MacViews: Get c/b/ui/views/tabs to build on Mac
[chromium-blink-merge.git] / base / numerics / safe_math_impl.h
blob663f393665ddb44e50f7ac70df5476283e9294b1
1 // Copyright 2014 The Chromium Authors. All rights reserved.
2 // Use of this source code is governed by a BSD-style license that can be
3 // found in the LICENSE file.
5 #ifndef SAFE_MATH_IMPL_H_
6 #define SAFE_MATH_IMPL_H_
8 #include <stdint.h>
10 #include <cmath>
11 #include <cstdlib>
12 #include <limits>
14 #include "base/numerics/safe_conversions.h"
15 #include "base/template_util.h"
17 namespace base {
18 namespace internal {
20 // Everything from here up to the floating point operations is portable C++,
21 // but it may not be fast. This code could be split based on
22 // platform/architecture and replaced with potentially faster implementations.
24 // Integer promotion templates used by the portable checked integer arithmetic.
25 template <size_t Size, bool IsSigned>
26 struct IntegerForSizeAndSign;
27 template <>
28 struct IntegerForSizeAndSign<1, true> {
29 typedef int8_t type;
31 template <>
32 struct IntegerForSizeAndSign<1, false> {
33 typedef uint8_t type;
35 template <>
36 struct IntegerForSizeAndSign<2, true> {
37 typedef int16_t type;
39 template <>
40 struct IntegerForSizeAndSign<2, false> {
41 typedef uint16_t type;
43 template <>
44 struct IntegerForSizeAndSign<4, true> {
45 typedef int32_t type;
47 template <>
48 struct IntegerForSizeAndSign<4, false> {
49 typedef uint32_t type;
51 template <>
52 struct IntegerForSizeAndSign<8, true> {
53 typedef int64_t type;
55 template <>
56 struct IntegerForSizeAndSign<8, false> {
57 typedef uint64_t type;
60 // WARNING: We have no IntegerForSizeAndSign<16, *>. If we ever add one to
61 // support 128-bit math, then the ArithmeticPromotion template below will need
62 // to be updated (or more likely replaced with a decltype expression).
64 template <typename Integer>
65 struct UnsignedIntegerForSize {
66 typedef typename enable_if<
67 std::numeric_limits<Integer>::is_integer,
68 typename IntegerForSizeAndSign<sizeof(Integer), false>::type>::type type;
71 template <typename Integer>
72 struct SignedIntegerForSize {
73 typedef typename enable_if<
74 std::numeric_limits<Integer>::is_integer,
75 typename IntegerForSizeAndSign<sizeof(Integer), true>::type>::type type;
78 template <typename Integer>
79 struct TwiceWiderInteger {
80 typedef typename enable_if<
81 std::numeric_limits<Integer>::is_integer,
82 typename IntegerForSizeAndSign<
83 sizeof(Integer) * 2,
84 std::numeric_limits<Integer>::is_signed>::type>::type type;
87 template <typename Integer>
88 struct PositionOfSignBit {
89 static const typename enable_if<std::numeric_limits<Integer>::is_integer,
90 size_t>::type value = 8 * sizeof(Integer) - 1;
93 // Helper templates for integer manipulations.
95 template <typename T>
96 bool HasSignBit(T x) {
97 // Cast to unsigned since right shift on signed is undefined.
98 return !!(static_cast<typename UnsignedIntegerForSize<T>::type>(x) >>
99 PositionOfSignBit<T>::value);
102 // This wrapper undoes the standard integer promotions.
103 template <typename T>
104 T BinaryComplement(T x) {
105 return ~x;
108 // Here are the actual portable checked integer math implementations.
109 // TODO(jschuh): Break this code out from the enable_if pattern and find a clean
110 // way to coalesce things into the CheckedNumericState specializations below.
112 template <typename T>
113 typename enable_if<std::numeric_limits<T>::is_integer, T>::type
114 CheckedAdd(T x, T y, RangeConstraint* validity) {
115 // Since the value of x+y is undefined if we have a signed type, we compute
116 // it using the unsigned type of the same size.
117 typedef typename UnsignedIntegerForSize<T>::type UnsignedDst;
118 UnsignedDst ux = static_cast<UnsignedDst>(x);
119 UnsignedDst uy = static_cast<UnsignedDst>(y);
120 UnsignedDst uresult = ux + uy;
121 // Addition is valid if the sign of (x + y) is equal to either that of x or
122 // that of y.
123 if (std::numeric_limits<T>::is_signed) {
124 if (HasSignBit(BinaryComplement((uresult ^ ux) & (uresult ^ uy))))
125 *validity = RANGE_VALID;
126 else // Direction of wrap is inverse of result sign.
127 *validity = HasSignBit(uresult) ? RANGE_OVERFLOW : RANGE_UNDERFLOW;
129 } else { // Unsigned is either valid or overflow.
