[Enhanced Bookmark] Change "Bookmark Bar" to "Bookmark bar" on Android
[chromium-blink-merge.git] / cc / resources / picture_pile.cc
blobb5b9c79f08af41cfae352f0e9338651d492ef8b8
1 // Copyright 2012 The Chromium Authors. All rights reserved.
2 // Use of this source code is governed by a BSD-style license that can be
3 // found in the LICENSE file.
5 #include "cc/resources/picture_pile.h"
7 #include <algorithm>
8 #include <limits>
9 #include <vector>
11 #include "cc/base/region.h"
12 #include "cc/resources/picture_pile_impl.h"
13 #include "skia/ext/analysis_canvas.h"
15 namespace {
16 // Layout pixel buffer around the visible layer rect to record. Any base
17 // picture that intersects the visible layer rect expanded by this distance
18 // will be recorded.
19 const int kPixelDistanceToRecord = 8000;
20 // We don't perform solid color analysis on images that have more than 10 skia
21 // operations.
22 const int kOpCountThatIsOkToAnalyze = 10;
24 // Dimensions of the tiles in this picture pile as well as the dimensions of
25 // the base picture in each tile.
26 const int kBasePictureSize = 512;
28 // Invalidation frequency settings. kInvalidationFrequencyThreshold is a value
29 // between 0 and 1 meaning invalidation frequency between 0% and 100% that
30 // indicates when to stop invalidating offscreen regions.
31 // kFrequentInvalidationDistanceThreshold defines what it means to be
32 // "offscreen" in terms of distance to visible in css pixels.
33 const float kInvalidationFrequencyThreshold = 0.75f;
34 const int kFrequentInvalidationDistanceThreshold = 512;
36 // TODO(humper): The density threshold here is somewhat arbitrary; need a
37 // way to set // this from the command line so we can write a benchmark
38 // script and find a sweet spot.
39 const float kDensityThreshold = 0.5f;
41 bool rect_sort_y(const gfx::Rect& r1, const gfx::Rect& r2) {
42 return r1.y() < r2.y() || (r1.y() == r2.y() && r1.x() < r2.x());
45 bool rect_sort_x(const gfx::Rect& r1, const gfx::Rect& r2) {
46 return r1.x() < r2.x() || (r1.x() == r2.x() && r1.y() < r2.y());
49 float PerformClustering(const std::vector<gfx::Rect>& tiles,
50 std::vector<gfx::Rect>* clustered_rects) {
51 // These variables track the record area and invalid area
52 // for the entire clustering
53 int total_record_area = 0;
54 int total_invalid_area = 0;
56 // These variables track the record area and invalid area
57 // for the current cluster being constructed.
58 gfx::Rect cur_record_rect;
59 int cluster_record_area = 0, cluster_invalid_area = 0;
61 for (std::vector<gfx::Rect>::const_iterator it = tiles.begin();
62 it != tiles.end();
63 it++) {
64 gfx::Rect invalid_tile = *it;
66 // For each tile, we consider adding the invalid tile to the
67 // current record rectangle. Only add it if the amount of empty
68 // space created is below a density threshold.
69 int tile_area = invalid_tile.width() * invalid_tile.height();
71 gfx::Rect proposed_union = cur_record_rect;
72 proposed_union.Union(invalid_tile);
73 int proposed_area = proposed_union.width() * proposed_union.height();
74 float proposed_density =
75 static_cast<float>(cluster_invalid_area + tile_area) /
76 static_cast<float>(proposed_area);
78 if (proposed_density >= kDensityThreshold) {
79 // It's okay to add this invalid tile to the
80 // current recording rectangle.
81 cur_record_rect = proposed_union;
82 cluster_record_area = proposed_area;
83 cluster_invalid_area += tile_area;
84 total_invalid_area += tile_area;
85 } else {
86 // Adding this invalid tile to the current recording rectangle
87 // would exceed our badness threshold, so put the current rectangle
88 // in the list of recording rects, and start a new one.
