Componentize component_updater: Copy over test data with executable bit.
[chromium-blink-merge.git] / base / threading / thread_perftest.cc
blobeaeddf9443507f4e73c8688f093628e797254bc9
1 // Copyright 2014 The Chromium Authors. All rights reserved.
2 // Use of this source code is governed by a BSD-style license that can be
3 // found in the LICENSE file.
5 #include "base/base_switches.h"
6 #include "base/bind.h"
7 #include "base/command_line.h"
8 #include "base/memory/scoped_vector.h"
9 #include "base/synchronization/condition_variable.h"
10 #include "base/synchronization/lock.h"
11 #include "base/synchronization/waitable_event.h"
12 #include "base/threading/thread.h"
13 #include "base/time/time.h"
14 #include "build/build_config.h"
15 #include "testing/gtest/include/gtest/gtest.h"
16 #include "testing/perf/perf_test.h"
18 #if defined(OS_POSIX)
19 #include <pthread.h>
20 #endif
22 namespace base {
24 namespace {
26 const int kNumRuns = 100000;
28 // Base class for a threading perf-test. This sets up some threads for the
29 // test and measures the clock-time in addition to time spent on each thread.
30 class ThreadPerfTest : public testing::Test {
31 public:
32 ThreadPerfTest()
33 : done_(false, false) {
34 // Disable the task profiler as it adds significant cost!
35 CommandLine::Init(0, NULL);
36 CommandLine::ForCurrentProcess()->AppendSwitchASCII(
37 switches::kProfilerTiming,
38 switches::kProfilerTimingDisabledValue);
41 // To be implemented by each test. Subclass must uses threads_ such that
42 // their cpu-time can be measured. Test must return from PingPong() _and_
43 // call FinishMeasurement from any thread to complete the test.
44 virtual void Init() {}
45 virtual void PingPong(int hops) = 0;
46 virtual void Reset() {}
48 void TimeOnThread(base::TimeTicks* ticks, base::WaitableEvent* done) {
49 *ticks = base::TimeTicks::ThreadNow();
50 done->Signal();
53 base::TimeTicks ThreadNow(base::Thread* thread) {
54 base::WaitableEvent done(false, false);
55 base::TimeTicks ticks;
56 thread->message_loop_proxy()->PostTask(
57 FROM_HERE,
58 base::Bind(&ThreadPerfTest::TimeOnThread,
59 base::Unretained(this),
60 &ticks,
61 &done));
62 done.Wait();
63 return ticks;
66 void RunPingPongTest(const std::string& name, unsigned num_threads) {
67 // Create threads and collect starting cpu-time for each thread.
68 std::vector<base::TimeTicks> thread_starts;
69 while (threads_.size() < num_threads) {
70 threads_.push_back(new base::Thread("PingPonger"));
71 threads_.back()->Start();
72 if (base::TimeTicks::IsThreadNowSupported())
73 thread_starts.push_back(ThreadNow(threads_.back()));
76 Init();
78 base::TimeTicks start = base::TimeTicks::HighResNow();
79 PingPong(kNumRuns);
80 done_.Wait();
81 base::TimeTicks end = base::TimeTicks::HighResNow();
83 // Gather the cpu-time spent on each thread. This does one extra tasks,
84 // but that should be in the noise given enough runs.
85 base::TimeDelta thread_time;
86 while (threads_.size()) {
87 if (base::TimeTicks::IsThreadNowSupported()) {
88 thread_time += ThreadNow(threads_.back()) - thread_starts.back();
89 thread_starts.pop_back();
91 threads_.pop_back();
94 Reset();
96 double num_runs = static_cast<double>(kNumRuns);
97 double us_per_task_clock = (end - start).InMicroseconds() / num_runs;
98 double us_per_task_cpu = thread_time.InMicroseconds() / num_runs;
100 // Clock time per task.
101 perf_test::PrintResult(
102 "task", "", name + "_time ", us_per_task_clock, "us/hop", true);
104 // Total utilization across threads if available (likely higher).
105 if (base::TimeTicks::IsThreadNowSupported()) {
106 perf_test::PrintResult(
107 "task", "", name + "_cpu ", us_per_task_cpu, "us/hop", true);
111 protected:
112 void FinishMeasurement() { done_.Signal(); }
113 ScopedVector<base::Thread> threads_;
115 private:
116 base::WaitableEvent done_;
119 // Class to test task performance by posting empty tasks back and forth.
120 class TaskPerfTest : public ThreadPerfTest {
121 base::Thread* NextThread(int count) {
122 return threads_[count % threads_.size()];
125 virtual void PingPong(int hops) OVERRIDE {
126 if (!hops) {
127 FinishMeasurement();
128 return;
130 NextThread(hops)->message_loop_proxy()->PostTask(
131 FROM_HERE,
132 base::Bind(
133 &ThreadPerfTest::PingPong, base::Unretained(this), hops - 1));
137 // This tries to test the 'best-case' as well as the 'worst-case' task posting
138 // performance. The best-case keeps one thread alive such that it never yeilds,
139 // while the worse-case forces a context switch for every task. Four threads are
140 // used to ensure the threads do yeild (with just two it might be possible for
141 // both threads to stay awake if they can signal each other fast enough).
142 TEST_F(TaskPerfTest, TaskPingPong) {
143 RunPingPongTest("1_Task_Threads", 1);
144 RunPingPongTest("4_Task_Threads", 4);
148 // Same as above, but add observers to test their perf impact.
