Infobar material design refresh: bg color
[chromium-blink-merge.git] / base / containers / linked_list.h
blob41461ff365e66fdbd568e2dcd3a96b7d212378ae
1 // Copyright (c) 2009 The Chromium Authors. All rights reserved.
2 // Use of this source code is governed by a BSD-style license that can be
3 // found in the LICENSE file.
5 #ifndef BASE_CONTAINERS_LINKED_LIST_H_
6 #define BASE_CONTAINERS_LINKED_LIST_H_
8 #include "base/macros.h"
10 // Simple LinkedList type. (See the Q&A section to understand how this
11 // differs from std::list).
13 // To use, start by declaring the class which will be contained in the linked
14 // list, as extending LinkNode (this gives it next/previous pointers).
16 // class MyNodeType : public LinkNode<MyNodeType> {
17 // ...
18 // };
20 // Next, to keep track of the list's head/tail, use a LinkedList instance:
22 // LinkedList<MyNodeType> list;
24 // To add elements to the list, use any of LinkedList::Append,
25 // LinkNode::InsertBefore, or LinkNode::InsertAfter:
27 // LinkNode<MyNodeType>* n1 = ...;
28 // LinkNode<MyNodeType>* n2 = ...;
29 // LinkNode<MyNodeType>* n3 = ...;
31 // list.Append(n1);
32 // list.Append(n3);
33 // n3->InsertBefore(n3);
35 // Lastly, to iterate through the linked list forwards:
37 // for (LinkNode<MyNodeType>* node = list.head();
38 // node != list.end();
39 // node = node->next()) {
40 // MyNodeType* value = node->value();
41 // ...
42 // }
44 // Or to iterate the linked list backwards:
46 // for (LinkNode<MyNodeType>* node = list.tail();
47 // node != list.end();
48 // node = node->previous()) {
49 // MyNodeType* value = node->value();
50 // ...
51 // }
53 // Questions and Answers:
55 // Q. Should I use std::list or base::LinkedList?
57 // A. The main reason to use base::LinkedList over std::list is
58 // performance. If you don't care about the performance differences
59 // then use an STL container, as it makes for better code readability.
61 // Comparing the performance of base::LinkedList<T> to std::list<T*>:
63 // * Erasing an element of type T* from base::LinkedList<T> is
64 // an O(1) operation. Whereas for std::list<T*> it is O(n).
65 // That is because with std::list<T*> you must obtain an
66 // iterator to the T* element before you can call erase(iterator).
68 // * Insertion operations with base::LinkedList<T> never require
69 // heap allocations.
71 // Q. How does base::LinkedList implementation differ from std::list?
73 // A. Doubly-linked lists are made up of nodes that contain "next" and
74 // "previous" pointers that reference other nodes in the list.
76 // With base::LinkedList<T>, the type being inserted already reserves
77 // space for the "next" and "previous" pointers (base::LinkNode<T>*).
78 // Whereas with std::list<T> the type can be anything, so the implementation
79 // needs to glue on the "next" and "previous" pointers using
80 // some internal node type.
82 namespace base {
84 template <typename T>
85 class LinkNode {
86 public:
87 LinkNode() : previous_(NULL), next_(NULL) {}
88 LinkNode(LinkNode<T>* previous, LinkNode<T>* next)
89 : previous_(previous), next_(next) {}
91 // Insert |this| into the linked list, before |e|.
92 void InsertBefore(LinkNode<T>* e) {
93 this->next_ = e;
94 this->previous_ = e->previous_;
95 e->previous_->next_ = this;
96 e->previous_ = this;
99 // Insert |this| into the linked list, after |e|.
100 void InsertAfter(LinkNode<T>* e) {
101 this->next_ = e->next_;
102 this->previous_ = e;
103 e->next_->previous_ = this;
104 e->next_ = this;
107 // Remove |this| from the linked list.
108 void RemoveFromList() {
109 this->previous_->next_ = this->next_;
110 this->next_->previous_ = this->previous_;
111 // next() and previous() return non-NULL if and only this node is not in any
112 // list.
113 this->next_ = NULL;
114 this->previous_ = NULL;
117 LinkNode<T>* previous() const {
118 return previous_;
121 LinkNode<T>* next() const {
122 return next_;
125 // Cast from the node-type to the value type.
126 const T* value() const {
127 return static_cast<const T*>(this);
130 T* value() {
131 return static_cast<T*>(this);
134 private:
135 LinkNode<T>* previous_;
136 LinkNode<T>* next_;
138 DISALLOW_COPY_AND_ASSIGN(LinkNode);
141 template <typename T>
142 class LinkedList {
143 public:
144 // The "root" node is self-referential, and forms the basis of a circular
145 // list (root_.next() will point back to the start of the list,
146 // and root_->previous() wraps around to the end of the list).
147 LinkedList() : root_(&root_, &root_) {}
149 // Appends |e| to the end of the linked list.
150 void Append(LinkNode<T>* e) {
151 e->InsertBefore(&root_);
154 LinkNode<T>* head() const {
155 return root_.next();
158 LinkNode<T>* tail() const {
159 return root_.previous();
162 const LinkNode<T>* end() const {
163 return &root_;
166 bool empty() const { return head() == end(); }
168 private:
169 LinkNode<T> root_;
171 DISALLOW_COPY_AND_ASSIGN(LinkedList);
174 } // namespace base
176 #endif // BASE_CONTAINERS_LINKED_LIST_H_