89 clustered_rects->push_back(cur_record_rect);
90 total_record_area += cluster_record_area;
91 cur_record_rect = invalid_tile;
92 cluster_invalid_area = tile_area;
93 cluster_record_area = tile_area;
97 DCHECK(!cur_record_rect.IsEmpty());
98 clustered_rects->push_back(cur_record_rect);
99 total_record_area += cluster_record_area;;
101 DCHECK_NE(total_record_area, 0);
103 return static_cast<float>(total_invalid_area) /
104 static_cast<float>(total_record_area);
107 void ClusterTiles(const std::vector<gfx::Rect>& invalid_tiles,
108 std::vector<gfx::Rect>* record_rects) {
109 TRACE_EVENT1("cc", "ClusterTiles",
110 "count",
111 invalid_tiles.size());
112 if (invalid_tiles.size() <= 1) {
113 // Quickly handle the special case for common
114 // single-invalidation update, and also the less common
115 // case of no tiles passed in.
116 *record_rects = invalid_tiles;
117 return;
120 // Sort the invalid tiles by y coordinate.
121 std::vector<gfx::Rect> invalid_tiles_vertical = invalid_tiles;
122 std::sort(invalid_tiles_vertical.begin(),
123 invalid_tiles_vertical.end(),
124 rect_sort_y);
126 std::vector<gfx::Rect> vertical_clustering;
127 float vertical_density =
128 PerformClustering(invalid_tiles_vertical, &vertical_clustering);
130 // If vertical density is optimal, then we can return early.
131 if (vertical_density == 1.f) {
132 *record_rects = vertical_clustering;
133 return;
136 // Now try again with a horizontal sort, see which one is best
137 std::vector<gfx::Rect> invalid_tiles_horizontal = invalid_tiles;
138 std::sort(invalid_tiles_horizontal.begin(),
139 invalid_tiles_horizontal.end(),
140 rect_sort_x);
142 std::vector<gfx::Rect> horizontal_clustering;
143 float horizontal_density =
144 PerformClustering(invalid_tiles_horizontal, &horizontal_clustering);
146 if (vertical_density < horizontal_density) {
147 *record_rects = horizontal_clustering;
148 return;
151 *record_rects = vertical_clustering;
154 #ifdef NDEBUG
155 const bool kDefaultClearCanvasSetting = false;
156 #else
157 const bool kDefaultClearCanvasSetting = true;
158 #endif
160 } // namespace
162 namespace cc {
164 PicturePile::PicturePile(float min_contents_scale,
165 const gfx::Size& tile_grid_size)
166 : min_contents_scale_(0),
167 slow_down_raster_scale_factor_for_debug_(0),
168 gather_pixel_refs_(false),
169 has_any_recordings_(false),
170 clear_canvas_with_debug_color_(kDefaultClearCanvasSetting),
171 requires_clear_(true),
172 is_solid_color_(false),
173 solid_color_(SK_ColorTRANSPARENT),
174 background_color_(SK_ColorTRANSPARENT),
175 pixel_record_distance_(kPixelDistanceToRecord),
176 is_suitable_for_gpu_rasterization_(true) {
177 tiling_.SetMaxTextureSize(gfx::Size(kBasePictureSize, kBasePictureSize));
178 SetMinContentsScale(min_contents_scale);
179 SetTileGridSize(tile_grid_size);
182 PicturePile::~PicturePile() {
185 bool PicturePile::UpdateAndExpandInvalidation(
186 ContentLayerClient* painter,
187 Region* invalidation,
188 const gfx::Size& layer_size,
189 const gfx::Rect& visible_layer_rect,
190 int frame_number,
191 RecordingSource::RecordingMode recording_mode) {
192 gfx::Rect interest_rect = visible_layer_rect;
193 interest_rect.Inset(-pixel_record_distance_, -pixel_record_distance_);
194 recorded_viewport_ = interest_rect;
195 recorded_viewport_.Intersect(gfx::Rect(layer_size));
197 bool updated = ApplyInvalidationAndResize(interest_rect, invalidation,
198 layer_size, frame_number);
199 std::vector<gfx::Rect> invalid_tiles;
