Landing Recent QUIC changes until 8/19/2015 17:00 UTC.
[chromium-blink-merge.git] / cc / base / math_util.cc
blob04e301e3c569fd91e56b390d34b291d6ae8712b2
1 // Copyright 2012 The Chromium Authors. All rights reserved.
2 // Use of this source code is governed by a BSD-style license that can be
3 // found in the LICENSE file.
5 #include "cc/base/math_util.h"
7 #include <algorithm>
8 #include <cmath>
9 #include <limits>
11 #include "base/trace_event/trace_event_argument.h"
12 #include "base/values.h"
13 #include "ui/gfx/geometry/quad_f.h"
14 #include "ui/gfx/geometry/rect.h"
15 #include "ui/gfx/geometry/rect_conversions.h"
16 #include "ui/gfx/geometry/rect_f.h"
17 #include "ui/gfx/geometry/vector2d_f.h"
18 #include "ui/gfx/geometry/vector3d_f.h"
19 #include "ui/gfx/transform.h"
21 namespace cc {
23 const double MathUtil::kPiDouble = 3.14159265358979323846;
24 const float MathUtil::kPiFloat = 3.14159265358979323846f;
26 static HomogeneousCoordinate ProjectHomogeneousPoint(
27 const gfx::Transform& transform,
28 const gfx::PointF& p) {
29 SkMScalar z =
30 -(transform.matrix().get(2, 0) * p.x() +
31 transform.matrix().get(2, 1) * p.y() + transform.matrix().get(2, 3)) /
32 transform.matrix().get(2, 2);
34 // In this case, the layer we are trying to project onto is perpendicular to
35 // ray (point p and z-axis direction) that we are trying to project. This
36 // happens when the layer is rotated so that it is infinitesimally thin, or
37 // when it is co-planar with the camera origin -- i.e. when the layer is
38 // invisible anyway.
39 if (!std::isfinite(z))
40 return HomogeneousCoordinate(0.0, 0.0, 0.0, 1.0);
42 HomogeneousCoordinate result(p.x(), p.y(), z, 1.0);
43 transform.matrix().mapMScalars(result.vec, result.vec);
44 return result;
47 static HomogeneousCoordinate ProjectHomogeneousPoint(
48 const gfx::Transform& transform,
49 const gfx::PointF& p,
50 bool* clipped) {
51 HomogeneousCoordinate h = ProjectHomogeneousPoint(transform, p);
52 *clipped = h.w() <= 0;
53 return h;
56 static HomogeneousCoordinate MapHomogeneousPoint(
57 const gfx::Transform& transform,
58 const gfx::Point3F& p) {
59 HomogeneousCoordinate result(p.x(), p.y(), p.z(), 1.0);
60 transform.matrix().mapMScalars(result.vec, result.vec);
61 return result;
64 static HomogeneousCoordinate ComputeClippedPointForEdge(
65 const HomogeneousCoordinate& h1,
66 const HomogeneousCoordinate& h2) {
67 // Points h1 and h2 form a line in 4d, and any point on that line can be
68 // represented as an interpolation between h1 and h2:
69 // p = (1-t) h1 + (t) h2
71 // We want to compute point p such that p.w == epsilon, where epsilon is a
72 // small non-zero number. (but the smaller the number is, the higher the risk
73 // of overflow)
74 // To do this, we solve for t in the following equation:
75 // p.w = epsilon = (1-t) * h1.w + (t) * h2.w
77 // Once paramter t is known, the rest of p can be computed via
78 // p = (1-t) h1 + (t) h2.
80 // Technically this is a special case of the following assertion, but its a
81 // good idea to keep it an explicit sanity check here.
82 DCHECK_NE(h2.w(), h1.w());
83 // Exactly one of h1 or h2 (but not both) must be on the negative side of the
84 // w plane when this is called.
