Windows should animate when they are about to get docked at screen edges.
[chromium-blink-merge.git] / net / disk_cache / v3 / entry_impl_v3.cc
blob35b2e5644a700386e94a2ea8c56052225e2e5e61
1 // Copyright (c) 2012 The Chromium Authors. All rights reserved.
2 // Use of this source code is governed by a BSD-style license that can be
3 // found in the LICENSE file.
5 #include "net/disk_cache/entry_impl.h"
7 #include "base/hash.h"
8 #include "base/message_loop/message_loop.h"
9 #include "base/metrics/histogram.h"
10 #include "base/strings/string_util.h"
11 #include "net/base/io_buffer.h"
12 #include "net/base/net_errors.h"
13 #include "net/disk_cache/backend_impl.h"
14 #include "net/disk_cache/bitmap.h"
15 #include "net/disk_cache/cache_util.h"
16 #include "net/disk_cache/histogram_macros.h"
17 #include "net/disk_cache/net_log_parameters.h"
18 #include "net/disk_cache/sparse_control.h"
20 using base::Time;
21 using base::TimeDelta;
22 using base::TimeTicks;
24 namespace {
26 const int kMaxBufferSize = 1024 * 1024; // 1 MB.
28 } // namespace
30 namespace disk_cache {
32 // This class handles individual memory buffers that store data before it is
33 // sent to disk. The buffer can start at any offset, but if we try to write to
34 // anywhere in the first 16KB of the file (kMaxBlockSize), we set the offset to
35 // zero. The buffer grows up to a size determined by the backend, to keep the
36 // total memory used under control.
37 class EntryImpl::UserBuffer {
38 public:
39 explicit UserBuffer(BackendImpl* backend)
40 : backend_(backend->GetWeakPtr()), offset_(0), grow_allowed_(true) {
41 buffer_.reserve(kMaxBlockSize);
43 ~UserBuffer() {
44 if (backend_)
45 backend_->BufferDeleted(capacity() - kMaxBlockSize);
48 // Returns true if we can handle writing |len| bytes to |offset|.
49 bool PreWrite(int offset, int len);
51 // Truncates the buffer to |offset| bytes.
52 void Truncate(int offset);
54 // Writes |len| bytes from |buf| at the given |offset|.
55 void Write(int offset, IOBuffer* buf, int len);
57 // Returns true if we can read |len| bytes from |offset|, given that the
58 // actual file has |eof| bytes stored. Note that the number of bytes to read
59 // may be modified by this method even though it returns false: that means we
60 // should do a smaller read from disk.
61 bool PreRead(int eof, int offset, int* len);
63 // Read |len| bytes from |buf| at the given |offset|.
64 int Read(int offset, IOBuffer* buf, int len);
66 // Prepare this buffer for reuse.
67 void Reset();
69 char* Data() { return buffer_.size() ? &buffer_[0] : NULL; }
70 int Size() { return static_cast<int>(buffer_.size()); }
71 int Start() { return offset_; }
72 int End() { return offset_ + Size(); }
74 private:
75 int capacity() { return static_cast<int>(buffer_.capacity()); }
76 bool GrowBuffer(int required, int limit);
78 base::WeakPtr<BackendImpl> backend_;
79 int offset_;
80 std::vector<char> buffer_;
81 bool grow_allowed_;
82 DISALLOW_COPY_AND_ASSIGN(UserBuffer);
85 bool EntryImpl::UserBuffer::PreWrite(int offset, int len) {
86 DCHECK_GE(offset, 0);
87 DCHECK_GE(len, 0);
88 DCHECK_GE(offset + len, 0);
90 // We don't want to write before our current start.
91 if (offset < offset_)
92 return false;
94 // Lets get the common case out of the way.
95 if (offset + len <= capacity())
96 return true;
98 // If we are writing to the first 16K (kMaxBlockSize), we want to keep the
99 // buffer offset_ at 0.
100 if (!Size() && offset > kMaxBlockSize)
101 return GrowBuffer(len, kMaxBufferSize);
103 int required = offset - offset_ + len;
104 return GrowBuffer(required, kMaxBufferSize * 6 / 5);
107 void EntryImpl::UserBuffer::Truncate(int offset) {
108 DCHECK_GE(offset, 0);
109 DCHECK_GE(offset, offset_);
110 DVLOG(3) << "Buffer truncate at " << offset << " current " << offset_;
112 offset -= offset_;
113 if (Size() >= offset)
114 buffer_.resize(offset);
117 void EntryImpl::UserBuffer::Write(int offset, IOBuffer* buf, int len) {
118 DCHECK_GE(offset, 0);
119 DCHECK_GE(len, 0);
120 DCHECK_GE(offset + len, 0);
121 DCHECK_GE(offset, offset_);
122 DVLOG(3) << "Buffer write at " << offset << " current " << offset_;
124 if (!Size() && offset > kMaxBlockSize)
125 offset_ = offset;
127 offset -= offset_;
129 if (offset > Size())
130 buffer_.resize(offset);
132 if (!len)
133 return;
135 char* buffer = buf->data();
136 int valid_len = Size() - offset;
137 int copy_len = std::min(valid_len, len);
138 if (copy_len) {
139 memcpy(&buffer_[offset], buffer, copy_len);
140 len -= copy_len;
141 buffer += copy_len;
143 if (!len)
144 return;
146 buffer_.insert(buffer_.end(), buffer, buffer + len);
149 bool EntryImpl::UserBuffer::PreRead(int eof, int offset, int* len) {
150 DCHECK_GE(offset, 0);
151 DCHECK_GT(*len, 0);
153 if (offset < offset_) {
154 // We are reading before this buffer.
155 if (offset >= eof)
156 return true;
158 // If the read overlaps with the buffer, change its length so that there is
159 // no overlap.
160 *len = std::min(*len, offset_ - offset);
161 *len = std::min(*len, eof - offset);
163 // We should read from disk.
164 return false;
167 if (!Size())
168 return false;
170 // See if we can fulfill the first part of the operation.
