Componentize pref registration in BookmarkModelFactory
[chromium-blink-merge.git] / ui / gfx / skbitmap_operations.cc
blobcfb44da330b08be71536ded62191cb3f8a8f2478
1 // Copyright (c) 2012 The Chromium Authors. All rights reserved.
2 // Use of this source code is governed by a BSD-style license that can be
3 // found in the LICENSE file.
5 #include "ui/gfx/skbitmap_operations.h"
7 #include <string.h>
8 #include <algorithm>
10 #include "base/logging.h"
11 #include "skia/ext/refptr.h"
12 #include "third_party/skia/include/core/SkBitmap.h"
13 #include "third_party/skia/include/core/SkCanvas.h"
14 #include "third_party/skia/include/core/SkColorFilter.h"
15 #include "third_party/skia/include/core/SkColorPriv.h"
16 #include "third_party/skia/include/core/SkUnPreMultiply.h"
17 #include "third_party/skia/include/effects/SkBlurImageFilter.h"
18 #include "ui/gfx/geometry/insets.h"
19 #include "ui/gfx/geometry/point.h"
20 #include "ui/gfx/geometry/size.h"
22 // static
23 SkBitmap SkBitmapOperations::CreateInvertedBitmap(const SkBitmap& image) {
24 DCHECK(image.colorType() == kN32_SkColorType);
26 SkAutoLockPixels lock_image(image);
28 SkBitmap inverted;
29 inverted.allocN32Pixels(image.width(), image.height());
31 for (int y = 0; y < image.height(); ++y) {
32 uint32* image_row = image.getAddr32(0, y);
33 uint32* dst_row = inverted.getAddr32(0, y);
35 for (int x = 0; x < image.width(); ++x) {
36 uint32 image_pixel = image_row[x];
37 dst_row[x] = (image_pixel & 0xFF000000) |
38 (0x00FFFFFF - (image_pixel & 0x00FFFFFF));
42 return inverted;
45 // static
46 SkBitmap SkBitmapOperations::CreateBlendedBitmap(const SkBitmap& first,
47 const SkBitmap& second,
48 double alpha) {
49 DCHECK((alpha >= 0) && (alpha <= 1));
50 DCHECK(first.width() == second.width());
51 DCHECK(first.height() == second.height());
52 DCHECK(first.bytesPerPixel() == second.bytesPerPixel());
53 DCHECK(first.colorType() == kN32_SkColorType);
55 // Optimize for case where we won't need to blend anything.
56 static const double alpha_min = 1.0 / 255;
57 static const double alpha_max = 254.0 / 255;
58 if (alpha < alpha_min)
59 return first;
60 else if (alpha > alpha_max)
61 return second;
63 SkAutoLockPixels lock_first(first);
64 SkAutoLockPixels lock_second(second);
66 SkBitmap blended;
67 blended.allocN32Pixels(first.width(), first.height());
69 double first_alpha = 1 - alpha;
71 for (int y = 0; y < first.height(); ++y) {
72 uint32* first_row = first.getAddr32(0, y);
73 uint32* second_row = second.getAddr32(0, y);
74 uint32* dst_row = blended.getAddr32(0, y);
76 for (int x = 0; x < first.width(); ++x) {
77 uint32 first_pixel = first_row[x];
78 uint32 second_pixel = second_row[x];
80 int a = static_cast<int>((SkColorGetA(first_pixel) * first_alpha) +
81 (SkColorGetA(second_pixel) * alpha));
82 int r = static_cast<int>((SkColorGetR(first_pixel) * first_alpha) +
83 (SkColorGetR(second_pixel) * alpha));
84 int g = static_cast<int>((SkColorGetG(first_pixel) * first_alpha) +
85 (SkColorGetG(second_pixel) * alpha));
86 int b = static_cast<int>((SkColorGetB(first_pixel) * first_alpha) +
87 (SkColorGetB(second_pixel) * alpha));
89 dst_row[x] = SkColorSetARGB(a, r, g, b);
93 return blended;
96 // static
97 SkBitmap SkBitmapOperations::CreateMaskedBitmap(const SkBitmap& rgb,
98 const SkBitmap& alpha) {
99 DCHECK(rgb.width() == alpha.width());
100 DCHECK(rgb.height() == alpha.height());
101 DCHECK(rgb.bytesPerPixel() == alpha.bytesPerPixel());
102 DCHECK(rgb.colorType() == kN32_SkColorType);
103 DCHECK(alpha.colorType() == kN32_SkColorType);
105 SkBitmap masked;
106 masked.allocN32Pixels(rgb.width(), rgb.height());
108 SkAutoLockPixels lock_rgb(rgb);