85 DCHECK(h1.ShouldBeClipped() ^ h2.ShouldBeClipped());
87 // ...or any positive non-zero small epsilon
88 SkMScalar w = 0.00001f;
89 SkMScalar t = (w - h1.w()) / (h2.w() - h1.w());
91 SkMScalar x = (SK_MScalar1 - t) * h1.x() + t * h2.x();
92 SkMScalar y = (SK_MScalar1 - t) * h1.y() + t * h2.y();
93 SkMScalar z = (SK_MScalar1 - t) * h1.z() + t * h2.z();
95 return HomogeneousCoordinate(x, y, z, w);
98 static inline void ExpandBoundsToIncludePoint(float* xmin,
99 float* xmax,
100 float* ymin,
101 float* ymax,
102 const gfx::PointF& p) {
103 *xmin = std::min(p.x(), *xmin);
104 *xmax = std::max(p.x(), *xmax);
105 *ymin = std::min(p.y(), *ymin);
106 *ymax = std::max(p.y(), *ymax);
109 static inline void AddVertexToClippedQuad(const gfx::PointF& new_vertex,
110 gfx::PointF clipped_quad[8],
111 int* num_vertices_in_clipped_quad) {
112 clipped_quad[*num_vertices_in_clipped_quad] = new_vertex;
113 (*num_vertices_in_clipped_quad)++;
116 static inline void AddVertexToClippedQuad3d(const gfx::Point3F& new_vertex,
117 gfx::Point3F clipped_quad[8],
118 int* num_vertices_in_clipped_quad) {
119 clipped_quad[*num_vertices_in_clipped_quad] = new_vertex;
120 (*num_vertices_in_clipped_quad)++;
123 gfx::Rect MathUtil::MapEnclosingClippedRect(const gfx::Transform& transform,
124 const gfx::Rect& src_rect) {
125 if (transform.IsIdentityOrIntegerTranslation()) {
126 gfx::Vector2d offset(static_cast<int>(transform.matrix().getFloat(0, 3)),
127 static_cast<int>(transform.matrix().getFloat(1, 3)));
128 return src_rect + offset;
130 return gfx::ToEnclosingRect(MapClippedRect(transform, gfx::RectF(src_rect)));
133 gfx::RectF MathUtil::MapClippedRect(const gfx::Transform& transform,
134 const gfx::RectF& src_rect) {
135 if (transform.IsIdentityOrTranslation()) {
136 gfx::Vector2dF offset(transform.matrix().getFloat(0, 3),
137 transform.matrix().getFloat(1, 3));
138 return src_rect + offset;
141 // Apply the transform, but retain the result in homogeneous coordinates.
143 SkMScalar quad[4 * 2]; // input: 4 x 2D points
144 quad[0] = src_rect.x();
145 quad[1] = src_rect.y();
146 quad[2] = src_rect.right();
147 quad[3] = src_rect.y();
148 quad[4] = src_rect.right();
149 quad[5] = src_rect.bottom();
150 quad[6] = src_rect.x();
151 quad[7] = src_rect.bottom();
153 SkMScalar result[4 * 4]; // output: 4 x 4D homogeneous points
154 transform.matrix().map2(quad, 4, result);
156 HomogeneousCoordinate hc0(result[0], result[1], result[2], result[3]);
157 HomogeneousCoordinate hc1(result[4], result[5], result[6], result[7]);
158 HomogeneousCoordinate hc2(result[8], result[9], result[10], result[11]);
159 HomogeneousCoordinate hc3(result[12], result[13], result[14], result[15]);
160 return ComputeEnclosingClippedRect(hc0, hc1, hc2, hc3);
163 gfx::Rect MathUtil::ProjectEnclosingClippedRect(const gfx::Transform& transform,
164 const gfx::Rect& src_rect) {
165 if (transform.IsIdentityOrIntegerTranslation()) {
166 gfx::Vector2d offset(static_cast<int>(transform.matrix().getFloat(0, 3)),
167 static_cast<int>(transform.matrix().getFloat(1, 3)));
168 return src_rect + offset;
170 return gfx::ToEnclosingRect(
171 ProjectClippedRect(transform, gfx::RectF(src_rect)));
174 gfx::RectF MathUtil::ProjectClippedRect(const gfx::Transform& transform,
175 const gfx::RectF& src_rect) {
176 if (transform.IsIdentityOrTranslation()) {
177 gfx::Vector2dF offset(transform.matrix().getFloat(0, 3),
178 transform.matrix().getFloat(1, 3));
179 return src_rect + offset;
182 // Perform the projection, but retain the result in homogeneous coordinates.