171 return (offset - offset_ < Size());
174 int EntryImpl::UserBuffer::Read(int offset, IOBuffer* buf, int len) {
175 DCHECK_GE(offset, 0);
176 DCHECK_GT(len, 0);
177 DCHECK(Size() || offset < offset_);
179 int clean_bytes = 0;
180 if (offset < offset_) {
181 // We don't have a file so lets fill the first part with 0.
182 clean_bytes = std::min(offset_ - offset, len);
183 memset(buf->data(), 0, clean_bytes);
184 if (len == clean_bytes)
185 return len;
186 offset = offset_;
187 len -= clean_bytes;
190 int start = offset - offset_;
191 int available = Size() - start;
192 DCHECK_GE(start, 0);
193 DCHECK_GE(available, 0);
194 len = std::min(len, available);
195 memcpy(buf->data() + clean_bytes, &buffer_[start], len);
196 return len + clean_bytes;
199 void EntryImpl::UserBuffer::Reset() {
200 if (!grow_allowed_) {
201 if (backend_)
202 backend_->BufferDeleted(capacity() - kMaxBlockSize);
203 grow_allowed_ = true;
204 std::vector<char> tmp;
205 buffer_.swap(tmp);
206 buffer_.reserve(kMaxBlockSize);
208 offset_ = 0;
209 buffer_.clear();
212 bool EntryImpl::UserBuffer::GrowBuffer(int required, int limit) {
213 DCHECK_GE(required, 0);
214 int current_size = capacity();
215 if (required <= current_size)
216 return true;
218 if (required > limit)
219 return false;
221 if (!backend_)
222 return false;
224 int to_add = std::max(required - current_size, kMaxBlockSize * 4);
225 to_add = std::max(current_size, to_add);
226 required = std::min(current_size + to_add, limit);
228 grow_allowed_ = backend_->IsAllocAllowed(current_size, required);
229 if (!grow_allowed_)
230 return false;
232 DVLOG(3) << "Buffer grow to " << required;
234 buffer_.reserve(required);
235 return true;
238 // ------------------------------------------------------------------------
240 EntryImpl::EntryImpl(BackendImpl* backend, Addr address, bool read_only)
241 : entry_(NULL, Addr(0)), node_(NULL, Addr(0)),
242 backend_(backend->GetWeakPtr()), doomed_(false), read_only_(read_only),
243 dirty_(false) {
244 entry_.LazyInit(backend->File(address), address);
245 for (int i = 0; i < kNumStreams; i++) {
246 unreported_size_[i] = 0;
250 bool EntryImpl::CreateEntry(Addr node_address, const std::string& key,
251 uint32 hash) {
252 Trace("Create entry In");
253 EntryStore* entry_store = entry_.Data();
254 RankingsNode* node = node_.Data();
255 memset(entry_store, 0, sizeof(EntryStore) * entry_.address().num_blocks());
256 memset(node, 0, sizeof(RankingsNode));
257 if (!node_.LazyInit(backend_->File(node_address), node_address))
258 return false;
260 entry_store->rankings_node = node_address.value();
261 node->contents = entry_.address().value();
263 entry_store->hash = hash;
264 entry_store->creation_time = Time::Now().ToInternalValue();
265 entry_store->key_len = static_cast<int32>(key.size());
266 if (entry_store->key_len > kMaxInternalKeyLength) {
267 Addr address(0);
268 if (!CreateBlock(entry_store->key_len + 1, &address))
269 return false;
271 entry_store->long_key = address.value();
272 File* key_file = GetBackingFile(address, kKeyFileIndex);
273 key_ = key;
275 size_t offset = 0;
276 if (address.is_block_file())
277 offset = address.start_block() * address.BlockSize() + kBlockHeaderSize;
279 if (!key_file || !key_file->Write(key.data(), key.size(), offset)) {
280 DeleteData(address, kKeyFileIndex);
281 return false;
284 if (address.is_separate_file())
285 key_file->SetLength(key.size() + 1);
286 } else {
287 memcpy(entry_store->key, key.data(), key.size());
288 entry_store->key[key.size()] = '\0';
290 backend_->ModifyStorageSize(0, static_cast<int32>(key.size()));
291 CACHE_UMA(COUNTS, "KeySize", 0, static_cast<int32>(key.size()));
292 node->dirty = backend_->GetCurrentEntryId();
293 Log("Create Entry ");
294 return true;
297 uint32 EntryImpl::GetHash() {
298 return entry_.Data()->hash;
301 bool EntryImpl::IsSameEntry(const std::string& key, uint32 hash) {
302 if (entry_.Data()->hash != hash ||
303 static_cast<size_t>(entry_.Data()->key_len) != key.size())
304 return false;
306 return (key.compare(GetKey()) == 0);
309 void EntryImpl::InternalDoom() {
310 net_log_.AddEvent(net::NetLog::TYPE_ENTRY_DOOM);
311 DCHECK(node_.HasData());
312 if (!node_.Data()->dirty) {
313 node_.Data()->dirty = backend_->GetCurrentEntryId();
314 node_.Store();
316 doomed_ = true;
319 // This only includes checks that relate to the first block of the entry (the
320 // first 256 bytes), and values that should be set from the entry creation.
321 // Basically, even if there is something wrong with this entry, we want to see
322 // if it is possible to load the rankings node and delete them together.
323 bool EntryImpl::SanityCheck() {
324 if (!entry_.VerifyHash())
325 return false;
327 EntryStore* stored = entry_.Data();
328 if (!stored->rankings_node || stored->key_len <= 0)
329 return false;
331 if (stored->reuse_count < 0 || stored->refetch_count < 0)
332 return false;
334 Addr rankings_addr(stored->rankings_node);
335 if (!rankings_addr.SanityCheckForRankings())
336 return false;
338 Addr next_addr(stored->next);
339 if (next_addr.is_initialized() && !next_addr.SanityCheckForEntry()) {
340 STRESS_NOTREACHED();
341 return false;
343 STRESS_DCHECK(next_addr.value() != entry_.address().value());
345 if (stored->state > ENTRY_DOOMED || stored->state < ENTRY_NORMAL)
346 return false;
348 Addr key_addr(stored->long_key);
349 if ((stored->key_len <= kMaxInternalKeyLength && key_addr.is_initialized()) ||
350 (stored->key_len > kMaxInternalKeyLength && !key_addr.is_initialized()))
351 return false;
353 if (!key_addr.SanityCheck())
354 return false;
356 if (key_addr.is_initialized() &&
357 ((stored->key_len < kMaxBlockSize && key_addr.is_separate_file()) ||
358 (stored->key_len >= kMaxBlockSize && key_addr.is_block_file())))
359 return false;
361 int num_blocks = NumBlocksForEntry(stored->key_len);
362 if (entry_.address().num_blocks() != num_blocks)
363 return false;
365 return true;
368 bool EntryImpl::DataSanityCheck() {
369 EntryStore* stored = entry_.Data();
370 Addr key_addr(stored->long_key);
372 // The key must be NULL terminated.
