1 // Copyright 2015 The Chromium Authors. All rights reserved.
2 // Use of this source code is governed by a BSD-style license that can be
3 // found in the LICENSE file.
10 #include <sys/prctl.h>
11 #include <sys/ptrace.h>
12 #include <sys/syscall.h>
14 #include <sys/types.h>
15 #include <sys/utsname.h>
17 #include <sys/socket.h>
20 // Work-around for buggy headers in Android's NDK
23 #include <linux/futex.h>
25 #include "base/bind.h"
26 #include "base/logging.h"
27 #include "base/macros.h"
28 #include "base/memory/scoped_ptr.h"
29 #include "base/posix/eintr_wrapper.h"
30 #include "base/synchronization/waitable_event.h"
31 #include "base/sys_info.h"
32 #include "base/threading/thread.h"
33 #include "build/build_config.h"
34 #include "sandbox/linux/bpf_dsl/bpf_dsl.h"
35 #include "sandbox/linux/bpf_dsl/errorcode.h"
36 #include "sandbox/linux/bpf_dsl/linux_syscall_ranges.h"
37 #include "sandbox/linux/bpf_dsl/policy.h"
38 #include "sandbox/linux/bpf_dsl/seccomp_macros.h"
39 #include "sandbox/linux/seccomp-bpf/bpf_tests.h"
40 #include "sandbox/linux/seccomp-bpf/die.h"
41 #include "sandbox/linux/seccomp-bpf/sandbox_bpf.h"
42 #include "sandbox/linux/seccomp-bpf/syscall.h"
43 #include "sandbox/linux/seccomp-bpf/trap.h"
44 #include "sandbox/linux/services/syscall_wrappers.h"
45 #include "sandbox/linux/services/thread_helpers.h"
46 #include "sandbox/linux/system_headers/linux_syscalls.h"
47 #include "sandbox/linux/tests/scoped_temporary_file.h"
48 #include "sandbox/linux/tests/unit_tests.h"
49 #include "testing/gtest/include/gtest/gtest.h"
51 // Workaround for Android's prctl.h file.
53 #define PR_GET_ENDIAN 19
55 #ifndef PR_CAPBSET_READ
56 #define PR_CAPBSET_READ 23
57 #define PR_CAPBSET_DROP 24
65 const int kExpectedReturnValue
= 42;
66 const char kSandboxDebuggingEnv
[] = "CHROME_SANDBOX_DEBUGGING";
68 // Set the global environment to allow the use of UnsafeTrap() policies.
69 void EnableUnsafeTraps() {
70 // The use of UnsafeTrap() causes us to print a warning message. This is
71 // generally desirable, but it results in the unittest failing, as it doesn't
72 // expect any messages on "stderr". So, temporarily disable messages. The
73 // BPF_TEST() is guaranteed to turn messages back on, after the policy
74 // function has completed.
75 setenv(kSandboxDebuggingEnv
, "t", 0);
76 Die::SuppressInfoMessages(true);
79 // BPF_TEST does a lot of the boiler-plate code around setting up a
80 // policy and optional passing data between the caller, the policy and
81 // any Trap() handlers. This is great for writing short and concise tests,
82 // and it helps us accidentally forgetting any of the crucial steps in
83 // setting up the sandbox. But it wouldn't hurt to have at least one test
84 // that explicitly walks through all these steps.
86 intptr_t IncreaseCounter(const struct arch_seccomp_data
& args
, void* aux
) {
88 int* counter
= static_cast<int*>(aux
);
92 class VerboseAPITestingPolicy
: public Policy
{
94 explicit VerboseAPITestingPolicy(int* counter_ptr
)
95 : counter_ptr_(counter_ptr
) {}
96 ~VerboseAPITestingPolicy() override
{}
98 ResultExpr
EvaluateSyscall(int sysno
) const override
{
99 DCHECK(SandboxBPF::IsValidSyscallNumber(sysno
));
100 if (sysno
== __NR_uname
) {
101 return Trap(IncreaseCounter
, counter_ptr_
);
109 DISALLOW_COPY_AND_ASSIGN(VerboseAPITestingPolicy
);
112 SANDBOX_TEST(SandboxBPF
, DISABLE_ON_TSAN(VerboseAPITesting
)) {
113 if (SandboxBPF::SupportsSeccompSandbox(
114 SandboxBPF::SeccompLevel::SINGLE_THREADED
)) {
115 static int counter
= 0;
117 SandboxBPF
sandbox(new VerboseAPITestingPolicy(&counter
));
118 BPF_ASSERT(sandbox
.StartSandbox(SandboxBPF::SeccompLevel::SINGLE_THREADED
));
120 BPF_ASSERT_EQ(0, counter
);
121 BPF_ASSERT_EQ(0, syscall(__NR_uname
, 0));
122 BPF_ASSERT_EQ(1, counter
);
123 BPF_ASSERT_EQ(1, syscall(__NR_uname
, 0));
124 BPF_ASSERT_EQ(2, counter
);
128 // A simple blacklist test
130 class BlacklistNanosleepPolicy
: public Policy
{
132 BlacklistNanosleepPolicy() {}
133 ~BlacklistNanosleepPolicy() override
{}
135 ResultExpr
EvaluateSyscall(int sysno
) const override
{
136 DCHECK(SandboxBPF::IsValidSyscallNumber(sysno
));
139 return Error(EACCES
);
145 static void AssertNanosleepFails() {
146 const struct timespec ts
= {0, 0};
148 BPF_ASSERT_EQ(-1, HANDLE_EINTR(syscall(__NR_nanosleep
, &ts
, NULL
)));
149 BPF_ASSERT_EQ(EACCES
, errno
);
153 DISALLOW_COPY_AND_ASSIGN(BlacklistNanosleepPolicy
);
156 BPF_TEST_C(SandboxBPF
, ApplyBasicBlacklistPolicy
, BlacklistNanosleepPolicy
) {
157 BlacklistNanosleepPolicy::AssertNanosleepFails();
160 BPF_TEST_C(SandboxBPF
, UseVsyscall
, BlacklistNanosleepPolicy
) {
162 // time() is implemented as a vsyscall. With an older glibc, with
163 // vsyscall=emulate and some versions of the seccomp BPF patch
164 // we may get SIGKILL-ed. Detect this!
165 BPF_ASSERT_NE(static_cast<time_t>(-1), time(¤t_time
));
168 // Now do a simple whitelist test
170 class WhitelistGetpidPolicy
: public Policy
{
172 WhitelistGetpidPolicy() {}
173 ~WhitelistGetpidPolicy() override
{}
175 ResultExpr
EvaluateSyscall(int sysno
) const override
{
176 DCHECK(SandboxBPF::IsValidSyscallNumber(sysno
));
179 case __NR_exit_group
:
182 return Error(ENOMEM
);
187 DISALLOW_COPY_AND_ASSIGN(WhitelistGetpidPolicy
);
190 BPF_TEST_C(SandboxBPF
, ApplyBasicWhitelistPolicy
, WhitelistGetpidPolicy
) {
191 // getpid() should be allowed
193 BPF_ASSERT(sys_getpid() > 0);
194 BPF_ASSERT(errno
== 0);
196 // getpgid() should be denied
197 BPF_ASSERT(getpgid(0) == -1);
198 BPF_ASSERT(errno
== ENOMEM
);
201 // A simple blacklist policy, with a SIGSYS handler
202 intptr_t EnomemHandler(const struct arch_seccomp_data
& args
, void* aux
) {
203 // We also check that the auxiliary data is correct
205 *(static_cast<int*>(aux
)) = kExpectedReturnValue
;
209 class BlacklistNanosleepTrapPolicy
: public Policy
{
211 explicit BlacklistNanosleepTrapPolicy(int* aux
) : aux_(aux
) {}
212 ~BlacklistNanosleepTrapPolicy() override
{}
214 ResultExpr
EvaluateSyscall(int sysno
) const override
{
215 DCHECK(SandboxBPF::IsValidSyscallNumber(sysno
));
218 return Trap(EnomemHandler
, aux_
);
227 DISALLOW_COPY_AND_ASSIGN(BlacklistNanosleepTrapPolicy
);
231 BasicBlacklistWithSigsys
,
232 BlacklistNanosleepTrapPolicy
,
233 int /* (*BPF_AUX) */) {
234 // getpid() should work properly
236 BPF_ASSERT(sys_getpid() > 0);
237 BPF_ASSERT(errno
== 0);
239 // Our Auxiliary Data, should be reset by the signal handler
241 const struct timespec ts
= {0, 0};
242 BPF_ASSERT(syscall(__NR_nanosleep
, &ts
, NULL
) == -1);
243 BPF_ASSERT(errno
== ENOMEM
);
245 // We expect the signal handler to modify AuxData
246 BPF_ASSERT(*BPF_AUX
== kExpectedReturnValue
);
249 // A simple test that verifies we can return arbitrary errno values.
251 class ErrnoTestPolicy
: public Policy
{
254 ~ErrnoTestPolicy() override
{}
256 ResultExpr
EvaluateSyscall(int sysno
) const override
;
259 DISALLOW_COPY_AND_ASSIGN(ErrnoTestPolicy
);
262 ResultExpr
ErrnoTestPolicy::EvaluateSyscall(int sysno
) const {
263 DCHECK(SandboxBPF::IsValidSyscallNumber(sysno
));
265 case __NR_dup3
: // dup2 is a wrapper of dup3 in android
266 #if defined(__NR_dup2)
269 // Pretend that dup2() worked, but don't actually do anything.
272 #if defined(__NR_setuid32)
278 #if defined(__NR_setgid32)
281 // Return maximum errno value (typically 4095).
282 return Error(ErrorCode::ERR_MAX_ERRNO
);
284 // Return errno = 42;
291 BPF_TEST_C(SandboxBPF
, ErrnoTest
, ErrnoTestPolicy
) {
292 // Verify that dup2() returns success, but doesn't actually run.
294 BPF_ASSERT(pipe(fds
) == 0);
295 BPF_ASSERT(pipe(fds
+ 2) == 0);
296 BPF_ASSERT(dup2(fds
[2], fds
[0]) == 0);
298 BPF_ASSERT(write(fds
[1], "\x55", 1) == 1);
299 BPF_ASSERT(write(fds
[3], "\xAA", 1) == 1);
300 BPF_ASSERT(read(fds
[0], buf
, 1) == 1);
302 // If dup2() executed, we will read \xAA, but it dup2() has been turned
303 // into a no-op by our policy, then we will read \x55.
304 BPF_ASSERT(buf
[0] == '\x55');
306 // Verify that we can return the minimum and maximum errno values.
308 BPF_ASSERT(setuid(0) == -1);
309 BPF_ASSERT(errno
== 1);
311 // On Android, errno is only supported up to 255, otherwise errno
312 // processing is skipped.
313 // We work around this (crbug.com/181647).
314 if (sandbox::IsAndroid() && setgid(0) != -1) {
316 BPF_ASSERT(setgid(0) == -ErrorCode::ERR_MAX_ERRNO
);
317 BPF_ASSERT(errno
== 0);
320 BPF_ASSERT(setgid(0) == -1);
321 BPF_ASSERT(errno
== ErrorCode::ERR_MAX_ERRNO
);
324 // Finally, test an errno in between the minimum and maximum.
326 struct utsname uts_buf
;
327 BPF_ASSERT(uname(&uts_buf
) == -1);
328 BPF_ASSERT(errno
== 42);
331 // Testing the stacking of two sandboxes
333 class StackingPolicyPartOne
: public Policy
{
335 StackingPolicyPartOne() {}
336 ~StackingPolicyPartOne() override
{}
338 ResultExpr
EvaluateSyscall(int sysno
) const override
{
339 DCHECK(SandboxBPF::IsValidSyscallNumber(sysno
));
342 const Arg
<int> arg(0);
343 return If(arg
== 0, Allow()).Else(Error(EPERM
));
351 DISALLOW_COPY_AND_ASSIGN(StackingPolicyPartOne
);
354 class StackingPolicyPartTwo
: public Policy
{
356 StackingPolicyPartTwo() {}
357 ~StackingPolicyPartTwo() override
{}
359 ResultExpr
EvaluateSyscall(int sysno
) const override
{
360 DCHECK(SandboxBPF::IsValidSyscallNumber(sysno
));
363 const Arg
<int> arg(0);
364 return If(arg
== 0, Error(EINVAL
)).Else(Allow());
372 DISALLOW_COPY_AND_ASSIGN(StackingPolicyPartTwo
);
375 BPF_TEST_C(SandboxBPF
, StackingPolicy
, StackingPolicyPartOne
) {
377 BPF_ASSERT(syscall(__NR_getppid
, 0) > 0);
378 BPF_ASSERT(errno
== 0);
380 BPF_ASSERT(syscall(__NR_getppid
, 1) == -1);
381 BPF_ASSERT(errno
== EPERM
);
383 // Stack a second sandbox with its own policy. Verify that we can further
384 // restrict filters, but we cannot relax existing filters.