109 SkAutoLockPixels lock_alpha(alpha);
110 SkAutoLockPixels lock_masked(masked);
112 for (int y = 0; y < masked.height(); ++y) {
113 uint32* rgb_row = rgb.getAddr32(0, y);
114 uint32* alpha_row = alpha.getAddr32(0, y);
115 uint32* dst_row = masked.getAddr32(0, y);
117 for (int x = 0; x < masked.width(); ++x) {
118 SkColor rgb_pixel = SkUnPreMultiply::PMColorToColor(rgb_row[x]);
119 SkColor alpha_pixel = SkUnPreMultiply::PMColorToColor(alpha_row[x]);
120 int alpha = SkAlphaMul(SkColorGetA(rgb_pixel),
121 SkAlpha255To256(SkColorGetA(alpha_pixel)));
122 int alpha_256 = SkAlpha255To256(alpha);
123 dst_row[x] = SkColorSetARGB(alpha,
124 SkAlphaMul(SkColorGetR(rgb_pixel), alpha_256),
125 SkAlphaMul(SkColorGetG(rgb_pixel), alpha_256),
126 SkAlphaMul(SkColorGetB(rgb_pixel),
127 alpha_256));
131 return masked;
134 // static
135 SkBitmap SkBitmapOperations::CreateButtonBackground(SkColor color,
136 const SkBitmap& image,
137 const SkBitmap& mask) {
138 DCHECK(image.colorType() == kN32_SkColorType);
139 DCHECK(mask.colorType() == kN32_SkColorType);
141 SkBitmap background;
142 background.allocN32Pixels(mask.width(), mask.height());
144 double bg_a = SkColorGetA(color);
145 double bg_r = SkColorGetR(color);
146 double bg_g = SkColorGetG(color);
147 double bg_b = SkColorGetB(color);
149 SkAutoLockPixels lock_mask(mask);
150 SkAutoLockPixels lock_image(image);
151 SkAutoLockPixels lock_background(background);
153 for (int y = 0; y < mask.height(); ++y) {
154 uint32* dst_row = background.getAddr32(0, y);
155 uint32* image_row = image.getAddr32(0, y % image.height());
156 uint32* mask_row = mask.getAddr32(0, y);
158 for (int x = 0; x < mask.width(); ++x) {
159 uint32 image_pixel = image_row[x % image.width()];
161 double img_a = SkColorGetA(image_pixel);
162 double img_r = SkColorGetR(image_pixel);
163 double img_g = SkColorGetG(image_pixel);
164 double img_b = SkColorGetB(image_pixel);
166 double img_alpha = static_cast<double>(img_a) / 255.0;
167 double img_inv = 1 - img_alpha;
169 double mask_a = static_cast<double>(SkColorGetA(mask_row[x])) / 255.0;
171 dst_row[x] = SkColorSetARGB(
172 static_cast<int>(std::min(255.0, bg_a + img_a) * mask_a),
173 static_cast<int>(((bg_r * img_inv) + (img_r * img_alpha)) * mask_a),
174 static_cast<int>(((bg_g * img_inv) + (img_g * img_alpha)) * mask_a),
175 static_cast<int>(((bg_b * img_inv) + (img_b * img_alpha)) * mask_a));
179 return background;
182 namespace {
183 namespace HSLShift {
185 // TODO(viettrungluu): Some things have yet to be optimized at all.
187 // Notes on and conventions used in the following code
189 // Conventions:
190 // - R, G, B, A = obvious; as variables: |r|, |g|, |b|, |a| (see also below)
191 // - H, S, L = obvious; as variables: |h|, |s|, |l| (see also below)
192 // - variables derived from S, L shift parameters: |sdec| and |sinc| for S
193 // increase and decrease factors, |ldec| and |linc| for L (see also below)
195 // To try to optimize HSL shifts, we do several things:
196 // - Avoid unpremultiplying (then processing) then premultiplying. This means
197 // that R, G, B values (and also L, but not H and S) should be treated as
198 // having a range of 0..A (where A is alpha).
199 // - Do things in integer/fixed-point. This avoids costly conversions between
200 // floating-point and integer, though I should study the tradeoff more
201 // carefully (presumably, at some point of processing complexity, converting
202 // and processing using simpler floating-point code will begin to win in
203 // performance). Also to be studied is the speed/type of floating point
204 // conversions; see, e.g., <http://www.stereopsis.com/sree/fpu2006.html>.