183 gfx::QuadF q = gfx::QuadF(src_rect);
184 HomogeneousCoordinate h1 = ProjectHomogeneousPoint(transform, q.p1());
185 HomogeneousCoordinate h2 = ProjectHomogeneousPoint(transform, q.p2());
186 HomogeneousCoordinate h3 = ProjectHomogeneousPoint(transform, q.p3());
187 HomogeneousCoordinate h4 = ProjectHomogeneousPoint(transform, q.p4());
189 return ComputeEnclosingClippedRect(h1, h2, h3, h4);
192 gfx::Rect MathUtil::MapEnclosedRectWith2dAxisAlignedTransform(
193 const gfx::Transform& transform,
194 const gfx::Rect& rect) {
195 DCHECK(transform.Preserves2dAxisAlignment());
197 if (transform.IsIdentityOrIntegerTranslation()) {
198 gfx::Vector2d offset(static_cast<int>(transform.matrix().getFloat(0, 3)),
199 static_cast<int>(transform.matrix().getFloat(1, 3)));
200 return rect + offset;
202 if (transform.IsIdentityOrTranslation()) {
203 gfx::Vector2dF offset(transform.matrix().getFloat(0, 3),
204 transform.matrix().getFloat(1, 3));
205 return gfx::ToEnclosedRect(rect + offset);
208 SkMScalar quad[2 * 2]; // input: 2 x 2D points
209 quad[0] = rect.x();
210 quad[1] = rect.y();
211 quad[2] = rect.right();
212 quad[3] = rect.bottom();
214 SkMScalar result[4 * 2]; // output: 2 x 4D homogeneous points
215 transform.matrix().map2(quad, 2, result);
217 HomogeneousCoordinate hc0(result[0], result[1], result[2], result[3]);
218 HomogeneousCoordinate hc1(result[4], result[5], result[6], result[7]);
219 DCHECK(!hc0.ShouldBeClipped());
220 DCHECK(!hc1.ShouldBeClipped());
222 gfx::PointF top_left(hc0.CartesianPoint2d());
223 gfx::PointF bottom_right(hc1.CartesianPoint2d());
224 return gfx::ToEnclosedRect(gfx::BoundingRect(top_left, bottom_right));
227 void MathUtil::MapClippedQuad(const gfx::Transform& transform,
228 const gfx::QuadF& src_quad,
229 gfx::PointF clipped_quad[8],
230 int* num_vertices_in_clipped_quad) {
231 HomogeneousCoordinate h1 =
232 MapHomogeneousPoint(transform, gfx::Point3F(src_quad.p1()));
233 HomogeneousCoordinate h2 =
234 MapHomogeneousPoint(transform, gfx::Point3F(src_quad.p2()));
235 HomogeneousCoordinate h3 =
236 MapHomogeneousPoint(transform, gfx::Point3F(src_quad.p3()));
237 HomogeneousCoordinate h4 =
238 MapHomogeneousPoint(transform, gfx::Point3F(src_quad.p4()));
240 // The order of adding the vertices to the array is chosen so that
241 // clockwise / counter-clockwise orientation is retained.
243 *num_vertices_in_clipped_quad = 0;
245 if (!h1.ShouldBeClipped()) {
246 AddVertexToClippedQuad(
247 h1.CartesianPoint2d(), clipped_quad, num_vertices_in_clipped_quad);
250 if (h1.ShouldBeClipped() ^ h2.ShouldBeClipped()) {
251 AddVertexToClippedQuad(
252 ComputeClippedPointForEdge(h1, h2).CartesianPoint2d(),
253 clipped_quad,
254 num_vertices_in_clipped_quad);
257 if (!h2.ShouldBeClipped()) {
258 AddVertexToClippedQuad(
259 h2.CartesianPoint2d(), clipped_quad, num_vertices_in_clipped_quad);
262 if (h2.ShouldBeClipped() ^ h3.ShouldBeClipped()) {
263 AddVertexToClippedQuad(
264 ComputeClippedPointForEdge(h2, h3).CartesianPoint2d(),
265 clipped_quad,
266 num_vertices_in_clipped_quad);
269 if (!h3.ShouldBeClipped()) {
270 AddVertexToClippedQuad(
271 h3.CartesianPoint2d(), clipped_quad, num_vertices_in_clipped_quad);
274 if (h3.ShouldBeClipped() ^ h4.ShouldBeClipped()) {
275 AddVertexToClippedQuad(
276 ComputeClippedPointForEdge(h3, h4).CartesianPoint2d(),
277 clipped_quad,
278 num_vertices_in_clipped_quad);
281 if (!h4.ShouldBeClipped()) {
282 AddVertexToClippedQuad(
283 h4.CartesianPoint2d(), clipped_quad, num_vertices_in_clipped_quad);
286 if (h4.ShouldBeClipped() ^ h1.ShouldBeClipped()) {
287 AddVertexToClippedQuad(
288 ComputeClippedPointForEdge(h4, h1).CartesianPoint2d(),
289 clipped_quad,
290 num_vertices_in_clipped_quad);
293 DCHECK_LE(*num_vertices_in_clipped_quad, 8);
296 bool MathUtil::MapClippedQuad3d(const gfx::Transform& transform,
297 const gfx::QuadF& src_quad,
298 gfx::Point3F clipped_quad[8],
299 int* num_vertices_in_clipped_quad) {
300 HomogeneousCoordinate h1 =
301 MapHomogeneousPoint(transform, gfx::Point3F(src_quad.p1()));
302 HomogeneousCoordinate h2 =
303 MapHomogeneousPoint(transform, gfx::Point3F(src_quad.p2()));
304 HomogeneousCoordinate h3 =
305 MapHomogeneousPoint(transform, gfx::Point3F(src_quad.p3()));
306 HomogeneousCoordinate h4 =
307 MapHomogeneousPoint(transform, gfx::Point3F(src_quad.p4()));
309 // The order of adding the vertices to the array is chosen so that
310 // clockwise / counter-clockwise orientation is retained.