385 SandboxBPF
sandbox(new StackingPolicyPartTwo());
386 BPF_ASSERT(sandbox
.StartSandbox(SandboxBPF::SeccompLevel::SINGLE_THREADED
));
389 BPF_ASSERT(syscall(__NR_getppid
, 0) == -1);
390 BPF_ASSERT(errno
== EINVAL
);
392 BPF_ASSERT(syscall(__NR_getppid
, 1) == -1);
393 BPF_ASSERT(errno
== EPERM
);
396 // A more complex, but synthetic policy. This tests the correctness of the BPF
397 // program by iterating through all syscalls and checking for an errno that
398 // depends on the syscall number. Unlike the Verifier, this exercises the BPF
399 // interpreter in the kernel.
401 // We try to make sure we exercise optimizations in the BPF compiler. We make
402 // sure that the compiler can have an opportunity to coalesce syscalls with
403 // contiguous numbers and we also make sure that disjoint sets can return the
405 int SysnoToRandomErrno(int sysno
) {
406 // Small contiguous sets of 3 system calls return an errno equal to the
407 // index of that set + 1 (so that we never return a NUL errno).
408 return ((sysno
& ~3) >> 2) % 29 + 1;
411 class SyntheticPolicy
: public Policy
{
414 ~SyntheticPolicy() override
{}
416 ResultExpr
EvaluateSyscall(int sysno
) const override
{
417 DCHECK(SandboxBPF::IsValidSyscallNumber(sysno
));
418 if (sysno
== __NR_exit_group
|| sysno
== __NR_write
) {
419 // exit_group() is special, we really need it to work.
420 // write() is needed for BPF_ASSERT() to report a useful error message.
423 return Error(SysnoToRandomErrno(sysno
));
427 DISALLOW_COPY_AND_ASSIGN(SyntheticPolicy
);
430 BPF_TEST_C(SandboxBPF
, SyntheticPolicy
, SyntheticPolicy
) {
431 // Ensure that that kExpectedReturnValue + syscallnumber + 1 does not int
433 BPF_ASSERT(std::numeric_limits
<int>::max() - kExpectedReturnValue
- 1 >=
434 static_cast<int>(MAX_PUBLIC_SYSCALL
));
436 for (int syscall_number
= static_cast<int>(MIN_SYSCALL
);
437 syscall_number
<= static_cast<int>(MAX_PUBLIC_SYSCALL
);
439 if (syscall_number
== __NR_exit_group
|| syscall_number
== __NR_write
) {
440 // exit_group() is special
444 BPF_ASSERT(syscall(syscall_number
) == -1);
445 BPF_ASSERT(errno
== SysnoToRandomErrno(syscall_number
));
450 // A simple policy that tests whether ARM private system calls are supported
451 // by our BPF compiler and by the BPF interpreter in the kernel.
453 // For ARM private system calls, return an errno equal to their offset from
454 // MIN_PRIVATE_SYSCALL plus 1 (to avoid NUL errno).
455 int ArmPrivateSysnoToErrno(int sysno
) {
456 if (sysno
>= static_cast<int>(MIN_PRIVATE_SYSCALL
) &&
457 sysno
<= static_cast<int>(MAX_PRIVATE_SYSCALL
)) {
458 return (sysno
- MIN_PRIVATE_SYSCALL
) + 1;
464 class ArmPrivatePolicy
: public Policy
{
466 ArmPrivatePolicy() {}
467 ~ArmPrivatePolicy() override
{}
469 ResultExpr
EvaluateSyscall(int sysno
) const override
{
470 DCHECK(SandboxBPF::IsValidSyscallNumber(sysno
));
471 // Start from |__ARM_NR_set_tls + 1| so as not to mess with actual
472 // ARM private system calls.
473 if (sysno
>= static_cast<int>(__ARM_NR_set_tls
+ 1) &&
474 sysno
<= static_cast<int>(MAX_PRIVATE_SYSCALL
)) {
475 return Error(ArmPrivateSysnoToErrno(sysno
));
481 DISALLOW_COPY_AND_ASSIGN(ArmPrivatePolicy
);
484 BPF_TEST_C(SandboxBPF
, ArmPrivatePolicy
, ArmPrivatePolicy
) {
485 for (int syscall_number
= static_cast<int>(__ARM_NR_set_tls
+ 1);
486 syscall_number
<= static_cast<int>(MAX_PRIVATE_SYSCALL
);
489 BPF_ASSERT(syscall(syscall_number
) == -1);
490 BPF_ASSERT(errno
== ArmPrivateSysnoToErrno(syscall_number
));
493 #endif // defined(__arm__)
495 intptr_t CountSyscalls(const struct arch_seccomp_data
& args
, void* aux
) {
496 // Count all invocations of our callback function.
497 ++*reinterpret_cast<int*>(aux
);
499 // Verify that within the callback function all filtering is temporarily
501 BPF_ASSERT(sys_getpid() > 1);
503 // Verify that we can now call the underlying system call without causing
504 // infinite recursion.
505 return SandboxBPF::ForwardSyscall(args
);
508 class GreyListedPolicy
: public Policy
{
510 explicit GreyListedPolicy(int* aux
) : aux_(aux
) {
511 // Set the global environment for unsafe traps once.
514 ~GreyListedPolicy() override
{}
516 ResultExpr
EvaluateSyscall(int sysno
) const override
{
517 DCHECK(SandboxBPF::IsValidSyscallNumber(sysno
));
518 // Some system calls must always be allowed, if our policy wants to make
519 // use of UnsafeTrap()
520 if (SandboxBPF::IsRequiredForUnsafeTrap(sysno
)) {
522 } else if (sysno
== __NR_getpid
) {
526 // Allow (and count) all other system calls.
527 return UnsafeTrap(CountSyscalls
, aux_
);
534 DISALLOW_COPY_AND_ASSIGN(GreyListedPolicy
);
537 BPF_TEST(SandboxBPF
, GreyListedPolicy
, GreyListedPolicy
, int /* (*BPF_AUX) */) {
538 BPF_ASSERT(sys_getpid() == -1);
539 BPF_ASSERT(errno
== EPERM
);
540 BPF_ASSERT(*BPF_AUX
== 0);
541 BPF_ASSERT(syscall(__NR_geteuid
) == syscall(__NR_getuid
));
542 BPF_ASSERT(*BPF_AUX
== 2);
544 BPF_ASSERT(!syscall(__NR_prctl
,
550 BPF_ASSERT(*BPF_AUX
== 3);
554 SANDBOX_TEST(SandboxBPF
, EnableUnsafeTrapsInSigSysHandler
) {
555 // Disabling warning messages that could confuse our test framework.
556 setenv(kSandboxDebuggingEnv
, "t", 0);
557 Die::SuppressInfoMessages(true);
559 unsetenv(kSandboxDebuggingEnv
);
560 SANDBOX_ASSERT(Trap::Registry()->EnableUnsafeTraps() == false);
561 setenv(kSandboxDebuggingEnv
, "", 1);
562 SANDBOX_ASSERT(Trap::Registry()->EnableUnsafeTraps() == false);
563 setenv(kSandboxDebuggingEnv
, "t", 1);
564 SANDBOX_ASSERT(Trap::Registry()->EnableUnsafeTraps() == true);
567 intptr_t PrctlHandler(const struct arch_seccomp_data
& args
, void*) {
568 if (args
.args
[0] == PR_CAPBSET_DROP
&& static_cast<int>(args
.args
[1]) == -1) {
569 // prctl(PR_CAPBSET_DROP, -1) is never valid. The kernel will always
570 // return an error. But our handler allows this call.
573 return SandboxBPF::ForwardSyscall(args
);
577 class PrctlPolicy
: public Policy
{
580 ~PrctlPolicy() override
{}
582 ResultExpr
EvaluateSyscall(int sysno
) const override
{
583 DCHECK(SandboxBPF::IsValidSyscallNumber(sysno
));
584 setenv(kSandboxDebuggingEnv
, "t", 0);
585 Die::SuppressInfoMessages(true);
587 if (sysno
== __NR_prctl
) {
588 // Handle prctl() inside an UnsafeTrap()
589 return UnsafeTrap(PrctlHandler
, NULL
);
592 // Allow all other system calls.
597 DISALLOW_COPY_AND_ASSIGN(PrctlPolicy
);
600 BPF_TEST_C(SandboxBPF
, ForwardSyscall
, PrctlPolicy
) {
601 // This call should never be allowed. But our policy will intercept it and
602 // let it pass successfully.
604 !prctl(PR_CAPBSET_DROP
, -1, (void*)NULL
, (void*)NULL
, (void*)NULL
));
606 // Verify that the call will fail, if it makes it all the way to the kernel.
608 prctl(PR_CAPBSET_DROP
, -2, (void*)NULL
, (void*)NULL
, (void*)NULL
) == -1);
610 // And verify that other uses of prctl() work just fine.
612 BPF_ASSERT(!syscall(__NR_prctl
,
620 // Finally, verify that system calls other than prctl() are completely
621 // unaffected by our policy.
622 struct utsname uts
= {};
623 BPF_ASSERT(!uname(&uts
));
624 BPF_ASSERT(!strcmp(uts
.sysname
, "Linux"));
627 intptr_t AllowRedirectedSyscall(const struct arch_seccomp_data
& args
, void*) {
628 return SandboxBPF::ForwardSyscall(args
);
631 class RedirectAllSyscallsPolicy
: public Policy
{
633 RedirectAllSyscallsPolicy() {}
634 ~RedirectAllSyscallsPolicy() override
{}
636 ResultExpr
EvaluateSyscall(int sysno
) const override
;
639 DISALLOW_COPY_AND_ASSIGN(RedirectAllSyscallsPolicy
);
642 ResultExpr
RedirectAllSyscallsPolicy::EvaluateSyscall(int sysno
) const {
643 DCHECK(SandboxBPF::IsValidSyscallNumber(sysno
));
644 setenv(kSandboxDebuggingEnv
, "t", 0);
645 Die::SuppressInfoMessages(true);
647 // Some system calls must always be allowed, if our policy wants to make
648 // use of UnsafeTrap()
649 if (SandboxBPF::IsRequiredForUnsafeTrap(sysno
))
651 return UnsafeTrap(AllowRedirectedSyscall
, NULL
);
654 #if !defined(ADDRESS_SANITIZER)
655 // ASan does not allow changing the signal handler for SIGBUS, and treats it as
658 int bus_handler_fd_
= -1;
660 void SigBusHandler(int, siginfo_t
* info
, void* void_context
) {
661 BPF_ASSERT(write(bus_handler_fd_
, "\x55", 1) == 1);
664 BPF_TEST_C(SandboxBPF
, SigBus
, RedirectAllSyscallsPolicy
) {
665 // We use the SIGBUS bit in the signal mask as a thread-local boolean
666 // value in the implementation of UnsafeTrap(). This is obviously a bit
667 // of a hack that could conceivably interfere with code that uses SIGBUS
668 // in more traditional ways. This test verifies that basic functionality
669 // of SIGBUS is not impacted, but it is certainly possibly to construe
670 // more complex uses of signals where our use of the SIGBUS mask is not
671 // 100% transparent. This is expected behavior.
673 BPF_ASSERT(socketpair(AF_UNIX
, SOCK_STREAM
, 0, fds
) == 0);
674 bus_handler_fd_
= fds
[1];
675 struct sigaction sa
= {};
676 sa
.sa_sigaction
= SigBusHandler
;
677 sa
.sa_flags
= SA_SIGINFO
;
678 BPF_ASSERT(sigaction(SIGBUS
, &sa
, NULL
) == 0);
681 BPF_ASSERT(read(fds
[0], &c
, 1) == 1);
682 BPF_ASSERT(close(fds
[0]) == 0);
683 BPF_ASSERT(close(fds
[1]) == 0);
684 BPF_ASSERT(c
== 0x55);
686 #endif // !defined(ADDRESS_SANITIZER)
688 BPF_TEST_C(SandboxBPF
, SigMask
, RedirectAllSyscallsPolicy
) {
689 // Signal masks are potentially tricky to handle. For instance, if we
690 // ever tried to update them from inside a Trap() or UnsafeTrap() handler,
691 // the call to sigreturn() at the end of the signal handler would undo
692 // all of our efforts. So, it makes sense to test that sigprocmask()
693 // works, even if we have a policy in place that makes use of UnsafeTrap().
694 // In practice, this works because we force sigprocmask() to be handled
695 // entirely in the kernel.
696 sigset_t mask0
, mask1
, mask2
;
698 // Call sigprocmask() to verify that SIGUSR2 wasn't blocked, if we didn't
699 // change the mask (it shouldn't have been, as it isn't blocked by default
702 // Use SIGUSR2 because Android seems to use SIGUSR1 for some purpose.
704 BPF_ASSERT(!sigprocmask(SIG_BLOCK
, &mask0
, &mask1
));
705 BPF_ASSERT(!sigismember(&mask1
, SIGUSR2
));
707 // Try again, and this time we verify that we can block it. This
708 // requires a second call to sigprocmask().