206 // Conventions for fixed-point arithmetic
207 // - Each function has a constant denominator (called |den|, which should be a
208 // power of 2), appropriate for the computations done in that function.
209 // - A value |x| is then typically represented by a numerator, named |x_num|,
210 // so that its actual value is |x_num / den| (casting to floating-point
211 // before division).
212 // - To obtain |x_num| from |x|, simply multiply by |den|, i.e., |x_num = x *
213 // den| (casting appropriately).
214 // - When necessary, a value |x| may also be represented as a numerator over
215 // the denominator squared (set |den2 = den * den|). In such a case, the
216 // corresponding variable is called |x_num2| (so that its actual value is
217 // |x_num^2 / den2|.
218 // - The representation of the product of |x| and |y| is be called |x_y_num| if
219 // |x * y == x_y_num / den|, and |xy_num2| if |x * y == x_y_num2 / den2|. In
220 // the latter case, notice that one can calculate |x_y_num2 = x_num * y_num|.
222 // Routine used to process a line; typically specialized for specific kinds of
223 // HSL shifts (to optimize).
224 typedef void (*LineProcessor)(const color_utils::HSL&,
225 const SkPMColor*,
226 SkPMColor*,
227 int width);
229 enum OperationOnH { kOpHNone = 0, kOpHShift, kNumHOps };
230 enum OperationOnS { kOpSNone = 0, kOpSDec, kOpSInc, kNumSOps };
231 enum OperationOnL { kOpLNone = 0, kOpLDec, kOpLInc, kNumLOps };
233 // Epsilon used to judge when shift values are close enough to various critical
234 // values (typically 0.5, which yields a no-op for S and L shifts. 1/256 should
235 // be small enough, but let's play it safe>
236 const double epsilon = 0.0005;
238 // Line processor: default/universal (i.e., old-school).
239 void LineProcDefault(const color_utils::HSL& hsl_shift,
240 const SkPMColor* in,
241 SkPMColor* out,
242 int width) {
243 for (int x = 0; x < width; x++) {
244 out[x] = SkPreMultiplyColor(color_utils::HSLShift(
245 SkUnPreMultiply::PMColorToColor(in[x]), hsl_shift));
249 // Line processor: no-op (i.e., copy).
250 void LineProcCopy(const color_utils::HSL& hsl_shift,
251 const SkPMColor* in,
252 SkPMColor* out,
253 int width) {
254 DCHECK(hsl_shift.h < 0);
255 DCHECK(hsl_shift.s < 0 || fabs(hsl_shift.s - 0.5) < HSLShift::epsilon);
256 DCHECK(hsl_shift.l < 0 || fabs(hsl_shift.l - 0.5) < HSLShift::epsilon);
257 memcpy(out, in, static_cast<size_t>(width) * sizeof(out[0]));
260 // Line processor: H no-op, S no-op, L decrease.
261 void LineProcHnopSnopLdec(const color_utils::HSL& hsl_shift,
262 const SkPMColor* in,
263 SkPMColor* out,
264 int width) {
265 const uint32_t den = 65536;
267 DCHECK(hsl_shift.h < 0);
268 DCHECK(hsl_shift.s < 0 || fabs(hsl_shift.s - 0.5) < HSLShift::epsilon);
269 DCHECK(hsl_shift.l <= 0.5 - HSLShift::epsilon && hsl_shift.l >= 0);
271 uint32_t ldec_num = static_cast<uint32_t>(hsl_shift.l * 2 * den);
272 for (int x = 0; x < width; x++) {
273 uint32_t a = SkGetPackedA32(in[x]);
274 uint32_t r = SkGetPackedR32(in[x]);
275 uint32_t g = SkGetPackedG32(in[x]);
276 uint32_t b = SkGetPackedB32(in[x]);
277 r = r * ldec_num / den;
278 g = g * ldec_num / den;
279 b = b * ldec_num / den;
280 out[x] = SkPackARGB32(a, r, g, b);
284 // Line processor: H no-op, S no-op, L increase.