130 *validity = BinaryComplement(x) >= y ? RANGE_VALID : RANGE_OVERFLOW;
132 return static_cast<T>(uresult);
135 template <typename T>
136 typename enable_if<std::numeric_limits<T>::is_integer, T>::type
137 CheckedSub(T x, T y, RangeConstraint* validity) {
138 // Since the value of x+y is undefined if we have a signed type, we compute
139 // it using the unsigned type of the same size.
140 typedef typename UnsignedIntegerForSize<T>::type UnsignedDst;
141 UnsignedDst ux = static_cast<UnsignedDst>(x);
142 UnsignedDst uy = static_cast<UnsignedDst>(y);
143 UnsignedDst uresult = ux - uy;
144 // Subtraction is valid if either x and y have same sign, or (x-y) and x have
145 // the same sign.
146 if (std::numeric_limits<T>::is_signed) {
147 if (HasSignBit(BinaryComplement((uresult ^ ux) & (ux ^ uy))))
148 *validity = RANGE_VALID;
149 else // Direction of wrap is inverse of result sign.
150 *validity = HasSignBit(uresult) ? RANGE_OVERFLOW : RANGE_UNDERFLOW;
152 } else { // Unsigned is either valid or underflow.
153 *validity = x >= y ? RANGE_VALID : RANGE_UNDERFLOW;
155 return static_cast<T>(uresult);
158 // Integer multiplication is a bit complicated. In the fast case we just
159 // we just promote to a twice wider type, and range check the result. In the
160 // slow case we need to manually check that the result won't be truncated by
161 // checking with division against the appropriate bound.
162 template <typename T>
163 typename enable_if<
164 std::numeric_limits<T>::is_integer && sizeof(T) * 2 <= sizeof(uintmax_t),
165 T>::type
166 CheckedMul(T x, T y, RangeConstraint* validity) {
167 typedef typename TwiceWiderInteger<T>::type IntermediateType;
168 IntermediateType tmp =
169 static_cast<IntermediateType>(x) * static_cast<IntermediateType>(y);
170 *validity = DstRangeRelationToSrcRange<T>(tmp);
171 return static_cast<T>(tmp);
174 template <typename T>
175 typename enable_if<std::numeric_limits<T>::is_integer&& std::numeric_limits<
176 T>::is_signed&&(sizeof(T) * 2 > sizeof(uintmax_t)),
177 T>::type
178 CheckedMul(T x, T y, RangeConstraint* validity) {
179 // if either side is zero then the result will be zero.
180 if (!(x || y)) {
181 return RANGE_VALID;
183 } else if (x > 0) {
184 if (y > 0)
185 *validity =
186 x <= std::numeric_limits<T>::max() / y ? RANGE_VALID : RANGE_OVERFLOW;
187 else
188 *validity = y >= std::numeric_limits<T>::min() / x ? RANGE_VALID
189 : RANGE_UNDERFLOW;
191 } else {
192 if (y > 0)
193 *validity = x >= std::numeric_limits<T>::min() / y ? RANGE_VALID
194 : RANGE_UNDERFLOW;
195 else
196 *validity =
197 y >= std::numeric_limits<T>::max() / x ? RANGE_VALID : RANGE_OVERFLOW;
200 return x * y;
203 template <typename T>
204 typename enable_if<std::numeric_limits<T>::is_integer &&
205 !std::numeric_limits<T>::is_signed &&
206 (sizeof(T) * 2 > sizeof(uintmax_t)),
207 T>::type
208 CheckedMul(T x, T y, RangeConstraint* validity) {
209 *validity = (y == 0 || x <= std::numeric_limits<T>::max() / y)
210 ? RANGE_VALID
211 : RANGE_OVERFLOW;
212 return x * y;
215 // Division just requires a check for an invalid negation on signed min/-1.
216 template <typename T>
217 T CheckedDiv(
218 T x,
219 T y,
220 RangeConstraint* validity,
221 typename enable_if<std::numeric_limits<T>::is_integer, int>::type = 0) {
222 if (std::numeric_limits<T>::is_signed && x == std::numeric_limits<T>::min() &&
223 y == static_cast<T>(-1)) {
224 *validity = RANGE_OVERFLOW;
225 return std::numeric_limits<T>::min();
228 *validity = RANGE_VALID;
229 return x / y;
232 template <typename T>
233 typename enable_if<
234 std::numeric_limits<T>::is_integer&& std::numeric_limits<T>::is_signed,
235 T>::type
236 CheckedMod(T x, T y, RangeConstraint* validity) {
237 *validity = y > 0 ? RANGE_VALID : RANGE_INVALID;
238 return x % y;
241 template <typename T>
242 typename enable_if<
243 std::numeric_limits<T>::is_integer && !std::numeric_limits<T>::is_signed,
244 T>::type
245 CheckedMod(T x, T y, RangeConstraint* validity) {
246 *validity = RANGE_VALID;
247 return x % y;
250 template <typename T>
251 typename enable_if<
252 std::numeric_limits<T>::is_integer&& std::numeric_limits<T>::is_signed,
253 T>::type
254 CheckedNeg(T value, RangeConstraint* validity) {
255 *validity =
256 value != std::numeric_limits<T>::min() ? RANGE_VALID : RANGE_OVERFLOW;
257 // The negation of signed min is min, so catch that one.