373 if (!key_addr.is_initialized() && stored->key[stored->key_len])
374 return false;
376 if (stored->hash != base::Hash(GetKey()))
377 return false;
379 for (int i = 0; i < kNumStreams; i++) {
380 Addr data_addr(stored->data_addr[i]);
381 int data_size = stored->data_size[i];
382 if (data_size < 0)
383 return false;
384 if (!data_size && data_addr.is_initialized())
385 return false;
386 if (!data_addr.SanityCheck())
387 return false;
388 if (!data_size)
389 continue;
390 if (data_size <= kMaxBlockSize && data_addr.is_separate_file())
391 return false;
392 if (data_size > kMaxBlockSize && data_addr.is_block_file())
393 return false;
395 return true;
398 void EntryImpl::FixForDelete() {
399 EntryStore* stored = entry_.Data();
400 Addr key_addr(stored->long_key);
402 if (!key_addr.is_initialized())
403 stored->key[stored->key_len] = '\0';
405 for (int i = 0; i < kNumStreams; i++) {
406 Addr data_addr(stored->data_addr[i]);
407 int data_size = stored->data_size[i];
408 if (data_addr.is_initialized()) {
409 if ((data_size <= kMaxBlockSize && data_addr.is_separate_file()) ||
410 (data_size > kMaxBlockSize && data_addr.is_block_file()) ||
411 !data_addr.SanityCheck()) {
412 STRESS_NOTREACHED();
413 // The address is weird so don't attempt to delete it.
414 stored->data_addr[i] = 0;
415 // In general, trust the stored size as it should be in sync with the
416 // total size tracked by the backend.
419 if (data_size < 0)
420 stored->data_size[i] = 0;
422 entry_.Store();
425 void EntryImpl::SetTimes(base::Time last_used, base::Time last_modified) {
426 node_.Data()->last_used = last_used.ToInternalValue();
427 node_.Data()->last_modified = last_modified.ToInternalValue();
428 node_.set_modified();
431 void EntryImpl::BeginLogging(net::NetLog* net_log, bool created) {
432 DCHECK(!net_log_.net_log());
433 net_log_ = net::BoundNetLog::Make(
434 net_log, net::NetLog::SOURCE_DISK_CACHE_ENTRY);
435 net_log_.BeginEvent(
436 net::NetLog::TYPE_DISK_CACHE_ENTRY_IMPL,
437 CreateNetLogEntryCreationCallback(this, created));
440 const net::BoundNetLog& EntryImpl::net_log() const {
441 return net_log_;
444 // ------------------------------------------------------------------------
446 void EntryImpl::Doom() {
447 if (background_queue_)
448 background_queue_->DoomEntryImpl(this);
451 void EntryImpl::DoomImpl() {
452 if (doomed_ || !backend_)
453 return;
455 SetPointerForInvalidEntry(backend_->GetCurrentEntryId());
456 backend_->InternalDoomEntry(this);
459 void EntryImpl::Close() {
460 if (background_queue_)
461 background_queue_->CloseEntryImpl(this);
464 std::string EntryImpl::GetKey() const {
465 CacheEntryBlock* entry = const_cast<CacheEntryBlock*>(&entry_);
466 int key_len = entry->Data()->key_len;
467 if (key_len <= kMaxInternalKeyLength)
468 return std::string(entry->Data()->key);
470 // We keep a copy of the key so that we can always return it, even if the
471 // backend is disabled.
472 if (!key_.empty())
473 return key_;
475 Addr address(entry->Data()->long_key);
476 DCHECK(address.is_initialized());
477 size_t offset = 0;
478 if (address.is_block_file())
479 offset = address.start_block() * address.BlockSize() + kBlockHeaderSize;
481 COMPILE_ASSERT(kNumStreams == kKeyFileIndex, invalid_key_index);
482 File* key_file = const_cast<EntryImpl*>(this)->GetBackingFile(address,
483 kKeyFileIndex);
484 if (!key_file)
485 return std::string();
487 ++key_len; // We store a trailing \0 on disk that we read back below.
