
.p1()));
448 HomogeneousCoordinate h2
=
449 MapHomogeneousPoint(transform
, gfx::Point3F(q
.p2()));
450 HomogeneousCoordinate h3
=
451 MapHomogeneousPoint(transform
, gfx::Point3F(q
.p3()));
452 HomogeneousCoordinate h4
=
453 MapHomogeneousPoint(transform
, gfx::Point3F(q
.p4()));
455 *clipped
= h1
.ShouldBeClipped() || h2
.ShouldBeClipped() ||
456 h3
.ShouldBeClipped() || h4
.ShouldBeClipped();
458 // Result will be invalid if clipped == true. But, compute it anyway just in
459 // case, to emulate existing behavior.
460 return gfx::QuadF(h1
.CartesianPoint2d(),
461 h2
.CartesianPoint2d(),
462 h3
.CartesianPoint2d(),
463 h4
.CartesianPoint2d());
466 gfx::QuadF
MathUtil::MapQuad3d(const gfx::Transform
& transform
,
470 if (transform
.IsIdentityOrTranslation()) {
471 gfx::QuadF
mapped_quad(q
);
473 gfx::Vector2dF(SkMScalarToFloat(transform
.matrix().get(0, 3)),
474 SkMScalarToFloat(transform
.matrix().get(1, 3)));
476 p
[0] = gfx::Point3F(mapped_quad
.p1().x(), mapped_quad
.p1().y(), 0.0f
);
477 p
[1] = gfx::Point3F(mapped_quad
.p2().x(), mapped_quad
.p2().y(), 0.0f
);
478 p
[2] = gfx::Point3F(mapped_quad
.p3().x(), mapped_quad
.p3().y(), 0.0f
);
479 p
[3] = gfx::Point3F(mapped_quad
.p4().x(), mapped_quad
.p4().y(), 0.0f
);
483 HomogeneousCoordinate h1
=
484 MapHomogeneousPoint(transform
, gfx::Point3F(q
.p1()));
485 HomogeneousCoordinate h2
=
486 MapHomogeneousPoint(transform
, gfx::Point3F(q
.p2()));
487 HomogeneousCoordinate h3
=
488 MapHomogeneousPoint(transform
, gfx::Point3F(q
.p3()));
489 HomogeneousCoordinate h4
=
490 MapHomogeneousPoint(transform
, gfx::Point3F(q
.p4()));
492 *clipped
= h1
.ShouldBeClipped() || h2
.ShouldBeClipped() ||
493 h3
.ShouldBeClipped() || h4
.ShouldBeClipped();
495 // Result will be invalid if clipped == true. But, compute it anyway just in
496 // case, to emulate existing behavior.
497 p
[0] = h1
.CartesianPoint3d();
498 p
[1] = h2
.CartesianPoint3d();
499 p
[2] = h3
.CartesianPoint3d();
500 p
[3] = h4
.CartesianPoint3d();
502 return gfx::QuadF(h1
.CartesianPoint2d(),
503 h2
.CartesianPoint2d(),
504 h3
.CartesianPoint2d(),
505 h4
.CartesianPoint2d());
508 gfx::PointF
MathUtil::MapPoint(const gfx::Transform
& transform
,
509 const gfx::PointF
& p
,
511 HomogeneousCoordinate h
= MapHomogeneousPoint(transform
, gfx::Point3F(p
));
515 return h
.CartesianPoint2d();
518 // The cartesian coordinates will be invalid after dividing by w.
521 // Avoid dividing by w if w == 0.
523 return gfx::PointF();
525 // This return value will be invalid because clipped == true, but (1) users of
526 // this code should be ignoring the return value when clipped == true anyway,
527 // and (2) this behavior is more consistent with existing behavior of WebKit
528 // transforms if the user really does not ignore the return value.
529 return h
.CartesianPoint2d();
532 gfx::Point3F
MathUtil::MapPoint(const gfx::Transform
& transform
,
533 const gfx::Point3F
& p
,
535 HomogeneousCoordinate h
= MapHomogeneousPoint(transform
, p
);
539 return h
.CartesianPoint3d();
542 // The cartesian coordinates will be invalid after dividing by w.
545 // Avoid dividing by w if w == 0.
547 return gfx::Point3F();
549 // This return value will be invalid because clipped == true, but (1) users of
550 // this code should be ignoring the return value when clipped == true anyway,
551 // and (2) this behavior is more consistent with existing behavior of WebKit
552 // transforms if the user really does not ignore the return value.