312 *num_vertices_in_clipped_quad = 0;
314 if (!h1.ShouldBeClipped()) {
315 AddVertexToClippedQuad3d(
316 h1.CartesianPoint3d(), clipped_quad, num_vertices_in_clipped_quad);
319 if (h1.ShouldBeClipped() ^ h2.ShouldBeClipped()) {
320 AddVertexToClippedQuad3d(
321 ComputeClippedPointForEdge(h1, h2).CartesianPoint3d(),
322 clipped_quad,
323 num_vertices_in_clipped_quad);
326 if (!h2.ShouldBeClipped()) {
327 AddVertexToClippedQuad3d(
328 h2.CartesianPoint3d(), clipped_quad, num_vertices_in_clipped_quad);
331 if (h2.ShouldBeClipped() ^ h3.ShouldBeClipped()) {
332 AddVertexToClippedQuad3d(
333 ComputeClippedPointForEdge(h2, h3).CartesianPoint3d(),
334 clipped_quad,
335 num_vertices_in_clipped_quad);
338 if (!h3.ShouldBeClipped()) {
339 AddVertexToClippedQuad3d(
340 h3.CartesianPoint3d(), clipped_quad, num_vertices_in_clipped_quad);
343 if (h3.ShouldBeClipped() ^ h4.ShouldBeClipped()) {
344 AddVertexToClippedQuad3d(
345 ComputeClippedPointForEdge(h3, h4).CartesianPoint3d(),
346 clipped_quad,
347 num_vertices_in_clipped_quad);
350 if (!h4.ShouldBeClipped()) {
351 AddVertexToClippedQuad3d(
352 h4.CartesianPoint3d(), clipped_quad, num_vertices_in_clipped_quad);
355 if (h4.ShouldBeClipped() ^ h1.ShouldBeClipped()) {
356 AddVertexToClippedQuad3d(
357 ComputeClippedPointForEdge(h4, h1).CartesianPoint3d(),
358 clipped_quad,
359 num_vertices_in_clipped_quad);
362 DCHECK_LE(*num_vertices_in_clipped_quad, 8);
363 return (*num_vertices_in_clipped_quad >= 4);
366 gfx::RectF MathUtil::ComputeEnclosingRectOfVertices(
367 const gfx::PointF vertices[],
368 int num_vertices) {
369 if (num_vertices < 2)
370 return gfx::RectF();
372 float xmin = std::numeric_limits<float>::max();
373 float xmax = -std::numeric_limits<float>::max();
374 float ymin = std::numeric_limits<float>::max();
375 float ymax = -std::numeric_limits<float>::max();
377 for (int i = 0; i < num_vertices; ++i)
378 ExpandBoundsToIncludePoint(&xmin, &xmax, &ymin, &ymax, vertices[i]);
380 return gfx::RectF(gfx::PointF(xmin, ymin),
381 gfx::SizeF(xmax - xmin, ymax - ymin));
384 gfx::RectF MathUtil::ComputeEnclosingClippedRect(
385 const HomogeneousCoordinate& h1,
386 const HomogeneousCoordinate& h2,
387 const HomogeneousCoordinate& h3,
388 const HomogeneousCoordinate& h4) {
389 // This function performs clipping as necessary and computes the enclosing 2d
390 // gfx::RectF of the vertices. Doing these two steps simultaneously allows us
391 // to avoid the overhead of storing an unknown number of clipped vertices.
393 // If no vertices on the quad are clipped, then we can simply return the
394 // enclosing rect directly.