149 class MessageLoopObserver : public base::MessageLoop::TaskObserver {
150 public:
151 virtual void WillProcessTask(const base::PendingTask& pending_task) OVERRIDE {
153 virtual void DidProcessTask(const base::PendingTask& pending_task) OVERRIDE {
156 MessageLoopObserver message_loop_observer;
158 class TaskObserverPerfTest : public TaskPerfTest {
159 public:
160 virtual void Init() OVERRIDE {
161 TaskPerfTest::Init();
162 for (size_t i = 0; i < threads_.size(); i++) {
163 threads_[i]->message_loop()->AddTaskObserver(&message_loop_observer);
168 TEST_F(TaskObserverPerfTest, TaskPingPong) {
169 RunPingPongTest("1_Task_Threads_With_Observer", 1);
170 RunPingPongTest("4_Task_Threads_With_Observer", 4);
173 // Class to test our WaitableEvent performance by signaling back and fort.
174 // WaitableEvent is templated so we can also compare with other versions.
175 template <typename WaitableEventType>
176 class EventPerfTest : public ThreadPerfTest {
177 public:
178 virtual void Init() OVERRIDE {
179 for (size_t i = 0; i < threads_.size(); i++)
180 events_.push_back(new WaitableEventType(false, false));
183 virtual void Reset() OVERRIDE { events_.clear(); }
185 void WaitAndSignalOnThread(size_t event) {
186 size_t next_event = (event + 1) % events_.size();
187 int my_hops = 0;
188 do {
189 events_[event]->Wait();
190 my_hops = --remaining_hops_; // We own 'hops' between Wait and Signal.
191 events_[next_event]->Signal();
192 } while (my_hops > 0);
193 // Once we are done, all threads will signal as hops passes zero.
194 // We only signal completion once, on the thread that reaches zero.
195 if (!my_hops)
196 FinishMeasurement();
199 virtual void PingPong(int hops) OVERRIDE {
200 remaining_hops_ = hops;
201 for (size_t i = 0; i < threads_.size(); i++) {
202 threads_[i]->message_loop_proxy()->PostTask(
203 FROM_HERE,
204 base::Bind(&EventPerfTest::WaitAndSignalOnThread,
205 base::Unretained(this),
206 i));
209 // Kick off the Signal ping-ponging.
210 events_.front()->Signal();
213 int remaining_hops_;
214 ScopedVector<WaitableEventType> events_;
217 // Similar to the task posting test, this just tests similar functionality
218 // using WaitableEvents. We only test four threads (worst-case), but we
219 // might want to craft a way to test the best-case (where the thread doesn't
220 // end up blocking because the event is already signalled).
221 typedef EventPerfTest<base::WaitableEvent> WaitableEventPerfTest;
222 TEST_F(WaitableEventPerfTest, EventPingPong) {
223 RunPingPongTest("4_WaitableEvent_Threads", 4);
226 // Build a minimal event using ConditionVariable.
227 class ConditionVariableEvent {
228 public:
229 ConditionVariableEvent(bool manual_reset, bool initially_signaled)
230 : cond_(&lock_), signaled_(false) {
231 DCHECK(!manual_reset);
232 DCHECK(!initially_signaled);
235 void Signal() {
237 base::AutoLock scoped_lock(lock_);
238 signaled_ = true;
240 cond_.Signal();
243 void Wait() {
244 base::AutoLock scoped_lock(lock_);
245 while (!signaled_)
246 cond_.Wait();
247 signaled_ = false;
250 private:
251 base::Lock lock_;
252 base::ConditionVariable cond_;
253 bool signaled_;
256 // This is meant to test the absolute minimal context switching time
257 // using our own base synchronization code.
258 typedef EventPerfTest<ConditionVariableEvent> ConditionVariablePerfTest;
259 TEST_F(ConditionVariablePerfTest, EventPingPong) {
260 RunPingPongTest("4_ConditionVariable_Threads", 4);
263 #if defined(OS_POSIX)
265 // Absolutely 100% minimal posix waitable event. If there is a better/faster
266 // way to force a context switch, we should use that instead.
267 class PthreadEvent {
268 public:
269 PthreadEvent(bool manual_reset, bool initially_signaled) {
270 DCHECK(!manual_reset);
271 DCHECK(!initially_signaled);
272 pthread_mutex_init(&mutex_, 0);
273 pthread_cond_init(&cond_, 0);
274 signaled_ = false;
277 ~PthreadEvent() {
278 pthread_cond_destroy(&cond_);
279 pthread_mutex_destroy(&mutex_);
282 void Signal() {
283 pthread_mutex_lock(&mutex_);
284 signaled_ = true;
285 pthread_mutex_unlock(&mutex_);
286 pthread_cond_signal(&cond_);
289 void Wait() {
290 pthread_mutex_lock(&mutex_);
291 while (!signaled_)
292 pthread_cond_wait(&cond_, &mutex_);
293 signaled_ = false;
294 pthread_mutex_unlock(&mutex_);
297 private:
298 bool signaled_;
299 pthread_mutex_t mutex_;
300 pthread_cond_t cond_;
303 // This is meant to test the absolute minimal context switching time.
304 // If there is any faster way to do this we should substitute it in.
305 typedef EventPerfTest<PthreadEvent> PthreadEventPerfTest;
306 TEST_F(PthreadEventPerfTest, EventPingPong) {
307 RunPingPongTest("4_PthreadCondVar_Threads", 4);
310 #endif
312 } // namespace
314 } // namespace base