709 sigaddset(&mask0
, SIGUSR2
);
710 BPF_ASSERT(!sigprocmask(SIG_BLOCK
, &mask0
, NULL
));
711 BPF_ASSERT(!sigprocmask(SIG_BLOCK
, NULL
, &mask2
));
712 BPF_ASSERT(sigismember(&mask2
, SIGUSR2
));
715 BPF_TEST_C(SandboxBPF
, UnsafeTrapWithErrno
, RedirectAllSyscallsPolicy
) {
716 // An UnsafeTrap() (or for that matter, a Trap()) has to report error
717 // conditions by returning an exit code in the range -1..-4096. This
718 // should happen automatically if using ForwardSyscall(). If the TrapFnc()
719 // uses some other method to make system calls, then it is responsible
720 // for computing the correct return code.
721 // This test verifies that ForwardSyscall() does the correct thing.
723 // The glibc system wrapper will ultimately set errno for us. So, from normal
724 // userspace, all of this should be completely transparent.
726 BPF_ASSERT(close(-1) == -1);
727 BPF_ASSERT(errno
== EBADF
);
729 // Explicitly avoid the glibc wrapper. This is not normally the way anybody
730 // would make system calls, but it allows us to verify that we don't
731 // accidentally mess with errno, when we shouldn't.
733 struct arch_seccomp_data args
= {};
734 args
.nr
= __NR_close
;
736 BPF_ASSERT(SandboxBPF::ForwardSyscall(args
) == -EBADF
);
737 BPF_ASSERT(errno
== 0);
740 // Simple test demonstrating how to use SandboxBPF::Cond()
742 class SimpleCondTestPolicy
: public Policy
{
744 SimpleCondTestPolicy() {}
745 ~SimpleCondTestPolicy() override
{}
747 ResultExpr
EvaluateSyscall(int sysno
) const override
;
750 DISALLOW_COPY_AND_ASSIGN(SimpleCondTestPolicy
);
753 ResultExpr
SimpleCondTestPolicy::EvaluateSyscall(int sysno
) const {
754 DCHECK(SandboxBPF::IsValidSyscallNumber(sysno
));
756 // We deliberately return unusual errno values upon failure, so that we
757 // can uniquely test for these values. In a "real" policy, you would want
758 // to return more traditional values.
759 int flags_argument_position
= -1;
761 #if defined(__NR_open)
763 flags_argument_position
= 1;
765 case __NR_openat
: { // open can be a wrapper for openat(2).
766 if (sysno
== __NR_openat
)
767 flags_argument_position
= 2;
769 // Allow opening files for reading, but don't allow writing.
770 static_assert(O_RDONLY
== 0, "O_RDONLY must be all zero bits");
771 const Arg
<int> flags(flags_argument_position
);
772 return If((flags
& O_ACCMODE
) != 0, Error(EROFS
)).Else(Allow());
775 // Allow prctl(PR_SET_DUMPABLE) and prctl(PR_GET_DUMPABLE), but
776 // disallow everything else.
777 const Arg
<int> option(0);
778 return If(option
== PR_SET_DUMPABLE
|| option
== PR_GET_DUMPABLE
, Allow())
779 .Else(Error(ENOMEM
));
786 BPF_TEST_C(SandboxBPF
, SimpleCondTest
, SimpleCondTestPolicy
) {
788 BPF_ASSERT((fd
= open("/proc/self/comm", O_RDWR
)) == -1);
789 BPF_ASSERT(errno
== EROFS
);
790 BPF_ASSERT((fd
= open("/proc/self/comm", O_RDONLY
)) >= 0);
794 BPF_ASSERT((ret
= prctl(PR_GET_DUMPABLE
)) >= 0);
795 BPF_ASSERT(prctl(PR_SET_DUMPABLE
, 1 - ret
) == 0);
796 BPF_ASSERT(prctl(PR_GET_ENDIAN
, &ret
) == -1);
797 BPF_ASSERT(errno
== ENOMEM
);
800 // This test exercises the SandboxBPF::Cond() method by building a complex
801 // tree of conditional equality operations. It then makes system calls and
802 // verifies that they return the values that we expected from our BPF
804 class EqualityStressTest
{
806 EqualityStressTest() {
807 // We want a deterministic test
810 // Iterates over system call numbers and builds a random tree of
812 // We are actually constructing a graph of ArgValue objects. This
813 // graph will later be used to a) compute our sandbox policy, and
814 // b) drive the code that verifies the output from the BPF program.
816 kNumTestCases
< (int)(MAX_PUBLIC_SYSCALL
- MIN_SYSCALL
- 10),
817 "kNumTestCases must be significantly smaller than the number "
819 for (int sysno
= MIN_SYSCALL
, end
= kNumTestCases
; sysno
< end
; ++sysno
) {
820 if (IsReservedSyscall(sysno
)) {
821 // Skip reserved system calls. This ensures that our test frame
822 // work isn't impacted by the fact that we are overriding
823 // a lot of different system calls.
825 arg_values_
.push_back(NULL
);
827 arg_values_
.push_back(
828 RandomArgValue(rand() % kMaxArgs
, 0, rand() % kMaxArgs
));
833 ~EqualityStressTest() {
834 for (std::vector
<ArgValue
*>::iterator iter
= arg_values_
.begin();
835 iter
!= arg_values_
.end();
837 DeleteArgValue(*iter
);
841 ResultExpr
Policy(int sysno
) {
842 DCHECK(SandboxBPF::IsValidSyscallNumber(sysno
));
843 if (sysno
< 0 || sysno
>= (int)arg_values_
.size() ||
844 IsReservedSyscall(sysno
)) {
845 // We only return ErrorCode values for the system calls that
846 // are part of our test data. Every other system call remains
850 // ToErrorCode() turns an ArgValue object into an ErrorCode that is
851 // suitable for use by a sandbox policy.
852 return ToErrorCode(arg_values_
[sysno
]);
856 void VerifyFilter() {
857 // Iterate over all system calls. Skip the system calls that have
858 // previously been determined as being reserved.
859 for (int sysno
= 0; sysno
< (int)arg_values_
.size(); ++sysno
) {
860 if (!arg_values_
[sysno
]) {
861 // Skip reserved system calls.
864 // Verify that system calls return the values that we expect them to
865 // return. This involves passing different combinations of system call
866 // parameters in order to exercise all possible code paths through the
867 // BPF filter program.
868 // We arbitrarily start by setting all six system call arguments to
869 // zero. And we then recursive traverse our tree of ArgValues to
870 // determine the necessary combinations of parameters.
871 intptr_t args
[6] = {};
872 Verify(sysno
, args
, *arg_values_
[sysno
]);
878 int argno
; // Argument number to inspect.
879 int size
; // Number of test cases (must be > 0).
881 uint32_t k_value
; // Value to compare syscall arg against.
882 int err
; // If non-zero, errno value to return.
883 struct ArgValue
* arg_value
; // Otherwise, more args needs inspecting.
885 int err
; // If none of the tests passed, this is what
886 struct ArgValue
* arg_value
; // we'll return (this is the "else" branch).
889 bool IsReservedSyscall(int sysno
) {
890 // There are a handful of system calls that we should never use in our
891 // test cases. These system calls are needed to allow the test framework
893 // If we wanted to write fully generic code, there are more system calls
894 // that could be listed here, and it is quite difficult to come up with a
895 // truly comprehensive list. After all, we are deliberately making system
896 // calls unavailable. In practice, we have a pretty good idea of the system
897 // calls that will be made by this particular test. So, this small list is
898 // sufficient. But if anybody copy'n'pasted this code for other uses, they
899 // would have to review that the list.
900 return sysno
== __NR_read
|| sysno
== __NR_write
|| sysno
== __NR_exit
||
901 sysno
== __NR_exit_group
|| sysno
== __NR_restart_syscall
;
904 ArgValue
* RandomArgValue(int argno
, int args_mask
, int remaining_args
) {
905 // Create a new ArgValue and fill it with random data. We use as bit mask
906 // to keep track of the system call parameters that have previously been
907 // set; this ensures that we won't accidentally define a contradictory
908 // set of equality tests.
909 struct ArgValue
* arg_value
= new ArgValue();
910 args_mask
|= 1 << argno
;
911 arg_value
->argno
= argno
;
913 // Apply some restrictions on just how complex our tests can be.
914 // Otherwise, we end up with a BPF program that is too complicated for
915 // the kernel to load.
916 int fan_out
= kMaxFanOut
;
917 if (remaining_args
> 3) {
919 } else if (remaining_args
> 2) {
923 // Create a couple of different test cases with randomized values that
924 // we want to use when comparing system call parameter number "argno".
925 arg_value
->size
= rand() % fan_out
+ 1;
926 arg_value
->tests
= new ArgValue::Tests
[arg_value
->size
];
928 uint32_t k_value
= rand();
929 for (int n
= 0; n
< arg_value
->size
; ++n
) {
930 // Ensure that we have unique values
931 k_value
+= rand() % (RAND_MAX
/ (kMaxFanOut
+ 1)) + 1;
933 // There are two possible types of nodes. Either this is a leaf node;
934 // in that case, we have completed all the equality tests that we
935 // wanted to perform, and we can now compute a random "errno" value that
936 // we should return. Or this is part of a more complex boolean
937 // expression; in that case, we have to recursively add tests for some
938 // of system call parameters that we have not yet included in our
940 arg_value
->tests
[n
].k_value
= k_value
;
941 if (!remaining_args
|| (rand() & 1)) {
942 arg_value
->tests
[n
].err
= (rand() % 1000) + 1;
943 arg_value
->tests
[n
].arg_value
= NULL
;
945 arg_value
->tests
[n
].err
= 0;
946 arg_value
->tests
[n
].arg_value
=
947 RandomArgValue(RandomArg(args_mask
), args_mask
, remaining_args
- 1);
950 // Finally, we have to define what we should return if none of the
951 // previous equality tests pass. Again, we can either deal with a leaf
952 // node, or we can randomly add another couple of tests.
953 if (!remaining_args
|| (rand() & 1)) {
954 arg_value
->err
= (rand() % 1000) + 1;
955 arg_value
->arg_value
= NULL
;
958 arg_value
->arg_value
=
959 RandomArgValue(RandomArg(args_mask
), args_mask
, remaining_args
- 1);
961 // We have now built a new (sub-)tree of ArgValues defining a set of
962 // boolean expressions for testing random system call arguments against
963 // random values. Return this tree to our caller.
967 int RandomArg(int args_mask
) {
968 // Compute a random system call parameter number.
969 int argno
= rand() % kMaxArgs
;
971 // Make sure that this same parameter number has not previously been
972 // used. Otherwise, we could end up with a test that is impossible to
973 // satisfy (e.g. args[0] == 1 && args[0] == 2).
974 while (args_mask
& (1 << argno
)) {
975 argno
= (argno
+ 1) % kMaxArgs
;
980 void DeleteArgValue(ArgValue
* arg_value
) {
981 // Delete an ArgValue and all of its child nodes. This requires
982 // recursively descending into the tree.
984 if (arg_value
->size
) {
985 for (int n
= 0; n
< arg_value
->size
; ++n
) {
986 if (!arg_value
->tests
[n
].err
) {
987 DeleteArgValue(arg_value
->tests
[n
].arg_value
);
990 delete[] arg_value
->tests
;
992 if (!arg_value
->err
) {
993 DeleteArgValue(arg_value
->arg_value
);
999 ResultExpr
ToErrorCode(ArgValue
* arg_value
) {
1000 // Compute the ResultExpr that should be returned, if none of our
1001 // tests succeed (i.e. the system call parameter doesn't match any
1002 // of the values in arg_value->tests[].k_value).
1004 if (arg_value
->err
) {
1005 // If this was a leaf node, return the errno value that we expect to
1006 // return from the BPF filter program.
1007 err
= Error(arg_value
->err
);
1009 // If this wasn't a leaf node yet, recursively descend into the rest
1010 // of the tree. This will end up adding a few more SandboxBPF::Cond()
1011 // tests to our ErrorCode.
1012 err
= ToErrorCode(arg_value
->arg_value
);
1015 // Now, iterate over all the test cases that we want to compare against.
1016 // This builds a chain of SandboxBPF::Cond() tests
1017 // (aka "if ... elif ... elif ... elif ... fi")
1018 for (int n
= arg_value
->size
; n
-- > 0;) {
1020 // Again, we distinguish between leaf nodes and subtrees.
1021 if (arg_value
->tests
[n
].err
) {
1022 matched
= Error(arg_value
->tests
[n
].err
);
1024 matched
= ToErrorCode(arg_value
->tests
[n
].arg_value
);
1026 // For now, all of our tests are limited to 32bit.
1027 // We have separate tests that check the behavior of 32bit vs. 64bit
1028 // conditional expressions.
1029 const Arg
<uint32_t> arg(arg_value
->argno
);
1030 err
= If(arg
== arg_value
->tests
[n
].k_value
, matched
).Else(err
);
1035 void Verify(int sysno
, intptr_t* args
, const ArgValue
& arg_value
) {
1036 uint32_t mismatched
= 0;
1037 // Iterate over all the k_values in arg_value.tests[] and verify that
1038 // we see the expected return values from system calls, when we pass
1039 // the k_value as a parameter in a system call.