258 return -value;
261 template <typename T>
262 typename enable_if<
263 std::numeric_limits<T>::is_integer && !std::numeric_limits<T>::is_signed,
264 T>::type
265 CheckedNeg(T value, RangeConstraint* validity) {
266 // The only legal unsigned negation is zero.
267 *validity = value ? RANGE_UNDERFLOW : RANGE_VALID;
268 return static_cast<T>(
269 -static_cast<typename SignedIntegerForSize<T>::type>(value));
272 template <typename T>
273 typename enable_if<
274 std::numeric_limits<T>::is_integer&& std::numeric_limits<T>::is_signed,
275 T>::type
276 CheckedAbs(T value, RangeConstraint* validity) {
277 *validity =
278 value != std::numeric_limits<T>::min() ? RANGE_VALID : RANGE_OVERFLOW;
279 return static_cast<T>(std::abs(value));
282 template <typename T>
283 typename enable_if<
284 std::numeric_limits<T>::is_integer && !std::numeric_limits<T>::is_signed,
285 T>::type
286 CheckedAbs(T value, RangeConstraint* validity) {
287 // Absolute value of a positive is just its identiy.
288 *validity = RANGE_VALID;
289 return value;
292 // These are the floating point stubs that the compiler needs to see. Only the
293 // negation operation is ever called.
294 #define BASE_FLOAT_ARITHMETIC_STUBS(NAME) \
295 template <typename T> \
296 typename enable_if<std::numeric_limits<T>::is_iec559, T>::type \
297 Checked##NAME(T, T, RangeConstraint*) { \
298 NOTREACHED(); \
299 return 0; \
302 BASE_FLOAT_ARITHMETIC_STUBS(Add)
303 BASE_FLOAT_ARITHMETIC_STUBS(Sub)
304 BASE_FLOAT_ARITHMETIC_STUBS(Mul)
305 BASE_FLOAT_ARITHMETIC_STUBS(Div)
306 BASE_FLOAT_ARITHMETIC_STUBS(Mod)
308 #undef BASE_FLOAT_ARITHMETIC_STUBS
310 template <typename T>
311 typename enable_if<std::numeric_limits<T>::is_iec559, T>::type CheckedNeg(
312 T value,
313 RangeConstraint*) {
314 return -value;
317 template <typename T>
318 typename enable_if<std::numeric_limits<T>::is_iec559, T>::type CheckedAbs(
319 T value,
320 RangeConstraint*) {
321 return std::abs(value);
324 // Floats carry around their validity state with them, but integers do not. So,
325 // we wrap the underlying value in a specialization in order to hide that detail
326 // and expose an interface via accessors.
327 enum NumericRepresentation {
328 NUMERIC_INTEGER,
329 NUMERIC_FLOATING,
330 NUMERIC_UNKNOWN
333 template <typename NumericType>
334 struct GetNumericRepresentation {
335 static const NumericRepresentation value =
336 std::numeric_limits<NumericType>::is_integer
337 ? NUMERIC_INTEGER
338 : (std::numeric_limits<NumericType>::is_iec559 ? NUMERIC_FLOATING
339 : NUMERIC_UNKNOWN);
342 template <typename T, NumericRepresentation type =
343 GetNumericRepresentation<T>::value>
344 class CheckedNumericState {};
346 // Integrals require quite a bit of additional housekeeping to manage state.
347 template <typename T>
348 class CheckedNumericState<T, NUMERIC_INTEGER> {
349 private:
350 T value_;
351 RangeConstraint validity_;
353 public:
354 template <typename Src, NumericRepresentation type>
355 friend class CheckedNumericState;
357 CheckedNumericState() : value_(0), validity_(RANGE_VALID) {}
359 template <typename Src>
360 CheckedNumericState(Src value, RangeConstraint validity)
361 : value_(static_cast<T>(value)),
362 validity_(GetRangeConstraint(validity |
363 DstRangeRelationToSrcRange<T>(value))) {
364 static_assert(std::numeric_limits<Src>::is_specialized,
365 "Argument must be numeric.");
368 // Copy constructor.
