Durable Storage: Refactor browser test and test the basic "deny" flow.
[chromium-blink-merge.git] / ui / events / latency_info.cc
blob3225001d655b59113a38a9beb8e352872bcb4c93
1 // Copyright 2013 The Chromium Authors. All rights reserved.
2 // Use of this source code is governed by a BSD-style license that can be
3 // found in the LICENSE file.
5 #include "ui/events/latency_info.h"
7 #include <algorithm>
8 #include <string>
10 #include "base/json/json_writer.h"
11 #include "base/lazy_instance.h"
12 #include "base/strings/stringprintf.h"
14 namespace {
16 const size_t kMaxLatencyInfoNumber = 100;
18 const char* GetComponentName(ui::LatencyComponentType type) {
19 #define CASE_TYPE(t) case ui::t: return #t
20 switch (type) {
21 CASE_TYPE(INPUT_EVENT_LATENCY_BEGIN_RWH_COMPONENT);
22 CASE_TYPE(LATENCY_BEGIN_SCROLL_LISTENER_UPDATE_MAIN_COMPONENT);
23 CASE_TYPE(INPUT_EVENT_LATENCY_SCROLL_UPDATE_ORIGINAL_COMPONENT);
24 CASE_TYPE(INPUT_EVENT_LATENCY_FIRST_SCROLL_UPDATE_ORIGINAL_COMPONENT);
25 CASE_TYPE(INPUT_EVENT_LATENCY_ORIGINAL_COMPONENT);
26 CASE_TYPE(INPUT_EVENT_LATENCY_UI_COMPONENT);
27 CASE_TYPE(INPUT_EVENT_LATENCY_RENDERING_SCHEDULED_MAIN_COMPONENT);
28 CASE_TYPE(INPUT_EVENT_LATENCY_RENDERING_SCHEDULED_IMPL_COMPONENT);
29 CASE_TYPE(INPUT_EVENT_LATENCY_FORWARD_SCROLL_UPDATE_TO_MAIN_COMPONENT);
30 CASE_TYPE(INPUT_EVENT_LATENCY_ACK_RWH_COMPONENT);
31 CASE_TYPE(WINDOW_SNAPSHOT_FRAME_NUMBER_COMPONENT);
32 CASE_TYPE(TAB_SHOW_COMPONENT);
33 CASE_TYPE(INPUT_EVENT_LATENCY_RENDERER_SWAP_COMPONENT);
34 CASE_TYPE(INPUT_EVENT_BROWSER_RECEIVED_RENDERER_SWAP_COMPONENT);
35 CASE_TYPE(INPUT_EVENT_GPU_SWAP_BUFFER_COMPONENT);
36 CASE_TYPE(INPUT_EVENT_LATENCY_TERMINATED_MOUSE_COMPONENT);
37 CASE_TYPE(INPUT_EVENT_LATENCY_TERMINATED_MOUSE_WHEEL_COMPONENT);
38 CASE_TYPE(INPUT_EVENT_LATENCY_TERMINATED_KEYBOARD_COMPONENT);
39 CASE_TYPE(INPUT_EVENT_LATENCY_TERMINATED_TOUCH_COMPONENT);
40 CASE_TYPE(INPUT_EVENT_LATENCY_TERMINATED_GESTURE_COMPONENT);
41 CASE_TYPE(INPUT_EVENT_LATENCY_TERMINATED_FRAME_SWAP_COMPONENT);
42 CASE_TYPE(INPUT_EVENT_LATENCY_TERMINATED_COMMIT_FAILED_COMPONENT);
43 CASE_TYPE(INPUT_EVENT_LATENCY_TERMINATED_COMMIT_NO_UPDATE_COMPONENT);
44 CASE_TYPE(INPUT_EVENT_LATENCY_TERMINATED_SWAP_FAILED_COMPONENT);
45 default:
46 DLOG(WARNING) << "Unhandled LatencyComponentType.\n";
47 break;
49 #undef CASE_TYPE
50 return "unknown";
53 bool IsTerminalComponent(ui::LatencyComponentType type) {
54 switch (type) {
55 case ui::INPUT_EVENT_LATENCY_TERMINATED_MOUSE_COMPONENT:
56 case ui::INPUT_EVENT_LATENCY_TERMINATED_MOUSE_WHEEL_COMPONENT:
57 case ui::INPUT_EVENT_LATENCY_TERMINATED_KEYBOARD_COMPONENT:
58 case ui::INPUT_EVENT_LATENCY_TERMINATED_TOUCH_COMPONENT:
59 case ui::INPUT_EVENT_LATENCY_TERMINATED_GESTURE_COMPONENT:
60 case ui::INPUT_EVENT_LATENCY_TERMINATED_FRAME_SWAP_COMPONENT:
61 case ui::INPUT_EVENT_LATENCY_TERMINATED_COMMIT_FAILED_COMPONENT:
62 case ui::INPUT_EVENT_LATENCY_TERMINATED_COMMIT_NO_UPDATE_COMPONENT:
63 case ui::INPUT_EVENT_LATENCY_TERMINATED_SWAP_FAILED_COMPONENT:
64 return true;
65 default:
66 return false;
70 bool IsBeginComponent(ui::LatencyComponentType type) {
71 return (type == ui::INPUT_EVENT_LATENCY_BEGIN_RWH_COMPONENT ||
72 type == ui::LATENCY_BEGIN_SCROLL_LISTENER_UPDATE_MAIN_COMPONENT);
75 bool IsInputLatencyBeginComponent(ui::LatencyComponentType type) {
76 return type == ui::INPUT_EVENT_LATENCY_BEGIN_RWH_COMPONENT;