553 return h
.CartesianPoint3d();
556 gfx::QuadF
MathUtil::ProjectQuad(const gfx::Transform
& transform
,
559 gfx::QuadF projected_quad
;
561 projected_quad
.set_p1(ProjectPoint(transform
, q
.p1(), &clipped_point
));
562 *clipped
= clipped_point
;
563 projected_quad
.set_p2(ProjectPoint(transform
, q
.p2(), &clipped_point
));
564 *clipped
|= clipped_point
;
565 projected_quad
.set_p3(ProjectPoint(transform
, q
.p3(), &clipped_point
));
566 *clipped
|= clipped_point
;
567 projected_quad
.set_p4(ProjectPoint(transform
, q
.p4(), &clipped_point
));
568 *clipped
|= clipped_point
;
570 return projected_quad
;
573 gfx::PointF
MathUtil::ProjectPoint(const gfx::Transform
& transform
,
574 const gfx::PointF
& p
,
576 HomogeneousCoordinate h
= ProjectHomogeneousPoint(transform
, p
, clipped
);
577 // Avoid dividing by w if w == 0.
579 return gfx::PointF();
581 // This return value will be invalid if clipped == true, but (1) users of
582 // this code should be ignoring the return value when clipped == true anyway,
583 // and (2) this behavior is more consistent with existing behavior of WebKit
584 // transforms if the user really does not ignore the return value.
585 return h
.CartesianPoint2d();
588 gfx::Point3F
MathUtil::ProjectPoint3D(const gfx::Transform
& transform
,
589 const gfx::PointF
& p
,
591 HomogeneousCoordinate h
= ProjectHomogeneousPoint(transform
, p
, clipped
);
593 return gfx::Point3F();
594 return h
.CartesianPoint3d();
597 gfx::RectF
MathUtil::ScaleRectProportional(const gfx::RectF
& input_outer_rect
,
598 const gfx::RectF
& scale_outer_rect
,
599 const gfx::RectF
& scale_inner_rect
) {
600 gfx::RectF output_inner_rect
= input_outer_rect
;
601 float scale_rect_to_input_scale_x
=
602 scale_outer_rect
.width() / input_outer_rect
.width();
603 float scale_rect_to_input_scale_y
=
604 scale_outer_rect
.height() / input_outer_rect
.height();
606 gfx::Vector2dF top_left_diff
=
607 scale_inner_rect
.origin() - scale_outer_rect
.origin();
608 gfx::Vector2dF bottom_right_diff
=
609 scale_inner_rect
.bottom_right() - scale_outer_rect
.bottom_right();
610 output_inner_rect
.Inset(top_left_diff
.x() / scale_rect_to_input_scale_x
,
611 top_left_diff
.y() / scale_rect_to_input_scale_y
,
612 -bottom_right_diff
.x() / scale_rect_to_input_scale_x
,
613 -bottom_right_diff
.y() / scale_rect_to_input_scale_y
);
614 return output_inner_rect
;
617 static inline bool NearlyZero(double value
) {
618 return std::abs(value
) < std::numeric_limits
<double>::epsilon();
621 static inline float ScaleOnAxis(double a
, double b
, double c
) {
622 if (NearlyZero(b
) && NearlyZero(c
))
624 if (NearlyZero(a
) && NearlyZero(c
))
626 if (NearlyZero(a
) && NearlyZero(b
))
629 // Do the sqrt as a double to not lose precision.
630 return static_cast<float>(std::sqrt(a
* a
+ b
* b
+ c
* c
));
633 gfx::Vector2dF
MathUtil::ComputeTransform2dScaleComponents(
634 const gfx::Transform
& transform
,
635 float fallback_value
) {
636 if (transform
.HasPerspective())
637 return gfx::Vector2dF(fallback_value
, fallback_value
);
638 float x_scale
= ScaleOnAxis(transform
.matrix().getDouble(0, 0),
639 transform
.matrix().getDouble(1, 0),
640 transform
.matrix().getDouble(2, 0));
641 float y_scale
= ScaleOnAxis(transform
.matrix().getDouble(0, 1),
642 transform
.matrix().getDouble(1, 1),
643 transform
.matrix().getDouble(2, 1));
644 return gfx::Vector2dF(x_scale
, y_scale
);
647 float MathUtil::SmallestAngleBetweenVectors(const gfx::Vector2dF
& v1
,
648 const gfx::Vector2dF
& v2
) {
649 double dot_product
= gfx::DotProduct(v1
, v2
) / v1
.Length() / v2
.Length();
650 // Clamp to compensate for rounding errors.