285 void LineProcHnopSnopLinc(const color_utils::HSL& hsl_shift,
286 const SkPMColor* in,
287 SkPMColor* out,
288 int width) {
289 const uint32_t den = 65536;
291 DCHECK(hsl_shift.h < 0);
292 DCHECK(hsl_shift.s < 0 || fabs(hsl_shift.s - 0.5) < HSLShift::epsilon);
293 DCHECK(hsl_shift.l >= 0.5 + HSLShift::epsilon && hsl_shift.l <= 1);
295 uint32_t linc_num = static_cast<uint32_t>((hsl_shift.l - 0.5) * 2 * den);
296 for (int x = 0; x < width; x++) {
297 uint32_t a = SkGetPackedA32(in[x]);
298 uint32_t r = SkGetPackedR32(in[x]);
299 uint32_t g = SkGetPackedG32(in[x]);
300 uint32_t b = SkGetPackedB32(in[x]);
301 r += (a - r) * linc_num / den;
302 g += (a - g) * linc_num / den;
303 b += (a - b) * linc_num / den;
304 out[x] = SkPackARGB32(a, r, g, b);
308 // Saturation changes modifications in RGB
310 // (Note that as a further complication, the values we deal in are
311 // premultiplied, so R/G/B values must be in the range 0..A. For mathematical
312 // purposes, one may as well use r=R/A, g=G/A, b=B/A. Without loss of
313 // generality, assume that R/G/B values are in the range 0..1.)
315 // Let Max = max(R,G,B), Min = min(R,G,B), and Med be the median value. Then L =
316 // (Max+Min)/2. If L is to remain constant, Max+Min must also remain constant.
318 // For H to remain constant, first, the (numerical) order of R/G/B (from
319 // smallest to largest) must remain the same. Second, all the ratios
320 // (R-G)/(Max-Min), (R-B)/(Max-Min), (G-B)/(Max-Min) must remain constant (of
321 // course, if Max = Min, then S = 0 and no saturation change is well-defined,
322 // since H is not well-defined).
324 // Let C_max be a colour with value Max, C_min be one with value Min, and C_med
325 // the remaining colour. Increasing saturation (to the maximum) is accomplished
326 // by increasing the value of C_max while simultaneously decreasing C_min and
327 // changing C_med so that the ratios are maintained; for the latter, it suffices
328 // to keep (C_med-C_min)/(C_max-C_min) constant (and equal to
329 // (Med-Min)/(Max-Min)).
331 // Line processor: H no-op, S decrease, L no-op.
332 void LineProcHnopSdecLnop(const color_utils::HSL& hsl_shift,
333 const SkPMColor* in,
334 SkPMColor* out,
335 int width) {
336 DCHECK(hsl_shift.h < 0);
337 DCHECK(hsl_shift.s >= 0 && hsl_shift.s <= 0.5 - HSLShift::epsilon);
338 DCHECK(hsl_shift.l < 0 || fabs(hsl_shift.l - 0.5) < HSLShift::epsilon);
340 const int32_t denom = 65536;
341 int32_t s_numer = static_cast<int32_t>(hsl_shift.s * 2 * denom);
342 for (int x = 0; x < width; x++) {
343 int32_t a = static_cast<int32_t>(SkGetPackedA32(in[x]));
344 int32_t r = static_cast<int32_t>(SkGetPackedR32(in[x]));
345 int32_t g = static_cast<int32_t>(SkGetPackedG32(in[x]));
346 int32_t b = static_cast<int32_t>(SkGetPackedB32(in[x]));
348 int32_t vmax, vmin;
349 if (r > g) { // This uses 3 compares rather than 4.
350 vmax = std::max(r, b);
351 vmin = std::min(g, b);
352 } else {
353 vmax = std::max(g, b);
354 vmin = std::min(r, b);
357 // Use denom * L to avoid rounding.
358 int32_t denom_l = (vmax + vmin) * (denom / 2);
359 int32_t s_numer_l = (vmax + vmin) * s_numer / 2;
361 r = (denom_l + r * s_numer - s_numer_l) / denom;
362 g = (denom_l + g * s_numer - s_numer_l) / denom;
363 b = (denom_l + b * s_numer - s_numer_l) / denom;
364 out[x] = SkPackARGB32(a, r, g, b);
368 // Line processor: H no-op, S decrease, L decrease.
369 void LineProcHnopSdecLdec(const color_utils::HSL& hsl_shift,
370 const SkPMColor* in,
371 SkPMColor* out,
372 int width) {
373 DCHECK(hsl_shift.h < 0);
374 DCHECK(hsl_shift.s >= 0 && hsl_shift.s <= 0.5 - HSLShift::epsilon);
375 DCHECK(hsl_shift.l >= 0 && hsl_shift.l <= 0.5 - HSLShift::epsilon);
377 // Can't be too big since we need room for denom*denom and a bit for sign.