1040 for (int n
= arg_value
.size
; n
-- > 0;) {
1041 mismatched
+= arg_value
.tests
[n
].k_value
;
1042 args
[arg_value
.argno
] = arg_value
.tests
[n
].k_value
;
1043 if (arg_value
.tests
[n
].err
) {
1044 VerifyErrno(sysno
, args
, arg_value
.tests
[n
].err
);
1046 Verify(sysno
, args
, *arg_value
.tests
[n
].arg_value
);
1049 // Find a k_value that doesn't match any of the k_values in
1050 // arg_value.tests[]. In most cases, the current value of "mismatched"
1051 // would fit this requirement. But on the off-chance that it happens
1052 // to collide, we double-check.
1054 for (int n
= arg_value
.size
; n
-- > 0;) {
1055 if (mismatched
== arg_value
.tests
[n
].k_value
) {
1060 // Now verify that we see the expected return value from system calls,
1061 // if we pass a value that doesn't match any of the conditions (i.e. this
1062 // is testing the "else" clause of the conditions).
1063 args
[arg_value
.argno
] = mismatched
;
1064 if (arg_value
.err
) {
1065 VerifyErrno(sysno
, args
, arg_value
.err
);
1067 Verify(sysno
, args
, *arg_value
.arg_value
);
1069 // Reset args[arg_value.argno]. This is not technically needed, but it
1070 // makes it easier to reason about the correctness of our tests.
1071 args
[arg_value
.argno
] = 0;
1074 void VerifyErrno(int sysno
, intptr_t* args
, int err
) {
1075 // We installed BPF filters that return different errno values
1076 // based on the system call number and the parameters that we decided
1077 // to pass in. Verify that this condition holds true.
1080 sysno
, args
[0], args
[1], args
[2], args
[3], args
[4], args
[5]) ==
1084 // Vector of ArgValue trees. These trees define all the possible boolean
1085 // expressions that we want to turn into a BPF filter program.
1086 std::vector
<ArgValue
*> arg_values_
;
1088 // Don't increase these values. We are pushing the limits of the maximum
1089 // BPF program that the kernel will allow us to load. If the values are
1090 // increased too much, the test will start failing.
1091 #if defined(__aarch64__)
1092 static const int kNumTestCases
= 30;
1094 static const int kNumTestCases
= 40;
1096 static const int kMaxFanOut
= 3;
1097 static const int kMaxArgs
= 6;
1100 class EqualityStressTestPolicy
: public Policy
{
1102 explicit EqualityStressTestPolicy(EqualityStressTest
* aux
) : aux_(aux
) {}
1103 ~EqualityStressTestPolicy() override
{}
1105 ResultExpr
EvaluateSyscall(int sysno
) const override
{
1106 return aux_
->Policy(sysno
);
1110 EqualityStressTest
* aux_
;
1112 DISALLOW_COPY_AND_ASSIGN(EqualityStressTestPolicy
);
1115 BPF_TEST(SandboxBPF
,
1117 EqualityStressTestPolicy
,
1118 EqualityStressTest
/* (*BPF_AUX) */) {
1119 BPF_AUX
->VerifyFilter();
1122 class EqualityArgumentWidthPolicy
: public Policy
{
1124 EqualityArgumentWidthPolicy() {}
1125 ~EqualityArgumentWidthPolicy() override
{}
1127 ResultExpr
EvaluateSyscall(int sysno
) const override
;
1130 DISALLOW_COPY_AND_ASSIGN(EqualityArgumentWidthPolicy
);
1133 ResultExpr
EqualityArgumentWidthPolicy::EvaluateSyscall(int sysno
) const {
1134 DCHECK(SandboxBPF::IsValidSyscallNumber(sysno
));
1135 if (sysno
== __NR_uname
) {
1136 const Arg
<int> option(0);
1137 const Arg
<uint32_t> arg32(1);
1138 const Arg
<uint64_t> arg64(1);
1139 return Switch(option
)
1140 .Case(0, If(arg32
== 0x55555555, Error(1)).Else(Error(2)))
1141 #if __SIZEOF_POINTER__ > 4
1142 .Case(1, If(arg64
== 0x55555555AAAAAAAAULL
, Error(1)).Else(Error(2)))
1149 BPF_TEST_C(SandboxBPF
, EqualityArgumentWidth
, EqualityArgumentWidthPolicy
) {
1150 BPF_ASSERT(Syscall::Call(__NR_uname
, 0, 0x55555555) == -1);
1151 BPF_ASSERT(Syscall::Call(__NR_uname
, 0, 0xAAAAAAAA) == -2);
1152 #if __SIZEOF_POINTER__ > 4
1153 // On 32bit machines, there is no way to pass a 64bit argument through the
1154 // syscall interface. So, we have to skip the part of the test that requires
1156 BPF_ASSERT(Syscall::Call(__NR_uname
, 1, 0x55555555AAAAAAAAULL
) == -1);
1157 BPF_ASSERT(Syscall::Call(__NR_uname
, 1, 0x5555555500000000ULL
) == -2);
1158 BPF_ASSERT(Syscall::Call(__NR_uname
, 1, 0x5555555511111111ULL
) == -2);
1159 BPF_ASSERT(Syscall::Call(__NR_uname
, 1, 0x11111111AAAAAAAAULL
) == -2);
1163 #if __SIZEOF_POINTER__ > 4
1164 // On 32bit machines, there is no way to pass a 64bit argument through the
1165 // syscall interface. So, we have to skip the part of the test that requires
1167 BPF_DEATH_TEST_C(SandboxBPF
,
1168 EqualityArgumentUnallowed64bit
,
1169 DEATH_MESSAGE("Unexpected 64bit argument detected"),
1170 EqualityArgumentWidthPolicy
) {
1171 Syscall::Call(__NR_uname
, 0, 0x5555555555555555ULL
);
1175 class EqualityWithNegativeArgumentsPolicy
: public Policy
{
1177 EqualityWithNegativeArgumentsPolicy() {}
1178 ~EqualityWithNegativeArgumentsPolicy() override
{}
1180 ResultExpr
EvaluateSyscall(int sysno
) const override
{
1181 DCHECK(SandboxBPF::IsValidSyscallNumber(sysno
));
1182 if (sysno
== __NR_uname
) {
1183 // TODO(mdempsky): This currently can't be Arg<int> because then
1184 // 0xFFFFFFFF will be treated as a (signed) int, and then when
1185 // Arg::EqualTo casts it to uint64_t, it will be sign extended.
1186 const Arg
<unsigned> arg(0);
1187 return If(arg
== 0xFFFFFFFF, Error(1)).Else(Error(2));
1193 DISALLOW_COPY_AND_ASSIGN(EqualityWithNegativeArgumentsPolicy
);
1196 BPF_TEST_C(SandboxBPF
,
1197 EqualityWithNegativeArguments
,
1198 EqualityWithNegativeArgumentsPolicy
) {
1199 BPF_ASSERT(Syscall::Call(__NR_uname
, 0xFFFFFFFF) == -1);
1200 BPF_ASSERT(Syscall::Call(__NR_uname
, -1) == -1);
1201 BPF_ASSERT(Syscall::Call(__NR_uname
, -1LL) == -1);
1204 #if __SIZEOF_POINTER__ > 4
1205 BPF_DEATH_TEST_C(SandboxBPF
,
1206 EqualityWithNegative64bitArguments
,
1207 DEATH_MESSAGE("Unexpected 64bit argument detected"),
1208 EqualityWithNegativeArgumentsPolicy
) {
1209 // When expecting a 32bit system call argument, we look at the MSB of the
1210 // 64bit value and allow both "0" and "-1". But the latter is allowed only
1211 // iff the LSB was negative. So, this death test should error out.
1212 BPF_ASSERT(Syscall::Call(__NR_uname
, 0xFFFFFFFF00000000LL
) == -1);
1216 class AllBitTestPolicy
: public Policy
{
1218 AllBitTestPolicy() {}
1219 ~AllBitTestPolicy() override
{}
1221 ResultExpr
EvaluateSyscall(int sysno
) const override
;
1224 static ResultExpr
HasAllBits32(uint32_t bits
);
1225 static ResultExpr
HasAllBits64(uint64_t bits
);
1227 DISALLOW_COPY_AND_ASSIGN(AllBitTestPolicy
);
1230 ResultExpr
AllBitTestPolicy::HasAllBits32(uint32_t bits
) {
1234 const Arg
<uint32_t> arg(1);
1235 return If((arg
& bits
) == bits
, Error(1)).Else(Error(0));
1238 ResultExpr
AllBitTestPolicy::HasAllBits64(uint64_t bits
) {
1242 const Arg
<uint64_t> arg(1);
1243 return If((arg
& bits
) == bits
, Error(1)).Else(Error(0));
1246 ResultExpr
AllBitTestPolicy::EvaluateSyscall(int sysno
) const {
1247 DCHECK(SandboxBPF::IsValidSyscallNumber(sysno
));
1248 // Test masked-equality cases that should trigger the "has all bits"
1249 // peephole optimizations. We try to find bitmasks that could conceivably
1250 // touch corner cases.
1251 // For all of these tests, we override the uname(). We can make use with
1252 // a single system call number, as we use the first system call argument to
1253 // select the different bit masks that we want to test against.
1254 if (sysno
== __NR_uname
) {
1255 const Arg
<int> option(0);
1256 return Switch(option
)
1257 .Case(0, HasAllBits32(0x0))
1258 .Case(1, HasAllBits32(0x1))
1259 .Case(2, HasAllBits32(0x3))
1260 .Case(3, HasAllBits32(0x80000000))
1261 #if __SIZEOF_POINTER__ > 4
1262 .Case(4, HasAllBits64(0x0))
1263 .Case(5, HasAllBits64(0x1))
1264 .Case(6, HasAllBits64(0x3))
1265 .Case(7, HasAllBits64(0x80000000))
1266 .Case(8, HasAllBits64(0x100000000ULL
))
1267 .Case(9, HasAllBits64(0x300000000ULL
))
1268 .Case(10, HasAllBits64(0x100000001ULL
))
1275 // Define a macro that performs tests using our test policy.
1276 // NOTE: Not all of the arguments in this macro are actually used!
1277 // They are here just to serve as documentation of the conditions
1278 // implemented in the test policy.
1279 // Most notably, "op" and "mask" are unused by the macro. If you want
1280 // to make changes to these values, you will have to edit the
1281 // test policy instead.
1282 #define BITMASK_TEST(testcase, arg, op, mask, expected_value) \
1283 BPF_ASSERT(Syscall::Call(__NR_uname, (testcase), (arg)) == (expected_value))
1285 // Our uname() system call returns ErrorCode(1) for success and
1286 // ErrorCode(0) for failure. Syscall::Call() turns this into an
1287 // exit code of -1 or 0.