395 bool something_clipped = h1.ShouldBeClipped() || h2.ShouldBeClipped() ||
396 h3.ShouldBeClipped() || h4.ShouldBeClipped();
397 if (!something_clipped) {
398 gfx::QuadF mapped_quad = gfx::QuadF(h1.CartesianPoint2d(),
399 h2.CartesianPoint2d(),
400 h3.CartesianPoint2d(),
401 h4.CartesianPoint2d());
402 return mapped_quad.BoundingBox();
405 bool everything_clipped = h1.ShouldBeClipped() && h2.ShouldBeClipped() &&
406 h3.ShouldBeClipped() && h4.ShouldBeClipped();
407 if (everything_clipped)
408 return gfx::RectF();
410 float xmin = std::numeric_limits<float>::max();
411 float xmax = -std::numeric_limits<float>::max();
412 float ymin = std::numeric_limits<float>::max();
413 float ymax = -std::numeric_limits<float>::max();
415 if (!h1.ShouldBeClipped())
416 ExpandBoundsToIncludePoint(&xmin, &xmax, &ymin, &ymax,
417 h1.CartesianPoint2d());
419 if (h1.ShouldBeClipped() ^ h2.ShouldBeClipped())
420 ExpandBoundsToIncludePoint(&xmin,
421 &xmax,
422 &ymin,
423 &ymax,
424 ComputeClippedPointForEdge(h1, h2)
425 .CartesianPoint2d());
427 if (!h2.ShouldBeClipped())
428 ExpandBoundsToIncludePoint(&xmin, &xmax, &ymin, &ymax,
429 h2.CartesianPoint2d());
431 if (h2.ShouldBeClipped() ^ h3.ShouldBeClipped())
432 ExpandBoundsToIncludePoint(&xmin,
433 &xmax,
434 &ymin,
435 &ymax,
436 ComputeClippedPointForEdge(h2, h3)
437 .CartesianPoint2d());
439 if (!h3.ShouldBeClipped())
440 ExpandBoundsToIncludePoint(&xmin, &xmax, &ymin, &ymax,
441 h3.CartesianPoint2d());
443 if (h3.ShouldBeClipped() ^ h4.ShouldBeClipped())
444 ExpandBoundsToIncludePoint(&xmin,
445 &xmax,
446 &ymin,
447 &ymax,
448 ComputeClippedPointForEdge(h3, h4)
449 .CartesianPoint2d());
451 if (!h4.ShouldBeClipped())
452 ExpandBoundsToIncludePoint(&xmin, &xmax, &ymin, &ymax,
453 h4.CartesianPoint2d());
455 if (h4.ShouldBeClipped() ^ h1.ShouldBeClipped())
456 ExpandBoundsToIncludePoint(&xmin,
457 &xmax,
458 &ymin,
459 &ymax,
460 ComputeClippedPointForEdge(h4, h1)
461 .CartesianPoint2d());
463 return gfx::RectF(gfx::PointF(xmin, ymin),
464 gfx::SizeF(xmax - xmin, ymax - ymin));
467 gfx::QuadF MathUtil::MapQuad(const gfx::Transform& transform,
468 const gfx::QuadF& q,
469 bool* clipped) {
470 if (transform.IsIdentityOrTranslation()) {
471 gfx::QuadF mapped_quad(q);
472 mapped_quad += gfx::Vector2dF(transform.matrix().getFloat(0, 3),
473 transform.matrix().getFloat(1, 3));
474 *clipped = false;
475 return mapped_quad;
478 HomogeneousCoordinate h1 =
479 MapHomogeneousPoint(transform, gfx::Point3F(q.p1()));
480 HomogeneousCoordinate h2 =
481 MapHomogeneousPoint(transform, gfx::Point3F(q.p2()));
482 HomogeneousCoordinate h3 =
483 MapHomogeneousPoint(transform, gfx::Point3F(q.p3()));
484 HomogeneousCoordinate h4 =
485 MapHomogeneousPoint(transform, gfx::Point3F(q.p4()));
487 *clipped = h1.ShouldBeClipped() || h2.ShouldBeClipped() ||
488 h3.ShouldBeClipped() || h4.ShouldBeClipped();
490 // Result will be invalid if clipped == true. But, compute it anyway just in
491 // case, to emulate existing behavior.
492 return gfx::QuadF(h1.CartesianPoint2d(),
493 h2.CartesianPoint2d(),
494 h3.CartesianPoint2d(),
495 h4.CartesianPoint2d());
498 gfx::QuadF MathUtil::MapQuad3d(const gfx::Transform& transform,
499 const gfx::QuadF& q,
500 gfx::Point3F* p,
501 bool* clipped) {
502 if (transform.IsIdentityOrTranslation()) {
503 gfx::QuadF mapped_quad(q);
504 mapped_quad += gfx::Vector2dF(transform.matrix().getFloat(0, 3),
505 transform.matrix().getFloat(1, 3));
506 *clipped = false;
507 p[0] = gfx::Point3F(mapped_quad.p1().x(), mapped_quad.p1().y(), 0.0f);
508 p[1] = gfx::Point3F(mapped_quad.p2().x(), mapped_quad.p2().y(), 0.0f);
509 p[2] = gfx::Point3F(mapped_quad.p3().x(), mapped_quad.p3().y(), 0.0f);
510 p[3] = gfx::Point3F(mapped_quad.p4().x(), mapped_quad.p4().y(), 0.0f);
511 return mapped_quad;
514 HomogeneousCoordinate h1 =
515 MapHomogeneousPoint(transform, gfx::Point3F(q.p1()));
516 HomogeneousCoordinate h2 =
517 MapHomogeneousPoint(transform, gfx::Point3F(q.p2()));
518 HomogeneousCoordinate h3 =
519 MapHomogeneousPoint(transform, gfx::Point3F(q.p3()));
520 HomogeneousCoordinate h4 =
521 MapHomogeneousPoint(transform, gfx::Point3F(q.p4()));
523 *clipped = h1.ShouldBeClipped() || h2.ShouldBeClipped() ||
524 h3.ShouldBeClipped() || h4.ShouldBeClipped();
526 // Result will be invalid if clipped == true. But, compute it anyway just in
527 // case, to emulate existing behavior.