200 GetInvalidTileRects(interest_rect, invalidation, visible_layer_rect,
201 frame_number, &invalid_tiles);
202 std::vector<gfx::Rect> record_rects;
203 ClusterTiles(invalid_tiles, &record_rects);
205 if (record_rects.empty())
206 return updated;
208 CreatePictures(painter, recording_mode, record_rects);
210 DetermineIfSolidColor();
212 has_any_recordings_ = true;
213 DCHECK(CanRasterSlowTileCheck(recorded_viewport_));
214 return true;
217 void PicturePile::DidMoveToNewCompositor() {
218 for (auto& map_pair : picture_map_)
219 map_pair.second.ResetInvalidationHistory();
222 bool PicturePile::ApplyInvalidationAndResize(const gfx::Rect& interest_rect,
223 Region* invalidation,
224 const gfx::Size& layer_size,
225 int frame_number) {
226 bool updated = false;
228 Region synthetic_invalidation;
229 gfx::Size old_tiling_size = GetSize();
230 if (old_tiling_size != layer_size) {
231 tiling_.SetTilingSize(layer_size);
232 updated = true;
235 gfx::Rect interest_rect_over_tiles =
236 tiling_.ExpandRectToTileBounds(interest_rect);
238 if (old_tiling_size != layer_size) {
239 gfx::Size min_tiling_size(
240 std::min(GetSize().width(), old_tiling_size.width()),
241 std::min(GetSize().height(), old_tiling_size.height()));
242 gfx::Size max_tiling_size(
243 std::max(GetSize().width(), old_tiling_size.width()),
244 std::max(GetSize().height(), old_tiling_size.height()));
246 has_any_recordings_ = false;
248 // Drop recordings that are outside the new or old layer bounds or that
249 // changed size. Newly exposed areas are considered invalidated.
250 // Previously exposed areas that are now outside of bounds also need to
251 // be invalidated, as they may become part of raster when scale < 1.
252 std::vector<PictureMapKey> to_erase;
253 int min_toss_x = tiling_.num_tiles_x();
254 if (max_tiling_size.width() > min_tiling_size.width()) {
255 min_toss_x =
256 tiling_.FirstBorderTileXIndexFromSrcCoord(min_tiling_size.width());
258 int min_toss_y = tiling_.num_tiles_y();
259 if (max_tiling_size.height() > min_tiling_size.height()) {
260 min_toss_y =
261 tiling_.FirstBorderTileYIndexFromSrcCoord(min_tiling_size.height());
263 for (const auto& key_picture_pair : picture_map_) {
264 const PictureMapKey& key = key_picture_pair.first;
265 if (key.first < min_toss_x && key.second < min_toss_y) {
266 has_any_recordings_ |= !!key_picture_pair.second.GetPicture();
267 continue;
269 to_erase.push_back(key);
272 for (size_t i = 0; i < to_erase.size(); ++i)
273 picture_map_.erase(to_erase[i]);
275 // If a recording is dropped and not re-recorded below, invalidate that
276 // full recording to cause any raster tiles that would use it to be
277 // dropped.
278 // If the recording will be replaced below, invalidate newly exposed
279 // areas and previously exposed areas to force raster tiles that include the
280 // old recording to know there is new recording to display.
281 gfx::Rect min_tiling_rect_over_tiles =
282 tiling_.ExpandRectToTileBounds(gfx::Rect(min_tiling_size));
283 if (min_toss_x < tiling_.num_tiles_x()) {
284 // The bounds which we want to invalidate are the tiles along the old
285 // edge of the pile when expanding, or the new edge of the pile when
286 // shrinking. In either case, it's the difference of the two, so we'll
287 // call this bounding box the DELTA EDGE RECT.
289 // In the picture below, the delta edge rect would be the bounding box of
290 // tiles {h,i,j}. |min_toss_x| would be equal to the horizontal index of
291 // the same tiles.