1288 #define EXPECT_FAILURE 0
1289 #define EXPECT_SUCCESS -1
1291 // A couple of our tests behave differently on 32bit and 64bit systems, as
1292 // there is no way for a 32bit system call to pass in a 64bit system call
1294 // We expect these tests to succeed on 64bit systems, but to tail on 32bit
1296 #define EXPT64_SUCCESS (sizeof(void*) > 4 ? EXPECT_SUCCESS : EXPECT_FAILURE)
1297 BPF_TEST_C(SandboxBPF
, AllBitTests
, AllBitTestPolicy
) {
1298 // 32bit test: all of 0x0 (should always be true)
1299 BITMASK_TEST( 0, 0, ALLBITS32
, 0, EXPECT_SUCCESS
);
1300 BITMASK_TEST( 0, 1, ALLBITS32
, 0, EXPECT_SUCCESS
);
1301 BITMASK_TEST( 0, 3, ALLBITS32
, 0, EXPECT_SUCCESS
);
1302 BITMASK_TEST( 0, 0xFFFFFFFFU
, ALLBITS32
, 0, EXPECT_SUCCESS
);
1303 BITMASK_TEST( 0, -1LL, ALLBITS32
, 0, EXPECT_SUCCESS
);
1305 // 32bit test: all of 0x1
1306 BITMASK_TEST( 1, 0, ALLBITS32
, 0x1, EXPECT_FAILURE
);
1307 BITMASK_TEST( 1, 1, ALLBITS32
, 0x1, EXPECT_SUCCESS
);
1308 BITMASK_TEST( 1, 2, ALLBITS32
, 0x1, EXPECT_FAILURE
);
1309 BITMASK_TEST( 1, 3, ALLBITS32
, 0x1, EXPECT_SUCCESS
);
1311 // 32bit test: all of 0x3
1312 BITMASK_TEST( 2, 0, ALLBITS32
, 0x3, EXPECT_FAILURE
);
1313 BITMASK_TEST( 2, 1, ALLBITS32
, 0x3, EXPECT_FAILURE
);
1314 BITMASK_TEST( 2, 2, ALLBITS32
, 0x3, EXPECT_FAILURE
);
1315 BITMASK_TEST( 2, 3, ALLBITS32
, 0x3, EXPECT_SUCCESS
);
1316 BITMASK_TEST( 2, 7, ALLBITS32
, 0x3, EXPECT_SUCCESS
);
1318 // 32bit test: all of 0x80000000
1319 BITMASK_TEST( 3, 0, ALLBITS32
, 0x80000000, EXPECT_FAILURE
);
1320 BITMASK_TEST( 3, 0x40000000U
, ALLBITS32
, 0x80000000, EXPECT_FAILURE
);
1321 BITMASK_TEST( 3, 0x80000000U
, ALLBITS32
, 0x80000000, EXPECT_SUCCESS
);
1322 BITMASK_TEST( 3, 0xC0000000U
, ALLBITS32
, 0x80000000, EXPECT_SUCCESS
);
1323 BITMASK_TEST( 3, -0x80000000LL
, ALLBITS32
, 0x80000000, EXPECT_SUCCESS
);
1325 #if __SIZEOF_POINTER__ > 4
1326 // 64bit test: all of 0x0 (should always be true)
1327 BITMASK_TEST( 4, 0, ALLBITS64
, 0, EXPECT_SUCCESS
);
1328 BITMASK_TEST( 4, 1, ALLBITS64
, 0, EXPECT_SUCCESS
);
1329 BITMASK_TEST( 4, 3, ALLBITS64
, 0, EXPECT_SUCCESS
);
1330 BITMASK_TEST( 4, 0xFFFFFFFFU
, ALLBITS64
, 0, EXPECT_SUCCESS
);
1331 BITMASK_TEST( 4, 0x100000000LL
, ALLBITS64
, 0, EXPECT_SUCCESS
);
1332 BITMASK_TEST( 4, 0x300000000LL
, ALLBITS64
, 0, EXPECT_SUCCESS
);
1333 BITMASK_TEST( 4,0x8000000000000000LL
, ALLBITS64
, 0, EXPECT_SUCCESS
);
1334 BITMASK_TEST( 4, -1LL, ALLBITS64
, 0, EXPECT_SUCCESS
);
1336 // 64bit test: all of 0x1
1337 BITMASK_TEST( 5, 0, ALLBITS64
, 1, EXPECT_FAILURE
);
1338 BITMASK_TEST( 5, 1, ALLBITS64
, 1, EXPECT_SUCCESS
);
1339 BITMASK_TEST( 5, 2, ALLBITS64
, 1, EXPECT_FAILURE
);
1340 BITMASK_TEST( 5, 3, ALLBITS64
, 1, EXPECT_SUCCESS
);
1341 BITMASK_TEST( 5, 0x100000000LL
, ALLBITS64
, 1, EXPECT_FAILURE
);
1342 BITMASK_TEST( 5, 0x100000001LL
, ALLBITS64
, 1, EXPECT_SUCCESS
);
1343 BITMASK_TEST( 5, 0x100000002LL
, ALLBITS64
, 1, EXPECT_FAILURE
);
1344 BITMASK_TEST( 5, 0x100000003LL
, ALLBITS64
, 1, EXPECT_SUCCESS
);
1346 // 64bit test: all of 0x3
1347 BITMASK_TEST( 6, 0, ALLBITS64
, 3, EXPECT_FAILURE
);
1348 BITMASK_TEST( 6, 1, ALLBITS64
, 3, EXPECT_FAILURE
);
1349 BITMASK_TEST( 6, 2, ALLBITS64
, 3, EXPECT_FAILURE
);
1350 BITMASK_TEST( 6, 3, ALLBITS64
, 3, EXPECT_SUCCESS
);
1351 BITMASK_TEST( 6, 7, ALLBITS64
, 3, EXPECT_SUCCESS
);
1352 BITMASK_TEST( 6, 0x100000000LL
, ALLBITS64
, 3, EXPECT_FAILURE
);
1353 BITMASK_TEST( 6, 0x100000001LL
, ALLBITS64
, 3, EXPECT_FAILURE
);
1354 BITMASK_TEST( 6, 0x100000002LL
, ALLBITS64
, 3, EXPECT_FAILURE
);
1355 BITMASK_TEST( 6, 0x100000003LL
, ALLBITS64
, 3, EXPECT_SUCCESS
);
1356 BITMASK_TEST( 6, 0x100000007LL
, ALLBITS64
, 3, EXPECT_SUCCESS
);
1358 // 64bit test: all of 0x80000000
1359 BITMASK_TEST( 7, 0, ALLBITS64
, 0x80000000, EXPECT_FAILURE
);
1360 BITMASK_TEST( 7, 0x40000000U
, ALLBITS64
, 0x80000000, EXPECT_FAILURE
);
1361 BITMASK_TEST( 7, 0x80000000U
, ALLBITS64
, 0x80000000, EXPECT_SUCCESS
);
1362 BITMASK_TEST( 7, 0xC0000000U
, ALLBITS64
, 0x80000000, EXPECT_SUCCESS
);
1363 BITMASK_TEST( 7, -0x80000000LL
, ALLBITS64
, 0x80000000, EXPECT_SUCCESS
);
1364 BITMASK_TEST( 7, 0x100000000LL
, ALLBITS64
, 0x80000000, EXPECT_FAILURE
);
1365 BITMASK_TEST( 7, 0x140000000LL
, ALLBITS64
, 0x80000000, EXPECT_FAILURE
);
1366 BITMASK_TEST( 7, 0x180000000LL
, ALLBITS64
, 0x80000000, EXPECT_SUCCESS
);
1367 BITMASK_TEST( 7, 0x1C0000000LL
, ALLBITS64
, 0x80000000, EXPECT_SUCCESS
);
1368 BITMASK_TEST( 7, -0x180000000LL
, ALLBITS64
, 0x80000000, EXPECT_SUCCESS
);
1370 // 64bit test: all of 0x100000000
1371 BITMASK_TEST( 8, 0x000000000LL
, ALLBITS64
,0x100000000, EXPECT_FAILURE
);
1372 BITMASK_TEST( 8, 0x100000000LL
, ALLBITS64
,0x100000000, EXPT64_SUCCESS
);
1373 BITMASK_TEST( 8, 0x200000000LL
, ALLBITS64
,0x100000000, EXPECT_FAILURE
);
1374 BITMASK_TEST( 8, 0x300000000LL
, ALLBITS64
,0x100000000, EXPT64_SUCCESS
);
1375 BITMASK_TEST( 8, 0x000000001LL
, ALLBITS64
,0x100000000, EXPECT_FAILURE
);
1376 BITMASK_TEST( 8, 0x100000001LL
, ALLBITS64
,0x100000000, EXPT64_SUCCESS
);
1377 BITMASK_TEST( 8, 0x200000001LL
, ALLBITS64
,0x100000000, EXPECT_FAILURE
);
1378 BITMASK_TEST( 8, 0x300000001LL
, ALLBITS64
,0x100000000, EXPT64_SUCCESS
);
1380 // 64bit test: all of 0x300000000
1381 BITMASK_TEST( 9, 0x000000000LL
, ALLBITS64
,0x300000000, EXPECT_FAILURE
);
1382 BITMASK_TEST( 9, 0x100000000LL
, ALLBITS64
,0x300000000, EXPECT_FAILURE
);
1383 BITMASK_TEST( 9, 0x200000000LL
, ALLBITS64
,0x300000000, EXPECT_FAILURE
);
1384 BITMASK_TEST( 9, 0x300000000LL
, ALLBITS64
,0x300000000, EXPT64_SUCCESS
);
1385 BITMASK_TEST( 9, 0x700000000LL
, ALLBITS64
,0x300000000, EXPT64_SUCCESS
);
1386 BITMASK_TEST( 9, 0x000000001LL
, ALLBITS64
,0x300000000, EXPECT_FAILURE
);
1387 BITMASK_TEST( 9, 0x100000001LL
, ALLBITS64
,0x300000000, EXPECT_FAILURE
);
1388 BITMASK_TEST( 9, 0x200000001LL
, ALLBITS64
,0x300000000, EXPECT_FAILURE
);
1389 BITMASK_TEST( 9, 0x300000001LL
, ALLBITS64
,0x300000000, EXPT64_SUCCESS
);
1390 BITMASK_TEST( 9, 0x700000001LL
, ALLBITS64
,0x300000000, EXPT64_SUCCESS
);
1392 // 64bit test: all of 0x100000001
1393 BITMASK_TEST(10, 0x000000000LL
, ALLBITS64
,0x100000001, EXPECT_FAILURE
);
1394 BITMASK_TEST(10, 0x000000001LL
, ALLBITS64
,0x100000001, EXPECT_FAILURE
);
1395 BITMASK_TEST(10, 0x100000000LL
, ALLBITS64
,0x100000001, EXPECT_FAILURE
);
1396 BITMASK_TEST(10, 0x100000001LL
, ALLBITS64
,0x100000001, EXPT64_SUCCESS
);
1397 BITMASK_TEST(10, 0xFFFFFFFFU
, ALLBITS64
,0x100000001, EXPECT_FAILURE
);
1398 BITMASK_TEST(10, -1L, ALLBITS64
,0x100000001, EXPT64_SUCCESS
);
1402 class AnyBitTestPolicy
: public Policy
{
1404 AnyBitTestPolicy() {}
1405 ~AnyBitTestPolicy() override
{}
1407 ResultExpr
EvaluateSyscall(int sysno
) const override
;
1410 static ResultExpr
HasAnyBits32(uint32_t);
1411 static ResultExpr
HasAnyBits64(uint64_t);
1413 DISALLOW_COPY_AND_ASSIGN(AnyBitTestPolicy
);
1416 ResultExpr
AnyBitTestPolicy::HasAnyBits32(uint32_t bits
) {
1420 const Arg
<uint32_t> arg(1);
1421 return If((arg
& bits
) != 0, Error(1)).Else(Error(0));
1424 ResultExpr
AnyBitTestPolicy::HasAnyBits64(uint64_t bits
) {
1428 const Arg
<uint64_t> arg(1);
1429 return If((arg
& bits
) != 0, Error(1)).Else(Error(0));
1432 ResultExpr
AnyBitTestPolicy::EvaluateSyscall(int sysno
) const {
1433 DCHECK(SandboxBPF::IsValidSyscallNumber(sysno
));
1434 // Test masked-equality cases that should trigger the "has any bits"
1435 // peephole optimizations. We try to find bitmasks that could conceivably
1436 // touch corner cases.
1437 // For all of these tests, we override the uname(). We can make use with
1438 // a single system call number, as we use the first system call argument to
1439 // select the different bit masks that we want to test against.