79 // This class is for converting latency info to trace buffer friendly format.
80 class LatencyInfoTracedValue
81 : public base::trace_event::ConvertableToTraceFormat {
82 public:
83 static scoped_refptr<ConvertableToTraceFormat> FromValue(
84 scoped_ptr<base::Value> value);
86 void AppendAsTraceFormat(std::string* out) const override;
88 private:
89 explicit LatencyInfoTracedValue(base::Value* value);
90 ~LatencyInfoTracedValue() override;
92 scoped_ptr<base::Value> value_;
94 DISALLOW_COPY_AND_ASSIGN(LatencyInfoTracedValue);
97 scoped_refptr<base::trace_event::ConvertableToTraceFormat>
98 LatencyInfoTracedValue::FromValue(scoped_ptr<base::Value> value) {
99 return scoped_refptr<base::trace_event::ConvertableToTraceFormat>(
100 new LatencyInfoTracedValue(value.release()));
103 LatencyInfoTracedValue::~LatencyInfoTracedValue() {
106 void LatencyInfoTracedValue::AppendAsTraceFormat(std::string* out) const {
107 std::string tmp;
108 base::JSONWriter::Write(*value_, &tmp);
109 *out += tmp;
112 LatencyInfoTracedValue::LatencyInfoTracedValue(base::Value* value)
113 : value_(value) {
116 struct BenchmarkEnabledInitializer {
117 BenchmarkEnabledInitializer() :
118 benchmark_enabled(TRACE_EVENT_API_GET_CATEGORY_GROUP_ENABLED(
119 "benchmark")) {
122 const unsigned char* benchmark_enabled;
125 static base::LazyInstance<BenchmarkEnabledInitializer>::Leaky
126 g_benchmark_enabled = LAZY_INSTANCE_INITIALIZER;
128 } // namespace
130 namespace ui {
132 LatencyInfo::InputCoordinate::InputCoordinate() : x(0), y(0) {
135 LatencyInfo::InputCoordinate::InputCoordinate(float x, float y) : x(x), y(y) {
138 LatencyInfo::LatencyInfo()
139 : input_coordinates_size_(0),
140 coalesced_events_size_(0),
141 trace_id_(-1),
142 terminated_(false) {
145 LatencyInfo::~LatencyInfo() {
148 LatencyInfo::LatencyInfo(int64 trace_id, bool terminated)
149 : input_coordinates_size_(0), trace_id_(trace_id), terminated_(terminated) {
152 bool LatencyInfo::Verify(const std::vector<LatencyInfo>& latency_info,
153 const char* referring_msg) {
154 if (latency_info.size() > kMaxLatencyInfoNumber) {
155 LOG(ERROR) << referring_msg << ", LatencyInfo vector size "
156 << latency_info.size() << " is too big.";
157 return false;
159 return true;
162 void LatencyInfo::CopyLatencyFrom(const LatencyInfo& other,
163 LatencyComponentType type) {
164 for (const auto& lc : other.latency_components()) {
165 if (lc.first.first == type) {
166 AddLatencyNumberWithTimestamp(lc.first.first,
167 lc.first.second,
168 lc.second.sequence_number,
169 lc.second.event_time,
170 lc.second.event_count);
175 void LatencyInfo::AddNewLatencyFrom(const LatencyInfo& other) {
176 for (const auto& lc : other.latency_components()) {
177 if (!FindLatency(lc.first.first, lc.first.second, NULL)) {
178 AddLatencyNumberWithTimestamp(lc.first.first,
179 lc.first.second,
180 lc.second.sequence_number,
181 lc.second.event_time,
182 lc.second.event_count);
187 void LatencyInfo::AddLatencyNumber(LatencyComponentType component,
188 int64 id,
189 int64 component_sequence_number) {
190 AddLatencyNumberWithTimestampImpl(component, id, component_sequence_number,
191 base::TimeTicks::Now(), 1, nullptr);
194 void LatencyInfo::AddLatencyNumberWithTraceName(
195 LatencyComponentType component,
196 int64 id,
197 int64 component_sequence_number,
198 const char* trace_name_str) {