293 // min pile edge-v max pile edge-v
294 // ---------------+ - - - - - - - -+
295 // mmppssvvyybbeeh|h .
296 // mmppssvvyybbeeh|h .
297 // nnqqttwwzzccffi|i .
298 // nnqqttwwzzccffi|i .
299 // oorruuxxaaddggj|j .
300 // oorruuxxaaddggj|j .
301 // ---------------+ - - - - - - - -+ <- min pile edge
302 // .
303 // - - - - - - - - - - - - - - - -+ <- max pile edge
305 // If you were to slide a vertical beam from the left edge of the
306 // delta edge rect toward the right, it would either hit the right edge
307 // of the delta edge rect, or the interest rect (expanded to the bounds
308 // of the tiles it touches). The same is true for a beam parallel to
309 // any of the four edges, sliding across the delta edge rect. We use
310 // the union of these four rectangles generated by these beams to
311 // determine which part of the delta edge rect is outside of the expanded
312 // interest rect.
314 // Case 1: Intersect rect is outside the delta edge rect. It can be
315 // either on the left or the right. The |left_rect| and |right_rect|,
316 // cover this case, one will be empty and one will cover the full
317 // delta edge rect. In the picture below, |left_rect| would cover the
318 // delta edge rect, and |right_rect| would be empty.
319 // +----------------------+ |^^^^^^^^^^^^^^^|
320 // |===> DELTA EDGE RECT | | |
321 // |===> | | INTEREST RECT |
322 // |===> | | |
323 // |===> | | |
324 // +----------------------+ |vvvvvvvvvvvvvvv|
326 // Case 2: Interest rect is inside the delta edge rect. It will always
327 // fill the entire delta edge rect horizontally since the old edge rect
328 // is a single tile wide, and the interest rect has been expanded to the
329 // bounds of the tiles it touches. In this case the |left_rect| and
330 // |right_rect| will be empty, but the case is handled by the |top_rect|
331 // and |bottom_rect|. In the picture below, neither the |top_rect| nor
332 // |bottom_rect| would empty, they would each cover the area of the old
333 // edge rect outside the expanded interest rect.
334 // +-----------------+
335 // |:::::::::::::::::|
336 // |:::::::::::::::::|
337 // |vvvvvvvvvvvvvvvvv|
338 // | |
339 // +-----------------+
340 // | INTEREST RECT |
341 // | |
342 // +-----------------+
343 // | |
344 // | DELTA EDGE RECT |
345 // +-----------------+
347 // Lastly, we need to consider tiles inside the expanded interest rect.
348 // For those tiles, we want to invalidate exactly the newly exposed
349 // pixels. In the picture below the tiles in the delta edge rect have
350 // been resized and the area covered by periods must be invalidated. The
351 // |exposed_rect| will cover exactly that area.
352 // v-min pile edge
353 // +---------+-------+
354 // | ........|
355 // | ........|
356 // | DELTA EDGE.RECT.|
357 // | ........|
358 // | ........|
359 // | ........|
360 // | ........|
361 // | ........|
362 // | ........|
363 // +---------+-------+
365 int left = tiling_.TilePositionX(min_toss_x);
366 int right = left + tiling_.TileSizeX(min_toss_x);
367 int top = min_tiling_rect_over_tiles.y();
368 int bottom = min_tiling_rect_over_tiles.bottom();
370 int left_until = std::min(interest_rect_over_tiles.x(), right);
371 int right_until = std::max(interest_rect_over_tiles.right(), left);
372 int top_until = std::min(interest_rect_over_tiles.y(), bottom);
373 int bottom_until = std::max(interest_rect_over_tiles.bottom(), top);
375 int exposed_left = min_tiling_size.width();
376 int exposed_left_until = max_tiling_size.width();
377 int exposed_top = top;
378 int exposed_bottom = max_tiling_size.height();
379 DCHECK_GE(exposed_left, left);
381 gfx::Rect left_rect(left, top, left_until - left, bottom - top);
382 gfx::Rect right_rect(right_until, top, right - right_until, bottom - top);
383 gfx::Rect top_rect(left, top, right - left, top_until - top);
384 gfx::Rect bottom_rect(
385 left, bottom_until, right - left, bottom - bottom_until);
386 gfx::Rect exposed_rect(exposed_left,
387 exposed_top,
388 exposed_left_until - exposed_left,
389 exposed_bottom - exposed_top);
390 synthetic_invalidation.Union(left_rect);
391 synthetic_invalidation.Union(right_rect);
392 synthetic_invalidation.Union(top_rect);
393 synthetic_invalidation.Union(bottom_rect);
394 synthetic_invalidation.Union(exposed_rect);
396 if (min_toss_y < tiling_.num_tiles_y()) {
397 // The same thing occurs here as in the case above, but the invalidation
398 // rect is the bounding box around the bottom row of tiles in the min
399 // pile. This would be tiles {o,r,u,x,a,d,g,j} in the above picture.