1440 if (sysno
== __NR_uname
) {
1441 const Arg
<int> option(0);
1442 return Switch(option
)
1443 .Case(0, HasAnyBits32(0x0))
1444 .Case(1, HasAnyBits32(0x1))
1445 .Case(2, HasAnyBits32(0x3))
1446 .Case(3, HasAnyBits32(0x80000000))
1447 #if __SIZEOF_POINTER__ > 4
1448 .Case(4, HasAnyBits64(0x0))
1449 .Case(5, HasAnyBits64(0x1))
1450 .Case(6, HasAnyBits64(0x3))
1451 .Case(7, HasAnyBits64(0x80000000))
1452 .Case(8, HasAnyBits64(0x100000000ULL
))
1453 .Case(9, HasAnyBits64(0x300000000ULL
))
1454 .Case(10, HasAnyBits64(0x100000001ULL
))
1461 BPF_TEST_C(SandboxBPF
, AnyBitTests
, AnyBitTestPolicy
) {
1462 // 32bit test: any of 0x0 (should always be false)
1463 BITMASK_TEST( 0, 0, ANYBITS32
, 0x0, EXPECT_FAILURE
);
1464 BITMASK_TEST( 0, 1, ANYBITS32
, 0x0, EXPECT_FAILURE
);
1465 BITMASK_TEST( 0, 3, ANYBITS32
, 0x0, EXPECT_FAILURE
);
1466 BITMASK_TEST( 0, 0xFFFFFFFFU
, ANYBITS32
, 0x0, EXPECT_FAILURE
);
1467 BITMASK_TEST( 0, -1LL, ANYBITS32
, 0x0, EXPECT_FAILURE
);
1469 // 32bit test: any of 0x1
1470 BITMASK_TEST( 1, 0, ANYBITS32
, 0x1, EXPECT_FAILURE
);
1471 BITMASK_TEST( 1, 1, ANYBITS32
, 0x1, EXPECT_SUCCESS
);
1472 BITMASK_TEST( 1, 2, ANYBITS32
, 0x1, EXPECT_FAILURE
);
1473 BITMASK_TEST( 1, 3, ANYBITS32
, 0x1, EXPECT_SUCCESS
);
1475 // 32bit test: any of 0x3
1476 BITMASK_TEST( 2, 0, ANYBITS32
, 0x3, EXPECT_FAILURE
);
1477 BITMASK_TEST( 2, 1, ANYBITS32
, 0x3, EXPECT_SUCCESS
);
1478 BITMASK_TEST( 2, 2, ANYBITS32
, 0x3, EXPECT_SUCCESS
);
1479 BITMASK_TEST( 2, 3, ANYBITS32
, 0x3, EXPECT_SUCCESS
);
1480 BITMASK_TEST( 2, 7, ANYBITS32
, 0x3, EXPECT_SUCCESS
);
1482 // 32bit test: any of 0x80000000
1483 BITMASK_TEST( 3, 0, ANYBITS32
, 0x80000000, EXPECT_FAILURE
);
1484 BITMASK_TEST( 3, 0x40000000U
, ANYBITS32
, 0x80000000, EXPECT_FAILURE
);
1485 BITMASK_TEST( 3, 0x80000000U
, ANYBITS32
, 0x80000000, EXPECT_SUCCESS
);
1486 BITMASK_TEST( 3, 0xC0000000U
, ANYBITS32
, 0x80000000, EXPECT_SUCCESS
);
1487 BITMASK_TEST( 3, -0x80000000LL
, ANYBITS32
, 0x80000000, EXPECT_SUCCESS
);
1489 #if __SIZEOF_POINTER__ > 4
1490 // 64bit test: any of 0x0 (should always be false)
1491 BITMASK_TEST( 4, 0, ANYBITS64
, 0x0, EXPECT_FAILURE
);
1492 BITMASK_TEST( 4, 1, ANYBITS64
, 0x0, EXPECT_FAILURE
);
1493 BITMASK_TEST( 4, 3, ANYBITS64
, 0x0, EXPECT_FAILURE
);
1494 BITMASK_TEST( 4, 0xFFFFFFFFU
, ANYBITS64
, 0x0, EXPECT_FAILURE
);
1495 BITMASK_TEST( 4, 0x100000000LL
, ANYBITS64
, 0x0, EXPECT_FAILURE
);
1496 BITMASK_TEST( 4, 0x300000000LL
, ANYBITS64
, 0x0, EXPECT_FAILURE
);
1497 BITMASK_TEST( 4,0x8000000000000000LL
, ANYBITS64
, 0x0, EXPECT_FAILURE
);
1498 BITMASK_TEST( 4, -1LL, ANYBITS64
, 0x0, EXPECT_FAILURE
);
1500 // 64bit test: any of 0x1
1501 BITMASK_TEST( 5, 0, ANYBITS64
, 0x1, EXPECT_FAILURE
);
1502 BITMASK_TEST( 5, 1, ANYBITS64
, 0x1, EXPECT_SUCCESS
);
1503 BITMASK_TEST( 5, 2, ANYBITS64
, 0x1, EXPECT_FAILURE
);
1504 BITMASK_TEST( 5, 3, ANYBITS64
, 0x1, EXPECT_SUCCESS
);
1505 BITMASK_TEST( 5, 0x100000001LL
, ANYBITS64
, 0x1, EXPECT_SUCCESS
);
1506 BITMASK_TEST( 5, 0x100000000LL
, ANYBITS64
, 0x1, EXPECT_FAILURE
);
1507 BITMASK_TEST( 5, 0x100000002LL
, ANYBITS64
, 0x1, EXPECT_FAILURE
);
1508 BITMASK_TEST( 5, 0x100000003LL
, ANYBITS64
, 0x1, EXPECT_SUCCESS
);
1510 // 64bit test: any of 0x3
1511 BITMASK_TEST( 6, 0, ANYBITS64
, 0x3, EXPECT_FAILURE
);
1512 BITMASK_TEST( 6, 1, ANYBITS64
, 0x3, EXPECT_SUCCESS
);
1513 BITMASK_TEST( 6, 2, ANYBITS64
, 0x3, EXPECT_SUCCESS
);
1514 BITMASK_TEST( 6, 3, ANYBITS64
, 0x3, EXPECT_SUCCESS
);
1515 BITMASK_TEST( 6, 7, ANYBITS64
, 0x3, EXPECT_SUCCESS
);
1516 BITMASK_TEST( 6, 0x100000000LL
, ANYBITS64
, 0x3, EXPECT_FAILURE
);
1517 BITMASK_TEST( 6, 0x100000001LL
, ANYBITS64
, 0x3, EXPECT_SUCCESS
);
1518 BITMASK_TEST( 6, 0x100000002LL
, ANYBITS64
, 0x3, EXPECT_SUCCESS
);
1519 BITMASK_TEST( 6, 0x100000003LL
, ANYBITS64
, 0x3, EXPECT_SUCCESS
);
1520 BITMASK_TEST( 6, 0x100000007LL
, ANYBITS64
, 0x3, EXPECT_SUCCESS
);
1522 // 64bit test: any of 0x80000000
1523 BITMASK_TEST( 7, 0, ANYBITS64
, 0x80000000, EXPECT_FAILURE
);
1524 BITMASK_TEST( 7, 0x40000000U
, ANYBITS64
, 0x80000000, EXPECT_FAILURE
);
1525 BITMASK_TEST( 7, 0x80000000U
, ANYBITS64
, 0x80000000, EXPECT_SUCCESS
);
1526 BITMASK_TEST( 7, 0xC0000000U
, ANYBITS64
, 0x80000000, EXPECT_SUCCESS
);
1527 BITMASK_TEST( 7, -0x80000000LL
, ANYBITS64
, 0x80000000, EXPECT_SUCCESS
);
1528 BITMASK_TEST( 7, 0x100000000LL
, ANYBITS64
, 0x80000000, EXPECT_FAILURE
);
1529 BITMASK_TEST( 7, 0x140000000LL
, ANYBITS64
, 0x80000000, EXPECT_FAILURE
);
1530 BITMASK_TEST( 7, 0x180000000LL
, ANYBITS64
, 0x80000000, EXPECT_SUCCESS
);
1531 BITMASK_TEST( 7, 0x1C0000000LL
, ANYBITS64
, 0x80000000, EXPECT_SUCCESS
);
1532 BITMASK_TEST( 7, -0x180000000LL
, ANYBITS64
, 0x80000000, EXPECT_SUCCESS
);
1534 // 64bit test: any of 0x100000000
1535 BITMASK_TEST( 8, 0x000000000LL
, ANYBITS64
,0x100000000, EXPECT_FAILURE
);
1536 BITMASK_TEST( 8, 0x100000000LL
, ANYBITS64
,0x100000000, EXPT64_SUCCESS
);
1537 BITMASK_TEST( 8, 0x200000000LL
, ANYBITS64
,0x100000000, EXPECT_FAILURE
);
1538 BITMASK_TEST( 8, 0x300000000LL
, ANYBITS64
,0x100000000, EXPT64_SUCCESS
);
1539 BITMASK_TEST( 8, 0x000000001LL
, ANYBITS64
,0x100000000, EXPECT_FAILURE
);
1540 BITMASK_TEST( 8, 0x100000001LL
, ANYBITS64
,0x100000000, EXPT64_SUCCESS
);
1541 BITMASK_TEST( 8, 0x200000001LL
, ANYBITS64
,0x100000000, EXPECT_FAILURE
);
1542 BITMASK_TEST( 8, 0x300000001LL
, ANYBITS64
,0x100000000, EXPT64_SUCCESS
);
1544 // 64bit test: any of 0x300000000
1545 BITMASK_TEST( 9, 0x000000000LL
, ANYBITS64
,0x300000000, EXPECT_FAILURE
);
1546 BITMASK_TEST( 9, 0x100000000LL
, ANYBITS64
,0x300000000, EXPT64_SUCCESS
);
1547 BITMASK_TEST( 9, 0x200000000LL
, ANYBITS64
,0x300000000, EXPT64_SUCCESS
);
1548 BITMASK_TEST( 9, 0x300000000LL
, ANYBITS64
,0x300000000, EXPT64_SUCCESS
);
1549 BITMASK_TEST( 9, 0x700000000LL
, ANYBITS64
,0x300000000, EXPT64_SUCCESS
);
1550 BITMASK_TEST( 9, 0x000000001LL
, ANYBITS64
,0x300000000, EXPECT_FAILURE
);
1551 BITMASK_TEST( 9, 0x100000001LL
, ANYBITS64
,0x300000000, EXPT64_SUCCESS
);
1552 BITMASK_TEST( 9, 0x200000001LL
, ANYBITS64
,0x300000000, EXPT64_SUCCESS
);
1553 BITMASK_TEST( 9, 0x300000001LL
, ANYBITS64
,0x300000000, EXPT64_SUCCESS
);
1554 BITMASK_TEST( 9, 0x700000001LL
, ANYBITS64
,0x300000000, EXPT64_SUCCESS
);
1556 // 64bit test: any of 0x100000001
1557 BITMASK_TEST( 10, 0x000000000LL
, ANYBITS64
,0x100000001, EXPECT_FAILURE
);
1558 BITMASK_TEST( 10, 0x000000001LL
, ANYBITS64
,0x100000001, EXPECT_SUCCESS
);
1559 BITMASK_TEST( 10, 0x100000000LL
, ANYBITS64
,0x100000001, EXPT64_SUCCESS
);
1560 BITMASK_TEST( 10, 0x100000001LL
, ANYBITS64
,0x100000001, EXPECT_SUCCESS
);
1561 BITMASK_TEST( 10, 0xFFFFFFFFU
, ANYBITS64
,0x100000001, EXPECT_SUCCESS
);
1562 BITMASK_TEST( 10, -1L, ANYBITS64
,0x100000001, EXPECT_SUCCESS
);
1566 class MaskedEqualTestPolicy
: public Policy
{
1568 MaskedEqualTestPolicy() {}
1569 ~MaskedEqualTestPolicy() override
{}
1571 ResultExpr
EvaluateSyscall(int sysno
) const override
;
1574 static ResultExpr
MaskedEqual32(uint32_t mask
, uint32_t value
);
1575 static ResultExpr
MaskedEqual64(uint64_t mask
, uint64_t value
);
1577 DISALLOW_COPY_AND_ASSIGN(MaskedEqualTestPolicy
);
1580 ResultExpr
MaskedEqualTestPolicy::MaskedEqual32(uint32_t mask
, uint32_t value
) {
1581 const Arg
<uint32_t> arg(1);
1582 return If((arg
& mask
) == value
, Error(1)).Else(Error(0));
1585 ResultExpr
MaskedEqualTestPolicy::MaskedEqual64(uint64_t mask
, uint64_t value
) {
1586 const Arg
<uint64_t> arg(1);
1587 return If((arg
& mask
) == value
, Error(1)).Else(Error(0));
1590 ResultExpr
MaskedEqualTestPolicy::EvaluateSyscall(int sysno
) const {
1591 DCHECK(SandboxBPF::IsValidSyscallNumber(sysno
));
1593 if (sysno
== __NR_uname
) {
1594 const Arg
<int> option(0);
1595 return Switch(option
)
1596 .Case(0, MaskedEqual32(0x00ff00ff, 0x005500aa))
1597 #if __SIZEOF_POINTER__ > 4
1598 .Case(1, MaskedEqual64(0x00ff00ff00000000, 0x005500aa00000000))
1599 .Case(2, MaskedEqual64(0x00ff00ff00ff00ff, 0x005500aa005500aa))
1607 #define MASKEQ_TEST(rulenum, arg, expected_result) \
1608 BPF_ASSERT(Syscall::Call(__NR_uname, (rulenum), (arg)) == (expected_result))
1610 BPF_TEST_C(SandboxBPF
, MaskedEqualTests
, MaskedEqualTestPolicy
) {
1611 // Allowed: 0x__55__aa
1612 MASKEQ_TEST(0, 0x00000000, EXPECT_FAILURE
);
1613 MASKEQ_TEST(0, 0x00000001, EXPECT_FAILURE
);
1614 MASKEQ_TEST(0, 0x00000003, EXPECT_FAILURE
);
1615 MASKEQ_TEST(0, 0x00000100, EXPECT_FAILURE
);
1616 MASKEQ_TEST(0, 0x00000300, EXPECT_FAILURE
);
1617 MASKEQ_TEST(0, 0x005500aa, EXPECT_SUCCESS
);
1618 MASKEQ_TEST(0, 0x005500ab, EXPECT_FAILURE
);
1619 MASKEQ_TEST(0, 0x005600aa, EXPECT_FAILURE
);
1620 MASKEQ_TEST(0, 0x005501aa, EXPECT_SUCCESS
);
1621 MASKEQ_TEST(0, 0x005503aa, EXPECT_SUCCESS
);
1622 MASKEQ_TEST(0, 0x555500aa, EXPECT_SUCCESS
);
1623 MASKEQ_TEST(0, 0xaa5500aa, EXPECT_SUCCESS
);
1625 #if __SIZEOF_POINTER__ > 4
1626 // Allowed: 0x__55__aa________
1627 MASKEQ_TEST(1, 0x0000000000000000, EXPECT_FAILURE
);
1628 MASKEQ_TEST(1, 0x0000000000000010, EXPECT_FAILURE
);
1629 MASKEQ_TEST(1, 0x0000000000000050, EXPECT_FAILURE
);
1630 MASKEQ_TEST(1, 0x0000000100000000, EXPECT_FAILURE
);
1631 MASKEQ_TEST(1, 0x0000000300000000, EXPECT_FAILURE
);
1632 MASKEQ_TEST(1, 0x0000010000000000, EXPECT_FAILURE
);
1633 MASKEQ_TEST(1, 0x0000030000000000, EXPECT_FAILURE
);
1634 MASKEQ_TEST(1, 0x005500aa00000000, EXPECT_SUCCESS
);
1635 MASKEQ_TEST(1, 0x005500ab00000000, EXPECT_FAILURE
);
1636 MASKEQ_TEST(1, 0x005600aa00000000, EXPECT_FAILURE
);
1637 MASKEQ_TEST(1, 0x005501aa00000000, EXPECT_SUCCESS
);
1638 MASKEQ_TEST(1, 0x005503aa00000000, EXPECT_SUCCESS
);
1639 MASKEQ_TEST(1, 0x555500aa00000000, EXPECT_SUCCESS
);
1640 MASKEQ_TEST(1, 0xaa5500aa00000000, EXPECT_SUCCESS
);
1641 MASKEQ_TEST(1, 0xaa5500aa00000000, EXPECT_SUCCESS
);
1642 MASKEQ_TEST(1, 0xaa5500aa0000cafe, EXPECT_SUCCESS
);
1644 // Allowed: 0x__55__aa__55__aa
1645 MASKEQ_TEST(2, 0x0000000000000000, EXPECT_FAILURE
);
1646 MASKEQ_TEST(2, 0x0000000000000010, EXPECT_FAILURE
);
1647 MASKEQ_TEST(2, 0x0000000000000050, EXPECT_FAILURE
);
1648 MASKEQ_TEST(2, 0x0000000100000000, EXPECT_FAILURE
);
1649 MASKEQ_TEST(2, 0x0000000300000000, EXPECT_FAILURE
);
1650 MASKEQ_TEST(2, 0x0000010000000000, EXPECT_FAILURE
);
1651 MASKEQ_TEST(2, 0x0000030000000000, EXPECT_FAILURE
);
1652 MASKEQ_TEST(2, 0x00000000005500aa, EXPECT_FAILURE
);
1653 MASKEQ_TEST(2, 0x005500aa00000000, EXPECT_FAILURE
);
1654 MASKEQ_TEST(2, 0x005500aa005500aa, EXPECT_SUCCESS
);
1655 MASKEQ_TEST(2, 0x005500aa005700aa, EXPECT_FAILURE
);
1656 MASKEQ_TEST(2, 0x005700aa005500aa, EXPECT_FAILURE
);
1657 MASKEQ_TEST(2, 0x005500aa004500aa, EXPECT_FAILURE
);
1658 MASKEQ_TEST(2, 0x004500aa005500aa, EXPECT_FAILURE
);
1659 MASKEQ_TEST(2, 0x005512aa005500aa, EXPECT_SUCCESS
);
1660 MASKEQ_TEST(2, 0x005500aa005534aa, EXPECT_SUCCESS
);
1661 MASKEQ_TEST(2, 0xff5500aa0055ffaa, EXPECT_SUCCESS
);
1665 intptr_t PthreadTrapHandler(const struct arch_seccomp_data
& args
, void* aux
) {
1666 if (args
.args
[0] != (CLONE_CHILD_CLEARTID
| CLONE_CHILD_SETTID
| SIGCHLD
)) {
1667 // We expect to get called for an attempt to fork(). No need to log that
1668 // call. But if we ever get called for anything else, we want to verbosely
1669 // print as much information as possible.