488 if (!offset && key_file->GetLength() != static_cast<size_t>(key_len))
489 return std::string();
491 if (!key_file->Read(WriteInto(&key_, key_len), key_len, offset))
492 key_.clear();
493 return key_;
496 Time EntryImpl::GetLastUsed() const {
497 CacheRankingsBlock* node = const_cast<CacheRankingsBlock*>(&node_);
498 return Time::FromInternalValue(node->Data()->last_used);
501 Time EntryImpl::GetLastModified() const {
502 CacheRankingsBlock* node = const_cast<CacheRankingsBlock*>(&node_);
503 return Time::FromInternalValue(node->Data()->last_modified);
506 int32 EntryImpl::GetDataSize(int index) const {
507 if (index < 0 || index >= kNumStreams)
508 return 0;
510 CacheEntryBlock* entry = const_cast<CacheEntryBlock*>(&entry_);
511 return entry->Data()->data_size[index];
514 int EntryImpl::ReadData(int index, int offset, IOBuffer* buf, int buf_len,
515 const CompletionCallback& callback) {
516 if (callback.is_null())
517 return ReadDataImpl(index, offset, buf, buf_len, callback);
519 DCHECK(node_.Data()->dirty || read_only_);
520 if (index < 0 || index >= kNumStreams)
521 return net::ERR_INVALID_ARGUMENT;
523 int entry_size = entry_.Data()->data_size[index];
524 if (offset >= entry_size || offset < 0 || !buf_len)
525 return 0;
527 if (buf_len < 0)
528 return net::ERR_INVALID_ARGUMENT;
530 if (!background_queue_)
531 return net::ERR_UNEXPECTED;
533 background_queue_->ReadData(this, index, offset, buf, buf_len, callback);
534 return net::ERR_IO_PENDING;
537 int EntryImpl::ReadDataImpl(int index, int offset, IOBuffer* buf, int buf_len,
538 const CompletionCallback& callback) {
539 if (net_log_.IsLoggingAllEvents()) {
540 net_log_.BeginEvent(
541 net::NetLog::TYPE_ENTRY_READ_DATA,
542 CreateNetLogReadWriteDataCallback(index, offset, buf_len, false));
545 int result = InternalReadData(index, offset, buf, buf_len, callback);
547 if (result != net::ERR_IO_PENDING && net_log_.IsLoggingAllEvents()) {
548 net_log_.EndEvent(
549 net::NetLog::TYPE_ENTRY_READ_DATA,
550 CreateNetLogReadWriteCompleteCallback(result));
552 return result;
555 int EntryImpl::WriteData(int index, int offset, IOBuffer* buf, int buf_len,
556 const CompletionCallback& callback, bool truncate) {
557 if (callback.is_null())
558 return WriteDataImpl(index, offset, buf, buf_len, callback, truncate);
560 DCHECK(node_.Data()->dirty || read_only_);
561 if (index < 0 || index >= kNumStreams)
562 return net::ERR_INVALID_ARGUMENT;
564 if (offset < 0 || buf_len < 0)
565 return net::ERR_INVALID_ARGUMENT;
567 if (!background_queue_)
568 return net::ERR_UNEXPECTED;
570 background_queue_->WriteData(this, index, offset, buf, buf_len, truncate,
571 callback);
572 return net::ERR_IO_PENDING;
575 int EntryImpl::WriteDataImpl(int index, int offset, IOBuffer* buf, int buf_len,
576 const CompletionCallback& callback,
577 bool truncate) {
578 if (net_log_.IsLoggingAllEvents()) {
579 net_log_.BeginEvent(
580 net::NetLog::TYPE_ENTRY_WRITE_DATA,
581 CreateNetLogReadWriteDataCallback(index, offset, buf_len, truncate));
584 int result = InternalWriteData(index, offset, buf, buf_len, callback,
585 truncate);
587 if (result != net::ERR_IO_PENDING && net_log_.IsLoggingAllEvents()) {
588 net_log_.EndEvent(
589 net::NetLog::TYPE_ENTRY_WRITE_DATA,
590 CreateNetLogReadWriteCompleteCallback(result));
592 return result;
595 int EntryImpl::ReadSparseData(int64 offset, IOBuffer* buf, int buf_len,
596 const CompletionCallback& callback) {
597 if (callback.is_null())
598 return ReadSparseDataImpl(offset, buf, buf_len, callback);
600 if (!background_queue_)
601 return net::ERR_UNEXPECTED;
603 background_queue_->ReadSparseData(this, offset, buf, buf_len, callback);
604 return net::ERR_IO_PENDING;
607 int EntryImpl::ReadSparseDataImpl(int64 offset, IOBuffer* buf, int buf_len,
608 const CompletionCallback& callback) {
609 DCHECK(node_.Data()->dirty || read_only_);
610 int result = InitSparseData();
611 if (net::OK != result)
612 return result;
614 TimeTicks start = TimeTicks::Now();
615 result = sparse_->StartIO(SparseControl::kReadOperation, offset, buf, buf_len,
616 callback);
617 ReportIOTime(kSparseRead, start);
618 return result;
621 int EntryImpl::WriteSparseData(int64 offset, IOBuffer* buf, int buf_len,
622 const CompletionCallback& callback) {
623 if (callback.is_null())
624 return WriteSparseDataImpl(offset, buf, buf_len, callback);
626 if (!background_queue_)
627 return net::ERR_UNEXPECTED;
629 background_queue_->WriteSparseData(this, offset, buf, buf_len, callback);
630 return net::ERR_IO_PENDING;
633 int EntryImpl::WriteSparseDataImpl(int64 offset, IOBuffer* buf, int buf_len,
634 const CompletionCallback& callback) {
635 DCHECK(node_.Data()->dirty || read_only_);
636 int result = InitSparseData();
637 if (net::OK != result)
638 return result;
640 TimeTicks start = TimeTicks::Now();
641 result = sparse_->StartIO(SparseControl::kWriteOperation, offset, buf,
642 buf_len, callback);
643 ReportIOTime(kSparseWrite, start);
644 return result;
647 int EntryImpl::GetAvailableRange(int64 offset, int len, int64* start,
648 const CompletionCallback& callback) {
649 if (!background_queue_)
650 return net::ERR_UNEXPECTED;
652 background_queue_->GetAvailableRange(this, offset, len, start, callback);
653 return net::ERR_IO_PENDING;
656 int EntryImpl::GetAvailableRangeImpl(int64 offset, int len, int64* start) {
657 int result = InitSparseData();
658 if (net::OK != result)
659 return result;
661 return sparse_->GetAvailableRange(offset, len, start);
664 bool EntryImpl::CouldBeSparse() const {
665 if (sparse_.get())
666 return true;
668 scoped_ptr<SparseControl> sparse;
669 sparse.reset(new SparseControl(const_cast<EntryImpl*>(this)));
670 return sparse->CouldBeSparse();
673 void EntryImpl::CancelSparseIO() {
674 if (background_queue_)
675 background_queue_->CancelSparseIO(this);
678 void EntryImpl::CancelSparseIOImpl() {
679 if (!sparse_.get())
680 return;
682 sparse_->CancelIO();
685 int EntryImpl::ReadyForSparseIO(const CompletionCallback& callback) {
686 if (!sparse_.get())
687 return net::OK;
689 if (!background_queue_)
690 return net::ERR_UNEXPECTED;
692 background_queue_->ReadyForSparseIO(this, callback);
693 return net::ERR_IO_PENDING;
696 int EntryImpl::ReadyForSparseIOImpl(const CompletionCallback& callback) {
697 DCHECK(sparse_.get());
698 return sparse_->ReadyToUse(callback);
701 // ------------------------------------------------------------------------
703 // When an entry is deleted from the cache, we clean up all the data associated
704 // with it for two reasons: to simplify the reuse of the block (we know that any
705 // unused block is filled with zeros), and to simplify the handling of write /
706 // read partial information from an entry (don't have to worry about returning
707 // data related to a previous cache entry because the range was not fully
708 // written before).