378 const int32_t denom = 1024;
379 int32_t l_numer = static_cast<int32_t>(hsl_shift.l * 2 * denom);
380 int32_t s_numer = static_cast<int32_t>(hsl_shift.s * 2 * denom);
381 for (int x = 0; x < width; x++) {
382 int32_t a = static_cast<int32_t>(SkGetPackedA32(in[x]));
383 int32_t r = static_cast<int32_t>(SkGetPackedR32(in[x]));
384 int32_t g = static_cast<int32_t>(SkGetPackedG32(in[x]));
385 int32_t b = static_cast<int32_t>(SkGetPackedB32(in[x]));
387 int32_t vmax, vmin;
388 if (r > g) { // This uses 3 compares rather than 4.
389 vmax = std::max(r, b);
390 vmin = std::min(g, b);
391 } else {
392 vmax = std::max(g, b);
393 vmin = std::min(r, b);
396 // Use denom * L to avoid rounding.
397 int32_t denom_l = (vmax + vmin) * (denom / 2);
398 int32_t s_numer_l = (vmax + vmin) * s_numer / 2;
400 r = (denom_l + r * s_numer - s_numer_l) * l_numer / (denom * denom);
401 g = (denom_l + g * s_numer - s_numer_l) * l_numer / (denom * denom);
402 b = (denom_l + b * s_numer - s_numer_l) * l_numer / (denom * denom);
403 out[x] = SkPackARGB32(a, r, g, b);
407 // Line processor: H no-op, S decrease, L increase.
408 void LineProcHnopSdecLinc(const color_utils::HSL& hsl_shift,
409 const SkPMColor* in,
410 SkPMColor* out,
411 int width) {
412 DCHECK(hsl_shift.h < 0);
413 DCHECK(hsl_shift.s >= 0 && hsl_shift.s <= 0.5 - HSLShift::epsilon);
414 DCHECK(hsl_shift.l >= 0.5 + HSLShift::epsilon && hsl_shift.l <= 1);
416 // Can't be too big since we need room for denom*denom and a bit for sign.
417 const int32_t denom = 1024;
418 int32_t l_numer = static_cast<int32_t>((hsl_shift.l - 0.5) * 2 * denom);
419 int32_t s_numer = static_cast<int32_t>(hsl_shift.s * 2 * denom);
420 for (int x = 0; x < width; x++) {
421 int32_t a = static_cast<int32_t>(SkGetPackedA32(in[x]));
422 int32_t r = static_cast<int32_t>(SkGetPackedR32(in[x]));
423 int32_t g = static_cast<int32_t>(SkGetPackedG32(in[x]));
424 int32_t b = static_cast<int32_t>(SkGetPackedB32(in[x]));
426 int32_t vmax, vmin;
427 if (r > g) { // This uses 3 compares rather than 4.
428 vmax = std::max(r, b);
429 vmin = std::min(g, b);
430 } else {
431 vmax = std::max(g, b);
432 vmin = std::min(r, b);
435 // Use denom * L to avoid rounding.
436 int32_t denom_l = (vmax + vmin) * (denom / 2);
437 int32_t s_numer_l = (vmax + vmin) * s_numer / 2;
439 r = denom_l + r * s_numer - s_numer_l;
440 g = denom_l + g * s_numer - s_numer_l;
441 b = denom_l + b * s_numer - s_numer_l;
443 r = (r * denom + (a * denom - r) * l_numer) / (denom * denom);
444 g = (g * denom + (a * denom - g) * l_numer) / (denom * denom);
445 b = (b * denom + (a * denom - b) * l_numer) / (denom * denom);
446 out[x] = SkPackARGB32(a, r, g, b);
450 const LineProcessor kLineProcessors[kNumHOps][kNumSOps][kNumLOps] = {
451 { // H: kOpHNone
452 { // S: kOpSNone
453 LineProcCopy, // L: kOpLNone
454 LineProcHnopSnopLdec, // L: kOpLDec
455 LineProcHnopSnopLinc // L: kOpLInc
457 { // S: kOpSDec
458 LineProcHnopSdecLnop, // L: kOpLNone
459 LineProcHnopSdecLdec, // L: kOpLDec
460 LineProcHnopSdecLinc // L: kOpLInc
462 { // S: kOpSInc
463 LineProcDefault, // L: kOpLNone
464 LineProcDefault, // L: kOpLDec
465 LineProcDefault // L: kOpLInc
468 { // H: kOpHShift
469 { // S: kOpSNone
470 LineProcDefault, // L: kOpLNone
471 LineProcDefault, // L: kOpLDec
472 LineProcDefault // L: kOpLInc
474 { // S: kOpSDec
475 LineProcDefault, // L: kOpLNone
476 LineProcDefault, // L: kOpLDec
477 LineProcDefault // L: kOpLInc
479 { // S: kOpSInc
480 LineProcDefault, // L: kOpLNone
481 LineProcDefault, // L: kOpLDec
482 LineProcDefault // L: kOpLInc
487 } // namespace HSLShift
488 } // namespace
490 // static
491 SkBitmap SkBitmapOperations::CreateHSLShiftedBitmap(
492 const SkBitmap& bitmap,
493 const color_utils::HSL& hsl_shift) {
494 // Default to NOPs.