651 dot_product
= std::max(-1.0, std::min(1.0, dot_product
));
652 return static_cast<float>(Rad2Deg(std::acos(dot_product
)));
655 gfx::Vector2dF
MathUtil::ProjectVector(const gfx::Vector2dF
& source
,
656 const gfx::Vector2dF
& destination
) {
657 float projected_length
=
658 gfx::DotProduct(source
, destination
) / destination
.LengthSquared();
659 return gfx::Vector2dF(projected_length
* destination
.x(),
660 projected_length
* destination
.y());
663 scoped_ptr
<base::Value
> MathUtil::AsValue(const gfx::Size
& s
) {
664 scoped_ptr
<base::DictionaryValue
> res(new base::DictionaryValue());
665 res
->SetDouble("width", s
.width());
666 res
->SetDouble("height", s
.height());
667 return res
.PassAs
<base::Value
>();
670 scoped_ptr
<base::Value
> MathUtil::AsValue(const gfx::Rect
& r
) {
671 scoped_ptr
<base::ListValue
> res(new base::ListValue());
672 res
->AppendInteger(r
.x());
673 res
->AppendInteger(r
.y());
674 res
->AppendInteger(r
.width());
675 res
->AppendInteger(r
.height());
676 return res
.PassAs
<base::Value
>();
679 bool MathUtil::FromValue(const base::Value
* raw_value
, gfx::Rect
* out_rect
) {
680 const base::ListValue
* value
= NULL
;
681 if (!raw_value
->GetAsList(&value
))
684 if (value
->GetSize() != 4)
689 ok
&= value
->GetInteger(0, &x
);
690 ok
&= value
->GetInteger(1, &y
);
691 ok
&= value
->GetInteger(2, &w
);
692 ok
&= value
->GetInteger(3, &h
);
696 *out_rect
= gfx::Rect(x
, y
, w
, h
);
700 scoped_ptr
<base::Value
> MathUtil::AsValue(const gfx::PointF
& pt
) {
701 scoped_ptr
<base::ListValue
> res(new base::ListValue());
702 res
->AppendDouble(pt
.x());
703 res
->AppendDouble(pt
.y());
704 return res
.PassAs
<base::Value
>();
707 void MathUtil::AddToTracedValue(const gfx::Size
& s
,
708 base::debug::TracedValue
* res
) {
709 res
->SetDouble("width", s
.width());
710 res
->SetDouble("height", s
.height());
713 void MathUtil::AddToTracedValue(const gfx::SizeF
& s
,
714 base::debug::TracedValue
* res
) {
715 res
->SetDouble("width", s
.width());
716 res
->SetDouble("height", s
.height());
719 void MathUtil::AddToTracedValue(const gfx::Rect
& r
,
720 base::debug::TracedValue
* res
) {
721 res
->AppendInteger(r
.x());
722 res
->AppendInteger(r
.y());
723 res
->AppendInteger(r
.width());
724 res
->AppendInteger(r
.height());
727 void MathUtil::AddToTracedValue(const gfx::PointF
& pt
,
728 base::debug::TracedValue
* res
) {
729 res
->AppendDouble(pt
.x());
730 res
->AppendDouble(pt
.y());
733 void MathUtil::AddToTracedValue(const gfx::Point3F
& pt
,
734 base::debug::TracedValue
* res
) {
735 res
->AppendDouble(pt
.x());
736 res
->AppendDouble(pt
.y());
737 res
->AppendDouble(pt
.z());
740 void MathUtil::AddToTracedValue(const gfx::Vector2d
& v
,
741 base::debug::TracedValue
* res
) {
742 res
->AppendInteger(v
.x());
743 res
->AppendInteger(v
.y());
746 void MathUtil::AddToTracedValue(const gfx::Vector2dF
& v
,
747 base::debug::TracedValue
* res
) {
748 res
->AppendDouble(v
.x());
749 res
->AppendDouble(v
.y());
752 void MathUtil::AddToTracedValue(const gfx::QuadF
& q
,
753 base::debug::TracedValue
* res
) {
754 res
->AppendDouble(q
.p1().x());
755 res
->AppendDouble(q
.p1().y());
756 res
->AppendDouble(q
.p2().x());
757 res
->AppendDouble(q
.p2().y());
758 res
->AppendDouble(q
.p3().x());
759 res
->AppendDouble(q
.p3().y());
760 res
->AppendDouble(q
.p4().x());
761 res
->AppendDouble(q
.p4().y());
764 void MathUtil::AddToTracedValue(const gfx::RectF
& rect
,
765 base::debug::TracedValue
* res
) {
766 res
->AppendDouble(rect
.x());
767 res
->AppendDouble(rect
.y());
768 res
->AppendDouble(rect
.width());
769 res
->AppendDouble(rect
.height());
772 void MathUtil::AddToTracedValue(const gfx::Transform
& transform
,
773 base::debug::TracedValue
* res
) {
774 const SkMatrix44
& m
= transform
.matrix();
775 for (int row
= 0; row
< 4; ++row
) {
776 for (int col
= 0; col
< 4; ++col
)
777 res
->AppendDouble(m
.getDouble(row
, col
));
781 void MathUtil::AddToTracedValue(const gfx::BoxF
& box
,
782 base::debug::TracedValue
* res
) {
783 res
->AppendInteger(box
.x());
784 res
->AppendInteger(box
.y());
785 res
->AppendInteger(box
.z());
786 res
->AppendInteger(box
.width());
787 res
->AppendInteger(box
.height());
788 res
->AppendInteger(box
.depth());
791 double MathUtil::AsDoubleSafely(double value
) {
792 return std::min(value
, std::numeric_limits
<double>::max());
795 float MathUtil::AsFloatSafely(float value
) {
796 return std::min(value
, std::numeric_limits
<float>::max());