709 EntryImpl::~EntryImpl() {
710 if (!backend_) {
711 entry_.clear_modified();
712 node_.clear_modified();
713 return;
715 Log("~EntryImpl in");
717 // Save the sparse info to disk. This will generate IO for this entry and
718 // maybe for a child entry, so it is important to do it before deleting this
719 // entry.
720 sparse_.reset();
722 // Remove this entry from the list of open entries.
723 backend_->OnEntryDestroyBegin(entry_.address());
725 if (doomed_) {
726 DeleteEntryData(true);
727 } else {
728 #if defined(NET_BUILD_STRESS_CACHE)
729 SanityCheck();
730 #endif
731 net_log_.AddEvent(net::NetLog::TYPE_ENTRY_CLOSE);
732 bool ret = true;
733 for (int index = 0; index < kNumStreams; index++) {
734 if (user_buffers_[index].get()) {
735 if (!(ret = Flush(index, 0)))
736 LOG(ERROR) << "Failed to save user data";
738 if (unreported_size_[index]) {
739 backend_->ModifyStorageSize(
740 entry_.Data()->data_size[index] - unreported_size_[index],
741 entry_.Data()->data_size[index]);
745 if (!ret) {
746 // There was a failure writing the actual data. Mark the entry as dirty.
747 int current_id = backend_->GetCurrentEntryId();
748 node_.Data()->dirty = current_id == 1 ? -1 : current_id - 1;
749 node_.Store();
750 } else if (node_.HasData() && !dirty_ && node_.Data()->dirty) {
751 node_.Data()->dirty = 0;
752 node_.Store();
756 Trace("~EntryImpl out 0x%p", reinterpret_cast<void*>(this));
757 net_log_.EndEvent(net::NetLog::TYPE_DISK_CACHE_ENTRY_IMPL);
758 backend_->OnEntryDestroyEnd();
761 int EntryImpl::InternalReadData(int index, int offset,
762 IOBuffer* buf, int buf_len,
763 const CompletionCallback& callback) {
764 DCHECK(node_.Data()->dirty || read_only_);
765 DVLOG(2) << "Read from " << index << " at " << offset << " : " << buf_len;
766 if (index < 0 || index >= kNumStreams)
767 return net::ERR_INVALID_ARGUMENT;
769 int entry_size = entry_.Data()->data_size[index];
770 if (offset >= entry_size || offset < 0 || !buf_len)
771 return 0;
773 if (buf_len < 0)
774 return net::ERR_INVALID_ARGUMENT;
776 if (!backend_)
777 return net::ERR_UNEXPECTED;
779 TimeTicks start = TimeTicks::Now();
781 if (offset + buf_len > entry_size)
782 buf_len = entry_size - offset;
784 UpdateRank(false);
786 backend_->OnEvent(Stats::READ_DATA);
787 backend_->OnRead(buf_len);
789 Addr address(entry_.Data()->data_addr[index]);
790 int eof = address.is_initialized() ? entry_size : 0;
791 if (user_buffers_[index].get() &&
792 user_buffers_[index]->PreRead(eof, offset, &buf_len)) {
793 // Complete the operation locally.
794 buf_len = user_buffers_[index]->Read(offset, buf, buf_len);
795 ReportIOTime(kRead, start);
796 return buf_len;
799 address.set_value(entry_.Data()->data_addr[index]);
800 DCHECK(address.is_initialized());
801 if (!address.is_initialized()) {
802 DoomImpl();
803 return net::ERR_FAILED;
806 File* file = GetBackingFile(address, index);
807 if (!file) {
808 DoomImpl();
809 LOG(ERROR) << "No file for " << std::hex << address.value();
810 return net::ERR_FILE_NOT_FOUND;
813 size_t file_offset = offset;
814 if (address.is_block_file()) {
815 DCHECK_LE(offset + buf_len, kMaxBlockSize);
816 file_offset += address.start_block() * address.BlockSize() +
817 kBlockHeaderSize;
820 SyncCallback* io_callback = NULL;
821 if (!callback.is_null()) {
822 io_callback = new SyncCallback(this, buf, callback,
823 net::NetLog::TYPE_ENTRY_READ_DATA);
826 TimeTicks start_async = TimeTicks::Now();
828 bool completed;
829 if (!file->Read(buf->data(), buf_len, file_offset, io_callback, &completed)) {
830 if (io_callback)
831 io_callback->Discard();
832 DoomImpl();
833 return net::ERR_CACHE_READ_FAILURE;
836 if (io_callback && completed)
837 io_callback->Discard();
839 if (io_callback)
840 ReportIOTime(kReadAsync1, start_async);
842 ReportIOTime(kRead, start);
843 return (completed || callback.is_null()) ? buf_len : net::ERR_IO_PENDING;
846 int EntryImpl::InternalWriteData(int index, int offset,
847 IOBuffer* buf, int buf_len,
848 const CompletionCallback& callback,
849 bool truncate) {
850 DCHECK(node_.Data()->dirty || read_only_);
851 DVLOG(2) << "Write to " << index << " at " << offset << " : " << buf_len;
852 if (index < 0 || index >= kNumStreams)
853 return net::ERR_INVALID_ARGUMENT;
855 if (offset < 0 || buf_len < 0)
856 return net::ERR_INVALID_ARGUMENT;
858 if (!backend_)
859 return net::ERR_UNEXPECTED;
861 int max_file_size = backend_->MaxFileSize();
863 // offset or buf_len could be negative numbers.
864 if (offset > max_file_size || buf_len > max_file_size ||
865 offset + buf_len > max_file_size) {
866 int size = offset + buf_len;
867 if (size <= max_file_size)
868 size = kint32max;
869 backend_->TooMuchStorageRequested(size);
870 return net::ERR_FAILED;
873 TimeTicks start = TimeTicks::Now();
875 // Read the size at this point (it may change inside prepare).