495 HSLShift::OperationOnH H_op = HSLShift::kOpHNone;
496 HSLShift::OperationOnS S_op = HSLShift::kOpSNone;
497 HSLShift::OperationOnL L_op = HSLShift::kOpLNone;
499 if (hsl_shift.h >= 0 && hsl_shift.h <= 1)
500 H_op = HSLShift::kOpHShift;
502 // Saturation shift: 0 -> fully desaturate, 0.5 -> NOP, 1 -> fully saturate.
503 if (hsl_shift.s >= 0 && hsl_shift.s <= (0.5 - HSLShift::epsilon))
504 S_op = HSLShift::kOpSDec;
505 else if (hsl_shift.s >= (0.5 + HSLShift::epsilon))
506 S_op = HSLShift::kOpSInc;
508 // Lightness shift: 0 -> black, 0.5 -> NOP, 1 -> white.
509 if (hsl_shift.l >= 0 && hsl_shift.l <= (0.5 - HSLShift::epsilon))
510 L_op = HSLShift::kOpLDec;
511 else if (hsl_shift.l >= (0.5 + HSLShift::epsilon))
512 L_op = HSLShift::kOpLInc;
514 HSLShift::LineProcessor line_proc =
515 HSLShift::kLineProcessors[H_op][S_op][L_op];
517 DCHECK(bitmap.empty() == false);
518 DCHECK(bitmap.colorType() == kN32_SkColorType);
520 SkBitmap shifted;
521 shifted.allocN32Pixels(bitmap.width(), bitmap.height());
523 SkAutoLockPixels lock_bitmap(bitmap);
524 SkAutoLockPixels lock_shifted(shifted);
526 // Loop through the pixels of the original bitmap.
527 for (int y = 0; y < bitmap.height(); ++y) {
528 SkPMColor* pixels = bitmap.getAddr32(0, y);
529 SkPMColor* tinted_pixels = shifted.getAddr32(0, y);
531 (*line_proc)(hsl_shift, pixels, tinted_pixels, bitmap.width());
534 return shifted;
537 // static
538 SkBitmap SkBitmapOperations::CreateTiledBitmap(const SkBitmap& source,
539 int src_x, int src_y,
540 int dst_w, int dst_h) {
541 DCHECK(source.colorType() == kN32_SkColorType);
543 SkBitmap cropped;
544 cropped.allocN32Pixels(dst_w, dst_h);
546 SkAutoLockPixels lock_source(source);
547 SkAutoLockPixels lock_cropped(cropped);
549 // Loop through the pixels of the original bitmap.
550 for (int y = 0; y < dst_h; ++y) {
551 int y_pix = (src_y + y) % source.height();
552 while (y_pix < 0)
553 y_pix += source.height();
555 uint32* source_row = source.getAddr32(0, y_pix);
556 uint32* dst_row = cropped.getAddr32(0, y);
558 for (int x = 0; x < dst_w; ++x) {
559 int x_pix = (src_x + x) % source.width();
560 while (x_pix < 0)
561 x_pix += source.width();
563 dst_row[x] = source_row[x_pix];
567 return cropped;
570 // static
571 SkBitmap SkBitmapOperations::DownsampleByTwoUntilSize(const SkBitmap& bitmap,
572 int min_w, int min_h) {
573 if ((bitmap.width() <= min_w) || (bitmap.height() <= min_h) ||
574 (min_w < 0) || (min_h < 0))
575 return bitmap;
577 // Since bitmaps are refcounted, this copy will be fast.