1670 const char* msg
= (const char*)aux
;
1672 "Clone() was called with unexpected arguments\n"
1682 (long long)args
.args
[0],
1683 (long long)args
.args
[1],
1684 (long long)args
.args
[2],
1685 (long long)args
.args
[3],
1686 (long long)args
.args
[4],
1687 (long long)args
.args
[5],
1693 class PthreadPolicyEquality
: public Policy
{
1695 PthreadPolicyEquality() {}
1696 ~PthreadPolicyEquality() override
{}
1698 ResultExpr
EvaluateSyscall(int sysno
) const override
;
1701 DISALLOW_COPY_AND_ASSIGN(PthreadPolicyEquality
);
1704 ResultExpr
PthreadPolicyEquality::EvaluateSyscall(int sysno
) const {
1705 DCHECK(SandboxBPF::IsValidSyscallNumber(sysno
));
1706 // This policy allows creating threads with pthread_create(). But it
1707 // doesn't allow any other uses of clone(). Most notably, it does not
1708 // allow callers to implement fork() or vfork() by passing suitable flags
1709 // to the clone() system call.
1710 if (sysno
== __NR_clone
) {
1711 // We have seen two different valid combinations of flags. Glibc
1712 // uses the more modern flags, sets the TLS from the call to clone(), and
1713 // uses futexes to monitor threads. Android's C run-time library, doesn't
1714 // do any of this, but it sets the obsolete (and no-op) CLONE_DETACHED.
1715 // More recent versions of Android don't set CLONE_DETACHED anymore, so
1716 // the last case accounts for that.
1717 // The following policy is very strict. It only allows the exact masks
1718 // that we have seen in known implementations. It is probably somewhat
1719 // stricter than what we would want to do.
1720 const uint64_t kGlibcCloneMask
= CLONE_VM
| CLONE_FS
| CLONE_FILES
|
1721 CLONE_SIGHAND
| CLONE_THREAD
|
1722 CLONE_SYSVSEM
| CLONE_SETTLS
|
1723 CLONE_PARENT_SETTID
| CLONE_CHILD_CLEARTID
;
1724 const uint64_t kBaseAndroidCloneMask
= CLONE_VM
| CLONE_FS
| CLONE_FILES
|
1725 CLONE_SIGHAND
| CLONE_THREAD
|
1727 const Arg
<unsigned long> flags(0);
1728 return If(flags
== kGlibcCloneMask
||
1729 flags
== (kBaseAndroidCloneMask
| CLONE_DETACHED
) ||
1730 flags
== kBaseAndroidCloneMask
,
1731 Allow()).Else(Trap(PthreadTrapHandler
, "Unknown mask"));
1737 class PthreadPolicyBitMask
: public Policy
{
1739 PthreadPolicyBitMask() {}
1740 ~PthreadPolicyBitMask() override
{}
1742 ResultExpr
EvaluateSyscall(int sysno
) const override
;
1745 static BoolExpr
HasAnyBits(const Arg
<unsigned long>& arg
, unsigned long bits
);
1746 static BoolExpr
HasAllBits(const Arg
<unsigned long>& arg
, unsigned long bits
);
1748 DISALLOW_COPY_AND_ASSIGN(PthreadPolicyBitMask
);
1751 BoolExpr
PthreadPolicyBitMask::HasAnyBits(const Arg
<unsigned long>& arg
,
1752 unsigned long bits
) {
1753 return (arg
& bits
) != 0;
1756 BoolExpr
PthreadPolicyBitMask::HasAllBits(const Arg
<unsigned long>& arg
,
1757 unsigned long bits
) {
1758 return (arg
& bits
) == bits
;
1761 ResultExpr
PthreadPolicyBitMask::EvaluateSyscall(int sysno
) const {
1762 DCHECK(SandboxBPF::IsValidSyscallNumber(sysno
));
1763 // This policy allows creating threads with pthread_create(). But it
1764 // doesn't allow any other uses of clone(). Most notably, it does not
1765 // allow callers to implement fork() or vfork() by passing suitable flags
1766 // to the clone() system call.
1767 if (sysno
== __NR_clone
) {
1768 // We have seen two different valid combinations of flags. Glibc
1769 // uses the more modern flags, sets the TLS from the call to clone(), and
1770 // uses futexes to monitor threads. Android's C run-time library, doesn't
1771 // do any of this, but it sets the obsolete (and no-op) CLONE_DETACHED.
1772 // The following policy allows for either combination of flags, but it
1773 // is generally a little more conservative than strictly necessary. We
1774 // err on the side of rather safe than sorry.
1775 // Very noticeably though, we disallow fork() (which is often just a
1776 // wrapper around clone()).
1777 const unsigned long kMandatoryFlags
= CLONE_VM
| CLONE_FS
| CLONE_FILES
|
1778 CLONE_SIGHAND
| CLONE_THREAD
|
1780 const unsigned long kFutexFlags
=
1781 CLONE_SETTLS
| CLONE_PARENT_SETTID
| CLONE_CHILD_CLEARTID
;
1782 const unsigned long kNoopFlags
= CLONE_DETACHED
;
1783 const unsigned long kKnownFlags
=
1784 kMandatoryFlags
| kFutexFlags
| kNoopFlags
;
1786 const Arg
<unsigned long> flags(0);
1787 return If(HasAnyBits(flags
, ~kKnownFlags
),
1788 Trap(PthreadTrapHandler
, "Unexpected CLONE_XXX flag found"))
1789 .ElseIf(!HasAllBits(flags
, kMandatoryFlags
),
1790 Trap(PthreadTrapHandler
,
1791 "Missing mandatory CLONE_XXX flags "
1792 "when creating new thread"))
1794 !HasAllBits(flags
, kFutexFlags
) && HasAnyBits(flags
, kFutexFlags
),
1795 Trap(PthreadTrapHandler
,
1796 "Must set either all or none of the TLS and futex bits in "
1804 static void* ThreadFnc(void* arg
) {
1805 ++*reinterpret_cast<int*>(arg
);
1806 Syscall::Call(__NR_futex
, arg
, FUTEX_WAKE
, 1, 0, 0, 0);
1810 static void PthreadTest() {
1811 // Attempt to start a joinable thread. This should succeed.
1814 BPF_ASSERT(!pthread_create(&thread
, NULL
, ThreadFnc
, &thread_ran
));
1815 BPF_ASSERT(!pthread_join(thread
, NULL
));
1816 BPF_ASSERT(thread_ran
);
1818 // Attempt to start a detached thread. This should succeed.
1820 pthread_attr_t attr
;
1821 BPF_ASSERT(!pthread_attr_init(&attr
));
1822 BPF_ASSERT(!pthread_attr_setdetachstate(&attr
, PTHREAD_CREATE_DETACHED
));
1823 BPF_ASSERT(!pthread_create(&thread
, &attr
, ThreadFnc
, &thread_ran
));
1824 BPF_ASSERT(!pthread_attr_destroy(&attr
));
1825 while (Syscall::Call(__NR_futex
, &thread_ran
, FUTEX_WAIT
, 0, 0, 0, 0) ==
1828 BPF_ASSERT(thread_ran
);
1830 // Attempt to fork() a process using clone(). This should fail. We use the
1831 // same flags that glibc uses when calling fork(). But we don't actually
1832 // try calling the fork() implementation in the C run-time library, as
1833 // run-time libraries other than glibc might call __NR_fork instead of
1834 // __NR_clone, and that would introduce a bogus test failure.
1836 BPF_ASSERT(Syscall::Call(__NR_clone
,
1837 CLONE_CHILD_CLEARTID
| CLONE_CHILD_SETTID
| SIGCHLD
,
1843 BPF_TEST_C(SandboxBPF
, PthreadEquality
, PthreadPolicyEquality
) {
1847 BPF_TEST_C(SandboxBPF
, PthreadBitMask
, PthreadPolicyBitMask
) {
1851 // libc might not define these even though the kernel supports it.
1852 #ifndef PTRACE_O_TRACESECCOMP
1853 #define PTRACE_O_TRACESECCOMP 0x00000080
1856 #ifdef PTRACE_EVENT_SECCOMP
1857 #define IS_SECCOMP_EVENT(status) ((status >> 16) == PTRACE_EVENT_SECCOMP)
1859 // When Debian/Ubuntu backported seccomp-bpf support into earlier kernels, they
1860 // changed the value of PTRACE_EVENT_SECCOMP from 7 to 8, since 7 was taken by
1861 // PTRACE_EVENT_STOP (upstream chose to renumber PTRACE_EVENT_STOP to 128). If
1862 // PTRACE_EVENT_SECCOMP isn't defined, we have no choice but to consider both
1864 #define IS_SECCOMP_EVENT(status) ((status >> 16) == 7 || (status >> 16) == 8)
1867 #if defined(__arm__)
1868 #ifndef PTRACE_SET_SYSCALL
1869 #define PTRACE_SET_SYSCALL 23
1873 #if defined(__aarch64__)
1874 #ifndef PTRACE_GETREGS
1875 #define PTRACE_GETREGS 12
1879 #if defined(__aarch64__)
1880 #ifndef PTRACE_SETREGS
1881 #define PTRACE_SETREGS 13
1885 // Changes the syscall to run for a child being sandboxed using seccomp-bpf with
1886 // PTRACE_O_TRACESECCOMP. Should only be called when the child is stopped on
1887 // PTRACE_EVENT_SECCOMP.
1889 // regs should contain the current set of registers of the child, obtained using
1892 // Depending on the architecture, this may modify regs, so the caller is
1893 // responsible for committing these changes using PTRACE_SETREGS.
1894 long SetSyscall(pid_t pid
, regs_struct
* regs
, int syscall_number
) {
1895 #if defined(__arm__)
1896 // On ARM, the syscall is changed using PTRACE_SET_SYSCALL. We cannot use the
1897 // libc ptrace call as the request parameter is an enum, and
1898 // PTRACE_SET_SYSCALL may not be in the enum.