876 int entry_size = entry_.Data()->data_size[index];
877 bool extending = entry_size < offset + buf_len;
878 truncate = truncate && entry_size > offset + buf_len;
879 Trace("To PrepareTarget 0x%x", entry_.address().value());
880 if (!PrepareTarget(index, offset, buf_len, truncate))
881 return net::ERR_FAILED;
883 Trace("From PrepareTarget 0x%x", entry_.address().value());
884 if (extending || truncate)
885 UpdateSize(index, entry_size, offset + buf_len);
887 UpdateRank(true);
889 backend_->OnEvent(Stats::WRITE_DATA);
890 backend_->OnWrite(buf_len);
892 if (user_buffers_[index].get()) {
893 // Complete the operation locally.
894 user_buffers_[index]->Write(offset, buf, buf_len);
895 ReportIOTime(kWrite, start);
896 return buf_len;
899 Addr address(entry_.Data()->data_addr[index]);
900 if (offset + buf_len == 0) {
901 if (truncate) {
902 DCHECK(!address.is_initialized());
904 return 0;
907 File* file = GetBackingFile(address, index);
908 if (!file)
909 return net::ERR_FILE_NOT_FOUND;
911 size_t file_offset = offset;
912 if (address.is_block_file()) {
913 DCHECK_LE(offset + buf_len, kMaxBlockSize);
914 file_offset += address.start_block() * address.BlockSize() +
915 kBlockHeaderSize;
916 } else if (truncate || (extending && !buf_len)) {
917 if (!file->SetLength(offset + buf_len))
918 return net::ERR_FAILED;
921 if (!buf_len)
922 return 0;
924 SyncCallback* io_callback = NULL;
925 if (!callback.is_null()) {
926 io_callback = new SyncCallback(this, buf, callback,
927 net::NetLog::TYPE_ENTRY_WRITE_DATA);
930 TimeTicks start_async = TimeTicks::Now();
932 bool completed;
933 if (!file->Write(buf->data(), buf_len, file_offset, io_callback,
934 &completed)) {
935 if (io_callback)
936 io_callback->Discard();
937 return net::ERR_CACHE_WRITE_FAILURE;
940 if (io_callback && completed)
941 io_callback->Discard();
943 if (io_callback)
944 ReportIOTime(kWriteAsync1, start_async);
946 ReportIOTime(kWrite, start);
947 return (completed || callback.is_null()) ? buf_len : net::ERR_IO_PENDING;
950 // ------------------------------------------------------------------------
952 bool EntryImpl::CreateDataBlock(int index, int size) {
953 DCHECK(index >= 0 && index < kNumStreams);
955 Addr address(entry_.Data()->data_addr[index]);
956 if (!CreateBlock(size, &address))
957 return false;
959 entry_.Data()->data_addr[index] = address.value();
960 entry_.Store();
961 return true;
964 bool EntryImpl::CreateBlock(int size, Addr* address) {
965 DCHECK(!address->is_initialized());
966 if (!backend_)
967 return false;
969 FileType file_type = Addr::RequiredFileType(size);
970 if (EXTERNAL == file_type) {
971 if (size > backend_->MaxFileSize())
972 return false;
973 if (!backend_->CreateExternalFile(address))
974 return false;
975 } else {
976 int num_blocks = Addr::RequiredBlocks(size, file_type);
978 if (!backend_->CreateBlock(file_type, num_blocks, address))
979 return false;
981 return true;
984 // Note that this method may end up modifying a block file so upon return the
985 // involved block will be free, and could be reused for something else. If there
986 // is a crash after that point (and maybe before returning to the caller), the
987 // entry will be left dirty... and at some point it will be discarded; it is
988 // important that the entry doesn't keep a reference to this address, or we'll
989 // end up deleting the contents of |address| once again.
990 void EntryImpl::DeleteData(Addr address, int index) {
991 DCHECK(backend_);
992 if (!address.is_initialized())
993 return;
994 if (address.is_separate_file()) {
995 int failure = !DeleteCacheFile(backend_->GetFileName(address));
996 CACHE_UMA(COUNTS, "DeleteFailed", 0, failure);
997 if (failure) {
998 LOG(ERROR) << "Failed to delete " <<
999 backend_->GetFileName(address).value() << " from the cache.";
1001 if (files_[index])
1002 files_[index] = NULL; // Releases the object.
1003 } else {
1004 backend_->DeleteBlock(address, true);
1008 void EntryImpl::UpdateRank(bool modified) {
1009 if (!backend_)
1010 return;
1012 if (!doomed_) {
1013 // Everything is handled by the backend.
1014 backend_->UpdateRank(this, modified);
1015 return;
1018 Time current = Time::Now();
1019 node_.Data()->last_used = current.ToInternalValue();
1021 if (modified)
1022 node_.Data()->last_modified = current.ToInternalValue();
1025 void EntryImpl::DeleteEntryData(bool everything) {
1026 DCHECK(doomed_ || !everything);
1028 if (GetEntryFlags() & PARENT_ENTRY) {
1029 // We have some child entries that must go away.
1030 SparseControl::DeleteChildren(this);
1033 if (GetDataSize(0))
1034 CACHE_UMA(COUNTS, "DeleteHeader", 0, GetDataSize(0));
1035 if (GetDataSize(1))
1036 CACHE_UMA(COUNTS, "DeleteData", 0, GetDataSize(1));
1037 for (int index = 0; index < kNumStreams; index++) {
1038 Addr address(entry_.Data()->data_addr[index]);
1039 if (address.is_initialized()) {
1040 backend_->ModifyStorageSize(entry_.Data()->data_size[index] -
1041 unreported_size_[index], 0);
1042 entry_.Data()->data_addr[index] = 0;
1043 entry_.Data()->data_size[index] = 0;
1044 entry_.Store();
1045 DeleteData(address, index);
1049 if (!everything)
1050 return;
1052 // Remove all traces of this entry.
1053 backend_->RemoveEntry(this);
1055 // Note that at this point node_ and entry_ are just two blocks of data, and
1056 // even if they reference each other, nobody should be referencing them.