578 SkBitmap current = bitmap;
579 while ((current.width() >= min_w * 2) && (current.height() >= min_h * 2) &&
580 (current.width() > 1) && (current.height() > 1))
581 current = DownsampleByTwo(current);
582 return current;
585 // static
586 SkBitmap SkBitmapOperations::DownsampleByTwo(const SkBitmap& bitmap) {
587 // Handle the nop case.
588 if ((bitmap.width() <= 1) || (bitmap.height() <= 1))
589 return bitmap;
591 SkBitmap result;
592 result.allocN32Pixels((bitmap.width() + 1) / 2, (bitmap.height() + 1) / 2);
594 SkAutoLockPixels lock(bitmap);
596 const int resultLastX = result.width() - 1;
597 const int srcLastX = bitmap.width() - 1;
599 for (int dest_y = 0; dest_y < result.height(); ++dest_y) {
600 const int src_y = dest_y << 1;
601 const SkPMColor* SK_RESTRICT cur_src0 = bitmap.getAddr32(0, src_y);
602 const SkPMColor* SK_RESTRICT cur_src1 = cur_src0;
603 if (src_y + 1 < bitmap.height())
604 cur_src1 = bitmap.getAddr32(0, src_y + 1);
606 SkPMColor* SK_RESTRICT cur_dst = result.getAddr32(0, dest_y);
608 for (int dest_x = 0; dest_x <= resultLastX; ++dest_x) {
609 // This code is based on downsampleby2_proc32 in SkBitmap.cpp. It is very
610 // clever in that it does two channels at once: alpha and green ("ag")
611 // and red and blue ("rb"). Each channel gets averaged across 4 pixels
612 // to get the result.
613 int bump_x = (dest_x << 1) < srcLastX;
614 SkPMColor tmp, ag, rb;
616 // Top left pixel of the 2x2 block.
617 tmp = cur_src0[0];
618 ag = (tmp >> 8) & 0xFF00FF;
619 rb = tmp & 0xFF00FF;
621 // Top right pixel of the 2x2 block.
622 tmp = cur_src0[bump_x];
623 ag += (tmp >> 8) & 0xFF00FF;
624 rb += tmp & 0xFF00FF;
626 // Bottom left pixel of the 2x2 block.
627 tmp = cur_src1[0];
628 ag += (tmp >> 8) & 0xFF00FF;
629 rb += tmp & 0xFF00FF;
631 // Bottom right pixel of the 2x2 block.
632 tmp = cur_src1[bump_x];
633 ag += (tmp >> 8) & 0xFF00FF;
634 rb += tmp & 0xFF00FF;
636 // Put the channels back together, dividing each by 4 to get the average.
637 // |ag| has the alpha and green channels shifted right by 8 bits from
638 // there they should end up, so shifting left by 6 gives them in the
639 // correct position divided by 4.
640 *cur_dst++ = ((rb >> 2) & 0xFF00FF) | ((ag << 6) & 0xFF00FF00);
642 cur_src0 += 2;
643 cur_src1 += 2;
647 return result;
650 // static
651 SkBitmap SkBitmapOperations::UnPreMultiply(const SkBitmap& bitmap) {
652 if (bitmap.isNull())
653 return bitmap;
654 if (bitmap.isOpaque())
655 return bitmap;
657 const SkImageInfo& info = bitmap.info();
658 SkImageInfo opaque_info =
659 SkImageInfo::Make(info.width(), info.height(), info.colorType(),
660 kOpaque_SkAlphaType, info.profileType());
661 SkBitmap opaque_bitmap;
662 opaque_bitmap.allocPixels(opaque_info);
665 SkAutoLockPixels bitmap_lock(bitmap);
666 SkAutoLockPixels opaque_bitmap_lock(opaque_bitmap);
667 for (int y = 0; y < opaque_bitmap.height(); y++) {
668 for (int x = 0; x < opaque_bitmap.width(); x++) {
669 uint32 src_pixel = *bitmap.getAddr32(x, y);
670 uint32* dst_pixel = opaque_bitmap.getAddr32(x, y);
671 SkColor unmultiplied = SkUnPreMultiply::PMColorToColor(src_pixel);
672 *dst_pixel = unmultiplied;
677 return opaque_bitmap;
680 // static
681 SkBitmap SkBitmapOperations::CreateTransposedBitmap(const SkBitmap& image) {
682 DCHECK(image.colorType() == kN32_SkColorType);
684 SkBitmap transposed;
685 transposed.allocN32Pixels(image.height(), image.width());
687 SkAutoLockPixels lock_image(image);