369 template <typename Src>
370 CheckedNumericState(const CheckedNumericState<Src>& rhs)
371 : value_(static_cast<T>(rhs.value())),
372 validity_(GetRangeConstraint(
373 rhs.validity() | DstRangeRelationToSrcRange<T>(rhs.value()))) {}
375 template <typename Src>
376 explicit CheckedNumericState(
377 Src value,
378 typename enable_if<std::numeric_limits<Src>::is_specialized, int>::type =
380 : value_(static_cast<T>(value)),
381 validity_(DstRangeRelationToSrcRange<T>(value)) {}
383 RangeConstraint validity() const { return validity_; }
384 T value() const { return value_; }
387 // Floating points maintain their own validity, but need translation wrappers.
388 template <typename T>
389 class CheckedNumericState<T, NUMERIC_FLOATING> {
390 private:
391 T value_;
393 public:
394 template <typename Src, NumericRepresentation type>
395 friend class CheckedNumericState;
397 CheckedNumericState() : value_(0.0) {}
399 template <typename Src>
400 CheckedNumericState(
401 Src value,
402 RangeConstraint validity,
403 typename enable_if<std::numeric_limits<Src>::is_integer, int>::type = 0) {
404 switch (DstRangeRelationToSrcRange<T>(value)) {
405 case RANGE_VALID:
406 value_ = static_cast<T>(value);
407 break;
409 case RANGE_UNDERFLOW:
410 value_ = -std::numeric_limits<T>::infinity();
411 break;
413 case RANGE_OVERFLOW:
414 value_ = std::numeric_limits<T>::infinity();
415 break;
417 case RANGE_INVALID:
418 value_ = std::numeric_limits<T>::quiet_NaN();
419 break;
421 default:
422 NOTREACHED();
426 template <typename Src>
427 explicit CheckedNumericState(
428 Src value,
429 typename enable_if<std::numeric_limits<Src>::is_specialized, int>::type =
431 : value_(static_cast<T>(value)) {}
433 // Copy constructor.
434 template <typename Src>
435 CheckedNumericState(const CheckedNumericState<Src>& rhs)
436 : value_(static_cast<T>(rhs.value())) {}
438 RangeConstraint validity() const {
439 return GetRangeConstraint(value_ <= std::numeric_limits<T>::max(),
440 value_ >= -std::numeric_limits<T>::max());
442 T value() const { return value_; }
445 // For integers less than 128-bit and floats 32-bit or larger, we can distil
446 // C/C++ arithmetic promotions down to two simple rules:
447 // 1. The type with the larger maximum exponent always takes precedence.
448 // 2. The resulting type must be promoted to at least an int.
449 // The following template specializations implement that promotion logic.
450 enum ArithmeticPromotionCategory {
451 LEFT_PROMOTION,
452 RIGHT_PROMOTION,
453 DEFAULT_PROMOTION
456 template <typename Lhs,
457 typename Rhs = Lhs,
458 ArithmeticPromotionCategory Promotion =
459 (MaxExponent<Lhs>::value > MaxExponent<Rhs>::value)
460 ? (MaxExponent<Lhs>::value > MaxExponent<int>::value
461 ? LEFT_PROMOTION
462 : DEFAULT_PROMOTION)
463 : (MaxExponent<Rhs>::value > MaxExponent<int>::value
464 ? RIGHT_PROMOTION
465 : DEFAULT_PROMOTION) >
466 struct ArithmeticPromotion;
468 template <typename Lhs, typename Rhs>
469 struct ArithmeticPromotion<Lhs, Rhs, LEFT_PROMOTION> {
470 typedef Lhs type;
473 template <typename Lhs, typename Rhs>
474 struct ArithmeticPromotion<Lhs, Rhs, RIGHT_PROMOTION> {
475 typedef Rhs type;
478 template <typename Lhs, typename Rhs>
479 struct ArithmeticPromotion<Lhs, Rhs, DEFAULT_PROMOTION> {
480 typedef int type;
483 // We can statically check if operations on the provided types can wrap, so we
484 // can skip the checked operations if they're not needed. So, for an integer we
485 // care if the destination type preserves the sign and is twice the width of
486 // the source.
487 template <typename T, typename Lhs, typename Rhs>
488 struct IsIntegerArithmeticSafe {
489 static const bool value = !std::numeric_limits<T>::is_iec559 &&
490 StaticDstRangeRelationToSrcRange<T, Lhs>::value ==
491 NUMERIC_RANGE_CONTAINED &&
492 sizeof(T) >= (2 * sizeof(Lhs)) &&
493 StaticDstRangeRelationToSrcRange<T, Rhs>::value !=
494 NUMERIC_RANGE_CONTAINED &&
495 sizeof(T) >= (2 * sizeof(Rhs));
498 } // namespace internal
499 } // namespace base
501 #endif // SAFE_MATH_IMPL_H_