1058 Addr address(entry_.Data()->long_key);
1059 DeleteData(address, kKeyFileIndex);
1060 backend_->ModifyStorageSize(entry_.Data()->key_len, 0);
1062 backend_->DeleteBlock(entry_.address(), true);
1063 entry_.Discard();
1065 if (!LeaveRankingsBehind()) {
1066 backend_->DeleteBlock(node_.address(), true);
1067 node_.Discard();
1071 // We keep a memory buffer for everything that ends up stored on a block file
1072 // (because we don't know yet the final data size), and for some of the data
1073 // that end up on external files. This function will initialize that memory
1074 // buffer and / or the files needed to store the data.
1076 // In general, a buffer may overlap data already stored on disk, and in that
1077 // case, the contents of the buffer are the most accurate. It may also extend
1078 // the file, but we don't want to read from disk just to keep the buffer up to
1079 // date. This means that as soon as there is a chance to get confused about what
1080 // is the most recent version of some part of a file, we'll flush the buffer and
1081 // reuse it for the new data. Keep in mind that the normal use pattern is quite
1082 // simple (write sequentially from the beginning), so we optimize for handling
1083 // that case.
1084 bool EntryImpl::PrepareTarget(int index, int offset, int buf_len,
1085 bool truncate) {
1086 if (truncate)
1087 return HandleTruncation(index, offset, buf_len);
1089 if (!offset && !buf_len)
1090 return true;
1092 Addr address(entry_.Data()->data_addr[index]);
1093 if (address.is_initialized()) {
1094 if (address.is_block_file() && !MoveToLocalBuffer(index))
1095 return false;
1097 if (!user_buffers_[index].get() && offset < kMaxBlockSize) {
1098 // We are about to create a buffer for the first 16KB, make sure that we
1099 // preserve existing data.
1100 if (!CopyToLocalBuffer(index))
1101 return false;
1105 if (!user_buffers_[index].get())
1106 user_buffers_[index].reset(new UserBuffer(backend_.get()));
1108 return PrepareBuffer(index, offset, buf_len);
1111 // We get to this function with some data already stored. If there is a
1112 // truncation that results on data stored internally, we'll explicitly
1113 // handle the case here.
1114 bool EntryImpl::HandleTruncation(int index, int offset, int buf_len) {
1115 Addr address(entry_.Data()->data_addr[index]);
1117 int current_size = entry_.Data()->data_size[index];
1118 int new_size = offset + buf_len;
1120 if (!new_size) {
1121 // This is by far the most common scenario.
1122 backend_->ModifyStorageSize(current_size - unreported_size_[index], 0);
1123 entry_.Data()->data_addr[index] = 0;
1124 entry_.Data()->data_size[index] = 0;
1125 unreported_size_[index] = 0;
1126 entry_.Store();
1127 DeleteData(address, index);
1129 user_buffers_[index].reset();
1130 return true;
1133 // We never postpone truncating a file, if there is one, but we may postpone
1134 // telling the backend about the size reduction.
1135 if (user_buffers_[index].get()) {
1136 DCHECK_GE(current_size, user_buffers_[index]->Start());
1137 if (!address.is_initialized()) {
1138 // There is no overlap between the buffer and disk.
1139 if (new_size > user_buffers_[index]->Start()) {
1140 // Just truncate our buffer.
1141 DCHECK_LT(new_size, user_buffers_[index]->End());
1142 user_buffers_[index]->Truncate(new_size);
1143 return true;
1146 // Just discard our buffer.
1147 user_buffers_[index]->Reset();
1148 return PrepareBuffer(index, offset, buf_len);
1151 // There is some overlap or we need to extend the file before the
1152 // truncation.
1153 if (offset > user_buffers_[index]->Start())
1154 user_buffers_[index]->Truncate(new_size);
1155 UpdateSize(index, current_size, new_size);
1156 if (!Flush(index, 0))
1157 return false;
1158 user_buffers_[index].reset();
1161 // We have data somewhere, and it is not in a buffer.
1162 DCHECK(!user_buffers_[index].get());
1163 DCHECK(address.is_initialized());
1165 if (new_size > kMaxBlockSize)
1166 return true; // Let the operation go directly to disk.
1168 return ImportSeparateFile(index, offset + buf_len);
1171 bool EntryImpl::CopyToLocalBuffer(int index) {
1172 Addr address(entry_.Data()->data_addr[index]);
1173 DCHECK(!user_buffers_[index].get());
1174 DCHECK(address.is_initialized());
1176 int len = std::min(entry_.Data()->data_size[index], kMaxBlockSize);
1177 user_buffers_[index].reset(new UserBuffer(backend_.get()));
1178 user_buffers_[index]->Write(len, NULL, 0);
1180 File* file = GetBackingFile(address, index);
1181 int offset = 0;
1183 if (address.is_block_file())
1184 offset = address.start_block() * address.BlockSize() + kBlockHeaderSize;
1186 if (!file ||
1187 !file->Read(user_buffers_[index]->Data(), len, offset, NULL, NULL)) {
1188 user_buffers_[index].reset();
1189 return false;
1191 return true;
1194 bool EntryImpl::MoveToLocalBuffer(int index) {
1195 if (!CopyToLocalBuffer(index))
1196 return false;
1198 Addr address(entry_.Data()->data_addr[index]);
1199 entry_.Data()->data_addr[index] = 0;
1200 entry_.Store();
1201 DeleteData(address, index);
1203 // If we lose this entry we'll see it as zero sized.
1204 int len = entry_.Data()->data_size[index];
1205 backend_->ModifyStorageSize(len - unreported_size_[index], 0);
1206 unreported_size_[index] = len;
1207 return true;
1210 bool EntryImpl::ImportSeparateFile(int index, int new_size) {
1211 if (entry_.Data()->data_size[index] > new_size)
1212 UpdateSize(index, entry_.Data()->data_size[index], new_size);
1214 return MoveToLocalBuffer(index);
1217 bool EntryImpl::PrepareBuffer(int index, int offset, int buf_len) {
1218 DCHECK(user_buffers_[index].get());
1219 if ((user_buffers_[index]->End() && offset > user_buffers_[index]->End()) ||
1220 offset > entry_.Data()->data_size[index]) {
1221 // We are about to extend the buffer or the file (with zeros), so make sure
1222 // that we are not overwriting anything.