1899 return syscall(__NR_ptrace
, PTRACE_SET_SYSCALL
, pid
, NULL
, syscall_number
);
1902 SECCOMP_PT_SYSCALL(*regs
) = syscall_number
;
1906 const uint16_t kTraceData
= 0xcc;
1908 class TraceAllPolicy
: public Policy
{
1911 ~TraceAllPolicy() override
{}
1913 ResultExpr
EvaluateSyscall(int system_call_number
) const override
{
1914 return Trace(kTraceData
);
1918 DISALLOW_COPY_AND_ASSIGN(TraceAllPolicy
);
1921 SANDBOX_TEST(SandboxBPF
, DISABLE_ON_TSAN(SeccompRetTrace
)) {
1922 if (!SandboxBPF::SupportsSeccompSandbox(
1923 SandboxBPF::SeccompLevel::SINGLE_THREADED
)) {
1927 // This test is disabled on arm due to a kernel bug.
1928 // See https://code.google.com/p/chromium/issues/detail?id=383977
1929 #if defined(__arm__) || defined(__aarch64__)
1930 printf("This test is currently disabled on ARM32/64 due to a kernel bug.");
1934 #if defined(__mips__)
1935 // TODO: Figure out how to support specificity of handling indirect syscalls
1936 // in this test and enable it.
1937 printf("This test is currently disabled on MIPS.");
1942 BPF_ASSERT_NE(-1, pid
);
1944 pid_t my_pid
= getpid();
1945 BPF_ASSERT_NE(-1, ptrace(PTRACE_TRACEME
, -1, NULL
, NULL
));
1946 BPF_ASSERT_EQ(0, raise(SIGSTOP
));
1947 SandboxBPF
sandbox(new TraceAllPolicy
);
1948 BPF_ASSERT(sandbox
.StartSandbox(SandboxBPF::SeccompLevel::SINGLE_THREADED
));
1950 // getpid is allowed.
1951 BPF_ASSERT_EQ(my_pid
, sys_getpid());
1953 // write to stdout is skipped and returns a fake value.
1954 BPF_ASSERT_EQ(kExpectedReturnValue
,
1955 syscall(__NR_write
, STDOUT_FILENO
, "A", 1));
1957 // kill is rewritten to exit(kExpectedReturnValue).
1958 syscall(__NR_kill
, my_pid
, SIGKILL
);
1960 // Should not be reached.
1965 BPF_ASSERT(HANDLE_EINTR(waitpid(pid
, &status
, WUNTRACED
)) != -1);
1966 BPF_ASSERT(WIFSTOPPED(status
));
1969 ptrace(PTRACE_SETOPTIONS
,
1972 reinterpret_cast<void*>(PTRACE_O_TRACESECCOMP
)));
1973 BPF_ASSERT_NE(-1, ptrace(PTRACE_CONT
, pid
, NULL
, NULL
));
1975 BPF_ASSERT(HANDLE_EINTR(waitpid(pid
, &status
, 0)) != -1);
1976 if (WIFEXITED(status
) || WIFSIGNALED(status
)) {
1977 BPF_ASSERT(WIFEXITED(status
));
1978 BPF_ASSERT_EQ(kExpectedReturnValue
, WEXITSTATUS(status
));
1982 if (!WIFSTOPPED(status
) || WSTOPSIG(status
) != SIGTRAP
||
1983 !IS_SECCOMP_EVENT(status
)) {
1984 BPF_ASSERT_NE(-1, ptrace(PTRACE_CONT
, pid
, NULL
, NULL
));
1989 BPF_ASSERT_NE(-1, ptrace(PTRACE_GETEVENTMSG
, pid
, NULL
, &data
));
1990 BPF_ASSERT_EQ(kTraceData
, data
);
1993 BPF_ASSERT_NE(-1, ptrace(PTRACE_GETREGS
, pid
, NULL
, ®s
));
1994 switch (SECCOMP_PT_SYSCALL(regs
)) {
1996 // Skip writes to stdout, make it return kExpectedReturnValue. Allow
1997 // writes to stderr so that BPF_ASSERT messages show up.
1998 if (SECCOMP_PT_PARM1(regs
) == STDOUT_FILENO
) {
1999 BPF_ASSERT_NE(-1, SetSyscall(pid
, ®s
, -1));
2000 SECCOMP_PT_RESULT(regs
) = kExpectedReturnValue
;
2001 BPF_ASSERT_NE(-1, ptrace(PTRACE_SETREGS
, pid
, NULL
, ®s
));
2006 // Rewrite to exit(kExpectedReturnValue).
2007 BPF_ASSERT_NE(-1, SetSyscall(pid
, ®s
, __NR_exit
));
2008 SECCOMP_PT_PARM1(regs
) = kExpectedReturnValue
;
2009 BPF_ASSERT_NE(-1, ptrace(PTRACE_SETREGS
, pid
, NULL
, ®s
));
2013 // Allow all other syscalls.
2017 BPF_ASSERT_NE(-1, ptrace(PTRACE_CONT
, pid
, NULL
, NULL
));
2021 // Android does not expose pread64 nor pwrite64.
2022 #if !defined(OS_ANDROID)
2024 bool FullPwrite64(int fd
, const char* buffer
, size_t count
, off64_t offset
) {
2026 const ssize_t transfered
=
2027 HANDLE_EINTR(pwrite64(fd
, buffer
, count
, offset
));
2028 if (transfered
<= 0 || static_cast<size_t>(transfered
) > count
) {
2031 count
-= transfered
;
2032 buffer
+= transfered
;
2033 offset
+= transfered
;
2038 bool FullPread64(int fd
, char* buffer
, size_t count
, off64_t offset
) {
2040 const ssize_t transfered
= HANDLE_EINTR(pread64(fd
, buffer
, count
, offset
));
2041 if (transfered
<= 0 || static_cast<size_t>(transfered
) > count
) {
2044 count
-= transfered
;
2045 buffer
+= transfered
;
2046 offset
+= transfered
;
2051 bool pread_64_was_forwarded
= false;
2053 class TrapPread64Policy
: public Policy
{
2055 TrapPread64Policy() {}
2056 ~TrapPread64Policy() override
{}
2058 ResultExpr
EvaluateSyscall(int system_call_number
) const override
{
2059 // Set the global environment for unsafe traps once.
2060 if (system_call_number
== MIN_SYSCALL
) {
2061 EnableUnsafeTraps();
2064 if (system_call_number
== __NR_pread64
) {
2065 return UnsafeTrap(ForwardPreadHandler
, NULL
);
2071 static intptr_t ForwardPreadHandler(const struct arch_seccomp_data
& args
,
2073 BPF_ASSERT(args
.nr
== __NR_pread64
);
2074 pread_64_was_forwarded
= true;
2076 return SandboxBPF::ForwardSyscall(args
);
2079 DISALLOW_COPY_AND_ASSIGN(TrapPread64Policy
);
2082 // pread(2) takes a 64 bits offset. On 32 bits systems, it will be split
2083 // between two arguments. In this test, we make sure that ForwardSyscall() can
2084 // forward it properly.
2085 BPF_TEST_C(SandboxBPF
, Pread64
, TrapPread64Policy
) {
2086 ScopedTemporaryFile temp_file
;
2087 const uint64_t kLargeOffset
= (static_cast<uint64_t>(1) << 32) | 0xBEEF;
2088 const char kTestString
[] = "This is a test!";
2089 BPF_ASSERT(FullPwrite64(
2090 temp_file
.fd(), kTestString
, sizeof(kTestString
), kLargeOffset
));
2092 char read_test_string
[sizeof(kTestString
)] = {0};
2093 BPF_ASSERT(FullPread64(temp_file
.fd(),
2095 sizeof(read_test_string
),
2097 BPF_ASSERT_EQ(0, memcmp(kTestString
, read_test_string
, sizeof(kTestString
)));
2098 BPF_ASSERT(pread_64_was_forwarded
);
2101 #endif // !defined(OS_ANDROID)
2103 void* TsyncApplyToTwoThreadsFunc(void* cond_ptr
) {
2104 base::WaitableEvent
* event
= static_cast<base::WaitableEvent
*>(cond_ptr
);
2106 // Wait for the main thread to signal that the filter has been applied.
2107 if (!event
->IsSignaled()) {
2111 BPF_ASSERT(event
->IsSignaled());
2113 BlacklistNanosleepPolicy::AssertNanosleepFails();
2118 SANDBOX_TEST(SandboxBPF
, Tsync
) {
2119 const bool supports_multi_threaded
= SandboxBPF::SupportsSeccompSandbox(
2120 SandboxBPF::SeccompLevel::MULTI_THREADED
);
2121 // On Chrome OS tsync is mandatory.
2122 #if defined(OS_CHROMEOS)
2123 if (base::SysInfo::IsRunningOnChromeOS()) {
2124 BPF_ASSERT_EQ(true, supports_multi_threaded
);
2126 // else a Chrome OS build not running on a Chrome OS device e.g. Chrome bots.
2127 // In this case fall through.
2129 if (!supports_multi_threaded
) {
2133 base::WaitableEvent
event(true, false);
2135 // Create a thread on which to invoke the blocked syscall.
2138 0, pthread_create(&thread
, NULL
, &TsyncApplyToTwoThreadsFunc
, &event
));
2140 // Test that nanoseelp success.
2141 const struct timespec ts
= {0, 0};
2142 BPF_ASSERT_EQ(0, HANDLE_EINTR(syscall(__NR_nanosleep
, &ts
, NULL
)));
2144 // Engage the sandbox.
2145 SandboxBPF
sandbox(new BlacklistNanosleepPolicy());
2146 BPF_ASSERT(sandbox
.StartSandbox(SandboxBPF::SeccompLevel::MULTI_THREADED
));
2148 // This thread should have the filter applied as well.
2149 BlacklistNanosleepPolicy::AssertNanosleepFails();
2151 // Signal the condition to invoke the system call.
2154 // Wait for the thread to finish.
2155 BPF_ASSERT_EQ(0, pthread_join(thread
, NULL
));
2158 class AllowAllPolicy
: public Policy
{
2161 ~AllowAllPolicy() override
{}
2163 ResultExpr
EvaluateSyscall(int sysno
) const override
{ return Allow(); }
2166 DISALLOW_COPY_AND_ASSIGN(AllowAllPolicy
);
2171 StartMultiThreadedAsSingleThreaded
,
2173 ThreadHelpers::GetAssertSingleThreadedErrorMessageForTests())) {
2174 base::Thread
thread("sandbox.linux.StartMultiThreadedAsSingleThreaded");
2175 BPF_ASSERT(thread
.Start());
2177 SandboxBPF
sandbox(new AllowAllPolicy());
2178 BPF_ASSERT(!sandbox
.StartSandbox(SandboxBPF::SeccompLevel::SINGLE_THREADED
));
2181 // http://crbug.com/407357
2182 #if !defined(THREAD_SANITIZER)
2185 StartSingleThreadedAsMultiThreaded
,
2187 "Cannot start sandbox; process may be single-threaded when "
2188 "reported as not")) {
2189 SandboxBPF
sandbox(new AllowAllPolicy());
2190 BPF_ASSERT(!sandbox
.StartSandbox(SandboxBPF::SeccompLevel::MULTI_THREADED
));
2192 #endif // !defined(THREAD_SANITIZER)
2194 // A stub handler for the UnsafeTrap. Never called.
2195 intptr_t NoOpHandler(const struct arch_seccomp_data
& args
, void*) {
2199 class UnsafeTrapWithCondPolicy
: public Policy
{
2201 UnsafeTrapWithCondPolicy() {}
2202 ~UnsafeTrapWithCondPolicy() override
{}
2204 ResultExpr
EvaluateSyscall(int sysno
) const override
{
2205 DCHECK(SandboxBPF::IsValidSyscallNumber(sysno
));
2206 setenv(kSandboxDebuggingEnv
, "t", 0);
2207 Die::SuppressInfoMessages(true);
2209 if (SandboxBPF::IsRequiredForUnsafeTrap(sysno
))
2214 const Arg
<uint32_t> arg(0);
2215 return If(arg
== 0, Allow()).Else(Error(EPERM
));
2218 const Arg
<uint32_t> arg(0);
2220 .Case(100, Error(ENOMEM
))
2221 .Case(200, Error(ENOSYS
))
2222 .Default(Error(EPERM
));
2225 case __NR_exit_group
:
2229 return UnsafeTrap(NoOpHandler
, NULL
);
2231 return Error(EPERM
);
2236 DISALLOW_COPY_AND_ASSIGN(UnsafeTrapWithCondPolicy
);
2239 BPF_TEST_C(SandboxBPF
, UnsafeTrapWithCond
, UnsafeTrapWithCondPolicy
) {
2240 BPF_ASSERT_EQ(-1, syscall(__NR_uname
, 0));
2241 BPF_ASSERT_EQ(EFAULT
, errno
);
2243 BPF_ASSERT_EQ(-1, syscall(__NR_uname
, 1));
2244 BPF_ASSERT_EQ(EPERM
, errno
);
2246 BPF_ASSERT_EQ(-1, syscall(__NR_setgid
, 100));
2247 BPF_ASSERT_EQ(ENOMEM
, errno
);
2249 BPF_ASSERT_EQ(-1, syscall(__NR_setgid
, 200));
2250 BPF_ASSERT_EQ(ENOSYS
, errno
);
2252 BPF_ASSERT_EQ(-1, syscall(__NR_setgid
, 300));
2253 BPF_ASSERT_EQ(EPERM
, errno
);
2258 } // namespace bpf_dsl
2259 } // namespace sandbox