528 p[0] = h1.CartesianPoint3d();
529 p[1] = h2.CartesianPoint3d();
530 p[2] = h3.CartesianPoint3d();
531 p[3] = h4.CartesianPoint3d();
533 return gfx::QuadF(h1.CartesianPoint2d(),
534 h2.CartesianPoint2d(),
535 h3.CartesianPoint2d(),
536 h4.CartesianPoint2d());
539 gfx::PointF MathUtil::MapPoint(const gfx::Transform& transform,
540 const gfx::PointF& p,
541 bool* clipped) {
542 HomogeneousCoordinate h = MapHomogeneousPoint(transform, gfx::Point3F(p));
544 if (h.w() > 0) {
545 *clipped = false;
546 return h.CartesianPoint2d();
549 // The cartesian coordinates will be invalid after dividing by w.
550 *clipped = true;
552 // Avoid dividing by w if w == 0.
553 if (!h.w())
554 return gfx::PointF();
556 // This return value will be invalid because clipped == true, but (1) users of
557 // this code should be ignoring the return value when clipped == true anyway,
558 // and (2) this behavior is more consistent with existing behavior of WebKit
559 // transforms if the user really does not ignore the return value.
560 return h.CartesianPoint2d();
563 gfx::Point3F MathUtil::MapPoint(const gfx::Transform& transform,
564 const gfx::Point3F& p,
565 bool* clipped) {
566 HomogeneousCoordinate h = MapHomogeneousPoint(transform, p);
568 if (h.w() > 0) {
569 *clipped = false;
570 return h.CartesianPoint3d();
573 // The cartesian coordinates will be invalid after dividing by w.
574 *clipped = true;
576 // Avoid dividing by w if w == 0.
577 if (!h.w())
578 return gfx::Point3F();
580 // This return value will be invalid because clipped == true, but (1) users of
581 // this code should be ignoring the return value when clipped == true anyway,
582 // and (2) this behavior is more consistent with existing behavior of WebKit
583 // transforms if the user really does not ignore the return value.
584 return h.CartesianPoint3d();
587 gfx::QuadF MathUtil::ProjectQuad(const gfx::Transform& transform,
588 const gfx::QuadF& q,
589 bool* clipped) {
590 gfx::QuadF projected_quad;
591 bool clipped_point;
592 projected_quad.set_p1(ProjectPoint(transform, q.p1(), &clipped_point));
593 *clipped = clipped_point;
594 projected_quad.set_p2(ProjectPoint(transform, q.p2(), &clipped_point));
595 *clipped |= clipped_point;
596 projected_quad.set_p3(ProjectPoint(transform, q.p3(), &clipped_point));
597 *clipped |= clipped_point;
598 projected_quad.set_p4(ProjectPoint(transform, q.p4(), &clipped_point));
599 *clipped |= clipped_point;
601 return projected_quad;
604 gfx::PointF MathUtil::ProjectPoint(const gfx::Transform& transform,
605 const gfx::PointF& p,
606 bool* clipped) {
607 HomogeneousCoordinate h = ProjectHomogeneousPoint(transform, p, clipped);
608 // Avoid dividing by w if w == 0.
609 if (!h.w())
610 return gfx::PointF();
612 // This return value will be invalid if clipped == true, but (1) users of
613 // this code should be ignoring the return value when clipped == true anyway,
614 // and (2) this behavior is more consistent with existing behavior of WebKit
615 // transforms if the user really does not ignore the return value.