1223 Addr address(entry_.Data()->data_addr[index]);
1224 if (address.is_initialized() && address.is_separate_file()) {
1225 if (!Flush(index, 0))
1226 return false;
1227 // There is an actual file already, and we don't want to keep track of
1228 // its length so we let this operation go straight to disk.
1229 // The only case when a buffer is allowed to extend the file (as in fill
1230 // with zeros before the start) is when there is no file yet to extend.
1231 user_buffers_[index].reset();
1232 return true;
1236 if (!user_buffers_[index]->PreWrite(offset, buf_len)) {
1237 if (!Flush(index, offset + buf_len))
1238 return false;
1240 // Lets try again.
1241 if (offset > user_buffers_[index]->End() ||
1242 !user_buffers_[index]->PreWrite(offset, buf_len)) {
1243 // We cannot complete the operation with a buffer.
1244 DCHECK(!user_buffers_[index]->Size());
1245 DCHECK(!user_buffers_[index]->Start());
1246 user_buffers_[index].reset();
1249 return true;
1252 bool EntryImpl::Flush(int index, int min_len) {
1253 Addr address(entry_.Data()->data_addr[index]);
1254 DCHECK(user_buffers_[index].get());
1255 DCHECK(!address.is_initialized() || address.is_separate_file());
1256 DVLOG(3) << "Flush";
1258 int size = std::max(entry_.Data()->data_size[index], min_len);
1259 if (size && !address.is_initialized() && !CreateDataBlock(index, size))
1260 return false;
1262 if (!entry_.Data()->data_size[index]) {
1263 DCHECK(!user_buffers_[index]->Size());
1264 return true;
1267 address.set_value(entry_.Data()->data_addr[index]);
1269 int len = user_buffers_[index]->Size();
1270 int offset = user_buffers_[index]->Start();
1271 if (!len && !offset)
1272 return true;
1274 if (address.is_block_file()) {
1275 DCHECK_EQ(len, entry_.Data()->data_size[index]);
1276 DCHECK(!offset);
1277 offset = address.start_block() * address.BlockSize() + kBlockHeaderSize;
1280 File* file = GetBackingFile(address, index);
1281 if (!file)
1282 return false;
1284 if (!file->Write(user_buffers_[index]->Data(), len, offset, NULL, NULL))
1285 return false;
1286 user_buffers_[index]->Reset();
1288 return true;
1291 void EntryImpl::UpdateSize(int index, int old_size, int new_size) {
1292 if (entry_.Data()->data_size[index] == new_size)
1293 return;
1295 unreported_size_[index] += new_size - old_size;
1296 entry_.Data()->data_size[index] = new_size;
1297 entry_.set_modified();
1300 int EntryImpl::InitSparseData() {
1301 if (sparse_.get())
1302 return net::OK;
1304 // Use a local variable so that sparse_ never goes from 'valid' to NULL.
1305 scoped_ptr<SparseControl> sparse(new SparseControl(this));
1306 int result = sparse->Init();
1307 if (net::OK == result)
1308 sparse_.swap(sparse);
1310 return result;
1313 void EntryImpl::SetEntryFlags(uint32 flags) {
1314 entry_.Data()->flags |= flags;
1315 entry_.set_modified();
1318 uint32 EntryImpl::GetEntryFlags() {
1319 return entry_.Data()->flags;
1322 void EntryImpl::GetData(int index, char** buffer, Addr* address) {
1323 DCHECK(backend_);
1324 if (user_buffers_[index].get() && user_buffers_[index]->Size() &&
1325 !user_buffers_[index]->Start()) {
1326 // The data is already in memory, just copy it and we're done.
1327 int data_len = entry_.Data()->data_size[index];
1328 if (data_len <= user_buffers_[index]->Size()) {
1329 DCHECK(!user_buffers_[index]->Start());
1330 *buffer = new char[data_len];
1331 memcpy(*buffer, user_buffers_[index]->Data(), data_len);
1332 return;
1336 // Bad news: we'd have to read the info from disk so instead we'll just tell
1337 // the caller where to read from.
1338 *buffer = NULL;
1339 address->set_value(entry_.Data()->data_addr[index]);
1340 if (address->is_initialized()) {
1341 // Prevent us from deleting the block from the backing store.
1342 backend_->ModifyStorageSize(entry_.Data()->data_size[index] -
1343 unreported_size_[index], 0);
1344 entry_.Data()->data_addr[index] = 0;
1345 entry_.Data()->data_size[index] = 0;
1349 void EntryImpl::ReportIOTime(Operation op, const base::TimeTicks& start) {
1350 if (!backend_)
1351 return;
1353 switch (op) {
1354 case kRead:
1355 CACHE_UMA(AGE_MS, "ReadTime", 0, start);
1356 break;
1357 case kWrite:
1358 CACHE_UMA(AGE_MS, "WriteTime", 0, start);
1359 break;
1360 case kSparseRead:
1361 CACHE_UMA(AGE_MS, "SparseReadTime", 0, start);
1362 break;
1363 case kSparseWrite:
1364 CACHE_UMA(AGE_MS, "SparseWriteTime", 0, start);
1365 break;
1366 case kAsyncIO:
1367 CACHE_UMA(AGE_MS, "AsyncIOTime", 0, start);
1368 break;
1369 case kReadAsync1:
1370 CACHE_UMA(AGE_MS, "AsyncReadDispatchTime", 0, start);
1371 break;
1372 case kWriteAsync1:
1373 CACHE_UMA(AGE_MS, "AsyncWriteDispatchTime", 0, start);
1374 break;
1375 default:
1376 NOTREACHED();
1380 void EntryImpl::Log(const char* msg) {
1381 int dirty = 0;
1382 if (node_.HasData()) {
1383 dirty = node_.Data()->dirty;
1386 Trace("%s 0x%p 0x%x 0x%x", msg, reinterpret_cast<void*>(this),
1387 entry_.address().value(), node_.address().value());
1389 Trace(" data: 0x%x 0x%x 0x%x", entry_.Data()->data_addr[0],
1390 entry_.Data()->data_addr[1], entry_.Data()->long_key);
1392 Trace(" doomed: %d 0x%x", doomed_, dirty);
1395 } // namespace disk_cache