199 AddLatencyNumberWithTimestampImpl(component, id, component_sequence_number,
200 base::TimeTicks::Now(), 1, trace_name_str);
203 void LatencyInfo::AddLatencyNumberWithTimestamp(LatencyComponentType component,
204 int64 id,
205 int64 component_sequence_number,
206 base::TimeTicks time,
207 uint32 event_count) {
208 AddLatencyNumberWithTimestampImpl(component, id, component_sequence_number,
209 time, event_count, nullptr);
212 void LatencyInfo::AddLatencyNumberWithTimestampImpl(
213 LatencyComponentType component,
214 int64 id,
215 int64 component_sequence_number,
216 base::TimeTicks time,
217 uint32 event_count,
218 const char* trace_name_str) {
220 const unsigned char* benchmark_enabled =
221 g_benchmark_enabled.Get().benchmark_enabled;
223 if (IsBeginComponent(component)) {
224 // Should only ever add begin component once.
225 CHECK_EQ(-1, trace_id_);
226 trace_id_ = component_sequence_number;
228 if (*benchmark_enabled) {
229 // The timestamp for ASYNC_BEGIN trace event is used for drawing the
230 // beginning of the trace event in trace viewer. For better visualization,
231 // for an input event, we want to draw the beginning as when the event is
232 // originally created, e.g. the timestamp of its ORIGINAL/UI_COMPONENT,
233 // not when we actually issue the ASYNC_BEGIN trace event.
234 LatencyComponent begin_component;
235 int64 ts = 0;
236 if (FindLatency(INPUT_EVENT_LATENCY_ORIGINAL_COMPONENT,
238 &begin_component) ||
239 FindLatency(INPUT_EVENT_LATENCY_UI_COMPONENT,
241 &begin_component)) {
242 // The timestamp stored in ORIGINAL/UI_COMPONENT is using clock
243 // CLOCK_MONOTONIC while TRACE_EVENT_ASYNC_BEGIN_WITH_TIMESTAMP0
244 // expects timestamp using CLOCK_MONOTONIC or CLOCK_SYSTEM_TRACE (on
245 // CrOS). So we need to adjust the diff between in CLOCK_MONOTONIC and
246 // CLOCK_SYSTEM_TRACE. Note that the diff is drifting overtime so we
247 // can't use a static value.
248 base::TimeDelta diff = (base::TimeTicks::Now() - base::TimeTicks()) -
249 (base::TraceTicks::Now() - base::TraceTicks());
250 ts = (begin_component.event_time - diff).ToInternalValue();
251 } else {
252 ts = base::TraceTicks::Now().ToInternalValue();
255 if (trace_name_str) {
256 if (IsInputLatencyBeginComponent(component))
257 trace_name_ = std::string("InputLatency::") + trace_name_str;
258 else
259 trace_name_ = std::string("Latency::") + trace_name_str;
262 TRACE_EVENT_COPY_ASYNC_BEGIN_WITH_TIMESTAMP0(
263 "benchmark,latencyInfo",
264 trace_name_.c_str(),
265 TRACE_ID_DONT_MANGLE(trace_id_),
266 ts);
269 TRACE_EVENT_WITH_FLOW1("input,benchmark",
270 "LatencyInfo.Flow",
271 TRACE_ID_DONT_MANGLE(trace_id_),
272 TRACE_EVENT_FLAG_FLOW_OUT,
273 "trace_id", trace_id_);
276 LatencyMap::key_type key = std::make_pair(component, id);
277 LatencyMap::iterator it = latency_components_.find(key);
278 if (it == latency_components_.end()) {
279 LatencyComponent info = {component_sequence_number, time, event_count};
280 latency_components_[key] = info;
281 } else {
282 it->second.sequence_number = std::max(component_sequence_number,
283 it->second.sequence_number);
284 uint32 new_count = event_count + it->second.event_count;
285 if (event_count > 0 && new_count != 0) {
286 // Do a weighted average, so that the new event_time is the average of
287 // the times of events currently in this structure with the time passed
288 // into this method.