616 return h.CartesianPoint2d();
619 gfx::Point3F MathUtil::ProjectPoint3D(const gfx::Transform& transform,
620 const gfx::PointF& p,
621 bool* clipped) {
622 HomogeneousCoordinate h = ProjectHomogeneousPoint(transform, p, clipped);
623 if (!h.w())
624 return gfx::Point3F();
625 return h.CartesianPoint3d();
628 gfx::RectF MathUtil::ScaleRectProportional(const gfx::RectF& input_outer_rect,
629 const gfx::RectF& scale_outer_rect,
630 const gfx::RectF& scale_inner_rect) {
631 gfx::RectF output_inner_rect = input_outer_rect;
632 float scale_rect_to_input_scale_x =
633 scale_outer_rect.width() / input_outer_rect.width();
634 float scale_rect_to_input_scale_y =
635 scale_outer_rect.height() / input_outer_rect.height();
637 gfx::Vector2dF top_left_diff =
638 scale_inner_rect.origin() - scale_outer_rect.origin();
639 gfx::Vector2dF bottom_right_diff =
640 scale_inner_rect.bottom_right() - scale_outer_rect.bottom_right();
641 output_inner_rect.Inset(top_left_diff.x() / scale_rect_to_input_scale_x,
642 top_left_diff.y() / scale_rect_to_input_scale_y,
643 -bottom_right_diff.x() / scale_rect_to_input_scale_x,
644 -bottom_right_diff.y() / scale_rect_to_input_scale_y);
645 return output_inner_rect;
648 static inline bool NearlyZero(double value) {
649 return std::abs(value) < std::numeric_limits<double>::epsilon();
652 static inline float ScaleOnAxis(double a, double b, double c) {
653 if (NearlyZero(b) && NearlyZero(c))
654 return std::abs(a);
655 if (NearlyZero(a) && NearlyZero(c))
656 return std::abs(b);
657 if (NearlyZero(a) && NearlyZero(b))
658 return std::abs(c);
660 // Do the sqrt as a double to not lose precision.
661 return static_cast<float>(std::sqrt(a * a + b * b + c * c));
664 gfx::Vector2dF MathUtil::ComputeTransform2dScaleComponents(
665 const gfx::Transform& transform,
666 float fallback_value) {
667 if (transform.HasPerspective())
668 return gfx::Vector2dF(fallback_value, fallback_value);
669 float x_scale = ScaleOnAxis(transform.matrix().getDouble(0, 0),
670 transform.matrix().getDouble(1, 0),
671 transform.matrix().getDouble(2, 0));
672 float y_scale = ScaleOnAxis(transform.matrix().getDouble(0, 1),
673 transform.matrix().getDouble(1, 1),
674 transform.matrix().getDouble(2, 1));
675 return gfx::Vector2dF(x_scale, y_scale);
678 float MathUtil::SmallestAngleBetweenVectors(const gfx::Vector2dF& v1,
679 const gfx::Vector2dF& v2) {
680 double dot_product = gfx::DotProduct(v1, v2) / v1.Length() / v2.Length();
681 // Clamp to compensate for rounding errors.
682 dot_product = std::max(-1.0, std::min(1.0, dot_product));
683 return static_cast<float>(Rad2Deg(std::acos(dot_product)));
686 gfx::Vector2dF MathUtil::ProjectVector(const gfx::Vector2dF& source,
687 const gfx::Vector2dF& destination) {
688 float projected_length =
689 gfx::DotProduct(source, destination) / destination.LengthSquared();
690 return gfx::Vector2dF(projected_length * destination.x(),
691 projected_length * destination.y());
694 scoped_ptr<base::Value> MathUtil::AsValue(const gfx::Size& s) {
695 scoped_ptr<base::DictionaryValue> res(new base::DictionaryValue());
696 res->SetDouble("width", s.width());
697 res->SetDouble("height", s.height());
698 return res.Pass();
701 scoped_ptr<base::Value> MathUtil::AsValue(const gfx::Rect& r) {
702 scoped_ptr<base::ListValue> res(new base::ListValue());
703 res->AppendInteger(r.x());
704 res->AppendInteger(r.y());
705 res->AppendInteger(r.width());
706 res->AppendInteger(r.height());
707 return res.Pass();
710 bool MathUtil::FromValue(const base::Value* raw_value, gfx::Rect* out_rect) {
711 const base::ListValue* value = nullptr;
712 if (!raw_value->GetAsList(&value))
713 return false;
715 if (value->GetSize() != 4)
716 return false;
718 int x, y, w, h;
719 bool ok = true;
720 ok &= value->GetInteger(0, &x);
721 ok &= value->GetInteger(1, &y);
722 ok &= value->GetInteger(2, &w);
723 ok &= value->GetInteger(3, &h);
724 if (!ok)
725 return false;
727 *out_rect = gfx::Rect(x, y, w, h);
728 return true;
731 scoped_ptr<base::Value> MathUtil::AsValue(const gfx::PointF& pt) {
732 scoped_ptr<base::ListValue> res(new base::ListValue());
733 res->AppendDouble(pt.x());
734 res->AppendDouble(pt.y());
735 return res.Pass();