401 int top = tiling_.TilePositionY(min_toss_y);
402 int bottom = top + tiling_.TileSizeY(min_toss_y);
403 int left = min_tiling_rect_over_tiles.x();
404 int right = min_tiling_rect_over_tiles.right();
406 int top_until = std::min(interest_rect_over_tiles.y(), bottom);
407 int bottom_until = std::max(interest_rect_over_tiles.bottom(), top);
408 int left_until = std::min(interest_rect_over_tiles.x(), right);
409 int right_until = std::max(interest_rect_over_tiles.right(), left);
411 int exposed_top = min_tiling_size.height();
412 int exposed_top_until = max_tiling_size.height();
413 int exposed_left = left;
414 int exposed_right = max_tiling_size.width();
415 DCHECK_GE(exposed_top, top);
417 gfx::Rect left_rect(left, top, left_until - left, bottom - top);
418 gfx::Rect right_rect(right_until, top, right - right_until, bottom - top);
419 gfx::Rect top_rect(left, top, right - left, top_until - top);
420 gfx::Rect bottom_rect(
421 left, bottom_until, right - left, bottom - bottom_until);
422 gfx::Rect exposed_rect(exposed_left,
423 exposed_top,
424 exposed_right - exposed_left,
425 exposed_top_until - exposed_top);
426 synthetic_invalidation.Union(left_rect);
427 synthetic_invalidation.Union(right_rect);
428 synthetic_invalidation.Union(top_rect);
429 synthetic_invalidation.Union(bottom_rect);
430 synthetic_invalidation.Union(exposed_rect);
434 // Detect cases where the full pile is invalidated, in this situation we
435 // can just drop/invalidate everything.
436 if (invalidation->Contains(gfx::Rect(old_tiling_size)) ||
437 invalidation->Contains(gfx::Rect(GetSize()))) {
438 for (auto& it : picture_map_)
439 updated = it.second.Invalidate(frame_number) || updated;
440 } else {
441 // Expand invalidation that is on tiles that aren't in the interest rect and
442 // will not be re-recorded below. These tiles are no longer valid and should
443 // be considerered fully invalid, so we can know to not keep around raster
444 // tiles that intersect with these recording tiles.
445 Region invalidation_expanded_to_full_tiles;
447 for (Region::Iterator i(*invalidation); i.has_rect(); i.next()) {
448 gfx::Rect invalid_rect = i.rect();
450 // This rect covers the bounds (excluding borders) of all tiles whose
451 // bounds (including borders) touch the |interest_rect|. This matches
452 // the iteration of the |invalid_rect| below which includes borders when
453 // calling Invalidate() on pictures.
454 gfx::Rect invalid_rect_outside_interest_rect_tiles =
455 tiling_.ExpandRectToTileBounds(invalid_rect);
456 // We subtract the |interest_rect_over_tiles| which represents the bounds
457 // of tiles that will be re-recorded below. This matches the iteration of
458 // |interest_rect| below which includes borders.
459 // TODO(danakj): We should have a Rect-subtract-Rect-to-2-rects operator
460 // instead of using Rect::Subtract which gives you the bounding box of the
461 // subtraction.