688 SkAutoLockPixels lock_transposed(transposed);
690 for (int y = 0; y < image.height(); ++y) {
691 uint32* image_row = image.getAddr32(0, y);
692 for (int x = 0; x < image.width(); ++x) {
693 uint32* dst = transposed.getAddr32(y, x);
694 *dst = image_row[x];
698 return transposed;
701 // static
702 SkBitmap SkBitmapOperations::CreateColorMask(const SkBitmap& bitmap,
703 SkColor c) {
704 DCHECK(bitmap.colorType() == kN32_SkColorType);
706 SkBitmap color_mask;
707 color_mask.allocN32Pixels(bitmap.width(), bitmap.height());
708 color_mask.eraseARGB(0, 0, 0, 0);
710 SkCanvas canvas(color_mask);
712 skia::RefPtr<SkColorFilter> color_filter = skia::AdoptRef(
713 SkColorFilter::CreateModeFilter(c, SkXfermode::kSrcIn_Mode));
714 SkPaint paint;
715 paint.setColorFilter(color_filter.get());
716 canvas.drawBitmap(bitmap, SkIntToScalar(0), SkIntToScalar(0), &paint);
717 return color_mask;
720 // static
721 SkBitmap SkBitmapOperations::CreateDropShadow(
722 const SkBitmap& bitmap,
723 const gfx::ShadowValues& shadows) {
724 DCHECK(bitmap.colorType() == kN32_SkColorType);
726 // Shadow margin insets are negative values because they grow outside.
727 // Negate them here as grow direction is not important and only pixel value
728 // is of interest here.
729 gfx::Insets shadow_margin = -gfx::ShadowValue::GetMargin(shadows);
731 SkBitmap image_with_shadow;
732 image_with_shadow.allocN32Pixels(bitmap.width() + shadow_margin.width(),
733 bitmap.height() + shadow_margin.height());
734 image_with_shadow.eraseARGB(0, 0, 0, 0);
736 SkCanvas canvas(image_with_shadow);
737 canvas.translate(SkIntToScalar(shadow_margin.left()),
738 SkIntToScalar(shadow_margin.top()));
740 SkPaint paint;
741 for (size_t i = 0; i < shadows.size(); ++i) {
742 const gfx::ShadowValue& shadow = shadows[i];
743 SkBitmap shadow_image = SkBitmapOperations::CreateColorMask(bitmap,
744 shadow.color());
746 // The blur is halved to produce a shadow that correctly fits within the
747 // |shadow_margin|.
748 SkScalar sigma = SkDoubleToScalar(shadow.blur() / 2);
749 skia::RefPtr<SkBlurImageFilter> filter =
750 skia::AdoptRef(SkBlurImageFilter::Create(sigma, sigma));
751 paint.setImageFilter(filter.get());
753 canvas.saveLayer(0, &paint);
754 canvas.drawBitmap(shadow_image,
755 SkIntToScalar(shadow.x()),
756 SkIntToScalar(shadow.y()));
757 canvas.restore();
760 canvas.drawBitmap(bitmap, SkIntToScalar(0), SkIntToScalar(0));
761 return image_with_shadow;
764 // static
765 SkBitmap SkBitmapOperations::Rotate(const SkBitmap& source,
766 RotationAmount rotation) {
767 SkBitmap result;
768 SkScalar angle = SkFloatToScalar(0.0f);
770 switch (rotation) {
771 case ROTATION_90_CW:
772 angle = SkFloatToScalar(90.0f);
773 result.allocN32Pixels(source.height(), source.width());
774 break;
775 case ROTATION_180_CW:
776 angle = SkFloatToScalar(180.0f);
777 result.allocN32Pixels(source.width(), source.height());
778 break;
779 case ROTATION_270_CW:
780 angle = SkFloatToScalar(270.0f);
781 result.allocN32Pixels(source.height(), source.width());
782 break;
785 SkCanvas canvas(result);
786 canvas.clear(SkColorSetARGB(0, 0, 0, 0));
788 canvas.translate(SkFloatToScalar(result.width() * 0.5f),
789 SkFloatToScalar(result.height() * 0.5f));
790 canvas.rotate(angle);
791 canvas.translate(-SkFloatToScalar(source.width() * 0.5f),
792 -SkFloatToScalar(source.height() * 0.5f));
793 canvas.drawBitmap(source, 0, 0);
794 canvas.flush();
796 return result;