738 void MathUtil::AddToTracedValue(const char* name,
739 const gfx::Size& s,
740 base::trace_event::TracedValue* res) {
741 res->BeginDictionary(name);
742 res->SetDouble("width", s.width());
743 res->SetDouble("height", s.height());
744 res->EndDictionary();
747 void MathUtil::AddToTracedValue(const char* name,
748 const gfx::SizeF& s,
749 base::trace_event::TracedValue* res) {
750 res->BeginDictionary(name);
751 res->SetDouble("width", s.width());
752 res->SetDouble("height", s.height());
753 res->EndDictionary();
756 void MathUtil::AddToTracedValue(const char* name,
757 const gfx::Rect& r,
758 base::trace_event::TracedValue* res) {
759 res->BeginArray(name);
760 res->AppendInteger(r.x());
761 res->AppendInteger(r.y());
762 res->AppendInteger(r.width());
763 res->AppendInteger(r.height());
764 res->EndArray();
767 void MathUtil::AddToTracedValue(const char* name,
768 const gfx::PointF& pt,
769 base::trace_event::TracedValue* res) {
770 res->BeginArray(name);
771 res->AppendDouble(pt.x());
772 res->AppendDouble(pt.y());
773 res->EndArray();
776 void MathUtil::AddToTracedValue(const char* name,
777 const gfx::Point3F& pt,
778 base::trace_event::TracedValue* res) {
779 res->BeginArray(name);
780 res->AppendDouble(pt.x());
781 res->AppendDouble(pt.y());
782 res->AppendDouble(pt.z());
783 res->EndArray();
786 void MathUtil::AddToTracedValue(const char* name,
787 const gfx::Vector2d& v,
788 base::trace_event::TracedValue* res) {
789 res->BeginArray(name);
790 res->AppendInteger(v.x());
791 res->AppendInteger(v.y());
792 res->EndArray();
795 void MathUtil::AddToTracedValue(const char* name,
796 const gfx::Vector2dF& v,
797 base::trace_event::TracedValue* res) {
798 res->BeginArray(name);
799 res->AppendDouble(v.x());
800 res->AppendDouble(v.y());
801 res->EndArray();
804 void MathUtil::AddToTracedValue(const char* name,
805 const gfx::ScrollOffset& v,
806 base::trace_event::TracedValue* res) {
807 res->BeginArray(name);
808 res->AppendDouble(v.x());
809 res->AppendDouble(v.y());
810 res->EndArray();
813 void MathUtil::AddToTracedValue(const char* name,
814 const gfx::QuadF& q,
815 base::trace_event::TracedValue* res) {
816 res->BeginArray(name);
817 res->AppendDouble(q.p1().x());
818 res->AppendDouble(q.p1().y());
819 res->AppendDouble(q.p2().x());
820 res->AppendDouble(q.p2().y());
821 res->AppendDouble(q.p3().x());
822 res->AppendDouble(q.p3().y());
823 res->AppendDouble(q.p4().x());
824 res->AppendDouble(q.p4().y());
825 res->EndArray();
828 void MathUtil::AddToTracedValue(const char* name,
829 const gfx::RectF& rect,
830 base::trace_event::TracedValue* res) {
831 res->BeginArray(name);
832 res->AppendDouble(rect.x());
833 res->AppendDouble(rect.y());
834 res->AppendDouble(rect.width());
835 res->AppendDouble(rect.height());
836 res->EndArray();
839 void MathUtil::AddToTracedValue(const char* name,
840 const gfx::Transform& transform,
841 base::trace_event::TracedValue* res) {
842 res->BeginArray(name);
843 const SkMatrix44& m = transform.matrix();
844 for (int row = 0; row < 4; ++row) {
845 for (int col = 0; col < 4; ++col)
846 res->AppendDouble(m.getDouble(row, col));
848 res->EndArray();
851 void MathUtil::AddToTracedValue(const char* name,
852 const gfx::BoxF& box,
853 base::trace_event::TracedValue* res) {
854 res->BeginArray(name);
855 res->AppendInteger(box.x());
856 res->AppendInteger(box.y());
857 res->AppendInteger(box.z());
858 res->AppendInteger(box.width());
859 res->AppendInteger(box.height());
860 res->AppendInteger(box.depth());
861 res->EndArray();
864 double MathUtil::AsDoubleSafely(double value) {
865 return std::min(value, std::numeric_limits<double>::max());
868 float MathUtil::AsFloatSafely(float value) {
869 return std::min(value, std::numeric_limits<float>::max());
872 gfx::Vector3dF MathUtil::GetXAxis(const gfx::Transform& transform) {
873 return gfx::Vector3dF(transform.matrix().getFloat(0, 0),
874 transform.matrix().getFloat(1, 0),
875 transform.matrix().getFloat(2, 0));
878 gfx::Vector3dF MathUtil::GetYAxis(const gfx::Transform& transform) {
879 return gfx::Vector3dF(transform.matrix().getFloat(0, 1),
880 transform.matrix().getFloat(1, 1),
881 transform.matrix().getFloat(2, 1));
884 } // namespace cc