462 invalid_rect_outside_interest_rect_tiles.Subtract(
463 interest_rect_over_tiles);
464 invalidation_expanded_to_full_tiles.Union(
465 invalid_rect_outside_interest_rect_tiles);
467 // Split this inflated invalidation across tile boundaries and apply it
468 // to all tiles that it touches.
469 bool include_borders = true;
470 for (TilingData::Iterator iter(&tiling_, invalid_rect, include_borders);
471 iter;
472 ++iter) {
473 const PictureMapKey& key = iter.index();
475 PictureMap::iterator picture_it = picture_map_.find(key);
476 if (picture_it == picture_map_.end())
477 continue;
479 // Inform the grid cell that it has been invalidated in this frame.
480 updated = picture_it->second.Invalidate(frame_number) || updated;
481 // Invalidate drops the picture so the whole tile better be invalidated
482 // if it won't be re-recorded below.
483 DCHECK_IMPLIES(!tiling_.TileBounds(key.first, key.second)
484 .Intersects(interest_rect_over_tiles),
485 invalidation_expanded_to_full_tiles.Contains(
486 tiling_.TileBounds(key.first, key.second)));
489 invalidation->Union(invalidation_expanded_to_full_tiles);
492 invalidation->Union(synthetic_invalidation);
493 return updated;
496 void PicturePile::GetInvalidTileRects(const gfx::Rect& interest_rect,
497 Region* invalidation,
498 const gfx::Rect& visible_layer_rect,
499 int frame_number,
500 std::vector<gfx::Rect>* invalid_tiles) {
501 // Make a list of all invalid tiles; we will attempt to
502 // cluster these into multiple invalidation regions.
503 bool include_borders = true;
504 for (TilingData::Iterator it(&tiling_, interest_rect, include_borders); it;
505 ++it) {
506 const PictureMapKey& key = it.index();
507 PictureInfo& info = picture_map_[key];
509 gfx::Rect rect = PaddedRect(key);
510 int distance_to_visible =
511 rect.ManhattanInternalDistance(visible_layer_rect);
513 if (info.NeedsRecording(frame_number, distance_to_visible)) {
514 gfx::Rect tile = tiling_.TileBounds(key.first, key.second);
515 invalid_tiles->push_back(tile);
516 } else if (!info.GetPicture()) {
517 if (recorded_viewport_.Intersects(rect)) {
518 // Recorded viewport is just an optimization for a fully recorded
519 // interest rect. In this case, a tile in that rect has declined
520 // to be recorded (probably due to frequent invalidations).
521 // TODO(enne): Shrink the recorded_viewport_ rather than clearing.
522 recorded_viewport_ = gfx::Rect();
525 // If a tile in the interest rect is not recorded, the entire tile needs
526 // to be considered invalid, so that we know not to keep around raster
527 // tiles that intersect this recording tile.
528 invalidation->Union(tiling_.TileBounds(it.index_x(), it.index_y()));
533 void PicturePile::CreatePictures(ContentLayerClient* painter,
534 RecordingSource::RecordingMode recording_mode,
535 const std::vector<gfx::Rect>& record_rects) {
536 for (const auto& record_rect : record_rects) {
537 gfx::Rect padded_record_rect = PadRect(record_rect);
539 int repeat_count = std::max(1, slow_down_raster_scale_factor_for_debug_);
540 scoped_refptr<Picture> picture;
542 for (int i = 0; i < repeat_count; i++) {
543 picture = Picture::Create(padded_record_rect, painter, tile_grid_size_,
544 gather_pixel_refs_, recording_mode);
545 // Note the '&&' with previous is-suitable state.
546 // This means that once a picture-pile becomes unsuitable for gpu
547 // rasterization due to some content, it will continue to be unsuitable
548 // even if that content is replaced by gpu-friendly content.
549 // This is an optimization to avoid iterating though all pictures in
550 // the pile after each invalidation.