289 it->second.event_time += (time - it->second.event_time) * event_count /
290 new_count;
291 it->second.event_count = new_count;
295 if (IsTerminalComponent(component) && trace_id_ != -1) {
296 // Should only ever add terminal component once.
297 CHECK(!terminated_);
298 terminated_ = true;
300 if (*benchmark_enabled) {
301 TRACE_EVENT_COPY_ASYNC_END1("benchmark,latencyInfo",
302 trace_name_.c_str(),
303 TRACE_ID_DONT_MANGLE(trace_id_),
304 "data", AsTraceableData());
307 TRACE_EVENT_WITH_FLOW0("input,benchmark",
308 "LatencyInfo.Flow",
309 TRACE_ID_DONT_MANGLE(trace_id_),
310 TRACE_EVENT_FLAG_FLOW_IN);
314 scoped_refptr<base::trace_event::ConvertableToTraceFormat>
315 LatencyInfo::AsTraceableData() {
316 scoped_ptr<base::DictionaryValue> record_data(new base::DictionaryValue());
317 for (const auto& lc : latency_components_) {
318 scoped_ptr<base::DictionaryValue>
319 component_info(new base::DictionaryValue());
320 component_info->SetDouble("comp_id", static_cast<double>(lc.first.second));
321 component_info->SetDouble(
322 "time",
323 static_cast<double>(lc.second.event_time.ToInternalValue()));
324 component_info->SetDouble("count", lc.second.event_count);
325 component_info->SetDouble("sequence_number",
326 lc.second.sequence_number);
327 record_data->Set(GetComponentName(lc.first.first), component_info.Pass());
329 record_data->SetDouble("trace_id", static_cast<double>(trace_id_));
331 scoped_ptr<base::ListValue> coordinates(new base::ListValue());
332 for (size_t i = 0; i < input_coordinates_size_; i++) {
333 scoped_ptr<base::DictionaryValue> coordinate_pair(
334 new base::DictionaryValue());
335 coordinate_pair->SetDouble("x", input_coordinates_[i].x);
336 coordinate_pair->SetDouble("y", input_coordinates_[i].y);
337 coordinates->Append(coordinate_pair.release());
339 record_data->Set("coordinates", coordinates.release());
340 return LatencyInfoTracedValue::FromValue(record_data.Pass());
343 bool LatencyInfo::FindLatency(LatencyComponentType type,
344 int64 id,
345 LatencyComponent* output) const {
346 LatencyMap::const_iterator it = latency_components_.find(
347 std::make_pair(type, id));
348 if (it == latency_components_.end())
349 return false;
350 if (output)
351 *output = it->second;
352 return true;
355 void LatencyInfo::RemoveLatency(LatencyComponentType type) {
356 LatencyMap::iterator it = latency_components_.begin();
357 while (it != latency_components_.end()) {
358 if (it->first.first == type) {
359 LatencyMap::iterator tmp = it;
360 ++it;
361 latency_components_.erase(tmp);
362 } else {
363 it++;
368 bool LatencyInfo::AddInputCoordinate(const InputCoordinate& input_coordinate) {
369 if (input_coordinates_size_ >= kMaxInputCoordinates)
370 return false;
371 input_coordinates_[input_coordinates_size_++] = input_coordinate;
372 return true;
375 bool LatencyInfo::AddCoalescedEventTimestamp(double timestamp) {
376 if (coalesced_events_size_ >= kMaxCoalescedEventTimestamps)
377 return false;
378 timestamps_of_coalesced_events_[coalesced_events_size_++] = timestamp;
379 return true;
382 } // namespace ui