551 if (is_suitable_for_gpu_rasterization_) {
552 const char* reason = nullptr;
553 is_suitable_for_gpu_rasterization_ &=
554 picture->IsSuitableForGpuRasterization(&reason);
556 if (!is_suitable_for_gpu_rasterization_) {
557 TRACE_EVENT_INSTANT1("cc", "GPU Rasterization Veto",
558 TRACE_EVENT_SCOPE_THREAD, "reason", reason);
563 bool found_tile_for_recorded_picture = false;
565 bool include_borders = true;
566 for (TilingData::Iterator it(&tiling_, padded_record_rect, include_borders);
567 it; ++it) {
568 const PictureMapKey& key = it.index();
569 gfx::Rect tile = PaddedRect(key);
570 if (padded_record_rect.Contains(tile)) {
571 PictureInfo& info = picture_map_[key];
572 info.SetPicture(picture);
573 found_tile_for_recorded_picture = true;
576 DCHECK(found_tile_for_recorded_picture);
580 scoped_refptr<RasterSource> PicturePile::CreateRasterSource(
581 bool can_use_lcd_text) const {
582 return scoped_refptr<RasterSource>(
583 PicturePileImpl::CreateFromPicturePile(this, can_use_lcd_text));
586 gfx::Size PicturePile::GetSize() const {
587 return tiling_.tiling_size();
590 void PicturePile::SetEmptyBounds() {
591 tiling_.SetTilingSize(gfx::Size());
592 Clear();
595 void PicturePile::SetMinContentsScale(float min_contents_scale) {
596 DCHECK(min_contents_scale);
597 if (min_contents_scale_ == min_contents_scale)
598 return;
600 // Picture contents are played back scaled. When the final contents scale is
601 // less than 1 (i.e. low res), then multiple recorded pixels will be used
602 // to raster one final pixel. To avoid splitting a final pixel across
603 // pictures (which would result in incorrect rasterization due to blending), a
604 // buffer margin is added so that any picture can be snapped to integral
605 // final pixels.
607 // For example, if a 1/4 contents scale is used, then that would be 3 buffer
608 // pixels, since that's the minimum number of pixels to add so that resulting
609 // content can be snapped to a four pixel aligned grid.
610 int buffer_pixels = static_cast<int>(ceil(1 / min_contents_scale) - 1);
611 buffer_pixels = std::max(0, buffer_pixels);
612 SetBufferPixels(buffer_pixels);
613 min_contents_scale_ = min_contents_scale;
616 void PicturePile::SetSlowdownRasterScaleFactor(int factor) {
617 slow_down_raster_scale_factor_for_debug_ = factor;
620 void PicturePile::SetGatherPixelRefs(bool gather_pixel_refs) {
621 gather_pixel_refs_ = gather_pixel_refs;
624 void PicturePile::SetBackgroundColor(SkColor background_color) {
625 background_color_ = background_color;
628 void PicturePile::SetRequiresClear(bool requires_clear) {
629 requires_clear_ = requires_clear;
632 bool PicturePile::IsSuitableForGpuRasterization() const {
633 return is_suitable_for_gpu_rasterization_;
636 void PicturePile::SetTileGridSize(const gfx::Size& tile_grid_size) {
637 DCHECK_GT(tile_grid_size.width(), 0);
638 DCHECK_GT(tile_grid_size.height(), 0);
640 tile_grid_size_ = tile_grid_size;
643 void PicturePile::SetUnsuitableForGpuRasterizationForTesting() {
644 is_suitable_for_gpu_rasterization_ = false;
647 gfx::Size PicturePile::GetTileGridSizeForTesting() const {
648 return tile_grid_size_;
651 bool PicturePile::CanRasterSlowTileCheck(const gfx::Rect& layer_rect) const {
652 bool include_borders = false;
653 for (TilingData::Iterator tile_iter(&tiling_, layer_rect, include_borders);
654 tile_iter; ++tile_iter) {
655 PictureMap::const_iterator map_iter = picture_map_.find(tile_iter.index());
656 if (map_iter == picture_map_.end())
657 return false;
658 if (!map_iter->second.GetPicture())
659 return false;
661 return true;
664 void PicturePile::DetermineIfSolidColor() {
665 is_solid_color_ = false;
666 solid_color_ = SK_ColorTRANSPARENT;
668 if (picture_map_.empty()) {
669 return;
672 PictureMap::const_iterator it = picture_map_.begin();
673 const Picture* picture = it->second.GetPicture();
675 // Missing recordings due to frequent invalidations or being too far away
676 // from the interest rect will cause the a null picture to exist.
677 if (!picture)
678 return;
680 // Don't bother doing more work if the first image is too complicated.
681 if (picture->ApproximateOpCount() > kOpCountThatIsOkToAnalyze)
682 return;
684 // Make sure all of the mapped images point to the same picture.
685 for (++it; it != picture_map_.end(); ++it) {
686 if (it->second.GetPicture() != picture)
687 return;
690 gfx::Size layer_size = GetSize();
691 skia::AnalysisCanvas canvas(layer_size.width(), layer_size.height());
693 picture->Raster(&canvas, nullptr, Region(), 1.0f);
694 is_solid_color_ = canvas.GetColorIfSolid(&solid_color_);
697 gfx::Rect PicturePile::PaddedRect(const PictureMapKey& key) const {
698 gfx::Rect tile = tiling_.TileBounds(key.first, key.second);
699 return PadRect(tile);
702 gfx::Rect PicturePile::PadRect(const gfx::Rect& rect) const {
703 gfx::Rect padded_rect = rect;
704 padded_rect.Inset(-buffer_pixels(), -buffer_pixels(), -buffer_pixels(),
705 -buffer_pixels());
706 return padded_rect;
709 void PicturePile::Clear() {
710 picture_map_.clear();
711 recorded_viewport_ = gfx::Rect();
712 has_any_recordings_ = false;
713 is_solid_color_ = false;
716 PicturePile::PictureInfo::PictureInfo() : last_frame_number_(0) {
719 PicturePile::PictureInfo::~PictureInfo() {
722 void PicturePile::PictureInfo::AdvanceInvalidationHistory(int frame_number) {
723 DCHECK_GE(frame_number, last_frame_number_);
724 if (frame_number == last_frame_number_)
725 return;
727 invalidation_history_ <<= (frame_number - last_frame_number_);
728 last_frame_number_ = frame_number;
731 bool PicturePile::PictureInfo::Invalidate(int frame_number) {
732 AdvanceInvalidationHistory(frame_number);
733 invalidation_history_.set(0);
735 bool did_invalidate = !!picture_.get();
736 picture_ = NULL;
737 return did_invalidate;
740 bool PicturePile::PictureInfo::NeedsRecording(int frame_number,
741 int distance_to_visible) {
742 AdvanceInvalidationHistory(frame_number);
744 // We only need recording if we don't have a picture. Furthermore, we only
745 // need a recording if we're within frequent invalidation distance threshold
746 // or the invalidation is not frequent enough (below invalidation frequency
747 // threshold).
748 return !picture_.get() &&
749 ((distance_to_visible <= kFrequentInvalidationDistanceThreshold) ||
750 (GetInvalidationFrequency() < kInvalidationFrequencyThreshold));
753 void PicturePile::PictureInfo::ResetInvalidationHistory() {
754 invalidation_history_.reset();
755 last_frame_number_ = 0;
758 void PicturePile::SetBufferPixels(int new_buffer_pixels) {
759 if (new_buffer_pixels == buffer_pixels())
760 return;
762 Clear();
763 tiling_.SetBorderTexels(new_buffer_pixels);
766 void PicturePile::PictureInfo::SetPicture(scoped_refptr<Picture> picture) {
767 picture_ = picture;
770 const Picture* PicturePile::PictureInfo::GetPicture() const {
771 return picture_.get();
774 float PicturePile::PictureInfo::GetInvalidationFrequency() const {
775 return invalidation_history_.count() /
776 static_cast<float>(INVALIDATION_FRAMES_TRACKED);
779 } // namespace cc